1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_page(struct page *page, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_page(struct page *page, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 98 static inline bool subpool_is_free(struct hugepage_subpool *spool) 99 { 100 if (spool->count) 101 return false; 102 if (spool->max_hpages != -1) 103 return spool->used_hpages == 0; 104 if (spool->min_hpages != -1) 105 return spool->rsv_hpages == spool->min_hpages; 106 107 return true; 108 } 109 110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 111 unsigned long irq_flags) 112 { 113 spin_unlock_irqrestore(&spool->lock, irq_flags); 114 115 /* If no pages are used, and no other handles to the subpool 116 * remain, give up any reservations based on minimum size and 117 * free the subpool */ 118 if (subpool_is_free(spool)) { 119 if (spool->min_hpages != -1) 120 hugetlb_acct_memory(spool->hstate, 121 -spool->min_hpages); 122 kfree(spool); 123 } 124 } 125 126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 127 long min_hpages) 128 { 129 struct hugepage_subpool *spool; 130 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 132 if (!spool) 133 return NULL; 134 135 spin_lock_init(&spool->lock); 136 spool->count = 1; 137 spool->max_hpages = max_hpages; 138 spool->hstate = h; 139 spool->min_hpages = min_hpages; 140 141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 142 kfree(spool); 143 return NULL; 144 } 145 spool->rsv_hpages = min_hpages; 146 147 return spool; 148 } 149 150 void hugepage_put_subpool(struct hugepage_subpool *spool) 151 { 152 unsigned long flags; 153 154 spin_lock_irqsave(&spool->lock, flags); 155 BUG_ON(!spool->count); 156 spool->count--; 157 unlock_or_release_subpool(spool, flags); 158 } 159 160 /* 161 * Subpool accounting for allocating and reserving pages. 162 * Return -ENOMEM if there are not enough resources to satisfy the 163 * request. Otherwise, return the number of pages by which the 164 * global pools must be adjusted (upward). The returned value may 165 * only be different than the passed value (delta) in the case where 166 * a subpool minimum size must be maintained. 167 */ 168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 169 long delta) 170 { 171 long ret = delta; 172 173 if (!spool) 174 return ret; 175 176 spin_lock_irq(&spool->lock); 177 178 if (spool->max_hpages != -1) { /* maximum size accounting */ 179 if ((spool->used_hpages + delta) <= spool->max_hpages) 180 spool->used_hpages += delta; 181 else { 182 ret = -ENOMEM; 183 goto unlock_ret; 184 } 185 } 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->rsv_hpages) { 189 if (delta > spool->rsv_hpages) { 190 /* 191 * Asking for more reserves than those already taken on 192 * behalf of subpool. Return difference. 193 */ 194 ret = delta - spool->rsv_hpages; 195 spool->rsv_hpages = 0; 196 } else { 197 ret = 0; /* reserves already accounted for */ 198 spool->rsv_hpages -= delta; 199 } 200 } 201 202 unlock_ret: 203 spin_unlock_irq(&spool->lock); 204 return ret; 205 } 206 207 /* 208 * Subpool accounting for freeing and unreserving pages. 209 * Return the number of global page reservations that must be dropped. 210 * The return value may only be different than the passed value (delta) 211 * in the case where a subpool minimum size must be maintained. 212 */ 213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 214 long delta) 215 { 216 long ret = delta; 217 unsigned long flags; 218 219 if (!spool) 220 return delta; 221 222 spin_lock_irqsave(&spool->lock, flags); 223 224 if (spool->max_hpages != -1) /* maximum size accounting */ 225 spool->used_hpages -= delta; 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 229 if (spool->rsv_hpages + delta <= spool->min_hpages) 230 ret = 0; 231 else 232 ret = spool->rsv_hpages + delta - spool->min_hpages; 233 234 spool->rsv_hpages += delta; 235 if (spool->rsv_hpages > spool->min_hpages) 236 spool->rsv_hpages = spool->min_hpages; 237 } 238 239 /* 240 * If hugetlbfs_put_super couldn't free spool due to an outstanding 241 * quota reference, free it now. 242 */ 243 unlock_or_release_subpool(spool, flags); 244 245 return ret; 246 } 247 248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 249 { 250 return HUGETLBFS_SB(inode->i_sb)->spool; 251 } 252 253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 254 { 255 return subpool_inode(file_inode(vma->vm_file)); 256 } 257 258 /* Helper that removes a struct file_region from the resv_map cache and returns 259 * it for use. 260 */ 261 static struct file_region * 262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 263 { 264 struct file_region *nrg; 265 266 VM_BUG_ON(resv->region_cache_count <= 0); 267 268 resv->region_cache_count--; 269 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 270 list_del(&nrg->link); 271 272 nrg->from = from; 273 nrg->to = to; 274 275 return nrg; 276 } 277 278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 279 struct file_region *rg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 nrg->reservation_counter = rg->reservation_counter; 283 nrg->css = rg->css; 284 if (rg->css) 285 css_get(rg->css); 286 #endif 287 } 288 289 /* Helper that records hugetlb_cgroup uncharge info. */ 290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 291 struct hstate *h, 292 struct resv_map *resv, 293 struct file_region *nrg) 294 { 295 #ifdef CONFIG_CGROUP_HUGETLB 296 if (h_cg) { 297 nrg->reservation_counter = 298 &h_cg->rsvd_hugepage[hstate_index(h)]; 299 nrg->css = &h_cg->css; 300 /* 301 * The caller will hold exactly one h_cg->css reference for the 302 * whole contiguous reservation region. But this area might be 303 * scattered when there are already some file_regions reside in 304 * it. As a result, many file_regions may share only one css 305 * reference. In order to ensure that one file_region must hold 306 * exactly one h_cg->css reference, we should do css_get for 307 * each file_region and leave the reference held by caller 308 * untouched. 309 */ 310 css_get(&h_cg->css); 311 if (!resv->pages_per_hpage) 312 resv->pages_per_hpage = pages_per_huge_page(h); 313 /* pages_per_hpage should be the same for all entries in 314 * a resv_map. 315 */ 316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 317 } else { 318 nrg->reservation_counter = NULL; 319 nrg->css = NULL; 320 } 321 #endif 322 } 323 324 static void put_uncharge_info(struct file_region *rg) 325 { 326 #ifdef CONFIG_CGROUP_HUGETLB 327 if (rg->css) 328 css_put(rg->css); 329 #endif 330 } 331 332 static bool has_same_uncharge_info(struct file_region *rg, 333 struct file_region *org) 334 { 335 #ifdef CONFIG_CGROUP_HUGETLB 336 return rg->reservation_counter == org->reservation_counter && 337 rg->css == org->css; 338 339 #else 340 return true; 341 #endif 342 } 343 344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 345 { 346 struct file_region *nrg, *prg; 347 348 prg = list_prev_entry(rg, link); 349 if (&prg->link != &resv->regions && prg->to == rg->from && 350 has_same_uncharge_info(prg, rg)) { 351 prg->to = rg->to; 352 353 list_del(&rg->link); 354 put_uncharge_info(rg); 355 kfree(rg); 356 357 rg = prg; 358 } 359 360 nrg = list_next_entry(rg, link); 361 if (&nrg->link != &resv->regions && nrg->from == rg->to && 362 has_same_uncharge_info(nrg, rg)) { 363 nrg->from = rg->from; 364 365 list_del(&rg->link); 366 put_uncharge_info(rg); 367 kfree(rg); 368 } 369 } 370 371 static inline long 372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 373 long to, struct hstate *h, struct hugetlb_cgroup *cg, 374 long *regions_needed) 375 { 376 struct file_region *nrg; 377 378 if (!regions_needed) { 379 nrg = get_file_region_entry_from_cache(map, from, to); 380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 381 list_add(&nrg->link, rg); 382 coalesce_file_region(map, nrg); 383 } else 384 *regions_needed += 1; 385 386 return to - from; 387 } 388 389 /* 390 * Must be called with resv->lock held. 391 * 392 * Calling this with regions_needed != NULL will count the number of pages 393 * to be added but will not modify the linked list. And regions_needed will 394 * indicate the number of file_regions needed in the cache to carry out to add 395 * the regions for this range. 396 */ 397 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 398 struct hugetlb_cgroup *h_cg, 399 struct hstate *h, long *regions_needed) 400 { 401 long add = 0; 402 struct list_head *head = &resv->regions; 403 long last_accounted_offset = f; 404 struct file_region *iter, *trg = NULL; 405 struct list_head *rg = NULL; 406 407 if (regions_needed) 408 *regions_needed = 0; 409 410 /* In this loop, we essentially handle an entry for the range 411 * [last_accounted_offset, iter->from), at every iteration, with some 412 * bounds checking. 413 */ 414 list_for_each_entry_safe(iter, trg, head, link) { 415 /* Skip irrelevant regions that start before our range. */ 416 if (iter->from < f) { 417 /* If this region ends after the last accounted offset, 418 * then we need to update last_accounted_offset. 419 */ 420 if (iter->to > last_accounted_offset) 421 last_accounted_offset = iter->to; 422 continue; 423 } 424 425 /* When we find a region that starts beyond our range, we've 426 * finished. 427 */ 428 if (iter->from >= t) { 429 rg = iter->link.prev; 430 break; 431 } 432 433 /* Add an entry for last_accounted_offset -> iter->from, and 434 * update last_accounted_offset. 435 */ 436 if (iter->from > last_accounted_offset) 437 add += hugetlb_resv_map_add(resv, iter->link.prev, 438 last_accounted_offset, 439 iter->from, h, h_cg, 440 regions_needed); 441 442 last_accounted_offset = iter->to; 443 } 444 445 /* Handle the case where our range extends beyond 446 * last_accounted_offset. 447 */ 448 if (!rg) 449 rg = head->prev; 450 if (last_accounted_offset < t) 451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 452 t, h, h_cg, regions_needed); 453 454 return add; 455 } 456 457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 458 */ 459 static int allocate_file_region_entries(struct resv_map *resv, 460 int regions_needed) 461 __must_hold(&resv->lock) 462 { 463 LIST_HEAD(allocated_regions); 464 int to_allocate = 0, i = 0; 465 struct file_region *trg = NULL, *rg = NULL; 466 467 VM_BUG_ON(regions_needed < 0); 468 469 /* 470 * Check for sufficient descriptors in the cache to accommodate 471 * the number of in progress add operations plus regions_needed. 472 * 473 * This is a while loop because when we drop the lock, some other call 474 * to region_add or region_del may have consumed some region_entries, 475 * so we keep looping here until we finally have enough entries for 476 * (adds_in_progress + regions_needed). 477 */ 478 while (resv->region_cache_count < 479 (resv->adds_in_progress + regions_needed)) { 480 to_allocate = resv->adds_in_progress + regions_needed - 481 resv->region_cache_count; 482 483 /* At this point, we should have enough entries in the cache 484 * for all the existing adds_in_progress. We should only be 485 * needing to allocate for regions_needed. 486 */ 487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 488 489 spin_unlock(&resv->lock); 490 for (i = 0; i < to_allocate; i++) { 491 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 492 if (!trg) 493 goto out_of_memory; 494 list_add(&trg->link, &allocated_regions); 495 } 496 497 spin_lock(&resv->lock); 498 499 list_splice(&allocated_regions, &resv->region_cache); 500 resv->region_cache_count += to_allocate; 501 } 502 503 return 0; 504 505 out_of_memory: 506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 507 list_del(&rg->link); 508 kfree(rg); 509 } 510 return -ENOMEM; 511 } 512 513 /* 514 * Add the huge page range represented by [f, t) to the reserve 515 * map. Regions will be taken from the cache to fill in this range. 516 * Sufficient regions should exist in the cache due to the previous 517 * call to region_chg with the same range, but in some cases the cache will not 518 * have sufficient entries due to races with other code doing region_add or 519 * region_del. The extra needed entries will be allocated. 520 * 521 * regions_needed is the out value provided by a previous call to region_chg. 522 * 523 * Return the number of new huge pages added to the map. This number is greater 524 * than or equal to zero. If file_region entries needed to be allocated for 525 * this operation and we were not able to allocate, it returns -ENOMEM. 526 * region_add of regions of length 1 never allocate file_regions and cannot 527 * fail; region_chg will always allocate at least 1 entry and a region_add for 528 * 1 page will only require at most 1 entry. 529 */ 530 static long region_add(struct resv_map *resv, long f, long t, 531 long in_regions_needed, struct hstate *h, 532 struct hugetlb_cgroup *h_cg) 533 { 534 long add = 0, actual_regions_needed = 0; 535 536 spin_lock(&resv->lock); 537 retry: 538 539 /* Count how many regions are actually needed to execute this add. */ 540 add_reservation_in_range(resv, f, t, NULL, NULL, 541 &actual_regions_needed); 542 543 /* 544 * Check for sufficient descriptors in the cache to accommodate 545 * this add operation. Note that actual_regions_needed may be greater 546 * than in_regions_needed, as the resv_map may have been modified since 547 * the region_chg call. In this case, we need to make sure that we 548 * allocate extra entries, such that we have enough for all the 549 * existing adds_in_progress, plus the excess needed for this 550 * operation. 551 */ 552 if (actual_regions_needed > in_regions_needed && 553 resv->region_cache_count < 554 resv->adds_in_progress + 555 (actual_regions_needed - in_regions_needed)) { 556 /* region_add operation of range 1 should never need to 557 * allocate file_region entries. 558 */ 559 VM_BUG_ON(t - f <= 1); 560 561 if (allocate_file_region_entries( 562 resv, actual_regions_needed - in_regions_needed)) { 563 return -ENOMEM; 564 } 565 566 goto retry; 567 } 568 569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 570 571 resv->adds_in_progress -= in_regions_needed; 572 573 spin_unlock(&resv->lock); 574 return add; 575 } 576 577 /* 578 * Examine the existing reserve map and determine how many 579 * huge pages in the specified range [f, t) are NOT currently 580 * represented. This routine is called before a subsequent 581 * call to region_add that will actually modify the reserve 582 * map to add the specified range [f, t). region_chg does 583 * not change the number of huge pages represented by the 584 * map. A number of new file_region structures is added to the cache as a 585 * placeholder, for the subsequent region_add call to use. At least 1 586 * file_region structure is added. 587 * 588 * out_regions_needed is the number of regions added to the 589 * resv->adds_in_progress. This value needs to be provided to a follow up call 590 * to region_add or region_abort for proper accounting. 591 * 592 * Returns the number of huge pages that need to be added to the existing 593 * reservation map for the range [f, t). This number is greater or equal to 594 * zero. -ENOMEM is returned if a new file_region structure or cache entry 595 * is needed and can not be allocated. 596 */ 597 static long region_chg(struct resv_map *resv, long f, long t, 598 long *out_regions_needed) 599 { 600 long chg = 0; 601 602 spin_lock(&resv->lock); 603 604 /* Count how many hugepages in this range are NOT represented. */ 605 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 606 out_regions_needed); 607 608 if (*out_regions_needed == 0) 609 *out_regions_needed = 1; 610 611 if (allocate_file_region_entries(resv, *out_regions_needed)) 612 return -ENOMEM; 613 614 resv->adds_in_progress += *out_regions_needed; 615 616 spin_unlock(&resv->lock); 617 return chg; 618 } 619 620 /* 621 * Abort the in progress add operation. The adds_in_progress field 622 * of the resv_map keeps track of the operations in progress between 623 * calls to region_chg and region_add. Operations are sometimes 624 * aborted after the call to region_chg. In such cases, region_abort 625 * is called to decrement the adds_in_progress counter. regions_needed 626 * is the value returned by the region_chg call, it is used to decrement 627 * the adds_in_progress counter. 628 * 629 * NOTE: The range arguments [f, t) are not needed or used in this 630 * routine. They are kept to make reading the calling code easier as 631 * arguments will match the associated region_chg call. 632 */ 633 static void region_abort(struct resv_map *resv, long f, long t, 634 long regions_needed) 635 { 636 spin_lock(&resv->lock); 637 VM_BUG_ON(!resv->region_cache_count); 638 resv->adds_in_progress -= regions_needed; 639 spin_unlock(&resv->lock); 640 } 641 642 /* 643 * Delete the specified range [f, t) from the reserve map. If the 644 * t parameter is LONG_MAX, this indicates that ALL regions after f 645 * should be deleted. Locate the regions which intersect [f, t) 646 * and either trim, delete or split the existing regions. 647 * 648 * Returns the number of huge pages deleted from the reserve map. 649 * In the normal case, the return value is zero or more. In the 650 * case where a region must be split, a new region descriptor must 651 * be allocated. If the allocation fails, -ENOMEM will be returned. 652 * NOTE: If the parameter t == LONG_MAX, then we will never split 653 * a region and possibly return -ENOMEM. Callers specifying 654 * t == LONG_MAX do not need to check for -ENOMEM error. 655 */ 656 static long region_del(struct resv_map *resv, long f, long t) 657 { 658 struct list_head *head = &resv->regions; 659 struct file_region *rg, *trg; 660 struct file_region *nrg = NULL; 661 long del = 0; 662 663 retry: 664 spin_lock(&resv->lock); 665 list_for_each_entry_safe(rg, trg, head, link) { 666 /* 667 * Skip regions before the range to be deleted. file_region 668 * ranges are normally of the form [from, to). However, there 669 * may be a "placeholder" entry in the map which is of the form 670 * (from, to) with from == to. Check for placeholder entries 671 * at the beginning of the range to be deleted. 672 */ 673 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 674 continue; 675 676 if (rg->from >= t) 677 break; 678 679 if (f > rg->from && t < rg->to) { /* Must split region */ 680 /* 681 * Check for an entry in the cache before dropping 682 * lock and attempting allocation. 683 */ 684 if (!nrg && 685 resv->region_cache_count > resv->adds_in_progress) { 686 nrg = list_first_entry(&resv->region_cache, 687 struct file_region, 688 link); 689 list_del(&nrg->link); 690 resv->region_cache_count--; 691 } 692 693 if (!nrg) { 694 spin_unlock(&resv->lock); 695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 696 if (!nrg) 697 return -ENOMEM; 698 goto retry; 699 } 700 701 del += t - f; 702 hugetlb_cgroup_uncharge_file_region( 703 resv, rg, t - f, false); 704 705 /* New entry for end of split region */ 706 nrg->from = t; 707 nrg->to = rg->to; 708 709 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 710 711 INIT_LIST_HEAD(&nrg->link); 712 713 /* Original entry is trimmed */ 714 rg->to = f; 715 716 list_add(&nrg->link, &rg->link); 717 nrg = NULL; 718 break; 719 } 720 721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 722 del += rg->to - rg->from; 723 hugetlb_cgroup_uncharge_file_region(resv, rg, 724 rg->to - rg->from, true); 725 list_del(&rg->link); 726 kfree(rg); 727 continue; 728 } 729 730 if (f <= rg->from) { /* Trim beginning of region */ 731 hugetlb_cgroup_uncharge_file_region(resv, rg, 732 t - rg->from, false); 733 734 del += t - rg->from; 735 rg->from = t; 736 } else { /* Trim end of region */ 737 hugetlb_cgroup_uncharge_file_region(resv, rg, 738 rg->to - f, false); 739 740 del += rg->to - f; 741 rg->to = f; 742 } 743 } 744 745 spin_unlock(&resv->lock); 746 kfree(nrg); 747 return del; 748 } 749 750 /* 751 * A rare out of memory error was encountered which prevented removal of 752 * the reserve map region for a page. The huge page itself was free'ed 753 * and removed from the page cache. This routine will adjust the subpool 754 * usage count, and the global reserve count if needed. By incrementing 755 * these counts, the reserve map entry which could not be deleted will 756 * appear as a "reserved" entry instead of simply dangling with incorrect 757 * counts. 758 */ 759 void hugetlb_fix_reserve_counts(struct inode *inode) 760 { 761 struct hugepage_subpool *spool = subpool_inode(inode); 762 long rsv_adjust; 763 bool reserved = false; 764 765 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 766 if (rsv_adjust > 0) { 767 struct hstate *h = hstate_inode(inode); 768 769 if (!hugetlb_acct_memory(h, 1)) 770 reserved = true; 771 } else if (!rsv_adjust) { 772 reserved = true; 773 } 774 775 if (!reserved) 776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 777 } 778 779 /* 780 * Count and return the number of huge pages in the reserve map 781 * that intersect with the range [f, t). 782 */ 783 static long region_count(struct resv_map *resv, long f, long t) 784 { 785 struct list_head *head = &resv->regions; 786 struct file_region *rg; 787 long chg = 0; 788 789 spin_lock(&resv->lock); 790 /* Locate each segment we overlap with, and count that overlap. */ 791 list_for_each_entry(rg, head, link) { 792 long seg_from; 793 long seg_to; 794 795 if (rg->to <= f) 796 continue; 797 if (rg->from >= t) 798 break; 799 800 seg_from = max(rg->from, f); 801 seg_to = min(rg->to, t); 802 803 chg += seg_to - seg_from; 804 } 805 spin_unlock(&resv->lock); 806 807 return chg; 808 } 809 810 /* 811 * Convert the address within this vma to the page offset within 812 * the mapping, in pagecache page units; huge pages here. 813 */ 814 static pgoff_t vma_hugecache_offset(struct hstate *h, 815 struct vm_area_struct *vma, unsigned long address) 816 { 817 return ((address - vma->vm_start) >> huge_page_shift(h)) + 818 (vma->vm_pgoff >> huge_page_order(h)); 819 } 820 821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 822 unsigned long address) 823 { 824 return vma_hugecache_offset(hstate_vma(vma), vma, address); 825 } 826 EXPORT_SYMBOL_GPL(linear_hugepage_index); 827 828 /* 829 * Return the size of the pages allocated when backing a VMA. In the majority 830 * cases this will be same size as used by the page table entries. 831 */ 832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 833 { 834 if (vma->vm_ops && vma->vm_ops->pagesize) 835 return vma->vm_ops->pagesize(vma); 836 return PAGE_SIZE; 837 } 838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 839 840 /* 841 * Return the page size being used by the MMU to back a VMA. In the majority 842 * of cases, the page size used by the kernel matches the MMU size. On 843 * architectures where it differs, an architecture-specific 'strong' 844 * version of this symbol is required. 845 */ 846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 847 { 848 return vma_kernel_pagesize(vma); 849 } 850 851 /* 852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 853 * bits of the reservation map pointer, which are always clear due to 854 * alignment. 855 */ 856 #define HPAGE_RESV_OWNER (1UL << 0) 857 #define HPAGE_RESV_UNMAPPED (1UL << 1) 858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 859 860 /* 861 * These helpers are used to track how many pages are reserved for 862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 863 * is guaranteed to have their future faults succeed. 864 * 865 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 866 * the reserve counters are updated with the hugetlb_lock held. It is safe 867 * to reset the VMA at fork() time as it is not in use yet and there is no 868 * chance of the global counters getting corrupted as a result of the values. 869 * 870 * The private mapping reservation is represented in a subtly different 871 * manner to a shared mapping. A shared mapping has a region map associated 872 * with the underlying file, this region map represents the backing file 873 * pages which have ever had a reservation assigned which this persists even 874 * after the page is instantiated. A private mapping has a region map 875 * associated with the original mmap which is attached to all VMAs which 876 * reference it, this region map represents those offsets which have consumed 877 * reservation ie. where pages have been instantiated. 878 */ 879 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 880 { 881 return (unsigned long)vma->vm_private_data; 882 } 883 884 static void set_vma_private_data(struct vm_area_struct *vma, 885 unsigned long value) 886 { 887 vma->vm_private_data = (void *)value; 888 } 889 890 static void 891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 892 struct hugetlb_cgroup *h_cg, 893 struct hstate *h) 894 { 895 #ifdef CONFIG_CGROUP_HUGETLB 896 if (!h_cg || !h) { 897 resv_map->reservation_counter = NULL; 898 resv_map->pages_per_hpage = 0; 899 resv_map->css = NULL; 900 } else { 901 resv_map->reservation_counter = 902 &h_cg->rsvd_hugepage[hstate_index(h)]; 903 resv_map->pages_per_hpage = pages_per_huge_page(h); 904 resv_map->css = &h_cg->css; 905 } 906 #endif 907 } 908 909 struct resv_map *resv_map_alloc(void) 910 { 911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 913 914 if (!resv_map || !rg) { 915 kfree(resv_map); 916 kfree(rg); 917 return NULL; 918 } 919 920 kref_init(&resv_map->refs); 921 spin_lock_init(&resv_map->lock); 922 INIT_LIST_HEAD(&resv_map->regions); 923 924 resv_map->adds_in_progress = 0; 925 /* 926 * Initialize these to 0. On shared mappings, 0's here indicate these 927 * fields don't do cgroup accounting. On private mappings, these will be 928 * re-initialized to the proper values, to indicate that hugetlb cgroup 929 * reservations are to be un-charged from here. 930 */ 931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 932 933 INIT_LIST_HEAD(&resv_map->region_cache); 934 list_add(&rg->link, &resv_map->region_cache); 935 resv_map->region_cache_count = 1; 936 937 return resv_map; 938 } 939 940 void resv_map_release(struct kref *ref) 941 { 942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 943 struct list_head *head = &resv_map->region_cache; 944 struct file_region *rg, *trg; 945 946 /* Clear out any active regions before we release the map. */ 947 region_del(resv_map, 0, LONG_MAX); 948 949 /* ... and any entries left in the cache */ 950 list_for_each_entry_safe(rg, trg, head, link) { 951 list_del(&rg->link); 952 kfree(rg); 953 } 954 955 VM_BUG_ON(resv_map->adds_in_progress); 956 957 kfree(resv_map); 958 } 959 960 static inline struct resv_map *inode_resv_map(struct inode *inode) 961 { 962 /* 963 * At inode evict time, i_mapping may not point to the original 964 * address space within the inode. This original address space 965 * contains the pointer to the resv_map. So, always use the 966 * address space embedded within the inode. 967 * The VERY common case is inode->mapping == &inode->i_data but, 968 * this may not be true for device special inodes. 969 */ 970 return (struct resv_map *)(&inode->i_data)->private_data; 971 } 972 973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 if (vma->vm_flags & VM_MAYSHARE) { 977 struct address_space *mapping = vma->vm_file->f_mapping; 978 struct inode *inode = mapping->host; 979 980 return inode_resv_map(inode); 981 982 } else { 983 return (struct resv_map *)(get_vma_private_data(vma) & 984 ~HPAGE_RESV_MASK); 985 } 986 } 987 988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 989 { 990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 992 993 set_vma_private_data(vma, (get_vma_private_data(vma) & 994 HPAGE_RESV_MASK) | (unsigned long)map); 995 } 996 997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 998 { 999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1001 1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1003 } 1004 1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1006 { 1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1008 1009 return (get_vma_private_data(vma) & flag) != 0; 1010 } 1011 1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1013 { 1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1015 /* 1016 * Clear vm_private_data 1017 * - For shared mappings this is a per-vma semaphore that may be 1018 * allocated in a subsequent call to hugetlb_vm_op_open. 1019 * Before clearing, make sure pointer is not associated with vma 1020 * as this will leak the structure. This is the case when called 1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1022 * been called to allocate a new structure. 