1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/memblock.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/mmdebug.h> 22 #include <linux/sched/signal.h> 23 #include <linux/rmap.h> 24 #include <linux/string_helpers.h> 25 #include <linux/swap.h> 26 #include <linux/swapops.h> 27 #include <linux/jhash.h> 28 #include <linux/numa.h> 29 30 #include <asm/page.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlb.h> 33 34 #include <linux/io.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/node.h> 38 #include <linux/userfaultfd_k.h> 39 #include <linux/page_owner.h> 40 #include "internal.h" 41 42 int hugetlb_max_hstate __read_mostly; 43 unsigned int default_hstate_idx; 44 struct hstate hstates[HUGE_MAX_HSTATE]; 45 /* 46 * Minimum page order among possible hugepage sizes, set to a proper value 47 * at boot time. 48 */ 49 static unsigned int minimum_order __read_mostly = UINT_MAX; 50 51 __initdata LIST_HEAD(huge_boot_pages); 52 53 /* for command line parsing */ 54 static struct hstate * __initdata parsed_hstate; 55 static unsigned long __initdata default_hstate_max_huge_pages; 56 static unsigned long __initdata default_hstate_size; 57 static bool __initdata parsed_valid_hugepagesz = true; 58 59 /* 60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 61 * free_huge_pages, and surplus_huge_pages. 62 */ 63 DEFINE_SPINLOCK(hugetlb_lock); 64 65 /* 66 * Serializes faults on the same logical page. This is used to 67 * prevent spurious OOMs when the hugepage pool is fully utilized. 68 */ 69 static int num_fault_mutexes; 70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 71 72 /* Forward declaration */ 73 static int hugetlb_acct_memory(struct hstate *h, long delta); 74 75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 76 { 77 bool free = (spool->count == 0) && (spool->used_hpages == 0); 78 79 spin_unlock(&spool->lock); 80 81 /* If no pages are used, and no other handles to the subpool 82 * remain, give up any reservations mased on minimum size and 83 * free the subpool */ 84 if (free) { 85 if (spool->min_hpages != -1) 86 hugetlb_acct_memory(spool->hstate, 87 -spool->min_hpages); 88 kfree(spool); 89 } 90 } 91 92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 93 long min_hpages) 94 { 95 struct hugepage_subpool *spool; 96 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 98 if (!spool) 99 return NULL; 100 101 spin_lock_init(&spool->lock); 102 spool->count = 1; 103 spool->max_hpages = max_hpages; 104 spool->hstate = h; 105 spool->min_hpages = min_hpages; 106 107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 108 kfree(spool); 109 return NULL; 110 } 111 spool->rsv_hpages = min_hpages; 112 113 return spool; 114 } 115 116 void hugepage_put_subpool(struct hugepage_subpool *spool) 117 { 118 spin_lock(&spool->lock); 119 BUG_ON(!spool->count); 120 spool->count--; 121 unlock_or_release_subpool(spool); 122 } 123 124 /* 125 * Subpool accounting for allocating and reserving pages. 126 * Return -ENOMEM if there are not enough resources to satisfy the 127 * the request. Otherwise, return the number of pages by which the 128 * global pools must be adjusted (upward). The returned value may 129 * only be different than the passed value (delta) in the case where 130 * a subpool minimum size must be manitained. 131 */ 132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 133 long delta) 134 { 135 long ret = delta; 136 137 if (!spool) 138 return ret; 139 140 spin_lock(&spool->lock); 141 142 if (spool->max_hpages != -1) { /* maximum size accounting */ 143 if ((spool->used_hpages + delta) <= spool->max_hpages) 144 spool->used_hpages += delta; 145 else { 146 ret = -ENOMEM; 147 goto unlock_ret; 148 } 149 } 150 151 /* minimum size accounting */ 152 if (spool->min_hpages != -1 && spool->rsv_hpages) { 153 if (delta > spool->rsv_hpages) { 154 /* 155 * Asking for more reserves than those already taken on 156 * behalf of subpool. Return difference. 157 */ 158 ret = delta - spool->rsv_hpages; 159 spool->rsv_hpages = 0; 160 } else { 161 ret = 0; /* reserves already accounted for */ 162 spool->rsv_hpages -= delta; 163 } 164 } 165 166 unlock_ret: 167 spin_unlock(&spool->lock); 168 return ret; 169 } 170 171 /* 172 * Subpool accounting for freeing and unreserving pages. 173 * Return the number of global page reservations that must be dropped. 174 * The return value may only be different than the passed value (delta) 175 * in the case where a subpool minimum size must be maintained. 176 */ 177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 178 long delta) 179 { 180 long ret = delta; 181 182 if (!spool) 183 return delta; 184 185 spin_lock(&spool->lock); 186 187 if (spool->max_hpages != -1) /* maximum size accounting */ 188 spool->used_hpages -= delta; 189 190 /* minimum size accounting */ 191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 192 if (spool->rsv_hpages + delta <= spool->min_hpages) 193 ret = 0; 194 else 195 ret = spool->rsv_hpages + delta - spool->min_hpages; 196 197 spool->rsv_hpages += delta; 198 if (spool->rsv_hpages > spool->min_hpages) 199 spool->rsv_hpages = spool->min_hpages; 200 } 201 202 /* 203 * If hugetlbfs_put_super couldn't free spool due to an outstanding 204 * quota reference, free it now. 205 */ 206 unlock_or_release_subpool(spool); 207 208 return ret; 209 } 210 211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 212 { 213 return HUGETLBFS_SB(inode->i_sb)->spool; 214 } 215 216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 217 { 218 return subpool_inode(file_inode(vma->vm_file)); 219 } 220 221 /* 222 * Region tracking -- allows tracking of reservations and instantiated pages 223 * across the pages in a mapping. 224 * 225 * The region data structures are embedded into a resv_map and protected 226 * by a resv_map's lock. The set of regions within the resv_map represent 227 * reservations for huge pages, or huge pages that have already been 228 * instantiated within the map. The from and to elements are huge page 229 * indicies into the associated mapping. from indicates the starting index 230 * of the region. to represents the first index past the end of the region. 231 * 232 * For example, a file region structure with from == 0 and to == 4 represents 233 * four huge pages in a mapping. It is important to note that the to element 234 * represents the first element past the end of the region. This is used in 235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 236 * 237 * Interval notation of the form [from, to) will be used to indicate that 238 * the endpoint from is inclusive and to is exclusive. 239 */ 240 struct file_region { 241 struct list_head link; 242 long from; 243 long to; 244 }; 245 246 /* 247 * Add the huge page range represented by [f, t) to the reserve 248 * map. In the normal case, existing regions will be expanded 249 * to accommodate the specified range. Sufficient regions should 250 * exist for expansion due to the previous call to region_chg 251 * with the same range. However, it is possible that region_del 252 * could have been called after region_chg and modifed the map 253 * in such a way that no region exists to be expanded. In this 254 * case, pull a region descriptor from the cache associated with 255 * the map and use that for the new range. 256 * 257 * Return the number of new huge pages added to the map. This 258 * number is greater than or equal to zero. 259 */ 260 static long region_add(struct resv_map *resv, long f, long t) 261 { 262 struct list_head *head = &resv->regions; 263 struct file_region *rg, *nrg, *trg; 264 long add = 0; 265 266 spin_lock(&resv->lock); 267 /* Locate the region we are either in or before. */ 268 list_for_each_entry(rg, head, link) 269 if (f <= rg->to) 270 break; 271 272 /* 273 * If no region exists which can be expanded to include the 274 * specified range, the list must have been modified by an 275 * interleving call to region_del(). Pull a region descriptor 276 * from the cache and use it for this range. 277 */ 278 if (&rg->link == head || t < rg->from) { 279 VM_BUG_ON(resv->region_cache_count <= 0); 280 281 resv->region_cache_count--; 282 nrg = list_first_entry(&resv->region_cache, struct file_region, 283 link); 284 list_del(&nrg->link); 285 286 nrg->from = f; 287 nrg->to = t; 288 list_add(&nrg->link, rg->link.prev); 289 290 add += t - f; 291 goto out_locked; 292 } 293 294 /* Round our left edge to the current segment if it encloses us. */ 295 if (f > rg->from) 296 f = rg->from; 297 298 /* Check for and consume any regions we now overlap with. */ 299 nrg = rg; 300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 301 if (&rg->link == head) 302 break; 303 if (rg->from > t) 304 break; 305 306 /* If this area reaches higher then extend our area to 307 * include it completely. If this is not the first area 308 * which we intend to reuse, free it. */ 309 if (rg->to > t) 310 t = rg->to; 311 if (rg != nrg) { 312 /* Decrement return value by the deleted range. 313 * Another range will span this area so that by 314 * end of routine add will be >= zero 315 */ 316 add -= (rg->to - rg->from); 317 list_del(&rg->link); 318 kfree(rg); 319 } 320 } 321 322 add += (nrg->from - f); /* Added to beginning of region */ 323 nrg->from = f; 324 add += t - nrg->to; /* Added to end of region */ 325 nrg->to = t; 326 327 out_locked: 328 resv->adds_in_progress--; 329 spin_unlock(&resv->lock); 330 VM_BUG_ON(add < 0); 331 return add; 332 } 333 334 /* 335 * Examine the existing reserve map and determine how many 336 * huge pages in the specified range [f, t) are NOT currently 337 * represented. This routine is called before a subsequent 338 * call to region_add that will actually modify the reserve 339 * map to add the specified range [f, t). region_chg does 340 * not change the number of huge pages represented by the 341 * map. However, if the existing regions in the map can not 342 * be expanded to represent the new range, a new file_region 343 * structure is added to the map as a placeholder. This is 344 * so that the subsequent region_add call will have all the 345 * regions it needs and will not fail. 346 * 347 * Upon entry, region_chg will also examine the cache of region descriptors 348 * associated with the map. If there are not enough descriptors cached, one 349 * will be allocated for the in progress add operation. 350 * 351 * Returns the number of huge pages that need to be added to the existing 352 * reservation map for the range [f, t). This number is greater or equal to 353 * zero. -ENOMEM is returned if a new file_region structure or cache entry 354 * is needed and can not be allocated. 355 */ 356 static long region_chg(struct resv_map *resv, long f, long t) 357 { 358 struct list_head *head = &resv->regions; 359 struct file_region *rg, *nrg = NULL; 360 long chg = 0; 361 362 retry: 363 spin_lock(&resv->lock); 364 retry_locked: 365 resv->adds_in_progress++; 366 367 /* 368 * Check for sufficient descriptors in the cache to accommodate 369 * the number of in progress add operations. 370 */ 371 if (resv->adds_in_progress > resv->region_cache_count) { 372 struct file_region *trg; 373 374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 375 /* Must drop lock to allocate a new descriptor. */ 376 resv->adds_in_progress--; 377 spin_unlock(&resv->lock); 378 379 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 380 if (!trg) { 381 kfree(nrg); 382 return -ENOMEM; 383 } 384 385 spin_lock(&resv->lock); 386 list_add(&trg->link, &resv->region_cache); 387 resv->region_cache_count++; 388 goto retry_locked; 389 } 390 391 /* Locate the region we are before or in. */ 392 list_for_each_entry(rg, head, link) 393 if (f <= rg->to) 394 break; 395 396 /* If we are below the current region then a new region is required. 397 * Subtle, allocate a new region at the position but make it zero 398 * size such that we can guarantee to record the reservation. */ 399 if (&rg->link == head || t < rg->from) { 400 if (!nrg) { 401 resv->adds_in_progress--; 402 spin_unlock(&resv->lock); 403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 404 if (!nrg) 405 return -ENOMEM; 406 407 nrg->from = f; 408 nrg->to = f; 409 INIT_LIST_HEAD(&nrg->link); 410 goto retry; 411 } 412 413 list_add(&nrg->link, rg->link.prev); 414 chg = t - f; 415 goto out_nrg; 416 } 417 418 /* Round our left edge to the current segment if it encloses us. */ 419 if (f > rg->from) 420 f = rg->from; 421 chg = t - f; 422 423 /* Check for and consume any regions we now overlap with. */ 424 list_for_each_entry(rg, rg->link.prev, link) { 425 if (&rg->link == head) 426 break; 427 if (rg->from > t) 428 goto out; 429 430 /* We overlap with this area, if it extends further than 431 * us then we must extend ourselves. Account for its 432 * existing reservation. */ 433 if (rg->to > t) { 434 chg += rg->to - t; 435 t = rg->to; 436 } 437 chg -= rg->to - rg->from; 438 } 439 440 out: 441 spin_unlock(&resv->lock); 442 /* We already know we raced and no longer need the new region */ 443 kfree(nrg); 444 return chg; 445 out_nrg: 446 spin_unlock(&resv->lock); 447 return chg; 448 } 449 450 /* 451 * Abort the in progress add operation. The adds_in_progress field 452 * of the resv_map keeps track of the operations in progress between 453 * calls to region_chg and region_add. Operations are sometimes 454 * aborted after the call to region_chg. In such cases, region_abort 455 * is called to decrement the adds_in_progress counter. 456 * 457 * NOTE: The range arguments [f, t) are not needed or used in this 458 * routine. They are kept to make reading the calling code easier as 459 * arguments will match the associated region_chg call. 460 */ 461 static void region_abort(struct resv_map *resv, long f, long t) 462 { 463 spin_lock(&resv->lock); 464 VM_BUG_ON(!resv->region_cache_count); 465 resv->adds_in_progress--; 466 spin_unlock(&resv->lock); 467 } 468 469 /* 470 * Delete the specified range [f, t) from the reserve map. If the 471 * t parameter is LONG_MAX, this indicates that ALL regions after f 472 * should be deleted. Locate the regions which intersect [f, t) 473 * and either trim, delete or split the existing regions. 474 * 475 * Returns the number of huge pages deleted from the reserve map. 476 * In the normal case, the return value is zero or more. In the 477 * case where a region must be split, a new region descriptor must 478 * be allocated. If the allocation fails, -ENOMEM will be returned. 479 * NOTE: If the parameter t == LONG_MAX, then we will never split 480 * a region and possibly return -ENOMEM. Callers specifying 481 * t == LONG_MAX do not need to check for -ENOMEM error. 482 */ 483 static long region_del(struct resv_map *resv, long f, long t) 484 { 485 struct list_head *head = &resv->regions; 486 struct file_region *rg, *trg; 487 struct file_region *nrg = NULL; 488 long del = 0; 489 490 retry: 491 spin_lock(&resv->lock); 492 list_for_each_entry_safe(rg, trg, head, link) { 493 /* 494 * Skip regions before the range to be deleted. file_region 495 * ranges are normally of the form [from, to). However, there 496 * may be a "placeholder" entry in the map which is of the form 497 * (from, to) with from == to. Check for placeholder entries 498 * at the beginning of the range to be deleted. 499 */ 500 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 501 continue; 502 503 if (rg->from >= t) 504 break; 505 506 if (f > rg->from && t < rg->to) { /* Must split region */ 507 /* 508 * Check for an entry in the cache before dropping 509 * lock and attempting allocation. 510 */ 511 if (!nrg && 512 resv->region_cache_count > resv->adds_in_progress) { 513 nrg = list_first_entry(&resv->region_cache, 514 struct file_region, 515 link); 516 list_del(&nrg->link); 517 resv->region_cache_count--; 518 } 519 520 if (!nrg) { 521 spin_unlock(&resv->lock); 522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 523 if (!nrg) 524 return -ENOMEM; 525 goto retry; 526 } 527 528 del += t - f; 529 530 /* New entry for end of split region */ 531 nrg->from = t; 532 nrg->to = rg->to; 533 INIT_LIST_HEAD(&nrg->link); 534 535 /* Original entry is trimmed */ 536 rg->to = f; 537 538 list_add(&nrg->link, &rg->link); 539 nrg = NULL; 540 break; 541 } 542 543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 544 del += rg->to - rg->from; 545 list_del(&rg->link); 546 kfree(rg); 547 continue; 548 } 549 550 if (f <= rg->from) { /* Trim beginning of region */ 551 del += t - rg->from; 552 rg->from = t; 553 } else { /* Trim end of region */ 554 del += rg->to - f; 555 rg->to = f; 556 } 557 } 558 559 spin_unlock(&resv->lock); 560 kfree(nrg); 561 return del; 562 } 563 564 /* 565 * A rare out of memory error was encountered which prevented removal of 566 * the reserve map region for a page. The huge page itself was free'ed 567 * and removed from the page cache. This routine will adjust the subpool 568 * usage count, and the global reserve count if needed. By incrementing 569 * these counts, the reserve map entry which could not be deleted will 570 * appear as a "reserved" entry instead of simply dangling with incorrect 571 * counts. 572 */ 573 void hugetlb_fix_reserve_counts(struct inode *inode) 574 { 575 struct hugepage_subpool *spool = subpool_inode(inode); 576 long rsv_adjust; 577 578 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 579 if (rsv_adjust) { 580 struct hstate *h = hstate_inode(inode); 581 582 hugetlb_acct_memory(h, 1); 583 } 584 } 585 586 /* 587 * Count and return the number of huge pages in the reserve map 588 * that intersect with the range [f, t). 589 */ 590 static long region_count(struct resv_map *resv, long f, long t) 591 { 592 struct list_head *head = &resv->regions; 593 struct file_region *rg; 594 long chg = 0; 595 596 spin_lock(&resv->lock); 597 /* Locate each segment we overlap with, and count that overlap. */ 598 list_for_each_entry(rg, head, link) { 599 long seg_from; 600 long seg_to; 601 602 if (rg->to <= f) 603 continue; 604 if (rg->from >= t) 605 break; 606 607 seg_from = max(rg->from, f); 608 seg_to = min(rg->to, t); 609 610 chg += seg_to - seg_from; 611 } 612 spin_unlock(&resv->lock); 613 614 return chg; 615 } 616 617 /* 618 * Convert the address within this vma to the page offset within 619 * the mapping, in pagecache page units; huge pages here. 620 */ 621 static pgoff_t vma_hugecache_offset(struct hstate *h, 622 struct vm_area_struct *vma, unsigned long address) 623 { 624 return ((address - vma->vm_start) >> huge_page_shift(h)) + 625 (vma->vm_pgoff >> huge_page_order(h)); 626 } 627 628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 629 unsigned long address) 630 { 631 return vma_hugecache_offset(hstate_vma(vma), vma, address); 632 } 633 EXPORT_SYMBOL_GPL(linear_hugepage_index); 634 635 /* 636 * Return the size of the pages allocated when backing a VMA. In the majority 637 * cases this will be same size as used by the page table entries. 