xref: /openbmc/linux/mm/hugetlb.c (revision c4c11dd1)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28 
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34 
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 
43 __initdata LIST_HEAD(huge_boot_pages);
44 
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49 
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54 
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
58 
59 	spin_unlock(&spool->lock);
60 
61 	/* If no pages are used, and no other handles to the subpool
62 	 * remain, free the subpool the subpool remain */
63 	if (free)
64 		kfree(spool);
65 }
66 
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69 	struct hugepage_subpool *spool;
70 
71 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 	if (!spool)
73 		return NULL;
74 
75 	spin_lock_init(&spool->lock);
76 	spool->count = 1;
77 	spool->max_hpages = nr_blocks;
78 	spool->used_hpages = 0;
79 
80 	return spool;
81 }
82 
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85 	spin_lock(&spool->lock);
86 	BUG_ON(!spool->count);
87 	spool->count--;
88 	unlock_or_release_subpool(spool);
89 }
90 
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 				      long delta)
93 {
94 	int ret = 0;
95 
96 	if (!spool)
97 		return 0;
98 
99 	spin_lock(&spool->lock);
100 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 		spool->used_hpages += delta;
102 	} else {
103 		ret = -ENOMEM;
104 	}
105 	spin_unlock(&spool->lock);
106 
107 	return ret;
108 }
109 
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 				       long delta)
112 {
113 	if (!spool)
114 		return;
115 
116 	spin_lock(&spool->lock);
117 	spool->used_hpages -= delta;
118 	/* If hugetlbfs_put_super couldn't free spool due to
119 	* an outstanding quota reference, free it now. */
120 	unlock_or_release_subpool(spool);
121 }
122 
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125 	return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127 
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130 	return subpool_inode(file_inode(vma->vm_file));
131 }
132 
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation mutex:
141  *
142  *	down_write(&mm->mmap_sem);
143  * or
144  *	down_read(&mm->mmap_sem);
145  *	mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148 	struct list_head link;
149 	long from;
150 	long to;
151 };
152 
153 static long region_add(struct list_head *head, long f, long t)
154 {
155 	struct file_region *rg, *nrg, *trg;
156 
157 	/* Locate the region we are either in or before. */
158 	list_for_each_entry(rg, head, link)
159 		if (f <= rg->to)
160 			break;
161 
162 	/* Round our left edge to the current segment if it encloses us. */
163 	if (f > rg->from)
164 		f = rg->from;
165 
166 	/* Check for and consume any regions we now overlap with. */
167 	nrg = rg;
168 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 		if (&rg->link == head)
170 			break;
171 		if (rg->from > t)
172 			break;
173 
174 		/* If this area reaches higher then extend our area to
175 		 * include it completely.  If this is not the first area
176 		 * which we intend to reuse, free it. */
177 		if (rg->to > t)
178 			t = rg->to;
179 		if (rg != nrg) {
180 			list_del(&rg->link);
181 			kfree(rg);
182 		}
183 	}
184 	nrg->from = f;
185 	nrg->to = t;
186 	return 0;
187 }
188 
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191 	struct file_region *rg, *nrg;
192 	long chg = 0;
193 
194 	/* Locate the region we are before or in. */
195 	list_for_each_entry(rg, head, link)
196 		if (f <= rg->to)
197 			break;
198 
199 	/* If we are below the current region then a new region is required.
200 	 * Subtle, allocate a new region at the position but make it zero
201 	 * size such that we can guarantee to record the reservation. */
202 	if (&rg->link == head || t < rg->from) {
203 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 		if (!nrg)
205 			return -ENOMEM;
206 		nrg->from = f;
207 		nrg->to   = f;
208 		INIT_LIST_HEAD(&nrg->link);
209 		list_add(&nrg->link, rg->link.prev);
210 
211 		return t - f;
212 	}
213 
214 	/* Round our left edge to the current segment if it encloses us. */
215 	if (f > rg->from)
216 		f = rg->from;
217 	chg = t - f;
218 
219 	/* Check for and consume any regions we now overlap with. */
220 	list_for_each_entry(rg, rg->link.prev, link) {
221 		if (&rg->link == head)
222 			break;
223 		if (rg->from > t)
224 			return chg;
225 
226 		/* We overlap with this area, if it extends further than
227 		 * us then we must extend ourselves.  Account for its
228 		 * existing reservation. */
229 		if (rg->to > t) {
230 			chg += rg->to - t;
231 			t = rg->to;
232 		}
233 		chg -= rg->to - rg->from;
234 	}
235 	return chg;
236 }
237 
238 static long region_truncate(struct list_head *head, long end)
239 {
240 	struct file_region *rg, *trg;
241 	long chg = 0;
242 
243 	/* Locate the region we are either in or before. */
244 	list_for_each_entry(rg, head, link)
245 		if (end <= rg->to)
246 			break;
247 	if (&rg->link == head)
248 		return 0;
249 
250 	/* If we are in the middle of a region then adjust it. */
251 	if (end > rg->from) {
252 		chg = rg->to - end;
253 		rg->to = end;
254 		rg = list_entry(rg->link.next, typeof(*rg), link);
255 	}
256 
257 	/* Drop any remaining regions. */
258 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 		if (&rg->link == head)
260 			break;
261 		chg += rg->to - rg->from;
262 		list_del(&rg->link);
263 		kfree(rg);
264 	}
265 	return chg;
266 }
267 
268 static long region_count(struct list_head *head, long f, long t)
269 {
270 	struct file_region *rg;
271 	long chg = 0;
272 
273 	/* Locate each segment we overlap with, and count that overlap. */
274 	list_for_each_entry(rg, head, link) {
275 		long seg_from;
276 		long seg_to;
277 
278 		if (rg->to <= f)
279 			continue;
280 		if (rg->from >= t)
281 			break;
282 
283 		seg_from = max(rg->from, f);
284 		seg_to = min(rg->to, t);
285 
286 		chg += seg_to - seg_from;
287 	}
288 
289 	return chg;
290 }
291 
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297 			struct vm_area_struct *vma, unsigned long address)
298 {
299 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 			(vma->vm_pgoff >> huge_page_order(h));
301 }
302 
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 				     unsigned long address)
305 {
306 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308 
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315 	struct hstate *hstate;
316 
317 	if (!is_vm_hugetlb_page(vma))
318 		return PAGE_SIZE;
319 
320 	hstate = hstate_vma(vma);
321 
322 	return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325 
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335 	return vma_kernel_pagesize(vma);
336 }
337 #endif
338 
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347 
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369 	return (unsigned long)vma->vm_private_data;
370 }
371 
372 static void set_vma_private_data(struct vm_area_struct *vma,
373 							unsigned long value)
374 {
375 	vma->vm_private_data = (void *)value;
376 }
377 
378 struct resv_map {
379 	struct kref refs;
380 	struct list_head regions;
381 };
382 
383 static struct resv_map *resv_map_alloc(void)
384 {
385 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 	if (!resv_map)
387 		return NULL;
388 
389 	kref_init(&resv_map->refs);
390 	INIT_LIST_HEAD(&resv_map->regions);
391 
392 	return resv_map;
393 }
394 
395 static void resv_map_release(struct kref *ref)
396 {
397 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398 
399 	/* Clear out any active regions before we release the map. */
400 	region_truncate(&resv_map->regions, 0);
401 	kfree(resv_map);
402 }
403 
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 	if (!(vma->vm_flags & VM_MAYSHARE))
408 		return (struct resv_map *)(get_vma_private_data(vma) &
409 							~HPAGE_RESV_MASK);
410 	return NULL;
411 }
412 
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417 
418 	set_vma_private_data(vma, (get_vma_private_data(vma) &
419 				HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421 
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 
427 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429 
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 
434 	return (get_vma_private_data(vma) & flag) != 0;
435 }
436 
437 /* Decrement the reserved pages in the hugepage pool by one */
438 static void decrement_hugepage_resv_vma(struct hstate *h,
439 			struct vm_area_struct *vma)
440 {
441 	if (vma->vm_flags & VM_NORESERVE)
442 		return;
443 
444 	if (vma->vm_flags & VM_MAYSHARE) {
445 		/* Shared mappings always use reserves */
446 		h->resv_huge_pages--;
447 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 		/*
449 		 * Only the process that called mmap() has reserves for
450 		 * private mappings.
451 		 */
452 		h->resv_huge_pages--;
453 	}
454 }
455 
456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458 {
459 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460 	if (!(vma->vm_flags & VM_MAYSHARE))
461 		vma->vm_private_data = (void *)0;
462 }
463 
464 /* Returns true if the VMA has associated reserve pages */
465 static int vma_has_reserves(struct vm_area_struct *vma)
466 {
467 	if (vma->vm_flags & VM_MAYSHARE)
468 		return 1;
469 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 		return 1;
471 	return 0;
472 }
473 
474 static void copy_gigantic_page(struct page *dst, struct page *src)
475 {
476 	int i;
477 	struct hstate *h = page_hstate(src);
478 	struct page *dst_base = dst;
479 	struct page *src_base = src;
480 
481 	for (i = 0; i < pages_per_huge_page(h); ) {
482 		cond_resched();
483 		copy_highpage(dst, src);
484 
485 		i++;
486 		dst = mem_map_next(dst, dst_base, i);
487 		src = mem_map_next(src, src_base, i);
488 	}
489 }
490 
491 void copy_huge_page(struct page *dst, struct page *src)
492 {
493 	int i;
494 	struct hstate *h = page_hstate(src);
495 
496 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 		copy_gigantic_page(dst, src);
498 		return;
499 	}
500 
501 	might_sleep();
502 	for (i = 0; i < pages_per_huge_page(h); i++) {
503 		cond_resched();
504 		copy_highpage(dst + i, src + i);
505 	}
506 }
507 
508 static void enqueue_huge_page(struct hstate *h, struct page *page)
509 {
510 	int nid = page_to_nid(page);
511 	list_move(&page->lru, &h->hugepage_freelists[nid]);
512 	h->free_huge_pages++;
513 	h->free_huge_pages_node[nid]++;
514 }
515 
516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517 {
518 	struct page *page;
519 
520 	if (list_empty(&h->hugepage_freelists[nid]))
521 		return NULL;
522 	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523 	list_move(&page->lru, &h->hugepage_activelist);
524 	set_page_refcounted(page);
525 	h->free_huge_pages--;
526 	h->free_huge_pages_node[nid]--;
527 	return page;
528 }
529 
530 static struct page *dequeue_huge_page_vma(struct hstate *h,
531 				struct vm_area_struct *vma,
532 				unsigned long address, int avoid_reserve)
533 {
534 	struct page *page = NULL;
535 	struct mempolicy *mpol;
536 	nodemask_t *nodemask;
537 	struct zonelist *zonelist;
538 	struct zone *zone;
539 	struct zoneref *z;
540 	unsigned int cpuset_mems_cookie;
541 
542 retry_cpuset:
543 	cpuset_mems_cookie = get_mems_allowed();
544 	zonelist = huge_zonelist(vma, address,
545 					htlb_alloc_mask, &mpol, &nodemask);
546 	/*
547 	 * A child process with MAP_PRIVATE mappings created by their parent
548 	 * have no page reserves. This check ensures that reservations are
549 	 * not "stolen". The child may still get SIGKILLed
550 	 */
551 	if (!vma_has_reserves(vma) &&
552 			h->free_huge_pages - h->resv_huge_pages == 0)
553 		goto err;
554 
555 	/* If reserves cannot be used, ensure enough pages are in the pool */
556 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557 		goto err;
558 
559 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
560 						MAX_NR_ZONES - 1, nodemask) {
561 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
562 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
563 			if (page) {
564 				if (!avoid_reserve)
565 					decrement_hugepage_resv_vma(h, vma);
566 				break;
567 			}
568 		}
569 	}
570 
571 	mpol_cond_put(mpol);
572 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
573 		goto retry_cpuset;
574 	return page;
575 
576 err:
577 	mpol_cond_put(mpol);
578 	return NULL;
579 }
580 
581 static void update_and_free_page(struct hstate *h, struct page *page)
582 {
583 	int i;
584 
585 	VM_BUG_ON(h->order >= MAX_ORDER);
586 
587 	h->nr_huge_pages--;
588 	h->nr_huge_pages_node[page_to_nid(page)]--;
589 	for (i = 0; i < pages_per_huge_page(h); i++) {
590 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 				1 << PG_referenced | 1 << PG_dirty |
592 				1 << PG_active | 1 << PG_reserved |
593 				1 << PG_private | 1 << PG_writeback);
594 	}
595 	VM_BUG_ON(hugetlb_cgroup_from_page(page));
596 	set_compound_page_dtor(page, NULL);
597 	set_page_refcounted(page);
598 	arch_release_hugepage(page);
599 	__free_pages(page, huge_page_order(h));
600 }
601 
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604 	struct hstate *h;
605 
606 	for_each_hstate(h) {
607 		if (huge_page_size(h) == size)
608 			return h;
609 	}
610 	return NULL;
611 }
612 
613 static void free_huge_page(struct page *page)
614 {
615 	/*
616 	 * Can't pass hstate in here because it is called from the
617 	 * compound page destructor.