1023 * - For MAP_PRIVATE mappings, this is the reserve map which does 1024 * not apply to children. Faults generated by the children are 1025 * not guaranteed to succeed, even if read-only. 1026 */ 1027 if (vma->vm_flags & VM_MAYSHARE) { 1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1029 1030 if (vma_lock && vma_lock->vma != vma) 1031 vma->vm_private_data = NULL; 1032 } else 1033 vma->vm_private_data = NULL; 1034 } 1035 1036 /* 1037 * Reset and decrement one ref on hugepage private reservation. 1038 * Called with mm->mmap_sem writer semaphore held. 1039 * This function should be only used by move_vma() and operate on 1040 * same sized vma. It should never come here with last ref on the 1041 * reservation. 1042 */ 1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1044 { 1045 /* 1046 * Clear the old hugetlb private page reservation. 1047 * It has already been transferred to new_vma. 1048 * 1049 * During a mremap() operation of a hugetlb vma we call move_vma() 1050 * which copies vma into new_vma and unmaps vma. After the copy 1051 * operation both new_vma and vma share a reference to the resv_map 1052 * struct, and at that point vma is about to be unmapped. We don't 1053 * want to return the reservation to the pool at unmap of vma because 1054 * the reservation still lives on in new_vma, so simply decrement the 1055 * ref here and remove the resv_map reference from this vma. 1056 */ 1057 struct resv_map *reservations = vma_resv_map(vma); 1058 1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1061 kref_put(&reservations->refs, resv_map_release); 1062 } 1063 1064 hugetlb_dup_vma_private(vma); 1065 } 1066 1067 /* Returns true if the VMA has associated reserve pages */ 1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1069 { 1070 if (vma->vm_flags & VM_NORESERVE) { 1071 /* 1072 * This address is already reserved by other process(chg == 0), 1073 * so, we should decrement reserved count. Without decrementing, 1074 * reserve count remains after releasing inode, because this 1075 * allocated page will go into page cache and is regarded as 1076 * coming from reserved pool in releasing step. Currently, we 1077 * don't have any other solution to deal with this situation 1078 * properly, so add work-around here. 1079 */ 1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1081 return true; 1082 else 1083 return false; 1084 } 1085 1086 /* Shared mappings always use reserves */ 1087 if (vma->vm_flags & VM_MAYSHARE) { 1088 /* 1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1090 * be a region map for all pages. The only situation where 1091 * there is no region map is if a hole was punched via 1092 * fallocate. In this case, there really are no reserves to 1093 * use. This situation is indicated if chg != 0. 1094 */ 1095 if (chg) 1096 return false; 1097 else 1098 return true; 1099 } 1100 1101 /* 1102 * Only the process that called mmap() has reserves for 1103 * private mappings. 1104 */ 1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1106 /* 1107 * Like the shared case above, a hole punch or truncate 1108 * could have been performed on the private mapping. 1109 * Examine the value of chg to determine if reserves 1110 * actually exist or were previously consumed. 1111 * Very Subtle - The value of chg comes from a previous 1112 * call to vma_needs_reserves(). The reserve map for 1113 * private mappings has different (opposite) semantics 1114 * than that of shared mappings. vma_needs_reserves() 1115 * has already taken this difference in semantics into 1116 * account. Therefore, the meaning of chg is the same 1117 * as in the shared case above. Code could easily be 1118 * combined, but keeping it separate draws attention to 1119 * subtle differences. 1120 */ 1121 if (chg) 1122 return false; 1123 else 1124 return true; 1125 } 1126 1127 return false; 1128 } 1129 1130 static void enqueue_huge_page(struct hstate *h, struct page *page) 1131 { 1132 int nid = page_to_nid(page); 1133 1134 lockdep_assert_held(&hugetlb_lock); 1135 VM_BUG_ON_PAGE(page_count(page), page); 1136 1137 list_move(&page->lru, &h->hugepage_freelists[nid]); 1138 h->free_huge_pages++; 1139 h->free_huge_pages_node[nid]++; 1140 SetHPageFreed(page); 1141 } 1142 1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1144 { 1145 struct page *page; 1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1147 1148 lockdep_assert_held(&hugetlb_lock); 1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1150 if (pin && !is_longterm_pinnable_page(page)) 1151 continue; 1152 1153 if (PageHWPoison(page)) 1154 continue; 1155 1156 list_move(&page->lru, &h->hugepage_activelist); 1157 set_page_refcounted(page); 1158 ClearHPageFreed(page); 1159 h->free_huge_pages--; 1160 h->free_huge_pages_node[nid]--; 1161 return page; 1162 } 1163 1164 return NULL; 1165 } 1166 1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1168 nodemask_t *nmask) 1169 { 1170 unsigned int cpuset_mems_cookie; 1171 struct zonelist *zonelist; 1172 struct zone *zone; 1173 struct zoneref *z; 1174 int node = NUMA_NO_NODE; 1175 1176 zonelist = node_zonelist(nid, gfp_mask); 1177 1178 retry_cpuset: 1179 cpuset_mems_cookie = read_mems_allowed_begin(); 1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1181 struct page *page; 1182 1183 if (!cpuset_zone_allowed(zone, gfp_mask)) 1184 continue; 1185 /* 1186 * no need to ask again on the same node. Pool is node rather than 1187 * zone aware 1188 */ 1189 if (zone_to_nid(zone) == node) 1190 continue; 1191 node = zone_to_nid(zone); 1192 1193 page = dequeue_huge_page_node_exact(h, node); 1194 if (page) 1195 return page; 1196 } 1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1198 goto retry_cpuset; 1199 1200 return NULL; 1201 } 1202 1203 static unsigned long available_huge_pages(struct hstate *h) 1204 { 1205 return h->free_huge_pages - h->resv_huge_pages; 1206 } 1207 1208 static struct page *dequeue_huge_page_vma(struct hstate *h, 1209 struct vm_area_struct *vma, 1210 unsigned long address, int avoid_reserve, 1211 long chg) 1212 { 1213 struct page *page = NULL; 1214 struct mempolicy *mpol; 1215 gfp_t gfp_mask; 1216 nodemask_t *nodemask; 1217 int nid; 1218 1219 /* 1220 * A child process with MAP_PRIVATE mappings created by their parent 1221 * have no page reserves. This check ensures that reservations are 1222 * not "stolen". The child may still get SIGKILLed 1223 */ 1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1225 goto err; 1226 1227 /* If reserves cannot be used, ensure enough pages are in the pool */ 1228 if (avoid_reserve && !available_huge_pages(h)) 1229 goto err; 1230 1231 gfp_mask = htlb_alloc_mask(h); 1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1233 1234 if (mpol_is_preferred_many(mpol)) { 1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1236 1237 /* Fallback to all nodes if page==NULL */ 1238 nodemask = NULL; 1239 } 1240 1241 if (!page) 1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1243 1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1245 SetHPageRestoreReserve(page); 1246 h->resv_huge_pages--; 1247 } 1248 1249 mpol_cond_put(mpol); 1250 return page; 1251 1252 err: 1253 return NULL; 1254 } 1255 1256 /* 1257 * common helper functions for hstate_next_node_to_{alloc|free}. 1258 * We may have allocated or freed a huge page based on a different 1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1260 * be outside of *nodes_allowed. Ensure that we use an allowed 1261 * node for alloc or free. 1262 */ 1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1264 { 1265 nid = next_node_in(nid, *nodes_allowed); 1266 VM_BUG_ON(nid >= MAX_NUMNODES); 1267 1268 return nid; 1269 } 1270 1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1272 { 1273 if (!node_isset(nid, *nodes_allowed)) 1274 nid = next_node_allowed(nid, nodes_allowed); 1275 return nid; 1276 } 1277 1278 /* 1279 * returns the previously saved node ["this node"] from which to 1280 * allocate a persistent huge page for the pool and advance the 1281 * next node from which to allocate, handling wrap at end of node 1282 * mask. 1283 */ 1284 static int hstate_next_node_to_alloc(struct hstate *h, 1285 nodemask_t *nodes_allowed) 1286 { 1287 int nid; 1288 1289 VM_BUG_ON(!nodes_allowed); 1290 1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1293 1294 return nid; 1295 } 1296 1297 /* 1298 * helper for remove_pool_huge_page() - return the previously saved 1299 * node ["this node"] from which to free a huge page. Advance the 1300 * next node id whether or not we find a free huge page to free so 1301 * that the next attempt to free addresses the next node. 1302 */ 1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1304 { 1305 int nid; 1306 1307 VM_BUG_ON(!nodes_allowed); 1308 1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1311 1312 return nid; 1313 } 1314 1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1316 for (nr_nodes = nodes_weight(*mask); \ 1317 nr_nodes > 0 && \ 1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1319 nr_nodes--) 1320 1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1322 for (nr_nodes = nodes_weight(*mask); \ 1323 nr_nodes > 0 && \ 1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1325 nr_nodes--) 1326 1327 /* used to demote non-gigantic_huge pages as well */ 1328 static void __destroy_compound_gigantic_page(struct page *page, 1329 unsigned int order, bool demote) 1330 { 1331 int i; 1332 int nr_pages = 1 << order; 1333 struct page *p; 1334 1335 atomic_set(compound_mapcount_ptr(page), 0); 1336 atomic_set(compound_pincount_ptr(page), 0); 1337 1338 for (i = 1; i < nr_pages; i++) { 1339 p = nth_page(page, i); 1340 p->mapping = NULL; 1341 clear_compound_head(p); 1342 if (!demote) 1343 set_page_refcounted(p); 1344 } 1345 1346 set_compound_order(page, 0); 1347 #ifdef CONFIG_64BIT 1348 page[1].compound_nr = 0; 1349 #endif 1350 __ClearPageHead(page); 1351 } 1352 1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1354 unsigned int order) 1355 { 1356 __destroy_compound_gigantic_page(page, order, true); 1357 } 1358 1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1360 static void destroy_compound_gigantic_page(struct page *page, 1361 unsigned int order) 1362 { 1363 __destroy_compound_gigantic_page(page, order, false); 1364 } 1365 1366 static void free_gigantic_page(struct page *page, unsigned int order) 1367 { 1368 /* 1369 * If the page isn't allocated using the cma allocator, 1370 * cma_release() returns false. 1371 */ 1372 #ifdef CONFIG_CMA 1373 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1374 return; 1375 #endif 1376 1377 free_contig_range(page_to_pfn(page), 1 << order); 1378 } 1379 1380 #ifdef CONFIG_CONTIG_ALLOC 1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1382 int nid, nodemask_t *nodemask) 1383 { 1384 unsigned long nr_pages = pages_per_huge_page(h); 1385 if (nid == NUMA_NO_NODE) 1386 nid = numa_mem_id(); 1387 1388 #ifdef CONFIG_CMA 1389 { 1390 struct page *page; 1391 int node; 1392 1393 if (hugetlb_cma[nid]) { 1394 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1395 huge_page_order(h), true); 1396 if (page) 1397 return page; 1398 } 1399 1400 if (!(gfp_mask & __GFP_THISNODE)) { 1401 for_each_node_mask(node, *nodemask) { 1402 if (node == nid || !hugetlb_cma[node]) 1403 continue; 1404 1405 page = cma_alloc(hugetlb_cma[node], nr_pages, 1406 huge_page_order(h), true); 1407 if (page) 1408 return page; 1409 } 1410 } 1411 } 1412 #endif 1413 1414 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1415 } 1416 1417 #else /* !CONFIG_CONTIG_ALLOC */ 1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1419 int nid, nodemask_t *nodemask) 1420 { 1421 return NULL; 1422 } 1423 #endif /* CONFIG_CONTIG_ALLOC */ 1424 1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1427 int nid, nodemask_t *nodemask) 1428 { 1429 return NULL; 1430 } 1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1432 static inline void destroy_compound_gigantic_page(struct page *page, 1433 unsigned int order) { } 1434 #endif 1435 1436 /* 1437 * Remove hugetlb page from lists, and update dtor so that page appears 1438 * as just a compound page. 1439 * 1440 * A reference is held on the page, except in the case of demote. 1441 * 1442 * Must be called with hugetlb lock held. 1443 */ 1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1445 bool adjust_surplus, 1446 bool demote) 1447 { 1448 int nid = page_to_nid(page); 1449 1450 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1451 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1452 1453 lockdep_assert_held(&hugetlb_lock); 1454 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1455 return; 1456 1457 list_del(&page->lru); 1458 1459 if (HPageFreed(page)) { 1460 h->free_huge_pages--; 1461 h->free_huge_pages_node[nid]--; 1462 } 1463 if (adjust_surplus) { 1464 h->surplus_huge_pages--; 1465 h->surplus_huge_pages_node[nid]--; 1466 } 1467 1468 /* 1469 * Very subtle 1470 * 1471 * For non-gigantic pages set the destructor to the normal compound 1472 * page dtor. This is needed in case someone takes an additional 1473 * temporary ref to the page, and freeing is delayed until they drop 1474 * their reference. 1475 * 1476 * For gigantic pages set the destructor to the null dtor. This 1477 * destructor will never be called. Before freeing the gigantic 1478 * page destroy_compound_gigantic_page will turn the compound page 1479 * into a simple group of pages. After this the destructor does not 1480 * apply. 1481 * 1482 * This handles the case where more than one ref is held when and 1483 * after update_and_free_page is called. 1484 * 1485 * In the case of demote we do not ref count the page as it will soon 1486 * be turned into a page of smaller size. 1487 */ 1488 if (!demote) 1489 set_page_refcounted(page); 1490 if (hstate_is_gigantic(h)) 1491 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1492 else 1493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1494 1495 h->nr_huge_pages--; 1496 h->nr_huge_pages_node[nid]--; 1497 } 1498 1499 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1500 bool adjust_surplus) 1501 { 1502 __remove_hugetlb_page(h, page, adjust_surplus, false); 1503 } 1504 1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1506 bool adjust_surplus) 1507 { 1508 __remove_hugetlb_page(h, page, adjust_surplus, true); 1509 } 1510 1511 static void add_hugetlb_page(struct hstate *h, struct page *page, 1512 bool adjust_surplus) 1513 { 1514 int zeroed; 1515 int nid = page_to_nid(page); 1516 1517 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1518 1519 lockdep_assert_held(&hugetlb_lock); 1520 1521 INIT_LIST_HEAD(&page->lru); 1522 h->nr_huge_pages++; 1523 h->nr_huge_pages_node[nid]++; 1524 1525 if (adjust_surplus) { 1526 h->surplus_huge_pages++; 1527 h->surplus_huge_pages_node[nid]++; 1528 } 1529 1530 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1531 set_page_private(page, 0); 1532 /* 1533 * We have to set HPageVmemmapOptimized again as above 1534 * set_page_private(page, 0) cleared it. 1535 */ 1536 SetHPageVmemmapOptimized(page); 1537 1538 /* 1539 * This page is about to be managed by the hugetlb allocator and 1540 * should have no users. Drop our reference, and check for others 1541 * just in case. 1542 */ 1543 zeroed = put_page_testzero(page); 1544 if (!zeroed) 1545 /* 1546 * It is VERY unlikely soneone else has taken a ref on 1547 * the page. In this case, we simply return as the 1548 * hugetlb destructor (free_huge_page) will be called 1549 * when this other ref is dropped. 1550 */ 1551 return; 1552 1553 arch_clear_hugepage_flags(page); 1554 enqueue_huge_page(h, page); 1555 } 1556 1557 static void __update_and_free_page(struct hstate *h, struct page *page) 1558 { 1559 int i; 1560 struct page *subpage; 1561 1562 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1563 return; 1564 1565 /* 1566 * If we don't know which subpages are hwpoisoned, we can't free 1567 * the hugepage, so it's leaked intentionally. 1568 */ 1569 if (HPageRawHwpUnreliable(page)) 1570 return; 1571 1572 if (hugetlb_vmemmap_restore(h, page)) { 1573 spin_lock_irq(&hugetlb_lock); 1574 /* 1575 * If we cannot allocate vmemmap pages, just refuse to free the 1576 * page and put the page back on the hugetlb free list and treat 1577 * as a surplus page. 1578 */ 1579 add_hugetlb_page(h, page, true); 1580 spin_unlock_irq(&hugetlb_lock); 1581 return; 1582 } 1583 1584 /* 1585 * Move PageHWPoison flag from head page to the raw error pages, 1586 * which makes any healthy subpages reusable. 1587 */ 1588 if (unlikely(PageHWPoison(page))) 1589 hugetlb_clear_page_hwpoison(page); 1590 1591 for (i = 0; i < pages_per_huge_page(h); i++) { 1592 subpage = nth_page(page, i); 1593 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1594 1 << PG_referenced | 1 << PG_dirty | 1595 1 << PG_active | 1 << PG_private | 1596 1 << PG_writeback); 1597 } 1598 1599 /* 1600 * Non-gigantic pages demoted from CMA allocated gigantic pages 1601 * need to be given back to CMA in free_gigantic_page. 1602 */ 1603 if (hstate_is_gigantic(h) || 1604 hugetlb_cma_page(page, huge_page_order(h))) { 1605 destroy_compound_gigantic_page(page, huge_page_order(h)); 1606 free_gigantic_page(page, huge_page_order(h)); 1607 } else { 1608 __free_pages(page, huge_page_order(h)); 1609 } 1610 } 1611 1612 /* 1613 * As update_and_free_page() can be called under any context, so we cannot 1614 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1615 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1616 * the vmemmap pages. 1617 * 1618 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1619 * freed and frees them one-by-one. As the page->mapping pointer is going 1620 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1621 * structure of a lockless linked list of huge pages to be freed. 1622 */ 1623 static LLIST_HEAD(hpage_freelist); 1624 1625 static void free_hpage_workfn(struct work_struct *work) 1626 { 1627 struct llist_node *node; 1628 1629 node = llist_del_all(&hpage_freelist); 1630 1631 while (node) { 1632 struct page *page; 1633 struct hstate *h; 1634 1635 page = container_of((struct address_space **)node, 1636 struct page, mapping); 1637 node = node->next; 1638 page->mapping = NULL; 1639 /* 1640 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1641 * is going to trigger because a previous call to 1642 * remove_hugetlb_page() will set_compound_page_dtor(page, 1643 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1644 */ 1645 h = size_to_hstate(page_size(page)); 1646 1647 __update_and_free_page(h, page); 1648 1649 cond_resched(); 1650 } 1651 } 1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1653 1654 static inline void flush_free_hpage_work(struct hstate *h) 1655 { 1656 if (hugetlb_vmemmap_optimizable(h)) 1657 flush_work(&free_hpage_work); 1658 } 1659 1660 static void update_and_free_page(struct hstate *h, struct page *page, 1661 bool atomic) 1662 { 1663 if (!HPageVmemmapOptimized(page) || !atomic) { 1664 __update_and_free_page(h, page); 1665 return; 1666 } 1667 1668 /* 1669 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1670 * 1671 * Only call schedule_work() if hpage_freelist is previously 1672 * empty. Otherwise, schedule_work() had been called but the workfn 1673 * hasn't retrieved the list yet. 1674 */ 1675 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1676 schedule_work(&free_hpage_work); 1677 } 1678 1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1680 { 1681 struct page *page, *t_page; 1682 1683 list_for_each_entry_safe(page, t_page, list, lru) { 1684 update_and_free_page(h, page, false); 1685 cond_resched(); 1686 } 1687 } 1688 1689 struct hstate *size_to_hstate(unsigned long size) 1690 { 1691 struct hstate *h; 1692 1693 for_each_hstate(h) { 1694 if (huge_page_size(h) == size) 1695 return h; 1696 } 1697 return NULL; 1698 } 1699 1700 void free_huge_page(struct page *page) 1701 { 1702 /* 1703 * Can't pass hstate in here because it is called from the 1704 * compound page destructor. 1705 */ 1706 struct hstate *h = page_hstate(page); 1707 int nid = page_to_nid(page); 1708 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1709 bool restore_reserve; 1710 unsigned long flags; 1711 1712 VM_BUG_ON_PAGE(page_count(page), page); 1713 VM_BUG_ON_PAGE(page_mapcount(page), page); 1714 1715 hugetlb_set_page_subpool(page, NULL); 1716 if (PageAnon(page)) 1717 __ClearPageAnonExclusive(page); 1718 page->mapping = NULL; 1719 restore_reserve = HPageRestoreReserve(page); 1720 ClearHPageRestoreReserve(page); 1721 1722 /* 1723 * If HPageRestoreReserve was set on page, page allocation consumed a 1724 * reservation. If the page was associated with a subpool, there 1725 * would have been a page reserved in the subpool before allocation 1726 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1727 * reservation, do not call hugepage_subpool_put_pages() as this will 1728 * remove the reserved page from the subpool. 1729 */ 1730 if (!restore_reserve) { 1731 /* 1732 * A return code of zero implies that the subpool will be 1733 * under its minimum size if the reservation is not restored 1734 * after page is free. Therefore, force restore_reserve 1735 * operation. 1736 */ 1737 if (hugepage_subpool_put_pages(spool, 1) == 0) 1738 restore_reserve = true; 1739 } 1740 1741 spin_lock_irqsave(&hugetlb_lock, flags); 1742 ClearHPageMigratable(page); 1743 hugetlb_cgroup_uncharge_page(hstate_index(h), 1744 pages_per_huge_page(h), page); 1745 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1746 pages_per_huge_page(h), page); 1747 if (restore_reserve) 1748 h->resv_huge_pages++; 1749 1750 if (HPageTemporary(page)) { 1751 remove_hugetlb_page(h, page, false); 1752 spin_unlock_irqrestore(&hugetlb_lock, flags); 1753 update_and_free_page(h, page, true); 1754 } else if (h->surplus_huge_pages_node[nid]) { 1755 /* remove the page from active list */ 1756 remove_hugetlb_page(h, page, true); 1757 spin_unlock_irqrestore(&hugetlb_lock, flags); 1758 update_and_free_page(h, page, true); 1759 } else { 1760 arch_clear_hugepage_flags(page); 1761 enqueue_huge_page(h, page); 1762 spin_unlock_irqrestore(&hugetlb_lock, flags); 1763 } 1764 } 1765 1766 /* 1767 * Must be called with the hugetlb lock held 1768 */ 1769 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1770 { 1771 lockdep_assert_held(&hugetlb_lock); 1772 h->nr_huge_pages++; 1773 h->nr_huge_pages_node[nid]++; 1774 } 1775 1776 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1777 { 1778 hugetlb_vmemmap_optimize(h, page); 1779 INIT_LIST_HEAD(&page->lru); 1780 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1781 hugetlb_set_page_subpool(page, NULL); 1782 set_hugetlb_cgroup(page, NULL); 1783 set_hugetlb_cgroup_rsvd(page, NULL); 1784 } 1785 1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1787 { 1788 __prep_new_huge_page(h, page); 1789 spin_lock_irq(&hugetlb_lock); 1790 __prep_account_new_huge_page(h, nid); 1791 spin_unlock_irq(&hugetlb_lock); 1792 } 1793 1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1795 bool demote) 1796 { 1797 int i, j; 1798 int nr_pages = 1 << order; 1799 struct page *p; 1800 1801 /* we rely on prep_new_huge_page to set the destructor */ 1802 set_compound_order(page, order); 1803 __SetPageHead(page); 1804 for (i = 0; i < nr_pages; i++) { 1805 p = nth_page(page, i); 1806 1807 /* 1808 * For gigantic hugepages allocated through bootmem at 1809 * boot, it's safer to be consistent with the not-gigantic 1810 * hugepages and clear the PG_reserved bit from all tail pages 1811 * too. Otherwise drivers using get_user_pages() to access tail 1812 * pages may get the reference counting wrong if they see 1813 * PG_reserved set on a tail page (despite the head page not 1814 * having PG_reserved set). Enforcing this consistency between 1815 * head and tail pages allows drivers to optimize away a check 1816 * on the head page when they need know if put_page() is needed 1817 * after get_user_pages(). 1818 */ 1819 __ClearPageReserved(p); 1820 /* 1821 * Subtle and very unlikely 1822 * 1823 * Gigantic 'page allocators' such as memblock or cma will 1824 * return a set of pages with each page ref counted. We need 1825 * to turn this set of pages into a compound page with tail 1826 * page ref counts set to zero. Code such as speculative page 1827 * cache adding could take a ref on a 'to be' tail page. 1828 * We need to respect any increased ref count, and only set 1829 * the ref count to zero if count is currently 1. If count 1830 * is not 1, we return an error. An error return indicates 1831 * the set of pages can not be converted to a gigantic page. 1832 * The caller who allocated the pages should then discard the 1833 * pages using the appropriate free interface. 1834 * 1835 * In the case of demote, the ref count will be zero. 1836 */ 1837 if (!demote) { 1838 if (!page_ref_freeze(p, 1)) { 1839 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1840 goto out_error; 1841 } 1842 } else { 1843 VM_BUG_ON_PAGE(page_count(p), p); 1844 } 1845 if (i != 0) 1846 set_compound_head(p, page); 1847 } 1848 atomic_set(compound_mapcount_ptr(page), -1); 1849 atomic_set(compound_pincount_ptr(page), 0); 1850 return true; 1851 1852 out_error: 1853 /* undo page modifications made above */ 1854 for (j = 0; j < i; j++) { 1855 p = nth_page(page, j); 1856 if (j != 0) 1857 clear_compound_head(p); 1858 set_page_refcounted(p); 1859 } 1860 /* need to clear PG_reserved on remaining tail pages */ 1861 for (; j < nr_pages; j++) { 1862 p = nth_page(page, j); 1863 __ClearPageReserved(p); 1864 } 1865 set_compound_order(page, 0); 1866 #ifdef CONFIG_64BIT 1867 page[1].compound_nr = 0; 1868 #endif 1869 __ClearPageHead(page); 1870 return false; 1871 } 1872 1873 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1874 { 1875 return __prep_compound_gigantic_page(page, order, false); 1876 } 1877 1878 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1879 unsigned int order) 1880 { 1881 return __prep_compound_gigantic_page(page, order, true); 1882 } 1883 1884 /* 1885 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1886 * transparent huge pages. See the PageTransHuge() documentation for more 1887 * details. 1888 */ 1889 int PageHuge(struct page *page) 1890 { 1891 if (!PageCompound(page)) 1892 return 0; 1893 1894 page = compound_head(page); 1895 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1896 } 1897 EXPORT_SYMBOL_GPL(PageHuge); 1898 1899 /* 1900 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1901 * normal or transparent huge pages. 1902 */ 1903 int PageHeadHuge(struct page *page_head) 1904 { 1905 if (!PageHead(page_head)) 1906 return 0; 1907 1908 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1909 } 1910 EXPORT_SYMBOL_GPL(PageHeadHuge); 1911 1912 /* 1913 * Find and lock address space (mapping) in write mode. 1914 * 1915 * Upon entry, the page is locked which means that page_mapping() is 1916 * stable. Due to locking order, we can only trylock_write. If we can 1917 * not get the lock, simply return NULL to caller. 1918 */ 1919 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1920 { 1921 struct address_space *mapping = page_mapping(hpage); 1922 1923 if (!mapping) 1924 return mapping; 1925 1926 if (i_mmap_trylock_write(mapping)) 1927 return mapping; 1928 1929 return NULL; 1930 } 1931 1932 pgoff_t hugetlb_basepage_index(struct page *page) 1933 { 1934 struct page *page_head = compound_head(page); 1935 pgoff_t index = page_index(page_head); 1936 unsigned long compound_idx; 1937 1938 if (compound_order(page_head) >= MAX_ORDER) 1939 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1940 else 1941 compound_idx = page - page_head; 1942 1943 return (index << compound_order(page_head)) + compound_idx; 1944 } 1945 1946 static struct page *alloc_buddy_huge_page(struct hstate *h, 1947 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1948 nodemask_t *node_alloc_noretry) 1949 { 1950 int order = huge_page_order(h); 1951 struct page *page; 1952 bool alloc_try_hard = true; 1953 bool retry = true; 1954 1955 /* 1956 * By default we always try hard to allocate the page with 1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1958 * a loop (to adjust global huge page counts) and previous allocation 1959 * failed, do not continue to try hard on the same node. Use the 1960 * node_alloc_noretry bitmap to manage this state information. 