1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 101 102 static inline bool subpool_is_free(struct hugepage_subpool *spool) 103 { 104 if (spool->count) 105 return false; 106 if (spool->max_hpages != -1) 107 return spool->used_hpages == 0; 108 if (spool->min_hpages != -1) 109 return spool->rsv_hpages == spool->min_hpages; 110 111 return true; 112 } 113 114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 115 unsigned long irq_flags) 116 { 117 spin_unlock_irqrestore(&spool->lock, irq_flags); 118 119 /* If no pages are used, and no other handles to the subpool 120 * remain, give up any reservations based on minimum size and 121 * free the subpool */ 122 if (subpool_is_free(spool)) { 123 if (spool->min_hpages != -1) 124 hugetlb_acct_memory(spool->hstate, 125 -spool->min_hpages); 126 kfree(spool); 127 } 128 } 129 130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 131 long min_hpages) 132 { 133 struct hugepage_subpool *spool; 134 135 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 136 if (!spool) 137 return NULL; 138 139 spin_lock_init(&spool->lock); 140 spool->count = 1; 141 spool->max_hpages = max_hpages; 142 spool->hstate = h; 143 spool->min_hpages = min_hpages; 144 145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 146 kfree(spool); 147 return NULL; 148 } 149 spool->rsv_hpages = min_hpages; 150 151 return spool; 152 } 153 154 void hugepage_put_subpool(struct hugepage_subpool *spool) 155 { 156 unsigned long flags; 157 158 spin_lock_irqsave(&spool->lock, flags); 159 BUG_ON(!spool->count); 160 spool->count--; 161 unlock_or_release_subpool(spool, flags); 162 } 163 164 /* 165 * Subpool accounting for allocating and reserving pages. 166 * Return -ENOMEM if there are not enough resources to satisfy the 167 * request. Otherwise, return the number of pages by which the 168 * global pools must be adjusted (upward). The returned value may 169 * only be different than the passed value (delta) in the case where 170 * a subpool minimum size must be maintained. 171 */ 172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 173 long delta) 174 { 175 long ret = delta; 176 177 if (!spool) 178 return ret; 179 180 spin_lock_irq(&spool->lock); 181 182 if (spool->max_hpages != -1) { /* maximum size accounting */ 183 if ((spool->used_hpages + delta) <= spool->max_hpages) 184 spool->used_hpages += delta; 185 else { 186 ret = -ENOMEM; 187 goto unlock_ret; 188 } 189 } 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->rsv_hpages) { 193 if (delta > spool->rsv_hpages) { 194 /* 195 * Asking for more reserves than those already taken on 196 * behalf of subpool. Return difference. 197 */ 198 ret = delta - spool->rsv_hpages; 199 spool->rsv_hpages = 0; 200 } else { 201 ret = 0; /* reserves already accounted for */ 202 spool->rsv_hpages -= delta; 203 } 204 } 205 206 unlock_ret: 207 spin_unlock_irq(&spool->lock); 208 return ret; 209 } 210 211 /* 212 * Subpool accounting for freeing and unreserving pages. 213 * Return the number of global page reservations that must be dropped. 214 * The return value may only be different than the passed value (delta) 215 * in the case where a subpool minimum size must be maintained. 216 */ 217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 218 long delta) 219 { 220 long ret = delta; 221 unsigned long flags; 222 223 if (!spool) 224 return delta; 225 226 spin_lock_irqsave(&spool->lock, flags); 227 228 if (spool->max_hpages != -1) /* maximum size accounting */ 229 spool->used_hpages -= delta; 230 231 /* minimum size accounting */ 232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 233 if (spool->rsv_hpages + delta <= spool->min_hpages) 234 ret = 0; 235 else 236 ret = spool->rsv_hpages + delta - spool->min_hpages; 237 238 spool->rsv_hpages += delta; 239 if (spool->rsv_hpages > spool->min_hpages) 240 spool->rsv_hpages = spool->min_hpages; 241 } 242 243 /* 244 * If hugetlbfs_put_super couldn't free spool due to an outstanding 245 * quota reference, free it now. 246 */ 247 unlock_or_release_subpool(spool, flags); 248 249 return ret; 250 } 251 252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 253 { 254 return HUGETLBFS_SB(inode->i_sb)->spool; 255 } 256 257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 258 { 259 return subpool_inode(file_inode(vma->vm_file)); 260 } 261 262 /* 263 * hugetlb vma_lock helper routines 264 */ 265 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 266 { 267 if (__vma_shareable_lock(vma)) { 268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 269 270 down_read(&vma_lock->rw_sema); 271 } else if (__vma_private_lock(vma)) { 272 struct resv_map *resv_map = vma_resv_map(vma); 273 274 down_read(&resv_map->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } else if (__vma_private_lock(vma)) { 285 struct resv_map *resv_map = vma_resv_map(vma); 286 287 up_read(&resv_map->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 down_write(&vma_lock->rw_sema); 297 } else if (__vma_private_lock(vma)) { 298 struct resv_map *resv_map = vma_resv_map(vma); 299 300 down_write(&resv_map->rw_sema); 301 } 302 } 303 304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 305 { 306 if (__vma_shareable_lock(vma)) { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 up_write(&vma_lock->rw_sema); 310 } else if (__vma_private_lock(vma)) { 311 struct resv_map *resv_map = vma_resv_map(vma); 312 313 up_write(&resv_map->rw_sema); 314 } 315 } 316 317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 318 { 319 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 return down_write_trylock(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 return down_write_trylock(&resv_map->rw_sema); 328 } 329 330 return 1; 331 } 332 333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 334 { 335 if (__vma_shareable_lock(vma)) { 336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 337 338 lockdep_assert_held(&vma_lock->rw_sema); 339 } else if (__vma_private_lock(vma)) { 340 struct resv_map *resv_map = vma_resv_map(vma); 341 342 lockdep_assert_held(&resv_map->rw_sema); 343 } 344 } 345 346 void hugetlb_vma_lock_release(struct kref *kref) 347 { 348 struct hugetlb_vma_lock *vma_lock = container_of(kref, 349 struct hugetlb_vma_lock, refs); 350 351 kfree(vma_lock); 352 } 353 354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 355 { 356 struct vm_area_struct *vma = vma_lock->vma; 357 358 /* 359 * vma_lock structure may or not be released as a result of put, 360 * it certainly will no longer be attached to vma so clear pointer. 361 * Semaphore synchronizes access to vma_lock->vma field. 362 */ 363 vma_lock->vma = NULL; 364 vma->vm_private_data = NULL; 365 up_write(&vma_lock->rw_sema); 366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 367 } 368 369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 370 { 371 if (__vma_shareable_lock(vma)) { 372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 373 374 __hugetlb_vma_unlock_write_put(vma_lock); 375 } else if (__vma_private_lock(vma)) { 376 struct resv_map *resv_map = vma_resv_map(vma); 377 378 /* no free for anon vmas, but still need to unlock */ 379 up_write(&resv_map->rw_sema); 380 } 381 } 382 383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 384 { 385 /* 386 * Only present in sharable vmas. 387 */ 388 if (!vma || !__vma_shareable_lock(vma)) 389 return; 390 391 if (vma->vm_private_data) { 392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 393 394 down_write(&vma_lock->rw_sema); 395 __hugetlb_vma_unlock_write_put(vma_lock); 396 } 397 } 398 399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 400 { 401 struct hugetlb_vma_lock *vma_lock; 402 403 /* Only establish in (flags) sharable vmas */ 404 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 405 return; 406 407 /* Should never get here with non-NULL vm_private_data */ 408 if (vma->vm_private_data) 409 return; 410 411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 412 if (!vma_lock) { 413 /* 414 * If we can not allocate structure, then vma can not 415 * participate in pmd sharing. This is only a possible 416 * performance enhancement and memory saving issue. 417 * However, the lock is also used to synchronize page 418 * faults with truncation. If the lock is not present, 419 * unlikely races could leave pages in a file past i_size 420 * until the file is removed. Warn in the unlikely case of 421 * allocation failure. 422 */ 423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 424 return; 425 } 426 427 kref_init(&vma_lock->refs); 428 init_rwsem(&vma_lock->rw_sema); 429 vma_lock->vma = vma; 430 vma->vm_private_data = vma_lock; 431 } 432 433 /* Helper that removes a struct file_region from the resv_map cache and returns 434 * it for use. 435 */ 436 static struct file_region * 437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 438 { 439 struct file_region *nrg; 440 441 VM_BUG_ON(resv->region_cache_count <= 0); 442 443 resv->region_cache_count--; 444 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 445 list_del(&nrg->link); 446 447 nrg->from = from; 448 nrg->to = to; 449 450 return nrg; 451 } 452 453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 454 struct file_region *rg) 455 { 456 #ifdef CONFIG_CGROUP_HUGETLB 457 nrg->reservation_counter = rg->reservation_counter; 458 nrg->css = rg->css; 459 if (rg->css) 460 css_get(rg->css); 461 #endif 462 } 463 464 /* Helper that records hugetlb_cgroup uncharge info. */ 465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 466 struct hstate *h, 467 struct resv_map *resv, 468 struct file_region *nrg) 469 { 470 #ifdef CONFIG_CGROUP_HUGETLB 471 if (h_cg) { 472 nrg->reservation_counter = 473 &h_cg->rsvd_hugepage[hstate_index(h)]; 474 nrg->css = &h_cg->css; 475 /* 476 * The caller will hold exactly one h_cg->css reference for the 477 * whole contiguous reservation region. But this area might be 478 * scattered when there are already some file_regions reside in 479 * it. As a result, many file_regions may share only one css 480 * reference. In order to ensure that one file_region must hold 481 * exactly one h_cg->css reference, we should do css_get for 482 * each file_region and leave the reference held by caller 483 * untouched. 484 */ 485 css_get(&h_cg->css); 486 if (!resv->pages_per_hpage) 487 resv->pages_per_hpage = pages_per_huge_page(h); 488 /* pages_per_hpage should be the same for all entries in 489 * a resv_map. 490 */ 491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 492 } else { 493 nrg->reservation_counter = NULL; 494 nrg->css = NULL; 495 } 496 #endif 497 } 498 499 static void put_uncharge_info(struct file_region *rg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (rg->css) 503 css_put(rg->css); 504 #endif 505 } 506 507 static bool has_same_uncharge_info(struct file_region *rg, 508 struct file_region *org) 509 { 510 #ifdef CONFIG_CGROUP_HUGETLB 511 return rg->reservation_counter == org->reservation_counter && 512 rg->css == org->css; 513 514 #else 515 return true; 516 #endif 517 } 518 519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 520 { 521 struct file_region *nrg, *prg; 522 523 prg = list_prev_entry(rg, link); 524 if (&prg->link != &resv->regions && prg->to == rg->from && 525 has_same_uncharge_info(prg, rg)) { 526 prg->to = rg->to; 527 528 list_del(&rg->link); 529 put_uncharge_info(rg); 530 kfree(rg); 531 532 rg = prg; 533 } 534 535 nrg = list_next_entry(rg, link); 536 if (&nrg->link != &resv->regions && nrg->from == rg->to && 537 has_same_uncharge_info(nrg, rg)) { 538 nrg->from = rg->from; 539 540 list_del(&rg->link); 541 put_uncharge_info(rg); 542 kfree(rg); 543 } 544 } 545 546 static inline long 547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 548 long to, struct hstate *h, struct hugetlb_cgroup *cg, 549 long *regions_needed) 550 { 551 struct file_region *nrg; 552 553 if (!regions_needed) { 554 nrg = get_file_region_entry_from_cache(map, from, to); 555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 556 list_add(&nrg->link, rg); 557 coalesce_file_region(map, nrg); 558 } else 559 *regions_needed += 1; 560 561 return to - from; 562 } 563 564 /* 565 * Must be called with resv->lock held. 566 * 567 * Calling this with regions_needed != NULL will count the number of pages 568 * to be added but will not modify the linked list. And regions_needed will 569 * indicate the number of file_regions needed in the cache to carry out to add 570 * the regions for this range. 