618 	 */
619 	struct hstate *h = page_hstate(page);
620 	int nid = page_to_nid(page);
621 	struct hugepage_subpool *spool =
622 		(struct hugepage_subpool *)page_private(page);
623 
624 	set_page_private(page, 0);
625 	page->mapping = NULL;
626 	BUG_ON(page_count(page));
627 	BUG_ON(page_mapcount(page));
628 
629 	spin_lock(&hugetlb_lock);
630 	hugetlb_cgroup_uncharge_page(hstate_index(h),
631 				     pages_per_huge_page(h), page);
632 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 		/* remove the page from active list */
634 		list_del(&page->lru);
635 		update_and_free_page(h, page);
636 		h->surplus_huge_pages--;
637 		h->surplus_huge_pages_node[nid]--;
638 	} else {
639 		arch_clear_hugepage_flags(page);
640 		enqueue_huge_page(h, page);
641 	}
642 	spin_unlock(&hugetlb_lock);
643 	hugepage_subpool_put_pages(spool, 1);
644 }
645 
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648 	INIT_LIST_HEAD(&page->lru);
649 	set_compound_page_dtor(page, free_huge_page);
650 	spin_lock(&hugetlb_lock);
651 	set_hugetlb_cgroup(page, NULL);
652 	h->nr_huge_pages++;
653 	h->nr_huge_pages_node[nid]++;
654 	spin_unlock(&hugetlb_lock);
655 	put_page(page); /* free it into the hugepage allocator */
656 }
657 
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660 	int i;
661 	int nr_pages = 1 << order;
662 	struct page *p = page + 1;
663 
664 	/* we rely on prep_new_huge_page to set the destructor */
665 	set_compound_order(page, order);
666 	__SetPageHead(page);
667 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 		__SetPageTail(p);
669 		set_page_count(p, 0);
670 		p->first_page = page;
671 	}
672 }
673 
674 /*
675  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676  * transparent huge pages.  See the PageTransHuge() documentation for more
677  * details.
678  */
679 int PageHuge(struct page *page)
680 {
681 	compound_page_dtor *dtor;
682 
683 	if (!PageCompound(page))
684 		return 0;
685 
686 	page = compound_head(page);
687 	dtor = get_compound_page_dtor(page);
688 
689 	return dtor == free_huge_page;
690 }
691 EXPORT_SYMBOL_GPL(PageHuge);
692 
693 pgoff_t __basepage_index(struct page *page)
694 {
695 	struct page *page_head = compound_head(page);
696 	pgoff_t index = page_index(page_head);
697 	unsigned long compound_idx;
698 
699 	if (!PageHuge(page_head))
700 		return page_index(page);
701 
702 	if (compound_order(page_head) >= MAX_ORDER)
703 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704 	else
705 		compound_idx = page - page_head;
706 
707 	return (index << compound_order(page_head)) + compound_idx;
708 }
709 
710 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
711 {
712 	struct page *page;
713 
714 	if (h->order >= MAX_ORDER)
715 		return NULL;
716 
717 	page = alloc_pages_exact_node(nid,
718 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719 						__GFP_REPEAT|__GFP_NOWARN,
720 		huge_page_order(h));
721 	if (page) {
722 		if (arch_prepare_hugepage(page)) {
723 			__free_pages(page, huge_page_order(h));
724 			return NULL;
725 		}
726 		prep_new_huge_page(h, page, nid);
727 	}
728 
729 	return page;
730 }
731 
732 /*
733  * common helper functions for hstate_next_node_to_{alloc|free}.
734  * We may have allocated or freed a huge page based on a different
735  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736  * be outside of *nodes_allowed.  Ensure that we use an allowed
737  * node for alloc or free.
738  */
739 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740 {
741 	nid = next_node(nid, *nodes_allowed);
742 	if (nid == MAX_NUMNODES)
743 		nid = first_node(*nodes_allowed);
744 	VM_BUG_ON(nid >= MAX_NUMNODES);
745 
746 	return nid;
747 }
748 
749 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750 {
751 	if (!node_isset(nid, *nodes_allowed))
752 		nid = next_node_allowed(nid, nodes_allowed);
753 	return nid;
754 }
755 
756 /*
757  * returns the previously saved node ["this node"] from which to
758  * allocate a persistent huge page for the pool and advance the
759  * next node from which to allocate, handling wrap at end of node
760  * mask.
761  */
762 static int hstate_next_node_to_alloc(struct hstate *h,
763 					nodemask_t *nodes_allowed)
764 {
765 	int nid;
766 
767 	VM_BUG_ON(!nodes_allowed);
768 
769 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771 
772 	return nid;
773 }
774 
775 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
776 {
777 	struct page *page;
778 	int start_nid;
779 	int next_nid;
780 	int ret = 0;
781 
782 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
783 	next_nid = start_nid;
784 
785 	do {
786 		page = alloc_fresh_huge_page_node(h, next_nid);
787 		if (page) {
788 			ret = 1;
789 			break;
790 		}
791 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
792 	} while (next_nid != start_nid);
793 
794 	if (ret)
795 		count_vm_event(HTLB_BUDDY_PGALLOC);
796 	else
797 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
798 
799 	return ret;
800 }
801 
802 /*
803  * helper for free_pool_huge_page() - return the previously saved
804  * node ["this node"] from which to free a huge page.  Advance the
805  * next node id whether or not we find a free huge page to free so
806  * that the next attempt to free addresses the next node.
807  */
808 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
809 {
810 	int nid;
811 
812 	VM_BUG_ON(!nodes_allowed);
813 
814 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
815 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
816 
817 	return nid;
818 }
819 
820 /*
821  * Free huge page from pool from next node to free.
822  * Attempt to keep persistent huge pages more or less
823  * balanced over allowed nodes.
824  * Called with hugetlb_lock locked.
825  */
826 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
827 							 bool acct_surplus)
828 {
829 	int start_nid;
830 	int next_nid;
831 	int ret = 0;
832 
833 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
834 	next_nid = start_nid;
835 
836 	do {
837 		/*
838 		 * If we're returning unused surplus pages, only examine
839 		 * nodes with surplus pages.
840 		 */
841 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
842 		    !list_empty(&h->hugepage_freelists[next_nid])) {
843 			struct page *page =
844 				list_entry(h->hugepage_freelists[next_nid].next,
845 					  struct page, lru);
846 			list_del(&page->lru);
847 			h->free_huge_pages--;
848 			h->free_huge_pages_node[next_nid]--;
849 			if (acct_surplus) {
850 				h->surplus_huge_pages--;
851 				h->surplus_huge_pages_node[next_nid]--;
852 			}
853 			update_and_free_page(h, page);
854 			ret = 1;
855 			break;
856 		}
857 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
858 	} while (next_nid != start_nid);
859 
860 	return ret;
861 }
862 
863 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
864 {
865 	struct page *page;
866 	unsigned int r_nid;
867 
868 	if (h->order >= MAX_ORDER)
869 		return NULL;
870 
871 	/*
872 	 * Assume we will successfully allocate the surplus page to
873 	 * prevent racing processes from causing the surplus to exceed
874 	 * overcommit
875 	 *
876 	 * This however introduces a different race, where a process B
877 	 * tries to grow the static hugepage pool while alloc_pages() is
878 	 * called by process A. B will only examine the per-node
879 	 * counters in determining if surplus huge pages can be
880 	 * converted to normal huge pages in adjust_pool_surplus(). A
881 	 * won't be able to increment the per-node counter, until the
882 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
883 	 * no more huge pages can be converted from surplus to normal
884 	 * state (and doesn't try to convert again). Thus, we have a
885 	 * case where a surplus huge page exists, the pool is grown, and
886 	 * the surplus huge page still exists after, even though it
887 	 * should just have been converted to a normal huge page. This
888 	 * does not leak memory, though, as the hugepage will be freed
889 	 * once it is out of use. It also does not allow the counters to
890 	 * go out of whack in adjust_pool_surplus() as we don't modify
891 	 * the node values until we've gotten the hugepage and only the
892 	 * per-node value is checked there.
893 	 */
894 	spin_lock(&hugetlb_lock);
895 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
896 		spin_unlock(&hugetlb_lock);
897 		return NULL;
898 	} else {
899 		h->nr_huge_pages++;
900 		h->surplus_huge_pages++;
901 	}
902 	spin_unlock(&hugetlb_lock);
903 
904 	if (nid == NUMA_NO_NODE)
905 		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
906 				   __GFP_REPEAT|__GFP_NOWARN,
907 				   huge_page_order(h));
908 	else
909 		page = alloc_pages_exact_node(nid,
910 			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
911 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
912 
913 	if (page && arch_prepare_hugepage(page)) {
914 		__free_pages(page, huge_page_order(h));
915 		page = NULL;
916 	}
917 
918 	spin_lock(&hugetlb_lock);
919 	if (page) {
920 		INIT_LIST_HEAD(&page->lru);
921 		r_nid = page_to_nid(page);
922 		set_compound_page_dtor(page, free_huge_page);
923 		set_hugetlb_cgroup(page, NULL);
924 		/*
925 		 * We incremented the global counters already
926 		 */
927 		h->nr_huge_pages_node[r_nid]++;
928 		h->surplus_huge_pages_node[r_nid]++;
929 		__count_vm_event(HTLB_BUDDY_PGALLOC);
930 	} else {
931 		h->nr_huge_pages--;
932 		h->surplus_huge_pages--;
933 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
934 	}
935 	spin_unlock(&hugetlb_lock);
936 
937 	return page;
938 }
939 
940 /*
941  * This allocation function is useful in the context where vma is irrelevant.
942  * E.g. soft-offlining uses this function because it only cares physical
943  * address of error page.
944  */
945 struct page *alloc_huge_page_node(struct hstate *h, int nid)
946 {
947 	struct page *page;
948 
949 	spin_lock(&hugetlb_lock);
950 	page = dequeue_huge_page_node(h, nid);
951 	spin_unlock(&hugetlb_lock);
952 
953 	if (!page)
954 		page = alloc_buddy_huge_page(h, nid);
955 
956 	return page;
957 }
958 
959 /*
960  * Increase the hugetlb pool such that it can accommodate a reservation
961  * of size 'delta'.
962  */
963 static int gather_surplus_pages(struct hstate *h, int delta)
964 {
965 	struct list_head surplus_list;
966 	struct page *page, *tmp;
967 	int ret, i;
968 	int needed, allocated;
969 	bool alloc_ok = true;
970 
971 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
972 	if (needed <= 0) {
973 		h->resv_huge_pages += delta;
974 		return 0;
975 	}
976 
977 	allocated = 0;
978 	INIT_LIST_HEAD(&surplus_list);
979 
980 	ret = -ENOMEM;
981 retry:
982 	spin_unlock(&hugetlb_lock);
983 	for (i = 0; i < needed; i++) {
984 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
985 		if (!page) {
986 			alloc_ok = false;
987 			break;
988 		}
989 		list_add(&page->lru, &surplus_list);
990 	}
991 	allocated += i;
992 
993 	/*
994 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
995 	 * because either resv_huge_pages or free_huge_pages may have changed.
996 	 */
997 	spin_lock(&hugetlb_lock);
998 	needed = (h->resv_huge_pages + delta) -
999 			(h->free_huge_pages + allocated);
1000 	if (needed > 0) {
1001 		if (alloc_ok)
1002 			goto retry;
1003 		/*
1004 		 * We were not able to allocate enough pages to
1005 		 * satisfy the entire reservation so we free what
1006 		 * we've allocated so far.
1007 		 */
1008 		goto free;
1009 	}
1010 	/*
1011 	 * The surplus_list now contains _at_least_ the number of extra pages
1012 	 * needed to accommodate the reservation.  Add the appropriate number
1013 	 * of pages to the hugetlb pool and free the extras back to the buddy
1014 	 * allocator.  Commit the entire reservation here to prevent another
1015 	 * process from stealing the pages as they are added to the pool but
1016 	 * before they are reserved.
1017 	 */
1018 	needed += allocated;
1019 	h->resv_huge_pages += delta;
1020 	ret = 0;
1021 
1022 	/* Free the needed pages to the hugetlb pool */
1023 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024 		if ((--needed) < 0)
1025 			break;
1026 		/*
1027 		 * This page is now managed by the hugetlb allocator and has
1028 		 * no users -- drop the buddy allocator's reference.
1029 		 */
1030 		put_page_testzero(page);
1031 		VM_BUG_ON(page_count(page));
1032 		enqueue_huge_page(h, page);
1033 	}
1034 free:
1035 	spin_unlock(&hugetlb_lock);
1036 
1037 	/* Free unnecessary surplus pages to the buddy allocator */
1038 	if (!list_empty(&surplus_list)) {
1039 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1040 			put_page(page);
1041 		}
1042 	}
1043 	spin_lock(&hugetlb_lock);
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * When releasing a hugetlb pool reservation, any surplus pages that were
1050  * allocated to satisfy the reservation must be explicitly freed if they were
1051  * never used.
