1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 36 #include <asm/page.h> 37 #include <asm/pgalloc.h> 38 #include <asm/tlb.h> 39 40 #include <linux/io.h> 41 #include <linux/hugetlb.h> 42 #include <linux/hugetlb_cgroup.h> 43 #include <linux/node.h> 44 #include <linux/page_owner.h> 45 #include "internal.h" 46 #include "hugetlb_vmemmap.h" 47 48 int hugetlb_max_hstate __read_mostly; 49 unsigned int default_hstate_idx; 50 struct hstate hstates[HUGE_MAX_HSTATE]; 51 52 #ifdef CONFIG_CMA 53 static struct cma *hugetlb_cma[MAX_NUMNODES]; 54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 55 static bool hugetlb_cma_page(struct page *page, unsigned int order) 56 { 57 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 58 1 << order); 59 } 60 #else 61 static bool hugetlb_cma_page(struct page *page, unsigned int order) 62 { 63 return false; 64 } 65 #endif 66 static unsigned long hugetlb_cma_size __initdata; 67 68 /* 69 * Minimum page order among possible hugepage sizes, set to a proper value 70 * at boot time. 71 */ 72 static unsigned int minimum_order __read_mostly = UINT_MAX; 73 74 __initdata LIST_HEAD(huge_boot_pages); 75 76 /* for command line parsing */ 77 static struct hstate * __initdata parsed_hstate; 78 static unsigned long __initdata default_hstate_max_huge_pages; 79 static bool __initdata parsed_valid_hugepagesz = true; 80 static bool __initdata parsed_default_hugepagesz; 81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 82 83 /* 84 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 85 * free_huge_pages, and surplus_huge_pages. 86 */ 87 DEFINE_SPINLOCK(hugetlb_lock); 88 89 /* 90 * Serializes faults on the same logical page. This is used to 91 * prevent spurious OOMs when the hugepage pool is fully utilized. 92 */ 93 static int num_fault_mutexes; 94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 95 96 /* Forward declaration */ 97 static int hugetlb_acct_memory(struct hstate *h, long delta); 98 99 static inline bool subpool_is_free(struct hugepage_subpool *spool) 100 { 101 if (spool->count) 102 return false; 103 if (spool->max_hpages != -1) 104 return spool->used_hpages == 0; 105 if (spool->min_hpages != -1) 106 return spool->rsv_hpages == spool->min_hpages; 107 108 return true; 109 } 110 111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 112 unsigned long irq_flags) 113 { 114 spin_unlock_irqrestore(&spool->lock, irq_flags); 115 116 /* If no pages are used, and no other handles to the subpool 117 * remain, give up any reservations based on minimum size and 118 * free the subpool */ 119 if (subpool_is_free(spool)) { 120 if (spool->min_hpages != -1) 121 hugetlb_acct_memory(spool->hstate, 122 -spool->min_hpages); 123 kfree(spool); 124 } 125 } 126 127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 128 long min_hpages) 129 { 130 struct hugepage_subpool *spool; 131 132 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 133 if (!spool) 134 return NULL; 135 136 spin_lock_init(&spool->lock); 137 spool->count = 1; 138 spool->max_hpages = max_hpages; 139 spool->hstate = h; 140 spool->min_hpages = min_hpages; 141 142 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 143 kfree(spool); 144 return NULL; 145 } 146 spool->rsv_hpages = min_hpages; 147 148 return spool; 149 } 150 151 void hugepage_put_subpool(struct hugepage_subpool *spool) 152 { 153 unsigned long flags; 154 155 spin_lock_irqsave(&spool->lock, flags); 156 BUG_ON(!spool->count); 157 spool->count--; 158 unlock_or_release_subpool(spool, flags); 159 } 160 161 /* 162 * Subpool accounting for allocating and reserving pages. 163 * Return -ENOMEM if there are not enough resources to satisfy the 164 * request. Otherwise, return the number of pages by which the 165 * global pools must be adjusted (upward). The returned value may 166 * only be different than the passed value (delta) in the case where 167 * a subpool minimum size must be maintained. 168 */ 169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 170 long delta) 171 { 172 long ret = delta; 173 174 if (!spool) 175 return ret; 176 177 spin_lock_irq(&spool->lock); 178 179 if (spool->max_hpages != -1) { /* maximum size accounting */ 180 if ((spool->used_hpages + delta) <= spool->max_hpages) 181 spool->used_hpages += delta; 182 else { 183 ret = -ENOMEM; 184 goto unlock_ret; 185 } 186 } 187 188 /* minimum size accounting */ 189 if (spool->min_hpages != -1 && spool->rsv_hpages) { 190 if (delta > spool->rsv_hpages) { 191 /* 192 * Asking for more reserves than those already taken on 193 * behalf of subpool. Return difference. 194 */ 195 ret = delta - spool->rsv_hpages; 196 spool->rsv_hpages = 0; 197 } else { 198 ret = 0; /* reserves already accounted for */ 199 spool->rsv_hpages -= delta; 200 } 201 } 202 203 unlock_ret: 204 spin_unlock_irq(&spool->lock); 205 return ret; 206 } 207 208 /* 209 * Subpool accounting for freeing and unreserving pages. 210 * Return the number of global page reservations that must be dropped. 211 * The return value may only be different than the passed value (delta) 212 * in the case where a subpool minimum size must be maintained. 213 */ 214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 215 long delta) 216 { 217 long ret = delta; 218 unsigned long flags; 219 220 if (!spool) 221 return delta; 222 223 spin_lock_irqsave(&spool->lock, flags); 224 225 if (spool->max_hpages != -1) /* maximum size accounting */ 226 spool->used_hpages -= delta; 227 228 /* minimum size accounting */ 229 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 230 if (spool->rsv_hpages + delta <= spool->min_hpages) 231 ret = 0; 232 else 233 ret = spool->rsv_hpages + delta - spool->min_hpages; 234 235 spool->rsv_hpages += delta; 236 if (spool->rsv_hpages > spool->min_hpages) 237 spool->rsv_hpages = spool->min_hpages; 238 } 239 240 /* 241 * If hugetlbfs_put_super couldn't free spool due to an outstanding 242 * quota reference, free it now. 243 */ 244 unlock_or_release_subpool(spool, flags); 245 246 return ret; 247 } 248 249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 250 { 251 return HUGETLBFS_SB(inode->i_sb)->spool; 252 } 253 254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 255 { 256 return subpool_inode(file_inode(vma->vm_file)); 257 } 258 259 /* Helper that removes a struct file_region from the resv_map cache and returns 260 * it for use. 261 */ 262 static struct file_region * 263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 264 { 265 struct file_region *nrg = NULL; 266 267 VM_BUG_ON(resv->region_cache_count <= 0); 268 269 resv->region_cache_count--; 270 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 271 list_del(&nrg->link); 272 273 nrg->from = from; 274 nrg->to = to; 275 276 return nrg; 277 } 278 279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 280 struct file_region *rg) 281 { 282 #ifdef CONFIG_CGROUP_HUGETLB 283 nrg->reservation_counter = rg->reservation_counter; 284 nrg->css = rg->css; 285 if (rg->css) 286 css_get(rg->css); 287 #endif 288 } 289 290 /* Helper that records hugetlb_cgroup uncharge info. */ 291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 292 struct hstate *h, 293 struct resv_map *resv, 294 struct file_region *nrg) 295 { 296 #ifdef CONFIG_CGROUP_HUGETLB 297 if (h_cg) { 298 nrg->reservation_counter = 299 &h_cg->rsvd_hugepage[hstate_index(h)]; 300 nrg->css = &h_cg->css; 301 /* 302 * The caller will hold exactly one h_cg->css reference for the 303 * whole contiguous reservation region. But this area might be 304 * scattered when there are already some file_regions reside in 305 * it. As a result, many file_regions may share only one css 306 * reference. In order to ensure that one file_region must hold 307 * exactly one h_cg->css reference, we should do css_get for 308 * each file_region and leave the reference held by caller 309 * untouched. 310 */ 311 css_get(&h_cg->css); 312 if (!resv->pages_per_hpage) 313 resv->pages_per_hpage = pages_per_huge_page(h); 314 /* pages_per_hpage should be the same for all entries in 315 * a resv_map. 316 */ 317 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 318 } else { 319 nrg->reservation_counter = NULL; 320 nrg->css = NULL; 321 } 322 #endif 323 } 324 325 static void put_uncharge_info(struct file_region *rg) 326 { 327 #ifdef CONFIG_CGROUP_HUGETLB 328 if (rg->css) 329 css_put(rg->css); 330 #endif 331 } 332 333 static bool has_same_uncharge_info(struct file_region *rg, 334 struct file_region *org) 335 { 336 #ifdef CONFIG_CGROUP_HUGETLB 337 return rg->reservation_counter == org->reservation_counter && 338 rg->css == org->css; 339 340 #else 341 return true; 342 #endif 343 } 344 345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 346 { 347 struct file_region *nrg = NULL, *prg = NULL; 348 349 prg = list_prev_entry(rg, link); 350 if (&prg->link != &resv->regions && prg->to == rg->from && 351 has_same_uncharge_info(prg, rg)) { 352 prg->to = rg->to; 353 354 list_del(&rg->link); 355 put_uncharge_info(rg); 356 kfree(rg); 357 358 rg = prg; 359 } 360 361 nrg = list_next_entry(rg, link); 362 if (&nrg->link != &resv->regions && nrg->from == rg->to && 363 has_same_uncharge_info(nrg, rg)) { 364 nrg->from = rg->from; 365 366 list_del(&rg->link); 367 put_uncharge_info(rg); 368 kfree(rg); 369 } 370 } 371 372 static inline long 373 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, 374 long to, struct hstate *h, struct hugetlb_cgroup *cg, 375 long *regions_needed) 376 { 377 struct file_region *nrg; 378 379 if (!regions_needed) { 380 nrg = get_file_region_entry_from_cache(map, from, to); 381 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 382 list_add(&nrg->link, rg->link.prev); 383 coalesce_file_region(map, nrg); 384 } else 385 *regions_needed += 1; 386 387 return to - from; 388 } 389 390 /* 391 * Must be called with resv->lock held. 392 * 393 * Calling this with regions_needed != NULL will count the number of pages 394 * to be added but will not modify the linked list. And regions_needed will 395 * indicate the number of file_regions needed in the cache to carry out to add 396 * the regions for this range. 397 */ 398 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 399 struct hugetlb_cgroup *h_cg, 400 struct hstate *h, long *regions_needed) 401 { 402 long add = 0; 403 struct list_head *head = &resv->regions; 404 long last_accounted_offset = f; 405 struct file_region *rg = NULL, *trg = NULL; 406 407 if (regions_needed) 408 *regions_needed = 0; 409 410 /* In this loop, we essentially handle an entry for the range 411 * [last_accounted_offset, rg->from), at every iteration, with some 412 * bounds checking. 413 */ 414 list_for_each_entry_safe(rg, trg, head, link) { 415 /* Skip irrelevant regions that start before our range. */ 416 if (rg->from < f) { 417 /* If this region ends after the last accounted offset, 418 * then we need to update last_accounted_offset. 419 */ 420 if (rg->to > last_accounted_offset) 421 last_accounted_offset = rg->to; 422 continue; 423 } 424 425 /* When we find a region that starts beyond our range, we've 426 * finished. 427 */ 428 if (rg->from >= t) 429 break; 430 431 /* Add an entry for last_accounted_offset -> rg->from, and 432 * update last_accounted_offset. 433 */ 434 if (rg->from > last_accounted_offset) 435 add += hugetlb_resv_map_add(resv, rg, 436 last_accounted_offset, 437 rg->from, h, h_cg, 438 regions_needed); 439 440 last_accounted_offset = rg->to; 441 } 442 443 /* Handle the case where our range extends beyond 444 * last_accounted_offset. 445 */ 446 if (last_accounted_offset < t) 447 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 448 t, h, h_cg, regions_needed); 449 450 return add; 451 } 452 453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 454 */ 455 static int allocate_file_region_entries(struct resv_map *resv, 456 int regions_needed) 457 __must_hold(&resv->lock) 458 { 459 struct list_head allocated_regions; 460 int to_allocate = 0, i = 0; 461 struct file_region *trg = NULL, *rg = NULL; 462 463 VM_BUG_ON(regions_needed < 0); 464 465 INIT_LIST_HEAD(&allocated_regions); 466 467 /* 468 * Check for sufficient descriptors in the cache to accommodate 469 * the number of in progress add operations plus regions_needed. 470 * 471 * This is a while loop because when we drop the lock, some other call 472 * to region_add or region_del may have consumed some region_entries, 473 * so we keep looping here until we finally have enough entries for 474 * (adds_in_progress + regions_needed). 475 */ 476 while (resv->region_cache_count < 477 (resv->adds_in_progress + regions_needed)) { 478 to_allocate = resv->adds_in_progress + regions_needed - 479 resv->region_cache_count; 480 481 /* At this point, we should have enough entries in the cache 482 * for all the existing adds_in_progress. We should only be 483 * needing to allocate for regions_needed. 484 */ 485 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 486 487 spin_unlock(&resv->lock); 488 for (i = 0; i < to_allocate; i++) { 489 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 490 if (!trg) 491 goto out_of_memory; 492 list_add(&trg->link, &allocated_regions); 493 } 494 495 spin_lock(&resv->lock); 496 497 list_splice(&allocated_regions, &resv->region_cache); 498 resv->region_cache_count += to_allocate; 499 } 500 501 return 0; 502 503 out_of_memory: 504 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 505 list_del(&rg->link); 506 kfree(rg); 507 } 508 return -ENOMEM; 509 } 510 511 /* 512 * Add the huge page range represented by [f, t) to the reserve 513 * map. Regions will be taken from the cache to fill in this range. 514 * Sufficient regions should exist in the cache due to the previous 515 * call to region_chg with the same range, but in some cases the cache will not 516 * have sufficient entries due to races with other code doing region_add or 517 * region_del. The extra needed entries will be allocated. 518 * 519 * regions_needed is the out value provided by a previous call to region_chg. 520 * 521 * Return the number of new huge pages added to the map. This number is greater 522 * than or equal to zero. If file_region entries needed to be allocated for 523 * this operation and we were not able to allocate, it returns -ENOMEM. 524 * region_add of regions of length 1 never allocate file_regions and cannot 525 * fail; region_chg will always allocate at least 1 entry and a region_add for 526 * 1 page will only require at most 1 entry. 527 */ 528 static long region_add(struct resv_map *resv, long f, long t, 529 long in_regions_needed, struct hstate *h, 530 struct hugetlb_cgroup *h_cg) 531 { 532 long add = 0, actual_regions_needed = 0; 533 534 spin_lock(&resv->lock); 535 retry: 536 537 /* Count how many regions are actually needed to execute this add. */ 538 add_reservation_in_range(resv, f, t, NULL, NULL, 539 &actual_regions_needed); 540 541 /* 542 * Check for sufficient descriptors in the cache to accommodate 543 * this add operation. Note that actual_regions_needed may be greater 544 * than in_regions_needed, as the resv_map may have been modified since 545 * the region_chg call. In this case, we need to make sure that we 546 * allocate extra entries, such that we have enough for all the 547 * existing adds_in_progress, plus the excess needed for this 548 * operation. 549 */ 550 if (actual_regions_needed > in_regions_needed && 551 resv->region_cache_count < 552 resv->adds_in_progress + 553 (actual_regions_needed - in_regions_needed)) { 554 /* region_add operation of range 1 should never need to 555 * allocate file_region entries. 556 */ 557 VM_BUG_ON(t - f <= 1); 558 559 if (allocate_file_region_entries( 560 resv, actual_regions_needed - in_regions_needed)) { 561 return -ENOMEM; 562 } 563 564 goto retry; 565 } 566 567 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 568 569 resv->adds_in_progress -= in_regions_needed; 570 571 spin_unlock(&resv->lock); 572 return add; 573 } 574 575 /* 576 * Examine the existing reserve map and determine how many 577 * huge pages in the specified range [f, t) are NOT currently 578 * represented. This routine is called before a subsequent 579 * call to region_add that will actually modify the reserve 580 * map to add the specified range [f, t). region_chg does 581 * not change the number of huge pages represented by the 582 * map. A number of new file_region structures is added to the cache as a 583 * placeholder, for the subsequent region_add call to use. At least 1 584 * file_region structure is added. 585 * 586 * out_regions_needed is the number of regions added to the 587 * resv->adds_in_progress. This value needs to be provided to a follow up call 588 * to region_add or region_abort for proper accounting. 589 * 590 * Returns the number of huge pages that need to be added to the existing 591 * reservation map for the range [f, t). This number is greater or equal to 592 * zero. -ENOMEM is returned if a new file_region structure or cache entry 593 * is needed and can not be allocated. 594 */ 595 static long region_chg(struct resv_map *resv, long f, long t, 596 long *out_regions_needed) 597 { 598 long chg = 0; 599 600 spin_lock(&resv->lock); 601 602 /* Count how many hugepages in this range are NOT represented. */ 603 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 604 out_regions_needed); 605 606 if (*out_regions_needed == 0) 607 *out_regions_needed = 1; 608 609 if (allocate_file_region_entries(resv, *out_regions_needed)) 610 return -ENOMEM; 611 612 resv->adds_in_progress += *out_regions_needed; 613 614 spin_unlock(&resv->lock); 615 return chg; 616 } 617 618 /* 619 * Abort the in progress add operation. The adds_in_progress field 620 * of the resv_map keeps track of the operations in progress between 621 * calls to region_chg and region_add. Operations are sometimes 622 * aborted after the call to region_chg. In such cases, region_abort 623 * is called to decrement the adds_in_progress counter. regions_needed 624 * is the value returned by the region_chg call, it is used to decrement 625 * the adds_in_progress counter. 626 * 627 * NOTE: The range arguments [f, t) are not needed or used in this 628 * routine. They are kept to make reading the calling code easier as 629 * arguments will match the associated region_chg call. 630 */ 631 static void region_abort(struct resv_map *resv, long f, long t, 632 long regions_needed) 633 { 634 spin_lock(&resv->lock); 635 VM_BUG_ON(!resv->region_cache_count); 636 resv->adds_in_progress -= regions_needed; 637 spin_unlock(&resv->lock); 638 } 639 640 /* 641 * Delete the specified range [f, t) from the reserve map. If the 642 * t parameter is LONG_MAX, this indicates that ALL regions after f 643 * should be deleted. Locate the regions which intersect [f, t) 644 * and either trim, delete or split the existing regions. 645 * 646 * Returns the number of huge pages deleted from the reserve map. 647 * In the normal case, the return value is zero or more. In the 648 * case where a region must be split, a new region descriptor must 649 * be allocated. If the allocation fails, -ENOMEM will be returned. 650 * NOTE: If the parameter t == LONG_MAX, then we will never split 651 * a region and possibly return -ENOMEM. Callers specifying 652 * t == LONG_MAX do not need to check for -ENOMEM error. 653 */ 654 static long region_del(struct resv_map *resv, long f, long t) 655 { 656 struct list_head *head = &resv->regions; 657 struct file_region *rg, *trg; 658 struct file_region *nrg = NULL; 659 long del = 0; 660 661 retry: 662 spin_lock(&resv->lock); 663 list_for_each_entry_safe(rg, trg, head, link) { 664 /* 665 * Skip regions before the range to be deleted. file_region 666 * ranges are normally of the form [from, to). However, there 667 * may be a "placeholder" entry in the map which is of the form 668 * (from, to) with from == to. Check for placeholder entries 669 * at the beginning of the range to be deleted. 670 */ 671 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 672 continue; 673 674 if (rg->from >= t) 675 break; 676 677 if (f > rg->from && t < rg->to) { /* Must split region */ 678 /* 679 * Check for an entry in the cache before dropping 680 * lock and attempting allocation. 681 */ 682 if (!nrg && 683 resv->region_cache_count > resv->adds_in_progress) { 684 nrg = list_first_entry(&resv->region_cache, 685 struct file_region, 686 link); 687 list_del(&nrg->link); 688 resv->region_cache_count--; 689 } 690 691 if (!nrg) { 692 spin_unlock(&resv->lock); 693 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 694 if (!nrg) 695 return -ENOMEM; 696 goto retry; 697 } 698 699 del += t - f; 700 hugetlb_cgroup_uncharge_file_region( 701 resv, rg, t - f, false); 702 703 /* New entry for end of split region */ 704 nrg->from = t; 705 nrg->to = rg->to; 706 707 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 708 709 INIT_LIST_HEAD(&nrg->link); 710 711 /* Original entry is trimmed */ 712 rg->to = f; 713 714 list_add(&nrg->link, &rg->link); 715 nrg = NULL; 716 break; 717 } 718 719 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 720 del += rg->to - rg->from; 721 hugetlb_cgroup_uncharge_file_region(resv, rg, 722 rg->to - rg->from, true); 723 list_del(&rg->link); 724 kfree(rg); 725 continue; 726 } 727 728 if (f <= rg->from) { /* Trim beginning of region */ 729 hugetlb_cgroup_uncharge_file_region(resv, rg, 730 t - rg->from, false); 731 732 del += t - rg->from; 733 rg->from = t; 734 } else { /* Trim end of region */ 735 hugetlb_cgroup_uncharge_file_region(resv, rg, 736 rg->to - f, false); 737 738 del += rg->to - f; 739 rg->to = f; 740 } 741 } 742 743 spin_unlock(&resv->lock); 744 kfree(nrg); 745 return del; 746 } 747 748 /* 749 * A rare out of memory error was encountered which prevented removal of 750 * the reserve map region for a page. The huge page itself was free'ed 751 * and removed from the page cache. This routine will adjust the subpool 752 * usage count, and the global reserve count if needed. By incrementing 753 * these counts, the reserve map entry which could not be deleted will 754 * appear as a "reserved" entry instead of simply dangling with incorrect 755 * counts. 756 */ 757 void hugetlb_fix_reserve_counts(struct inode *inode) 758 { 759 struct hugepage_subpool *spool = subpool_inode(inode); 760 long rsv_adjust; 761 bool reserved = false; 762 763 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 764 if (rsv_adjust > 0) { 765 struct hstate *h = hstate_inode(inode); 766 767 if (!hugetlb_acct_memory(h, 1)) 768 reserved = true; 769 } else if (!rsv_adjust) { 770 reserved = true; 771 } 772 773 if (!reserved) 774 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 775 } 776 777 /* 778 * Count and return the number of huge pages in the reserve map 779 * that intersect with the range [f, t). 780 */ 781 static long region_count(struct resv_map *resv, long f, long t) 782 { 783 struct list_head *head = &resv->regions; 784 struct file_region *rg; 785 long chg = 0; 786 787 spin_lock(&resv->lock); 788 /* Locate each segment we overlap with, and count that overlap. */ 789 list_for_each_entry(rg, head, link) { 790 long seg_from; 791 long seg_to; 792 793 if (rg->to <= f) 794 continue; 795 if (rg->from >= t) 796 break; 797 798 seg_from = max(rg->from, f); 799 seg_to = min(rg->to, t); 800 801 chg += seg_to - seg_from; 802 } 803 spin_unlock(&resv->lock); 804 805 return chg; 806 } 807 808 /* 809 * Convert the address within this vma to the page offset within 810 * the mapping, in pagecache page units; huge pages here. 811 */ 812 static pgoff_t vma_hugecache_offset(struct hstate *h, 813 struct vm_area_struct *vma, unsigned long address) 814 { 815 return ((address - vma->vm_start) >> huge_page_shift(h)) + 816 (vma->vm_pgoff >> huge_page_order(h)); 817 } 818 819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 820 unsigned long address) 821 { 822 return vma_hugecache_offset(hstate_vma(vma), vma, address); 823 } 824 EXPORT_SYMBOL_GPL(linear_hugepage_index); 825 826 /* 827 * Return the size of the pages allocated when backing a VMA. In the majority 828 * cases this will be same size as used by the page table entries. 829 */ 830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 831 { 832 if (vma->vm_ops && vma->vm_ops->pagesize) 833 return vma->vm_ops->pagesize(vma); 834 return PAGE_SIZE; 835 } 836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 837 838 /* 839 * Return the page size being used by the MMU to back a VMA. In the majority 840 * of cases, the page size used by the kernel matches the MMU size. On 841 * architectures where it differs, an architecture-specific 'strong' 842 * version of this symbol is required. 843 */ 844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 845 { 846 return vma_kernel_pagesize(vma); 847 } 848 849 /* 850 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 851 * bits of the reservation map pointer, which are always clear due to 852 * alignment. 853 */ 854 #define HPAGE_RESV_OWNER (1UL << 0) 855 #define HPAGE_RESV_UNMAPPED (1UL << 1) 856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 857 858 /* 859 * These helpers are used to track how many pages are reserved for 860 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 861 * is guaranteed to have their future faults succeed. 862 * 863 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 864 * the reserve counters are updated with the hugetlb_lock held. It is safe 865 * to reset the VMA at fork() time as it is not in use yet and there is no 866 * chance of the global counters getting corrupted as a result of the values. 867 * 868 * The private mapping reservation is represented in a subtly different 869 * manner to a shared mapping. A shared mapping has a region map associated 870 * with the underlying file, this region map represents the backing file 871 * pages which have ever had a reservation assigned which this persists even 872 * after the page is instantiated. A private mapping has a region map 873 * associated with the original mmap which is attached to all VMAs which 874 * reference it, this region map represents those offsets which have consumed 875 * reservation ie. where pages have been instantiated. 