xref: /openbmc/linux/mm/hugetlb.c (revision cb325ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlb.h>
39 
40 #include <linux/io.h>
41 #include <linux/hugetlb.h>
42 #include <linux/hugetlb_cgroup.h>
43 #include <linux/node.h>
44 #include <linux/page_owner.h>
45 #include "internal.h"
46 #include "hugetlb_vmemmap.h"
47 
48 int hugetlb_max_hstate __read_mostly;
49 unsigned int default_hstate_idx;
50 struct hstate hstates[HUGE_MAX_HSTATE];
51 
52 #ifdef CONFIG_CMA
53 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 static bool hugetlb_cma_page(struct page *page, unsigned int order)
56 {
57 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
58 				1 << order);
59 }
60 #else
61 static bool hugetlb_cma_page(struct page *page, unsigned int order)
62 {
63 	return false;
64 }
65 #endif
66 static unsigned long hugetlb_cma_size __initdata;
67 
68 /*
69  * Minimum page order among possible hugepage sizes, set to a proper value
70  * at boot time.
71  */
72 static unsigned int minimum_order __read_mostly = UINT_MAX;
73 
74 __initdata LIST_HEAD(huge_boot_pages);
75 
76 /* for command line parsing */
77 static struct hstate * __initdata parsed_hstate;
78 static unsigned long __initdata default_hstate_max_huge_pages;
79 static bool __initdata parsed_valid_hugepagesz = true;
80 static bool __initdata parsed_default_hugepagesz;
81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82 
83 /*
84  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
85  * free_huge_pages, and surplus_huge_pages.
86  */
87 DEFINE_SPINLOCK(hugetlb_lock);
88 
89 /*
90  * Serializes faults on the same logical page.  This is used to
91  * prevent spurious OOMs when the hugepage pool is fully utilized.
92  */
93 static int num_fault_mutexes;
94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95 
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98 
99 static inline bool subpool_is_free(struct hugepage_subpool *spool)
100 {
101 	if (spool->count)
102 		return false;
103 	if (spool->max_hpages != -1)
104 		return spool->used_hpages == 0;
105 	if (spool->min_hpages != -1)
106 		return spool->rsv_hpages == spool->min_hpages;
107 
108 	return true;
109 }
110 
111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
112 						unsigned long irq_flags)
113 {
114 	spin_unlock_irqrestore(&spool->lock, irq_flags);
115 
116 	/* If no pages are used, and no other handles to the subpool
117 	 * remain, give up any reservations based on minimum size and
118 	 * free the subpool */
119 	if (subpool_is_free(spool)) {
120 		if (spool->min_hpages != -1)
121 			hugetlb_acct_memory(spool->hstate,
122 						-spool->min_hpages);
123 		kfree(spool);
124 	}
125 }
126 
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128 						long min_hpages)
129 {
130 	struct hugepage_subpool *spool;
131 
132 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133 	if (!spool)
134 		return NULL;
135 
136 	spin_lock_init(&spool->lock);
137 	spool->count = 1;
138 	spool->max_hpages = max_hpages;
139 	spool->hstate = h;
140 	spool->min_hpages = min_hpages;
141 
142 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143 		kfree(spool);
144 		return NULL;
145 	}
146 	spool->rsv_hpages = min_hpages;
147 
148 	return spool;
149 }
150 
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&spool->lock, flags);
156 	BUG_ON(!spool->count);
157 	spool->count--;
158 	unlock_or_release_subpool(spool, flags);
159 }
160 
161 /*
162  * Subpool accounting for allocating and reserving pages.
163  * Return -ENOMEM if there are not enough resources to satisfy the
164  * request.  Otherwise, return the number of pages by which the
165  * global pools must be adjusted (upward).  The returned value may
166  * only be different than the passed value (delta) in the case where
167  * a subpool minimum size must be maintained.
168  */
169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
170 				      long delta)
171 {
172 	long ret = delta;
173 
174 	if (!spool)
175 		return ret;
176 
177 	spin_lock_irq(&spool->lock);
178 
179 	if (spool->max_hpages != -1) {		/* maximum size accounting */
180 		if ((spool->used_hpages + delta) <= spool->max_hpages)
181 			spool->used_hpages += delta;
182 		else {
183 			ret = -ENOMEM;
184 			goto unlock_ret;
185 		}
186 	}
187 
188 	/* minimum size accounting */
189 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
190 		if (delta > spool->rsv_hpages) {
191 			/*
192 			 * Asking for more reserves than those already taken on
193 			 * behalf of subpool.  Return difference.
194 			 */
195 			ret = delta - spool->rsv_hpages;
196 			spool->rsv_hpages = 0;
197 		} else {
198 			ret = 0;	/* reserves already accounted for */
199 			spool->rsv_hpages -= delta;
200 		}
201 	}
202 
203 unlock_ret:
204 	spin_unlock_irq(&spool->lock);
205 	return ret;
206 }
207 
208 /*
209  * Subpool accounting for freeing and unreserving pages.
210  * Return the number of global page reservations that must be dropped.
211  * The return value may only be different than the passed value (delta)
212  * in the case where a subpool minimum size must be maintained.
213  */
214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
215 				       long delta)
216 {
217 	long ret = delta;
218 	unsigned long flags;
219 
220 	if (!spool)
221 		return delta;
222 
223 	spin_lock_irqsave(&spool->lock, flags);
224 
225 	if (spool->max_hpages != -1)		/* maximum size accounting */
226 		spool->used_hpages -= delta;
227 
228 	 /* minimum size accounting */
229 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230 		if (spool->rsv_hpages + delta <= spool->min_hpages)
231 			ret = 0;
232 		else
233 			ret = spool->rsv_hpages + delta - spool->min_hpages;
234 
235 		spool->rsv_hpages += delta;
236 		if (spool->rsv_hpages > spool->min_hpages)
237 			spool->rsv_hpages = spool->min_hpages;
238 	}
239 
240 	/*
241 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
242 	 * quota reference, free it now.
243 	 */
244 	unlock_or_release_subpool(spool, flags);
245 
246 	return ret;
247 }
248 
249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 {
251 	return HUGETLBFS_SB(inode->i_sb)->spool;
252 }
253 
254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 {
256 	return subpool_inode(file_inode(vma->vm_file));
257 }
258 
259 /* Helper that removes a struct file_region from the resv_map cache and returns
260  * it for use.
261  */
262 static struct file_region *
263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 {
265 	struct file_region *nrg = NULL;
266 
267 	VM_BUG_ON(resv->region_cache_count <= 0);
268 
269 	resv->region_cache_count--;
270 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
271 	list_del(&nrg->link);
272 
273 	nrg->from = from;
274 	nrg->to = to;
275 
276 	return nrg;
277 }
278 
279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
280 					      struct file_region *rg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	nrg->reservation_counter = rg->reservation_counter;
284 	nrg->css = rg->css;
285 	if (rg->css)
286 		css_get(rg->css);
287 #endif
288 }
289 
290 /* Helper that records hugetlb_cgroup uncharge info. */
291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 						struct hstate *h,
293 						struct resv_map *resv,
294 						struct file_region *nrg)
295 {
296 #ifdef CONFIG_CGROUP_HUGETLB
297 	if (h_cg) {
298 		nrg->reservation_counter =
299 			&h_cg->rsvd_hugepage[hstate_index(h)];
300 		nrg->css = &h_cg->css;
301 		/*
302 		 * The caller will hold exactly one h_cg->css reference for the
303 		 * whole contiguous reservation region. But this area might be
304 		 * scattered when there are already some file_regions reside in
305 		 * it. As a result, many file_regions may share only one css
306 		 * reference. In order to ensure that one file_region must hold
307 		 * exactly one h_cg->css reference, we should do css_get for
308 		 * each file_region and leave the reference held by caller
309 		 * untouched.
310 		 */
311 		css_get(&h_cg->css);
312 		if (!resv->pages_per_hpage)
313 			resv->pages_per_hpage = pages_per_huge_page(h);
314 		/* pages_per_hpage should be the same for all entries in
315 		 * a resv_map.
316 		 */
317 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 	} else {
319 		nrg->reservation_counter = NULL;
320 		nrg->css = NULL;
321 	}
322 #endif
323 }
324 
325 static void put_uncharge_info(struct file_region *rg)
326 {
327 #ifdef CONFIG_CGROUP_HUGETLB
328 	if (rg->css)
329 		css_put(rg->css);
330 #endif
331 }
332 
333 static bool has_same_uncharge_info(struct file_region *rg,
334 				   struct file_region *org)
335 {
336 #ifdef CONFIG_CGROUP_HUGETLB
337 	return rg->reservation_counter == org->reservation_counter &&
338 	       rg->css == org->css;
339 
340 #else
341 	return true;
342 #endif
343 }
344 
345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 {
347 	struct file_region *nrg = NULL, *prg = NULL;
348 
349 	prg = list_prev_entry(rg, link);
350 	if (&prg->link != &resv->regions && prg->to == rg->from &&
351 	    has_same_uncharge_info(prg, rg)) {
352 		prg->to = rg->to;
353 
354 		list_del(&rg->link);
355 		put_uncharge_info(rg);
356 		kfree(rg);
357 
358 		rg = prg;
359 	}
360 
361 	nrg = list_next_entry(rg, link);
362 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
363 	    has_same_uncharge_info(nrg, rg)) {
364 		nrg->from = rg->from;
365 
366 		list_del(&rg->link);
367 		put_uncharge_info(rg);
368 		kfree(rg);
369 	}
370 }
371 
372 static inline long
373 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
374 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
375 		     long *regions_needed)
376 {
377 	struct file_region *nrg;
378 
379 	if (!regions_needed) {
380 		nrg = get_file_region_entry_from_cache(map, from, to);
381 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382 		list_add(&nrg->link, rg->link.prev);
383 		coalesce_file_region(map, nrg);
384 	} else
385 		*regions_needed += 1;
386 
387 	return to - from;
388 }
389 
390 /*
391  * Must be called with resv->lock held.
392  *
393  * Calling this with regions_needed != NULL will count the number of pages
394  * to be added but will not modify the linked list. And regions_needed will
395  * indicate the number of file_regions needed in the cache to carry out to add
396  * the regions for this range.
397  */
398 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399 				     struct hugetlb_cgroup *h_cg,
400 				     struct hstate *h, long *regions_needed)
401 {
402 	long add = 0;
403 	struct list_head *head = &resv->regions;
404 	long last_accounted_offset = f;
405 	struct file_region *rg = NULL, *trg = NULL;
406 
407 	if (regions_needed)
408 		*regions_needed = 0;
409 
410 	/* In this loop, we essentially handle an entry for the range
411 	 * [last_accounted_offset, rg->from), at every iteration, with some
412 	 * bounds checking.
413 	 */
414 	list_for_each_entry_safe(rg, trg, head, link) {
415 		/* Skip irrelevant regions that start before our range. */
416 		if (rg->from < f) {
417 			/* If this region ends after the last accounted offset,
418 			 * then we need to update last_accounted_offset.
419 			 */
420 			if (rg->to > last_accounted_offset)
421 				last_accounted_offset = rg->to;
422 			continue;
423 		}
424 
425 		/* When we find a region that starts beyond our range, we've
426 		 * finished.
427 		 */
428 		if (rg->from >= t)
429 			break;
430 
431 		/* Add an entry for last_accounted_offset -> rg->from, and
432 		 * update last_accounted_offset.
433 		 */
434 		if (rg->from > last_accounted_offset)
435 			add += hugetlb_resv_map_add(resv, rg,
436 						    last_accounted_offset,
437 						    rg->from, h, h_cg,
438 						    regions_needed);
439 
440 		last_accounted_offset = rg->to;
441 	}
442 
443 	/* Handle the case where our range extends beyond
444 	 * last_accounted_offset.
445 	 */
446 	if (last_accounted_offset < t)
447 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448 					    t, h, h_cg, regions_needed);
449 
450 	return add;
451 }
452 
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456 					int regions_needed)
457 	__must_hold(&resv->lock)
458 {
459 	struct list_head allocated_regions;
460 	int to_allocate = 0, i = 0;
461 	struct file_region *trg = NULL, *rg = NULL;
462 
463 	VM_BUG_ON(regions_needed < 0);
464 
465 	INIT_LIST_HEAD(&allocated_regions);
466 
467 	/*
468 	 * Check for sufficient descriptors in the cache to accommodate
469 	 * the number of in progress add operations plus regions_needed.
470 	 *
471 	 * This is a while loop because when we drop the lock, some other call
472 	 * to region_add or region_del may have consumed some region_entries,
473 	 * so we keep looping here until we finally have enough entries for
474 	 * (adds_in_progress + regions_needed).
475 	 */
476 	while (resv->region_cache_count <
477 	       (resv->adds_in_progress + regions_needed)) {
478 		to_allocate = resv->adds_in_progress + regions_needed -
479 			      resv->region_cache_count;
480 
481 		/* At this point, we should have enough entries in the cache
482 		 * for all the existing adds_in_progress. We should only be
483 		 * needing to allocate for regions_needed.
484 		 */
485 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486 
487 		spin_unlock(&resv->lock);
488 		for (i = 0; i < to_allocate; i++) {
489 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490 			if (!trg)
491 				goto out_of_memory;
492 			list_add(&trg->link, &allocated_regions);
493 		}
494 
495 		spin_lock(&resv->lock);
496 
497 		list_splice(&allocated_regions, &resv->region_cache);
498 		resv->region_cache_count += to_allocate;
499 	}
500 
501 	return 0;
502 
503 out_of_memory:
504 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505 		list_del(&rg->link);
506 		kfree(rg);
507 	}
508 	return -ENOMEM;
509 }
510 
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529 		       long in_regions_needed, struct hstate *h,
530 		       struct hugetlb_cgroup *h_cg)
531 {
532 	long add = 0, actual_regions_needed = 0;
533 
534 	spin_lock(&resv->lock);
535 retry:
536 
537 	/* Count how many regions are actually needed to execute this add. */
538 	add_reservation_in_range(resv, f, t, NULL, NULL,
539 				 &actual_regions_needed);
540 
541 	/*
542 	 * Check for sufficient descriptors in the cache to accommodate
543 	 * this add operation. Note that actual_regions_needed may be greater
544 	 * than in_regions_needed, as the resv_map may have been modified since
545 	 * the region_chg call. In this case, we need to make sure that we
546 	 * allocate extra entries, such that we have enough for all the
547 	 * existing adds_in_progress, plus the excess needed for this
548 	 * operation.
549 	 */
550 	if (actual_regions_needed > in_regions_needed &&
551 	    resv->region_cache_count <
552 		    resv->adds_in_progress +
553 			    (actual_regions_needed - in_regions_needed)) {
554 		/* region_add operation of range 1 should never need to
555 		 * allocate file_region entries.
556 		 */
557 		VM_BUG_ON(t - f <= 1);
558 
559 		if (allocate_file_region_entries(
560 			    resv, actual_regions_needed - in_regions_needed)) {
561 			return -ENOMEM;
562 		}
563 
564 		goto retry;
565 	}
566 
567 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568 
569 	resv->adds_in_progress -= in_regions_needed;
570 
571 	spin_unlock(&resv->lock);
572 	return add;
573 }
574 
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596 		       long *out_regions_needed)
597 {
598 	long chg = 0;
599 
600 	spin_lock(&resv->lock);
601 
602 	/* Count how many hugepages in this range are NOT represented. */
603 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604 				       out_regions_needed);
605 
606 	if (*out_regions_needed == 0)
607 		*out_regions_needed = 1;
608 
609 	if (allocate_file_region_entries(resv, *out_regions_needed))
610 		return -ENOMEM;
611 
612 	resv->adds_in_progress += *out_regions_needed;
613 
614 	spin_unlock(&resv->lock);
615 	return chg;
616 }
617 
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632 			 long regions_needed)
633 {
634 	spin_lock(&resv->lock);
635 	VM_BUG_ON(!resv->region_cache_count);
636 	resv->adds_in_progress -= regions_needed;
637 	spin_unlock(&resv->lock);
638 }
639 
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656 	struct list_head *head = &resv->regions;
657 	struct file_region *rg, *trg;
658 	struct file_region *nrg = NULL;
659 	long del = 0;
660 
661 retry:
662 	spin_lock(&resv->lock);
663 	list_for_each_entry_safe(rg, trg, head, link) {
664 		/*
665 		 * Skip regions before the range to be deleted.  file_region
666 		 * ranges are normally of the form [from, to).  However, there
667 		 * may be a "placeholder" entry in the map which is of the form
668 		 * (from, to) with from == to.  Check for placeholder entries
669 		 * at the beginning of the range to be deleted.
670 		 */
671 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672 			continue;
673 
674 		if (rg->from >= t)
675 			break;
676 
677 		if (f > rg->from && t < rg->to) { /* Must split region */
678 			/*
679 			 * Check for an entry in the cache before dropping
680 			 * lock and attempting allocation.
681 			 */
682 			if (!nrg &&
683 			    resv->region_cache_count > resv->adds_in_progress) {
684 				nrg = list_first_entry(&resv->region_cache,
685 							struct file_region,
686 							link);
687 				list_del(&nrg->link);
688 				resv->region_cache_count--;
689 			}
690 
691 			if (!nrg) {
692 				spin_unlock(&resv->lock);
693 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694 				if (!nrg)
695 					return -ENOMEM;
696 				goto retry;
697 			}
698 
699 			del += t - f;
700 			hugetlb_cgroup_uncharge_file_region(
701 				resv, rg, t - f, false);
702 
703 			/* New entry for end of split region */
704 			nrg->from = t;
705 			nrg->to = rg->to;
706 
707 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708 
709 			INIT_LIST_HEAD(&nrg->link);
710 
711 			/* Original entry is trimmed */
712 			rg->to = f;
713 
714 			list_add(&nrg->link, &rg->link);
715 			nrg = NULL;
716 			break;
717 		}
718 
719 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720 			del += rg->to - rg->from;
721 			hugetlb_cgroup_uncharge_file_region(resv, rg,
722 							    rg->to - rg->from, true);
723 			list_del(&rg->link);
724 			kfree(rg);
725 			continue;
726 		}
727 
728 		if (f <= rg->from) {	/* Trim beginning of region */
729 			hugetlb_cgroup_uncharge_file_region(resv, rg,
730 							    t - rg->from, false);
731 
732 			del += t - rg->from;
733 			rg->from = t;
734 		} else {		/* Trim end of region */
735 			hugetlb_cgroup_uncharge_file_region(resv, rg,
736 							    rg->to - f, false);
737 
738 			del += rg->to - f;
739 			rg->to = f;
740 		}
741 	}
742 
743 	spin_unlock(&resv->lock);
744 	kfree(nrg);
745 	return del;
746 }
747 
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759 	struct hugepage_subpool *spool = subpool_inode(inode);
760 	long rsv_adjust;
761 	bool reserved = false;
762 
763 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764 	if (rsv_adjust > 0) {
765 		struct hstate *h = hstate_inode(inode);
766 
767 		if (!hugetlb_acct_memory(h, 1))
768 			reserved = true;
769 	} else if (!rsv_adjust) {
770 		reserved = true;
771 	}
772 
773 	if (!reserved)
774 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776 
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783 	struct list_head *head = &resv->regions;
784 	struct file_region *rg;
785 	long chg = 0;
786 
787 	spin_lock(&resv->lock);
788 	/* Locate each segment we overlap with, and count that overlap. */
789 	list_for_each_entry(rg, head, link) {
790 		long seg_from;
791 		long seg_to;
792 
793 		if (rg->to <= f)
794 			continue;
795 		if (rg->from >= t)
796 			break;
797 
798 		seg_from = max(rg->from, f);
799 		seg_to = min(rg->to, t);
800 
801 		chg += seg_to - seg_from;
802 	}
803 	spin_unlock(&resv->lock);
804 
805 	return chg;
806 }
807 
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813 			struct vm_area_struct *vma, unsigned long address)
814 {
815 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
816 			(vma->vm_pgoff >> huge_page_order(h));
817 }
818 
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820 				     unsigned long address)
821 {
822 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825 
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832 	if (vma->vm_ops && vma->vm_ops->pagesize)
833 		return vma->vm_ops->pagesize(vma);
834 	return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837 
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846 	return vma_kernel_pagesize(vma);
847 }
848 
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857 
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879 	return (unsigned long)vma->vm_private_data;
880 }
881 
882 static void set_vma_private_data(struct vm_area_struct *vma,
883 							unsigned long value)
884 {
885 	vma->vm_private_data = (void *)value;
886 }
887 
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890 					  struct hugetlb_cgroup *h_cg,
891 					  struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894 	if (!h_cg || !h) {
895 		resv_map->reservation_counter = NULL;
896 		resv_map->pages_per_hpage = 0;
897 		resv_map->css = NULL;
898 	} else {
899 		resv_map->reservation_counter =
900 			&h_cg->rsvd_hugepage[hstate_index(h)];
901 		resv_map->pages_per_hpage = pages_per_huge_page(h);
902 		resv_map->css = &h_cg->css;
903 	}
904 #endif
905 }
906 
907 struct resv_map *resv_map_alloc(void)
908 {
909 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911 
912 	if (!resv_map || !rg) {
913 		kfree(resv_map);
914 		kfree(rg);
915 		return NULL;
916 	}
917 
918 	kref_init(&resv_map->refs);
919 	spin_lock_init(&resv_map->lock);
920 	INIT_LIST_HEAD(&resv_map->regions);
921 
922 	resv_map->adds_in_progress = 0;
923 	/*
924 	 * Initialize these to 0. On shared mappings, 0's here indicate these
925 	 * fields don't do cgroup accounting. On private mappings, these will be
926 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
927 	 * reservations are to be un-charged from here.
928 	 */
929 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930 
931 	INIT_LIST_HEAD(&resv_map->region_cache);
932 	list_add(&rg->link, &resv_map->region_cache);
933 	resv_map->region_cache_count = 1;
934 
935 	return resv_map;
936 }
937 
938 void resv_map_release(struct kref *ref)
939 {
940 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941 	struct list_head *head = &resv_map->region_cache;
942 	struct file_region *rg, *trg;
943 
944 	/* Clear out any active regions before we release the map. */
945 	region_del(resv_map, 0, LONG_MAX);
946 
947 	/* ... and any entries left in the cache */
948 	list_for_each_entry_safe(rg, trg, head, link) {
949 		list_del(&rg->link);
950 		kfree(rg);
951 	}
952 
953 	VM_BUG_ON(resv_map->adds_in_progress);
954 
955 	kfree(resv_map);
956 }
957 
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960 	/*
961 	 * At inode evict time, i_mapping may not point to the original
962 	 * address space within the inode.  This original address space
963 	 * contains the pointer to the resv_map.  So, always use the
964 	 * address space embedded within the inode.
965 	 * The VERY common case is inode->mapping == &inode->i_data but,
966 	 * this may not be true for device special inodes.
967 	 */
968 	return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970 
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974 	if (vma->vm_flags & VM_MAYSHARE) {
975 		struct address_space *mapping = vma->vm_file->f_mapping;
976 		struct inode *inode = mapping->host;
977 
978 		return inode_resv_map(inode);
979 
980 	} else {
981 		return (struct resv_map *)(get_vma_private_data(vma) &
982 							~HPAGE_RESV_MASK);
983 	}
984 }
985 
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 
991 	set_vma_private_data(vma, (get_vma_private_data(vma) &
992 				HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994 
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999 
1000 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002 
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006 
1007 	return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009 
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014 	if (!(vma->vm_flags & VM_MAYSHARE))
1015 		vma->vm_private_data = (void *)0;
1016 }
1017 
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027 	/*
1028 	 * Clear the old hugetlb private page reservation.
1029 	 * It has already been transferred to new_vma.
1030 	 *
1031 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1032 	 * which copies vma into new_vma and unmaps vma. After the copy
1033 	 * operation both new_vma and vma share a reference to the resv_map
1034 	 * struct, and at that point vma is about to be unmapped. We don't
1035 	 * want to return the reservation to the pool at unmap of vma because
1036 	 * the reservation still lives on in new_vma, so simply decrement the
1037 	 * ref here and remove the resv_map reference from this vma.
1038 	 */
1039 	struct resv_map *reservations = vma_resv_map(vma);
1040 
1041 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043 		kref_put(&reservations->refs, resv_map_release);
1044 	}
1045 
1046 	reset_vma_resv_huge_pages(vma);
1047 }
1048 
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052 	if (vma->vm_flags & VM_NORESERVE) {
1053 		/*
1054 		 * This address is already reserved by other process(chg == 0),
1055 		 * so, we should decrement reserved count. Without decrementing,
1056 		 * reserve count remains after releasing inode, because this
1057 		 * allocated page will go into page cache and is regarded as
1058 		 * coming from reserved pool in releasing step.  Currently, we
1059 		 * don't have any other solution to deal with this situation
1060 		 * properly, so add work-around here.
1061 		 */
1062 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063 			return true;
1064 		else
1065 			return false;
1066 	}
1067 
1068 	/* Shared mappings always use reserves */
1069 	if (vma->vm_flags & VM_MAYSHARE) {
1070 		/*
1071 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072 		 * be a region map for all pages.  The only situation where
1073 		 * there is no region map is if a hole was punched via
1074 		 * fallocate.  In this case, there really are no reserves to
1075 		 * use.  This situation is indicated if chg != 0.
1076 		 */
1077 		if (chg)
1078 			return false;
1079 		else
1080 			return true;
1081 	}
1082 
1083 	/*
1084 	 * Only the process that called mmap() has reserves for
1085 	 * private mappings.
1086 	 */
1087 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 		/*
1089 		 * Like the shared case above, a hole punch or truncate
1090 		 * could have been performed on the private mapping.
1091 		 * Examine the value of chg to determine if reserves
1092 		 * actually exist or were previously consumed.
1093 		 * Very Subtle - The value of chg comes from a previous
1094 		 * call to vma_needs_reserves().  The reserve map for
1095 		 * private mappings has different (opposite) semantics
1096 		 * than that of shared mappings.  vma_needs_reserves()
1097 		 * has already taken this difference in semantics into
1098 		 * account.  Therefore, the meaning of chg is the same
1099 		 * as in the shared case above.  Code could easily be
1100 		 * combined, but keeping it separate draws attention to
1101 		 * subtle differences.