638 */ 639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 640 { 641 if (vma->vm_ops && vma->vm_ops->pagesize) 642 return vma->vm_ops->pagesize(vma); 643 return PAGE_SIZE; 644 } 645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 646 647 /* 648 * Return the page size being used by the MMU to back a VMA. In the majority 649 * of cases, the page size used by the kernel matches the MMU size. On 650 * architectures where it differs, an architecture-specific 'strong' 651 * version of this symbol is required. 652 */ 653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 654 { 655 return vma_kernel_pagesize(vma); 656 } 657 658 /* 659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 660 * bits of the reservation map pointer, which are always clear due to 661 * alignment. 662 */ 663 #define HPAGE_RESV_OWNER (1UL << 0) 664 #define HPAGE_RESV_UNMAPPED (1UL << 1) 665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 666 667 /* 668 * These helpers are used to track how many pages are reserved for 669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 670 * is guaranteed to have their future faults succeed. 671 * 672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 673 * the reserve counters are updated with the hugetlb_lock held. It is safe 674 * to reset the VMA at fork() time as it is not in use yet and there is no 675 * chance of the global counters getting corrupted as a result of the values. 676 * 677 * The private mapping reservation is represented in a subtly different 678 * manner to a shared mapping. A shared mapping has a region map associated 679 * with the underlying file, this region map represents the backing file 680 * pages which have ever had a reservation assigned which this persists even 681 * after the page is instantiated. A private mapping has a region map 682 * associated with the original mmap which is attached to all VMAs which 683 * reference it, this region map represents those offsets which have consumed 684 * reservation ie. where pages have been instantiated. 685 */ 686 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 687 { 688 return (unsigned long)vma->vm_private_data; 689 } 690 691 static void set_vma_private_data(struct vm_area_struct *vma, 692 unsigned long value) 693 { 694 vma->vm_private_data = (void *)value; 695 } 696 697 struct resv_map *resv_map_alloc(void) 698 { 699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 701 702 if (!resv_map || !rg) { 703 kfree(resv_map); 704 kfree(rg); 705 return NULL; 706 } 707 708 kref_init(&resv_map->refs); 709 spin_lock_init(&resv_map->lock); 710 INIT_LIST_HEAD(&resv_map->regions); 711 712 resv_map->adds_in_progress = 0; 713 714 INIT_LIST_HEAD(&resv_map->region_cache); 715 list_add(&rg->link, &resv_map->region_cache); 716 resv_map->region_cache_count = 1; 717 718 return resv_map; 719 } 720 721 void resv_map_release(struct kref *ref) 722 { 723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 724 struct list_head *head = &resv_map->region_cache; 725 struct file_region *rg, *trg; 726 727 /* Clear out any active regions before we release the map. */ 728 region_del(resv_map, 0, LONG_MAX); 729 730 /* ... and any entries left in the cache */ 731 list_for_each_entry_safe(rg, trg, head, link) { 732 list_del(&rg->link); 733 kfree(rg); 734 } 735 736 VM_BUG_ON(resv_map->adds_in_progress); 737 738 kfree(resv_map); 739 } 740 741 static inline struct resv_map *inode_resv_map(struct inode *inode) 742 { 743 /* 744 * At inode evict time, i_mapping may not point to the original 745 * address space within the inode. This original address space 746 * contains the pointer to the resv_map. So, always use the 747 * address space embedded within the inode. 748 * The VERY common case is inode->mapping == &inode->i_data but, 749 * this may not be true for device special inodes. 750 */ 751 return (struct resv_map *)(&inode->i_data)->private_data; 752 } 753 754 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 755 { 756 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 757 if (vma->vm_flags & VM_MAYSHARE) { 758 struct address_space *mapping = vma->vm_file->f_mapping; 759 struct inode *inode = mapping->host; 760 761 return inode_resv_map(inode); 762 763 } else { 764 return (struct resv_map *)(get_vma_private_data(vma) & 765 ~HPAGE_RESV_MASK); 766 } 767 } 768 769 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 770 { 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 773 774 set_vma_private_data(vma, (get_vma_private_data(vma) & 775 HPAGE_RESV_MASK) | (unsigned long)map); 776 } 777 778 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 779 { 780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 781 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 782 783 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 784 } 785 786 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 787 { 788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 789 790 return (get_vma_private_data(vma) & flag) != 0; 791 } 792 793 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 794 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 795 { 796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 797 if (!(vma->vm_flags & VM_MAYSHARE)) 798 vma->vm_private_data = (void *)0; 799 } 800 801 /* Returns true if the VMA has associated reserve pages */ 802 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 803 { 804 if (vma->vm_flags & VM_NORESERVE) { 805 /* 806 * This address is already reserved by other process(chg == 0), 807 * so, we should decrement reserved count. Without decrementing, 808 * reserve count remains after releasing inode, because this 809 * allocated page will go into page cache and is regarded as 810 * coming from reserved pool in releasing step. Currently, we 811 * don't have any other solution to deal with this situation 812 * properly, so add work-around here. 813 */ 814 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 815 return true; 816 else 817 return false; 818 } 819 820 /* Shared mappings always use reserves */ 821 if (vma->vm_flags & VM_MAYSHARE) { 822 /* 823 * We know VM_NORESERVE is not set. Therefore, there SHOULD 824 * be a region map for all pages. The only situation where 825 * there is no region map is if a hole was punched via 826 * fallocate. In this case, there really are no reverves to 827 * use. This situation is indicated if chg != 0. 828 */ 829 if (chg) 830 return false; 831 else 832 return true; 833 } 834 835 /* 836 * Only the process that called mmap() has reserves for 837 * private mappings. 838 */ 839 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 840 /* 841 * Like the shared case above, a hole punch or truncate 842 * could have been performed on the private mapping. 843 * Examine the value of chg to determine if reserves 844 * actually exist or were previously consumed. 845 * Very Subtle - The value of chg comes from a previous 846 * call to vma_needs_reserves(). The reserve map for 847 * private mappings has different (opposite) semantics 848 * than that of shared mappings. vma_needs_reserves() 849 * has already taken this difference in semantics into 850 * account. Therefore, the meaning of chg is the same 851 * as in the shared case above. Code could easily be 852 * combined, but keeping it separate draws attention to 853 * subtle differences. 854 */ 855 if (chg) 856 return false; 857 else 858 return true; 859 } 860 861 return false; 862 } 863 864 static void enqueue_huge_page(struct hstate *h, struct page *page) 865 { 866 int nid = page_to_nid(page); 867 list_move(&page->lru, &h->hugepage_freelists[nid]); 868 h->free_huge_pages++; 869 h->free_huge_pages_node[nid]++; 870 } 871 872 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 873 { 874 struct page *page; 875 876 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 877 if (!PageHWPoison(page)) 878 break; 879 /* 880 * if 'non-isolated free hugepage' not found on the list, 881 * the allocation fails. 882 */ 883 if (&h->hugepage_freelists[nid] == &page->lru) 884 return NULL; 885 list_move(&page->lru, &h->hugepage_activelist); 886 set_page_refcounted(page); 887 h->free_huge_pages--; 888 h->free_huge_pages_node[nid]--; 889 return page; 890 } 891 892 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 893 nodemask_t *nmask) 894 { 895 unsigned int cpuset_mems_cookie; 896 struct zonelist *zonelist; 897 struct zone *zone; 898 struct zoneref *z; 899 int node = NUMA_NO_NODE; 900 901 zonelist = node_zonelist(nid, gfp_mask); 902 903 retry_cpuset: 904 cpuset_mems_cookie = read_mems_allowed_begin(); 905 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 906 struct page *page; 907 908 if (!cpuset_zone_allowed(zone, gfp_mask)) 909 continue; 910 /* 911 * no need to ask again on the same node. Pool is node rather than 912 * zone aware 913 */ 914 if (zone_to_nid(zone) == node) 915 continue; 916 node = zone_to_nid(zone); 917 918 page = dequeue_huge_page_node_exact(h, node); 919 if (page) 920 return page; 921 } 922 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 923 goto retry_cpuset; 924 925 return NULL; 926 } 927 928 /* Movability of hugepages depends on migration support. */ 929 static inline gfp_t htlb_alloc_mask(struct hstate *h) 930 { 931 if (hugepage_movable_supported(h)) 932 return GFP_HIGHUSER_MOVABLE; 933 else 934 return GFP_HIGHUSER; 935 } 936 937 static struct page *dequeue_huge_page_vma(struct hstate *h, 938 struct vm_area_struct *vma, 939 unsigned long address, int avoid_reserve, 940 long chg) 941 { 942 struct page *page; 943 struct mempolicy *mpol; 944 gfp_t gfp_mask; 945 nodemask_t *nodemask; 946 int nid; 947 948 /* 949 * A child process with MAP_PRIVATE mappings created by their parent 950 * have no page reserves. This check ensures that reservations are 951 * not "stolen". The child may still get SIGKILLed 952 */ 953 if (!vma_has_reserves(vma, chg) && 954 h->free_huge_pages - h->resv_huge_pages == 0) 955 goto err; 956 957 /* If reserves cannot be used, ensure enough pages are in the pool */ 958 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 959 goto err; 960 961 gfp_mask = htlb_alloc_mask(h); 962 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 963 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 964 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 965 SetPagePrivate(page); 966 h->resv_huge_pages--; 967 } 968 969 mpol_cond_put(mpol); 970 return page; 971 972 err: 973 return NULL; 974 } 975 976 /* 977 * common helper functions for hstate_next_node_to_{alloc|free}. 978 * We may have allocated or freed a huge page based on a different 979 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 980 * be outside of *nodes_allowed. Ensure that we use an allowed 981 * node for alloc or free. 982 */ 983 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 984 { 985 nid = next_node_in(nid, *nodes_allowed); 986 VM_BUG_ON(nid >= MAX_NUMNODES); 987 988 return nid; 989 } 990 991 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 992 { 993 if (!node_isset(nid, *nodes_allowed)) 994 nid = next_node_allowed(nid, nodes_allowed); 995 return nid; 996 } 997 998 /* 999 * returns the previously saved node ["this node"] from which to 1000 * allocate a persistent huge page for the pool and advance the 1001 * next node from which to allocate, handling wrap at end of node 1002 * mask. 1003 */ 1004 static int hstate_next_node_to_alloc(struct hstate *h, 1005 nodemask_t *nodes_allowed) 1006 { 1007 int nid; 1008 1009 VM_BUG_ON(!nodes_allowed); 1010 1011 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1012 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1013 1014 return nid; 1015 } 1016 1017 /* 1018 * helper for free_pool_huge_page() - return the previously saved 1019 * node ["this node"] from which to free a huge page. Advance the 1020 * next node id whether or not we find a free huge page to free so 1021 * that the next attempt to free addresses the next node. 1022 */ 1023 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1024 { 1025 int nid; 1026 1027 VM_BUG_ON(!nodes_allowed); 1028 1029 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1030 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1031 1032 return nid; 1033 } 1034 1035 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1036 for (nr_nodes = nodes_weight(*mask); \ 1037 nr_nodes > 0 && \ 1038 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1039 nr_nodes--) 1040 1041 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1042 for (nr_nodes = nodes_weight(*mask); \ 1043 nr_nodes > 0 && \ 1044 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1045 nr_nodes--) 1046 1047 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1048 static void destroy_compound_gigantic_page(struct page *page, 1049 unsigned int order) 1050 { 1051 int i; 1052 int nr_pages = 1 << order; 1053 struct page *p = page + 1; 1054 1055 atomic_set(compound_mapcount_ptr(page), 0); 1056 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1057 clear_compound_head(p); 1058 set_page_refcounted(p); 1059 } 1060 1061 set_compound_order(page, 0); 1062 __ClearPageHead(page); 1063 } 1064 1065 static void free_gigantic_page(struct page *page, unsigned int order) 1066 { 1067 free_contig_range(page_to_pfn(page), 1 << order); 1068 } 1069 1070 #ifdef CONFIG_CONTIG_ALLOC 1071 static int __alloc_gigantic_page(unsigned long start_pfn, 1072 unsigned long nr_pages, gfp_t gfp_mask) 1073 { 1074 unsigned long end_pfn = start_pfn + nr_pages; 1075 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1076 gfp_mask); 1077 } 1078 1079 static bool pfn_range_valid_gigantic(struct zone *z, 1080 unsigned long start_pfn, unsigned long nr_pages) 1081 { 1082 unsigned long i, end_pfn = start_pfn + nr_pages; 1083 struct page *page; 1084 1085 for (i = start_pfn; i < end_pfn; i++) { 1086 if (!pfn_valid(i)) 1087 return false; 1088 1089 page = pfn_to_page(i); 1090 1091 if (page_zone(page) != z) 1092 return false; 1093 1094 if (PageReserved(page)) 1095 return false; 1096 1097 if (page_count(page) > 0) 1098 return false; 1099 1100 if (PageHuge(page)) 1101 return false; 1102 } 1103 1104 return true; 1105 } 1106 1107 static bool zone_spans_last_pfn(const struct zone *zone, 1108 unsigned long start_pfn, unsigned long nr_pages) 1109 { 1110 unsigned long last_pfn = start_pfn + nr_pages - 1; 1111 return zone_spans_pfn(zone, last_pfn); 1112 } 1113 1114 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1115 int nid, nodemask_t *nodemask) 1116 { 1117 unsigned int order = huge_page_order(h); 1118 unsigned long nr_pages = 1 << order; 1119 unsigned long ret, pfn, flags; 1120 struct zonelist *zonelist; 1121 struct zone *zone; 1122 struct zoneref *z; 1123 1124 zonelist = node_zonelist(nid, gfp_mask); 1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1126 spin_lock_irqsave(&zone->lock, flags); 1127 1128 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1129 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1130 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1131 /* 1132 * We release the zone lock here because 1133 * alloc_contig_range() will also lock the zone 1134 * at some point. If there's an allocation 1135 * spinning on this lock, it may win the race 1136 * and cause alloc_contig_range() to fail... 1137 */ 1138 spin_unlock_irqrestore(&zone->lock, flags); 1139 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1140 if (!ret) 1141 return pfn_to_page(pfn); 1142 spin_lock_irqsave(&zone->lock, flags); 1143 } 1144 pfn += nr_pages; 1145 } 1146 1147 spin_unlock_irqrestore(&zone->lock, flags); 1148 } 1149 1150 return NULL; 1151 } 1152 1153 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1154 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1155 #else /* !CONFIG_CONTIG_ALLOC */ 1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1157 int nid, nodemask_t *nodemask) 1158 { 1159 return NULL; 1160 } 1161 #endif /* CONFIG_CONTIG_ALLOC */ 1162 1163 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1164 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1165 int nid, nodemask_t *nodemask) 1166 { 1167 return NULL; 1168 } 1169 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1170 static inline void destroy_compound_gigantic_page(struct page *page, 1171 unsigned int order) { } 1172 #endif 1173 1174 static void update_and_free_page(struct hstate *h, struct page *page) 1175 { 1176 int i; 1177 1178 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1179 return; 1180 1181 h->nr_huge_pages--; 1182 h->nr_huge_pages_node[page_to_nid(page)]--; 1183 for (i = 0; i < pages_per_huge_page(h); i++) { 1184 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1185 1 << PG_referenced | 1 << PG_dirty | 1186 1 << PG_active | 1 << PG_private | 1187 1 << PG_writeback); 1188 } 1189 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1190 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1191 set_page_refcounted(page); 1192 if (hstate_is_gigantic(h)) { 1193 destroy_compound_gigantic_page(page, huge_page_order(h)); 1194 free_gigantic_page(page, huge_page_order(h)); 1195 } else { 1196 __free_pages(page, huge_page_order(h)); 1197 } 1198 } 1199 1200 struct hstate *size_to_hstate(unsigned long size) 1201 { 1202 struct hstate *h; 1203 1204 for_each_hstate(h) { 1205 if (huge_page_size(h) == size) 1206 return h; 1207 } 1208 return NULL; 1209 } 1210 1211 /* 1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1213 * to hstate->hugepage_activelist.) 1214 * 1215 * This function can be called for tail pages, but never returns true for them. 1216 */ 1217 bool page_huge_active(struct page *page) 1218 { 1219 VM_BUG_ON_PAGE(!PageHuge(page), page); 1220 return PageHead(page) && PagePrivate(&page[1]); 1221 } 1222 1223 /* never called for tail page */ 1224 static void set_page_huge_active(struct page *page) 1225 { 1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1227 SetPagePrivate(&page[1]); 1228 } 1229 1230 static void clear_page_huge_active(struct page *page) 1231 { 1232 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1233 ClearPagePrivate(&page[1]); 1234 } 1235 1236 /* 1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1238 * code 1239 */ 1240 static inline bool PageHugeTemporary(struct page *page) 1241 { 1242 if (!PageHuge(page)) 1243 return false; 1244 1245 return (unsigned long)page[2].mapping == -1U; 1246 } 1247 1248 static inline void SetPageHugeTemporary(struct page *page) 1249 { 1250 page[2].mapping = (void *)-1U; 1251 } 1252 1253 static inline void ClearPageHugeTemporary(struct page *page) 1254 { 1255 page[2].mapping = NULL; 1256 } 1257 1258 void free_huge_page(struct page *page) 1259 { 1260 /* 1261 * Can't pass hstate in here because it is called from the 1262 * compound page destructor. 