876 */ 877 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 878 { 879 return (unsigned long)vma->vm_private_data; 880 } 881 882 static void set_vma_private_data(struct vm_area_struct *vma, 883 unsigned long value) 884 { 885 vma->vm_private_data = (void *)value; 886 } 887 888 static void 889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 890 struct hugetlb_cgroup *h_cg, 891 struct hstate *h) 892 { 893 #ifdef CONFIG_CGROUP_HUGETLB 894 if (!h_cg || !h) { 895 resv_map->reservation_counter = NULL; 896 resv_map->pages_per_hpage = 0; 897 resv_map->css = NULL; 898 } else { 899 resv_map->reservation_counter = 900 &h_cg->rsvd_hugepage[hstate_index(h)]; 901 resv_map->pages_per_hpage = pages_per_huge_page(h); 902 resv_map->css = &h_cg->css; 903 } 904 #endif 905 } 906 907 struct resv_map *resv_map_alloc(void) 908 { 909 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 910 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 911 912 if (!resv_map || !rg) { 913 kfree(resv_map); 914 kfree(rg); 915 return NULL; 916 } 917 918 kref_init(&resv_map->refs); 919 spin_lock_init(&resv_map->lock); 920 INIT_LIST_HEAD(&resv_map->regions); 921 922 resv_map->adds_in_progress = 0; 923 /* 924 * Initialize these to 0. On shared mappings, 0's here indicate these 925 * fields don't do cgroup accounting. On private mappings, these will be 926 * re-initialized to the proper values, to indicate that hugetlb cgroup 927 * reservations are to be un-charged from here. 928 */ 929 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 930 931 INIT_LIST_HEAD(&resv_map->region_cache); 932 list_add(&rg->link, &resv_map->region_cache); 933 resv_map->region_cache_count = 1; 934 935 return resv_map; 936 } 937 938 void resv_map_release(struct kref *ref) 939 { 940 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 941 struct list_head *head = &resv_map->region_cache; 942 struct file_region *rg, *trg; 943 944 /* Clear out any active regions before we release the map. */ 945 region_del(resv_map, 0, LONG_MAX); 946 947 /* ... and any entries left in the cache */ 948 list_for_each_entry_safe(rg, trg, head, link) { 949 list_del(&rg->link); 950 kfree(rg); 951 } 952 953 VM_BUG_ON(resv_map->adds_in_progress); 954 955 kfree(resv_map); 956 } 957 958 static inline struct resv_map *inode_resv_map(struct inode *inode) 959 { 960 /* 961 * At inode evict time, i_mapping may not point to the original 962 * address space within the inode. This original address space 963 * contains the pointer to the resv_map. So, always use the 964 * address space embedded within the inode. 965 * The VERY common case is inode->mapping == &inode->i_data but, 966 * this may not be true for device special inodes. 967 */ 968 return (struct resv_map *)(&inode->i_data)->private_data; 969 } 970 971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 972 { 973 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 974 if (vma->vm_flags & VM_MAYSHARE) { 975 struct address_space *mapping = vma->vm_file->f_mapping; 976 struct inode *inode = mapping->host; 977 978 return inode_resv_map(inode); 979 980 } else { 981 return (struct resv_map *)(get_vma_private_data(vma) & 982 ~HPAGE_RESV_MASK); 983 } 984 } 985 986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 987 { 988 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 989 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 990 991 set_vma_private_data(vma, (get_vma_private_data(vma) & 992 HPAGE_RESV_MASK) | (unsigned long)map); 993 } 994 995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 996 { 997 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 998 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 999 1000 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1001 } 1002 1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1004 { 1005 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1006 1007 return (get_vma_private_data(vma) & flag) != 0; 1008 } 1009 1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 1012 { 1013 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1014 if (!(vma->vm_flags & VM_MAYSHARE)) 1015 vma->vm_private_data = (void *)0; 1016 } 1017 1018 /* 1019 * Reset and decrement one ref on hugepage private reservation. 1020 * Called with mm->mmap_sem writer semaphore held. 1021 * This function should be only used by move_vma() and operate on 1022 * same sized vma. It should never come here with last ref on the 1023 * reservation. 1024 */ 1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1026 { 1027 /* 1028 * Clear the old hugetlb private page reservation. 1029 * It has already been transferred to new_vma. 1030 * 1031 * During a mremap() operation of a hugetlb vma we call move_vma() 1032 * which copies vma into new_vma and unmaps vma. After the copy 1033 * operation both new_vma and vma share a reference to the resv_map 1034 * struct, and at that point vma is about to be unmapped. We don't 1035 * want to return the reservation to the pool at unmap of vma because 1036 * the reservation still lives on in new_vma, so simply decrement the 1037 * ref here and remove the resv_map reference from this vma. 1038 */ 1039 struct resv_map *reservations = vma_resv_map(vma); 1040 1041 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1042 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1043 kref_put(&reservations->refs, resv_map_release); 1044 } 1045 1046 reset_vma_resv_huge_pages(vma); 1047 } 1048 1049 /* Returns true if the VMA has associated reserve pages */ 1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1051 { 1052 if (vma->vm_flags & VM_NORESERVE) { 1053 /* 1054 * This address is already reserved by other process(chg == 0), 1055 * so, we should decrement reserved count. Without decrementing, 1056 * reserve count remains after releasing inode, because this 1057 * allocated page will go into page cache and is regarded as 1058 * coming from reserved pool in releasing step. Currently, we 1059 * don't have any other solution to deal with this situation 1060 * properly, so add work-around here. 1061 */ 1062 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1063 return true; 1064 else 1065 return false; 1066 } 1067 1068 /* Shared mappings always use reserves */ 1069 if (vma->vm_flags & VM_MAYSHARE) { 1070 /* 1071 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1072 * be a region map for all pages. The only situation where 1073 * there is no region map is if a hole was punched via 1074 * fallocate. In this case, there really are no reserves to 1075 * use. This situation is indicated if chg != 0. 1076 */ 1077 if (chg) 1078 return false; 1079 else 1080 return true; 1081 } 1082 1083 /* 1084 * Only the process that called mmap() has reserves for 1085 * private mappings. 1086 */ 1087 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1088 /* 1089 * Like the shared case above, a hole punch or truncate 1090 * could have been performed on the private mapping. 1091 * Examine the value of chg to determine if reserves 1092 * actually exist or were previously consumed. 1093 * Very Subtle - The value of chg comes from a previous 1094 * call to vma_needs_reserves(). The reserve map for 1095 * private mappings has different (opposite) semantics 1096 * than that of shared mappings. vma_needs_reserves() 1097 * has already taken this difference in semantics into 1098 * account. Therefore, the meaning of chg is the same 1099 * as in the shared case above. Code could easily be 1100 * combined, but keeping it separate draws attention to 1101 * subtle differences. 1102 */ 1103 if (chg) 1104 return false; 1105 else 1106 return true; 1107 } 1108 1109 return false; 1110 } 1111 1112 static void enqueue_huge_page(struct hstate *h, struct page *page) 1113 { 1114 int nid = page_to_nid(page); 1115 1116 lockdep_assert_held(&hugetlb_lock); 1117 VM_BUG_ON_PAGE(page_count(page), page); 1118 1119 list_move(&page->lru, &h->hugepage_freelists[nid]); 1120 h->free_huge_pages++; 1121 h->free_huge_pages_node[nid]++; 1122 SetHPageFreed(page); 1123 } 1124 1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1126 { 1127 struct page *page; 1128 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1129 1130 lockdep_assert_held(&hugetlb_lock); 1131 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1132 if (pin && !is_pinnable_page(page)) 1133 continue; 1134 1135 if (PageHWPoison(page)) 1136 continue; 1137 1138 list_move(&page->lru, &h->hugepage_activelist); 1139 set_page_refcounted(page); 1140 ClearHPageFreed(page); 1141 h->free_huge_pages--; 1142 h->free_huge_pages_node[nid]--; 1143 return page; 1144 } 1145 1146 return NULL; 1147 } 1148 1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1150 nodemask_t *nmask) 1151 { 1152 unsigned int cpuset_mems_cookie; 1153 struct zonelist *zonelist; 1154 struct zone *zone; 1155 struct zoneref *z; 1156 int node = NUMA_NO_NODE; 1157 1158 zonelist = node_zonelist(nid, gfp_mask); 1159 1160 retry_cpuset: 1161 cpuset_mems_cookie = read_mems_allowed_begin(); 1162 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1163 struct page *page; 1164 1165 if (!cpuset_zone_allowed(zone, gfp_mask)) 1166 continue; 1167 /* 1168 * no need to ask again on the same node. Pool is node rather than 1169 * zone aware 1170 */ 1171 if (zone_to_nid(zone) == node) 1172 continue; 1173 node = zone_to_nid(zone); 1174 1175 page = dequeue_huge_page_node_exact(h, node); 1176 if (page) 1177 return page; 1178 } 1179 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1180 goto retry_cpuset; 1181 1182 return NULL; 1183 } 1184 1185 static struct page *dequeue_huge_page_vma(struct hstate *h, 1186 struct vm_area_struct *vma, 1187 unsigned long address, int avoid_reserve, 1188 long chg) 1189 { 1190 struct page *page = NULL; 1191 struct mempolicy *mpol; 1192 gfp_t gfp_mask; 1193 nodemask_t *nodemask; 1194 int nid; 1195 1196 /* 1197 * A child process with MAP_PRIVATE mappings created by their parent 1198 * have no page reserves. This check ensures that reservations are 1199 * not "stolen". The child may still get SIGKILLed 1200 */ 1201 if (!vma_has_reserves(vma, chg) && 1202 h->free_huge_pages - h->resv_huge_pages == 0) 1203 goto err; 1204 1205 /* If reserves cannot be used, ensure enough pages are in the pool */ 1206 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1207 goto err; 1208 1209 gfp_mask = htlb_alloc_mask(h); 1210 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1211 1212 if (mpol_is_preferred_many(mpol)) { 1213 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1214 1215 /* Fallback to all nodes if page==NULL */ 1216 nodemask = NULL; 1217 } 1218 1219 if (!page) 1220 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1221 1222 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1223 SetHPageRestoreReserve(page); 1224 h->resv_huge_pages--; 1225 } 1226 1227 mpol_cond_put(mpol); 1228 return page; 1229 1230 err: 1231 return NULL; 1232 } 1233 1234 /* 1235 * common helper functions for hstate_next_node_to_{alloc|free}. 1236 * We may have allocated or freed a huge page based on a different 1237 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1238 * be outside of *nodes_allowed. Ensure that we use an allowed 1239 * node for alloc or free. 1240 */ 1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1242 { 1243 nid = next_node_in(nid, *nodes_allowed); 1244 VM_BUG_ON(nid >= MAX_NUMNODES); 1245 1246 return nid; 1247 } 1248 1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1250 { 1251 if (!node_isset(nid, *nodes_allowed)) 1252 nid = next_node_allowed(nid, nodes_allowed); 1253 return nid; 1254 } 1255 1256 /* 1257 * returns the previously saved node ["this node"] from which to 1258 * allocate a persistent huge page for the pool and advance the 1259 * next node from which to allocate, handling wrap at end of node 1260 * mask. 1261 */ 1262 static int hstate_next_node_to_alloc(struct hstate *h, 1263 nodemask_t *nodes_allowed) 1264 { 1265 int nid; 1266 1267 VM_BUG_ON(!nodes_allowed); 1268 1269 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1270 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1271 1272 return nid; 1273 } 1274 1275 /* 1276 * helper for remove_pool_huge_page() - return the previously saved 1277 * node ["this node"] from which to free a huge page. Advance the 1278 * next node id whether or not we find a free huge page to free so 1279 * that the next attempt to free addresses the next node. 1280 */ 1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1282 { 1283 int nid; 1284 1285 VM_BUG_ON(!nodes_allowed); 1286 1287 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1288 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1289 1290 return nid; 1291 } 1292 1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1294 for (nr_nodes = nodes_weight(*mask); \ 1295 nr_nodes > 0 && \ 1296 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1297 nr_nodes--) 1298 1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1300 for (nr_nodes = nodes_weight(*mask); \ 1301 nr_nodes > 0 && \ 1302 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1303 nr_nodes--) 1304 1305 /* used to demote non-gigantic_huge pages as well */ 1306 static void __destroy_compound_gigantic_page(struct page *page, 1307 unsigned int order, bool demote) 1308 { 1309 int i; 1310 int nr_pages = 1 << order; 1311 struct page *p = page + 1; 1312 1313 atomic_set(compound_mapcount_ptr(page), 0); 1314 atomic_set(compound_pincount_ptr(page), 0); 1315 1316 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1317 p->mapping = NULL; 1318 clear_compound_head(p); 1319 if (!demote) 1320 set_page_refcounted(p); 1321 } 1322 1323 set_compound_order(page, 0); 1324 page[1].compound_nr = 0; 1325 __ClearPageHead(page); 1326 } 1327 1328 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1329 unsigned int order) 1330 { 1331 __destroy_compound_gigantic_page(page, order, true); 1332 } 1333 1334 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1335 static void destroy_compound_gigantic_page(struct page *page, 1336 unsigned int order) 1337 { 1338 __destroy_compound_gigantic_page(page, order, false); 1339 } 1340 1341 static void free_gigantic_page(struct page *page, unsigned int order) 1342 { 1343 /* 1344 * If the page isn't allocated using the cma allocator, 1345 * cma_release() returns false. 1346 */ 1347 #ifdef CONFIG_CMA 1348 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1349 return; 1350 #endif 1351 1352 free_contig_range(page_to_pfn(page), 1 << order); 1353 } 1354 1355 #ifdef CONFIG_CONTIG_ALLOC 1356 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1357 int nid, nodemask_t *nodemask) 1358 { 1359 unsigned long nr_pages = pages_per_huge_page(h); 1360 if (nid == NUMA_NO_NODE) 1361 nid = numa_mem_id(); 1362 1363 #ifdef CONFIG_CMA 1364 { 1365 struct page *page; 1366 int node; 1367 1368 if (hugetlb_cma[nid]) { 1369 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1370 huge_page_order(h), true); 1371 if (page) 1372 return page; 1373 } 1374 1375 if (!(gfp_mask & __GFP_THISNODE)) { 1376 for_each_node_mask(node, *nodemask) { 1377 if (node == nid || !hugetlb_cma[node]) 1378 continue; 1379 1380 page = cma_alloc(hugetlb_cma[node], nr_pages, 1381 huge_page_order(h), true); 1382 if (page) 1383 return page; 1384 } 1385 } 1386 } 1387 #endif 1388 1389 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1390 } 1391 1392 #else /* !CONFIG_CONTIG_ALLOC */ 1393 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1394 int nid, nodemask_t *nodemask) 1395 { 1396 return NULL; 1397 } 1398 #endif /* CONFIG_CONTIG_ALLOC */ 1399 1400 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1402 int nid, nodemask_t *nodemask) 1403 { 1404 return NULL; 1405 } 1406 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1407 static inline void destroy_compound_gigantic_page(struct page *page, 1408 unsigned int order) { } 1409 #endif 1410 1411 /* 1412 * Remove hugetlb page from lists, and update dtor so that page appears 1413 * as just a compound page. 1414 * 1415 * A reference is held on the page, except in the case of demote. 1416 * 1417 * Must be called with hugetlb lock held. 1418 */ 1419 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1420 bool adjust_surplus, 1421 bool demote) 1422 { 1423 int nid = page_to_nid(page); 1424 1425 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1426 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1427 1428 lockdep_assert_held(&hugetlb_lock); 1429 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1430 return; 1431 1432 list_del(&page->lru); 1433 1434 if (HPageFreed(page)) { 1435 h->free_huge_pages--; 1436 h->free_huge_pages_node[nid]--; 1437 } 1438 if (adjust_surplus) { 1439 h->surplus_huge_pages--; 1440 h->surplus_huge_pages_node[nid]--; 1441 } 1442 1443 /* 1444 * Very subtle 1445 * 1446 * For non-gigantic pages set the destructor to the normal compound 1447 * page dtor. This is needed in case someone takes an additional 1448 * temporary ref to the page, and freeing is delayed until they drop 1449 * their reference. 1450 * 1451 * For gigantic pages set the destructor to the null dtor. This 1452 * destructor will never be called. Before freeing the gigantic 1453 * page destroy_compound_gigantic_page will turn the compound page 1454 * into a simple group of pages. After this the destructor does not 1455 * apply. 1456 * 1457 * This handles the case where more than one ref is held when and 1458 * after update_and_free_page is called. 1459 * 1460 * In the case of demote we do not ref count the page as it will soon 1461 * be turned into a page of smaller size. 1462 */ 1463 if (!demote) 1464 set_page_refcounted(page); 1465 if (hstate_is_gigantic(h)) 1466 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1467 else 1468 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1469 1470 h->nr_huge_pages--; 1471 h->nr_huge_pages_node[nid]--; 1472 } 1473 1474 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1475 bool adjust_surplus) 1476 { 1477 __remove_hugetlb_page(h, page, adjust_surplus, false); 1478 } 1479 1480 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1481 bool adjust_surplus) 1482 { 1483 __remove_hugetlb_page(h, page, adjust_surplus, true); 1484 } 1485 1486 static void add_hugetlb_page(struct hstate *h, struct page *page, 1487 bool adjust_surplus) 1488 { 1489 int zeroed; 1490 int nid = page_to_nid(page); 1491 1492 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1493 1494 lockdep_assert_held(&hugetlb_lock); 1495 1496 INIT_LIST_HEAD(&page->lru); 1497 h->nr_huge_pages++; 1498 h->nr_huge_pages_node[nid]++; 1499 1500 if (adjust_surplus) { 1501 h->surplus_huge_pages++; 1502 h->surplus_huge_pages_node[nid]++; 1503 } 1504 1505 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1506 set_page_private(page, 0); 1507 SetHPageVmemmapOptimized(page); 1508 1509 /* 1510 * This page is about to be managed by the hugetlb allocator and 1511 * should have no users. Drop our reference, and check for others 1512 * just in case. 1513 */ 1514 zeroed = put_page_testzero(page); 1515 if (!zeroed) 1516 /* 1517 * It is VERY unlikely soneone else has taken a ref on 1518 * the page. In this case, we simply return as the 1519 * hugetlb destructor (free_huge_page) will be called 1520 * when this other ref is dropped. 1521 */ 1522 return; 1523 1524 arch_clear_hugepage_flags(page); 1525 enqueue_huge_page(h, page); 1526 } 1527 1528 static void __update_and_free_page(struct hstate *h, struct page *page) 1529 { 1530 int i; 1531 struct page *subpage = page; 1532 1533 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1534 return; 1535 1536 if (alloc_huge_page_vmemmap(h, page)) { 1537 spin_lock_irq(&hugetlb_lock); 1538 /* 1539 * If we cannot allocate vmemmap pages, just refuse to free the 1540 * page and put the page back on the hugetlb free list and treat 1541 * as a surplus page. 1542 */ 1543 add_hugetlb_page(h, page, true); 1544 spin_unlock_irq(&hugetlb_lock); 1545 return; 1546 } 1547 1548 for (i = 0; i < pages_per_huge_page(h); 1549 i++, subpage = mem_map_next(subpage, page, i)) { 1550 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1551 1 << PG_referenced | 1 << PG_dirty | 1552 1 << PG_active | 1 << PG_private | 1553 1 << PG_writeback); 1554 } 1555 1556 /* 1557 * Non-gigantic pages demoted from CMA allocated gigantic pages 1558 * need to be given back to CMA in free_gigantic_page. 1559 */ 1560 if (hstate_is_gigantic(h) || 1561 hugetlb_cma_page(page, huge_page_order(h))) { 1562 destroy_compound_gigantic_page(page, huge_page_order(h)); 1563 free_gigantic_page(page, huge_page_order(h)); 1564 } else { 1565 __free_pages(page, huge_page_order(h)); 1566 } 1567 } 1568 1569 /* 1570 * As update_and_free_page() can be called under any context, so we cannot 1571 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1572 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1573 * the vmemmap pages. 1574 * 1575 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1576 * freed and frees them one-by-one. As the page->mapping pointer is going 1577 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1578 * structure of a lockless linked list of huge pages to be freed. 1579 */ 1580 static LLIST_HEAD(hpage_freelist); 1581 1582 static void free_hpage_workfn(struct work_struct *work) 1583 { 1584 struct llist_node *node; 1585 1586 node = llist_del_all(&hpage_freelist); 1587 1588 while (node) { 1589 struct page *page; 1590 struct hstate *h; 1591 1592 page = container_of((struct address_space **)node, 1593 struct page, mapping); 1594 node = node->next; 1595 page->mapping = NULL; 1596 /* 1597 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1598 * is going to trigger because a previous call to 1599 * remove_hugetlb_page() will set_compound_page_dtor(page, 1600 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1601 */ 1602 h = size_to_hstate(page_size(page)); 1603 1604 __update_and_free_page(h, page); 1605 1606 cond_resched(); 1607 } 1608 } 1609 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1610 1611 static inline void flush_free_hpage_work(struct hstate *h) 1612 { 1613 if (free_vmemmap_pages_per_hpage(h)) 1614 flush_work(&free_hpage_work); 1615 } 1616 1617 static void update_and_free_page(struct hstate *h, struct page *page, 1618 bool atomic) 1619 { 1620 if (!HPageVmemmapOptimized(page) || !atomic) { 1621 __update_and_free_page(h, page); 1622 return; 1623 } 1624 1625 /* 1626 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1627 * 1628 * Only call schedule_work() if hpage_freelist is previously 1629 * empty. Otherwise, schedule_work() had been called but the workfn 1630 * hasn't retrieved the list yet. 1631 */ 1632 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1633 schedule_work(&free_hpage_work); 1634 } 1635 1636 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1637 { 1638 struct page *page, *t_page; 1639 1640 list_for_each_entry_safe(page, t_page, list, lru) { 1641 update_and_free_page(h, page, false); 1642 cond_resched(); 1643 } 1644 } 1645 1646 struct hstate *size_to_hstate(unsigned long size) 1647 { 1648 struct hstate *h; 1649 1650 for_each_hstate(h) { 1651 if (huge_page_size(h) == size) 1652 return h; 1653 } 1654 return NULL; 1655 } 1656 1657 void free_huge_page(struct page *page) 1658 { 1659 /* 1660 * Can't pass hstate in here because it is called from the 1661 * compound page destructor. 1662 */ 1663 struct hstate *h = page_hstate(page); 1664 int nid = page_to_nid(page); 1665 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1666 bool restore_reserve; 1667 unsigned long flags; 1668 1669 VM_BUG_ON_PAGE(page_count(page), page); 1670 VM_BUG_ON_PAGE(page_mapcount(page), page); 1671 1672 hugetlb_set_page_subpool(page, NULL); 1673 page->mapping = NULL; 1674 restore_reserve = HPageRestoreReserve(page); 1675 ClearHPageRestoreReserve(page); 1676 1677 /* 1678 * If HPageRestoreReserve was set on page, page allocation consumed a 1679 * reservation. If the page was associated with a subpool, there 1680 * would have been a page reserved in the subpool before allocation 1681 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1682 * reservation, do not call hugepage_subpool_put_pages() as this will 1683 * remove the reserved page from the subpool. 1684 */ 1685 if (!restore_reserve) { 1686 /* 1687 * A return code of zero implies that the subpool will be 1688 * under its minimum size if the reservation is not restored 1689 * after page is free. Therefore, force restore_reserve 1690 * operation. 1691 */ 1692 if (hugepage_subpool_put_pages(spool, 1) == 0) 1693 restore_reserve = true; 1694 } 1695 1696 spin_lock_irqsave(&hugetlb_lock, flags); 1697 ClearHPageMigratable(page); 1698 hugetlb_cgroup_uncharge_page(hstate_index(h), 1699 pages_per_huge_page(h), page); 1700 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1701 pages_per_huge_page(h), page); 1702 if (restore_reserve) 1703 h->resv_huge_pages++; 1704 1705 if (HPageTemporary(page)) { 1706 remove_hugetlb_page(h, page, false); 1707 spin_unlock_irqrestore(&hugetlb_lock, flags); 1708 update_and_free_page(h, page, true); 1709 } else if (h->surplus_huge_pages_node[nid]) { 1710 /* remove the page from active list */ 1711 remove_hugetlb_page(h, page, true); 1712 spin_unlock_irqrestore(&hugetlb_lock, flags); 1713 update_and_free_page(h, page, true); 1714 } else { 1715 arch_clear_hugepage_flags(page); 1716 enqueue_huge_page(h, page); 1717 spin_unlock_irqrestore(&hugetlb_lock, flags); 1718 } 1719 } 1720 1721 /* 1722 * Must be called with the hugetlb lock held 1723 */ 1724 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1725 { 1726 lockdep_assert_held(&hugetlb_lock); 1727 h->nr_huge_pages++; 1728 h->nr_huge_pages_node[nid]++; 1729 } 1730 1731 static void __prep_new_huge_page(struct hstate *h, struct page *page) 1732 { 1733 free_huge_page_vmemmap(h, page); 1734 INIT_LIST_HEAD(&page->lru); 1735 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1736 hugetlb_set_page_subpool(page, NULL); 1737 set_hugetlb_cgroup(page, NULL); 1738 set_hugetlb_cgroup_rsvd(page, NULL); 1739 } 1740 1741 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1742 { 1743 __prep_new_huge_page(h, page); 1744 spin_lock_irq(&hugetlb_lock); 1745 __prep_account_new_huge_page(h, nid); 1746 spin_unlock_irq(&hugetlb_lock); 1747 } 1748 1749 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1750 bool demote) 1751 { 1752 int i, j; 1753 int nr_pages = 1 << order; 1754 struct page *p = page + 1; 1755 1756 /* we rely on prep_new_huge_page to set the destructor */ 1757 set_compound_order(page, order); 1758 __ClearPageReserved(page); 1759 __SetPageHead(page); 1760 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1761 /* 1762 * For gigantic hugepages allocated through bootmem at 1763 * boot, it's safer to be consistent with the not-gigantic 1764 * hugepages and clear the PG_reserved bit from all tail pages 1765 * too. Otherwise drivers using get_user_pages() to access tail 1766 * pages may get the reference counting wrong if they see 1767 * PG_reserved set on a tail page (despite the head page not 1768 * having PG_reserved set). Enforcing this consistency between 1769 * head and tail pages allows drivers to optimize away a check 1770 * on the head page when they need know if put_page() is needed 1771 * after get_user_pages(). 