1961 */ 1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1963 alloc_try_hard = false; 1964 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1965 if (alloc_try_hard) 1966 gfp_mask |= __GFP_RETRY_MAYFAIL; 1967 if (nid == NUMA_NO_NODE) 1968 nid = numa_mem_id(); 1969 retry: 1970 page = __alloc_pages(gfp_mask, order, nid, nmask); 1971 1972 /* Freeze head page */ 1973 if (page && !page_ref_freeze(page, 1)) { 1974 __free_pages(page, order); 1975 if (retry) { /* retry once */ 1976 retry = false; 1977 goto retry; 1978 } 1979 /* WOW! twice in a row. */ 1980 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 1981 page = NULL; 1982 } 1983 1984 if (page) 1985 __count_vm_event(HTLB_BUDDY_PGALLOC); 1986 else 1987 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1988 1989 /* 1990 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1991 * indicates an overall state change. Clear bit so that we resume 1992 * normal 'try hard' allocations. 1993 */ 1994 if (node_alloc_noretry && page && !alloc_try_hard) 1995 node_clear(nid, *node_alloc_noretry); 1996 1997 /* 1998 * If we tried hard to get a page but failed, set bit so that 1999 * subsequent attempts will not try as hard until there is an 2000 * overall state change. 2001 */ 2002 if (node_alloc_noretry && !page && alloc_try_hard) 2003 node_set(nid, *node_alloc_noretry); 2004 2005 return page; 2006 } 2007 2008 /* 2009 * Common helper to allocate a fresh hugetlb page. All specific allocators 2010 * should use this function to get new hugetlb pages 2011 * 2012 * Note that returned page is 'frozen': ref count of head page and all tail 2013 * pages is zero. 2014 */ 2015 static struct page *alloc_fresh_huge_page(struct hstate *h, 2016 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2017 nodemask_t *node_alloc_noretry) 2018 { 2019 struct page *page; 2020 bool retry = false; 2021 2022 retry: 2023 if (hstate_is_gigantic(h)) 2024 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 2025 else 2026 page = alloc_buddy_huge_page(h, gfp_mask, 2027 nid, nmask, node_alloc_noretry); 2028 if (!page) 2029 return NULL; 2030 2031 if (hstate_is_gigantic(h)) { 2032 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 2033 /* 2034 * Rare failure to convert pages to compound page. 2035 * Free pages and try again - ONCE! 2036 */ 2037 free_gigantic_page(page, huge_page_order(h)); 2038 if (!retry) { 2039 retry = true; 2040 goto retry; 2041 } 2042 return NULL; 2043 } 2044 } 2045 prep_new_huge_page(h, page, page_to_nid(page)); 2046 2047 return page; 2048 } 2049 2050 /* 2051 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2052 * manner. 2053 */ 2054 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2055 nodemask_t *node_alloc_noretry) 2056 { 2057 struct page *page; 2058 int nr_nodes, node; 2059 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2060 2061 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2062 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2063 node_alloc_noretry); 2064 if (page) 2065 break; 2066 } 2067 2068 if (!page) 2069 return 0; 2070 2071 free_huge_page(page); /* free it into the hugepage allocator */ 2072 2073 return 1; 2074 } 2075 2076 /* 2077 * Remove huge page from pool from next node to free. Attempt to keep 2078 * persistent huge pages more or less balanced over allowed nodes. 2079 * This routine only 'removes' the hugetlb page. The caller must make 2080 * an additional call to free the page to low level allocators. 2081 * Called with hugetlb_lock locked. 2082 */ 2083 static struct page *remove_pool_huge_page(struct hstate *h, 2084 nodemask_t *nodes_allowed, 2085 bool acct_surplus) 2086 { 2087 int nr_nodes, node; 2088 struct page *page = NULL; 2089 2090 lockdep_assert_held(&hugetlb_lock); 2091 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2092 /* 2093 * If we're returning unused surplus pages, only examine 2094 * nodes with surplus pages. 2095 */ 2096 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2097 !list_empty(&h->hugepage_freelists[node])) { 2098 page = list_entry(h->hugepage_freelists[node].next, 2099 struct page, lru); 2100 remove_hugetlb_page(h, page, acct_surplus); 2101 break; 2102 } 2103 } 2104 2105 return page; 2106 } 2107 2108 /* 2109 * Dissolve a given free hugepage into free buddy pages. This function does 2110 * nothing for in-use hugepages and non-hugepages. 2111 * This function returns values like below: 2112 * 2113 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2114 * when the system is under memory pressure and the feature of 2115 * freeing unused vmemmap pages associated with each hugetlb page 2116 * is enabled. 2117 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2118 * (allocated or reserved.) 2119 * 0: successfully dissolved free hugepages or the page is not a 2120 * hugepage (considered as already dissolved) 2121 */ 2122 int dissolve_free_huge_page(struct page *page) 2123 { 2124 int rc = -EBUSY; 2125 2126 retry: 2127 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2128 if (!PageHuge(page)) 2129 return 0; 2130 2131 spin_lock_irq(&hugetlb_lock); 2132 if (!PageHuge(page)) { 2133 rc = 0; 2134 goto out; 2135 } 2136 2137 if (!page_count(page)) { 2138 struct page *head = compound_head(page); 2139 struct hstate *h = page_hstate(head); 2140 if (!available_huge_pages(h)) 2141 goto out; 2142 2143 /* 2144 * We should make sure that the page is already on the free list 2145 * when it is dissolved. 2146 */ 2147 if (unlikely(!HPageFreed(head))) { 2148 spin_unlock_irq(&hugetlb_lock); 2149 cond_resched(); 2150 2151 /* 2152 * Theoretically, we should return -EBUSY when we 2153 * encounter this race. In fact, we have a chance 2154 * to successfully dissolve the page if we do a 2155 * retry. Because the race window is quite small. 2156 * If we seize this opportunity, it is an optimization 2157 * for increasing the success rate of dissolving page. 2158 */ 2159 goto retry; 2160 } 2161 2162 remove_hugetlb_page(h, head, false); 2163 h->max_huge_pages--; 2164 spin_unlock_irq(&hugetlb_lock); 2165 2166 /* 2167 * Normally update_and_free_page will allocate required vmemmmap 2168 * before freeing the page. update_and_free_page will fail to 2169 * free the page if it can not allocate required vmemmap. We 2170 * need to adjust max_huge_pages if the page is not freed. 2171 * Attempt to allocate vmemmmap here so that we can take 2172 * appropriate action on failure. 2173 */ 2174 rc = hugetlb_vmemmap_restore(h, head); 2175 if (!rc) { 2176 update_and_free_page(h, head, false); 2177 } else { 2178 spin_lock_irq(&hugetlb_lock); 2179 add_hugetlb_page(h, head, false); 2180 h->max_huge_pages++; 2181 spin_unlock_irq(&hugetlb_lock); 2182 } 2183 2184 return rc; 2185 } 2186 out: 2187 spin_unlock_irq(&hugetlb_lock); 2188 return rc; 2189 } 2190 2191 /* 2192 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2193 * make specified memory blocks removable from the system. 2194 * Note that this will dissolve a free gigantic hugepage completely, if any 2195 * part of it lies within the given range. 2196 * Also note that if dissolve_free_huge_page() returns with an error, all 2197 * free hugepages that were dissolved before that error are lost. 2198 */ 2199 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2200 { 2201 unsigned long pfn; 2202 struct page *page; 2203 int rc = 0; 2204 unsigned int order; 2205 struct hstate *h; 2206 2207 if (!hugepages_supported()) 2208 return rc; 2209 2210 order = huge_page_order(&default_hstate); 2211 for_each_hstate(h) 2212 order = min(order, huge_page_order(h)); 2213 2214 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2215 page = pfn_to_page(pfn); 2216 rc = dissolve_free_huge_page(page); 2217 if (rc) 2218 break; 2219 } 2220 2221 return rc; 2222 } 2223 2224 /* 2225 * Allocates a fresh surplus page from the page allocator. 2226 */ 2227 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2228 int nid, nodemask_t *nmask) 2229 { 2230 struct page *page = NULL; 2231 2232 if (hstate_is_gigantic(h)) 2233 return NULL; 2234 2235 spin_lock_irq(&hugetlb_lock); 2236 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2237 goto out_unlock; 2238 spin_unlock_irq(&hugetlb_lock); 2239 2240 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2241 if (!page) 2242 return NULL; 2243 2244 spin_lock_irq(&hugetlb_lock); 2245 /* 2246 * We could have raced with the pool size change. 2247 * Double check that and simply deallocate the new page 2248 * if we would end up overcommiting the surpluses. Abuse 2249 * temporary page to workaround the nasty free_huge_page 2250 * codeflow 2251 */ 2252 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2253 SetHPageTemporary(page); 2254 spin_unlock_irq(&hugetlb_lock); 2255 free_huge_page(page); 2256 return NULL; 2257 } 2258 2259 h->surplus_huge_pages++; 2260 h->surplus_huge_pages_node[page_to_nid(page)]++; 2261 2262 out_unlock: 2263 spin_unlock_irq(&hugetlb_lock); 2264 2265 return page; 2266 } 2267 2268 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2269 int nid, nodemask_t *nmask) 2270 { 2271 struct page *page; 2272 2273 if (hstate_is_gigantic(h)) 2274 return NULL; 2275 2276 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2277 if (!page) 2278 return NULL; 2279 2280 /* fresh huge pages are frozen */ 2281 set_page_refcounted(page); 2282 2283 /* 2284 * We do not account these pages as surplus because they are only 2285 * temporary and will be released properly on the last reference 2286 */ 2287 SetHPageTemporary(page); 2288 2289 return page; 2290 } 2291 2292 /* 2293 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2294 */ 2295 static 2296 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2297 struct vm_area_struct *vma, unsigned long addr) 2298 { 2299 struct page *page = NULL; 2300 struct mempolicy *mpol; 2301 gfp_t gfp_mask = htlb_alloc_mask(h); 2302 int nid; 2303 nodemask_t *nodemask; 2304 2305 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2306 if (mpol_is_preferred_many(mpol)) { 2307 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2308 2309 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2310 page = alloc_surplus_huge_page(h, gfp, nid, nodemask); 2311 2312 /* Fallback to all nodes if page==NULL */ 2313 nodemask = NULL; 2314 } 2315 2316 if (!page) 2317 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 2318 mpol_cond_put(mpol); 2319 return page; 2320 } 2321 2322 /* page migration callback function */ 2323 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2324 nodemask_t *nmask, gfp_t gfp_mask) 2325 { 2326 spin_lock_irq(&hugetlb_lock); 2327 if (available_huge_pages(h)) { 2328 struct page *page; 2329 2330 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2331 if (page) { 2332 spin_unlock_irq(&hugetlb_lock); 2333 return page; 2334 } 2335 } 2336 spin_unlock_irq(&hugetlb_lock); 2337 2338 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2339 } 2340 2341 /* mempolicy aware migration callback */ 2342 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2343 unsigned long address) 2344 { 2345 struct mempolicy *mpol; 2346 nodemask_t *nodemask; 2347 struct page *page; 2348 gfp_t gfp_mask; 2349 int node; 2350 2351 gfp_mask = htlb_alloc_mask(h); 2352 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2353 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2354 mpol_cond_put(mpol); 2355 2356 return page; 2357 } 2358 2359 /* 2360 * Increase the hugetlb pool such that it can accommodate a reservation 2361 * of size 'delta'. 2362 */ 2363 static int gather_surplus_pages(struct hstate *h, long delta) 2364 __must_hold(&hugetlb_lock) 2365 { 2366 LIST_HEAD(surplus_list); 2367 struct page *page, *tmp; 2368 int ret; 2369 long i; 2370 long needed, allocated; 2371 bool alloc_ok = true; 2372 2373 lockdep_assert_held(&hugetlb_lock); 2374 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2375 if (needed <= 0) { 2376 h->resv_huge_pages += delta; 2377 return 0; 2378 } 2379 2380 allocated = 0; 2381 2382 ret = -ENOMEM; 2383 retry: 2384 spin_unlock_irq(&hugetlb_lock); 2385 for (i = 0; i < needed; i++) { 2386 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2387 NUMA_NO_NODE, NULL); 2388 if (!page) { 2389 alloc_ok = false; 2390 break; 2391 } 2392 list_add(&page->lru, &surplus_list); 2393 cond_resched(); 2394 } 2395 allocated += i; 2396 2397 /* 2398 * After retaking hugetlb_lock, we need to recalculate 'needed' 2399 * because either resv_huge_pages or free_huge_pages may have changed. 2400 */ 2401 spin_lock_irq(&hugetlb_lock); 2402 needed = (h->resv_huge_pages + delta) - 2403 (h->free_huge_pages + allocated); 2404 if (needed > 0) { 2405 if (alloc_ok) 2406 goto retry; 2407 /* 2408 * We were not able to allocate enough pages to 2409 * satisfy the entire reservation so we free what 2410 * we've allocated so far. 2411 */ 2412 goto free; 2413 } 2414 /* 2415 * The surplus_list now contains _at_least_ the number of extra pages 2416 * needed to accommodate the reservation. Add the appropriate number 2417 * of pages to the hugetlb pool and free the extras back to the buddy 2418 * allocator. Commit the entire reservation here to prevent another 2419 * process from stealing the pages as they are added to the pool but 2420 * before they are reserved. 2421 */ 2422 needed += allocated; 2423 h->resv_huge_pages += delta; 2424 ret = 0; 2425 2426 /* Free the needed pages to the hugetlb pool */ 2427 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2428 if ((--needed) < 0) 2429 break; 2430 /* Add the page to the hugetlb allocator */ 2431 enqueue_huge_page(h, page); 2432 } 2433 free: 2434 spin_unlock_irq(&hugetlb_lock); 2435 2436 /* 2437 * Free unnecessary surplus pages to the buddy allocator. 2438 * Pages have no ref count, call free_huge_page directly. 2439 */ 2440 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2441 free_huge_page(page); 2442 spin_lock_irq(&hugetlb_lock); 2443 2444 return ret; 2445 } 2446 2447 /* 2448 * This routine has two main purposes: 2449 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2450 * in unused_resv_pages. This corresponds to the prior adjustments made 2451 * to the associated reservation map. 2452 * 2) Free any unused surplus pages that may have been allocated to satisfy 2453 * the reservation. As many as unused_resv_pages may be freed. 2454 */ 2455 static void return_unused_surplus_pages(struct hstate *h, 2456 unsigned long unused_resv_pages) 2457 { 2458 unsigned long nr_pages; 2459 struct page *page; 2460 LIST_HEAD(page_list); 2461 2462 lockdep_assert_held(&hugetlb_lock); 2463 /* Uncommit the reservation */ 2464 h->resv_huge_pages -= unused_resv_pages; 2465 2466 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2467 goto out; 2468 2469 /* 2470 * Part (or even all) of the reservation could have been backed 2471 * by pre-allocated pages. Only free surplus pages. 2472 */ 2473 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2474 2475 /* 2476 * We want to release as many surplus pages as possible, spread 2477 * evenly across all nodes with memory. Iterate across these nodes 2478 * until we can no longer free unreserved surplus pages. This occurs 2479 * when the nodes with surplus pages have no free pages. 2480 * remove_pool_huge_page() will balance the freed pages across the 2481 * on-line nodes with memory and will handle the hstate accounting. 2482 */ 2483 while (nr_pages--) { 2484 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2485 if (!page) 2486 goto out; 2487 2488 list_add(&page->lru, &page_list); 2489 } 2490 2491 out: 2492 spin_unlock_irq(&hugetlb_lock); 2493 update_and_free_pages_bulk(h, &page_list); 2494 spin_lock_irq(&hugetlb_lock); 2495 } 2496 2497 2498 /* 2499 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2500 * are used by the huge page allocation routines to manage reservations. 2501 * 2502 * vma_needs_reservation is called to determine if the huge page at addr 2503 * within the vma has an associated reservation. If a reservation is 2504 * needed, the value 1 is returned. The caller is then responsible for 2505 * managing the global reservation and subpool usage counts. After 2506 * the huge page has been allocated, vma_commit_reservation is called 2507 * to add the page to the reservation map. If the page allocation fails, 2508 * the reservation must be ended instead of committed. vma_end_reservation 2509 * is called in such cases. 2510 * 2511 * In the normal case, vma_commit_reservation returns the same value 2512 * as the preceding vma_needs_reservation call. The only time this 2513 * is not the case is if a reserve map was changed between calls. It 2514 * is the responsibility of the caller to notice the difference and 2515 * take appropriate action. 2516 * 2517 * vma_add_reservation is used in error paths where a reservation must 2518 * be restored when a newly allocated huge page must be freed. It is 2519 * to be called after calling vma_needs_reservation to determine if a 2520 * reservation exists. 2521 * 2522 * vma_del_reservation is used in error paths where an entry in the reserve 2523 * map was created during huge page allocation and must be removed. It is to 2524 * be called after calling vma_needs_reservation to determine if a reservation 2525 * exists. 2526 */ 2527 enum vma_resv_mode { 2528 VMA_NEEDS_RESV, 2529 VMA_COMMIT_RESV, 2530 VMA_END_RESV, 2531 VMA_ADD_RESV, 2532 VMA_DEL_RESV, 2533 }; 2534 static long __vma_reservation_common(struct hstate *h, 2535 struct vm_area_struct *vma, unsigned long addr, 2536 enum vma_resv_mode mode) 2537 { 2538 struct resv_map *resv; 2539 pgoff_t idx; 2540 long ret; 2541 long dummy_out_regions_needed; 2542 2543 resv = vma_resv_map(vma); 2544 if (!resv) 2545 return 1; 2546 2547 idx = vma_hugecache_offset(h, vma, addr); 2548 switch (mode) { 2549 case VMA_NEEDS_RESV: 2550 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2551 /* We assume that vma_reservation_* routines always operate on 2552 * 1 page, and that adding to resv map a 1 page entry can only 2553 * ever require 1 region. 2554 */ 2555 VM_BUG_ON(dummy_out_regions_needed != 1); 2556 break; 2557 case VMA_COMMIT_RESV: 2558 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2559 /* region_add calls of range 1 should never fail. */ 2560 VM_BUG_ON(ret < 0); 2561 break; 2562 case VMA_END_RESV: 2563 region_abort(resv, idx, idx + 1, 1); 2564 ret = 0; 2565 break; 2566 case VMA_ADD_RESV: 2567 if (vma->vm_flags & VM_MAYSHARE) { 2568 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2569 /* region_add calls of range 1 should never fail. */ 2570 VM_BUG_ON(ret < 0); 2571 } else { 2572 region_abort(resv, idx, idx + 1, 1); 2573 ret = region_del(resv, idx, idx + 1); 2574 } 2575 break; 2576 case VMA_DEL_RESV: 2577 if (vma->vm_flags & VM_MAYSHARE) { 2578 region_abort(resv, idx, idx + 1, 1); 2579 ret = region_del(resv, idx, idx + 1); 2580 } else { 2581 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2582 /* region_add calls of range 1 should never fail. */ 2583 VM_BUG_ON(ret < 0); 2584 } 2585 break; 2586 default: 2587 BUG(); 2588 } 2589 2590 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2591 return ret; 2592 /* 2593 * We know private mapping must have HPAGE_RESV_OWNER set. 2594 * 2595 * In most cases, reserves always exist for private mappings. 2596 * However, a file associated with mapping could have been 2597 * hole punched or truncated after reserves were consumed. 2598 * As subsequent fault on such a range will not use reserves. 2599 * Subtle - The reserve map for private mappings has the 2600 * opposite meaning than that of shared mappings. If NO 2601 * entry is in the reserve map, it means a reservation exists. 2602 * If an entry exists in the reserve map, it means the 2603 * reservation has already been consumed. As a result, the 2604 * return value of this routine is the opposite of the 2605 * value returned from reserve map manipulation routines above. 2606 */ 2607 if (ret > 0) 2608 return 0; 2609 if (ret == 0) 2610 return 1; 2611 return ret; 2612 } 2613 2614 static long vma_needs_reservation(struct hstate *h, 2615 struct vm_area_struct *vma, unsigned long addr) 2616 { 2617 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2618 } 2619 2620 static long vma_commit_reservation(struct hstate *h, 2621 struct vm_area_struct *vma, unsigned long addr) 2622 { 2623 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2624 } 2625 2626 static void vma_end_reservation(struct hstate *h, 2627 struct vm_area_struct *vma, unsigned long addr) 2628 { 2629 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2630 } 2631 2632 static long vma_add_reservation(struct hstate *h, 2633 struct vm_area_struct *vma, unsigned long addr) 2634 { 2635 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2636 } 2637 2638 static long vma_del_reservation(struct hstate *h, 2639 struct vm_area_struct *vma, unsigned long addr) 2640 { 2641 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2642 } 2643 2644 /* 2645 * This routine is called to restore reservation information on error paths. 2646 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2647 * the hugetlb mutex should remain held when calling this routine. 2648 * 2649 * It handles two specific cases: 2650 * 1) A reservation was in place and the page consumed the reservation. 2651 * HPageRestoreReserve is set in the page. 2652 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2653 * not set. However, alloc_huge_page always updates the reserve map. 2654 * 2655 * In case 1, free_huge_page later in the error path will increment the 2656 * global reserve count. But, free_huge_page does not have enough context 2657 * to adjust the reservation map. This case deals primarily with private 2658 * mappings. Adjust the reserve map here to be consistent with global 2659 * reserve count adjustments to be made by free_huge_page. Make sure the 2660 * reserve map indicates there is a reservation present. 2661 * 2662 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2663 */ 2664 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2665 unsigned long address, struct page *page) 2666 { 2667 long rc = vma_needs_reservation(h, vma, address); 2668 2669 if (HPageRestoreReserve(page)) { 2670 if (unlikely(rc < 0)) 2671 /* 2672 * Rare out of memory condition in reserve map 2673 * manipulation. Clear HPageRestoreReserve so that 2674 * global reserve count will not be incremented 2675 * by free_huge_page. This will make it appear 2676 * as though the reservation for this page was 2677 * consumed. This may prevent the task from 2678 * faulting in the page at a later time. This 2679 * is better than inconsistent global huge page 2680 * accounting of reserve counts. 2681 */ 2682 ClearHPageRestoreReserve(page); 2683 else if (rc) 2684 (void)vma_add_reservation(h, vma, address); 2685 else 2686 vma_end_reservation(h, vma, address); 2687 } else { 2688 if (!rc) { 2689 /* 2690 * This indicates there is an entry in the reserve map 2691 * not added by alloc_huge_page. We know it was added 2692 * before the alloc_huge_page call, otherwise 2693 * HPageRestoreReserve would be set on the page. 2694 * Remove the entry so that a subsequent allocation 2695 * does not consume a reservation. 2696 */ 2697 rc = vma_del_reservation(h, vma, address); 2698 if (rc < 0) 2699 /* 2700 * VERY rare out of memory condition. Since 2701 * we can not delete the entry, set 2702 * HPageRestoreReserve so that the reserve 2703 * count will be incremented when the page 2704 * is freed. This reserve will be consumed 2705 * on a subsequent allocation. 2706 */ 2707 SetHPageRestoreReserve(page); 2708 } else if (rc < 0) { 2709 /* 2710 * Rare out of memory condition from 2711 * vma_needs_reservation call. Memory allocation is 2712 * only attempted if a new entry is needed. Therefore, 2713 * this implies there is not an entry in the 2714 * reserve map. 2715 * 2716 * For shared mappings, no entry in the map indicates 2717 * no reservation. We are done. 2718 */ 2719 if (!(vma->vm_flags & VM_MAYSHARE)) 2720 /* 2721 * For private mappings, no entry indicates 2722 * a reservation is present. Since we can 2723 * not add an entry, set SetHPageRestoreReserve 2724 * on the page so reserve count will be 2725 * incremented when freed. This reserve will 2726 * be consumed on a subsequent allocation. 2727 */ 2728 SetHPageRestoreReserve(page); 2729 } else 2730 /* 2731 * No reservation present, do nothing 2732 */ 2733 vma_end_reservation(h, vma, address); 2734 } 2735 } 2736 2737 /* 2738 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2739 * @h: struct hstate old page belongs to 2740 * @old_page: Old page to dissolve 2741 * @list: List to isolate the page in case we need to 2742 * Returns 0 on success, otherwise negated error. 2743 */ 2744 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2745 struct list_head *list) 2746 { 2747 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2748 int nid = page_to_nid(old_page); 2749 struct page *new_page; 2750 int ret = 0; 2751 2752 /* 2753 * Before dissolving the page, we need to allocate a new one for the 2754 * pool to remain stable. Here, we allocate the page and 'prep' it 2755 * by doing everything but actually updating counters and adding to 2756 * the pool. This simplifies and let us do most of the processing 2757 * under the lock. 2758 */ 2759 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2760 if (!new_page) 2761 return -ENOMEM; 2762 __prep_new_huge_page(h, new_page); 2763 2764 retry: 2765 spin_lock_irq(&hugetlb_lock); 2766 if (!PageHuge(old_page)) { 2767 /* 2768 * Freed from under us. Drop new_page too. 2769 */ 2770 goto free_new; 2771 } else if (page_count(old_page)) { 2772 /* 2773 * Someone has grabbed the page, try to isolate it here. 2774 * Fail with -EBUSY if not possible. 2775 */ 2776 spin_unlock_irq(&hugetlb_lock); 2777 ret = isolate_hugetlb(old_page, list); 2778 spin_lock_irq(&hugetlb_lock); 2779 goto free_new; 2780 } else if (!HPageFreed(old_page)) { 2781 /* 2782 * Page's refcount is 0 but it has not been enqueued in the 2783 * freelist yet. Race window is small, so we can succeed here if 2784 * we retry. 2785 */ 2786 spin_unlock_irq(&hugetlb_lock); 2787 cond_resched(); 2788 goto retry; 2789 } else { 2790 /* 2791 * Ok, old_page is still a genuine free hugepage. Remove it from 2792 * the freelist and decrease the counters. These will be 2793 * incremented again when calling __prep_account_new_huge_page() 2794 * and enqueue_huge_page() for new_page. The counters will remain 2795 * stable since this happens under the lock. 2796 */ 2797 remove_hugetlb_page(h, old_page, false); 2798 2799 /* 2800 * Ref count on new page is already zero as it was dropped 2801 * earlier. It can be directly added to the pool free list. 2802 */ 2803 __prep_account_new_huge_page(h, nid); 2804 enqueue_huge_page(h, new_page); 2805 2806 /* 2807 * Pages have been replaced, we can safely free the old one. 2808 */ 2809 spin_unlock_irq(&hugetlb_lock); 2810 update_and_free_page(h, old_page, false); 2811 } 2812 2813 return ret; 2814 2815 free_new: 2816 spin_unlock_irq(&hugetlb_lock); 2817 /* Page has a zero ref count, but needs a ref to be freed */ 2818 set_page_refcounted(new_page); 2819 update_and_free_page(h, new_page, false); 2820 2821 return ret; 2822 } 2823 2824 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2825 { 2826 struct hstate *h; 2827 struct page *head; 2828 int ret = -EBUSY; 2829 2830 /* 2831 * The page might have been dissolved from under our feet, so make sure 2832 * to carefully check the state under the lock. 2833 * Return success when racing as if we dissolved the page ourselves. 2834 */ 2835 spin_lock_irq(&hugetlb_lock); 2836 if (PageHuge(page)) { 2837 head = compound_head(page); 2838 h = page_hstate(head); 2839 } else { 2840 spin_unlock_irq(&hugetlb_lock); 2841 return 0; 2842 } 2843 spin_unlock_irq(&hugetlb_lock); 2844 2845 /* 2846 * Fence off gigantic pages as there is a cyclic dependency between 2847 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2848 * of bailing out right away without further retrying. 2849 */ 2850 if (hstate_is_gigantic(h)) 2851 return -ENOMEM; 2852 2853 if (page_count(head) && !isolate_hugetlb(head, list)) 2854 ret = 0; 2855 else if (!page_count(head)) 2856 ret = alloc_and_dissolve_huge_page(h, head, list); 2857 2858 return ret; 2859 } 2860 2861 struct page *alloc_huge_page(struct vm_area_struct *vma, 2862 unsigned long addr, int avoid_reserve) 2863 { 2864 struct hugepage_subpool *spool = subpool_vma(vma); 2865 struct hstate *h = hstate_vma(vma); 2866 struct page *page; 2867 long map_chg, map_commit; 2868 long gbl_chg; 2869 int ret, idx; 2870 struct hugetlb_cgroup *h_cg; 2871 bool deferred_reserve; 2872 2873 idx = hstate_index(h); 2874 /* 2875 * Examine the region/reserve map to determine if the process 2876 * has a reservation for the page to be allocated. A return 2877 * code of zero indicates a reservation exists (no change). 