1052  * Called with hugetlb_lock held.
1053  */
1054 static void return_unused_surplus_pages(struct hstate *h,
1055 					unsigned long unused_resv_pages)
1056 {
1057 	unsigned long nr_pages;
1058 
1059 	/* Uncommit the reservation */
1060 	h->resv_huge_pages -= unused_resv_pages;
1061 
1062 	/* Cannot return gigantic pages currently */
1063 	if (h->order >= MAX_ORDER)
1064 		return;
1065 
1066 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1067 
1068 	/*
1069 	 * We want to release as many surplus pages as possible, spread
1070 	 * evenly across all nodes with memory. Iterate across these nodes
1071 	 * until we can no longer free unreserved surplus pages. This occurs
1072 	 * when the nodes with surplus pages have no free pages.
1073 	 * free_pool_huge_page() will balance the the freed pages across the
1074 	 * on-line nodes with memory and will handle the hstate accounting.
1075 	 */
1076 	while (nr_pages--) {
1077 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1078 			break;
1079 	}
1080 }
1081 
1082 /*
1083  * Determine if the huge page at addr within the vma has an associated
1084  * reservation.  Where it does not we will need to logically increase
1085  * reservation and actually increase subpool usage before an allocation
1086  * can occur.  Where any new reservation would be required the
1087  * reservation change is prepared, but not committed.  Once the page
1088  * has been allocated from the subpool and instantiated the change should
1089  * be committed via vma_commit_reservation.  No action is required on
1090  * failure.
1091  */
1092 static long vma_needs_reservation(struct hstate *h,
1093 			struct vm_area_struct *vma, unsigned long addr)
1094 {
1095 	struct address_space *mapping = vma->vm_file->f_mapping;
1096 	struct inode *inode = mapping->host;
1097 
1098 	if (vma->vm_flags & VM_MAYSHARE) {
1099 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1100 		return region_chg(&inode->i_mapping->private_list,
1101 							idx, idx + 1);
1102 
1103 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1104 		return 1;
1105 
1106 	} else  {
1107 		long err;
1108 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109 		struct resv_map *reservations = vma_resv_map(vma);
1110 
1111 		err = region_chg(&reservations->regions, idx, idx + 1);
1112 		if (err < 0)
1113 			return err;
1114 		return 0;
1115 	}
1116 }
1117 static void vma_commit_reservation(struct hstate *h,
1118 			struct vm_area_struct *vma, unsigned long addr)
1119 {
1120 	struct address_space *mapping = vma->vm_file->f_mapping;
1121 	struct inode *inode = mapping->host;
1122 
1123 	if (vma->vm_flags & VM_MAYSHARE) {
1124 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1126 
1127 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1128 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1129 		struct resv_map *reservations = vma_resv_map(vma);
1130 
1131 		/* Mark this page used in the map. */
1132 		region_add(&reservations->regions, idx, idx + 1);
1133 	}
1134 }
1135 
1136 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1137 				    unsigned long addr, int avoid_reserve)
1138 {
1139 	struct hugepage_subpool *spool = subpool_vma(vma);
1140 	struct hstate *h = hstate_vma(vma);
1141 	struct page *page;
1142 	long chg;
1143 	int ret, idx;
1144 	struct hugetlb_cgroup *h_cg;
1145 
1146 	idx = hstate_index(h);
1147 	/*
1148 	 * Processes that did not create the mapping will have no
1149 	 * reserves and will not have accounted against subpool
1150 	 * limit. Check that the subpool limit can be made before
1151 	 * satisfying the allocation MAP_NORESERVE mappings may also
1152 	 * need pages and subpool limit allocated allocated if no reserve
1153 	 * mapping overlaps.
1154 	 */
1155 	chg = vma_needs_reservation(h, vma, addr);
1156 	if (chg < 0)
1157 		return ERR_PTR(-ENOMEM);
1158 	if (chg)
1159 		if (hugepage_subpool_get_pages(spool, chg))
1160 			return ERR_PTR(-ENOSPC);
1161 
1162 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1163 	if (ret) {
1164 		hugepage_subpool_put_pages(spool, chg);
1165 		return ERR_PTR(-ENOSPC);
1166 	}
1167 	spin_lock(&hugetlb_lock);
1168 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1169 	if (page) {
1170 		/* update page cgroup details */
1171 		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1172 					     h_cg, page);
1173 		spin_unlock(&hugetlb_lock);
1174 	} else {
1175 		spin_unlock(&hugetlb_lock);
1176 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1177 		if (!page) {
1178 			hugetlb_cgroup_uncharge_cgroup(idx,
1179 						       pages_per_huge_page(h),
1180 						       h_cg);
1181 			hugepage_subpool_put_pages(spool, chg);
1182 			return ERR_PTR(-ENOSPC);
1183 		}
1184 		spin_lock(&hugetlb_lock);
1185 		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1186 					     h_cg, page);
1187 		list_move(&page->lru, &h->hugepage_activelist);
1188 		spin_unlock(&hugetlb_lock);
1189 	}
1190 
1191 	set_page_private(page, (unsigned long)spool);
1192 
1193 	vma_commit_reservation(h, vma, addr);
1194 	return page;
1195 }
1196 
1197 int __weak alloc_bootmem_huge_page(struct hstate *h)
1198 {
1199 	struct huge_bootmem_page *m;
1200 	int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1201 
1202 	while (nr_nodes) {
1203 		void *addr;
1204 
1205 		addr = __alloc_bootmem_node_nopanic(
1206 				NODE_DATA(hstate_next_node_to_alloc(h,
1207 						&node_states[N_MEMORY])),
1208 				huge_page_size(h), huge_page_size(h), 0);
1209 
1210 		if (addr) {
1211 			/*
1212 			 * Use the beginning of the huge page to store the
1213 			 * huge_bootmem_page struct (until gather_bootmem
1214 			 * puts them into the mem_map).
1215 			 */
1216 			m = addr;
1217 			goto found;
1218 		}
1219 		nr_nodes--;
1220 	}
1221 	return 0;
1222 
1223 found:
1224 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1225 	/* Put them into a private list first because mem_map is not up yet */
1226 	list_add(&m->list, &huge_boot_pages);
1227 	m->hstate = h;
1228 	return 1;
1229 }
1230 
1231 static void prep_compound_huge_page(struct page *page, int order)
1232 {
1233 	if (unlikely(order > (MAX_ORDER - 1)))
1234 		prep_compound_gigantic_page(page, order);
1235 	else
1236 		prep_compound_page(page, order);
1237 }
1238 
1239 /* Put bootmem huge pages into the standard lists after mem_map is up */
1240 static void __init gather_bootmem_prealloc(void)
1241 {
1242 	struct huge_bootmem_page *m;
1243 
1244 	list_for_each_entry(m, &huge_boot_pages, list) {
1245 		struct hstate *h = m->hstate;
1246 		struct page *page;
1247 
1248 #ifdef CONFIG_HIGHMEM
1249 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1250 		free_bootmem_late((unsigned long)m,
1251 				  sizeof(struct huge_bootmem_page));
1252 #else
1253 		page = virt_to_page(m);
1254 #endif
1255 		__ClearPageReserved(page);
1256 		WARN_ON(page_count(page) != 1);
1257 		prep_compound_huge_page(page, h->order);
1258 		prep_new_huge_page(h, page, page_to_nid(page));
1259 		/*
1260 		 * If we had gigantic hugepages allocated at boot time, we need
1261 		 * to restore the 'stolen' pages to totalram_pages in order to
1262 		 * fix confusing memory reports from free(1) and another
1263 		 * side-effects, like CommitLimit going negative.
1264 		 */
1265 		if (h->order > (MAX_ORDER - 1))
1266 			adjust_managed_page_count(page, 1 << h->order);
1267 	}
1268 }
1269 
1270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1271 {
1272 	unsigned long i;
1273 
1274 	for (i = 0; i < h->max_huge_pages; ++i) {
1275 		if (h->order >= MAX_ORDER) {
1276 			if (!alloc_bootmem_huge_page(h))
1277 				break;
1278 		} else if (!alloc_fresh_huge_page(h,
1279 					 &node_states[N_MEMORY]))
1280 			break;
1281 	}
1282 	h->max_huge_pages = i;
1283 }
1284 
1285 static void __init hugetlb_init_hstates(void)
1286 {
1287 	struct hstate *h;
1288 
1289 	for_each_hstate(h) {
1290 		/* oversize hugepages were init'ed in early boot */
1291 		if (h->order < MAX_ORDER)
1292 			hugetlb_hstate_alloc_pages(h);
1293 	}
1294 }
1295 
1296 static char * __init memfmt(char *buf, unsigned long n)
1297 {
1298 	if (n >= (1UL << 30))
1299 		sprintf(buf, "%lu GB", n >> 30);
1300 	else if (n >= (1UL << 20))
1301 		sprintf(buf, "%lu MB", n >> 20);
1302 	else
1303 		sprintf(buf, "%lu KB", n >> 10);
1304 	return buf;
1305 }
1306 
1307 static void __init report_hugepages(void)
1308 {
1309 	struct hstate *h;
1310 
1311 	for_each_hstate(h) {
1312 		char buf[32];
1313 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1314 			memfmt(buf, huge_page_size(h)),
1315 			h->free_huge_pages);
1316 	}
1317 }
1318 
1319 #ifdef CONFIG_HIGHMEM
1320 static void try_to_free_low(struct hstate *h, unsigned long count,
1321 						nodemask_t *nodes_allowed)
1322 {
1323 	int i;
1324 
1325 	if (h->order >= MAX_ORDER)
1326 		return;
1327 
1328 	for_each_node_mask(i, *nodes_allowed) {
1329 		struct page *page, *next;
1330 		struct list_head *freel = &h->hugepage_freelists[i];
1331 		list_for_each_entry_safe(page, next, freel, lru) {
1332 			if (count >= h->nr_huge_pages)
1333 				return;
1334 			if (PageHighMem(page))
1335 				continue;
1336 			list_del(&page->lru);
1337 			update_and_free_page(h, page);
1338 			h->free_huge_pages--;
1339 			h->free_huge_pages_node[page_to_nid(page)]--;
1340 		}
1341 	}
1342 }
1343 #else
1344 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1345 						nodemask_t *nodes_allowed)
1346 {
1347 }
1348 #endif
1349 
1350 /*
1351  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1352  * balanced by operating on them in a round-robin fashion.
1353  * Returns 1 if an adjustment was made.
1354  */
1355 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1356 				int delta)
1357 {
1358 	int start_nid, next_nid;
1359 	int ret = 0;
1360 
1361 	VM_BUG_ON(delta != -1 && delta != 1);
1362 
1363 	if (delta < 0)
1364 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1365 	else
1366 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1367 	next_nid = start_nid;
1368 
1369 	do {
1370 		int nid = next_nid;
1371 		if (delta < 0)  {
1372 			/*
1373 			 * To shrink on this node, there must be a surplus page
1374 			 */
1375 			if (!h->surplus_huge_pages_node[nid]) {
1376 				next_nid = hstate_next_node_to_alloc(h,
1377 								nodes_allowed);
1378 				continue;
1379 			}
1380 		}
1381 		if (delta > 0) {
1382 			/*
1383 			 * Surplus cannot exceed the total number of pages
1384 			 */
1385 			if (h->surplus_huge_pages_node[nid] >=
1386 						h->nr_huge_pages_node[nid]) {
1387 				next_nid = hstate_next_node_to_free(h,
1388 								nodes_allowed);
1389 				continue;
1390 			}
1391 		}
1392 
1393 		h->surplus_huge_pages += delta;
1394 		h->surplus_huge_pages_node[nid] += delta;
1395 		ret = 1;
1396 		break;
1397 	} while (next_nid != start_nid);
1398 
1399 	return ret;
1400 }
1401 
1402 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1403 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1404 						nodemask_t *nodes_allowed)
1405 {
1406 	unsigned long min_count, ret;
1407 
1408 	if (h->order >= MAX_ORDER)
1409 		return h->max_huge_pages;
1410 
1411 	/*
1412 	 * Increase the pool size
1413 	 * First take pages out of surplus state.  Then make up the
1414 	 * remaining difference by allocating fresh huge pages.
1415 	 *
1416 	 * We might race with alloc_buddy_huge_page() here and be unable
1417 	 * to convert a surplus huge page to a normal huge page. That is
1418 	 * not critical, though, it just means the overall size of the
1419 	 * pool might be one hugepage larger than it needs to be, but
1420 	 * within all the constraints specified by the sysctls.
1421 	 */
1422 	spin_lock(&hugetlb_lock);
1423 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1424 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1425 			break;
1426 	}
1427 
1428 	while (count > persistent_huge_pages(h)) {
1429 		/*
1430 		 * If this allocation races such that we no longer need the
1431 		 * page, free_huge_page will handle it by freeing the page
1432 		 * and reducing the surplus.