1772 */ 1773 __ClearPageReserved(p); 1774 /* 1775 * Subtle and very unlikely 1776 * 1777 * Gigantic 'page allocators' such as memblock or cma will 1778 * return a set of pages with each page ref counted. We need 1779 * to turn this set of pages into a compound page with tail 1780 * page ref counts set to zero. Code such as speculative page 1781 * cache adding could take a ref on a 'to be' tail page. 1782 * We need to respect any increased ref count, and only set 1783 * the ref count to zero if count is currently 1. If count 1784 * is not 1, we return an error. An error return indicates 1785 * the set of pages can not be converted to a gigantic page. 1786 * The caller who allocated the pages should then discard the 1787 * pages using the appropriate free interface. 1788 * 1789 * In the case of demote, the ref count will be zero. 1790 */ 1791 if (!demote) { 1792 if (!page_ref_freeze(p, 1)) { 1793 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1794 goto out_error; 1795 } 1796 } else { 1797 VM_BUG_ON_PAGE(page_count(p), p); 1798 } 1799 set_compound_head(p, page); 1800 } 1801 atomic_set(compound_mapcount_ptr(page), -1); 1802 atomic_set(compound_pincount_ptr(page), 0); 1803 return true; 1804 1805 out_error: 1806 /* undo tail page modifications made above */ 1807 p = page + 1; 1808 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) { 1809 clear_compound_head(p); 1810 set_page_refcounted(p); 1811 } 1812 /* need to clear PG_reserved on remaining tail pages */ 1813 for (; j < nr_pages; j++, p = mem_map_next(p, page, j)) 1814 __ClearPageReserved(p); 1815 set_compound_order(page, 0); 1816 page[1].compound_nr = 0; 1817 __ClearPageHead(page); 1818 return false; 1819 } 1820 1821 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1822 { 1823 return __prep_compound_gigantic_page(page, order, false); 1824 } 1825 1826 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1827 unsigned int order) 1828 { 1829 return __prep_compound_gigantic_page(page, order, true); 1830 } 1831 1832 /* 1833 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1834 * transparent huge pages. See the PageTransHuge() documentation for more 1835 * details. 1836 */ 1837 int PageHuge(struct page *page) 1838 { 1839 if (!PageCompound(page)) 1840 return 0; 1841 1842 page = compound_head(page); 1843 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1844 } 1845 EXPORT_SYMBOL_GPL(PageHuge); 1846 1847 /* 1848 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1849 * normal or transparent huge pages. 1850 */ 1851 int PageHeadHuge(struct page *page_head) 1852 { 1853 if (!PageHead(page_head)) 1854 return 0; 1855 1856 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1857 } 1858 EXPORT_SYMBOL_GPL(PageHeadHuge); 1859 1860 /* 1861 * Find and lock address space (mapping) in write mode. 1862 * 1863 * Upon entry, the page is locked which means that page_mapping() is 1864 * stable. Due to locking order, we can only trylock_write. If we can 1865 * not get the lock, simply return NULL to caller. 1866 */ 1867 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1868 { 1869 struct address_space *mapping = page_mapping(hpage); 1870 1871 if (!mapping) 1872 return mapping; 1873 1874 if (i_mmap_trylock_write(mapping)) 1875 return mapping; 1876 1877 return NULL; 1878 } 1879 1880 pgoff_t hugetlb_basepage_index(struct page *page) 1881 { 1882 struct page *page_head = compound_head(page); 1883 pgoff_t index = page_index(page_head); 1884 unsigned long compound_idx; 1885 1886 if (compound_order(page_head) >= MAX_ORDER) 1887 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1888 else 1889 compound_idx = page - page_head; 1890 1891 return (index << compound_order(page_head)) + compound_idx; 1892 } 1893 1894 static struct page *alloc_buddy_huge_page(struct hstate *h, 1895 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1896 nodemask_t *node_alloc_noretry) 1897 { 1898 int order = huge_page_order(h); 1899 struct page *page; 1900 bool alloc_try_hard = true; 1901 1902 /* 1903 * By default we always try hard to allocate the page with 1904 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1905 * a loop (to adjust global huge page counts) and previous allocation 1906 * failed, do not continue to try hard on the same node. Use the 1907 * node_alloc_noretry bitmap to manage this state information. 1908 */ 1909 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1910 alloc_try_hard = false; 1911 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1912 if (alloc_try_hard) 1913 gfp_mask |= __GFP_RETRY_MAYFAIL; 1914 if (nid == NUMA_NO_NODE) 1915 nid = numa_mem_id(); 1916 page = __alloc_pages(gfp_mask, order, nid, nmask); 1917 if (page) 1918 __count_vm_event(HTLB_BUDDY_PGALLOC); 1919 else 1920 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1921 1922 /* 1923 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1924 * indicates an overall state change. Clear bit so that we resume 1925 * normal 'try hard' allocations. 1926 */ 1927 if (node_alloc_noretry && page && !alloc_try_hard) 1928 node_clear(nid, *node_alloc_noretry); 1929 1930 /* 1931 * If we tried hard to get a page but failed, set bit so that 1932 * subsequent attempts will not try as hard until there is an 1933 * overall state change. 1934 */ 1935 if (node_alloc_noretry && !page && alloc_try_hard) 1936 node_set(nid, *node_alloc_noretry); 1937 1938 return page; 1939 } 1940 1941 /* 1942 * Common helper to allocate a fresh hugetlb page. All specific allocators 1943 * should use this function to get new hugetlb pages 1944 */ 1945 static struct page *alloc_fresh_huge_page(struct hstate *h, 1946 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1947 nodemask_t *node_alloc_noretry) 1948 { 1949 struct page *page; 1950 bool retry = false; 1951 1952 retry: 1953 if (hstate_is_gigantic(h)) 1954 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1955 else 1956 page = alloc_buddy_huge_page(h, gfp_mask, 1957 nid, nmask, node_alloc_noretry); 1958 if (!page) 1959 return NULL; 1960 1961 if (hstate_is_gigantic(h)) { 1962 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 1963 /* 1964 * Rare failure to convert pages to compound page. 1965 * Free pages and try again - ONCE! 1966 */ 1967 free_gigantic_page(page, huge_page_order(h)); 1968 if (!retry) { 1969 retry = true; 1970 goto retry; 1971 } 1972 return NULL; 1973 } 1974 } 1975 prep_new_huge_page(h, page, page_to_nid(page)); 1976 1977 return page; 1978 } 1979 1980 /* 1981 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1982 * manner. 1983 */ 1984 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1985 nodemask_t *node_alloc_noretry) 1986 { 1987 struct page *page; 1988 int nr_nodes, node; 1989 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1990 1991 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1992 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1993 node_alloc_noretry); 1994 if (page) 1995 break; 1996 } 1997 1998 if (!page) 1999 return 0; 2000 2001 put_page(page); /* free it into the hugepage allocator */ 2002 2003 return 1; 2004 } 2005 2006 /* 2007 * Remove huge page from pool from next node to free. Attempt to keep 2008 * persistent huge pages more or less balanced over allowed nodes. 2009 * This routine only 'removes' the hugetlb page. The caller must make 2010 * an additional call to free the page to low level allocators. 2011 * Called with hugetlb_lock locked. 2012 */ 2013 static struct page *remove_pool_huge_page(struct hstate *h, 2014 nodemask_t *nodes_allowed, 2015 bool acct_surplus) 2016 { 2017 int nr_nodes, node; 2018 struct page *page = NULL; 2019 2020 lockdep_assert_held(&hugetlb_lock); 2021 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2022 /* 2023 * If we're returning unused surplus pages, only examine 2024 * nodes with surplus pages. 2025 */ 2026 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2027 !list_empty(&h->hugepage_freelists[node])) { 2028 page = list_entry(h->hugepage_freelists[node].next, 2029 struct page, lru); 2030 remove_hugetlb_page(h, page, acct_surplus); 2031 break; 2032 } 2033 } 2034 2035 return page; 2036 } 2037 2038 /* 2039 * Dissolve a given free hugepage into free buddy pages. This function does 2040 * nothing for in-use hugepages and non-hugepages. 2041 * This function returns values like below: 2042 * 2043 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2044 * when the system is under memory pressure and the feature of 2045 * freeing unused vmemmap pages associated with each hugetlb page 2046 * is enabled. 2047 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2048 * (allocated or reserved.) 2049 * 0: successfully dissolved free hugepages or the page is not a 2050 * hugepage (considered as already dissolved) 2051 */ 2052 int dissolve_free_huge_page(struct page *page) 2053 { 2054 int rc = -EBUSY; 2055 2056 retry: 2057 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2058 if (!PageHuge(page)) 2059 return 0; 2060 2061 spin_lock_irq(&hugetlb_lock); 2062 if (!PageHuge(page)) { 2063 rc = 0; 2064 goto out; 2065 } 2066 2067 if (!page_count(page)) { 2068 struct page *head = compound_head(page); 2069 struct hstate *h = page_hstate(head); 2070 if (h->free_huge_pages - h->resv_huge_pages == 0) 2071 goto out; 2072 2073 /* 2074 * We should make sure that the page is already on the free list 2075 * when it is dissolved. 2076 */ 2077 if (unlikely(!HPageFreed(head))) { 2078 spin_unlock_irq(&hugetlb_lock); 2079 cond_resched(); 2080 2081 /* 2082 * Theoretically, we should return -EBUSY when we 2083 * encounter this race. In fact, we have a chance 2084 * to successfully dissolve the page if we do a 2085 * retry. Because the race window is quite small. 2086 * If we seize this opportunity, it is an optimization 2087 * for increasing the success rate of dissolving page. 2088 */ 2089 goto retry; 2090 } 2091 2092 remove_hugetlb_page(h, head, false); 2093 h->max_huge_pages--; 2094 spin_unlock_irq(&hugetlb_lock); 2095 2096 /* 2097 * Normally update_and_free_page will allocate required vmemmmap 2098 * before freeing the page. update_and_free_page will fail to 2099 * free the page if it can not allocate required vmemmap. We 2100 * need to adjust max_huge_pages if the page is not freed. 2101 * Attempt to allocate vmemmmap here so that we can take 2102 * appropriate action on failure. 2103 */ 2104 rc = alloc_huge_page_vmemmap(h, head); 2105 if (!rc) { 2106 /* 2107 * Move PageHWPoison flag from head page to the raw 2108 * error page, which makes any subpages rather than 2109 * the error page reusable. 2110 */ 2111 if (PageHWPoison(head) && page != head) { 2112 SetPageHWPoison(page); 2113 ClearPageHWPoison(head); 2114 } 2115 update_and_free_page(h, head, false); 2116 } else { 2117 spin_lock_irq(&hugetlb_lock); 2118 add_hugetlb_page(h, head, false); 2119 h->max_huge_pages++; 2120 spin_unlock_irq(&hugetlb_lock); 2121 } 2122 2123 return rc; 2124 } 2125 out: 2126 spin_unlock_irq(&hugetlb_lock); 2127 return rc; 2128 } 2129 2130 /* 2131 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2132 * make specified memory blocks removable from the system. 2133 * Note that this will dissolve a free gigantic hugepage completely, if any 2134 * part of it lies within the given range. 2135 * Also note that if dissolve_free_huge_page() returns with an error, all 2136 * free hugepages that were dissolved before that error are lost. 2137 */ 2138 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2139 { 2140 unsigned long pfn; 2141 struct page *page; 2142 int rc = 0; 2143 2144 if (!hugepages_supported()) 2145 return rc; 2146 2147 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 2148 page = pfn_to_page(pfn); 2149 rc = dissolve_free_huge_page(page); 2150 if (rc) 2151 break; 2152 } 2153 2154 return rc; 2155 } 2156 2157 /* 2158 * Allocates a fresh surplus page from the page allocator. 2159 */ 2160 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2161 int nid, nodemask_t *nmask, bool zero_ref) 2162 { 2163 struct page *page = NULL; 2164 bool retry = false; 2165 2166 if (hstate_is_gigantic(h)) 2167 return NULL; 2168 2169 spin_lock_irq(&hugetlb_lock); 2170 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2171 goto out_unlock; 2172 spin_unlock_irq(&hugetlb_lock); 2173 2174 retry: 2175 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2176 if (!page) 2177 return NULL; 2178 2179 spin_lock_irq(&hugetlb_lock); 2180 /* 2181 * We could have raced with the pool size change. 2182 * Double check that and simply deallocate the new page 2183 * if we would end up overcommiting the surpluses. Abuse 2184 * temporary page to workaround the nasty free_huge_page 2185 * codeflow 2186 */ 2187 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2188 SetHPageTemporary(page); 2189 spin_unlock_irq(&hugetlb_lock); 2190 put_page(page); 2191 return NULL; 2192 } 2193 2194 if (zero_ref) { 2195 /* 2196 * Caller requires a page with zero ref count. 2197 * We will drop ref count here. If someone else is holding 2198 * a ref, the page will be freed when they drop it. Abuse 2199 * temporary page flag to accomplish this. 2200 */ 2201 SetHPageTemporary(page); 2202 if (!put_page_testzero(page)) { 2203 /* 2204 * Unexpected inflated ref count on freshly allocated 2205 * huge. Retry once. 2206 */ 2207 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n"); 2208 spin_unlock_irq(&hugetlb_lock); 2209 if (retry) 2210 return NULL; 2211 2212 retry = true; 2213 goto retry; 2214 } 2215 ClearHPageTemporary(page); 2216 } 2217 2218 h->surplus_huge_pages++; 2219 h->surplus_huge_pages_node[page_to_nid(page)]++; 2220 2221 out_unlock: 2222 spin_unlock_irq(&hugetlb_lock); 2223 2224 return page; 2225 } 2226 2227 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2228 int nid, nodemask_t *nmask) 2229 { 2230 struct page *page; 2231 2232 if (hstate_is_gigantic(h)) 2233 return NULL; 2234 2235 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2236 if (!page) 2237 return NULL; 2238 2239 /* 2240 * We do not account these pages as surplus because they are only 2241 * temporary and will be released properly on the last reference 2242 */ 2243 SetHPageTemporary(page); 2244 2245 return page; 2246 } 2247 2248 /* 2249 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2250 */ 2251 static 2252 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2253 struct vm_area_struct *vma, unsigned long addr) 2254 { 2255 struct page *page = NULL; 2256 struct mempolicy *mpol; 2257 gfp_t gfp_mask = htlb_alloc_mask(h); 2258 int nid; 2259 nodemask_t *nodemask; 2260 2261 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2262 if (mpol_is_preferred_many(mpol)) { 2263 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2264 2265 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2266 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false); 2267 2268 /* Fallback to all nodes if page==NULL */ 2269 nodemask = NULL; 2270 } 2271 2272 if (!page) 2273 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false); 2274 mpol_cond_put(mpol); 2275 return page; 2276 } 2277 2278 /* page migration callback function */ 2279 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2280 nodemask_t *nmask, gfp_t gfp_mask) 2281 { 2282 spin_lock_irq(&hugetlb_lock); 2283 if (h->free_huge_pages - h->resv_huge_pages > 0) { 2284 struct page *page; 2285 2286 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2287 if (page) { 2288 spin_unlock_irq(&hugetlb_lock); 2289 return page; 2290 } 2291 } 2292 spin_unlock_irq(&hugetlb_lock); 2293 2294 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2295 } 2296 2297 /* mempolicy aware migration callback */ 2298 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2299 unsigned long address) 2300 { 2301 struct mempolicy *mpol; 2302 nodemask_t *nodemask; 2303 struct page *page; 2304 gfp_t gfp_mask; 2305 int node; 2306 2307 gfp_mask = htlb_alloc_mask(h); 2308 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2309 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2310 mpol_cond_put(mpol); 2311 2312 return page; 2313 } 2314 2315 /* 2316 * Increase the hugetlb pool such that it can accommodate a reservation 2317 * of size 'delta'. 2318 */ 2319 static int gather_surplus_pages(struct hstate *h, long delta) 2320 __must_hold(&hugetlb_lock) 2321 { 2322 struct list_head surplus_list; 2323 struct page *page, *tmp; 2324 int ret; 2325 long i; 2326 long needed, allocated; 2327 bool alloc_ok = true; 2328 2329 lockdep_assert_held(&hugetlb_lock); 2330 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2331 if (needed <= 0) { 2332 h->resv_huge_pages += delta; 2333 return 0; 2334 } 2335 2336 allocated = 0; 2337 INIT_LIST_HEAD(&surplus_list); 2338 2339 ret = -ENOMEM; 2340 retry: 2341 spin_unlock_irq(&hugetlb_lock); 2342 for (i = 0; i < needed; i++) { 2343 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2344 NUMA_NO_NODE, NULL, true); 2345 if (!page) { 2346 alloc_ok = false; 2347 break; 2348 } 2349 list_add(&page->lru, &surplus_list); 2350 cond_resched(); 2351 } 2352 allocated += i; 2353 2354 /* 2355 * After retaking hugetlb_lock, we need to recalculate 'needed' 2356 * because either resv_huge_pages or free_huge_pages may have changed. 2357 */ 2358 spin_lock_irq(&hugetlb_lock); 2359 needed = (h->resv_huge_pages + delta) - 2360 (h->free_huge_pages + allocated); 2361 if (needed > 0) { 2362 if (alloc_ok) 2363 goto retry; 2364 /* 2365 * We were not able to allocate enough pages to 2366 * satisfy the entire reservation so we free what 2367 * we've allocated so far. 2368 */ 2369 goto free; 2370 } 2371 /* 2372 * The surplus_list now contains _at_least_ the number of extra pages 2373 * needed to accommodate the reservation. Add the appropriate number 2374 * of pages to the hugetlb pool and free the extras back to the buddy 2375 * allocator. Commit the entire reservation here to prevent another 2376 * process from stealing the pages as they are added to the pool but 2377 * before they are reserved. 2378 */ 2379 needed += allocated; 2380 h->resv_huge_pages += delta; 2381 ret = 0; 2382 2383 /* Free the needed pages to the hugetlb pool */ 2384 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2385 if ((--needed) < 0) 2386 break; 2387 /* Add the page to the hugetlb allocator */ 2388 enqueue_huge_page(h, page); 2389 } 2390 free: 2391 spin_unlock_irq(&hugetlb_lock); 2392 2393 /* 2394 * Free unnecessary surplus pages to the buddy allocator. 2395 * Pages have no ref count, call free_huge_page directly. 2396 */ 2397 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2398 free_huge_page(page); 2399 spin_lock_irq(&hugetlb_lock); 2400 2401 return ret; 2402 } 2403 2404 /* 2405 * This routine has two main purposes: 2406 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2407 * in unused_resv_pages. This corresponds to the prior adjustments made 2408 * to the associated reservation map. 2409 * 2) Free any unused surplus pages that may have been allocated to satisfy 2410 * the reservation. As many as unused_resv_pages may be freed. 2411 */ 2412 static void return_unused_surplus_pages(struct hstate *h, 2413 unsigned long unused_resv_pages) 2414 { 2415 unsigned long nr_pages; 2416 struct page *page; 2417 LIST_HEAD(page_list); 2418 2419 lockdep_assert_held(&hugetlb_lock); 2420 /* Uncommit the reservation */ 2421 h->resv_huge_pages -= unused_resv_pages; 2422 2423 /* Cannot return gigantic pages currently */ 2424 if (hstate_is_gigantic(h)) 2425 goto out; 2426 2427 /* 2428 * Part (or even all) of the reservation could have been backed 2429 * by pre-allocated pages. Only free surplus pages. 2430 */ 2431 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2432 2433 /* 2434 * We want to release as many surplus pages as possible, spread 2435 * evenly across all nodes with memory. Iterate across these nodes 2436 * until we can no longer free unreserved surplus pages. This occurs 2437 * when the nodes with surplus pages have no free pages. 2438 * remove_pool_huge_page() will balance the freed pages across the 2439 * on-line nodes with memory and will handle the hstate accounting. 2440 */ 2441 while (nr_pages--) { 2442 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2443 if (!page) 2444 goto out; 2445 2446 list_add(&page->lru, &page_list); 2447 } 2448 2449 out: 2450 spin_unlock_irq(&hugetlb_lock); 2451 update_and_free_pages_bulk(h, &page_list); 2452 spin_lock_irq(&hugetlb_lock); 2453 } 2454 2455 2456 /* 2457 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2458 * are used by the huge page allocation routines to manage reservations. 2459 * 2460 * vma_needs_reservation is called to determine if the huge page at addr 2461 * within the vma has an associated reservation. If a reservation is 2462 * needed, the value 1 is returned. The caller is then responsible for 2463 * managing the global reservation and subpool usage counts. After 2464 * the huge page has been allocated, vma_commit_reservation is called 2465 * to add the page to the reservation map. If the page allocation fails, 2466 * the reservation must be ended instead of committed. vma_end_reservation 2467 * is called in such cases. 2468 * 2469 * In the normal case, vma_commit_reservation returns the same value 2470 * as the preceding vma_needs_reservation call. The only time this 2471 * is not the case is if a reserve map was changed between calls. It 2472 * is the responsibility of the caller to notice the difference and 2473 * take appropriate action. 2474 * 2475 * vma_add_reservation is used in error paths where a reservation must 2476 * be restored when a newly allocated huge page must be freed. It is 2477 * to be called after calling vma_needs_reservation to determine if a 2478 * reservation exists. 2479 * 2480 * vma_del_reservation is used in error paths where an entry in the reserve 2481 * map was created during huge page allocation and must be removed. It is to 2482 * be called after calling vma_needs_reservation to determine if a reservation 2483 * exists. 2484 */ 2485 enum vma_resv_mode { 2486 VMA_NEEDS_RESV, 2487 VMA_COMMIT_RESV, 2488 VMA_END_RESV, 2489 VMA_ADD_RESV, 2490 VMA_DEL_RESV, 2491 }; 2492 static long __vma_reservation_common(struct hstate *h, 2493 struct vm_area_struct *vma, unsigned long addr, 2494 enum vma_resv_mode mode) 2495 { 2496 struct resv_map *resv; 2497 pgoff_t idx; 2498 long ret; 2499 long dummy_out_regions_needed; 2500 2501 resv = vma_resv_map(vma); 2502 if (!resv) 2503 return 1; 2504 2505 idx = vma_hugecache_offset(h, vma, addr); 2506 switch (mode) { 2507 case VMA_NEEDS_RESV: 2508 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2509 /* We assume that vma_reservation_* routines always operate on 2510 * 1 page, and that adding to resv map a 1 page entry can only 2511 * ever require 1 region. 2512 */ 2513 VM_BUG_ON(dummy_out_regions_needed != 1); 2514 break; 2515 case VMA_COMMIT_RESV: 2516 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2517 /* region_add calls of range 1 should never fail. */ 2518 VM_BUG_ON(ret < 0); 2519 break; 2520 case VMA_END_RESV: 2521 region_abort(resv, idx, idx + 1, 1); 2522 ret = 0; 2523 break; 2524 case VMA_ADD_RESV: 2525 if (vma->vm_flags & VM_MAYSHARE) { 2526 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2527 /* region_add calls of range 1 should never fail. */ 2528 VM_BUG_ON(ret < 0); 2529 } else { 2530 region_abort(resv, idx, idx + 1, 1); 2531 ret = region_del(resv, idx, idx + 1); 2532 } 2533 break; 2534 case VMA_DEL_RESV: 2535 if (vma->vm_flags & VM_MAYSHARE) { 2536 region_abort(resv, idx, idx + 1, 1); 2537 ret = region_del(resv, idx, idx + 1); 2538 } else { 2539 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2540 /* region_add calls of range 1 should never fail. */ 2541 VM_BUG_ON(ret < 0); 2542 } 2543 break; 2544 default: 2545 BUG(); 2546 } 2547 2548 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2549 return ret; 2550 /* 2551 * We know private mapping must have HPAGE_RESV_OWNER set. 2552 * 2553 * In most cases, reserves always exist for private mappings. 2554 * However, a file associated with mapping could have been 2555 * hole punched or truncated after reserves were consumed. 2556 * As subsequent fault on such a range will not use reserves. 2557 * Subtle - The reserve map for private mappings has the 2558 * opposite meaning than that of shared mappings. If NO 2559 * entry is in the reserve map, it means a reservation exists. 2560 * If an entry exists in the reserve map, it means the 2561 * reservation has already been consumed. As a result, the 2562 * return value of this routine is the opposite of the 2563 * value returned from reserve map manipulation routines above. 2564 */ 2565 if (ret > 0) 2566 return 0; 2567 if (ret == 0) 2568 return 1; 2569 return ret; 2570 } 2571 2572 static long vma_needs_reservation(struct hstate *h, 2573 struct vm_area_struct *vma, unsigned long addr) 2574 { 2575 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2576 } 2577 2578 static long vma_commit_reservation(struct hstate *h, 2579 struct vm_area_struct *vma, unsigned long addr) 2580 { 2581 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2582 } 2583 2584 static void vma_end_reservation(struct hstate *h, 2585 struct vm_area_struct *vma, unsigned long addr) 2586 { 2587 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2588 } 2589 2590 static long vma_add_reservation(struct hstate *h, 2591 struct vm_area_struct *vma, unsigned long addr) 2592 { 2593 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2594 } 2595 2596 static long vma_del_reservation(struct hstate *h, 2597 struct vm_area_struct *vma, unsigned long addr) 2598 { 2599 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2600 } 2601 2602 /* 2603 * This routine is called to restore reservation information on error paths. 2604 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2605 * the hugetlb mutex should remain held when calling this routine. 2606 * 2607 * It handles two specific cases: 2608 * 1) A reservation was in place and the page consumed the reservation. 2609 * HPageRestoreReserve is set in the page. 2610 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2611 * not set. However, alloc_huge_page always updates the reserve map. 2612 * 2613 * In case 1, free_huge_page later in the error path will increment the 2614 * global reserve count. But, free_huge_page does not have enough context 2615 * to adjust the reservation map. This case deals primarily with private 2616 * mappings. Adjust the reserve map here to be consistent with global 2617 * reserve count adjustments to be made by free_huge_page. Make sure the 2618 * reserve map indicates there is a reservation present. 