571 */ 572 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 573 struct hugetlb_cgroup *h_cg, 574 struct hstate *h, long *regions_needed) 575 { 576 long add = 0; 577 struct list_head *head = &resv->regions; 578 long last_accounted_offset = f; 579 struct file_region *iter, *trg = NULL; 580 struct list_head *rg = NULL; 581 582 if (regions_needed) 583 *regions_needed = 0; 584 585 /* In this loop, we essentially handle an entry for the range 586 * [last_accounted_offset, iter->from), at every iteration, with some 587 * bounds checking. 588 */ 589 list_for_each_entry_safe(iter, trg, head, link) { 590 /* Skip irrelevant regions that start before our range. */ 591 if (iter->from < f) { 592 /* If this region ends after the last accounted offset, 593 * then we need to update last_accounted_offset. 594 */ 595 if (iter->to > last_accounted_offset) 596 last_accounted_offset = iter->to; 597 continue; 598 } 599 600 /* When we find a region that starts beyond our range, we've 601 * finished. 602 */ 603 if (iter->from >= t) { 604 rg = iter->link.prev; 605 break; 606 } 607 608 /* Add an entry for last_accounted_offset -> iter->from, and 609 * update last_accounted_offset. 610 */ 611 if (iter->from > last_accounted_offset) 612 add += hugetlb_resv_map_add(resv, iter->link.prev, 613 last_accounted_offset, 614 iter->from, h, h_cg, 615 regions_needed); 616 617 last_accounted_offset = iter->to; 618 } 619 620 /* Handle the case where our range extends beyond 621 * last_accounted_offset. 622 */ 623 if (!rg) 624 rg = head->prev; 625 if (last_accounted_offset < t) 626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 627 t, h, h_cg, regions_needed); 628 629 return add; 630 } 631 632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 633 */ 634 static int allocate_file_region_entries(struct resv_map *resv, 635 int regions_needed) 636 __must_hold(&resv->lock) 637 { 638 LIST_HEAD(allocated_regions); 639 int to_allocate = 0, i = 0; 640 struct file_region *trg = NULL, *rg = NULL; 641 642 VM_BUG_ON(regions_needed < 0); 643 644 /* 645 * Check for sufficient descriptors in the cache to accommodate 646 * the number of in progress add operations plus regions_needed. 647 * 648 * This is a while loop because when we drop the lock, some other call 649 * to region_add or region_del may have consumed some region_entries, 650 * so we keep looping here until we finally have enough entries for 651 * (adds_in_progress + regions_needed). 652 */ 653 while (resv->region_cache_count < 654 (resv->adds_in_progress + regions_needed)) { 655 to_allocate = resv->adds_in_progress + regions_needed - 656 resv->region_cache_count; 657 658 /* At this point, we should have enough entries in the cache 659 * for all the existing adds_in_progress. We should only be 660 * needing to allocate for regions_needed. 661 */ 662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 663 664 spin_unlock(&resv->lock); 665 for (i = 0; i < to_allocate; i++) { 666 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 667 if (!trg) 668 goto out_of_memory; 669 list_add(&trg->link, &allocated_regions); 670 } 671 672 spin_lock(&resv->lock); 673 674 list_splice(&allocated_regions, &resv->region_cache); 675 resv->region_cache_count += to_allocate; 676 } 677 678 return 0; 679 680 out_of_memory: 681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 682 list_del(&rg->link); 683 kfree(rg); 684 } 685 return -ENOMEM; 686 } 687 688 /* 689 * Add the huge page range represented by [f, t) to the reserve 690 * map. Regions will be taken from the cache to fill in this range. 691 * Sufficient regions should exist in the cache due to the previous 692 * call to region_chg with the same range, but in some cases the cache will not 693 * have sufficient entries due to races with other code doing region_add or 694 * region_del. The extra needed entries will be allocated. 695 * 696 * regions_needed is the out value provided by a previous call to region_chg. 697 * 698 * Return the number of new huge pages added to the map. This number is greater 699 * than or equal to zero. If file_region entries needed to be allocated for 700 * this operation and we were not able to allocate, it returns -ENOMEM. 701 * region_add of regions of length 1 never allocate file_regions and cannot 702 * fail; region_chg will always allocate at least 1 entry and a region_add for 703 * 1 page will only require at most 1 entry. 704 */ 705 static long region_add(struct resv_map *resv, long f, long t, 706 long in_regions_needed, struct hstate *h, 707 struct hugetlb_cgroup *h_cg) 708 { 709 long add = 0, actual_regions_needed = 0; 710 711 spin_lock(&resv->lock); 712 retry: 713 714 /* Count how many regions are actually needed to execute this add. */ 715 add_reservation_in_range(resv, f, t, NULL, NULL, 716 &actual_regions_needed); 717 718 /* 719 * Check for sufficient descriptors in the cache to accommodate 720 * this add operation. Note that actual_regions_needed may be greater 721 * than in_regions_needed, as the resv_map may have been modified since 722 * the region_chg call. In this case, we need to make sure that we 723 * allocate extra entries, such that we have enough for all the 724 * existing adds_in_progress, plus the excess needed for this 725 * operation. 726 */ 727 if (actual_regions_needed > in_regions_needed && 728 resv->region_cache_count < 729 resv->adds_in_progress + 730 (actual_regions_needed - in_regions_needed)) { 731 /* region_add operation of range 1 should never need to 732 * allocate file_region entries. 733 */ 734 VM_BUG_ON(t - f <= 1); 735 736 if (allocate_file_region_entries( 737 resv, actual_regions_needed - in_regions_needed)) { 738 return -ENOMEM; 739 } 740 741 goto retry; 742 } 743 744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 745 746 resv->adds_in_progress -= in_regions_needed; 747 748 spin_unlock(&resv->lock); 749 return add; 750 } 751 752 /* 753 * Examine the existing reserve map and determine how many 754 * huge pages in the specified range [f, t) are NOT currently 755 * represented. This routine is called before a subsequent 756 * call to region_add that will actually modify the reserve 757 * map to add the specified range [f, t). region_chg does 758 * not change the number of huge pages represented by the 759 * map. A number of new file_region structures is added to the cache as a 760 * placeholder, for the subsequent region_add call to use. At least 1 761 * file_region structure is added. 762 * 763 * out_regions_needed is the number of regions added to the 764 * resv->adds_in_progress. This value needs to be provided to a follow up call 765 * to region_add or region_abort for proper accounting. 766 * 767 * Returns the number of huge pages that need to be added to the existing 768 * reservation map for the range [f, t). This number is greater or equal to 769 * zero. -ENOMEM is returned if a new file_region structure or cache entry 770 * is needed and can not be allocated. 771 */ 772 static long region_chg(struct resv_map *resv, long f, long t, 773 long *out_regions_needed) 774 { 775 long chg = 0; 776 777 spin_lock(&resv->lock); 778 779 /* Count how many hugepages in this range are NOT represented. */ 780 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 781 out_regions_needed); 782 783 if (*out_regions_needed == 0) 784 *out_regions_needed = 1; 785 786 if (allocate_file_region_entries(resv, *out_regions_needed)) 787 return -ENOMEM; 788 789 resv->adds_in_progress += *out_regions_needed; 790 791 spin_unlock(&resv->lock); 792 return chg; 793 } 794 795 /* 796 * Abort the in progress add operation. The adds_in_progress field 797 * of the resv_map keeps track of the operations in progress between 798 * calls to region_chg and region_add. Operations are sometimes 799 * aborted after the call to region_chg. In such cases, region_abort 800 * is called to decrement the adds_in_progress counter. regions_needed 801 * is the value returned by the region_chg call, it is used to decrement 802 * the adds_in_progress counter. 803 * 804 * NOTE: The range arguments [f, t) are not needed or used in this 805 * routine. They are kept to make reading the calling code easier as 806 * arguments will match the associated region_chg call. 807 */ 808 static void region_abort(struct resv_map *resv, long f, long t, 809 long regions_needed) 810 { 811 spin_lock(&resv->lock); 812 VM_BUG_ON(!resv->region_cache_count); 813 resv->adds_in_progress -= regions_needed; 814 spin_unlock(&resv->lock); 815 } 816 817 /* 818 * Delete the specified range [f, t) from the reserve map. If the 819 * t parameter is LONG_MAX, this indicates that ALL regions after f 820 * should be deleted. Locate the regions which intersect [f, t) 821 * and either trim, delete or split the existing regions. 822 * 823 * Returns the number of huge pages deleted from the reserve map. 824 * In the normal case, the return value is zero or more. In the 825 * case where a region must be split, a new region descriptor must 826 * be allocated. If the allocation fails, -ENOMEM will be returned. 827 * NOTE: If the parameter t == LONG_MAX, then we will never split 828 * a region and possibly return -ENOMEM. Callers specifying 829 * t == LONG_MAX do not need to check for -ENOMEM error. 830 */ 831 static long region_del(struct resv_map *resv, long f, long t) 832 { 833 struct list_head *head = &resv->regions; 834 struct file_region *rg, *trg; 835 struct file_region *nrg = NULL; 836 long del = 0; 837 838 retry: 839 spin_lock(&resv->lock); 840 list_for_each_entry_safe(rg, trg, head, link) { 841 /* 842 * Skip regions before the range to be deleted. file_region 843 * ranges are normally of the form [from, to). However, there 844 * may be a "placeholder" entry in the map which is of the form 845 * (from, to) with from == to. Check for placeholder entries 846 * at the beginning of the range to be deleted. 847 */ 848 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 849 continue; 850 851 if (rg->from >= t) 852 break; 853 854 if (f > rg->from && t < rg->to) { /* Must split region */ 855 /* 856 * Check for an entry in the cache before dropping 857 * lock and attempting allocation. 858 */ 859 if (!nrg && 860 resv->region_cache_count > resv->adds_in_progress) { 861 nrg = list_first_entry(&resv->region_cache, 862 struct file_region, 863 link); 864 list_del(&nrg->link); 865 resv->region_cache_count--; 866 } 867 868 if (!nrg) { 869 spin_unlock(&resv->lock); 870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 871 if (!nrg) 872 return -ENOMEM; 873 goto retry; 874 } 875 876 del += t - f; 877 hugetlb_cgroup_uncharge_file_region( 878 resv, rg, t - f, false); 879 880 /* New entry for end of split region */ 881 nrg->from = t; 882 nrg->to = rg->to; 883 884 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 885 886 INIT_LIST_HEAD(&nrg->link); 887 888 /* Original entry is trimmed */ 889 rg->to = f; 890 891 list_add(&nrg->link, &rg->link); 892 nrg = NULL; 893 break; 894 } 895 896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 897 del += rg->to - rg->from; 898 hugetlb_cgroup_uncharge_file_region(resv, rg, 899 rg->to - rg->from, true); 900 list_del(&rg->link); 901 kfree(rg); 902 continue; 903 } 904 905 if (f <= rg->from) { /* Trim beginning of region */ 906 hugetlb_cgroup_uncharge_file_region(resv, rg, 907 t - rg->from, false); 908 909 del += t - rg->from; 910 rg->from = t; 911 } else { /* Trim end of region */ 912 hugetlb_cgroup_uncharge_file_region(resv, rg, 913 rg->to - f, false); 914 915 del += rg->to - f; 916 rg->to = f; 917 } 918 } 919 920 spin_unlock(&resv->lock); 921 kfree(nrg); 922 return del; 923 } 924 925 /* 926 * A rare out of memory error was encountered which prevented removal of 927 * the reserve map region for a page. The huge page itself was free'ed 928 * and removed from the page cache. This routine will adjust the subpool 929 * usage count, and the global reserve count if needed. By incrementing 930 * these counts, the reserve map entry which could not be deleted will 931 * appear as a "reserved" entry instead of simply dangling with incorrect 932 * counts. 933 */ 934 void hugetlb_fix_reserve_counts(struct inode *inode) 935 { 936 struct hugepage_subpool *spool = subpool_inode(inode); 937 long rsv_adjust; 938 bool reserved = false; 939 940 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 941 if (rsv_adjust > 0) { 942 struct hstate *h = hstate_inode(inode); 943 944 if (!hugetlb_acct_memory(h, 1)) 945 reserved = true; 946 } else if (!rsv_adjust) { 947 reserved = true; 948 } 949 950 if (!reserved) 951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 952 } 953 954 /* 955 * Count and return the number of huge pages in the reserve map 956 * that intersect with the range [f, t). 