1433 		 */
1434 		spin_unlock(&hugetlb_lock);
1435 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1436 		spin_lock(&hugetlb_lock);
1437 		if (!ret)
1438 			goto out;
1439 
1440 		/* Bail for signals. Probably ctrl-c from user */
1441 		if (signal_pending(current))
1442 			goto out;
1443 	}
1444 
1445 	/*
1446 	 * Decrease the pool size
1447 	 * First return free pages to the buddy allocator (being careful
1448 	 * to keep enough around to satisfy reservations).  Then place
1449 	 * pages into surplus state as needed so the pool will shrink
1450 	 * to the desired size as pages become free.
1451 	 *
1452 	 * By placing pages into the surplus state independent of the
1453 	 * overcommit value, we are allowing the surplus pool size to
1454 	 * exceed overcommit. There are few sane options here. Since
1455 	 * alloc_buddy_huge_page() is checking the global counter,
1456 	 * though, we'll note that we're not allowed to exceed surplus
1457 	 * and won't grow the pool anywhere else. Not until one of the
1458 	 * sysctls are changed, or the surplus pages go out of use.
1459 	 */
1460 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1461 	min_count = max(count, min_count);
1462 	try_to_free_low(h, min_count, nodes_allowed);
1463 	while (min_count < persistent_huge_pages(h)) {
1464 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1465 			break;
1466 	}
1467 	while (count < persistent_huge_pages(h)) {
1468 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1469 			break;
1470 	}
1471 out:
1472 	ret = persistent_huge_pages(h);
1473 	spin_unlock(&hugetlb_lock);
1474 	return ret;
1475 }
1476 
1477 #define HSTATE_ATTR_RO(_name) \
1478 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1479 
1480 #define HSTATE_ATTR(_name) \
1481 	static struct kobj_attribute _name##_attr = \
1482 		__ATTR(_name, 0644, _name##_show, _name##_store)
1483 
1484 static struct kobject *hugepages_kobj;
1485 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1486 
1487 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1488 
1489 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1490 {
1491 	int i;
1492 
1493 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1494 		if (hstate_kobjs[i] == kobj) {
1495 			if (nidp)
1496 				*nidp = NUMA_NO_NODE;
1497 			return &hstates[i];
1498 		}
1499 
1500 	return kobj_to_node_hstate(kobj, nidp);
1501 }
1502 
1503 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1504 					struct kobj_attribute *attr, char *buf)
1505 {
1506 	struct hstate *h;
1507 	unsigned long nr_huge_pages;
1508 	int nid;
1509 
1510 	h = kobj_to_hstate(kobj, &nid);
1511 	if (nid == NUMA_NO_NODE)
1512 		nr_huge_pages = h->nr_huge_pages;
1513 	else
1514 		nr_huge_pages = h->nr_huge_pages_node[nid];
1515 
1516 	return sprintf(buf, "%lu\n", nr_huge_pages);
1517 }
1518 
1519 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1520 			struct kobject *kobj, struct kobj_attribute *attr,
1521 			const char *buf, size_t len)
1522 {
1523 	int err;
1524 	int nid;
1525 	unsigned long count;
1526 	struct hstate *h;
1527 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1528 
1529 	err = strict_strtoul(buf, 10, &count);
1530 	if (err)
1531 		goto out;
1532 
1533 	h = kobj_to_hstate(kobj, &nid);
1534 	if (h->order >= MAX_ORDER) {
1535 		err = -EINVAL;
1536 		goto out;
1537 	}
1538 
1539 	if (nid == NUMA_NO_NODE) {
1540 		/*
1541 		 * global hstate attribute
1542 		 */
1543 		if (!(obey_mempolicy &&
1544 				init_nodemask_of_mempolicy(nodes_allowed))) {
1545 			NODEMASK_FREE(nodes_allowed);
1546 			nodes_allowed = &node_states[N_MEMORY];
1547 		}
1548 	} else if (nodes_allowed) {
1549 		/*
1550 		 * per node hstate attribute: adjust count to global,
1551 		 * but restrict alloc/free to the specified node.
1552 		 */
1553 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1554 		init_nodemask_of_node(nodes_allowed, nid);
1555 	} else
1556 		nodes_allowed = &node_states[N_MEMORY];
1557 
1558 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1559 
1560 	if (nodes_allowed != &node_states[N_MEMORY])
1561 		NODEMASK_FREE(nodes_allowed);
1562 
1563 	return len;
1564 out:
1565 	NODEMASK_FREE(nodes_allowed);
1566 	return err;
1567 }
1568 
1569 static ssize_t nr_hugepages_show(struct kobject *kobj,
1570 				       struct kobj_attribute *attr, char *buf)
1571 {
1572 	return nr_hugepages_show_common(kobj, attr, buf);
1573 }
1574 
1575 static ssize_t nr_hugepages_store(struct kobject *kobj,
1576 	       struct kobj_attribute *attr, const char *buf, size_t len)
1577 {
1578 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1579 }
1580 HSTATE_ATTR(nr_hugepages);
1581 
1582 #ifdef CONFIG_NUMA
1583 
1584 /*
1585  * hstate attribute for optionally mempolicy-based constraint on persistent
1586  * huge page alloc/free.
1587  */
1588 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1589 				       struct kobj_attribute *attr, char *buf)
1590 {
1591 	return nr_hugepages_show_common(kobj, attr, buf);
1592 }
1593 
1594 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1595 	       struct kobj_attribute *attr, const char *buf, size_t len)
1596 {
1597 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1598 }
1599 HSTATE_ATTR(nr_hugepages_mempolicy);
1600 #endif
1601 
1602 
1603 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1604 					struct kobj_attribute *attr, char *buf)
1605 {
1606 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1607 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1608 }
1609 
1610 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1611 		struct kobj_attribute *attr, const char *buf, size_t count)
1612 {
1613 	int err;
1614 	unsigned long input;
1615 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1616 
1617 	if (h->order >= MAX_ORDER)
1618 		return -EINVAL;
1619 
1620 	err = strict_strtoul(buf, 10, &input);
1621 	if (err)
1622 		return err;
1623 
1624 	spin_lock(&hugetlb_lock);
1625 	h->nr_overcommit_huge_pages = input;
1626 	spin_unlock(&hugetlb_lock);
1627 
1628 	return count;
1629 }
1630 HSTATE_ATTR(nr_overcommit_hugepages);
1631 
1632 static ssize_t free_hugepages_show(struct kobject *kobj,
1633 					struct kobj_attribute *attr, char *buf)
1634 {
1635 	struct hstate *h;
1636 	unsigned long free_huge_pages;
1637 	int nid;
1638 
1639 	h = kobj_to_hstate(kobj, &nid);
1640 	if (nid == NUMA_NO_NODE)
1641 		free_huge_pages = h->free_huge_pages;
1642 	else
1643 		free_huge_pages = h->free_huge_pages_node[nid];
1644 
1645 	return sprintf(buf, "%lu\n", free_huge_pages);
1646 }
1647 HSTATE_ATTR_RO(free_hugepages);
1648 
1649 static ssize_t resv_hugepages_show(struct kobject *kobj,
1650 					struct kobj_attribute *attr, char *buf)
1651 {
1652 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1653 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1654 }
1655 HSTATE_ATTR_RO(resv_hugepages);
1656 
1657 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1658 					struct kobj_attribute *attr, char *buf)
1659 {
1660 	struct hstate *h;
1661 	unsigned long surplus_huge_pages;
1662 	int nid;
1663 
1664 	h = kobj_to_hstate(kobj, &nid);
1665 	if (nid == NUMA_NO_NODE)
1666 		surplus_huge_pages = h->surplus_huge_pages;
1667 	else
1668 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1669 
1670 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1671 }
1672 HSTATE_ATTR_RO(surplus_hugepages);
1673 
1674 static struct attribute *hstate_attrs[] = {
1675 	&nr_hugepages_attr.attr,
1676 	&nr_overcommit_hugepages_attr.attr,
1677 	&free_hugepages_attr.attr,
1678 	&resv_hugepages_attr.attr,
1679 	&surplus_hugepages_attr.attr,
1680 #ifdef CONFIG_NUMA
1681 	&nr_hugepages_mempolicy_attr.attr,
1682 #endif
1683 	NULL,
1684 };
1685 
1686 static struct attribute_group hstate_attr_group = {
1687 	.attrs = hstate_attrs,
1688 };
1689 
1690 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1691 				    struct kobject **hstate_kobjs,
1692 				    struct attribute_group *hstate_attr_group)
1693 {
1694 	int retval;
1695 	int hi = hstate_index(h);
1696 
1697 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1698 	if (!hstate_kobjs[hi])
1699 		return -ENOMEM;
1700 
1701 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1702 	if (retval)
1703 		kobject_put(hstate_kobjs[hi]);
1704 
1705 	return retval;
1706 }
1707 
1708 static void __init hugetlb_sysfs_init(void)
1709 {
1710 	struct hstate *h;
1711 	int err;
1712 
1713 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1714 	if (!hugepages_kobj)
1715 		return;
1716 
1717 	for_each_hstate(h) {
1718 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1719 					 hstate_kobjs, &hstate_attr_group);
1720 		if (err)
1721 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1722 	}
1723 }
1724 
1725 #ifdef CONFIG_NUMA
1726 
1727 /*
1728  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1729  * with node devices in node_devices[] using a parallel array.  The array
1730  * index of a node device or _hstate == node id.
1731  * This is here to avoid any static dependency of the node device driver, in
1732  * the base kernel, on the hugetlb module.
1733  */
1734 struct node_hstate {
1735 	struct kobject		*hugepages_kobj;
1736 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1737 };
1738 struct node_hstate node_hstates[MAX_NUMNODES];
1739 
1740 /*
1741  * A subset of global hstate attributes for node devices
1742  */
1743 static struct attribute *per_node_hstate_attrs[] = {
1744 	&nr_hugepages_attr.attr,
1745 	&free_hugepages_attr.attr,
1746 	&surplus_hugepages_attr.attr,
1747 	NULL,
1748 };
1749 
1750 static struct attribute_group per_node_hstate_attr_group = {
1751 	.attrs = per_node_hstate_attrs,
1752 };
1753 
1754 /*
1755  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1756  * Returns node id via non-NULL nidp.
1757  */
1758 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1759 {
1760 	int nid;
1761 
1762 	for (nid = 0; nid < nr_node_ids; nid++) {
1763 		struct node_hstate *nhs = &node_hstates[nid];
1764 		int i;
1765 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1766 			if (nhs->hstate_kobjs[i] == kobj) {
1767 				if (nidp)
1768 					*nidp = nid;
1769 				return &hstates[i];
1770 			}
1771 	}
1772 
1773 	BUG();
1774 	return NULL;
1775 }
1776 
1777 /*
1778  * Unregister hstate attributes from a single node device.
1779  * No-op if no hstate attributes attached.
1780  */
1781 static void hugetlb_unregister_node(struct node *node)
1782 {
1783 	struct hstate *h;
1784 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1785 
1786 	if (!nhs->hugepages_kobj)
1787 		return;		/* no hstate attributes */
1788 
1789 	for_each_hstate(h) {
1790 		int idx = hstate_index(h);
1791 		if (nhs->hstate_kobjs[idx]) {
1792 			kobject_put(nhs->hstate_kobjs[idx]);
1793 			nhs->hstate_kobjs[idx] = NULL;
1794 		}
1795 	}
1796 
1797 	kobject_put(nhs->hugepages_kobj);
1798 	nhs->hugepages_kobj = NULL;
1799 }
1800 
1801 /*
1802  * hugetlb module exit:  unregister hstate attributes from node devices
1803  * that have them.
1804  */
1805 static void hugetlb_unregister_all_nodes(void)
1806 {
1807 	int nid;
1808 
1809 	/*
1810 	 * disable node device registrations.
1811 	 */
1812 	register_hugetlbfs_with_node(NULL, NULL);
1813 
1814 	/*
1815 	 * remove hstate attributes from any nodes that have them.
1816 	 */
1817 	for (nid = 0; nid < nr_node_ids; nid++)
1818 		hugetlb_unregister_node(node_devices[nid]);
1819 }
1820 
1821 /*
1822  * Register hstate attributes for a single node device.
1823  * No-op if attributes already registered.
1824  */
1825 static void hugetlb_register_node(struct node *node)
1826 {
1827 	struct hstate *h;
1828 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1829 	int err;
1830 
1831 	if (nhs->hugepages_kobj)
1832 		return;		/* already allocated */
1833 
1834 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1835 							&node->dev.kobj);
1836 	if (!nhs->hugepages_kobj)
1837 		return;
1838 
1839 	for_each_hstate(h) {
1840 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1841 						nhs->hstate_kobjs,
1842 						&per_node_hstate_attr_group);
1843 		if (err) {
1844 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1845 				h->name, node->dev.id);
1846 			hugetlb_unregister_node(node);
1847 			break;
1848 		}
1849 	}
1850 }
1851 
1852 /*
1853  * hugetlb init time:  register hstate attributes for all registered node
1854  * devices of nodes that have memory.  All on-line nodes should have
1855  * registered their associated device by this time.