1102 		 */
1103 		if (chg)
1104 			return false;
1105 		else
1106 			return true;
1107 	}
1108 
1109 	return false;
1110 }
1111 
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114 	int nid = page_to_nid(page);
1115 
1116 	lockdep_assert_held(&hugetlb_lock);
1117 	VM_BUG_ON_PAGE(page_count(page), page);
1118 
1119 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1120 	h->free_huge_pages++;
1121 	h->free_huge_pages_node[nid]++;
1122 	SetHPageFreed(page);
1123 }
1124 
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127 	struct page *page;
1128 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129 
1130 	lockdep_assert_held(&hugetlb_lock);
1131 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132 		if (pin && !is_pinnable_page(page))
1133 			continue;
1134 
1135 		if (PageHWPoison(page))
1136 			continue;
1137 
1138 		list_move(&page->lru, &h->hugepage_activelist);
1139 		set_page_refcounted(page);
1140 		ClearHPageFreed(page);
1141 		h->free_huge_pages--;
1142 		h->free_huge_pages_node[nid]--;
1143 		return page;
1144 	}
1145 
1146 	return NULL;
1147 }
1148 
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150 		nodemask_t *nmask)
1151 {
1152 	unsigned int cpuset_mems_cookie;
1153 	struct zonelist *zonelist;
1154 	struct zone *zone;
1155 	struct zoneref *z;
1156 	int node = NUMA_NO_NODE;
1157 
1158 	zonelist = node_zonelist(nid, gfp_mask);
1159 
1160 retry_cpuset:
1161 	cpuset_mems_cookie = read_mems_allowed_begin();
1162 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163 		struct page *page;
1164 
1165 		if (!cpuset_zone_allowed(zone, gfp_mask))
1166 			continue;
1167 		/*
1168 		 * no need to ask again on the same node. Pool is node rather than
1169 		 * zone aware
1170 		 */
1171 		if (zone_to_nid(zone) == node)
1172 			continue;
1173 		node = zone_to_nid(zone);
1174 
1175 		page = dequeue_huge_page_node_exact(h, node);
1176 		if (page)
1177 			return page;
1178 	}
1179 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180 		goto retry_cpuset;
1181 
1182 	return NULL;
1183 }
1184 
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186 				struct vm_area_struct *vma,
1187 				unsigned long address, int avoid_reserve,
1188 				long chg)
1189 {
1190 	struct page *page = NULL;
1191 	struct mempolicy *mpol;
1192 	gfp_t gfp_mask;
1193 	nodemask_t *nodemask;
1194 	int nid;
1195 
1196 	/*
1197 	 * A child process with MAP_PRIVATE mappings created by their parent
1198 	 * have no page reserves. This check ensures that reservations are
1199 	 * not "stolen". The child may still get SIGKILLed
1200 	 */
1201 	if (!vma_has_reserves(vma, chg) &&
1202 			h->free_huge_pages - h->resv_huge_pages == 0)
1203 		goto err;
1204 
1205 	/* If reserves cannot be used, ensure enough pages are in the pool */
1206 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207 		goto err;
1208 
1209 	gfp_mask = htlb_alloc_mask(h);
1210 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211 
1212 	if (mpol_is_preferred_many(mpol)) {
1213 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214 
1215 		/* Fallback to all nodes if page==NULL */
1216 		nodemask = NULL;
1217 	}
1218 
1219 	if (!page)
1220 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221 
1222 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223 		SetHPageRestoreReserve(page);
1224 		h->resv_huge_pages--;
1225 	}
1226 
1227 	mpol_cond_put(mpol);
1228 	return page;
1229 
1230 err:
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243 	nid = next_node_in(nid, *nodes_allowed);
1244 	VM_BUG_ON(nid >= MAX_NUMNODES);
1245 
1246 	return nid;
1247 }
1248 
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251 	if (!node_isset(nid, *nodes_allowed))
1252 		nid = next_node_allowed(nid, nodes_allowed);
1253 	return nid;
1254 }
1255 
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263 					nodemask_t *nodes_allowed)
1264 {
1265 	int nid;
1266 
1267 	VM_BUG_ON(!nodes_allowed);
1268 
1269 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271 
1272 	return nid;
1273 }
1274 
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283 	int nid;
1284 
1285 	VM_BUG_ON(!nodes_allowed);
1286 
1287 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289 
1290 	return nid;
1291 }
1292 
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1294 	for (nr_nodes = nodes_weight(*mask);				\
1295 		nr_nodes > 0 &&						\
1296 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1297 		nr_nodes--)
1298 
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1300 	for (nr_nodes = nodes_weight(*mask);				\
1301 		nr_nodes > 0 &&						\
1302 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1303 		nr_nodes--)
1304 
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307 					unsigned int order, bool demote)
1308 {
1309 	int i;
1310 	int nr_pages = 1 << order;
1311 	struct page *p = page + 1;
1312 
1313 	atomic_set(compound_mapcount_ptr(page), 0);
1314 	atomic_set(compound_pincount_ptr(page), 0);
1315 
1316 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317 		p->mapping = NULL;
1318 		clear_compound_head(p);
1319 		if (!demote)
1320 			set_page_refcounted(p);
1321 	}
1322 
1323 	set_compound_order(page, 0);
1324 	page[1].compound_nr = 0;
1325 	__ClearPageHead(page);
1326 }
1327 
1328 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1329 					unsigned int order)
1330 {
1331 	__destroy_compound_gigantic_page(page, order, true);
1332 }
1333 
1334 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1335 static void destroy_compound_gigantic_page(struct page *page,
1336 					unsigned int order)
1337 {
1338 	__destroy_compound_gigantic_page(page, order, false);
1339 }
1340 
1341 static void free_gigantic_page(struct page *page, unsigned int order)
1342 {
1343 	/*
1344 	 * If the page isn't allocated using the cma allocator,
1345 	 * cma_release() returns false.
1346 	 */
1347 #ifdef CONFIG_CMA
1348 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1349 		return;
1350 #endif
1351 
1352 	free_contig_range(page_to_pfn(page), 1 << order);
1353 }
1354 
1355 #ifdef CONFIG_CONTIG_ALLOC
1356 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1357 		int nid, nodemask_t *nodemask)
1358 {
1359 	unsigned long nr_pages = pages_per_huge_page(h);
1360 	if (nid == NUMA_NO_NODE)
1361 		nid = numa_mem_id();
1362 
1363 #ifdef CONFIG_CMA
1364 	{
1365 		struct page *page;
1366 		int node;
1367 
1368 		if (hugetlb_cma[nid]) {
1369 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1370 					huge_page_order(h), true);
1371 			if (page)
1372 				return page;
1373 		}
1374 
1375 		if (!(gfp_mask & __GFP_THISNODE)) {
1376 			for_each_node_mask(node, *nodemask) {
1377 				if (node == nid || !hugetlb_cma[node])
1378 					continue;
1379 
1380 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1381 						huge_page_order(h), true);
1382 				if (page)
1383 					return page;
1384 			}
1385 		}
1386 	}
1387 #endif
1388 
1389 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1390 }
1391 
1392 #else /* !CONFIG_CONTIG_ALLOC */
1393 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1394 					int nid, nodemask_t *nodemask)
1395 {
1396 	return NULL;
1397 }
1398 #endif /* CONFIG_CONTIG_ALLOC */
1399 
1400 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402 					int nid, nodemask_t *nodemask)
1403 {
1404 	return NULL;
1405 }
1406 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1407 static inline void destroy_compound_gigantic_page(struct page *page,
1408 						unsigned int order) { }
1409 #endif
1410 
1411 /*
1412  * Remove hugetlb page from lists, and update dtor so that page appears
1413  * as just a compound page.
1414  *
1415  * A reference is held on the page, except in the case of demote.
1416  *
1417  * Must be called with hugetlb lock held.
1418  */
1419 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1420 							bool adjust_surplus,
1421 							bool demote)
1422 {
1423 	int nid = page_to_nid(page);
1424 
1425 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1426 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1427 
1428 	lockdep_assert_held(&hugetlb_lock);
1429 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1430 		return;
1431 
1432 	list_del(&page->lru);
1433 
1434 	if (HPageFreed(page)) {
1435 		h->free_huge_pages--;
1436 		h->free_huge_pages_node[nid]--;
1437 	}
1438 	if (adjust_surplus) {
1439 		h->surplus_huge_pages--;
1440 		h->surplus_huge_pages_node[nid]--;
1441 	}
1442 
1443 	/*
1444 	 * Very subtle
1445 	 *
1446 	 * For non-gigantic pages set the destructor to the normal compound
1447 	 * page dtor.  This is needed in case someone takes an additional
1448 	 * temporary ref to the page, and freeing is delayed until they drop
1449 	 * their reference.
1450 	 *
1451 	 * For gigantic pages set the destructor to the null dtor.  This
1452 	 * destructor will never be called.  Before freeing the gigantic
1453 	 * page destroy_compound_gigantic_page will turn the compound page
1454 	 * into a simple group of pages.  After this the destructor does not
1455 	 * apply.
1456 	 *
1457 	 * This handles the case where more than one ref is held when and
1458 	 * after update_and_free_page is called.
1459 	 *
1460 	 * In the case of demote we do not ref count the page as it will soon
1461 	 * be turned into a page of smaller size.
1462 	 */
1463 	if (!demote)
1464 		set_page_refcounted(page);
1465 	if (hstate_is_gigantic(h))
1466 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1467 	else
1468 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1469 
1470 	h->nr_huge_pages--;
1471 	h->nr_huge_pages_node[nid]--;
1472 }
1473 
1474 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1475 							bool adjust_surplus)
1476 {
1477 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1478 }
1479 
1480 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1481 							bool adjust_surplus)
1482 {
1483 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1484 }
1485 
1486 static void add_hugetlb_page(struct hstate *h, struct page *page,
1487 			     bool adjust_surplus)
1488 {
1489 	int zeroed;
1490 	int nid = page_to_nid(page);
1491 
1492 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1493 
1494 	lockdep_assert_held(&hugetlb_lock);
1495 
1496 	INIT_LIST_HEAD(&page->lru);
1497 	h->nr_huge_pages++;
1498 	h->nr_huge_pages_node[nid]++;
1499 
1500 	if (adjust_surplus) {
1501 		h->surplus_huge_pages++;
1502 		h->surplus_huge_pages_node[nid]++;
1503 	}
1504 
1505 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1506 	set_page_private(page, 0);
1507 	SetHPageVmemmapOptimized(page);
1508 
1509 	/*
1510 	 * This page is about to be managed by the hugetlb allocator and
1511 	 * should have no users.  Drop our reference, and check for others
1512 	 * just in case.
1513 	 */
1514 	zeroed = put_page_testzero(page);
1515 	if (!zeroed)
1516 		/*
1517 		 * It is VERY unlikely soneone else has taken a ref on
1518 		 * the page.  In this case, we simply return as the
1519 		 * hugetlb destructor (free_huge_page) will be called
1520 		 * when this other ref is dropped.
1521 		 */
1522 		return;
1523 
1524 	arch_clear_hugepage_flags(page);
1525 	enqueue_huge_page(h, page);
1526 }
1527 
1528 static void __update_and_free_page(struct hstate *h, struct page *page)
1529 {
1530 	int i;
1531 	struct page *subpage = page;
1532 
1533 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1534 		return;
1535 
1536 	if (alloc_huge_page_vmemmap(h, page)) {
1537 		spin_lock_irq(&hugetlb_lock);
1538 		/*
1539 		 * If we cannot allocate vmemmap pages, just refuse to free the
1540 		 * page and put the page back on the hugetlb free list and treat
1541 		 * as a surplus page.
1542 		 */
1543 		add_hugetlb_page(h, page, true);
1544 		spin_unlock_irq(&hugetlb_lock);
1545 		return;
1546 	}
1547 
1548 	for (i = 0; i < pages_per_huge_page(h);
1549 	     i++, subpage = mem_map_next(subpage, page, i)) {
1550 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1551 				1 << PG_referenced | 1 << PG_dirty |
1552 				1 << PG_active | 1 << PG_private |
1553 				1 << PG_writeback);
1554 	}
1555 
1556 	/*
1557 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1558 	 * need to be given back to CMA in free_gigantic_page.
1559 	 */
1560 	if (hstate_is_gigantic(h) ||
1561 	    hugetlb_cma_page(page, huge_page_order(h))) {
1562 		destroy_compound_gigantic_page(page, huge_page_order(h));
1563 		free_gigantic_page(page, huge_page_order(h));
1564 	} else {
1565 		__free_pages(page, huge_page_order(h));
1566 	}
1567 }
1568 
1569 /*
1570  * As update_and_free_page() can be called under any context, so we cannot
1571  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1572  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1573  * the vmemmap pages.
1574  *
1575  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1576  * freed and frees them one-by-one. As the page->mapping pointer is going
1577  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1578  * structure of a lockless linked list of huge pages to be freed.
1579  */
1580 static LLIST_HEAD(hpage_freelist);
1581 
1582 static void free_hpage_workfn(struct work_struct *work)
1583 {
1584 	struct llist_node *node;
1585 
1586 	node = llist_del_all(&hpage_freelist);
1587 
1588 	while (node) {
1589 		struct page *page;
1590 		struct hstate *h;
1591 
1592 		page = container_of((struct address_space **)node,
1593 				     struct page, mapping);
1594 		node = node->next;
1595 		page->mapping = NULL;
1596 		/*
1597 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1598 		 * is going to trigger because a previous call to
1599 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1600 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1601 		 */
1602 		h = size_to_hstate(page_size(page));
1603 
1604 		__update_and_free_page(h, page);
1605 
1606 		cond_resched();
1607 	}
1608 }
1609 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1610 
1611 static inline void flush_free_hpage_work(struct hstate *h)
1612 {
1613 	if (free_vmemmap_pages_per_hpage(h))
1614 		flush_work(&free_hpage_work);
1615 }
1616 
1617 static void update_and_free_page(struct hstate *h, struct page *page,
1618 				 bool atomic)
1619 {
1620 	if (!HPageVmemmapOptimized(page) || !atomic) {
1621 		__update_and_free_page(h, page);
1622 		return;
1623 	}
1624 
1625 	/*
1626 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1627 	 *
1628 	 * Only call schedule_work() if hpage_freelist is previously
1629 	 * empty. Otherwise, schedule_work() had been called but the workfn
1630 	 * hasn't retrieved the list yet.
1631 	 */
1632 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1633 		schedule_work(&free_hpage_work);
1634 }
1635 
1636 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1637 {
1638 	struct page *page, *t_page;
1639 
1640 	list_for_each_entry_safe(page, t_page, list, lru) {
1641 		update_and_free_page(h, page, false);
1642 		cond_resched();
1643 	}
1644 }
1645 
1646 struct hstate *size_to_hstate(unsigned long size)
1647 {
1648 	struct hstate *h;
1649 
1650 	for_each_hstate(h) {
1651 		if (huge_page_size(h) == size)
1652 			return h;
1653 	}
1654 	return NULL;
1655 }
1656 
1657 void free_huge_page(struct page *page)
1658 {
1659 	/*
1660 	 * Can't pass hstate in here because it is called from the
1661 	 * compound page destructor.
1662 	 */
1663 	struct hstate *h = page_hstate(page);
1664 	int nid = page_to_nid(page);
1665 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1666 	bool restore_reserve;
1667 	unsigned long flags;
1668 
1669 	VM_BUG_ON_PAGE(page_count(page), page);
1670 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1671 
1672 	hugetlb_set_page_subpool(page, NULL);
1673 	page->mapping = NULL;
1674 	restore_reserve = HPageRestoreReserve(page);
1675 	ClearHPageRestoreReserve(page);
1676 
1677 	/*
1678 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1679 	 * reservation.  If the page was associated with a subpool, there
1680 	 * would have been a page reserved in the subpool before allocation
1681 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1682 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1683 	 * remove the reserved page from the subpool.
1684 	 */
1685 	if (!restore_reserve) {
1686 		/*
1687 		 * A return code of zero implies that the subpool will be
1688 		 * under its minimum size if the reservation is not restored
1689 		 * after page is free.  Therefore, force restore_reserve
1690 		 * operation.
1691 		 */
1692 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1693 			restore_reserve = true;
1694 	}
1695 
1696 	spin_lock_irqsave(&hugetlb_lock, flags);
1697 	ClearHPageMigratable(page);
1698 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1699 				     pages_per_huge_page(h), page);
1700 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1701 					  pages_per_huge_page(h), page);
1702 	if (restore_reserve)
1703 		h->resv_huge_pages++;
1704 
1705 	if (HPageTemporary(page)) {
1706 		remove_hugetlb_page(h, page, false);
1707 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1708 		update_and_free_page(h, page, true);
1709 	} else if (h->surplus_huge_pages_node[nid]) {
1710 		/* remove the page from active list */
1711 		remove_hugetlb_page(h, page, true);
1712 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1713 		update_and_free_page(h, page, true);
1714 	} else {
1715 		arch_clear_hugepage_flags(page);
1716 		enqueue_huge_page(h, page);
1717 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1718 	}
1719 }
1720 
1721 /*
1722  * Must be called with the hugetlb lock held
1723  */
1724 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1725 {
1726 	lockdep_assert_held(&hugetlb_lock);
1727 	h->nr_huge_pages++;
1728 	h->nr_huge_pages_node[nid]++;
1729 }
1730 
1731 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1732 {
1733 	free_huge_page_vmemmap(h, page);
1734 	INIT_LIST_HEAD(&page->lru);
1735 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1736 	hugetlb_set_page_subpool(page, NULL);
1737 	set_hugetlb_cgroup(page, NULL);
1738 	set_hugetlb_cgroup_rsvd(page, NULL);
1739 }
1740 
1741 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1742 {
1743 	__prep_new_huge_page(h, page);
1744 	spin_lock_irq(&hugetlb_lock);
1745 	__prep_account_new_huge_page(h, nid);
1746 	spin_unlock_irq(&hugetlb_lock);
1747 }
1748 
1749 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1750 								bool demote)
1751 {
1752 	int i, j;
1753 	int nr_pages = 1 << order;
1754 	struct page *p = page + 1;
1755 
1756 	/* we rely on prep_new_huge_page to set the destructor */
1757 	set_compound_order(page, order);
1758 	__ClearPageReserved(page);
1759 	__SetPageHead(page);
1760 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1761 		/*
1762 		 * For gigantic hugepages allocated through bootmem at
1763 		 * boot, it's safer to be consistent with the not-gigantic
1764 		 * hugepages and clear the PG_reserved bit from all tail pages
1765 		 * too.  Otherwise drivers using get_user_pages() to access tail
1766 		 * pages may get the reference counting wrong if they see
1767 		 * PG_reserved set on a tail page (despite the head page not
1768 		 * having PG_reserved set).  Enforcing this consistency between
1769 		 * head and tail pages allows drivers to optimize away a check
1770 		 * on the head page when they need know if put_page() is needed
1771 		 * after get_user_pages().
1772 		 */
1773 		__ClearPageReserved(p);
1774 		/*
1775 		 * Subtle and very unlikely
1776 		 *
1777 		 * Gigantic 'page allocators' such as memblock or cma will
1778 		 * return a set of pages with each page ref counted.  We need
1779 		 * to turn this set of pages into a compound page with tail
1780 		 * page ref counts set to zero.  Code such as speculative page
1781 		 * cache adding could take a ref on a 'to be' tail page.
1782 		 * We need to respect any increased ref count, and only set
1783 		 * the ref count to zero if count is currently 1.  If count
1784 		 * is not 1, we return an error.  An error return indicates
1785 		 * the set of pages can not be converted to a gigantic page.
1786 		 * The caller who allocated the pages should then discard the
1787 		 * pages using the appropriate free interface.
1788 		 *
1789 		 * In the case of demote, the ref count will be zero.
1790 		 */
1791 		if (!demote) {
1792 			if (!page_ref_freeze(p, 1)) {
1793 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1794 				goto out_error;
1795 			}
1796 		} else {
1797 			VM_BUG_ON_PAGE(page_count(p), p);
1798 		}
1799 		set_compound_head(p, page);
1800 	}
1801 	atomic_set(compound_mapcount_ptr(page), -1);
1802 	atomic_set(compound_pincount_ptr(page), 0);
1803 	return true;
1804 
1805 out_error:
1806 	/* undo tail page modifications made above */
1807 	p = page + 1;
1808 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1809 		clear_compound_head(p);
1810 		set_page_refcounted(p);
1811 	}
1812 	/* need to clear PG_reserved on remaining tail pages  */
1813 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1814 		__ClearPageReserved(p);
1815 	set_compound_order(page, 0);
1816 	page[1].compound_nr = 0;
1817 	__ClearPageHead(page);
1818 	return false;
1819 }
1820 
1821 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1822 {
1823 	return __prep_compound_gigantic_page(page, order, false);
1824 }
1825 
1826 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1827 							unsigned int order)
1828 {
1829 	return __prep_compound_gigantic_page(page, order, true);
1830 }
1831 
1832 /*
1833  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1834  * transparent huge pages.  See the PageTransHuge() documentation for more
1835  * details.
1836  */
1837 int PageHuge(struct page *page)
1838 {
1839 	if (!PageCompound(page))
1840 		return 0;
1841 
1842 	page = compound_head(page);
1843 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1844 }
1845 EXPORT_SYMBOL_GPL(PageHuge);
1846 
1847 /*
1848  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1849  * normal or transparent huge pages.
1850  */
1851 int PageHeadHuge(struct page *page_head)
1852 {
1853 	if (!PageHead(page_head))
1854 		return 0;
1855 
1856 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1857 }
1858 EXPORT_SYMBOL_GPL(PageHeadHuge);
1859 
1860 /*
1861  * Find and lock address space (mapping) in write mode.
1862  *
1863  * Upon entry, the page is locked which means that page_mapping() is
1864  * stable.  Due to locking order, we can only trylock_write.  If we can
1865  * not get the lock, simply return NULL to caller.
1866  */
1867 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1868 {
1869 	struct address_space *mapping = page_mapping(hpage);
1870 
1871 	if (!mapping)
1872 		return mapping;
1873 
1874 	if (i_mmap_trylock_write(mapping))
1875 		return mapping;
1876 
1877 	return NULL;
1878 }
1879 
1880 pgoff_t hugetlb_basepage_index(struct page *page)
1881 {
1882 	struct page *page_head = compound_head(page);
1883 	pgoff_t index = page_index(page_head);
1884 	unsigned long compound_idx;
1885 
1886 	if (compound_order(page_head) >= MAX_ORDER)
1887 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1888 	else
1889 		compound_idx = page - page_head;
1890 
1891 	return (index << compound_order(page_head)) + compound_idx;
1892 }
1893 
1894 static struct page *alloc_buddy_huge_page(struct hstate *h,
1895 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1896 		nodemask_t *node_alloc_noretry)
1897 {
1898 	int order = huge_page_order(h);
1899 	struct page *page;
1900 	bool alloc_try_hard = true;
1901 
1902 	/*
1903 	 * By default we always try hard to allocate the page with
1904 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1905 	 * a loop (to adjust global huge page counts) and previous allocation
1906 	 * failed, do not continue to try hard on the same node.  Use the
1907 	 * node_alloc_noretry bitmap to manage this state information.
1908 	 */
1909 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1910 		alloc_try_hard = false;
1911 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1912 	if (alloc_try_hard)
1913 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1914 	if (nid == NUMA_NO_NODE)
1915 		nid = numa_mem_id();
1916 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1917 	if (page)
1918 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1919 	else
1920 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1921 
1922 	/*
1923 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1924 	 * indicates an overall state change.  Clear bit so that we resume
1925 	 * normal 'try hard' allocations.
1926 	 */
1927 	if (node_alloc_noretry && page && !alloc_try_hard)
1928 		node_clear(nid, *node_alloc_noretry);
1929 
1930 	/*
1931 	 * If we tried hard to get a page but failed, set bit so that
1932 	 * subsequent attempts will not try as hard until there is an
1933 	 * overall state change.
1934 	 */
1935 	if (node_alloc_noretry && !page && alloc_try_hard)
1936 		node_set(nid, *node_alloc_noretry);
1937 
1938 	return page;
1939 }
1940 
1941 /*
1942  * Common helper to allocate a fresh hugetlb page. All specific allocators
1943  * should use this function to get new hugetlb pages
1944  */
1945 static struct page *alloc_fresh_huge_page(struct hstate *h,
1946 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1947 		nodemask_t *node_alloc_noretry)
1948 {
1949 	struct page *page;
1950 	bool retry = false;
1951 
1952 retry:
1953 	if (hstate_is_gigantic(h))
1954 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1955 	else
1956 		page = alloc_buddy_huge_page(h, gfp_mask,
1957 				nid, nmask, node_alloc_noretry);
1958 	if (!page)
1959 		return NULL;
1960 
1961 	if (hstate_is_gigantic(h)) {
1962 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1963 			/*
1964 			 * Rare failure to convert pages to compound page.
1965 			 * Free pages and try again - ONCE!
1966 			 */
1967 			free_gigantic_page(page, huge_page_order(h));
1968 			if (!retry) {
1969 				retry = true;
1970 				goto retry;
1971 			}
1972 			return NULL;
1973 		}
1974 	}
1975 	prep_new_huge_page(h, page, page_to_nid(page));
1976 
1977 	return page;
1978 }
1979 
1980 /*
1981  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1982  * manner.
1983  */
1984 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1985 				nodemask_t *node_alloc_noretry)
1986 {
1987 	struct page *page;
1988 	int nr_nodes, node;
1989 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1990 
1991 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1992 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1993 						node_alloc_noretry);
1994 		if (page)
1995 			break;
1996 	}
1997 
1998 	if (!page)
1999 		return 0;
2000 
2001 	put_page(page); /* free it into the hugepage allocator */
2002 
2003 	return 1;
2004 }
2005 
2006 /*
2007  * Remove huge page from pool from next node to free.  Attempt to keep
2008  * persistent huge pages more or less balanced over allowed nodes.
2009  * This routine only 'removes' the hugetlb page.  The caller must make
2010  * an additional call to free the page to low level allocators.
2011  * Called with hugetlb_lock locked.
2012  */
2013 static struct page *remove_pool_huge_page(struct hstate *h,
2014 						nodemask_t *nodes_allowed,
2015 						 bool acct_surplus)
2016 {
2017 	int nr_nodes, node;
2018 	struct page *page = NULL;
2019 
2020 	lockdep_assert_held(&hugetlb_lock);
2021 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2022 		/*
2023 		 * If we're returning unused surplus pages, only examine
2024 		 * nodes with surplus pages.
2025 		 */
2026 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2027 		    !list_empty(&h->hugepage_freelists[node])) {
2028 			page = list_entry(h->hugepage_freelists[node].next,
2029 					  struct page, lru);
2030 			remove_hugetlb_page(h, page, acct_surplus);
2031 			break;
2032 		}
2033 	}
2034 
2035 	return page;
2036 }
2037 
2038 /*
2039  * Dissolve a given free hugepage into free buddy pages. This function does
2040  * nothing for in-use hugepages and non-hugepages.
