xref: /openbmc/linux/mm/hugetlb.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32 
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlb.h>
36 
37 #include <linux/io.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/node.h>
41 #include <linux/userfaultfd_k.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48 
49 static struct cma *hugetlb_cma[MAX_NUMNODES];
50 
51 /*
52  * Minimum page order among possible hugepage sizes, set to a proper value
53  * at boot time.
54  */
55 static unsigned int minimum_order __read_mostly = UINT_MAX;
56 
57 __initdata LIST_HEAD(huge_boot_pages);
58 
59 /* for command line parsing */
60 static struct hstate * __initdata parsed_hstate;
61 static unsigned long __initdata default_hstate_max_huge_pages;
62 static unsigned long __initdata default_hstate_size;
63 static bool __initdata parsed_valid_hugepagesz = true;
64 
65 /*
66  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
67  * free_huge_pages, and surplus_huge_pages.
68  */
69 DEFINE_SPINLOCK(hugetlb_lock);
70 
71 /*
72  * Serializes faults on the same logical page.  This is used to
73  * prevent spurious OOMs when the hugepage pool is fully utilized.
74  */
75 static int num_fault_mutexes;
76 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
77 
78 /* Forward declaration */
79 static int hugetlb_acct_memory(struct hstate *h, long delta);
80 
81 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
82 {
83 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
84 
85 	spin_unlock(&spool->lock);
86 
87 	/* If no pages are used, and no other handles to the subpool
88 	 * remain, give up any reservations mased on minimum size and
89 	 * free the subpool */
90 	if (free) {
91 		if (spool->min_hpages != -1)
92 			hugetlb_acct_memory(spool->hstate,
93 						-spool->min_hpages);
94 		kfree(spool);
95 	}
96 }
97 
98 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
99 						long min_hpages)
100 {
101 	struct hugepage_subpool *spool;
102 
103 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
104 	if (!spool)
105 		return NULL;
106 
107 	spin_lock_init(&spool->lock);
108 	spool->count = 1;
109 	spool->max_hpages = max_hpages;
110 	spool->hstate = h;
111 	spool->min_hpages = min_hpages;
112 
113 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
114 		kfree(spool);
115 		return NULL;
116 	}
117 	spool->rsv_hpages = min_hpages;
118 
119 	return spool;
120 }
121 
122 void hugepage_put_subpool(struct hugepage_subpool *spool)
123 {
124 	spin_lock(&spool->lock);
125 	BUG_ON(!spool->count);
126 	spool->count--;
127 	unlock_or_release_subpool(spool);
128 }
129 
130 /*
131  * Subpool accounting for allocating and reserving pages.
132  * Return -ENOMEM if there are not enough resources to satisfy the
133  * the request.  Otherwise, return the number of pages by which the
134  * global pools must be adjusted (upward).  The returned value may
135  * only be different than the passed value (delta) in the case where
136  * a subpool minimum size must be manitained.
137  */
138 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
139 				      long delta)
140 {
141 	long ret = delta;
142 
143 	if (!spool)
144 		return ret;
145 
146 	spin_lock(&spool->lock);
147 
148 	if (spool->max_hpages != -1) {		/* maximum size accounting */
149 		if ((spool->used_hpages + delta) <= spool->max_hpages)
150 			spool->used_hpages += delta;
151 		else {
152 			ret = -ENOMEM;
153 			goto unlock_ret;
154 		}
155 	}
156 
157 	/* minimum size accounting */
158 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
159 		if (delta > spool->rsv_hpages) {
160 			/*
161 			 * Asking for more reserves than those already taken on
162 			 * behalf of subpool.  Return difference.
163 			 */
164 			ret = delta - spool->rsv_hpages;
165 			spool->rsv_hpages = 0;
166 		} else {
167 			ret = 0;	/* reserves already accounted for */
168 			spool->rsv_hpages -= delta;
169 		}
170 	}
171 
172 unlock_ret:
173 	spin_unlock(&spool->lock);
174 	return ret;
175 }
176 
177 /*
178  * Subpool accounting for freeing and unreserving pages.
179  * Return the number of global page reservations that must be dropped.
180  * The return value may only be different than the passed value (delta)
181  * in the case where a subpool minimum size must be maintained.
182  */
183 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
184 				       long delta)
185 {
186 	long ret = delta;
187 
188 	if (!spool)
189 		return delta;
190 
191 	spin_lock(&spool->lock);
192 
193 	if (spool->max_hpages != -1)		/* maximum size accounting */
194 		spool->used_hpages -= delta;
195 
196 	 /* minimum size accounting */
197 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
198 		if (spool->rsv_hpages + delta <= spool->min_hpages)
199 			ret = 0;
200 		else
201 			ret = spool->rsv_hpages + delta - spool->min_hpages;
202 
203 		spool->rsv_hpages += delta;
204 		if (spool->rsv_hpages > spool->min_hpages)
205 			spool->rsv_hpages = spool->min_hpages;
206 	}
207 
208 	/*
209 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
210 	 * quota reference, free it now.
211 	 */
212 	unlock_or_release_subpool(spool);
213 
214 	return ret;
215 }
216 
217 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
218 {
219 	return HUGETLBFS_SB(inode->i_sb)->spool;
220 }
221 
222 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
223 {
224 	return subpool_inode(file_inode(vma->vm_file));
225 }
226 
227 /* Helper that removes a struct file_region from the resv_map cache and returns
228  * it for use.
229  */
230 static struct file_region *
231 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
232 {
233 	struct file_region *nrg = NULL;
234 
235 	VM_BUG_ON(resv->region_cache_count <= 0);
236 
237 	resv->region_cache_count--;
238 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
239 	VM_BUG_ON(!nrg);
240 	list_del(&nrg->link);
241 
242 	nrg->from = from;
243 	nrg->to = to;
244 
245 	return nrg;
246 }
247 
248 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
249 					      struct file_region *rg)
250 {
251 #ifdef CONFIG_CGROUP_HUGETLB
252 	nrg->reservation_counter = rg->reservation_counter;
253 	nrg->css = rg->css;
254 	if (rg->css)
255 		css_get(rg->css);
256 #endif
257 }
258 
259 /* Helper that records hugetlb_cgroup uncharge info. */
260 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
261 						struct hstate *h,
262 						struct resv_map *resv,
263 						struct file_region *nrg)
264 {
265 #ifdef CONFIG_CGROUP_HUGETLB
266 	if (h_cg) {
267 		nrg->reservation_counter =
268 			&h_cg->rsvd_hugepage[hstate_index(h)];
269 		nrg->css = &h_cg->css;
270 		if (!resv->pages_per_hpage)
271 			resv->pages_per_hpage = pages_per_huge_page(h);
272 		/* pages_per_hpage should be the same for all entries in
273 		 * a resv_map.
274 		 */
275 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
276 	} else {
277 		nrg->reservation_counter = NULL;
278 		nrg->css = NULL;
279 	}
280 #endif
281 }
282 
283 static bool has_same_uncharge_info(struct file_region *rg,
284 				   struct file_region *org)
285 {
286 #ifdef CONFIG_CGROUP_HUGETLB
287 	return rg && org &&
288 	       rg->reservation_counter == org->reservation_counter &&
289 	       rg->css == org->css;
290 
291 #else
292 	return true;
293 #endif
294 }
295 
296 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
297 {
298 	struct file_region *nrg = NULL, *prg = NULL;
299 
300 	prg = list_prev_entry(rg, link);
301 	if (&prg->link != &resv->regions && prg->to == rg->from &&
302 	    has_same_uncharge_info(prg, rg)) {
303 		prg->to = rg->to;
304 
305 		list_del(&rg->link);
306 		kfree(rg);
307 
308 		coalesce_file_region(resv, prg);
309 		return;
310 	}
311 
312 	nrg = list_next_entry(rg, link);
313 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
314 	    has_same_uncharge_info(nrg, rg)) {
315 		nrg->from = rg->from;
316 
317 		list_del(&rg->link);
318 		kfree(rg);
319 
320 		coalesce_file_region(resv, nrg);
321 		return;
322 	}
323 }
324 
325 /* Must be called with resv->lock held. Calling this with count_only == true
326  * will count the number of pages to be added but will not modify the linked
327  * list. If regions_needed != NULL and count_only == true, then regions_needed
328  * will indicate the number of file_regions needed in the cache to carry out to
329  * add the regions for this range.
330  */
331 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
332 				     struct hugetlb_cgroup *h_cg,
333 				     struct hstate *h, long *regions_needed,
334 				     bool count_only)
335 {
336 	long add = 0;
337 	struct list_head *head = &resv->regions;
338 	long last_accounted_offset = f;
339 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340 
341 	if (regions_needed)
342 		*regions_needed = 0;
343 
344 	/* In this loop, we essentially handle an entry for the range
345 	 * [last_accounted_offset, rg->from), at every iteration, with some
346 	 * bounds checking.
347 	 */
348 	list_for_each_entry_safe(rg, trg, head, link) {
349 		/* Skip irrelevant regions that start before our range. */
350 		if (rg->from < f) {
351 			/* If this region ends after the last accounted offset,
352 			 * then we need to update last_accounted_offset.
353 			 */
354 			if (rg->to > last_accounted_offset)
355 				last_accounted_offset = rg->to;
356 			continue;
357 		}
358 
359 		/* When we find a region that starts beyond our range, we've
360 		 * finished.
361 		 */
362 		if (rg->from > t)
363 			break;
364 
365 		/* Add an entry for last_accounted_offset -> rg->from, and
366 		 * update last_accounted_offset.
367 		 */
368 		if (rg->from > last_accounted_offset) {
369 			add += rg->from - last_accounted_offset;
370 			if (!count_only) {
371 				nrg = get_file_region_entry_from_cache(
372 					resv, last_accounted_offset, rg->from);
373 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 								    resv, nrg);
375 				list_add(&nrg->link, rg->link.prev);
376 				coalesce_file_region(resv, nrg);
377 			} else if (regions_needed)
378 				*regions_needed += 1;
379 		}
380 
381 		last_accounted_offset = rg->to;
382 	}
383 
384 	/* Handle the case where our range extends beyond
385 	 * last_accounted_offset.
386 	 */
387 	if (last_accounted_offset < t) {
388 		add += t - last_accounted_offset;
389 		if (!count_only) {
390 			nrg = get_file_region_entry_from_cache(
391 				resv, last_accounted_offset, t);
392 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393 			list_add(&nrg->link, rg->link.prev);
394 			coalesce_file_region(resv, nrg);
395 		} else if (regions_needed)
396 			*regions_needed += 1;
397 	}
398 
399 	VM_BUG_ON(add < 0);
400 	return add;
401 }
402 
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406 					int regions_needed)
407 	__must_hold(&resv->lock)
408 {
409 	struct list_head allocated_regions;
410 	int to_allocate = 0, i = 0;
411 	struct file_region *trg = NULL, *rg = NULL;
412 
413 	VM_BUG_ON(regions_needed < 0);
414 
415 	INIT_LIST_HEAD(&allocated_regions);
416 
417 	/*
418 	 * Check for sufficient descriptors in the cache to accommodate
419 	 * the number of in progress add operations plus regions_needed.
420 	 *
421 	 * This is a while loop because when we drop the lock, some other call
422 	 * to region_add or region_del may have consumed some region_entries,
423 	 * so we keep looping here until we finally have enough entries for
424 	 * (adds_in_progress + regions_needed).
425 	 */
426 	while (resv->region_cache_count <
427 	       (resv->adds_in_progress + regions_needed)) {
428 		to_allocate = resv->adds_in_progress + regions_needed -
429 			      resv->region_cache_count;
430 
431 		/* At this point, we should have enough entries in the cache
432 		 * for all the existings adds_in_progress. We should only be
433 		 * needing to allocate for regions_needed.
434 		 */
435 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436 
437 		spin_unlock(&resv->lock);
438 		for (i = 0; i < to_allocate; i++) {
439 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 			if (!trg)
441 				goto out_of_memory;
442 			list_add(&trg->link, &allocated_regions);
443 		}
444 
445 		spin_lock(&resv->lock);
446 
447 		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
448 			list_del(&rg->link);
449 			list_add(&rg->link, &resv->region_cache);
450 			resv->region_cache_count++;
451 		}
452 	}
453 
454 	return 0;
455 
456 out_of_memory:
457 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
458 		list_del(&rg->link);
459 		kfree(rg);
460 	}
461 	return -ENOMEM;
462 }
463 
464 /*
465  * Add the huge page range represented by [f, t) to the reserve
466  * map.  Regions will be taken from the cache to fill in this range.
467  * Sufficient regions should exist in the cache due to the previous
468  * call to region_chg with the same range, but in some cases the cache will not
469  * have sufficient entries due to races with other code doing region_add or
470  * region_del.  The extra needed entries will be allocated.
471  *
472  * regions_needed is the out value provided by a previous call to region_chg.
473  *
474  * Return the number of new huge pages added to the map.  This number is greater
475  * than or equal to zero.  If file_region entries needed to be allocated for
476  * this operation and we were not able to allocate, it ruturns -ENOMEM.
477  * region_add of regions of length 1 never allocate file_regions and cannot
478  * fail; region_chg will always allocate at least 1 entry and a region_add for
479  * 1 page will only require at most 1 entry.
480  */
481 static long region_add(struct resv_map *resv, long f, long t,
482 		       long in_regions_needed, struct hstate *h,
483 		       struct hugetlb_cgroup *h_cg)
484 {
485 	long add = 0, actual_regions_needed = 0;
486 
487 	spin_lock(&resv->lock);
488 retry:
489 
490 	/* Count how many regions are actually needed to execute this add. */
491 	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
492 				 true);
493 
494 	/*
495 	 * Check for sufficient descriptors in the cache to accommodate
496 	 * this add operation. Note that actual_regions_needed may be greater
497 	 * than in_regions_needed, as the resv_map may have been modified since
498 	 * the region_chg call. In this case, we need to make sure that we
499 	 * allocate extra entries, such that we have enough for all the
500 	 * existing adds_in_progress, plus the excess needed for this
501 	 * operation.
502 	 */
503 	if (actual_regions_needed > in_regions_needed &&
504 	    resv->region_cache_count <
505 		    resv->adds_in_progress +
506 			    (actual_regions_needed - in_regions_needed)) {
507 		/* region_add operation of range 1 should never need to
508 		 * allocate file_region entries.
509 		 */
510 		VM_BUG_ON(t - f <= 1);
511 
512 		if (allocate_file_region_entries(
513 			    resv, actual_regions_needed - in_regions_needed)) {
514 			return -ENOMEM;
515 		}
516 
517 		goto retry;
518 	}
519 
520 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
521 
522 	resv->adds_in_progress -= in_regions_needed;
523 
524 	spin_unlock(&resv->lock);
525 	VM_BUG_ON(add < 0);
526 	return add;
527 }
528 
529 /*
530  * Examine the existing reserve map and determine how many
531  * huge pages in the specified range [f, t) are NOT currently
532  * represented.  This routine is called before a subsequent
533  * call to region_add that will actually modify the reserve
534  * map to add the specified range [f, t).  region_chg does
535  * not change the number of huge pages represented by the
536  * map.  A number of new file_region structures is added to the cache as a
537  * placeholder, for the subsequent region_add call to use. At least 1
538  * file_region structure is added.
539  *
540  * out_regions_needed is the number of regions added to the
541  * resv->adds_in_progress.  This value needs to be provided to a follow up call
542  * to region_add or region_abort for proper accounting.
543  *
544  * Returns the number of huge pages that need to be added to the existing
545  * reservation map for the range [f, t).  This number is greater or equal to
546  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
547  * is needed and can not be allocated.
548  */
549 static long region_chg(struct resv_map *resv, long f, long t,
550 		       long *out_regions_needed)
551 {
552 	long chg = 0;
553 
554 	spin_lock(&resv->lock);
555 
556 	/* Count how many hugepages in this range are NOT respresented. */
557 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
558 				       out_regions_needed, true);
559 
560 	if (*out_regions_needed == 0)
561 		*out_regions_needed = 1;
562 
563 	if (allocate_file_region_entries(resv, *out_regions_needed))
564 		return -ENOMEM;
565 
566 	resv->adds_in_progress += *out_regions_needed;
567 
568 	spin_unlock(&resv->lock);
569 	return chg;
570 }
571 
572 /*
573  * Abort the in progress add operation.  The adds_in_progress field
574  * of the resv_map keeps track of the operations in progress between
575  * calls to region_chg and region_add.  Operations are sometimes
576  * aborted after the call to region_chg.  In such cases, region_abort
577  * is called to decrement the adds_in_progress counter. regions_needed
578  * is the value returned by the region_chg call, it is used to decrement
579  * the adds_in_progress counter.
580  *
581  * NOTE: The range arguments [f, t) are not needed or used in this
582  * routine.  They are kept to make reading the calling code easier as
583  * arguments will match the associated region_chg call.
584  */
585 static void region_abort(struct resv_map *resv, long f, long t,
586 			 long regions_needed)
587 {
588 	spin_lock(&resv->lock);
589 	VM_BUG_ON(!resv->region_cache_count);
590 	resv->adds_in_progress -= regions_needed;
591 	spin_unlock(&resv->lock);
592 }
593 
594 /*
595  * Delete the specified range [f, t) from the reserve map.  If the
596  * t parameter is LONG_MAX, this indicates that ALL regions after f
597  * should be deleted.  Locate the regions which intersect [f, t)
598  * and either trim, delete or split the existing regions.
599  *
600  * Returns the number of huge pages deleted from the reserve map.
601  * In the normal case, the return value is zero or more.  In the
602  * case where a region must be split, a new region descriptor must
603  * be allocated.  If the allocation fails, -ENOMEM will be returned.
604  * NOTE: If the parameter t == LONG_MAX, then we will never split
605  * a region and possibly return -ENOMEM.  Callers specifying
606  * t == LONG_MAX do not need to check for -ENOMEM error.
607  */
608 static long region_del(struct resv_map *resv, long f, long t)
609 {
610 	struct list_head *head = &resv->regions;
611 	struct file_region *rg, *trg;
612 	struct file_region *nrg = NULL;
613 	long del = 0;
614 
615 retry:
616 	spin_lock(&resv->lock);
617 	list_for_each_entry_safe(rg, trg, head, link) {
618 		/*
619 		 * Skip regions before the range to be deleted.  file_region
620 		 * ranges are normally of the form [from, to).  However, there
621 		 * may be a "placeholder" entry in the map which is of the form
622 		 * (from, to) with from == to.  Check for placeholder entries
623 		 * at the beginning of the range to be deleted.
624 		 */
625 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
626 			continue;
627 
628 		if (rg->from >= t)
629 			break;
630 
631 		if (f > rg->from && t < rg->to) { /* Must split region */
632 			/*
633 			 * Check for an entry in the cache before dropping
634 			 * lock and attempting allocation.
635 			 */
636 			if (!nrg &&
637 			    resv->region_cache_count > resv->adds_in_progress) {
638 				nrg = list_first_entry(&resv->region_cache,
639 							struct file_region,
640 							link);
641 				list_del(&nrg->link);
642 				resv->region_cache_count--;
643 			}
644 
645 			if (!nrg) {
646 				spin_unlock(&resv->lock);
647 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
648 				if (!nrg)
649 					return -ENOMEM;
650 				goto retry;
651 			}
652 
653 			del += t - f;
654 
655 			/* New entry for end of split region */
656 			nrg->from = t;
657 			nrg->to = rg->to;
658 
659 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
660 
661 			INIT_LIST_HEAD(&nrg->link);
662 
663 			/* Original entry is trimmed */
664 			rg->to = f;
665 
666 			hugetlb_cgroup_uncharge_file_region(
667 				resv, rg, nrg->to - nrg->from);
668 
669 			list_add(&nrg->link, &rg->link);
670 			nrg = NULL;
671 			break;
672 		}
673 
674 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
675 			del += rg->to - rg->from;
676 			hugetlb_cgroup_uncharge_file_region(resv, rg,
677 							    rg->to - rg->from);
678 			list_del(&rg->link);
679 			kfree(rg);
680 			continue;
681 		}
682 
683 		if (f <= rg->from) {	/* Trim beginning of region */
684 			del += t - rg->from;
685 			rg->from = t;
686 
687 			hugetlb_cgroup_uncharge_file_region(resv, rg,
688 							    t - rg->from);
689 		} else {		/* Trim end of region */
690 			del += rg->to - f;
691 			rg->to = f;
692 
693 			hugetlb_cgroup_uncharge_file_region(resv, rg,
694 							    rg->to - f);
695 		}
696 	}
697 
698 	spin_unlock(&resv->lock);
699 	kfree(nrg);
700 	return del;
701 }
702 
703 /*
704  * A rare out of memory error was encountered which prevented removal of
705  * the reserve map region for a page.  The huge page itself was free'ed
706  * and removed from the page cache.  This routine will adjust the subpool
707  * usage count, and the global reserve count if needed.  By incrementing
708  * these counts, the reserve map entry which could not be deleted will
709  * appear as a "reserved" entry instead of simply dangling with incorrect
710  * counts.
711  */
712 void hugetlb_fix_reserve_counts(struct inode *inode)
713 {
714 	struct hugepage_subpool *spool = subpool_inode(inode);
715 	long rsv_adjust;
716 
717 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
718 	if (rsv_adjust) {
719 		struct hstate *h = hstate_inode(inode);
720 
721 		hugetlb_acct_memory(h, 1);
722 	}
723 }
724 
725 /*
726  * Count and return the number of huge pages in the reserve map
727  * that intersect with the range [f, t).
728  */
729 static long region_count(struct resv_map *resv, long f, long t)
730 {
731 	struct list_head *head = &resv->regions;
732 	struct file_region *rg;
733 	long chg = 0;
734 
735 	spin_lock(&resv->lock);
736 	/* Locate each segment we overlap with, and count that overlap. */
737 	list_for_each_entry(rg, head, link) {
738 		long seg_from;
739 		long seg_to;
740 
741 		if (rg->to <= f)
742 			continue;
743 		if (rg->from >= t)
744 			break;
745 
746 		seg_from = max(rg->from, f);
747 		seg_to = min(rg->to, t);
748 
749 		chg += seg_to - seg_from;
750 	}
751 	spin_unlock(&resv->lock);
752 
753 	return chg;
754 }
755 
756 /*
757  * Convert the address within this vma to the page offset within
758  * the mapping, in pagecache page units; huge pages here.