2619 * 2620 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2621 */ 2622 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2623 unsigned long address, struct page *page) 2624 { 2625 long rc = vma_needs_reservation(h, vma, address); 2626 2627 if (HPageRestoreReserve(page)) { 2628 if (unlikely(rc < 0)) 2629 /* 2630 * Rare out of memory condition in reserve map 2631 * manipulation. Clear HPageRestoreReserve so that 2632 * global reserve count will not be incremented 2633 * by free_huge_page. This will make it appear 2634 * as though the reservation for this page was 2635 * consumed. This may prevent the task from 2636 * faulting in the page at a later time. This 2637 * is better than inconsistent global huge page 2638 * accounting of reserve counts. 2639 */ 2640 ClearHPageRestoreReserve(page); 2641 else if (rc) 2642 (void)vma_add_reservation(h, vma, address); 2643 else 2644 vma_end_reservation(h, vma, address); 2645 } else { 2646 if (!rc) { 2647 /* 2648 * This indicates there is an entry in the reserve map 2649 * not added by alloc_huge_page. We know it was added 2650 * before the alloc_huge_page call, otherwise 2651 * HPageRestoreReserve would be set on the page. 2652 * Remove the entry so that a subsequent allocation 2653 * does not consume a reservation. 2654 */ 2655 rc = vma_del_reservation(h, vma, address); 2656 if (rc < 0) 2657 /* 2658 * VERY rare out of memory condition. Since 2659 * we can not delete the entry, set 2660 * HPageRestoreReserve so that the reserve 2661 * count will be incremented when the page 2662 * is freed. This reserve will be consumed 2663 * on a subsequent allocation. 2664 */ 2665 SetHPageRestoreReserve(page); 2666 } else if (rc < 0) { 2667 /* 2668 * Rare out of memory condition from 2669 * vma_needs_reservation call. Memory allocation is 2670 * only attempted if a new entry is needed. Therefore, 2671 * this implies there is not an entry in the 2672 * reserve map. 2673 * 2674 * For shared mappings, no entry in the map indicates 2675 * no reservation. We are done. 2676 */ 2677 if (!(vma->vm_flags & VM_MAYSHARE)) 2678 /* 2679 * For private mappings, no entry indicates 2680 * a reservation is present. Since we can 2681 * not add an entry, set SetHPageRestoreReserve 2682 * on the page so reserve count will be 2683 * incremented when freed. This reserve will 2684 * be consumed on a subsequent allocation. 2685 */ 2686 SetHPageRestoreReserve(page); 2687 } else 2688 /* 2689 * No reservation present, do nothing 2690 */ 2691 vma_end_reservation(h, vma, address); 2692 } 2693 } 2694 2695 /* 2696 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2697 * @h: struct hstate old page belongs to 2698 * @old_page: Old page to dissolve 2699 * @list: List to isolate the page in case we need to 2700 * Returns 0 on success, otherwise negated error. 2701 */ 2702 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2703 struct list_head *list) 2704 { 2705 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2706 int nid = page_to_nid(old_page); 2707 bool alloc_retry = false; 2708 struct page *new_page; 2709 int ret = 0; 2710 2711 /* 2712 * Before dissolving the page, we need to allocate a new one for the 2713 * pool to remain stable. Here, we allocate the page and 'prep' it 2714 * by doing everything but actually updating counters and adding to 2715 * the pool. This simplifies and let us do most of the processing 2716 * under the lock. 2717 */ 2718 alloc_retry: 2719 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2720 if (!new_page) 2721 return -ENOMEM; 2722 /* 2723 * If all goes well, this page will be directly added to the free 2724 * list in the pool. For this the ref count needs to be zero. 2725 * Attempt to drop now, and retry once if needed. It is VERY 2726 * unlikely there is another ref on the page. 2727 * 2728 * If someone else has a reference to the page, it will be freed 2729 * when they drop their ref. Abuse temporary page flag to accomplish 2730 * this. Retry once if there is an inflated ref count. 2731 */ 2732 SetHPageTemporary(new_page); 2733 if (!put_page_testzero(new_page)) { 2734 if (alloc_retry) 2735 return -EBUSY; 2736 2737 alloc_retry = true; 2738 goto alloc_retry; 2739 } 2740 ClearHPageTemporary(new_page); 2741 2742 __prep_new_huge_page(h, new_page); 2743 2744 retry: 2745 spin_lock_irq(&hugetlb_lock); 2746 if (!PageHuge(old_page)) { 2747 /* 2748 * Freed from under us. Drop new_page too. 2749 */ 2750 goto free_new; 2751 } else if (page_count(old_page)) { 2752 /* 2753 * Someone has grabbed the page, try to isolate it here. 2754 * Fail with -EBUSY if not possible. 2755 */ 2756 spin_unlock_irq(&hugetlb_lock); 2757 if (!isolate_huge_page(old_page, list)) 2758 ret = -EBUSY; 2759 spin_lock_irq(&hugetlb_lock); 2760 goto free_new; 2761 } else if (!HPageFreed(old_page)) { 2762 /* 2763 * Page's refcount is 0 but it has not been enqueued in the 2764 * freelist yet. Race window is small, so we can succeed here if 2765 * we retry. 2766 */ 2767 spin_unlock_irq(&hugetlb_lock); 2768 cond_resched(); 2769 goto retry; 2770 } else { 2771 /* 2772 * Ok, old_page is still a genuine free hugepage. Remove it from 2773 * the freelist and decrease the counters. These will be 2774 * incremented again when calling __prep_account_new_huge_page() 2775 * and enqueue_huge_page() for new_page. The counters will remain 2776 * stable since this happens under the lock. 2777 */ 2778 remove_hugetlb_page(h, old_page, false); 2779 2780 /* 2781 * Ref count on new page is already zero as it was dropped 2782 * earlier. It can be directly added to the pool free list. 2783 */ 2784 __prep_account_new_huge_page(h, nid); 2785 enqueue_huge_page(h, new_page); 2786 2787 /* 2788 * Pages have been replaced, we can safely free the old one. 2789 */ 2790 spin_unlock_irq(&hugetlb_lock); 2791 update_and_free_page(h, old_page, false); 2792 } 2793 2794 return ret; 2795 2796 free_new: 2797 spin_unlock_irq(&hugetlb_lock); 2798 /* Page has a zero ref count, but needs a ref to be freed */ 2799 set_page_refcounted(new_page); 2800 update_and_free_page(h, new_page, false); 2801 2802 return ret; 2803 } 2804 2805 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2806 { 2807 struct hstate *h; 2808 struct page *head; 2809 int ret = -EBUSY; 2810 2811 /* 2812 * The page might have been dissolved from under our feet, so make sure 2813 * to carefully check the state under the lock. 2814 * Return success when racing as if we dissolved the page ourselves. 2815 */ 2816 spin_lock_irq(&hugetlb_lock); 2817 if (PageHuge(page)) { 2818 head = compound_head(page); 2819 h = page_hstate(head); 2820 } else { 2821 spin_unlock_irq(&hugetlb_lock); 2822 return 0; 2823 } 2824 spin_unlock_irq(&hugetlb_lock); 2825 2826 /* 2827 * Fence off gigantic pages as there is a cyclic dependency between 2828 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2829 * of bailing out right away without further retrying. 2830 */ 2831 if (hstate_is_gigantic(h)) 2832 return -ENOMEM; 2833 2834 if (page_count(head) && isolate_huge_page(head, list)) 2835 ret = 0; 2836 else if (!page_count(head)) 2837 ret = alloc_and_dissolve_huge_page(h, head, list); 2838 2839 return ret; 2840 } 2841 2842 struct page *alloc_huge_page(struct vm_area_struct *vma, 2843 unsigned long addr, int avoid_reserve) 2844 { 2845 struct hugepage_subpool *spool = subpool_vma(vma); 2846 struct hstate *h = hstate_vma(vma); 2847 struct page *page; 2848 long map_chg, map_commit; 2849 long gbl_chg; 2850 int ret, idx; 2851 struct hugetlb_cgroup *h_cg; 2852 bool deferred_reserve; 2853 2854 idx = hstate_index(h); 2855 /* 2856 * Examine the region/reserve map to determine if the process 2857 * has a reservation for the page to be allocated. A return 2858 * code of zero indicates a reservation exists (no change). 2859 */ 2860 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2861 if (map_chg < 0) 2862 return ERR_PTR(-ENOMEM); 2863 2864 /* 2865 * Processes that did not create the mapping will have no 2866 * reserves as indicated by the region/reserve map. Check 2867 * that the allocation will not exceed the subpool limit. 2868 * Allocations for MAP_NORESERVE mappings also need to be 2869 * checked against any subpool limit. 2870 */ 2871 if (map_chg || avoid_reserve) { 2872 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2873 if (gbl_chg < 0) { 2874 vma_end_reservation(h, vma, addr); 2875 return ERR_PTR(-ENOSPC); 2876 } 2877 2878 /* 2879 * Even though there was no reservation in the region/reserve 2880 * map, there could be reservations associated with the 2881 * subpool that can be used. This would be indicated if the 2882 * return value of hugepage_subpool_get_pages() is zero. 2883 * However, if avoid_reserve is specified we still avoid even 2884 * the subpool reservations. 2885 */ 2886 if (avoid_reserve) 2887 gbl_chg = 1; 2888 } 2889 2890 /* If this allocation is not consuming a reservation, charge it now. 2891 */ 2892 deferred_reserve = map_chg || avoid_reserve; 2893 if (deferred_reserve) { 2894 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2895 idx, pages_per_huge_page(h), &h_cg); 2896 if (ret) 2897 goto out_subpool_put; 2898 } 2899 2900 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2901 if (ret) 2902 goto out_uncharge_cgroup_reservation; 2903 2904 spin_lock_irq(&hugetlb_lock); 2905 /* 2906 * glb_chg is passed to indicate whether or not a page must be taken 2907 * from the global free pool (global change). gbl_chg == 0 indicates 2908 * a reservation exists for the allocation. 2909 */ 2910 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2911 if (!page) { 2912 spin_unlock_irq(&hugetlb_lock); 2913 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2914 if (!page) 2915 goto out_uncharge_cgroup; 2916 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2917 SetHPageRestoreReserve(page); 2918 h->resv_huge_pages--; 2919 } 2920 spin_lock_irq(&hugetlb_lock); 2921 list_add(&page->lru, &h->hugepage_activelist); 2922 /* Fall through */ 2923 } 2924 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2925 /* If allocation is not consuming a reservation, also store the 2926 * hugetlb_cgroup pointer on the page. 2927 */ 2928 if (deferred_reserve) { 2929 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2930 h_cg, page); 2931 } 2932 2933 spin_unlock_irq(&hugetlb_lock); 2934 2935 hugetlb_set_page_subpool(page, spool); 2936 2937 map_commit = vma_commit_reservation(h, vma, addr); 2938 if (unlikely(map_chg > map_commit)) { 2939 /* 2940 * The page was added to the reservation map between 2941 * vma_needs_reservation and vma_commit_reservation. 2942 * This indicates a race with hugetlb_reserve_pages. 2943 * Adjust for the subpool count incremented above AND 2944 * in hugetlb_reserve_pages for the same page. Also, 2945 * the reservation count added in hugetlb_reserve_pages 2946 * no longer applies. 2947 */ 2948 long rsv_adjust; 2949 2950 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2951 hugetlb_acct_memory(h, -rsv_adjust); 2952 if (deferred_reserve) 2953 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2954 pages_per_huge_page(h), page); 2955 } 2956 return page; 2957 2958 out_uncharge_cgroup: 2959 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2960 out_uncharge_cgroup_reservation: 2961 if (deferred_reserve) 2962 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2963 h_cg); 2964 out_subpool_put: 2965 if (map_chg || avoid_reserve) 2966 hugepage_subpool_put_pages(spool, 1); 2967 vma_end_reservation(h, vma, addr); 2968 return ERR_PTR(-ENOSPC); 2969 } 2970 2971 int alloc_bootmem_huge_page(struct hstate *h, int nid) 2972 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2973 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 2974 { 2975 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 2976 int nr_nodes, node; 2977 2978 if (nid != NUMA_NO_NODE && nid >= nr_online_nodes) 2979 return 0; 2980 /* do node specific alloc */ 2981 if (nid != NUMA_NO_NODE) { 2982 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 2983 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 2984 if (!m) 2985 return 0; 2986 goto found; 2987 } 2988 /* allocate from next node when distributing huge pages */ 2989 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2990 m = memblock_alloc_try_nid_raw( 2991 huge_page_size(h), huge_page_size(h), 2992 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2993 /* 2994 * Use the beginning of the huge page to store the 2995 * huge_bootmem_page struct (until gather_bootmem 2996 * puts them into the mem_map). 2997 */ 2998 if (!m) 2999 return 0; 3000 goto found; 3001 } 3002 3003 found: 3004 /* Put them into a private list first because mem_map is not up yet */ 3005 INIT_LIST_HEAD(&m->list); 3006 list_add(&m->list, &huge_boot_pages); 3007 m->hstate = h; 3008 return 1; 3009 } 3010 3011 /* 3012 * Put bootmem huge pages into the standard lists after mem_map is up. 3013 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3014 */ 3015 static void __init gather_bootmem_prealloc(void) 3016 { 3017 struct huge_bootmem_page *m; 3018 3019 list_for_each_entry(m, &huge_boot_pages, list) { 3020 struct page *page = virt_to_page(m); 3021 struct hstate *h = m->hstate; 3022 3023 VM_BUG_ON(!hstate_is_gigantic(h)); 3024 WARN_ON(page_count(page) != 1); 3025 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3026 WARN_ON(PageReserved(page)); 3027 prep_new_huge_page(h, page, page_to_nid(page)); 3028 put_page(page); /* add to the hugepage allocator */ 3029 } else { 3030 /* VERY unlikely inflated ref count on a tail page */ 3031 free_gigantic_page(page, huge_page_order(h)); 3032 } 3033 3034 /* 3035 * We need to restore the 'stolen' pages to totalram_pages 3036 * in order to fix confusing memory reports from free(1) and 3037 * other side-effects, like CommitLimit going negative. 3038 */ 3039 adjust_managed_page_count(page, pages_per_huge_page(h)); 3040 cond_resched(); 3041 } 3042 } 3043 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3044 { 3045 unsigned long i; 3046 char buf[32]; 3047 3048 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3049 if (hstate_is_gigantic(h)) { 3050 if (!alloc_bootmem_huge_page(h, nid)) 3051 break; 3052 } else { 3053 struct page *page; 3054 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3055 3056 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3057 &node_states[N_MEMORY], NULL); 3058 if (!page) 3059 break; 3060 put_page(page); /* free it into the hugepage allocator */ 3061 } 3062 cond_resched(); 3063 } 3064 if (i == h->max_huge_pages_node[nid]) 3065 return; 3066 3067 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3068 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3069 h->max_huge_pages_node[nid], buf, nid, i); 3070 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3071 h->max_huge_pages_node[nid] = i; 3072 } 3073 3074 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3075 { 3076 unsigned long i; 3077 nodemask_t *node_alloc_noretry; 3078 bool node_specific_alloc = false; 3079 3080 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3081 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3082 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3083 return; 3084 } 3085 3086 /* do node specific alloc */ 3087 for (i = 0; i < nr_online_nodes; i++) { 3088 if (h->max_huge_pages_node[i] > 0) { 3089 hugetlb_hstate_alloc_pages_onenode(h, i); 3090 node_specific_alloc = true; 3091 } 3092 } 3093 3094 if (node_specific_alloc) 3095 return; 3096 3097 /* below will do all node balanced alloc */ 3098 if (!hstate_is_gigantic(h)) { 3099 /* 3100 * Bit mask controlling how hard we retry per-node allocations. 3101 * Ignore errors as lower level routines can deal with 3102 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3103 * time, we are likely in bigger trouble. 3104 */ 3105 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3106 GFP_KERNEL); 3107 } else { 3108 /* allocations done at boot time */ 3109 node_alloc_noretry = NULL; 3110 } 3111 3112 /* bit mask controlling how hard we retry per-node allocations */ 3113 if (node_alloc_noretry) 3114 nodes_clear(*node_alloc_noretry); 3115 3116 for (i = 0; i < h->max_huge_pages; ++i) { 3117 if (hstate_is_gigantic(h)) { 3118 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3119 break; 3120 } else if (!alloc_pool_huge_page(h, 3121 &node_states[N_MEMORY], 3122 node_alloc_noretry)) 3123 break; 3124 cond_resched(); 3125 } 3126 if (i < h->max_huge_pages) { 3127 char buf[32]; 3128 3129 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3130 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3131 h->max_huge_pages, buf, i); 3132 h->max_huge_pages = i; 3133 } 3134 kfree(node_alloc_noretry); 3135 } 3136 3137 static void __init hugetlb_init_hstates(void) 3138 { 3139 struct hstate *h, *h2; 3140 3141 for_each_hstate(h) { 3142 if (minimum_order > huge_page_order(h)) 3143 minimum_order = huge_page_order(h); 3144 3145 /* oversize hugepages were init'ed in early boot */ 3146 if (!hstate_is_gigantic(h)) 3147 hugetlb_hstate_alloc_pages(h); 3148 3149 /* 3150 * Set demote order for each hstate. Note that 3151 * h->demote_order is initially 0. 3152 * - We can not demote gigantic pages if runtime freeing 3153 * is not supported, so skip this. 3154 * - If CMA allocation is possible, we can not demote 3155 * HUGETLB_PAGE_ORDER or smaller size pages. 3156 */ 3157 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3158 continue; 3159 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3160 continue; 3161 for_each_hstate(h2) { 3162 if (h2 == h) 3163 continue; 3164 if (h2->order < h->order && 3165 h2->order > h->demote_order) 3166 h->demote_order = h2->order; 3167 } 3168 } 3169 VM_BUG_ON(minimum_order == UINT_MAX); 3170 } 3171 3172 static void __init report_hugepages(void) 3173 { 3174 struct hstate *h; 3175 3176 for_each_hstate(h) { 3177 char buf[32]; 3178 3179 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3180 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 3181 buf, h->free_huge_pages); 3182 } 3183 } 3184 3185 #ifdef CONFIG_HIGHMEM 3186 static void try_to_free_low(struct hstate *h, unsigned long count, 3187 nodemask_t *nodes_allowed) 3188 { 3189 int i; 3190 LIST_HEAD(page_list); 3191 3192 lockdep_assert_held(&hugetlb_lock); 3193 if (hstate_is_gigantic(h)) 3194 return; 3195 3196 /* 3197 * Collect pages to be freed on a list, and free after dropping lock 3198 */ 3199 for_each_node_mask(i, *nodes_allowed) { 3200 struct page *page, *next; 3201 struct list_head *freel = &h->hugepage_freelists[i]; 3202 list_for_each_entry_safe(page, next, freel, lru) { 3203 if (count >= h->nr_huge_pages) 3204 goto out; 3205 if (PageHighMem(page)) 3206 continue; 3207 remove_hugetlb_page(h, page, false); 3208 list_add(&page->lru, &page_list); 3209 } 3210 } 3211 3212 out: 3213 spin_unlock_irq(&hugetlb_lock); 3214 update_and_free_pages_bulk(h, &page_list); 3215 spin_lock_irq(&hugetlb_lock); 3216 } 3217 #else 3218 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3219 nodemask_t *nodes_allowed) 3220 { 3221 } 3222 #endif 3223 3224 /* 3225 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3226 * balanced by operating on them in a round-robin fashion. 3227 * Returns 1 if an adjustment was made. 3228 */ 3229 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3230 int delta) 3231 { 3232 int nr_nodes, node; 3233 3234 lockdep_assert_held(&hugetlb_lock); 3235 VM_BUG_ON(delta != -1 && delta != 1); 3236 3237 if (delta < 0) { 3238 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3239 if (h->surplus_huge_pages_node[node]) 3240 goto found; 3241 } 3242 } else { 3243 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3244 if (h->surplus_huge_pages_node[node] < 3245 h->nr_huge_pages_node[node]) 3246 goto found; 3247 } 3248 } 3249 return 0; 3250 3251 found: 3252 h->surplus_huge_pages += delta; 3253 h->surplus_huge_pages_node[node] += delta; 3254 return 1; 3255 } 3256 3257 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3258 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3259 nodemask_t *nodes_allowed) 3260 { 3261 unsigned long min_count, ret; 3262 struct page *page; 3263 LIST_HEAD(page_list); 3264 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3265 3266 /* 3267 * Bit mask controlling how hard we retry per-node allocations. 3268 * If we can not allocate the bit mask, do not attempt to allocate 3269 * the requested huge pages. 3270 */ 3271 if (node_alloc_noretry) 3272 nodes_clear(*node_alloc_noretry); 3273 else 3274 return -ENOMEM; 3275 3276 /* 3277 * resize_lock mutex prevents concurrent adjustments to number of 3278 * pages in hstate via the proc/sysfs interfaces. 3279 */ 3280 mutex_lock(&h->resize_lock); 3281 flush_free_hpage_work(h); 3282 spin_lock_irq(&hugetlb_lock); 3283 3284 /* 3285 * Check for a node specific request. 3286 * Changing node specific huge page count may require a corresponding 3287 * change to the global count. In any case, the passed node mask 3288 * (nodes_allowed) will restrict alloc/free to the specified node. 3289 */ 3290 if (nid != NUMA_NO_NODE) { 3291 unsigned long old_count = count; 3292 3293 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3294 /* 3295 * User may have specified a large count value which caused the 3296 * above calculation to overflow. In this case, they wanted 3297 * to allocate as many huge pages as possible. Set count to 3298 * largest possible value to align with their intention. 3299 */ 3300 if (count < old_count) 3301 count = ULONG_MAX; 3302 } 3303 3304 /* 3305 * Gigantic pages runtime allocation depend on the capability for large 3306 * page range allocation. 3307 * If the system does not provide this feature, return an error when 3308 * the user tries to allocate gigantic pages but let the user free the 3309 * boottime allocated gigantic pages. 3310 */ 3311 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3312 if (count > persistent_huge_pages(h)) { 3313 spin_unlock_irq(&hugetlb_lock); 3314 mutex_unlock(&h->resize_lock); 3315 NODEMASK_FREE(node_alloc_noretry); 3316 return -EINVAL; 3317 } 3318 /* Fall through to decrease pool */ 3319 } 3320 3321 /* 3322 * Increase the pool size 3323 * First take pages out of surplus state. Then make up the 3324 * remaining difference by allocating fresh huge pages. 3325 * 3326 * We might race with alloc_surplus_huge_page() here and be unable 3327 * to convert a surplus huge page to a normal huge page. That is 3328 * not critical, though, it just means the overall size of the 3329 * pool might be one hugepage larger than it needs to be, but 3330 * within all the constraints specified by the sysctls. 3331 */ 3332 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3333 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3334 break; 3335 } 3336 3337 while (count > persistent_huge_pages(h)) { 3338 /* 3339 * If this allocation races such that we no longer need the 3340 * page, free_huge_page will handle it by freeing the page 3341 * and reducing the surplus. 3342 */ 3343 spin_unlock_irq(&hugetlb_lock); 3344 3345 /* yield cpu to avoid soft lockup */ 3346 cond_resched(); 3347 3348 ret = alloc_pool_huge_page(h, nodes_allowed, 3349 node_alloc_noretry); 3350 spin_lock_irq(&hugetlb_lock); 3351 if (!ret) 3352 goto out; 3353 3354 /* Bail for signals. Probably ctrl-c from user */ 3355 if (signal_pending(current)) 3356 goto out; 3357 } 3358 3359 /* 3360 * Decrease the pool size 3361 * First return free pages to the buddy allocator (being careful 3362 * to keep enough around to satisfy reservations). Then place 3363 * pages into surplus state as needed so the pool will shrink 3364 * to the desired size as pages become free. 3365 * 3366 * By placing pages into the surplus state independent of the 3367 * overcommit value, we are allowing the surplus pool size to 3368 * exceed overcommit. There are few sane options here. Since 3369 * alloc_surplus_huge_page() is checking the global counter, 3370 * though, we'll note that we're not allowed to exceed surplus 3371 * and won't grow the pool anywhere else. Not until one of the 3372 * sysctls are changed, or the surplus pages go out of use. 3373 */ 3374 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3375 min_count = max(count, min_count); 3376 try_to_free_low(h, min_count, nodes_allowed); 3377 3378 /* 3379 * Collect pages to be removed on list without dropping lock 3380 */ 3381 while (min_count < persistent_huge_pages(h)) { 3382 page = remove_pool_huge_page(h, nodes_allowed, 0); 3383 if (!page) 3384 break; 3385 3386 list_add(&page->lru, &page_list); 3387 } 3388 /* free the pages after dropping lock */ 3389 spin_unlock_irq(&hugetlb_lock); 3390 update_and_free_pages_bulk(h, &page_list); 3391 flush_free_hpage_work(h); 3392 spin_lock_irq(&hugetlb_lock); 3393 3394 while (count < persistent_huge_pages(h)) { 3395 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3396 break; 3397 } 3398 out: 3399 h->max_huge_pages = persistent_huge_pages(h); 3400 spin_unlock_irq(&hugetlb_lock); 3401 mutex_unlock(&h->resize_lock); 3402 3403 NODEMASK_FREE(node_alloc_noretry); 3404 3405 return 0; 3406 } 3407 3408 static int demote_free_huge_page(struct hstate *h, struct page *page) 3409 { 3410 int i, nid = page_to_nid(page); 3411 struct hstate *target_hstate; 3412 int rc = 0; 3413 3414 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3415 3416 remove_hugetlb_page_for_demote(h, page, false); 3417 spin_unlock_irq(&hugetlb_lock); 3418 3419 rc = alloc_huge_page_vmemmap(h, page); 3420 if (rc) { 3421 /* Allocation of vmemmmap failed, we can not demote page */ 3422 spin_lock_irq(&hugetlb_lock); 3423 set_page_refcounted(page); 3424 add_hugetlb_page(h, page, false); 3425 return rc; 3426 } 3427 3428 /* 3429 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3430 * sizes as it will not ref count pages. 3431 */ 3432 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3433 3434 /* 3435 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3436 * Without the mutex, pages added to target hstate could be marked 3437 * as surplus. 3438 * 3439 * Note that we already hold h->resize_lock. To prevent deadlock, 3440 * use the convention of always taking larger size hstate mutex first. 