1263 */ 1264 struct hstate *h = page_hstate(page); 1265 int nid = page_to_nid(page); 1266 struct hugepage_subpool *spool = 1267 (struct hugepage_subpool *)page_private(page); 1268 bool restore_reserve; 1269 1270 VM_BUG_ON_PAGE(page_count(page), page); 1271 VM_BUG_ON_PAGE(page_mapcount(page), page); 1272 1273 set_page_private(page, 0); 1274 page->mapping = NULL; 1275 restore_reserve = PagePrivate(page); 1276 ClearPagePrivate(page); 1277 1278 /* 1279 * If PagePrivate() was set on page, page allocation consumed a 1280 * reservation. If the page was associated with a subpool, there 1281 * would have been a page reserved in the subpool before allocation 1282 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1283 * reservtion, do not call hugepage_subpool_put_pages() as this will 1284 * remove the reserved page from the subpool. 1285 */ 1286 if (!restore_reserve) { 1287 /* 1288 * A return code of zero implies that the subpool will be 1289 * under its minimum size if the reservation is not restored 1290 * after page is free. Therefore, force restore_reserve 1291 * operation. 1292 */ 1293 if (hugepage_subpool_put_pages(spool, 1) == 0) 1294 restore_reserve = true; 1295 } 1296 1297 spin_lock(&hugetlb_lock); 1298 clear_page_huge_active(page); 1299 hugetlb_cgroup_uncharge_page(hstate_index(h), 1300 pages_per_huge_page(h), page); 1301 if (restore_reserve) 1302 h->resv_huge_pages++; 1303 1304 if (PageHugeTemporary(page)) { 1305 list_del(&page->lru); 1306 ClearPageHugeTemporary(page); 1307 update_and_free_page(h, page); 1308 } else if (h->surplus_huge_pages_node[nid]) { 1309 /* remove the page from active list */ 1310 list_del(&page->lru); 1311 update_and_free_page(h, page); 1312 h->surplus_huge_pages--; 1313 h->surplus_huge_pages_node[nid]--; 1314 } else { 1315 arch_clear_hugepage_flags(page); 1316 enqueue_huge_page(h, page); 1317 } 1318 spin_unlock(&hugetlb_lock); 1319 } 1320 1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1322 { 1323 INIT_LIST_HEAD(&page->lru); 1324 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1325 spin_lock(&hugetlb_lock); 1326 set_hugetlb_cgroup(page, NULL); 1327 h->nr_huge_pages++; 1328 h->nr_huge_pages_node[nid]++; 1329 spin_unlock(&hugetlb_lock); 1330 } 1331 1332 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1333 { 1334 int i; 1335 int nr_pages = 1 << order; 1336 struct page *p = page + 1; 1337 1338 /* we rely on prep_new_huge_page to set the destructor */ 1339 set_compound_order(page, order); 1340 __ClearPageReserved(page); 1341 __SetPageHead(page); 1342 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1343 /* 1344 * For gigantic hugepages allocated through bootmem at 1345 * boot, it's safer to be consistent with the not-gigantic 1346 * hugepages and clear the PG_reserved bit from all tail pages 1347 * too. Otherwse drivers using get_user_pages() to access tail 1348 * pages may get the reference counting wrong if they see 1349 * PG_reserved set on a tail page (despite the head page not 1350 * having PG_reserved set). Enforcing this consistency between 1351 * head and tail pages allows drivers to optimize away a check 1352 * on the head page when they need know if put_page() is needed 1353 * after get_user_pages(). 1354 */ 1355 __ClearPageReserved(p); 1356 set_page_count(p, 0); 1357 set_compound_head(p, page); 1358 } 1359 atomic_set(compound_mapcount_ptr(page), -1); 1360 } 1361 1362 /* 1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1364 * transparent huge pages. See the PageTransHuge() documentation for more 1365 * details. 1366 */ 1367 int PageHuge(struct page *page) 1368 { 1369 if (!PageCompound(page)) 1370 return 0; 1371 1372 page = compound_head(page); 1373 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1374 } 1375 EXPORT_SYMBOL_GPL(PageHuge); 1376 1377 /* 1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1379 * normal or transparent huge pages. 1380 */ 1381 int PageHeadHuge(struct page *page_head) 1382 { 1383 if (!PageHead(page_head)) 1384 return 0; 1385 1386 return get_compound_page_dtor(page_head) == free_huge_page; 1387 } 1388 1389 pgoff_t __basepage_index(struct page *page) 1390 { 1391 struct page *page_head = compound_head(page); 1392 pgoff_t index = page_index(page_head); 1393 unsigned long compound_idx; 1394 1395 if (!PageHuge(page_head)) 1396 return page_index(page); 1397 1398 if (compound_order(page_head) >= MAX_ORDER) 1399 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1400 else 1401 compound_idx = page - page_head; 1402 1403 return (index << compound_order(page_head)) + compound_idx; 1404 } 1405 1406 static struct page *alloc_buddy_huge_page(struct hstate *h, 1407 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1408 { 1409 int order = huge_page_order(h); 1410 struct page *page; 1411 1412 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1413 if (nid == NUMA_NO_NODE) 1414 nid = numa_mem_id(); 1415 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1416 if (page) 1417 __count_vm_event(HTLB_BUDDY_PGALLOC); 1418 else 1419 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1420 1421 return page; 1422 } 1423 1424 /* 1425 * Common helper to allocate a fresh hugetlb page. All specific allocators 1426 * should use this function to get new hugetlb pages 1427 */ 1428 static struct page *alloc_fresh_huge_page(struct hstate *h, 1429 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1430 { 1431 struct page *page; 1432 1433 if (hstate_is_gigantic(h)) 1434 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1435 else 1436 page = alloc_buddy_huge_page(h, gfp_mask, 1437 nid, nmask); 1438 if (!page) 1439 return NULL; 1440 1441 if (hstate_is_gigantic(h)) 1442 prep_compound_gigantic_page(page, huge_page_order(h)); 1443 prep_new_huge_page(h, page, page_to_nid(page)); 1444 1445 return page; 1446 } 1447 1448 /* 1449 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1450 * manner. 1451 */ 1452 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1453 { 1454 struct page *page; 1455 int nr_nodes, node; 1456 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1457 1458 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1459 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1460 if (page) 1461 break; 1462 } 1463 1464 if (!page) 1465 return 0; 1466 1467 put_page(page); /* free it into the hugepage allocator */ 1468 1469 return 1; 1470 } 1471 1472 /* 1473 * Free huge page from pool from next node to free. 1474 * Attempt to keep persistent huge pages more or less 1475 * balanced over allowed nodes. 1476 * Called with hugetlb_lock locked. 1477 */ 1478 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1479 bool acct_surplus) 1480 { 1481 int nr_nodes, node; 1482 int ret = 0; 1483 1484 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1485 /* 1486 * If we're returning unused surplus pages, only examine 1487 * nodes with surplus pages. 1488 */ 1489 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1490 !list_empty(&h->hugepage_freelists[node])) { 1491 struct page *page = 1492 list_entry(h->hugepage_freelists[node].next, 1493 struct page, lru); 1494 list_del(&page->lru); 1495 h->free_huge_pages--; 1496 h->free_huge_pages_node[node]--; 1497 if (acct_surplus) { 1498 h->surplus_huge_pages--; 1499 h->surplus_huge_pages_node[node]--; 1500 } 1501 update_and_free_page(h, page); 1502 ret = 1; 1503 break; 1504 } 1505 } 1506 1507 return ret; 1508 } 1509 1510 /* 1511 * Dissolve a given free hugepage into free buddy pages. This function does 1512 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1513 * dissolution fails because a give page is not a free hugepage, or because 1514 * free hugepages are fully reserved. 1515 */ 1516 int dissolve_free_huge_page(struct page *page) 1517 { 1518 int rc = -EBUSY; 1519 1520 spin_lock(&hugetlb_lock); 1521 if (PageHuge(page) && !page_count(page)) { 1522 struct page *head = compound_head(page); 1523 struct hstate *h = page_hstate(head); 1524 int nid = page_to_nid(head); 1525 if (h->free_huge_pages - h->resv_huge_pages == 0) 1526 goto out; 1527 /* 1528 * Move PageHWPoison flag from head page to the raw error page, 1529 * which makes any subpages rather than the error page reusable. 1530 */ 1531 if (PageHWPoison(head) && page != head) { 1532 SetPageHWPoison(page); 1533 ClearPageHWPoison(head); 1534 } 1535 list_del(&head->lru); 1536 h->free_huge_pages--; 1537 h->free_huge_pages_node[nid]--; 1538 h->max_huge_pages--; 1539 update_and_free_page(h, head); 1540 rc = 0; 1541 } 1542 out: 1543 spin_unlock(&hugetlb_lock); 1544 return rc; 1545 } 1546 1547 /* 1548 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1549 * make specified memory blocks removable from the system. 1550 * Note that this will dissolve a free gigantic hugepage completely, if any 1551 * part of it lies within the given range. 1552 * Also note that if dissolve_free_huge_page() returns with an error, all 1553 * free hugepages that were dissolved before that error are lost. 1554 */ 1555 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1556 { 1557 unsigned long pfn; 1558 struct page *page; 1559 int rc = 0; 1560 1561 if (!hugepages_supported()) 1562 return rc; 1563 1564 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1565 page = pfn_to_page(pfn); 1566 if (PageHuge(page) && !page_count(page)) { 1567 rc = dissolve_free_huge_page(page); 1568 if (rc) 1569 break; 1570 } 1571 } 1572 1573 return rc; 1574 } 1575 1576 /* 1577 * Allocates a fresh surplus page from the page allocator. 1578 */ 1579 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1580 int nid, nodemask_t *nmask) 1581 { 1582 struct page *page = NULL; 1583 1584 if (hstate_is_gigantic(h)) 1585 return NULL; 1586 1587 spin_lock(&hugetlb_lock); 1588 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1589 goto out_unlock; 1590 spin_unlock(&hugetlb_lock); 1591 1592 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1593 if (!page) 1594 return NULL; 1595 1596 spin_lock(&hugetlb_lock); 1597 /* 1598 * We could have raced with the pool size change. 1599 * Double check that and simply deallocate the new page 1600 * if we would end up overcommiting the surpluses. Abuse 1601 * temporary page to workaround the nasty free_huge_page 1602 * codeflow 1603 */ 1604 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1605 SetPageHugeTemporary(page); 1606 spin_unlock(&hugetlb_lock); 1607 put_page(page); 1608 return NULL; 1609 } else { 1610 h->surplus_huge_pages++; 1611 h->surplus_huge_pages_node[page_to_nid(page)]++; 1612 } 1613 1614 out_unlock: 1615 spin_unlock(&hugetlb_lock); 1616 1617 return page; 1618 } 1619 1620 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1621 int nid, nodemask_t *nmask) 1622 { 1623 struct page *page; 1624 1625 if (hstate_is_gigantic(h)) 1626 return NULL; 1627 1628 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1629 if (!page) 1630 return NULL; 1631 1632 /* 1633 * We do not account these pages as surplus because they are only 1634 * temporary and will be released properly on the last reference 1635 */ 1636 SetPageHugeTemporary(page); 1637 1638 return page; 1639 } 1640 1641 /* 1642 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1643 */ 1644 static 1645 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1646 struct vm_area_struct *vma, unsigned long addr) 1647 { 1648 struct page *page; 1649 struct mempolicy *mpol; 1650 gfp_t gfp_mask = htlb_alloc_mask(h); 1651 int nid; 1652 nodemask_t *nodemask; 1653 1654 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1655 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1656 mpol_cond_put(mpol); 1657 1658 return page; 1659 } 1660 1661 /* page migration callback function */ 1662 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1663 { 1664 gfp_t gfp_mask = htlb_alloc_mask(h); 1665 struct page *page = NULL; 1666 1667 if (nid != NUMA_NO_NODE) 1668 gfp_mask |= __GFP_THISNODE; 1669 1670 spin_lock(&hugetlb_lock); 1671 if (h->free_huge_pages - h->resv_huge_pages > 0) 1672 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1673 spin_unlock(&hugetlb_lock); 1674 1675 if (!page) 1676 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1677 1678 return page; 1679 } 1680 1681 /* page migration callback function */ 1682 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1683 nodemask_t *nmask) 1684 { 1685 gfp_t gfp_mask = htlb_alloc_mask(h); 1686 1687 spin_lock(&hugetlb_lock); 1688 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1689 struct page *page; 1690 1691 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1692 if (page) { 1693 spin_unlock(&hugetlb_lock); 1694 return page; 1695 } 1696 } 1697 spin_unlock(&hugetlb_lock); 1698 1699 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1700 } 1701 1702 /* mempolicy aware migration callback */ 1703 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1704 unsigned long address) 1705 { 1706 struct mempolicy *mpol; 1707 nodemask_t *nodemask; 1708 struct page *page; 1709 gfp_t gfp_mask; 1710 int node; 1711 1712 gfp_mask = htlb_alloc_mask(h); 1713 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1714 page = alloc_huge_page_nodemask(h, node, nodemask); 1715 mpol_cond_put(mpol); 1716 1717 return page; 1718 } 1719 1720 /* 1721 * Increase the hugetlb pool such that it can accommodate a reservation 1722 * of size 'delta'. 1723 */ 1724 static int gather_surplus_pages(struct hstate *h, int delta) 1725 { 1726 struct list_head surplus_list; 1727 struct page *page, *tmp; 1728 int ret, i; 1729 int needed, allocated; 1730 bool alloc_ok = true; 1731 1732 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1733 if (needed <= 0) { 1734 h->resv_huge_pages += delta; 1735 return 0; 1736 } 1737 1738 allocated = 0; 1739 INIT_LIST_HEAD(&surplus_list); 1740 1741 ret = -ENOMEM; 1742 retry: 1743 spin_unlock(&hugetlb_lock); 1744 for (i = 0; i < needed; i++) { 1745 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1746 NUMA_NO_NODE, NULL); 1747 if (!page) { 1748 alloc_ok = false; 1749 break; 1750 } 1751 list_add(&page->lru, &surplus_list); 1752 cond_resched(); 1753 } 1754 allocated += i; 1755 1756 /* 1757 * After retaking hugetlb_lock, we need to recalculate 'needed' 1758 * because either resv_huge_pages or free_huge_pages may have changed. 1759 */ 1760 spin_lock(&hugetlb_lock); 1761 needed = (h->resv_huge_pages + delta) - 1762 (h->free_huge_pages + allocated); 1763 if (needed > 0) { 1764 if (alloc_ok) 1765 goto retry; 1766 /* 1767 * We were not able to allocate enough pages to 1768 * satisfy the entire reservation so we free what 1769 * we've allocated so far. 1770 */ 1771 goto free; 1772 } 1773 /* 1774 * The surplus_list now contains _at_least_ the number of extra pages 1775 * needed to accommodate the reservation. Add the appropriate number 1776 * of pages to the hugetlb pool and free the extras back to the buddy 1777 * allocator. Commit the entire reservation here to prevent another 1778 * process from stealing the pages as they are added to the pool but 1779 * before they are reserved. 1780 */ 1781 needed += allocated; 1782 h->resv_huge_pages += delta; 1783 ret = 0; 1784 1785 /* Free the needed pages to the hugetlb pool */ 1786 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1787 if ((--needed) < 0) 1788 break; 1789 /* 1790 * This page is now managed by the hugetlb allocator and has 1791 * no users -- drop the buddy allocator's reference. 1792 */ 1793 put_page_testzero(page); 1794 VM_BUG_ON_PAGE(page_count(page), page); 1795 enqueue_huge_page(h, page); 1796 } 1797 free: 1798 spin_unlock(&hugetlb_lock); 1799 1800 /* Free unnecessary surplus pages to the buddy allocator */ 1801 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1802 put_page(page); 1803 spin_lock(&hugetlb_lock); 1804 1805 return ret; 1806 } 1807 1808 /* 1809 * This routine has two main purposes: 1810 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1811 * in unused_resv_pages. This corresponds to the prior adjustments made 1812 * to the associated reservation map. 1813 * 2) Free any unused surplus pages that may have been allocated to satisfy 1814 * the reservation. As many as unused_resv_pages may be freed. 1815 * 1816 * Called with hugetlb_lock held. However, the lock could be dropped (and 1817 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1818 * we must make sure nobody else can claim pages we are in the process of 1819 * freeing. Do this by ensuring resv_huge_page always is greater than the 1820 * number of huge pages we plan to free when dropping the lock. 1821 */ 1822 static void return_unused_surplus_pages(struct hstate *h, 1823 unsigned long unused_resv_pages) 1824 { 1825 unsigned long nr_pages; 1826 1827 /* Cannot return gigantic pages currently */ 1828 if (hstate_is_gigantic(h)) 1829 goto out; 1830 1831 /* 1832 * Part (or even all) of the reservation could have been backed 1833 * by pre-allocated pages. Only free surplus pages. 1834 */ 1835 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1836 1837 /* 1838 * We want to release as many surplus pages as possible, spread 1839 * evenly across all nodes with memory. Iterate across these nodes 1840 * until we can no longer free unreserved surplus pages. This occurs 1841 * when the nodes with surplus pages have no free pages. 1842 * free_pool_huge_page() will balance the the freed pages across the 1843 * on-line nodes with memory and will handle the hstate accounting. 1844 * 1845 * Note that we decrement resv_huge_pages as we free the pages. If 1846 * we drop the lock, resv_huge_pages will still be sufficiently large 1847 * to cover subsequent pages we may free. 1848 */ 1849 while (nr_pages--) { 1850 h->resv_huge_pages--; 1851 unused_resv_pages--; 1852 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1853 goto out; 1854 cond_resched_lock(&hugetlb_lock); 1855 } 1856 1857 out: 1858 /* Fully uncommit the reservation */ 1859 h->resv_huge_pages -= unused_resv_pages; 1860 } 1861 1862 1863 /* 1864 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1865 * are used by the huge page allocation routines to manage reservations. 1866 * 1867 * vma_needs_reservation is called to determine if the huge page at addr 1868 * within the vma has an associated reservation. If a reservation is 1869 * needed, the value 1 is returned. The caller is then responsible for 1870 * managing the global reservation and subpool usage counts. After 1871 * the huge page has been allocated, vma_commit_reservation is called 1872 * to add the page to the reservation map. If the page allocation fails, 1873 * the reservation must be ended instead of committed. vma_end_reservation 1874 * is called in such cases. 1875 * 1876 * In the normal case, vma_commit_reservation returns the same value 1877 * as the preceding vma_needs_reservation call. The only time this 1878 * is not the case is if a reserve map was changed between calls. It 1879 * is the responsibility of the caller to notice the difference and 1880 * take appropriate action. 