2041  * This function returns values like below:
2042  *
2043  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2044  *           when the system is under memory pressure and the feature of
2045  *           freeing unused vmemmap pages associated with each hugetlb page
2046  *           is enabled.
2047  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2048  *           (allocated or reserved.)
2049  *       0:  successfully dissolved free hugepages or the page is not a
2050  *           hugepage (considered as already dissolved)
2051  */
2052 int dissolve_free_huge_page(struct page *page)
2053 {
2054 	int rc = -EBUSY;
2055 
2056 retry:
2057 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2058 	if (!PageHuge(page))
2059 		return 0;
2060 
2061 	spin_lock_irq(&hugetlb_lock);
2062 	if (!PageHuge(page)) {
2063 		rc = 0;
2064 		goto out;
2065 	}
2066 
2067 	if (!page_count(page)) {
2068 		struct page *head = compound_head(page);
2069 		struct hstate *h = page_hstate(head);
2070 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2071 			goto out;
2072 
2073 		/*
2074 		 * We should make sure that the page is already on the free list
2075 		 * when it is dissolved.
2076 		 */
2077 		if (unlikely(!HPageFreed(head))) {
2078 			spin_unlock_irq(&hugetlb_lock);
2079 			cond_resched();
2080 
2081 			/*
2082 			 * Theoretically, we should return -EBUSY when we
2083 			 * encounter this race. In fact, we have a chance
2084 			 * to successfully dissolve the page if we do a
2085 			 * retry. Because the race window is quite small.
2086 			 * If we seize this opportunity, it is an optimization
2087 			 * for increasing the success rate of dissolving page.
2088 			 */
2089 			goto retry;
2090 		}
2091 
2092 		remove_hugetlb_page(h, head, false);
2093 		h->max_huge_pages--;
2094 		spin_unlock_irq(&hugetlb_lock);
2095 
2096 		/*
2097 		 * Normally update_and_free_page will allocate required vmemmmap
2098 		 * before freeing the page.  update_and_free_page will fail to
2099 		 * free the page if it can not allocate required vmemmap.  We
2100 		 * need to adjust max_huge_pages if the page is not freed.
2101 		 * Attempt to allocate vmemmmap here so that we can take
2102 		 * appropriate action on failure.
2103 		 */
2104 		rc = alloc_huge_page_vmemmap(h, head);
2105 		if (!rc) {
2106 			/*
2107 			 * Move PageHWPoison flag from head page to the raw
2108 			 * error page, which makes any subpages rather than
2109 			 * the error page reusable.
2110 			 */
2111 			if (PageHWPoison(head) && page != head) {
2112 				SetPageHWPoison(page);
2113 				ClearPageHWPoison(head);
2114 			}
2115 			update_and_free_page(h, head, false);
2116 		} else {
2117 			spin_lock_irq(&hugetlb_lock);
2118 			add_hugetlb_page(h, head, false);
2119 			h->max_huge_pages++;
2120 			spin_unlock_irq(&hugetlb_lock);
2121 		}
2122 
2123 		return rc;
2124 	}
2125 out:
2126 	spin_unlock_irq(&hugetlb_lock);
2127 	return rc;
2128 }
2129 
2130 /*
2131  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2132  * make specified memory blocks removable from the system.
2133  * Note that this will dissolve a free gigantic hugepage completely, if any
2134  * part of it lies within the given range.
2135  * Also note that if dissolve_free_huge_page() returns with an error, all
2136  * free hugepages that were dissolved before that error are lost.
2137  */
2138 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2139 {
2140 	unsigned long pfn;
2141 	struct page *page;
2142 	int rc = 0;
2143 
2144 	if (!hugepages_supported())
2145 		return rc;
2146 
2147 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2148 		page = pfn_to_page(pfn);
2149 		rc = dissolve_free_huge_page(page);
2150 		if (rc)
2151 			break;
2152 	}
2153 
2154 	return rc;
2155 }
2156 
2157 /*
2158  * Allocates a fresh surplus page from the page allocator.
2159  */
2160 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2161 		int nid, nodemask_t *nmask, bool zero_ref)
2162 {
2163 	struct page *page = NULL;
2164 	bool retry = false;
2165 
2166 	if (hstate_is_gigantic(h))
2167 		return NULL;
2168 
2169 	spin_lock_irq(&hugetlb_lock);
2170 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2171 		goto out_unlock;
2172 	spin_unlock_irq(&hugetlb_lock);
2173 
2174 retry:
2175 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2176 	if (!page)
2177 		return NULL;
2178 
2179 	spin_lock_irq(&hugetlb_lock);
2180 	/*
2181 	 * We could have raced with the pool size change.
2182 	 * Double check that and simply deallocate the new page
2183 	 * if we would end up overcommiting the surpluses. Abuse
2184 	 * temporary page to workaround the nasty free_huge_page
2185 	 * codeflow
2186 	 */
2187 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2188 		SetHPageTemporary(page);
2189 		spin_unlock_irq(&hugetlb_lock);
2190 		put_page(page);
2191 		return NULL;
2192 	}
2193 
2194 	if (zero_ref) {
2195 		/*
2196 		 * Caller requires a page with zero ref count.
2197 		 * We will drop ref count here.  If someone else is holding
2198 		 * a ref, the page will be freed when they drop it.  Abuse
2199 		 * temporary page flag to accomplish this.
2200 		 */
2201 		SetHPageTemporary(page);
2202 		if (!put_page_testzero(page)) {
2203 			/*
2204 			 * Unexpected inflated ref count on freshly allocated
2205 			 * huge.  Retry once.
2206 			 */
2207 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2208 			spin_unlock_irq(&hugetlb_lock);
2209 			if (retry)
2210 				return NULL;
2211 
2212 			retry = true;
2213 			goto retry;
2214 		}
2215 		ClearHPageTemporary(page);
2216 	}
2217 
2218 	h->surplus_huge_pages++;
2219 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2220 
2221 out_unlock:
2222 	spin_unlock_irq(&hugetlb_lock);
2223 
2224 	return page;
2225 }
2226 
2227 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2228 				     int nid, nodemask_t *nmask)
2229 {
2230 	struct page *page;
2231 
2232 	if (hstate_is_gigantic(h))
2233 		return NULL;
2234 
2235 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2236 	if (!page)
2237 		return NULL;
2238 
2239 	/*
2240 	 * We do not account these pages as surplus because they are only
2241 	 * temporary and will be released properly on the last reference
2242 	 */
2243 	SetHPageTemporary(page);
2244 
2245 	return page;
2246 }
2247 
2248 /*
2249  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2250  */
2251 static
2252 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2253 		struct vm_area_struct *vma, unsigned long addr)
2254 {
2255 	struct page *page = NULL;
2256 	struct mempolicy *mpol;
2257 	gfp_t gfp_mask = htlb_alloc_mask(h);
2258 	int nid;
2259 	nodemask_t *nodemask;
2260 
2261 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2262 	if (mpol_is_preferred_many(mpol)) {
2263 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2264 
2265 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2266 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2267 
2268 		/* Fallback to all nodes if page==NULL */
2269 		nodemask = NULL;
2270 	}
2271 
2272 	if (!page)
2273 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2274 	mpol_cond_put(mpol);
2275 	return page;
2276 }
2277 
2278 /* page migration callback function */
2279 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2280 		nodemask_t *nmask, gfp_t gfp_mask)
2281 {
2282 	spin_lock_irq(&hugetlb_lock);
2283 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2284 		struct page *page;
2285 
2286 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2287 		if (page) {
2288 			spin_unlock_irq(&hugetlb_lock);
2289 			return page;
2290 		}
2291 	}
2292 	spin_unlock_irq(&hugetlb_lock);
2293 
2294 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2295 }
2296 
2297 /* mempolicy aware migration callback */
2298 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2299 		unsigned long address)
2300 {
2301 	struct mempolicy *mpol;
2302 	nodemask_t *nodemask;
2303 	struct page *page;
2304 	gfp_t gfp_mask;
2305 	int node;
2306 
2307 	gfp_mask = htlb_alloc_mask(h);
2308 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2309 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2310 	mpol_cond_put(mpol);
2311 
2312 	return page;
2313 }
2314 
2315 /*
2316  * Increase the hugetlb pool such that it can accommodate a reservation
2317  * of size 'delta'.
2318  */
2319 static int gather_surplus_pages(struct hstate *h, long delta)
2320 	__must_hold(&hugetlb_lock)
2321 {
2322 	struct list_head surplus_list;
2323 	struct page *page, *tmp;
2324 	int ret;
2325 	long i;
2326 	long needed, allocated;
2327 	bool alloc_ok = true;
2328 
2329 	lockdep_assert_held(&hugetlb_lock);
2330 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2331 	if (needed <= 0) {
2332 		h->resv_huge_pages += delta;
2333 		return 0;
2334 	}
2335 
2336 	allocated = 0;
2337 	INIT_LIST_HEAD(&surplus_list);
2338 
2339 	ret = -ENOMEM;
2340 retry:
2341 	spin_unlock_irq(&hugetlb_lock);
2342 	for (i = 0; i < needed; i++) {
2343 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2344 				NUMA_NO_NODE, NULL, true);
2345 		if (!page) {
2346 			alloc_ok = false;
2347 			break;
2348 		}
2349 		list_add(&page->lru, &surplus_list);
2350 		cond_resched();
2351 	}
2352 	allocated += i;
2353 
2354 	/*
2355 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2356 	 * because either resv_huge_pages or free_huge_pages may have changed.
2357 	 */
2358 	spin_lock_irq(&hugetlb_lock);
2359 	needed = (h->resv_huge_pages + delta) -
2360 			(h->free_huge_pages + allocated);
2361 	if (needed > 0) {
2362 		if (alloc_ok)
2363 			goto retry;
2364 		/*
2365 		 * We were not able to allocate enough pages to
2366 		 * satisfy the entire reservation so we free what
2367 		 * we've allocated so far.
2368 		 */
2369 		goto free;
2370 	}
2371 	/*
2372 	 * The surplus_list now contains _at_least_ the number of extra pages
2373 	 * needed to accommodate the reservation.  Add the appropriate number
2374 	 * of pages to the hugetlb pool and free the extras back to the buddy
2375 	 * allocator.  Commit the entire reservation here to prevent another
2376 	 * process from stealing the pages as they are added to the pool but
2377 	 * before they are reserved.
2378 	 */
2379 	needed += allocated;
2380 	h->resv_huge_pages += delta;
2381 	ret = 0;
2382 
2383 	/* Free the needed pages to the hugetlb pool */
2384 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2385 		if ((--needed) < 0)
2386 			break;
2387 		/* Add the page to the hugetlb allocator */
2388 		enqueue_huge_page(h, page);
2389 	}
2390 free:
2391 	spin_unlock_irq(&hugetlb_lock);
2392 
2393 	/*
2394 	 * Free unnecessary surplus pages to the buddy allocator.
2395 	 * Pages have no ref count, call free_huge_page directly.
2396 	 */
2397 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2398 		free_huge_page(page);
2399 	spin_lock_irq(&hugetlb_lock);
2400 
2401 	return ret;
2402 }
2403 
2404 /*
2405  * This routine has two main purposes:
2406  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2407  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2408  *    to the associated reservation map.
2409  * 2) Free any unused surplus pages that may have been allocated to satisfy
2410  *    the reservation.  As many as unused_resv_pages may be freed.
2411  */
2412 static void return_unused_surplus_pages(struct hstate *h,
2413 					unsigned long unused_resv_pages)
2414 {
2415 	unsigned long nr_pages;
2416 	struct page *page;
2417 	LIST_HEAD(page_list);
2418 
2419 	lockdep_assert_held(&hugetlb_lock);
2420 	/* Uncommit the reservation */
2421 	h->resv_huge_pages -= unused_resv_pages;
2422 
2423 	/* Cannot return gigantic pages currently */
2424 	if (hstate_is_gigantic(h))
2425 		goto out;
2426 
2427 	/*
2428 	 * Part (or even all) of the reservation could have been backed
2429 	 * by pre-allocated pages. Only free surplus pages.
2430 	 */
2431 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2432 
2433 	/*
2434 	 * We want to release as many surplus pages as possible, spread
2435 	 * evenly across all nodes with memory. Iterate across these nodes
2436 	 * until we can no longer free unreserved surplus pages. This occurs
2437 	 * when the nodes with surplus pages have no free pages.
2438 	 * remove_pool_huge_page() will balance the freed pages across the
2439 	 * on-line nodes with memory and will handle the hstate accounting.
2440 	 */
2441 	while (nr_pages--) {
2442 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2443 		if (!page)
2444 			goto out;
2445 
2446 		list_add(&page->lru, &page_list);
2447 	}
2448 
2449 out:
2450 	spin_unlock_irq(&hugetlb_lock);
2451 	update_and_free_pages_bulk(h, &page_list);
2452 	spin_lock_irq(&hugetlb_lock);
2453 }
2454 
2455 
2456 /*
2457  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2458  * are used by the huge page allocation routines to manage reservations.
2459  *
2460  * vma_needs_reservation is called to determine if the huge page at addr
2461  * within the vma has an associated reservation.  If a reservation is
2462  * needed, the value 1 is returned.  The caller is then responsible for
2463  * managing the global reservation and subpool usage counts.  After
2464  * the huge page has been allocated, vma_commit_reservation is called
2465  * to add the page to the reservation map.  If the page allocation fails,
2466  * the reservation must be ended instead of committed.  vma_end_reservation
2467  * is called in such cases.
2468  *
2469  * In the normal case, vma_commit_reservation returns the same value
2470  * as the preceding vma_needs_reservation call.  The only time this
2471  * is not the case is if a reserve map was changed between calls.  It
2472  * is the responsibility of the caller to notice the difference and
2473  * take appropriate action.
2474  *
2475  * vma_add_reservation is used in error paths where a reservation must
2476  * be restored when a newly allocated huge page must be freed.  It is
2477  * to be called after calling vma_needs_reservation to determine if a
2478  * reservation exists.
2479  *
2480  * vma_del_reservation is used in error paths where an entry in the reserve
2481  * map was created during huge page allocation and must be removed.  It is to
2482  * be called after calling vma_needs_reservation to determine if a reservation
2483  * exists.
2484  */
2485 enum vma_resv_mode {
2486 	VMA_NEEDS_RESV,
2487 	VMA_COMMIT_RESV,
2488 	VMA_END_RESV,
2489 	VMA_ADD_RESV,
2490 	VMA_DEL_RESV,
2491 };
2492 static long __vma_reservation_common(struct hstate *h,
2493 				struct vm_area_struct *vma, unsigned long addr,
2494 				enum vma_resv_mode mode)
2495 {
2496 	struct resv_map *resv;
2497 	pgoff_t idx;
2498 	long ret;
2499 	long dummy_out_regions_needed;
2500 
2501 	resv = vma_resv_map(vma);
2502 	if (!resv)
2503 		return 1;
2504 
2505 	idx = vma_hugecache_offset(h, vma, addr);
2506 	switch (mode) {
2507 	case VMA_NEEDS_RESV:
2508 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2509 		/* We assume that vma_reservation_* routines always operate on
2510 		 * 1 page, and that adding to resv map a 1 page entry can only
2511 		 * ever require 1 region.
2512 		 */
2513 		VM_BUG_ON(dummy_out_regions_needed != 1);
2514 		break;
2515 	case VMA_COMMIT_RESV:
2516 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2517 		/* region_add calls of range 1 should never fail. */
2518 		VM_BUG_ON(ret < 0);
2519 		break;
2520 	case VMA_END_RESV:
2521 		region_abort(resv, idx, idx + 1, 1);
2522 		ret = 0;
2523 		break;
2524 	case VMA_ADD_RESV:
2525 		if (vma->vm_flags & VM_MAYSHARE) {
2526 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2527 			/* region_add calls of range 1 should never fail. */
2528 			VM_BUG_ON(ret < 0);
2529 		} else {
2530 			region_abort(resv, idx, idx + 1, 1);
2531 			ret = region_del(resv, idx, idx + 1);
2532 		}
2533 		break;
2534 	case VMA_DEL_RESV:
2535 		if (vma->vm_flags & VM_MAYSHARE) {
2536 			region_abort(resv, idx, idx + 1, 1);
2537 			ret = region_del(resv, idx, idx + 1);
2538 		} else {
2539 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2540 			/* region_add calls of range 1 should never fail. */
2541 			VM_BUG_ON(ret < 0);
2542 		}
2543 		break;
2544 	default:
2545 		BUG();
2546 	}
2547 
2548 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2549 		return ret;
2550 	/*
2551 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2552 	 *
2553 	 * In most cases, reserves always exist for private mappings.
2554 	 * However, a file associated with mapping could have been
2555 	 * hole punched or truncated after reserves were consumed.
2556 	 * As subsequent fault on such a range will not use reserves.
2557 	 * Subtle - The reserve map for private mappings has the
2558 	 * opposite meaning than that of shared mappings.  If NO
2559 	 * entry is in the reserve map, it means a reservation exists.
2560 	 * If an entry exists in the reserve map, it means the
2561 	 * reservation has already been consumed.  As a result, the
2562 	 * return value of this routine is the opposite of the
2563 	 * value returned from reserve map manipulation routines above.
2564 	 */
2565 	if (ret > 0)
2566 		return 0;
2567 	if (ret == 0)
2568 		return 1;
2569 	return ret;
2570 }
2571 
2572 static long vma_needs_reservation(struct hstate *h,
2573 			struct vm_area_struct *vma, unsigned long addr)
2574 {
2575 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2576 }
2577 
2578 static long vma_commit_reservation(struct hstate *h,
2579 			struct vm_area_struct *vma, unsigned long addr)
2580 {
2581 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2582 }
2583 
2584 static void vma_end_reservation(struct hstate *h,
2585 			struct vm_area_struct *vma, unsigned long addr)
2586 {
2587 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2588 }
2589 
2590 static long vma_add_reservation(struct hstate *h,
2591 			struct vm_area_struct *vma, unsigned long addr)
2592 {
2593 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2594 }
2595 
2596 static long vma_del_reservation(struct hstate *h,
2597 			struct vm_area_struct *vma, unsigned long addr)
2598 {
2599 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2600 }
2601 
2602 /*
2603  * This routine is called to restore reservation information on error paths.
2604  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2605  * the hugetlb mutex should remain held when calling this routine.
2606  *
2607  * It handles two specific cases:
2608  * 1) A reservation was in place and the page consumed the reservation.
2609  *    HPageRestoreReserve is set in the page.
2610  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2611  *    not set.  However, alloc_huge_page always updates the reserve map.
2612  *
2613  * In case 1, free_huge_page later in the error path will increment the
2614  * global reserve count.  But, free_huge_page does not have enough context
2615  * to adjust the reservation map.  This case deals primarily with private
2616  * mappings.  Adjust the reserve map here to be consistent with global
2617  * reserve count adjustments to be made by free_huge_page.  Make sure the
2618  * reserve map indicates there is a reservation present.
2619  *
2620  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2621  */
2622 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2623 			unsigned long address, struct page *page)
2624 {
2625 	long rc = vma_needs_reservation(h, vma, address);
2626 
2627 	if (HPageRestoreReserve(page)) {
2628 		if (unlikely(rc < 0))
2629 			/*
2630 			 * Rare out of memory condition in reserve map
2631 			 * manipulation.  Clear HPageRestoreReserve so that
2632 			 * global reserve count will not be incremented
2633 			 * by free_huge_page.  This will make it appear
2634 			 * as though the reservation for this page was
2635 			 * consumed.  This may prevent the task from
2636 			 * faulting in the page at a later time.  This
2637 			 * is better than inconsistent global huge page
2638 			 * accounting of reserve counts.
2639 			 */
2640 			ClearHPageRestoreReserve(page);
2641 		else if (rc)
2642 			(void)vma_add_reservation(h, vma, address);
2643 		else
2644 			vma_end_reservation(h, vma, address);
2645 	} else {
2646 		if (!rc) {
2647 			/*
2648 			 * This indicates there is an entry in the reserve map
2649 			 * not added by alloc_huge_page.  We know it was added
2650 			 * before the alloc_huge_page call, otherwise
2651 			 * HPageRestoreReserve would be set on the page.
2652 			 * Remove the entry so that a subsequent allocation
2653 			 * does not consume a reservation.
2654 			 */
2655 			rc = vma_del_reservation(h, vma, address);
2656 			if (rc < 0)
2657 				/*
2658 				 * VERY rare out of memory condition.  Since
2659 				 * we can not delete the entry, set
2660 				 * HPageRestoreReserve so that the reserve
2661 				 * count will be incremented when the page
2662 				 * is freed.  This reserve will be consumed
2663 				 * on a subsequent allocation.
2664 				 */
2665 				SetHPageRestoreReserve(page);
2666 		} else if (rc < 0) {
2667 			/*
2668 			 * Rare out of memory condition from
2669 			 * vma_needs_reservation call.  Memory allocation is
2670 			 * only attempted if a new entry is needed.  Therefore,
2671 			 * this implies there is not an entry in the
2672 			 * reserve map.
2673 			 *
2674 			 * For shared mappings, no entry in the map indicates
2675 			 * no reservation.  We are done.
2676 			 */
2677 			if (!(vma->vm_flags & VM_MAYSHARE))
2678 				/*
2679 				 * For private mappings, no entry indicates
2680 				 * a reservation is present.  Since we can
2681 				 * not add an entry, set SetHPageRestoreReserve
2682 				 * on the page so reserve count will be
2683 				 * incremented when freed.  This reserve will
2684 				 * be consumed on a subsequent allocation.
2685 				 */
2686 				SetHPageRestoreReserve(page);
2687 		} else
2688 			/*
2689 			 * No reservation present, do nothing
2690 			 */
2691 			 vma_end_reservation(h, vma, address);
2692 	}
2693 }
2694 
2695 /*
2696  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2697  * @h: struct hstate old page belongs to
2698  * @old_page: Old page to dissolve
2699  * @list: List to isolate the page in case we need to
2700  * Returns 0 on success, otherwise negated error.
2701  */
2702 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2703 					struct list_head *list)
2704 {
2705 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2706 	int nid = page_to_nid(old_page);
2707 	bool alloc_retry = false;
2708 	struct page *new_page;
2709 	int ret = 0;
2710 
2711 	/*
2712 	 * Before dissolving the page, we need to allocate a new one for the
2713 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2714 	 * by doing everything but actually updating counters and adding to
2715 	 * the pool.  This simplifies and let us do most of the processing
2716 	 * under the lock.
2717 	 */
2718 alloc_retry:
2719 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2720 	if (!new_page)
2721 		return -ENOMEM;
2722 	/*
2723 	 * If all goes well, this page will be directly added to the free
2724 	 * list in the pool.  For this the ref count needs to be zero.
2725 	 * Attempt to drop now, and retry once if needed.  It is VERY
2726 	 * unlikely there is another ref on the page.
2727 	 *
2728 	 * If someone else has a reference to the page, it will be freed
2729 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2730 	 * this.  Retry once if there is an inflated ref count.
2731 	 */
2732 	SetHPageTemporary(new_page);
2733 	if (!put_page_testzero(new_page)) {
2734 		if (alloc_retry)
2735 			return -EBUSY;
2736 
2737 		alloc_retry = true;
2738 		goto alloc_retry;
2739 	}
2740 	ClearHPageTemporary(new_page);
2741 
2742 	__prep_new_huge_page(h, new_page);
2743 
2744 retry:
2745 	spin_lock_irq(&hugetlb_lock);
2746 	if (!PageHuge(old_page)) {
2747 		/*
2748 		 * Freed from under us. Drop new_page too.
2749 		 */
2750 		goto free_new;
2751 	} else if (page_count(old_page)) {
2752 		/*
2753 		 * Someone has grabbed the page, try to isolate it here.
2754 		 * Fail with -EBUSY if not possible.
2755 		 */
2756 		spin_unlock_irq(&hugetlb_lock);
2757 		if (!isolate_huge_page(old_page, list))
2758 			ret = -EBUSY;
2759 		spin_lock_irq(&hugetlb_lock);
2760 		goto free_new;
2761 	} else if (!HPageFreed(old_page)) {
2762 		/*
2763 		 * Page's refcount is 0 but it has not been enqueued in the
2764 		 * freelist yet. Race window is small, so we can succeed here if
2765 		 * we retry.
2766 		 */
2767 		spin_unlock_irq(&hugetlb_lock);
2768 		cond_resched();
2769 		goto retry;
2770 	} else {
2771 		/*
2772 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2773 		 * the freelist and decrease the counters. These will be
2774 		 * incremented again when calling __prep_account_new_huge_page()
2775 		 * and enqueue_huge_page() for new_page. The counters will remain
2776 		 * stable since this happens under the lock.
2777 		 */
2778 		remove_hugetlb_page(h, old_page, false);
2779 
2780 		/*
2781 		 * Ref count on new page is already zero as it was dropped
2782 		 * earlier.  It can be directly added to the pool free list.
2783 		 */
2784 		__prep_account_new_huge_page(h, nid);
2785 		enqueue_huge_page(h, new_page);
2786 
2787 		/*
2788 		 * Pages have been replaced, we can safely free the old one.
2789 		 */
2790 		spin_unlock_irq(&hugetlb_lock);
2791 		update_and_free_page(h, old_page, false);
2792 	}
2793 
2794 	return ret;
2795 
2796 free_new:
2797 	spin_unlock_irq(&hugetlb_lock);
2798 	/* Page has a zero ref count, but needs a ref to be freed */
2799 	set_page_refcounted(new_page);
2800 	update_and_free_page(h, new_page, false);
2801 
2802 	return ret;
2803 }
2804 
2805 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2806 {
2807 	struct hstate *h;
2808 	struct page *head;
2809 	int ret = -EBUSY;
2810 
2811 	/*
2812 	 * The page might have been dissolved from under our feet, so make sure
2813 	 * to carefully check the state under the lock.
2814 	 * Return success when racing as if we dissolved the page ourselves.
2815 	 */
2816 	spin_lock_irq(&hugetlb_lock);
2817 	if (PageHuge(page)) {
2818 		head = compound_head(page);
2819 		h = page_hstate(head);
2820 	} else {
2821 		spin_unlock_irq(&hugetlb_lock);
2822 		return 0;
2823 	}
2824 	spin_unlock_irq(&hugetlb_lock);
2825 
2826 	/*
2827 	 * Fence off gigantic pages as there is a cyclic dependency between
2828 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2829 	 * of bailing out right away without further retrying.