3441 */ 3442 mutex_lock(&target_hstate->resize_lock); 3443 for (i = 0; i < pages_per_huge_page(h); 3444 i += pages_per_huge_page(target_hstate)) { 3445 if (hstate_is_gigantic(target_hstate)) 3446 prep_compound_gigantic_page_for_demote(page + i, 3447 target_hstate->order); 3448 else 3449 prep_compound_page(page + i, target_hstate->order); 3450 set_page_private(page + i, 0); 3451 set_page_refcounted(page + i); 3452 prep_new_huge_page(target_hstate, page + i, nid); 3453 put_page(page + i); 3454 } 3455 mutex_unlock(&target_hstate->resize_lock); 3456 3457 spin_lock_irq(&hugetlb_lock); 3458 3459 /* 3460 * Not absolutely necessary, but for consistency update max_huge_pages 3461 * based on pool changes for the demoted page. 3462 */ 3463 h->max_huge_pages--; 3464 target_hstate->max_huge_pages += pages_per_huge_page(h); 3465 3466 return rc; 3467 } 3468 3469 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3470 __must_hold(&hugetlb_lock) 3471 { 3472 int nr_nodes, node; 3473 struct page *page; 3474 int rc = 0; 3475 3476 lockdep_assert_held(&hugetlb_lock); 3477 3478 /* We should never get here if no demote order */ 3479 if (!h->demote_order) { 3480 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3481 return -EINVAL; /* internal error */ 3482 } 3483 3484 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3485 if (!list_empty(&h->hugepage_freelists[node])) { 3486 page = list_entry(h->hugepage_freelists[node].next, 3487 struct page, lru); 3488 rc = demote_free_huge_page(h, page); 3489 break; 3490 } 3491 } 3492 3493 return rc; 3494 } 3495 3496 #define HSTATE_ATTR_RO(_name) \ 3497 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3498 3499 #define HSTATE_ATTR_WO(_name) \ 3500 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3501 3502 #define HSTATE_ATTR(_name) \ 3503 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3504 3505 static struct kobject *hugepages_kobj; 3506 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3507 3508 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3509 3510 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3511 { 3512 int i; 3513 3514 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3515 if (hstate_kobjs[i] == kobj) { 3516 if (nidp) 3517 *nidp = NUMA_NO_NODE; 3518 return &hstates[i]; 3519 } 3520 3521 return kobj_to_node_hstate(kobj, nidp); 3522 } 3523 3524 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3525 struct kobj_attribute *attr, char *buf) 3526 { 3527 struct hstate *h; 3528 unsigned long nr_huge_pages; 3529 int nid; 3530 3531 h = kobj_to_hstate(kobj, &nid); 3532 if (nid == NUMA_NO_NODE) 3533 nr_huge_pages = h->nr_huge_pages; 3534 else 3535 nr_huge_pages = h->nr_huge_pages_node[nid]; 3536 3537 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3538 } 3539 3540 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3541 struct hstate *h, int nid, 3542 unsigned long count, size_t len) 3543 { 3544 int err; 3545 nodemask_t nodes_allowed, *n_mask; 3546 3547 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3548 return -EINVAL; 3549 3550 if (nid == NUMA_NO_NODE) { 3551 /* 3552 * global hstate attribute 3553 */ 3554 if (!(obey_mempolicy && 3555 init_nodemask_of_mempolicy(&nodes_allowed))) 3556 n_mask = &node_states[N_MEMORY]; 3557 else 3558 n_mask = &nodes_allowed; 3559 } else { 3560 /* 3561 * Node specific request. count adjustment happens in 3562 * set_max_huge_pages() after acquiring hugetlb_lock. 3563 */ 3564 init_nodemask_of_node(&nodes_allowed, nid); 3565 n_mask = &nodes_allowed; 3566 } 3567 3568 err = set_max_huge_pages(h, count, nid, n_mask); 3569 3570 return err ? err : len; 3571 } 3572 3573 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3574 struct kobject *kobj, const char *buf, 3575 size_t len) 3576 { 3577 struct hstate *h; 3578 unsigned long count; 3579 int nid; 3580 int err; 3581 3582 err = kstrtoul(buf, 10, &count); 3583 if (err) 3584 return err; 3585 3586 h = kobj_to_hstate(kobj, &nid); 3587 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3588 } 3589 3590 static ssize_t nr_hugepages_show(struct kobject *kobj, 3591 struct kobj_attribute *attr, char *buf) 3592 { 3593 return nr_hugepages_show_common(kobj, attr, buf); 3594 } 3595 3596 static ssize_t nr_hugepages_store(struct kobject *kobj, 3597 struct kobj_attribute *attr, const char *buf, size_t len) 3598 { 3599 return nr_hugepages_store_common(false, kobj, buf, len); 3600 } 3601 HSTATE_ATTR(nr_hugepages); 3602 3603 #ifdef CONFIG_NUMA 3604 3605 /* 3606 * hstate attribute for optionally mempolicy-based constraint on persistent 3607 * huge page alloc/free. 3608 */ 3609 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3610 struct kobj_attribute *attr, 3611 char *buf) 3612 { 3613 return nr_hugepages_show_common(kobj, attr, buf); 3614 } 3615 3616 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3617 struct kobj_attribute *attr, const char *buf, size_t len) 3618 { 3619 return nr_hugepages_store_common(true, kobj, buf, len); 3620 } 3621 HSTATE_ATTR(nr_hugepages_mempolicy); 3622 #endif 3623 3624 3625 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3626 struct kobj_attribute *attr, char *buf) 3627 { 3628 struct hstate *h = kobj_to_hstate(kobj, NULL); 3629 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3630 } 3631 3632 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3633 struct kobj_attribute *attr, const char *buf, size_t count) 3634 { 3635 int err; 3636 unsigned long input; 3637 struct hstate *h = kobj_to_hstate(kobj, NULL); 3638 3639 if (hstate_is_gigantic(h)) 3640 return -EINVAL; 3641 3642 err = kstrtoul(buf, 10, &input); 3643 if (err) 3644 return err; 3645 3646 spin_lock_irq(&hugetlb_lock); 3647 h->nr_overcommit_huge_pages = input; 3648 spin_unlock_irq(&hugetlb_lock); 3649 3650 return count; 3651 } 3652 HSTATE_ATTR(nr_overcommit_hugepages); 3653 3654 static ssize_t free_hugepages_show(struct kobject *kobj, 3655 struct kobj_attribute *attr, char *buf) 3656 { 3657 struct hstate *h; 3658 unsigned long free_huge_pages; 3659 int nid; 3660 3661 h = kobj_to_hstate(kobj, &nid); 3662 if (nid == NUMA_NO_NODE) 3663 free_huge_pages = h->free_huge_pages; 3664 else 3665 free_huge_pages = h->free_huge_pages_node[nid]; 3666 3667 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3668 } 3669 HSTATE_ATTR_RO(free_hugepages); 3670 3671 static ssize_t resv_hugepages_show(struct kobject *kobj, 3672 struct kobj_attribute *attr, char *buf) 3673 { 3674 struct hstate *h = kobj_to_hstate(kobj, NULL); 3675 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3676 } 3677 HSTATE_ATTR_RO(resv_hugepages); 3678 3679 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3680 struct kobj_attribute *attr, char *buf) 3681 { 3682 struct hstate *h; 3683 unsigned long surplus_huge_pages; 3684 int nid; 3685 3686 h = kobj_to_hstate(kobj, &nid); 3687 if (nid == NUMA_NO_NODE) 3688 surplus_huge_pages = h->surplus_huge_pages; 3689 else 3690 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3691 3692 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3693 } 3694 HSTATE_ATTR_RO(surplus_hugepages); 3695 3696 static ssize_t demote_store(struct kobject *kobj, 3697 struct kobj_attribute *attr, const char *buf, size_t len) 3698 { 3699 unsigned long nr_demote; 3700 unsigned long nr_available; 3701 nodemask_t nodes_allowed, *n_mask; 3702 struct hstate *h; 3703 int err = 0; 3704 int nid; 3705 3706 err = kstrtoul(buf, 10, &nr_demote); 3707 if (err) 3708 return err; 3709 h = kobj_to_hstate(kobj, &nid); 3710 3711 if (nid != NUMA_NO_NODE) { 3712 init_nodemask_of_node(&nodes_allowed, nid); 3713 n_mask = &nodes_allowed; 3714 } else { 3715 n_mask = &node_states[N_MEMORY]; 3716 } 3717 3718 /* Synchronize with other sysfs operations modifying huge pages */ 3719 mutex_lock(&h->resize_lock); 3720 spin_lock_irq(&hugetlb_lock); 3721 3722 while (nr_demote) { 3723 /* 3724 * Check for available pages to demote each time thorough the 3725 * loop as demote_pool_huge_page will drop hugetlb_lock. 3726 */ 3727 if (nid != NUMA_NO_NODE) 3728 nr_available = h->free_huge_pages_node[nid]; 3729 else 3730 nr_available = h->free_huge_pages; 3731 nr_available -= h->resv_huge_pages; 3732 if (!nr_available) 3733 break; 3734 3735 err = demote_pool_huge_page(h, n_mask); 3736 if (err) 3737 break; 3738 3739 nr_demote--; 3740 } 3741 3742 spin_unlock_irq(&hugetlb_lock); 3743 mutex_unlock(&h->resize_lock); 3744 3745 if (err) 3746 return err; 3747 return len; 3748 } 3749 HSTATE_ATTR_WO(demote); 3750 3751 static ssize_t demote_size_show(struct kobject *kobj, 3752 struct kobj_attribute *attr, char *buf) 3753 { 3754 int nid; 3755 struct hstate *h = kobj_to_hstate(kobj, &nid); 3756 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3757 3758 return sysfs_emit(buf, "%lukB\n", demote_size); 3759 } 3760 3761 static ssize_t demote_size_store(struct kobject *kobj, 3762 struct kobj_attribute *attr, 3763 const char *buf, size_t count) 3764 { 3765 struct hstate *h, *demote_hstate; 3766 unsigned long demote_size; 3767 unsigned int demote_order; 3768 int nid; 3769 3770 demote_size = (unsigned long)memparse(buf, NULL); 3771 3772 demote_hstate = size_to_hstate(demote_size); 3773 if (!demote_hstate) 3774 return -EINVAL; 3775 demote_order = demote_hstate->order; 3776 if (demote_order < HUGETLB_PAGE_ORDER) 3777 return -EINVAL; 3778 3779 /* demote order must be smaller than hstate order */ 3780 h = kobj_to_hstate(kobj, &nid); 3781 if (demote_order >= h->order) 3782 return -EINVAL; 3783 3784 /* resize_lock synchronizes access to demote size and writes */ 3785 mutex_lock(&h->resize_lock); 3786 h->demote_order = demote_order; 3787 mutex_unlock(&h->resize_lock); 3788 3789 return count; 3790 } 3791 HSTATE_ATTR(demote_size); 3792 3793 static struct attribute *hstate_attrs[] = { 3794 &nr_hugepages_attr.attr, 3795 &nr_overcommit_hugepages_attr.attr, 3796 &free_hugepages_attr.attr, 3797 &resv_hugepages_attr.attr, 3798 &surplus_hugepages_attr.attr, 3799 #ifdef CONFIG_NUMA 3800 &nr_hugepages_mempolicy_attr.attr, 3801 #endif 3802 NULL, 3803 }; 3804 3805 static const struct attribute_group hstate_attr_group = { 3806 .attrs = hstate_attrs, 3807 }; 3808 3809 static struct attribute *hstate_demote_attrs[] = { 3810 &demote_size_attr.attr, 3811 &demote_attr.attr, 3812 NULL, 3813 }; 3814 3815 static const struct attribute_group hstate_demote_attr_group = { 3816 .attrs = hstate_demote_attrs, 3817 }; 3818 3819 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3820 struct kobject **hstate_kobjs, 3821 const struct attribute_group *hstate_attr_group) 3822 { 3823 int retval; 3824 int hi = hstate_index(h); 3825 3826 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3827 if (!hstate_kobjs[hi]) 3828 return -ENOMEM; 3829 3830 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3831 if (retval) { 3832 kobject_put(hstate_kobjs[hi]); 3833 hstate_kobjs[hi] = NULL; 3834 } 3835 3836 if (h->demote_order) { 3837 if (sysfs_create_group(hstate_kobjs[hi], 3838 &hstate_demote_attr_group)) 3839 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3840 } 3841 3842 return retval; 3843 } 3844 3845 static void __init hugetlb_sysfs_init(void) 3846 { 3847 struct hstate *h; 3848 int err; 3849 3850 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3851 if (!hugepages_kobj) 3852 return; 3853 3854 for_each_hstate(h) { 3855 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3856 hstate_kobjs, &hstate_attr_group); 3857 if (err) 3858 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3859 } 3860 } 3861 3862 #ifdef CONFIG_NUMA 3863 3864 /* 3865 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3866 * with node devices in node_devices[] using a parallel array. The array 3867 * index of a node device or _hstate == node id. 3868 * This is here to avoid any static dependency of the node device driver, in 3869 * the base kernel, on the hugetlb module. 3870 */ 3871 struct node_hstate { 3872 struct kobject *hugepages_kobj; 3873 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3874 }; 3875 static struct node_hstate node_hstates[MAX_NUMNODES]; 3876 3877 /* 3878 * A subset of global hstate attributes for node devices 3879 */ 3880 static struct attribute *per_node_hstate_attrs[] = { 3881 &nr_hugepages_attr.attr, 3882 &free_hugepages_attr.attr, 3883 &surplus_hugepages_attr.attr, 3884 NULL, 3885 }; 3886 3887 static const struct attribute_group per_node_hstate_attr_group = { 3888 .attrs = per_node_hstate_attrs, 3889 }; 3890 3891 /* 3892 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3893 * Returns node id via non-NULL nidp. 3894 */ 3895 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3896 { 3897 int nid; 3898 3899 for (nid = 0; nid < nr_node_ids; nid++) { 3900 struct node_hstate *nhs = &node_hstates[nid]; 3901 int i; 3902 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3903 if (nhs->hstate_kobjs[i] == kobj) { 3904 if (nidp) 3905 *nidp = nid; 3906 return &hstates[i]; 3907 } 3908 } 3909 3910 BUG(); 3911 return NULL; 3912 } 3913 3914 /* 3915 * Unregister hstate attributes from a single node device. 3916 * No-op if no hstate attributes attached. 3917 */ 3918 static void hugetlb_unregister_node(struct node *node) 3919 { 3920 struct hstate *h; 3921 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3922 3923 if (!nhs->hugepages_kobj) 3924 return; /* no hstate attributes */ 3925 3926 for_each_hstate(h) { 3927 int idx = hstate_index(h); 3928 if (nhs->hstate_kobjs[idx]) { 3929 kobject_put(nhs->hstate_kobjs[idx]); 3930 nhs->hstate_kobjs[idx] = NULL; 3931 } 3932 } 3933 3934 kobject_put(nhs->hugepages_kobj); 3935 nhs->hugepages_kobj = NULL; 3936 } 3937 3938 3939 /* 3940 * Register hstate attributes for a single node device. 3941 * No-op if attributes already registered. 3942 */ 3943 static void hugetlb_register_node(struct node *node) 3944 { 3945 struct hstate *h; 3946 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3947 int err; 3948 3949 if (nhs->hugepages_kobj) 3950 return; /* already allocated */ 3951 3952 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3953 &node->dev.kobj); 3954 if (!nhs->hugepages_kobj) 3955 return; 3956 3957 for_each_hstate(h) { 3958 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3959 nhs->hstate_kobjs, 3960 &per_node_hstate_attr_group); 3961 if (err) { 3962 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3963 h->name, node->dev.id); 3964 hugetlb_unregister_node(node); 3965 break; 3966 } 3967 } 3968 } 3969 3970 /* 3971 * hugetlb init time: register hstate attributes for all registered node 3972 * devices of nodes that have memory. All on-line nodes should have 3973 * registered their associated device by this time. 3974 */ 3975 static void __init hugetlb_register_all_nodes(void) 3976 { 3977 int nid; 3978 3979 for_each_node_state(nid, N_MEMORY) { 3980 struct node *node = node_devices[nid]; 3981 if (node->dev.id == nid) 3982 hugetlb_register_node(node); 3983 } 3984 3985 /* 3986 * Let the node device driver know we're here so it can 3987 * [un]register hstate attributes on node hotplug. 3988 */ 3989 register_hugetlbfs_with_node(hugetlb_register_node, 3990 hugetlb_unregister_node); 3991 } 3992 #else /* !CONFIG_NUMA */ 3993 3994 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3995 { 3996 BUG(); 3997 if (nidp) 3998 *nidp = -1; 3999 return NULL; 4000 } 4001 4002 static void hugetlb_register_all_nodes(void) { } 4003 4004 #endif 4005 4006 static int __init hugetlb_init(void) 4007 { 4008 int i; 4009 4010 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4011 __NR_HPAGEFLAGS); 4012 4013 if (!hugepages_supported()) { 4014 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4015 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4016 return 0; 4017 } 4018 4019 /* 4020 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4021 * architectures depend on setup being done here. 4022 */ 4023 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4024 if (!parsed_default_hugepagesz) { 4025 /* 4026 * If we did not parse a default huge page size, set 4027 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4028 * number of huge pages for this default size was implicitly 4029 * specified, set that here as well. 4030 * Note that the implicit setting will overwrite an explicit 4031 * setting. A warning will be printed in this case. 4032 */ 4033 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4034 if (default_hstate_max_huge_pages) { 4035 if (default_hstate.max_huge_pages) { 4036 char buf[32]; 4037 4038 string_get_size(huge_page_size(&default_hstate), 4039 1, STRING_UNITS_2, buf, 32); 4040 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4041 default_hstate.max_huge_pages, buf); 4042 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4043 default_hstate_max_huge_pages); 4044 } 4045 default_hstate.max_huge_pages = 4046 default_hstate_max_huge_pages; 4047 4048 for (i = 0; i < nr_online_nodes; i++) 4049 default_hstate.max_huge_pages_node[i] = 4050 default_hugepages_in_node[i]; 4051 } 4052 } 4053 4054 hugetlb_cma_check(); 4055 hugetlb_init_hstates(); 4056 gather_bootmem_prealloc(); 4057 report_hugepages(); 4058 4059 hugetlb_sysfs_init(); 4060 hugetlb_register_all_nodes(); 4061 hugetlb_cgroup_file_init(); 4062 4063 #ifdef CONFIG_SMP 4064 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4065 #else 4066 num_fault_mutexes = 1; 4067 #endif 4068 hugetlb_fault_mutex_table = 4069 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4070 GFP_KERNEL); 4071 BUG_ON(!hugetlb_fault_mutex_table); 4072 4073 for (i = 0; i < num_fault_mutexes; i++) 4074 mutex_init(&hugetlb_fault_mutex_table[i]); 4075 return 0; 4076 } 4077 subsys_initcall(hugetlb_init); 4078 4079 /* Overwritten by architectures with more huge page sizes */ 4080 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4081 { 4082 return size == HPAGE_SIZE; 4083 } 4084 4085 void __init hugetlb_add_hstate(unsigned int order) 4086 { 4087 struct hstate *h; 4088 unsigned long i; 4089 4090 if (size_to_hstate(PAGE_SIZE << order)) { 4091 return; 4092 } 4093 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4094 BUG_ON(order == 0); 4095 h = &hstates[hugetlb_max_hstate++]; 4096 mutex_init(&h->resize_lock); 4097 h->order = order; 4098 h->mask = ~(huge_page_size(h) - 1); 4099 for (i = 0; i < MAX_NUMNODES; ++i) 4100 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4101 INIT_LIST_HEAD(&h->hugepage_activelist); 4102 h->next_nid_to_alloc = first_memory_node; 4103 h->next_nid_to_free = first_memory_node; 4104 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4105 huge_page_size(h)/1024); 4106 hugetlb_vmemmap_init(h); 4107 4108 parsed_hstate = h; 4109 } 4110 4111 bool __init __weak hugetlb_node_alloc_supported(void) 4112 { 4113 return true; 4114 } 4115 /* 4116 * hugepages command line processing 4117 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4118 * specification. If not, ignore the hugepages value. hugepages can also 4119 * be the first huge page command line option in which case it implicitly 4120 * specifies the number of huge pages for the default size. 4121 */ 4122 static int __init hugepages_setup(char *s) 4123 { 4124 unsigned long *mhp; 4125 static unsigned long *last_mhp; 4126 int node = NUMA_NO_NODE; 4127 int count; 4128 unsigned long tmp; 4129 char *p = s; 4130 4131 if (!parsed_valid_hugepagesz) { 4132 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4133 parsed_valid_hugepagesz = true; 4134 return 0; 4135 } 4136 4137 /* 4138 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4139 * yet, so this hugepages= parameter goes to the "default hstate". 4140 * Otherwise, it goes with the previously parsed hugepagesz or 4141 * default_hugepagesz. 4142 */ 4143 else if (!hugetlb_max_hstate) 4144 mhp = &default_hstate_max_huge_pages; 4145 else 4146 mhp = &parsed_hstate->max_huge_pages; 4147 4148 if (mhp == last_mhp) { 4149 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4150 return 0; 4151 } 4152 4153 while (*p) { 4154 count = 0; 4155 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4156 goto invalid; 4157 /* Parameter is node format */ 4158 if (p[count] == ':') { 4159 if (!hugetlb_node_alloc_supported()) { 4160 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4161 return 0; 4162 } 4163 if (tmp >= nr_online_nodes) 4164 goto invalid; 4165 node = array_index_nospec(tmp, nr_online_nodes); 4166 p += count + 1; 4167 /* Parse hugepages */ 4168 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4169 goto invalid; 4170 if (!hugetlb_max_hstate) 4171 default_hugepages_in_node[node] = tmp; 4172 else 4173 parsed_hstate->max_huge_pages_node[node] = tmp; 4174 *mhp += tmp; 4175 /* Go to parse next node*/ 4176 if (p[count] == ',') 4177 p += count + 1; 4178 else 4179 break; 4180 } else { 4181 if (p != s) 4182 goto invalid; 4183 *mhp = tmp; 4184 break; 4185 } 4186 } 4187 4188 /* 4189 * Global state is always initialized later in hugetlb_init. 4190 * But we need to allocate gigantic hstates here early to still 4191 * use the bootmem allocator. 4192 */ 4193 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4194 hugetlb_hstate_alloc_pages(parsed_hstate); 4195 4196 last_mhp = mhp; 4197 4198 return 1; 4199 4200 invalid: 4201 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4202 return 0; 4203 } 4204 __setup("hugepages=", hugepages_setup); 4205 4206 /* 4207 * hugepagesz command line processing 4208 * A specific huge page size can only be specified once with hugepagesz. 4209 * hugepagesz is followed by hugepages on the command line. The global 4210 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4211 * hugepagesz argument was valid. 4212 */ 4213 static int __init hugepagesz_setup(char *s) 4214 { 4215 unsigned long size; 4216 struct hstate *h; 4217 4218 parsed_valid_hugepagesz = false; 4219 size = (unsigned long)memparse(s, NULL); 4220 4221 if (!arch_hugetlb_valid_size(size)) { 4222 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4223 return 0; 4224 } 4225 4226 h = size_to_hstate(size); 4227 if (h) { 4228 /* 4229 * hstate for this size already exists. This is normally 4230 * an error, but is allowed if the existing hstate is the 4231 * default hstate. More specifically, it is only allowed if 4232 * the number of huge pages for the default hstate was not 4233 * previously specified. 4234 */ 4235 if (!parsed_default_hugepagesz || h != &default_hstate || 4236 default_hstate.max_huge_pages) { 4237 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4238 return 0; 4239 } 4240 4241 /* 4242 * No need to call hugetlb_add_hstate() as hstate already 4243 * exists. But, do set parsed_hstate so that a following 4244 * hugepages= parameter will be applied to this hstate. 4245 */ 4246 parsed_hstate = h; 4247 parsed_valid_hugepagesz = true; 4248 return 1; 4249 } 4250 4251 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4252 parsed_valid_hugepagesz = true; 4253 return 1; 4254 } 4255 __setup("hugepagesz=", hugepagesz_setup); 4256 4257 /* 4258 * default_hugepagesz command line input 4259 * Only one instance of default_hugepagesz allowed on command line. 4260 */ 4261 static int __init default_hugepagesz_setup(char *s) 4262 { 4263 unsigned long size; 4264 int i; 4265 4266 parsed_valid_hugepagesz = false; 4267 if (parsed_default_hugepagesz) { 4268 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4269 return 0; 4270 } 4271 4272 size = (unsigned long)memparse(s, NULL); 4273 4274 if (!arch_hugetlb_valid_size(size)) { 4275 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4276 return 0; 4277 } 4278 4279 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4280 parsed_valid_hugepagesz = true; 4281 parsed_default_hugepagesz = true; 4282 default_hstate_idx = hstate_index(size_to_hstate(size)); 4283 4284 /* 4285 * The number of default huge pages (for this size) could have been 4286 * specified as the first hugetlb parameter: hugepages=X. If so, 4287 * then default_hstate_max_huge_pages is set. If the default huge 4288 * page size is gigantic (>= MAX_ORDER), then the pages must be 4289 * allocated here from bootmem allocator. 4290 */ 4291 if (default_hstate_max_huge_pages) { 4292 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4293 for (i = 0; i < nr_online_nodes; i++) 4294 default_hstate.max_huge_pages_node[i] = 4295 default_hugepages_in_node[i]; 4296 if (hstate_is_gigantic(&default_hstate)) 4297 hugetlb_hstate_alloc_pages(&default_hstate); 4298 default_hstate_max_huge_pages = 0; 4299 } 4300 4301 return 1; 4302 } 4303 __setup("default_hugepagesz=", default_hugepagesz_setup); 4304 4305 static unsigned int allowed_mems_nr(struct hstate *h) 4306 { 4307 int node; 4308 unsigned int nr = 0; 4309 nodemask_t *mpol_allowed; 4310 unsigned int *array = h->free_huge_pages_node; 4311 gfp_t gfp_mask = htlb_alloc_mask(h); 4312 4313 mpol_allowed = policy_nodemask_current(gfp_mask); 4314 4315 for_each_node_mask(node, cpuset_current_mems_allowed) { 4316 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 4317 nr += array[node]; 4318 } 4319 4320 return nr; 4321 } 4322 4323 #ifdef CONFIG_SYSCTL 4324 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4325 void *buffer, size_t *length, 4326 loff_t *ppos, unsigned long *out) 4327 { 4328 struct ctl_table dup_table; 4329 4330 /* 4331 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4332 * can duplicate the @table and alter the duplicate of it. 4333 */ 4334 dup_table = *table; 4335 dup_table.data = out; 4336 4337 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4338 } 4339 4340 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4341 struct ctl_table *table, int write, 4342 void *buffer, size_t *length, loff_t *ppos) 4343 { 4344 struct hstate *h = &default_hstate; 4345 unsigned long tmp = h->max_huge_pages; 4346 int ret; 4347 4348 if (!hugepages_supported()) 4349 return -EOPNOTSUPP; 4350 4351 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4352 &tmp); 4353 if (ret) 4354 goto out; 4355 4356 if (write) 4357 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4358 NUMA_NO_NODE, tmp, *length); 4359 out: 4360 return ret; 4361 } 4362 4363 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4364 void *buffer, size_t *length, loff_t *ppos) 4365 { 4366 4367 return hugetlb_sysctl_handler_common(false, table, write, 4368 buffer, length, ppos); 4369 } 4370 4371 #ifdef CONFIG_NUMA 4372 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4373 void *buffer, size_t *length, loff_t *ppos) 4374 { 4375 return hugetlb_sysctl_handler_common(true, table, write, 4376 buffer, length, ppos); 4377 } 4378 #endif /* CONFIG_NUMA */ 4379 4380 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4381 void *buffer, size_t *length, loff_t *ppos) 4382 { 4383 struct hstate *h = &default_hstate; 4384 unsigned long tmp; 4385 int ret; 4386 4387 if (!hugepages_supported()) 4388 return -EOPNOTSUPP; 4389 4390 tmp = h->nr_overcommit_huge_pages; 4391 4392 if (write && hstate_is_gigantic(h)) 4393 return -EINVAL; 4394 4395 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4396 &tmp); 4397 if (ret) 4398 goto out; 4399 4400 if (write) { 4401 spin_lock_irq(&hugetlb_lock); 4402 h->nr_overcommit_huge_pages = tmp; 4403 spin_unlock_irq(&hugetlb_lock); 4404 } 4405 out: 4406 return ret; 4407 } 4408 4409 #endif /* CONFIG_SYSCTL */ 4410 4411 void hugetlb_report_meminfo(struct seq_file *m) 4412 { 4413 struct hstate *h; 4414 unsigned long total = 0; 4415 4416 if (!hugepages_supported()) 4417 return; 4418 4419 for_each_hstate(h) { 4420 unsigned long count = h->nr_huge_pages; 4421 4422 total += huge_page_size(h) * count; 4423 4424 if (h == &default_hstate) 4425 seq_printf(m, 4426 "HugePages_Total: %5lu\n" 4427 "HugePages_Free: %5lu\n" 4428 "HugePages_Rsvd: %5lu\n" 4429 "HugePages_Surp: %5lu\n" 4430 "Hugepagesize: %8lu kB\n", 4431 count, 4432 h->free_huge_pages, 4433 h->resv_huge_pages, 4434 h->surplus_huge_pages, 4435 huge_page_size(h) / SZ_1K); 4436 } 4437 4438 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4439 } 4440 4441 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4442 { 4443 struct hstate *h = &default_hstate; 4444 4445 if (!hugepages_supported()) 4446 return 0; 4447 4448 return sysfs_emit_at(buf, len, 4449 "Node %d HugePages_Total: %5u\n" 4450 "Node %d HugePages_Free: %5u\n" 4451 "Node %d HugePages_Surp: %5u\n", 4452 nid, h->nr_huge_pages_node[nid], 4453 nid, h->free_huge_pages_node[nid], 4454 nid, h->surplus_huge_pages_node[nid]); 4455 } 4456 4457 void hugetlb_show_meminfo(void) 4458 { 4459 struct hstate *h; 4460 int nid; 4461 4462 if (!hugepages_supported()) 4463 return; 4464 4465 for_each_node_state(nid, N_MEMORY) 4466 for_each_hstate(h) 4467 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4468 nid, 4469 h->nr_huge_pages_node[nid], 4470 h->free_huge_pages_node[nid], 4471 h->surplus_huge_pages_node[nid], 4472 huge_page_size(h) / SZ_1K); 4473 } 4474 4475 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4476 { 4477 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4478 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4479 } 4480 4481 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4482 unsigned long hugetlb_total_pages(void) 4483 { 4484 struct hstate *h; 4485 unsigned long nr_total_pages = 0; 4486 4487 for_each_hstate(h) 4488 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4489 return nr_total_pages; 4490 } 4491 4492 static int hugetlb_acct_memory(struct hstate *h, long delta) 4493 { 4494 int ret = -ENOMEM; 4495 4496 if (!delta) 4497 return 0; 4498 4499 spin_lock_irq(&hugetlb_lock); 4500 /* 4501 * When cpuset is configured, it breaks the strict hugetlb page 4502 * reservation as the accounting is done on a global variable. Such 4503 * reservation is completely rubbish in the presence of cpuset because 4504 * the reservation is not checked against page availability for the 4505 * current cpuset. Application can still potentially OOM'ed by kernel 4506 * with lack of free htlb page in cpuset that the task is in. 4507 * Attempt to enforce strict accounting with cpuset is almost 4508 * impossible (or too ugly) because cpuset is too fluid that 4509 * task or memory node can be dynamically moved between cpusets. 