1881 * 1882 * vma_add_reservation is used in error paths where a reservation must 1883 * be restored when a newly allocated huge page must be freed. It is 1884 * to be called after calling vma_needs_reservation to determine if a 1885 * reservation exists. 1886 */ 1887 enum vma_resv_mode { 1888 VMA_NEEDS_RESV, 1889 VMA_COMMIT_RESV, 1890 VMA_END_RESV, 1891 VMA_ADD_RESV, 1892 }; 1893 static long __vma_reservation_common(struct hstate *h, 1894 struct vm_area_struct *vma, unsigned long addr, 1895 enum vma_resv_mode mode) 1896 { 1897 struct resv_map *resv; 1898 pgoff_t idx; 1899 long ret; 1900 1901 resv = vma_resv_map(vma); 1902 if (!resv) 1903 return 1; 1904 1905 idx = vma_hugecache_offset(h, vma, addr); 1906 switch (mode) { 1907 case VMA_NEEDS_RESV: 1908 ret = region_chg(resv, idx, idx + 1); 1909 break; 1910 case VMA_COMMIT_RESV: 1911 ret = region_add(resv, idx, idx + 1); 1912 break; 1913 case VMA_END_RESV: 1914 region_abort(resv, idx, idx + 1); 1915 ret = 0; 1916 break; 1917 case VMA_ADD_RESV: 1918 if (vma->vm_flags & VM_MAYSHARE) 1919 ret = region_add(resv, idx, idx + 1); 1920 else { 1921 region_abort(resv, idx, idx + 1); 1922 ret = region_del(resv, idx, idx + 1); 1923 } 1924 break; 1925 default: 1926 BUG(); 1927 } 1928 1929 if (vma->vm_flags & VM_MAYSHARE) 1930 return ret; 1931 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1932 /* 1933 * In most cases, reserves always exist for private mappings. 1934 * However, a file associated with mapping could have been 1935 * hole punched or truncated after reserves were consumed. 1936 * As subsequent fault on such a range will not use reserves. 1937 * Subtle - The reserve map for private mappings has the 1938 * opposite meaning than that of shared mappings. If NO 1939 * entry is in the reserve map, it means a reservation exists. 1940 * If an entry exists in the reserve map, it means the 1941 * reservation has already been consumed. As a result, the 1942 * return value of this routine is the opposite of the 1943 * value returned from reserve map manipulation routines above. 1944 */ 1945 if (ret) 1946 return 0; 1947 else 1948 return 1; 1949 } 1950 else 1951 return ret < 0 ? ret : 0; 1952 } 1953 1954 static long vma_needs_reservation(struct hstate *h, 1955 struct vm_area_struct *vma, unsigned long addr) 1956 { 1957 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1958 } 1959 1960 static long vma_commit_reservation(struct hstate *h, 1961 struct vm_area_struct *vma, unsigned long addr) 1962 { 1963 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1964 } 1965 1966 static void vma_end_reservation(struct hstate *h, 1967 struct vm_area_struct *vma, unsigned long addr) 1968 { 1969 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1970 } 1971 1972 static long vma_add_reservation(struct hstate *h, 1973 struct vm_area_struct *vma, unsigned long addr) 1974 { 1975 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1976 } 1977 1978 /* 1979 * This routine is called to restore a reservation on error paths. In the 1980 * specific error paths, a huge page was allocated (via alloc_huge_page) 1981 * and is about to be freed. If a reservation for the page existed, 1982 * alloc_huge_page would have consumed the reservation and set PagePrivate 1983 * in the newly allocated page. When the page is freed via free_huge_page, 1984 * the global reservation count will be incremented if PagePrivate is set. 1985 * However, free_huge_page can not adjust the reserve map. Adjust the 1986 * reserve map here to be consistent with global reserve count adjustments 1987 * to be made by free_huge_page. 1988 */ 1989 static void restore_reserve_on_error(struct hstate *h, 1990 struct vm_area_struct *vma, unsigned long address, 1991 struct page *page) 1992 { 1993 if (unlikely(PagePrivate(page))) { 1994 long rc = vma_needs_reservation(h, vma, address); 1995 1996 if (unlikely(rc < 0)) { 1997 /* 1998 * Rare out of memory condition in reserve map 1999 * manipulation. Clear PagePrivate so that 2000 * global reserve count will not be incremented 2001 * by free_huge_page. This will make it appear 2002 * as though the reservation for this page was 2003 * consumed. This may prevent the task from 2004 * faulting in the page at a later time. This 2005 * is better than inconsistent global huge page 2006 * accounting of reserve counts. 2007 */ 2008 ClearPagePrivate(page); 2009 } else if (rc) { 2010 rc = vma_add_reservation(h, vma, address); 2011 if (unlikely(rc < 0)) 2012 /* 2013 * See above comment about rare out of 2014 * memory condition. 2015 */ 2016 ClearPagePrivate(page); 2017 } else 2018 vma_end_reservation(h, vma, address); 2019 } 2020 } 2021 2022 struct page *alloc_huge_page(struct vm_area_struct *vma, 2023 unsigned long addr, int avoid_reserve) 2024 { 2025 struct hugepage_subpool *spool = subpool_vma(vma); 2026 struct hstate *h = hstate_vma(vma); 2027 struct page *page; 2028 long map_chg, map_commit; 2029 long gbl_chg; 2030 int ret, idx; 2031 struct hugetlb_cgroup *h_cg; 2032 2033 idx = hstate_index(h); 2034 /* 2035 * Examine the region/reserve map to determine if the process 2036 * has a reservation for the page to be allocated. A return 2037 * code of zero indicates a reservation exists (no change). 2038 */ 2039 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2040 if (map_chg < 0) 2041 return ERR_PTR(-ENOMEM); 2042 2043 /* 2044 * Processes that did not create the mapping will have no 2045 * reserves as indicated by the region/reserve map. Check 2046 * that the allocation will not exceed the subpool limit. 2047 * Allocations for MAP_NORESERVE mappings also need to be 2048 * checked against any subpool limit. 2049 */ 2050 if (map_chg || avoid_reserve) { 2051 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2052 if (gbl_chg < 0) { 2053 vma_end_reservation(h, vma, addr); 2054 return ERR_PTR(-ENOSPC); 2055 } 2056 2057 /* 2058 * Even though there was no reservation in the region/reserve 2059 * map, there could be reservations associated with the 2060 * subpool that can be used. This would be indicated if the 2061 * return value of hugepage_subpool_get_pages() is zero. 2062 * However, if avoid_reserve is specified we still avoid even 2063 * the subpool reservations. 2064 */ 2065 if (avoid_reserve) 2066 gbl_chg = 1; 2067 } 2068 2069 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2070 if (ret) 2071 goto out_subpool_put; 2072 2073 spin_lock(&hugetlb_lock); 2074 /* 2075 * glb_chg is passed to indicate whether or not a page must be taken 2076 * from the global free pool (global change). gbl_chg == 0 indicates 2077 * a reservation exists for the allocation. 2078 */ 2079 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2080 if (!page) { 2081 spin_unlock(&hugetlb_lock); 2082 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2083 if (!page) 2084 goto out_uncharge_cgroup; 2085 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2086 SetPagePrivate(page); 2087 h->resv_huge_pages--; 2088 } 2089 spin_lock(&hugetlb_lock); 2090 list_move(&page->lru, &h->hugepage_activelist); 2091 /* Fall through */ 2092 } 2093 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2094 spin_unlock(&hugetlb_lock); 2095 2096 set_page_private(page, (unsigned long)spool); 2097 2098 map_commit = vma_commit_reservation(h, vma, addr); 2099 if (unlikely(map_chg > map_commit)) { 2100 /* 2101 * The page was added to the reservation map between 2102 * vma_needs_reservation and vma_commit_reservation. 2103 * This indicates a race with hugetlb_reserve_pages. 2104 * Adjust for the subpool count incremented above AND 2105 * in hugetlb_reserve_pages for the same page. Also, 2106 * the reservation count added in hugetlb_reserve_pages 2107 * no longer applies. 2108 */ 2109 long rsv_adjust; 2110 2111 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2112 hugetlb_acct_memory(h, -rsv_adjust); 2113 } 2114 return page; 2115 2116 out_uncharge_cgroup: 2117 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2118 out_subpool_put: 2119 if (map_chg || avoid_reserve) 2120 hugepage_subpool_put_pages(spool, 1); 2121 vma_end_reservation(h, vma, addr); 2122 return ERR_PTR(-ENOSPC); 2123 } 2124 2125 int alloc_bootmem_huge_page(struct hstate *h) 2126 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2127 int __alloc_bootmem_huge_page(struct hstate *h) 2128 { 2129 struct huge_bootmem_page *m; 2130 int nr_nodes, node; 2131 2132 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2133 void *addr; 2134 2135 addr = memblock_alloc_try_nid_raw( 2136 huge_page_size(h), huge_page_size(h), 2137 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2138 if (addr) { 2139 /* 2140 * Use the beginning of the huge page to store the 2141 * huge_bootmem_page struct (until gather_bootmem 2142 * puts them into the mem_map). 2143 */ 2144 m = addr; 2145 goto found; 2146 } 2147 } 2148 return 0; 2149 2150 found: 2151 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2152 /* Put them into a private list first because mem_map is not up yet */ 2153 INIT_LIST_HEAD(&m->list); 2154 list_add(&m->list, &huge_boot_pages); 2155 m->hstate = h; 2156 return 1; 2157 } 2158 2159 static void __init prep_compound_huge_page(struct page *page, 2160 unsigned int order) 2161 { 2162 if (unlikely(order > (MAX_ORDER - 1))) 2163 prep_compound_gigantic_page(page, order); 2164 else 2165 prep_compound_page(page, order); 2166 } 2167 2168 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2169 static void __init gather_bootmem_prealloc(void) 2170 { 2171 struct huge_bootmem_page *m; 2172 2173 list_for_each_entry(m, &huge_boot_pages, list) { 2174 struct page *page = virt_to_page(m); 2175 struct hstate *h = m->hstate; 2176 2177 WARN_ON(page_count(page) != 1); 2178 prep_compound_huge_page(page, h->order); 2179 WARN_ON(PageReserved(page)); 2180 prep_new_huge_page(h, page, page_to_nid(page)); 2181 put_page(page); /* free it into the hugepage allocator */ 2182 2183 /* 2184 * If we had gigantic hugepages allocated at boot time, we need 2185 * to restore the 'stolen' pages to totalram_pages in order to 2186 * fix confusing memory reports from free(1) and another 2187 * side-effects, like CommitLimit going negative. 2188 */ 2189 if (hstate_is_gigantic(h)) 2190 adjust_managed_page_count(page, 1 << h->order); 2191 cond_resched(); 2192 } 2193 } 2194 2195 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2196 { 2197 unsigned long i; 2198 2199 for (i = 0; i < h->max_huge_pages; ++i) { 2200 if (hstate_is_gigantic(h)) { 2201 if (!alloc_bootmem_huge_page(h)) 2202 break; 2203 } else if (!alloc_pool_huge_page(h, 2204 &node_states[N_MEMORY])) 2205 break; 2206 cond_resched(); 2207 } 2208 if (i < h->max_huge_pages) { 2209 char buf[32]; 2210 2211 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2212 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2213 h->max_huge_pages, buf, i); 2214 h->max_huge_pages = i; 2215 } 2216 } 2217 2218 static void __init hugetlb_init_hstates(void) 2219 { 2220 struct hstate *h; 2221 2222 for_each_hstate(h) { 2223 if (minimum_order > huge_page_order(h)) 2224 minimum_order = huge_page_order(h); 2225 2226 /* oversize hugepages were init'ed in early boot */ 2227 if (!hstate_is_gigantic(h)) 2228 hugetlb_hstate_alloc_pages(h); 2229 } 2230 VM_BUG_ON(minimum_order == UINT_MAX); 2231 } 2232 2233 static void __init report_hugepages(void) 2234 { 2235 struct hstate *h; 2236 2237 for_each_hstate(h) { 2238 char buf[32]; 2239 2240 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2241 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2242 buf, h->free_huge_pages); 2243 } 2244 } 2245 2246 #ifdef CONFIG_HIGHMEM 2247 static void try_to_free_low(struct hstate *h, unsigned long count, 2248 nodemask_t *nodes_allowed) 2249 { 2250 int i; 2251 2252 if (hstate_is_gigantic(h)) 2253 return; 2254 2255 for_each_node_mask(i, *nodes_allowed) { 2256 struct page *page, *next; 2257 struct list_head *freel = &h->hugepage_freelists[i]; 2258 list_for_each_entry_safe(page, next, freel, lru) { 2259 if (count >= h->nr_huge_pages) 2260 return; 2261 if (PageHighMem(page)) 2262 continue; 2263 list_del(&page->lru); 2264 update_and_free_page(h, page); 2265 h->free_huge_pages--; 2266 h->free_huge_pages_node[page_to_nid(page)]--; 2267 } 2268 } 2269 } 2270 #else 2271 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2272 nodemask_t *nodes_allowed) 2273 { 2274 } 2275 #endif 2276 2277 /* 2278 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2279 * balanced by operating on them in a round-robin fashion. 2280 * Returns 1 if an adjustment was made. 2281 */ 2282 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2283 int delta) 2284 { 2285 int nr_nodes, node; 2286 2287 VM_BUG_ON(delta != -1 && delta != 1); 2288 2289 if (delta < 0) { 2290 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2291 if (h->surplus_huge_pages_node[node]) 2292 goto found; 2293 } 2294 } else { 2295 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2296 if (h->surplus_huge_pages_node[node] < 2297 h->nr_huge_pages_node[node]) 2298 goto found; 2299 } 2300 } 2301 return 0; 2302 2303 found: 2304 h->surplus_huge_pages += delta; 2305 h->surplus_huge_pages_node[node] += delta; 2306 return 1; 2307 } 2308 2309 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2310 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2311 nodemask_t *nodes_allowed) 2312 { 2313 unsigned long min_count, ret; 2314 2315 spin_lock(&hugetlb_lock); 2316 2317 /* 2318 * Check for a node specific request. 2319 * Changing node specific huge page count may require a corresponding 2320 * change to the global count. In any case, the passed node mask 2321 * (nodes_allowed) will restrict alloc/free to the specified node. 2322 */ 2323 if (nid != NUMA_NO_NODE) { 2324 unsigned long old_count = count; 2325 2326 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2327 /* 2328 * User may have specified a large count value which caused the 2329 * above calculation to overflow. In this case, they wanted 2330 * to allocate as many huge pages as possible. Set count to 2331 * largest possible value to align with their intention. 2332 */ 2333 if (count < old_count) 2334 count = ULONG_MAX; 2335 } 2336 2337 /* 2338 * Gigantic pages runtime allocation depend on the capability for large 2339 * page range allocation. 2340 * If the system does not provide this feature, return an error when 2341 * the user tries to allocate gigantic pages but let the user free the 2342 * boottime allocated gigantic pages. 2343 */ 2344 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2345 if (count > persistent_huge_pages(h)) { 2346 spin_unlock(&hugetlb_lock); 2347 return -EINVAL; 2348 } 2349 /* Fall through to decrease pool */ 2350 } 2351 2352 /* 2353 * Increase the pool size 2354 * First take pages out of surplus state. Then make up the 2355 * remaining difference by allocating fresh huge pages. 2356 * 2357 * We might race with alloc_surplus_huge_page() here and be unable 2358 * to convert a surplus huge page to a normal huge page. That is 2359 * not critical, though, it just means the overall size of the 2360 * pool might be one hugepage larger than it needs to be, but 2361 * within all the constraints specified by the sysctls. 2362 */ 2363 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2364 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2365 break; 2366 } 2367 2368 while (count > persistent_huge_pages(h)) { 2369 /* 2370 * If this allocation races such that we no longer need the 2371 * page, free_huge_page will handle it by freeing the page 2372 * and reducing the surplus. 2373 */ 2374 spin_unlock(&hugetlb_lock); 2375 2376 /* yield cpu to avoid soft lockup */ 2377 cond_resched(); 2378 2379 ret = alloc_pool_huge_page(h, nodes_allowed); 2380 spin_lock(&hugetlb_lock); 2381 if (!ret) 2382 goto out; 2383 2384 /* Bail for signals. Probably ctrl-c from user */ 2385 if (signal_pending(current)) 2386 goto out; 2387 } 2388 2389 /* 2390 * Decrease the pool size 2391 * First return free pages to the buddy allocator (being careful 2392 * to keep enough around to satisfy reservations). Then place 2393 * pages into surplus state as needed so the pool will shrink 2394 * to the desired size as pages become free. 2395 * 2396 * By placing pages into the surplus state independent of the 2397 * overcommit value, we are allowing the surplus pool size to 2398 * exceed overcommit. There are few sane options here. Since 2399 * alloc_surplus_huge_page() is checking the global counter, 2400 * though, we'll note that we're not allowed to exceed surplus 2401 * and won't grow the pool anywhere else. Not until one of the 2402 * sysctls are changed, or the surplus pages go out of use. 2403 */ 2404 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2405 min_count = max(count, min_count); 2406 try_to_free_low(h, min_count, nodes_allowed); 2407 while (min_count < persistent_huge_pages(h)) { 2408 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2409 break; 2410 cond_resched_lock(&hugetlb_lock); 2411 } 2412 while (count < persistent_huge_pages(h)) { 2413 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2414 break; 2415 } 2416 out: 2417 h->max_huge_pages = persistent_huge_pages(h); 2418 spin_unlock(&hugetlb_lock); 2419 2420 return 0; 2421 } 2422 2423 #define HSTATE_ATTR_RO(_name) \ 2424 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2425 2426 #define HSTATE_ATTR(_name) \ 2427 static struct kobj_attribute _name##_attr = \ 2428 __ATTR(_name, 0644, _name##_show, _name##_store) 2429 2430 static struct kobject *hugepages_kobj; 2431 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2432 2433 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2434 2435 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2436 { 2437 int i; 2438 2439 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2440 if (hstate_kobjs[i] == kobj) { 2441 if (nidp) 2442 *nidp = NUMA_NO_NODE; 2443 return &hstates[i]; 2444 } 2445 2446 return kobj_to_node_hstate(kobj, nidp); 2447 } 2448 2449 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2450 struct kobj_attribute *attr, char *buf) 2451 { 2452 struct hstate *h; 2453 unsigned long nr_huge_pages; 2454 int nid; 2455 2456 h = kobj_to_hstate(kobj, &nid); 2457 if (nid == NUMA_NO_NODE) 2458 nr_huge_pages = h->nr_huge_pages; 2459 else 2460 nr_huge_pages = h->nr_huge_pages_node[nid]; 2461 2462 return sprintf(buf, "%lu\n", nr_huge_pages); 2463 } 2464 2465 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2466 struct hstate *h, int nid, 2467 unsigned long count, size_t len) 2468 { 2469 int err; 2470 nodemask_t nodes_allowed, *n_mask; 2471 2472 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2473 return -EINVAL; 2474 2475 if (nid == NUMA_NO_NODE) { 2476 /* 2477 * global hstate attribute 2478 */ 2479 if (!