759  */
760 static pgoff_t vma_hugecache_offset(struct hstate *h,
761 			struct vm_area_struct *vma, unsigned long address)
762 {
763 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
764 			(vma->vm_pgoff >> huge_page_order(h));
765 }
766 
767 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
768 				     unsigned long address)
769 {
770 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
771 }
772 EXPORT_SYMBOL_GPL(linear_hugepage_index);
773 
774 /*
775  * Return the size of the pages allocated when backing a VMA. In the majority
776  * cases this will be same size as used by the page table entries.
777  */
778 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
779 {
780 	if (vma->vm_ops && vma->vm_ops->pagesize)
781 		return vma->vm_ops->pagesize(vma);
782 	return PAGE_SIZE;
783 }
784 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
785 
786 /*
787  * Return the page size being used by the MMU to back a VMA. In the majority
788  * of cases, the page size used by the kernel matches the MMU size. On
789  * architectures where it differs, an architecture-specific 'strong'
790  * version of this symbol is required.
791  */
792 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
793 {
794 	return vma_kernel_pagesize(vma);
795 }
796 
797 /*
798  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
799  * bits of the reservation map pointer, which are always clear due to
800  * alignment.
801  */
802 #define HPAGE_RESV_OWNER    (1UL << 0)
803 #define HPAGE_RESV_UNMAPPED (1UL << 1)
804 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
805 
806 /*
807  * These helpers are used to track how many pages are reserved for
808  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
809  * is guaranteed to have their future faults succeed.
810  *
811  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
812  * the reserve counters are updated with the hugetlb_lock held. It is safe
813  * to reset the VMA at fork() time as it is not in use yet and there is no
814  * chance of the global counters getting corrupted as a result of the values.
815  *
816  * The private mapping reservation is represented in a subtly different
817  * manner to a shared mapping.  A shared mapping has a region map associated
818  * with the underlying file, this region map represents the backing file
819  * pages which have ever had a reservation assigned which this persists even
820  * after the page is instantiated.  A private mapping has a region map
821  * associated with the original mmap which is attached to all VMAs which
822  * reference it, this region map represents those offsets which have consumed
823  * reservation ie. where pages have been instantiated.
824  */
825 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
826 {
827 	return (unsigned long)vma->vm_private_data;
828 }
829 
830 static void set_vma_private_data(struct vm_area_struct *vma,
831 							unsigned long value)
832 {
833 	vma->vm_private_data = (void *)value;
834 }
835 
836 static void
837 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
838 					  struct hugetlb_cgroup *h_cg,
839 					  struct hstate *h)
840 {
841 #ifdef CONFIG_CGROUP_HUGETLB
842 	if (!h_cg || !h) {
843 		resv_map->reservation_counter = NULL;
844 		resv_map->pages_per_hpage = 0;
845 		resv_map->css = NULL;
846 	} else {
847 		resv_map->reservation_counter =
848 			&h_cg->rsvd_hugepage[hstate_index(h)];
849 		resv_map->pages_per_hpage = pages_per_huge_page(h);
850 		resv_map->css = &h_cg->css;
851 	}
852 #endif
853 }
854 
855 struct resv_map *resv_map_alloc(void)
856 {
857 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
858 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
859 
860 	if (!resv_map || !rg) {
861 		kfree(resv_map);
862 		kfree(rg);
863 		return NULL;
864 	}
865 
866 	kref_init(&resv_map->refs);
867 	spin_lock_init(&resv_map->lock);
868 	INIT_LIST_HEAD(&resv_map->regions);
869 
870 	resv_map->adds_in_progress = 0;
871 	/*
872 	 * Initialize these to 0. On shared mappings, 0's here indicate these
873 	 * fields don't do cgroup accounting. On private mappings, these will be
874 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
875 	 * reservations are to be un-charged from here.
876 	 */
877 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
878 
879 	INIT_LIST_HEAD(&resv_map->region_cache);
880 	list_add(&rg->link, &resv_map->region_cache);
881 	resv_map->region_cache_count = 1;
882 
883 	return resv_map;
884 }
885 
886 void resv_map_release(struct kref *ref)
887 {
888 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
889 	struct list_head *head = &resv_map->region_cache;
890 	struct file_region *rg, *trg;
891 
892 	/* Clear out any active regions before we release the map. */
893 	region_del(resv_map, 0, LONG_MAX);
894 
895 	/* ... and any entries left in the cache */
896 	list_for_each_entry_safe(rg, trg, head, link) {
897 		list_del(&rg->link);
898 		kfree(rg);
899 	}
900 
901 	VM_BUG_ON(resv_map->adds_in_progress);
902 
903 	kfree(resv_map);
904 }
905 
906 static inline struct resv_map *inode_resv_map(struct inode *inode)
907 {
908 	/*
909 	 * At inode evict time, i_mapping may not point to the original
910 	 * address space within the inode.  This original address space
911 	 * contains the pointer to the resv_map.  So, always use the
912 	 * address space embedded within the inode.
913 	 * The VERY common case is inode->mapping == &inode->i_data but,
914 	 * this may not be true for device special inodes.
915 	 */
916 	return (struct resv_map *)(&inode->i_data)->private_data;
917 }
918 
919 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
920 {
921 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
922 	if (vma->vm_flags & VM_MAYSHARE) {
923 		struct address_space *mapping = vma->vm_file->f_mapping;
924 		struct inode *inode = mapping->host;
925 
926 		return inode_resv_map(inode);
927 
928 	} else {
929 		return (struct resv_map *)(get_vma_private_data(vma) &
930 							~HPAGE_RESV_MASK);
931 	}
932 }
933 
934 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
935 {
936 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
937 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
938 
939 	set_vma_private_data(vma, (get_vma_private_data(vma) &
940 				HPAGE_RESV_MASK) | (unsigned long)map);
941 }
942 
943 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
944 {
945 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
946 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
947 
948 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
949 }
950 
951 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
952 {
953 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
954 
955 	return (get_vma_private_data(vma) & flag) != 0;
956 }
957 
958 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
959 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
960 {
961 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962 	if (!(vma->vm_flags & VM_MAYSHARE))
963 		vma->vm_private_data = (void *)0;
964 }
965 
966 /* Returns true if the VMA has associated reserve pages */
967 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
968 {
969 	if (vma->vm_flags & VM_NORESERVE) {
970 		/*
971 		 * This address is already reserved by other process(chg == 0),
972 		 * so, we should decrement reserved count. Without decrementing,
973 		 * reserve count remains after releasing inode, because this
974 		 * allocated page will go into page cache and is regarded as
975 		 * coming from reserved pool in releasing step.  Currently, we
976 		 * don't have any other solution to deal with this situation
977 		 * properly, so add work-around here.
978 		 */
979 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
980 			return true;
981 		else
982 			return false;
983 	}
984 
985 	/* Shared mappings always use reserves */
986 	if (vma->vm_flags & VM_MAYSHARE) {
987 		/*
988 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
989 		 * be a region map for all pages.  The only situation where
990 		 * there is no region map is if a hole was punched via
991 		 * fallocate.  In this case, there really are no reverves to
992 		 * use.  This situation is indicated if chg != 0.
993 		 */
994 		if (chg)
995 			return false;
996 		else
997 			return true;
998 	}
999 
1000 	/*
1001 	 * Only the process that called mmap() has reserves for
1002 	 * private mappings.
1003 	 */
1004 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1005 		/*
1006 		 * Like the shared case above, a hole punch or truncate
1007 		 * could have been performed on the private mapping.
1008 		 * Examine the value of chg to determine if reserves
1009 		 * actually exist or were previously consumed.
1010 		 * Very Subtle - The value of chg comes from a previous
1011 		 * call to vma_needs_reserves().  The reserve map for
1012 		 * private mappings has different (opposite) semantics
1013 		 * than that of shared mappings.  vma_needs_reserves()
1014 		 * has already taken this difference in semantics into
1015 		 * account.  Therefore, the meaning of chg is the same
1016 		 * as in the shared case above.  Code could easily be
1017 		 * combined, but keeping it separate draws attention to
1018 		 * subtle differences.
1019 		 */
1020 		if (chg)
1021 			return false;
1022 		else
1023 			return true;
1024 	}
1025 
1026 	return false;
1027 }
1028 
1029 static void enqueue_huge_page(struct hstate *h, struct page *page)
1030 {
1031 	int nid = page_to_nid(page);
1032 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1033 	h->free_huge_pages++;
1034 	h->free_huge_pages_node[nid]++;
1035 }
1036 
1037 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1038 {
1039 	struct page *page;
1040 
1041 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1042 		if (!PageHWPoison(page))
1043 			break;
1044 	/*
1045 	 * if 'non-isolated free hugepage' not found on the list,
1046 	 * the allocation fails.
1047 	 */
1048 	if (&h->hugepage_freelists[nid] == &page->lru)
1049 		return NULL;
1050 	list_move(&page->lru, &h->hugepage_activelist);
1051 	set_page_refcounted(page);
1052 	h->free_huge_pages--;
1053 	h->free_huge_pages_node[nid]--;
1054 	return page;
1055 }
1056 
1057 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1058 		nodemask_t *nmask)
1059 {
1060 	unsigned int cpuset_mems_cookie;
1061 	struct zonelist *zonelist;
1062 	struct zone *zone;
1063 	struct zoneref *z;
1064 	int node = NUMA_NO_NODE;
1065 
1066 	zonelist = node_zonelist(nid, gfp_mask);
1067 
1068 retry_cpuset:
1069 	cpuset_mems_cookie = read_mems_allowed_begin();
1070 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1071 		struct page *page;
1072 
1073 		if (!cpuset_zone_allowed(zone, gfp_mask))
1074 			continue;
1075 		/*
1076 		 * no need to ask again on the same node. Pool is node rather than
1077 		 * zone aware
1078 		 */
1079 		if (zone_to_nid(zone) == node)
1080 			continue;
1081 		node = zone_to_nid(zone);
1082 
1083 		page = dequeue_huge_page_node_exact(h, node);
1084 		if (page)
1085 			return page;
1086 	}
1087 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1088 		goto retry_cpuset;
1089 
1090 	return NULL;
1091 }
1092 
1093 /* Movability of hugepages depends on migration support. */
1094 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1095 {
1096 	if (hugepage_movable_supported(h))
1097 		return GFP_HIGHUSER_MOVABLE;
1098 	else
1099 		return GFP_HIGHUSER;
1100 }
1101 
1102 static struct page *dequeue_huge_page_vma(struct hstate *h,
1103 				struct vm_area_struct *vma,
1104 				unsigned long address, int avoid_reserve,
1105 				long chg)
1106 {
1107 	struct page *page;
1108 	struct mempolicy *mpol;
1109 	gfp_t gfp_mask;
1110 	nodemask_t *nodemask;
1111 	int nid;
1112 
1113 	/*
1114 	 * A child process with MAP_PRIVATE mappings created by their parent
1115 	 * have no page reserves. This check ensures that reservations are
1116 	 * not "stolen". The child may still get SIGKILLed
1117 	 */
1118 	if (!vma_has_reserves(vma, chg) &&
1119 			h->free_huge_pages - h->resv_huge_pages == 0)
1120 		goto err;
1121 
1122 	/* If reserves cannot be used, ensure enough pages are in the pool */
1123 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1124 		goto err;
1125 
1126 	gfp_mask = htlb_alloc_mask(h);
1127 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1128 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1129 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1130 		SetPagePrivate(page);
1131 		h->resv_huge_pages--;
1132 	}
1133 
1134 	mpol_cond_put(mpol);
1135 	return page;
1136 
1137 err:
1138 	return NULL;
1139 }
1140 
1141 /*
1142  * common helper functions for hstate_next_node_to_{alloc|free}.
1143  * We may have allocated or freed a huge page based on a different
1144  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1145  * be outside of *nodes_allowed.  Ensure that we use an allowed
1146  * node for alloc or free.
1147  */
1148 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1149 {
1150 	nid = next_node_in(nid, *nodes_allowed);
1151 	VM_BUG_ON(nid >= MAX_NUMNODES);
1152 
1153 	return nid;
1154 }
1155 
1156 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1157 {
1158 	if (!node_isset(nid, *nodes_allowed))
1159 		nid = next_node_allowed(nid, nodes_allowed);
1160 	return nid;
1161 }
1162 
1163 /*
1164  * returns the previously saved node ["this node"] from which to
1165  * allocate a persistent huge page for the pool and advance the
1166  * next node from which to allocate, handling wrap at end of node
1167  * mask.
1168  */
1169 static int hstate_next_node_to_alloc(struct hstate *h,
1170 					nodemask_t *nodes_allowed)
1171 {
1172 	int nid;
1173 
1174 	VM_BUG_ON(!nodes_allowed);
1175 
1176 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1177 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1178 
1179 	return nid;
1180 }
1181 
1182 /*
1183  * helper for free_pool_huge_page() - return the previously saved
1184  * node ["this node"] from which to free a huge page.  Advance the
1185  * next node id whether or not we find a free huge page to free so
1186  * that the next attempt to free addresses the next node.
1187  */
1188 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1189 {
1190 	int nid;
1191 
1192 	VM_BUG_ON(!nodes_allowed);
1193 
1194 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1195 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1196 
1197 	return nid;
1198 }
1199 
1200 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1201 	for (nr_nodes = nodes_weight(*mask);				\
1202 		nr_nodes > 0 &&						\
1203 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1204 		nr_nodes--)
1205 
1206 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1207 	for (nr_nodes = nodes_weight(*mask);				\
1208 		nr_nodes > 0 &&						\
1209 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1210 		nr_nodes--)
1211 
1212 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1213 static void destroy_compound_gigantic_page(struct page *page,
1214 					unsigned int order)
1215 {
1216 	int i;
1217 	int nr_pages = 1 << order;
1218 	struct page *p = page + 1;
1219 
1220 	atomic_set(compound_mapcount_ptr(page), 0);
1221 	if (hpage_pincount_available(page))
1222 		atomic_set(compound_pincount_ptr(page), 0);
1223 
1224 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225 		clear_compound_head(p);
1226 		set_page_refcounted(p);
1227 	}
1228 
1229 	set_compound_order(page, 0);
1230 	__ClearPageHead(page);
1231 }
1232 
1233 static void free_gigantic_page(struct page *page, unsigned int order)
1234 {
1235 	/*
1236 	 * If the page isn't allocated using the cma allocator,
1237 	 * cma_release() returns false.
1238 	 */
1239 	if (IS_ENABLED(CONFIG_CMA) &&
1240 	    cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1241 		return;
1242 
1243 	free_contig_range(page_to_pfn(page), 1 << order);
1244 }
1245 
1246 #ifdef CONFIG_CONTIG_ALLOC
1247 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1248 		int nid, nodemask_t *nodemask)
1249 {
1250 	unsigned long nr_pages = 1UL << huge_page_order(h);
1251 
1252 	if (IS_ENABLED(CONFIG_CMA)) {
1253 		struct page *page;
1254 		int node;
1255 
1256 		for_each_node_mask(node, *nodemask) {
1257 			if (!hugetlb_cma[node])
1258 				continue;
1259 
1260 			page = cma_alloc(hugetlb_cma[node], nr_pages,
1261 					 huge_page_order(h), true);
1262 			if (page)
1263 				return page;
1264 		}
1265 	}
1266 
1267 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1268 }
1269 
1270 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1271 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1272 #else /* !CONFIG_CONTIG_ALLOC */
1273 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1274 					int nid, nodemask_t *nodemask)
1275 {
1276 	return NULL;
1277 }
1278 #endif /* CONFIG_CONTIG_ALLOC */
1279 
1280 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1281 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1282 					int nid, nodemask_t *nodemask)
1283 {
1284 	return NULL;
1285 }
1286 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1287 static inline void destroy_compound_gigantic_page(struct page *page,
1288 						unsigned int order) { }
1289 #endif
1290 
1291 static void update_and_free_page(struct hstate *h, struct page *page)
1292 {
1293 	int i;
1294 
1295 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1296 		return;
1297 
1298 	h->nr_huge_pages--;
1299 	h->nr_huge_pages_node[page_to_nid(page)]--;
1300 	for (i = 0; i < pages_per_huge_page(h); i++) {
1301 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1302 				1 << PG_referenced | 1 << PG_dirty |
1303 				1 << PG_active | 1 << PG_private |
1304 				1 << PG_writeback);
1305 	}
1306 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1307 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1308 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1309 	set_page_refcounted(page);
1310 	if (hstate_is_gigantic(h)) {
1311 		/*
1312 		 * Temporarily drop the hugetlb_lock, because
1313 		 * we might block in free_gigantic_page().
1314 		 */
1315 		spin_unlock(&hugetlb_lock);
1316 		destroy_compound_gigantic_page(page, huge_page_order(h));
1317 		free_gigantic_page(page, huge_page_order(h));
1318 		spin_lock(&hugetlb_lock);
1319 	} else {
1320 		__free_pages(page, huge_page_order(h));
1321 	}
1322 }
1323 
1324 struct hstate *size_to_hstate(unsigned long size)
1325 {
1326 	struct hstate *h;
1327 
1328 	for_each_hstate(h) {
1329 		if (huge_page_size(h) == size)
1330 			return h;
1331 	}
1332 	return NULL;
1333 }
1334 
1335 /*
1336  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1337  * to hstate->hugepage_activelist.)
1338  *
1339  * This function can be called for tail pages, but never returns true for them.
1340  */
1341 bool page_huge_active(struct page *page)
1342 {
1343 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1344 	return PageHead(page) && PagePrivate(&page[1]);
1345 }
1346 
1347 /* never called for tail page */
1348 static void set_page_huge_active(struct page *page)
1349 {
1350 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1351 	SetPagePrivate(&page[1]);
1352 }
1353 
1354 static void clear_page_huge_active(struct page *page)
1355 {
1356 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1357 	ClearPagePrivate(&page[1]);
1358 }
1359 
1360 /*
1361  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1362  * code
1363  */
1364 static inline bool PageHugeTemporary(struct page *page)
1365 {
1366 	if (!PageHuge(page))
1367 		return false;
1368 
1369 	return (unsigned long)page[2].mapping == -1U;
1370 }
1371 
1372 static inline void SetPageHugeTemporary(struct page *page)
1373 {
1374 	page[2].mapping = (void *)-1U;
1375 }
1376 
1377 static inline void ClearPageHugeTemporary(struct page *page)
1378 {
1379 	page[2].mapping = NULL;
1380 }
1381 
1382 static void __free_huge_page(struct page *page)
1383 {
1384 	/*
1385 	 * Can't pass hstate in here because it is called from the
1386 	 * compound page destructor.
1387 	 */
1388 	struct hstate *h = page_hstate(page);
1389 	int nid = page_to_nid(page);
1390 	struct hugepage_subpool *spool =
1391 		(struct hugepage_subpool *)page_private(page);
1392 	bool restore_reserve;
1393 
1394 	VM_BUG_ON_PAGE(page_count(page), page);
1395 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1396 
1397 	set_page_private(page, 0);
1398 	page->mapping = NULL;
1399 	restore_reserve = PagePrivate(page);
1400 	ClearPagePrivate(page);
1401 
1402 	/*
1403 	 * If PagePrivate() was set on page, page allocation consumed a
1404 	 * reservation.  If the page was associated with a subpool, there
1405 	 * would have been a page reserved in the subpool before allocation
1406 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1407 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1408 	 * remove the reserved page from the subpool.
1409 	 */
1410 	if (!restore_reserve) {
1411 		/*
1412 		 * A return code of zero implies that the subpool will be
1413 		 * under its minimum size if the reservation is not restored
1414 		 * after page is free.  Therefore, force restore_reserve
1415 		 * operation.
1416 		 */
1417 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1418 			restore_reserve = true;
1419 	}
1420 
1421 	spin_lock(&hugetlb_lock);
1422 	clear_page_huge_active(page);
1423 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1424 				     pages_per_huge_page(h), page);
1425 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1426 					  pages_per_huge_page(h), page);
1427 	if (restore_reserve)
1428 		h->resv_huge_pages++;
1429 
1430 	if (PageHugeTemporary(page)) {
1431 		list_del(&page->lru);
1432 		ClearPageHugeTemporary(page);
1433 		update_and_free_page(h, page);
1434 	} else if (h->surplus_huge_pages_node[nid]) {
1435 		/* remove the page from active list */
1436 		list_del(&page->lru);
1437 		update_and_free_page(h, page);
1438 		h->surplus_huge_pages--;
1439 		h->surplus_huge_pages_node[nid]--;
1440 	} else {
1441 		arch_clear_hugepage_flags(page);
1442 		enqueue_huge_page(h, page);
1443 	}
1444 	spin_unlock(&hugetlb_lock);
1445 }
1446 
1447 /*
1448  * As free_huge_page() can be called from a non-task context, we have
1449  * to defer the actual freeing in a workqueue to prevent potential
1450  * hugetlb_lock deadlock.
1451  *
1452  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1453  * be freed and frees them one-by-one. As the page->mapping pointer is
1454  * going to be cleared in __free_huge_page() anyway, it is reused as the
1455  * llist_node structure of a lockless linked list of huge pages to be freed.
1456  */
1457 static LLIST_HEAD(hpage_freelist);
1458 
1459 static void free_hpage_workfn(struct work_struct *work)
1460 {
1461 	struct llist_node *node;
1462 	struct page *page;
1463 
1464 	node = llist_del_all(&hpage_freelist);
1465 
1466 	while (node) {
1467 		page = container_of((struct address_space **)node,
1468 				     struct page, mapping);
1469 		node = node->next;
1470 		__free_huge_page(page);
1471 	}
1472 }
1473 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1474 
1475 void free_huge_page(struct page *page)
1476 {
1477 	/*
1478 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1479 	 */
1480 	if (!in_task()) {
1481 		/*
1482 		 * Only call schedule_work() if hpage_freelist is previously
1483 		 * empty. Otherwise, schedule_work() had been called but the
1484 		 * workfn hasn't retrieved the list yet.