4510 * 4511 * The change of semantics for shared hugetlb mapping with cpuset is 4512 * undesirable. However, in order to preserve some of the semantics, 4513 * we fall back to check against current free page availability as 4514 * a best attempt and hopefully to minimize the impact of changing 4515 * semantics that cpuset has. 4516 * 4517 * Apart from cpuset, we also have memory policy mechanism that 4518 * also determines from which node the kernel will allocate memory 4519 * in a NUMA system. So similar to cpuset, we also should consider 4520 * the memory policy of the current task. Similar to the description 4521 * above. 4522 */ 4523 if (delta > 0) { 4524 if (gather_surplus_pages(h, delta) < 0) 4525 goto out; 4526 4527 if (delta > allowed_mems_nr(h)) { 4528 return_unused_surplus_pages(h, delta); 4529 goto out; 4530 } 4531 } 4532 4533 ret = 0; 4534 if (delta < 0) 4535 return_unused_surplus_pages(h, (unsigned long) -delta); 4536 4537 out: 4538 spin_unlock_irq(&hugetlb_lock); 4539 return ret; 4540 } 4541 4542 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4543 { 4544 struct resv_map *resv = vma_resv_map(vma); 4545 4546 /* 4547 * This new VMA should share its siblings reservation map if present. 4548 * The VMA will only ever have a valid reservation map pointer where 4549 * it is being copied for another still existing VMA. As that VMA 4550 * has a reference to the reservation map it cannot disappear until 4551 * after this open call completes. It is therefore safe to take a 4552 * new reference here without additional locking. 4553 */ 4554 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4555 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4556 kref_get(&resv->refs); 4557 } 4558 } 4559 4560 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4561 { 4562 struct hstate *h = hstate_vma(vma); 4563 struct resv_map *resv = vma_resv_map(vma); 4564 struct hugepage_subpool *spool = subpool_vma(vma); 4565 unsigned long reserve, start, end; 4566 long gbl_reserve; 4567 4568 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4569 return; 4570 4571 start = vma_hugecache_offset(h, vma, vma->vm_start); 4572 end = vma_hugecache_offset(h, vma, vma->vm_end); 4573 4574 reserve = (end - start) - region_count(resv, start, end); 4575 hugetlb_cgroup_uncharge_counter(resv, start, end); 4576 if (reserve) { 4577 /* 4578 * Decrement reserve counts. The global reserve count may be 4579 * adjusted if the subpool has a minimum size. 4580 */ 4581 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4582 hugetlb_acct_memory(h, -gbl_reserve); 4583 } 4584 4585 kref_put(&resv->refs, resv_map_release); 4586 } 4587 4588 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4589 { 4590 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4591 return -EINVAL; 4592 return 0; 4593 } 4594 4595 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4596 { 4597 return huge_page_size(hstate_vma(vma)); 4598 } 4599 4600 /* 4601 * We cannot handle pagefaults against hugetlb pages at all. They cause 4602 * handle_mm_fault() to try to instantiate regular-sized pages in the 4603 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4604 * this far. 4605 */ 4606 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4607 { 4608 BUG(); 4609 return 0; 4610 } 4611 4612 /* 4613 * When a new function is introduced to vm_operations_struct and added 4614 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4615 * This is because under System V memory model, mappings created via 4616 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4617 * their original vm_ops are overwritten with shm_vm_ops. 4618 */ 4619 const struct vm_operations_struct hugetlb_vm_ops = { 4620 .fault = hugetlb_vm_op_fault, 4621 .open = hugetlb_vm_op_open, 4622 .close = hugetlb_vm_op_close, 4623 .may_split = hugetlb_vm_op_split, 4624 .pagesize = hugetlb_vm_op_pagesize, 4625 }; 4626 4627 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4628 int writable) 4629 { 4630 pte_t entry; 4631 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4632 4633 if (writable) { 4634 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4635 vma->vm_page_prot))); 4636 } else { 4637 entry = huge_pte_wrprotect(mk_huge_pte(page, 4638 vma->vm_page_prot)); 4639 } 4640 entry = pte_mkyoung(entry); 4641 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4642 4643 return entry; 4644 } 4645 4646 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4647 unsigned long address, pte_t *ptep) 4648 { 4649 pte_t entry; 4650 4651 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4652 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4653 update_mmu_cache(vma, address, ptep); 4654 } 4655 4656 bool is_hugetlb_entry_migration(pte_t pte) 4657 { 4658 swp_entry_t swp; 4659 4660 if (huge_pte_none(pte) || pte_present(pte)) 4661 return false; 4662 swp = pte_to_swp_entry(pte); 4663 if (is_migration_entry(swp)) 4664 return true; 4665 else 4666 return false; 4667 } 4668 4669 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4670 { 4671 swp_entry_t swp; 4672 4673 if (huge_pte_none(pte) || pte_present(pte)) 4674 return false; 4675 swp = pte_to_swp_entry(pte); 4676 if (is_hwpoison_entry(swp)) 4677 return true; 4678 else 4679 return false; 4680 } 4681 4682 static void 4683 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4684 struct page *new_page) 4685 { 4686 __SetPageUptodate(new_page); 4687 hugepage_add_new_anon_rmap(new_page, vma, addr); 4688 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4689 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4690 ClearHPageRestoreReserve(new_page); 4691 SetHPageMigratable(new_page); 4692 } 4693 4694 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4695 struct vm_area_struct *vma) 4696 { 4697 pte_t *src_pte, *dst_pte, entry, dst_entry; 4698 struct page *ptepage; 4699 unsigned long addr; 4700 bool cow = is_cow_mapping(vma->vm_flags); 4701 struct hstate *h = hstate_vma(vma); 4702 unsigned long sz = huge_page_size(h); 4703 unsigned long npages = pages_per_huge_page(h); 4704 struct address_space *mapping = vma->vm_file->f_mapping; 4705 struct mmu_notifier_range range; 4706 int ret = 0; 4707 4708 if (cow) { 4709 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 4710 vma->vm_start, 4711 vma->vm_end); 4712 mmu_notifier_invalidate_range_start(&range); 4713 } else { 4714 /* 4715 * For shared mappings i_mmap_rwsem must be held to call 4716 * huge_pte_alloc, otherwise the returned ptep could go 4717 * away if part of a shared pmd and another thread calls 4718 * huge_pmd_unshare. 4719 */ 4720 i_mmap_lock_read(mapping); 4721 } 4722 4723 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 4724 spinlock_t *src_ptl, *dst_ptl; 4725 src_pte = huge_pte_offset(src, addr, sz); 4726 if (!src_pte) 4727 continue; 4728 dst_pte = huge_pte_alloc(dst, vma, addr, sz); 4729 if (!dst_pte) { 4730 ret = -ENOMEM; 4731 break; 4732 } 4733 4734 /* 4735 * If the pagetables are shared don't copy or take references. 4736 * dst_pte == src_pte is the common case of src/dest sharing. 4737 * 4738 * However, src could have 'unshared' and dst shares with 4739 * another vma. If dst_pte !none, this implies sharing. 4740 * Check here before taking page table lock, and once again 4741 * after taking the lock below. 4742 */ 4743 dst_entry = huge_ptep_get(dst_pte); 4744 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 4745 continue; 4746 4747 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4748 src_ptl = huge_pte_lockptr(h, src, src_pte); 4749 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4750 entry = huge_ptep_get(src_pte); 4751 dst_entry = huge_ptep_get(dst_pte); 4752 again: 4753 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4754 /* 4755 * Skip if src entry none. Also, skip in the 4756 * unlikely case dst entry !none as this implies 4757 * sharing with another vma. 4758 */ 4759 ; 4760 } else if (unlikely(is_hugetlb_entry_migration(entry) || 4761 is_hugetlb_entry_hwpoisoned(entry))) { 4762 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4763 4764 if (is_writable_migration_entry(swp_entry) && cow) { 4765 /* 4766 * COW mappings require pages in both 4767 * parent and child to be set to read. 4768 */ 4769 swp_entry = make_readable_migration_entry( 4770 swp_offset(swp_entry)); 4771 entry = swp_entry_to_pte(swp_entry); 4772 set_huge_swap_pte_at(src, addr, src_pte, 4773 entry, sz); 4774 } 4775 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4776 } else { 4777 entry = huge_ptep_get(src_pte); 4778 ptepage = pte_page(entry); 4779 get_page(ptepage); 4780 4781 /* 4782 * This is a rare case where we see pinned hugetlb 4783 * pages while they're prone to COW. We need to do the 4784 * COW earlier during fork. 4785 * 4786 * When pre-allocating the page or copying data, we 4787 * need to be without the pgtable locks since we could 4788 * sleep during the process. 4789 */ 4790 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 4791 pte_t src_pte_old = entry; 4792 struct page *new; 4793 4794 spin_unlock(src_ptl); 4795 spin_unlock(dst_ptl); 4796 /* Do not use reserve as it's private owned */ 4797 new = alloc_huge_page(vma, addr, 1); 4798 if (IS_ERR(new)) { 4799 put_page(ptepage); 4800 ret = PTR_ERR(new); 4801 break; 4802 } 4803 copy_user_huge_page(new, ptepage, addr, vma, 4804 npages); 4805 put_page(ptepage); 4806 4807 /* Install the new huge page if src pte stable */ 4808 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4809 src_ptl = huge_pte_lockptr(h, src, src_pte); 4810 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4811 entry = huge_ptep_get(src_pte); 4812 if (!pte_same(src_pte_old, entry)) { 4813 restore_reserve_on_error(h, vma, addr, 4814 new); 4815 put_page(new); 4816 /* dst_entry won't change as in child */ 4817 goto again; 4818 } 4819 hugetlb_install_page(vma, dst_pte, addr, new); 4820 spin_unlock(src_ptl); 4821 spin_unlock(dst_ptl); 4822 continue; 4823 } 4824 4825 if (cow) { 4826 /* 4827 * No need to notify as we are downgrading page 4828 * table protection not changing it to point 4829 * to a new page. 4830 * 4831 * See Documentation/vm/mmu_notifier.rst 4832 */ 4833 huge_ptep_set_wrprotect(src, addr, src_pte); 4834 entry = huge_pte_wrprotect(entry); 4835 } 4836 4837 page_dup_rmap(ptepage, true); 4838 set_huge_pte_at(dst, addr, dst_pte, entry); 4839 hugetlb_count_add(npages, dst); 4840 } 4841 spin_unlock(src_ptl); 4842 spin_unlock(dst_ptl); 4843 } 4844 4845 if (cow) 4846 mmu_notifier_invalidate_range_end(&range); 4847 else 4848 i_mmap_unlock_read(mapping); 4849 4850 return ret; 4851 } 4852 4853 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4854 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4855 { 4856 struct hstate *h = hstate_vma(vma); 4857 struct mm_struct *mm = vma->vm_mm; 4858 spinlock_t *src_ptl, *dst_ptl; 4859 pte_t pte; 4860 4861 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4862 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4863 4864 /* 4865 * We don't have to worry about the ordering of src and dst ptlocks 4866 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4867 */ 4868 if (src_ptl != dst_ptl) 4869 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4870 4871 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4872 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4873 4874 if (src_ptl != dst_ptl) 4875 spin_unlock(src_ptl); 4876 spin_unlock(dst_ptl); 4877 } 4878 4879 int move_hugetlb_page_tables(struct vm_area_struct *vma, 4880 struct vm_area_struct *new_vma, 4881 unsigned long old_addr, unsigned long new_addr, 4882 unsigned long len) 4883 { 4884 struct hstate *h = hstate_vma(vma); 4885 struct address_space *mapping = vma->vm_file->f_mapping; 4886 unsigned long sz = huge_page_size(h); 4887 struct mm_struct *mm = vma->vm_mm; 4888 unsigned long old_end = old_addr + len; 4889 unsigned long old_addr_copy; 4890 pte_t *src_pte, *dst_pte; 4891 struct mmu_notifier_range range; 4892 4893 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 4894 old_end); 4895 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4896 mmu_notifier_invalidate_range_start(&range); 4897 /* Prevent race with file truncation */ 4898 i_mmap_lock_write(mapping); 4899 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 4900 src_pte = huge_pte_offset(mm, old_addr, sz); 4901 if (!src_pte) 4902 continue; 4903 if (huge_pte_none(huge_ptep_get(src_pte))) 4904 continue; 4905 4906 /* old_addr arg to huge_pmd_unshare() is a pointer and so the 4907 * arg may be modified. Pass a copy instead to preserve the 4908 * value in old_addr. 4909 */ 4910 old_addr_copy = old_addr; 4911 4912 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) 4913 continue; 4914 4915 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 4916 if (!dst_pte) 4917 break; 4918 4919 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 4920 } 4921 flush_tlb_range(vma, old_end - len, old_end); 4922 mmu_notifier_invalidate_range_end(&range); 4923 i_mmap_unlock_write(mapping); 4924 4925 return len + old_addr - old_end; 4926 } 4927 4928 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4929 unsigned long start, unsigned long end, 4930 struct page *ref_page) 4931 { 4932 struct mm_struct *mm = vma->vm_mm; 4933 unsigned long address; 4934 pte_t *ptep; 4935 pte_t pte; 4936 spinlock_t *ptl; 4937 struct page *page; 4938 struct hstate *h = hstate_vma(vma); 4939 unsigned long sz = huge_page_size(h); 4940 struct mmu_notifier_range range; 4941 bool force_flush = false; 4942 4943 WARN_ON(!is_vm_hugetlb_page(vma)); 4944 BUG_ON(start & ~huge_page_mask(h)); 4945 BUG_ON(end & ~huge_page_mask(h)); 4946 4947 /* 4948 * This is a hugetlb vma, all the pte entries should point 4949 * to huge page. 4950 */ 4951 tlb_change_page_size(tlb, sz); 4952 tlb_start_vma(tlb, vma); 4953 4954 /* 4955 * If sharing possible, alert mmu notifiers of worst case. 4956 */ 4957 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 4958 end); 4959 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4960 mmu_notifier_invalidate_range_start(&range); 4961 address = start; 4962 for (; address < end; address += sz) { 4963 ptep = huge_pte_offset(mm, address, sz); 4964 if (!ptep) 4965 continue; 4966 4967 ptl = huge_pte_lock(h, mm, ptep); 4968 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4969 spin_unlock(ptl); 4970 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 4971 force_flush = true; 4972 continue; 4973 } 4974 4975 pte = huge_ptep_get(ptep); 4976 if (huge_pte_none(pte)) { 4977 spin_unlock(ptl); 4978 continue; 4979 } 4980 4981 /* 4982 * Migrating hugepage or HWPoisoned hugepage is already 4983 * unmapped and its refcount is dropped, so just clear pte here. 4984 */ 4985 if (unlikely(!pte_present(pte))) { 4986 huge_pte_clear(mm, address, ptep, sz); 4987 spin_unlock(ptl); 4988 continue; 4989 } 4990 4991 page = pte_page(pte); 4992 /* 4993 * If a reference page is supplied, it is because a specific 4994 * page is being unmapped, not a range. Ensure the page we 4995 * are about to unmap is the actual page of interest. 4996 */ 4997 if (ref_page) { 4998 if (page != ref_page) { 4999 spin_unlock(ptl); 5000 continue; 5001 } 5002 /* 5003 * Mark the VMA as having unmapped its page so that 5004 * future faults in this VMA will fail rather than 5005 * looking like data was lost 5006 */ 5007 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5008 } 5009 5010 pte = huge_ptep_get_and_clear(mm, address, ptep); 5011 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5012 if (huge_pte_dirty(pte)) 5013 set_page_dirty(page); 5014 5015 hugetlb_count_sub(pages_per_huge_page(h), mm); 5016 page_remove_rmap(page, true); 5017 5018 spin_unlock(ptl); 5019 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5020 /* 5021 * Bail out after unmapping reference page if supplied 5022 */ 5023 if (ref_page) 5024 break; 5025 } 5026 mmu_notifier_invalidate_range_end(&range); 5027 tlb_end_vma(tlb, vma); 5028 5029 /* 5030 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5031 * could defer the flush until now, since by holding i_mmap_rwsem we 5032 * guaranteed that the last refernece would not be dropped. But we must 5033 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5034 * dropped and the last reference to the shared PMDs page might be 5035 * dropped as well. 5036 * 5037 * In theory we could defer the freeing of the PMD pages as well, but 5038 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5039 * detect sharing, so we cannot defer the release of the page either. 5040 * Instead, do flush now. 5041 */ 5042 if (force_flush) 5043 tlb_flush_mmu_tlbonly(tlb); 5044 } 5045 5046 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5047 struct vm_area_struct *vma, unsigned long start, 5048 unsigned long end, struct page *ref_page) 5049 { 5050 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 5051 5052 /* 5053 * Clear this flag so that x86's huge_pmd_share page_table_shareable 5054 * test will fail on a vma being torn down, and not grab a page table 5055 * on its way out. We're lucky that the flag has such an appropriate 5056 * name, and can in fact be safely cleared here. We could clear it 5057 * before the __unmap_hugepage_range above, but all that's necessary 5058 * is to clear it before releasing the i_mmap_rwsem. This works 5059 * because in the context this is called, the VMA is about to be 5060 * destroyed and the i_mmap_rwsem is held. 5061 */ 5062 vma->vm_flags &= ~VM_MAYSHARE; 5063 } 5064 5065 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5066 unsigned long end, struct page *ref_page) 5067 { 5068 struct mmu_gather tlb; 5069 5070 tlb_gather_mmu(&tlb, vma->vm_mm); 5071 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 5072 tlb_finish_mmu(&tlb); 5073 } 5074 5075 /* 5076 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5077 * mapping it owns the reserve page for. The intention is to unmap the page 5078 * from other VMAs and let the children be SIGKILLed if they are faulting the 5079 * same region. 5080 */ 5081 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5082 struct page *page, unsigned long address) 5083 { 5084 struct hstate *h = hstate_vma(vma); 5085 struct vm_area_struct *iter_vma; 5086 struct address_space *mapping; 5087 pgoff_t pgoff; 5088 5089 /* 5090 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5091 * from page cache lookup which is in HPAGE_SIZE units. 5092 */ 5093 address = address & huge_page_mask(h); 5094 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5095 vma->vm_pgoff; 5096 mapping = vma->vm_file->f_mapping; 5097 5098 /* 5099 * Take the mapping lock for the duration of the table walk. As 5100 * this mapping should be shared between all the VMAs, 5101 * __unmap_hugepage_range() is called as the lock is already held 5102 */ 5103 i_mmap_lock_write(mapping); 5104 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5105 /* Do not unmap the current VMA */ 5106 if (iter_vma == vma) 5107 continue; 5108 5109 /* 5110 * Shared VMAs have their own reserves and do not affect 5111 * MAP_PRIVATE accounting but it is possible that a shared 5112 * VMA is using the same page so check and skip such VMAs. 5113 */ 5114 if (iter_vma->vm_flags & VM_MAYSHARE) 5115 continue; 5116 5117 /* 5118 * Unmap the page from other VMAs without their own reserves. 5119 * They get marked to be SIGKILLed if they fault in these 5120 * areas. This is because a future no-page fault on this VMA 5121 * could insert a zeroed page instead of the data existing 5122 * from the time of fork. This would look like data corruption 5123 */ 5124 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5125 unmap_hugepage_range(iter_vma, address, 5126 address + huge_page_size(h), page); 5127 } 5128 i_mmap_unlock_write(mapping); 5129 } 5130 5131 /* 5132 * Hugetlb_cow() should be called with page lock of the original hugepage held. 5133 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5134 * cannot race with other handlers or page migration. 5135 * Keep the pte_same checks anyway to make transition from the mutex easier. 5136 */ 5137 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 5138 unsigned long address, pte_t *ptep, 5139 struct page *pagecache_page, spinlock_t *ptl) 5140 { 5141 pte_t pte; 5142 struct hstate *h = hstate_vma(vma); 5143 struct page *old_page, *new_page; 5144 int outside_reserve = 0; 5145 vm_fault_t ret = 0; 5146 unsigned long haddr = address & huge_page_mask(h); 5147 struct mmu_notifier_range range; 5148 5149 pte = huge_ptep_get(ptep); 5150 old_page = pte_page(pte); 5151 5152 retry_avoidcopy: 5153 /* If no-one else is actually using this page, avoid the copy 5154 * and just make the page writable */ 5155 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5156 page_move_anon_rmap(old_page, vma); 5157 set_huge_ptep_writable(vma, haddr, ptep); 5158 return 0; 5159 } 5160 5161 /* 5162 * If the process that created a MAP_PRIVATE mapping is about to 5163 * perform a COW due to a shared page count, attempt to satisfy 5164 * the allocation without using the existing reserves. The pagecache 5165 * page is used to determine if the reserve at this address was 5166 * consumed or not. If reserves were used, a partial faulted mapping 5167 * at the time of fork() could consume its reserves on COW instead 5168 * of the full address range. 5169 */ 5170 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5171 old_page != pagecache_page) 5172 outside_reserve = 1; 5173 5174 get_page(old_page); 5175 5176 /* 5177 * Drop page table lock as buddy allocator may be called. It will 5178 * be acquired again before returning to the caller, as expected. 5179 */ 5180 spin_unlock(ptl); 5181 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5182 5183 if (IS_ERR(new_page)) { 5184 /* 5185 * If a process owning a MAP_PRIVATE mapping fails to COW, 5186 * it is due to references held by a child and an insufficient 5187 * huge page pool. To guarantee the original mappers 5188 * reliability, unmap the page from child processes. The child 5189 * may get SIGKILLed if it later faults. 5190 */ 5191 if (outside_reserve) { 5192 struct address_space *mapping = vma->vm_file->f_mapping; 5193 pgoff_t idx; 5194 u32 hash; 5195 5196 put_page(old_page); 5197 BUG_ON(huge_pte_none(pte)); 5198 /* 5199 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 5200 * unmapping. unmapping needs to hold i_mmap_rwsem 5201 * in write mode. Dropping i_mmap_rwsem in read mode 5202 * here is OK as COW mappings do not interact with 5203 * PMD sharing. 5204 * 5205 * Reacquire both after unmap operation. 5206 */ 5207 idx = vma_hugecache_offset(h, vma, haddr); 5208 hash = hugetlb_fault_mutex_hash(mapping, idx); 5209 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5210 i_mmap_unlock_read(mapping); 5211 5212 unmap_ref_private(mm, vma, old_page, haddr); 5213 5214 i_mmap_lock_read(mapping); 5215 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5216 spin_lock(ptl); 5217 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5218 if (likely(ptep && 5219 pte_same(huge_ptep_get(ptep), pte))) 5220 goto retry_avoidcopy; 5221 /* 5222 * race occurs while re-acquiring page table 5223 * lock, and our job is done. 5224 */ 5225 return 0; 5226 } 5227 5228 ret = vmf_error(PTR_ERR(new_page)); 5229 goto out_release_old; 5230 } 5231 5232 /* 5233 * When the original hugepage is shared one, it does not have 5234 * anon_vma prepared. 