2830 	 */
2831 	if (hstate_is_gigantic(h))
2832 		return -ENOMEM;
2833 
2834 	if (page_count(head) && isolate_huge_page(head, list))
2835 		ret = 0;
2836 	else if (!page_count(head))
2837 		ret = alloc_and_dissolve_huge_page(h, head, list);
2838 
2839 	return ret;
2840 }
2841 
2842 struct page *alloc_huge_page(struct vm_area_struct *vma,
2843 				    unsigned long addr, int avoid_reserve)
2844 {
2845 	struct hugepage_subpool *spool = subpool_vma(vma);
2846 	struct hstate *h = hstate_vma(vma);
2847 	struct page *page;
2848 	long map_chg, map_commit;
2849 	long gbl_chg;
2850 	int ret, idx;
2851 	struct hugetlb_cgroup *h_cg;
2852 	bool deferred_reserve;
2853 
2854 	idx = hstate_index(h);
2855 	/*
2856 	 * Examine the region/reserve map to determine if the process
2857 	 * has a reservation for the page to be allocated.  A return
2858 	 * code of zero indicates a reservation exists (no change).
2859 	 */
2860 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2861 	if (map_chg < 0)
2862 		return ERR_PTR(-ENOMEM);
2863 
2864 	/*
2865 	 * Processes that did not create the mapping will have no
2866 	 * reserves as indicated by the region/reserve map. Check
2867 	 * that the allocation will not exceed the subpool limit.
2868 	 * Allocations for MAP_NORESERVE mappings also need to be
2869 	 * checked against any subpool limit.
2870 	 */
2871 	if (map_chg || avoid_reserve) {
2872 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2873 		if (gbl_chg < 0) {
2874 			vma_end_reservation(h, vma, addr);
2875 			return ERR_PTR(-ENOSPC);
2876 		}
2877 
2878 		/*
2879 		 * Even though there was no reservation in the region/reserve
2880 		 * map, there could be reservations associated with the
2881 		 * subpool that can be used.  This would be indicated if the
2882 		 * return value of hugepage_subpool_get_pages() is zero.
2883 		 * However, if avoid_reserve is specified we still avoid even
2884 		 * the subpool reservations.
2885 		 */
2886 		if (avoid_reserve)
2887 			gbl_chg = 1;
2888 	}
2889 
2890 	/* If this allocation is not consuming a reservation, charge it now.
2891 	 */
2892 	deferred_reserve = map_chg || avoid_reserve;
2893 	if (deferred_reserve) {
2894 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2895 			idx, pages_per_huge_page(h), &h_cg);
2896 		if (ret)
2897 			goto out_subpool_put;
2898 	}
2899 
2900 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2901 	if (ret)
2902 		goto out_uncharge_cgroup_reservation;
2903 
2904 	spin_lock_irq(&hugetlb_lock);
2905 	/*
2906 	 * glb_chg is passed to indicate whether or not a page must be taken
2907 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2908 	 * a reservation exists for the allocation.
2909 	 */
2910 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2911 	if (!page) {
2912 		spin_unlock_irq(&hugetlb_lock);
2913 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2914 		if (!page)
2915 			goto out_uncharge_cgroup;
2916 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2917 			SetHPageRestoreReserve(page);
2918 			h->resv_huge_pages--;
2919 		}
2920 		spin_lock_irq(&hugetlb_lock);
2921 		list_add(&page->lru, &h->hugepage_activelist);
2922 		/* Fall through */
2923 	}
2924 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2925 	/* If allocation is not consuming a reservation, also store the
2926 	 * hugetlb_cgroup pointer on the page.
2927 	 */
2928 	if (deferred_reserve) {
2929 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2930 						  h_cg, page);
2931 	}
2932 
2933 	spin_unlock_irq(&hugetlb_lock);
2934 
2935 	hugetlb_set_page_subpool(page, spool);
2936 
2937 	map_commit = vma_commit_reservation(h, vma, addr);
2938 	if (unlikely(map_chg > map_commit)) {
2939 		/*
2940 		 * The page was added to the reservation map between
2941 		 * vma_needs_reservation and vma_commit_reservation.
2942 		 * This indicates a race with hugetlb_reserve_pages.
2943 		 * Adjust for the subpool count incremented above AND
2944 		 * in hugetlb_reserve_pages for the same page.  Also,
2945 		 * the reservation count added in hugetlb_reserve_pages
2946 		 * no longer applies.
2947 		 */
2948 		long rsv_adjust;
2949 
2950 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2951 		hugetlb_acct_memory(h, -rsv_adjust);
2952 		if (deferred_reserve)
2953 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2954 					pages_per_huge_page(h), page);
2955 	}
2956 	return page;
2957 
2958 out_uncharge_cgroup:
2959 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2960 out_uncharge_cgroup_reservation:
2961 	if (deferred_reserve)
2962 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2963 						    h_cg);
2964 out_subpool_put:
2965 	if (map_chg || avoid_reserve)
2966 		hugepage_subpool_put_pages(spool, 1);
2967 	vma_end_reservation(h, vma, addr);
2968 	return ERR_PTR(-ENOSPC);
2969 }
2970 
2971 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2972 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2973 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2974 {
2975 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2976 	int nr_nodes, node;
2977 
2978 	if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2979 		return 0;
2980 	/* do node specific alloc */
2981 	if (nid != NUMA_NO_NODE) {
2982 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2983 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2984 		if (!m)
2985 			return 0;
2986 		goto found;
2987 	}
2988 	/* allocate from next node when distributing huge pages */
2989 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2990 		m = memblock_alloc_try_nid_raw(
2991 				huge_page_size(h), huge_page_size(h),
2992 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2993 		/*
2994 		 * Use the beginning of the huge page to store the
2995 		 * huge_bootmem_page struct (until gather_bootmem
2996 		 * puts them into the mem_map).
2997 		 */
2998 		if (!m)
2999 			return 0;
3000 		goto found;
3001 	}
3002 
3003 found:
3004 	/* Put them into a private list first because mem_map is not up yet */
3005 	INIT_LIST_HEAD(&m->list);
3006 	list_add(&m->list, &huge_boot_pages);
3007 	m->hstate = h;
3008 	return 1;
3009 }
3010 
3011 /*
3012  * Put bootmem huge pages into the standard lists after mem_map is up.
3013  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3014  */
3015 static void __init gather_bootmem_prealloc(void)
3016 {
3017 	struct huge_bootmem_page *m;
3018 
3019 	list_for_each_entry(m, &huge_boot_pages, list) {
3020 		struct page *page = virt_to_page(m);
3021 		struct hstate *h = m->hstate;
3022 
3023 		VM_BUG_ON(!hstate_is_gigantic(h));
3024 		WARN_ON(page_count(page) != 1);
3025 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3026 			WARN_ON(PageReserved(page));
3027 			prep_new_huge_page(h, page, page_to_nid(page));
3028 			put_page(page); /* add to the hugepage allocator */
3029 		} else {
3030 			/* VERY unlikely inflated ref count on a tail page */
3031 			free_gigantic_page(page, huge_page_order(h));
3032 		}
3033 
3034 		/*
3035 		 * We need to restore the 'stolen' pages to totalram_pages
3036 		 * in order to fix confusing memory reports from free(1) and
3037 		 * other side-effects, like CommitLimit going negative.
3038 		 */
3039 		adjust_managed_page_count(page, pages_per_huge_page(h));
3040 		cond_resched();
3041 	}
3042 }
3043 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3044 {
3045 	unsigned long i;
3046 	char buf[32];
3047 
3048 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3049 		if (hstate_is_gigantic(h)) {
3050 			if (!alloc_bootmem_huge_page(h, nid))
3051 				break;
3052 		} else {
3053 			struct page *page;
3054 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3055 
3056 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3057 					&node_states[N_MEMORY], NULL);
3058 			if (!page)
3059 				break;
3060 			put_page(page); /* free it into the hugepage allocator */
3061 		}
3062 		cond_resched();
3063 	}
3064 	if (i == h->max_huge_pages_node[nid])
3065 		return;
3066 
3067 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3068 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3069 		h->max_huge_pages_node[nid], buf, nid, i);
3070 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3071 	h->max_huge_pages_node[nid] = i;
3072 }
3073 
3074 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3075 {
3076 	unsigned long i;
3077 	nodemask_t *node_alloc_noretry;
3078 	bool node_specific_alloc = false;
3079 
3080 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3081 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3082 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3083 		return;
3084 	}
3085 
3086 	/* do node specific alloc */
3087 	for (i = 0; i < nr_online_nodes; i++) {
3088 		if (h->max_huge_pages_node[i] > 0) {
3089 			hugetlb_hstate_alloc_pages_onenode(h, i);
3090 			node_specific_alloc = true;
3091 		}
3092 	}
3093 
3094 	if (node_specific_alloc)
3095 		return;
3096 
3097 	/* below will do all node balanced alloc */
3098 	if (!hstate_is_gigantic(h)) {
3099 		/*
3100 		 * Bit mask controlling how hard we retry per-node allocations.
3101 		 * Ignore errors as lower level routines can deal with
3102 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3103 		 * time, we are likely in bigger trouble.
3104 		 */
3105 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3106 						GFP_KERNEL);
3107 	} else {
3108 		/* allocations done at boot time */
3109 		node_alloc_noretry = NULL;
3110 	}
3111 
3112 	/* bit mask controlling how hard we retry per-node allocations */
3113 	if (node_alloc_noretry)
3114 		nodes_clear(*node_alloc_noretry);
3115 
3116 	for (i = 0; i < h->max_huge_pages; ++i) {
3117 		if (hstate_is_gigantic(h)) {
3118 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3119 				break;
3120 		} else if (!alloc_pool_huge_page(h,
3121 					 &node_states[N_MEMORY],
3122 					 node_alloc_noretry))
3123 			break;
3124 		cond_resched();
3125 	}
3126 	if (i < h->max_huge_pages) {
3127 		char buf[32];
3128 
3129 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3130 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3131 			h->max_huge_pages, buf, i);
3132 		h->max_huge_pages = i;
3133 	}
3134 	kfree(node_alloc_noretry);
3135 }
3136 
3137 static void __init hugetlb_init_hstates(void)
3138 {
3139 	struct hstate *h, *h2;
3140 
3141 	for_each_hstate(h) {
3142 		if (minimum_order > huge_page_order(h))
3143 			minimum_order = huge_page_order(h);
3144 
3145 		/* oversize hugepages were init'ed in early boot */
3146 		if (!hstate_is_gigantic(h))
3147 			hugetlb_hstate_alloc_pages(h);
3148 
3149 		/*
3150 		 * Set demote order for each hstate.  Note that
3151 		 * h->demote_order is initially 0.
3152 		 * - We can not demote gigantic pages if runtime freeing
3153 		 *   is not supported, so skip this.
3154 		 * - If CMA allocation is possible, we can not demote
3155 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3156 		 */
3157 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3158 			continue;
3159 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3160 			continue;
3161 		for_each_hstate(h2) {
3162 			if (h2 == h)
3163 				continue;
3164 			if (h2->order < h->order &&
3165 			    h2->order > h->demote_order)
3166 				h->demote_order = h2->order;
3167 		}
3168 	}
3169 	VM_BUG_ON(minimum_order == UINT_MAX);
3170 }
3171 
3172 static void __init report_hugepages(void)
3173 {
3174 	struct hstate *h;
3175 
3176 	for_each_hstate(h) {
3177 		char buf[32];
3178 
3179 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3180 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3181 			buf, h->free_huge_pages);
3182 	}
3183 }
3184 
3185 #ifdef CONFIG_HIGHMEM
3186 static void try_to_free_low(struct hstate *h, unsigned long count,
3187 						nodemask_t *nodes_allowed)
3188 {
3189 	int i;
3190 	LIST_HEAD(page_list);
3191 
3192 	lockdep_assert_held(&hugetlb_lock);
3193 	if (hstate_is_gigantic(h))
3194 		return;
3195 
3196 	/*
3197 	 * Collect pages to be freed on a list, and free after dropping lock
3198 	 */
3199 	for_each_node_mask(i, *nodes_allowed) {
3200 		struct page *page, *next;
3201 		struct list_head *freel = &h->hugepage_freelists[i];
3202 		list_for_each_entry_safe(page, next, freel, lru) {
3203 			if (count >= h->nr_huge_pages)
3204 				goto out;
3205 			if (PageHighMem(page))
3206 				continue;
3207 			remove_hugetlb_page(h, page, false);
3208 			list_add(&page->lru, &page_list);
3209 		}
3210 	}
3211 
3212 out:
3213 	spin_unlock_irq(&hugetlb_lock);
3214 	update_and_free_pages_bulk(h, &page_list);
3215 	spin_lock_irq(&hugetlb_lock);
3216 }
3217 #else
3218 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3219 						nodemask_t *nodes_allowed)
3220 {
3221 }
3222 #endif
3223 
3224 /*
3225  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3226  * balanced by operating on them in a round-robin fashion.
3227  * Returns 1 if an adjustment was made.
3228  */
3229 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3230 				int delta)
3231 {
3232 	int nr_nodes, node;
3233 
3234 	lockdep_assert_held(&hugetlb_lock);
3235 	VM_BUG_ON(delta != -1 && delta != 1);
3236 
3237 	if (delta < 0) {
3238 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3239 			if (h->surplus_huge_pages_node[node])
3240 				goto found;
3241 		}
3242 	} else {
3243 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3244 			if (h->surplus_huge_pages_node[node] <
3245 					h->nr_huge_pages_node[node])
3246 				goto found;
3247 		}
3248 	}
3249 	return 0;
3250 
3251 found:
3252 	h->surplus_huge_pages += delta;
3253 	h->surplus_huge_pages_node[node] += delta;
3254 	return 1;
3255 }
3256 
3257 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3258 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3259 			      nodemask_t *nodes_allowed)
3260 {
3261 	unsigned long min_count, ret;
3262 	struct page *page;
3263 	LIST_HEAD(page_list);
3264 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3265 
3266 	/*
3267 	 * Bit mask controlling how hard we retry per-node allocations.
3268 	 * If we can not allocate the bit mask, do not attempt to allocate
3269 	 * the requested huge pages.
3270 	 */
3271 	if (node_alloc_noretry)
3272 		nodes_clear(*node_alloc_noretry);
3273 	else
3274 		return -ENOMEM;
3275 
3276 	/*
3277 	 * resize_lock mutex prevents concurrent adjustments to number of
3278 	 * pages in hstate via the proc/sysfs interfaces.
3279 	 */
3280 	mutex_lock(&h->resize_lock);
3281 	flush_free_hpage_work(h);
3282 	spin_lock_irq(&hugetlb_lock);
3283 
3284 	/*
3285 	 * Check for a node specific request.
3286 	 * Changing node specific huge page count may require a corresponding
3287 	 * change to the global count.  In any case, the passed node mask
3288 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3289 	 */
3290 	if (nid != NUMA_NO_NODE) {
3291 		unsigned long old_count = count;
3292 
3293 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3294 		/*
3295 		 * User may have specified a large count value which caused the
3296 		 * above calculation to overflow.  In this case, they wanted
3297 		 * to allocate as many huge pages as possible.  Set count to
3298 		 * largest possible value to align with their intention.
3299 		 */
3300 		if (count < old_count)
3301 			count = ULONG_MAX;
3302 	}
3303 
3304 	/*
3305 	 * Gigantic pages runtime allocation depend on the capability for large
3306 	 * page range allocation.
3307 	 * If the system does not provide this feature, return an error when
3308 	 * the user tries to allocate gigantic pages but let the user free the
3309 	 * boottime allocated gigantic pages.
3310 	 */
3311 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3312 		if (count > persistent_huge_pages(h)) {
3313 			spin_unlock_irq(&hugetlb_lock);
3314 			mutex_unlock(&h->resize_lock);
3315 			NODEMASK_FREE(node_alloc_noretry);
3316 			return -EINVAL;
3317 		}
3318 		/* Fall through to decrease pool */
3319 	}
3320 
3321 	/*
3322 	 * Increase the pool size
3323 	 * First take pages out of surplus state.  Then make up the
3324 	 * remaining difference by allocating fresh huge pages.
3325 	 *
3326 	 * We might race with alloc_surplus_huge_page() here and be unable
3327 	 * to convert a surplus huge page to a normal huge page. That is
3328 	 * not critical, though, it just means the overall size of the
3329 	 * pool might be one hugepage larger than it needs to be, but
3330 	 * within all the constraints specified by the sysctls.
3331 	 */
3332 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3333 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3334 			break;
3335 	}
3336 
3337 	while (count > persistent_huge_pages(h)) {
3338 		/*
3339 		 * If this allocation races such that we no longer need the
3340 		 * page, free_huge_page will handle it by freeing the page
3341 		 * and reducing the surplus.
3342 		 */
3343 		spin_unlock_irq(&hugetlb_lock);
3344 
3345 		/* yield cpu to avoid soft lockup */
3346 		cond_resched();
3347 
3348 		ret = alloc_pool_huge_page(h, nodes_allowed,
3349 						node_alloc_noretry);
3350 		spin_lock_irq(&hugetlb_lock);
3351 		if (!ret)
3352 			goto out;
3353 
3354 		/* Bail for signals. Probably ctrl-c from user */
3355 		if (signal_pending(current))
3356 			goto out;
3357 	}
3358 
3359 	/*
3360 	 * Decrease the pool size
3361 	 * First return free pages to the buddy allocator (being careful
3362 	 * to keep enough around to satisfy reservations).  Then place
3363 	 * pages into surplus state as needed so the pool will shrink
3364 	 * to the desired size as pages become free.
3365 	 *
3366 	 * By placing pages into the surplus state independent of the
3367 	 * overcommit value, we are allowing the surplus pool size to
3368 	 * exceed overcommit. There are few sane options here. Since
3369 	 * alloc_surplus_huge_page() is checking the global counter,
3370 	 * though, we'll note that we're not allowed to exceed surplus
3371 	 * and won't grow the pool anywhere else. Not until one of the
3372 	 * sysctls are changed, or the surplus pages go out of use.
3373 	 */
3374 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3375 	min_count = max(count, min_count);
3376 	try_to_free_low(h, min_count, nodes_allowed);
3377 
3378 	/*
3379 	 * Collect pages to be removed on list without dropping lock
3380 	 */
3381 	while (min_count < persistent_huge_pages(h)) {
3382 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3383 		if (!page)
3384 			break;
3385 
3386 		list_add(&page->lru, &page_list);
3387 	}
3388 	/* free the pages after dropping lock */
3389 	spin_unlock_irq(&hugetlb_lock);
3390 	update_and_free_pages_bulk(h, &page_list);
3391 	flush_free_hpage_work(h);
3392 	spin_lock_irq(&hugetlb_lock);
3393 
3394 	while (count < persistent_huge_pages(h)) {
3395 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3396 			break;
3397 	}
3398 out:
3399 	h->max_huge_pages = persistent_huge_pages(h);
3400 	spin_unlock_irq(&hugetlb_lock);
3401 	mutex_unlock(&h->resize_lock);
3402 
3403 	NODEMASK_FREE(node_alloc_noretry);
3404 
3405 	return 0;
3406 }
3407 
3408 static int demote_free_huge_page(struct hstate *h, struct page *page)
3409 {
3410 	int i, nid = page_to_nid(page);
3411 	struct hstate *target_hstate;
3412 	int rc = 0;
3413 
3414 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3415 
3416 	remove_hugetlb_page_for_demote(h, page, false);
3417 	spin_unlock_irq(&hugetlb_lock);
3418 
3419 	rc = alloc_huge_page_vmemmap(h, page);
3420 	if (rc) {
3421 		/* Allocation of vmemmmap failed, we can not demote page */
3422 		spin_lock_irq(&hugetlb_lock);
3423 		set_page_refcounted(page);
3424 		add_hugetlb_page(h, page, false);
3425 		return rc;
3426 	}
3427 
3428 	/*
3429 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3430 	 * sizes as it will not ref count pages.
3431 	 */
3432 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3433 
3434 	/*
3435 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3436 	 * Without the mutex, pages added to target hstate could be marked
3437 	 * as surplus.
3438 	 *
3439 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3440 	 * use the convention of always taking larger size hstate mutex first.
3441 	 */
3442 	mutex_lock(&target_hstate->resize_lock);
3443 	for (i = 0; i < pages_per_huge_page(h);
3444 				i += pages_per_huge_page(target_hstate)) {
3445 		if (hstate_is_gigantic(target_hstate))
3446 			prep_compound_gigantic_page_for_demote(page + i,
3447 							target_hstate->order);
3448 		else
3449 			prep_compound_page(page + i, target_hstate->order);
3450 		set_page_private(page + i, 0);
3451 		set_page_refcounted(page + i);
3452 		prep_new_huge_page(target_hstate, page + i, nid);
3453 		put_page(page + i);
3454 	}
3455 	mutex_unlock(&target_hstate->resize_lock);
3456 
3457 	spin_lock_irq(&hugetlb_lock);
3458 
3459 	/*
3460 	 * Not absolutely necessary, but for consistency update max_huge_pages
3461 	 * based on pool changes for the demoted page.
3462 	 */
3463 	h->max_huge_pages--;
3464 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3465 
3466 	return rc;
3467 }
3468 
3469 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3470 	__must_hold(&hugetlb_lock)
3471 {
3472 	int nr_nodes, node;
3473 	struct page *page;
3474 	int rc = 0;
3475 
3476 	lockdep_assert_held(&hugetlb_lock);
3477 
3478 	/* We should never get here if no demote order */
3479 	if (!h->demote_order) {
3480 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3481 		return -EINVAL;		/* internal error */
3482 	}
3483 
3484 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3485 		if (!list_empty(&h->hugepage_freelists[node])) {
3486 			page = list_entry(h->hugepage_freelists[node].next,
3487 					struct page, lru);
3488 			rc = demote_free_huge_page(h, page);
3489 			break;
3490 		}
3491 	}
3492 
3493 	return rc;
3494 }
3495 
3496 #define HSTATE_ATTR_RO(_name) \
3497 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3498 
3499 #define HSTATE_ATTR_WO(_name) \
3500 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3501 
3502 #define HSTATE_ATTR(_name) \
3503 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3504 
3505 static struct kobject *hugepages_kobj;
3506 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3507 
3508 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3509 
3510 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3511 {
3512 	int i;
3513 
3514 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3515 		if (hstate_kobjs[i] == kobj) {
3516 			if (nidp)
3517 				*nidp = NUMA_NO_NODE;
3518 			return &hstates[i];
3519 		}
3520 
3521 	return kobj_to_node_hstate(kobj, nidp);
3522 }
3523 
3524 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3525 					struct kobj_attribute *attr, char *buf)
3526 {
3527 	struct hstate *h;
3528 	unsigned long nr_huge_pages;
3529 	int nid;
3530 
3531 	h = kobj_to_hstate(kobj, &nid);
3532 	if (nid == NUMA_NO_NODE)
3533 		nr_huge_pages = h->nr_huge_pages;
3534 	else
3535 		nr_huge_pages = h->nr_huge_pages_node[nid];
3536 
3537 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3538 }
3539 
3540 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3541 					   struct hstate *h, int nid,
3542 					   unsigned long count, size_t len)
3543 {
3544 	int err;
3545 	nodemask_t nodes_allowed, *n_mask;
3546 
3547 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3548 		return -EINVAL;
3549 
3550 	if (nid == NUMA_NO_NODE) {
3551 		/*
3552 		 * global hstate attribute
3553 		 */
3554 		if (!(obey_mempolicy &&
3555 				init_nodemask_of_mempolicy(&nodes_allowed)))
3556 			n_mask = &node_states[N_MEMORY];
3557 		else
3558 			n_mask = &nodes_allowed;
3559 	} else {
3560 		/*
3561 		 * Node specific request.  count adjustment happens in
3562 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3563 		 */
3564 		init_nodemask_of_node(&nodes_allowed, nid);
3565 		n_mask = &nodes_allowed;
3566 	}
3567 
3568 	err = set_max_huge_pages(h, count, nid, n_mask);
3569 
3570 	return err ? err : len;
3571 }
3572 
3573 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3574 					 struct kobject *kobj, const char *buf,
3575 					 size_t len)
3576 {
3577 	struct hstate *h;
3578 	unsigned long count;
3579 	int nid;
3580 	int err;
3581 
3582 	err = kstrtoul(buf, 10, &count);
3583 	if (err)
3584 		return err;
3585 
3586 	h = kobj_to_hstate(kobj, &nid);
3587 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3588 }
3589 
3590 static ssize_t nr_hugepages_show(struct kobject *kobj,
3591 				       struct kobj_attribute *attr, char *buf)
3592 {
3593 	return nr_hugepages_show_common(kobj, attr, buf);
3594 }
3595 
3596 static ssize_t nr_hugepages_store(struct kobject *kobj,
3597 	       struct kobj_attribute *attr, const char *buf, size_t len)
3598 {
3599 	return nr_hugepages_store_common(false, kobj, buf, len);
3600 }
3601 HSTATE_ATTR(nr_hugepages);
3602 
3603 #ifdef CONFIG_NUMA
3604 
3605 /*
3606  * hstate attribute for optionally mempolicy-based constraint on persistent
3607  * huge page alloc/free.