1485 		 */
1486 		if (llist_add((struct llist_node *)&page->mapping,
1487 			      &hpage_freelist))
1488 			schedule_work(&free_hpage_work);
1489 		return;
1490 	}
1491 
1492 	__free_huge_page(page);
1493 }
1494 
1495 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1496 {
1497 	INIT_LIST_HEAD(&page->lru);
1498 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1499 	spin_lock(&hugetlb_lock);
1500 	set_hugetlb_cgroup(page, NULL);
1501 	set_hugetlb_cgroup_rsvd(page, NULL);
1502 	h->nr_huge_pages++;
1503 	h->nr_huge_pages_node[nid]++;
1504 	spin_unlock(&hugetlb_lock);
1505 }
1506 
1507 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1508 {
1509 	int i;
1510 	int nr_pages = 1 << order;
1511 	struct page *p = page + 1;
1512 
1513 	/* we rely on prep_new_huge_page to set the destructor */
1514 	set_compound_order(page, order);
1515 	__ClearPageReserved(page);
1516 	__SetPageHead(page);
1517 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1518 		/*
1519 		 * For gigantic hugepages allocated through bootmem at
1520 		 * boot, it's safer to be consistent with the not-gigantic
1521 		 * hugepages and clear the PG_reserved bit from all tail pages
1522 		 * too.  Otherwse drivers using get_user_pages() to access tail
1523 		 * pages may get the reference counting wrong if they see
1524 		 * PG_reserved set on a tail page (despite the head page not
1525 		 * having PG_reserved set).  Enforcing this consistency between
1526 		 * head and tail pages allows drivers to optimize away a check
1527 		 * on the head page when they need know if put_page() is needed
1528 		 * after get_user_pages().
1529 		 */
1530 		__ClearPageReserved(p);
1531 		set_page_count(p, 0);
1532 		set_compound_head(p, page);
1533 	}
1534 	atomic_set(compound_mapcount_ptr(page), -1);
1535 
1536 	if (hpage_pincount_available(page))
1537 		atomic_set(compound_pincount_ptr(page), 0);
1538 }
1539 
1540 /*
1541  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1542  * transparent huge pages.  See the PageTransHuge() documentation for more
1543  * details.
1544  */
1545 int PageHuge(struct page *page)
1546 {
1547 	if (!PageCompound(page))
1548 		return 0;
1549 
1550 	page = compound_head(page);
1551 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1552 }
1553 EXPORT_SYMBOL_GPL(PageHuge);
1554 
1555 /*
1556  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1557  * normal or transparent huge pages.
1558  */
1559 int PageHeadHuge(struct page *page_head)
1560 {
1561 	if (!PageHead(page_head))
1562 		return 0;
1563 
1564 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1565 }
1566 
1567 /*
1568  * Find address_space associated with hugetlbfs page.
1569  * Upon entry page is locked and page 'was' mapped although mapped state
1570  * could change.  If necessary, use anon_vma to find vma and associated
1571  * address space.  The returned mapping may be stale, but it can not be
1572  * invalid as page lock (which is held) is required to destroy mapping.
1573  */
1574 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1575 {
1576 	struct anon_vma *anon_vma;
1577 	pgoff_t pgoff_start, pgoff_end;
1578 	struct anon_vma_chain *avc;
1579 	struct address_space *mapping = page_mapping(hpage);
1580 
1581 	/* Simple file based mapping */
1582 	if (mapping)
1583 		return mapping;
1584 
1585 	/*
1586 	 * Even anonymous hugetlbfs mappings are associated with an
1587 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1588 	 * code).  Find a vma associated with the anonymous vma, and
1589 	 * use the file pointer to get address_space.
1590 	 */
1591 	anon_vma = page_lock_anon_vma_read(hpage);
1592 	if (!anon_vma)
1593 		return mapping;  /* NULL */
1594 
1595 	/* Use first found vma */
1596 	pgoff_start = page_to_pgoff(hpage);
1597 	pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1598 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1599 					pgoff_start, pgoff_end) {
1600 		struct vm_area_struct *vma = avc->vma;
1601 
1602 		mapping = vma->vm_file->f_mapping;
1603 		break;
1604 	}
1605 
1606 	anon_vma_unlock_read(anon_vma);
1607 	return mapping;
1608 }
1609 
1610 /*
1611  * Find and lock address space (mapping) in write mode.
1612  *
1613  * Upon entry, the page is locked which allows us to find the mapping
1614  * even in the case of an anon page.  However, locking order dictates
1615  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1616  * specific.  So, we first try to lock the sema while still holding the
1617  * page lock.  If this works, great!  If not, then we need to drop the
1618  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1619  * course, need to revalidate state along the way.
1620  */
1621 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1622 {
1623 	struct address_space *mapping, *mapping2;
1624 
1625 	mapping = _get_hugetlb_page_mapping(hpage);
1626 retry:
1627 	if (!mapping)
1628 		return mapping;
1629 
1630 	/*
1631 	 * If no contention, take lock and return
1632 	 */
1633 	if (i_mmap_trylock_write(mapping))
1634 		return mapping;
1635 
1636 	/*
1637 	 * Must drop page lock and wait on mapping sema.
1638 	 * Note:  Once page lock is dropped, mapping could become invalid.
1639 	 * As a hack, increase map count until we lock page again.
1640 	 */
1641 	atomic_inc(&hpage->_mapcount);
1642 	unlock_page(hpage);
1643 	i_mmap_lock_write(mapping);
1644 	lock_page(hpage);
1645 	atomic_add_negative(-1, &hpage->_mapcount);
1646 
1647 	/* verify page is still mapped */
1648 	if (!page_mapped(hpage)) {
1649 		i_mmap_unlock_write(mapping);
1650 		return NULL;
1651 	}
1652 
1653 	/*
1654 	 * Get address space again and verify it is the same one
1655 	 * we locked.  If not, drop lock and retry.
1656 	 */
1657 	mapping2 = _get_hugetlb_page_mapping(hpage);
1658 	if (mapping2 != mapping) {
1659 		i_mmap_unlock_write(mapping);
1660 		mapping = mapping2;
1661 		goto retry;
1662 	}
1663 
1664 	return mapping;
1665 }
1666 
1667 pgoff_t __basepage_index(struct page *page)
1668 {
1669 	struct page *page_head = compound_head(page);
1670 	pgoff_t index = page_index(page_head);
1671 	unsigned long compound_idx;
1672 
1673 	if (!PageHuge(page_head))
1674 		return page_index(page);
1675 
1676 	if (compound_order(page_head) >= MAX_ORDER)
1677 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1678 	else
1679 		compound_idx = page - page_head;
1680 
1681 	return (index << compound_order(page_head)) + compound_idx;
1682 }
1683 
1684 static struct page *alloc_buddy_huge_page(struct hstate *h,
1685 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1686 		nodemask_t *node_alloc_noretry)
1687 {
1688 	int order = huge_page_order(h);
1689 	struct page *page;
1690 	bool alloc_try_hard = true;
1691 
1692 	/*
1693 	 * By default we always try hard to allocate the page with
1694 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1695 	 * a loop (to adjust global huge page counts) and previous allocation
1696 	 * failed, do not continue to try hard on the same node.  Use the
1697 	 * node_alloc_noretry bitmap to manage this state information.
1698 	 */
1699 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1700 		alloc_try_hard = false;
1701 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1702 	if (alloc_try_hard)
1703 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1704 	if (nid == NUMA_NO_NODE)
1705 		nid = numa_mem_id();
1706 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1707 	if (page)
1708 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1709 	else
1710 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1711 
1712 	/*
1713 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1714 	 * indicates an overall state change.  Clear bit so that we resume
1715 	 * normal 'try hard' allocations.
1716 	 */
1717 	if (node_alloc_noretry && page && !alloc_try_hard)
1718 		node_clear(nid, *node_alloc_noretry);
1719 
1720 	/*
1721 	 * If we tried hard to get a page but failed, set bit so that
1722 	 * subsequent attempts will not try as hard until there is an
1723 	 * overall state change.
1724 	 */
1725 	if (node_alloc_noretry && !page && alloc_try_hard)
1726 		node_set(nid, *node_alloc_noretry);
1727 
1728 	return page;
1729 }
1730 
1731 /*
1732  * Common helper to allocate a fresh hugetlb page. All specific allocators
1733  * should use this function to get new hugetlb pages
1734  */
1735 static struct page *alloc_fresh_huge_page(struct hstate *h,
1736 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1737 		nodemask_t *node_alloc_noretry)
1738 {
1739 	struct page *page;
1740 
1741 	if (hstate_is_gigantic(h))
1742 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1743 	else
1744 		page = alloc_buddy_huge_page(h, gfp_mask,
1745 				nid, nmask, node_alloc_noretry);
1746 	if (!page)
1747 		return NULL;
1748 
1749 	if (hstate_is_gigantic(h))
1750 		prep_compound_gigantic_page(page, huge_page_order(h));
1751 	prep_new_huge_page(h, page, page_to_nid(page));
1752 
1753 	return page;
1754 }
1755 
1756 /*
1757  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1758  * manner.
1759  */
1760 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1761 				nodemask_t *node_alloc_noretry)
1762 {
1763 	struct page *page;
1764 	int nr_nodes, node;
1765 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1766 
1767 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1768 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1769 						node_alloc_noretry);
1770 		if (page)
1771 			break;
1772 	}
1773 
1774 	if (!page)
1775 		return 0;
1776 
1777 	put_page(page); /* free it into the hugepage allocator */
1778 
1779 	return 1;
1780 }
1781 
1782 /*
1783  * Free huge page from pool from next node to free.
1784  * Attempt to keep persistent huge pages more or less
1785  * balanced over allowed nodes.
1786  * Called with hugetlb_lock locked.
1787  */
1788 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1789 							 bool acct_surplus)
1790 {
1791 	int nr_nodes, node;
1792 	int ret = 0;
1793 
1794 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1795 		/*
1796 		 * If we're returning unused surplus pages, only examine
1797 		 * nodes with surplus pages.
1798 		 */
1799 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1800 		    !list_empty(&h->hugepage_freelists[node])) {
1801 			struct page *page =
1802 				list_entry(h->hugepage_freelists[node].next,
1803 					  struct page, lru);
1804 			list_del(&page->lru);
1805 			h->free_huge_pages--;
1806 			h->free_huge_pages_node[node]--;
1807 			if (acct_surplus) {
1808 				h->surplus_huge_pages--;
1809 				h->surplus_huge_pages_node[node]--;
1810 			}
1811 			update_and_free_page(h, page);
1812 			ret = 1;
1813 			break;
1814 		}
1815 	}
1816 
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Dissolve a given free hugepage into free buddy pages. This function does
1822  * nothing for in-use hugepages and non-hugepages.
1823  * This function returns values like below:
1824  *
1825  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1826  *          (allocated or reserved.)
1827  *       0: successfully dissolved free hugepages or the page is not a
1828  *          hugepage (considered as already dissolved)
1829  */
1830 int dissolve_free_huge_page(struct page *page)
1831 {
1832 	int rc = -EBUSY;
1833 
1834 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1835 	if (!PageHuge(page))
1836 		return 0;
1837 
1838 	spin_lock(&hugetlb_lock);
1839 	if (!PageHuge(page)) {
1840 		rc = 0;
1841 		goto out;
1842 	}
1843 
1844 	if (!page_count(page)) {
1845 		struct page *head = compound_head(page);
1846 		struct hstate *h = page_hstate(head);
1847 		int nid = page_to_nid(head);
1848 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1849 			goto out;
1850 		/*
1851 		 * Move PageHWPoison flag from head page to the raw error page,
1852 		 * which makes any subpages rather than the error page reusable.
1853 		 */
1854 		if (PageHWPoison(head) && page != head) {
1855 			SetPageHWPoison(page);
1856 			ClearPageHWPoison(head);
1857 		}
1858 		list_del(&head->lru);
1859 		h->free_huge_pages--;
1860 		h->free_huge_pages_node[nid]--;
1861 		h->max_huge_pages--;
1862 		update_and_free_page(h, head);
1863 		rc = 0;
1864 	}
1865 out:
1866 	spin_unlock(&hugetlb_lock);
1867 	return rc;
1868 }
1869 
1870 /*
1871  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1872  * make specified memory blocks removable from the system.
1873  * Note that this will dissolve a free gigantic hugepage completely, if any
1874  * part of it lies within the given range.
1875  * Also note that if dissolve_free_huge_page() returns with an error, all
1876  * free hugepages that were dissolved before that error are lost.
1877  */
1878 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1879 {
1880 	unsigned long pfn;
1881 	struct page *page;
1882 	int rc = 0;
1883 
1884 	if (!hugepages_supported())
1885 		return rc;
1886 
1887 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1888 		page = pfn_to_page(pfn);
1889 		rc = dissolve_free_huge_page(page);
1890 		if (rc)
1891 			break;
1892 	}
1893 
1894 	return rc;
1895 }
1896 
1897 /*
1898  * Allocates a fresh surplus page from the page allocator.
1899  */
1900 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1901 		int nid, nodemask_t *nmask)
1902 {
1903 	struct page *page = NULL;
1904 
1905 	if (hstate_is_gigantic(h))
1906 		return NULL;
1907 
1908 	spin_lock(&hugetlb_lock);
1909 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1910 		goto out_unlock;
1911 	spin_unlock(&hugetlb_lock);
1912 
1913 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1914 	if (!page)
1915 		return NULL;
1916 
1917 	spin_lock(&hugetlb_lock);
1918 	/*
1919 	 * We could have raced with the pool size change.
1920 	 * Double check that and simply deallocate the new page
1921 	 * if we would end up overcommiting the surpluses. Abuse
1922 	 * temporary page to workaround the nasty free_huge_page
1923 	 * codeflow
1924 	 */
1925 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1926 		SetPageHugeTemporary(page);
1927 		spin_unlock(&hugetlb_lock);
1928 		put_page(page);
1929 		return NULL;
1930 	} else {
1931 		h->surplus_huge_pages++;
1932 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1933 	}
1934 
1935 out_unlock:
1936 	spin_unlock(&hugetlb_lock);
1937 
1938 	return page;
1939 }
1940 
1941 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1942 				     int nid, nodemask_t *nmask)
1943 {
1944 	struct page *page;
1945 
1946 	if (hstate_is_gigantic(h))
1947 		return NULL;
1948 
1949 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1950 	if (!page)
1951 		return NULL;
1952 
1953 	/*
1954 	 * We do not account these pages as surplus because they are only
1955 	 * temporary and will be released properly on the last reference
1956 	 */
1957 	SetPageHugeTemporary(page);
1958 
1959 	return page;
1960 }
1961 
1962 /*
1963  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1964  */
1965 static
1966 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1967 		struct vm_area_struct *vma, unsigned long addr)
1968 {
1969 	struct page *page;
1970 	struct mempolicy *mpol;
1971 	gfp_t gfp_mask = htlb_alloc_mask(h);
1972 	int nid;
1973 	nodemask_t *nodemask;
1974 
1975 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1976 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1977 	mpol_cond_put(mpol);
1978 
1979 	return page;
1980 }
1981 
1982 /* page migration callback function */
1983 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1984 {
1985 	gfp_t gfp_mask = htlb_alloc_mask(h);
1986 	struct page *page = NULL;
1987 
1988 	if (nid != NUMA_NO_NODE)
1989 		gfp_mask |= __GFP_THISNODE;
1990 
1991 	spin_lock(&hugetlb_lock);
1992 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1993 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1994 	spin_unlock(&hugetlb_lock);
1995 
1996 	if (!page)
1997 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1998 
1999 	return page;
2000 }
2001 
2002 /* page migration callback function */
2003 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2004 		nodemask_t *nmask)
2005 {
2006 	gfp_t gfp_mask = htlb_alloc_mask(h);
2007 
2008 	spin_lock(&hugetlb_lock);
2009 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2010 		struct page *page;
2011 
2012 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2013 		if (page) {
2014 			spin_unlock(&hugetlb_lock);
2015 			return page;
2016 		}
2017 	}
2018 	spin_unlock(&hugetlb_lock);
2019 
2020 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2021 }
2022 
2023 /* mempolicy aware migration callback */
2024 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2025 		unsigned long address)
2026 {
2027 	struct mempolicy *mpol;
2028 	nodemask_t *nodemask;
2029 	struct page *page;
2030 	gfp_t gfp_mask;
2031 	int node;
2032 
2033 	gfp_mask = htlb_alloc_mask(h);
2034 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2035 	page = alloc_huge_page_nodemask(h, node, nodemask);
2036 	mpol_cond_put(mpol);
2037 
2038 	return page;
2039 }
2040 
2041 /*
2042  * Increase the hugetlb pool such that it can accommodate a reservation
2043  * of size 'delta'.
2044  */
2045 static int gather_surplus_pages(struct hstate *h, int delta)
2046 	__must_hold(&hugetlb_lock)
2047 {
2048 	struct list_head surplus_list;
2049 	struct page *page, *tmp;
2050 	int ret, i;
2051 	int needed, allocated;
2052 	bool alloc_ok = true;
2053 
2054 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2055 	if (needed <= 0) {
2056 		h->resv_huge_pages += delta;
2057 		return 0;
2058 	}
2059 
2060 	allocated = 0;
2061 	INIT_LIST_HEAD(&surplus_list);
2062 
2063 	ret = -ENOMEM;
2064 retry:
2065 	spin_unlock(&hugetlb_lock);
2066 	for (i = 0; i < needed; i++) {
2067 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2068 				NUMA_NO_NODE, NULL);
2069 		if (!page) {
2070 			alloc_ok = false;
2071 			break;
2072 		}
2073 		list_add(&page->lru, &surplus_list);
2074 		cond_resched();
2075 	}
2076 	allocated += i;
2077 
2078 	/*
2079 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2080 	 * because either resv_huge_pages or free_huge_pages may have changed.
2081 	 */
2082 	spin_lock(&hugetlb_lock);
2083 	needed = (h->resv_huge_pages + delta) -
2084 			(h->free_huge_pages + allocated);
2085 	if (needed > 0) {
2086 		if (alloc_ok)
2087 			goto retry;
2088 		/*
2089 		 * We were not able to allocate enough pages to
2090 		 * satisfy the entire reservation so we free what
2091 		 * we've allocated so far.
2092 		 */
2093 		goto free;
2094 	}
2095 	/*
2096 	 * The surplus_list now contains _at_least_ the number of extra pages
2097 	 * needed to accommodate the reservation.  Add the appropriate number
2098 	 * of pages to the hugetlb pool and free the extras back to the buddy
2099 	 * allocator.  Commit the entire reservation here to prevent another
2100 	 * process from stealing the pages as they are added to the pool but
2101 	 * before they are reserved.
2102 	 */
2103 	needed += allocated;
2104 	h->resv_huge_pages += delta;
2105 	ret = 0;
2106 
2107 	/* Free the needed pages to the hugetlb pool */
2108 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2109 		if ((--needed) < 0)
2110 			break;
2111 		/*
2112 		 * This page is now managed by the hugetlb allocator and has
2113 		 * no users -- drop the buddy allocator's reference.
2114 		 */
2115 		put_page_testzero(page);
2116 		VM_BUG_ON_PAGE(page_count(page), page);
2117 		enqueue_huge_page(h, page);
2118 	}
2119 free:
2120 	spin_unlock(&hugetlb_lock);
2121 
2122 	/* Free unnecessary surplus pages to the buddy allocator */
2123 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2124 		put_page(page);
2125 	spin_lock(&hugetlb_lock);
2126 
2127 	return ret;
2128 }
2129 
2130 /*
2131  * This routine has two main purposes:
2132  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2133  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2134  *    to the associated reservation map.
2135  * 2) Free any unused surplus pages that may have been allocated to satisfy
2136  *    the reservation.  As many as unused_resv_pages may be freed.
2137  *
2138  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2139  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2140  * we must make sure nobody else can claim pages we are in the process of
2141  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2142  * number of huge pages we plan to free when dropping the lock.
2143  */
2144 static void return_unused_surplus_pages(struct hstate *h,
2145 					unsigned long unused_resv_pages)
2146 {
2147 	unsigned long nr_pages;
2148 
2149 	/* Cannot return gigantic pages currently */
2150 	if (hstate_is_gigantic(h))
2151 		goto out;
2152 
2153 	/*
2154 	 * Part (or even all) of the reservation could have been backed
2155 	 * by pre-allocated pages. Only free surplus pages.
2156 	 */
2157 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2158 
2159 	/*
2160 	 * We want to release as many surplus pages as possible, spread
2161 	 * evenly across all nodes with memory. Iterate across these nodes
2162 	 * until we can no longer free unreserved surplus pages. This occurs
2163 	 * when the nodes with surplus pages have no free pages.
2164 	 * free_pool_huge_page() will balance the the freed pages across the
2165 	 * on-line nodes with memory and will handle the hstate accounting.
2166 	 *
2167 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2168 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2169 	 * to cover subsequent pages we may free.
2170 	 */
2171 	while (nr_pages--) {
2172 		h->resv_huge_pages--;
2173 		unused_resv_pages--;
2174 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2175 			goto out;
2176 		cond_resched_lock(&hugetlb_lock);
2177 	}
2178 
2179 out:
2180 	/* Fully uncommit the reservation */
2181 	h->resv_huge_pages -= unused_resv_pages;
2182 }
2183 
2184 
2185 /*
2186  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2187  * are used by the huge page allocation routines to manage reservations.
2188  *
2189  * vma_needs_reservation is called to determine if the huge page at addr
2190  * within the vma has an associated reservation.  If a reservation is
2191  * needed, the value 1 is returned.  The caller is then responsible for
2192  * managing the global reservation and subpool usage counts.  After
2193  * the huge page has been allocated, vma_commit_reservation is called
2194  * to add the page to the reservation map.  If the page allocation fails,
2195  * the reservation must be ended instead of committed.  vma_end_reservation
2196  * is called in such cases.