957 */ 958 static long region_count(struct resv_map *resv, long f, long t) 959 { 960 struct list_head *head = &resv->regions; 961 struct file_region *rg; 962 long chg = 0; 963 964 spin_lock(&resv->lock); 965 /* Locate each segment we overlap with, and count that overlap. */ 966 list_for_each_entry(rg, head, link) { 967 long seg_from; 968 long seg_to; 969 970 if (rg->to <= f) 971 continue; 972 if (rg->from >= t) 973 break; 974 975 seg_from = max(rg->from, f); 976 seg_to = min(rg->to, t); 977 978 chg += seg_to - seg_from; 979 } 980 spin_unlock(&resv->lock); 981 982 return chg; 983 } 984 985 /* 986 * Convert the address within this vma to the page offset within 987 * the mapping, in pagecache page units; huge pages here. 988 */ 989 static pgoff_t vma_hugecache_offset(struct hstate *h, 990 struct vm_area_struct *vma, unsigned long address) 991 { 992 return ((address - vma->vm_start) >> huge_page_shift(h)) + 993 (vma->vm_pgoff >> huge_page_order(h)); 994 } 995 996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 997 unsigned long address) 998 { 999 return vma_hugecache_offset(hstate_vma(vma), vma, address); 1000 } 1001 EXPORT_SYMBOL_GPL(linear_hugepage_index); 1002 1003 /** 1004 * vma_kernel_pagesize - Page size granularity for this VMA. 1005 * @vma: The user mapping. 1006 * 1007 * Folios in this VMA will be aligned to, and at least the size of the 1008 * number of bytes returned by this function. 1009 * 1010 * Return: The default size of the folios allocated when backing a VMA. 1011 */ 1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1013 { 1014 if (vma->vm_ops && vma->vm_ops->pagesize) 1015 return vma->vm_ops->pagesize(vma); 1016 return PAGE_SIZE; 1017 } 1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1019 1020 /* 1021 * Return the page size being used by the MMU to back a VMA. In the majority 1022 * of cases, the page size used by the kernel matches the MMU size. On 1023 * architectures where it differs, an architecture-specific 'strong' 1024 * version of this symbol is required. 1025 */ 1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1027 { 1028 return vma_kernel_pagesize(vma); 1029 } 1030 1031 /* 1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1033 * bits of the reservation map pointer, which are always clear due to 1034 * alignment. 1035 */ 1036 #define HPAGE_RESV_OWNER (1UL << 0) 1037 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1039 1040 /* 1041 * These helpers are used to track how many pages are reserved for 1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1043 * is guaranteed to have their future faults succeed. 1044 * 1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1046 * the reserve counters are updated with the hugetlb_lock held. It is safe 1047 * to reset the VMA at fork() time as it is not in use yet and there is no 1048 * chance of the global counters getting corrupted as a result of the values. 1049 * 1050 * The private mapping reservation is represented in a subtly different 1051 * manner to a shared mapping. A shared mapping has a region map associated 1052 * with the underlying file, this region map represents the backing file 1053 * pages which have ever had a reservation assigned which this persists even 1054 * after the page is instantiated. A private mapping has a region map 1055 * associated with the original mmap which is attached to all VMAs which 1056 * reference it, this region map represents those offsets which have consumed 1057 * reservation ie. where pages have been instantiated. 1058 */ 1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1060 { 1061 return (unsigned long)vma->vm_private_data; 1062 } 1063 1064 static void set_vma_private_data(struct vm_area_struct *vma, 1065 unsigned long value) 1066 { 1067 vma->vm_private_data = (void *)value; 1068 } 1069 1070 static void 1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1072 struct hugetlb_cgroup *h_cg, 1073 struct hstate *h) 1074 { 1075 #ifdef CONFIG_CGROUP_HUGETLB 1076 if (!h_cg || !h) { 1077 resv_map->reservation_counter = NULL; 1078 resv_map->pages_per_hpage = 0; 1079 resv_map->css = NULL; 1080 } else { 1081 resv_map->reservation_counter = 1082 &h_cg->rsvd_hugepage[hstate_index(h)]; 1083 resv_map->pages_per_hpage = pages_per_huge_page(h); 1084 resv_map->css = &h_cg->css; 1085 } 1086 #endif 1087 } 1088 1089 struct resv_map *resv_map_alloc(void) 1090 { 1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1093 1094 if (!resv_map || !rg) { 1095 kfree(resv_map); 1096 kfree(rg); 1097 return NULL; 1098 } 1099 1100 kref_init(&resv_map->refs); 1101 spin_lock_init(&resv_map->lock); 1102 INIT_LIST_HEAD(&resv_map->regions); 1103 init_rwsem(&resv_map->rw_sema); 1104 1105 resv_map->adds_in_progress = 0; 1106 /* 1107 * Initialize these to 0. On shared mappings, 0's here indicate these 1108 * fields don't do cgroup accounting. On private mappings, these will be 1109 * re-initialized to the proper values, to indicate that hugetlb cgroup 1110 * reservations are to be un-charged from here. 1111 */ 1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1113 1114 INIT_LIST_HEAD(&resv_map->region_cache); 1115 list_add(&rg->link, &resv_map->region_cache); 1116 resv_map->region_cache_count = 1; 1117 1118 return resv_map; 1119 } 1120 1121 void resv_map_release(struct kref *ref) 1122 { 1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1124 struct list_head *head = &resv_map->region_cache; 1125 struct file_region *rg, *trg; 1126 1127 /* Clear out any active regions before we release the map. */ 1128 region_del(resv_map, 0, LONG_MAX); 1129 1130 /* ... and any entries left in the cache */ 1131 list_for_each_entry_safe(rg, trg, head, link) { 1132 list_del(&rg->link); 1133 kfree(rg); 1134 } 1135 1136 VM_BUG_ON(resv_map->adds_in_progress); 1137 1138 kfree(resv_map); 1139 } 1140 1141 static inline struct resv_map *inode_resv_map(struct inode *inode) 1142 { 1143 /* 1144 * At inode evict time, i_mapping may not point to the original 1145 * address space within the inode. This original address space 1146 * contains the pointer to the resv_map. So, always use the 1147 * address space embedded within the inode. 1148 * The VERY common case is inode->mapping == &inode->i_data but, 1149 * this may not be true for device special inodes. 1150 */ 1151 return (struct resv_map *)(&inode->i_data)->private_data; 1152 } 1153 1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 if (vma->vm_flags & VM_MAYSHARE) { 1158 struct address_space *mapping = vma->vm_file->f_mapping; 1159 struct inode *inode = mapping->host; 1160 1161 return inode_resv_map(inode); 1162 1163 } else { 1164 return (struct resv_map *)(get_vma_private_data(vma) & 1165 ~HPAGE_RESV_MASK); 1166 } 1167 } 1168 1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1170 { 1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1173 1174 set_vma_private_data(vma, (unsigned long)map); 1175 } 1176 1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1178 { 1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1181 1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1183 } 1184 1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1186 { 1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1188 1189 return (get_vma_private_data(vma) & flag) != 0; 1190 } 1191 1192 bool __vma_private_lock(struct vm_area_struct *vma) 1193 { 1194 return !(vma->vm_flags & VM_MAYSHARE) && 1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1197 } 1198 1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1200 { 1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1202 /* 1203 * Clear vm_private_data 1204 * - For shared mappings this is a per-vma semaphore that may be 1205 * allocated in a subsequent call to hugetlb_vm_op_open. 1206 * Before clearing, make sure pointer is not associated with vma 1207 * as this will leak the structure. This is the case when called 1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1209 * been called to allocate a new structure. 1210 * - For MAP_PRIVATE mappings, this is the reserve map which does 1211 * not apply to children. Faults generated by the children are 1212 * not guaranteed to succeed, even if read-only. 1213 */ 1214 if (vma->vm_flags & VM_MAYSHARE) { 1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1216 1217 if (vma_lock && vma_lock->vma != vma) 1218 vma->vm_private_data = NULL; 1219 } else 1220 vma->vm_private_data = NULL; 1221 } 1222 1223 /* 1224 * Reset and decrement one ref on hugepage private reservation. 1225 * Called with mm->mmap_lock writer semaphore held. 1226 * This function should be only used by move_vma() and operate on 1227 * same sized vma. It should never come here with last ref on the 1228 * reservation. 1229 */ 1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1231 { 1232 /* 1233 * Clear the old hugetlb private page reservation. 1234 * It has already been transferred to new_vma. 1235 * 1236 * During a mremap() operation of a hugetlb vma we call move_vma() 1237 * which copies vma into new_vma and unmaps vma. After the copy 1238 * operation both new_vma and vma share a reference to the resv_map 1239 * struct, and at that point vma is about to be unmapped. We don't 1240 * want to return the reservation to the pool at unmap of vma because 1241 * the reservation still lives on in new_vma, so simply decrement the 1242 * ref here and remove the resv_map reference from this vma. 1243 */ 1244 struct resv_map *reservations = vma_resv_map(vma); 1245 1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1248 kref_put(&reservations->refs, resv_map_release); 1249 } 1250 1251 hugetlb_dup_vma_private(vma); 1252 } 1253 1254 /* Returns true if the VMA has associated reserve pages */ 1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1256 { 1257 if (vma->vm_flags & VM_NORESERVE) { 1258 /* 1259 * This address is already reserved by other process(chg == 0), 1260 * so, we should decrement reserved count. Without decrementing, 1261 * reserve count remains after releasing inode, because this 1262 * allocated page will go into page cache and is regarded as 1263 * coming from reserved pool in releasing step. Currently, we 1264 * don't have any other solution to deal with this situation 1265 * properly, so add work-around here. 1266 */ 1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1268 return true; 1269 else 1270 return false; 1271 } 1272 1273 /* Shared mappings always use reserves */ 1274 if (vma->vm_flags & VM_MAYSHARE) { 1275 /* 1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1277 * be a region map for all pages. The only situation where 1278 * there is no region map is if a hole was punched via 1279 * fallocate. In this case, there really are no reserves to 1280 * use. This situation is indicated if chg != 0. 1281 */ 1282 if (chg) 1283 return false; 1284 else 1285 return true; 1286 } 1287 1288 /* 1289 * Only the process that called mmap() has reserves for 1290 * private mappings. 1291 */ 1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1293 /* 1294 * Like the shared case above, a hole punch or truncate 1295 * could have been performed on the private mapping. 1296 * Examine the value of chg to determine if reserves 1297 * actually exist or were previously consumed. 1298 * Very Subtle - The value of chg comes from a previous 1299 * call to vma_needs_reserves(). The reserve map for 1300 * private mappings has different (opposite) semantics 1301 * than that of shared mappings. vma_needs_reserves() 1302 * has already taken this difference in semantics into 1303 * account. Therefore, the meaning of chg is the same 1304 * as in the shared case above. Code could easily be 1305 * combined, but keeping it separate draws attention to 1306 * subtle differences. 