3608  */
3609 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3610 					   struct kobj_attribute *attr,
3611 					   char *buf)
3612 {
3613 	return nr_hugepages_show_common(kobj, attr, buf);
3614 }
3615 
3616 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3617 	       struct kobj_attribute *attr, const char *buf, size_t len)
3618 {
3619 	return nr_hugepages_store_common(true, kobj, buf, len);
3620 }
3621 HSTATE_ATTR(nr_hugepages_mempolicy);
3622 #endif
3623 
3624 
3625 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3626 					struct kobj_attribute *attr, char *buf)
3627 {
3628 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3629 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3630 }
3631 
3632 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3633 		struct kobj_attribute *attr, const char *buf, size_t count)
3634 {
3635 	int err;
3636 	unsigned long input;
3637 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3638 
3639 	if (hstate_is_gigantic(h))
3640 		return -EINVAL;
3641 
3642 	err = kstrtoul(buf, 10, &input);
3643 	if (err)
3644 		return err;
3645 
3646 	spin_lock_irq(&hugetlb_lock);
3647 	h->nr_overcommit_huge_pages = input;
3648 	spin_unlock_irq(&hugetlb_lock);
3649 
3650 	return count;
3651 }
3652 HSTATE_ATTR(nr_overcommit_hugepages);
3653 
3654 static ssize_t free_hugepages_show(struct kobject *kobj,
3655 					struct kobj_attribute *attr, char *buf)
3656 {
3657 	struct hstate *h;
3658 	unsigned long free_huge_pages;
3659 	int nid;
3660 
3661 	h = kobj_to_hstate(kobj, &nid);
3662 	if (nid == NUMA_NO_NODE)
3663 		free_huge_pages = h->free_huge_pages;
3664 	else
3665 		free_huge_pages = h->free_huge_pages_node[nid];
3666 
3667 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3668 }
3669 HSTATE_ATTR_RO(free_hugepages);
3670 
3671 static ssize_t resv_hugepages_show(struct kobject *kobj,
3672 					struct kobj_attribute *attr, char *buf)
3673 {
3674 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3675 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3676 }
3677 HSTATE_ATTR_RO(resv_hugepages);
3678 
3679 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3680 					struct kobj_attribute *attr, char *buf)
3681 {
3682 	struct hstate *h;
3683 	unsigned long surplus_huge_pages;
3684 	int nid;
3685 
3686 	h = kobj_to_hstate(kobj, &nid);
3687 	if (nid == NUMA_NO_NODE)
3688 		surplus_huge_pages = h->surplus_huge_pages;
3689 	else
3690 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3691 
3692 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3693 }
3694 HSTATE_ATTR_RO(surplus_hugepages);
3695 
3696 static ssize_t demote_store(struct kobject *kobj,
3697 	       struct kobj_attribute *attr, const char *buf, size_t len)
3698 {
3699 	unsigned long nr_demote;
3700 	unsigned long nr_available;
3701 	nodemask_t nodes_allowed, *n_mask;
3702 	struct hstate *h;
3703 	int err = 0;
3704 	int nid;
3705 
3706 	err = kstrtoul(buf, 10, &nr_demote);
3707 	if (err)
3708 		return err;
3709 	h = kobj_to_hstate(kobj, &nid);
3710 
3711 	if (nid != NUMA_NO_NODE) {
3712 		init_nodemask_of_node(&nodes_allowed, nid);
3713 		n_mask = &nodes_allowed;
3714 	} else {
3715 		n_mask = &node_states[N_MEMORY];
3716 	}
3717 
3718 	/* Synchronize with other sysfs operations modifying huge pages */
3719 	mutex_lock(&h->resize_lock);
3720 	spin_lock_irq(&hugetlb_lock);
3721 
3722 	while (nr_demote) {
3723 		/*
3724 		 * Check for available pages to demote each time thorough the
3725 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3726 		 */
3727 		if (nid != NUMA_NO_NODE)
3728 			nr_available = h->free_huge_pages_node[nid];
3729 		else
3730 			nr_available = h->free_huge_pages;
3731 		nr_available -= h->resv_huge_pages;
3732 		if (!nr_available)
3733 			break;
3734 
3735 		err = demote_pool_huge_page(h, n_mask);
3736 		if (err)
3737 			break;
3738 
3739 		nr_demote--;
3740 	}
3741 
3742 	spin_unlock_irq(&hugetlb_lock);
3743 	mutex_unlock(&h->resize_lock);
3744 
3745 	if (err)
3746 		return err;
3747 	return len;
3748 }
3749 HSTATE_ATTR_WO(demote);
3750 
3751 static ssize_t demote_size_show(struct kobject *kobj,
3752 					struct kobj_attribute *attr, char *buf)
3753 {
3754 	int nid;
3755 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3756 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3757 
3758 	return sysfs_emit(buf, "%lukB\n", demote_size);
3759 }
3760 
3761 static ssize_t demote_size_store(struct kobject *kobj,
3762 					struct kobj_attribute *attr,
3763 					const char *buf, size_t count)
3764 {
3765 	struct hstate *h, *demote_hstate;
3766 	unsigned long demote_size;
3767 	unsigned int demote_order;
3768 	int nid;
3769 
3770 	demote_size = (unsigned long)memparse(buf, NULL);
3771 
3772 	demote_hstate = size_to_hstate(demote_size);
3773 	if (!demote_hstate)
3774 		return -EINVAL;
3775 	demote_order = demote_hstate->order;
3776 	if (demote_order < HUGETLB_PAGE_ORDER)
3777 		return -EINVAL;
3778 
3779 	/* demote order must be smaller than hstate order */
3780 	h = kobj_to_hstate(kobj, &nid);
3781 	if (demote_order >= h->order)
3782 		return -EINVAL;
3783 
3784 	/* resize_lock synchronizes access to demote size and writes */
3785 	mutex_lock(&h->resize_lock);
3786 	h->demote_order = demote_order;
3787 	mutex_unlock(&h->resize_lock);
3788 
3789 	return count;
3790 }
3791 HSTATE_ATTR(demote_size);
3792 
3793 static struct attribute *hstate_attrs[] = {
3794 	&nr_hugepages_attr.attr,
3795 	&nr_overcommit_hugepages_attr.attr,
3796 	&free_hugepages_attr.attr,
3797 	&resv_hugepages_attr.attr,
3798 	&surplus_hugepages_attr.attr,
3799 #ifdef CONFIG_NUMA
3800 	&nr_hugepages_mempolicy_attr.attr,
3801 #endif
3802 	NULL,
3803 };
3804 
3805 static const struct attribute_group hstate_attr_group = {
3806 	.attrs = hstate_attrs,
3807 };
3808 
3809 static struct attribute *hstate_demote_attrs[] = {
3810 	&demote_size_attr.attr,
3811 	&demote_attr.attr,
3812 	NULL,
3813 };
3814 
3815 static const struct attribute_group hstate_demote_attr_group = {
3816 	.attrs = hstate_demote_attrs,
3817 };
3818 
3819 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3820 				    struct kobject **hstate_kobjs,
3821 				    const struct attribute_group *hstate_attr_group)
3822 {
3823 	int retval;
3824 	int hi = hstate_index(h);
3825 
3826 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3827 	if (!hstate_kobjs[hi])
3828 		return -ENOMEM;
3829 
3830 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3831 	if (retval) {
3832 		kobject_put(hstate_kobjs[hi]);
3833 		hstate_kobjs[hi] = NULL;
3834 	}
3835 
3836 	if (h->demote_order) {
3837 		if (sysfs_create_group(hstate_kobjs[hi],
3838 					&hstate_demote_attr_group))
3839 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3840 	}
3841 
3842 	return retval;
3843 }
3844 
3845 static void __init hugetlb_sysfs_init(void)
3846 {
3847 	struct hstate *h;
3848 	int err;
3849 
3850 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3851 	if (!hugepages_kobj)
3852 		return;
3853 
3854 	for_each_hstate(h) {
3855 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3856 					 hstate_kobjs, &hstate_attr_group);
3857 		if (err)
3858 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3859 	}
3860 }
3861 
3862 #ifdef CONFIG_NUMA
3863 
3864 /*
3865  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3866  * with node devices in node_devices[] using a parallel array.  The array
3867  * index of a node device or _hstate == node id.
3868  * This is here to avoid any static dependency of the node device driver, in
3869  * the base kernel, on the hugetlb module.
3870  */
3871 struct node_hstate {
3872 	struct kobject		*hugepages_kobj;
3873 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3874 };
3875 static struct node_hstate node_hstates[MAX_NUMNODES];
3876 
3877 /*
3878  * A subset of global hstate attributes for node devices
3879  */
3880 static struct attribute *per_node_hstate_attrs[] = {
3881 	&nr_hugepages_attr.attr,
3882 	&free_hugepages_attr.attr,
3883 	&surplus_hugepages_attr.attr,
3884 	NULL,
3885 };
3886 
3887 static const struct attribute_group per_node_hstate_attr_group = {
3888 	.attrs = per_node_hstate_attrs,
3889 };
3890 
3891 /*
3892  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3893  * Returns node id via non-NULL nidp.
3894  */
3895 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3896 {
3897 	int nid;
3898 
3899 	for (nid = 0; nid < nr_node_ids; nid++) {
3900 		struct node_hstate *nhs = &node_hstates[nid];
3901 		int i;
3902 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3903 			if (nhs->hstate_kobjs[i] == kobj) {
3904 				if (nidp)
3905 					*nidp = nid;
3906 				return &hstates[i];
3907 			}
3908 	}
3909 
3910 	BUG();
3911 	return NULL;
3912 }
3913 
3914 /*
3915  * Unregister hstate attributes from a single node device.
3916  * No-op if no hstate attributes attached.
3917  */
3918 static void hugetlb_unregister_node(struct node *node)
3919 {
3920 	struct hstate *h;
3921 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3922 
3923 	if (!nhs->hugepages_kobj)
3924 		return;		/* no hstate attributes */
3925 
3926 	for_each_hstate(h) {
3927 		int idx = hstate_index(h);
3928 		if (nhs->hstate_kobjs[idx]) {
3929 			kobject_put(nhs->hstate_kobjs[idx]);
3930 			nhs->hstate_kobjs[idx] = NULL;
3931 		}
3932 	}
3933 
3934 	kobject_put(nhs->hugepages_kobj);
3935 	nhs->hugepages_kobj = NULL;
3936 }
3937 
3938 
3939 /*
3940  * Register hstate attributes for a single node device.
3941  * No-op if attributes already registered.
3942  */
3943 static void hugetlb_register_node(struct node *node)
3944 {
3945 	struct hstate *h;
3946 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3947 	int err;
3948 
3949 	if (nhs->hugepages_kobj)
3950 		return;		/* already allocated */
3951 
3952 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3953 							&node->dev.kobj);
3954 	if (!nhs->hugepages_kobj)
3955 		return;
3956 
3957 	for_each_hstate(h) {
3958 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3959 						nhs->hstate_kobjs,
3960 						&per_node_hstate_attr_group);
3961 		if (err) {
3962 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3963 				h->name, node->dev.id);
3964 			hugetlb_unregister_node(node);
3965 			break;
3966 		}
3967 	}
3968 }
3969 
3970 /*
3971  * hugetlb init time:  register hstate attributes for all registered node
3972  * devices of nodes that have memory.  All on-line nodes should have
3973  * registered their associated device by this time.
3974  */
3975 static void __init hugetlb_register_all_nodes(void)
3976 {
3977 	int nid;
3978 
3979 	for_each_node_state(nid, N_MEMORY) {
3980 		struct node *node = node_devices[nid];
3981 		if (node->dev.id == nid)
3982 			hugetlb_register_node(node);
3983 	}
3984 
3985 	/*
3986 	 * Let the node device driver know we're here so it can
3987 	 * [un]register hstate attributes on node hotplug.
3988 	 */
3989 	register_hugetlbfs_with_node(hugetlb_register_node,
3990 				     hugetlb_unregister_node);
3991 }
3992 #else	/* !CONFIG_NUMA */
3993 
3994 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3995 {
3996 	BUG();
3997 	if (nidp)
3998 		*nidp = -1;
3999 	return NULL;
4000 }
4001 
4002 static void hugetlb_register_all_nodes(void) { }
4003 
4004 #endif
4005 
4006 static int __init hugetlb_init(void)
4007 {
4008 	int i;
4009 
4010 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4011 			__NR_HPAGEFLAGS);
4012 
4013 	if (!hugepages_supported()) {
4014 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4015 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4016 		return 0;
4017 	}
4018 
4019 	/*
4020 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4021 	 * architectures depend on setup being done here.
4022 	 */
4023 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4024 	if (!parsed_default_hugepagesz) {
4025 		/*
4026 		 * If we did not parse a default huge page size, set
4027 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4028 		 * number of huge pages for this default size was implicitly
4029 		 * specified, set that here as well.
4030 		 * Note that the implicit setting will overwrite an explicit
4031 		 * setting.  A warning will be printed in this case.
4032 		 */
4033 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4034 		if (default_hstate_max_huge_pages) {
4035 			if (default_hstate.max_huge_pages) {
4036 				char buf[32];
4037 
4038 				string_get_size(huge_page_size(&default_hstate),
4039 					1, STRING_UNITS_2, buf, 32);
4040 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4041 					default_hstate.max_huge_pages, buf);
4042 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4043 					default_hstate_max_huge_pages);
4044 			}
4045 			default_hstate.max_huge_pages =
4046 				default_hstate_max_huge_pages;
4047 
4048 			for (i = 0; i < nr_online_nodes; i++)
4049 				default_hstate.max_huge_pages_node[i] =
4050 					default_hugepages_in_node[i];
4051 		}
4052 	}
4053 
4054 	hugetlb_cma_check();
4055 	hugetlb_init_hstates();
4056 	gather_bootmem_prealloc();
4057 	report_hugepages();
4058 
4059 	hugetlb_sysfs_init();
4060 	hugetlb_register_all_nodes();
4061 	hugetlb_cgroup_file_init();
4062 
4063 #ifdef CONFIG_SMP
4064 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4065 #else
4066 	num_fault_mutexes = 1;
4067 #endif
4068 	hugetlb_fault_mutex_table =
4069 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4070 			      GFP_KERNEL);
4071 	BUG_ON(!hugetlb_fault_mutex_table);
4072 
4073 	for (i = 0; i < num_fault_mutexes; i++)
4074 		mutex_init(&hugetlb_fault_mutex_table[i]);
4075 	return 0;
4076 }
4077 subsys_initcall(hugetlb_init);
4078 
4079 /* Overwritten by architectures with more huge page sizes */
4080 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4081 {
4082 	return size == HPAGE_SIZE;
4083 }
4084 
4085 void __init hugetlb_add_hstate(unsigned int order)
4086 {
4087 	struct hstate *h;
4088 	unsigned long i;
4089 
4090 	if (size_to_hstate(PAGE_SIZE << order)) {
4091 		return;
4092 	}
4093 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4094 	BUG_ON(order == 0);
4095 	h = &hstates[hugetlb_max_hstate++];
4096 	mutex_init(&h->resize_lock);
4097 	h->order = order;
4098 	h->mask = ~(huge_page_size(h) - 1);
4099 	for (i = 0; i < MAX_NUMNODES; ++i)
4100 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4101 	INIT_LIST_HEAD(&h->hugepage_activelist);
4102 	h->next_nid_to_alloc = first_memory_node;
4103 	h->next_nid_to_free = first_memory_node;
4104 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4105 					huge_page_size(h)/1024);
4106 	hugetlb_vmemmap_init(h);
4107 
4108 	parsed_hstate = h;
4109 }
4110 
4111 bool __init __weak hugetlb_node_alloc_supported(void)
4112 {
4113 	return true;
4114 }
4115 /*
4116  * hugepages command line processing
4117  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4118  * specification.  If not, ignore the hugepages value.  hugepages can also
4119  * be the first huge page command line  option in which case it implicitly
4120  * specifies the number of huge pages for the default size.
4121  */
4122 static int __init hugepages_setup(char *s)
4123 {
4124 	unsigned long *mhp;
4125 	static unsigned long *last_mhp;
4126 	int node = NUMA_NO_NODE;
4127 	int count;
4128 	unsigned long tmp;
4129 	char *p = s;
4130 
4131 	if (!parsed_valid_hugepagesz) {
4132 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4133 		parsed_valid_hugepagesz = true;
4134 		return 0;
4135 	}
4136 
4137 	/*
4138 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4139 	 * yet, so this hugepages= parameter goes to the "default hstate".
4140 	 * Otherwise, it goes with the previously parsed hugepagesz or
4141 	 * default_hugepagesz.
4142 	 */
4143 	else if (!hugetlb_max_hstate)
4144 		mhp = &default_hstate_max_huge_pages;
4145 	else
4146 		mhp = &parsed_hstate->max_huge_pages;
4147 
4148 	if (mhp == last_mhp) {
4149 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4150 		return 0;
4151 	}
4152 
4153 	while (*p) {
4154 		count = 0;
4155 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4156 			goto invalid;
4157 		/* Parameter is node format */
4158 		if (p[count] == ':') {
4159 			if (!hugetlb_node_alloc_supported()) {
4160 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4161 				return 0;
4162 			}
4163 			if (tmp >= nr_online_nodes)
4164 				goto invalid;
4165 			node = array_index_nospec(tmp, nr_online_nodes);
4166 			p += count + 1;
4167 			/* Parse hugepages */
4168 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4169 				goto invalid;
4170 			if (!hugetlb_max_hstate)
4171 				default_hugepages_in_node[node] = tmp;
4172 			else
4173 				parsed_hstate->max_huge_pages_node[node] = tmp;
4174 			*mhp += tmp;
4175 			/* Go to parse next node*/
4176 			if (p[count] == ',')
4177 				p += count + 1;
4178 			else
4179 				break;
4180 		} else {
4181 			if (p != s)
4182 				goto invalid;
4183 			*mhp = tmp;
4184 			break;
4185 		}
4186 	}
4187 
4188 	/*
4189 	 * Global state is always initialized later in hugetlb_init.
4190 	 * But we need to allocate gigantic hstates here early to still
4191 	 * use the bootmem allocator.
4192 	 */
4193 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4194 		hugetlb_hstate_alloc_pages(parsed_hstate);
4195 
4196 	last_mhp = mhp;
4197 
4198 	return 1;
4199 
4200 invalid:
4201 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4202 	return 0;
4203 }
4204 __setup("hugepages=", hugepages_setup);
4205 
4206 /*
4207  * hugepagesz command line processing
4208  * A specific huge page size can only be specified once with hugepagesz.
4209  * hugepagesz is followed by hugepages on the command line.  The global
4210  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4211  * hugepagesz argument was valid.
4212  */
4213 static int __init hugepagesz_setup(char *s)
4214 {
4215 	unsigned long size;
4216 	struct hstate *h;
4217 
4218 	parsed_valid_hugepagesz = false;
4219 	size = (unsigned long)memparse(s, NULL);
4220 
4221 	if (!arch_hugetlb_valid_size(size)) {
4222 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4223 		return 0;
4224 	}
4225 
4226 	h = size_to_hstate(size);
4227 	if (h) {
4228 		/*
4229 		 * hstate for this size already exists.  This is normally
4230 		 * an error, but is allowed if the existing hstate is the
4231 		 * default hstate.  More specifically, it is only allowed if
4232 		 * the number of huge pages for the default hstate was not
4233 		 * previously specified.
4234 		 */
4235 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4236 		    default_hstate.max_huge_pages) {
4237 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4238 			return 0;
4239 		}
4240 
4241 		/*
4242 		 * No need to call hugetlb_add_hstate() as hstate already
4243 		 * exists.  But, do set parsed_hstate so that a following
4244 		 * hugepages= parameter will be applied to this hstate.
4245 		 */
4246 		parsed_hstate = h;
4247 		parsed_valid_hugepagesz = true;
4248 		return 1;
4249 	}
4250 
4251 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4252 	parsed_valid_hugepagesz = true;
4253 	return 1;
4254 }
4255 __setup("hugepagesz=", hugepagesz_setup);
4256 
4257 /*
4258  * default_hugepagesz command line input
4259  * Only one instance of default_hugepagesz allowed on command line.
4260  */
4261 static int __init default_hugepagesz_setup(char *s)
4262 {
4263 	unsigned long size;
4264 	int i;
4265 
4266 	parsed_valid_hugepagesz = false;
4267 	if (parsed_default_hugepagesz) {
4268 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4269 		return 0;
4270 	}
4271 
4272 	size = (unsigned long)memparse(s, NULL);
4273 
4274 	if (!arch_hugetlb_valid_size(size)) {
4275 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4276 		return 0;
4277 	}
4278 
4279 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4280 	parsed_valid_hugepagesz = true;
4281 	parsed_default_hugepagesz = true;
4282 	default_hstate_idx = hstate_index(size_to_hstate(size));
4283 
4284 	/*
4285 	 * The number of default huge pages (for this size) could have been
4286 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4287 	 * then default_hstate_max_huge_pages is set.  If the default huge
4288 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4289 	 * allocated here from bootmem allocator.
4290 	 */
4291 	if (default_hstate_max_huge_pages) {
4292 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4293 		for (i = 0; i < nr_online_nodes; i++)
4294 			default_hstate.max_huge_pages_node[i] =
4295 				default_hugepages_in_node[i];
4296 		if (hstate_is_gigantic(&default_hstate))
4297 			hugetlb_hstate_alloc_pages(&default_hstate);
4298 		default_hstate_max_huge_pages = 0;
4299 	}
4300 
4301 	return 1;
4302 }
4303 __setup("default_hugepagesz=", default_hugepagesz_setup);
4304 
4305 static unsigned int allowed_mems_nr(struct hstate *h)
4306 {
4307 	int node;
4308 	unsigned int nr = 0;
4309 	nodemask_t *mpol_allowed;
4310 	unsigned int *array = h->free_huge_pages_node;
4311 	gfp_t gfp_mask = htlb_alloc_mask(h);
4312 
4313 	mpol_allowed = policy_nodemask_current(gfp_mask);
4314 
4315 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4316 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4317 			nr += array[node];
4318 	}
4319 
4320 	return nr;
4321 }
4322 
4323 #ifdef CONFIG_SYSCTL
4324 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4325 					  void *buffer, size_t *length,
4326 					  loff_t *ppos, unsigned long *out)
4327 {
4328 	struct ctl_table dup_table;
4329 
4330 	/*
4331 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4332 	 * can duplicate the @table and alter the duplicate of it.
4333 	 */
4334 	dup_table = *table;
4335 	dup_table.data = out;
4336 
4337 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4338 }
4339 
4340 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4341 			 struct ctl_table *table, int write,
4342 			 void *buffer, size_t *length, loff_t *ppos)
4343 {
4344 	struct hstate *h = &default_hstate;
4345 	unsigned long tmp = h->max_huge_pages;
4346 	int ret;
4347 
4348 	if (!hugepages_supported())
4349 		return -EOPNOTSUPP;
4350 
4351 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4352 					     &tmp);
4353 	if (ret)
4354 		goto out;
4355 
4356 	if (write)
4357 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4358 						  NUMA_NO_NODE, tmp, *length);
4359 out:
4360 	return ret;
4361 }
4362 
4363 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4364 			  void *buffer, size_t *length, loff_t *ppos)
4365 {
4366 
4367 	return hugetlb_sysctl_handler_common(false, table, write,
4368 							buffer, length, ppos);
4369 }
4370 
4371 #ifdef CONFIG_NUMA
4372 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4373 			  void *buffer, size_t *length, loff_t *ppos)
4374 {
4375 	return hugetlb_sysctl_handler_common(true, table, write,
4376 							buffer, length, ppos);
4377 }
4378 #endif /* CONFIG_NUMA */
4379 
4380 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4381 		void *buffer, size_t *length, loff_t *ppos)
4382 {
4383 	struct hstate *h = &default_hstate;
4384 	unsigned long tmp;
4385 	int ret;
4386 
4387 	if (!hugepages_supported())
4388 		return -EOPNOTSUPP;
4389 
4390 	tmp = h->nr_overcommit_huge_pages;
4391 
4392 	if (write && hstate_is_gigantic(h))
4393 		return -EINVAL;
4394 
4395 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4396 					     &tmp);
4397 	if (ret)
4398 		goto out;
4399 
4400 	if (write) {
4401 		spin_lock_irq(&hugetlb_lock);
4402 		h->nr_overcommit_huge_pages = tmp;
4403 		spin_unlock_irq(&hugetlb_lock);
4404 	}
4405 out:
4406 	return ret;
4407 }
4408 
4409 #endif /* CONFIG_SYSCTL */
4410 
4411 void hugetlb_report_meminfo(struct seq_file *m)
4412 {
4413 	struct hstate *h;
4414 	unsigned long total = 0;
4415 
4416 	if (!hugepages_supported())
4417 		return;
4418 
4419 	for_each_hstate(h) {
4420 		unsigned long count = h->nr_huge_pages;
4421 
4422 		total += huge_page_size(h) * count;
4423 
4424 		if (h == &default_hstate)
4425 			seq_printf(m,
4426 				   "HugePages_Total:   %5lu\n"
4427 				   "HugePages_Free:    %5lu\n"
4428 				   "HugePages_Rsvd:    %5lu\n"
4429 				   "HugePages_Surp:    %5lu\n"
4430 				   "Hugepagesize:   %8lu kB\n",
4431 				   count,
4432 				   h->free_huge_pages,
4433 				   h->resv_huge_pages,
4434 				   h->surplus_huge_pages,
4435 				   huge_page_size(h) / SZ_1K);
4436 	}
4437 
4438 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4439 }
4440 
4441 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4442 {
4443 	struct hstate *h = &default_hstate;
4444 
4445 	if (!hugepages_supported())
4446 		return 0;
4447 
4448 	return sysfs_emit_at(buf, len,
4449 			     "Node %d HugePages_Total: %5u\n"
4450 			     "Node %d HugePages_Free:  %5u\n"
4451 			     "Node %d HugePages_Surp:  %5u\n",
4452 			     nid, h->nr_huge_pages_node[nid],
4453 			     nid, h->free_huge_pages_node[nid],
4454 			     nid, h->surplus_huge_pages_node[nid]);
4455 }
4456 
4457 void hugetlb_show_meminfo(void)
4458 {
4459 	struct hstate *h;
4460 	int nid;
4461 
4462 	if (!hugepages_supported())
4463 		return;
4464 
4465 	for_each_node_state(nid, N_MEMORY)
4466 		for_each_hstate(h)
4467 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4468 				nid,
4469 				h->nr_huge_pages_node[nid],
4470 				h->free_huge_pages_node[nid],
4471 				h->surplus_huge_pages_node[nid],
4472 				huge_page_size(h) / SZ_1K);
4473 }
4474 
4475 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4476 {
4477 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4478 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4479 }
4480 
4481 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4482 unsigned long hugetlb_total_pages(void)
4483 {
4484 	struct hstate *h;
4485 	unsigned long nr_total_pages = 0;
4486 
4487 	for_each_hstate(h)
4488 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4489 	return nr_total_pages;
4490 }
4491 
4492 static int hugetlb_acct_memory(struct hstate *h, long delta)
4493 {
4494 	int ret = -ENOMEM;
4495 
4496 	if (!delta)
4497 		return 0;
4498 
4499 	spin_lock_irq(&hugetlb_lock);
4500 	/*
4501 	 * When cpuset is configured, it breaks the strict hugetlb page
4502 	 * reservation as the accounting is done on a global variable. Such
4503 	 * reservation is completely rubbish in the presence of cpuset because
4504 	 * the reservation is not checked against page availability for the
4505 	 * current cpuset. Application can still potentially OOM'ed by kernel
4506 	 * with lack of free htlb page in cpuset that the task is in.
4507 	 * Attempt to enforce strict accounting with cpuset is almost
4508 	 * impossible (or too ugly) because cpuset is too fluid that
4509 	 * task or memory node can be dynamically moved between cpusets.