2197  *
2198  * In the normal case, vma_commit_reservation returns the same value
2199  * as the preceding vma_needs_reservation call.  The only time this
2200  * is not the case is if a reserve map was changed between calls.  It
2201  * is the responsibility of the caller to notice the difference and
2202  * take appropriate action.
2203  *
2204  * vma_add_reservation is used in error paths where a reservation must
2205  * be restored when a newly allocated huge page must be freed.  It is
2206  * to be called after calling vma_needs_reservation to determine if a
2207  * reservation exists.
2208  */
2209 enum vma_resv_mode {
2210 	VMA_NEEDS_RESV,
2211 	VMA_COMMIT_RESV,
2212 	VMA_END_RESV,
2213 	VMA_ADD_RESV,
2214 };
2215 static long __vma_reservation_common(struct hstate *h,
2216 				struct vm_area_struct *vma, unsigned long addr,
2217 				enum vma_resv_mode mode)
2218 {
2219 	struct resv_map *resv;
2220 	pgoff_t idx;
2221 	long ret;
2222 	long dummy_out_regions_needed;
2223 
2224 	resv = vma_resv_map(vma);
2225 	if (!resv)
2226 		return 1;
2227 
2228 	idx = vma_hugecache_offset(h, vma, addr);
2229 	switch (mode) {
2230 	case VMA_NEEDS_RESV:
2231 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2232 		/* We assume that vma_reservation_* routines always operate on
2233 		 * 1 page, and that adding to resv map a 1 page entry can only
2234 		 * ever require 1 region.
2235 		 */
2236 		VM_BUG_ON(dummy_out_regions_needed != 1);
2237 		break;
2238 	case VMA_COMMIT_RESV:
2239 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2240 		/* region_add calls of range 1 should never fail. */
2241 		VM_BUG_ON(ret < 0);
2242 		break;
2243 	case VMA_END_RESV:
2244 		region_abort(resv, idx, idx + 1, 1);
2245 		ret = 0;
2246 		break;
2247 	case VMA_ADD_RESV:
2248 		if (vma->vm_flags & VM_MAYSHARE) {
2249 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2250 			/* region_add calls of range 1 should never fail. */
2251 			VM_BUG_ON(ret < 0);
2252 		} else {
2253 			region_abort(resv, idx, idx + 1, 1);
2254 			ret = region_del(resv, idx, idx + 1);
2255 		}
2256 		break;
2257 	default:
2258 		BUG();
2259 	}
2260 
2261 	if (vma->vm_flags & VM_MAYSHARE)
2262 		return ret;
2263 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2264 		/*
2265 		 * In most cases, reserves always exist for private mappings.
2266 		 * However, a file associated with mapping could have been
2267 		 * hole punched or truncated after reserves were consumed.
2268 		 * As subsequent fault on such a range will not use reserves.
2269 		 * Subtle - The reserve map for private mappings has the
2270 		 * opposite meaning than that of shared mappings.  If NO
2271 		 * entry is in the reserve map, it means a reservation exists.
2272 		 * If an entry exists in the reserve map, it means the
2273 		 * reservation has already been consumed.  As a result, the
2274 		 * return value of this routine is the opposite of the
2275 		 * value returned from reserve map manipulation routines above.
2276 		 */
2277 		if (ret)
2278 			return 0;
2279 		else
2280 			return 1;
2281 	}
2282 	else
2283 		return ret < 0 ? ret : 0;
2284 }
2285 
2286 static long vma_needs_reservation(struct hstate *h,
2287 			struct vm_area_struct *vma, unsigned long addr)
2288 {
2289 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2290 }
2291 
2292 static long vma_commit_reservation(struct hstate *h,
2293 			struct vm_area_struct *vma, unsigned long addr)
2294 {
2295 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2296 }
2297 
2298 static void vma_end_reservation(struct hstate *h,
2299 			struct vm_area_struct *vma, unsigned long addr)
2300 {
2301 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2302 }
2303 
2304 static long vma_add_reservation(struct hstate *h,
2305 			struct vm_area_struct *vma, unsigned long addr)
2306 {
2307 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2308 }
2309 
2310 /*
2311  * This routine is called to restore a reservation on error paths.  In the
2312  * specific error paths, a huge page was allocated (via alloc_huge_page)
2313  * and is about to be freed.  If a reservation for the page existed,
2314  * alloc_huge_page would have consumed the reservation and set PagePrivate
2315  * in the newly allocated page.  When the page is freed via free_huge_page,
2316  * the global reservation count will be incremented if PagePrivate is set.
2317  * However, free_huge_page can not adjust the reserve map.  Adjust the
2318  * reserve map here to be consistent with global reserve count adjustments
2319  * to be made by free_huge_page.
2320  */
2321 static void restore_reserve_on_error(struct hstate *h,
2322 			struct vm_area_struct *vma, unsigned long address,
2323 			struct page *page)
2324 {
2325 	if (unlikely(PagePrivate(page))) {
2326 		long rc = vma_needs_reservation(h, vma, address);
2327 
2328 		if (unlikely(rc < 0)) {
2329 			/*
2330 			 * Rare out of memory condition in reserve map
2331 			 * manipulation.  Clear PagePrivate so that
2332 			 * global reserve count will not be incremented
2333 			 * by free_huge_page.  This will make it appear
2334 			 * as though the reservation for this page was
2335 			 * consumed.  This may prevent the task from
2336 			 * faulting in the page at a later time.  This
2337 			 * is better than inconsistent global huge page
2338 			 * accounting of reserve counts.
2339 			 */
2340 			ClearPagePrivate(page);
2341 		} else if (rc) {
2342 			rc = vma_add_reservation(h, vma, address);
2343 			if (unlikely(rc < 0))
2344 				/*
2345 				 * See above comment about rare out of
2346 				 * memory condition.
2347 				 */
2348 				ClearPagePrivate(page);
2349 		} else
2350 			vma_end_reservation(h, vma, address);
2351 	}
2352 }
2353 
2354 struct page *alloc_huge_page(struct vm_area_struct *vma,
2355 				    unsigned long addr, int avoid_reserve)
2356 {
2357 	struct hugepage_subpool *spool = subpool_vma(vma);
2358 	struct hstate *h = hstate_vma(vma);
2359 	struct page *page;
2360 	long map_chg, map_commit;
2361 	long gbl_chg;
2362 	int ret, idx;
2363 	struct hugetlb_cgroup *h_cg;
2364 	bool deferred_reserve;
2365 
2366 	idx = hstate_index(h);
2367 	/*
2368 	 * Examine the region/reserve map to determine if the process
2369 	 * has a reservation for the page to be allocated.  A return
2370 	 * code of zero indicates a reservation exists (no change).
2371 	 */
2372 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2373 	if (map_chg < 0)
2374 		return ERR_PTR(-ENOMEM);
2375 
2376 	/*
2377 	 * Processes that did not create the mapping will have no
2378 	 * reserves as indicated by the region/reserve map. Check
2379 	 * that the allocation will not exceed the subpool limit.
2380 	 * Allocations for MAP_NORESERVE mappings also need to be
2381 	 * checked against any subpool limit.
2382 	 */
2383 	if (map_chg || avoid_reserve) {
2384 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2385 		if (gbl_chg < 0) {
2386 			vma_end_reservation(h, vma, addr);
2387 			return ERR_PTR(-ENOSPC);
2388 		}
2389 
2390 		/*
2391 		 * Even though there was no reservation in the region/reserve
2392 		 * map, there could be reservations associated with the
2393 		 * subpool that can be used.  This would be indicated if the
2394 		 * return value of hugepage_subpool_get_pages() is zero.
2395 		 * However, if avoid_reserve is specified we still avoid even
2396 		 * the subpool reservations.
2397 		 */
2398 		if (avoid_reserve)
2399 			gbl_chg = 1;
2400 	}
2401 
2402 	/* If this allocation is not consuming a reservation, charge it now.
2403 	 */
2404 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2405 	if (deferred_reserve) {
2406 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2407 			idx, pages_per_huge_page(h), &h_cg);
2408 		if (ret)
2409 			goto out_subpool_put;
2410 	}
2411 
2412 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2413 	if (ret)
2414 		goto out_uncharge_cgroup_reservation;
2415 
2416 	spin_lock(&hugetlb_lock);
2417 	/*
2418 	 * glb_chg is passed to indicate whether or not a page must be taken
2419 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2420 	 * a reservation exists for the allocation.
2421 	 */
2422 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2423 	if (!page) {
2424 		spin_unlock(&hugetlb_lock);
2425 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2426 		if (!page)
2427 			goto out_uncharge_cgroup;
2428 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2429 			SetPagePrivate(page);
2430 			h->resv_huge_pages--;
2431 		}
2432 		spin_lock(&hugetlb_lock);
2433 		list_move(&page->lru, &h->hugepage_activelist);
2434 		/* Fall through */
2435 	}
2436 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2437 	/* If allocation is not consuming a reservation, also store the
2438 	 * hugetlb_cgroup pointer on the page.
2439 	 */
2440 	if (deferred_reserve) {
2441 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2442 						  h_cg, page);
2443 	}
2444 
2445 	spin_unlock(&hugetlb_lock);
2446 
2447 	set_page_private(page, (unsigned long)spool);
2448 
2449 	map_commit = vma_commit_reservation(h, vma, addr);
2450 	if (unlikely(map_chg > map_commit)) {
2451 		/*
2452 		 * The page was added to the reservation map between
2453 		 * vma_needs_reservation and vma_commit_reservation.
2454 		 * This indicates a race with hugetlb_reserve_pages.
2455 		 * Adjust for the subpool count incremented above AND
2456 		 * in hugetlb_reserve_pages for the same page.  Also,
2457 		 * the reservation count added in hugetlb_reserve_pages
2458 		 * no longer applies.
2459 		 */
2460 		long rsv_adjust;
2461 
2462 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2463 		hugetlb_acct_memory(h, -rsv_adjust);
2464 	}
2465 	return page;
2466 
2467 out_uncharge_cgroup:
2468 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2469 out_uncharge_cgroup_reservation:
2470 	if (deferred_reserve)
2471 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2472 						    h_cg);
2473 out_subpool_put:
2474 	if (map_chg || avoid_reserve)
2475 		hugepage_subpool_put_pages(spool, 1);
2476 	vma_end_reservation(h, vma, addr);
2477 	return ERR_PTR(-ENOSPC);
2478 }
2479 
2480 int alloc_bootmem_huge_page(struct hstate *h)
2481 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2482 int __alloc_bootmem_huge_page(struct hstate *h)
2483 {
2484 	struct huge_bootmem_page *m;
2485 	int nr_nodes, node;
2486 
2487 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2488 		void *addr;
2489 
2490 		addr = memblock_alloc_try_nid_raw(
2491 				huge_page_size(h), huge_page_size(h),
2492 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2493 		if (addr) {
2494 			/*
2495 			 * Use the beginning of the huge page to store the
2496 			 * huge_bootmem_page struct (until gather_bootmem
2497 			 * puts them into the mem_map).
2498 			 */
2499 			m = addr;
2500 			goto found;
2501 		}
2502 	}
2503 	return 0;
2504 
2505 found:
2506 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2507 	/* Put them into a private list first because mem_map is not up yet */
2508 	INIT_LIST_HEAD(&m->list);
2509 	list_add(&m->list, &huge_boot_pages);
2510 	m->hstate = h;
2511 	return 1;
2512 }
2513 
2514 static void __init prep_compound_huge_page(struct page *page,
2515 		unsigned int order)
2516 {
2517 	if (unlikely(order > (MAX_ORDER - 1)))
2518 		prep_compound_gigantic_page(page, order);
2519 	else
2520 		prep_compound_page(page, order);
2521 }
2522 
2523 /* Put bootmem huge pages into the standard lists after mem_map is up */
2524 static void __init gather_bootmem_prealloc(void)
2525 {
2526 	struct huge_bootmem_page *m;
2527 
2528 	list_for_each_entry(m, &huge_boot_pages, list) {
2529 		struct page *page = virt_to_page(m);
2530 		struct hstate *h = m->hstate;
2531 
2532 		WARN_ON(page_count(page) != 1);
2533 		prep_compound_huge_page(page, h->order);
2534 		WARN_ON(PageReserved(page));
2535 		prep_new_huge_page(h, page, page_to_nid(page));
2536 		put_page(page); /* free it into the hugepage allocator */
2537 
2538 		/*
2539 		 * If we had gigantic hugepages allocated at boot time, we need
2540 		 * to restore the 'stolen' pages to totalram_pages in order to
2541 		 * fix confusing memory reports from free(1) and another
2542 		 * side-effects, like CommitLimit going negative.
2543 		 */
2544 		if (hstate_is_gigantic(h))
2545 			adjust_managed_page_count(page, 1 << h->order);
2546 		cond_resched();
2547 	}
2548 }
2549 
2550 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2551 {
2552 	unsigned long i;
2553 	nodemask_t *node_alloc_noretry;
2554 
2555 	if (!hstate_is_gigantic(h)) {
2556 		/*
2557 		 * Bit mask controlling how hard we retry per-node allocations.
2558 		 * Ignore errors as lower level routines can deal with
2559 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2560 		 * time, we are likely in bigger trouble.
2561 		 */
2562 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2563 						GFP_KERNEL);
2564 	} else {
2565 		/* allocations done at boot time */
2566 		node_alloc_noretry = NULL;
2567 	}
2568 
2569 	/* bit mask controlling how hard we retry per-node allocations */
2570 	if (node_alloc_noretry)
2571 		nodes_clear(*node_alloc_noretry);
2572 
2573 	for (i = 0; i < h->max_huge_pages; ++i) {
2574 		if (hstate_is_gigantic(h)) {
2575 			if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
2576 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2577 				break;
2578 			}
2579 			if (!alloc_bootmem_huge_page(h))
2580 				break;
2581 		} else if (!alloc_pool_huge_page(h,
2582 					 &node_states[N_MEMORY],
2583 					 node_alloc_noretry))
2584 			break;
2585 		cond_resched();
2586 	}
2587 	if (i < h->max_huge_pages) {
2588 		char buf[32];
2589 
2590 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2591 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2592 			h->max_huge_pages, buf, i);
2593 		h->max_huge_pages = i;
2594 	}
2595 
2596 	kfree(node_alloc_noretry);
2597 }
2598 
2599 static void __init hugetlb_init_hstates(void)
2600 {
2601 	struct hstate *h;
2602 
2603 	for_each_hstate(h) {
2604 		if (minimum_order > huge_page_order(h))
2605 			minimum_order = huge_page_order(h);
2606 
2607 		/* oversize hugepages were init'ed in early boot */
2608 		if (!hstate_is_gigantic(h))
2609 			hugetlb_hstate_alloc_pages(h);
2610 	}
2611 	VM_BUG_ON(minimum_order == UINT_MAX);
2612 }
2613 
2614 static void __init report_hugepages(void)
2615 {
2616 	struct hstate *h;
2617 
2618 	for_each_hstate(h) {
2619 		char buf[32];
2620 
2621 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2622 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2623 			buf, h->free_huge_pages);
2624 	}
2625 }
2626 
2627 #ifdef CONFIG_HIGHMEM
2628 static void try_to_free_low(struct hstate *h, unsigned long count,
2629 						nodemask_t *nodes_allowed)
2630 {
2631 	int i;
2632 
2633 	if (hstate_is_gigantic(h))
2634 		return;
2635 
2636 	for_each_node_mask(i, *nodes_allowed) {
2637 		struct page *page, *next;
2638 		struct list_head *freel = &h->hugepage_freelists[i];
2639 		list_for_each_entry_safe(page, next, freel, lru) {
2640 			if (count >= h->nr_huge_pages)
2641 				return;
2642 			if (PageHighMem(page))
2643 				continue;
2644 			list_del(&page->lru);
2645 			update_and_free_page(h, page);
2646 			h->free_huge_pages--;
2647 			h->free_huge_pages_node[page_to_nid(page)]--;
2648 		}
2649 	}
2650 }
2651 #else
2652 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2653 						nodemask_t *nodes_allowed)
2654 {
2655 }
2656 #endif
2657 
2658 /*
2659  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2660  * balanced by operating on them in a round-robin fashion.
2661  * Returns 1 if an adjustment was made.
2662  */
2663 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2664 				int delta)
2665 {
2666 	int nr_nodes, node;
2667 
2668 	VM_BUG_ON(delta != -1 && delta != 1);
2669 
2670 	if (delta < 0) {
2671 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2672 			if (h->surplus_huge_pages_node[node])
2673 				goto found;
2674 		}
2675 	} else {
2676 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2677 			if (h->surplus_huge_pages_node[node] <
2678 					h->nr_huge_pages_node[node])
2679 				goto found;
2680 		}
2681 	}
2682 	return 0;
2683 
2684 found:
2685 	h->surplus_huge_pages += delta;
2686 	h->surplus_huge_pages_node[node] += delta;
2687 	return 1;
2688 }
2689 
2690 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2691 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2692 			      nodemask_t *nodes_allowed)
2693 {
2694 	unsigned long min_count, ret;
2695 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2696 
2697 	/*
2698 	 * Bit mask controlling how hard we retry per-node allocations.
2699 	 * If we can not allocate the bit mask, do not attempt to allocate
2700 	 * the requested huge pages.
2701 	 */
2702 	if (node_alloc_noretry)
2703 		nodes_clear(*node_alloc_noretry);
2704 	else
2705 		return -ENOMEM;
2706 
2707 	spin_lock(&hugetlb_lock);
2708 
2709 	/*
2710 	 * Check for a node specific request.
2711 	 * Changing node specific huge page count may require a corresponding
2712 	 * change to the global count.  In any case, the passed node mask
2713 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2714 	 */
2715 	if (nid != NUMA_NO_NODE) {
2716 		unsigned long old_count = count;
2717 
2718 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2719 		/*
2720 		 * User may have specified a large count value which caused the
2721 		 * above calculation to overflow.  In this case, they wanted
2722 		 * to allocate as many huge pages as possible.  Set count to
2723 		 * largest possible value to align with their intention.
2724 		 */
2725 		if (count < old_count)
2726 			count = ULONG_MAX;
2727 	}
2728 
2729 	/*
2730 	 * Gigantic pages runtime allocation depend on the capability for large
2731 	 * page range allocation.
2732 	 * If the system does not provide this feature, return an error when
2733 	 * the user tries to allocate gigantic pages but let the user free the
2734 	 * boottime allocated gigantic pages.
2735 	 */
2736 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2737 		if (count > persistent_huge_pages(h)) {
2738 			spin_unlock(&hugetlb_lock);
2739 			NODEMASK_FREE(node_alloc_noretry);
2740 			return -EINVAL;
2741 		}
2742 		/* Fall through to decrease pool */
2743 	}
2744 
2745 	/*
2746 	 * Increase the pool size
2747 	 * First take pages out of surplus state.  Then make up the
2748 	 * remaining difference by allocating fresh huge pages.
2749 	 *
2750 	 * We might race with alloc_surplus_huge_page() here and be unable
2751 	 * to convert a surplus huge page to a normal huge page. That is
2752 	 * not critical, though, it just means the overall size of the
2753 	 * pool might be one hugepage larger than it needs to be, but
2754 	 * within all the constraints specified by the sysctls.
2755 	 */
2756 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2757 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2758 			break;
2759 	}
2760 
2761 	while (count > persistent_huge_pages(h)) {
2762 		/*
2763 		 * If this allocation races such that we no longer need the
2764 		 * page, free_huge_page will handle it by freeing the page
2765 		 * and reducing the surplus.
2766 		 */
2767 		spin_unlock(&hugetlb_lock);
2768 
2769 		/* yield cpu to avoid soft lockup */
2770 		cond_resched();
2771 
2772 		ret = alloc_pool_huge_page(h, nodes_allowed,
2773 						node_alloc_noretry);
2774 		spin_lock(&hugetlb_lock);
2775 		if (!ret)
2776 			goto out;
2777 
2778 		/* Bail for signals. Probably ctrl-c from user */
2779 		if (signal_pending(current))
2780 			goto out;
2781 	}
2782 
2783 	/*
2784 	 * Decrease the pool size
2785 	 * First return free pages to the buddy allocator (being careful
2786 	 * to keep enough around to satisfy reservations).  Then place
2787 	 * pages into surplus state as needed so the pool will shrink
2788 	 * to the desired size as pages become free.
2789 	 *
2790 	 * By placing pages into the surplus state independent of the
2791 	 * overcommit value, we are allowing the surplus pool size to
2792 	 * exceed overcommit. There are few sane options here. Since
2793 	 * alloc_surplus_huge_page() is checking the global counter,
2794 	 * though, we'll note that we're not allowed to exceed surplus
2795 	 * and won't grow the pool anywhere else. Not until one of the
2796 	 * sysctls are changed, or the surplus pages go out of use.