2878 */ 2879 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2880 if (map_chg < 0) 2881 return ERR_PTR(-ENOMEM); 2882 2883 /* 2884 * Processes that did not create the mapping will have no 2885 * reserves as indicated by the region/reserve map. Check 2886 * that the allocation will not exceed the subpool limit. 2887 * Allocations for MAP_NORESERVE mappings also need to be 2888 * checked against any subpool limit. 2889 */ 2890 if (map_chg || avoid_reserve) { 2891 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2892 if (gbl_chg < 0) { 2893 vma_end_reservation(h, vma, addr); 2894 return ERR_PTR(-ENOSPC); 2895 } 2896 2897 /* 2898 * Even though there was no reservation in the region/reserve 2899 * map, there could be reservations associated with the 2900 * subpool that can be used. This would be indicated if the 2901 * return value of hugepage_subpool_get_pages() is zero. 2902 * However, if avoid_reserve is specified we still avoid even 2903 * the subpool reservations. 2904 */ 2905 if (avoid_reserve) 2906 gbl_chg = 1; 2907 } 2908 2909 /* If this allocation is not consuming a reservation, charge it now. 2910 */ 2911 deferred_reserve = map_chg || avoid_reserve; 2912 if (deferred_reserve) { 2913 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2914 idx, pages_per_huge_page(h), &h_cg); 2915 if (ret) 2916 goto out_subpool_put; 2917 } 2918 2919 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2920 if (ret) 2921 goto out_uncharge_cgroup_reservation; 2922 2923 spin_lock_irq(&hugetlb_lock); 2924 /* 2925 * glb_chg is passed to indicate whether or not a page must be taken 2926 * from the global free pool (global change). gbl_chg == 0 indicates 2927 * a reservation exists for the allocation. 2928 */ 2929 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2930 if (!page) { 2931 spin_unlock_irq(&hugetlb_lock); 2932 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2933 if (!page) 2934 goto out_uncharge_cgroup; 2935 spin_lock_irq(&hugetlb_lock); 2936 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2937 SetHPageRestoreReserve(page); 2938 h->resv_huge_pages--; 2939 } 2940 list_add(&page->lru, &h->hugepage_activelist); 2941 set_page_refcounted(page); 2942 /* Fall through */ 2943 } 2944 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2945 /* If allocation is not consuming a reservation, also store the 2946 * hugetlb_cgroup pointer on the page. 2947 */ 2948 if (deferred_reserve) { 2949 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2950 h_cg, page); 2951 } 2952 2953 spin_unlock_irq(&hugetlb_lock); 2954 2955 hugetlb_set_page_subpool(page, spool); 2956 2957 map_commit = vma_commit_reservation(h, vma, addr); 2958 if (unlikely(map_chg > map_commit)) { 2959 /* 2960 * The page was added to the reservation map between 2961 * vma_needs_reservation and vma_commit_reservation. 2962 * This indicates a race with hugetlb_reserve_pages. 2963 * Adjust for the subpool count incremented above AND 2964 * in hugetlb_reserve_pages for the same page. Also, 2965 * the reservation count added in hugetlb_reserve_pages 2966 * no longer applies. 2967 */ 2968 long rsv_adjust; 2969 2970 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2971 hugetlb_acct_memory(h, -rsv_adjust); 2972 if (deferred_reserve) 2973 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2974 pages_per_huge_page(h), page); 2975 } 2976 return page; 2977 2978 out_uncharge_cgroup: 2979 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2980 out_uncharge_cgroup_reservation: 2981 if (deferred_reserve) 2982 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2983 h_cg); 2984 out_subpool_put: 2985 if (map_chg || avoid_reserve) 2986 hugepage_subpool_put_pages(spool, 1); 2987 vma_end_reservation(h, vma, addr); 2988 return ERR_PTR(-ENOSPC); 2989 } 2990 2991 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2992 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2993 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2994 { 2995 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2996 int nr_nodes, node; 2997 2998 /* do node specific alloc */ 2999 if (nid != NUMA_NO_NODE) { 3000 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3001 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3002 if (!m) 3003 return 0; 3004 goto found; 3005 } 3006 /* allocate from next node when distributing huge pages */ 3007 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3008 m = memblock_alloc_try_nid_raw( 3009 huge_page_size(h), huge_page_size(h), 3010 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3011 /* 3012 * Use the beginning of the huge page to store the 3013 * huge_bootmem_page struct (until gather_bootmem 3014 * puts them into the mem_map). 3015 */ 3016 if (!m) 3017 return 0; 3018 goto found; 3019 } 3020 3021 found: 3022 /* Put them into a private list first because mem_map is not up yet */ 3023 INIT_LIST_HEAD(&m->list); 3024 list_add(&m->list, &huge_boot_pages); 3025 m->hstate = h; 3026 return 1; 3027 } 3028 3029 /* 3030 * Put bootmem huge pages into the standard lists after mem_map is up. 3031 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3032 */ 3033 static void __init gather_bootmem_prealloc(void) 3034 { 3035 struct huge_bootmem_page *m; 3036 3037 list_for_each_entry(m, &huge_boot_pages, list) { 3038 struct page *page = virt_to_page(m); 3039 struct hstate *h = m->hstate; 3040 3041 VM_BUG_ON(!hstate_is_gigantic(h)); 3042 WARN_ON(page_count(page) != 1); 3043 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3044 WARN_ON(PageReserved(page)); 3045 prep_new_huge_page(h, page, page_to_nid(page)); 3046 free_huge_page(page); /* add to the hugepage allocator */ 3047 } else { 3048 /* VERY unlikely inflated ref count on a tail page */ 3049 free_gigantic_page(page, huge_page_order(h)); 3050 } 3051 3052 /* 3053 * We need to restore the 'stolen' pages to totalram_pages 3054 * in order to fix confusing memory reports from free(1) and 3055 * other side-effects, like CommitLimit going negative. 3056 */ 3057 adjust_managed_page_count(page, pages_per_huge_page(h)); 3058 cond_resched(); 3059 } 3060 } 3061 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3062 { 3063 unsigned long i; 3064 char buf[32]; 3065 3066 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3067 if (hstate_is_gigantic(h)) { 3068 if (!alloc_bootmem_huge_page(h, nid)) 3069 break; 3070 } else { 3071 struct page *page; 3072 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3073 3074 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3075 &node_states[N_MEMORY], NULL); 3076 if (!page) 3077 break; 3078 free_huge_page(page); /* free it into the hugepage allocator */ 3079 } 3080 cond_resched(); 3081 } 3082 if (i == h->max_huge_pages_node[nid]) 3083 return; 3084 3085 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3086 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3087 h->max_huge_pages_node[nid], buf, nid, i); 3088 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3089 h->max_huge_pages_node[nid] = i; 3090 } 3091 3092 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3093 { 3094 unsigned long i; 3095 nodemask_t *node_alloc_noretry; 3096 bool node_specific_alloc = false; 3097 3098 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3099 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3100 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3101 return; 3102 } 3103 3104 /* do node specific alloc */ 3105 for_each_online_node(i) { 3106 if (h->max_huge_pages_node[i] > 0) { 3107 hugetlb_hstate_alloc_pages_onenode(h, i); 3108 node_specific_alloc = true; 3109 } 3110 } 3111 3112 if (node_specific_alloc) 3113 return; 3114 3115 /* below will do all node balanced alloc */ 3116 if (!hstate_is_gigantic(h)) { 3117 /* 3118 * Bit mask controlling how hard we retry per-node allocations. 3119 * Ignore errors as lower level routines can deal with 3120 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3121 * time, we are likely in bigger trouble. 3122 */ 3123 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3124 GFP_KERNEL); 3125 } else { 3126 /* allocations done at boot time */ 3127 node_alloc_noretry = NULL; 3128 } 3129 3130 /* bit mask controlling how hard we retry per-node allocations */ 3131 if (node_alloc_noretry) 3132 nodes_clear(*node_alloc_noretry); 3133 3134 for (i = 0; i < h->max_huge_pages; ++i) { 3135 if (hstate_is_gigantic(h)) { 3136 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3137 break; 3138 } else if (!alloc_pool_huge_page(h, 3139 &node_states[N_MEMORY], 3140 node_alloc_noretry)) 3141 break; 3142 cond_resched(); 3143 } 3144 if (i < h->max_huge_pages) { 3145 char buf[32]; 3146 3147 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3148 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3149 h->max_huge_pages, buf, i); 3150 h->max_huge_pages = i; 3151 } 3152 kfree(node_alloc_noretry); 3153 } 3154 3155 static void __init hugetlb_init_hstates(void) 3156 { 3157 struct hstate *h, *h2; 3158 3159 for_each_hstate(h) { 3160 /* oversize hugepages were init'ed in early boot */ 3161 if (!hstate_is_gigantic(h)) 3162 hugetlb_hstate_alloc_pages(h); 3163 3164 /* 3165 * Set demote order for each hstate. Note that 3166 * h->demote_order is initially 0. 3167 * - We can not demote gigantic pages if runtime freeing 3168 * is not supported, so skip this. 3169 * - If CMA allocation is possible, we can not demote 3170 * HUGETLB_PAGE_ORDER or smaller size pages. 3171 */ 3172 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3173 continue; 3174 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3175 continue; 3176 for_each_hstate(h2) { 3177 if (h2 == h) 3178 continue; 3179 if (h2->order < h->order && 3180 h2->order > h->demote_order) 3181 h->demote_order = h2->order; 3182 } 3183 } 3184 } 3185 3186 static void __init report_hugepages(void) 3187 { 3188 struct hstate *h; 3189 3190 for_each_hstate(h) { 3191 char buf[32]; 3192 3193 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3194 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3195 buf, h->free_huge_pages); 3196 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3197 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3198 } 3199 } 3200 3201 #ifdef CONFIG_HIGHMEM 3202 static void try_to_free_low(struct hstate *h, unsigned long count, 3203 nodemask_t *nodes_allowed) 3204 { 3205 int i; 3206 LIST_HEAD(page_list); 3207 3208 lockdep_assert_held(&hugetlb_lock); 3209 if (hstate_is_gigantic(h)) 3210 return; 3211 3212 /* 3213 * Collect pages to be freed on a list, and free after dropping lock 3214 */ 3215 for_each_node_mask(i, *nodes_allowed) { 3216 struct page *page, *next; 3217 struct list_head *freel = &h->hugepage_freelists[i]; 3218 list_for_each_entry_safe(page, next, freel, lru) { 3219 if (count >= h->nr_huge_pages) 3220 goto out; 3221 if (PageHighMem(page)) 3222 continue; 3223 remove_hugetlb_page(h, page, false); 3224 list_add(&page->lru, &page_list); 3225 } 3226 } 3227 3228 out: 3229 spin_unlock_irq(&hugetlb_lock); 3230 update_and_free_pages_bulk(h, &page_list); 3231 spin_lock_irq(&hugetlb_lock); 3232 } 3233 #else 3234 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3235 nodemask_t *nodes_allowed) 3236 { 3237 } 3238 #endif 3239 3240 /* 3241 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3242 * balanced by operating on them in a round-robin fashion. 3243 * Returns 1 if an adjustment was made. 3244 */ 3245 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3246 int delta) 3247 { 3248 int nr_nodes, node; 3249 3250 lockdep_assert_held(&hugetlb_lock); 3251 VM_BUG_ON(delta != -1 && delta != 1); 3252 3253 if (delta < 0) { 3254 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3255 if (h->surplus_huge_pages_node[node]) 3256 goto found; 3257 } 3258 } else { 3259 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3260 if (h->surplus_huge_pages_node[node] < 3261 h->nr_huge_pages_node[node]) 3262 goto found; 3263 } 3264 } 3265 return 0; 3266 3267 found: 3268 h->surplus_huge_pages += delta; 3269 h->surplus_huge_pages_node[node] += delta; 3270 return 1; 3271 } 3272 3273 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3274 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3275 nodemask_t *nodes_allowed) 3276 { 3277 unsigned long min_count, ret; 3278 struct page *page; 3279 LIST_HEAD(page_list); 3280 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3281 3282 /* 3283 * Bit mask controlling how hard we retry per-node allocations. 3284 * If we can not allocate the bit mask, do not attempt to allocate 3285 * the requested huge pages. 3286 */ 3287 if (node_alloc_noretry) 3288 nodes_clear(*node_alloc_noretry); 3289 else 3290 return -ENOMEM; 3291 3292 /* 3293 * resize_lock mutex prevents concurrent adjustments to number of 3294 * pages in hstate via the proc/sysfs interfaces. 3295 */ 3296 mutex_lock(&h->resize_lock); 3297 flush_free_hpage_work(h); 3298 spin_lock_irq(&hugetlb_lock); 3299 3300 /* 3301 * Check for a node specific request. 3302 * Changing node specific huge page count may require a corresponding 3303 * change to the global count. In any case, the passed node mask 3304 * (nodes_allowed) will restrict alloc/free to the specified node. 3305 */ 3306 if (nid != NUMA_NO_NODE) { 3307 unsigned long old_count = count; 3308 3309 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3310 /* 3311 * User may have specified a large count value which caused the 3312 * above calculation to overflow. In this case, they wanted 3313 * to allocate as many huge pages as possible. Set count to 3314 * largest possible value to align with their intention. 3315 */ 3316 if (count < old_count) 3317 count = ULONG_MAX; 3318 } 3319 3320 /* 3321 * Gigantic pages runtime allocation depend on the capability for large 3322 * page range allocation. 3323 * If the system does not provide this feature, return an error when 3324 * the user tries to allocate gigantic pages but let the user free the 3325 * boottime allocated gigantic pages. 3326 */ 3327 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3328 if (count > persistent_huge_pages(h)) { 3329 spin_unlock_irq(&hugetlb_lock); 3330 mutex_unlock(&h->resize_lock); 3331 NODEMASK_FREE(node_alloc_noretry); 3332 return -EINVAL; 3333 } 3334 /* Fall through to decrease pool */ 3335 } 3336 3337 /* 3338 * Increase the pool size 3339 * First take pages out of surplus state. Then make up the 3340 * remaining difference by allocating fresh huge pages. 3341 * 3342 * We might race with alloc_surplus_huge_page() here and be unable 3343 * to convert a surplus huge page to a normal huge page. That is 3344 * not critical, though, it just means the overall size of the 3345 * pool might be one hugepage larger than it needs to be, but 3346 * within all the constraints specified by the sysctls. 3347 */ 3348 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3349 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3350 break; 3351 } 3352 3353 while (count > persistent_huge_pages(h)) { 3354 /* 3355 * If this allocation races such that we no longer need the 3356 * page, free_huge_page will handle it by freeing the page 3357 * and reducing the surplus. 3358 */ 3359 spin_unlock_irq(&hugetlb_lock); 3360 3361 /* yield cpu to avoid soft lockup */ 3362 cond_resched(); 3363 3364 ret = alloc_pool_huge_page(h, nodes_allowed, 3365 node_alloc_noretry); 3366 spin_lock_irq(&hugetlb_lock); 3367 if (!ret) 3368 goto out; 3369 3370 /* Bail for signals. Probably ctrl-c from user */ 3371 if (signal_pending(current)) 3372 goto out; 3373 } 3374 3375 /* 3376 * Decrease the pool size 3377 * First return free pages to the buddy allocator (being careful 3378 * to keep enough around to satisfy reservations). Then place 3379 * pages into surplus state as needed so the pool will shrink 3380 * to the desired size as pages become free. 3381 * 3382 * By placing pages into the surplus state independent of the 3383 * overcommit value, we are allowing the surplus pool size to 3384 * exceed overcommit. There are few sane options here. Since 3385 * alloc_surplus_huge_page() is checking the global counter, 3386 * though, we'll note that we're not allowed to exceed surplus 3387 * and won't grow the pool anywhere else. Not until one of the 3388 * sysctls are changed, or the surplus pages go out of use. 3389 */ 3390 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3391 min_count = max(count, min_count); 3392 try_to_free_low(h, min_count, nodes_allowed); 3393 3394 /* 3395 * Collect pages to be removed on list without dropping lock 3396 */ 3397 while (min_count < persistent_huge_pages(h)) { 3398 page = remove_pool_huge_page(h, nodes_allowed, 0); 3399 if (!page) 3400 break; 3401 3402 list_add(&page->lru, &page_list); 3403 } 3404 /* free the pages after dropping lock */ 3405 spin_unlock_irq(&hugetlb_lock); 3406 update_and_free_pages_bulk(h, &page_list); 3407 flush_free_hpage_work(h); 3408 spin_lock_irq(&hugetlb_lock); 3409 3410 while (count < persistent_huge_pages(h)) { 3411 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3412 break; 3413 } 3414 out: 3415 h->max_huge_pages = persistent_huge_pages(h); 3416 spin_unlock_irq(&hugetlb_lock); 3417 mutex_unlock(&h->resize_lock); 3418 3419 NODEMASK_FREE(node_alloc_noretry); 3420 3421 return 0; 3422 } 3423 3424 static int demote_free_huge_page(struct hstate *h, struct page *page) 3425 { 3426 int i, nid = page_to_nid(page); 3427 struct hstate *target_hstate; 3428 struct page *subpage; 3429 int rc = 0; 3430 3431 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3432 3433 remove_hugetlb_page_for_demote(h, page, false); 3434 spin_unlock_irq(&hugetlb_lock); 3435 3436 rc = hugetlb_vmemmap_restore(h, page); 3437 if (rc) { 3438 /* Allocation of vmemmmap failed, we can not demote page */ 3439 spin_lock_irq(&hugetlb_lock); 3440 set_page_refcounted(page); 3441 add_hugetlb_page(h, page, false); 3442 return rc; 3443 } 3444 3445 /* 3446 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3447 * sizes as it will not ref count pages. 3448 */ 3449 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3450 3451 /* 3452 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3453 * Without the mutex, pages added to target hstate could be marked 3454 * as surplus. 3455 * 3456 * Note that we already hold h->resize_lock. To prevent deadlock, 3457 * use the convention of always taking larger size hstate mutex first. 3458 */ 3459 mutex_lock(&target_hstate->resize_lock); 3460 for (i = 0; i < pages_per_huge_page(h); 3461 i += pages_per_huge_page(target_hstate)) { 3462 subpage = nth_page(page, i); 3463 if (hstate_is_gigantic(target_hstate)) 3464 prep_compound_gigantic_page_for_demote(subpage, 3465 target_hstate->order); 3466 else 3467 prep_compound_page(subpage, target_hstate->order); 3468 set_page_private(subpage, 0); 3469 prep_new_huge_page(target_hstate, subpage, nid); 3470 free_huge_page(subpage); 3471 } 3472 mutex_unlock(&target_hstate->resize_lock); 3473 3474 spin_lock_irq(&hugetlb_lock); 3475 3476 /* 3477 * Not absolutely necessary, but for consistency update max_huge_pages 3478 * based on pool changes for the demoted page. 3479 */ 3480 h->max_huge_pages--; 3481 target_hstate->max_huge_pages += 3482 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3483 3484 return rc; 3485 } 3486 3487 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3488 __must_hold(&hugetlb_lock) 3489 { 3490 int nr_nodes, node; 3491 struct page *page; 3492 3493 lockdep_assert_held(&hugetlb_lock); 3494 3495 /* We should never get here if no demote order */ 3496 if (!h->demote_order) { 3497 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3498 return -EINVAL; /* internal error */ 3499 } 3500 3501 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3502 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3503 if (PageHWPoison(page)) 3504 continue; 3505 3506 return demote_free_huge_page(h, page); 3507 } 3508 } 3509 3510 /* 3511 * Only way to get here is if all pages on free lists are poisoned. 3512 * Return -EBUSY so that caller will not retry. 3513 */ 3514 return -EBUSY; 3515 } 3516 3517 #define HSTATE_ATTR_RO(_name) \ 3518 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3519 3520 #define HSTATE_ATTR_WO(_name) \ 3521 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3522 3523 #define HSTATE_ATTR(_name) \ 3524 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3525 3526 static struct kobject *hugepages_kobj; 3527 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3528 3529 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3530 3531 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3532 { 3533 int i; 3534 3535 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3536 if (hstate_kobjs[i] == kobj) { 3537 if (nidp) 3538 *nidp = NUMA_NO_NODE; 3539 return &hstates[i]; 3540 } 3541 3542 return kobj_to_node_hstate(kobj, nidp); 3543 } 3544 3545 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3546 struct kobj_attribute *attr, char *buf) 3547 { 3548 struct hstate *h; 3549 unsigned long nr_huge_pages; 3550 int nid; 3551 3552 h = kobj_to_hstate(kobj, &nid); 3553 if (nid == NUMA_NO_NODE) 3554 nr_huge_pages = h->nr_huge_pages; 3555 else 3556 nr_huge_pages = h->nr_huge_pages_node[nid]; 3557 3558 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3559 } 3560 3561 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3562 struct hstate *h, int nid, 3563 unsigned long count, size_t len) 3564 { 3565 int err; 3566 nodemask_t nodes_allowed, *n_mask; 3567 3568 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3569 return -EINVAL; 3570 3571 if (nid == NUMA_NO_NODE) { 3572 /* 3573 * global hstate attribute 3574 */ 3575 if (!(obey_mempolicy && 3576 init_nodemask_of_mempolicy(&nodes_allowed))) 3577 n_mask = &node_states[N_MEMORY]; 3578 else 3579 n_mask = &nodes_allowed; 3580 } else { 3581 /* 3582 * Node specific request. count adjustment happens in 3583 * set_max_huge_pages() after acquiring hugetlb_lock. 3584 */ 3585 init_nodemask_of_node(&nodes_allowed, nid); 3586 n_mask = &nodes_allowed; 3587 } 3588 3589 err = set_max_huge_pages(h, count, nid, n_mask); 3590 3591 return err ? err : len; 3592 } 3593 3594 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3595 struct kobject *kobj, const char *buf, 3596 size_t len) 3597 { 3598 struct hstate *h; 3599 unsigned long count; 3600 int nid; 3601 int err; 3602 3603 err = kstrtoul(buf, 10, &count); 3604 if (err) 3605 return err; 3606 3607 h = kobj_to_hstate(kobj, &nid); 3608 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3609 } 3610 3611 static ssize_t nr_hugepages_show(struct kobject *kobj, 3612 struct kobj_attribute *attr, char *buf) 3613 { 3614 return nr_hugepages_show_common(kobj, attr, buf); 3615 } 3616 3617 static ssize_t nr_hugepages_store(struct kobject *kobj, 3618 struct kobj_attribute *attr, const char *buf, size_t len) 3619 { 3620 return nr_hugepages_store_common(false, kobj, buf, len); 3621 } 3622 HSTATE_ATTR(nr_hugepages); 3623 3624 #ifdef CONFIG_NUMA 3625 3626 /* 3627 * hstate attribute for optionally mempolicy-based constraint on persistent 3628 * huge page alloc/free. 3629 */ 3630 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3631 struct kobj_attribute *attr, 3632 char *buf) 3633 { 3634 return nr_hugepages_show_common(kobj, attr, buf); 3635 } 3636 3637 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3638 struct kobj_attribute *attr, const char *buf, size_t len) 3639 { 3640 return nr_hugepages_store_common(true, kobj, buf, len); 3641 } 3642 HSTATE_ATTR(nr_hugepages_mempolicy); 3643 #endif 3644 3645 3646 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3647 struct kobj_attribute *attr, char *buf) 3648 { 3649 struct hstate *h = kobj_to_hstate(kobj, NULL); 3650 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3651 } 3652 3653 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3654 struct kobj_attribute *attr, const char *buf, size_t count) 3655 { 3656 int err; 3657 unsigned long input; 3658 struct hstate *h = kobj_to_hstate(kobj, NULL); 3659 3660 if (hstate_is_gigantic(h)) 3661 return -EINVAL; 3662 3663 err = kstrtoul(buf, 10, &input); 3664 if (err) 3665 return err; 3666 3667 spin_lock_irq(&hugetlb_lock); 3668 h->nr_overcommit_huge_pages = input; 3669 spin_unlock_irq(&hugetlb_lock); 3670 3671 return count; 3672 } 3673 HSTATE_ATTR(nr_overcommit_hugepages); 3674 3675 static ssize_t free_hugepages_show(struct kobject *kobj, 3676 struct kobj_attribute *attr, char *buf) 3677 { 3678 struct hstate *h; 3679 unsigned long free_huge_pages; 3680 int nid; 3681 3682 h = kobj_to_hstate(kobj, &nid); 3683 if (nid == NUMA_NO_NODE) 3684 free_huge_pages = h->free_huge_pages; 3685 else 3686 free_huge_pages = h->free_huge_pages_node[nid]; 3687 3688 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3689 } 3690 HSTATE_ATTR_RO(free_hugepages); 3691 3692 static ssize_t resv_hugepages_show(struct kobject *kobj, 3693 struct kobj_attribute *attr, char *buf) 3694 { 3695 struct hstate *h = kobj_to_hstate(kobj, NULL); 3696 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3697 } 3698 HSTATE_ATTR_RO(resv_hugepages); 3699 3700 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3701 struct kobj_attribute *attr, char *buf) 3702 { 3703 struct hstate *h; 3704 unsigned long surplus_huge_pages; 3705 int nid; 3706 3707 h = kobj_to_hstate(kobj, &nid); 3708 if (nid == NUMA_NO_NODE) 3709 surplus_huge_pages = h->surplus_huge_pages; 3710 else 3711 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3712 3713 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3714 } 3715 HSTATE_ATTR_RO(surplus_hugepages); 3716 3717 static ssize_t demote_store(struct kobject *kobj, 3718 struct kobj_attribute *attr, const char *buf, size_t len) 3719 { 3720 unsigned long nr_demote; 3721 unsigned long nr_available; 3722 nodemask_t nodes_allowed, *n_mask; 3723 struct hstate *h; 3724 int err; 3725 int nid; 3726 3727 err = kstrtoul(buf, 10, &nr_demote); 3728 if (err) 3729 return err; 3730 h = kobj_to_hstate(kobj, &nid); 3731 3732 if (nid != NUMA_NO_NODE) { 3733 init_nodemask_of_node(&nodes_allowed, nid); 3734 n_mask = &nodes_allowed; 3735 } else { 3736 n_mask = &node_states[N_MEMORY]; 3737 } 3738 3739 /* Synchronize with other sysfs operations modifying huge pages */ 3740 mutex_lock(&h->resize_lock); 3741 spin_lock_irq(&hugetlb_lock); 3742 3743 while (nr_demote) { 3744 /* 3745 * Check for available pages to demote each time thorough the 3746 * loop as demote_pool_huge_page will drop hugetlb_lock. 3747 */ 3748 if (nid != NUMA_NO_NODE) 3749 nr_available = h->free_huge_pages_node[nid]; 3750 else 3751 nr_available = h->free_huge_pages; 3752 nr_available -= h->resv_huge_pages; 3753 if (!nr_available) 3754 break; 3755 3756 err = demote_pool_huge_page(h, n_mask); 3757 if (err) 3758 break; 3759 3760 nr_demote--; 3761 } 3762 3763 spin_unlock_irq(&hugetlb_lock); 3764 mutex_unlock(&h->resize_lock); 3765 3766 if (err) 3767 return err; 3768 return len; 3769 } 3770 HSTATE_ATTR_WO(demote); 3771 3772 static ssize_t demote_size_show(struct kobject *kobj, 3773 struct kobj_attribute *attr, char *buf) 3774 { 3775 struct hstate *h = kobj_to_hstate(kobj, NULL); 3776 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3777 3778 return sysfs_emit(buf, "%lukB\n", demote_size); 3779 } 3780 3781 static ssize_t demote_size_store(struct kobject *kobj, 3782 struct kobj_attribute *attr, 3783 const char *buf, size_t count) 3784 { 3785 struct hstate *h, *demote_hstate; 3786 unsigned long demote_size; 3787 unsigned int demote_order; 3788 3789 demote_size = (unsigned long)memparse(buf, NULL); 3790 3791 demote_hstate = size_to_hstate(demote_size); 3792 if (!demote_hstate) 3793 return -EINVAL; 3794 demote_order = demote_hstate->order; 3795 if (demote_order < HUGETLB_PAGE_ORDER) 3796 return -EINVAL; 3797 3798 /* demote order must be smaller than hstate order */ 3799 h = kobj_to_hstate(kobj, NULL); 3800 if (demote_order >= h->order) 3801 return -EINVAL; 3802 3803 /* resize_lock synchronizes access to demote size and writes */ 3804 mutex_lock(&h->resize_lock); 3805 h->demote_order = demote_order; 3806 mutex_unlock(&h->resize_lock); 3807 3808 return count; 3809 } 3810 HSTATE_ATTR(demote_size); 3811 3812 static struct attribute *hstate_attrs[] = { 3813 &nr_hugepages_attr.attr, 3814 &nr_overcommit_hugepages_attr.attr, 3815 &free_hugepages_attr.attr, 3816 &resv_hugepages_attr.attr, 3817 &surplus_hugepages_attr.attr, 3818 #ifdef CONFIG_NUMA 3819 &nr_hugepages_mempolicy_attr.attr, 3820 #endif 3821 NULL, 3822 }; 3823 3824 static const struct attribute_group hstate_attr_group = { 3825 .attrs = hstate_attrs, 3826 }; 3827 3828 static struct attribute *hstate_demote_attrs[] = { 3829 &demote_size_attr.attr, 3830 &demote_attr.attr, 3831 NULL, 3832 }; 3833 3834 static const struct attribute_group hstate_demote_attr_group = { 3835 .attrs = hstate_demote_attrs, 3836 }; 3837 3838 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3839 struct kobject **hstate_kobjs, 3840 const struct attribute_group *hstate_attr_group) 3841 { 3842 int retval; 3843 int hi = hstate_index(h); 3844 3845 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3846 if (!hstate_kobjs[hi]) 3847 return -ENOMEM; 3848 3849 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3850 if (retval) { 3851 kobject_put(hstate_kobjs[hi]); 3852 hstate_kobjs[hi] = NULL; 3853 return retval; 3854 } 3855 3856 if (h->demote_order) { 3857 retval = sysfs_create_group(hstate_kobjs[hi], 3858 &hstate_demote_attr_group); 3859 if (retval) { 3860 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3861 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 3862 kobject_put(hstate_kobjs[hi]); 3863 hstate_kobjs[hi] = NULL; 3864 return retval; 3865 } 3866 } 3867 3868 return 0; 3869 } 3870 3871 #ifdef CONFIG_NUMA 3872 static bool hugetlb_sysfs_initialized __ro_after_init; 3873 3874 /* 3875 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3876 * with node devices in node_devices[] using a parallel array. The array 3877 * index of a node device or _hstate == node id. 3878 * This is here to avoid any static dependency of the node device driver, in 3879 * the base kernel, on the hugetlb module. 