5235 */ 5236 if (unlikely(anon_vma_prepare(vma))) { 5237 ret = VM_FAULT_OOM; 5238 goto out_release_all; 5239 } 5240 5241 copy_user_huge_page(new_page, old_page, address, vma, 5242 pages_per_huge_page(h)); 5243 __SetPageUptodate(new_page); 5244 5245 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5246 haddr + huge_page_size(h)); 5247 mmu_notifier_invalidate_range_start(&range); 5248 5249 /* 5250 * Retake the page table lock to check for racing updates 5251 * before the page tables are altered 5252 */ 5253 spin_lock(ptl); 5254 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5255 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5256 ClearHPageRestoreReserve(new_page); 5257 5258 /* Break COW */ 5259 huge_ptep_clear_flush(vma, haddr, ptep); 5260 mmu_notifier_invalidate_range(mm, range.start, range.end); 5261 page_remove_rmap(old_page, true); 5262 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5263 set_huge_pte_at(mm, haddr, ptep, 5264 make_huge_pte(vma, new_page, 1)); 5265 SetHPageMigratable(new_page); 5266 /* Make the old page be freed below */ 5267 new_page = old_page; 5268 } 5269 spin_unlock(ptl); 5270 mmu_notifier_invalidate_range_end(&range); 5271 out_release_all: 5272 /* No restore in case of successful pagetable update (Break COW) */ 5273 if (new_page != old_page) 5274 restore_reserve_on_error(h, vma, haddr, new_page); 5275 put_page(new_page); 5276 out_release_old: 5277 put_page(old_page); 5278 5279 spin_lock(ptl); /* Caller expects lock to be held */ 5280 return ret; 5281 } 5282 5283 /* Return the pagecache page at a given address within a VMA */ 5284 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 5285 struct vm_area_struct *vma, unsigned long address) 5286 { 5287 struct address_space *mapping; 5288 pgoff_t idx; 5289 5290 mapping = vma->vm_file->f_mapping; 5291 idx = vma_hugecache_offset(h, vma, address); 5292 5293 return find_lock_page(mapping, idx); 5294 } 5295 5296 /* 5297 * Return whether there is a pagecache page to back given address within VMA. 5298 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5299 */ 5300 static bool hugetlbfs_pagecache_present(struct hstate *h, 5301 struct vm_area_struct *vma, unsigned long address) 5302 { 5303 struct address_space *mapping; 5304 pgoff_t idx; 5305 struct page *page; 5306 5307 mapping = vma->vm_file->f_mapping; 5308 idx = vma_hugecache_offset(h, vma, address); 5309 5310 page = find_get_page(mapping, idx); 5311 if (page) 5312 put_page(page); 5313 return page != NULL; 5314 } 5315 5316 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 5317 pgoff_t idx) 5318 { 5319 struct inode *inode = mapping->host; 5320 struct hstate *h = hstate_inode(inode); 5321 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 5322 5323 if (err) 5324 return err; 5325 ClearHPageRestoreReserve(page); 5326 5327 /* 5328 * set page dirty so that it will not be removed from cache/file 5329 * by non-hugetlbfs specific code paths. 5330 */ 5331 set_page_dirty(page); 5332 5333 spin_lock(&inode->i_lock); 5334 inode->i_blocks += blocks_per_huge_page(h); 5335 spin_unlock(&inode->i_lock); 5336 return 0; 5337 } 5338 5339 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5340 struct address_space *mapping, 5341 pgoff_t idx, 5342 unsigned int flags, 5343 unsigned long haddr, 5344 unsigned long addr, 5345 unsigned long reason) 5346 { 5347 vm_fault_t ret; 5348 u32 hash; 5349 struct vm_fault vmf = { 5350 .vma = vma, 5351 .address = haddr, 5352 .real_address = addr, 5353 .flags = flags, 5354 5355 /* 5356 * Hard to debug if it ends up being 5357 * used by a callee that assumes 5358 * something about the other 5359 * uninitialized fields... same as in 5360 * memory.c 5361 */ 5362 }; 5363 5364 /* 5365 * hugetlb_fault_mutex and i_mmap_rwsem must be 5366 * dropped before handling userfault. Reacquire 5367 * after handling fault to make calling code simpler. 5368 */ 5369 hash = hugetlb_fault_mutex_hash(mapping, idx); 5370 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5371 i_mmap_unlock_read(mapping); 5372 ret = handle_userfault(&vmf, reason); 5373 i_mmap_lock_read(mapping); 5374 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5375 5376 return ret; 5377 } 5378 5379 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5380 struct vm_area_struct *vma, 5381 struct address_space *mapping, pgoff_t idx, 5382 unsigned long address, pte_t *ptep, unsigned int flags) 5383 { 5384 struct hstate *h = hstate_vma(vma); 5385 vm_fault_t ret = VM_FAULT_SIGBUS; 5386 int anon_rmap = 0; 5387 unsigned long size; 5388 struct page *page; 5389 pte_t new_pte; 5390 spinlock_t *ptl; 5391 unsigned long haddr = address & huge_page_mask(h); 5392 bool new_page, new_pagecache_page = false; 5393 5394 /* 5395 * Currently, we are forced to kill the process in the event the 5396 * original mapper has unmapped pages from the child due to a failed 5397 * COW. Warn that such a situation has occurred as it may not be obvious 5398 */ 5399 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5400 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5401 current->pid); 5402 return ret; 5403 } 5404 5405 /* 5406 * We can not race with truncation due to holding i_mmap_rwsem. 5407 * i_size is modified when holding i_mmap_rwsem, so check here 5408 * once for faults beyond end of file. 5409 */ 5410 size = i_size_read(mapping->host) >> huge_page_shift(h); 5411 if (idx >= size) 5412 goto out; 5413 5414 retry: 5415 new_page = false; 5416 page = find_lock_page(mapping, idx); 5417 if (!page) { 5418 /* Check for page in userfault range */ 5419 if (userfaultfd_missing(vma)) { 5420 ret = hugetlb_handle_userfault(vma, mapping, idx, 5421 flags, haddr, address, 5422 VM_UFFD_MISSING); 5423 goto out; 5424 } 5425 5426 page = alloc_huge_page(vma, haddr, 0); 5427 if (IS_ERR(page)) { 5428 /* 5429 * Returning error will result in faulting task being 5430 * sent SIGBUS. The hugetlb fault mutex prevents two 5431 * tasks from racing to fault in the same page which 5432 * could result in false unable to allocate errors. 5433 * Page migration does not take the fault mutex, but 5434 * does a clear then write of pte's under page table 5435 * lock. Page fault code could race with migration, 5436 * notice the clear pte and try to allocate a page 5437 * here. Before returning error, get ptl and make 5438 * sure there really is no pte entry. 5439 */ 5440 ptl = huge_pte_lock(h, mm, ptep); 5441 ret = 0; 5442 if (huge_pte_none(huge_ptep_get(ptep))) 5443 ret = vmf_error(PTR_ERR(page)); 5444 spin_unlock(ptl); 5445 goto out; 5446 } 5447 clear_huge_page(page, address, pages_per_huge_page(h)); 5448 __SetPageUptodate(page); 5449 new_page = true; 5450 5451 if (vma->vm_flags & VM_MAYSHARE) { 5452 int err = huge_add_to_page_cache(page, mapping, idx); 5453 if (err) { 5454 put_page(page); 5455 if (err == -EEXIST) 5456 goto retry; 5457 goto out; 5458 } 5459 new_pagecache_page = true; 5460 } else { 5461 lock_page(page); 5462 if (unlikely(anon_vma_prepare(vma))) { 5463 ret = VM_FAULT_OOM; 5464 goto backout_unlocked; 5465 } 5466 anon_rmap = 1; 5467 } 5468 } else { 5469 /* 5470 * If memory error occurs between mmap() and fault, some process 5471 * don't have hwpoisoned swap entry for errored virtual address. 5472 * So we need to block hugepage fault by PG_hwpoison bit check. 5473 */ 5474 if (unlikely(PageHWPoison(page))) { 5475 ret = VM_FAULT_HWPOISON_LARGE | 5476 VM_FAULT_SET_HINDEX(hstate_index(h)); 5477 goto backout_unlocked; 5478 } 5479 5480 /* Check for page in userfault range. */ 5481 if (userfaultfd_minor(vma)) { 5482 unlock_page(page); 5483 put_page(page); 5484 ret = hugetlb_handle_userfault(vma, mapping, idx, 5485 flags, haddr, address, 5486 VM_UFFD_MINOR); 5487 goto out; 5488 } 5489 } 5490 5491 /* 5492 * If we are going to COW a private mapping later, we examine the 5493 * pending reservations for this page now. This will ensure that 5494 * any allocations necessary to record that reservation occur outside 5495 * the spinlock. 5496 */ 5497 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5498 if (vma_needs_reservation(h, vma, haddr) < 0) { 5499 ret = VM_FAULT_OOM; 5500 goto backout_unlocked; 5501 } 5502 /* Just decrements count, does not deallocate */ 5503 vma_end_reservation(h, vma, haddr); 5504 } 5505 5506 ptl = huge_pte_lock(h, mm, ptep); 5507 ret = 0; 5508 if (!huge_pte_none(huge_ptep_get(ptep))) 5509 goto backout; 5510 5511 if (anon_rmap) { 5512 ClearHPageRestoreReserve(page); 5513 hugepage_add_new_anon_rmap(page, vma, haddr); 5514 } else 5515 page_dup_rmap(page, true); 5516 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5517 && (vma->vm_flags & VM_SHARED))); 5518 set_huge_pte_at(mm, haddr, ptep, new_pte); 5519 5520 hugetlb_count_add(pages_per_huge_page(h), mm); 5521 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5522 /* Optimization, do the COW without a second fault */ 5523 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 5524 } 5525 5526 spin_unlock(ptl); 5527 5528 /* 5529 * Only set HPageMigratable in newly allocated pages. Existing pages 5530 * found in the pagecache may not have HPageMigratableset if they have 5531 * been isolated for migration. 5532 */ 5533 if (new_page) 5534 SetHPageMigratable(page); 5535 5536 unlock_page(page); 5537 out: 5538 return ret; 5539 5540 backout: 5541 spin_unlock(ptl); 5542 backout_unlocked: 5543 unlock_page(page); 5544 /* restore reserve for newly allocated pages not in page cache */ 5545 if (new_page && !new_pagecache_page) 5546 restore_reserve_on_error(h, vma, haddr, page); 5547 put_page(page); 5548 goto out; 5549 } 5550 5551 #ifdef CONFIG_SMP 5552 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5553 { 5554 unsigned long key[2]; 5555 u32 hash; 5556 5557 key[0] = (unsigned long) mapping; 5558 key[1] = idx; 5559 5560 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5561 5562 return hash & (num_fault_mutexes - 1); 5563 } 5564 #else 5565 /* 5566 * For uniprocessor systems we always use a single mutex, so just 5567 * return 0 and avoid the hashing overhead. 5568 */ 5569 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5570 { 5571 return 0; 5572 } 5573 #endif 5574 5575 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5576 unsigned long address, unsigned int flags) 5577 { 5578 pte_t *ptep, entry; 5579 spinlock_t *ptl; 5580 vm_fault_t ret; 5581 u32 hash; 5582 pgoff_t idx; 5583 struct page *page = NULL; 5584 struct page *pagecache_page = NULL; 5585 struct hstate *h = hstate_vma(vma); 5586 struct address_space *mapping; 5587 int need_wait_lock = 0; 5588 unsigned long haddr = address & huge_page_mask(h); 5589 5590 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5591 if (ptep) { 5592 /* 5593 * Since we hold no locks, ptep could be stale. That is 5594 * OK as we are only making decisions based on content and 5595 * not actually modifying content here. 5596 */ 5597 entry = huge_ptep_get(ptep); 5598 if (unlikely(is_hugetlb_entry_migration(entry))) { 5599 migration_entry_wait_huge(vma, mm, ptep); 5600 return 0; 5601 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5602 return VM_FAULT_HWPOISON_LARGE | 5603 VM_FAULT_SET_HINDEX(hstate_index(h)); 5604 } 5605 5606 /* 5607 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 5608 * until finished with ptep. This serves two purposes: 5609 * 1) It prevents huge_pmd_unshare from being called elsewhere 5610 * and making the ptep no longer valid. 5611 * 2) It synchronizes us with i_size modifications during truncation. 5612 * 5613 * ptep could have already be assigned via huge_pte_offset. That 5614 * is OK, as huge_pte_alloc will return the same value unless 5615 * something has changed. 5616 */ 5617 mapping = vma->vm_file->f_mapping; 5618 i_mmap_lock_read(mapping); 5619 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5620 if (!ptep) { 5621 i_mmap_unlock_read(mapping); 5622 return VM_FAULT_OOM; 5623 } 5624 5625 /* 5626 * Serialize hugepage allocation and instantiation, so that we don't 5627 * get spurious allocation failures if two CPUs race to instantiate 5628 * the same page in the page cache. 5629 */ 5630 idx = vma_hugecache_offset(h, vma, haddr); 5631 hash = hugetlb_fault_mutex_hash(mapping, idx); 5632 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5633 5634 entry = huge_ptep_get(ptep); 5635 if (huge_pte_none(entry)) { 5636 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 5637 goto out_mutex; 5638 } 5639 5640 ret = 0; 5641 5642 /* 5643 * entry could be a migration/hwpoison entry at this point, so this 5644 * check prevents the kernel from going below assuming that we have 5645 * an active hugepage in pagecache. This goto expects the 2nd page 5646 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5647 * properly handle it. 5648 */ 5649 if (!pte_present(entry)) 5650 goto out_mutex; 5651 5652 /* 5653 * If we are going to COW the mapping later, we examine the pending 5654 * reservations for this page now. This will ensure that any 5655 * allocations necessary to record that reservation occur outside the 5656 * spinlock. For private mappings, we also lookup the pagecache 5657 * page now as it is used to determine if a reservation has been 5658 * consumed. 5659 */ 5660 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5661 if (vma_needs_reservation(h, vma, haddr) < 0) { 5662 ret = VM_FAULT_OOM; 5663 goto out_mutex; 5664 } 5665 /* Just decrements count, does not deallocate */ 5666 vma_end_reservation(h, vma, haddr); 5667 5668 if (!(vma->vm_flags & VM_MAYSHARE)) 5669 pagecache_page = hugetlbfs_pagecache_page(h, 5670 vma, haddr); 5671 } 5672 5673 ptl = huge_pte_lock(h, mm, ptep); 5674 5675 /* Check for a racing update before calling hugetlb_cow */ 5676 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5677 goto out_ptl; 5678 5679 /* 5680 * hugetlb_cow() requires page locks of pte_page(entry) and 5681 * pagecache_page, so here we need take the former one 5682 * when page != pagecache_page or !pagecache_page. 5683 */ 5684 page = pte_page(entry); 5685 if (page != pagecache_page) 5686 if (!trylock_page(page)) { 5687 need_wait_lock = 1; 5688 goto out_ptl; 5689 } 5690 5691 get_page(page); 5692 5693 if (flags & FAULT_FLAG_WRITE) { 5694 if (!huge_pte_write(entry)) { 5695 ret = hugetlb_cow(mm, vma, address, ptep, 5696 pagecache_page, ptl); 5697 goto out_put_page; 5698 } 5699 entry = huge_pte_mkdirty(entry); 5700 } 5701 entry = pte_mkyoung(entry); 5702 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5703 flags & FAULT_FLAG_WRITE)) 5704 update_mmu_cache(vma, haddr, ptep); 5705 out_put_page: 5706 if (page != pagecache_page) 5707 unlock_page(page); 5708 put_page(page); 5709 out_ptl: 5710 spin_unlock(ptl); 5711 5712 if (pagecache_page) { 5713 unlock_page(pagecache_page); 5714 put_page(pagecache_page); 5715 } 5716 out_mutex: 5717 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5718 i_mmap_unlock_read(mapping); 5719 /* 5720 * Generally it's safe to hold refcount during waiting page lock. But 5721 * here we just wait to defer the next page fault to avoid busy loop and 5722 * the page is not used after unlocked before returning from the current 5723 * page fault. So we are safe from accessing freed page, even if we wait 5724 * here without taking refcount. 5725 */ 5726 if (need_wait_lock) 5727 wait_on_page_locked(page); 5728 return ret; 5729 } 5730 5731 #ifdef CONFIG_USERFAULTFD 5732 /* 5733 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5734 * modifications for huge pages. 5735 */ 5736 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5737 pte_t *dst_pte, 5738 struct vm_area_struct *dst_vma, 5739 unsigned long dst_addr, 5740 unsigned long src_addr, 5741 enum mcopy_atomic_mode mode, 5742 struct page **pagep) 5743 { 5744 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 5745 struct hstate *h = hstate_vma(dst_vma); 5746 struct address_space *mapping = dst_vma->vm_file->f_mapping; 5747 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 5748 unsigned long size; 5749 int vm_shared = dst_vma->vm_flags & VM_SHARED; 5750 pte_t _dst_pte; 5751 spinlock_t *ptl; 5752 int ret = -ENOMEM; 5753 struct page *page; 5754 int writable; 5755 bool page_in_pagecache = false; 5756 5757 if (is_continue) { 5758 ret = -EFAULT; 5759 page = find_lock_page(mapping, idx); 5760 if (!page) 5761 goto out; 5762 page_in_pagecache = true; 5763 } else if (!*pagep) { 5764 /* If a page already exists, then it's UFFDIO_COPY for 5765 * a non-missing case. Return -EEXIST. 5766 */ 5767 if (vm_shared && 5768 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5769 ret = -EEXIST; 5770 goto out; 5771 } 5772 5773 page = alloc_huge_page(dst_vma, dst_addr, 0); 5774 if (IS_ERR(page)) { 5775 ret = -ENOMEM; 5776 goto out; 5777 } 5778 5779 ret = copy_huge_page_from_user(page, 5780 (const void __user *) src_addr, 5781 pages_per_huge_page(h), false); 5782 5783 /* fallback to copy_from_user outside mmap_lock */ 5784 if (unlikely(ret)) { 5785 ret = -ENOENT; 5786 /* Free the allocated page which may have 5787 * consumed a reservation. 5788 */ 5789 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5790 put_page(page); 5791 5792 /* Allocate a temporary page to hold the copied 5793 * contents. 5794 */ 5795 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 5796 if (!page) { 5797 ret = -ENOMEM; 5798 goto out; 5799 } 5800 *pagep = page; 5801 /* Set the outparam pagep and return to the caller to 5802 * copy the contents outside the lock. Don't free the 5803 * page. 5804 */ 5805 goto out; 5806 } 5807 } else { 5808 if (vm_shared && 5809 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 5810 put_page(*pagep); 5811 ret = -EEXIST; 5812 *pagep = NULL; 5813 goto out; 5814 } 5815 5816 page = alloc_huge_page(dst_vma, dst_addr, 0); 5817 if (IS_ERR(page)) { 5818 ret = -ENOMEM; 5819 *pagep = NULL; 5820 goto out; 5821 } 5822 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 5823 pages_per_huge_page(h)); 5824 put_page(*pagep); 5825 *pagep = NULL; 5826 } 5827 5828 /* 5829 * The memory barrier inside __SetPageUptodate makes sure that 5830 * preceding stores to the page contents become visible before 5831 * the set_pte_at() write. 5832 */ 5833 __SetPageUptodate(page); 5834 5835 /* Add shared, newly allocated pages to the page cache. */ 5836 if (vm_shared && !is_continue) { 5837 size = i_size_read(mapping->host) >> huge_page_shift(h); 5838 ret = -EFAULT; 5839 if (idx >= size) 5840 goto out_release_nounlock; 5841 5842 /* 5843 * Serialization between remove_inode_hugepages() and 5844 * huge_add_to_page_cache() below happens through the 5845 * hugetlb_fault_mutex_table that here must be hold by 5846 * the caller. 5847 */ 5848 ret = huge_add_to_page_cache(page, mapping, idx); 5849 if (ret) 5850 goto out_release_nounlock; 5851 page_in_pagecache = true; 5852 } 5853 5854 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 5855 spin_lock(ptl); 5856 5857 /* 5858 * Recheck the i_size after holding PT lock to make sure not 5859 * to leave any page mapped (as page_mapped()) beyond the end 5860 * of the i_size (remove_inode_hugepages() is strict about 5861 * enforcing that). If we bail out here, we'll also leave a 5862 * page in the radix tree in the vm_shared case beyond the end 5863 * of the i_size, but remove_inode_hugepages() will take care 5864 * of it as soon as we drop the hugetlb_fault_mutex_table. 5865 */ 5866 size = i_size_read(mapping->host) >> huge_page_shift(h); 5867 ret = -EFAULT; 5868 if (idx >= size) 5869 goto out_release_unlock; 5870 5871 ret = -EEXIST; 5872 if (!huge_pte_none(huge_ptep_get(dst_pte))) 5873 goto out_release_unlock; 5874 5875 if (vm_shared) { 5876 page_dup_rmap(page, true); 5877 } else { 5878 ClearHPageRestoreReserve(page); 5879 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 5880 } 5881 5882 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ 5883 if (is_continue && !vm_shared) 5884 writable = 0; 5885 else 5886 writable = dst_vma->vm_flags & VM_WRITE; 5887 5888 _dst_pte = make_huge_pte(dst_vma, page, writable); 5889 if (writable) 5890 _dst_pte = huge_pte_mkdirty(_dst_pte); 5891 _dst_pte = pte_mkyoung(_dst_pte); 5892 5893 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 5894 5895 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 5896 dst_vma->vm_flags & VM_WRITE); 5897 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 5898 5899 /* No need to invalidate - it was non-present before */ 5900 update_mmu_cache(dst_vma, dst_addr, dst_pte); 5901 5902 spin_unlock(ptl); 5903 if (!is_continue) 5904 SetHPageMigratable(page); 5905 if (vm_shared || is_continue) 5906 unlock_page(page); 5907 ret = 0; 5908 out: 5909 return ret; 5910 out_release_unlock: 5911 spin_unlock(ptl); 5912 if (vm_shared || is_continue) 5913 unlock_page(page); 5914 out_release_nounlock: 5915 if (!page_in_pagecache) 5916 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5917 put_page(page); 5918 goto out; 5919 } 5920 #endif /* CONFIG_USERFAULTFD */ 5921 5922 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 5923 int refs, struct page **pages, 5924 struct vm_area_struct **vmas) 5925 { 5926 int nr; 5927 5928 for (nr = 0; nr < refs; nr++) { 5929 if (likely(pages)) 5930 pages[nr] = mem_map_offset(page, nr); 5931 if (vmas) 5932 vmas[nr] = vma; 5933 } 5934 } 5935 5936 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 5937 struct page **pages, struct vm_area_struct **vmas, 5938 unsigned long *position, unsigned long *nr_pages, 5939 long i, unsigned int flags, int *locked) 5940 { 5941 unsigned long pfn_offset; 5942 unsigned long vaddr = *position; 5943 unsigned long remainder = *nr_pages; 5944 struct hstate *h = hstate_vma(vma); 5945 int err = -EFAULT, refs; 5946 5947 while (vaddr < vma->vm_end && remainder) { 5948 pte_t *pte; 5949 spinlock_t *ptl = NULL; 5950 int absent; 5951 struct page *page; 5952 5953 /* 5954 * If we have a pending SIGKILL, don't keep faulting pages and 5955 * potentially allocating memory. 5956 */ 5957 if (fatal_signal_pending(current)) { 5958 remainder = 0; 5959 break; 5960 } 5961 5962 /* 5963 * Some archs (sparc64, sh*) have multiple pte_ts to 5964 * each hugepage. We have to make sure we get the 5965 * first, for the page indexing below to work. 5966 * 5967 * Note that page table lock is not held when pte is null. 5968 */ 5969 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 5970 huge_page_size(h)); 5971 if (pte) 5972 ptl = huge_pte_lock(h, mm, pte); 5973 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 5974 5975 /* 5976 * When coredumping, it suits get_dump_page if we just return 5977 * an error where there's an empty slot with no huge pagecache 5978 * to back it. This way, we avoid allocating a hugepage, and 5979 * the sparse dumpfile avoids allocating disk blocks, but its 5980 * huge holes still show up with zeroes where they need to be. 5981 */ 5982 if (absent && (flags & FOLL_DUMP) && 5983 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 5984 if (pte) 5985 spin_unlock(ptl); 5986 remainder = 0; 5987 break; 5988 } 5989 5990 /* 5991 * We need call hugetlb_fault for both hugepages under migration 5992 * (in which case hugetlb_fault waits for the migration,) and 5993 * hwpoisoned hugepages (in which case we need to prevent the 5994 * caller from accessing to them.) In order to do this, we use 5995 * here is_swap_pte instead of is_hugetlb_entry_migration and 5996 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 5997 * both cases, and because we can't follow correct pages 5998 * directly from any kind of swap entries. 5999 */ 6000 if (absent || is_swap_pte(huge_ptep_get(pte)) || 6001 ((flags & FOLL_WRITE) && 6002 !huge_pte_write(huge_ptep_get(pte)))) { 6003 vm_fault_t ret; 6004 unsigned int fault_flags = 0; 6005 6006 if (pte) 6007 spin_unlock(ptl); 6008 if (flags & FOLL_WRITE) 6009 fault_flags |= FAULT_FLAG_WRITE; 6010 if (locked) 6011 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6012 FAULT_FLAG_KILLABLE; 6013 if (flags & FOLL_NOWAIT) 6014 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6015 FAULT_FLAG_RETRY_NOWAIT; 6016 if (flags & FOLL_TRIED) { 6017 /* 6018 * Note: FAULT_FLAG_ALLOW_RETRY and 6019 * FAULT_FLAG_TRIED can co-exist 6020 */ 6021 fault_flags |= FAULT_FLAG_TRIED; 6022 } 6023 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6024 if (ret & VM_FAULT_ERROR) { 6025 err = vm_fault_to_errno(ret, flags); 6026 remainder = 0; 6027 break; 6028 } 6029 if (ret & VM_FAULT_RETRY) { 6030 if (locked && 6031 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6032 *locked = 0; 6033 *nr_pages = 0; 6034 /* 6035 * VM_FAULT_RETRY must not return an 6036 * error, it will return zero 6037 * instead. 6038 * 6039 * No need to update "position" as the 6040 * caller will not check it after 6041 * *nr_pages is set to 0. 6042 */ 6043 return i; 6044 } 6045 continue; 6046 } 6047 6048 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6049 page = pte_page(huge_ptep_get(pte)); 6050 6051 /* 6052 * If subpage information not requested, update counters 6053 * and skip the same_page loop below. 6054 */ 6055 if (!pages && !vmas && !pfn_offset && 6056 (vaddr + huge_page_size(h) < vma->vm_end) && 6057 (remainder >= pages_per_huge_page(h))) { 6058 vaddr += huge_page_size(h); 6059 remainder -= pages_per_huge_page(h); 6060 i += pages_per_huge_page(h); 6061 spin_unlock(ptl); 6062 continue; 6063 } 6064 6065 /* vaddr may not be aligned to PAGE_SIZE */ 6066 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6067 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6068 6069 if (pages || vmas) 6070 record_subpages_vmas(mem_map_offset(page, pfn_offset), 6071 vma, refs, 6072 likely(pages) ? pages + i : NULL, 6073 vmas ? vmas + i : NULL); 6074 6075 if (pages) { 6076 /* 6077 * try_grab_compound_head() should always succeed here, 6078 * because: a) we hold the ptl lock, and b) we've just 6079 * checked that the huge page is present in the page 6080 * tables. If the huge page is present, then the tail 6081 * pages must also be present. The ptl prevents the 6082 * head page and tail pages from being rearranged in 6083 * any way. So this page must be available at this 6084 * point, unless the page refcount overflowed: 6085 */ 6086 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 6087 refs, 6088 flags))) { 6089 spin_unlock(ptl); 6090 remainder = 0; 6091 err = -ENOMEM; 6092 break; 6093 } 6094 } 6095 6096 vaddr += (refs << PAGE_SHIFT); 6097 remainder -= refs; 6098 i += refs; 6099 6100 spin_unlock(ptl); 6101 } 6102 *nr_pages = remainder; 6103 /* 6104 * setting position is actually required only if remainder is 6105 * not zero but it's faster not to add a "if (remainder)" 6106 * branch. 6107 */ 6108 *position = vaddr; 6109 6110 return i ? i : err; 6111 } 6112 6113 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6114 unsigned long address, unsigned long end, pgprot_t newprot) 6115 { 6116 struct mm_struct *mm = vma->vm_mm; 6117 unsigned long start = address; 6118 pte_t *ptep; 6119 pte_t pte; 6120 struct hstate *h = hstate_vma(vma); 6121 unsigned long pages = 0; 6122 bool shared_pmd = false; 6123 struct mmu_notifier_range range; 6124 6125 /* 6126 * In the case of shared PMDs, the area to flush could be beyond 6127 * start/end. Set range.start/range.end to cover the maximum possible 6128 * range if PMD sharing is possible. 