2797 	 */
2798 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2799 	min_count = max(count, min_count);
2800 	try_to_free_low(h, min_count, nodes_allowed);
2801 	while (min_count < persistent_huge_pages(h)) {
2802 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2803 			break;
2804 		cond_resched_lock(&hugetlb_lock);
2805 	}
2806 	while (count < persistent_huge_pages(h)) {
2807 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2808 			break;
2809 	}
2810 out:
2811 	h->max_huge_pages = persistent_huge_pages(h);
2812 	spin_unlock(&hugetlb_lock);
2813 
2814 	NODEMASK_FREE(node_alloc_noretry);
2815 
2816 	return 0;
2817 }
2818 
2819 #define HSTATE_ATTR_RO(_name) \
2820 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2821 
2822 #define HSTATE_ATTR(_name) \
2823 	static struct kobj_attribute _name##_attr = \
2824 		__ATTR(_name, 0644, _name##_show, _name##_store)
2825 
2826 static struct kobject *hugepages_kobj;
2827 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2828 
2829 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2830 
2831 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2832 {
2833 	int i;
2834 
2835 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2836 		if (hstate_kobjs[i] == kobj) {
2837 			if (nidp)
2838 				*nidp = NUMA_NO_NODE;
2839 			return &hstates[i];
2840 		}
2841 
2842 	return kobj_to_node_hstate(kobj, nidp);
2843 }
2844 
2845 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2846 					struct kobj_attribute *attr, char *buf)
2847 {
2848 	struct hstate *h;
2849 	unsigned long nr_huge_pages;
2850 	int nid;
2851 
2852 	h = kobj_to_hstate(kobj, &nid);
2853 	if (nid == NUMA_NO_NODE)
2854 		nr_huge_pages = h->nr_huge_pages;
2855 	else
2856 		nr_huge_pages = h->nr_huge_pages_node[nid];
2857 
2858 	return sprintf(buf, "%lu\n", nr_huge_pages);
2859 }
2860 
2861 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2862 					   struct hstate *h, int nid,
2863 					   unsigned long count, size_t len)
2864 {
2865 	int err;
2866 	nodemask_t nodes_allowed, *n_mask;
2867 
2868 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2869 		return -EINVAL;
2870 
2871 	if (nid == NUMA_NO_NODE) {
2872 		/*
2873 		 * global hstate attribute
2874 		 */
2875 		if (!(obey_mempolicy &&
2876 				init_nodemask_of_mempolicy(&nodes_allowed)))
2877 			n_mask = &node_states[N_MEMORY];
2878 		else
2879 			n_mask = &nodes_allowed;
2880 	} else {
2881 		/*
2882 		 * Node specific request.  count adjustment happens in
2883 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2884 		 */
2885 		init_nodemask_of_node(&nodes_allowed, nid);
2886 		n_mask = &nodes_allowed;
2887 	}
2888 
2889 	err = set_max_huge_pages(h, count, nid, n_mask);
2890 
2891 	return err ? err : len;
2892 }
2893 
2894 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2895 					 struct kobject *kobj, const char *buf,
2896 					 size_t len)
2897 {
2898 	struct hstate *h;
2899 	unsigned long count;
2900 	int nid;
2901 	int err;
2902 
2903 	err = kstrtoul(buf, 10, &count);
2904 	if (err)
2905 		return err;
2906 
2907 	h = kobj_to_hstate(kobj, &nid);
2908 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2909 }
2910 
2911 static ssize_t nr_hugepages_show(struct kobject *kobj,
2912 				       struct kobj_attribute *attr, char *buf)
2913 {
2914 	return nr_hugepages_show_common(kobj, attr, buf);
2915 }
2916 
2917 static ssize_t nr_hugepages_store(struct kobject *kobj,
2918 	       struct kobj_attribute *attr, const char *buf, size_t len)
2919 {
2920 	return nr_hugepages_store_common(false, kobj, buf, len);
2921 }
2922 HSTATE_ATTR(nr_hugepages);
2923 
2924 #ifdef CONFIG_NUMA
2925 
2926 /*
2927  * hstate attribute for optionally mempolicy-based constraint on persistent
2928  * huge page alloc/free.
2929  */
2930 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2931 				       struct kobj_attribute *attr, char *buf)
2932 {
2933 	return nr_hugepages_show_common(kobj, attr, buf);
2934 }
2935 
2936 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2937 	       struct kobj_attribute *attr, const char *buf, size_t len)
2938 {
2939 	return nr_hugepages_store_common(true, kobj, buf, len);
2940 }
2941 HSTATE_ATTR(nr_hugepages_mempolicy);
2942 #endif
2943 
2944 
2945 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2946 					struct kobj_attribute *attr, char *buf)
2947 {
2948 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2949 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2950 }
2951 
2952 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2953 		struct kobj_attribute *attr, const char *buf, size_t count)
2954 {
2955 	int err;
2956 	unsigned long input;
2957 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2958 
2959 	if (hstate_is_gigantic(h))
2960 		return -EINVAL;
2961 
2962 	err = kstrtoul(buf, 10, &input);
2963 	if (err)
2964 		return err;
2965 
2966 	spin_lock(&hugetlb_lock);
2967 	h->nr_overcommit_huge_pages = input;
2968 	spin_unlock(&hugetlb_lock);
2969 
2970 	return count;
2971 }
2972 HSTATE_ATTR(nr_overcommit_hugepages);
2973 
2974 static ssize_t free_hugepages_show(struct kobject *kobj,
2975 					struct kobj_attribute *attr, char *buf)
2976 {
2977 	struct hstate *h;
2978 	unsigned long free_huge_pages;
2979 	int nid;
2980 
2981 	h = kobj_to_hstate(kobj, &nid);
2982 	if (nid == NUMA_NO_NODE)
2983 		free_huge_pages = h->free_huge_pages;
2984 	else
2985 		free_huge_pages = h->free_huge_pages_node[nid];
2986 
2987 	return sprintf(buf, "%lu\n", free_huge_pages);
2988 }
2989 HSTATE_ATTR_RO(free_hugepages);
2990 
2991 static ssize_t resv_hugepages_show(struct kobject *kobj,
2992 					struct kobj_attribute *attr, char *buf)
2993 {
2994 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2995 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2996 }
2997 HSTATE_ATTR_RO(resv_hugepages);
2998 
2999 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3000 					struct kobj_attribute *attr, char *buf)
3001 {
3002 	struct hstate *h;
3003 	unsigned long surplus_huge_pages;
3004 	int nid;
3005 
3006 	h = kobj_to_hstate(kobj, &nid);
3007 	if (nid == NUMA_NO_NODE)
3008 		surplus_huge_pages = h->surplus_huge_pages;
3009 	else
3010 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3011 
3012 	return sprintf(buf, "%lu\n", surplus_huge_pages);
3013 }
3014 HSTATE_ATTR_RO(surplus_hugepages);
3015 
3016 static struct attribute *hstate_attrs[] = {
3017 	&nr_hugepages_attr.attr,
3018 	&nr_overcommit_hugepages_attr.attr,
3019 	&free_hugepages_attr.attr,
3020 	&resv_hugepages_attr.attr,
3021 	&surplus_hugepages_attr.attr,
3022 #ifdef CONFIG_NUMA
3023 	&nr_hugepages_mempolicy_attr.attr,
3024 #endif
3025 	NULL,
3026 };
3027 
3028 static const struct attribute_group hstate_attr_group = {
3029 	.attrs = hstate_attrs,
3030 };
3031 
3032 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3033 				    struct kobject **hstate_kobjs,
3034 				    const struct attribute_group *hstate_attr_group)
3035 {
3036 	int retval;
3037 	int hi = hstate_index(h);
3038 
3039 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3040 	if (!hstate_kobjs[hi])
3041 		return -ENOMEM;
3042 
3043 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3044 	if (retval)
3045 		kobject_put(hstate_kobjs[hi]);
3046 
3047 	return retval;
3048 }
3049 
3050 static void __init hugetlb_sysfs_init(void)
3051 {
3052 	struct hstate *h;
3053 	int err;
3054 
3055 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3056 	if (!hugepages_kobj)
3057 		return;
3058 
3059 	for_each_hstate(h) {
3060 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3061 					 hstate_kobjs, &hstate_attr_group);
3062 		if (err)
3063 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
3064 	}
3065 }
3066 
3067 #ifdef CONFIG_NUMA
3068 
3069 /*
3070  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3071  * with node devices in node_devices[] using a parallel array.  The array
3072  * index of a node device or _hstate == node id.
3073  * This is here to avoid any static dependency of the node device driver, in
3074  * the base kernel, on the hugetlb module.
3075  */
3076 struct node_hstate {
3077 	struct kobject		*hugepages_kobj;
3078 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3079 };
3080 static struct node_hstate node_hstates[MAX_NUMNODES];
3081 
3082 /*
3083  * A subset of global hstate attributes for node devices
3084  */
3085 static struct attribute *per_node_hstate_attrs[] = {
3086 	&nr_hugepages_attr.attr,
3087 	&free_hugepages_attr.attr,
3088 	&surplus_hugepages_attr.attr,
3089 	NULL,
3090 };
3091 
3092 static const struct attribute_group per_node_hstate_attr_group = {
3093 	.attrs = per_node_hstate_attrs,
3094 };
3095 
3096 /*
3097  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3098  * Returns node id via non-NULL nidp.
3099  */
3100 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3101 {
3102 	int nid;
3103 
3104 	for (nid = 0; nid < nr_node_ids; nid++) {
3105 		struct node_hstate *nhs = &node_hstates[nid];
3106 		int i;
3107 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3108 			if (nhs->hstate_kobjs[i] == kobj) {
3109 				if (nidp)
3110 					*nidp = nid;
3111 				return &hstates[i];
3112 			}
3113 	}
3114 
3115 	BUG();
3116 	return NULL;
3117 }
3118 
3119 /*
3120  * Unregister hstate attributes from a single node device.
3121  * No-op if no hstate attributes attached.
3122  */
3123 static void hugetlb_unregister_node(struct node *node)
3124 {
3125 	struct hstate *h;
3126 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3127 
3128 	if (!nhs->hugepages_kobj)
3129 		return;		/* no hstate attributes */
3130 
3131 	for_each_hstate(h) {
3132 		int idx = hstate_index(h);
3133 		if (nhs->hstate_kobjs[idx]) {
3134 			kobject_put(nhs->hstate_kobjs[idx]);
3135 			nhs->hstate_kobjs[idx] = NULL;
3136 		}
3137 	}
3138 
3139 	kobject_put(nhs->hugepages_kobj);
3140 	nhs->hugepages_kobj = NULL;
3141 }
3142 
3143 
3144 /*
3145  * Register hstate attributes for a single node device.
3146  * No-op if attributes already registered.
3147  */
3148 static void hugetlb_register_node(struct node *node)
3149 {
3150 	struct hstate *h;
3151 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3152 	int err;
3153 
3154 	if (nhs->hugepages_kobj)
3155 		return;		/* already allocated */
3156 
3157 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3158 							&node->dev.kobj);
3159 	if (!nhs->hugepages_kobj)
3160 		return;
3161 
3162 	for_each_hstate(h) {
3163 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3164 						nhs->hstate_kobjs,
3165 						&per_node_hstate_attr_group);
3166 		if (err) {
3167 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
3168 				h->name, node->dev.id);
3169 			hugetlb_unregister_node(node);
3170 			break;
3171 		}
3172 	}
3173 }
3174 
3175 /*
3176  * hugetlb init time:  register hstate attributes for all registered node
3177  * devices of nodes that have memory.  All on-line nodes should have
3178  * registered their associated device by this time.
3179  */
3180 static void __init hugetlb_register_all_nodes(void)
3181 {
3182 	int nid;
3183 
3184 	for_each_node_state(nid, N_MEMORY) {
3185 		struct node *node = node_devices[nid];
3186 		if (node->dev.id == nid)
3187 			hugetlb_register_node(node);
3188 	}
3189 
3190 	/*
3191 	 * Let the node device driver know we're here so it can
3192 	 * [un]register hstate attributes on node hotplug.
3193 	 */
3194 	register_hugetlbfs_with_node(hugetlb_register_node,
3195 				     hugetlb_unregister_node);
3196 }
3197 #else	/* !CONFIG_NUMA */
3198 
3199 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3200 {
3201 	BUG();
3202 	if (nidp)
3203 		*nidp = -1;
3204 	return NULL;
3205 }
3206 
3207 static void hugetlb_register_all_nodes(void) { }
3208 
3209 #endif
3210 
3211 static int __init hugetlb_init(void)
3212 {
3213 	int i;
3214 
3215 	if (!hugepages_supported())
3216 		return 0;
3217 
3218 	if (!size_to_hstate(default_hstate_size)) {
3219 		if (default_hstate_size != 0) {
3220 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
3221 			       default_hstate_size, HPAGE_SIZE);
3222 		}
3223 
3224 		default_hstate_size = HPAGE_SIZE;
3225 		if (!size_to_hstate(default_hstate_size))
3226 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3227 	}
3228 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
3229 	if (default_hstate_max_huge_pages) {
3230 		if (!default_hstate.max_huge_pages)
3231 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3232 	}
3233 
3234 	hugetlb_cma_check();
3235 	hugetlb_init_hstates();
3236 	gather_bootmem_prealloc();
3237 	report_hugepages();
3238 
3239 	hugetlb_sysfs_init();
3240 	hugetlb_register_all_nodes();
3241 	hugetlb_cgroup_file_init();
3242 
3243 #ifdef CONFIG_SMP
3244 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3245 #else
3246 	num_fault_mutexes = 1;
3247 #endif
3248 	hugetlb_fault_mutex_table =
3249 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3250 			      GFP_KERNEL);
3251 	BUG_ON(!hugetlb_fault_mutex_table);
3252 
3253 	for (i = 0; i < num_fault_mutexes; i++)
3254 		mutex_init(&hugetlb_fault_mutex_table[i]);
3255 	return 0;
3256 }
3257 subsys_initcall(hugetlb_init);
3258 
3259 /* Should be called on processing a hugepagesz=... option */
3260 void __init hugetlb_bad_size(void)
3261 {
3262 	parsed_valid_hugepagesz = false;
3263 }
3264 
3265 void __init hugetlb_add_hstate(unsigned int order)
3266 {
3267 	struct hstate *h;
3268 	unsigned long i;
3269 
3270 	if (size_to_hstate(PAGE_SIZE << order)) {
3271 		pr_warn("hugepagesz= specified twice, ignoring\n");
3272 		return;
3273 	}
3274 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3275 	BUG_ON(order == 0);
3276 	h = &hstates[hugetlb_max_hstate++];
3277 	h->order = order;
3278 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3279 	h->nr_huge_pages = 0;
3280 	h->free_huge_pages = 0;
3281 	for (i = 0; i < MAX_NUMNODES; ++i)
3282 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3283 	INIT_LIST_HEAD(&h->hugepage_activelist);
3284 	h->next_nid_to_alloc = first_memory_node;
3285 	h->next_nid_to_free = first_memory_node;
3286 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3287 					huge_page_size(h)/1024);
3288 
3289 	parsed_hstate = h;
3290 }
3291 
3292 static int __init hugetlb_nrpages_setup(char *s)
3293 {
3294 	unsigned long *mhp;
3295 	static unsigned long *last_mhp;
3296 
3297 	if (!parsed_valid_hugepagesz) {
3298 		pr_warn("hugepages = %s preceded by "
3299 			"an unsupported hugepagesz, ignoring\n", s);
3300 		parsed_valid_hugepagesz = true;
3301 		return 1;
3302 	}
3303 	/*
3304 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3305 	 * so this hugepages= parameter goes to the "default hstate".
3306 	 */
3307 	else if (!hugetlb_max_hstate)
3308 		mhp = &default_hstate_max_huge_pages;
3309 	else
3310 		mhp = &parsed_hstate->max_huge_pages;
3311 
3312 	if (mhp == last_mhp) {
3313 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3314 		return 1;
3315 	}
3316 
3317 	if (sscanf(s, "%lu", mhp) <= 0)
3318 		*mhp = 0;
3319 
3320 	/*
3321 	 * Global state is always initialized later in hugetlb_init.
3322 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3323 	 * use the bootmem allocator.
3324 	 */
3325 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3326 		hugetlb_hstate_alloc_pages(parsed_hstate);
3327 
3328 	last_mhp = mhp;
3329 
3330 	return 1;
3331 }
3332 __setup("hugepages=", hugetlb_nrpages_setup);
3333 
3334 static int __init hugetlb_default_setup(char *s)
3335 {
3336 	default_hstate_size = memparse(s, &s);
3337 	return 1;
3338 }
3339 __setup("default_hugepagesz=", hugetlb_default_setup);
3340 
3341 static unsigned int cpuset_mems_nr(unsigned int *array)
3342 {
3343 	int node;
3344 	unsigned int nr = 0;
3345 
3346 	for_each_node_mask(node, cpuset_current_mems_allowed)
3347 		nr += array[node];
3348 
3349 	return nr;
3350 }
3351 
3352 #ifdef CONFIG_SYSCTL
3353 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3354 			 struct ctl_table *table, int write,
3355 			 void __user *buffer, size_t *length, loff_t *ppos)
3356 {
3357 	struct hstate *h = &default_hstate;
3358 	unsigned long tmp = h->max_huge_pages;
3359 	int ret;
3360 
3361 	if (!hugepages_supported())
3362 		return -EOPNOTSUPP;
3363 
3364 	table->data = &tmp;
3365 	table->maxlen = sizeof(unsigned long);
3366 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3367 	if (ret)
3368 		goto out;
3369 
3370 	if (write)
3371 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3372 						  NUMA_NO_NODE, tmp, *length);
3373 out:
3374 	return ret;
3375 }
3376 
3377 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3378 			  void __user *buffer, size_t *length, loff_t *ppos)
3379 {
3380 
3381 	return hugetlb_sysctl_handler_common(false, table, write,
3382 							buffer, length, ppos);
3383 }
3384 
3385 #ifdef CONFIG_NUMA
3386 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3387 			  void __user *buffer, size_t *length, loff_t *ppos)
3388 {
3389 	return hugetlb_sysctl_handler_common(true, table, write,
3390 							buffer, length, ppos);
3391 }
3392 #endif /* CONFIG_NUMA */
3393 
3394 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3395 			void __user *buffer,
3396 			size_t *length, loff_t *ppos)
3397 {
3398 	struct hstate *h = &default_hstate;
3399 	unsigned long tmp;
3400 	int ret;
3401 
3402 	if (!hugepages_supported())
3403 		return -EOPNOTSUPP;
3404 
3405 	tmp = h->nr_overcommit_huge_pages;
3406 
3407 	if (write && hstate_is_gigantic(h))
3408 		return -EINVAL;
3409 
3410 	table->data = &tmp;
3411 	table->maxlen = sizeof(unsigned long);
3412 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3413 	if (ret)
3414 		goto out;
3415 
3416 	if (write) {
3417 		spin_lock(&hugetlb_lock);
3418 		h->nr_overcommit_huge_pages = tmp;
3419 		spin_unlock(&hugetlb_lock);
3420 	}
3421 out:
3422 	return ret;
3423 }
3424 
3425 #endif /* CONFIG_SYSCTL */
3426 
3427 void hugetlb_report_meminfo(struct seq_file *m)
3428 {
3429 	struct hstate *h;
3430 	unsigned long total = 0;
3431 
3432 	if (!hugepages_supported())
3433 		return;
3434 
3435 	for_each_hstate(h) {
3436 		unsigned long count = h->nr_huge_pages;
3437 
3438 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3439 
3440 		if (h == &default_hstate)
3441 			seq_printf(m,
3442 				   "HugePages_Total:   %5lu\n"
3443 				   "HugePages_Free:    %5lu\n"
3444 				   "HugePages_Rsvd:    %5lu\n"
3445 				   "HugePages_Surp:    %5lu\n"
3446 				   "Hugepagesize:   %8lu kB\n",
3447 				   count,
3448 				   h->free_huge_pages,
3449 				   h->resv_huge_pages,
3450 				   h->surplus_huge_pages,
3451 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3452 	}
3453 
3454 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3455 }
3456 
3457 int hugetlb_report_node_meminfo(int nid, char *buf)
3458 {
3459 	struct hstate *h = &default_hstate;
3460 	if (!hugepages_supported())
3461 		return 0;
3462 	return sprintf(buf,
3463 		"Node %d HugePages_Total: %5u\n"
3464 		"Node %d HugePages_Free:  %5u\n"
3465 		"Node %d HugePages_Surp:  %5u\n",
3466 		nid, h->nr_huge_pages_node[nid],
3467 		nid, h->free_huge_pages_node[nid],
3468 		nid, h->surplus_huge_pages_node[nid]);
3469 }
3470 
3471 void hugetlb_show_meminfo(void)
3472 {
3473 	struct hstate *h;
3474 	int nid;
3475 
3476 	if (!hugepages_supported())
3477 		return;
3478 
3479 	for_each_node_state(nid, N_MEMORY)
3480 		for_each_hstate(h)
3481 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3482 				nid,
3483 				h->nr_huge_pages_node[nid],
3484 				h->free_huge_pages_node[nid],
3485 				h->surplus_huge_pages_node[nid],
3486 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3487 }
3488 
3489 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3490 {
3491 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3492 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3493 }
3494 
3495 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3496 unsigned long hugetlb_total_pages(void)
3497 {
3498 	struct hstate *h;
3499 	unsigned long nr_total_pages = 0;
3500 
3501 	for_each_hstate(h)
3502 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3503 	return nr_total_pages;
3504 }
3505 
3506 static int hugetlb_acct_memory(struct hstate *h, long delta)
3507 {
3508 	int ret = -ENOMEM;
3509 
3510 	spin_lock(&hugetlb_lock);
3511 	/*
3512 	 * When cpuset is configured, it breaks the strict hugetlb page
3513 	 * reservation as the accounting is done on a global variable. Such
3514 	 * reservation is completely rubbish in the presence of cpuset because
3515 	 * the reservation is not checked against page availability for the
3516 	 * current cpuset. Application can still potentially OOM'ed by kernel
3517 	 * with lack of free htlb page in cpuset that the task is in.
3518 	 * Attempt to enforce strict accounting with cpuset is almost
3519 	 * impossible (or too ugly) because cpuset is too fluid that
3520 	 * task or memory node can be dynamically moved between cpusets.
3521 	 *
3522 	 * The change of semantics for shared hugetlb mapping with cpuset is
3523 	 * undesirable. However, in order to preserve some of the semantics,
3524 	 * we fall back to check against current free page availability as
3525 	 * a best attempt and hopefully to minimize the impact of changing
3526 	 * semantics that cpuset has.
3527 	 */
3528 	if (delta > 0) {
3529 		if (gather_surplus_pages(h, delta) < 0)
3530 			goto out;
3531 
3532 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3533 			return_unused_surplus_pages(h, delta);
3534 			goto out;
3535 		}
3536 	}
3537 
3538 	ret = 0;
3539 	if (delta < 0)
3540 		return_unused_surplus_pages(h, (unsigned long) -delta);
3541 
3542 out:
3543 	spin_unlock(&hugetlb_lock);
3544 	return ret;
3545 }
3546 
3547 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3548 {
3549 	struct resv_map *resv = vma_resv_map(vma);
3550 
3551 	/*
3552 	 * This new VMA should share its siblings reservation map if present.