1307 */ 1308 if (chg) 1309 return false; 1310 else 1311 return true; 1312 } 1313 1314 return false; 1315 } 1316 1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1318 { 1319 int nid = folio_nid(folio); 1320 1321 lockdep_assert_held(&hugetlb_lock); 1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1323 1324 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1325 h->free_huge_pages++; 1326 h->free_huge_pages_node[nid]++; 1327 folio_set_hugetlb_freed(folio); 1328 } 1329 1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1331 int nid) 1332 { 1333 struct folio *folio; 1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1335 1336 lockdep_assert_held(&hugetlb_lock); 1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1338 if (pin && !folio_is_longterm_pinnable(folio)) 1339 continue; 1340 1341 if (folio_test_hwpoison(folio)) 1342 continue; 1343 1344 list_move(&folio->lru, &h->hugepage_activelist); 1345 folio_ref_unfreeze(folio, 1); 1346 folio_clear_hugetlb_freed(folio); 1347 h->free_huge_pages--; 1348 h->free_huge_pages_node[nid]--; 1349 return folio; 1350 } 1351 1352 return NULL; 1353 } 1354 1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1356 int nid, nodemask_t *nmask) 1357 { 1358 unsigned int cpuset_mems_cookie; 1359 struct zonelist *zonelist; 1360 struct zone *zone; 1361 struct zoneref *z; 1362 int node = NUMA_NO_NODE; 1363 1364 zonelist = node_zonelist(nid, gfp_mask); 1365 1366 retry_cpuset: 1367 cpuset_mems_cookie = read_mems_allowed_begin(); 1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1369 struct folio *folio; 1370 1371 if (!cpuset_zone_allowed(zone, gfp_mask)) 1372 continue; 1373 /* 1374 * no need to ask again on the same node. Pool is node rather than 1375 * zone aware 1376 */ 1377 if (zone_to_nid(zone) == node) 1378 continue; 1379 node = zone_to_nid(zone); 1380 1381 folio = dequeue_hugetlb_folio_node_exact(h, node); 1382 if (folio) 1383 return folio; 1384 } 1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1386 goto retry_cpuset; 1387 1388 return NULL; 1389 } 1390 1391 static unsigned long available_huge_pages(struct hstate *h) 1392 { 1393 return h->free_huge_pages - h->resv_huge_pages; 1394 } 1395 1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1397 struct vm_area_struct *vma, 1398 unsigned long address, int avoid_reserve, 1399 long chg) 1400 { 1401 struct folio *folio = NULL; 1402 struct mempolicy *mpol; 1403 gfp_t gfp_mask; 1404 nodemask_t *nodemask; 1405 int nid; 1406 1407 /* 1408 * A child process with MAP_PRIVATE mappings created by their parent 1409 * have no page reserves. This check ensures that reservations are 1410 * not "stolen". The child may still get SIGKILLed 1411 */ 1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1413 goto err; 1414 1415 /* If reserves cannot be used, ensure enough pages are in the pool */ 1416 if (avoid_reserve && !available_huge_pages(h)) 1417 goto err; 1418 1419 gfp_mask = htlb_alloc_mask(h); 1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1421 1422 if (mpol_is_preferred_many(mpol)) { 1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1424 nid, nodemask); 1425 1426 /* Fallback to all nodes if page==NULL */ 1427 nodemask = NULL; 1428 } 1429 1430 if (!folio) 1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1432 nid, nodemask); 1433 1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1435 folio_set_hugetlb_restore_reserve(folio); 1436 h->resv_huge_pages--; 1437 } 1438 1439 mpol_cond_put(mpol); 1440 return folio; 1441 1442 err: 1443 return NULL; 1444 } 1445 1446 /* 1447 * common helper functions for hstate_next_node_to_{alloc|free}. 1448 * We may have allocated or freed a huge page based on a different 1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1450 * be outside of *nodes_allowed. Ensure that we use an allowed 1451 * node for alloc or free. 1452 */ 1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1454 { 1455 nid = next_node_in(nid, *nodes_allowed); 1456 VM_BUG_ON(nid >= MAX_NUMNODES); 1457 1458 return nid; 1459 } 1460 1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1462 { 1463 if (!node_isset(nid, *nodes_allowed)) 1464 nid = next_node_allowed(nid, nodes_allowed); 1465 return nid; 1466 } 1467 1468 /* 1469 * returns the previously saved node ["this node"] from which to 1470 * allocate a persistent huge page for the pool and advance the 1471 * next node from which to allocate, handling wrap at end of node 1472 * mask. 1473 */ 1474 static int hstate_next_node_to_alloc(struct hstate *h, 1475 nodemask_t *nodes_allowed) 1476 { 1477 int nid; 1478 1479 VM_BUG_ON(!nodes_allowed); 1480 1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1483 1484 return nid; 1485 } 1486 1487 /* 1488 * helper for remove_pool_huge_page() - return the previously saved 1489 * node ["this node"] from which to free a huge page. Advance the 1490 * next node id whether or not we find a free huge page to free so 1491 * that the next attempt to free addresses the next node. 1492 */ 1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1494 { 1495 int nid; 1496 1497 VM_BUG_ON(!nodes_allowed); 1498 1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1501 1502 return nid; 1503 } 1504 1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1506 for (nr_nodes = nodes_weight(*mask); \ 1507 nr_nodes > 0 && \ 1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1509 nr_nodes--) 1510 1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1512 for (nr_nodes = nodes_weight(*mask); \ 1513 nr_nodes > 0 && \ 1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1515 nr_nodes--) 1516 1517 /* used to demote non-gigantic_huge pages as well */ 1518 static void __destroy_compound_gigantic_folio(struct folio *folio, 1519 unsigned int order, bool demote) 1520 { 1521 int i; 1522 int nr_pages = 1 << order; 1523 struct page *p; 1524 1525 atomic_set(&folio->_entire_mapcount, 0); 1526 atomic_set(&folio->_nr_pages_mapped, 0); 1527 atomic_set(&folio->_pincount, 0); 1528 1529 for (i = 1; i < nr_pages; i++) { 1530 p = folio_page(folio, i); 1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1532 p->mapping = NULL; 1533 clear_compound_head(p); 1534 if (!demote) 1535 set_page_refcounted(p); 1536 } 1537 1538 __folio_clear_head(folio); 1539 } 1540 1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1542 unsigned int order) 1543 { 1544 __destroy_compound_gigantic_folio(folio, order, true); 1545 } 1546 1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1548 static void destroy_compound_gigantic_folio(struct folio *folio, 1549 unsigned int order) 1550 { 1551 __destroy_compound_gigantic_folio(folio, order, false); 1552 } 1553 1554 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1555 { 1556 /* 1557 * If the page isn't allocated using the cma allocator, 1558 * cma_release() returns false. 1559 */ 1560 #ifdef CONFIG_CMA 1561 int nid = folio_nid(folio); 1562 1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1564 return; 1565 #endif 1566 1567 free_contig_range(folio_pfn(folio), 1 << order); 1568 } 1569 1570 #ifdef CONFIG_CONTIG_ALLOC 1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1572 int nid, nodemask_t *nodemask) 1573 { 1574 struct page *page; 1575 unsigned long nr_pages = pages_per_huge_page(h); 1576 if (nid == NUMA_NO_NODE) 1577 nid = numa_mem_id(); 1578 1579 #ifdef CONFIG_CMA 1580 { 1581 int node; 1582 1583 if (hugetlb_cma[nid]) { 1584 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1585 huge_page_order(h), true); 1586 if (page) 1587 return page_folio(page); 1588 } 1589 1590 if (!(gfp_mask & __GFP_THISNODE)) { 1591 for_each_node_mask(node, *nodemask) { 1592 if (node == nid || !hugetlb_cma[node]) 1593 continue; 1594 1595 page = cma_alloc(hugetlb_cma[node], nr_pages, 1596 huge_page_order(h), true); 1597 if (page) 1598 return page_folio(page); 1599 } 1600 } 1601 } 1602 #endif 1603 1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1605 return page ? page_folio(page) : NULL; 1606 } 1607 1608 #else /* !CONFIG_CONTIG_ALLOC */ 1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1610 int nid, nodemask_t *nodemask) 1611 { 1612 return NULL; 1613 } 1614 #endif /* CONFIG_CONTIG_ALLOC */ 1615 1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1618 int nid, nodemask_t *nodemask) 1619 { 1620 return NULL; 1621 } 1622 static inline void free_gigantic_folio(struct folio *folio, 1623 unsigned int order) { } 1624 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1625 unsigned int order) { } 1626 #endif 1627 1628 static inline void __clear_hugetlb_destructor(struct hstate *h, 1629 struct folio *folio) 1630 { 1631 lockdep_assert_held(&hugetlb_lock); 1632 1633 folio_clear_hugetlb(folio); 1634 } 1635 1636 /* 1637 * Remove hugetlb folio from lists. 1638 * If vmemmap exists for the folio, update dtor so that the folio appears 1639 * as just a compound page. Otherwise, wait until after allocating vmemmap 1640 * to update dtor. 1641 * 1642 * A reference is held on the folio, except in the case of demote. 1643 * 1644 * Must be called with hugetlb lock held. 1645 */ 1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1647 bool adjust_surplus, 1648 bool demote) 1649 { 1650 int nid = folio_nid(folio); 1651 1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1654 1655 lockdep_assert_held(&hugetlb_lock); 1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1657 return; 1658 1659 list_del(&folio->lru); 1660 1661 if (folio_test_hugetlb_freed(folio)) { 1662 h->free_huge_pages--; 1663 h->free_huge_pages_node[nid]--; 1664 } 1665 if (adjust_surplus) { 1666 h->surplus_huge_pages--; 1667 h->surplus_huge_pages_node[nid]--; 1668 } 1669 1670 /* 1671 * We can only clear the hugetlb destructor after allocating vmemmap 1672 * pages. Otherwise, someone (memory error handling) may try to write 1673 * to tail struct pages. 1674 */ 1675 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1676 __clear_hugetlb_destructor(h, folio); 1677 1678 /* 1679 * In the case of demote we do not ref count the page as it will soon 1680 * be turned into a page of smaller size. 1681 */ 1682 if (!demote) 1683 folio_ref_unfreeze(folio, 1); 1684 1685 h->nr_huge_pages--; 1686 h->nr_huge_pages_node[nid]--; 1687 } 1688 1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1690 bool adjust_surplus) 1691 { 1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1693 } 1694 1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1696 bool adjust_surplus) 1697 { 1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1699 } 1700 1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1702 bool adjust_surplus) 1703 { 1704 int zeroed; 1705 int nid = folio_nid(folio); 1706 1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1708 1709 lockdep_assert_held(&hugetlb_lock); 1710 1711 INIT_LIST_HEAD(&folio->lru); 1712 h->nr_huge_pages++; 1713 h->nr_huge_pages_node[nid]++; 1714 1715 if (adjust_surplus) { 1716 h->surplus_huge_pages++; 1717 h->surplus_huge_pages_node[nid]++; 1718 } 1719 1720 folio_set_hugetlb(folio); 1721 folio_change_private(folio, NULL); 1722 /* 1723 * We have to set hugetlb_vmemmap_optimized again as above 1724 * folio_change_private(folio, NULL) cleared it. 1725 */ 1726 folio_set_hugetlb_vmemmap_optimized(folio); 1727 1728 /* 1729 * This folio is about to be managed by the hugetlb allocator and 1730 * should have no users. Drop our reference, and check for others 1731 * just in case. 1732 */ 1733 zeroed = folio_put_testzero(folio); 1734 if (unlikely(!zeroed)) 1735 /* 1736 * It is VERY unlikely soneone else has taken a ref 1737 * on the folio. In this case, we simply return as 1738 * free_huge_folio() will be called when this other ref 1739 * is dropped. 1740 */ 1741 return; 1742 1743 arch_clear_hugepage_flags(&folio->page); 1744 enqueue_hugetlb_folio(h, folio); 1745 } 1746 1747 static void __update_and_free_hugetlb_folio(struct hstate *h, 1748 struct folio *folio) 1749 { 1750 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1751 1752 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1753 return; 1754 1755 /* 1756 * If we don't know which subpages are hwpoisoned, we can't free 1757 * the hugepage, so it's leaked intentionally. 1758 */ 1759 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1760 return; 1761 1762 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1763 spin_lock_irq(&hugetlb_lock); 1764 /* 1765 * If we cannot allocate vmemmap pages, just refuse to free the 1766 * page and put the page back on the hugetlb free list and treat 1767 * as a surplus page. 1768 */ 1769 add_hugetlb_folio(h, folio, true); 1770 spin_unlock_irq(&hugetlb_lock); 1771 return; 1772 } 1773 1774 /* 1775 * Move PageHWPoison flag from head page to the raw error pages, 1776 * which makes any healthy subpages reusable. 1777 */ 1778 if (unlikely(folio_test_hwpoison(folio))) 1779 folio_clear_hugetlb_hwpoison(folio); 1780 1781 /* 1782 * If vmemmap pages were allocated above, then we need to clear the 1783 * hugetlb destructor under the hugetlb lock. 1784 */ 1785 if (clear_dtor) { 1786 spin_lock_irq(&hugetlb_lock); 1787 __clear_hugetlb_destructor(h, folio); 1788 spin_unlock_irq(&hugetlb_lock); 1789 } 1790 1791 /* 1792 * Non-gigantic pages demoted from CMA allocated gigantic pages 1793 * need to be given back to CMA in free_gigantic_folio. 