3880 */ 3881 struct node_hstate { 3882 struct kobject *hugepages_kobj; 3883 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3884 }; 3885 static struct node_hstate node_hstates[MAX_NUMNODES]; 3886 3887 /* 3888 * A subset of global hstate attributes for node devices 3889 */ 3890 static struct attribute *per_node_hstate_attrs[] = { 3891 &nr_hugepages_attr.attr, 3892 &free_hugepages_attr.attr, 3893 &surplus_hugepages_attr.attr, 3894 NULL, 3895 }; 3896 3897 static const struct attribute_group per_node_hstate_attr_group = { 3898 .attrs = per_node_hstate_attrs, 3899 }; 3900 3901 /* 3902 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3903 * Returns node id via non-NULL nidp. 3904 */ 3905 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3906 { 3907 int nid; 3908 3909 for (nid = 0; nid < nr_node_ids; nid++) { 3910 struct node_hstate *nhs = &node_hstates[nid]; 3911 int i; 3912 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3913 if (nhs->hstate_kobjs[i] == kobj) { 3914 if (nidp) 3915 *nidp = nid; 3916 return &hstates[i]; 3917 } 3918 } 3919 3920 BUG(); 3921 return NULL; 3922 } 3923 3924 /* 3925 * Unregister hstate attributes from a single node device. 3926 * No-op if no hstate attributes attached. 3927 */ 3928 void hugetlb_unregister_node(struct node *node) 3929 { 3930 struct hstate *h; 3931 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3932 3933 if (!nhs->hugepages_kobj) 3934 return; /* no hstate attributes */ 3935 3936 for_each_hstate(h) { 3937 int idx = hstate_index(h); 3938 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 3939 3940 if (!hstate_kobj) 3941 continue; 3942 if (h->demote_order) 3943 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 3944 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 3945 kobject_put(hstate_kobj); 3946 nhs->hstate_kobjs[idx] = NULL; 3947 } 3948 3949 kobject_put(nhs->hugepages_kobj); 3950 nhs->hugepages_kobj = NULL; 3951 } 3952 3953 3954 /* 3955 * Register hstate attributes for a single node device. 3956 * No-op if attributes already registered. 3957 */ 3958 void hugetlb_register_node(struct node *node) 3959 { 3960 struct hstate *h; 3961 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3962 int err; 3963 3964 if (!hugetlb_sysfs_initialized) 3965 return; 3966 3967 if (nhs->hugepages_kobj) 3968 return; /* already allocated */ 3969 3970 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3971 &node->dev.kobj); 3972 if (!nhs->hugepages_kobj) 3973 return; 3974 3975 for_each_hstate(h) { 3976 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3977 nhs->hstate_kobjs, 3978 &per_node_hstate_attr_group); 3979 if (err) { 3980 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3981 h->name, node->dev.id); 3982 hugetlb_unregister_node(node); 3983 break; 3984 } 3985 } 3986 } 3987 3988 /* 3989 * hugetlb init time: register hstate attributes for all registered node 3990 * devices of nodes that have memory. All on-line nodes should have 3991 * registered their associated device by this time. 3992 */ 3993 static void __init hugetlb_register_all_nodes(void) 3994 { 3995 int nid; 3996 3997 for_each_online_node(nid) 3998 hugetlb_register_node(node_devices[nid]); 3999 } 4000 #else /* !CONFIG_NUMA */ 4001 4002 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4003 { 4004 BUG(); 4005 if (nidp) 4006 *nidp = -1; 4007 return NULL; 4008 } 4009 4010 static void hugetlb_register_all_nodes(void) { } 4011 4012 #endif 4013 4014 #ifdef CONFIG_CMA 4015 static void __init hugetlb_cma_check(void); 4016 #else 4017 static inline __init void hugetlb_cma_check(void) 4018 { 4019 } 4020 #endif 4021 4022 static void __init hugetlb_sysfs_init(void) 4023 { 4024 struct hstate *h; 4025 int err; 4026 4027 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4028 if (!hugepages_kobj) 4029 return; 4030 4031 for_each_hstate(h) { 4032 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4033 hstate_kobjs, &hstate_attr_group); 4034 if (err) 4035 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4036 } 4037 4038 #ifdef CONFIG_NUMA 4039 hugetlb_sysfs_initialized = true; 4040 #endif 4041 hugetlb_register_all_nodes(); 4042 } 4043 4044 static int __init hugetlb_init(void) 4045 { 4046 int i; 4047 4048 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4049 __NR_HPAGEFLAGS); 4050 4051 if (!hugepages_supported()) { 4052 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4053 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4054 return 0; 4055 } 4056 4057 /* 4058 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4059 * architectures depend on setup being done here. 4060 */ 4061 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4062 if (!parsed_default_hugepagesz) { 4063 /* 4064 * If we did not parse a default huge page size, set 4065 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4066 * number of huge pages for this default size was implicitly 4067 * specified, set that here as well. 4068 * Note that the implicit setting will overwrite an explicit 4069 * setting. A warning will be printed in this case. 4070 */ 4071 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4072 if (default_hstate_max_huge_pages) { 4073 if (default_hstate.max_huge_pages) { 4074 char buf[32]; 4075 4076 string_get_size(huge_page_size(&default_hstate), 4077 1, STRING_UNITS_2, buf, 32); 4078 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4079 default_hstate.max_huge_pages, buf); 4080 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4081 default_hstate_max_huge_pages); 4082 } 4083 default_hstate.max_huge_pages = 4084 default_hstate_max_huge_pages; 4085 4086 for_each_online_node(i) 4087 default_hstate.max_huge_pages_node[i] = 4088 default_hugepages_in_node[i]; 4089 } 4090 } 4091 4092 hugetlb_cma_check(); 4093 hugetlb_init_hstates(); 4094 gather_bootmem_prealloc(); 4095 report_hugepages(); 4096 4097 hugetlb_sysfs_init(); 4098 hugetlb_cgroup_file_init(); 4099 4100 #ifdef CONFIG_SMP 4101 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4102 #else 4103 num_fault_mutexes = 1; 4104 #endif 4105 hugetlb_fault_mutex_table = 4106 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4107 GFP_KERNEL); 4108 BUG_ON(!hugetlb_fault_mutex_table); 4109 4110 for (i = 0; i < num_fault_mutexes; i++) 4111 mutex_init(&hugetlb_fault_mutex_table[i]); 4112 return 0; 4113 } 4114 subsys_initcall(hugetlb_init); 4115 4116 /* Overwritten by architectures with more huge page sizes */ 4117 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4118 { 4119 return size == HPAGE_SIZE; 4120 } 4121 4122 void __init hugetlb_add_hstate(unsigned int order) 4123 { 4124 struct hstate *h; 4125 unsigned long i; 4126 4127 if (size_to_hstate(PAGE_SIZE << order)) { 4128 return; 4129 } 4130 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4131 BUG_ON(order == 0); 4132 h = &hstates[hugetlb_max_hstate++]; 4133 mutex_init(&h->resize_lock); 4134 h->order = order; 4135 h->mask = ~(huge_page_size(h) - 1); 4136 for (i = 0; i < MAX_NUMNODES; ++i) 4137 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4138 INIT_LIST_HEAD(&h->hugepage_activelist); 4139 h->next_nid_to_alloc = first_memory_node; 4140 h->next_nid_to_free = first_memory_node; 4141 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4142 huge_page_size(h)/SZ_1K); 4143 4144 parsed_hstate = h; 4145 } 4146 4147 bool __init __weak hugetlb_node_alloc_supported(void) 4148 { 4149 return true; 4150 } 4151 4152 static void __init hugepages_clear_pages_in_node(void) 4153 { 4154 if (!hugetlb_max_hstate) { 4155 default_hstate_max_huge_pages = 0; 4156 memset(default_hugepages_in_node, 0, 4157 sizeof(default_hugepages_in_node)); 4158 } else { 4159 parsed_hstate->max_huge_pages = 0; 4160 memset(parsed_hstate->max_huge_pages_node, 0, 4161 sizeof(parsed_hstate->max_huge_pages_node)); 4162 } 4163 } 4164 4165 /* 4166 * hugepages command line processing 4167 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4168 * specification. If not, ignore the hugepages value. hugepages can also 4169 * be the first huge page command line option in which case it implicitly 4170 * specifies the number of huge pages for the default size. 4171 */ 4172 static int __init hugepages_setup(char *s) 4173 { 4174 unsigned long *mhp; 4175 static unsigned long *last_mhp; 4176 int node = NUMA_NO_NODE; 4177 int count; 4178 unsigned long tmp; 4179 char *p = s; 4180 4181 if (!parsed_valid_hugepagesz) { 4182 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4183 parsed_valid_hugepagesz = true; 4184 return 1; 4185 } 4186 4187 /* 4188 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4189 * yet, so this hugepages= parameter goes to the "default hstate". 4190 * Otherwise, it goes with the previously parsed hugepagesz or 4191 * default_hugepagesz. 4192 */ 4193 else if (!hugetlb_max_hstate) 4194 mhp = &default_hstate_max_huge_pages; 4195 else 4196 mhp = &parsed_hstate->max_huge_pages; 4197 4198 if (mhp == last_mhp) { 4199 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4200 return 1; 4201 } 4202 4203 while (*p) { 4204 count = 0; 4205 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4206 goto invalid; 4207 /* Parameter is node format */ 4208 if (p[count] == ':') { 4209 if (!hugetlb_node_alloc_supported()) { 4210 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4211 return 1; 4212 } 4213 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4214 goto invalid; 4215 node = array_index_nospec(tmp, MAX_NUMNODES); 4216 p += count + 1; 4217 /* Parse hugepages */ 4218 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4219 goto invalid; 4220 if (!hugetlb_max_hstate) 4221 default_hugepages_in_node[node] = tmp; 4222 else 4223 parsed_hstate->max_huge_pages_node[node] = tmp; 4224 *mhp += tmp; 4225 /* Go to parse next node*/ 4226 if (p[count] == ',') 4227 p += count + 1; 4228 else 4229 break; 4230 } else { 4231 if (p != s) 4232 goto invalid; 4233 *mhp = tmp; 4234 break; 4235 } 4236 } 4237 4238 /* 4239 * Global state is always initialized later in hugetlb_init. 4240 * But we need to allocate gigantic hstates here early to still 4241 * use the bootmem allocator. 4242 */ 4243 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4244 hugetlb_hstate_alloc_pages(parsed_hstate); 4245 4246 last_mhp = mhp; 4247 4248 return 1; 4249 4250 invalid: 4251 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4252 hugepages_clear_pages_in_node(); 4253 return 1; 4254 } 4255 __setup("hugepages=", hugepages_setup); 4256 4257 /* 4258 * hugepagesz command line processing 4259 * A specific huge page size can only be specified once with hugepagesz. 4260 * hugepagesz is followed by hugepages on the command line. The global 4261 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4262 * hugepagesz argument was valid. 4263 */ 4264 static int __init hugepagesz_setup(char *s) 4265 { 4266 unsigned long size; 4267 struct hstate *h; 4268 4269 parsed_valid_hugepagesz = false; 4270 size = (unsigned long)memparse(s, NULL); 4271 4272 if (!arch_hugetlb_valid_size(size)) { 4273 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4274 return 1; 4275 } 4276 4277 h = size_to_hstate(size); 4278 if (h) { 4279 /* 4280 * hstate for this size already exists. This is normally 4281 * an error, but is allowed if the existing hstate is the 4282 * default hstate. More specifically, it is only allowed if 4283 * the number of huge pages for the default hstate was not 4284 * previously specified. 4285 */ 4286 if (!parsed_default_hugepagesz || h != &default_hstate || 4287 default_hstate.max_huge_pages) { 4288 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4289 return 1; 4290 } 4291 4292 /* 4293 * No need to call hugetlb_add_hstate() as hstate already 4294 * exists. But, do set parsed_hstate so that a following 4295 * hugepages= parameter will be applied to this hstate. 4296 */ 4297 parsed_hstate = h; 4298 parsed_valid_hugepagesz = true; 4299 return 1; 4300 } 4301 4302 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4303 parsed_valid_hugepagesz = true; 4304 return 1; 4305 } 4306 __setup("hugepagesz=", hugepagesz_setup); 4307 4308 /* 4309 * default_hugepagesz command line input 4310 * Only one instance of default_hugepagesz allowed on command line. 4311 */ 4312 static int __init default_hugepagesz_setup(char *s) 4313 { 4314 unsigned long size; 4315 int i; 4316 4317 parsed_valid_hugepagesz = false; 4318 if (parsed_default_hugepagesz) { 4319 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4320 return 1; 4321 } 4322 4323 size = (unsigned long)memparse(s, NULL); 4324 4325 if (!arch_hugetlb_valid_size(size)) { 4326 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4327 return 1; 4328 } 4329 4330 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4331 parsed_valid_hugepagesz = true; 4332 parsed_default_hugepagesz = true; 4333 default_hstate_idx = hstate_index(size_to_hstate(size)); 4334 4335 /* 4336 * The number of default huge pages (for this size) could have been 4337 * specified as the first hugetlb parameter: hugepages=X. If so, 4338 * then default_hstate_max_huge_pages is set. If the default huge 4339 * page size is gigantic (>= MAX_ORDER), then the pages must be 4340 * allocated here from bootmem allocator. 4341 */ 4342 if (default_hstate_max_huge_pages) { 4343 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4344 for_each_online_node(i) 4345 default_hstate.max_huge_pages_node[i] = 4346 default_hugepages_in_node[i]; 4347 if (hstate_is_gigantic(&default_hstate)) 4348 hugetlb_hstate_alloc_pages(&default_hstate); 4349 default_hstate_max_huge_pages = 0; 4350 } 4351 4352 return 1; 4353 } 4354 __setup("default_hugepagesz=", default_hugepagesz_setup); 4355 4356 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4357 { 4358 #ifdef CONFIG_NUMA 4359 struct mempolicy *mpol = get_task_policy(current); 4360 4361 /* 4362 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4363 * (from policy_nodemask) specifically for hugetlb case 4364 */ 4365 if (mpol->mode == MPOL_BIND && 4366 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4367 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4368 return &mpol->nodes; 4369 #endif 4370 return NULL; 4371 } 4372 4373 static unsigned int allowed_mems_nr(struct hstate *h) 4374 { 4375 int node; 4376 unsigned int nr = 0; 4377 nodemask_t *mbind_nodemask; 4378 unsigned int *array = h->free_huge_pages_node; 4379 gfp_t gfp_mask = htlb_alloc_mask(h); 4380 4381 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4382 for_each_node_mask(node, cpuset_current_mems_allowed) { 4383 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4384 nr += array[node]; 4385 } 4386 4387 return nr; 4388 } 4389 4390 #ifdef CONFIG_SYSCTL 4391 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4392 void *buffer, size_t *length, 4393 loff_t *ppos, unsigned long *out) 4394 { 4395 struct ctl_table dup_table; 4396 4397 /* 4398 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4399 * can duplicate the @table and alter the duplicate of it. 4400 */ 4401 dup_table = *table; 4402 dup_table.data = out; 4403 4404 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4405 } 4406 4407 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4408 struct ctl_table *table, int write, 4409 void *buffer, size_t *length, loff_t *ppos) 4410 { 4411 struct hstate *h = &default_hstate; 4412 unsigned long tmp = h->max_huge_pages; 4413 int ret; 4414 4415 if (!hugepages_supported()) 4416 return -EOPNOTSUPP; 4417 4418 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4419 &tmp); 4420 if (ret) 4421 goto out; 4422 4423 if (write) 4424 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4425 NUMA_NO_NODE, tmp, *length); 4426 out: 4427 return ret; 4428 } 4429 4430 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4431 void *buffer, size_t *length, loff_t *ppos) 4432 { 4433 4434 return hugetlb_sysctl_handler_common(false, table, write, 4435 buffer, length, ppos); 4436 } 4437 4438 #ifdef CONFIG_NUMA 4439 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4440 void *buffer, size_t *length, loff_t *ppos) 4441 { 4442 return hugetlb_sysctl_handler_common(true, table, write, 4443 buffer, length, ppos); 4444 } 4445 #endif /* CONFIG_NUMA */ 4446 4447 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4448 void *buffer, size_t *length, loff_t *ppos) 4449 { 4450 struct hstate *h = &default_hstate; 4451 unsigned long tmp; 4452 int ret; 4453 4454 if (!hugepages_supported()) 4455 return -EOPNOTSUPP; 4456 4457 tmp = h->nr_overcommit_huge_pages; 4458 4459 if (write && hstate_is_gigantic(h)) 4460 return -EINVAL; 4461 4462 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4463 &tmp); 4464 if (ret) 4465 goto out; 4466 4467 if (write) { 4468 spin_lock_irq(&hugetlb_lock); 4469 h->nr_overcommit_huge_pages = tmp; 4470 spin_unlock_irq(&hugetlb_lock); 4471 } 4472 out: 4473 return ret; 4474 } 4475 4476 #endif /* CONFIG_SYSCTL */ 4477 4478 void hugetlb_report_meminfo(struct seq_file *m) 4479 { 4480 struct hstate *h; 4481 unsigned long total = 0; 4482 4483 if (!hugepages_supported()) 4484 return; 4485 4486 for_each_hstate(h) { 4487 unsigned long count = h->nr_huge_pages; 4488 4489 total += huge_page_size(h) * count; 4490 4491 if (h == &default_hstate) 4492 seq_printf(m, 4493 "HugePages_Total: %5lu\n" 4494 "HugePages_Free: %5lu\n" 4495 "HugePages_Rsvd: %5lu\n" 4496 "HugePages_Surp: %5lu\n" 4497 "Hugepagesize: %8lu kB\n", 4498 count, 4499 h->free_huge_pages, 4500 h->resv_huge_pages, 4501 h->surplus_huge_pages, 4502 huge_page_size(h) / SZ_1K); 4503 } 4504 4505 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4506 } 4507 4508 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4509 { 4510 struct hstate *h = &default_hstate; 4511 4512 if (!hugepages_supported()) 4513 return 0; 4514 4515 return sysfs_emit_at(buf, len, 4516 "Node %d HugePages_Total: %5u\n" 4517 "Node %d HugePages_Free: %5u\n" 4518 "Node %d HugePages_Surp: %5u\n", 4519 nid, h->nr_huge_pages_node[nid], 4520 nid, h->free_huge_pages_node[nid], 4521 nid, h->surplus_huge_pages_node[nid]); 4522 } 4523 4524 void hugetlb_show_meminfo_node(int nid) 4525 { 4526 struct hstate *h; 4527 4528 if (!hugepages_supported()) 4529 return; 4530 4531 for_each_hstate(h) 4532 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4533 nid, 4534 h->nr_huge_pages_node[nid], 4535 h->free_huge_pages_node[nid], 4536 h->surplus_huge_pages_node[nid], 4537 huge_page_size(h) / SZ_1K); 4538 } 4539 4540 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4541 { 4542 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4543 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4544 } 4545 4546 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4547 unsigned long hugetlb_total_pages(void) 4548 { 4549 struct hstate *h; 4550 unsigned long nr_total_pages = 0; 4551 4552 for_each_hstate(h) 4553 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4554 return nr_total_pages; 4555 } 4556 4557 static int hugetlb_acct_memory(struct hstate *h, long delta) 4558 { 4559 int ret = -ENOMEM; 4560 4561 if (!delta) 4562 return 0; 4563 4564 spin_lock_irq(&hugetlb_lock); 4565 /* 4566 * When cpuset is configured, it breaks the strict hugetlb page 4567 * reservation as the accounting is done on a global variable. Such 4568 * reservation is completely rubbish in the presence of cpuset because 4569 * the reservation is not checked against page availability for the 4570 * current cpuset. Application can still potentially OOM'ed by kernel 4571 * with lack of free htlb page in cpuset that the task is in. 4572 * Attempt to enforce strict accounting with cpuset is almost 4573 * impossible (or too ugly) because cpuset is too fluid that 4574 * task or memory node can be dynamically moved between cpusets. 4575 * 4576 * The change of semantics for shared hugetlb mapping with cpuset is 4577 * undesirable. However, in order to preserve some of the semantics, 4578 * we fall back to check against current free page availability as 4579 * a best attempt and hopefully to minimize the impact of changing 4580 * semantics that cpuset has. 4581 * 4582 * Apart from cpuset, we also have memory policy mechanism that 4583 * also determines from which node the kernel will allocate memory 4584 * in a NUMA system. So similar to cpuset, we also should consider 4585 * the memory policy of the current task. Similar to the description 4586 * above. 4587 */ 4588 if (delta > 0) { 4589 if (gather_surplus_pages(h, delta) < 0) 4590 goto out; 4591 4592 if (delta > allowed_mems_nr(h)) { 4593 return_unused_surplus_pages(h, delta); 4594 goto out; 4595 } 4596 } 4597 4598 ret = 0; 4599 if (delta < 0) 4600 return_unused_surplus_pages(h, (unsigned long) -delta); 4601 4602 out: 4603 spin_unlock_irq(&hugetlb_lock); 4604 return ret; 4605 } 4606 4607 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4608 { 4609 struct resv_map *resv = vma_resv_map(vma); 4610 4611 /* 4612 * HPAGE_RESV_OWNER indicates a private mapping. 4613 * This new VMA should share its siblings reservation map if present. 4614 * The VMA will only ever have a valid reservation map pointer where 4615 * it is being copied for another still existing VMA. As that VMA 4616 * has a reference to the reservation map it cannot disappear until 4617 * after this open call completes. It is therefore safe to take a 4618 * new reference here without additional locking. 4619 */ 4620 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4621 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4622 kref_get(&resv->refs); 4623 } 4624 4625 /* 4626 * vma_lock structure for sharable mappings is vma specific. 4627 * Clear old pointer (if copied via vm_area_dup) and allocate 4628 * new structure. Before clearing, make sure vma_lock is not 4629 * for this vma. 4630 */ 4631 if (vma->vm_flags & VM_MAYSHARE) { 4632 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4633 4634 if (vma_lock) { 4635 if (vma_lock->vma != vma) { 4636 vma->vm_private_data = NULL; 4637 hugetlb_vma_lock_alloc(vma); 4638 } else 4639 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4640 } else 4641 hugetlb_vma_lock_alloc(vma); 4642 } 4643 } 4644 4645 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4646 { 4647 struct hstate *h = hstate_vma(vma); 4648 struct resv_map *resv; 4649 struct hugepage_subpool *spool = subpool_vma(vma); 4650 unsigned long reserve, start, end; 4651 long gbl_reserve; 4652 4653 hugetlb_vma_lock_free(vma); 4654 4655 resv = vma_resv_map(vma); 4656 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4657 return; 4658 4659 start = vma_hugecache_offset(h, vma, vma->vm_start); 4660 end = vma_hugecache_offset(h, vma, vma->vm_end); 4661 4662 reserve = (end - start) - region_count(resv, start, end); 4663 hugetlb_cgroup_uncharge_counter(resv, start, end); 4664 if (reserve) { 4665 /* 4666 * Decrement reserve counts. The global reserve count may be 4667 * adjusted if the subpool has a minimum size. 4668 */ 4669 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4670 hugetlb_acct_memory(h, -gbl_reserve); 4671 } 4672 4673 kref_put(&resv->refs, resv_map_release); 4674 } 4675 4676 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4677 { 4678 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4679 return -EINVAL; 4680 return 0; 4681 } 4682 4683 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4684 { 4685 return huge_page_size(hstate_vma(vma)); 4686 } 4687 4688 /* 4689 * We cannot handle pagefaults against hugetlb pages at all. They cause 4690 * handle_mm_fault() to try to instantiate regular-sized pages in the 4691 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4692 * this far. 4693 */ 4694 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4695 { 4696 BUG(); 4697 return 0; 4698 } 4699 4700 /* 4701 * When a new function is introduced to vm_operations_struct and added 4702 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4703 * This is because under System V memory model, mappings created via 4704 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4705 * their original vm_ops are overwritten with shm_vm_ops. 4706 */ 4707 const struct vm_operations_struct hugetlb_vm_ops = { 4708 .fault = hugetlb_vm_op_fault, 4709 .open = hugetlb_vm_op_open, 4710 .close = hugetlb_vm_op_close, 4711 .may_split = hugetlb_vm_op_split, 4712 .pagesize = hugetlb_vm_op_pagesize, 4713 }; 4714 4715 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4716 int writable) 4717 { 4718 pte_t entry; 4719 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4720 4721 if (writable) { 4722 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4723 vma->vm_page_prot))); 4724 } else { 4725 entry = huge_pte_wrprotect(mk_huge_pte(page, 4726 vma->vm_page_prot)); 4727 } 4728 entry = pte_mkyoung(entry); 4729 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4730 4731 return entry; 4732 } 4733 4734 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4735 unsigned long address, pte_t *ptep) 4736 { 4737 pte_t entry; 4738 4739 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4740 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4741 update_mmu_cache(vma, address, ptep); 4742 } 4743 4744 bool is_hugetlb_entry_migration(pte_t pte) 4745 { 4746 swp_entry_t swp; 4747 4748 if (huge_pte_none(pte) || pte_present(pte)) 4749 return false; 4750 swp = pte_to_swp_entry(pte); 4751 if (is_migration_entry(swp)) 4752 return true; 4753 else 4754 return false; 4755 } 4756 4757 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4758 { 4759 swp_entry_t swp; 4760 4761 if (huge_pte_none(pte) || pte_present(pte)) 4762 return false; 4763 swp = pte_to_swp_entry(pte); 4764 if (is_hwpoison_entry(swp)) 4765 return true; 4766 else 4767 return false; 4768 } 4769 4770 static void 4771 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4772 struct page *new_page) 4773 { 4774 __SetPageUptodate(new_page); 4775 hugepage_add_new_anon_rmap(new_page, vma, addr); 4776 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4777 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4778 ClearHPageRestoreReserve(new_page); 4779 SetHPageMigratable(new_page); 4780 } 4781 4782 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4783 struct vm_area_struct *dst_vma, 4784 struct vm_area_struct *src_vma) 4785 { 4786 pte_t *src_pte, *dst_pte, entry; 4787 struct page *ptepage; 4788 unsigned long addr; 4789 bool cow = is_cow_mapping(src_vma->vm_flags); 4790 struct hstate *h = hstate_vma(src_vma); 4791 unsigned long sz = huge_page_size(h); 4792 unsigned long npages = pages_per_huge_page(h); 4793 struct mmu_notifier_range range; 4794 unsigned long last_addr_mask; 4795 int ret = 0; 4796 4797 if (cow) { 4798 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4799 src_vma->vm_start, 4800 src_vma->vm_end); 4801 mmu_notifier_invalidate_range_start(&range); 4802 mmap_assert_write_locked(src); 4803 raw_write_seqcount_begin(&src->write_protect_seq); 4804 } else { 4805 /* 4806 * For shared mappings the vma lock must be held before 4807 * calling huge_pte_offset in the src vma. Otherwise, the 4808 * returned ptep could go away if part of a shared pmd and 4809 * another thread calls huge_pmd_unshare. 