(obey_mempolicy && 2480 init_nodemask_of_mempolicy(&nodes_allowed))) 2481 n_mask = &node_states[N_MEMORY]; 2482 else 2483 n_mask = &nodes_allowed; 2484 } else { 2485 /* 2486 * Node specific request. count adjustment happens in 2487 * set_max_huge_pages() after acquiring hugetlb_lock. 2488 */ 2489 init_nodemask_of_node(&nodes_allowed, nid); 2490 n_mask = &nodes_allowed; 2491 } 2492 2493 err = set_max_huge_pages(h, count, nid, n_mask); 2494 2495 return err ? err : len; 2496 } 2497 2498 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2499 struct kobject *kobj, const char *buf, 2500 size_t len) 2501 { 2502 struct hstate *h; 2503 unsigned long count; 2504 int nid; 2505 int err; 2506 2507 err = kstrtoul(buf, 10, &count); 2508 if (err) 2509 return err; 2510 2511 h = kobj_to_hstate(kobj, &nid); 2512 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2513 } 2514 2515 static ssize_t nr_hugepages_show(struct kobject *kobj, 2516 struct kobj_attribute *attr, char *buf) 2517 { 2518 return nr_hugepages_show_common(kobj, attr, buf); 2519 } 2520 2521 static ssize_t nr_hugepages_store(struct kobject *kobj, 2522 struct kobj_attribute *attr, const char *buf, size_t len) 2523 { 2524 return nr_hugepages_store_common(false, kobj, buf, len); 2525 } 2526 HSTATE_ATTR(nr_hugepages); 2527 2528 #ifdef CONFIG_NUMA 2529 2530 /* 2531 * hstate attribute for optionally mempolicy-based constraint on persistent 2532 * huge page alloc/free. 2533 */ 2534 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2535 struct kobj_attribute *attr, char *buf) 2536 { 2537 return nr_hugepages_show_common(kobj, attr, buf); 2538 } 2539 2540 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2541 struct kobj_attribute *attr, const char *buf, size_t len) 2542 { 2543 return nr_hugepages_store_common(true, kobj, buf, len); 2544 } 2545 HSTATE_ATTR(nr_hugepages_mempolicy); 2546 #endif 2547 2548 2549 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2550 struct kobj_attribute *attr, char *buf) 2551 { 2552 struct hstate *h = kobj_to_hstate(kobj, NULL); 2553 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2554 } 2555 2556 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2557 struct kobj_attribute *attr, const char *buf, size_t count) 2558 { 2559 int err; 2560 unsigned long input; 2561 struct hstate *h = kobj_to_hstate(kobj, NULL); 2562 2563 if (hstate_is_gigantic(h)) 2564 return -EINVAL; 2565 2566 err = kstrtoul(buf, 10, &input); 2567 if (err) 2568 return err; 2569 2570 spin_lock(&hugetlb_lock); 2571 h->nr_overcommit_huge_pages = input; 2572 spin_unlock(&hugetlb_lock); 2573 2574 return count; 2575 } 2576 HSTATE_ATTR(nr_overcommit_hugepages); 2577 2578 static ssize_t free_hugepages_show(struct kobject *kobj, 2579 struct kobj_attribute *attr, char *buf) 2580 { 2581 struct hstate *h; 2582 unsigned long free_huge_pages; 2583 int nid; 2584 2585 h = kobj_to_hstate(kobj, &nid); 2586 if (nid == NUMA_NO_NODE) 2587 free_huge_pages = h->free_huge_pages; 2588 else 2589 free_huge_pages = h->free_huge_pages_node[nid]; 2590 2591 return sprintf(buf, "%lu\n", free_huge_pages); 2592 } 2593 HSTATE_ATTR_RO(free_hugepages); 2594 2595 static ssize_t resv_hugepages_show(struct kobject *kobj, 2596 struct kobj_attribute *attr, char *buf) 2597 { 2598 struct hstate *h = kobj_to_hstate(kobj, NULL); 2599 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2600 } 2601 HSTATE_ATTR_RO(resv_hugepages); 2602 2603 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2604 struct kobj_attribute *attr, char *buf) 2605 { 2606 struct hstate *h; 2607 unsigned long surplus_huge_pages; 2608 int nid; 2609 2610 h = kobj_to_hstate(kobj, &nid); 2611 if (nid == NUMA_NO_NODE) 2612 surplus_huge_pages = h->surplus_huge_pages; 2613 else 2614 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2615 2616 return sprintf(buf, "%lu\n", surplus_huge_pages); 2617 } 2618 HSTATE_ATTR_RO(surplus_hugepages); 2619 2620 static struct attribute *hstate_attrs[] = { 2621 &nr_hugepages_attr.attr, 2622 &nr_overcommit_hugepages_attr.attr, 2623 &free_hugepages_attr.attr, 2624 &resv_hugepages_attr.attr, 2625 &surplus_hugepages_attr.attr, 2626 #ifdef CONFIG_NUMA 2627 &nr_hugepages_mempolicy_attr.attr, 2628 #endif 2629 NULL, 2630 }; 2631 2632 static const struct attribute_group hstate_attr_group = { 2633 .attrs = hstate_attrs, 2634 }; 2635 2636 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2637 struct kobject **hstate_kobjs, 2638 const struct attribute_group *hstate_attr_group) 2639 { 2640 int retval; 2641 int hi = hstate_index(h); 2642 2643 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2644 if (!hstate_kobjs[hi]) 2645 return -ENOMEM; 2646 2647 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2648 if (retval) 2649 kobject_put(hstate_kobjs[hi]); 2650 2651 return retval; 2652 } 2653 2654 static void __init hugetlb_sysfs_init(void) 2655 { 2656 struct hstate *h; 2657 int err; 2658 2659 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2660 if (!hugepages_kobj) 2661 return; 2662 2663 for_each_hstate(h) { 2664 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2665 hstate_kobjs, &hstate_attr_group); 2666 if (err) 2667 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2668 } 2669 } 2670 2671 #ifdef CONFIG_NUMA 2672 2673 /* 2674 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2675 * with node devices in node_devices[] using a parallel array. The array 2676 * index of a node device or _hstate == node id. 2677 * This is here to avoid any static dependency of the node device driver, in 2678 * the base kernel, on the hugetlb module. 2679 */ 2680 struct node_hstate { 2681 struct kobject *hugepages_kobj; 2682 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2683 }; 2684 static struct node_hstate node_hstates[MAX_NUMNODES]; 2685 2686 /* 2687 * A subset of global hstate attributes for node devices 2688 */ 2689 static struct attribute *per_node_hstate_attrs[] = { 2690 &nr_hugepages_attr.attr, 2691 &free_hugepages_attr.attr, 2692 &surplus_hugepages_attr.attr, 2693 NULL, 2694 }; 2695 2696 static const struct attribute_group per_node_hstate_attr_group = { 2697 .attrs = per_node_hstate_attrs, 2698 }; 2699 2700 /* 2701 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2702 * Returns node id via non-NULL nidp. 2703 */ 2704 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2705 { 2706 int nid; 2707 2708 for (nid = 0; nid < nr_node_ids; nid++) { 2709 struct node_hstate *nhs = &node_hstates[nid]; 2710 int i; 2711 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2712 if (nhs->hstate_kobjs[i] == kobj) { 2713 if (nidp) 2714 *nidp = nid; 2715 return &hstates[i]; 2716 } 2717 } 2718 2719 BUG(); 2720 return NULL; 2721 } 2722 2723 /* 2724 * Unregister hstate attributes from a single node device. 2725 * No-op if no hstate attributes attached. 2726 */ 2727 static void hugetlb_unregister_node(struct node *node) 2728 { 2729 struct hstate *h; 2730 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2731 2732 if (!nhs->hugepages_kobj) 2733 return; /* no hstate attributes */ 2734 2735 for_each_hstate(h) { 2736 int idx = hstate_index(h); 2737 if (nhs->hstate_kobjs[idx]) { 2738 kobject_put(nhs->hstate_kobjs[idx]); 2739 nhs->hstate_kobjs[idx] = NULL; 2740 } 2741 } 2742 2743 kobject_put(nhs->hugepages_kobj); 2744 nhs->hugepages_kobj = NULL; 2745 } 2746 2747 2748 /* 2749 * Register hstate attributes for a single node device. 2750 * No-op if attributes already registered. 2751 */ 2752 static void hugetlb_register_node(struct node *node) 2753 { 2754 struct hstate *h; 2755 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2756 int err; 2757 2758 if (nhs->hugepages_kobj) 2759 return; /* already allocated */ 2760 2761 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2762 &node->dev.kobj); 2763 if (!nhs->hugepages_kobj) 2764 return; 2765 2766 for_each_hstate(h) { 2767 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2768 nhs->hstate_kobjs, 2769 &per_node_hstate_attr_group); 2770 if (err) { 2771 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2772 h->name, node->dev.id); 2773 hugetlb_unregister_node(node); 2774 break; 2775 } 2776 } 2777 } 2778 2779 /* 2780 * hugetlb init time: register hstate attributes for all registered node 2781 * devices of nodes that have memory. All on-line nodes should have 2782 * registered their associated device by this time. 2783 */ 2784 static void __init hugetlb_register_all_nodes(void) 2785 { 2786 int nid; 2787 2788 for_each_node_state(nid, N_MEMORY) { 2789 struct node *node = node_devices[nid]; 2790 if (node->dev.id == nid) 2791 hugetlb_register_node(node); 2792 } 2793 2794 /* 2795 * Let the node device driver know we're here so it can 2796 * [un]register hstate attributes on node hotplug. 2797 */ 2798 register_hugetlbfs_with_node(hugetlb_register_node, 2799 hugetlb_unregister_node); 2800 } 2801 #else /* !CONFIG_NUMA */ 2802 2803 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2804 { 2805 BUG(); 2806 if (nidp) 2807 *nidp = -1; 2808 return NULL; 2809 } 2810 2811 static void hugetlb_register_all_nodes(void) { } 2812 2813 #endif 2814 2815 static int __init hugetlb_init(void) 2816 { 2817 int i; 2818 2819 if (!hugepages_supported()) 2820 return 0; 2821 2822 if (!size_to_hstate(default_hstate_size)) { 2823 if (default_hstate_size != 0) { 2824 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2825 default_hstate_size, HPAGE_SIZE); 2826 } 2827 2828 default_hstate_size = HPAGE_SIZE; 2829 if (!size_to_hstate(default_hstate_size)) 2830 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2831 } 2832 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2833 if (default_hstate_max_huge_pages) { 2834 if (!default_hstate.max_huge_pages) 2835 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2836 } 2837 2838 hugetlb_init_hstates(); 2839 gather_bootmem_prealloc(); 2840 report_hugepages(); 2841 2842 hugetlb_sysfs_init(); 2843 hugetlb_register_all_nodes(); 2844 hugetlb_cgroup_file_init(); 2845 2846 #ifdef CONFIG_SMP 2847 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2848 #else 2849 num_fault_mutexes = 1; 2850 #endif 2851 hugetlb_fault_mutex_table = 2852 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2853 GFP_KERNEL); 2854 BUG_ON(!hugetlb_fault_mutex_table); 2855 2856 for (i = 0; i < num_fault_mutexes; i++) 2857 mutex_init(&hugetlb_fault_mutex_table[i]); 2858 return 0; 2859 } 2860 subsys_initcall(hugetlb_init); 2861 2862 /* Should be called on processing a hugepagesz=... option */ 2863 void __init hugetlb_bad_size(void) 2864 { 2865 parsed_valid_hugepagesz = false; 2866 } 2867 2868 void __init hugetlb_add_hstate(unsigned int order) 2869 { 2870 struct hstate *h; 2871 unsigned long i; 2872 2873 if (size_to_hstate(PAGE_SIZE << order)) { 2874 pr_warn("hugepagesz= specified twice, ignoring\n"); 2875 return; 2876 } 2877 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2878 BUG_ON(order == 0); 2879 h = &hstates[hugetlb_max_hstate++]; 2880 h->order = order; 2881 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2882 h->nr_huge_pages = 0; 2883 h->free_huge_pages = 0; 2884 for (i = 0; i < MAX_NUMNODES; ++i) 2885 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2886 INIT_LIST_HEAD(&h->hugepage_activelist); 2887 h->next_nid_to_alloc = first_memory_node; 2888 h->next_nid_to_free = first_memory_node; 2889 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2890 huge_page_size(h)/1024); 2891 2892 parsed_hstate = h; 2893 } 2894 2895 static int __init hugetlb_nrpages_setup(char *s) 2896 { 2897 unsigned long *mhp; 2898 static unsigned long *last_mhp; 2899 2900 if (!parsed_valid_hugepagesz) { 2901 pr_warn("hugepages = %s preceded by " 2902 "an unsupported hugepagesz, ignoring\n", s); 2903 parsed_valid_hugepagesz = true; 2904 return 1; 2905 } 2906 /* 2907 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2908 * so this hugepages= parameter goes to the "default hstate". 2909 */ 2910 else if (!hugetlb_max_hstate) 2911 mhp = &default_hstate_max_huge_pages; 2912 else 2913 mhp = &parsed_hstate->max_huge_pages; 2914 2915 if (mhp == last_mhp) { 2916 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2917 return 1; 2918 } 2919 2920 if (sscanf(s, "%lu", mhp) <= 0) 2921 *mhp = 0; 2922 2923 /* 2924 * Global state is always initialized later in hugetlb_init. 2925 * But we need to allocate >= MAX_ORDER hstates here early to still 2926 * use the bootmem allocator. 2927 */ 2928 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2929 hugetlb_hstate_alloc_pages(parsed_hstate); 2930 2931 last_mhp = mhp; 2932 2933 return 1; 2934 } 2935 __setup("hugepages=", hugetlb_nrpages_setup); 2936 2937 static int __init hugetlb_default_setup(char *s) 2938 { 2939 default_hstate_size = memparse(s, &s); 2940 return 1; 2941 } 2942 __setup("default_hugepagesz=", hugetlb_default_setup); 2943 2944 static unsigned int cpuset_mems_nr(unsigned int *array) 2945 { 2946 int node; 2947 unsigned int nr = 0; 2948 2949 for_each_node_mask(node, cpuset_current_mems_allowed) 2950 nr += array[node]; 2951 2952 return nr; 2953 } 2954 2955 #ifdef CONFIG_SYSCTL 2956 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2957 struct ctl_table *table, int write, 2958 void __user *buffer, size_t *length, loff_t *ppos) 2959 { 2960 struct hstate *h = &default_hstate; 2961 unsigned long tmp = h->max_huge_pages; 2962 int ret; 2963 2964 if (!hugepages_supported()) 2965 return -EOPNOTSUPP; 2966 2967 table->data = &tmp; 2968 table->maxlen = sizeof(unsigned long); 2969 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2970 if (ret) 2971 goto out; 2972 2973 if (write) 2974 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2975 NUMA_NO_NODE, tmp, *length); 2976 out: 2977 return ret; 2978 } 2979 2980 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2981 void __user *buffer, size_t *length, loff_t *ppos) 2982 { 2983 2984 return hugetlb_sysctl_handler_common(false, table, write, 2985 buffer, length, ppos); 2986 } 2987 2988 #ifdef CONFIG_NUMA 2989 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2990 void __user *buffer, size_t *length, loff_t *ppos) 2991 { 2992 return hugetlb_sysctl_handler_common(true, table, write, 2993 buffer, length, ppos); 2994 } 2995 #endif /* CONFIG_NUMA */ 2996 2997 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2998 void __user *buffer, 2999 size_t *length, loff_t *ppos) 3000 { 3001 struct hstate *h = &default_hstate; 3002 unsigned long tmp; 3003 int ret; 3004 3005 if (!hugepages_supported()) 3006 return -EOPNOTSUPP; 3007 3008 tmp = h->nr_overcommit_huge_pages; 3009 3010 if (write && hstate_is_gigantic(h)) 3011 return -EINVAL; 3012 3013 table->data = &tmp; 3014 table->maxlen = sizeof(unsigned long); 3015 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3016 if (ret) 3017 goto out; 3018 3019 if (write) { 3020 spin_lock(&hugetlb_lock); 3021 h->nr_overcommit_huge_pages = tmp; 3022 spin_unlock(&hugetlb_lock); 3023 } 3024 out: 3025 return ret; 3026 } 3027 3028 #endif /* CONFIG_SYSCTL */ 3029 3030 void hugetlb_report_meminfo(struct seq_file *m) 3031 { 3032 struct hstate *h; 3033 unsigned long total = 0; 3034 3035 if (!hugepages_supported()) 3036 return; 3037 3038 for_each_hstate(h) { 3039 unsigned long count = h->nr_huge_pages; 3040 3041 total += (PAGE_SIZE << huge_page_order(h)) * count; 3042 3043 if (h == &default_hstate) 3044 seq_printf(m, 3045 "HugePages_Total: %5lu\n" 3046 "HugePages_Free: %5lu\n" 3047 "HugePages_Rsvd: %5lu\n" 3048 "HugePages_Surp: %5lu\n" 3049 "Hugepagesize: %8lu kB\n", 3050 count, 3051 h->free_huge_pages, 3052 h->resv_huge_pages, 3053 h->surplus_huge_pages, 3054 (PAGE_SIZE << huge_page_order(h)) / 1024); 3055 } 3056 3057 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3058 } 3059 3060 int hugetlb_report_node_meminfo(int nid, char *buf) 3061 { 3062 struct hstate *h = &default_hstate; 3063 if (!hugepages_supported()) 3064 return 0; 3065 return sprintf(buf, 3066 "Node %d HugePages_Total: %5u\n" 3067 "Node %d HugePages_Free: %5u\n" 3068 "Node %d HugePages_Surp: %5u\n", 3069 nid, h->nr_huge_pages_node[nid], 3070 nid, h->free_huge_pages_node[nid], 3071 nid, h->surplus_huge_pages_node[nid]); 3072 } 3073 3074 void hugetlb_show_meminfo(void) 3075 { 3076 struct hstate *h; 3077 int nid; 3078 3079 if (!hugepages_supported()) 3080 return; 3081 3082 for_each_node_state(nid, N_MEMORY) 3083 for_each_hstate(h) 3084 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3085 nid, 3086 h->nr_huge_pages_node[nid], 3087 h->free_huge_pages_node[nid], 3088 h->surplus_huge_pages_node[nid], 3089 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3090 } 3091 3092 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3093 { 3094 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3095 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3096 } 3097 3098 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3099 unsigned long hugetlb_total_pages(void) 3100 { 3101 struct hstate *h; 3102 unsigned long nr_total_pages = 0; 3103 3104 for_each_hstate(h) 3105 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3106 return nr_total_pages; 3107 } 3108 3109 static int hugetlb_acct_memory(struct hstate *h, long delta) 3110 { 3111 int ret = -ENOMEM; 3112 3113 spin_lock(&hugetlb_lock); 3114 /* 3115 * When cpuset is configured, it breaks the strict hugetlb page 3116 * reservation as the accounting is done on a global variable. Such 3117 * reservation is completely rubbish in the presence of cpuset because 3118 * the reservation is not checked against page availability for the 3119 * current cpuset. Application can still potentially OOM'ed by kernel 3120 * with lack of free htlb page in cpuset that the task is in. 3121 * Attempt to enforce strict accounting with cpuset is almost 3122 * impossible (or too ugly) because cpuset is too fluid that 3123 * task or memory node can be dynamically moved between cpusets. 3124 * 3125 * The change of semantics for shared hugetlb mapping with cpuset is 3126 * undesirable. However, in order to preserve some of the semantics, 3127 * we fall back to check against current free page availability as 3128 * a best attempt and hopefully to minimize the impact of changing 3129 * semantics that cpuset has. 3130 */ 3131 if (delta > 0) { 3132 if (gather_surplus_pages(h, delta) < 0) 3133 goto out; 3134 3135 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3136 return_unused_surplus_pages(h, delta); 3137 goto out; 3138 } 3139 } 3140 3141 ret = 0; 3142 if (delta < 0) 3143 return_unused_surplus_pages(h, (unsigned long) -delta); 3144 3145 out: 3146 spin_unlock(&hugetlb_lock); 3147 return ret; 3148 } 3149 3150 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3151 { 3152 struct resv_map *resv = vma_resv_map(vma); 3153 3154 /* 3155 * This new VMA should share its siblings reservation map if present. 3156 * The VMA will only ever have a valid reservation map pointer where 3157 * it is being copied for another still existing VMA. As that VMA 3158 * has a reference to the reservation map it cannot disappear until 3159 * after this open call completes. It is therefore safe to take a 3160 * new reference here without additional locking. 