4510 	 *
4511 	 * The change of semantics for shared hugetlb mapping with cpuset is
4512 	 * undesirable. However, in order to preserve some of the semantics,
4513 	 * we fall back to check against current free page availability as
4514 	 * a best attempt and hopefully to minimize the impact of changing
4515 	 * semantics that cpuset has.
4516 	 *
4517 	 * Apart from cpuset, we also have memory policy mechanism that
4518 	 * also determines from which node the kernel will allocate memory
4519 	 * in a NUMA system. So similar to cpuset, we also should consider
4520 	 * the memory policy of the current task. Similar to the description
4521 	 * above.
4522 	 */
4523 	if (delta > 0) {
4524 		if (gather_surplus_pages(h, delta) < 0)
4525 			goto out;
4526 
4527 		if (delta > allowed_mems_nr(h)) {
4528 			return_unused_surplus_pages(h, delta);
4529 			goto out;
4530 		}
4531 	}
4532 
4533 	ret = 0;
4534 	if (delta < 0)
4535 		return_unused_surplus_pages(h, (unsigned long) -delta);
4536 
4537 out:
4538 	spin_unlock_irq(&hugetlb_lock);
4539 	return ret;
4540 }
4541 
4542 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4543 {
4544 	struct resv_map *resv = vma_resv_map(vma);
4545 
4546 	/*
4547 	 * This new VMA should share its siblings reservation map if present.
4548 	 * The VMA will only ever have a valid reservation map pointer where
4549 	 * it is being copied for another still existing VMA.  As that VMA
4550 	 * has a reference to the reservation map it cannot disappear until
4551 	 * after this open call completes.  It is therefore safe to take a
4552 	 * new reference here without additional locking.
4553 	 */
4554 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4555 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4556 		kref_get(&resv->refs);
4557 	}
4558 }
4559 
4560 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4561 {
4562 	struct hstate *h = hstate_vma(vma);
4563 	struct resv_map *resv = vma_resv_map(vma);
4564 	struct hugepage_subpool *spool = subpool_vma(vma);
4565 	unsigned long reserve, start, end;
4566 	long gbl_reserve;
4567 
4568 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4569 		return;
4570 
4571 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4572 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4573 
4574 	reserve = (end - start) - region_count(resv, start, end);
4575 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4576 	if (reserve) {
4577 		/*
4578 		 * Decrement reserve counts.  The global reserve count may be
4579 		 * adjusted if the subpool has a minimum size.
4580 		 */
4581 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4582 		hugetlb_acct_memory(h, -gbl_reserve);
4583 	}
4584 
4585 	kref_put(&resv->refs, resv_map_release);
4586 }
4587 
4588 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4589 {
4590 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4591 		return -EINVAL;
4592 	return 0;
4593 }
4594 
4595 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4596 {
4597 	return huge_page_size(hstate_vma(vma));
4598 }
4599 
4600 /*
4601  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4602  * handle_mm_fault() to try to instantiate regular-sized pages in the
4603  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4604  * this far.
4605  */
4606 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4607 {
4608 	BUG();
4609 	return 0;
4610 }
4611 
4612 /*
4613  * When a new function is introduced to vm_operations_struct and added
4614  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4615  * This is because under System V memory model, mappings created via
4616  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4617  * their original vm_ops are overwritten with shm_vm_ops.
4618  */
4619 const struct vm_operations_struct hugetlb_vm_ops = {
4620 	.fault = hugetlb_vm_op_fault,
4621 	.open = hugetlb_vm_op_open,
4622 	.close = hugetlb_vm_op_close,
4623 	.may_split = hugetlb_vm_op_split,
4624 	.pagesize = hugetlb_vm_op_pagesize,
4625 };
4626 
4627 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4628 				int writable)
4629 {
4630 	pte_t entry;
4631 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4632 
4633 	if (writable) {
4634 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4635 					 vma->vm_page_prot)));
4636 	} else {
4637 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4638 					   vma->vm_page_prot));
4639 	}
4640 	entry = pte_mkyoung(entry);
4641 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4642 
4643 	return entry;
4644 }
4645 
4646 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4647 				   unsigned long address, pte_t *ptep)
4648 {
4649 	pte_t entry;
4650 
4651 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4652 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4653 		update_mmu_cache(vma, address, ptep);
4654 }
4655 
4656 bool is_hugetlb_entry_migration(pte_t pte)
4657 {
4658 	swp_entry_t swp;
4659 
4660 	if (huge_pte_none(pte) || pte_present(pte))
4661 		return false;
4662 	swp = pte_to_swp_entry(pte);
4663 	if (is_migration_entry(swp))
4664 		return true;
4665 	else
4666 		return false;
4667 }
4668 
4669 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4670 {
4671 	swp_entry_t swp;
4672 
4673 	if (huge_pte_none(pte) || pte_present(pte))
4674 		return false;
4675 	swp = pte_to_swp_entry(pte);
4676 	if (is_hwpoison_entry(swp))
4677 		return true;
4678 	else
4679 		return false;
4680 }
4681 
4682 static void
4683 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4684 		     struct page *new_page)
4685 {
4686 	__SetPageUptodate(new_page);
4687 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4688 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4689 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4690 	ClearHPageRestoreReserve(new_page);
4691 	SetHPageMigratable(new_page);
4692 }
4693 
4694 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4695 			    struct vm_area_struct *vma)
4696 {
4697 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4698 	struct page *ptepage;
4699 	unsigned long addr;
4700 	bool cow = is_cow_mapping(vma->vm_flags);
4701 	struct hstate *h = hstate_vma(vma);
4702 	unsigned long sz = huge_page_size(h);
4703 	unsigned long npages = pages_per_huge_page(h);
4704 	struct address_space *mapping = vma->vm_file->f_mapping;
4705 	struct mmu_notifier_range range;
4706 	int ret = 0;
4707 
4708 	if (cow) {
4709 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4710 					vma->vm_start,
4711 					vma->vm_end);
4712 		mmu_notifier_invalidate_range_start(&range);
4713 	} else {
4714 		/*
4715 		 * For shared mappings i_mmap_rwsem must be held to call
4716 		 * huge_pte_alloc, otherwise the returned ptep could go
4717 		 * away if part of a shared pmd and another thread calls
4718 		 * huge_pmd_unshare.
4719 		 */
4720 		i_mmap_lock_read(mapping);
4721 	}
4722 
4723 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4724 		spinlock_t *src_ptl, *dst_ptl;
4725 		src_pte = huge_pte_offset(src, addr, sz);
4726 		if (!src_pte)
4727 			continue;
4728 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4729 		if (!dst_pte) {
4730 			ret = -ENOMEM;
4731 			break;
4732 		}
4733 
4734 		/*
4735 		 * If the pagetables are shared don't copy or take references.
4736 		 * dst_pte == src_pte is the common case of src/dest sharing.
4737 		 *
4738 		 * However, src could have 'unshared' and dst shares with
4739 		 * another vma.  If dst_pte !none, this implies sharing.
4740 		 * Check here before taking page table lock, and once again
4741 		 * after taking the lock below.
4742 		 */
4743 		dst_entry = huge_ptep_get(dst_pte);
4744 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4745 			continue;
4746 
4747 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4748 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4749 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4750 		entry = huge_ptep_get(src_pte);
4751 		dst_entry = huge_ptep_get(dst_pte);
4752 again:
4753 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4754 			/*
4755 			 * Skip if src entry none.  Also, skip in the
4756 			 * unlikely case dst entry !none as this implies
4757 			 * sharing with another vma.
4758 			 */
4759 			;
4760 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4761 				    is_hugetlb_entry_hwpoisoned(entry))) {
4762 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4763 
4764 			if (is_writable_migration_entry(swp_entry) && cow) {
4765 				/*
4766 				 * COW mappings require pages in both
4767 				 * parent and child to be set to read.
4768 				 */
4769 				swp_entry = make_readable_migration_entry(
4770 							swp_offset(swp_entry));
4771 				entry = swp_entry_to_pte(swp_entry);
4772 				set_huge_swap_pte_at(src, addr, src_pte,
4773 						     entry, sz);
4774 			}
4775 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4776 		} else {
4777 			entry = huge_ptep_get(src_pte);
4778 			ptepage = pte_page(entry);
4779 			get_page(ptepage);
4780 
4781 			/*
4782 			 * This is a rare case where we see pinned hugetlb
4783 			 * pages while they're prone to COW.  We need to do the
4784 			 * COW earlier during fork.
4785 			 *
4786 			 * When pre-allocating the page or copying data, we
4787 			 * need to be without the pgtable locks since we could
4788 			 * sleep during the process.
4789 			 */
4790 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4791 				pte_t src_pte_old = entry;
4792 				struct page *new;
4793 
4794 				spin_unlock(src_ptl);
4795 				spin_unlock(dst_ptl);
4796 				/* Do not use reserve as it's private owned */
4797 				new = alloc_huge_page(vma, addr, 1);
4798 				if (IS_ERR(new)) {
4799 					put_page(ptepage);
4800 					ret = PTR_ERR(new);
4801 					break;
4802 				}
4803 				copy_user_huge_page(new, ptepage, addr, vma,
4804 						    npages);
4805 				put_page(ptepage);
4806 
4807 				/* Install the new huge page if src pte stable */
4808 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4809 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4810 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4811 				entry = huge_ptep_get(src_pte);
4812 				if (!pte_same(src_pte_old, entry)) {
4813 					restore_reserve_on_error(h, vma, addr,
4814 								new);
4815 					put_page(new);
4816 					/* dst_entry won't change as in child */
4817 					goto again;
4818 				}
4819 				hugetlb_install_page(vma, dst_pte, addr, new);
4820 				spin_unlock(src_ptl);
4821 				spin_unlock(dst_ptl);
4822 				continue;
4823 			}
4824 
4825 			if (cow) {
4826 				/*
4827 				 * No need to notify as we are downgrading page
4828 				 * table protection not changing it to point
4829 				 * to a new page.
4830 				 *
4831 				 * See Documentation/vm/mmu_notifier.rst
4832 				 */
4833 				huge_ptep_set_wrprotect(src, addr, src_pte);
4834 				entry = huge_pte_wrprotect(entry);
4835 			}
4836 
4837 			page_dup_rmap(ptepage, true);
4838 			set_huge_pte_at(dst, addr, dst_pte, entry);
4839 			hugetlb_count_add(npages, dst);
4840 		}
4841 		spin_unlock(src_ptl);
4842 		spin_unlock(dst_ptl);
4843 	}
4844 
4845 	if (cow)
4846 		mmu_notifier_invalidate_range_end(&range);
4847 	else
4848 		i_mmap_unlock_read(mapping);
4849 
4850 	return ret;
4851 }
4852 
4853 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4854 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4855 {
4856 	struct hstate *h = hstate_vma(vma);
4857 	struct mm_struct *mm = vma->vm_mm;
4858 	spinlock_t *src_ptl, *dst_ptl;
4859 	pte_t pte;
4860 
4861 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4862 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4863 
4864 	/*
4865 	 * We don't have to worry about the ordering of src and dst ptlocks
4866 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4867 	 */
4868 	if (src_ptl != dst_ptl)
4869 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4870 
4871 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4872 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4873 
4874 	if (src_ptl != dst_ptl)
4875 		spin_unlock(src_ptl);
4876 	spin_unlock(dst_ptl);
4877 }
4878 
4879 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4880 			     struct vm_area_struct *new_vma,
4881 			     unsigned long old_addr, unsigned long new_addr,
4882 			     unsigned long len)
4883 {
4884 	struct hstate *h = hstate_vma(vma);
4885 	struct address_space *mapping = vma->vm_file->f_mapping;
4886 	unsigned long sz = huge_page_size(h);
4887 	struct mm_struct *mm = vma->vm_mm;
4888 	unsigned long old_end = old_addr + len;
4889 	unsigned long old_addr_copy;
4890 	pte_t *src_pte, *dst_pte;
4891 	struct mmu_notifier_range range;
4892 
4893 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4894 				old_end);
4895 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4896 	mmu_notifier_invalidate_range_start(&range);
4897 	/* Prevent race with file truncation */
4898 	i_mmap_lock_write(mapping);
4899 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4900 		src_pte = huge_pte_offset(mm, old_addr, sz);
4901 		if (!src_pte)
4902 			continue;
4903 		if (huge_pte_none(huge_ptep_get(src_pte)))
4904 			continue;
4905 
4906 		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
4907 		 * arg may be modified. Pass a copy instead to preserve the
4908 		 * value in old_addr.
4909 		 */
4910 		old_addr_copy = old_addr;
4911 
4912 		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4913 			continue;
4914 
4915 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4916 		if (!dst_pte)
4917 			break;
4918 
4919 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4920 	}
4921 	flush_tlb_range(vma, old_end - len, old_end);
4922 	mmu_notifier_invalidate_range_end(&range);
4923 	i_mmap_unlock_write(mapping);
4924 
4925 	return len + old_addr - old_end;
4926 }
4927 
4928 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4929 				   unsigned long start, unsigned long end,
4930 				   struct page *ref_page)
4931 {
4932 	struct mm_struct *mm = vma->vm_mm;
4933 	unsigned long address;
4934 	pte_t *ptep;
4935 	pte_t pte;
4936 	spinlock_t *ptl;
4937 	struct page *page;
4938 	struct hstate *h = hstate_vma(vma);
4939 	unsigned long sz = huge_page_size(h);
4940 	struct mmu_notifier_range range;
4941 	bool force_flush = false;
4942 
4943 	WARN_ON(!is_vm_hugetlb_page(vma));
4944 	BUG_ON(start & ~huge_page_mask(h));
4945 	BUG_ON(end & ~huge_page_mask(h));
4946 
4947 	/*
4948 	 * This is a hugetlb vma, all the pte entries should point
4949 	 * to huge page.
4950 	 */
4951 	tlb_change_page_size(tlb, sz);
4952 	tlb_start_vma(tlb, vma);
4953 
4954 	/*
4955 	 * If sharing possible, alert mmu notifiers of worst case.
4956 	 */
4957 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4958 				end);
4959 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4960 	mmu_notifier_invalidate_range_start(&range);
4961 	address = start;
4962 	for (; address < end; address += sz) {
4963 		ptep = huge_pte_offset(mm, address, sz);
4964 		if (!ptep)
4965 			continue;
4966 
4967 		ptl = huge_pte_lock(h, mm, ptep);
4968 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4969 			spin_unlock(ptl);
4970 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4971 			force_flush = true;
4972 			continue;
4973 		}
4974 
4975 		pte = huge_ptep_get(ptep);
4976 		if (huge_pte_none(pte)) {
4977 			spin_unlock(ptl);
4978 			continue;
4979 		}
4980 
4981 		/*
4982 		 * Migrating hugepage or HWPoisoned hugepage is already
4983 		 * unmapped and its refcount is dropped, so just clear pte here.
4984 		 */
4985 		if (unlikely(!pte_present(pte))) {
4986 			huge_pte_clear(mm, address, ptep, sz);
4987 			spin_unlock(ptl);
4988 			continue;
4989 		}
4990 
4991 		page = pte_page(pte);
4992 		/*
4993 		 * If a reference page is supplied, it is because a specific
4994 		 * page is being unmapped, not a range. Ensure the page we
4995 		 * are about to unmap is the actual page of interest.
4996 		 */
4997 		if (ref_page) {
4998 			if (page != ref_page) {
4999 				spin_unlock(ptl);
5000 				continue;
5001 			}
5002 			/*
5003 			 * Mark the VMA as having unmapped its page so that
5004 			 * future faults in this VMA will fail rather than
5005 			 * looking like data was lost
5006 			 */
5007 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5008 		}
5009 
5010 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5011 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5012 		if (huge_pte_dirty(pte))
5013 			set_page_dirty(page);
5014 
5015 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5016 		page_remove_rmap(page, true);
5017 
5018 		spin_unlock(ptl);
5019 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5020 		/*
5021 		 * Bail out after unmapping reference page if supplied
5022 		 */
5023 		if (ref_page)
5024 			break;
5025 	}
5026 	mmu_notifier_invalidate_range_end(&range);
5027 	tlb_end_vma(tlb, vma);
5028 
5029 	/*
5030 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5031 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5032 	 * guaranteed that the last refernece would not be dropped. But we must
5033 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5034 	 * dropped and the last reference to the shared PMDs page might be
5035 	 * dropped as well.
5036 	 *
5037 	 * In theory we could defer the freeing of the PMD pages as well, but
5038 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5039 	 * detect sharing, so we cannot defer the release of the page either.
5040 	 * Instead, do flush now.
5041 	 */
5042 	if (force_flush)
5043 		tlb_flush_mmu_tlbonly(tlb);
5044 }
5045 
5046 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5047 			  struct vm_area_struct *vma, unsigned long start,
5048 			  unsigned long end, struct page *ref_page)
5049 {
5050 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
5051 
5052 	/*
5053 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5054 	 * test will fail on a vma being torn down, and not grab a page table
5055 	 * on its way out.  We're lucky that the flag has such an appropriate
5056 	 * name, and can in fact be safely cleared here. We could clear it
5057 	 * before the __unmap_hugepage_range above, but all that's necessary
5058 	 * is to clear it before releasing the i_mmap_rwsem. This works
5059 	 * because in the context this is called, the VMA is about to be
5060 	 * destroyed and the i_mmap_rwsem is held.
5061 	 */
5062 	vma->vm_flags &= ~VM_MAYSHARE;
5063 }
5064 
5065 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5066 			  unsigned long end, struct page *ref_page)
5067 {
5068 	struct mmu_gather tlb;
5069 
5070 	tlb_gather_mmu(&tlb, vma->vm_mm);
5071 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5072 	tlb_finish_mmu(&tlb);
5073 }
5074 
5075 /*
5076  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5077  * mapping it owns the reserve page for. The intention is to unmap the page
5078  * from other VMAs and let the children be SIGKILLed if they are faulting the
5079  * same region.
5080  */
5081 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5082 			      struct page *page, unsigned long address)
5083 {
5084 	struct hstate *h = hstate_vma(vma);
5085 	struct vm_area_struct *iter_vma;
5086 	struct address_space *mapping;
5087 	pgoff_t pgoff;
5088 
5089 	/*
5090 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5091 	 * from page cache lookup which is in HPAGE_SIZE units.
5092 	 */
5093 	address = address & huge_page_mask(h);
5094 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5095 			vma->vm_pgoff;
5096 	mapping = vma->vm_file->f_mapping;
5097 
5098 	/*
5099 	 * Take the mapping lock for the duration of the table walk. As
5100 	 * this mapping should be shared between all the VMAs,
5101 	 * __unmap_hugepage_range() is called as the lock is already held
5102 	 */
5103 	i_mmap_lock_write(mapping);
5104 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5105 		/* Do not unmap the current VMA */
5106 		if (iter_vma == vma)
5107 			continue;
5108 
5109 		/*
5110 		 * Shared VMAs have their own reserves and do not affect
5111 		 * MAP_PRIVATE accounting but it is possible that a shared
5112 		 * VMA is using the same page so check and skip such VMAs.
5113 		 */
5114 		if (iter_vma->vm_flags & VM_MAYSHARE)
5115 			continue;
5116 
5117 		/*
5118 		 * Unmap the page from other VMAs without their own reserves.
5119 		 * They get marked to be SIGKILLed if they fault in these
5120 		 * areas. This is because a future no-page fault on this VMA
5121 		 * could insert a zeroed page instead of the data existing
5122 		 * from the time of fork. This would look like data corruption
5123 		 */
5124 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5125 			unmap_hugepage_range(iter_vma, address,
5126 					     address + huge_page_size(h), page);
5127 	}
5128 	i_mmap_unlock_write(mapping);
5129 }
5130 
5131 /*
5132  * Hugetlb_cow() should be called with page lock of the original hugepage held.
5133  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5134  * cannot race with other handlers or page migration.
5135  * Keep the pte_same checks anyway to make transition from the mutex easier.
5136  */
5137 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5138 		       unsigned long address, pte_t *ptep,
5139 		       struct page *pagecache_page, spinlock_t *ptl)
5140 {
5141 	pte_t pte;
5142 	struct hstate *h = hstate_vma(vma);
5143 	struct page *old_page, *new_page;
5144 	int outside_reserve = 0;
5145 	vm_fault_t ret = 0;
5146 	unsigned long haddr = address & huge_page_mask(h);
5147 	struct mmu_notifier_range range;
5148 
5149 	pte = huge_ptep_get(ptep);
5150 	old_page = pte_page(pte);
5151 
5152 retry_avoidcopy:
5153 	/* If no-one else is actually using this page, avoid the copy
5154 	 * and just make the page writable */
5155 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5156 		page_move_anon_rmap(old_page, vma);
5157 		set_huge_ptep_writable(vma, haddr, ptep);
5158 		return 0;
5159 	}
5160 
5161 	/*
5162 	 * If the process that created a MAP_PRIVATE mapping is about to
5163 	 * perform a COW due to a shared page count, attempt to satisfy
5164 	 * the allocation without using the existing reserves. The pagecache
5165 	 * page is used to determine if the reserve at this address was
5166 	 * consumed or not. If reserves were used, a partial faulted mapping
5167 	 * at the time of fork() could consume its reserves on COW instead
5168 	 * of the full address range.
5169 	 */
5170 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5171 			old_page != pagecache_page)
5172 		outside_reserve = 1;
5173 
5174 	get_page(old_page);
5175 
5176 	/*
5177 	 * Drop page table lock as buddy allocator may be called. It will
5178 	 * be acquired again before returning to the caller, as expected.
5179 	 */
5180 	spin_unlock(ptl);
5181 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5182 
5183 	if (IS_ERR(new_page)) {
5184 		/*
5185 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5186 		 * it is due to references held by a child and an insufficient
5187 		 * huge page pool. To guarantee the original mappers
5188 		 * reliability, unmap the page from child processes. The child
5189 		 * may get SIGKILLed if it later faults.
5190 		 */
5191 		if (outside_reserve) {
5192 			struct address_space *mapping = vma->vm_file->f_mapping;
5193 			pgoff_t idx;
5194 			u32 hash;
5195 
5196 			put_page(old_page);
5197 			BUG_ON(huge_pte_none(pte));
5198 			/*
5199 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5200 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5201 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5202 			 * here is OK as COW mappings do not interact with
5203 			 * PMD sharing.
5204 			 *
5205 			 * Reacquire both after unmap operation.
5206 			 */
5207 			idx = vma_hugecache_offset(h, vma, haddr);
5208 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5209 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5210 			i_mmap_unlock_read(mapping);
5211 
5212 			unmap_ref_private(mm, vma, old_page, haddr);
5213 
5214 			i_mmap_lock_read(mapping);
5215 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5216 			spin_lock(ptl);
5217 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5218 			if (likely(ptep &&
5219 				   pte_same(huge_ptep_get(ptep), pte)))
5220 				goto retry_avoidcopy;
5221 			/*
5222 			 * race occurs while re-acquiring page table
5223 			 * lock, and our job is done.
5224 			 */
5225 			return 0;
5226 		}
5227 
5228 		ret = vmf_error(PTR_ERR(new_page));
5229 		goto out_release_old;
5230 	}
5231 
5232 	/*
5233 	 * When the original hugepage is shared one, it does not have
5234 	 * anon_vma prepared.
5235 	 */
5236 	if (unlikely(anon_vma_prepare(vma))) {
5237 		ret = VM_FAULT_OOM;
5238 		goto out_release_all;
5239 	}
5240 
5241 	copy_user_huge_page(new_page, old_page, address, vma,
5242 			    pages_per_huge_page(h));
5243 	__SetPageUptodate(new_page);
5244 
5245 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5246 				haddr + huge_page_size(h));
5247 	mmu_notifier_invalidate_range_start(&range);
5248 
5249 	/*
5250 	 * Retake the page table lock to check for racing updates
5251 	 * before the page tables are altered
5252 	 */
5253 	spin_lock(ptl);
5254 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5255 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5256 		ClearHPageRestoreReserve(new_page);
5257 
5258 		/* Break COW */
5259 		huge_ptep_clear_flush(vma, haddr, ptep);
5260 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5261 		page_remove_rmap(old_page, true);
5262 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5263 		set_huge_pte_at(mm, haddr, ptep,
5264 				make_huge_pte(vma, new_page, 1));
5265 		SetHPageMigratable(new_page);
5266 		/* Make the old page be freed below */
5267 		new_page = old_page;
5268 	}
5269 	spin_unlock(ptl);
5270 	mmu_notifier_invalidate_range_end(&range);
5271 out_release_all:
5272 	/* No restore in case of successful pagetable update (Break COW) */
5273 	if (new_page != old_page)
5274 		restore_reserve_on_error(h, vma, haddr, new_page);
5275 	put_page(new_page);
5276 out_release_old:
5277 	put_page(old_page);
5278 
5279 	spin_lock(ptl); /* Caller expects lock to be held */
5280 	return ret;
5281 }
5282 
5283 /* Return the pagecache page at a given address within a VMA */
5284 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5285 			struct vm_area_struct *vma, unsigned long address)
5286 {
5287 	struct address_space *mapping;
5288 	pgoff_t idx;
5289 
5290 	mapping = vma->vm_file->f_mapping;
5291 	idx = vma_hugecache_offset(h, vma, address);
5292 
5293 	return find_lock_page(mapping, idx);
5294 }
5295 
5296 /*
5297  * Return whether there is a pagecache page to back given address within VMA.
5298  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5299  */
5300 static bool hugetlbfs_pagecache_present(struct hstate *h,
5301 			struct vm_area_struct *vma, unsigned long address)
5302 {
5303 	struct address_space *mapping;
5304 	pgoff_t idx;
5305 	struct page *page;
5306 
5307 	mapping = vma->vm_file->f_mapping;
5308 	idx = vma_hugecache_offset(h, vma, address);
5309 
5310 	page = find_get_page(mapping, idx);
5311 	if (page)
5312 		put_page(page);
5313 	return page != NULL;
5314 }
5315 
5316 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5317 			   pgoff_t idx)
5318 {
5319 	struct inode *inode = mapping->host;
5320 	struct hstate *h = hstate_inode(inode);
5321 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5322 
5323 	if (err)
5324 		return err;
5325 	ClearHPageRestoreReserve(page);
5326 
5327 	/*
5328 	 * set page dirty so that it will not be removed from cache/file
5329 	 * by non-hugetlbfs specific code paths.