1794 */ 1795 if (hstate_is_gigantic(h) || 1796 hugetlb_cma_folio(folio, huge_page_order(h))) { 1797 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1798 free_gigantic_folio(folio, huge_page_order(h)); 1799 } else { 1800 __free_pages(&folio->page, huge_page_order(h)); 1801 } 1802 } 1803 1804 /* 1805 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1806 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1807 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1808 * the vmemmap pages. 1809 * 1810 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1811 * freed and frees them one-by-one. As the page->mapping pointer is going 1812 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1813 * structure of a lockless linked list of huge pages to be freed. 1814 */ 1815 static LLIST_HEAD(hpage_freelist); 1816 1817 static void free_hpage_workfn(struct work_struct *work) 1818 { 1819 struct llist_node *node; 1820 1821 node = llist_del_all(&hpage_freelist); 1822 1823 while (node) { 1824 struct page *page; 1825 struct hstate *h; 1826 1827 page = container_of((struct address_space **)node, 1828 struct page, mapping); 1829 node = node->next; 1830 page->mapping = NULL; 1831 /* 1832 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1833 * folio_hstate() is going to trigger because a previous call to 1834 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1835 * not use folio_hstate() directly. 1836 */ 1837 h = size_to_hstate(page_size(page)); 1838 1839 __update_and_free_hugetlb_folio(h, page_folio(page)); 1840 1841 cond_resched(); 1842 } 1843 } 1844 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1845 1846 static inline void flush_free_hpage_work(struct hstate *h) 1847 { 1848 if (hugetlb_vmemmap_optimizable(h)) 1849 flush_work(&free_hpage_work); 1850 } 1851 1852 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1853 bool atomic) 1854 { 1855 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1856 __update_and_free_hugetlb_folio(h, folio); 1857 return; 1858 } 1859 1860 /* 1861 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1862 * 1863 * Only call schedule_work() if hpage_freelist is previously 1864 * empty. Otherwise, schedule_work() had been called but the workfn 1865 * hasn't retrieved the list yet. 1866 */ 1867 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1868 schedule_work(&free_hpage_work); 1869 } 1870 1871 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1872 { 1873 struct page *page, *t_page; 1874 struct folio *folio; 1875 1876 list_for_each_entry_safe(page, t_page, list, lru) { 1877 folio = page_folio(page); 1878 update_and_free_hugetlb_folio(h, folio, false); 1879 cond_resched(); 1880 } 1881 } 1882 1883 struct hstate *size_to_hstate(unsigned long size) 1884 { 1885 struct hstate *h; 1886 1887 for_each_hstate(h) { 1888 if (huge_page_size(h) == size) 1889 return h; 1890 } 1891 return NULL; 1892 } 1893 1894 void free_huge_folio(struct folio *folio) 1895 { 1896 /* 1897 * Can't pass hstate in here because it is called from the 1898 * compound page destructor. 1899 */ 1900 struct hstate *h = folio_hstate(folio); 1901 int nid = folio_nid(folio); 1902 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1903 bool restore_reserve; 1904 unsigned long flags; 1905 1906 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1907 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1908 1909 hugetlb_set_folio_subpool(folio, NULL); 1910 if (folio_test_anon(folio)) 1911 __ClearPageAnonExclusive(&folio->page); 1912 folio->mapping = NULL; 1913 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1914 folio_clear_hugetlb_restore_reserve(folio); 1915 1916 /* 1917 * If HPageRestoreReserve was set on page, page allocation consumed a 1918 * reservation. If the page was associated with a subpool, there 1919 * would have been a page reserved in the subpool before allocation 1920 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1921 * reservation, do not call hugepage_subpool_put_pages() as this will 1922 * remove the reserved page from the subpool. 1923 */ 1924 if (!restore_reserve) { 1925 /* 1926 * A return code of zero implies that the subpool will be 1927 * under its minimum size if the reservation is not restored 1928 * after page is free. Therefore, force restore_reserve 1929 * operation. 1930 */ 1931 if (hugepage_subpool_put_pages(spool, 1) == 0) 1932 restore_reserve = true; 1933 } 1934 1935 spin_lock_irqsave(&hugetlb_lock, flags); 1936 folio_clear_hugetlb_migratable(folio); 1937 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1938 pages_per_huge_page(h), folio); 1939 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1940 pages_per_huge_page(h), folio); 1941 if (restore_reserve) 1942 h->resv_huge_pages++; 1943 1944 if (folio_test_hugetlb_temporary(folio)) { 1945 remove_hugetlb_folio(h, folio, false); 1946 spin_unlock_irqrestore(&hugetlb_lock, flags); 1947 update_and_free_hugetlb_folio(h, folio, true); 1948 } else if (h->surplus_huge_pages_node[nid]) { 1949 /* remove the page from active list */ 1950 remove_hugetlb_folio(h, folio, true); 1951 spin_unlock_irqrestore(&hugetlb_lock, flags); 1952 update_and_free_hugetlb_folio(h, folio, true); 1953 } else { 1954 arch_clear_hugepage_flags(&folio->page); 1955 enqueue_hugetlb_folio(h, folio); 1956 spin_unlock_irqrestore(&hugetlb_lock, flags); 1957 } 1958 } 1959 1960 /* 1961 * Must be called with the hugetlb lock held 1962 */ 1963 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1964 { 1965 lockdep_assert_held(&hugetlb_lock); 1966 h->nr_huge_pages++; 1967 h->nr_huge_pages_node[nid]++; 1968 } 1969 1970 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1971 { 1972 hugetlb_vmemmap_optimize(h, &folio->page); 1973 INIT_LIST_HEAD(&folio->lru); 1974 folio_set_hugetlb(folio); 1975 hugetlb_set_folio_subpool(folio, NULL); 1976 set_hugetlb_cgroup(folio, NULL); 1977 set_hugetlb_cgroup_rsvd(folio, NULL); 1978 } 1979 1980 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1981 { 1982 __prep_new_hugetlb_folio(h, folio); 1983 spin_lock_irq(&hugetlb_lock); 1984 __prep_account_new_huge_page(h, nid); 1985 spin_unlock_irq(&hugetlb_lock); 1986 } 1987 1988 static bool __prep_compound_gigantic_folio(struct folio *folio, 1989 unsigned int order, bool demote) 1990 { 1991 int i, j; 1992 int nr_pages = 1 << order; 1993 struct page *p; 1994 1995 __folio_clear_reserved(folio); 1996 for (i = 0; i < nr_pages; i++) { 1997 p = folio_page(folio, i); 1998 1999 /* 2000 * For gigantic hugepages allocated through bootmem at 2001 * boot, it's safer to be consistent with the not-gigantic 2002 * hugepages and clear the PG_reserved bit from all tail pages 2003 * too. Otherwise drivers using get_user_pages() to access tail 2004 * pages may get the reference counting wrong if they see 2005 * PG_reserved set on a tail page (despite the head page not 2006 * having PG_reserved set). Enforcing this consistency between 2007 * head and tail pages allows drivers to optimize away a check 2008 * on the head page when they need know if put_page() is needed 2009 * after get_user_pages(). 2010 */ 2011 if (i != 0) /* head page cleared above */ 2012 __ClearPageReserved(p); 2013 /* 2014 * Subtle and very unlikely 2015 * 2016 * Gigantic 'page allocators' such as memblock or cma will 2017 * return a set of pages with each page ref counted. We need 2018 * to turn this set of pages into a compound page with tail 2019 * page ref counts set to zero. Code such as speculative page 2020 * cache adding could take a ref on a 'to be' tail page. 2021 * We need to respect any increased ref count, and only set 2022 * the ref count to zero if count is currently 1. If count 2023 * is not 1, we return an error. An error return indicates 2024 * the set of pages can not be converted to a gigantic page. 2025 * The caller who allocated the pages should then discard the 2026 * pages using the appropriate free interface. 2027 * 2028 * In the case of demote, the ref count will be zero. 2029 */ 2030 if (!demote) { 2031 if (!page_ref_freeze(p, 1)) { 2032 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2033 goto out_error; 2034 } 2035 } else { 2036 VM_BUG_ON_PAGE(page_count(p), p); 2037 } 2038 if (i != 0) 2039 set_compound_head(p, &folio->page); 2040 } 2041 __folio_set_head(folio); 2042 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2043 folio_set_order(folio, order); 2044 atomic_set(&folio->_entire_mapcount, -1); 2045 atomic_set(&folio->_nr_pages_mapped, 0); 2046 atomic_set(&folio->_pincount, 0); 2047 return true; 2048 2049 out_error: 2050 /* undo page modifications made above */ 2051 for (j = 0; j < i; j++) { 2052 p = folio_page(folio, j); 2053 if (j != 0) 2054 clear_compound_head(p); 2055 set_page_refcounted(p); 2056 } 2057 /* need to clear PG_reserved on remaining tail pages */ 2058 for (; j < nr_pages; j++) { 2059 p = folio_page(folio, j); 2060 __ClearPageReserved(p); 2061 } 2062 return false; 2063 } 2064 2065 static bool prep_compound_gigantic_folio(struct folio *folio, 2066 unsigned int order) 2067 { 2068 return __prep_compound_gigantic_folio(folio, order, false); 2069 } 2070 2071 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2072 unsigned int order) 2073 { 2074 return __prep_compound_gigantic_folio(folio, order, true); 2075 } 2076 2077 /* 2078 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2079 * transparent huge pages. See the PageTransHuge() documentation for more 2080 * details. 2081 */ 2082 int PageHuge(struct page *page) 2083 { 2084 struct folio *folio; 2085 2086 if (!PageCompound(page)) 2087 return 0; 2088 folio = page_folio(page); 2089 return folio_test_hugetlb(folio); 2090 } 2091 EXPORT_SYMBOL_GPL(PageHuge); 2092 2093 /* 2094 * Find and lock address space (mapping) in write mode. 2095 * 2096 * Upon entry, the page is locked which means that page_mapping() is 2097 * stable. Due to locking order, we can only trylock_write. If we can 2098 * not get the lock, simply return NULL to caller. 2099 */ 2100 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2101 { 2102 struct address_space *mapping = page_mapping(hpage); 2103 2104 if (!mapping) 2105 return mapping; 2106 2107 if (i_mmap_trylock_write(mapping)) 2108 return mapping; 2109 2110 return NULL; 2111 } 2112 2113 pgoff_t hugetlb_basepage_index(struct page *page) 2114 { 2115 struct page *page_head = compound_head(page); 2116 pgoff_t index = page_index(page_head); 2117 unsigned long compound_idx; 2118 2119 if (compound_order(page_head) > MAX_ORDER) 2120 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2121 else 2122 compound_idx = page - page_head; 2123 2124 return (index << compound_order(page_head)) + compound_idx; 2125 } 2126 2127 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2128 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2129 nodemask_t *node_alloc_noretry) 2130 { 2131 int order = huge_page_order(h); 2132 struct page *page; 2133 bool alloc_try_hard = true; 2134 bool retry = true; 2135 2136 /* 2137 * By default we always try hard to allocate the page with 2138 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2139 * a loop (to adjust global huge page counts) and previous allocation 2140 * failed, do not continue to try hard on the same node. Use the 2141 * node_alloc_noretry bitmap to manage this state information. 2142 */ 2143 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2144 alloc_try_hard = false; 2145 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2146 if (alloc_try_hard) 2147 gfp_mask |= __GFP_RETRY_MAYFAIL; 2148 if (nid == NUMA_NO_NODE) 2149 nid = numa_mem_id(); 2150 retry: 2151 page = __alloc_pages(gfp_mask, order, nid, nmask); 2152 2153 /* Freeze head page */ 2154 if (page && !page_ref_freeze(page, 1)) { 2155 __free_pages(page, order); 2156 if (retry) { /* retry once */ 2157 retry = false; 2158 goto retry; 2159 } 2160 /* WOW! twice in a row. */ 2161 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2162 page = NULL; 2163 } 2164 2165 /* 2166 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2167 * indicates an overall state change. Clear bit so that we resume 2168 * normal 'try hard' allocations. 