3161 */ 3162 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3163 kref_get(&resv->refs); 3164 } 3165 3166 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3167 { 3168 struct hstate *h = hstate_vma(vma); 3169 struct resv_map *resv = vma_resv_map(vma); 3170 struct hugepage_subpool *spool = subpool_vma(vma); 3171 unsigned long reserve, start, end; 3172 long gbl_reserve; 3173 3174 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3175 return; 3176 3177 start = vma_hugecache_offset(h, vma, vma->vm_start); 3178 end = vma_hugecache_offset(h, vma, vma->vm_end); 3179 3180 reserve = (end - start) - region_count(resv, start, end); 3181 3182 kref_put(&resv->refs, resv_map_release); 3183 3184 if (reserve) { 3185 /* 3186 * Decrement reserve counts. The global reserve count may be 3187 * adjusted if the subpool has a minimum size. 3188 */ 3189 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3190 hugetlb_acct_memory(h, -gbl_reserve); 3191 } 3192 } 3193 3194 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3195 { 3196 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3197 return -EINVAL; 3198 return 0; 3199 } 3200 3201 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3202 { 3203 struct hstate *hstate = hstate_vma(vma); 3204 3205 return 1UL << huge_page_shift(hstate); 3206 } 3207 3208 /* 3209 * We cannot handle pagefaults against hugetlb pages at all. They cause 3210 * handle_mm_fault() to try to instantiate regular-sized pages in the 3211 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3212 * this far. 3213 */ 3214 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3215 { 3216 BUG(); 3217 return 0; 3218 } 3219 3220 /* 3221 * When a new function is introduced to vm_operations_struct and added 3222 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3223 * This is because under System V memory model, mappings created via 3224 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3225 * their original vm_ops are overwritten with shm_vm_ops. 3226 */ 3227 const struct vm_operations_struct hugetlb_vm_ops = { 3228 .fault = hugetlb_vm_op_fault, 3229 .open = hugetlb_vm_op_open, 3230 .close = hugetlb_vm_op_close, 3231 .split = hugetlb_vm_op_split, 3232 .pagesize = hugetlb_vm_op_pagesize, 3233 }; 3234 3235 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3236 int writable) 3237 { 3238 pte_t entry; 3239 3240 if (writable) { 3241 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3242 vma->vm_page_prot))); 3243 } else { 3244 entry = huge_pte_wrprotect(mk_huge_pte(page, 3245 vma->vm_page_prot)); 3246 } 3247 entry = pte_mkyoung(entry); 3248 entry = pte_mkhuge(entry); 3249 entry = arch_make_huge_pte(entry, vma, page, writable); 3250 3251 return entry; 3252 } 3253 3254 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3255 unsigned long address, pte_t *ptep) 3256 { 3257 pte_t entry; 3258 3259 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3260 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3261 update_mmu_cache(vma, address, ptep); 3262 } 3263 3264 bool is_hugetlb_entry_migration(pte_t pte) 3265 { 3266 swp_entry_t swp; 3267 3268 if (huge_pte_none(pte) || pte_present(pte)) 3269 return false; 3270 swp = pte_to_swp_entry(pte); 3271 if (non_swap_entry(swp) && is_migration_entry(swp)) 3272 return true; 3273 else 3274 return false; 3275 } 3276 3277 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3278 { 3279 swp_entry_t swp; 3280 3281 if (huge_pte_none(pte) || pte_present(pte)) 3282 return 0; 3283 swp = pte_to_swp_entry(pte); 3284 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3285 return 1; 3286 else 3287 return 0; 3288 } 3289 3290 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3291 struct vm_area_struct *vma) 3292 { 3293 pte_t *src_pte, *dst_pte, entry, dst_entry; 3294 struct page *ptepage; 3295 unsigned long addr; 3296 int cow; 3297 struct hstate *h = hstate_vma(vma); 3298 unsigned long sz = huge_page_size(h); 3299 struct mmu_notifier_range range; 3300 int ret = 0; 3301 3302 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3303 3304 if (cow) { 3305 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3306 vma->vm_start, 3307 vma->vm_end); 3308 mmu_notifier_invalidate_range_start(&range); 3309 } 3310 3311 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3312 spinlock_t *src_ptl, *dst_ptl; 3313 src_pte = huge_pte_offset(src, addr, sz); 3314 if (!src_pte) 3315 continue; 3316 dst_pte = huge_pte_alloc(dst, addr, sz); 3317 if (!dst_pte) { 3318 ret = -ENOMEM; 3319 break; 3320 } 3321 3322 /* 3323 * If the pagetables are shared don't copy or take references. 3324 * dst_pte == src_pte is the common case of src/dest sharing. 3325 * 3326 * However, src could have 'unshared' and dst shares with 3327 * another vma. If dst_pte !none, this implies sharing. 3328 * Check here before taking page table lock, and once again 3329 * after taking the lock below. 3330 */ 3331 dst_entry = huge_ptep_get(dst_pte); 3332 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3333 continue; 3334 3335 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3336 src_ptl = huge_pte_lockptr(h, src, src_pte); 3337 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3338 entry = huge_ptep_get(src_pte); 3339 dst_entry = huge_ptep_get(dst_pte); 3340 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3341 /* 3342 * Skip if src entry none. Also, skip in the 3343 * unlikely case dst entry !none as this implies 3344 * sharing with another vma. 3345 */ 3346 ; 3347 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3348 is_hugetlb_entry_hwpoisoned(entry))) { 3349 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3350 3351 if (is_write_migration_entry(swp_entry) && cow) { 3352 /* 3353 * COW mappings require pages in both 3354 * parent and child to be set to read. 3355 */ 3356 make_migration_entry_read(&swp_entry); 3357 entry = swp_entry_to_pte(swp_entry); 3358 set_huge_swap_pte_at(src, addr, src_pte, 3359 entry, sz); 3360 } 3361 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3362 } else { 3363 if (cow) { 3364 /* 3365 * No need to notify as we are downgrading page 3366 * table protection not changing it to point 3367 * to a new page. 3368 * 3369 * See Documentation/vm/mmu_notifier.rst 3370 */ 3371 huge_ptep_set_wrprotect(src, addr, src_pte); 3372 } 3373 entry = huge_ptep_get(src_pte); 3374 ptepage = pte_page(entry); 3375 get_page(ptepage); 3376 page_dup_rmap(ptepage, true); 3377 set_huge_pte_at(dst, addr, dst_pte, entry); 3378 hugetlb_count_add(pages_per_huge_page(h), dst); 3379 } 3380 spin_unlock(src_ptl); 3381 spin_unlock(dst_ptl); 3382 } 3383 3384 if (cow) 3385 mmu_notifier_invalidate_range_end(&range); 3386 3387 return ret; 3388 } 3389 3390 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3391 unsigned long start, unsigned long end, 3392 struct page *ref_page) 3393 { 3394 struct mm_struct *mm = vma->vm_mm; 3395 unsigned long address; 3396 pte_t *ptep; 3397 pte_t pte; 3398 spinlock_t *ptl; 3399 struct page *page; 3400 struct hstate *h = hstate_vma(vma); 3401 unsigned long sz = huge_page_size(h); 3402 struct mmu_notifier_range range; 3403 3404 WARN_ON(!is_vm_hugetlb_page(vma)); 3405 BUG_ON(start & ~huge_page_mask(h)); 3406 BUG_ON(end & ~huge_page_mask(h)); 3407 3408 /* 3409 * This is a hugetlb vma, all the pte entries should point 3410 * to huge page. 3411 */ 3412 tlb_change_page_size(tlb, sz); 3413 tlb_start_vma(tlb, vma); 3414 3415 /* 3416 * If sharing possible, alert mmu notifiers of worst case. 3417 */ 3418 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3419 end); 3420 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3421 mmu_notifier_invalidate_range_start(&range); 3422 address = start; 3423 for (; address < end; address += sz) { 3424 ptep = huge_pte_offset(mm, address, sz); 3425 if (!ptep) 3426 continue; 3427 3428 ptl = huge_pte_lock(h, mm, ptep); 3429 if (huge_pmd_unshare(mm, &address, ptep)) { 3430 spin_unlock(ptl); 3431 /* 3432 * We just unmapped a page of PMDs by clearing a PUD. 3433 * The caller's TLB flush range should cover this area. 3434 */ 3435 continue; 3436 } 3437 3438 pte = huge_ptep_get(ptep); 3439 if (huge_pte_none(pte)) { 3440 spin_unlock(ptl); 3441 continue; 3442 } 3443 3444 /* 3445 * Migrating hugepage or HWPoisoned hugepage is already 3446 * unmapped and its refcount is dropped, so just clear pte here. 3447 */ 3448 if (unlikely(!pte_present(pte))) { 3449 huge_pte_clear(mm, address, ptep, sz); 3450 spin_unlock(ptl); 3451 continue; 3452 } 3453 3454 page = pte_page(pte); 3455 /* 3456 * If a reference page is supplied, it is because a specific 3457 * page is being unmapped, not a range. Ensure the page we 3458 * are about to unmap is the actual page of interest. 3459 */ 3460 if (ref_page) { 3461 if (page != ref_page) { 3462 spin_unlock(ptl); 3463 continue; 3464 } 3465 /* 3466 * Mark the VMA as having unmapped its page so that 3467 * future faults in this VMA will fail rather than 3468 * looking like data was lost 3469 */ 3470 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3471 } 3472 3473 pte = huge_ptep_get_and_clear(mm, address, ptep); 3474 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3475 if (huge_pte_dirty(pte)) 3476 set_page_dirty(page); 3477 3478 hugetlb_count_sub(pages_per_huge_page(h), mm); 3479 page_remove_rmap(page, true); 3480 3481 spin_unlock(ptl); 3482 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3483 /* 3484 * Bail out after unmapping reference page if supplied 3485 */ 3486 if (ref_page) 3487 break; 3488 } 3489 mmu_notifier_invalidate_range_end(&range); 3490 tlb_end_vma(tlb, vma); 3491 } 3492 3493 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3494 struct vm_area_struct *vma, unsigned long start, 3495 unsigned long end, struct page *ref_page) 3496 { 3497 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3498 3499 /* 3500 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3501 * test will fail on a vma being torn down, and not grab a page table 3502 * on its way out. We're lucky that the flag has such an appropriate 3503 * name, and can in fact be safely cleared here. We could clear it 3504 * before the __unmap_hugepage_range above, but all that's necessary 3505 * is to clear it before releasing the i_mmap_rwsem. This works 3506 * because in the context this is called, the VMA is about to be 3507 * destroyed and the i_mmap_rwsem is held. 3508 */ 3509 vma->vm_flags &= ~VM_MAYSHARE; 3510 } 3511 3512 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3513 unsigned long end, struct page *ref_page) 3514 { 3515 struct mm_struct *mm; 3516 struct mmu_gather tlb; 3517 unsigned long tlb_start = start; 3518 unsigned long tlb_end = end; 3519 3520 /* 3521 * If shared PMDs were possibly used within this vma range, adjust 3522 * start/end for worst case tlb flushing. 3523 * Note that we can not be sure if PMDs are shared until we try to 3524 * unmap pages. However, we want to make sure TLB flushing covers 3525 * the largest possible range. 3526 */ 3527 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3528 3529 mm = vma->vm_mm; 3530 3531 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3532 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3533 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3534 } 3535 3536 /* 3537 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3538 * mappping it owns the reserve page for. The intention is to unmap the page 3539 * from other VMAs and let the children be SIGKILLed if they are faulting the 3540 * same region. 3541 */ 3542 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3543 struct page *page, unsigned long address) 3544 { 3545 struct hstate *h = hstate_vma(vma); 3546 struct vm_area_struct *iter_vma; 3547 struct address_space *mapping; 3548 pgoff_t pgoff; 3549 3550 /* 3551 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3552 * from page cache lookup which is in HPAGE_SIZE units. 3553 */ 3554 address = address & huge_page_mask(h); 3555 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3556 vma->vm_pgoff; 3557 mapping = vma->vm_file->f_mapping; 3558 3559 /* 3560 * Take the mapping lock for the duration of the table walk. As 3561 * this mapping should be shared between all the VMAs, 3562 * __unmap_hugepage_range() is called as the lock is already held 3563 */ 3564 i_mmap_lock_write(mapping); 3565 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3566 /* Do not unmap the current VMA */ 3567 if (iter_vma == vma) 3568 continue; 3569 3570 /* 3571 * Shared VMAs have their own reserves and do not affect 3572 * MAP_PRIVATE accounting but it is possible that a shared 3573 * VMA is using the same page so check and skip such VMAs. 3574 */ 3575 if (iter_vma->vm_flags & VM_MAYSHARE) 3576 continue; 3577 3578 /* 3579 * Unmap the page from other VMAs without their own reserves. 3580 * They get marked to be SIGKILLed if they fault in these 3581 * areas. This is because a future no-page fault on this VMA 3582 * could insert a zeroed page instead of the data existing 3583 * from the time of fork. This would look like data corruption 3584 */ 3585 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3586 unmap_hugepage_range(iter_vma, address, 3587 address + huge_page_size(h), page); 3588 } 3589 i_mmap_unlock_write(mapping); 3590 } 3591 3592 /* 3593 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3594 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3595 * cannot race with other handlers or page migration. 3596 * Keep the pte_same checks anyway to make transition from the mutex easier. 3597 */ 3598 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3599 unsigned long address, pte_t *ptep, 3600 struct page *pagecache_page, spinlock_t *ptl) 3601 { 3602 pte_t pte; 3603 struct hstate *h = hstate_vma(vma); 3604 struct page *old_page, *new_page; 3605 int outside_reserve = 0; 3606 vm_fault_t ret = 0; 3607 unsigned long haddr = address & huge_page_mask(h); 3608 struct mmu_notifier_range range; 3609 3610 pte = huge_ptep_get(ptep); 3611 old_page = pte_page(pte); 3612 3613 retry_avoidcopy: 3614 /* If no-one else is actually using this page, avoid the copy 3615 * and just make the page writable */ 3616 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3617 page_move_anon_rmap(old_page, vma); 3618 set_huge_ptep_writable(vma, haddr, ptep); 3619 return 0; 3620 } 3621 3622 /* 3623 * If the process that created a MAP_PRIVATE mapping is about to 3624 * perform a COW due to a shared page count, attempt to satisfy 3625 * the allocation without using the existing reserves. The pagecache 3626 * page is used to determine if the reserve at this address was 3627 * consumed or not. If reserves were used, a partial faulted mapping 3628 * at the time of fork() could consume its reserves on COW instead 3629 * of the full address range. 3630 */ 3631 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3632 old_page != pagecache_page) 3633 outside_reserve = 1; 3634 3635 get_page(old_page); 3636 3637 /* 3638 * Drop page table lock as buddy allocator may be called. It will 3639 * be acquired again before returning to the caller, as expected. 3640 */ 3641 spin_unlock(ptl); 3642 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3643 3644 if (IS_ERR(new_page)) { 3645 /* 3646 * If a process owning a MAP_PRIVATE mapping fails to COW, 3647 * it is due to references held by a child and an insufficient 3648 * huge page pool. To guarantee the original mappers 3649 * reliability, unmap the page from child processes. The child 3650 * may get SIGKILLed if it later faults. 3651 */ 3652 if (outside_reserve) { 3653 put_page(old_page); 3654 BUG_ON(huge_pte_none(pte)); 3655 unmap_ref_private(mm, vma, old_page, haddr); 3656 BUG_ON(huge_pte_none(pte)); 3657 spin_lock(ptl); 3658 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3659 if (likely(ptep && 3660 pte_same(huge_ptep_get(ptep), pte))) 3661 goto retry_avoidcopy; 3662 /* 3663 * race occurs while re-acquiring page table 3664 * lock, and our job is done. 3665 */ 3666 return 0; 3667 } 3668 3669 ret = vmf_error(PTR_ERR(new_page)); 3670 goto out_release_old; 3671 } 3672 3673 /* 3674 * When the original hugepage is shared one, it does not have 3675 * anon_vma prepared. 3676 */ 3677 if (unlikely(anon_vma_prepare(vma))) { 3678 ret = VM_FAULT_OOM; 3679 goto out_release_all; 3680 } 3681 3682 copy_user_huge_page(new_page, old_page, address, vma, 3683 pages_per_huge_page(h)); 3684 __SetPageUptodate(new_page); 3685 3686 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 3687 haddr + huge_page_size(h)); 3688 mmu_notifier_invalidate_range_start(&range); 3689 3690 /* 3691 * Retake the page table lock to check for racing updates 3692 * before the page tables are altered 3693 */ 3694 spin_lock(ptl); 3695 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3696 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3697 ClearPagePrivate(new_page); 3698 3699 /* Break COW */ 3700 huge_ptep_clear_flush(vma, haddr, ptep); 3701 mmu_notifier_invalidate_range(mm, range.start, range.end); 3702 set_huge_pte_at(mm, haddr, ptep, 3703 make_huge_pte(vma, new_page, 1)); 3704 page_remove_rmap(old_page, true); 3705 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3706 set_page_huge_active(new_page); 3707 /* Make the old page be freed below */ 3708 new_page = old_page; 3709 } 3710 spin_unlock(ptl); 3711 mmu_notifier_invalidate_range_end(&range); 3712 out_release_all: 3713 restore_reserve_on_error(h, vma, haddr, new_page); 3714 put_page(new_page); 3715 out_release_old: 3716 put_page(old_page); 3717 3718 spin_lock(ptl); /* Caller expects lock to be held */ 3719 return ret; 3720 } 3721 3722 /* Return the pagecache page at a given address within a VMA */ 3723 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3724 struct vm_area_struct *vma, unsigned long address) 3725 { 3726 struct address_space *mapping; 3727 pgoff_t idx; 3728 3729 mapping = vma->vm_file->f_mapping; 3730 idx = vma_hugecache_offset(h, vma, address); 3731 3732 return find_lock_page(mapping, idx); 3733 } 3734 3735 /* 3736 * Return whether there is a pagecache page to back given address within VMA. 3737 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3738 */ 3739 static bool hugetlbfs_pagecache_present(struct hstate *h, 3740 struct vm_area_struct *vma, unsigned long address) 3741 { 3742 struct address_space *mapping; 3743 pgoff_t idx; 3744 struct page *page; 3745 3746 mapping = vma->vm_file->f_mapping; 3747 idx = vma_hugecache_offset(h, vma, address); 3748 3749 page = find_get_page(mapping, idx); 3750 if (page) 3751 put_page(page); 3752 return page != NULL; 3753 } 3754 3755 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3756 pgoff_t idx) 3757 { 3758 struct inode *inode = mapping->host; 3759 struct hstate *h = hstate_inode(inode); 3760 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3761 3762 if (err) 3763 return err; 3764 ClearPagePrivate(page); 3765 3766 /* 3767 * set page dirty so that it will not be removed from cache/file 3768 * by non-hugetlbfs specific code paths. 