4810 */ 4811 hugetlb_vma_lock_read(src_vma); 4812 } 4813 4814 last_addr_mask = hugetlb_mask_last_page(h); 4815 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4816 spinlock_t *src_ptl, *dst_ptl; 4817 src_pte = huge_pte_offset(src, addr, sz); 4818 if (!src_pte) { 4819 addr |= last_addr_mask; 4820 continue; 4821 } 4822 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4823 if (!dst_pte) { 4824 ret = -ENOMEM; 4825 break; 4826 } 4827 4828 /* 4829 * If the pagetables are shared don't copy or take references. 4830 * 4831 * dst_pte == src_pte is the common case of src/dest sharing. 4832 * However, src could have 'unshared' and dst shares with 4833 * another vma. So page_count of ptep page is checked instead 4834 * to reliably determine whether pte is shared. 4835 */ 4836 if (page_count(virt_to_page(dst_pte)) > 1) { 4837 addr |= last_addr_mask; 4838 continue; 4839 } 4840 4841 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4842 src_ptl = huge_pte_lockptr(h, src, src_pte); 4843 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4844 entry = huge_ptep_get(src_pte); 4845 again: 4846 if (huge_pte_none(entry)) { 4847 /* 4848 * Skip if src entry none. 4849 */ 4850 ; 4851 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 4852 bool uffd_wp = huge_pte_uffd_wp(entry); 4853 4854 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4855 entry = huge_pte_clear_uffd_wp(entry); 4856 set_huge_pte_at(dst, addr, dst_pte, entry); 4857 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 4858 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4859 bool uffd_wp = huge_pte_uffd_wp(entry); 4860 4861 if (!is_readable_migration_entry(swp_entry) && cow) { 4862 /* 4863 * COW mappings require pages in both 4864 * parent and child to be set to read. 4865 */ 4866 swp_entry = make_readable_migration_entry( 4867 swp_offset(swp_entry)); 4868 entry = swp_entry_to_pte(swp_entry); 4869 if (userfaultfd_wp(src_vma) && uffd_wp) 4870 entry = huge_pte_mkuffd_wp(entry); 4871 set_huge_pte_at(src, addr, src_pte, entry); 4872 } 4873 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4874 entry = huge_pte_clear_uffd_wp(entry); 4875 set_huge_pte_at(dst, addr, dst_pte, entry); 4876 } else if (unlikely(is_pte_marker(entry))) { 4877 /* 4878 * We copy the pte marker only if the dst vma has 4879 * uffd-wp enabled. 4880 */ 4881 if (userfaultfd_wp(dst_vma)) 4882 set_huge_pte_at(dst, addr, dst_pte, entry); 4883 } else { 4884 entry = huge_ptep_get(src_pte); 4885 ptepage = pte_page(entry); 4886 get_page(ptepage); 4887 4888 /* 4889 * Failing to duplicate the anon rmap is a rare case 4890 * where we see pinned hugetlb pages while they're 4891 * prone to COW. We need to do the COW earlier during 4892 * fork. 4893 * 4894 * When pre-allocating the page or copying data, we 4895 * need to be without the pgtable locks since we could 4896 * sleep during the process. 4897 */ 4898 if (!PageAnon(ptepage)) { 4899 page_dup_file_rmap(ptepage, true); 4900 } else if (page_try_dup_anon_rmap(ptepage, true, 4901 src_vma)) { 4902 pte_t src_pte_old = entry; 4903 struct page *new; 4904 4905 spin_unlock(src_ptl); 4906 spin_unlock(dst_ptl); 4907 /* Do not use reserve as it's private owned */ 4908 new = alloc_huge_page(dst_vma, addr, 1); 4909 if (IS_ERR(new)) { 4910 put_page(ptepage); 4911 ret = PTR_ERR(new); 4912 break; 4913 } 4914 copy_user_huge_page(new, ptepage, addr, dst_vma, 4915 npages); 4916 put_page(ptepage); 4917 4918 /* Install the new huge page if src pte stable */ 4919 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4920 src_ptl = huge_pte_lockptr(h, src, src_pte); 4921 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4922 entry = huge_ptep_get(src_pte); 4923 if (!pte_same(src_pte_old, entry)) { 4924 restore_reserve_on_error(h, dst_vma, addr, 4925 new); 4926 put_page(new); 4927 /* huge_ptep of dst_pte won't change as in child */ 4928 goto again; 4929 } 4930 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4931 spin_unlock(src_ptl); 4932 spin_unlock(dst_ptl); 4933 continue; 4934 } 4935 4936 if (cow) { 4937 /* 4938 * No need to notify as we are downgrading page 4939 * table protection not changing it to point 4940 * to a new page. 4941 * 4942 * See Documentation/mm/mmu_notifier.rst 4943 */ 4944 huge_ptep_set_wrprotect(src, addr, src_pte); 4945 entry = huge_pte_wrprotect(entry); 4946 } 4947 4948 set_huge_pte_at(dst, addr, dst_pte, entry); 4949 hugetlb_count_add(npages, dst); 4950 } 4951 spin_unlock(src_ptl); 4952 spin_unlock(dst_ptl); 4953 } 4954 4955 if (cow) { 4956 raw_write_seqcount_end(&src->write_protect_seq); 4957 mmu_notifier_invalidate_range_end(&range); 4958 } else { 4959 hugetlb_vma_unlock_read(src_vma); 4960 } 4961 4962 return ret; 4963 } 4964 4965 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4966 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4967 { 4968 struct hstate *h = hstate_vma(vma); 4969 struct mm_struct *mm = vma->vm_mm; 4970 spinlock_t *src_ptl, *dst_ptl; 4971 pte_t pte; 4972 4973 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4974 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4975 4976 /* 4977 * We don't have to worry about the ordering of src and dst ptlocks 4978 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4979 */ 4980 if (src_ptl != dst_ptl) 4981 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4982 4983 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4984 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4985 4986 if (src_ptl != dst_ptl) 4987 spin_unlock(src_ptl); 4988 spin_unlock(dst_ptl); 4989 } 4990 4991 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4992 struct vm_area_struct *new_vma, 4993 unsigned long old_addr, unsigned long new_addr, 4994 unsigned long len) 4995 { 4996 struct hstate *h = hstate_vma(vma); 4997 struct address_space *mapping = vma->vm_file->f_mapping; 4998 unsigned long sz = huge_page_size(h); 4999 struct mm_struct *mm = vma->vm_mm; 5000 unsigned long old_end = old_addr + len; 5001 unsigned long last_addr_mask; 5002 pte_t *src_pte, *dst_pte; 5003 struct mmu_notifier_range range; 5004 bool shared_pmd = false; 5005 5006 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 5007 old_end); 5008 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5009 /* 5010 * In case of shared PMDs, we should cover the maximum possible 5011 * range. 5012 */ 5013 flush_cache_range(vma, range.start, range.end); 5014 5015 mmu_notifier_invalidate_range_start(&range); 5016 last_addr_mask = hugetlb_mask_last_page(h); 5017 /* Prevent race with file truncation */ 5018 hugetlb_vma_lock_write(vma); 5019 i_mmap_lock_write(mapping); 5020 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5021 src_pte = huge_pte_offset(mm, old_addr, sz); 5022 if (!src_pte) { 5023 old_addr |= last_addr_mask; 5024 new_addr |= last_addr_mask; 5025 continue; 5026 } 5027 if (huge_pte_none(huge_ptep_get(src_pte))) 5028 continue; 5029 5030 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5031 shared_pmd = true; 5032 old_addr |= last_addr_mask; 5033 new_addr |= last_addr_mask; 5034 continue; 5035 } 5036 5037 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5038 if (!dst_pte) 5039 break; 5040 5041 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5042 } 5043 5044 if (shared_pmd) 5045 flush_tlb_range(vma, range.start, range.end); 5046 else 5047 flush_tlb_range(vma, old_end - len, old_end); 5048 mmu_notifier_invalidate_range_end(&range); 5049 i_mmap_unlock_write(mapping); 5050 hugetlb_vma_unlock_write(vma); 5051 5052 return len + old_addr - old_end; 5053 } 5054 5055 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5056 unsigned long start, unsigned long end, 5057 struct page *ref_page, zap_flags_t zap_flags) 5058 { 5059 struct mm_struct *mm = vma->vm_mm; 5060 unsigned long address; 5061 pte_t *ptep; 5062 pte_t pte; 5063 spinlock_t *ptl; 5064 struct page *page; 5065 struct hstate *h = hstate_vma(vma); 5066 unsigned long sz = huge_page_size(h); 5067 struct mmu_notifier_range range; 5068 unsigned long last_addr_mask; 5069 bool force_flush = false; 5070 5071 WARN_ON(!is_vm_hugetlb_page(vma)); 5072 BUG_ON(start & ~huge_page_mask(h)); 5073 BUG_ON(end & ~huge_page_mask(h)); 5074 5075 /* 5076 * This is a hugetlb vma, all the pte entries should point 5077 * to huge page. 5078 */ 5079 tlb_change_page_size(tlb, sz); 5080 tlb_start_vma(tlb, vma); 5081 5082 /* 5083 * If sharing possible, alert mmu notifiers of worst case. 5084 */ 5085 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 5086 end); 5087 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5088 mmu_notifier_invalidate_range_start(&range); 5089 last_addr_mask = hugetlb_mask_last_page(h); 5090 address = start; 5091 for (; address < end; address += sz) { 5092 ptep = huge_pte_offset(mm, address, sz); 5093 if (!ptep) { 5094 address |= last_addr_mask; 5095 continue; 5096 } 5097 5098 ptl = huge_pte_lock(h, mm, ptep); 5099 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5100 spin_unlock(ptl); 5101 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5102 force_flush = true; 5103 address |= last_addr_mask; 5104 continue; 5105 } 5106 5107 pte = huge_ptep_get(ptep); 5108 if (huge_pte_none(pte)) { 5109 spin_unlock(ptl); 5110 continue; 5111 } 5112 5113 /* 5114 * Migrating hugepage or HWPoisoned hugepage is already 5115 * unmapped and its refcount is dropped, so just clear pte here. 5116 */ 5117 if (unlikely(!pte_present(pte))) { 5118 #ifdef CONFIG_PTE_MARKER_UFFD_WP 5119 /* 5120 * If the pte was wr-protected by uffd-wp in any of the 5121 * swap forms, meanwhile the caller does not want to 5122 * drop the uffd-wp bit in this zap, then replace the 5123 * pte with a marker. 5124 */ 5125 if (pte_swp_uffd_wp_any(pte) && 5126 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5127 set_huge_pte_at(mm, address, ptep, 5128 make_pte_marker(PTE_MARKER_UFFD_WP)); 5129 else 5130 #endif 5131 huge_pte_clear(mm, address, ptep, sz); 5132 spin_unlock(ptl); 5133 continue; 5134 } 5135 5136 page = pte_page(pte); 5137 /* 5138 * If a reference page is supplied, it is because a specific 5139 * page is being unmapped, not a range. Ensure the page we 5140 * are about to unmap is the actual page of interest. 5141 */ 5142 if (ref_page) { 5143 if (page != ref_page) { 5144 spin_unlock(ptl); 5145 continue; 5146 } 5147 /* 5148 * Mark the VMA as having unmapped its page so that 5149 * future faults in this VMA will fail rather than 5150 * looking like data was lost 5151 */ 5152 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5153 } 5154 5155 pte = huge_ptep_get_and_clear(mm, address, ptep); 5156 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5157 if (huge_pte_dirty(pte)) 5158 set_page_dirty(page); 5159 #ifdef CONFIG_PTE_MARKER_UFFD_WP 5160 /* Leave a uffd-wp pte marker if needed */ 5161 if (huge_pte_uffd_wp(pte) && 5162 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5163 set_huge_pte_at(mm, address, ptep, 5164 make_pte_marker(PTE_MARKER_UFFD_WP)); 5165 #endif 5166 hugetlb_count_sub(pages_per_huge_page(h), mm); 5167 page_remove_rmap(page, vma, true); 5168 5169 spin_unlock(ptl); 5170 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5171 /* 5172 * Bail out after unmapping reference page if supplied 5173 */ 5174 if (ref_page) 5175 break; 5176 } 5177 mmu_notifier_invalidate_range_end(&range); 5178 tlb_end_vma(tlb, vma); 5179 5180 /* 5181 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5182 * could defer the flush until now, since by holding i_mmap_rwsem we 5183 * guaranteed that the last refernece would not be dropped. But we must 5184 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5185 * dropped and the last reference to the shared PMDs page might be 5186 * dropped as well. 5187 * 5188 * In theory we could defer the freeing of the PMD pages as well, but 5189 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5190 * detect sharing, so we cannot defer the release of the page either. 5191 * Instead, do flush now. 5192 */ 5193 if (force_flush) 5194 tlb_flush_mmu_tlbonly(tlb); 5195 } 5196 5197 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5198 struct vm_area_struct *vma, unsigned long start, 5199 unsigned long end, struct page *ref_page, 5200 zap_flags_t zap_flags) 5201 { 5202 hugetlb_vma_lock_write(vma); 5203 i_mmap_lock_write(vma->vm_file->f_mapping); 5204 5205 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5206 5207 /* 5208 * Unlock and free the vma lock before releasing i_mmap_rwsem. When 5209 * the vma_lock is freed, this makes the vma ineligible for pmd 5210 * sharing. And, i_mmap_rwsem is required to set up pmd sharing. 5211 * This is important as page tables for this unmapped range will 5212 * be asynchrously deleted. If the page tables are shared, there 5213 * will be issues when accessed by someone else. 5214 */ 5215 __hugetlb_vma_unlock_write_free(vma); 5216 5217 i_mmap_unlock_write(vma->vm_file->f_mapping); 5218 } 5219 5220 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5221 unsigned long end, struct page *ref_page, 5222 zap_flags_t zap_flags) 5223 { 5224 struct mmu_gather tlb; 5225 5226 tlb_gather_mmu(&tlb, vma->vm_mm); 5227 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5228 tlb_finish_mmu(&tlb); 5229 } 5230 5231 /* 5232 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5233 * mapping it owns the reserve page for. The intention is to unmap the page 5234 * from other VMAs and let the children be SIGKILLed if they are faulting the 5235 * same region. 5236 */ 5237 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5238 struct page *page, unsigned long address) 5239 { 5240 struct hstate *h = hstate_vma(vma); 5241 struct vm_area_struct *iter_vma; 5242 struct address_space *mapping; 5243 pgoff_t pgoff; 5244 5245 /* 5246 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5247 * from page cache lookup which is in HPAGE_SIZE units. 5248 */ 5249 address = address & huge_page_mask(h); 5250 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5251 vma->vm_pgoff; 5252 mapping = vma->vm_file->f_mapping; 5253 5254 /* 5255 * Take the mapping lock for the duration of the table walk. As 5256 * this mapping should be shared between all the VMAs, 5257 * __unmap_hugepage_range() is called as the lock is already held 5258 */ 5259 i_mmap_lock_write(mapping); 5260 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5261 /* Do not unmap the current VMA */ 5262 if (iter_vma == vma) 5263 continue; 5264 5265 /* 5266 * Shared VMAs have their own reserves and do not affect 5267 * MAP_PRIVATE accounting but it is possible that a shared 5268 * VMA is using the same page so check and skip such VMAs. 5269 */ 5270 if (iter_vma->vm_flags & VM_MAYSHARE) 5271 continue; 5272 5273 /* 5274 * Unmap the page from other VMAs without their own reserves. 5275 * They get marked to be SIGKILLed if they fault in these 5276 * areas. This is because a future no-page fault on this VMA 5277 * could insert a zeroed page instead of the data existing 5278 * from the time of fork. This would look like data corruption 5279 */ 5280 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5281 unmap_hugepage_range(iter_vma, address, 5282 address + huge_page_size(h), page, 0); 5283 } 5284 i_mmap_unlock_write(mapping); 5285 } 5286 5287 /* 5288 * hugetlb_wp() should be called with page lock of the original hugepage held. 5289 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5290 * cannot race with other handlers or page migration. 5291 * Keep the pte_same checks anyway to make transition from the mutex easier. 5292 */ 5293 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5294 unsigned long address, pte_t *ptep, unsigned int flags, 5295 struct page *pagecache_page, spinlock_t *ptl) 5296 { 5297 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5298 pte_t pte; 5299 struct hstate *h = hstate_vma(vma); 5300 struct page *old_page, *new_page; 5301 int outside_reserve = 0; 5302 vm_fault_t ret = 0; 5303 unsigned long haddr = address & huge_page_mask(h); 5304 struct mmu_notifier_range range; 5305 5306 VM_BUG_ON(unshare && (flags & FOLL_WRITE)); 5307 VM_BUG_ON(!unshare && !(flags & FOLL_WRITE)); 5308 5309 /* 5310 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5311 * PTE mapped R/O such as maybe_mkwrite() would do. 5312 */ 5313 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5314 return VM_FAULT_SIGSEGV; 5315 5316 /* Let's take out MAP_SHARED mappings first. */ 5317 if (vma->vm_flags & VM_MAYSHARE) { 5318 if (unlikely(unshare)) 5319 return 0; 5320 set_huge_ptep_writable(vma, haddr, ptep); 5321 return 0; 5322 } 5323 5324 pte = huge_ptep_get(ptep); 5325 old_page = pte_page(pte); 5326 5327 delayacct_wpcopy_start(); 5328 5329 retry_avoidcopy: 5330 /* 5331 * If no-one else is actually using this page, we're the exclusive 5332 * owner and can reuse this page. 5333 */ 5334 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5335 if (!PageAnonExclusive(old_page)) 5336 page_move_anon_rmap(old_page, vma); 5337 if (likely(!unshare)) 5338 set_huge_ptep_writable(vma, haddr, ptep); 5339 5340 delayacct_wpcopy_end(); 5341 return 0; 5342 } 5343 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5344 old_page); 5345 5346 /* 5347 * If the process that created a MAP_PRIVATE mapping is about to 5348 * perform a COW due to a shared page count, attempt to satisfy 5349 * the allocation without using the existing reserves. The pagecache 5350 * page is used to determine if the reserve at this address was 5351 * consumed or not. If reserves were used, a partial faulted mapping 5352 * at the time of fork() could consume its reserves on COW instead 5353 * of the full address range. 5354 */ 5355 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5356 old_page != pagecache_page) 5357 outside_reserve = 1; 5358 5359 get_page(old_page); 5360 5361 /* 5362 * Drop page table lock as buddy allocator may be called. It will 5363 * be acquired again before returning to the caller, as expected. 5364 */ 5365 spin_unlock(ptl); 5366 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5367 5368 if (IS_ERR(new_page)) { 5369 /* 5370 * If a process owning a MAP_PRIVATE mapping fails to COW, 5371 * it is due to references held by a child and an insufficient 5372 * huge page pool. To guarantee the original mappers 5373 * reliability, unmap the page from child processes. The child 5374 * may get SIGKILLed if it later faults. 5375 */ 5376 if (outside_reserve) { 5377 struct address_space *mapping = vma->vm_file->f_mapping; 5378 pgoff_t idx; 5379 u32 hash; 5380 5381 put_page(old_page); 5382 /* 5383 * Drop hugetlb_fault_mutex and vma_lock before 5384 * unmapping. unmapping needs to hold vma_lock 5385 * in write mode. Dropping vma_lock in read mode 5386 * here is OK as COW mappings do not interact with 5387 * PMD sharing. 5388 * 5389 * Reacquire both after unmap operation. 5390 */ 5391 idx = vma_hugecache_offset(h, vma, haddr); 5392 hash = hugetlb_fault_mutex_hash(mapping, idx); 5393 hugetlb_vma_unlock_read(vma); 5394 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5395 5396 unmap_ref_private(mm, vma, old_page, haddr); 5397 5398 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5399 hugetlb_vma_lock_read(vma); 5400 spin_lock(ptl); 5401 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5402 if (likely(ptep && 5403 pte_same(huge_ptep_get(ptep), pte))) 5404 goto retry_avoidcopy; 5405 /* 5406 * race occurs while re-acquiring page table 5407 * lock, and our job is done. 5408 */ 5409 delayacct_wpcopy_end(); 5410 return 0; 5411 } 5412 5413 ret = vmf_error(PTR_ERR(new_page)); 5414 goto out_release_old; 5415 } 5416 5417 /* 5418 * When the original hugepage is shared one, it does not have 5419 * anon_vma prepared. 5420 */ 5421 if (unlikely(anon_vma_prepare(vma))) { 5422 ret = VM_FAULT_OOM; 5423 goto out_release_all; 5424 } 5425 5426 copy_user_huge_page(new_page, old_page, address, vma, 5427 pages_per_huge_page(h)); 5428 __SetPageUptodate(new_page); 5429 5430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5431 haddr + huge_page_size(h)); 5432 mmu_notifier_invalidate_range_start(&range); 5433 5434 /* 5435 * Retake the page table lock to check for racing updates 5436 * before the page tables are altered 5437 */ 5438 spin_lock(ptl); 5439 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5440 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5441 ClearHPageRestoreReserve(new_page); 5442 5443 /* Break COW or unshare */ 5444 huge_ptep_clear_flush(vma, haddr, ptep); 5445 mmu_notifier_invalidate_range(mm, range.start, range.end); 5446 page_remove_rmap(old_page, vma, true); 5447 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5448 set_huge_pte_at(mm, haddr, ptep, 5449 make_huge_pte(vma, new_page, !unshare)); 5450 SetHPageMigratable(new_page); 5451 /* Make the old page be freed below */ 5452 new_page = old_page; 5453 } 5454 spin_unlock(ptl); 5455 mmu_notifier_invalidate_range_end(&range); 5456 out_release_all: 5457 /* 5458 * No restore in case of successful pagetable update (Break COW or 5459 * unshare) 5460 */ 5461 if (new_page != old_page) 5462 restore_reserve_on_error(h, vma, haddr, new_page); 5463 put_page(new_page); 5464 out_release_old: 5465 put_page(old_page); 5466 5467 spin_lock(ptl); /* Caller expects lock to be held */ 5468 5469 delayacct_wpcopy_end(); 5470 return ret; 5471 } 5472 5473 /* 5474 * Return whether there is a pagecache page to back given address within VMA. 5475 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5476 */ 5477 static bool hugetlbfs_pagecache_present(struct hstate *h, 5478 struct vm_area_struct *vma, unsigned long address) 5479 { 5480 struct address_space *mapping; 5481 pgoff_t idx; 5482 struct page *page; 5483 5484 mapping = vma->vm_file->f_mapping; 5485 idx = vma_hugecache_offset(h, vma, address); 5486 5487 page = find_get_page(mapping, idx); 5488 if (page) 5489 put_page(page); 5490 return page != NULL; 5491 } 5492 5493 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, 5494 pgoff_t idx) 5495 { 5496 struct folio *folio = page_folio(page); 5497 struct inode *inode = mapping->host; 5498 struct hstate *h = hstate_inode(inode); 5499 int err; 5500 5501 __folio_set_locked(folio); 5502 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5503 5504 if (unlikely(err)) { 5505 __folio_clear_locked(folio); 5506 return err; 5507 } 5508 ClearHPageRestoreReserve(page); 5509 5510 /* 5511 * mark folio dirty so that it will not be removed from cache/file 5512 * by non-hugetlbfs specific code paths. 5513 */ 5514 folio_mark_dirty(folio); 5515 5516 spin_lock(&inode->i_lock); 5517 inode->i_blocks += blocks_per_huge_page(h); 5518 spin_unlock(&inode->i_lock); 5519 return 0; 5520 } 5521 5522 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5523 struct address_space *mapping, 5524 pgoff_t idx, 5525 unsigned int flags, 5526 unsigned long haddr, 5527 unsigned long addr, 5528 unsigned long reason) 5529 { 5530 u32 hash; 5531 struct vm_fault vmf = { 5532 .vma = vma, 5533 .address = haddr, 5534 .real_address = addr, 5535 .flags = flags, 5536 5537 /* 5538 * Hard to debug if it ends up being 5539 * used by a callee that assumes 5540 * something about the other 5541 * uninitialized fields... same as in 5542 * memory.c 5543 */ 5544 }; 5545 5546 /* 5547 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5548 * userfault. Also mmap_lock could be dropped due to handling 5549 * userfault, any vma operation should be careful from here. 5550 */ 5551 hugetlb_vma_unlock_read(vma); 5552 hash = hugetlb_fault_mutex_hash(mapping, idx); 5553 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5554 return handle_userfault(&vmf, reason); 5555 } 5556 5557 /* 5558 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5559 * false if pte changed or is changing. 5560 */ 5561 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5562 pte_t *ptep, pte_t old_pte) 5563 { 5564 spinlock_t *ptl; 5565 bool same; 5566 5567 ptl = huge_pte_lock(h, mm, ptep); 5568 same = pte_same(huge_ptep_get(ptep), old_pte); 5569 spin_unlock(ptl); 5570 5571 return same; 5572 } 5573 5574 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5575 struct vm_area_struct *vma, 5576 struct address_space *mapping, pgoff_t idx, 5577 unsigned long address, pte_t *ptep, 5578 pte_t old_pte, unsigned int flags) 5579 { 5580 struct hstate *h = hstate_vma(vma); 5581 vm_fault_t ret = VM_FAULT_SIGBUS; 5582 int anon_rmap = 0; 5583 unsigned long size; 5584 struct page *page; 5585 pte_t new_pte; 5586 spinlock_t *ptl; 5587 unsigned long haddr = address & huge_page_mask(h); 5588 bool new_page, new_pagecache_page = false; 5589 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5590 5591 /* 5592 * Currently, we are forced to kill the process in the event the 5593 * original mapper has unmapped pages from the child due to a failed 5594 * COW/unsharing. Warn that such a situation has occurred as it may not 5595 * be obvious. 5596 */ 5597 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5598 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5599 current->pid); 5600 goto out; 5601 } 5602 5603 /* 5604 * Use page lock to guard against racing truncation 5605 * before we get page_table_lock. 5606 */ 5607 new_page = false; 5608 page = find_lock_page(mapping, idx); 5609 if (!page) { 5610 size = i_size_read(mapping->host) >> huge_page_shift(h); 5611 if (idx >= size) 5612 goto out; 5613 /* Check for page in userfault range */ 5614 if (userfaultfd_missing(vma)) { 5615 /* 5616 * Since hugetlb_no_page() was examining pte 5617 * without pgtable lock, we need to re-test under 5618 * lock because the pte may not be stable and could 5619 * have changed from under us. Try to detect 5620 * either changed or during-changing ptes and retry 5621 * properly when needed. 5622 * 5623 * Note that userfaultfd is actually fine with 5624 * false positives (e.g. caused by pte changed), 5625 * but not wrong logical events (e.g. caused by 5626 * reading a pte during changing). The latter can 5627 * confuse the userspace, so the strictness is very 5628 * much preferred. E.g., MISSING event should 5629 * never happen on the page after UFFDIO_COPY has 5630 * correctly installed the page and returned. 5631 */ 5632 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5633 ret = 0; 5634 goto out; 5635 } 5636 5637 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5638 haddr, address, 5639 VM_UFFD_MISSING); 5640 } 5641 5642 page = alloc_huge_page(vma, haddr, 0); 5643 if (IS_ERR(page)) { 5644 /* 5645 * Returning error will result in faulting task being 5646 * sent SIGBUS. The hugetlb fault mutex prevents two 5647 * tasks from racing to fault in the same page which 5648 * could result in false unable to allocate errors. 5649 * Page migration does not take the fault mutex, but 5650 * does a clear then write of pte's under page table 5651 * lock. Page fault code could race with migration, 5652 * notice the clear pte and try to allocate a page 5653 * here. Before returning error, get ptl and make 5654 * sure there really is no pte entry. 5655 */ 5656 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5657 ret = vmf_error(PTR_ERR(page)); 5658 else 5659 ret = 0; 5660 goto out; 5661 } 5662 clear_huge_page(page, address, pages_per_huge_page(h)); 5663 __SetPageUptodate(page); 5664 new_page = true; 5665 5666 if (vma->vm_flags & VM_MAYSHARE) { 5667 int err = hugetlb_add_to_page_cache(page, mapping, idx); 5668 if (err) { 5669 /* 5670 * err can't be -EEXIST which implies someone 5671 * else consumed the reservation since hugetlb 5672 * fault mutex is held when add a hugetlb page 5673 * to the page cache. So it's safe to call 5674 * restore_reserve_on_error() here. 5675 */ 5676 restore_reserve_on_error(h, vma, haddr, page); 5677 put_page(page); 5678 goto out; 5679 } 5680 new_pagecache_page = true; 5681 } else { 5682 lock_page(page); 5683 if (unlikely(anon_vma_prepare(vma))) { 5684 ret = VM_FAULT_OOM; 5685 goto backout_unlocked; 5686 } 5687 anon_rmap = 1; 5688 } 5689 } else { 5690 /* 5691 * If memory error occurs between mmap() and fault, some process 5692 * don't have hwpoisoned swap entry for errored virtual address. 5693 * So we need to block hugepage fault by PG_hwpoison bit check. 