2169 */ 2170 if (node_alloc_noretry && page && !alloc_try_hard) 2171 node_clear(nid, *node_alloc_noretry); 2172 2173 /* 2174 * If we tried hard to get a page but failed, set bit so that 2175 * subsequent attempts will not try as hard until there is an 2176 * overall state change. 2177 */ 2178 if (node_alloc_noretry && !page && alloc_try_hard) 2179 node_set(nid, *node_alloc_noretry); 2180 2181 if (!page) { 2182 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2183 return NULL; 2184 } 2185 2186 __count_vm_event(HTLB_BUDDY_PGALLOC); 2187 return page_folio(page); 2188 } 2189 2190 /* 2191 * Common helper to allocate a fresh hugetlb page. All specific allocators 2192 * should use this function to get new hugetlb pages 2193 * 2194 * Note that returned page is 'frozen': ref count of head page and all tail 2195 * pages is zero. 2196 */ 2197 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2198 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2199 nodemask_t *node_alloc_noretry) 2200 { 2201 struct folio *folio; 2202 bool retry = false; 2203 2204 retry: 2205 if (hstate_is_gigantic(h)) 2206 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2207 else 2208 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2209 nid, nmask, node_alloc_noretry); 2210 if (!folio) 2211 return NULL; 2212 if (hstate_is_gigantic(h)) { 2213 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2214 /* 2215 * Rare failure to convert pages to compound page. 2216 * Free pages and try again - ONCE! 2217 */ 2218 free_gigantic_folio(folio, huge_page_order(h)); 2219 if (!retry) { 2220 retry = true; 2221 goto retry; 2222 } 2223 return NULL; 2224 } 2225 } 2226 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2227 2228 return folio; 2229 } 2230 2231 /* 2232 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2233 * manner. 2234 */ 2235 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2236 nodemask_t *node_alloc_noretry) 2237 { 2238 struct folio *folio; 2239 int nr_nodes, node; 2240 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2241 2242 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2243 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2244 nodes_allowed, node_alloc_noretry); 2245 if (folio) { 2246 free_huge_folio(folio); /* free it into the hugepage allocator */ 2247 return 1; 2248 } 2249 } 2250 2251 return 0; 2252 } 2253 2254 /* 2255 * Remove huge page from pool from next node to free. Attempt to keep 2256 * persistent huge pages more or less balanced over allowed nodes. 2257 * This routine only 'removes' the hugetlb page. The caller must make 2258 * an additional call to free the page to low level allocators. 2259 * Called with hugetlb_lock locked. 2260 */ 2261 static struct page *remove_pool_huge_page(struct hstate *h, 2262 nodemask_t *nodes_allowed, 2263 bool acct_surplus) 2264 { 2265 int nr_nodes, node; 2266 struct page *page = NULL; 2267 struct folio *folio; 2268 2269 lockdep_assert_held(&hugetlb_lock); 2270 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2271 /* 2272 * If we're returning unused surplus pages, only examine 2273 * nodes with surplus pages. 2274 */ 2275 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2276 !list_empty(&h->hugepage_freelists[node])) { 2277 page = list_entry(h->hugepage_freelists[node].next, 2278 struct page, lru); 2279 folio = page_folio(page); 2280 remove_hugetlb_folio(h, folio, acct_surplus); 2281 break; 2282 } 2283 } 2284 2285 return page; 2286 } 2287 2288 /* 2289 * Dissolve a given free hugepage into free buddy pages. This function does 2290 * nothing for in-use hugepages and non-hugepages. 2291 * This function returns values like below: 2292 * 2293 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2294 * when the system is under memory pressure and the feature of 2295 * freeing unused vmemmap pages associated with each hugetlb page 2296 * is enabled. 2297 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2298 * (allocated or reserved.) 2299 * 0: successfully dissolved free hugepages or the page is not a 2300 * hugepage (considered as already dissolved) 2301 */ 2302 int dissolve_free_huge_page(struct page *page) 2303 { 2304 int rc = -EBUSY; 2305 struct folio *folio = page_folio(page); 2306 2307 retry: 2308 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2309 if (!folio_test_hugetlb(folio)) 2310 return 0; 2311 2312 spin_lock_irq(&hugetlb_lock); 2313 if (!folio_test_hugetlb(folio)) { 2314 rc = 0; 2315 goto out; 2316 } 2317 2318 if (!folio_ref_count(folio)) { 2319 struct hstate *h = folio_hstate(folio); 2320 if (!available_huge_pages(h)) 2321 goto out; 2322 2323 /* 2324 * We should make sure that the page is already on the free list 2325 * when it is dissolved. 2326 */ 2327 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2328 spin_unlock_irq(&hugetlb_lock); 2329 cond_resched(); 2330 2331 /* 2332 * Theoretically, we should return -EBUSY when we 2333 * encounter this race. In fact, we have a chance 2334 * to successfully dissolve the page if we do a 2335 * retry. Because the race window is quite small. 2336 * If we seize this opportunity, it is an optimization 2337 * for increasing the success rate of dissolving page. 2338 */ 2339 goto retry; 2340 } 2341 2342 remove_hugetlb_folio(h, folio, false); 2343 h->max_huge_pages--; 2344 spin_unlock_irq(&hugetlb_lock); 2345 2346 /* 2347 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2348 * before freeing the page. update_and_free_hugtlb_folio will fail to 2349 * free the page if it can not allocate required vmemmap. We 2350 * need to adjust max_huge_pages if the page is not freed. 2351 * Attempt to allocate vmemmmap here so that we can take 2352 * appropriate action on failure. 2353 */ 2354 rc = hugetlb_vmemmap_restore(h, &folio->page); 2355 if (!rc) { 2356 update_and_free_hugetlb_folio(h, folio, false); 2357 } else { 2358 spin_lock_irq(&hugetlb_lock); 2359 add_hugetlb_folio(h, folio, false); 2360 h->max_huge_pages++; 2361 spin_unlock_irq(&hugetlb_lock); 2362 } 2363 2364 return rc; 2365 } 2366 out: 2367 spin_unlock_irq(&hugetlb_lock); 2368 return rc; 2369 } 2370 2371 /* 2372 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2373 * make specified memory blocks removable from the system. 2374 * Note that this will dissolve a free gigantic hugepage completely, if any 2375 * part of it lies within the given range. 2376 * Also note that if dissolve_free_huge_page() returns with an error, all 2377 * free hugepages that were dissolved before that error are lost. 2378 */ 2379 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2380 { 2381 unsigned long pfn; 2382 struct page *page; 2383 int rc = 0; 2384 unsigned int order; 2385 struct hstate *h; 2386 2387 if (!hugepages_supported()) 2388 return rc; 2389 2390 order = huge_page_order(&default_hstate); 2391 for_each_hstate(h) 2392 order = min(order, huge_page_order(h)); 2393 2394 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2395 page = pfn_to_page(pfn); 2396 rc = dissolve_free_huge_page(page); 2397 if (rc) 2398 break; 2399 } 2400 2401 return rc; 2402 } 2403 2404 /* 2405 * Allocates a fresh surplus page from the page allocator. 2406 */ 2407 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2408 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2409 { 2410 struct folio *folio = NULL; 2411 2412 if (hstate_is_gigantic(h)) 2413 return NULL; 2414 2415 spin_lock_irq(&hugetlb_lock); 2416 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2417 goto out_unlock; 2418 spin_unlock_irq(&hugetlb_lock); 2419 2420 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2421 if (!folio) 2422 return NULL; 2423 2424 spin_lock_irq(&hugetlb_lock); 2425 /* 2426 * We could have raced with the pool size change. 2427 * Double check that and simply deallocate the new page 2428 * if we would end up overcommiting the surpluses. Abuse 2429 * temporary page to workaround the nasty free_huge_folio 2430 * codeflow 2431 */ 2432 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2433 folio_set_hugetlb_temporary(folio); 2434 spin_unlock_irq(&hugetlb_lock); 2435 free_huge_folio(folio); 2436 return NULL; 2437 } 2438 2439 h->surplus_huge_pages++; 2440 h->surplus_huge_pages_node[folio_nid(folio)]++; 2441 2442 out_unlock: 2443 spin_unlock_irq(&hugetlb_lock); 2444 2445 return folio; 2446 } 2447 2448 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2449 int nid, nodemask_t *nmask) 2450 { 2451 struct folio *folio; 2452 2453 if (hstate_is_gigantic(h)) 2454 return NULL; 2455 2456 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2457 if (!folio) 2458 return NULL; 2459 2460 /* fresh huge pages are frozen */ 2461 folio_ref_unfreeze(folio, 1); 2462 /* 2463 * We do not account these pages as surplus because they are only 2464 * temporary and will be released properly on the last reference 2465 */ 2466 folio_set_hugetlb_temporary(folio); 2467 2468 return folio; 2469 } 2470 2471 /* 2472 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2473 */ 2474 static 2475 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2476 struct vm_area_struct *vma, unsigned long addr) 2477 { 2478 struct folio *folio = NULL; 2479 struct mempolicy *mpol; 2480 gfp_t gfp_mask = htlb_alloc_mask(h); 2481 int nid; 2482 nodemask_t *nodemask; 2483 2484 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2485 if (mpol_is_preferred_many(mpol)) { 2486 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2487 2488 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2489 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2490 2491 /* Fallback to all nodes if page==NULL */ 2492 nodemask = NULL; 2493 } 2494 2495 if (!folio) 2496 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2497 mpol_cond_put(mpol); 2498 return folio; 2499 } 2500 2501 /* folio migration callback function */ 2502 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2503 nodemask_t *nmask, gfp_t gfp_mask) 2504 { 2505 spin_lock_irq(&hugetlb_lock); 2506 if (available_huge_pages(h)) { 2507 struct folio *folio; 2508 2509 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2510 preferred_nid, nmask); 2511 if (folio) { 2512 spin_unlock_irq(&hugetlb_lock); 2513 return folio; 2514 } 2515 } 2516 spin_unlock_irq(&hugetlb_lock); 2517 2518 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2519 } 2520 2521 /* mempolicy aware migration callback */ 2522 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2523 unsigned long address) 2524 { 2525 struct mempolicy *mpol; 2526 nodemask_t *nodemask; 2527 struct folio *folio; 2528 gfp_t gfp_mask; 2529 int node; 2530 2531 gfp_mask = htlb_alloc_mask(h); 2532 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2533 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2534 mpol_cond_put(mpol); 2535 2536 return folio; 2537 } 2538 2539 /* 2540 * Increase the hugetlb pool such that it can accommodate a reservation 2541 * of size 'delta'. 2542 */ 2543 static int gather_surplus_pages(struct hstate *h, long delta) 2544 __must_hold(&hugetlb_lock) 2545 { 2546 LIST_HEAD(surplus_list); 2547 struct folio *folio, *tmp; 2548 int ret; 2549 long i; 2550 long needed, allocated; 2551 bool alloc_ok = true; 2552 2553 lockdep_assert_held(&hugetlb_lock); 2554 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2555 if (needed <= 0) { 2556 h->resv_huge_pages += delta; 2557 return 0; 2558 } 2559 2560 allocated = 0; 2561 2562 ret = -ENOMEM; 2563 retry: 2564 spin_unlock_irq(&hugetlb_lock); 2565 for (i = 0; i < needed; i++) { 2566 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2567 NUMA_NO_NODE, NULL); 2568 if (!folio) { 2569 alloc_ok = false; 2570 break; 2571 } 2572 list_add(&folio->lru, &surplus_list); 2573 cond_resched(); 2574 } 2575 allocated += i; 2576 2577 /* 2578 * After retaking hugetlb_lock, we need to recalculate 'needed' 2579 * because either resv_huge_pages or free_huge_pages may have changed. 2580 */ 2581 spin_lock_irq(&hugetlb_lock); 2582 needed = (h->resv_huge_pages + delta) - 2583 (h->free_huge_pages + allocated); 2584 if (needed > 0) { 2585 if (alloc_ok) 2586 goto retry; 2587 /* 2588 * We were not able to allocate enough pages to 2589 * satisfy the entire reservation so we free what 2590 * we've allocated so far. 2591 */ 2592 goto free; 2593 } 2594 /* 2595 * The surplus_list now contains _at_least_ the number of extra pages 2596 * needed to accommodate the reservation. Add the appropriate number 2597 * of pages to the hugetlb pool and free the extras back to the buddy 2598 * allocator. Commit the entire reservation here to prevent another 2599 * process from stealing the pages as they are added to the pool but 2600 * before they are reserved. 