3769 */ 3770 set_page_dirty(page); 3771 3772 spin_lock(&inode->i_lock); 3773 inode->i_blocks += blocks_per_huge_page(h); 3774 spin_unlock(&inode->i_lock); 3775 return 0; 3776 } 3777 3778 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3779 struct vm_area_struct *vma, 3780 struct address_space *mapping, pgoff_t idx, 3781 unsigned long address, pte_t *ptep, unsigned int flags) 3782 { 3783 struct hstate *h = hstate_vma(vma); 3784 vm_fault_t ret = VM_FAULT_SIGBUS; 3785 int anon_rmap = 0; 3786 unsigned long size; 3787 struct page *page; 3788 pte_t new_pte; 3789 spinlock_t *ptl; 3790 unsigned long haddr = address & huge_page_mask(h); 3791 bool new_page = false; 3792 3793 /* 3794 * Currently, we are forced to kill the process in the event the 3795 * original mapper has unmapped pages from the child due to a failed 3796 * COW. Warn that such a situation has occurred as it may not be obvious 3797 */ 3798 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3799 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3800 current->pid); 3801 return ret; 3802 } 3803 3804 /* 3805 * Use page lock to guard against racing truncation 3806 * before we get page_table_lock. 3807 */ 3808 retry: 3809 page = find_lock_page(mapping, idx); 3810 if (!page) { 3811 size = i_size_read(mapping->host) >> huge_page_shift(h); 3812 if (idx >= size) 3813 goto out; 3814 3815 /* 3816 * Check for page in userfault range 3817 */ 3818 if (userfaultfd_missing(vma)) { 3819 u32 hash; 3820 struct vm_fault vmf = { 3821 .vma = vma, 3822 .address = haddr, 3823 .flags = flags, 3824 /* 3825 * Hard to debug if it ends up being 3826 * used by a callee that assumes 3827 * something about the other 3828 * uninitialized fields... same as in 3829 * memory.c 3830 */ 3831 }; 3832 3833 /* 3834 * hugetlb_fault_mutex must be dropped before 3835 * handling userfault. Reacquire after handling 3836 * fault to make calling code simpler. 3837 */ 3838 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 3839 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3840 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3841 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3842 goto out; 3843 } 3844 3845 page = alloc_huge_page(vma, haddr, 0); 3846 if (IS_ERR(page)) { 3847 ret = vmf_error(PTR_ERR(page)); 3848 goto out; 3849 } 3850 clear_huge_page(page, address, pages_per_huge_page(h)); 3851 __SetPageUptodate(page); 3852 new_page = true; 3853 3854 if (vma->vm_flags & VM_MAYSHARE) { 3855 int err = huge_add_to_page_cache(page, mapping, idx); 3856 if (err) { 3857 put_page(page); 3858 if (err == -EEXIST) 3859 goto retry; 3860 goto out; 3861 } 3862 } else { 3863 lock_page(page); 3864 if (unlikely(anon_vma_prepare(vma))) { 3865 ret = VM_FAULT_OOM; 3866 goto backout_unlocked; 3867 } 3868 anon_rmap = 1; 3869 } 3870 } else { 3871 /* 3872 * If memory error occurs between mmap() and fault, some process 3873 * don't have hwpoisoned swap entry for errored virtual address. 3874 * So we need to block hugepage fault by PG_hwpoison bit check. 3875 */ 3876 if (unlikely(PageHWPoison(page))) { 3877 ret = VM_FAULT_HWPOISON | 3878 VM_FAULT_SET_HINDEX(hstate_index(h)); 3879 goto backout_unlocked; 3880 } 3881 } 3882 3883 /* 3884 * If we are going to COW a private mapping later, we examine the 3885 * pending reservations for this page now. This will ensure that 3886 * any allocations necessary to record that reservation occur outside 3887 * the spinlock. 3888 */ 3889 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3890 if (vma_needs_reservation(h, vma, haddr) < 0) { 3891 ret = VM_FAULT_OOM; 3892 goto backout_unlocked; 3893 } 3894 /* Just decrements count, does not deallocate */ 3895 vma_end_reservation(h, vma, haddr); 3896 } 3897 3898 ptl = huge_pte_lock(h, mm, ptep); 3899 size = i_size_read(mapping->host) >> huge_page_shift(h); 3900 if (idx >= size) 3901 goto backout; 3902 3903 ret = 0; 3904 if (!huge_pte_none(huge_ptep_get(ptep))) 3905 goto backout; 3906 3907 if (anon_rmap) { 3908 ClearPagePrivate(page); 3909 hugepage_add_new_anon_rmap(page, vma, haddr); 3910 } else 3911 page_dup_rmap(page, true); 3912 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3913 && (vma->vm_flags & VM_SHARED))); 3914 set_huge_pte_at(mm, haddr, ptep, new_pte); 3915 3916 hugetlb_count_add(pages_per_huge_page(h), mm); 3917 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3918 /* Optimization, do the COW without a second fault */ 3919 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3920 } 3921 3922 spin_unlock(ptl); 3923 3924 /* 3925 * Only make newly allocated pages active. Existing pages found 3926 * in the pagecache could be !page_huge_active() if they have been 3927 * isolated for migration. 3928 */ 3929 if (new_page) 3930 set_page_huge_active(page); 3931 3932 unlock_page(page); 3933 out: 3934 return ret; 3935 3936 backout: 3937 spin_unlock(ptl); 3938 backout_unlocked: 3939 unlock_page(page); 3940 restore_reserve_on_error(h, vma, haddr, page); 3941 put_page(page); 3942 goto out; 3943 } 3944 3945 #ifdef CONFIG_SMP 3946 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 3947 pgoff_t idx, unsigned long address) 3948 { 3949 unsigned long key[2]; 3950 u32 hash; 3951 3952 key[0] = (unsigned long) mapping; 3953 key[1] = idx; 3954 3955 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3956 3957 return hash & (num_fault_mutexes - 1); 3958 } 3959 #else 3960 /* 3961 * For uniprocesor systems we always use a single mutex, so just 3962 * return 0 and avoid the hashing overhead. 3963 */ 3964 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 3965 pgoff_t idx, unsigned long address) 3966 { 3967 return 0; 3968 } 3969 #endif 3970 3971 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3972 unsigned long address, unsigned int flags) 3973 { 3974 pte_t *ptep, entry; 3975 spinlock_t *ptl; 3976 vm_fault_t ret; 3977 u32 hash; 3978 pgoff_t idx; 3979 struct page *page = NULL; 3980 struct page *pagecache_page = NULL; 3981 struct hstate *h = hstate_vma(vma); 3982 struct address_space *mapping; 3983 int need_wait_lock = 0; 3984 unsigned long haddr = address & huge_page_mask(h); 3985 3986 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3987 if (ptep) { 3988 entry = huge_ptep_get(ptep); 3989 if (unlikely(is_hugetlb_entry_migration(entry))) { 3990 migration_entry_wait_huge(vma, mm, ptep); 3991 return 0; 3992 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3993 return VM_FAULT_HWPOISON_LARGE | 3994 VM_FAULT_SET_HINDEX(hstate_index(h)); 3995 } else { 3996 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3997 if (!ptep) 3998 return VM_FAULT_OOM; 3999 } 4000 4001 mapping = vma->vm_file->f_mapping; 4002 idx = vma_hugecache_offset(h, vma, haddr); 4003 4004 /* 4005 * Serialize hugepage allocation and instantiation, so that we don't 4006 * get spurious allocation failures if two CPUs race to instantiate 4007 * the same page in the page cache. 4008 */ 4009 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 4010 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4011 4012 entry = huge_ptep_get(ptep); 4013 if (huge_pte_none(entry)) { 4014 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4015 goto out_mutex; 4016 } 4017 4018 ret = 0; 4019 4020 /* 4021 * entry could be a migration/hwpoison entry at this point, so this 4022 * check prevents the kernel from going below assuming that we have 4023 * a active hugepage in pagecache. This goto expects the 2nd page fault, 4024 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 4025 * handle it. 4026 */ 4027 if (!pte_present(entry)) 4028 goto out_mutex; 4029 4030 /* 4031 * If we are going to COW the mapping later, we examine the pending 4032 * reservations for this page now. This will ensure that any 4033 * allocations necessary to record that reservation occur outside the 4034 * spinlock. For private mappings, we also lookup the pagecache 4035 * page now as it is used to determine if a reservation has been 4036 * consumed. 4037 */ 4038 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4039 if (vma_needs_reservation(h, vma, haddr) < 0) { 4040 ret = VM_FAULT_OOM; 4041 goto out_mutex; 4042 } 4043 /* Just decrements count, does not deallocate */ 4044 vma_end_reservation(h, vma, haddr); 4045 4046 if (!(vma->vm_flags & VM_MAYSHARE)) 4047 pagecache_page = hugetlbfs_pagecache_page(h, 4048 vma, haddr); 4049 } 4050 4051 ptl = huge_pte_lock(h, mm, ptep); 4052 4053 /* Check for a racing update before calling hugetlb_cow */ 4054 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4055 goto out_ptl; 4056 4057 /* 4058 * hugetlb_cow() requires page locks of pte_page(entry) and 4059 * pagecache_page, so here we need take the former one 4060 * when page != pagecache_page or !pagecache_page. 4061 */ 4062 page = pte_page(entry); 4063 if (page != pagecache_page) 4064 if (!trylock_page(page)) { 4065 need_wait_lock = 1; 4066 goto out_ptl; 4067 } 4068 4069 get_page(page); 4070 4071 if (flags & FAULT_FLAG_WRITE) { 4072 if (!huge_pte_write(entry)) { 4073 ret = hugetlb_cow(mm, vma, address, ptep, 4074 pagecache_page, ptl); 4075 goto out_put_page; 4076 } 4077 entry = huge_pte_mkdirty(entry); 4078 } 4079 entry = pte_mkyoung(entry); 4080 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4081 flags & FAULT_FLAG_WRITE)) 4082 update_mmu_cache(vma, haddr, ptep); 4083 out_put_page: 4084 if (page != pagecache_page) 4085 unlock_page(page); 4086 put_page(page); 4087 out_ptl: 4088 spin_unlock(ptl); 4089 4090 if (pagecache_page) { 4091 unlock_page(pagecache_page); 4092 put_page(pagecache_page); 4093 } 4094 out_mutex: 4095 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4096 /* 4097 * Generally it's safe to hold refcount during waiting page lock. But 4098 * here we just wait to defer the next page fault to avoid busy loop and 4099 * the page is not used after unlocked before returning from the current 4100 * page fault. So we are safe from accessing freed page, even if we wait 4101 * here without taking refcount. 4102 */ 4103 if (need_wait_lock) 4104 wait_on_page_locked(page); 4105 return ret; 4106 } 4107 4108 /* 4109 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4110 * modifications for huge pages. 4111 */ 4112 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4113 pte_t *dst_pte, 4114 struct vm_area_struct *dst_vma, 4115 unsigned long dst_addr, 4116 unsigned long src_addr, 4117 struct page **pagep) 4118 { 4119 struct address_space *mapping; 4120 pgoff_t idx; 4121 unsigned long size; 4122 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4123 struct hstate *h = hstate_vma(dst_vma); 4124 pte_t _dst_pte; 4125 spinlock_t *ptl; 4126 int ret; 4127 struct page *page; 4128 4129 if (!*pagep) { 4130 ret = -ENOMEM; 4131 page = alloc_huge_page(dst_vma, dst_addr, 0); 4132 if (IS_ERR(page)) 4133 goto out; 4134 4135 ret = copy_huge_page_from_user(page, 4136 (const void __user *) src_addr, 4137 pages_per_huge_page(h), false); 4138 4139 /* fallback to copy_from_user outside mmap_sem */ 4140 if (unlikely(ret)) { 4141 ret = -ENOENT; 4142 *pagep = page; 4143 /* don't free the page */ 4144 goto out; 4145 } 4146 } else { 4147 page = *pagep; 4148 *pagep = NULL; 4149 } 4150 4151 /* 4152 * The memory barrier inside __SetPageUptodate makes sure that 4153 * preceding stores to the page contents become visible before 4154 * the set_pte_at() write. 4155 */ 4156 __SetPageUptodate(page); 4157 4158 mapping = dst_vma->vm_file->f_mapping; 4159 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4160 4161 /* 4162 * If shared, add to page cache 4163 */ 4164 if (vm_shared) { 4165 size = i_size_read(mapping->host) >> huge_page_shift(h); 4166 ret = -EFAULT; 4167 if (idx >= size) 4168 goto out_release_nounlock; 4169 4170 /* 4171 * Serialization between remove_inode_hugepages() and 4172 * huge_add_to_page_cache() below happens through the 4173 * hugetlb_fault_mutex_table that here must be hold by 4174 * the caller. 4175 */ 4176 ret = huge_add_to_page_cache(page, mapping, idx); 4177 if (ret) 4178 goto out_release_nounlock; 4179 } 4180 4181 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4182 spin_lock(ptl); 4183 4184 /* 4185 * Recheck the i_size after holding PT lock to make sure not 4186 * to leave any page mapped (as page_mapped()) beyond the end 4187 * of the i_size (remove_inode_hugepages() is strict about 4188 * enforcing that). If we bail out here, we'll also leave a 4189 * page in the radix tree in the vm_shared case beyond the end 4190 * of the i_size, but remove_inode_hugepages() will take care 4191 * of it as soon as we drop the hugetlb_fault_mutex_table. 4192 */ 4193 size = i_size_read(mapping->host) >> huge_page_shift(h); 4194 ret = -EFAULT; 4195 if (idx >= size) 4196 goto out_release_unlock; 4197 4198 ret = -EEXIST; 4199 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4200 goto out_release_unlock; 4201 4202 if (vm_shared) { 4203 page_dup_rmap(page, true); 4204 } else { 4205 ClearPagePrivate(page); 4206 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4207 } 4208 4209 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4210 if (dst_vma->vm_flags & VM_WRITE) 4211 _dst_pte = huge_pte_mkdirty(_dst_pte); 4212 _dst_pte = pte_mkyoung(_dst_pte); 4213 4214 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4215 4216 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4217 dst_vma->vm_flags & VM_WRITE); 4218 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4219 4220 /* No need to invalidate - it was non-present before */ 4221 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4222 4223 spin_unlock(ptl); 4224 set_page_huge_active(page); 4225 if (vm_shared) 4226 unlock_page(page); 4227 ret = 0; 4228 out: 4229 return ret; 4230 out_release_unlock: 4231 spin_unlock(ptl); 4232 if (vm_shared) 4233 unlock_page(page); 4234 out_release_nounlock: 4235 put_page(page); 4236 goto out; 4237 } 4238 4239 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4240 struct page **pages, struct vm_area_struct **vmas, 4241 unsigned long *position, unsigned long *nr_pages, 4242 long i, unsigned int flags, int *nonblocking) 4243 { 4244 unsigned long pfn_offset; 4245 unsigned long vaddr = *position; 4246 unsigned long remainder = *nr_pages; 4247 struct hstate *h = hstate_vma(vma); 4248 int err = -EFAULT; 4249 4250 while (vaddr < vma->vm_end && remainder) { 4251 pte_t *pte; 4252 spinlock_t *ptl = NULL; 4253 int absent; 4254 struct page *page; 4255 4256 /* 4257 * If we have a pending SIGKILL, don't keep faulting pages and 4258 * potentially allocating memory. 4259 */ 4260 if (fatal_signal_pending(current)) { 4261 remainder = 0; 4262 break; 4263 } 4264 4265 /* 4266 * Some archs (sparc64, sh*) have multiple pte_ts to 4267 * each hugepage. We have to make sure we get the 4268 * first, for the page indexing below to work. 4269 * 4270 * Note that page table lock is not held when pte is null. 4271 */ 4272 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4273 huge_page_size(h)); 4274 if (pte) 4275 ptl = huge_pte_lock(h, mm, pte); 4276 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4277 4278 /* 4279 * When coredumping, it suits get_dump_page if we just return 4280 * an error where there's an empty slot with no huge pagecache 4281 * to back it. This way, we avoid allocating a hugepage, and 4282 * the sparse dumpfile avoids allocating disk blocks, but its 4283 * huge holes still show up with zeroes where they need to be. 4284 */ 4285 if (absent && (flags & FOLL_DUMP) && 4286 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4287 if (pte) 4288 spin_unlock(ptl); 4289 remainder = 0; 4290 break; 4291 } 4292 4293 /* 4294 * We need call hugetlb_fault for both hugepages under migration 4295 * (in which case hugetlb_fault waits for the migration,) and 4296 * hwpoisoned hugepages (in which case we need to prevent the 4297 * caller from accessing to them.) In order to do this, we use 4298 * here is_swap_pte instead of is_hugetlb_entry_migration and 4299 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4300 * both cases, and because we can't follow correct pages 4301 * directly from any kind of swap entries. 4302 */ 4303 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4304 ((flags & FOLL_WRITE) && 4305 !huge_pte_write(huge_ptep_get(pte)))) { 4306 vm_fault_t ret; 4307 unsigned int fault_flags = 0; 4308 4309 if (pte) 4310 spin_unlock(ptl); 4311 if (flags & FOLL_WRITE) 4312 fault_flags |= FAULT_FLAG_WRITE; 4313 if (nonblocking) 4314 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4315 if (flags & FOLL_NOWAIT) 4316 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4317 FAULT_FLAG_RETRY_NOWAIT; 4318 if (flags & FOLL_TRIED) { 4319 VM_WARN_ON_ONCE(fault_flags & 4320 FAULT_FLAG_ALLOW_RETRY); 4321 fault_flags |= FAULT_FLAG_TRIED; 4322 } 4323 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4324 if (ret & VM_FAULT_ERROR) { 4325 err = vm_fault_to_errno(ret, flags); 4326 remainder = 0; 4327 break; 4328 } 4329 if (ret & VM_FAULT_RETRY) { 4330 if (nonblocking && 4331 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4332 *nonblocking = 0; 4333 *nr_pages = 0; 4334 /* 4335 * VM_FAULT_RETRY must not return an 4336 * error, it will return zero 4337 * instead. 4338 * 4339 * No need to update "position" as the 4340 * caller will not check it after 4341 * *nr_pages is set to 0. 4342 */ 4343 return i; 4344 } 4345 continue; 4346 } 4347 4348 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4349 page = pte_page(huge_ptep_get(pte)); 4350 4351 /* 4352 * Instead of doing 'try_get_page()' below in the same_page 4353 * loop, just check the count once here. 4354 */ 4355 if (unlikely(page_count(page) <= 0)) { 4356 if (pages) { 4357 spin_unlock(ptl); 4358 remainder = 0; 4359 err = -ENOMEM; 4360 break; 4361 } 4362 } 4363 same_page: 4364 if (pages) { 4365 pages[i] = mem_map_offset(page, pfn_offset); 4366 get_page(pages[i]); 4367 } 4368 4369 if (vmas) 4370 vmas[i] = vma; 4371 4372 vaddr += PAGE_SIZE; 4373 ++pfn_offset; 4374 --remainder; 4375 ++i; 4376 if (vaddr < vma->vm_end && remainder && 4377 pfn_offset < pages_per_huge_page(h)) { 4378 /* 4379 * We use pfn_offset to avoid touching the pageframes 4380 * of this compound page. 4381 */ 4382 goto same_page; 4383 } 4384 spin_unlock(ptl); 4385 } 4386 *nr_pages = remainder; 4387 /* 4388 * setting position is actually required only if remainder is 4389 * not zero but it's faster not to add a "if (remainder)" 4390 * branch. 