3553 	 * The VMA will only ever have a valid reservation map pointer where
3554 	 * it is being copied for another still existing VMA.  As that VMA
3555 	 * has a reference to the reservation map it cannot disappear until
3556 	 * after this open call completes.  It is therefore safe to take a
3557 	 * new reference here without additional locking.
3558 	 */
3559 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3560 		kref_get(&resv->refs);
3561 }
3562 
3563 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3564 {
3565 	struct hstate *h = hstate_vma(vma);
3566 	struct resv_map *resv = vma_resv_map(vma);
3567 	struct hugepage_subpool *spool = subpool_vma(vma);
3568 	unsigned long reserve, start, end;
3569 	long gbl_reserve;
3570 
3571 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3572 		return;
3573 
3574 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3575 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3576 
3577 	reserve = (end - start) - region_count(resv, start, end);
3578 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3579 	if (reserve) {
3580 		/*
3581 		 * Decrement reserve counts.  The global reserve count may be
3582 		 * adjusted if the subpool has a minimum size.
3583 		 */
3584 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3585 		hugetlb_acct_memory(h, -gbl_reserve);
3586 	}
3587 
3588 	kref_put(&resv->refs, resv_map_release);
3589 }
3590 
3591 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3592 {
3593 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3594 		return -EINVAL;
3595 	return 0;
3596 }
3597 
3598 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3599 {
3600 	struct hstate *hstate = hstate_vma(vma);
3601 
3602 	return 1UL << huge_page_shift(hstate);
3603 }
3604 
3605 /*
3606  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3607  * handle_mm_fault() to try to instantiate regular-sized pages in the
3608  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3609  * this far.
3610  */
3611 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3612 {
3613 	BUG();
3614 	return 0;
3615 }
3616 
3617 /*
3618  * When a new function is introduced to vm_operations_struct and added
3619  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3620  * This is because under System V memory model, mappings created via
3621  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3622  * their original vm_ops are overwritten with shm_vm_ops.
3623  */
3624 const struct vm_operations_struct hugetlb_vm_ops = {
3625 	.fault = hugetlb_vm_op_fault,
3626 	.open = hugetlb_vm_op_open,
3627 	.close = hugetlb_vm_op_close,
3628 	.split = hugetlb_vm_op_split,
3629 	.pagesize = hugetlb_vm_op_pagesize,
3630 };
3631 
3632 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3633 				int writable)
3634 {
3635 	pte_t entry;
3636 
3637 	if (writable) {
3638 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3639 					 vma->vm_page_prot)));
3640 	} else {
3641 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3642 					   vma->vm_page_prot));
3643 	}
3644 	entry = pte_mkyoung(entry);
3645 	entry = pte_mkhuge(entry);
3646 	entry = arch_make_huge_pte(entry, vma, page, writable);
3647 
3648 	return entry;
3649 }
3650 
3651 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3652 				   unsigned long address, pte_t *ptep)
3653 {
3654 	pte_t entry;
3655 
3656 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3657 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3658 		update_mmu_cache(vma, address, ptep);
3659 }
3660 
3661 bool is_hugetlb_entry_migration(pte_t pte)
3662 {
3663 	swp_entry_t swp;
3664 
3665 	if (huge_pte_none(pte) || pte_present(pte))
3666 		return false;
3667 	swp = pte_to_swp_entry(pte);
3668 	if (non_swap_entry(swp) && is_migration_entry(swp))
3669 		return true;
3670 	else
3671 		return false;
3672 }
3673 
3674 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3675 {
3676 	swp_entry_t swp;
3677 
3678 	if (huge_pte_none(pte) || pte_present(pte))
3679 		return 0;
3680 	swp = pte_to_swp_entry(pte);
3681 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3682 		return 1;
3683 	else
3684 		return 0;
3685 }
3686 
3687 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3688 			    struct vm_area_struct *vma)
3689 {
3690 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3691 	struct page *ptepage;
3692 	unsigned long addr;
3693 	int cow;
3694 	struct hstate *h = hstate_vma(vma);
3695 	unsigned long sz = huge_page_size(h);
3696 	struct address_space *mapping = vma->vm_file->f_mapping;
3697 	struct mmu_notifier_range range;
3698 	int ret = 0;
3699 
3700 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3701 
3702 	if (cow) {
3703 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3704 					vma->vm_start,
3705 					vma->vm_end);
3706 		mmu_notifier_invalidate_range_start(&range);
3707 	} else {
3708 		/*
3709 		 * For shared mappings i_mmap_rwsem must be held to call
3710 		 * huge_pte_alloc, otherwise the returned ptep could go
3711 		 * away if part of a shared pmd and another thread calls
3712 		 * huge_pmd_unshare.
3713 		 */
3714 		i_mmap_lock_read(mapping);
3715 	}
3716 
3717 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3718 		spinlock_t *src_ptl, *dst_ptl;
3719 		src_pte = huge_pte_offset(src, addr, sz);
3720 		if (!src_pte)
3721 			continue;
3722 		dst_pte = huge_pte_alloc(dst, addr, sz);
3723 		if (!dst_pte) {
3724 			ret = -ENOMEM;
3725 			break;
3726 		}
3727 
3728 		/*
3729 		 * If the pagetables are shared don't copy or take references.
3730 		 * dst_pte == src_pte is the common case of src/dest sharing.
3731 		 *
3732 		 * However, src could have 'unshared' and dst shares with
3733 		 * another vma.  If dst_pte !none, this implies sharing.
3734 		 * Check here before taking page table lock, and once again
3735 		 * after taking the lock below.
3736 		 */
3737 		dst_entry = huge_ptep_get(dst_pte);
3738 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3739 			continue;
3740 
3741 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3742 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3743 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3744 		entry = huge_ptep_get(src_pte);
3745 		dst_entry = huge_ptep_get(dst_pte);
3746 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3747 			/*
3748 			 * Skip if src entry none.  Also, skip in the
3749 			 * unlikely case dst entry !none as this implies
3750 			 * sharing with another vma.
3751 			 */
3752 			;
3753 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3754 				    is_hugetlb_entry_hwpoisoned(entry))) {
3755 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3756 
3757 			if (is_write_migration_entry(swp_entry) && cow) {
3758 				/*
3759 				 * COW mappings require pages in both
3760 				 * parent and child to be set to read.
3761 				 */
3762 				make_migration_entry_read(&swp_entry);
3763 				entry = swp_entry_to_pte(swp_entry);
3764 				set_huge_swap_pte_at(src, addr, src_pte,
3765 						     entry, sz);
3766 			}
3767 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3768 		} else {
3769 			if (cow) {
3770 				/*
3771 				 * No need to notify as we are downgrading page
3772 				 * table protection not changing it to point
3773 				 * to a new page.
3774 				 *
3775 				 * See Documentation/vm/mmu_notifier.rst
3776 				 */
3777 				huge_ptep_set_wrprotect(src, addr, src_pte);
3778 			}
3779 			entry = huge_ptep_get(src_pte);
3780 			ptepage = pte_page(entry);
3781 			get_page(ptepage);
3782 			page_dup_rmap(ptepage, true);
3783 			set_huge_pte_at(dst, addr, dst_pte, entry);
3784 			hugetlb_count_add(pages_per_huge_page(h), dst);
3785 		}
3786 		spin_unlock(src_ptl);
3787 		spin_unlock(dst_ptl);
3788 	}
3789 
3790 	if (cow)
3791 		mmu_notifier_invalidate_range_end(&range);
3792 	else
3793 		i_mmap_unlock_read(mapping);
3794 
3795 	return ret;
3796 }
3797 
3798 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3799 			    unsigned long start, unsigned long end,
3800 			    struct page *ref_page)
3801 {
3802 	struct mm_struct *mm = vma->vm_mm;
3803 	unsigned long address;
3804 	pte_t *ptep;
3805 	pte_t pte;
3806 	spinlock_t *ptl;
3807 	struct page *page;
3808 	struct hstate *h = hstate_vma(vma);
3809 	unsigned long sz = huge_page_size(h);
3810 	struct mmu_notifier_range range;
3811 
3812 	WARN_ON(!is_vm_hugetlb_page(vma));
3813 	BUG_ON(start & ~huge_page_mask(h));
3814 	BUG_ON(end & ~huge_page_mask(h));
3815 
3816 	/*
3817 	 * This is a hugetlb vma, all the pte entries should point
3818 	 * to huge page.
3819 	 */
3820 	tlb_change_page_size(tlb, sz);
3821 	tlb_start_vma(tlb, vma);
3822 
3823 	/*
3824 	 * If sharing possible, alert mmu notifiers of worst case.
3825 	 */
3826 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3827 				end);
3828 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3829 	mmu_notifier_invalidate_range_start(&range);
3830 	address = start;
3831 	for (; address < end; address += sz) {
3832 		ptep = huge_pte_offset(mm, address, sz);
3833 		if (!ptep)
3834 			continue;
3835 
3836 		ptl = huge_pte_lock(h, mm, ptep);
3837 		if (huge_pmd_unshare(mm, &address, ptep)) {
3838 			spin_unlock(ptl);
3839 			/*
3840 			 * We just unmapped a page of PMDs by clearing a PUD.
3841 			 * The caller's TLB flush range should cover this area.
3842 			 */
3843 			continue;
3844 		}
3845 
3846 		pte = huge_ptep_get(ptep);
3847 		if (huge_pte_none(pte)) {
3848 			spin_unlock(ptl);
3849 			continue;
3850 		}
3851 
3852 		/*
3853 		 * Migrating hugepage or HWPoisoned hugepage is already
3854 		 * unmapped and its refcount is dropped, so just clear pte here.
3855 		 */
3856 		if (unlikely(!pte_present(pte))) {
3857 			huge_pte_clear(mm, address, ptep, sz);
3858 			spin_unlock(ptl);
3859 			continue;
3860 		}
3861 
3862 		page = pte_page(pte);
3863 		/*
3864 		 * If a reference page is supplied, it is because a specific
3865 		 * page is being unmapped, not a range. Ensure the page we
3866 		 * are about to unmap is the actual page of interest.
3867 		 */
3868 		if (ref_page) {
3869 			if (page != ref_page) {
3870 				spin_unlock(ptl);
3871 				continue;
3872 			}
3873 			/*
3874 			 * Mark the VMA as having unmapped its page so that
3875 			 * future faults in this VMA will fail rather than
3876 			 * looking like data was lost
3877 			 */
3878 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3879 		}
3880 
3881 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3882 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3883 		if (huge_pte_dirty(pte))
3884 			set_page_dirty(page);
3885 
3886 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3887 		page_remove_rmap(page, true);
3888 
3889 		spin_unlock(ptl);
3890 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3891 		/*
3892 		 * Bail out after unmapping reference page if supplied
3893 		 */
3894 		if (ref_page)
3895 			break;
3896 	}
3897 	mmu_notifier_invalidate_range_end(&range);
3898 	tlb_end_vma(tlb, vma);
3899 }
3900 
3901 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3902 			  struct vm_area_struct *vma, unsigned long start,
3903 			  unsigned long end, struct page *ref_page)
3904 {
3905 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3906 
3907 	/*
3908 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3909 	 * test will fail on a vma being torn down, and not grab a page table
3910 	 * on its way out.  We're lucky that the flag has such an appropriate
3911 	 * name, and can in fact be safely cleared here. We could clear it
3912 	 * before the __unmap_hugepage_range above, but all that's necessary
3913 	 * is to clear it before releasing the i_mmap_rwsem. This works
3914 	 * because in the context this is called, the VMA is about to be
3915 	 * destroyed and the i_mmap_rwsem is held.
3916 	 */
3917 	vma->vm_flags &= ~VM_MAYSHARE;
3918 }
3919 
3920 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3921 			  unsigned long end, struct page *ref_page)
3922 {
3923 	struct mm_struct *mm;
3924 	struct mmu_gather tlb;
3925 	unsigned long tlb_start = start;
3926 	unsigned long tlb_end = end;
3927 
3928 	/*
3929 	 * If shared PMDs were possibly used within this vma range, adjust
3930 	 * start/end for worst case tlb flushing.
3931 	 * Note that we can not be sure if PMDs are shared until we try to
3932 	 * unmap pages.  However, we want to make sure TLB flushing covers
3933 	 * the largest possible range.
3934 	 */
3935 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3936 
3937 	mm = vma->vm_mm;
3938 
3939 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3940 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3941 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3942 }
3943 
3944 /*
3945  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3946  * mappping it owns the reserve page for. The intention is to unmap the page
3947  * from other VMAs and let the children be SIGKILLed if they are faulting the
3948  * same region.
3949  */
3950 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3951 			      struct page *page, unsigned long address)
3952 {
3953 	struct hstate *h = hstate_vma(vma);
3954 	struct vm_area_struct *iter_vma;
3955 	struct address_space *mapping;
3956 	pgoff_t pgoff;
3957 
3958 	/*
3959 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3960 	 * from page cache lookup which is in HPAGE_SIZE units.
3961 	 */
3962 	address = address & huge_page_mask(h);
3963 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3964 			vma->vm_pgoff;
3965 	mapping = vma->vm_file->f_mapping;
3966 
3967 	/*
3968 	 * Take the mapping lock for the duration of the table walk. As
3969 	 * this mapping should be shared between all the VMAs,
3970 	 * __unmap_hugepage_range() is called as the lock is already held
3971 	 */
3972 	i_mmap_lock_write(mapping);
3973 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3974 		/* Do not unmap the current VMA */
3975 		if (iter_vma == vma)
3976 			continue;
3977 
3978 		/*
3979 		 * Shared VMAs have their own reserves and do not affect
3980 		 * MAP_PRIVATE accounting but it is possible that a shared
3981 		 * VMA is using the same page so check and skip such VMAs.
3982 		 */
3983 		if (iter_vma->vm_flags & VM_MAYSHARE)
3984 			continue;
3985 
3986 		/*
3987 		 * Unmap the page from other VMAs without their own reserves.
3988 		 * They get marked to be SIGKILLed if they fault in these
3989 		 * areas. This is because a future no-page fault on this VMA
3990 		 * could insert a zeroed page instead of the data existing
3991 		 * from the time of fork. This would look like data corruption
3992 		 */
3993 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3994 			unmap_hugepage_range(iter_vma, address,
3995 					     address + huge_page_size(h), page);
3996 	}
3997 	i_mmap_unlock_write(mapping);
3998 }
3999 
4000 /*
4001  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4002  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4003  * cannot race with other handlers or page migration.
4004  * Keep the pte_same checks anyway to make transition from the mutex easier.
4005  */
4006 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4007 		       unsigned long address, pte_t *ptep,
4008 		       struct page *pagecache_page, spinlock_t *ptl)
4009 {
4010 	pte_t pte;
4011 	struct hstate *h = hstate_vma(vma);
4012 	struct page *old_page, *new_page;
4013 	int outside_reserve = 0;
4014 	vm_fault_t ret = 0;
4015 	unsigned long haddr = address & huge_page_mask(h);
4016 	struct mmu_notifier_range range;
4017 
4018 	pte = huge_ptep_get(ptep);
4019 	old_page = pte_page(pte);
4020 
4021 retry_avoidcopy:
4022 	/* If no-one else is actually using this page, avoid the copy
4023 	 * and just make the page writable */
4024 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4025 		page_move_anon_rmap(old_page, vma);
4026 		set_huge_ptep_writable(vma, haddr, ptep);
4027 		return 0;
4028 	}
4029 
4030 	/*
4031 	 * If the process that created a MAP_PRIVATE mapping is about to
4032 	 * perform a COW due to a shared page count, attempt to satisfy
4033 	 * the allocation without using the existing reserves. The pagecache
4034 	 * page is used to determine if the reserve at this address was
4035 	 * consumed or not. If reserves were used, a partial faulted mapping
4036 	 * at the time of fork() could consume its reserves on COW instead
4037 	 * of the full address range.
4038 	 */
4039 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4040 			old_page != pagecache_page)
4041 		outside_reserve = 1;
4042 
4043 	get_page(old_page);
4044 
4045 	/*
4046 	 * Drop page table lock as buddy allocator may be called. It will
4047 	 * be acquired again before returning to the caller, as expected.
4048 	 */
4049 	spin_unlock(ptl);
4050 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4051 
4052 	if (IS_ERR(new_page)) {
4053 		/*
4054 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4055 		 * it is due to references held by a child and an insufficient
4056 		 * huge page pool. To guarantee the original mappers
4057 		 * reliability, unmap the page from child processes. The child
4058 		 * may get SIGKILLed if it later faults.
4059 		 */
4060 		if (outside_reserve) {
4061 			put_page(old_page);
4062 			BUG_ON(huge_pte_none(pte));
4063 			unmap_ref_private(mm, vma, old_page, haddr);
4064 			BUG_ON(huge_pte_none(pte));
4065 			spin_lock(ptl);
4066 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4067 			if (likely(ptep &&
4068 				   pte_same(huge_ptep_get(ptep), pte)))
4069 				goto retry_avoidcopy;
4070 			/*
4071 			 * race occurs while re-acquiring page table
4072 			 * lock, and our job is done.
4073 			 */
4074 			return 0;
4075 		}
4076 
4077 		ret = vmf_error(PTR_ERR(new_page));
4078 		goto out_release_old;
4079 	}
4080 
4081 	/*
4082 	 * When the original hugepage is shared one, it does not have
4083 	 * anon_vma prepared.
4084 	 */
4085 	if (unlikely(anon_vma_prepare(vma))) {
4086 		ret = VM_FAULT_OOM;
4087 		goto out_release_all;
4088 	}
4089 
4090 	copy_user_huge_page(new_page, old_page, address, vma,
4091 			    pages_per_huge_page(h));
4092 	__SetPageUptodate(new_page);
4093 
4094 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4095 				haddr + huge_page_size(h));
4096 	mmu_notifier_invalidate_range_start(&range);
4097 
4098 	/*
4099 	 * Retake the page table lock to check for racing updates
4100 	 * before the page tables are altered
4101 	 */
4102 	spin_lock(ptl);
4103 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4104 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4105 		ClearPagePrivate(new_page);
4106 
4107 		/* Break COW */
4108 		huge_ptep_clear_flush(vma, haddr, ptep);
4109 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4110 		set_huge_pte_at(mm, haddr, ptep,
4111 				make_huge_pte(vma, new_page, 1));
4112 		page_remove_rmap(old_page, true);
4113 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4114 		set_page_huge_active(new_page);
4115 		/* Make the old page be freed below */
4116 		new_page = old_page;
4117 	}
4118 	spin_unlock(ptl);
4119 	mmu_notifier_invalidate_range_end(&range);
4120 out_release_all:
4121 	restore_reserve_on_error(h, vma, haddr, new_page);
4122 	put_page(new_page);
4123 out_release_old:
4124 	put_page(old_page);
4125 
4126 	spin_lock(ptl); /* Caller expects lock to be held */
4127 	return ret;
4128 }
4129 
4130 /* Return the pagecache page at a given address within a VMA */
4131 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4132 			struct vm_area_struct *vma, unsigned long address)
4133 {
4134 	struct address_space *mapping;
4135 	pgoff_t idx;
4136 
4137 	mapping = vma->vm_file->f_mapping;
4138 	idx = vma_hugecache_offset(h, vma, address);
4139 
4140 	return find_lock_page(mapping, idx);
4141 }
4142 
4143 /*
4144  * Return whether there is a pagecache page to back given address within VMA.
4145  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4146  */
4147 static bool hugetlbfs_pagecache_present(struct hstate *h,
4148 			struct vm_area_struct *vma, unsigned long address)
4149 {
4150 	struct address_space *mapping;
4151 	pgoff_t idx;
4152 	struct page *page;
4153 
4154 	mapping = vma->vm_file->f_mapping;
4155 	idx = vma_hugecache_offset(h, vma, address);
4156 
4157 	page = find_get_page(mapping, idx);
4158 	if (page)
4159 		put_page(page);
4160 	return page != NULL;
4161 }
4162 
4163 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4164 			   pgoff_t idx)
4165 {
4166 	struct inode *inode = mapping->host;
4167 	struct hstate *h = hstate_inode(inode);
4168 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4169 
4170 	if (err)
4171 		return err;
4172 	ClearPagePrivate(page);
4173 
4174 	/*
4175 	 * set page dirty so that it will not be removed from cache/file
4176 	 * by non-hugetlbfs specific code paths.
4177 	 */
4178 	set_page_dirty(page);
4179 
4180 	spin_lock(&inode->i_lock);
4181 	inode->i_blocks += blocks_per_huge_page(h);
4182 	spin_unlock(&inode->i_lock);
4183 	return 0;
4184 }
4185 
4186 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4187 			struct vm_area_struct *vma,
4188 			struct address_space *mapping, pgoff_t idx,
4189 			unsigned long address, pte_t *ptep, unsigned int flags)
4190 {
4191 	struct hstate *h = hstate_vma(vma);
4192 	vm_fault_t ret = VM_FAULT_SIGBUS;
4193 	int anon_rmap = 0;
4194 	unsigned long size;
4195 	struct page *page;
4196 	pte_t new_pte;
4197 	spinlock_t *ptl;
4198 	unsigned long haddr = address & huge_page_mask(h);
4199 	bool new_page = false;
4200 
4201 	/*
4202 	 * Currently, we are forced to kill the process in the event the
4203 	 * original mapper has unmapped pages from the child due to a failed
4204 	 * COW. Warn that such a situation has occurred as it may not be obvious
4205 	 */
4206 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4207 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4208 			   current->pid);
4209 		return ret;
4210 	}
4211 
4212 	/*
4213 	 * We can not race with truncation due to holding i_mmap_rwsem.
4214 	 * i_size is modified when holding i_mmap_rwsem, so check here
4215 	 * once for faults beyond end of file.