2601 */ 2602 needed += allocated; 2603 h->resv_huge_pages += delta; 2604 ret = 0; 2605 2606 /* Free the needed pages to the hugetlb pool */ 2607 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2608 if ((--needed) < 0) 2609 break; 2610 /* Add the page to the hugetlb allocator */ 2611 enqueue_hugetlb_folio(h, folio); 2612 } 2613 free: 2614 spin_unlock_irq(&hugetlb_lock); 2615 2616 /* 2617 * Free unnecessary surplus pages to the buddy allocator. 2618 * Pages have no ref count, call free_huge_folio directly. 2619 */ 2620 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2621 free_huge_folio(folio); 2622 spin_lock_irq(&hugetlb_lock); 2623 2624 return ret; 2625 } 2626 2627 /* 2628 * This routine has two main purposes: 2629 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2630 * in unused_resv_pages. This corresponds to the prior adjustments made 2631 * to the associated reservation map. 2632 * 2) Free any unused surplus pages that may have been allocated to satisfy 2633 * the reservation. As many as unused_resv_pages may be freed. 2634 */ 2635 static void return_unused_surplus_pages(struct hstate *h, 2636 unsigned long unused_resv_pages) 2637 { 2638 unsigned long nr_pages; 2639 struct page *page; 2640 LIST_HEAD(page_list); 2641 2642 lockdep_assert_held(&hugetlb_lock); 2643 /* Uncommit the reservation */ 2644 h->resv_huge_pages -= unused_resv_pages; 2645 2646 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2647 goto out; 2648 2649 /* 2650 * Part (or even all) of the reservation could have been backed 2651 * by pre-allocated pages. Only free surplus pages. 2652 */ 2653 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2654 2655 /* 2656 * We want to release as many surplus pages as possible, spread 2657 * evenly across all nodes with memory. Iterate across these nodes 2658 * until we can no longer free unreserved surplus pages. This occurs 2659 * when the nodes with surplus pages have no free pages. 2660 * remove_pool_huge_page() will balance the freed pages across the 2661 * on-line nodes with memory and will handle the hstate accounting. 2662 */ 2663 while (nr_pages--) { 2664 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2665 if (!page) 2666 goto out; 2667 2668 list_add(&page->lru, &page_list); 2669 } 2670 2671 out: 2672 spin_unlock_irq(&hugetlb_lock); 2673 update_and_free_pages_bulk(h, &page_list); 2674 spin_lock_irq(&hugetlb_lock); 2675 } 2676 2677 2678 /* 2679 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2680 * are used by the huge page allocation routines to manage reservations. 2681 * 2682 * vma_needs_reservation is called to determine if the huge page at addr 2683 * within the vma has an associated reservation. If a reservation is 2684 * needed, the value 1 is returned. The caller is then responsible for 2685 * managing the global reservation and subpool usage counts. After 2686 * the huge page has been allocated, vma_commit_reservation is called 2687 * to add the page to the reservation map. If the page allocation fails, 2688 * the reservation must be ended instead of committed. vma_end_reservation 2689 * is called in such cases. 2690 * 2691 * In the normal case, vma_commit_reservation returns the same value 2692 * as the preceding vma_needs_reservation call. The only time this 2693 * is not the case is if a reserve map was changed between calls. It 2694 * is the responsibility of the caller to notice the difference and 2695 * take appropriate action. 2696 * 2697 * vma_add_reservation is used in error paths where a reservation must 2698 * be restored when a newly allocated huge page must be freed. It is 2699 * to be called after calling vma_needs_reservation to determine if a 2700 * reservation exists. 2701 * 2702 * vma_del_reservation is used in error paths where an entry in the reserve 2703 * map was created during huge page allocation and must be removed. It is to 2704 * be called after calling vma_needs_reservation to determine if a reservation 2705 * exists. 2706 */ 2707 enum vma_resv_mode { 2708 VMA_NEEDS_RESV, 2709 VMA_COMMIT_RESV, 2710 VMA_END_RESV, 2711 VMA_ADD_RESV, 2712 VMA_DEL_RESV, 2713 }; 2714 static long __vma_reservation_common(struct hstate *h, 2715 struct vm_area_struct *vma, unsigned long addr, 2716 enum vma_resv_mode mode) 2717 { 2718 struct resv_map *resv; 2719 pgoff_t idx; 2720 long ret; 2721 long dummy_out_regions_needed; 2722 2723 resv = vma_resv_map(vma); 2724 if (!resv) 2725 return 1; 2726 2727 idx = vma_hugecache_offset(h, vma, addr); 2728 switch (mode) { 2729 case VMA_NEEDS_RESV: 2730 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2731 /* We assume that vma_reservation_* routines always operate on 2732 * 1 page, and that adding to resv map a 1 page entry can only 2733 * ever require 1 region. 2734 */ 2735 VM_BUG_ON(dummy_out_regions_needed != 1); 2736 break; 2737 case VMA_COMMIT_RESV: 2738 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2739 /* region_add calls of range 1 should never fail. */ 2740 VM_BUG_ON(ret < 0); 2741 break; 2742 case VMA_END_RESV: 2743 region_abort(resv, idx, idx + 1, 1); 2744 ret = 0; 2745 break; 2746 case VMA_ADD_RESV: 2747 if (vma->vm_flags & VM_MAYSHARE) { 2748 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2749 /* region_add calls of range 1 should never fail. */ 2750 VM_BUG_ON(ret < 0); 2751 } else { 2752 region_abort(resv, idx, idx + 1, 1); 2753 ret = region_del(resv, idx, idx + 1); 2754 } 2755 break; 2756 case VMA_DEL_RESV: 2757 if (vma->vm_flags & VM_MAYSHARE) { 2758 region_abort(resv, idx, idx + 1, 1); 2759 ret = region_del(resv, idx, idx + 1); 2760 } else { 2761 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2762 /* region_add calls of range 1 should never fail. */ 2763 VM_BUG_ON(ret < 0); 2764 } 2765 break; 2766 default: 2767 BUG(); 2768 } 2769 2770 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2771 return ret; 2772 /* 2773 * We know private mapping must have HPAGE_RESV_OWNER set. 2774 * 2775 * In most cases, reserves always exist for private mappings. 2776 * However, a file associated with mapping could have been 2777 * hole punched or truncated after reserves were consumed. 2778 * As subsequent fault on such a range will not use reserves. 2779 * Subtle - The reserve map for private mappings has the 2780 * opposite meaning than that of shared mappings. If NO 2781 * entry is in the reserve map, it means a reservation exists. 2782 * If an entry exists in the reserve map, it means the 2783 * reservation has already been consumed. As a result, the 2784 * return value of this routine is the opposite of the 2785 * value returned from reserve map manipulation routines above. 2786 */ 2787 if (ret > 0) 2788 return 0; 2789 if (ret == 0) 2790 return 1; 2791 return ret; 2792 } 2793 2794 static long vma_needs_reservation(struct hstate *h, 2795 struct vm_area_struct *vma, unsigned long addr) 2796 { 2797 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2798 } 2799 2800 static long vma_commit_reservation(struct hstate *h, 2801 struct vm_area_struct *vma, unsigned long addr) 2802 { 2803 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2804 } 2805 2806 static void vma_end_reservation(struct hstate *h, 2807 struct vm_area_struct *vma, unsigned long addr) 2808 { 2809 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2810 } 2811 2812 static long vma_add_reservation(struct hstate *h, 2813 struct vm_area_struct *vma, unsigned long addr) 2814 { 2815 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2816 } 2817 2818 static long vma_del_reservation(struct hstate *h, 2819 struct vm_area_struct *vma, unsigned long addr) 2820 { 2821 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2822 } 2823 2824 /* 2825 * This routine is called to restore reservation information on error paths. 2826 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2827 * and the hugetlb mutex should remain held when calling this routine. 2828 * 2829 * It handles two specific cases: 2830 * 1) A reservation was in place and the folio consumed the reservation. 2831 * hugetlb_restore_reserve is set in the folio. 2832 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2833 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2834 * 2835 * In case 1, free_huge_folio later in the error path will increment the 2836 * global reserve count. But, free_huge_folio does not have enough context 2837 * to adjust the reservation map. This case deals primarily with private 2838 * mappings. Adjust the reserve map here to be consistent with global 2839 * reserve count adjustments to be made by free_huge_folio. Make sure the 2840 * reserve map indicates there is a reservation present. 2841 * 2842 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2843 */ 2844 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2845 unsigned long address, struct folio *folio) 2846 { 2847 long rc = vma_needs_reservation(h, vma, address); 2848 2849 if (folio_test_hugetlb_restore_reserve(folio)) { 2850 if (unlikely(rc < 0)) 2851 /* 2852 * Rare out of memory condition in reserve map 2853 * manipulation. Clear hugetlb_restore_reserve so 2854 * that global reserve count will not be incremented 2855 * by free_huge_folio. This will make it appear 2856 * as though the reservation for this folio was 2857 * consumed. This may prevent the task from 2858 * faulting in the folio at a later time. This 2859 * is better than inconsistent global huge page 2860 * accounting of reserve counts. 2861 */ 2862 folio_clear_hugetlb_restore_reserve(folio); 2863 else if (rc) 2864 (void)vma_add_reservation(h, vma, address); 2865 else 2866 vma_end_reservation(h, vma, address); 2867 } else { 2868 if (!rc) { 2869 /* 2870 * This indicates there is an entry in the reserve map 2871 * not added by alloc_hugetlb_folio. We know it was added 2872 * before the alloc_hugetlb_folio call, otherwise 2873 * hugetlb_restore_reserve would be set on the folio. 2874 * Remove the entry so that a subsequent allocation 2875 * does not consume a reservation. 2876 */ 2877 rc = vma_del_reservation(h, vma, address); 2878 if (rc < 0) 2879 /* 2880 * VERY rare out of memory condition. Since 2881 * we can not delete the entry, set 2882 * hugetlb_restore_reserve so that the reserve 2883 * count will be incremented when the folio 2884 * is freed. This reserve will be consumed 2885 * on a subsequent allocation. 2886 */ 2887 folio_set_hugetlb_restore_reserve(folio); 2888 } else if (rc < 0) { 2889 /* 2890 * Rare out of memory condition from 2891 * vma_needs_reservation call. Memory allocation is 2892 * only attempted if a new entry is needed. Therefore, 2893 * this implies there is not an entry in the 2894 * reserve map. 2895 * 2896 * For shared mappings, no entry in the map indicates 2897 * no reservation. We are done. 2898 */ 2899 if (!(vma->vm_flags & VM_MAYSHARE)) 2900 /* 2901 * For private mappings, no entry indicates 2902 * a reservation is present. Since we can 2903 * not add an entry, set hugetlb_restore_reserve 2904 * on the folio so reserve count will be 2905 * incremented when freed. This reserve will 2906 * be consumed on a subsequent allocation. 2907 */ 2908 folio_set_hugetlb_restore_reserve(folio); 2909 } else 2910 /* 2911 * No reservation present, do nothing 2912 */ 2913 vma_end_reservation(h, vma, address); 2914 } 2915 } 2916 2917 /* 2918 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2919 * the old one 2920 * @h: struct hstate old page belongs to 2921 * @old_folio: Old folio to dissolve 2922 * @list: List to isolate the page in case we need to 2923 * Returns 0 on success, otherwise negated error. 2924 */ 2925 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2926 struct folio *old_folio, struct list_head *list) 2927 { 2928 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2929 int nid = folio_nid(old_folio); 2930 struct folio *new_folio; 2931 int ret = 0; 2932 2933 /* 2934 * Before dissolving the folio, we need to allocate a new one for the 2935 * pool to remain stable. Here, we allocate the folio and 'prep' it 2936 * by doing everything but actually updating counters and adding to 2937 * the pool. This simplifies and let us do most of the processing 2938 * under the lock. 2939 */ 2940 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2941 if (!new_folio) 2942 return -ENOMEM; 2943 __prep_new_hugetlb_folio(h, new_folio); 2944 2945 retry: 2946 spin_lock_irq(&hugetlb_lock); 2947 if (!folio_test_hugetlb(old_folio)) { 2948 /* 2949 * Freed from under us. Drop new_folio too. 2950 */ 2951 goto free_new; 2952 } else if (folio_ref_count(old_folio)) { 2953 bool isolated; 2954 2955 /* 2956 * Someone has grabbed the folio, try to isolate it here. 2957 * Fail with -EBUSY if not possible. 