4391 */ 4392 *position = vaddr; 4393 4394 return i ? i : err; 4395 } 4396 4397 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4398 /* 4399 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4400 * implement this. 4401 */ 4402 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4403 #endif 4404 4405 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4406 unsigned long address, unsigned long end, pgprot_t newprot) 4407 { 4408 struct mm_struct *mm = vma->vm_mm; 4409 unsigned long start = address; 4410 pte_t *ptep; 4411 pte_t pte; 4412 struct hstate *h = hstate_vma(vma); 4413 unsigned long pages = 0; 4414 bool shared_pmd = false; 4415 struct mmu_notifier_range range; 4416 4417 /* 4418 * In the case of shared PMDs, the area to flush could be beyond 4419 * start/end. Set range.start/range.end to cover the maximum possible 4420 * range if PMD sharing is possible. 4421 */ 4422 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4423 0, vma, mm, start, end); 4424 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4425 4426 BUG_ON(address >= end); 4427 flush_cache_range(vma, range.start, range.end); 4428 4429 mmu_notifier_invalidate_range_start(&range); 4430 i_mmap_lock_write(vma->vm_file->f_mapping); 4431 for (; address < end; address += huge_page_size(h)) { 4432 spinlock_t *ptl; 4433 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4434 if (!ptep) 4435 continue; 4436 ptl = huge_pte_lock(h, mm, ptep); 4437 if (huge_pmd_unshare(mm, &address, ptep)) { 4438 pages++; 4439 spin_unlock(ptl); 4440 shared_pmd = true; 4441 continue; 4442 } 4443 pte = huge_ptep_get(ptep); 4444 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4445 spin_unlock(ptl); 4446 continue; 4447 } 4448 if (unlikely(is_hugetlb_entry_migration(pte))) { 4449 swp_entry_t entry = pte_to_swp_entry(pte); 4450 4451 if (is_write_migration_entry(entry)) { 4452 pte_t newpte; 4453 4454 make_migration_entry_read(&entry); 4455 newpte = swp_entry_to_pte(entry); 4456 set_huge_swap_pte_at(mm, address, ptep, 4457 newpte, huge_page_size(h)); 4458 pages++; 4459 } 4460 spin_unlock(ptl); 4461 continue; 4462 } 4463 if (!huge_pte_none(pte)) { 4464 pte_t old_pte; 4465 4466 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4467 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4468 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4469 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4470 pages++; 4471 } 4472 spin_unlock(ptl); 4473 } 4474 /* 4475 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4476 * may have cleared our pud entry and done put_page on the page table: 4477 * once we release i_mmap_rwsem, another task can do the final put_page 4478 * and that page table be reused and filled with junk. If we actually 4479 * did unshare a page of pmds, flush the range corresponding to the pud. 4480 */ 4481 if (shared_pmd) 4482 flush_hugetlb_tlb_range(vma, range.start, range.end); 4483 else 4484 flush_hugetlb_tlb_range(vma, start, end); 4485 /* 4486 * No need to call mmu_notifier_invalidate_range() we are downgrading 4487 * page table protection not changing it to point to a new page. 4488 * 4489 * See Documentation/vm/mmu_notifier.rst 4490 */ 4491 i_mmap_unlock_write(vma->vm_file->f_mapping); 4492 mmu_notifier_invalidate_range_end(&range); 4493 4494 return pages << h->order; 4495 } 4496 4497 int hugetlb_reserve_pages(struct inode *inode, 4498 long from, long to, 4499 struct vm_area_struct *vma, 4500 vm_flags_t vm_flags) 4501 { 4502 long ret, chg; 4503 struct hstate *h = hstate_inode(inode); 4504 struct hugepage_subpool *spool = subpool_inode(inode); 4505 struct resv_map *resv_map; 4506 long gbl_reserve; 4507 4508 /* This should never happen */ 4509 if (from > to) { 4510 VM_WARN(1, "%s called with a negative range\n", __func__); 4511 return -EINVAL; 4512 } 4513 4514 /* 4515 * Only apply hugepage reservation if asked. At fault time, an 4516 * attempt will be made for VM_NORESERVE to allocate a page 4517 * without using reserves 4518 */ 4519 if (vm_flags & VM_NORESERVE) 4520 return 0; 4521 4522 /* 4523 * Shared mappings base their reservation on the number of pages that 4524 * are already allocated on behalf of the file. Private mappings need 4525 * to reserve the full area even if read-only as mprotect() may be 4526 * called to make the mapping read-write. Assume !vma is a shm mapping 4527 */ 4528 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4529 /* 4530 * resv_map can not be NULL as hugetlb_reserve_pages is only 4531 * called for inodes for which resv_maps were created (see 4532 * hugetlbfs_get_inode). 4533 */ 4534 resv_map = inode_resv_map(inode); 4535 4536 chg = region_chg(resv_map, from, to); 4537 4538 } else { 4539 resv_map = resv_map_alloc(); 4540 if (!resv_map) 4541 return -ENOMEM; 4542 4543 chg = to - from; 4544 4545 set_vma_resv_map(vma, resv_map); 4546 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4547 } 4548 4549 if (chg < 0) { 4550 ret = chg; 4551 goto out_err; 4552 } 4553 4554 /* 4555 * There must be enough pages in the subpool for the mapping. If 4556 * the subpool has a minimum size, there may be some global 4557 * reservations already in place (gbl_reserve). 4558 */ 4559 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4560 if (gbl_reserve < 0) { 4561 ret = -ENOSPC; 4562 goto out_err; 4563 } 4564 4565 /* 4566 * Check enough hugepages are available for the reservation. 4567 * Hand the pages back to the subpool if there are not 4568 */ 4569 ret = hugetlb_acct_memory(h, gbl_reserve); 4570 if (ret < 0) { 4571 /* put back original number of pages, chg */ 4572 (void)hugepage_subpool_put_pages(spool, chg); 4573 goto out_err; 4574 } 4575 4576 /* 4577 * Account for the reservations made. Shared mappings record regions 4578 * that have reservations as they are shared by multiple VMAs. 4579 * When the last VMA disappears, the region map says how much 4580 * the reservation was and the page cache tells how much of 4581 * the reservation was consumed. Private mappings are per-VMA and 4582 * only the consumed reservations are tracked. When the VMA 4583 * disappears, the original reservation is the VMA size and the 4584 * consumed reservations are stored in the map. Hence, nothing 4585 * else has to be done for private mappings here 4586 */ 4587 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4588 long add = region_add(resv_map, from, to); 4589 4590 if (unlikely(chg > add)) { 4591 /* 4592 * pages in this range were added to the reserve 4593 * map between region_chg and region_add. This 4594 * indicates a race with alloc_huge_page. Adjust 4595 * the subpool and reserve counts modified above 4596 * based on the difference. 4597 */ 4598 long rsv_adjust; 4599 4600 rsv_adjust = hugepage_subpool_put_pages(spool, 4601 chg - add); 4602 hugetlb_acct_memory(h, -rsv_adjust); 4603 } 4604 } 4605 return 0; 4606 out_err: 4607 if (!vma || vma->vm_flags & VM_MAYSHARE) 4608 /* Don't call region_abort if region_chg failed */ 4609 if (chg >= 0) 4610 region_abort(resv_map, from, to); 4611 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4612 kref_put(&resv_map->refs, resv_map_release); 4613 return ret; 4614 } 4615 4616 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4617 long freed) 4618 { 4619 struct hstate *h = hstate_inode(inode); 4620 struct resv_map *resv_map = inode_resv_map(inode); 4621 long chg = 0; 4622 struct hugepage_subpool *spool = subpool_inode(inode); 4623 long gbl_reserve; 4624 4625 /* 4626 * Since this routine can be called in the evict inode path for all 4627 * hugetlbfs inodes, resv_map could be NULL. 4628 */ 4629 if (resv_map) { 4630 chg = region_del(resv_map, start, end); 4631 /* 4632 * region_del() can fail in the rare case where a region 4633 * must be split and another region descriptor can not be 4634 * allocated. If end == LONG_MAX, it will not fail. 4635 */ 4636 if (chg < 0) 4637 return chg; 4638 } 4639 4640 spin_lock(&inode->i_lock); 4641 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4642 spin_unlock(&inode->i_lock); 4643 4644 /* 4645 * If the subpool has a minimum size, the number of global 4646 * reservations to be released may be adjusted. 4647 */ 4648 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4649 hugetlb_acct_memory(h, -gbl_reserve); 4650 4651 return 0; 4652 } 4653 4654 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4655 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4656 struct vm_area_struct *vma, 4657 unsigned long addr, pgoff_t idx) 4658 { 4659 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4660 svma->vm_start; 4661 unsigned long sbase = saddr & PUD_MASK; 4662 unsigned long s_end = sbase + PUD_SIZE; 4663 4664 /* Allow segments to share if only one is marked locked */ 4665 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4666 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4667 4668 /* 4669 * match the virtual addresses, permission and the alignment of the 4670 * page table page. 4671 */ 4672 if (pmd_index(addr) != pmd_index(saddr) || 4673 vm_flags != svm_flags || 4674 sbase < svma->vm_start || svma->vm_end < s_end) 4675 return 0; 4676 4677 return saddr; 4678 } 4679 4680 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4681 { 4682 unsigned long base = addr & PUD_MASK; 4683 unsigned long end = base + PUD_SIZE; 4684 4685 /* 4686 * check on proper vm_flags and page table alignment 4687 */ 4688 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4689 return true; 4690 return false; 4691 } 4692 4693 /* 4694 * Determine if start,end range within vma could be mapped by shared pmd. 4695 * If yes, adjust start and end to cover range associated with possible 4696 * shared pmd mappings. 4697 */ 4698 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4699 unsigned long *start, unsigned long *end) 4700 { 4701 unsigned long check_addr = *start; 4702 4703 if (!(vma->vm_flags & VM_MAYSHARE)) 4704 return; 4705 4706 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4707 unsigned long a_start = check_addr & PUD_MASK; 4708 unsigned long a_end = a_start + PUD_SIZE; 4709 4710 /* 4711 * If sharing is possible, adjust start/end if necessary. 4712 */ 4713 if (range_in_vma(vma, a_start, a_end)) { 4714 if (a_start < *start) 4715 *start = a_start; 4716 if (a_end > *end) 4717 *end = a_end; 4718 } 4719 } 4720 } 4721 4722 /* 4723 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4724 * and returns the corresponding pte. While this is not necessary for the 4725 * !shared pmd case because we can allocate the pmd later as well, it makes the 4726 * code much cleaner. pmd allocation is essential for the shared case because 4727 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4728 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4729 * bad pmd for sharing. 4730 */ 4731 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4732 { 4733 struct vm_area_struct *vma = find_vma(mm, addr); 4734 struct address_space *mapping = vma->vm_file->f_mapping; 4735 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4736 vma->vm_pgoff; 4737 struct vm_area_struct *svma; 4738 unsigned long saddr; 4739 pte_t *spte = NULL; 4740 pte_t *pte; 4741 spinlock_t *ptl; 4742 4743 if (!vma_shareable(vma, addr)) 4744 return (pte_t *)pmd_alloc(mm, pud, addr); 4745 4746 i_mmap_lock_write(mapping); 4747 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4748 if (svma == vma) 4749 continue; 4750 4751 saddr = page_table_shareable(svma, vma, addr, idx); 4752 if (saddr) { 4753 spte = huge_pte_offset(svma->vm_mm, saddr, 4754 vma_mmu_pagesize(svma)); 4755 if (spte) { 4756 get_page(virt_to_page(spte)); 4757 break; 4758 } 4759 } 4760 } 4761 4762 if (!spte) 4763 goto out; 4764 4765 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4766 if (pud_none(*pud)) { 4767 pud_populate(mm, pud, 4768 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4769 mm_inc_nr_pmds(mm); 4770 } else { 4771 put_page(virt_to_page(spte)); 4772 } 4773 spin_unlock(ptl); 4774 out: 4775 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4776 i_mmap_unlock_write(mapping); 4777 return pte; 4778 } 4779 4780 /* 4781 * unmap huge page backed by shared pte. 4782 * 4783 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4784 * indicated by page_count > 1, unmap is achieved by clearing pud and 4785 * decrementing the ref count. If count == 1, the pte page is not shared. 4786 * 4787 * called with page table lock held. 4788 * 4789 * returns: 1 successfully unmapped a shared pte page 4790 * 0 the underlying pte page is not shared, or it is the last user 4791 */ 4792 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4793 { 4794 pgd_t *pgd = pgd_offset(mm, *addr); 4795 p4d_t *p4d = p4d_offset(pgd, *addr); 4796 pud_t *pud = pud_offset(p4d, *addr); 4797 4798 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4799 if (page_count(virt_to_page(ptep)) == 1) 4800 return 0; 4801 4802 pud_clear(pud); 4803 put_page(virt_to_page(ptep)); 4804 mm_dec_nr_pmds(mm); 4805 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4806 return 1; 4807 } 4808 #define want_pmd_share() (1) 4809 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4810 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4811 { 4812 return NULL; 4813 } 4814 4815 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4816 { 4817 return 0; 4818 } 4819 4820 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4821 unsigned long *start, unsigned long *end) 4822 { 4823 } 4824 #define want_pmd_share() (0) 4825 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4826 4827 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4828 pte_t *huge_pte_alloc(struct mm_struct *mm, 4829 unsigned long addr, unsigned long sz) 4830 { 4831 pgd_t *pgd; 4832 p4d_t *p4d; 4833 pud_t *pud; 4834 pte_t *pte = NULL; 4835 4836 pgd = pgd_offset(mm, addr); 4837 p4d = p4d_alloc(mm, pgd, addr); 4838 if (!p4d) 4839 return NULL; 4840 pud = pud_alloc(mm, p4d, addr); 4841 if (pud) { 4842 if (sz == PUD_SIZE) { 4843 pte = (pte_t *)pud; 4844 } else { 4845 BUG_ON(sz != PMD_SIZE); 4846 if (want_pmd_share() && pud_none(*pud)) 4847 pte = huge_pmd_share(mm, addr, pud); 4848 else 4849 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4850 } 4851 } 4852 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4853 4854 return pte; 4855 } 4856 4857 /* 4858 * huge_pte_offset() - Walk the page table to resolve the hugepage 4859 * entry at address @addr 4860 * 4861 * Return: Pointer to page table or swap entry (PUD or PMD) for 4862 * address @addr, or NULL if a p*d_none() entry is encountered and the 4863 * size @sz doesn't match the hugepage size at this level of the page 4864 * table. 4865 */ 4866 pte_t *huge_pte_offset(struct mm_struct *mm, 4867 unsigned long addr, unsigned long sz) 4868 { 4869 pgd_t *pgd; 4870 p4d_t *p4d; 4871 pud_t *pud; 4872 pmd_t *pmd; 4873 4874 pgd = pgd_offset(mm, addr); 4875 if (!pgd_present(*pgd)) 4876 return NULL; 4877 p4d = p4d_offset(pgd, addr); 4878 if (!p4d_present(*p4d)) 4879 return NULL; 4880 4881 pud = pud_offset(p4d, addr); 4882 if (sz != PUD_SIZE && pud_none(*pud)) 4883 return NULL; 4884 /* hugepage or swap? */ 4885 if (pud_huge(*pud) || !pud_present(*pud)) 4886 return (pte_t *)pud; 4887 4888 pmd = pmd_offset(pud, addr); 4889 if (sz != PMD_SIZE && pmd_none(*pmd)) 4890 return NULL; 4891 /* hugepage or swap? */ 4892 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4893 return (pte_t *)pmd; 4894 4895 return NULL; 4896 } 4897 4898 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4899 4900 /* 4901 * These functions are overwritable if your architecture needs its own 4902 * behavior. 4903 */ 4904 struct page * __weak 4905 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4906 int write) 4907 { 4908 return ERR_PTR(-EINVAL); 4909 } 4910 4911 struct page * __weak 4912 follow_huge_pd(struct vm_area_struct *vma, 4913 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4914 { 4915 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4916 return NULL; 4917 } 4918 4919 struct page * __weak 4920 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4921 pmd_t *pmd, int flags) 4922 { 4923 struct page *page = NULL; 4924 spinlock_t *ptl; 4925 pte_t pte; 4926 retry: 4927 ptl = pmd_lockptr(mm, pmd); 4928 spin_lock(ptl); 4929 /* 4930 * make sure that the address range covered by this pmd is not 4931 * unmapped from other threads. 4932 */ 4933 if (!pmd_huge(*pmd)) 4934 goto out; 4935 pte = huge_ptep_get((pte_t *)pmd); 4936 if (pte_present(pte)) { 4937 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4938 if (flags & FOLL_GET) 4939 get_page(page); 4940 } else { 4941 if (is_hugetlb_entry_migration(pte)) { 4942 spin_unlock(ptl); 4943 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4944 goto retry; 4945 } 4946 /* 4947 * hwpoisoned entry is treated as no_page_table in 4948 * follow_page_mask(). 4949 */ 4950 } 4951 out: 4952 spin_unlock(ptl); 4953 return page; 4954 } 4955 4956 struct page * __weak 4957 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4958 pud_t *pud, int flags) 4959 { 4960 if (flags & FOLL_GET) 4961 return NULL; 4962 4963 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4964 } 4965 4966 struct page * __weak 4967 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4968 { 4969 if (flags & FOLL_GET) 4970 return NULL; 4971 4972 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4973 } 4974 4975 bool isolate_huge_page(struct page *page, struct list_head *list) 4976 { 4977 bool ret = true; 4978 4979 VM_BUG_ON_PAGE(!PageHead(page), page); 4980 spin_lock(&hugetlb_lock); 4981 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4982 ret = false; 4983 goto unlock; 4984 } 4985 clear_page_huge_active(page); 4986 list_move_tail(&page->lru, list); 4987 unlock: 4988 spin_unlock(&hugetlb_lock); 4989 return ret; 4990 } 4991 4992 void putback_active_hugepage(struct page *page) 4993 { 4994 VM_BUG_ON_PAGE(!PageHead(page), page); 4995 spin_lock(&hugetlb_lock); 4996 set_page_huge_active(page); 4997 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4998 spin_unlock(&hugetlb_lock); 4999 put_page(page); 5000 } 5001 5002 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5003 { 5004 struct hstate *h = page_hstate(oldpage); 5005 5006 hugetlb_cgroup_migrate(oldpage, newpage); 5007 set_page_owner_migrate_reason(newpage, reason); 5008 5009 /* 5010 * transfer temporary state of the new huge page. This is 5011 * reverse to other transitions because the newpage is going to 5012 * be final while the old one will be freed so it takes over 5013 * the temporary status. 5014 * 5015 * Also note that we have to transfer the per-node surplus state 5016 * here as well otherwise the global surplus count will not match 5017 * the per-node's. 5018 */ 5019 if (PageHugeTemporary(newpage)) { 5020 int old_nid = page_to_nid(oldpage); 5021 int new_nid = page_to_nid(newpage); 5022 5023 SetPageHugeTemporary(oldpage); 5024 ClearPageHugeTemporary(newpage); 5025 5026 spin_lock(&hugetlb_lock); 5027 if (h->surplus_huge_pages_node[old_nid]) { 5028 h->surplus_huge_pages_node[old_nid]--; 5029 h->surplus_huge_pages_node[new_nid]++; 5030 } 5031 spin_unlock(&hugetlb_lock); 5032 } 5033 } 5034