5330 	 */
5331 	set_page_dirty(page);
5332 
5333 	spin_lock(&inode->i_lock);
5334 	inode->i_blocks += blocks_per_huge_page(h);
5335 	spin_unlock(&inode->i_lock);
5336 	return 0;
5337 }
5338 
5339 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5340 						  struct address_space *mapping,
5341 						  pgoff_t idx,
5342 						  unsigned int flags,
5343 						  unsigned long haddr,
5344 						  unsigned long addr,
5345 						  unsigned long reason)
5346 {
5347 	vm_fault_t ret;
5348 	u32 hash;
5349 	struct vm_fault vmf = {
5350 		.vma = vma,
5351 		.address = haddr,
5352 		.real_address = addr,
5353 		.flags = flags,
5354 
5355 		/*
5356 		 * Hard to debug if it ends up being
5357 		 * used by a callee that assumes
5358 		 * something about the other
5359 		 * uninitialized fields... same as in
5360 		 * memory.c
5361 		 */
5362 	};
5363 
5364 	/*
5365 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5366 	 * dropped before handling userfault.  Reacquire
5367 	 * after handling fault to make calling code simpler.
5368 	 */
5369 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5370 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5371 	i_mmap_unlock_read(mapping);
5372 	ret = handle_userfault(&vmf, reason);
5373 	i_mmap_lock_read(mapping);
5374 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5375 
5376 	return ret;
5377 }
5378 
5379 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5380 			struct vm_area_struct *vma,
5381 			struct address_space *mapping, pgoff_t idx,
5382 			unsigned long address, pte_t *ptep, unsigned int flags)
5383 {
5384 	struct hstate *h = hstate_vma(vma);
5385 	vm_fault_t ret = VM_FAULT_SIGBUS;
5386 	int anon_rmap = 0;
5387 	unsigned long size;
5388 	struct page *page;
5389 	pte_t new_pte;
5390 	spinlock_t *ptl;
5391 	unsigned long haddr = address & huge_page_mask(h);
5392 	bool new_page, new_pagecache_page = false;
5393 
5394 	/*
5395 	 * Currently, we are forced to kill the process in the event the
5396 	 * original mapper has unmapped pages from the child due to a failed
5397 	 * COW. Warn that such a situation has occurred as it may not be obvious
5398 	 */
5399 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5400 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5401 			   current->pid);
5402 		return ret;
5403 	}
5404 
5405 	/*
5406 	 * We can not race with truncation due to holding i_mmap_rwsem.
5407 	 * i_size is modified when holding i_mmap_rwsem, so check here
5408 	 * once for faults beyond end of file.
5409 	 */
5410 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5411 	if (idx >= size)
5412 		goto out;
5413 
5414 retry:
5415 	new_page = false;
5416 	page = find_lock_page(mapping, idx);
5417 	if (!page) {
5418 		/* Check for page in userfault range */
5419 		if (userfaultfd_missing(vma)) {
5420 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5421 						       flags, haddr, address,
5422 						       VM_UFFD_MISSING);
5423 			goto out;
5424 		}
5425 
5426 		page = alloc_huge_page(vma, haddr, 0);
5427 		if (IS_ERR(page)) {
5428 			/*
5429 			 * Returning error will result in faulting task being
5430 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5431 			 * tasks from racing to fault in the same page which
5432 			 * could result in false unable to allocate errors.
5433 			 * Page migration does not take the fault mutex, but
5434 			 * does a clear then write of pte's under page table
5435 			 * lock.  Page fault code could race with migration,
5436 			 * notice the clear pte and try to allocate a page
5437 			 * here.  Before returning error, get ptl and make
5438 			 * sure there really is no pte entry.
5439 			 */
5440 			ptl = huge_pte_lock(h, mm, ptep);
5441 			ret = 0;
5442 			if (huge_pte_none(huge_ptep_get(ptep)))
5443 				ret = vmf_error(PTR_ERR(page));
5444 			spin_unlock(ptl);
5445 			goto out;
5446 		}
5447 		clear_huge_page(page, address, pages_per_huge_page(h));
5448 		__SetPageUptodate(page);
5449 		new_page = true;
5450 
5451 		if (vma->vm_flags & VM_MAYSHARE) {
5452 			int err = huge_add_to_page_cache(page, mapping, idx);
5453 			if (err) {
5454 				put_page(page);
5455 				if (err == -EEXIST)
5456 					goto retry;
5457 				goto out;
5458 			}
5459 			new_pagecache_page = true;
5460 		} else {
5461 			lock_page(page);
5462 			if (unlikely(anon_vma_prepare(vma))) {
5463 				ret = VM_FAULT_OOM;
5464 				goto backout_unlocked;
5465 			}
5466 			anon_rmap = 1;
5467 		}
5468 	} else {
5469 		/*
5470 		 * If memory error occurs between mmap() and fault, some process
5471 		 * don't have hwpoisoned swap entry for errored virtual address.
5472 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5473 		 */
5474 		if (unlikely(PageHWPoison(page))) {
5475 			ret = VM_FAULT_HWPOISON_LARGE |
5476 				VM_FAULT_SET_HINDEX(hstate_index(h));
5477 			goto backout_unlocked;
5478 		}
5479 
5480 		/* Check for page in userfault range. */
5481 		if (userfaultfd_minor(vma)) {
5482 			unlock_page(page);
5483 			put_page(page);
5484 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5485 						       flags, haddr, address,
5486 						       VM_UFFD_MINOR);
5487 			goto out;
5488 		}
5489 	}
5490 
5491 	/*
5492 	 * If we are going to COW a private mapping later, we examine the
5493 	 * pending reservations for this page now. This will ensure that
5494 	 * any allocations necessary to record that reservation occur outside
5495 	 * the spinlock.
5496 	 */
5497 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5498 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5499 			ret = VM_FAULT_OOM;
5500 			goto backout_unlocked;
5501 		}
5502 		/* Just decrements count, does not deallocate */
5503 		vma_end_reservation(h, vma, haddr);
5504 	}
5505 
5506 	ptl = huge_pte_lock(h, mm, ptep);
5507 	ret = 0;
5508 	if (!huge_pte_none(huge_ptep_get(ptep)))
5509 		goto backout;
5510 
5511 	if (anon_rmap) {
5512 		ClearHPageRestoreReserve(page);
5513 		hugepage_add_new_anon_rmap(page, vma, haddr);
5514 	} else
5515 		page_dup_rmap(page, true);
5516 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5517 				&& (vma->vm_flags & VM_SHARED)));
5518 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5519 
5520 	hugetlb_count_add(pages_per_huge_page(h), mm);
5521 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5522 		/* Optimization, do the COW without a second fault */
5523 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5524 	}
5525 
5526 	spin_unlock(ptl);
5527 
5528 	/*
5529 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5530 	 * found in the pagecache may not have HPageMigratableset if they have
5531 	 * been isolated for migration.
5532 	 */
5533 	if (new_page)
5534 		SetHPageMigratable(page);
5535 
5536 	unlock_page(page);
5537 out:
5538 	return ret;
5539 
5540 backout:
5541 	spin_unlock(ptl);
5542 backout_unlocked:
5543 	unlock_page(page);
5544 	/* restore reserve for newly allocated pages not in page cache */
5545 	if (new_page && !new_pagecache_page)
5546 		restore_reserve_on_error(h, vma, haddr, page);
5547 	put_page(page);
5548 	goto out;
5549 }
5550 
5551 #ifdef CONFIG_SMP
5552 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5553 {
5554 	unsigned long key[2];
5555 	u32 hash;
5556 
5557 	key[0] = (unsigned long) mapping;
5558 	key[1] = idx;
5559 
5560 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5561 
5562 	return hash & (num_fault_mutexes - 1);
5563 }
5564 #else
5565 /*
5566  * For uniprocessor systems we always use a single mutex, so just
5567  * return 0 and avoid the hashing overhead.
5568  */
5569 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5570 {
5571 	return 0;
5572 }
5573 #endif
5574 
5575 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5576 			unsigned long address, unsigned int flags)
5577 {
5578 	pte_t *ptep, entry;
5579 	spinlock_t *ptl;
5580 	vm_fault_t ret;
5581 	u32 hash;
5582 	pgoff_t idx;
5583 	struct page *page = NULL;
5584 	struct page *pagecache_page = NULL;
5585 	struct hstate *h = hstate_vma(vma);
5586 	struct address_space *mapping;
5587 	int need_wait_lock = 0;
5588 	unsigned long haddr = address & huge_page_mask(h);
5589 
5590 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5591 	if (ptep) {
5592 		/*
5593 		 * Since we hold no locks, ptep could be stale.  That is
5594 		 * OK as we are only making decisions based on content and
5595 		 * not actually modifying content here.
5596 		 */
5597 		entry = huge_ptep_get(ptep);
5598 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5599 			migration_entry_wait_huge(vma, mm, ptep);
5600 			return 0;
5601 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5602 			return VM_FAULT_HWPOISON_LARGE |
5603 				VM_FAULT_SET_HINDEX(hstate_index(h));
5604 	}
5605 
5606 	/*
5607 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5608 	 * until finished with ptep.  This serves two purposes:
5609 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5610 	 *    and making the ptep no longer valid.
5611 	 * 2) It synchronizes us with i_size modifications during truncation.
5612 	 *
5613 	 * ptep could have already be assigned via huge_pte_offset.  That
5614 	 * is OK, as huge_pte_alloc will return the same value unless
5615 	 * something has changed.
5616 	 */
5617 	mapping = vma->vm_file->f_mapping;
5618 	i_mmap_lock_read(mapping);
5619 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5620 	if (!ptep) {
5621 		i_mmap_unlock_read(mapping);
5622 		return VM_FAULT_OOM;
5623 	}
5624 
5625 	/*
5626 	 * Serialize hugepage allocation and instantiation, so that we don't
5627 	 * get spurious allocation failures if two CPUs race to instantiate
5628 	 * the same page in the page cache.
5629 	 */
5630 	idx = vma_hugecache_offset(h, vma, haddr);
5631 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5632 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5633 
5634 	entry = huge_ptep_get(ptep);
5635 	if (huge_pte_none(entry)) {
5636 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5637 		goto out_mutex;
5638 	}
5639 
5640 	ret = 0;
5641 
5642 	/*
5643 	 * entry could be a migration/hwpoison entry at this point, so this
5644 	 * check prevents the kernel from going below assuming that we have
5645 	 * an active hugepage in pagecache. This goto expects the 2nd page
5646 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5647 	 * properly handle it.
5648 	 */
5649 	if (!pte_present(entry))
5650 		goto out_mutex;
5651 
5652 	/*
5653 	 * If we are going to COW the mapping later, we examine the pending
5654 	 * reservations for this page now. This will ensure that any
5655 	 * allocations necessary to record that reservation occur outside the
5656 	 * spinlock. For private mappings, we also lookup the pagecache
5657 	 * page now as it is used to determine if a reservation has been
5658 	 * consumed.
5659 	 */
5660 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5661 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5662 			ret = VM_FAULT_OOM;
5663 			goto out_mutex;
5664 		}
5665 		/* Just decrements count, does not deallocate */
5666 		vma_end_reservation(h, vma, haddr);
5667 
5668 		if (!(vma->vm_flags & VM_MAYSHARE))
5669 			pagecache_page = hugetlbfs_pagecache_page(h,
5670 								vma, haddr);
5671 	}
5672 
5673 	ptl = huge_pte_lock(h, mm, ptep);
5674 
5675 	/* Check for a racing update before calling hugetlb_cow */
5676 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5677 		goto out_ptl;
5678 
5679 	/*
5680 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5681 	 * pagecache_page, so here we need take the former one
5682 	 * when page != pagecache_page or !pagecache_page.
5683 	 */
5684 	page = pte_page(entry);
5685 	if (page != pagecache_page)
5686 		if (!trylock_page(page)) {
5687 			need_wait_lock = 1;
5688 			goto out_ptl;
5689 		}
5690 
5691 	get_page(page);
5692 
5693 	if (flags & FAULT_FLAG_WRITE) {
5694 		if (!huge_pte_write(entry)) {
5695 			ret = hugetlb_cow(mm, vma, address, ptep,
5696 					  pagecache_page, ptl);
5697 			goto out_put_page;
5698 		}
5699 		entry = huge_pte_mkdirty(entry);
5700 	}
5701 	entry = pte_mkyoung(entry);
5702 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5703 						flags & FAULT_FLAG_WRITE))
5704 		update_mmu_cache(vma, haddr, ptep);
5705 out_put_page:
5706 	if (page != pagecache_page)
5707 		unlock_page(page);
5708 	put_page(page);
5709 out_ptl:
5710 	spin_unlock(ptl);
5711 
5712 	if (pagecache_page) {
5713 		unlock_page(pagecache_page);
5714 		put_page(pagecache_page);
5715 	}
5716 out_mutex:
5717 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5718 	i_mmap_unlock_read(mapping);
5719 	/*
5720 	 * Generally it's safe to hold refcount during waiting page lock. But
5721 	 * here we just wait to defer the next page fault to avoid busy loop and
5722 	 * the page is not used after unlocked before returning from the current
5723 	 * page fault. So we are safe from accessing freed page, even if we wait
5724 	 * here without taking refcount.
5725 	 */
5726 	if (need_wait_lock)
5727 		wait_on_page_locked(page);
5728 	return ret;
5729 }
5730 
5731 #ifdef CONFIG_USERFAULTFD
5732 /*
5733  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5734  * modifications for huge pages.
5735  */
5736 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5737 			    pte_t *dst_pte,
5738 			    struct vm_area_struct *dst_vma,
5739 			    unsigned long dst_addr,
5740 			    unsigned long src_addr,
5741 			    enum mcopy_atomic_mode mode,
5742 			    struct page **pagep)
5743 {
5744 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5745 	struct hstate *h = hstate_vma(dst_vma);
5746 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5747 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5748 	unsigned long size;
5749 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5750 	pte_t _dst_pte;
5751 	spinlock_t *ptl;
5752 	int ret = -ENOMEM;
5753 	struct page *page;
5754 	int writable;
5755 	bool page_in_pagecache = false;
5756 
5757 	if (is_continue) {
5758 		ret = -EFAULT;
5759 		page = find_lock_page(mapping, idx);
5760 		if (!page)
5761 			goto out;
5762 		page_in_pagecache = true;
5763 	} else if (!*pagep) {
5764 		/* If a page already exists, then it's UFFDIO_COPY for
5765 		 * a non-missing case. Return -EEXIST.
5766 		 */
5767 		if (vm_shared &&
5768 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5769 			ret = -EEXIST;
5770 			goto out;
5771 		}
5772 
5773 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5774 		if (IS_ERR(page)) {
5775 			ret = -ENOMEM;
5776 			goto out;
5777 		}
5778 
5779 		ret = copy_huge_page_from_user(page,
5780 						(const void __user *) src_addr,
5781 						pages_per_huge_page(h), false);
5782 
5783 		/* fallback to copy_from_user outside mmap_lock */
5784 		if (unlikely(ret)) {
5785 			ret = -ENOENT;
5786 			/* Free the allocated page which may have
5787 			 * consumed a reservation.
5788 			 */
5789 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5790 			put_page(page);
5791 
5792 			/* Allocate a temporary page to hold the copied
5793 			 * contents.
5794 			 */
5795 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5796 			if (!page) {
5797 				ret = -ENOMEM;
5798 				goto out;
5799 			}
5800 			*pagep = page;
5801 			/* Set the outparam pagep and return to the caller to
5802 			 * copy the contents outside the lock. Don't free the
5803 			 * page.
5804 			 */
5805 			goto out;
5806 		}
5807 	} else {
5808 		if (vm_shared &&
5809 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5810 			put_page(*pagep);
5811 			ret = -EEXIST;
5812 			*pagep = NULL;
5813 			goto out;
5814 		}
5815 
5816 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5817 		if (IS_ERR(page)) {
5818 			ret = -ENOMEM;
5819 			*pagep = NULL;
5820 			goto out;
5821 		}
5822 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5823 				    pages_per_huge_page(h));
5824 		put_page(*pagep);
5825 		*pagep = NULL;
5826 	}
5827 
5828 	/*
5829 	 * The memory barrier inside __SetPageUptodate makes sure that
5830 	 * preceding stores to the page contents become visible before
5831 	 * the set_pte_at() write.
5832 	 */
5833 	__SetPageUptodate(page);
5834 
5835 	/* Add shared, newly allocated pages to the page cache. */
5836 	if (vm_shared && !is_continue) {
5837 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5838 		ret = -EFAULT;
5839 		if (idx >= size)
5840 			goto out_release_nounlock;
5841 
5842 		/*
5843 		 * Serialization between remove_inode_hugepages() and
5844 		 * huge_add_to_page_cache() below happens through the
5845 		 * hugetlb_fault_mutex_table that here must be hold by
5846 		 * the caller.
5847 		 */
5848 		ret = huge_add_to_page_cache(page, mapping, idx);
5849 		if (ret)
5850 			goto out_release_nounlock;
5851 		page_in_pagecache = true;
5852 	}
5853 
5854 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5855 	spin_lock(ptl);
5856 
5857 	/*
5858 	 * Recheck the i_size after holding PT lock to make sure not
5859 	 * to leave any page mapped (as page_mapped()) beyond the end
5860 	 * of the i_size (remove_inode_hugepages() is strict about
5861 	 * enforcing that). If we bail out here, we'll also leave a
5862 	 * page in the radix tree in the vm_shared case beyond the end
5863 	 * of the i_size, but remove_inode_hugepages() will take care
5864 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5865 	 */
5866 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5867 	ret = -EFAULT;
5868 	if (idx >= size)
5869 		goto out_release_unlock;
5870 
5871 	ret = -EEXIST;
5872 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5873 		goto out_release_unlock;
5874 
5875 	if (vm_shared) {
5876 		page_dup_rmap(page, true);
5877 	} else {
5878 		ClearHPageRestoreReserve(page);
5879 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5880 	}
5881 
5882 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5883 	if (is_continue && !vm_shared)
5884 		writable = 0;
5885 	else
5886 		writable = dst_vma->vm_flags & VM_WRITE;
5887 
5888 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5889 	if (writable)
5890 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5891 	_dst_pte = pte_mkyoung(_dst_pte);
5892 
5893 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5894 
5895 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5896 					dst_vma->vm_flags & VM_WRITE);
5897 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5898 
5899 	/* No need to invalidate - it was non-present before */
5900 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5901 
5902 	spin_unlock(ptl);
5903 	if (!is_continue)
5904 		SetHPageMigratable(page);
5905 	if (vm_shared || is_continue)
5906 		unlock_page(page);
5907 	ret = 0;
5908 out:
5909 	return ret;
5910 out_release_unlock:
5911 	spin_unlock(ptl);
5912 	if (vm_shared || is_continue)
5913 		unlock_page(page);
5914 out_release_nounlock:
5915 	if (!page_in_pagecache)
5916 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5917 	put_page(page);
5918 	goto out;
5919 }
5920 #endif /* CONFIG_USERFAULTFD */
5921 
5922 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5923 				 int refs, struct page **pages,
5924 				 struct vm_area_struct **vmas)
5925 {
5926 	int nr;
5927 
5928 	for (nr = 0; nr < refs; nr++) {
5929 		if (likely(pages))
5930 			pages[nr] = mem_map_offset(page, nr);
5931 		if (vmas)
5932 			vmas[nr] = vma;
5933 	}
5934 }
5935 
5936 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5937 			 struct page **pages, struct vm_area_struct **vmas,
5938 			 unsigned long *position, unsigned long *nr_pages,
5939 			 long i, unsigned int flags, int *locked)
5940 {
5941 	unsigned long pfn_offset;
5942 	unsigned long vaddr = *position;
5943 	unsigned long remainder = *nr_pages;
5944 	struct hstate *h = hstate_vma(vma);
5945 	int err = -EFAULT, refs;
5946 
5947 	while (vaddr < vma->vm_end && remainder) {
5948 		pte_t *pte;
5949 		spinlock_t *ptl = NULL;
5950 		int absent;
5951 		struct page *page;
5952 
5953 		/*
5954 		 * If we have a pending SIGKILL, don't keep faulting pages and
5955 		 * potentially allocating memory.
5956 		 */
5957 		if (fatal_signal_pending(current)) {
5958 			remainder = 0;
5959 			break;
5960 		}
5961 
5962 		/*
5963 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5964 		 * each hugepage.  We have to make sure we get the
5965 		 * first, for the page indexing below to work.
5966 		 *
5967 		 * Note that page table lock is not held when pte is null.
5968 		 */
5969 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5970 				      huge_page_size(h));
5971 		if (pte)
5972 			ptl = huge_pte_lock(h, mm, pte);
5973 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5974 
5975 		/*
5976 		 * When coredumping, it suits get_dump_page if we just return
5977 		 * an error where there's an empty slot with no huge pagecache
5978 		 * to back it.  This way, we avoid allocating a hugepage, and
5979 		 * the sparse dumpfile avoids allocating disk blocks, but its
5980 		 * huge holes still show up with zeroes where they need to be.
5981 		 */
5982 		if (absent && (flags & FOLL_DUMP) &&
5983 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5984 			if (pte)
5985 				spin_unlock(ptl);
5986 			remainder = 0;
5987 			break;
5988 		}
5989 
5990 		/*
5991 		 * We need call hugetlb_fault for both hugepages under migration
5992 		 * (in which case hugetlb_fault waits for the migration,) and
5993 		 * hwpoisoned hugepages (in which case we need to prevent the
5994 		 * caller from accessing to them.) In order to do this, we use
5995 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5996 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5997 		 * both cases, and because we can't follow correct pages
5998 		 * directly from any kind of swap entries.
5999 		 */
6000 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
6001 		    ((flags & FOLL_WRITE) &&
6002 		      !huge_pte_write(huge_ptep_get(pte)))) {
6003 			vm_fault_t ret;
6004 			unsigned int fault_flags = 0;
6005 
6006 			if (pte)
6007 				spin_unlock(ptl);
6008 			if (flags & FOLL_WRITE)
6009 				fault_flags |= FAULT_FLAG_WRITE;
6010 			if (locked)
6011 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6012 					FAULT_FLAG_KILLABLE;
6013 			if (flags & FOLL_NOWAIT)
6014 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6015 					FAULT_FLAG_RETRY_NOWAIT;
6016 			if (flags & FOLL_TRIED) {
6017 				/*
6018 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6019 				 * FAULT_FLAG_TRIED can co-exist
6020 				 */
6021 				fault_flags |= FAULT_FLAG_TRIED;
6022 			}
6023 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6024 			if (ret & VM_FAULT_ERROR) {
6025 				err = vm_fault_to_errno(ret, flags);
6026 				remainder = 0;
6027 				break;
6028 			}
6029 			if (ret & VM_FAULT_RETRY) {
6030 				if (locked &&
6031 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6032 					*locked = 0;
6033 				*nr_pages = 0;
6034 				/*
6035 				 * VM_FAULT_RETRY must not return an
6036 				 * error, it will return zero
6037 				 * instead.
6038 				 *
6039 				 * No need to update "position" as the
6040 				 * caller will not check it after
6041 				 * *nr_pages is set to 0.
6042 				 */
6043 				return i;
6044 			}
6045 			continue;
6046 		}
6047 
6048 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6049 		page = pte_page(huge_ptep_get(pte));
6050 
6051 		/*
6052 		 * If subpage information not requested, update counters
6053 		 * and skip the same_page loop below.
6054 		 */
6055 		if (!pages && !vmas && !pfn_offset &&
6056 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6057 		    (remainder >= pages_per_huge_page(h))) {
6058 			vaddr += huge_page_size(h);
6059 			remainder -= pages_per_huge_page(h);
6060 			i += pages_per_huge_page(h);
6061 			spin_unlock(ptl);
6062 			continue;
6063 		}
6064 
6065 		/* vaddr may not be aligned to PAGE_SIZE */
6066 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6067 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6068 
6069 		if (pages || vmas)
6070 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6071 					     vma, refs,
6072 					     likely(pages) ? pages + i : NULL,
6073 					     vmas ? vmas + i : NULL);
6074 
6075 		if (pages) {
6076 			/*
6077 			 * try_grab_compound_head() should always succeed here,
6078 			 * because: a) we hold the ptl lock, and b) we've just
6079 			 * checked that the huge page is present in the page
6080 			 * tables. If the huge page is present, then the tail
6081 			 * pages must also be present. The ptl prevents the
6082 			 * head page and tail pages from being rearranged in
6083 			 * any way. So this page must be available at this
6084 			 * point, unless the page refcount overflowed:
6085 			 */
6086 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
6087 								 refs,
6088 								 flags))) {
6089 				spin_unlock(ptl);
6090 				remainder = 0;
6091 				err = -ENOMEM;
6092 				break;
6093 			}
6094 		}
6095 
6096 		vaddr += (refs << PAGE_SHIFT);
6097 		remainder -= refs;
6098 		i += refs;
6099 
6100 		spin_unlock(ptl);
6101 	}
6102 	*nr_pages = remainder;
6103 	/*
6104 	 * setting position is actually required only if remainder is
6105 	 * not zero but it's faster not to add a "if (remainder)"
6106 	 * branch.
6107 	 */
6108 	*position = vaddr;
6109 
6110 	return i ? i : err;
6111 }
6112 
6113 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6114 		unsigned long address, unsigned long end, pgprot_t newprot)
6115 {
6116 	struct mm_struct *mm = vma->vm_mm;
6117 	unsigned long start = address;
6118 	pte_t *ptep;
6119 	pte_t pte;
6120 	struct hstate *h = hstate_vma(vma);
6121 	unsigned long pages = 0;
6122 	bool shared_pmd = false;
6123 	struct mmu_notifier_range range;
6124 
6125 	/*
6126 	 * In the case of shared PMDs, the area to flush could be beyond
6127 	 * start/end.  Set range.start/range.end to cover the maximum possible
6128 	 * range if PMD sharing is possible.