4216 	 */
4217 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4218 	if (idx >= size)
4219 		goto out;
4220 
4221 retry:
4222 	page = find_lock_page(mapping, idx);
4223 	if (!page) {
4224 		/*
4225 		 * Check for page in userfault range
4226 		 */
4227 		if (userfaultfd_missing(vma)) {
4228 			u32 hash;
4229 			struct vm_fault vmf = {
4230 				.vma = vma,
4231 				.address = haddr,
4232 				.flags = flags,
4233 				/*
4234 				 * Hard to debug if it ends up being
4235 				 * used by a callee that assumes
4236 				 * something about the other
4237 				 * uninitialized fields... same as in
4238 				 * memory.c
4239 				 */
4240 			};
4241 
4242 			/*
4243 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4244 			 * dropped before handling userfault.  Reacquire
4245 			 * after handling fault to make calling code simpler.
4246 			 */
4247 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4248 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4249 			i_mmap_unlock_read(mapping);
4250 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4251 			i_mmap_lock_read(mapping);
4252 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4253 			goto out;
4254 		}
4255 
4256 		page = alloc_huge_page(vma, haddr, 0);
4257 		if (IS_ERR(page)) {
4258 			/*
4259 			 * Returning error will result in faulting task being
4260 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4261 			 * tasks from racing to fault in the same page which
4262 			 * could result in false unable to allocate errors.
4263 			 * Page migration does not take the fault mutex, but
4264 			 * does a clear then write of pte's under page table
4265 			 * lock.  Page fault code could race with migration,
4266 			 * notice the clear pte and try to allocate a page
4267 			 * here.  Before returning error, get ptl and make
4268 			 * sure there really is no pte entry.
4269 			 */
4270 			ptl = huge_pte_lock(h, mm, ptep);
4271 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4272 				ret = 0;
4273 				spin_unlock(ptl);
4274 				goto out;
4275 			}
4276 			spin_unlock(ptl);
4277 			ret = vmf_error(PTR_ERR(page));
4278 			goto out;
4279 		}
4280 		clear_huge_page(page, address, pages_per_huge_page(h));
4281 		__SetPageUptodate(page);
4282 		new_page = true;
4283 
4284 		if (vma->vm_flags & VM_MAYSHARE) {
4285 			int err = huge_add_to_page_cache(page, mapping, idx);
4286 			if (err) {
4287 				put_page(page);
4288 				if (err == -EEXIST)
4289 					goto retry;
4290 				goto out;
4291 			}
4292 		} else {
4293 			lock_page(page);
4294 			if (unlikely(anon_vma_prepare(vma))) {
4295 				ret = VM_FAULT_OOM;
4296 				goto backout_unlocked;
4297 			}
4298 			anon_rmap = 1;
4299 		}
4300 	} else {
4301 		/*
4302 		 * If memory error occurs between mmap() and fault, some process
4303 		 * don't have hwpoisoned swap entry for errored virtual address.
4304 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4305 		 */
4306 		if (unlikely(PageHWPoison(page))) {
4307 			ret = VM_FAULT_HWPOISON |
4308 				VM_FAULT_SET_HINDEX(hstate_index(h));
4309 			goto backout_unlocked;
4310 		}
4311 	}
4312 
4313 	/*
4314 	 * If we are going to COW a private mapping later, we examine the
4315 	 * pending reservations for this page now. This will ensure that
4316 	 * any allocations necessary to record that reservation occur outside
4317 	 * the spinlock.
4318 	 */
4319 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4320 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4321 			ret = VM_FAULT_OOM;
4322 			goto backout_unlocked;
4323 		}
4324 		/* Just decrements count, does not deallocate */
4325 		vma_end_reservation(h, vma, haddr);
4326 	}
4327 
4328 	ptl = huge_pte_lock(h, mm, ptep);
4329 	ret = 0;
4330 	if (!huge_pte_none(huge_ptep_get(ptep)))
4331 		goto backout;
4332 
4333 	if (anon_rmap) {
4334 		ClearPagePrivate(page);
4335 		hugepage_add_new_anon_rmap(page, vma, haddr);
4336 	} else
4337 		page_dup_rmap(page, true);
4338 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4339 				&& (vma->vm_flags & VM_SHARED)));
4340 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4341 
4342 	hugetlb_count_add(pages_per_huge_page(h), mm);
4343 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4344 		/* Optimization, do the COW without a second fault */
4345 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4346 	}
4347 
4348 	spin_unlock(ptl);
4349 
4350 	/*
4351 	 * Only make newly allocated pages active.  Existing pages found
4352 	 * in the pagecache could be !page_huge_active() if they have been
4353 	 * isolated for migration.
4354 	 */
4355 	if (new_page)
4356 		set_page_huge_active(page);
4357 
4358 	unlock_page(page);
4359 out:
4360 	return ret;
4361 
4362 backout:
4363 	spin_unlock(ptl);
4364 backout_unlocked:
4365 	unlock_page(page);
4366 	restore_reserve_on_error(h, vma, haddr, page);
4367 	put_page(page);
4368 	goto out;
4369 }
4370 
4371 #ifdef CONFIG_SMP
4372 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4373 {
4374 	unsigned long key[2];
4375 	u32 hash;
4376 
4377 	key[0] = (unsigned long) mapping;
4378 	key[1] = idx;
4379 
4380 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4381 
4382 	return hash & (num_fault_mutexes - 1);
4383 }
4384 #else
4385 /*
4386  * For uniprocesor systems we always use a single mutex, so just
4387  * return 0 and avoid the hashing overhead.
4388  */
4389 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4390 {
4391 	return 0;
4392 }
4393 #endif
4394 
4395 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4396 			unsigned long address, unsigned int flags)
4397 {
4398 	pte_t *ptep, entry;
4399 	spinlock_t *ptl;
4400 	vm_fault_t ret;
4401 	u32 hash;
4402 	pgoff_t idx;
4403 	struct page *page = NULL;
4404 	struct page *pagecache_page = NULL;
4405 	struct hstate *h = hstate_vma(vma);
4406 	struct address_space *mapping;
4407 	int need_wait_lock = 0;
4408 	unsigned long haddr = address & huge_page_mask(h);
4409 
4410 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4411 	if (ptep) {
4412 		/*
4413 		 * Since we hold no locks, ptep could be stale.  That is
4414 		 * OK as we are only making decisions based on content and
4415 		 * not actually modifying content here.
4416 		 */
4417 		entry = huge_ptep_get(ptep);
4418 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4419 			migration_entry_wait_huge(vma, mm, ptep);
4420 			return 0;
4421 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4422 			return VM_FAULT_HWPOISON_LARGE |
4423 				VM_FAULT_SET_HINDEX(hstate_index(h));
4424 	} else {
4425 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4426 		if (!ptep)
4427 			return VM_FAULT_OOM;
4428 	}
4429 
4430 	/*
4431 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4432 	 * until finished with ptep.  This serves two purposes:
4433 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4434 	 *    and making the ptep no longer valid.
4435 	 * 2) It synchronizes us with i_size modifications during truncation.
4436 	 *
4437 	 * ptep could have already be assigned via huge_pte_offset.  That
4438 	 * is OK, as huge_pte_alloc will return the same value unless
4439 	 * something has changed.
4440 	 */
4441 	mapping = vma->vm_file->f_mapping;
4442 	i_mmap_lock_read(mapping);
4443 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4444 	if (!ptep) {
4445 		i_mmap_unlock_read(mapping);
4446 		return VM_FAULT_OOM;
4447 	}
4448 
4449 	/*
4450 	 * Serialize hugepage allocation and instantiation, so that we don't
4451 	 * get spurious allocation failures if two CPUs race to instantiate
4452 	 * the same page in the page cache.
4453 	 */
4454 	idx = vma_hugecache_offset(h, vma, haddr);
4455 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4456 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4457 
4458 	entry = huge_ptep_get(ptep);
4459 	if (huge_pte_none(entry)) {
4460 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4461 		goto out_mutex;
4462 	}
4463 
4464 	ret = 0;
4465 
4466 	/*
4467 	 * entry could be a migration/hwpoison entry at this point, so this
4468 	 * check prevents the kernel from going below assuming that we have
4469 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4470 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4471 	 * handle it.
4472 	 */
4473 	if (!pte_present(entry))
4474 		goto out_mutex;
4475 
4476 	/*
4477 	 * If we are going to COW the mapping later, we examine the pending
4478 	 * reservations for this page now. This will ensure that any
4479 	 * allocations necessary to record that reservation occur outside the
4480 	 * spinlock. For private mappings, we also lookup the pagecache
4481 	 * page now as it is used to determine if a reservation has been
4482 	 * consumed.
4483 	 */
4484 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4485 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4486 			ret = VM_FAULT_OOM;
4487 			goto out_mutex;
4488 		}
4489 		/* Just decrements count, does not deallocate */
4490 		vma_end_reservation(h, vma, haddr);
4491 
4492 		if (!(vma->vm_flags & VM_MAYSHARE))
4493 			pagecache_page = hugetlbfs_pagecache_page(h,
4494 								vma, haddr);
4495 	}
4496 
4497 	ptl = huge_pte_lock(h, mm, ptep);
4498 
4499 	/* Check for a racing update before calling hugetlb_cow */
4500 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4501 		goto out_ptl;
4502 
4503 	/*
4504 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4505 	 * pagecache_page, so here we need take the former one
4506 	 * when page != pagecache_page or !pagecache_page.
4507 	 */
4508 	page = pte_page(entry);
4509 	if (page != pagecache_page)
4510 		if (!trylock_page(page)) {
4511 			need_wait_lock = 1;
4512 			goto out_ptl;
4513 		}
4514 
4515 	get_page(page);
4516 
4517 	if (flags & FAULT_FLAG_WRITE) {
4518 		if (!huge_pte_write(entry)) {
4519 			ret = hugetlb_cow(mm, vma, address, ptep,
4520 					  pagecache_page, ptl);
4521 			goto out_put_page;
4522 		}
4523 		entry = huge_pte_mkdirty(entry);
4524 	}
4525 	entry = pte_mkyoung(entry);
4526 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4527 						flags & FAULT_FLAG_WRITE))
4528 		update_mmu_cache(vma, haddr, ptep);
4529 out_put_page:
4530 	if (page != pagecache_page)
4531 		unlock_page(page);
4532 	put_page(page);
4533 out_ptl:
4534 	spin_unlock(ptl);
4535 
4536 	if (pagecache_page) {
4537 		unlock_page(pagecache_page);
4538 		put_page(pagecache_page);
4539 	}
4540 out_mutex:
4541 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4542 	i_mmap_unlock_read(mapping);
4543 	/*
4544 	 * Generally it's safe to hold refcount during waiting page lock. But
4545 	 * here we just wait to defer the next page fault to avoid busy loop and
4546 	 * the page is not used after unlocked before returning from the current
4547 	 * page fault. So we are safe from accessing freed page, even if we wait
4548 	 * here without taking refcount.
4549 	 */
4550 	if (need_wait_lock)
4551 		wait_on_page_locked(page);
4552 	return ret;
4553 }
4554 
4555 /*
4556  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4557  * modifications for huge pages.
4558  */
4559 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4560 			    pte_t *dst_pte,
4561 			    struct vm_area_struct *dst_vma,
4562 			    unsigned long dst_addr,
4563 			    unsigned long src_addr,
4564 			    struct page **pagep)
4565 {
4566 	struct address_space *mapping;
4567 	pgoff_t idx;
4568 	unsigned long size;
4569 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4570 	struct hstate *h = hstate_vma(dst_vma);
4571 	pte_t _dst_pte;
4572 	spinlock_t *ptl;
4573 	int ret;
4574 	struct page *page;
4575 
4576 	if (!*pagep) {
4577 		ret = -ENOMEM;
4578 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4579 		if (IS_ERR(page))
4580 			goto out;
4581 
4582 		ret = copy_huge_page_from_user(page,
4583 						(const void __user *) src_addr,
4584 						pages_per_huge_page(h), false);
4585 
4586 		/* fallback to copy_from_user outside mmap_sem */
4587 		if (unlikely(ret)) {
4588 			ret = -ENOENT;
4589 			*pagep = page;
4590 			/* don't free the page */
4591 			goto out;
4592 		}
4593 	} else {
4594 		page = *pagep;
4595 		*pagep = NULL;
4596 	}
4597 
4598 	/*
4599 	 * The memory barrier inside __SetPageUptodate makes sure that
4600 	 * preceding stores to the page contents become visible before
4601 	 * the set_pte_at() write.
4602 	 */
4603 	__SetPageUptodate(page);
4604 
4605 	mapping = dst_vma->vm_file->f_mapping;
4606 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4607 
4608 	/*
4609 	 * If shared, add to page cache
4610 	 */
4611 	if (vm_shared) {
4612 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4613 		ret = -EFAULT;
4614 		if (idx >= size)
4615 			goto out_release_nounlock;
4616 
4617 		/*
4618 		 * Serialization between remove_inode_hugepages() and
4619 		 * huge_add_to_page_cache() below happens through the
4620 		 * hugetlb_fault_mutex_table that here must be hold by
4621 		 * the caller.
4622 		 */
4623 		ret = huge_add_to_page_cache(page, mapping, idx);
4624 		if (ret)
4625 			goto out_release_nounlock;
4626 	}
4627 
4628 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4629 	spin_lock(ptl);
4630 
4631 	/*
4632 	 * Recheck the i_size after holding PT lock to make sure not
4633 	 * to leave any page mapped (as page_mapped()) beyond the end
4634 	 * of the i_size (remove_inode_hugepages() is strict about
4635 	 * enforcing that). If we bail out here, we'll also leave a
4636 	 * page in the radix tree in the vm_shared case beyond the end
4637 	 * of the i_size, but remove_inode_hugepages() will take care
4638 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4639 	 */
4640 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4641 	ret = -EFAULT;
4642 	if (idx >= size)
4643 		goto out_release_unlock;
4644 
4645 	ret = -EEXIST;
4646 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4647 		goto out_release_unlock;
4648 
4649 	if (vm_shared) {
4650 		page_dup_rmap(page, true);
4651 	} else {
4652 		ClearPagePrivate(page);
4653 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4654 	}
4655 
4656 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4657 	if (dst_vma->vm_flags & VM_WRITE)
4658 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4659 	_dst_pte = pte_mkyoung(_dst_pte);
4660 
4661 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4662 
4663 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4664 					dst_vma->vm_flags & VM_WRITE);
4665 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4666 
4667 	/* No need to invalidate - it was non-present before */
4668 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4669 
4670 	spin_unlock(ptl);
4671 	set_page_huge_active(page);
4672 	if (vm_shared)
4673 		unlock_page(page);
4674 	ret = 0;
4675 out:
4676 	return ret;
4677 out_release_unlock:
4678 	spin_unlock(ptl);
4679 	if (vm_shared)
4680 		unlock_page(page);
4681 out_release_nounlock:
4682 	put_page(page);
4683 	goto out;
4684 }
4685 
4686 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4687 			 struct page **pages, struct vm_area_struct **vmas,
4688 			 unsigned long *position, unsigned long *nr_pages,
4689 			 long i, unsigned int flags, int *locked)
4690 {
4691 	unsigned long pfn_offset;
4692 	unsigned long vaddr = *position;
4693 	unsigned long remainder = *nr_pages;
4694 	struct hstate *h = hstate_vma(vma);
4695 	int err = -EFAULT;
4696 
4697 	while (vaddr < vma->vm_end && remainder) {
4698 		pte_t *pte;
4699 		spinlock_t *ptl = NULL;
4700 		int absent;
4701 		struct page *page;
4702 
4703 		/*
4704 		 * If we have a pending SIGKILL, don't keep faulting pages and
4705 		 * potentially allocating memory.
4706 		 */
4707 		if (fatal_signal_pending(current)) {
4708 			remainder = 0;
4709 			break;
4710 		}
4711 
4712 		/*
4713 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4714 		 * each hugepage.  We have to make sure we get the
4715 		 * first, for the page indexing below to work.
4716 		 *
4717 		 * Note that page table lock is not held when pte is null.
4718 		 */
4719 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4720 				      huge_page_size(h));
4721 		if (pte)
4722 			ptl = huge_pte_lock(h, mm, pte);
4723 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4724 
4725 		/*
4726 		 * When coredumping, it suits get_dump_page if we just return
4727 		 * an error where there's an empty slot with no huge pagecache
4728 		 * to back it.  This way, we avoid allocating a hugepage, and
4729 		 * the sparse dumpfile avoids allocating disk blocks, but its
4730 		 * huge holes still show up with zeroes where they need to be.
4731 		 */
4732 		if (absent && (flags & FOLL_DUMP) &&
4733 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4734 			if (pte)
4735 				spin_unlock(ptl);
4736 			remainder = 0;
4737 			break;
4738 		}
4739 
4740 		/*
4741 		 * We need call hugetlb_fault for both hugepages under migration
4742 		 * (in which case hugetlb_fault waits for the migration,) and
4743 		 * hwpoisoned hugepages (in which case we need to prevent the
4744 		 * caller from accessing to them.) In order to do this, we use
4745 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4746 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4747 		 * both cases, and because we can't follow correct pages
4748 		 * directly from any kind of swap entries.
4749 		 */
4750 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4751 		    ((flags & FOLL_WRITE) &&
4752 		      !huge_pte_write(huge_ptep_get(pte)))) {
4753 			vm_fault_t ret;
4754 			unsigned int fault_flags = 0;
4755 
4756 			if (pte)
4757 				spin_unlock(ptl);
4758 			if (flags & FOLL_WRITE)
4759 				fault_flags |= FAULT_FLAG_WRITE;
4760 			if (locked)
4761 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4762 					FAULT_FLAG_KILLABLE;
4763 			if (flags & FOLL_NOWAIT)
4764 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4765 					FAULT_FLAG_RETRY_NOWAIT;
4766 			if (flags & FOLL_TRIED) {
4767 				/*
4768 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4769 				 * FAULT_FLAG_TRIED can co-exist
4770 				 */
4771 				fault_flags |= FAULT_FLAG_TRIED;
4772 			}
4773 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4774 			if (ret & VM_FAULT_ERROR) {
4775 				err = vm_fault_to_errno(ret, flags);
4776 				remainder = 0;
4777 				break;
4778 			}
4779 			if (ret & VM_FAULT_RETRY) {
4780 				if (locked &&
4781 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4782 					*locked = 0;
4783 				*nr_pages = 0;
4784 				/*
4785 				 * VM_FAULT_RETRY must not return an
4786 				 * error, it will return zero
4787 				 * instead.
4788 				 *
4789 				 * No need to update "position" as the
4790 				 * caller will not check it after
4791 				 * *nr_pages is set to 0.
4792 				 */
4793 				return i;
4794 			}
4795 			continue;
4796 		}
4797 
4798 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4799 		page = pte_page(huge_ptep_get(pte));
4800 
4801 		/*
4802 		 * If subpage information not requested, update counters
4803 		 * and skip the same_page loop below.
4804 		 */
4805 		if (!pages && !vmas && !pfn_offset &&
4806 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4807 		    (remainder >= pages_per_huge_page(h))) {
4808 			vaddr += huge_page_size(h);
4809 			remainder -= pages_per_huge_page(h);
4810 			i += pages_per_huge_page(h);
4811 			spin_unlock(ptl);
4812 			continue;
4813 		}
4814 
4815 same_page:
4816 		if (pages) {
4817 			pages[i] = mem_map_offset(page, pfn_offset);
4818 			/*
4819 			 * try_grab_page() should always succeed here, because:
4820 			 * a) we hold the ptl lock, and b) we've just checked
4821 			 * that the huge page is present in the page tables. If
4822 			 * the huge page is present, then the tail pages must
4823 			 * also be present. The ptl prevents the head page and
4824 			 * tail pages from being rearranged in any way. So this
4825 			 * page must be available at this point, unless the page
4826 			 * refcount overflowed:
4827 			 */
4828 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4829 				spin_unlock(ptl);
4830 				remainder = 0;
4831 				err = -ENOMEM;
4832 				break;
4833 			}
4834 		}
4835 
4836 		if (vmas)
4837 			vmas[i] = vma;
4838 
4839 		vaddr += PAGE_SIZE;
4840 		++pfn_offset;
4841 		--remainder;
4842 		++i;
4843 		if (vaddr < vma->vm_end && remainder &&
4844 				pfn_offset < pages_per_huge_page(h)) {
4845 			/*
4846 			 * We use pfn_offset to avoid touching the pageframes
4847 			 * of this compound page.
4848 			 */
4849 			goto same_page;
4850 		}
4851 		spin_unlock(ptl);
4852 	}
4853 	*nr_pages = remainder;
4854 	/*
4855 	 * setting position is actually required only if remainder is
4856 	 * not zero but it's faster not to add a "if (remainder)"
4857 	 * branch.
4858 	 */
4859 	*position = vaddr;
4860 
4861 	return i ? i : err;
4862 }
4863 
4864 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4865 /*
4866  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4867  * implement this.
4868  */
4869 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4870 #endif
4871 
4872 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4873 		unsigned long address, unsigned long end, pgprot_t newprot)
4874 {
4875 	struct mm_struct *mm = vma->vm_mm;
4876 	unsigned long start = address;
4877 	pte_t *ptep;
4878 	pte_t pte;
4879 	struct hstate *h = hstate_vma(vma);
4880 	unsigned long pages = 0;
4881 	bool shared_pmd = false;
4882 	struct mmu_notifier_range range;
4883 
4884 	/*
4885 	 * In the case of shared PMDs, the area to flush could be beyond
4886 	 * start/end.  Set range.start/range.end to cover the maximum possible
4887 	 * range if PMD sharing is possible.