1856  */
1857 static void hugetlb_register_all_nodes(void)
1858 {
1859 	int nid;
1860 
1861 	for_each_node_state(nid, N_MEMORY) {
1862 		struct node *node = node_devices[nid];
1863 		if (node->dev.id == nid)
1864 			hugetlb_register_node(node);
1865 	}
1866 
1867 	/*
1868 	 * Let the node device driver know we're here so it can
1869 	 * [un]register hstate attributes on node hotplug.
1870 	 */
1871 	register_hugetlbfs_with_node(hugetlb_register_node,
1872 				     hugetlb_unregister_node);
1873 }
1874 #else	/* !CONFIG_NUMA */
1875 
1876 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1877 {
1878 	BUG();
1879 	if (nidp)
1880 		*nidp = -1;
1881 	return NULL;
1882 }
1883 
1884 static void hugetlb_unregister_all_nodes(void) { }
1885 
1886 static void hugetlb_register_all_nodes(void) { }
1887 
1888 #endif
1889 
1890 static void __exit hugetlb_exit(void)
1891 {
1892 	struct hstate *h;
1893 
1894 	hugetlb_unregister_all_nodes();
1895 
1896 	for_each_hstate(h) {
1897 		kobject_put(hstate_kobjs[hstate_index(h)]);
1898 	}
1899 
1900 	kobject_put(hugepages_kobj);
1901 }
1902 module_exit(hugetlb_exit);
1903 
1904 static int __init hugetlb_init(void)
1905 {
1906 	/* Some platform decide whether they support huge pages at boot
1907 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1908 	 * there is no such support
1909 	 */
1910 	if (HPAGE_SHIFT == 0)
1911 		return 0;
1912 
1913 	if (!size_to_hstate(default_hstate_size)) {
1914 		default_hstate_size = HPAGE_SIZE;
1915 		if (!size_to_hstate(default_hstate_size))
1916 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1917 	}
1918 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1919 	if (default_hstate_max_huge_pages)
1920 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1921 
1922 	hugetlb_init_hstates();
1923 	gather_bootmem_prealloc();
1924 	report_hugepages();
1925 
1926 	hugetlb_sysfs_init();
1927 	hugetlb_register_all_nodes();
1928 	hugetlb_cgroup_file_init();
1929 
1930 	return 0;
1931 }
1932 module_init(hugetlb_init);
1933 
1934 /* Should be called on processing a hugepagesz=... option */
1935 void __init hugetlb_add_hstate(unsigned order)
1936 {
1937 	struct hstate *h;
1938 	unsigned long i;
1939 
1940 	if (size_to_hstate(PAGE_SIZE << order)) {
1941 		pr_warning("hugepagesz= specified twice, ignoring\n");
1942 		return;
1943 	}
1944 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1945 	BUG_ON(order == 0);
1946 	h = &hstates[hugetlb_max_hstate++];
1947 	h->order = order;
1948 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1949 	h->nr_huge_pages = 0;
1950 	h->free_huge_pages = 0;
1951 	for (i = 0; i < MAX_NUMNODES; ++i)
1952 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1953 	INIT_LIST_HEAD(&h->hugepage_activelist);
1954 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1955 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1956 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1957 					huge_page_size(h)/1024);
1958 
1959 	parsed_hstate = h;
1960 }
1961 
1962 static int __init hugetlb_nrpages_setup(char *s)
1963 {
1964 	unsigned long *mhp;
1965 	static unsigned long *last_mhp;
1966 
1967 	/*
1968 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1969 	 * so this hugepages= parameter goes to the "default hstate".
1970 	 */
1971 	if (!hugetlb_max_hstate)
1972 		mhp = &default_hstate_max_huge_pages;
1973 	else
1974 		mhp = &parsed_hstate->max_huge_pages;
1975 
1976 	if (mhp == last_mhp) {
1977 		pr_warning("hugepages= specified twice without "
1978 			   "interleaving hugepagesz=, ignoring\n");
1979 		return 1;
1980 	}
1981 
1982 	if (sscanf(s, "%lu", mhp) <= 0)
1983 		*mhp = 0;
1984 
1985 	/*
1986 	 * Global state is always initialized later in hugetlb_init.
1987 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1988 	 * use the bootmem allocator.
1989 	 */
1990 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1991 		hugetlb_hstate_alloc_pages(parsed_hstate);
1992 
1993 	last_mhp = mhp;
1994 
1995 	return 1;
1996 }
1997 __setup("hugepages=", hugetlb_nrpages_setup);
1998 
1999 static int __init hugetlb_default_setup(char *s)
2000 {
2001 	default_hstate_size = memparse(s, &s);
2002 	return 1;
2003 }
2004 __setup("default_hugepagesz=", hugetlb_default_setup);
2005 
2006 static unsigned int cpuset_mems_nr(unsigned int *array)
2007 {
2008 	int node;
2009 	unsigned int nr = 0;
2010 
2011 	for_each_node_mask(node, cpuset_current_mems_allowed)
2012 		nr += array[node];
2013 
2014 	return nr;
2015 }
2016 
2017 #ifdef CONFIG_SYSCTL
2018 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2019 			 struct ctl_table *table, int write,
2020 			 void __user *buffer, size_t *length, loff_t *ppos)
2021 {
2022 	struct hstate *h = &default_hstate;
2023 	unsigned long tmp;
2024 	int ret;
2025 
2026 	tmp = h->max_huge_pages;
2027 
2028 	if (write && h->order >= MAX_ORDER)
2029 		return -EINVAL;
2030 
2031 	table->data = &tmp;
2032 	table->maxlen = sizeof(unsigned long);
2033 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2034 	if (ret)
2035 		goto out;
2036 
2037 	if (write) {
2038 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2039 						GFP_KERNEL | __GFP_NORETRY);
2040 		if (!(obey_mempolicy &&
2041 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2042 			NODEMASK_FREE(nodes_allowed);
2043 			nodes_allowed = &node_states[N_MEMORY];
2044 		}
2045 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2046 
2047 		if (nodes_allowed != &node_states[N_MEMORY])
2048 			NODEMASK_FREE(nodes_allowed);
2049 	}
2050 out:
2051 	return ret;
2052 }
2053 
2054 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2055 			  void __user *buffer, size_t *length, loff_t *ppos)
2056 {
2057 
2058 	return hugetlb_sysctl_handler_common(false, table, write,
2059 							buffer, length, ppos);
2060 }
2061 
2062 #ifdef CONFIG_NUMA
2063 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2064 			  void __user *buffer, size_t *length, loff_t *ppos)
2065 {
2066 	return hugetlb_sysctl_handler_common(true, table, write,
2067 							buffer, length, ppos);
2068 }
2069 #endif /* CONFIG_NUMA */
2070 
2071 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2072 			void __user *buffer,
2073 			size_t *length, loff_t *ppos)
2074 {
2075 	proc_dointvec(table, write, buffer, length, ppos);
2076 	if (hugepages_treat_as_movable)
2077 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2078 	else
2079 		htlb_alloc_mask = GFP_HIGHUSER;
2080 	return 0;
2081 }
2082 
2083 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2084 			void __user *buffer,
2085 			size_t *length, loff_t *ppos)
2086 {
2087 	struct hstate *h = &default_hstate;
2088 	unsigned long tmp;
2089 	int ret;
2090 
2091 	tmp = h->nr_overcommit_huge_pages;
2092 
2093 	if (write && h->order >= MAX_ORDER)
2094 		return -EINVAL;
2095 
2096 	table->data = &tmp;
2097 	table->maxlen = sizeof(unsigned long);
2098 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2099 	if (ret)
2100 		goto out;
2101 
2102 	if (write) {
2103 		spin_lock(&hugetlb_lock);
2104 		h->nr_overcommit_huge_pages = tmp;
2105 		spin_unlock(&hugetlb_lock);
2106 	}
2107 out:
2108 	return ret;
2109 }
2110 
2111 #endif /* CONFIG_SYSCTL */
2112 
2113 void hugetlb_report_meminfo(struct seq_file *m)
2114 {
2115 	struct hstate *h = &default_hstate;
2116 	seq_printf(m,
2117 			"HugePages_Total:   %5lu\n"
2118 			"HugePages_Free:    %5lu\n"
2119 			"HugePages_Rsvd:    %5lu\n"
2120 			"HugePages_Surp:    %5lu\n"
2121 			"Hugepagesize:   %8lu kB\n",
2122 			h->nr_huge_pages,
2123 			h->free_huge_pages,
2124 			h->resv_huge_pages,
2125 			h->surplus_huge_pages,
2126 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2127 }
2128 
2129 int hugetlb_report_node_meminfo(int nid, char *buf)
2130 {
2131 	struct hstate *h = &default_hstate;
2132 	return sprintf(buf,
2133 		"Node %d HugePages_Total: %5u\n"
2134 		"Node %d HugePages_Free:  %5u\n"
2135 		"Node %d HugePages_Surp:  %5u\n",
2136 		nid, h->nr_huge_pages_node[nid],
2137 		nid, h->free_huge_pages_node[nid],
2138 		nid, h->surplus_huge_pages_node[nid]);
2139 }
2140 
2141 void hugetlb_show_meminfo(void)
2142 {
2143 	struct hstate *h;
2144 	int nid;
2145 
2146 	for_each_node_state(nid, N_MEMORY)
2147 		for_each_hstate(h)
2148 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2149 				nid,
2150 				h->nr_huge_pages_node[nid],
2151 				h->free_huge_pages_node[nid],
2152 				h->surplus_huge_pages_node[nid],
2153 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2154 }
2155 
2156 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2157 unsigned long hugetlb_total_pages(void)
2158 {
2159 	struct hstate *h;
2160 	unsigned long nr_total_pages = 0;
2161 
2162 	for_each_hstate(h)
2163 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2164 	return nr_total_pages;
2165 }
2166 
2167 static int hugetlb_acct_memory(struct hstate *h, long delta)
2168 {
2169 	int ret = -ENOMEM;
2170 
2171 	spin_lock(&hugetlb_lock);
2172 	/*
2173 	 * When cpuset is configured, it breaks the strict hugetlb page
2174 	 * reservation as the accounting is done on a global variable. Such
2175 	 * reservation is completely rubbish in the presence of cpuset because
2176 	 * the reservation is not checked against page availability for the
2177 	 * current cpuset. Application can still potentially OOM'ed by kernel
2178 	 * with lack of free htlb page in cpuset that the task is in.
2179 	 * Attempt to enforce strict accounting with cpuset is almost
2180 	 * impossible (or too ugly) because cpuset is too fluid that
2181 	 * task or memory node can be dynamically moved between cpusets.
2182 	 *
2183 	 * The change of semantics for shared hugetlb mapping with cpuset is
2184 	 * undesirable. However, in order to preserve some of the semantics,
2185 	 * we fall back to check against current free page availability as
2186 	 * a best attempt and hopefully to minimize the impact of changing
2187 	 * semantics that cpuset has.
2188 	 */
2189 	if (delta > 0) {
2190 		if (gather_surplus_pages(h, delta) < 0)
2191 			goto out;
2192 
2193 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2194 			return_unused_surplus_pages(h, delta);
2195 			goto out;
2196 		}
2197 	}
2198 
2199 	ret = 0;
2200 	if (delta < 0)
2201 		return_unused_surplus_pages(h, (unsigned long) -delta);
2202 
2203 out:
2204 	spin_unlock(&hugetlb_lock);
2205 	return ret;
2206 }
2207 
2208 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2209 {
2210 	struct resv_map *reservations = vma_resv_map(vma);
2211 
2212 	/*
2213 	 * This new VMA should share its siblings reservation map if present.
2214 	 * The VMA will only ever have a valid reservation map pointer where
2215 	 * it is being copied for another still existing VMA.  As that VMA
2216 	 * has a reference to the reservation map it cannot disappear until
2217 	 * after this open call completes.  It is therefore safe to take a
2218 	 * new reference here without additional locking.
2219 	 */
2220 	if (reservations)
2221 		kref_get(&reservations->refs);
2222 }
2223 
2224 static void resv_map_put(struct vm_area_struct *vma)
2225 {
2226 	struct resv_map *reservations = vma_resv_map(vma);
2227 
2228 	if (!reservations)
2229 		return;
2230 	kref_put(&reservations->refs, resv_map_release);
2231 }
2232 
2233 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2234 {
2235 	struct hstate *h = hstate_vma(vma);
2236 	struct resv_map *reservations = vma_resv_map(vma);
2237 	struct hugepage_subpool *spool = subpool_vma(vma);
2238 	unsigned long reserve;
2239 	unsigned long start;
2240 	unsigned long end;
2241 
2242 	if (reservations) {
2243 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2244 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2245 
2246 		reserve = (end - start) -
2247 			region_count(&reservations->regions, start, end);
2248 
2249 		resv_map_put(vma);
2250 
2251 		if (reserve) {
2252 			hugetlb_acct_memory(h, -reserve);
2253 			hugepage_subpool_put_pages(spool, reserve);
2254 		}
2255 	}
2256 }
2257 
2258 /*
2259  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2260  * handle_mm_fault() to try to instantiate regular-sized pages in the
2261  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2262  * this far.