6129 */ 6130 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6131 0, vma, mm, start, end); 6132 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6133 6134 BUG_ON(address >= end); 6135 flush_cache_range(vma, range.start, range.end); 6136 6137 mmu_notifier_invalidate_range_start(&range); 6138 i_mmap_lock_write(vma->vm_file->f_mapping); 6139 for (; address < end; address += huge_page_size(h)) { 6140 spinlock_t *ptl; 6141 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 6142 if (!ptep) 6143 continue; 6144 ptl = huge_pte_lock(h, mm, ptep); 6145 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 6146 pages++; 6147 spin_unlock(ptl); 6148 shared_pmd = true; 6149 continue; 6150 } 6151 pte = huge_ptep_get(ptep); 6152 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6153 spin_unlock(ptl); 6154 continue; 6155 } 6156 if (unlikely(is_hugetlb_entry_migration(pte))) { 6157 swp_entry_t entry = pte_to_swp_entry(pte); 6158 6159 if (is_writable_migration_entry(entry)) { 6160 pte_t newpte; 6161 6162 entry = make_readable_migration_entry( 6163 swp_offset(entry)); 6164 newpte = swp_entry_to_pte(entry); 6165 set_huge_swap_pte_at(mm, address, ptep, 6166 newpte, huge_page_size(h)); 6167 pages++; 6168 } 6169 spin_unlock(ptl); 6170 continue; 6171 } 6172 if (!huge_pte_none(pte)) { 6173 pte_t old_pte; 6174 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6175 6176 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6177 pte = huge_pte_modify(old_pte, newprot); 6178 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6179 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6180 pages++; 6181 } 6182 spin_unlock(ptl); 6183 } 6184 /* 6185 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6186 * may have cleared our pud entry and done put_page on the page table: 6187 * once we release i_mmap_rwsem, another task can do the final put_page 6188 * and that page table be reused and filled with junk. If we actually 6189 * did unshare a page of pmds, flush the range corresponding to the pud. 6190 */ 6191 if (shared_pmd) 6192 flush_hugetlb_tlb_range(vma, range.start, range.end); 6193 else 6194 flush_hugetlb_tlb_range(vma, start, end); 6195 /* 6196 * No need to call mmu_notifier_invalidate_range() we are downgrading 6197 * page table protection not changing it to point to a new page. 6198 * 6199 * See Documentation/vm/mmu_notifier.rst 6200 */ 6201 i_mmap_unlock_write(vma->vm_file->f_mapping); 6202 mmu_notifier_invalidate_range_end(&range); 6203 6204 return pages << h->order; 6205 } 6206 6207 /* Return true if reservation was successful, false otherwise. */ 6208 bool hugetlb_reserve_pages(struct inode *inode, 6209 long from, long to, 6210 struct vm_area_struct *vma, 6211 vm_flags_t vm_flags) 6212 { 6213 long chg, add = -1; 6214 struct hstate *h = hstate_inode(inode); 6215 struct hugepage_subpool *spool = subpool_inode(inode); 6216 struct resv_map *resv_map; 6217 struct hugetlb_cgroup *h_cg = NULL; 6218 long gbl_reserve, regions_needed = 0; 6219 6220 /* This should never happen */ 6221 if (from > to) { 6222 VM_WARN(1, "%s called with a negative range\n", __func__); 6223 return false; 6224 } 6225 6226 /* 6227 * Only apply hugepage reservation if asked. At fault time, an 6228 * attempt will be made for VM_NORESERVE to allocate a page 6229 * without using reserves 6230 */ 6231 if (vm_flags & VM_NORESERVE) 6232 return true; 6233 6234 /* 6235 * Shared mappings base their reservation on the number of pages that 6236 * are already allocated on behalf of the file. Private mappings need 6237 * to reserve the full area even if read-only as mprotect() may be 6238 * called to make the mapping read-write. Assume !vma is a shm mapping 6239 */ 6240 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6241 /* 6242 * resv_map can not be NULL as hugetlb_reserve_pages is only 6243 * called for inodes for which resv_maps were created (see 6244 * hugetlbfs_get_inode). 6245 */ 6246 resv_map = inode_resv_map(inode); 6247 6248 chg = region_chg(resv_map, from, to, ®ions_needed); 6249 6250 } else { 6251 /* Private mapping. */ 6252 resv_map = resv_map_alloc(); 6253 if (!resv_map) 6254 return false; 6255 6256 chg = to - from; 6257 6258 set_vma_resv_map(vma, resv_map); 6259 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6260 } 6261 6262 if (chg < 0) 6263 goto out_err; 6264 6265 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6266 chg * pages_per_huge_page(h), &h_cg) < 0) 6267 goto out_err; 6268 6269 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6270 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6271 * of the resv_map. 6272 */ 6273 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6274 } 6275 6276 /* 6277 * There must be enough pages in the subpool for the mapping. If 6278 * the subpool has a minimum size, there may be some global 6279 * reservations already in place (gbl_reserve). 6280 */ 6281 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6282 if (gbl_reserve < 0) 6283 goto out_uncharge_cgroup; 6284 6285 /* 6286 * Check enough hugepages are available for the reservation. 6287 * Hand the pages back to the subpool if there are not 6288 */ 6289 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6290 goto out_put_pages; 6291 6292 /* 6293 * Account for the reservations made. Shared mappings record regions 6294 * that have reservations as they are shared by multiple VMAs. 6295 * When the last VMA disappears, the region map says how much 6296 * the reservation was and the page cache tells how much of 6297 * the reservation was consumed. Private mappings are per-VMA and 6298 * only the consumed reservations are tracked. When the VMA 6299 * disappears, the original reservation is the VMA size and the 6300 * consumed reservations are stored in the map. Hence, nothing 6301 * else has to be done for private mappings here 6302 */ 6303 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6304 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6305 6306 if (unlikely(add < 0)) { 6307 hugetlb_acct_memory(h, -gbl_reserve); 6308 goto out_put_pages; 6309 } else if (unlikely(chg > add)) { 6310 /* 6311 * pages in this range were added to the reserve 6312 * map between region_chg and region_add. This 6313 * indicates a race with alloc_huge_page. Adjust 6314 * the subpool and reserve counts modified above 6315 * based on the difference. 6316 */ 6317 long rsv_adjust; 6318 6319 /* 6320 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6321 * reference to h_cg->css. See comment below for detail. 6322 */ 6323 hugetlb_cgroup_uncharge_cgroup_rsvd( 6324 hstate_index(h), 6325 (chg - add) * pages_per_huge_page(h), h_cg); 6326 6327 rsv_adjust = hugepage_subpool_put_pages(spool, 6328 chg - add); 6329 hugetlb_acct_memory(h, -rsv_adjust); 6330 } else if (h_cg) { 6331 /* 6332 * The file_regions will hold their own reference to 6333 * h_cg->css. So we should release the reference held 6334 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6335 * done. 6336 */ 6337 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6338 } 6339 } 6340 return true; 6341 6342 out_put_pages: 6343 /* put back original number of pages, chg */ 6344 (void)hugepage_subpool_put_pages(spool, chg); 6345 out_uncharge_cgroup: 6346 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6347 chg * pages_per_huge_page(h), h_cg); 6348 out_err: 6349 if (!vma || vma->vm_flags & VM_MAYSHARE) 6350 /* Only call region_abort if the region_chg succeeded but the 6351 * region_add failed or didn't run. 6352 */ 6353 if (chg >= 0 && add < 0) 6354 region_abort(resv_map, from, to, regions_needed); 6355 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6356 kref_put(&resv_map->refs, resv_map_release); 6357 return false; 6358 } 6359 6360 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6361 long freed) 6362 { 6363 struct hstate *h = hstate_inode(inode); 6364 struct resv_map *resv_map = inode_resv_map(inode); 6365 long chg = 0; 6366 struct hugepage_subpool *spool = subpool_inode(inode); 6367 long gbl_reserve; 6368 6369 /* 6370 * Since this routine can be called in the evict inode path for all 6371 * hugetlbfs inodes, resv_map could be NULL. 6372 */ 6373 if (resv_map) { 6374 chg = region_del(resv_map, start, end); 6375 /* 6376 * region_del() can fail in the rare case where a region 6377 * must be split and another region descriptor can not be 6378 * allocated. If end == LONG_MAX, it will not fail. 6379 */ 6380 if (chg < 0) 6381 return chg; 6382 } 6383 6384 spin_lock(&inode->i_lock); 6385 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6386 spin_unlock(&inode->i_lock); 6387 6388 /* 6389 * If the subpool has a minimum size, the number of global 6390 * reservations to be released may be adjusted. 6391 * 6392 * Note that !resv_map implies freed == 0. So (chg - freed) 6393 * won't go negative. 6394 */ 6395 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6396 hugetlb_acct_memory(h, -gbl_reserve); 6397 6398 return 0; 6399 } 6400 6401 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6402 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6403 struct vm_area_struct *vma, 6404 unsigned long addr, pgoff_t idx) 6405 { 6406 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6407 svma->vm_start; 6408 unsigned long sbase = saddr & PUD_MASK; 6409 unsigned long s_end = sbase + PUD_SIZE; 6410 6411 /* Allow segments to share if only one is marked locked */ 6412 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6413 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6414 6415 /* 6416 * match the virtual addresses, permission and the alignment of the 6417 * page table page. 6418 */ 6419 if (pmd_index(addr) != pmd_index(saddr) || 6420 vm_flags != svm_flags || 6421 !range_in_vma(svma, sbase, s_end)) 6422 return 0; 6423 6424 return saddr; 6425 } 6426 6427 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 6428 { 6429 unsigned long base = addr & PUD_MASK; 6430 unsigned long end = base + PUD_SIZE; 6431 6432 /* 6433 * check on proper vm_flags and page table alignment 6434 */ 6435 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 6436 return true; 6437 return false; 6438 } 6439 6440 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6441 { 6442 #ifdef CONFIG_USERFAULTFD 6443 if (uffd_disable_huge_pmd_share(vma)) 6444 return false; 6445 #endif 6446 return vma_shareable(vma, addr); 6447 } 6448 6449 /* 6450 * Determine if start,end range within vma could be mapped by shared pmd. 6451 * If yes, adjust start and end to cover range associated with possible 6452 * shared pmd mappings. 6453 */ 6454 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6455 unsigned long *start, unsigned long *end) 6456 { 6457 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6458 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6459 6460 /* 6461 * vma needs to span at least one aligned PUD size, and the range 6462 * must be at least partially within in. 6463 */ 6464 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6465 (*end <= v_start) || (*start >= v_end)) 6466 return; 6467 6468 /* Extend the range to be PUD aligned for a worst case scenario */ 6469 if (*start > v_start) 6470 *start = ALIGN_DOWN(*start, PUD_SIZE); 6471 6472 if (*end < v_end) 6473 *end = ALIGN(*end, PUD_SIZE); 6474 } 6475 6476 /* 6477 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6478 * and returns the corresponding pte. While this is not necessary for the 6479 * !shared pmd case because we can allocate the pmd later as well, it makes the 6480 * code much cleaner. 6481 * 6482 * This routine must be called with i_mmap_rwsem held in at least read mode if 6483 * sharing is possible. For hugetlbfs, this prevents removal of any page 6484 * table entries associated with the address space. This is important as we 6485 * are setting up sharing based on existing page table entries (mappings). 6486 */ 6487 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6488 unsigned long addr, pud_t *pud) 6489 { 6490 struct address_space *mapping = vma->vm_file->f_mapping; 6491 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6492 vma->vm_pgoff; 6493 struct vm_area_struct *svma; 6494 unsigned long saddr; 6495 pte_t *spte = NULL; 6496 pte_t *pte; 6497 spinlock_t *ptl; 6498 6499 i_mmap_assert_locked(mapping); 6500 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6501 if (svma == vma) 6502 continue; 6503 6504 saddr = page_table_shareable(svma, vma, addr, idx); 6505 if (saddr) { 6506 spte = huge_pte_offset(svma->vm_mm, saddr, 6507 vma_mmu_pagesize(svma)); 6508 if (spte) { 6509 get_page(virt_to_page(spte)); 6510 break; 6511 } 6512 } 6513 } 6514 6515 if (!spte) 6516 goto out; 6517 6518 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 6519 if (pud_none(*pud)) { 6520 pud_populate(mm, pud, 6521 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6522 mm_inc_nr_pmds(mm); 6523 } else { 6524 put_page(virt_to_page(spte)); 6525 } 6526 spin_unlock(ptl); 6527 out: 6528 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6529 return pte; 6530 } 6531 6532 /* 6533 * unmap huge page backed by shared pte. 6534 * 6535 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 6536 * indicated by page_count > 1, unmap is achieved by clearing pud and 6537 * decrementing the ref count. If count == 1, the pte page is not shared. 6538 * 6539 * Called with page table lock held and i_mmap_rwsem held in write mode. 6540 * 6541 * returns: 1 successfully unmapped a shared pte page 6542 * 0 the underlying pte page is not shared, or it is the last user 6543 */ 6544 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6545 unsigned long *addr, pte_t *ptep) 6546 { 6547 pgd_t *pgd = pgd_offset(mm, *addr); 6548 p4d_t *p4d = p4d_offset(pgd, *addr); 6549 pud_t *pud = pud_offset(p4d, *addr); 6550 6551 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6552 BUG_ON(page_count(virt_to_page(ptep)) == 0); 6553 if (page_count(virt_to_page(ptep)) == 1) 6554 return 0; 6555 6556 pud_clear(pud); 6557 put_page(virt_to_page(ptep)); 6558 mm_dec_nr_pmds(mm); 6559 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 6560 return 1; 6561 } 6562 6563 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6564 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6565 unsigned long addr, pud_t *pud) 6566 { 6567 return NULL; 6568 } 6569 6570 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 6571 unsigned long *addr, pte_t *ptep) 6572 { 6573 return 0; 6574 } 6575 6576 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6577 unsigned long *start, unsigned long *end) 6578 { 6579 } 6580 6581 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6582 { 6583 return false; 6584 } 6585 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 6586 6587 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 6588 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 6589 unsigned long addr, unsigned long sz) 6590 { 6591 pgd_t *pgd; 6592 p4d_t *p4d; 6593 pud_t *pud; 6594 pte_t *pte = NULL; 6595 6596 pgd = pgd_offset(mm, addr); 6597 p4d = p4d_alloc(mm, pgd, addr); 6598 if (!p4d) 6599 return NULL; 6600 pud = pud_alloc(mm, p4d, addr); 6601 if (pud) { 6602 if (sz == PUD_SIZE) { 6603 pte = (pte_t *)pud; 6604 } else { 6605 BUG_ON(sz != PMD_SIZE); 6606 if (want_pmd_share(vma, addr) && pud_none(*pud)) 6607 pte = huge_pmd_share(mm, vma, addr, pud); 6608 else 6609 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6610 } 6611 } 6612 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 6613 6614 return pte; 6615 } 6616 6617 /* 6618 * huge_pte_offset() - Walk the page table to resolve the hugepage 6619 * entry at address @addr 6620 * 6621 * Return: Pointer to page table entry (PUD or PMD) for 6622 * address @addr, or NULL if a !p*d_present() entry is encountered and the 6623 * size @sz doesn't match the hugepage size at this level of the page 6624 * table. 6625 */ 6626 pte_t *huge_pte_offset(struct mm_struct *mm, 6627 unsigned long addr, unsigned long sz) 6628 { 6629 pgd_t *pgd; 6630 p4d_t *p4d; 6631 pud_t *pud; 6632 pmd_t *pmd; 6633 6634 pgd = pgd_offset(mm, addr); 6635 if (!pgd_present(*pgd)) 6636 return NULL; 6637 p4d = p4d_offset(pgd, addr); 6638 if (!p4d_present(*p4d)) 6639 return NULL; 6640 6641 pud = pud_offset(p4d, addr); 6642 if (sz == PUD_SIZE) 6643 /* must be pud huge, non-present or none */ 6644 return (pte_t *)pud; 6645 if (!pud_present(*pud)) 6646 return NULL; 6647 /* must have a valid entry and size to go further */ 6648 6649 pmd = pmd_offset(pud, addr); 6650 /* must be pmd huge, non-present or none */ 6651 return (pte_t *)pmd; 6652 } 6653 6654 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 6655 6656 /* 6657 * These functions are overwritable if your architecture needs its own 6658 * behavior. 6659 */ 6660 struct page * __weak 6661 follow_huge_addr(struct mm_struct *mm, unsigned long address, 6662 int write) 6663 { 6664 return ERR_PTR(-EINVAL); 6665 } 6666 6667 struct page * __weak 6668 follow_huge_pd(struct vm_area_struct *vma, 6669 unsigned long address, hugepd_t hpd, int flags, int pdshift) 6670 { 6671 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 6672 return NULL; 6673 } 6674 6675 struct page * __weak 6676 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 6677 pmd_t *pmd, int flags) 6678 { 6679 struct page *page = NULL; 6680 spinlock_t *ptl; 6681 pte_t pte; 6682 6683 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 6684 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 6685 (FOLL_PIN | FOLL_GET))) 6686 return NULL; 6687 6688 retry: 6689 ptl = pmd_lockptr(mm, pmd); 6690 spin_lock(ptl); 6691 /* 6692 * make sure that the address range covered by this pmd is not 6693 * unmapped from other threads. 6694 */ 6695 if (!pmd_huge(*pmd)) 6696 goto out; 6697 pte = huge_ptep_get((pte_t *)pmd); 6698 if (pte_present(pte)) { 6699 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 6700 /* 6701 * try_grab_page() should always succeed here, because: a) we 6702 * hold the pmd (ptl) lock, and b) we've just checked that the 6703 * huge pmd (head) page is present in the page tables. The ptl 6704 * prevents the head page and tail pages from being rearranged 6705 * in any way. So this page must be available at this point, 6706 * unless the page refcount overflowed: 6707 */ 6708 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6709 page = NULL; 6710 goto out; 6711 } 6712 } else { 6713 if (is_hugetlb_entry_migration(pte)) { 6714 spin_unlock(ptl); 6715 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 6716 goto retry; 6717 } 6718 /* 6719 * hwpoisoned entry is treated as no_page_table in 6720 * follow_page_mask(). 6721 */ 6722 } 6723 out: 6724 spin_unlock(ptl); 6725 return page; 6726 } 6727 6728 struct page * __weak 6729 follow_huge_pud(struct mm_struct *mm, unsigned long address, 6730 pud_t *pud, int flags) 6731 { 6732 if (flags & (FOLL_GET | FOLL_PIN)) 6733 return NULL; 6734 6735 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 6736 } 6737 6738 struct page * __weak 6739 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 6740 { 6741 if (flags & (FOLL_GET | FOLL_PIN)) 6742 return NULL; 6743 6744 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 6745 } 6746 6747 bool isolate_huge_page(struct page *page, struct list_head *list) 6748 { 6749 bool ret = true; 6750 6751 spin_lock_irq(&hugetlb_lock); 6752 if (!PageHeadHuge(page) || 6753 !HPageMigratable(page) || 6754 !get_page_unless_zero(page)) { 6755 ret = false; 6756 goto unlock; 6757 } 6758 ClearHPageMigratable(page); 6759 list_move_tail(&page->lru, list); 6760 unlock: 6761 spin_unlock_irq(&hugetlb_lock); 6762 return ret; 6763 } 6764 6765 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 6766 { 6767 int ret = 0; 6768 6769 *hugetlb = false; 6770 spin_lock_irq(&hugetlb_lock); 6771 if (PageHeadHuge(page)) { 6772 *hugetlb = true; 6773 if (HPageFreed(page) || HPageMigratable(page)) 6774 ret = get_page_unless_zero(page); 6775 else 6776 ret = -EBUSY; 6777 } 6778 spin_unlock_irq(&hugetlb_lock); 6779 return ret; 6780 } 6781 6782 void putback_active_hugepage(struct page *page) 6783 { 6784 spin_lock_irq(&hugetlb_lock); 6785 SetHPageMigratable(page); 6786 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 6787 spin_unlock_irq(&hugetlb_lock); 6788 put_page(page); 6789 } 6790 6791 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 6792 { 6793 struct hstate *h = page_hstate(oldpage); 6794 6795 hugetlb_cgroup_migrate(oldpage, newpage); 6796 set_page_owner_migrate_reason(newpage, reason); 6797 6798 /* 6799 * transfer temporary state of the new huge page. This is 6800 * reverse to other transitions because the newpage is going to 6801 * be final while the old one will be freed so it takes over 6802 * the temporary status. 6803 * 6804 * Also note that we have to transfer the per-node surplus state 6805 * here as well otherwise the global surplus count will not match 6806 * the per-node's. 6807 */ 6808 if (HPageTemporary(newpage)) { 6809 int old_nid = page_to_nid(oldpage); 6810 int new_nid = page_to_nid(newpage); 6811 6812 SetHPageTemporary(oldpage); 6813 ClearHPageTemporary(newpage); 6814 6815 /* 6816 * There is no need to transfer the per-node surplus state 6817 * when we do not cross the node. 6818 */ 6819 if (new_nid == old_nid) 6820 return; 6821 spin_lock_irq(&hugetlb_lock); 6822 if (h->surplus_huge_pages_node[old_nid]) { 6823 h->surplus_huge_pages_node[old_nid]--; 6824 h->surplus_huge_pages_node[new_nid]++; 6825 } 6826 spin_unlock_irq(&hugetlb_lock); 6827 } 6828 } 6829 6830 /* 6831 * This function will unconditionally remove all the shared pmd pgtable entries 6832 * within the specific vma for a hugetlbfs memory range. 6833 */ 6834 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 6835 { 6836 struct hstate *h = hstate_vma(vma); 6837 unsigned long sz = huge_page_size(h); 6838 struct mm_struct *mm = vma->vm_mm; 6839 struct mmu_notifier_range range; 6840 unsigned long address, start, end; 6841 spinlock_t *ptl; 6842 pte_t *ptep; 6843 6844 if (!(vma->vm_flags & VM_MAYSHARE)) 6845 return; 6846 6847 start = ALIGN(vma->vm_start, PUD_SIZE); 6848 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6849 6850 if (start >= end) 6851 return; 6852 6853 /* 6854 * No need to call adjust_range_if_pmd_sharing_possible(), because 6855 * we have already done the PUD_SIZE alignment. 6856 */ 6857 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 6858 start, end); 6859 mmu_notifier_invalidate_range_start(&range); 6860 i_mmap_lock_write(vma->vm_file->f_mapping); 6861 for (address = start; address < end; address += PUD_SIZE) { 6862 unsigned long tmp = address; 6863 6864 ptep = huge_pte_offset(mm, address, sz); 6865 if (!ptep) 6866 continue; 6867 ptl = huge_pte_lock(h, mm, ptep); 6868 /* We don't want 'address' to be changed */ 6869 huge_pmd_unshare(mm, vma, &tmp, ptep); 6870 spin_unlock(ptl); 6871 } 6872 flush_hugetlb_tlb_range(vma, start, end); 6873 i_mmap_unlock_write(vma->vm_file->f_mapping); 6874 /* 6875 * No need to call mmu_notifier_invalidate_range(), see 6876 * Documentation/vm/mmu_notifier.rst. 6877 */ 6878 mmu_notifier_invalidate_range_end(&range); 6879 } 6880 6881 #ifdef CONFIG_CMA 6882 static bool cma_reserve_called __initdata; 6883 6884 static int __init cmdline_parse_hugetlb_cma(char *p) 6885 { 6886 int nid, count = 0; 6887 unsigned long tmp; 6888 char *s = p; 6889 6890 while (*s) { 6891 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 6892 break; 6893 6894 if (s[count] == ':') { 6895 if (tmp >= MAX_NUMNODES) 6896 break; 6897 nid = array_index_nospec(tmp, MAX_NUMNODES); 6898 6899 s += count + 1; 6900 tmp = memparse(s, &s); 6901 hugetlb_cma_size_in_node[nid] = tmp; 6902 hugetlb_cma_size += tmp; 6903 6904 /* 6905 * Skip the separator if have one, otherwise 6906 * break the parsing. 6907 */ 6908 if (*s == ',') 6909 s++; 6910 else 6911 break; 6912 } else { 6913 hugetlb_cma_size = memparse(p, &p); 6914 break; 6915 } 6916 } 6917 6918 return 0; 6919 } 6920 6921 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 6922 6923 void __init hugetlb_cma_reserve(int order) 6924 { 6925 unsigned long size, reserved, per_node; 6926 bool node_specific_cma_alloc = false; 6927 int nid; 6928 6929 cma_reserve_called = true; 6930 6931 if (!hugetlb_cma_size) 6932 return; 6933 6934 for (nid = 0; nid < MAX_NUMNODES; nid++) { 6935 if (hugetlb_cma_size_in_node[nid] == 0) 6936 continue; 6937 6938 if (!node_state(nid, N_ONLINE)) { 6939 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 6940 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6941 hugetlb_cma_size_in_node[nid] = 0; 6942 continue; 6943 } 6944 6945 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 6946 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 6947 nid, (PAGE_SIZE << order) / SZ_1M); 6948 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 6949 hugetlb_cma_size_in_node[nid] = 0; 6950 } else { 6951 node_specific_cma_alloc = true; 6952 } 6953 } 6954 6955 /* Validate the CMA size again in case some invalid nodes specified. */ 6956 if (!hugetlb_cma_size) 6957 return; 6958 6959 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 6960 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 6961 (PAGE_SIZE << order) / SZ_1M); 6962 hugetlb_cma_size = 0; 6963 return; 6964 } 6965 6966 if (!node_specific_cma_alloc) { 6967 /* 6968 * If 3 GB area is requested on a machine with 4 numa nodes, 6969 * let's allocate 1 GB on first three nodes and ignore the last one. 6970 */ 6971 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 6972 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 6973 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 6974 } 6975 6976 reserved = 0; 6977 for_each_node_state(nid, N_ONLINE) { 6978 int res; 6979 char name[CMA_MAX_NAME]; 6980 6981 if (node_specific_cma_alloc) { 6982 if (hugetlb_cma_size_in_node[nid] == 0) 6983 continue; 6984 6985 size = hugetlb_cma_size_in_node[nid]; 6986 } else { 6987 size = min(per_node, hugetlb_cma_size - reserved); 6988 } 6989 6990 size = round_up(size, PAGE_SIZE << order); 6991 6992 snprintf(name, sizeof(name), "hugetlb%d", nid); 6993 /* 6994 * Note that 'order per bit' is based on smallest size that 6995 * may be returned to CMA allocator in the case of 6996 * huge page demotion. 6997 */ 6998 res = cma_declare_contiguous_nid(0, size, 0, 6999 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7000 0, false, name, 7001 &hugetlb_cma[nid], nid); 7002 if (res) { 7003 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7004 res, nid); 7005 continue; 7006 } 7007 7008 reserved += size; 7009 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7010 size / SZ_1M, nid); 7011 7012 if (reserved >= hugetlb_cma_size) 7013 break; 7014 } 7015 7016 if (!reserved) 7017 /* 7018 * hugetlb_cma_size is used to determine if allocations from 7019 * cma are possible. Set to zero if no cma regions are set up. 7020 */ 7021 hugetlb_cma_size = 0; 7022 } 7023 7024 void __init hugetlb_cma_check(void) 7025 { 7026 if (!hugetlb_cma_size || cma_reserve_called) 7027 return; 7028 7029 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7030 } 7031 7032 #endif /* CONFIG_CMA */ 7033