4888 	 */
4889 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4890 				0, vma, mm, start, end);
4891 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4892 
4893 	BUG_ON(address >= end);
4894 	flush_cache_range(vma, range.start, range.end);
4895 
4896 	mmu_notifier_invalidate_range_start(&range);
4897 	i_mmap_lock_write(vma->vm_file->f_mapping);
4898 	for (; address < end; address += huge_page_size(h)) {
4899 		spinlock_t *ptl;
4900 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4901 		if (!ptep)
4902 			continue;
4903 		ptl = huge_pte_lock(h, mm, ptep);
4904 		if (huge_pmd_unshare(mm, &address, ptep)) {
4905 			pages++;
4906 			spin_unlock(ptl);
4907 			shared_pmd = true;
4908 			continue;
4909 		}
4910 		pte = huge_ptep_get(ptep);
4911 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4912 			spin_unlock(ptl);
4913 			continue;
4914 		}
4915 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4916 			swp_entry_t entry = pte_to_swp_entry(pte);
4917 
4918 			if (is_write_migration_entry(entry)) {
4919 				pte_t newpte;
4920 
4921 				make_migration_entry_read(&entry);
4922 				newpte = swp_entry_to_pte(entry);
4923 				set_huge_swap_pte_at(mm, address, ptep,
4924 						     newpte, huge_page_size(h));
4925 				pages++;
4926 			}
4927 			spin_unlock(ptl);
4928 			continue;
4929 		}
4930 		if (!huge_pte_none(pte)) {
4931 			pte_t old_pte;
4932 
4933 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4934 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4935 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4936 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4937 			pages++;
4938 		}
4939 		spin_unlock(ptl);
4940 	}
4941 	/*
4942 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4943 	 * may have cleared our pud entry and done put_page on the page table:
4944 	 * once we release i_mmap_rwsem, another task can do the final put_page
4945 	 * and that page table be reused and filled with junk.  If we actually
4946 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4947 	 */
4948 	if (shared_pmd)
4949 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4950 	else
4951 		flush_hugetlb_tlb_range(vma, start, end);
4952 	/*
4953 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4954 	 * page table protection not changing it to point to a new page.
4955 	 *
4956 	 * See Documentation/vm/mmu_notifier.rst
4957 	 */
4958 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4959 	mmu_notifier_invalidate_range_end(&range);
4960 
4961 	return pages << h->order;
4962 }
4963 
4964 int hugetlb_reserve_pages(struct inode *inode,
4965 					long from, long to,
4966 					struct vm_area_struct *vma,
4967 					vm_flags_t vm_flags)
4968 {
4969 	long ret, chg, add = -1;
4970 	struct hstate *h = hstate_inode(inode);
4971 	struct hugepage_subpool *spool = subpool_inode(inode);
4972 	struct resv_map *resv_map;
4973 	struct hugetlb_cgroup *h_cg = NULL;
4974 	long gbl_reserve, regions_needed = 0;
4975 
4976 	/* This should never happen */
4977 	if (from > to) {
4978 		VM_WARN(1, "%s called with a negative range\n", __func__);
4979 		return -EINVAL;
4980 	}
4981 
4982 	/*
4983 	 * Only apply hugepage reservation if asked. At fault time, an
4984 	 * attempt will be made for VM_NORESERVE to allocate a page
4985 	 * without using reserves
4986 	 */
4987 	if (vm_flags & VM_NORESERVE)
4988 		return 0;
4989 
4990 	/*
4991 	 * Shared mappings base their reservation on the number of pages that
4992 	 * are already allocated on behalf of the file. Private mappings need
4993 	 * to reserve the full area even if read-only as mprotect() may be
4994 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4995 	 */
4996 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4997 		/*
4998 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4999 		 * called for inodes for which resv_maps were created (see
5000 		 * hugetlbfs_get_inode).
5001 		 */
5002 		resv_map = inode_resv_map(inode);
5003 
5004 		chg = region_chg(resv_map, from, to, &regions_needed);
5005 
5006 	} else {
5007 		/* Private mapping. */
5008 		resv_map = resv_map_alloc();
5009 		if (!resv_map)
5010 			return -ENOMEM;
5011 
5012 		chg = to - from;
5013 
5014 		set_vma_resv_map(vma, resv_map);
5015 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5016 	}
5017 
5018 	if (chg < 0) {
5019 		ret = chg;
5020 		goto out_err;
5021 	}
5022 
5023 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5024 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5025 
5026 	if (ret < 0) {
5027 		ret = -ENOMEM;
5028 		goto out_err;
5029 	}
5030 
5031 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5032 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5033 		 * of the resv_map.
5034 		 */
5035 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5036 	}
5037 
5038 	/*
5039 	 * There must be enough pages in the subpool for the mapping. If
5040 	 * the subpool has a minimum size, there may be some global
5041 	 * reservations already in place (gbl_reserve).
5042 	 */
5043 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5044 	if (gbl_reserve < 0) {
5045 		ret = -ENOSPC;
5046 		goto out_uncharge_cgroup;
5047 	}
5048 
5049 	/*
5050 	 * Check enough hugepages are available for the reservation.
5051 	 * Hand the pages back to the subpool if there are not
5052 	 */
5053 	ret = hugetlb_acct_memory(h, gbl_reserve);
5054 	if (ret < 0) {
5055 		goto out_put_pages;
5056 	}
5057 
5058 	/*
5059 	 * Account for the reservations made. Shared mappings record regions
5060 	 * that have reservations as they are shared by multiple VMAs.
5061 	 * When the last VMA disappears, the region map says how much
5062 	 * the reservation was and the page cache tells how much of
5063 	 * the reservation was consumed. Private mappings are per-VMA and
5064 	 * only the consumed reservations are tracked. When the VMA
5065 	 * disappears, the original reservation is the VMA size and the
5066 	 * consumed reservations are stored in the map. Hence, nothing
5067 	 * else has to be done for private mappings here
5068 	 */
5069 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5070 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5071 
5072 		if (unlikely(add < 0)) {
5073 			hugetlb_acct_memory(h, -gbl_reserve);
5074 			goto out_put_pages;
5075 		} else if (unlikely(chg > add)) {
5076 			/*
5077 			 * pages in this range were added to the reserve
5078 			 * map between region_chg and region_add.  This
5079 			 * indicates a race with alloc_huge_page.  Adjust
5080 			 * the subpool and reserve counts modified above
5081 			 * based on the difference.
5082 			 */
5083 			long rsv_adjust;
5084 
5085 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5086 				hstate_index(h),
5087 				(chg - add) * pages_per_huge_page(h), h_cg);
5088 
5089 			rsv_adjust = hugepage_subpool_put_pages(spool,
5090 								chg - add);
5091 			hugetlb_acct_memory(h, -rsv_adjust);
5092 		}
5093 	}
5094 	return 0;
5095 out_put_pages:
5096 	/* put back original number of pages, chg */
5097 	(void)hugepage_subpool_put_pages(spool, chg);
5098 out_uncharge_cgroup:
5099 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5100 					    chg * pages_per_huge_page(h), h_cg);
5101 out_err:
5102 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5103 		/* Only call region_abort if the region_chg succeeded but the
5104 		 * region_add failed or didn't run.
5105 		 */
5106 		if (chg >= 0 && add < 0)
5107 			region_abort(resv_map, from, to, regions_needed);
5108 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5109 		kref_put(&resv_map->refs, resv_map_release);
5110 	return ret;
5111 }
5112 
5113 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5114 								long freed)
5115 {
5116 	struct hstate *h = hstate_inode(inode);
5117 	struct resv_map *resv_map = inode_resv_map(inode);
5118 	long chg = 0;
5119 	struct hugepage_subpool *spool = subpool_inode(inode);
5120 	long gbl_reserve;
5121 
5122 	/*
5123 	 * Since this routine can be called in the evict inode path for all
5124 	 * hugetlbfs inodes, resv_map could be NULL.
5125 	 */
5126 	if (resv_map) {
5127 		chg = region_del(resv_map, start, end);
5128 		/*
5129 		 * region_del() can fail in the rare case where a region
5130 		 * must be split and another region descriptor can not be
5131 		 * allocated.  If end == LONG_MAX, it will not fail.
5132 		 */
5133 		if (chg < 0)
5134 			return chg;
5135 	}
5136 
5137 	spin_lock(&inode->i_lock);
5138 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5139 	spin_unlock(&inode->i_lock);
5140 
5141 	/*
5142 	 * If the subpool has a minimum size, the number of global
5143 	 * reservations to be released may be adjusted.
5144 	 */
5145 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5146 	hugetlb_acct_memory(h, -gbl_reserve);
5147 
5148 	return 0;
5149 }
5150 
5151 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5152 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5153 				struct vm_area_struct *vma,
5154 				unsigned long addr, pgoff_t idx)
5155 {
5156 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5157 				svma->vm_start;
5158 	unsigned long sbase = saddr & PUD_MASK;
5159 	unsigned long s_end = sbase + PUD_SIZE;
5160 
5161 	/* Allow segments to share if only one is marked locked */
5162 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5163 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5164 
5165 	/*
5166 	 * match the virtual addresses, permission and the alignment of the
5167 	 * page table page.
5168 	 */
5169 	if (pmd_index(addr) != pmd_index(saddr) ||
5170 	    vm_flags != svm_flags ||
5171 	    sbase < svma->vm_start || svma->vm_end < s_end)
5172 		return 0;
5173 
5174 	return saddr;
5175 }
5176 
5177 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5178 {
5179 	unsigned long base = addr & PUD_MASK;
5180 	unsigned long end = base + PUD_SIZE;
5181 
5182 	/*
5183 	 * check on proper vm_flags and page table alignment
5184 	 */
5185 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5186 		return true;
5187 	return false;
5188 }
5189 
5190 /*
5191  * Determine if start,end range within vma could be mapped by shared pmd.
5192  * If yes, adjust start and end to cover range associated with possible
5193  * shared pmd mappings.
5194  */
5195 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5196 				unsigned long *start, unsigned long *end)
5197 {
5198 	unsigned long check_addr;
5199 
5200 	if (!(vma->vm_flags & VM_MAYSHARE))
5201 		return;
5202 
5203 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5204 		unsigned long a_start = check_addr & PUD_MASK;
5205 		unsigned long a_end = a_start + PUD_SIZE;
5206 
5207 		/*
5208 		 * If sharing is possible, adjust start/end if necessary.
5209 		 */
5210 		if (range_in_vma(vma, a_start, a_end)) {
5211 			if (a_start < *start)
5212 				*start = a_start;
5213 			if (a_end > *end)
5214 				*end = a_end;
5215 		}
5216 	}
5217 }
5218 
5219 /*
5220  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5221  * and returns the corresponding pte. While this is not necessary for the
5222  * !shared pmd case because we can allocate the pmd later as well, it makes the
5223  * code much cleaner.
5224  *
5225  * This routine must be called with i_mmap_rwsem held in at least read mode.
5226  * For hugetlbfs, this prevents removal of any page table entries associated
5227  * with the address space.  This is important as we are setting up sharing
5228  * based on existing page table entries (mappings).
5229  */
5230 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5231 {
5232 	struct vm_area_struct *vma = find_vma(mm, addr);
5233 	struct address_space *mapping = vma->vm_file->f_mapping;
5234 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5235 			vma->vm_pgoff;
5236 	struct vm_area_struct *svma;
5237 	unsigned long saddr;
5238 	pte_t *spte = NULL;
5239 	pte_t *pte;
5240 	spinlock_t *ptl;
5241 
5242 	if (!vma_shareable(vma, addr))
5243 		return (pte_t *)pmd_alloc(mm, pud, addr);
5244 
5245 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5246 		if (svma == vma)
5247 			continue;
5248 
5249 		saddr = page_table_shareable(svma, vma, addr, idx);
5250 		if (saddr) {
5251 			spte = huge_pte_offset(svma->vm_mm, saddr,
5252 					       vma_mmu_pagesize(svma));
5253 			if (spte) {
5254 				get_page(virt_to_page(spte));
5255 				break;
5256 			}
5257 		}
5258 	}
5259 
5260 	if (!spte)
5261 		goto out;
5262 
5263 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5264 	if (pud_none(*pud)) {
5265 		pud_populate(mm, pud,
5266 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5267 		mm_inc_nr_pmds(mm);
5268 	} else {
5269 		put_page(virt_to_page(spte));
5270 	}
5271 	spin_unlock(ptl);
5272 out:
5273 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5274 	return pte;
5275 }
5276 
5277 /*
5278  * unmap huge page backed by shared pte.
5279  *
5280  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5281  * indicated by page_count > 1, unmap is achieved by clearing pud and
5282  * decrementing the ref count. If count == 1, the pte page is not shared.
5283  *
5284  * Called with page table lock held and i_mmap_rwsem held in write mode.
5285  *
5286  * returns: 1 successfully unmapped a shared pte page
5287  *	    0 the underlying pte page is not shared, or it is the last user
5288  */
5289 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5290 {
5291 	pgd_t *pgd = pgd_offset(mm, *addr);
5292 	p4d_t *p4d = p4d_offset(pgd, *addr);
5293 	pud_t *pud = pud_offset(p4d, *addr);
5294 
5295 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5296 	if (page_count(virt_to_page(ptep)) == 1)
5297 		return 0;
5298 
5299 	pud_clear(pud);
5300 	put_page(virt_to_page(ptep));
5301 	mm_dec_nr_pmds(mm);
5302 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5303 	return 1;
5304 }
5305 #define want_pmd_share()	(1)
5306 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5307 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5308 {
5309 	return NULL;
5310 }
5311 
5312 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5313 {
5314 	return 0;
5315 }
5316 
5317 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5318 				unsigned long *start, unsigned long *end)
5319 {
5320 }
5321 #define want_pmd_share()	(0)
5322 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5323 
5324 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5325 pte_t *huge_pte_alloc(struct mm_struct *mm,
5326 			unsigned long addr, unsigned long sz)
5327 {
5328 	pgd_t *pgd;
5329 	p4d_t *p4d;
5330 	pud_t *pud;
5331 	pte_t *pte = NULL;
5332 
5333 	pgd = pgd_offset(mm, addr);
5334 	p4d = p4d_alloc(mm, pgd, addr);
5335 	if (!p4d)
5336 		return NULL;
5337 	pud = pud_alloc(mm, p4d, addr);
5338 	if (pud) {
5339 		if (sz == PUD_SIZE) {
5340 			pte = (pte_t *)pud;
5341 		} else {
5342 			BUG_ON(sz != PMD_SIZE);
5343 			if (want_pmd_share() && pud_none(*pud))
5344 				pte = huge_pmd_share(mm, addr, pud);
5345 			else
5346 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5347 		}
5348 	}
5349 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5350 
5351 	return pte;
5352 }
5353 
5354 /*
5355  * huge_pte_offset() - Walk the page table to resolve the hugepage
5356  * entry at address @addr
5357  *
5358  * Return: Pointer to page table or swap entry (PUD or PMD) for
5359  * address @addr, or NULL if a p*d_none() entry is encountered and the
5360  * size @sz doesn't match the hugepage size at this level of the page
5361  * table.
5362  */
5363 pte_t *huge_pte_offset(struct mm_struct *mm,
5364 		       unsigned long addr, unsigned long sz)
5365 {
5366 	pgd_t *pgd;
5367 	p4d_t *p4d;
5368 	pud_t *pud;
5369 	pmd_t *pmd;
5370 
5371 	pgd = pgd_offset(mm, addr);
5372 	if (!pgd_present(*pgd))
5373 		return NULL;
5374 	p4d = p4d_offset(pgd, addr);
5375 	if (!p4d_present(*p4d))
5376 		return NULL;
5377 
5378 	pud = pud_offset(p4d, addr);
5379 	if (sz != PUD_SIZE && pud_none(*pud))
5380 		return NULL;
5381 	/* hugepage or swap? */
5382 	if (pud_huge(*pud) || !pud_present(*pud))
5383 		return (pte_t *)pud;
5384 
5385 	pmd = pmd_offset(pud, addr);
5386 	if (sz != PMD_SIZE && pmd_none(*pmd))
5387 		return NULL;
5388 	/* hugepage or swap? */
5389 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
5390 		return (pte_t *)pmd;
5391 
5392 	return NULL;
5393 }
5394 
5395 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5396 
5397 /*
5398  * These functions are overwritable if your architecture needs its own
5399  * behavior.
5400  */
5401 struct page * __weak
5402 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5403 			      int write)
5404 {
5405 	return ERR_PTR(-EINVAL);
5406 }
5407 
5408 struct page * __weak
5409 follow_huge_pd(struct vm_area_struct *vma,
5410 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5411 {
5412 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5413 	return NULL;
5414 }
5415 
5416 struct page * __weak
5417 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5418 		pmd_t *pmd, int flags)
5419 {
5420 	struct page *page = NULL;
5421 	spinlock_t *ptl;
5422 	pte_t pte;
5423 
5424 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5425 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5426 			 (FOLL_PIN | FOLL_GET)))
5427 		return NULL;
5428 
5429 retry:
5430 	ptl = pmd_lockptr(mm, pmd);
5431 	spin_lock(ptl);
5432 	/*
5433 	 * make sure that the address range covered by this pmd is not
5434 	 * unmapped from other threads.
5435 	 */
5436 	if (!pmd_huge(*pmd))
5437 		goto out;
5438 	pte = huge_ptep_get((pte_t *)pmd);
5439 	if (pte_present(pte)) {
5440 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5441 		/*
5442 		 * try_grab_page() should always succeed here, because: a) we
5443 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5444 		 * huge pmd (head) page is present in the page tables. The ptl
5445 		 * prevents the head page and tail pages from being rearranged
5446 		 * in any way. So this page must be available at this point,
5447 		 * unless the page refcount overflowed:
5448 		 */
5449 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5450 			page = NULL;
5451 			goto out;
5452 		}
5453 	} else {
5454 		if (is_hugetlb_entry_migration(pte)) {
5455 			spin_unlock(ptl);
5456 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5457 			goto retry;
5458 		}
5459 		/*
5460 		 * hwpoisoned entry is treated as no_page_table in
5461 		 * follow_page_mask().
5462 		 */
5463 	}
5464 out:
5465 	spin_unlock(ptl);
5466 	return page;
5467 }
5468 
5469 struct page * __weak
5470 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5471 		pud_t *pud, int flags)
5472 {
5473 	if (flags & (FOLL_GET | FOLL_PIN))
5474 		return NULL;
5475 
5476 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5477 }
5478 
5479 struct page * __weak
5480 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5481 {
5482 	if (flags & (FOLL_GET | FOLL_PIN))
5483 		return NULL;
5484 
5485 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5486 }
5487 
5488 bool isolate_huge_page(struct page *page, struct list_head *list)
5489 {
5490 	bool ret = true;
5491 
5492 	VM_BUG_ON_PAGE(!PageHead(page), page);
5493 	spin_lock(&hugetlb_lock);
5494 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5495 		ret = false;
5496 		goto unlock;
5497 	}
5498 	clear_page_huge_active(page);
5499 	list_move_tail(&page->lru, list);
5500 unlock:
5501 	spin_unlock(&hugetlb_lock);
5502 	return ret;
5503 }
5504 
5505 void putback_active_hugepage(struct page *page)
5506 {
5507 	VM_BUG_ON_PAGE(!PageHead(page), page);
5508 	spin_lock(&hugetlb_lock);
5509 	set_page_huge_active(page);
5510 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5511 	spin_unlock(&hugetlb_lock);
5512 	put_page(page);
5513 }
5514 
5515 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5516 {
5517 	struct hstate *h = page_hstate(oldpage);
5518 
5519 	hugetlb_cgroup_migrate(oldpage, newpage);
5520 	set_page_owner_migrate_reason(newpage, reason);
5521 
5522 	/*
5523 	 * transfer temporary state of the new huge page. This is
5524 	 * reverse to other transitions because the newpage is going to
5525 	 * be final while the old one will be freed so it takes over
5526 	 * the temporary status.
5527 	 *
5528 	 * Also note that we have to transfer the per-node surplus state
5529 	 * here as well otherwise the global surplus count will not match
5530 	 * the per-node's.
5531 	 */
5532 	if (PageHugeTemporary(newpage)) {
5533 		int old_nid = page_to_nid(oldpage);
5534 		int new_nid = page_to_nid(newpage);
5535 
5536 		SetPageHugeTemporary(oldpage);
5537 		ClearPageHugeTemporary(newpage);
5538 
5539 		spin_lock(&hugetlb_lock);
5540 		if (h->surplus_huge_pages_node[old_nid]) {
5541 			h->surplus_huge_pages_node[old_nid]--;
5542 			h->surplus_huge_pages_node[new_nid]++;
5543 		}
5544 		spin_unlock(&hugetlb_lock);
5545 	}
5546 }
5547 
5548 #ifdef CONFIG_CMA
5549 static unsigned long hugetlb_cma_size __initdata;
5550 static bool cma_reserve_called __initdata;
5551 
5552 static int __init cmdline_parse_hugetlb_cma(char *p)
5553 {
5554 	hugetlb_cma_size = memparse(p, &p);
5555 	return 0;
5556 }
5557 
5558 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5559 
5560 void __init hugetlb_cma_reserve(int order)
5561 {
5562 	unsigned long size, reserved, per_node;
5563 	int nid;
5564 
5565 	cma_reserve_called = true;
5566 
5567 	if (!hugetlb_cma_size)
5568 		return;
5569 
5570 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5571 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5572 			(PAGE_SIZE << order) / SZ_1M);
5573 		return;
5574 	}
5575 
5576 	/*
5577 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5578 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5579 	 */
5580 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5581 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5582 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5583 
5584 	reserved = 0;
5585 	for_each_node_state(nid, N_ONLINE) {
5586 		int res;
5587 
5588 		size = min(per_node, hugetlb_cma_size - reserved);
5589 		size = round_up(size, PAGE_SIZE << order);
5590 
5591 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5592 						 0, false, "hugetlb",
5593 						 &hugetlb_cma[nid], nid);
5594 		if (res) {
5595 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5596 				res, nid);
5597 			continue;
5598 		}
5599 
5600 		reserved += size;
5601 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5602 			size / SZ_1M, nid);
5603 
5604 		if (reserved >= hugetlb_cma_size)
5605 			break;
5606 	}
5607 }
5608 
5609 void __init hugetlb_cma_check(void)
5610 {
5611 	if (!hugetlb_cma_size || cma_reserve_called)
5612 		return;
5613 
5614 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5615 }
5616 
5617 #endif /* CONFIG_CMA */
5618