2263  */
2264 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2265 {
2266 	BUG();
2267 	return 0;
2268 }
2269 
2270 const struct vm_operations_struct hugetlb_vm_ops = {
2271 	.fault = hugetlb_vm_op_fault,
2272 	.open = hugetlb_vm_op_open,
2273 	.close = hugetlb_vm_op_close,
2274 };
2275 
2276 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2277 				int writable)
2278 {
2279 	pte_t entry;
2280 
2281 	if (writable) {
2282 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2283 					 vma->vm_page_prot)));
2284 	} else {
2285 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2286 					   vma->vm_page_prot));
2287 	}
2288 	entry = pte_mkyoung(entry);
2289 	entry = pte_mkhuge(entry);
2290 	entry = arch_make_huge_pte(entry, vma, page, writable);
2291 
2292 	return entry;
2293 }
2294 
2295 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2296 				   unsigned long address, pte_t *ptep)
2297 {
2298 	pte_t entry;
2299 
2300 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2301 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2302 		update_mmu_cache(vma, address, ptep);
2303 }
2304 
2305 
2306 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2307 			    struct vm_area_struct *vma)
2308 {
2309 	pte_t *src_pte, *dst_pte, entry;
2310 	struct page *ptepage;
2311 	unsigned long addr;
2312 	int cow;
2313 	struct hstate *h = hstate_vma(vma);
2314 	unsigned long sz = huge_page_size(h);
2315 
2316 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2317 
2318 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2319 		src_pte = huge_pte_offset(src, addr);
2320 		if (!src_pte)
2321 			continue;
2322 		dst_pte = huge_pte_alloc(dst, addr, sz);
2323 		if (!dst_pte)
2324 			goto nomem;
2325 
2326 		/* If the pagetables are shared don't copy or take references */
2327 		if (dst_pte == src_pte)
2328 			continue;
2329 
2330 		spin_lock(&dst->page_table_lock);
2331 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2332 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2333 			if (cow)
2334 				huge_ptep_set_wrprotect(src, addr, src_pte);
2335 			entry = huge_ptep_get(src_pte);
2336 			ptepage = pte_page(entry);
2337 			get_page(ptepage);
2338 			page_dup_rmap(ptepage);
2339 			set_huge_pte_at(dst, addr, dst_pte, entry);
2340 		}
2341 		spin_unlock(&src->page_table_lock);
2342 		spin_unlock(&dst->page_table_lock);
2343 	}
2344 	return 0;
2345 
2346 nomem:
2347 	return -ENOMEM;
2348 }
2349 
2350 static int is_hugetlb_entry_migration(pte_t pte)
2351 {
2352 	swp_entry_t swp;
2353 
2354 	if (huge_pte_none(pte) || pte_present(pte))
2355 		return 0;
2356 	swp = pte_to_swp_entry(pte);
2357 	if (non_swap_entry(swp) && is_migration_entry(swp))
2358 		return 1;
2359 	else
2360 		return 0;
2361 }
2362 
2363 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2364 {
2365 	swp_entry_t swp;
2366 
2367 	if (huge_pte_none(pte) || pte_present(pte))
2368 		return 0;
2369 	swp = pte_to_swp_entry(pte);
2370 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2371 		return 1;
2372 	else
2373 		return 0;
2374 }
2375 
2376 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2377 			    unsigned long start, unsigned long end,
2378 			    struct page *ref_page)
2379 {
2380 	int force_flush = 0;
2381 	struct mm_struct *mm = vma->vm_mm;
2382 	unsigned long address;
2383 	pte_t *ptep;
2384 	pte_t pte;
2385 	struct page *page;
2386 	struct hstate *h = hstate_vma(vma);
2387 	unsigned long sz = huge_page_size(h);
2388 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2389 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2390 
2391 	WARN_ON(!is_vm_hugetlb_page(vma));
2392 	BUG_ON(start & ~huge_page_mask(h));
2393 	BUG_ON(end & ~huge_page_mask(h));
2394 
2395 	tlb_start_vma(tlb, vma);
2396 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2397 again:
2398 	spin_lock(&mm->page_table_lock);
2399 	for (address = start; address < end; address += sz) {
2400 		ptep = huge_pte_offset(mm, address);
2401 		if (!ptep)
2402 			continue;
2403 
2404 		if (huge_pmd_unshare(mm, &address, ptep))
2405 			continue;
2406 
2407 		pte = huge_ptep_get(ptep);
2408 		if (huge_pte_none(pte))
2409 			continue;
2410 
2411 		/*
2412 		 * HWPoisoned hugepage is already unmapped and dropped reference
2413 		 */
2414 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2415 			huge_pte_clear(mm, address, ptep);
2416 			continue;
2417 		}
2418 
2419 		page = pte_page(pte);
2420 		/*
2421 		 * If a reference page is supplied, it is because a specific
2422 		 * page is being unmapped, not a range. Ensure the page we
2423 		 * are about to unmap is the actual page of interest.
2424 		 */
2425 		if (ref_page) {
2426 			if (page != ref_page)
2427 				continue;
2428 
2429 			/*
2430 			 * Mark the VMA as having unmapped its page so that
2431 			 * future faults in this VMA will fail rather than
2432 			 * looking like data was lost
2433 			 */
2434 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2435 		}
2436 
2437 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2438 		tlb_remove_tlb_entry(tlb, ptep, address);
2439 		if (huge_pte_dirty(pte))
2440 			set_page_dirty(page);
2441 
2442 		page_remove_rmap(page);
2443 		force_flush = !__tlb_remove_page(tlb, page);
2444 		if (force_flush)
2445 			break;
2446 		/* Bail out after unmapping reference page if supplied */
2447 		if (ref_page)
2448 			break;
2449 	}
2450 	spin_unlock(&mm->page_table_lock);
2451 	/*
2452 	 * mmu_gather ran out of room to batch pages, we break out of
2453 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2454 	 * and page-free while holding it.
2455 	 */
2456 	if (force_flush) {
2457 		force_flush = 0;
2458 		tlb_flush_mmu(tlb);
2459 		if (address < end && !ref_page)
2460 			goto again;
2461 	}
2462 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2463 	tlb_end_vma(tlb, vma);
2464 }
2465 
2466 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2467 			  struct vm_area_struct *vma, unsigned long start,
2468 			  unsigned long end, struct page *ref_page)
2469 {
2470 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2471 
2472 	/*
2473 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2474 	 * test will fail on a vma being torn down, and not grab a page table
2475 	 * on its way out.  We're lucky that the flag has such an appropriate
2476 	 * name, and can in fact be safely cleared here. We could clear it
2477 	 * before the __unmap_hugepage_range above, but all that's necessary
2478 	 * is to clear it before releasing the i_mmap_mutex. This works
2479 	 * because in the context this is called, the VMA is about to be
2480 	 * destroyed and the i_mmap_mutex is held.
2481 	 */
2482 	vma->vm_flags &= ~VM_MAYSHARE;
2483 }
2484 
2485 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2486 			  unsigned long end, struct page *ref_page)
2487 {
2488 	struct mm_struct *mm;
2489 	struct mmu_gather tlb;
2490 
2491 	mm = vma->vm_mm;
2492 
2493 	tlb_gather_mmu(&tlb, mm, 0);
2494 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2495 	tlb_finish_mmu(&tlb, start, end);
2496 }
2497 
2498 /*
2499  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2500  * mappping it owns the reserve page for. The intention is to unmap the page
2501  * from other VMAs and let the children be SIGKILLed if they are faulting the
2502  * same region.
2503  */
2504 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2505 				struct page *page, unsigned long address)
2506 {
2507 	struct hstate *h = hstate_vma(vma);
2508 	struct vm_area_struct *iter_vma;
2509 	struct address_space *mapping;
2510 	pgoff_t pgoff;
2511 
2512 	/*
2513 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2514 	 * from page cache lookup which is in HPAGE_SIZE units.
2515 	 */
2516 	address = address & huge_page_mask(h);
2517 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2518 			vma->vm_pgoff;
2519 	mapping = file_inode(vma->vm_file)->i_mapping;
2520 
2521 	/*
2522 	 * Take the mapping lock for the duration of the table walk. As
2523 	 * this mapping should be shared between all the VMAs,
2524 	 * __unmap_hugepage_range() is called as the lock is already held
2525 	 */
2526 	mutex_lock(&mapping->i_mmap_mutex);
2527 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2528 		/* Do not unmap the current VMA */
2529 		if (iter_vma == vma)
2530 			continue;
2531 
2532 		/*
2533 		 * Unmap the page from other VMAs without their own reserves.
2534 		 * They get marked to be SIGKILLed if they fault in these
2535 		 * areas. This is because a future no-page fault on this VMA
2536 		 * could insert a zeroed page instead of the data existing
2537 		 * from the time of fork. This would look like data corruption
2538 		 */
2539 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2540 			unmap_hugepage_range(iter_vma, address,
2541 					     address + huge_page_size(h), page);
2542 	}
2543 	mutex_unlock(&mapping->i_mmap_mutex);
2544 
2545 	return 1;
2546 }
2547 
2548 /*
2549  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2550  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2551  * cannot race with other handlers or page migration.
2552  * Keep the pte_same checks anyway to make transition from the mutex easier.
2553  */
2554 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2555 			unsigned long address, pte_t *ptep, pte_t pte,
2556 			struct page *pagecache_page)
2557 {
2558 	struct hstate *h = hstate_vma(vma);
2559 	struct page *old_page, *new_page;
2560 	int avoidcopy;
2561 	int outside_reserve = 0;
2562 	unsigned long mmun_start;	/* For mmu_notifiers */
2563 	unsigned long mmun_end;		/* For mmu_notifiers */
2564 
2565 	old_page = pte_page(pte);
2566 
2567 retry_avoidcopy:
2568 	/* If no-one else is actually using this page, avoid the copy
2569 	 * and just make the page writable */
2570 	avoidcopy = (page_mapcount(old_page) == 1);
2571 	if (avoidcopy) {
2572 		if (PageAnon(old_page))
2573 			page_move_anon_rmap(old_page, vma, address);
2574 		set_huge_ptep_writable(vma, address, ptep);
2575 		return 0;
2576 	}
2577 
2578 	/*
2579 	 * If the process that created a MAP_PRIVATE mapping is about to
2580 	 * perform a COW due to a shared page count, attempt to satisfy
2581 	 * the allocation without using the existing reserves. The pagecache
2582 	 * page is used to determine if the reserve at this address was
2583 	 * consumed or not. If reserves were used, a partial faulted mapping
2584 	 * at the time of fork() could consume its reserves on COW instead
2585 	 * of the full address range.
2586 	 */
2587 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2588 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2589 			old_page != pagecache_page)
2590 		outside_reserve = 1;
2591 
2592 	page_cache_get(old_page);
2593 
2594 	/* Drop page_table_lock as buddy allocator may be called */
2595 	spin_unlock(&mm->page_table_lock);
2596 	new_page = alloc_huge_page(vma, address, outside_reserve);
2597 
2598 	if (IS_ERR(new_page)) {
2599 		long err = PTR_ERR(new_page);
2600 		page_cache_release(old_page);
2601 
2602 		/*
2603 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2604 		 * it is due to references held by a child and an insufficient
2605 		 * huge page pool. To guarantee the original mappers
2606 		 * reliability, unmap the page from child processes. The child
2607 		 * may get SIGKILLed if it later faults.
2608 		 */
2609 		if (outside_reserve) {
2610 			BUG_ON(huge_pte_none(pte));
2611 			if (unmap_ref_private(mm, vma, old_page, address)) {
2612 				BUG_ON(huge_pte_none(pte));
2613 				spin_lock(&mm->page_table_lock);
2614 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2615 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2616 					goto retry_avoidcopy;
2617 				/*
2618 				 * race occurs while re-acquiring page_table_lock, and
2619 				 * our job is done.
2620 				 */
2621 				return 0;
2622 			}
2623 			WARN_ON_ONCE(1);
2624 		}
2625 
2626 		/* Caller expects lock to be held */
2627 		spin_lock(&mm->page_table_lock);
2628 		if (err == -ENOMEM)
2629 			return VM_FAULT_OOM;
2630 		else
2631 			return VM_FAULT_SIGBUS;
2632 	}
2633 
2634 	/*
2635 	 * When the original hugepage is shared one, it does not have
2636 	 * anon_vma prepared.