5694 */ 5695 if (unlikely(PageHWPoison(page))) { 5696 ret = VM_FAULT_HWPOISON_LARGE | 5697 VM_FAULT_SET_HINDEX(hstate_index(h)); 5698 goto backout_unlocked; 5699 } 5700 5701 /* Check for page in userfault range. */ 5702 if (userfaultfd_minor(vma)) { 5703 unlock_page(page); 5704 put_page(page); 5705 /* See comment in userfaultfd_missing() block above */ 5706 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5707 ret = 0; 5708 goto out; 5709 } 5710 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5711 haddr, address, 5712 VM_UFFD_MINOR); 5713 } 5714 } 5715 5716 /* 5717 * If we are going to COW a private mapping later, we examine the 5718 * pending reservations for this page now. This will ensure that 5719 * any allocations necessary to record that reservation occur outside 5720 * the spinlock. 5721 */ 5722 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5723 if (vma_needs_reservation(h, vma, haddr) < 0) { 5724 ret = VM_FAULT_OOM; 5725 goto backout_unlocked; 5726 } 5727 /* Just decrements count, does not deallocate */ 5728 vma_end_reservation(h, vma, haddr); 5729 } 5730 5731 ptl = huge_pte_lock(h, mm, ptep); 5732 ret = 0; 5733 /* If pte changed from under us, retry */ 5734 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5735 goto backout; 5736 5737 if (anon_rmap) { 5738 ClearHPageRestoreReserve(page); 5739 hugepage_add_new_anon_rmap(page, vma, haddr); 5740 } else 5741 page_dup_file_rmap(page, true); 5742 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5743 && (vma->vm_flags & VM_SHARED))); 5744 /* 5745 * If this pte was previously wr-protected, keep it wr-protected even 5746 * if populated. 5747 */ 5748 if (unlikely(pte_marker_uffd_wp(old_pte))) 5749 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5750 set_huge_pte_at(mm, haddr, ptep, new_pte); 5751 5752 hugetlb_count_add(pages_per_huge_page(h), mm); 5753 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5754 /* Optimization, do the COW without a second fault */ 5755 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5756 } 5757 5758 spin_unlock(ptl); 5759 5760 /* 5761 * Only set HPageMigratable in newly allocated pages. Existing pages 5762 * found in the pagecache may not have HPageMigratableset if they have 5763 * been isolated for migration. 5764 */ 5765 if (new_page) 5766 SetHPageMigratable(page); 5767 5768 unlock_page(page); 5769 out: 5770 hugetlb_vma_unlock_read(vma); 5771 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5772 return ret; 5773 5774 backout: 5775 spin_unlock(ptl); 5776 backout_unlocked: 5777 if (new_page && !new_pagecache_page) 5778 restore_reserve_on_error(h, vma, haddr, page); 5779 5780 unlock_page(page); 5781 put_page(page); 5782 goto out; 5783 } 5784 5785 #ifdef CONFIG_SMP 5786 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5787 { 5788 unsigned long key[2]; 5789 u32 hash; 5790 5791 key[0] = (unsigned long) mapping; 5792 key[1] = idx; 5793 5794 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5795 5796 return hash & (num_fault_mutexes - 1); 5797 } 5798 #else 5799 /* 5800 * For uniprocessor systems we always use a single mutex, so just 5801 * return 0 and avoid the hashing overhead. 5802 */ 5803 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5804 { 5805 return 0; 5806 } 5807 #endif 5808 5809 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5810 unsigned long address, unsigned int flags) 5811 { 5812 pte_t *ptep, entry; 5813 spinlock_t *ptl; 5814 vm_fault_t ret; 5815 u32 hash; 5816 pgoff_t idx; 5817 struct page *page = NULL; 5818 struct page *pagecache_page = NULL; 5819 struct hstate *h = hstate_vma(vma); 5820 struct address_space *mapping; 5821 int need_wait_lock = 0; 5822 unsigned long haddr = address & huge_page_mask(h); 5823 5824 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5825 if (ptep) { 5826 /* 5827 * Since we hold no locks, ptep could be stale. That is 5828 * OK as we are only making decisions based on content and 5829 * not actually modifying content here. 5830 */ 5831 entry = huge_ptep_get(ptep); 5832 if (unlikely(is_hugetlb_entry_migration(entry))) { 5833 migration_entry_wait_huge(vma, ptep); 5834 return 0; 5835 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5836 return VM_FAULT_HWPOISON_LARGE | 5837 VM_FAULT_SET_HINDEX(hstate_index(h)); 5838 } 5839 5840 /* 5841 * Serialize hugepage allocation and instantiation, so that we don't 5842 * get spurious allocation failures if two CPUs race to instantiate 5843 * the same page in the page cache. 5844 */ 5845 mapping = vma->vm_file->f_mapping; 5846 idx = vma_hugecache_offset(h, vma, haddr); 5847 hash = hugetlb_fault_mutex_hash(mapping, idx); 5848 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5849 5850 /* 5851 * Acquire vma lock before calling huge_pte_alloc and hold 5852 * until finished with ptep. This prevents huge_pmd_unshare from 5853 * being called elsewhere and making the ptep no longer valid. 5854 * 5855 * ptep could have already be assigned via huge_pte_offset. That 5856 * is OK, as huge_pte_alloc will return the same value unless 5857 * something has changed. 5858 */ 5859 hugetlb_vma_lock_read(vma); 5860 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5861 if (!ptep) { 5862 hugetlb_vma_unlock_read(vma); 5863 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5864 return VM_FAULT_OOM; 5865 } 5866 5867 entry = huge_ptep_get(ptep); 5868 /* PTE markers should be handled the same way as none pte */ 5869 if (huge_pte_none_mostly(entry)) 5870 /* 5871 * hugetlb_no_page will drop vma lock and hugetlb fault 5872 * mutex internally, which make us return immediately. 5873 */ 5874 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5875 entry, flags); 5876 5877 ret = 0; 5878 5879 /* 5880 * entry could be a migration/hwpoison entry at this point, so this 5881 * check prevents the kernel from going below assuming that we have 5882 * an active hugepage in pagecache. This goto expects the 2nd page 5883 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5884 * properly handle it. 5885 */ 5886 if (!pte_present(entry)) 5887 goto out_mutex; 5888 5889 /* 5890 * If we are going to COW/unshare the mapping later, we examine the 5891 * pending reservations for this page now. This will ensure that any 5892 * allocations necessary to record that reservation occur outside the 5893 * spinlock. Also lookup the pagecache page now as it is used to 5894 * determine if a reservation has been consumed. 5895 */ 5896 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5897 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 5898 if (vma_needs_reservation(h, vma, haddr) < 0) { 5899 ret = VM_FAULT_OOM; 5900 goto out_mutex; 5901 } 5902 /* Just decrements count, does not deallocate */ 5903 vma_end_reservation(h, vma, haddr); 5904 5905 pagecache_page = find_lock_page(mapping, idx); 5906 } 5907 5908 ptl = huge_pte_lock(h, mm, ptep); 5909 5910 /* Check for a racing update before calling hugetlb_wp() */ 5911 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5912 goto out_ptl; 5913 5914 /* Handle userfault-wp first, before trying to lock more pages */ 5915 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5916 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5917 struct vm_fault vmf = { 5918 .vma = vma, 5919 .address = haddr, 5920 .real_address = address, 5921 .flags = flags, 5922 }; 5923 5924 spin_unlock(ptl); 5925 if (pagecache_page) { 5926 unlock_page(pagecache_page); 5927 put_page(pagecache_page); 5928 } 5929 hugetlb_vma_unlock_read(vma); 5930 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5931 return handle_userfault(&vmf, VM_UFFD_WP); 5932 } 5933 5934 /* 5935 * hugetlb_wp() requires page locks of pte_page(entry) and 5936 * pagecache_page, so here we need take the former one 5937 * when page != pagecache_page or !pagecache_page. 5938 */ 5939 page = pte_page(entry); 5940 if (page != pagecache_page) 5941 if (!trylock_page(page)) { 5942 need_wait_lock = 1; 5943 goto out_ptl; 5944 } 5945 5946 get_page(page); 5947 5948 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5949 if (!huge_pte_write(entry)) { 5950 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5951 pagecache_page, ptl); 5952 goto out_put_page; 5953 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5954 entry = huge_pte_mkdirty(entry); 5955 } 5956 } 5957 entry = pte_mkyoung(entry); 5958 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5959 flags & FAULT_FLAG_WRITE)) 5960 update_mmu_cache(vma, haddr, ptep); 5961 out_put_page: 5962 if (page != pagecache_page) 5963 unlock_page(page); 5964 put_page(page); 5965 out_ptl: 5966 spin_unlock(ptl); 5967 5968 if (pagecache_page) { 5969 unlock_page(pagecache_page); 5970 put_page(pagecache_page); 5971 } 5972 out_mutex: 5973 hugetlb_vma_unlock_read(vma); 5974 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5975 /* 5976 * Generally it's safe to hold refcount during waiting page lock. But 5977 * here we just wait to defer the next page fault to avoid busy loop and 5978 * the page is not used after unlocked before returning from the current 5979 * page fault. So we are safe from accessing freed page, even if we wait 5980 * here without taking refcount. 5981 */ 5982 if (need_wait_lock) 5983 wait_on_page_locked(page); 5984 return ret; 5985 } 5986 5987 #ifdef CONFIG_USERFAULTFD 5988 /* 5989 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5990 * modifications for huge pages. 5991 */ 5992 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5993 pte_t *dst_pte, 5994 struct vm_area_struct *dst_vma, 5995 unsigned long dst_addr, 5996 unsigned long src_addr, 5997 enum mcopy_atomic_mode mode, 5998 struct page **pagep, 5999 bool wp_copy) 6000 { 6001 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 6002 struct hstate *h = hstate_vma(dst_vma); 6003 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6004 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6005 unsigned long size; 6006 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6007 pte_t _dst_pte; 6008 spinlock_t *ptl; 6009 int ret = -ENOMEM; 6010 struct page *page; 6011 int writable; 6012 bool page_in_pagecache = false; 6013 6014 if (is_continue) { 6015 ret = -EFAULT; 6016 page = find_lock_page(mapping, idx); 6017 if (!page) 6018 goto out; 6019 page_in_pagecache = true; 6020 } else if (!*pagep) { 6021 /* If a page already exists, then it's UFFDIO_COPY for 6022 * a non-missing case. Return -EEXIST. 6023 */ 6024 if (vm_shared && 6025 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6026 ret = -EEXIST; 6027 goto out; 6028 } 6029 6030 page = alloc_huge_page(dst_vma, dst_addr, 0); 6031 if (IS_ERR(page)) { 6032 ret = -ENOMEM; 6033 goto out; 6034 } 6035 6036 ret = copy_huge_page_from_user(page, 6037 (const void __user *) src_addr, 6038 pages_per_huge_page(h), false); 6039 6040 /* fallback to copy_from_user outside mmap_lock */ 6041 if (unlikely(ret)) { 6042 ret = -ENOENT; 6043 /* Free the allocated page which may have 6044 * consumed a reservation. 6045 */ 6046 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6047 put_page(page); 6048 6049 /* Allocate a temporary page to hold the copied 6050 * contents. 6051 */ 6052 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 6053 if (!page) { 6054 ret = -ENOMEM; 6055 goto out; 6056 } 6057 *pagep = page; 6058 /* Set the outparam pagep and return to the caller to 6059 * copy the contents outside the lock. Don't free the 6060 * page. 6061 */ 6062 goto out; 6063 } 6064 } else { 6065 if (vm_shared && 6066 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6067 put_page(*pagep); 6068 ret = -EEXIST; 6069 *pagep = NULL; 6070 goto out; 6071 } 6072 6073 page = alloc_huge_page(dst_vma, dst_addr, 0); 6074 if (IS_ERR(page)) { 6075 put_page(*pagep); 6076 ret = -ENOMEM; 6077 *pagep = NULL; 6078 goto out; 6079 } 6080 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 6081 pages_per_huge_page(h)); 6082 put_page(*pagep); 6083 *pagep = NULL; 6084 } 6085 6086 /* 6087 * The memory barrier inside __SetPageUptodate makes sure that 6088 * preceding stores to the page contents become visible before 6089 * the set_pte_at() write. 6090 */ 6091 __SetPageUptodate(page); 6092 6093 /* Add shared, newly allocated pages to the page cache. */ 6094 if (vm_shared && !is_continue) { 6095 size = i_size_read(mapping->host) >> huge_page_shift(h); 6096 ret = -EFAULT; 6097 if (idx >= size) 6098 goto out_release_nounlock; 6099 6100 /* 6101 * Serialization between remove_inode_hugepages() and 6102 * hugetlb_add_to_page_cache() below happens through the 6103 * hugetlb_fault_mutex_table that here must be hold by 6104 * the caller. 6105 */ 6106 ret = hugetlb_add_to_page_cache(page, mapping, idx); 6107 if (ret) 6108 goto out_release_nounlock; 6109 page_in_pagecache = true; 6110 } 6111 6112 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6113 6114 ret = -EIO; 6115 if (PageHWPoison(page)) 6116 goto out_release_unlock; 6117 6118 /* 6119 * We allow to overwrite a pte marker: consider when both MISSING|WP 6120 * registered, we firstly wr-protect a none pte which has no page cache 6121 * page backing it, then access the page. 6122 */ 6123 ret = -EEXIST; 6124 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6125 goto out_release_unlock; 6126 6127 if (page_in_pagecache) { 6128 page_dup_file_rmap(page, true); 6129 } else { 6130 ClearHPageRestoreReserve(page); 6131 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6132 } 6133 6134 /* 6135 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6136 * with wp flag set, don't set pte write bit. 6137 */ 6138 if (wp_copy || (is_continue && !vm_shared)) 6139 writable = 0; 6140 else 6141 writable = dst_vma->vm_flags & VM_WRITE; 6142 6143 _dst_pte = make_huge_pte(dst_vma, page, writable); 6144 /* 6145 * Always mark UFFDIO_COPY page dirty; note that this may not be 6146 * extremely important for hugetlbfs for now since swapping is not 6147 * supported, but we should still be clear in that this page cannot be 6148 * thrown away at will, even if write bit not set. 6149 */ 6150 _dst_pte = huge_pte_mkdirty(_dst_pte); 6151 _dst_pte = pte_mkyoung(_dst_pte); 6152 6153 if (wp_copy) 6154 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6155 6156 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6157 6158 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6159 6160 /* No need to invalidate - it was non-present before */ 6161 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6162 6163 spin_unlock(ptl); 6164 if (!is_continue) 6165 SetHPageMigratable(page); 6166 if (vm_shared || is_continue) 6167 unlock_page(page); 6168 ret = 0; 6169 out: 6170 return ret; 6171 out_release_unlock: 6172 spin_unlock(ptl); 6173 if (vm_shared || is_continue) 6174 unlock_page(page); 6175 out_release_nounlock: 6176 if (!page_in_pagecache) 6177 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6178 put_page(page); 6179 goto out; 6180 } 6181 #endif /* CONFIG_USERFAULTFD */ 6182 6183 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6184 int refs, struct page **pages, 6185 struct vm_area_struct **vmas) 6186 { 6187 int nr; 6188 6189 for (nr = 0; nr < refs; nr++) { 6190 if (likely(pages)) 6191 pages[nr] = nth_page(page, nr); 6192 if (vmas) 6193 vmas[nr] = vma; 6194 } 6195 } 6196 6197 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte, 6198 bool *unshare) 6199 { 6200 pte_t pteval = huge_ptep_get(pte); 6201 6202 *unshare = false; 6203 if (is_swap_pte(pteval)) 6204 return true; 6205 if (huge_pte_write(pteval)) 6206 return false; 6207 if (flags & FOLL_WRITE) 6208 return true; 6209 if (gup_must_unshare(flags, pte_page(pteval))) { 6210 *unshare = true; 6211 return true; 6212 } 6213 return false; 6214 } 6215 6216 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6217 struct page **pages, struct vm_area_struct **vmas, 6218 unsigned long *position, unsigned long *nr_pages, 6219 long i, unsigned int flags, int *locked) 6220 { 6221 unsigned long pfn_offset; 6222 unsigned long vaddr = *position; 6223 unsigned long remainder = *nr_pages; 6224 struct hstate *h = hstate_vma(vma); 6225 int err = -EFAULT, refs; 6226 6227 while (vaddr < vma->vm_end && remainder) { 6228 pte_t *pte; 6229 spinlock_t *ptl = NULL; 6230 bool unshare = false; 6231 int absent; 6232 struct page *page; 6233 6234 /* 6235 * If we have a pending SIGKILL, don't keep faulting pages and 6236 * potentially allocating memory. 6237 */ 6238 if (fatal_signal_pending(current)) { 6239 remainder = 0; 6240 break; 6241 } 6242 6243 /* 6244 * Some archs (sparc64, sh*) have multiple pte_ts to 6245 * each hugepage. We have to make sure we get the 6246 * first, for the page indexing below to work. 6247 * 6248 * Note that page table lock is not held when pte is null. 6249 */ 6250 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6251 huge_page_size(h)); 6252 if (pte) 6253 ptl = huge_pte_lock(h, mm, pte); 6254 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6255 6256 /* 6257 * When coredumping, it suits get_dump_page if we just return 6258 * an error where there's an empty slot with no huge pagecache 6259 * to back it. This way, we avoid allocating a hugepage, and 6260 * the sparse dumpfile avoids allocating disk blocks, but its 6261 * huge holes still show up with zeroes where they need to be. 6262 */ 6263 if (absent && (flags & FOLL_DUMP) && 6264 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6265 if (pte) 6266 spin_unlock(ptl); 6267 remainder = 0; 6268 break; 6269 } 6270 6271 /* 6272 * We need call hugetlb_fault for both hugepages under migration 6273 * (in which case hugetlb_fault waits for the migration,) and 6274 * hwpoisoned hugepages (in which case we need to prevent the 6275 * caller from accessing to them.) In order to do this, we use 6276 * here is_swap_pte instead of is_hugetlb_entry_migration and 6277 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6278 * both cases, and because we can't follow correct pages 6279 * directly from any kind of swap entries. 6280 */ 6281 if (absent || 6282 __follow_hugetlb_must_fault(flags, pte, &unshare)) { 6283 vm_fault_t ret; 6284 unsigned int fault_flags = 0; 6285 6286 if (pte) 6287 spin_unlock(ptl); 6288 if (flags & FOLL_WRITE) 6289 fault_flags |= FAULT_FLAG_WRITE; 6290 else if (unshare) 6291 fault_flags |= FAULT_FLAG_UNSHARE; 6292 if (locked) 6293 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6294 FAULT_FLAG_KILLABLE; 6295 if (flags & FOLL_NOWAIT) 6296 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6297 FAULT_FLAG_RETRY_NOWAIT; 6298 if (flags & FOLL_TRIED) { 6299 /* 6300 * Note: FAULT_FLAG_ALLOW_RETRY and 6301 * FAULT_FLAG_TRIED can co-exist 6302 */ 6303 fault_flags |= FAULT_FLAG_TRIED; 6304 } 6305 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6306 if (ret & VM_FAULT_ERROR) { 6307 err = vm_fault_to_errno(ret, flags); 6308 remainder = 0; 6309 break; 6310 } 6311 if (ret & VM_FAULT_RETRY) { 6312 if (locked && 6313 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6314 *locked = 0; 6315 *nr_pages = 0; 6316 /* 6317 * VM_FAULT_RETRY must not return an 6318 * error, it will return zero 6319 * instead. 6320 * 6321 * No need to update "position" as the 6322 * caller will not check it after 6323 * *nr_pages is set to 0. 6324 */ 6325 return i; 6326 } 6327 continue; 6328 } 6329 6330 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6331 page = pte_page(huge_ptep_get(pte)); 6332 6333 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6334 !PageAnonExclusive(page), page); 6335 6336 /* 6337 * If subpage information not requested, update counters 6338 * and skip the same_page loop below. 6339 */ 6340 if (!pages && !vmas && !pfn_offset && 6341 (vaddr + huge_page_size(h) < vma->vm_end) && 6342 (remainder >= pages_per_huge_page(h))) { 6343 vaddr += huge_page_size(h); 6344 remainder -= pages_per_huge_page(h); 6345 i += pages_per_huge_page(h); 6346 spin_unlock(ptl); 6347 continue; 6348 } 6349 6350 /* vaddr may not be aligned to PAGE_SIZE */ 6351 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6352 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6353 6354 if (pages || vmas) 6355 record_subpages_vmas(nth_page(page, pfn_offset), 6356 vma, refs, 6357 likely(pages) ? pages + i : NULL, 6358 vmas ? vmas + i : NULL); 6359 6360 if (pages) { 6361 /* 6362 * try_grab_folio() should always succeed here, 6363 * because: a) we hold the ptl lock, and b) we've just 6364 * checked that the huge page is present in the page 6365 * tables. If the huge page is present, then the tail 6366 * pages must also be present. The ptl prevents the 6367 * head page and tail pages from being rearranged in 6368 * any way. So this page must be available at this 6369 * point, unless the page refcount overflowed: 6370 */ 6371 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6372 flags))) { 6373 spin_unlock(ptl); 6374 remainder = 0; 6375 err = -ENOMEM; 6376 break; 6377 } 6378 } 6379 6380 vaddr += (refs << PAGE_SHIFT); 6381 remainder -= refs; 6382 i += refs; 6383 6384 spin_unlock(ptl); 6385 } 6386 *nr_pages = remainder; 6387 /* 6388 * setting position is actually required only if remainder is 6389 * not zero but it's faster not to add a "if (remainder)" 6390 * branch. 6391 */ 6392 *position = vaddr; 6393 6394 return i ? i : err; 6395 } 6396 6397 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6398 unsigned long address, unsigned long end, 6399 pgprot_t newprot, unsigned long cp_flags) 6400 { 6401 struct mm_struct *mm = vma->vm_mm; 6402 unsigned long start = address; 6403 pte_t *ptep; 6404 pte_t pte; 6405 struct hstate *h = hstate_vma(vma); 6406 unsigned long pages = 0, psize = huge_page_size(h); 6407 bool shared_pmd = false; 6408 struct mmu_notifier_range range; 6409 unsigned long last_addr_mask; 6410 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6411 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6412 6413 /* 6414 * In the case of shared PMDs, the area to flush could be beyond 6415 * start/end. Set range.start/range.end to cover the maximum possible 6416 * range if PMD sharing is possible. 6417 */ 6418 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6419 0, vma, mm, start, end); 6420 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6421 6422 BUG_ON(address >= end); 6423 flush_cache_range(vma, range.start, range.end); 6424 6425 mmu_notifier_invalidate_range_start(&range); 6426 hugetlb_vma_lock_write(vma); 6427 i_mmap_lock_write(vma->vm_file->f_mapping); 6428 last_addr_mask = hugetlb_mask_last_page(h); 6429 for (; address < end; address += psize) { 6430 spinlock_t *ptl; 6431 ptep = huge_pte_offset(mm, address, psize); 6432 if (!ptep) { 6433 address |= last_addr_mask; 6434 continue; 6435 } 6436 ptl = huge_pte_lock(h, mm, ptep); 6437 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6438 /* 6439 * When uffd-wp is enabled on the vma, unshare 6440 * shouldn't happen at all. Warn about it if it 6441 * happened due to some reason. 6442 */ 6443 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6444 pages++; 6445 spin_unlock(ptl); 6446 shared_pmd = true; 6447 address |= last_addr_mask; 6448 continue; 6449 } 6450 pte = huge_ptep_get(ptep); 6451 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6452 spin_unlock(ptl); 6453 continue; 6454 } 6455 if (unlikely(is_hugetlb_entry_migration(pte))) { 6456 swp_entry_t entry = pte_to_swp_entry(pte); 6457 struct page *page = pfn_swap_entry_to_page(entry); 6458 6459 if (!is_readable_migration_entry(entry)) { 6460 pte_t newpte; 6461 6462 if (PageAnon(page)) 6463 entry = make_readable_exclusive_migration_entry( 6464 swp_offset(entry)); 6465 else 6466 entry = make_readable_migration_entry( 6467 swp_offset(entry)); 6468 newpte = swp_entry_to_pte(entry); 6469 if (uffd_wp) 6470 newpte = pte_swp_mkuffd_wp(newpte); 6471 else if (uffd_wp_resolve) 6472 newpte = pte_swp_clear_uffd_wp(newpte); 6473 set_huge_pte_at(mm, address, ptep, newpte); 6474 pages++; 6475 } 6476 spin_unlock(ptl); 6477 continue; 6478 } 6479 if (unlikely(pte_marker_uffd_wp(pte))) { 6480 /* 6481 * This is changing a non-present pte into a none pte, 6482 * no need for huge_ptep_modify_prot_start/commit(). 6483 */ 6484 if (uffd_wp_resolve) 6485 huge_pte_clear(mm, address, ptep, psize); 6486 } 6487 if (!huge_pte_none(pte)) { 6488 pte_t old_pte; 6489 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6490 6491 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6492 pte = huge_pte_modify(old_pte, newprot); 6493 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6494 if (uffd_wp) 6495 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6496 else if (uffd_wp_resolve) 6497 pte = huge_pte_clear_uffd_wp(pte); 6498 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6499 pages++; 6500 } else { 6501 /* None pte */ 6502 if (unlikely(uffd_wp)) 6503 /* Safe to modify directly (none->non-present). */ 6504 set_huge_pte_at(mm, address, ptep, 6505 make_pte_marker(PTE_MARKER_UFFD_WP)); 6506 } 6507 spin_unlock(ptl); 6508 } 6509 /* 6510 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6511 * may have cleared our pud entry and done put_page on the page table: 6512 * once we release i_mmap_rwsem, another task can do the final put_page 6513 * and that page table be reused and filled with junk. If we actually 6514 * did unshare a page of pmds, flush the range corresponding to the pud. 6515 */ 6516 if (shared_pmd) 6517 flush_hugetlb_tlb_range(vma, range.start, range.end); 6518 else 6519 flush_hugetlb_tlb_range(vma, start, end); 6520 /* 6521 * No need to call mmu_notifier_invalidate_range() we are downgrading 6522 * page table protection not changing it to point to a new page. 6523 * 6524 * See Documentation/mm/mmu_notifier.rst 6525 */ 6526 i_mmap_unlock_write(vma->vm_file->f_mapping); 6527 hugetlb_vma_unlock_write(vma); 6528 mmu_notifier_invalidate_range_end(&range); 6529 6530 return pages << h->order; 6531 } 6532 6533 /* Return true if reservation was successful, false otherwise. */ 6534 bool hugetlb_reserve_pages(struct inode *inode, 6535 long from, long to, 6536 struct vm_area_struct *vma, 6537 vm_flags_t vm_flags) 6538 { 6539 long chg, add = -1; 6540 struct hstate *h = hstate_inode(inode); 6541 struct hugepage_subpool *spool = subpool_inode(inode); 6542 struct resv_map *resv_map; 6543 struct hugetlb_cgroup *h_cg = NULL; 6544 long gbl_reserve, regions_needed = 0; 6545 6546 /* This should never happen */ 6547 if (from > to) { 6548 VM_WARN(1, "%s called with a negative range\n", __func__); 6549 return false; 6550 } 6551 6552 /* 6553 * vma specific semaphore used for pmd sharing synchronization 6554 */ 6555 hugetlb_vma_lock_alloc(vma); 6556 6557 /* 6558 * Only apply hugepage reservation if asked. At fault time, an 6559 * attempt will be made for VM_NORESERVE to allocate a page 6560 * without using reserves 6561 */ 6562 if (vm_flags & VM_NORESERVE) 6563 return true; 6564 6565 /* 6566 * Shared mappings base their reservation on the number of pages that 6567 * are already allocated on behalf of the file. Private mappings need 6568 * to reserve the full area even if read-only as mprotect() may be 6569 * called to make the mapping read-write. Assume !vma is a shm mapping 6570 */ 6571 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6572 /* 6573 * resv_map can not be NULL as hugetlb_reserve_pages is only 6574 * called for inodes for which resv_maps were created (see 6575 * hugetlbfs_get_inode). 6576 */ 6577 resv_map = inode_resv_map(inode); 6578 6579 chg = region_chg(resv_map, from, to, ®ions_needed); 6580 } else { 6581 /* Private mapping. */ 6582 resv_map = resv_map_alloc(); 6583 if (!resv_map) 6584 goto out_err; 6585 6586 chg = to - from; 6587 6588 set_vma_resv_map(vma, resv_map); 6589 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6590 } 6591 6592 if (chg < 0) 6593 goto out_err; 6594 6595 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6596 chg * pages_per_huge_page(h), &h_cg) < 0) 6597 goto out_err; 6598 6599 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6600 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6601 * of the resv_map. 6602 */ 6603 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6604 } 6605 6606 /* 6607 * There must be enough pages in the subpool for the mapping. If 6608 * the subpool has a minimum size, there may be some global 6609 * reservations already in place (gbl_reserve). 6610 */ 6611 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6612 if (gbl_reserve < 0) 6613 goto out_uncharge_cgroup; 6614 6615 /* 6616 * Check enough hugepages are available for the reservation. 