6129 	 */
6130 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6131 				0, vma, mm, start, end);
6132 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6133 
6134 	BUG_ON(address >= end);
6135 	flush_cache_range(vma, range.start, range.end);
6136 
6137 	mmu_notifier_invalidate_range_start(&range);
6138 	i_mmap_lock_write(vma->vm_file->f_mapping);
6139 	for (; address < end; address += huge_page_size(h)) {
6140 		spinlock_t *ptl;
6141 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6142 		if (!ptep)
6143 			continue;
6144 		ptl = huge_pte_lock(h, mm, ptep);
6145 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6146 			pages++;
6147 			spin_unlock(ptl);
6148 			shared_pmd = true;
6149 			continue;
6150 		}
6151 		pte = huge_ptep_get(ptep);
6152 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6153 			spin_unlock(ptl);
6154 			continue;
6155 		}
6156 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6157 			swp_entry_t entry = pte_to_swp_entry(pte);
6158 
6159 			if (is_writable_migration_entry(entry)) {
6160 				pte_t newpte;
6161 
6162 				entry = make_readable_migration_entry(
6163 							swp_offset(entry));
6164 				newpte = swp_entry_to_pte(entry);
6165 				set_huge_swap_pte_at(mm, address, ptep,
6166 						     newpte, huge_page_size(h));
6167 				pages++;
6168 			}
6169 			spin_unlock(ptl);
6170 			continue;
6171 		}
6172 		if (!huge_pte_none(pte)) {
6173 			pte_t old_pte;
6174 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6175 
6176 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6177 			pte = huge_pte_modify(old_pte, newprot);
6178 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6179 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6180 			pages++;
6181 		}
6182 		spin_unlock(ptl);
6183 	}
6184 	/*
6185 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6186 	 * may have cleared our pud entry and done put_page on the page table:
6187 	 * once we release i_mmap_rwsem, another task can do the final put_page
6188 	 * and that page table be reused and filled with junk.  If we actually
6189 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6190 	 */
6191 	if (shared_pmd)
6192 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6193 	else
6194 		flush_hugetlb_tlb_range(vma, start, end);
6195 	/*
6196 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6197 	 * page table protection not changing it to point to a new page.
6198 	 *
6199 	 * See Documentation/vm/mmu_notifier.rst
6200 	 */
6201 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6202 	mmu_notifier_invalidate_range_end(&range);
6203 
6204 	return pages << h->order;
6205 }
6206 
6207 /* Return true if reservation was successful, false otherwise.  */
6208 bool hugetlb_reserve_pages(struct inode *inode,
6209 					long from, long to,
6210 					struct vm_area_struct *vma,
6211 					vm_flags_t vm_flags)
6212 {
6213 	long chg, add = -1;
6214 	struct hstate *h = hstate_inode(inode);
6215 	struct hugepage_subpool *spool = subpool_inode(inode);
6216 	struct resv_map *resv_map;
6217 	struct hugetlb_cgroup *h_cg = NULL;
6218 	long gbl_reserve, regions_needed = 0;
6219 
6220 	/* This should never happen */
6221 	if (from > to) {
6222 		VM_WARN(1, "%s called with a negative range\n", __func__);
6223 		return false;
6224 	}
6225 
6226 	/*
6227 	 * Only apply hugepage reservation if asked. At fault time, an
6228 	 * attempt will be made for VM_NORESERVE to allocate a page
6229 	 * without using reserves
6230 	 */
6231 	if (vm_flags & VM_NORESERVE)
6232 		return true;
6233 
6234 	/*
6235 	 * Shared mappings base their reservation on the number of pages that
6236 	 * are already allocated on behalf of the file. Private mappings need
6237 	 * to reserve the full area even if read-only as mprotect() may be
6238 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6239 	 */
6240 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6241 		/*
6242 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6243 		 * called for inodes for which resv_maps were created (see
6244 		 * hugetlbfs_get_inode).
6245 		 */
6246 		resv_map = inode_resv_map(inode);
6247 
6248 		chg = region_chg(resv_map, from, to, &regions_needed);
6249 
6250 	} else {
6251 		/* Private mapping. */
6252 		resv_map = resv_map_alloc();
6253 		if (!resv_map)
6254 			return false;
6255 
6256 		chg = to - from;
6257 
6258 		set_vma_resv_map(vma, resv_map);
6259 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6260 	}
6261 
6262 	if (chg < 0)
6263 		goto out_err;
6264 
6265 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6266 				chg * pages_per_huge_page(h), &h_cg) < 0)
6267 		goto out_err;
6268 
6269 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6270 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6271 		 * of the resv_map.
6272 		 */
6273 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6274 	}
6275 
6276 	/*
6277 	 * There must be enough pages in the subpool for the mapping. If
6278 	 * the subpool has a minimum size, there may be some global
6279 	 * reservations already in place (gbl_reserve).
6280 	 */
6281 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6282 	if (gbl_reserve < 0)
6283 		goto out_uncharge_cgroup;
6284 
6285 	/*
6286 	 * Check enough hugepages are available for the reservation.
6287 	 * Hand the pages back to the subpool if there are not
6288 	 */
6289 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6290 		goto out_put_pages;
6291 
6292 	/*
6293 	 * Account for the reservations made. Shared mappings record regions
6294 	 * that have reservations as they are shared by multiple VMAs.
6295 	 * When the last VMA disappears, the region map says how much
6296 	 * the reservation was and the page cache tells how much of
6297 	 * the reservation was consumed. Private mappings are per-VMA and
6298 	 * only the consumed reservations are tracked. When the VMA
6299 	 * disappears, the original reservation is the VMA size and the
6300 	 * consumed reservations are stored in the map. Hence, nothing
6301 	 * else has to be done for private mappings here
6302 	 */
6303 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6304 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6305 
6306 		if (unlikely(add < 0)) {
6307 			hugetlb_acct_memory(h, -gbl_reserve);
6308 			goto out_put_pages;
6309 		} else if (unlikely(chg > add)) {
6310 			/*
6311 			 * pages in this range were added to the reserve
6312 			 * map between region_chg and region_add.  This
6313 			 * indicates a race with alloc_huge_page.  Adjust
6314 			 * the subpool and reserve counts modified above
6315 			 * based on the difference.
6316 			 */
6317 			long rsv_adjust;
6318 
6319 			/*
6320 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6321 			 * reference to h_cg->css. See comment below for detail.
6322 			 */
6323 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6324 				hstate_index(h),
6325 				(chg - add) * pages_per_huge_page(h), h_cg);
6326 
6327 			rsv_adjust = hugepage_subpool_put_pages(spool,
6328 								chg - add);
6329 			hugetlb_acct_memory(h, -rsv_adjust);
6330 		} else if (h_cg) {
6331 			/*
6332 			 * The file_regions will hold their own reference to
6333 			 * h_cg->css. So we should release the reference held
6334 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6335 			 * done.
6336 			 */
6337 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6338 		}
6339 	}
6340 	return true;
6341 
6342 out_put_pages:
6343 	/* put back original number of pages, chg */
6344 	(void)hugepage_subpool_put_pages(spool, chg);
6345 out_uncharge_cgroup:
6346 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6347 					    chg * pages_per_huge_page(h), h_cg);
6348 out_err:
6349 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6350 		/* Only call region_abort if the region_chg succeeded but the
6351 		 * region_add failed or didn't run.
6352 		 */
6353 		if (chg >= 0 && add < 0)
6354 			region_abort(resv_map, from, to, regions_needed);
6355 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6356 		kref_put(&resv_map->refs, resv_map_release);
6357 	return false;
6358 }
6359 
6360 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6361 								long freed)
6362 {
6363 	struct hstate *h = hstate_inode(inode);
6364 	struct resv_map *resv_map = inode_resv_map(inode);
6365 	long chg = 0;
6366 	struct hugepage_subpool *spool = subpool_inode(inode);
6367 	long gbl_reserve;
6368 
6369 	/*
6370 	 * Since this routine can be called in the evict inode path for all
6371 	 * hugetlbfs inodes, resv_map could be NULL.
6372 	 */
6373 	if (resv_map) {
6374 		chg = region_del(resv_map, start, end);
6375 		/*
6376 		 * region_del() can fail in the rare case where a region
6377 		 * must be split and another region descriptor can not be
6378 		 * allocated.  If end == LONG_MAX, it will not fail.
6379 		 */
6380 		if (chg < 0)
6381 			return chg;
6382 	}
6383 
6384 	spin_lock(&inode->i_lock);
6385 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6386 	spin_unlock(&inode->i_lock);
6387 
6388 	/*
6389 	 * If the subpool has a minimum size, the number of global
6390 	 * reservations to be released may be adjusted.
6391 	 *
6392 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6393 	 * won't go negative.
6394 	 */
6395 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6396 	hugetlb_acct_memory(h, -gbl_reserve);
6397 
6398 	return 0;
6399 }
6400 
6401 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6402 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6403 				struct vm_area_struct *vma,
6404 				unsigned long addr, pgoff_t idx)
6405 {
6406 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6407 				svma->vm_start;
6408 	unsigned long sbase = saddr & PUD_MASK;
6409 	unsigned long s_end = sbase + PUD_SIZE;
6410 
6411 	/* Allow segments to share if only one is marked locked */
6412 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6413 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6414 
6415 	/*
6416 	 * match the virtual addresses, permission and the alignment of the
6417 	 * page table page.
6418 	 */
6419 	if (pmd_index(addr) != pmd_index(saddr) ||
6420 	    vm_flags != svm_flags ||
6421 	    !range_in_vma(svma, sbase, s_end))
6422 		return 0;
6423 
6424 	return saddr;
6425 }
6426 
6427 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6428 {
6429 	unsigned long base = addr & PUD_MASK;
6430 	unsigned long end = base + PUD_SIZE;
6431 
6432 	/*
6433 	 * check on proper vm_flags and page table alignment
6434 	 */
6435 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6436 		return true;
6437 	return false;
6438 }
6439 
6440 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6441 {
6442 #ifdef CONFIG_USERFAULTFD
6443 	if (uffd_disable_huge_pmd_share(vma))
6444 		return false;
6445 #endif
6446 	return vma_shareable(vma, addr);
6447 }
6448 
6449 /*
6450  * Determine if start,end range within vma could be mapped by shared pmd.
6451  * If yes, adjust start and end to cover range associated with possible
6452  * shared pmd mappings.
6453  */
6454 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6455 				unsigned long *start, unsigned long *end)
6456 {
6457 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6458 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6459 
6460 	/*
6461 	 * vma needs to span at least one aligned PUD size, and the range
6462 	 * must be at least partially within in.
6463 	 */
6464 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6465 		(*end <= v_start) || (*start >= v_end))
6466 		return;
6467 
6468 	/* Extend the range to be PUD aligned for a worst case scenario */
6469 	if (*start > v_start)
6470 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6471 
6472 	if (*end < v_end)
6473 		*end = ALIGN(*end, PUD_SIZE);
6474 }
6475 
6476 /*
6477  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6478  * and returns the corresponding pte. While this is not necessary for the
6479  * !shared pmd case because we can allocate the pmd later as well, it makes the
6480  * code much cleaner.
6481  *
6482  * This routine must be called with i_mmap_rwsem held in at least read mode if
6483  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6484  * table entries associated with the address space.  This is important as we
6485  * are setting up sharing based on existing page table entries (mappings).
6486  */
6487 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6488 		      unsigned long addr, pud_t *pud)
6489 {
6490 	struct address_space *mapping = vma->vm_file->f_mapping;
6491 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6492 			vma->vm_pgoff;
6493 	struct vm_area_struct *svma;
6494 	unsigned long saddr;
6495 	pte_t *spte = NULL;
6496 	pte_t *pte;
6497 	spinlock_t *ptl;
6498 
6499 	i_mmap_assert_locked(mapping);
6500 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6501 		if (svma == vma)
6502 			continue;
6503 
6504 		saddr = page_table_shareable(svma, vma, addr, idx);
6505 		if (saddr) {
6506 			spte = huge_pte_offset(svma->vm_mm, saddr,
6507 					       vma_mmu_pagesize(svma));
6508 			if (spte) {
6509 				get_page(virt_to_page(spte));
6510 				break;
6511 			}
6512 		}
6513 	}
6514 
6515 	if (!spte)
6516 		goto out;
6517 
6518 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6519 	if (pud_none(*pud)) {
6520 		pud_populate(mm, pud,
6521 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6522 		mm_inc_nr_pmds(mm);
6523 	} else {
6524 		put_page(virt_to_page(spte));
6525 	}
6526 	spin_unlock(ptl);
6527 out:
6528 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6529 	return pte;
6530 }
6531 
6532 /*
6533  * unmap huge page backed by shared pte.
6534  *
6535  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6536  * indicated by page_count > 1, unmap is achieved by clearing pud and
6537  * decrementing the ref count. If count == 1, the pte page is not shared.
6538  *
6539  * Called with page table lock held and i_mmap_rwsem held in write mode.
6540  *
6541  * returns: 1 successfully unmapped a shared pte page
6542  *	    0 the underlying pte page is not shared, or it is the last user
6543  */
6544 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6545 					unsigned long *addr, pte_t *ptep)
6546 {
6547 	pgd_t *pgd = pgd_offset(mm, *addr);
6548 	p4d_t *p4d = p4d_offset(pgd, *addr);
6549 	pud_t *pud = pud_offset(p4d, *addr);
6550 
6551 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6552 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6553 	if (page_count(virt_to_page(ptep)) == 1)
6554 		return 0;
6555 
6556 	pud_clear(pud);
6557 	put_page(virt_to_page(ptep));
6558 	mm_dec_nr_pmds(mm);
6559 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6560 	return 1;
6561 }
6562 
6563 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6564 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6565 		      unsigned long addr, pud_t *pud)
6566 {
6567 	return NULL;
6568 }
6569 
6570 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6571 				unsigned long *addr, pte_t *ptep)
6572 {
6573 	return 0;
6574 }
6575 
6576 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6577 				unsigned long *start, unsigned long *end)
6578 {
6579 }
6580 
6581 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6582 {
6583 	return false;
6584 }
6585 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6586 
6587 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6588 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6589 			unsigned long addr, unsigned long sz)
6590 {
6591 	pgd_t *pgd;
6592 	p4d_t *p4d;
6593 	pud_t *pud;
6594 	pte_t *pte = NULL;
6595 
6596 	pgd = pgd_offset(mm, addr);
6597 	p4d = p4d_alloc(mm, pgd, addr);
6598 	if (!p4d)
6599 		return NULL;
6600 	pud = pud_alloc(mm, p4d, addr);
6601 	if (pud) {
6602 		if (sz == PUD_SIZE) {
6603 			pte = (pte_t *)pud;
6604 		} else {
6605 			BUG_ON(sz != PMD_SIZE);
6606 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6607 				pte = huge_pmd_share(mm, vma, addr, pud);
6608 			else
6609 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6610 		}
6611 	}
6612 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6613 
6614 	return pte;
6615 }
6616 
6617 /*
6618  * huge_pte_offset() - Walk the page table to resolve the hugepage
6619  * entry at address @addr
6620  *
6621  * Return: Pointer to page table entry (PUD or PMD) for
6622  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6623  * size @sz doesn't match the hugepage size at this level of the page
6624  * table.
6625  */
6626 pte_t *huge_pte_offset(struct mm_struct *mm,
6627 		       unsigned long addr, unsigned long sz)
6628 {
6629 	pgd_t *pgd;
6630 	p4d_t *p4d;
6631 	pud_t *pud;
6632 	pmd_t *pmd;
6633 
6634 	pgd = pgd_offset(mm, addr);
6635 	if (!pgd_present(*pgd))
6636 		return NULL;
6637 	p4d = p4d_offset(pgd, addr);
6638 	if (!p4d_present(*p4d))
6639 		return NULL;
6640 
6641 	pud = pud_offset(p4d, addr);
6642 	if (sz == PUD_SIZE)
6643 		/* must be pud huge, non-present or none */
6644 		return (pte_t *)pud;
6645 	if (!pud_present(*pud))
6646 		return NULL;
6647 	/* must have a valid entry and size to go further */
6648 
6649 	pmd = pmd_offset(pud, addr);
6650 	/* must be pmd huge, non-present or none */
6651 	return (pte_t *)pmd;
6652 }
6653 
6654 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6655 
6656 /*
6657  * These functions are overwritable if your architecture needs its own
6658  * behavior.
6659  */
6660 struct page * __weak
6661 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6662 			      int write)
6663 {
6664 	return ERR_PTR(-EINVAL);
6665 }
6666 
6667 struct page * __weak
6668 follow_huge_pd(struct vm_area_struct *vma,
6669 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6670 {
6671 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6672 	return NULL;
6673 }
6674 
6675 struct page * __weak
6676 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6677 		pmd_t *pmd, int flags)
6678 {
6679 	struct page *page = NULL;
6680 	spinlock_t *ptl;
6681 	pte_t pte;
6682 
6683 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6684 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6685 			 (FOLL_PIN | FOLL_GET)))
6686 		return NULL;
6687 
6688 retry:
6689 	ptl = pmd_lockptr(mm, pmd);
6690 	spin_lock(ptl);
6691 	/*
6692 	 * make sure that the address range covered by this pmd is not
6693 	 * unmapped from other threads.
6694 	 */
6695 	if (!pmd_huge(*pmd))
6696 		goto out;
6697 	pte = huge_ptep_get((pte_t *)pmd);
6698 	if (pte_present(pte)) {
6699 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6700 		/*
6701 		 * try_grab_page() should always succeed here, because: a) we
6702 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6703 		 * huge pmd (head) page is present in the page tables. The ptl
6704 		 * prevents the head page and tail pages from being rearranged
6705 		 * in any way. So this page must be available at this point,
6706 		 * unless the page refcount overflowed:
6707 		 */
6708 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6709 			page = NULL;
6710 			goto out;
6711 		}
6712 	} else {
6713 		if (is_hugetlb_entry_migration(pte)) {
6714 			spin_unlock(ptl);
6715 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6716 			goto retry;
6717 		}
6718 		/*
6719 		 * hwpoisoned entry is treated as no_page_table in
6720 		 * follow_page_mask().
6721 		 */
6722 	}
6723 out:
6724 	spin_unlock(ptl);
6725 	return page;
6726 }
6727 
6728 struct page * __weak
6729 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6730 		pud_t *pud, int flags)
6731 {
6732 	if (flags & (FOLL_GET | FOLL_PIN))
6733 		return NULL;
6734 
6735 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6736 }
6737 
6738 struct page * __weak
6739 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6740 {
6741 	if (flags & (FOLL_GET | FOLL_PIN))
6742 		return NULL;
6743 
6744 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6745 }
6746 
6747 bool isolate_huge_page(struct page *page, struct list_head *list)
6748 {
6749 	bool ret = true;
6750 
6751 	spin_lock_irq(&hugetlb_lock);
6752 	if (!PageHeadHuge(page) ||
6753 	    !HPageMigratable(page) ||
6754 	    !get_page_unless_zero(page)) {
6755 		ret = false;
6756 		goto unlock;
6757 	}
6758 	ClearHPageMigratable(page);
6759 	list_move_tail(&page->lru, list);
6760 unlock:
6761 	spin_unlock_irq(&hugetlb_lock);
6762 	return ret;
6763 }
6764 
6765 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6766 {
6767 	int ret = 0;
6768 
6769 	*hugetlb = false;
6770 	spin_lock_irq(&hugetlb_lock);
6771 	if (PageHeadHuge(page)) {
6772 		*hugetlb = true;
6773 		if (HPageFreed(page) || HPageMigratable(page))
6774 			ret = get_page_unless_zero(page);
6775 		else
6776 			ret = -EBUSY;
6777 	}
6778 	spin_unlock_irq(&hugetlb_lock);
6779 	return ret;
6780 }
6781 
6782 void putback_active_hugepage(struct page *page)
6783 {
6784 	spin_lock_irq(&hugetlb_lock);
6785 	SetHPageMigratable(page);
6786 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6787 	spin_unlock_irq(&hugetlb_lock);
6788 	put_page(page);
6789 }
6790 
6791 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6792 {
6793 	struct hstate *h = page_hstate(oldpage);
6794 
6795 	hugetlb_cgroup_migrate(oldpage, newpage);
6796 	set_page_owner_migrate_reason(newpage, reason);
6797 
6798 	/*
6799 	 * transfer temporary state of the new huge page. This is
6800 	 * reverse to other transitions because the newpage is going to
6801 	 * be final while the old one will be freed so it takes over
6802 	 * the temporary status.
6803 	 *
6804 	 * Also note that we have to transfer the per-node surplus state
6805 	 * here as well otherwise the global surplus count will not match
6806 	 * the per-node's.
6807 	 */
6808 	if (HPageTemporary(newpage)) {
6809 		int old_nid = page_to_nid(oldpage);
6810 		int new_nid = page_to_nid(newpage);
6811 
6812 		SetHPageTemporary(oldpage);
6813 		ClearHPageTemporary(newpage);
6814 
6815 		/*
6816 		 * There is no need to transfer the per-node surplus state
6817 		 * when we do not cross the node.
6818 		 */
6819 		if (new_nid == old_nid)
6820 			return;
6821 		spin_lock_irq(&hugetlb_lock);
6822 		if (h->surplus_huge_pages_node[old_nid]) {
6823 			h->surplus_huge_pages_node[old_nid]--;
6824 			h->surplus_huge_pages_node[new_nid]++;
6825 		}
6826 		spin_unlock_irq(&hugetlb_lock);
6827 	}
6828 }
6829 
6830 /*
6831  * This function will unconditionally remove all the shared pmd pgtable entries
6832  * within the specific vma for a hugetlbfs memory range.
6833  */
6834 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6835 {
6836 	struct hstate *h = hstate_vma(vma);
6837 	unsigned long sz = huge_page_size(h);
6838 	struct mm_struct *mm = vma->vm_mm;
6839 	struct mmu_notifier_range range;
6840 	unsigned long address, start, end;
6841 	spinlock_t *ptl;
6842 	pte_t *ptep;
6843 
6844 	if (!(vma->vm_flags & VM_MAYSHARE))
6845 		return;
6846 
6847 	start = ALIGN(vma->vm_start, PUD_SIZE);
6848 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6849 
6850 	if (start >= end)
6851 		return;
6852 
6853 	/*
6854 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6855 	 * we have already done the PUD_SIZE alignment.
6856 	 */
6857 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6858 				start, end);
6859 	mmu_notifier_invalidate_range_start(&range);
6860 	i_mmap_lock_write(vma->vm_file->f_mapping);
6861 	for (address = start; address < end; address += PUD_SIZE) {
6862 		unsigned long tmp = address;
6863 
6864 		ptep = huge_pte_offset(mm, address, sz);
6865 		if (!ptep)
6866 			continue;
6867 		ptl = huge_pte_lock(h, mm, ptep);
6868 		/* We don't want 'address' to be changed */
6869 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6870 		spin_unlock(ptl);
6871 	}
6872 	flush_hugetlb_tlb_range(vma, start, end);
6873 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6874 	/*
6875 	 * No need to call mmu_notifier_invalidate_range(), see
6876 	 * Documentation/vm/mmu_notifier.rst.
6877 	 */
6878 	mmu_notifier_invalidate_range_end(&range);
6879 }
6880 
6881 #ifdef CONFIG_CMA
6882 static bool cma_reserve_called __initdata;
6883 
6884 static int __init cmdline_parse_hugetlb_cma(char *p)
6885 {
6886 	int nid, count = 0;
6887 	unsigned long tmp;
6888 	char *s = p;
6889 
6890 	while (*s) {
6891 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6892 			break;
6893 
6894 		if (s[count] == ':') {
6895 			if (tmp >= MAX_NUMNODES)
6896 				break;
6897 			nid = array_index_nospec(tmp, MAX_NUMNODES);
6898 
6899 			s += count + 1;
6900 			tmp = memparse(s, &s);
6901 			hugetlb_cma_size_in_node[nid] = tmp;
6902 			hugetlb_cma_size += tmp;
6903 
6904 			/*
6905 			 * Skip the separator if have one, otherwise
6906 			 * break the parsing.
6907 			 */
6908 			if (*s == ',')
6909 				s++;
6910 			else
6911 				break;
6912 		} else {
6913 			hugetlb_cma_size = memparse(p, &p);
6914 			break;
6915 		}
6916 	}
6917 
6918 	return 0;
6919 }
6920 
6921 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6922 
6923 void __init hugetlb_cma_reserve(int order)
6924 {
6925 	unsigned long size, reserved, per_node;
6926 	bool node_specific_cma_alloc = false;
6927 	int nid;
6928 
6929 	cma_reserve_called = true;
6930 
6931 	if (!hugetlb_cma_size)
6932 		return;
6933 
6934 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
6935 		if (hugetlb_cma_size_in_node[nid] == 0)
6936 			continue;
6937 
6938 		if (!node_state(nid, N_ONLINE)) {
6939 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6940 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6941 			hugetlb_cma_size_in_node[nid] = 0;
6942 			continue;
6943 		}
6944 
6945 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6946 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6947 				nid, (PAGE_SIZE << order) / SZ_1M);
6948 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6949 			hugetlb_cma_size_in_node[nid] = 0;
6950 		} else {
6951 			node_specific_cma_alloc = true;
6952 		}
6953 	}
6954 
6955 	/* Validate the CMA size again in case some invalid nodes specified. */
6956 	if (!hugetlb_cma_size)
6957 		return;
6958 
6959 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6960 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6961 			(PAGE_SIZE << order) / SZ_1M);
6962 		hugetlb_cma_size = 0;
6963 		return;
6964 	}
6965 
6966 	if (!node_specific_cma_alloc) {
6967 		/*
6968 		 * If 3 GB area is requested on a machine with 4 numa nodes,
6969 		 * let's allocate 1 GB on first three nodes and ignore the last one.
6970 		 */
6971 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6972 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6973 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6974 	}
6975 
6976 	reserved = 0;
6977 	for_each_node_state(nid, N_ONLINE) {
6978 		int res;
6979 		char name[CMA_MAX_NAME];
6980 
6981 		if (node_specific_cma_alloc) {
6982 			if (hugetlb_cma_size_in_node[nid] == 0)
6983 				continue;
6984 
6985 			size = hugetlb_cma_size_in_node[nid];
6986 		} else {
6987 			size = min(per_node, hugetlb_cma_size - reserved);
6988 		}
6989 
6990 		size = round_up(size, PAGE_SIZE << order);
6991 
6992 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6993 		/*
6994 		 * Note that 'order per bit' is based on smallest size that
6995 		 * may be returned to CMA allocator in the case of
6996 		 * huge page demotion.
6997 		 */
6998 		res = cma_declare_contiguous_nid(0, size, 0,
6999 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7000 						 0, false, name,
7001 						 &hugetlb_cma[nid], nid);
7002 		if (res) {
7003 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7004 				res, nid);
7005 			continue;
7006 		}
7007 
7008 		reserved += size;
7009 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7010 			size / SZ_1M, nid);
7011 
7012 		if (reserved >= hugetlb_cma_size)
7013 			break;
7014 	}
7015 
7016 	if (!reserved)
7017 		/*
7018 		 * hugetlb_cma_size is used to determine if allocations from
7019 		 * cma are possible.  Set to zero if no cma regions are set up.
7020 		 */
7021 		hugetlb_cma_size = 0;
7022 }
7023 
7024 void __init hugetlb_cma_check(void)
7025 {
7026 	if (!hugetlb_cma_size || cma_reserve_called)
7027 		return;
7028 
7029 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7030 }
7031 
7032 #endif /* CONFIG_CMA */
7033