2637 	 */
2638 	if (unlikely(anon_vma_prepare(vma))) {
2639 		page_cache_release(new_page);
2640 		page_cache_release(old_page);
2641 		/* Caller expects lock to be held */
2642 		spin_lock(&mm->page_table_lock);
2643 		return VM_FAULT_OOM;
2644 	}
2645 
2646 	copy_user_huge_page(new_page, old_page, address, vma,
2647 			    pages_per_huge_page(h));
2648 	__SetPageUptodate(new_page);
2649 
2650 	mmun_start = address & huge_page_mask(h);
2651 	mmun_end = mmun_start + huge_page_size(h);
2652 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2653 	/*
2654 	 * Retake the page_table_lock to check for racing updates
2655 	 * before the page tables are altered
2656 	 */
2657 	spin_lock(&mm->page_table_lock);
2658 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2659 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2660 		/* Break COW */
2661 		huge_ptep_clear_flush(vma, address, ptep);
2662 		set_huge_pte_at(mm, address, ptep,
2663 				make_huge_pte(vma, new_page, 1));
2664 		page_remove_rmap(old_page);
2665 		hugepage_add_new_anon_rmap(new_page, vma, address);
2666 		/* Make the old page be freed below */
2667 		new_page = old_page;
2668 	}
2669 	spin_unlock(&mm->page_table_lock);
2670 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2671 	/* Caller expects lock to be held */
2672 	spin_lock(&mm->page_table_lock);
2673 	page_cache_release(new_page);
2674 	page_cache_release(old_page);
2675 	return 0;
2676 }
2677 
2678 /* Return the pagecache page at a given address within a VMA */
2679 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2680 			struct vm_area_struct *vma, unsigned long address)
2681 {
2682 	struct address_space *mapping;
2683 	pgoff_t idx;
2684 
2685 	mapping = vma->vm_file->f_mapping;
2686 	idx = vma_hugecache_offset(h, vma, address);
2687 
2688 	return find_lock_page(mapping, idx);
2689 }
2690 
2691 /*
2692  * Return whether there is a pagecache page to back given address within VMA.
2693  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2694  */
2695 static bool hugetlbfs_pagecache_present(struct hstate *h,
2696 			struct vm_area_struct *vma, unsigned long address)
2697 {
2698 	struct address_space *mapping;
2699 	pgoff_t idx;
2700 	struct page *page;
2701 
2702 	mapping = vma->vm_file->f_mapping;
2703 	idx = vma_hugecache_offset(h, vma, address);
2704 
2705 	page = find_get_page(mapping, idx);
2706 	if (page)
2707 		put_page(page);
2708 	return page != NULL;
2709 }
2710 
2711 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2712 			unsigned long address, pte_t *ptep, unsigned int flags)
2713 {
2714 	struct hstate *h = hstate_vma(vma);
2715 	int ret = VM_FAULT_SIGBUS;
2716 	int anon_rmap = 0;
2717 	pgoff_t idx;
2718 	unsigned long size;
2719 	struct page *page;
2720 	struct address_space *mapping;
2721 	pte_t new_pte;
2722 
2723 	/*
2724 	 * Currently, we are forced to kill the process in the event the
2725 	 * original mapper has unmapped pages from the child due to a failed
2726 	 * COW. Warn that such a situation has occurred as it may not be obvious
2727 	 */
2728 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2729 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2730 			   current->pid);
2731 		return ret;
2732 	}
2733 
2734 	mapping = vma->vm_file->f_mapping;
2735 	idx = vma_hugecache_offset(h, vma, address);
2736 
2737 	/*
2738 	 * Use page lock to guard against racing truncation
2739 	 * before we get page_table_lock.
2740 	 */
2741 retry:
2742 	page = find_lock_page(mapping, idx);
2743 	if (!page) {
2744 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2745 		if (idx >= size)
2746 			goto out;
2747 		page = alloc_huge_page(vma, address, 0);
2748 		if (IS_ERR(page)) {
2749 			ret = PTR_ERR(page);
2750 			if (ret == -ENOMEM)
2751 				ret = VM_FAULT_OOM;
2752 			else
2753 				ret = VM_FAULT_SIGBUS;
2754 			goto out;
2755 		}
2756 		clear_huge_page(page, address, pages_per_huge_page(h));
2757 		__SetPageUptodate(page);
2758 
2759 		if (vma->vm_flags & VM_MAYSHARE) {
2760 			int err;
2761 			struct inode *inode = mapping->host;
2762 
2763 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2764 			if (err) {
2765 				put_page(page);
2766 				if (err == -EEXIST)
2767 					goto retry;
2768 				goto out;
2769 			}
2770 
2771 			spin_lock(&inode->i_lock);
2772 			inode->i_blocks += blocks_per_huge_page(h);
2773 			spin_unlock(&inode->i_lock);
2774 		} else {
2775 			lock_page(page);
2776 			if (unlikely(anon_vma_prepare(vma))) {
2777 				ret = VM_FAULT_OOM;
2778 				goto backout_unlocked;
2779 			}
2780 			anon_rmap = 1;
2781 		}
2782 	} else {
2783 		/*
2784 		 * If memory error occurs between mmap() and fault, some process
2785 		 * don't have hwpoisoned swap entry for errored virtual address.
2786 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2787 		 */
2788 		if (unlikely(PageHWPoison(page))) {
2789 			ret = VM_FAULT_HWPOISON |
2790 				VM_FAULT_SET_HINDEX(hstate_index(h));
2791 			goto backout_unlocked;
2792 		}
2793 	}
2794 
2795 	/*
2796 	 * If we are going to COW a private mapping later, we examine the
2797 	 * pending reservations for this page now. This will ensure that
2798 	 * any allocations necessary to record that reservation occur outside
2799 	 * the spinlock.
2800 	 */
2801 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2802 		if (vma_needs_reservation(h, vma, address) < 0) {
2803 			ret = VM_FAULT_OOM;
2804 			goto backout_unlocked;
2805 		}
2806 
2807 	spin_lock(&mm->page_table_lock);
2808 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2809 	if (idx >= size)
2810 		goto backout;
2811 
2812 	ret = 0;
2813 	if (!huge_pte_none(huge_ptep_get(ptep)))
2814 		goto backout;
2815 
2816 	if (anon_rmap)
2817 		hugepage_add_new_anon_rmap(page, vma, address);
2818 	else
2819 		page_dup_rmap(page);
2820 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2821 				&& (vma->vm_flags & VM_SHARED)));
2822 	set_huge_pte_at(mm, address, ptep, new_pte);
2823 
2824 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2825 		/* Optimization, do the COW without a second fault */
2826 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2827 	}
2828 
2829 	spin_unlock(&mm->page_table_lock);
2830 	unlock_page(page);
2831 out:
2832 	return ret;
2833 
2834 backout:
2835 	spin_unlock(&mm->page_table_lock);
2836 backout_unlocked:
2837 	unlock_page(page);
2838 	put_page(page);
2839 	goto out;
2840 }
2841 
2842 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2843 			unsigned long address, unsigned int flags)
2844 {
2845 	pte_t *ptep;
2846 	pte_t entry;
2847 	int ret;
2848 	struct page *page = NULL;
2849 	struct page *pagecache_page = NULL;
2850 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2851 	struct hstate *h = hstate_vma(vma);
2852 
2853 	address &= huge_page_mask(h);
2854 
2855 	ptep = huge_pte_offset(mm, address);
2856 	if (ptep) {
2857 		entry = huge_ptep_get(ptep);
2858 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2859 			migration_entry_wait_huge(mm, ptep);
2860 			return 0;
2861 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2862 			return VM_FAULT_HWPOISON_LARGE |
2863 				VM_FAULT_SET_HINDEX(hstate_index(h));
2864 	}
2865 
2866 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2867 	if (!ptep)
2868 		return VM_FAULT_OOM;
2869 
2870 	/*
2871 	 * Serialize hugepage allocation and instantiation, so that we don't
2872 	 * get spurious allocation failures if two CPUs race to instantiate
2873 	 * the same page in the page cache.
2874 	 */
2875 	mutex_lock(&hugetlb_instantiation_mutex);
2876 	entry = huge_ptep_get(ptep);
2877 	if (huge_pte_none(entry)) {
2878 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2879 		goto out_mutex;
2880 	}
2881 
2882 	ret = 0;
2883 
2884 	/*
2885 	 * If we are going to COW the mapping later, we examine the pending
2886 	 * reservations for this page now. This will ensure that any
2887 	 * allocations necessary to record that reservation occur outside the
2888 	 * spinlock. For private mappings, we also lookup the pagecache
2889 	 * page now as it is used to determine if a reservation has been
2890 	 * consumed.
2891 	 */
2892 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2893 		if (vma_needs_reservation(h, vma, address) < 0) {
2894 			ret = VM_FAULT_OOM;
2895 			goto out_mutex;
2896 		}
2897 
2898 		if (!(vma->vm_flags & VM_MAYSHARE))
2899 			pagecache_page = hugetlbfs_pagecache_page(h,
2900 								vma, address);
2901 	}
2902 
2903 	/*
2904 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2905 	 * pagecache_page, so here we need take the former one
2906 	 * when page != pagecache_page or !pagecache_page.
2907 	 * Note that locking order is always pagecache_page -> page,
2908 	 * so no worry about deadlock.
2909 	 */
2910 	page = pte_page(entry);
2911 	get_page(page);
2912 	if (page != pagecache_page)
2913 		lock_page(page);
2914 
2915 	spin_lock(&mm->page_table_lock);
2916 	/* Check for a racing update before calling hugetlb_cow */
2917 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2918 		goto out_page_table_lock;
2919 
2920 
2921 	if (flags & FAULT_FLAG_WRITE) {
2922 		if (!huge_pte_write(entry)) {
2923 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2924 							pagecache_page);
2925 			goto out_page_table_lock;
2926 		}
2927 		entry = huge_pte_mkdirty(entry);
2928 	}
2929 	entry = pte_mkyoung(entry);
2930 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2931 						flags & FAULT_FLAG_WRITE))
2932 		update_mmu_cache(vma, address, ptep);
2933 
2934 out_page_table_lock:
2935 	spin_unlock(&mm->page_table_lock);
2936 
2937 	if (pagecache_page) {
2938 		unlock_page(pagecache_page);
2939 		put_page(pagecache_page);
2940 	}
2941 	if (page != pagecache_page)
2942 		unlock_page(page);
2943 	put_page(page);
2944 
2945 out_mutex:
2946 	mutex_unlock(&hugetlb_instantiation_mutex);
2947 
2948 	return ret;
2949 }
2950 
2951 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2952 			 struct page **pages, struct vm_area_struct **vmas,
2953 			 unsigned long *position, unsigned long *nr_pages,
2954 			 long i, unsigned int flags)
2955 {
2956 	unsigned long pfn_offset;
2957 	unsigned long vaddr = *position;
2958 	unsigned long remainder = *nr_pages;
2959 	struct hstate *h = hstate_vma(vma);
2960 
2961 	spin_lock(&mm->page_table_lock);
2962 	while (vaddr < vma->vm_end && remainder) {
2963 		pte_t *pte;
2964 		int absent;
2965 		struct page *page;
2966 
2967 		/*
2968 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2969 		 * each hugepage.  We have to make sure we get the
2970 		 * first, for the page indexing below to work.
2971 		 */
2972 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2973 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2974 
2975 		/*
2976 		 * When coredumping, it suits get_dump_page if we just return
2977 		 * an error where there's an empty slot with no huge pagecache
2978 		 * to back it.  This way, we avoid allocating a hugepage, and
2979 		 * the sparse dumpfile avoids allocating disk blocks, but its
2980 		 * huge holes still show up with zeroes where they need to be.
2981 		 */
2982 		if (absent && (flags & FOLL_DUMP) &&
2983 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2984 			remainder = 0;
2985 			break;
2986 		}
2987 
2988 		/*
2989 		 * We need call hugetlb_fault for both hugepages under migration
2990 		 * (in which case hugetlb_fault waits for the migration,) and
2991 		 * hwpoisoned hugepages (in which case we need to prevent the
2992 		 * caller from accessing to them.) In order to do this, we use
2993 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
2994 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2995 		 * both cases, and because we can't follow correct pages
2996 		 * directly from any kind of swap entries.
2997 		 */
2998 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2999 		    ((flags & FOLL_WRITE) &&
3000 		      !huge_pte_write(huge_ptep_get(pte)))) {
3001 			int ret;
3002 
3003 			spin_unlock(&mm->page_table_lock);
3004 			ret = hugetlb_fault(mm, vma, vaddr,
3005 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3006 			spin_lock(&mm->page_table_lock);
3007 			if (!(ret & VM_FAULT_ERROR))
3008 				continue;
3009 
3010 			remainder = 0;
3011 			break;
3012 		}
3013 
3014 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3015 		page = pte_page(huge_ptep_get(pte));
3016 same_page:
3017 		if (pages) {
3018 			pages[i] = mem_map_offset(page, pfn_offset);
3019 			get_page(pages[i]);
3020 		}
3021 
3022 		if (vmas)
3023 			vmas[i] = vma;
3024 
3025 		vaddr += PAGE_SIZE;
3026 		++pfn_offset;
3027 		--remainder;
3028 		++i;
3029 		if (vaddr < vma->vm_end && remainder &&
3030 				pfn_offset < pages_per_huge_page(h)) {
3031 			/*
3032 			 * We use pfn_offset to avoid touching the pageframes
3033 			 * of this compound page.