6617 * Hand the pages back to the subpool if there are not 6618 */ 6619 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6620 goto out_put_pages; 6621 6622 /* 6623 * Account for the reservations made. Shared mappings record regions 6624 * that have reservations as they are shared by multiple VMAs. 6625 * When the last VMA disappears, the region map says how much 6626 * the reservation was and the page cache tells how much of 6627 * the reservation was consumed. Private mappings are per-VMA and 6628 * only the consumed reservations are tracked. When the VMA 6629 * disappears, the original reservation is the VMA size and the 6630 * consumed reservations are stored in the map. Hence, nothing 6631 * else has to be done for private mappings here 6632 */ 6633 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6634 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6635 6636 if (unlikely(add < 0)) { 6637 hugetlb_acct_memory(h, -gbl_reserve); 6638 goto out_put_pages; 6639 } else if (unlikely(chg > add)) { 6640 /* 6641 * pages in this range were added to the reserve 6642 * map between region_chg and region_add. This 6643 * indicates a race with alloc_huge_page. Adjust 6644 * the subpool and reserve counts modified above 6645 * based on the difference. 6646 */ 6647 long rsv_adjust; 6648 6649 /* 6650 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6651 * reference to h_cg->css. See comment below for detail. 6652 */ 6653 hugetlb_cgroup_uncharge_cgroup_rsvd( 6654 hstate_index(h), 6655 (chg - add) * pages_per_huge_page(h), h_cg); 6656 6657 rsv_adjust = hugepage_subpool_put_pages(spool, 6658 chg - add); 6659 hugetlb_acct_memory(h, -rsv_adjust); 6660 } else if (h_cg) { 6661 /* 6662 * The file_regions will hold their own reference to 6663 * h_cg->css. So we should release the reference held 6664 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6665 * done. 6666 */ 6667 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6668 } 6669 } 6670 return true; 6671 6672 out_put_pages: 6673 /* put back original number of pages, chg */ 6674 (void)hugepage_subpool_put_pages(spool, chg); 6675 out_uncharge_cgroup: 6676 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6677 chg * pages_per_huge_page(h), h_cg); 6678 out_err: 6679 hugetlb_vma_lock_free(vma); 6680 if (!vma || vma->vm_flags & VM_MAYSHARE) 6681 /* Only call region_abort if the region_chg succeeded but the 6682 * region_add failed or didn't run. 6683 */ 6684 if (chg >= 0 && add < 0) 6685 region_abort(resv_map, from, to, regions_needed); 6686 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6687 kref_put(&resv_map->refs, resv_map_release); 6688 return false; 6689 } 6690 6691 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6692 long freed) 6693 { 6694 struct hstate *h = hstate_inode(inode); 6695 struct resv_map *resv_map = inode_resv_map(inode); 6696 long chg = 0; 6697 struct hugepage_subpool *spool = subpool_inode(inode); 6698 long gbl_reserve; 6699 6700 /* 6701 * Since this routine can be called in the evict inode path for all 6702 * hugetlbfs inodes, resv_map could be NULL. 6703 */ 6704 if (resv_map) { 6705 chg = region_del(resv_map, start, end); 6706 /* 6707 * region_del() can fail in the rare case where a region 6708 * must be split and another region descriptor can not be 6709 * allocated. If end == LONG_MAX, it will not fail. 6710 */ 6711 if (chg < 0) 6712 return chg; 6713 } 6714 6715 spin_lock(&inode->i_lock); 6716 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6717 spin_unlock(&inode->i_lock); 6718 6719 /* 6720 * If the subpool has a minimum size, the number of global 6721 * reservations to be released may be adjusted. 6722 * 6723 * Note that !resv_map implies freed == 0. So (chg - freed) 6724 * won't go negative. 6725 */ 6726 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6727 hugetlb_acct_memory(h, -gbl_reserve); 6728 6729 return 0; 6730 } 6731 6732 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6733 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6734 struct vm_area_struct *vma, 6735 unsigned long addr, pgoff_t idx) 6736 { 6737 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6738 svma->vm_start; 6739 unsigned long sbase = saddr & PUD_MASK; 6740 unsigned long s_end = sbase + PUD_SIZE; 6741 6742 /* Allow segments to share if only one is marked locked */ 6743 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6744 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6745 6746 /* 6747 * match the virtual addresses, permission and the alignment of the 6748 * page table page. 6749 * 6750 * Also, vma_lock (vm_private_data) is required for sharing. 6751 */ 6752 if (pmd_index(addr) != pmd_index(saddr) || 6753 vm_flags != svm_flags || 6754 !range_in_vma(svma, sbase, s_end) || 6755 !svma->vm_private_data) 6756 return 0; 6757 6758 return saddr; 6759 } 6760 6761 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6762 { 6763 unsigned long start = addr & PUD_MASK; 6764 unsigned long end = start + PUD_SIZE; 6765 6766 #ifdef CONFIG_USERFAULTFD 6767 if (uffd_disable_huge_pmd_share(vma)) 6768 return false; 6769 #endif 6770 /* 6771 * check on proper vm_flags and page table alignment 6772 */ 6773 if (!(vma->vm_flags & VM_MAYSHARE)) 6774 return false; 6775 if (!vma->vm_private_data) /* vma lock required for sharing */ 6776 return false; 6777 if (!range_in_vma(vma, start, end)) 6778 return false; 6779 return true; 6780 } 6781 6782 /* 6783 * Determine if start,end range within vma could be mapped by shared pmd. 6784 * If yes, adjust start and end to cover range associated with possible 6785 * shared pmd mappings. 6786 */ 6787 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6788 unsigned long *start, unsigned long *end) 6789 { 6790 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6791 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6792 6793 /* 6794 * vma needs to span at least one aligned PUD size, and the range 6795 * must be at least partially within in. 6796 */ 6797 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6798 (*end <= v_start) || (*start >= v_end)) 6799 return; 6800 6801 /* Extend the range to be PUD aligned for a worst case scenario */ 6802 if (*start > v_start) 6803 *start = ALIGN_DOWN(*start, PUD_SIZE); 6804 6805 if (*end < v_end) 6806 *end = ALIGN(*end, PUD_SIZE); 6807 } 6808 6809 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma) 6810 { 6811 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) && 6812 vma->vm_private_data; 6813 } 6814 6815 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 6816 { 6817 if (__vma_shareable_flags_pmd(vma)) { 6818 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6819 6820 down_read(&vma_lock->rw_sema); 6821 } 6822 } 6823 6824 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 6825 { 6826 if (__vma_shareable_flags_pmd(vma)) { 6827 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6828 6829 up_read(&vma_lock->rw_sema); 6830 } 6831 } 6832 6833 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 6834 { 6835 if (__vma_shareable_flags_pmd(vma)) { 6836 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6837 6838 down_write(&vma_lock->rw_sema); 6839 } 6840 } 6841 6842 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 6843 { 6844 if (__vma_shareable_flags_pmd(vma)) { 6845 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6846 6847 up_write(&vma_lock->rw_sema); 6848 } 6849 } 6850 6851 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 6852 { 6853 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6854 6855 if (!__vma_shareable_flags_pmd(vma)) 6856 return 1; 6857 6858 return down_write_trylock(&vma_lock->rw_sema); 6859 } 6860 6861 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 6862 { 6863 if (__vma_shareable_flags_pmd(vma)) { 6864 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6865 6866 lockdep_assert_held(&vma_lock->rw_sema); 6867 } 6868 } 6869 6870 void hugetlb_vma_lock_release(struct kref *kref) 6871 { 6872 struct hugetlb_vma_lock *vma_lock = container_of(kref, 6873 struct hugetlb_vma_lock, refs); 6874 6875 kfree(vma_lock); 6876 } 6877 6878 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 6879 { 6880 struct vm_area_struct *vma = vma_lock->vma; 6881 6882 /* 6883 * vma_lock structure may or not be released as a result of put, 6884 * it certainly will no longer be attached to vma so clear pointer. 6885 * Semaphore synchronizes access to vma_lock->vma field. 6886 */ 6887 vma_lock->vma = NULL; 6888 vma->vm_private_data = NULL; 6889 up_write(&vma_lock->rw_sema); 6890 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 6891 } 6892 6893 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 6894 { 6895 if (__vma_shareable_flags_pmd(vma)) { 6896 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6897 6898 __hugetlb_vma_unlock_write_put(vma_lock); 6899 } 6900 } 6901 6902 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 6903 { 6904 /* 6905 * Only present in sharable vmas. 6906 */ 6907 if (!vma || !__vma_shareable_flags_pmd(vma)) 6908 return; 6909 6910 if (vma->vm_private_data) { 6911 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6912 6913 down_write(&vma_lock->rw_sema); 6914 __hugetlb_vma_unlock_write_put(vma_lock); 6915 } 6916 } 6917 6918 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 6919 { 6920 struct hugetlb_vma_lock *vma_lock; 6921 6922 /* Only establish in (flags) sharable vmas */ 6923 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 6924 return; 6925 6926 /* Should never get here with non-NULL vm_private_data */ 6927 if (vma->vm_private_data) 6928 return; 6929 6930 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 6931 if (!vma_lock) { 6932 /* 6933 * If we can not allocate structure, then vma can not 6934 * participate in pmd sharing. This is only a possible 6935 * performance enhancement and memory saving issue. 6936 * However, the lock is also used to synchronize page 6937 * faults with truncation. If the lock is not present, 6938 * unlikely races could leave pages in a file past i_size 6939 * until the file is removed. Warn in the unlikely case of 6940 * allocation failure. 6941 */ 6942 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 6943 return; 6944 } 6945 6946 kref_init(&vma_lock->refs); 6947 init_rwsem(&vma_lock->rw_sema); 6948 vma_lock->vma = vma; 6949 vma->vm_private_data = vma_lock; 6950 } 6951 6952 /* 6953 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6954 * and returns the corresponding pte. While this is not necessary for the 6955 * !shared pmd case because we can allocate the pmd later as well, it makes the 6956 * code much cleaner. pmd allocation is essential for the shared case because 6957 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6958 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6959 * bad pmd for sharing. 6960 */ 6961 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6962 unsigned long addr, pud_t *pud) 6963 { 6964 struct address_space *mapping = vma->vm_file->f_mapping; 6965 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6966 vma->vm_pgoff; 6967 struct vm_area_struct *svma; 6968 unsigned long saddr; 6969 pte_t *spte = NULL; 6970 pte_t *pte; 6971 spinlock_t *ptl; 6972 6973 i_mmap_lock_read(mapping); 6974 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6975 if (svma == vma) 6976 continue; 6977 6978 saddr = page_table_shareable(svma, vma, addr, idx); 6979 if (saddr) { 6980 spte = huge_pte_offset(svma->vm_mm, saddr, 6981 vma_mmu_pagesize(svma)); 6982 if (spte) { 6983 get_page(virt_to_page(spte)); 6984 break; 6985 } 6986 } 6987 } 6988 6989 if (!spte) 6990 goto out; 6991 6992 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6993 if (pud_none(*pud)) { 6994 pud_populate(mm, pud, 6995 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6996 mm_inc_nr_pmds(mm); 6997 } else { 6998 put_page(virt_to_page(spte)); 6999 } 7000 spin_unlock(ptl); 7001 out: 7002 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7003 i_mmap_unlock_read(mapping); 7004 return pte; 7005 } 7006 7007 /* 7008 * unmap huge page backed by shared pte. 7009 * 7010 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7011 * indicated by page_count > 1, unmap is achieved by clearing pud and 7012 * decrementing the ref count. If count == 1, the pte page is not shared. 7013 * 7014 * Called with page table lock held. 7015 * 7016 * returns: 1 successfully unmapped a shared pte page 7017 * 0 the underlying pte page is not shared, or it is the last user 7018 */ 7019 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7020 unsigned long addr, pte_t *ptep) 7021 { 7022 pgd_t *pgd = pgd_offset(mm, addr); 7023 p4d_t *p4d = p4d_offset(pgd, addr); 7024 pud_t *pud = pud_offset(p4d, addr); 7025 7026 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7027 hugetlb_vma_assert_locked(vma); 7028 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7029 if (page_count(virt_to_page(ptep)) == 1) 7030 return 0; 7031 7032 pud_clear(pud); 7033 put_page(virt_to_page(ptep)); 7034 mm_dec_nr_pmds(mm); 7035 return 1; 7036 } 7037 7038 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7039 7040 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 7041 { 7042 } 7043 7044 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 7045 { 7046 } 7047 7048 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 7049 { 7050 } 7051 7052 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 7053 { 7054 } 7055 7056 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 7057 { 7058 return 1; 7059 } 7060 7061 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 7062 { 7063 } 7064 7065 void hugetlb_vma_lock_release(struct kref *kref) 7066 { 7067 } 7068 7069 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 7070 { 7071 } 7072 7073 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 7074 { 7075 } 7076 7077 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 7078 { 7079 } 7080 7081 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7082 unsigned long addr, pud_t *pud) 7083 { 7084 return NULL; 7085 } 7086 7087 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7088 unsigned long addr, pte_t *ptep) 7089 { 7090 return 0; 7091 } 7092 7093 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7094 unsigned long *start, unsigned long *end) 7095 { 7096 } 7097 7098 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7099 { 7100 return false; 7101 } 7102 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7103 7104 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7105 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7106 unsigned long addr, unsigned long sz) 7107 { 7108 pgd_t *pgd; 7109 p4d_t *p4d; 7110 pud_t *pud; 7111 pte_t *pte = NULL; 7112 7113 pgd = pgd_offset(mm, addr); 7114 p4d = p4d_alloc(mm, pgd, addr); 7115 if (!p4d) 7116 return NULL; 7117 pud = pud_alloc(mm, p4d, addr); 7118 if (pud) { 7119 if (sz == PUD_SIZE) { 7120 pte = (pte_t *)pud; 7121 } else { 7122 BUG_ON(sz != PMD_SIZE); 7123 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7124 pte = huge_pmd_share(mm, vma, addr, pud); 7125 else 7126 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7127 } 7128 } 7129 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7130 7131 return pte; 7132 } 7133 7134 /* 7135 * huge_pte_offset() - Walk the page table to resolve the hugepage 7136 * entry at address @addr 7137 * 7138 * Return: Pointer to page table entry (PUD or PMD) for 7139 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7140 * size @sz doesn't match the hugepage size at this level of the page 7141 * table. 7142 */ 7143 pte_t *huge_pte_offset(struct mm_struct *mm, 7144 unsigned long addr, unsigned long sz) 7145 { 7146 pgd_t *pgd; 7147 p4d_t *p4d; 7148 pud_t *pud; 7149 pmd_t *pmd; 7150 7151 pgd = pgd_offset(mm, addr); 7152 if (!pgd_present(*pgd)) 7153 return NULL; 7154 p4d = p4d_offset(pgd, addr); 7155 if (!p4d_present(*p4d)) 7156 return NULL; 7157 7158 pud = pud_offset(p4d, addr); 7159 if (sz == PUD_SIZE) 7160 /* must be pud huge, non-present or none */ 7161 return (pte_t *)pud; 7162 if (!pud_present(*pud)) 7163 return NULL; 7164 /* must have a valid entry and size to go further */ 7165 7166 pmd = pmd_offset(pud, addr); 7167 /* must be pmd huge, non-present or none */ 7168 return (pte_t *)pmd; 7169 } 7170 7171 /* 7172 * Return a mask that can be used to update an address to the last huge 7173 * page in a page table page mapping size. Used to skip non-present 7174 * page table entries when linearly scanning address ranges. Architectures 7175 * with unique huge page to page table relationships can define their own 7176 * version of this routine. 7177 */ 7178 unsigned long hugetlb_mask_last_page(struct hstate *h) 7179 { 7180 unsigned long hp_size = huge_page_size(h); 7181 7182 if (hp_size == PUD_SIZE) 7183 return P4D_SIZE - PUD_SIZE; 7184 else if (hp_size == PMD_SIZE) 7185 return PUD_SIZE - PMD_SIZE; 7186 else 7187 return 0UL; 7188 } 7189 7190 #else 7191 7192 /* See description above. Architectures can provide their own version. */ 7193 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7194 { 7195 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7196 if (huge_page_size(h) == PMD_SIZE) 7197 return PUD_SIZE - PMD_SIZE; 7198 #endif 7199 return 0UL; 7200 } 7201 7202 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7203 7204 /* 7205 * These functions are overwritable if your architecture needs its own 7206 * behavior. 7207 */ 7208 struct page * __weak 7209 follow_huge_addr(struct mm_struct *mm, unsigned long address, 7210 int write) 7211 { 7212 return ERR_PTR(-EINVAL); 7213 } 7214 7215 struct page * __weak 7216 follow_huge_pd(struct vm_area_struct *vma, 7217 unsigned long address, hugepd_t hpd, int flags, int pdshift) 7218 { 7219 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 7220 return NULL; 7221 } 7222 7223 struct page * __weak 7224 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags) 7225 { 7226 struct hstate *h = hstate_vma(vma); 7227 struct mm_struct *mm = vma->vm_mm; 7228 struct page *page = NULL; 7229 spinlock_t *ptl; 7230 pte_t *ptep, pte; 7231 7232 /* 7233 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 7234 * follow_hugetlb_page(). 7235 */ 7236 if (WARN_ON_ONCE(flags & FOLL_PIN)) 7237 return NULL; 7238 7239 retry: 7240 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 7241 if (!ptep) 7242 return NULL; 7243 7244 ptl = huge_pte_lock(h, mm, ptep); 7245 pte = huge_ptep_get(ptep); 7246 if (pte_present(pte)) { 7247 page = pte_page(pte) + 7248 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 7249 /* 7250 * try_grab_page() should always succeed here, because: a) we 7251 * hold the pmd (ptl) lock, and b) we've just checked that the 7252 * huge pmd (head) page is present in the page tables. The ptl 7253 * prevents the head page and tail pages from being rearranged 7254 * in any way. So this page must be available at this point, 7255 * unless the page refcount overflowed: 7256 */ 7257 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 7258 page = NULL; 7259 goto out; 7260 } 7261 } else { 7262 if (is_hugetlb_entry_migration(pte)) { 7263 spin_unlock(ptl); 7264 __migration_entry_wait_huge(ptep, ptl); 7265 goto retry; 7266 } 7267 /* 7268 * hwpoisoned entry is treated as no_page_table in 7269 * follow_page_mask(). 7270 */ 7271 } 7272 out: 7273 spin_unlock(ptl); 7274 return page; 7275 } 7276 7277 struct page * __weak 7278 follow_huge_pud(struct mm_struct *mm, unsigned long address, 7279 pud_t *pud, int flags) 7280 { 7281 struct page *page = NULL; 7282 spinlock_t *ptl; 7283 pte_t pte; 7284 7285 if (WARN_ON_ONCE(flags & FOLL_PIN)) 7286 return NULL; 7287 7288 retry: 7289 ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud); 7290 if (!pud_huge(*pud)) 7291 goto out; 7292 pte = huge_ptep_get((pte_t *)pud); 7293 if (pte_present(pte)) { 7294 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 7295 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 7296 page = NULL; 7297 goto out; 7298 } 7299 } else { 7300 if (is_hugetlb_entry_migration(pte)) { 7301 spin_unlock(ptl); 7302 __migration_entry_wait(mm, (pte_t *)pud, ptl); 7303 goto retry; 7304 } 7305 /* 7306 * hwpoisoned entry is treated as no_page_table in 7307 * follow_page_mask(). 7308 */ 7309 } 7310 out: 7311 spin_unlock(ptl); 7312 return page; 7313 } 7314 7315 struct page * __weak 7316 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 7317 { 7318 if (flags & (FOLL_GET | FOLL_PIN)) 7319 return NULL; 7320 7321 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 7322 } 7323 7324 int isolate_hugetlb(struct page *page, struct list_head *list) 7325 { 7326 int ret = 0; 7327 7328 spin_lock_irq(&hugetlb_lock); 7329 if (!PageHeadHuge(page) || 7330 !HPageMigratable(page) || 7331 !get_page_unless_zero(page)) { 7332 ret = -EBUSY; 7333 goto unlock; 7334 } 7335 ClearHPageMigratable(page); 7336 list_move_tail(&page->lru, list); 7337 unlock: 7338 spin_unlock_irq(&hugetlb_lock); 7339 return ret; 7340 } 7341 7342 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 7343 { 7344 int ret = 0; 7345 7346 *hugetlb = false; 7347 spin_lock_irq(&hugetlb_lock); 7348 if (PageHeadHuge(page)) { 7349 *hugetlb = true; 7350 if (HPageFreed(page)) 7351 ret = 0; 7352 else if (HPageMigratable(page)) 7353 ret = get_page_unless_zero(page); 7354 else 7355 ret = -EBUSY; 7356 } 7357 spin_unlock_irq(&hugetlb_lock); 7358 return ret; 7359 } 7360 7361 int get_huge_page_for_hwpoison(unsigned long pfn, int flags) 7362 { 7363 int ret; 7364 7365 spin_lock_irq(&hugetlb_lock); 7366 ret = __get_huge_page_for_hwpoison(pfn, flags); 7367 spin_unlock_irq(&hugetlb_lock); 7368 return ret; 7369 } 7370 7371 void putback_active_hugepage(struct page *page) 7372 { 7373 spin_lock_irq(&hugetlb_lock); 7374 SetHPageMigratable(page); 7375 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7376 spin_unlock_irq(&hugetlb_lock); 7377 put_page(page); 7378 } 7379 7380 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 7381 { 7382 struct hstate *h = page_hstate(oldpage); 7383 7384 hugetlb_cgroup_migrate(oldpage, newpage); 7385 set_page_owner_migrate_reason(newpage, reason); 7386 7387 /* 7388 * transfer temporary state of the new huge page. This is 7389 * reverse to other transitions because the newpage is going to 7390 * be final while the old one will be freed so it takes over 7391 * the temporary status. 7392 * 7393 * Also note that we have to transfer the per-node surplus state 7394 * here as well otherwise the global surplus count will not match 7395 * the per-node's. 7396 */ 7397 if (HPageTemporary(newpage)) { 7398 int old_nid = page_to_nid(oldpage); 7399 int new_nid = page_to_nid(newpage); 7400 7401 SetHPageTemporary(oldpage); 7402 ClearHPageTemporary(newpage); 7403 7404 /* 7405 * There is no need to transfer the per-node surplus state 7406 * when we do not cross the node. 7407 */ 7408 if (new_nid == old_nid) 7409 return; 7410 spin_lock_irq(&hugetlb_lock); 7411 if (h->surplus_huge_pages_node[old_nid]) { 7412 h->surplus_huge_pages_node[old_nid]--; 7413 h->surplus_huge_pages_node[new_nid]++; 7414 } 7415 spin_unlock_irq(&hugetlb_lock); 7416 } 7417 } 7418 7419 /* 7420 * This function will unconditionally remove all the shared pmd pgtable entries 7421 * within the specific vma for a hugetlbfs memory range. 7422 */ 7423 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7424 { 7425 struct hstate *h = hstate_vma(vma); 7426 unsigned long sz = huge_page_size(h); 7427 struct mm_struct *mm = vma->vm_mm; 7428 struct mmu_notifier_range range; 7429 unsigned long address, start, end; 7430 spinlock_t *ptl; 7431 pte_t *ptep; 7432 7433 if (!(vma->vm_flags & VM_MAYSHARE)) 7434 return; 7435 7436 start = ALIGN(vma->vm_start, PUD_SIZE); 7437 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7438 7439 if (start >= end) 7440 return; 7441 7442 flush_cache_range(vma, start, end); 7443 /* 7444 * No need to call adjust_range_if_pmd_sharing_possible(), because 7445 * we have already done the PUD_SIZE alignment. 7446 */ 7447 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7448 start, end); 7449 mmu_notifier_invalidate_range_start(&range); 7450 hugetlb_vma_lock_write(vma); 7451 i_mmap_lock_write(vma->vm_file->f_mapping); 7452 for (address = start; address < end; address += PUD_SIZE) { 7453 ptep = huge_pte_offset(mm, address, sz); 7454 if (!ptep) 7455 continue; 7456 ptl = huge_pte_lock(h, mm, ptep); 7457 huge_pmd_unshare(mm, vma, address, ptep); 7458 spin_unlock(ptl); 7459 } 7460 flush_hugetlb_tlb_range(vma, start, end); 7461 i_mmap_unlock_write(vma->vm_file->f_mapping); 7462 hugetlb_vma_unlock_write(vma); 7463 /* 7464 * No need to call mmu_notifier_invalidate_range(), see 7465 * Documentation/mm/mmu_notifier.rst. 7466 */ 7467 mmu_notifier_invalidate_range_end(&range); 7468 } 7469 7470 #ifdef CONFIG_CMA 7471 static bool cma_reserve_called __initdata; 7472 7473 static int __init cmdline_parse_hugetlb_cma(char *p) 7474 { 7475 int nid, count = 0; 7476 unsigned long tmp; 7477 char *s = p; 7478 7479 while (*s) { 7480 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7481 break; 7482 7483 if (s[count] == ':') { 7484 if (tmp >= MAX_NUMNODES) 7485 break; 7486 nid = array_index_nospec(tmp, MAX_NUMNODES); 7487 7488 s += count + 1; 7489 tmp = memparse(s, &s); 7490 hugetlb_cma_size_in_node[nid] = tmp; 7491 hugetlb_cma_size += tmp; 7492 7493 /* 7494 * Skip the separator if have one, otherwise 7495 * break the parsing. 7496 */ 7497 if (*s == ',') 7498 s++; 7499 else 7500 break; 7501 } else { 7502 hugetlb_cma_size = memparse(p, &p); 7503 break; 7504 } 7505 } 7506 7507 return 0; 7508 } 7509 7510 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7511 7512 void __init hugetlb_cma_reserve(int order) 7513 { 7514 unsigned long size, reserved, per_node; 7515 bool node_specific_cma_alloc = false; 7516 int nid; 7517 7518 cma_reserve_called = true; 7519 7520 if (!hugetlb_cma_size) 7521 return; 7522 7523 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7524 if (hugetlb_cma_size_in_node[nid] == 0) 7525 continue; 7526 7527 if (!node_online(nid)) { 7528 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7529 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7530 hugetlb_cma_size_in_node[nid] = 0; 7531 continue; 7532 } 7533 7534 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7535 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7536 nid, (PAGE_SIZE << order) / SZ_1M); 7537 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7538 hugetlb_cma_size_in_node[nid] = 0; 7539 } else { 7540 node_specific_cma_alloc = true; 7541 } 7542 } 7543 7544 /* Validate the CMA size again in case some invalid nodes specified. */ 7545 if (!hugetlb_cma_size) 7546 return; 7547 7548 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7549 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7550 (PAGE_SIZE << order) / SZ_1M); 7551 hugetlb_cma_size = 0; 7552 return; 7553 } 7554 7555 if (!node_specific_cma_alloc) { 7556 /* 7557 * If 3 GB area is requested on a machine with 4 numa nodes, 7558 * let's allocate 1 GB on first three nodes and ignore the last one. 7559 */ 7560 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7561 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7562 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7563 } 7564 7565 reserved = 0; 7566 for_each_online_node(nid) { 7567 int res; 7568 char name[CMA_MAX_NAME]; 7569 7570 if (node_specific_cma_alloc) { 7571 if (hugetlb_cma_size_in_node[nid] == 0) 7572 continue; 7573 7574 size = hugetlb_cma_size_in_node[nid]; 7575 } else { 7576 size = min(per_node, hugetlb_cma_size - reserved); 7577 } 7578 7579 size = round_up(size, PAGE_SIZE << order); 7580 7581 snprintf(name, sizeof(name), "hugetlb%d", nid); 7582 /* 7583 * Note that 'order per bit' is based on smallest size that 7584 * may be returned to CMA allocator in the case of 7585 * huge page demotion. 7586 */ 7587 res = cma_declare_contiguous_nid(0, size, 0, 7588 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7589 0, false, name, 7590 &hugetlb_cma[nid], nid); 7591 if (res) { 7592 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7593 res, nid); 7594 continue; 7595 } 7596 7597 reserved += size; 7598 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7599 size / SZ_1M, nid); 7600 7601 if (reserved >= hugetlb_cma_size) 7602 break; 7603 } 7604 7605 if (!reserved) 7606 /* 7607 * hugetlb_cma_size is used to determine if allocations from 7608 * cma are possible. Set to zero if no cma regions are set up. 7609 */ 7610 hugetlb_cma_size = 0; 7611 } 7612 7613 static void __init hugetlb_cma_check(void) 7614 { 7615 if (!hugetlb_cma_size || cma_reserve_called) 7616 return; 7617 7618 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7619 } 7620 7621 #endif /* CONFIG_CMA */ 7622