3034 			 */
3035 			goto same_page;
3036 		}
3037 	}
3038 	spin_unlock(&mm->page_table_lock);
3039 	*nr_pages = remainder;
3040 	*position = vaddr;
3041 
3042 	return i ? i : -EFAULT;
3043 }
3044 
3045 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3046 		unsigned long address, unsigned long end, pgprot_t newprot)
3047 {
3048 	struct mm_struct *mm = vma->vm_mm;
3049 	unsigned long start = address;
3050 	pte_t *ptep;
3051 	pte_t pte;
3052 	struct hstate *h = hstate_vma(vma);
3053 	unsigned long pages = 0;
3054 
3055 	BUG_ON(address >= end);
3056 	flush_cache_range(vma, address, end);
3057 
3058 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3059 	spin_lock(&mm->page_table_lock);
3060 	for (; address < end; address += huge_page_size(h)) {
3061 		ptep = huge_pte_offset(mm, address);
3062 		if (!ptep)
3063 			continue;
3064 		if (huge_pmd_unshare(mm, &address, ptep)) {
3065 			pages++;
3066 			continue;
3067 		}
3068 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3069 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3070 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3071 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3072 			set_huge_pte_at(mm, address, ptep, pte);
3073 			pages++;
3074 		}
3075 	}
3076 	spin_unlock(&mm->page_table_lock);
3077 	/*
3078 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3079 	 * may have cleared our pud entry and done put_page on the page table:
3080 	 * once we release i_mmap_mutex, another task can do the final put_page
3081 	 * and that page table be reused and filled with junk.
3082 	 */
3083 	flush_tlb_range(vma, start, end);
3084 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3085 
3086 	return pages << h->order;
3087 }
3088 
3089 int hugetlb_reserve_pages(struct inode *inode,
3090 					long from, long to,
3091 					struct vm_area_struct *vma,
3092 					vm_flags_t vm_flags)
3093 {
3094 	long ret, chg;
3095 	struct hstate *h = hstate_inode(inode);
3096 	struct hugepage_subpool *spool = subpool_inode(inode);
3097 
3098 	/*
3099 	 * Only apply hugepage reservation if asked. At fault time, an
3100 	 * attempt will be made for VM_NORESERVE to allocate a page
3101 	 * without using reserves
3102 	 */
3103 	if (vm_flags & VM_NORESERVE)
3104 		return 0;
3105 
3106 	/*
3107 	 * Shared mappings base their reservation on the number of pages that
3108 	 * are already allocated on behalf of the file. Private mappings need
3109 	 * to reserve the full area even if read-only as mprotect() may be
3110 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3111 	 */
3112 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3113 		chg = region_chg(&inode->i_mapping->private_list, from, to);
3114 	else {
3115 		struct resv_map *resv_map = resv_map_alloc();
3116 		if (!resv_map)
3117 			return -ENOMEM;
3118 
3119 		chg = to - from;
3120 
3121 		set_vma_resv_map(vma, resv_map);
3122 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3123 	}
3124 
3125 	if (chg < 0) {
3126 		ret = chg;
3127 		goto out_err;
3128 	}
3129 
3130 	/* There must be enough pages in the subpool for the mapping */
3131 	if (hugepage_subpool_get_pages(spool, chg)) {
3132 		ret = -ENOSPC;
3133 		goto out_err;
3134 	}
3135 
3136 	/*
3137 	 * Check enough hugepages are available for the reservation.
3138 	 * Hand the pages back to the subpool if there are not
3139 	 */
3140 	ret = hugetlb_acct_memory(h, chg);
3141 	if (ret < 0) {
3142 		hugepage_subpool_put_pages(spool, chg);
3143 		goto out_err;
3144 	}
3145 
3146 	/*
3147 	 * Account for the reservations made. Shared mappings record regions
3148 	 * that have reservations as they are shared by multiple VMAs.
3149 	 * When the last VMA disappears, the region map says how much
3150 	 * the reservation was and the page cache tells how much of
3151 	 * the reservation was consumed. Private mappings are per-VMA and
3152 	 * only the consumed reservations are tracked. When the VMA
3153 	 * disappears, the original reservation is the VMA size and the
3154 	 * consumed reservations are stored in the map. Hence, nothing
3155 	 * else has to be done for private mappings here
3156 	 */
3157 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3158 		region_add(&inode->i_mapping->private_list, from, to);
3159 	return 0;
3160 out_err:
3161 	if (vma)
3162 		resv_map_put(vma);
3163 	return ret;
3164 }
3165 
3166 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3167 {
3168 	struct hstate *h = hstate_inode(inode);
3169 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3170 	struct hugepage_subpool *spool = subpool_inode(inode);
3171 
3172 	spin_lock(&inode->i_lock);
3173 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3174 	spin_unlock(&inode->i_lock);
3175 
3176 	hugepage_subpool_put_pages(spool, (chg - freed));
3177 	hugetlb_acct_memory(h, -(chg - freed));
3178 }
3179 
3180 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3181 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3182 				struct vm_area_struct *vma,
3183 				unsigned long addr, pgoff_t idx)
3184 {
3185 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3186 				svma->vm_start;
3187 	unsigned long sbase = saddr & PUD_MASK;
3188 	unsigned long s_end = sbase + PUD_SIZE;
3189 
3190 	/* Allow segments to share if only one is marked locked */
3191 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3192 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3193 
3194 	/*
3195 	 * match the virtual addresses, permission and the alignment of the
3196 	 * page table page.
3197 	 */
3198 	if (pmd_index(addr) != pmd_index(saddr) ||
3199 	    vm_flags != svm_flags ||
3200 	    sbase < svma->vm_start || svma->vm_end < s_end)
3201 		return 0;
3202 
3203 	return saddr;
3204 }
3205 
3206 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3207 {
3208 	unsigned long base = addr & PUD_MASK;
3209 	unsigned long end = base + PUD_SIZE;
3210 
3211 	/*
3212 	 * check on proper vm_flags and page table alignment
3213 	 */
3214 	if (vma->vm_flags & VM_MAYSHARE &&
3215 	    vma->vm_start <= base && end <= vma->vm_end)
3216 		return 1;
3217 	return 0;
3218 }
3219 
3220 /*
3221  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3222  * and returns the corresponding pte. While this is not necessary for the
3223  * !shared pmd case because we can allocate the pmd later as well, it makes the
3224  * code much cleaner. pmd allocation is essential for the shared case because
3225  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3226  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3227  * bad pmd for sharing.
3228  */
3229 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3230 {
3231 	struct vm_area_struct *vma = find_vma(mm, addr);
3232 	struct address_space *mapping = vma->vm_file->f_mapping;
3233 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3234 			vma->vm_pgoff;
3235 	struct vm_area_struct *svma;
3236 	unsigned long saddr;
3237 	pte_t *spte = NULL;
3238 	pte_t *pte;
3239 
3240 	if (!vma_shareable(vma, addr))
3241 		return (pte_t *)pmd_alloc(mm, pud, addr);
3242 
3243 	mutex_lock(&mapping->i_mmap_mutex);
3244 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3245 		if (svma == vma)
3246 			continue;
3247 
3248 		saddr = page_table_shareable(svma, vma, addr, idx);
3249 		if (saddr) {
3250 			spte = huge_pte_offset(svma->vm_mm, saddr);
3251 			if (spte) {
3252 				get_page(virt_to_page(spte));
3253 				break;
3254 			}
3255 		}
3256 	}
3257 
3258 	if (!spte)
3259 		goto out;
3260 
3261 	spin_lock(&mm->page_table_lock);
3262 	if (pud_none(*pud))
3263 		pud_populate(mm, pud,
3264 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3265 	else
3266 		put_page(virt_to_page(spte));
3267 	spin_unlock(&mm->page_table_lock);
3268 out:
3269 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3270 	mutex_unlock(&mapping->i_mmap_mutex);
3271 	return pte;
3272 }
3273 
3274 /*
3275  * unmap huge page backed by shared pte.
3276  *
3277  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3278  * indicated by page_count > 1, unmap is achieved by clearing pud and
3279  * decrementing the ref count. If count == 1, the pte page is not shared.
3280  *
3281  * called with vma->vm_mm->page_table_lock held.
3282  *
3283  * returns: 1 successfully unmapped a shared pte page
3284  *	    0 the underlying pte page is not shared, or it is the last user
3285  */
3286 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3287 {
3288 	pgd_t *pgd = pgd_offset(mm, *addr);
3289 	pud_t *pud = pud_offset(pgd, *addr);
3290 
3291 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3292 	if (page_count(virt_to_page(ptep)) == 1)
3293 		return 0;
3294 
3295 	pud_clear(pud);
3296 	put_page(virt_to_page(ptep));
3297 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3298 	return 1;
3299 }
3300 #define want_pmd_share()	(1)
3301 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3302 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3303 {
3304 	return NULL;
3305 }
3306 #define want_pmd_share()	(0)
3307 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3308 
3309 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3310 pte_t *huge_pte_alloc(struct mm_struct *mm,
3311 			unsigned long addr, unsigned long sz)
3312 {
3313 	pgd_t *pgd;
3314 	pud_t *pud;
3315 	pte_t *pte = NULL;
3316 
3317 	pgd = pgd_offset(mm, addr);
3318 	pud = pud_alloc(mm, pgd, addr);
3319 	if (pud) {
3320 		if (sz == PUD_SIZE) {
3321 			pte = (pte_t *)pud;
3322 		} else {
3323 			BUG_ON(sz != PMD_SIZE);
3324 			if (want_pmd_share() && pud_none(*pud))
3325 				pte = huge_pmd_share(mm, addr, pud);
3326 			else
3327 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3328 		}
3329 	}
3330 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3331 
3332 	return pte;
3333 }
3334 
3335 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3336 {
3337 	pgd_t *pgd;
3338 	pud_t *pud;
3339 	pmd_t *pmd = NULL;
3340 
3341 	pgd = pgd_offset(mm, addr);
3342 	if (pgd_present(*pgd)) {
3343 		pud = pud_offset(pgd, addr);
3344 		if (pud_present(*pud)) {
3345 			if (pud_huge(*pud))
3346 				return (pte_t *)pud;
3347 			pmd = pmd_offset(pud, addr);
3348 		}
3349 	}
3350 	return (pte_t *) pmd;
3351 }
3352 
3353 struct page *
3354 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3355 		pmd_t *pmd, int write)
3356 {
3357 	struct page *page;
3358 
3359 	page = pte_page(*(pte_t *)pmd);
3360 	if (page)
3361 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3362 	return page;
3363 }
3364 
3365 struct page *
3366 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3367 		pud_t *pud, int write)
3368 {
3369 	struct page *page;
3370 
3371 	page = pte_page(*(pte_t *)pud);
3372 	if (page)
3373 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3374 	return page;
3375 }
3376 
3377 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3378 
3379 /* Can be overriden by architectures */
3380 __attribute__((weak)) struct page *
3381 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3382 	       pud_t *pud, int write)
3383 {
3384 	BUG();
3385 	return NULL;
3386 }
3387 
3388 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3389 
3390 #ifdef CONFIG_MEMORY_FAILURE
3391 
3392 /* Should be called in hugetlb_lock */
3393 static int is_hugepage_on_freelist(struct page *hpage)
3394 {
3395 	struct page *page;
3396 	struct page *tmp;
3397 	struct hstate *h = page_hstate(hpage);
3398 	int nid = page_to_nid(hpage);
3399 
3400 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3401 		if (page == hpage)
3402 			return 1;
3403 	return 0;
3404 }
3405 
3406 /*
3407  * This function is called from memory failure code.
3408  * Assume the caller holds page lock of the head page.
3409  */
3410 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3411 {
3412 	struct hstate *h = page_hstate(hpage);
3413 	int nid = page_to_nid(hpage);
3414 	int ret = -EBUSY;
3415 
3416 	spin_lock(&hugetlb_lock);
3417 	if (is_hugepage_on_freelist(hpage)) {
3418 		/*
3419 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3420 		 * but dangling hpage->lru can trigger list-debug warnings
3421 		 * (this happens when we call unpoison_memory() on it),
3422 		 * so let it point to itself with list_del_init().
3423 		 */
3424 		list_del_init(&hpage->lru);
3425 		set_page_refcounted(hpage);
3426 		h->free_huge_pages--;
3427 		h->free_huge_pages_node[nid]--;
3428 		ret = 0;
3429 	}
3430 	spin_unlock(&hugetlb_lock);
3431 	return ret;
3432 }
3433 #endif
3434