2958 */ 2959 spin_unlock_irq(&hugetlb_lock); 2960 isolated = isolate_hugetlb(old_folio, list); 2961 ret = isolated ? 0 : -EBUSY; 2962 spin_lock_irq(&hugetlb_lock); 2963 goto free_new; 2964 } else if (!folio_test_hugetlb_freed(old_folio)) { 2965 /* 2966 * Folio's refcount is 0 but it has not been enqueued in the 2967 * freelist yet. Race window is small, so we can succeed here if 2968 * we retry. 2969 */ 2970 spin_unlock_irq(&hugetlb_lock); 2971 cond_resched(); 2972 goto retry; 2973 } else { 2974 /* 2975 * Ok, old_folio is still a genuine free hugepage. Remove it from 2976 * the freelist and decrease the counters. These will be 2977 * incremented again when calling __prep_account_new_huge_page() 2978 * and enqueue_hugetlb_folio() for new_folio. The counters will 2979 * remain stable since this happens under the lock. 2980 */ 2981 remove_hugetlb_folio(h, old_folio, false); 2982 2983 /* 2984 * Ref count on new_folio is already zero as it was dropped 2985 * earlier. It can be directly added to the pool free list. 2986 */ 2987 __prep_account_new_huge_page(h, nid); 2988 enqueue_hugetlb_folio(h, new_folio); 2989 2990 /* 2991 * Folio has been replaced, we can safely free the old one. 2992 */ 2993 spin_unlock_irq(&hugetlb_lock); 2994 update_and_free_hugetlb_folio(h, old_folio, false); 2995 } 2996 2997 return ret; 2998 2999 free_new: 3000 spin_unlock_irq(&hugetlb_lock); 3001 /* Folio has a zero ref count, but needs a ref to be freed */ 3002 folio_ref_unfreeze(new_folio, 1); 3003 update_and_free_hugetlb_folio(h, new_folio, false); 3004 3005 return ret; 3006 } 3007 3008 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3009 { 3010 struct hstate *h; 3011 struct folio *folio = page_folio(page); 3012 int ret = -EBUSY; 3013 3014 /* 3015 * The page might have been dissolved from under our feet, so make sure 3016 * to carefully check the state under the lock. 3017 * Return success when racing as if we dissolved the page ourselves. 3018 */ 3019 spin_lock_irq(&hugetlb_lock); 3020 if (folio_test_hugetlb(folio)) { 3021 h = folio_hstate(folio); 3022 } else { 3023 spin_unlock_irq(&hugetlb_lock); 3024 return 0; 3025 } 3026 spin_unlock_irq(&hugetlb_lock); 3027 3028 /* 3029 * Fence off gigantic pages as there is a cyclic dependency between 3030 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3031 * of bailing out right away without further retrying. 3032 */ 3033 if (hstate_is_gigantic(h)) 3034 return -ENOMEM; 3035 3036 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3037 ret = 0; 3038 else if (!folio_ref_count(folio)) 3039 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3040 3041 return ret; 3042 } 3043 3044 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3045 unsigned long addr, int avoid_reserve) 3046 { 3047 struct hugepage_subpool *spool = subpool_vma(vma); 3048 struct hstate *h = hstate_vma(vma); 3049 struct folio *folio; 3050 long map_chg, map_commit; 3051 long gbl_chg; 3052 int ret, idx; 3053 struct hugetlb_cgroup *h_cg = NULL; 3054 bool deferred_reserve; 3055 3056 idx = hstate_index(h); 3057 /* 3058 * Examine the region/reserve map to determine if the process 3059 * has a reservation for the page to be allocated. A return 3060 * code of zero indicates a reservation exists (no change). 3061 */ 3062 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3063 if (map_chg < 0) 3064 return ERR_PTR(-ENOMEM); 3065 3066 /* 3067 * Processes that did not create the mapping will have no 3068 * reserves as indicated by the region/reserve map. Check 3069 * that the allocation will not exceed the subpool limit. 3070 * Allocations for MAP_NORESERVE mappings also need to be 3071 * checked against any subpool limit. 3072 */ 3073 if (map_chg || avoid_reserve) { 3074 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3075 if (gbl_chg < 0) { 3076 vma_end_reservation(h, vma, addr); 3077 return ERR_PTR(-ENOSPC); 3078 } 3079 3080 /* 3081 * Even though there was no reservation in the region/reserve 3082 * map, there could be reservations associated with the 3083 * subpool that can be used. This would be indicated if the 3084 * return value of hugepage_subpool_get_pages() is zero. 3085 * However, if avoid_reserve is specified we still avoid even 3086 * the subpool reservations. 3087 */ 3088 if (avoid_reserve) 3089 gbl_chg = 1; 3090 } 3091 3092 /* If this allocation is not consuming a reservation, charge it now. 3093 */ 3094 deferred_reserve = map_chg || avoid_reserve; 3095 if (deferred_reserve) { 3096 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3097 idx, pages_per_huge_page(h), &h_cg); 3098 if (ret) 3099 goto out_subpool_put; 3100 } 3101 3102 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3103 if (ret) 3104 goto out_uncharge_cgroup_reservation; 3105 3106 spin_lock_irq(&hugetlb_lock); 3107 /* 3108 * glb_chg is passed to indicate whether or not a page must be taken 3109 * from the global free pool (global change). gbl_chg == 0 indicates 3110 * a reservation exists for the allocation. 3111 */ 3112 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3113 if (!folio) { 3114 spin_unlock_irq(&hugetlb_lock); 3115 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3116 if (!folio) 3117 goto out_uncharge_cgroup; 3118 spin_lock_irq(&hugetlb_lock); 3119 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3120 folio_set_hugetlb_restore_reserve(folio); 3121 h->resv_huge_pages--; 3122 } 3123 list_add(&folio->lru, &h->hugepage_activelist); 3124 folio_ref_unfreeze(folio, 1); 3125 /* Fall through */ 3126 } 3127 3128 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3129 /* If allocation is not consuming a reservation, also store the 3130 * hugetlb_cgroup pointer on the page. 3131 */ 3132 if (deferred_reserve) { 3133 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3134 h_cg, folio); 3135 } 3136 3137 spin_unlock_irq(&hugetlb_lock); 3138 3139 hugetlb_set_folio_subpool(folio, spool); 3140 3141 map_commit = vma_commit_reservation(h, vma, addr); 3142 if (unlikely(map_chg > map_commit)) { 3143 /* 3144 * The page was added to the reservation map between 3145 * vma_needs_reservation and vma_commit_reservation. 3146 * This indicates a race with hugetlb_reserve_pages. 3147 * Adjust for the subpool count incremented above AND 3148 * in hugetlb_reserve_pages for the same page. Also, 3149 * the reservation count added in hugetlb_reserve_pages 3150 * no longer applies. 3151 */ 3152 long rsv_adjust; 3153 3154 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3155 hugetlb_acct_memory(h, -rsv_adjust); 3156 if (deferred_reserve) 3157 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3158 pages_per_huge_page(h), folio); 3159 } 3160 return folio; 3161 3162 out_uncharge_cgroup: 3163 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3164 out_uncharge_cgroup_reservation: 3165 if (deferred_reserve) 3166 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3167 h_cg); 3168 out_subpool_put: 3169 if (map_chg || avoid_reserve) 3170 hugepage_subpool_put_pages(spool, 1); 3171 vma_end_reservation(h, vma, addr); 3172 return ERR_PTR(-ENOSPC); 3173 } 3174 3175 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3176 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3177 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3178 { 3179 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3180 int nr_nodes, node; 3181 3182 /* do node specific alloc */ 3183 if (nid != NUMA_NO_NODE) { 3184 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3185 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3186 if (!m) 3187 return 0; 3188 goto found; 3189 } 3190 /* allocate from next node when distributing huge pages */ 3191 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3192 m = memblock_alloc_try_nid_raw( 3193 huge_page_size(h), huge_page_size(h), 3194 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3195 /* 3196 * Use the beginning of the huge page to store the 3197 * huge_bootmem_page struct (until gather_bootmem 3198 * puts them into the mem_map). 3199 */ 3200 if (!m) 3201 return 0; 3202 goto found; 3203 } 3204 3205 found: 3206 /* Put them into a private list first because mem_map is not up yet */ 3207 INIT_LIST_HEAD(&m->list); 3208 list_add(&m->list, &huge_boot_pages); 3209 m->hstate = h; 3210 return 1; 3211 } 3212 3213 /* 3214 * Put bootmem huge pages into the standard lists after mem_map is up. 3215 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3216 */ 3217 static void __init gather_bootmem_prealloc(void) 3218 { 3219 struct huge_bootmem_page *m; 3220 3221 list_for_each_entry(m, &huge_boot_pages, list) { 3222 struct page *page = virt_to_page(m); 3223 struct folio *folio = page_folio(page); 3224 struct hstate *h = m->hstate; 3225 3226 VM_BUG_ON(!hstate_is_gigantic(h)); 3227 WARN_ON(folio_ref_count(folio) != 1); 3228 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3229 WARN_ON(folio_test_reserved(folio)); 3230 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3231 free_huge_folio(folio); /* add to the hugepage allocator */ 3232 } else { 3233 /* VERY unlikely inflated ref count on a tail page */ 3234 free_gigantic_folio(folio, huge_page_order(h)); 3235 } 3236 3237 /* 3238 * We need to restore the 'stolen' pages to totalram_pages 3239 * in order to fix confusing memory reports from free(1) and 3240 * other side-effects, like CommitLimit going negative. 3241 */ 3242 adjust_managed_page_count(page, pages_per_huge_page(h)); 3243 cond_resched(); 3244 } 3245 } 3246 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3247 { 3248 unsigned long i; 3249 char buf[32]; 3250 3251 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3252 if (hstate_is_gigantic(h)) { 3253 if (!alloc_bootmem_huge_page(h, nid)) 3254 break; 3255 } else { 3256 struct folio *folio; 3257 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3258 3259 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3260 &node_states[N_MEMORY], NULL); 3261 if (!folio) 3262 break; 3263 free_huge_folio(folio); /* free it into the hugepage allocator */ 3264 } 3265 cond_resched(); 3266 } 3267 if (i == h->max_huge_pages_node[nid]) 3268 return; 3269 3270 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3271 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3272 h->max_huge_pages_node[nid], buf, nid, i); 3273 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3274 h->max_huge_pages_node[nid] = i; 3275 } 3276 3277 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3278 { 3279 unsigned long i; 3280 nodemask_t *node_alloc_noretry; 3281 bool node_specific_alloc = false; 3282 3283 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3284 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3285 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3286 return; 3287 } 3288 3289 /* do node specific alloc */ 3290 for_each_online_node(i) { 3291 if (h->max_huge_pages_node[i] > 0) { 3292 hugetlb_hstate_alloc_pages_onenode(h, i); 3293 node_specific_alloc = true; 3294 } 3295 } 3296 3297 if (node_specific_alloc) 3298 return; 3299 3300 /* below will do all node balanced alloc */ 3301 if (!hstate_is_gigantic(h)) { 3302 /* 3303 * Bit mask controlling how hard we retry per-node allocations. 3304 * Ignore errors as lower level routines can deal with 3305 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3306 * time, we are likely in bigger trouble. 3307 */ 3308 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3309 GFP_KERNEL); 3310 } else { 3311 /* allocations done at boot time */ 3312 node_alloc_noretry = NULL; 3313 } 3314 3315 /* bit mask controlling how hard we retry per-node allocations */ 3316 if (node_alloc_noretry) 3317 nodes_clear(*node_alloc_noretry); 3318 3319 for (i = 0; i < h->max_huge_pages; ++i) { 3320 if (hstate_is_gigantic(h)) { 3321 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3322 break; 3323 } else if (!alloc_pool_huge_page(h, 3324 &node_states[N_MEMORY], 3325 node_alloc_noretry)) 3326 break; 3327 cond_resched(); 3328 } 3329 if (i < h->max_huge_pages) { 3330 char buf[32]; 3331 3332 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3333 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3334 h->max_huge_pages, buf, i); 3335 h->max_huge_pages = i; 3336 } 3337 kfree(node_alloc_noretry); 3338 } 3339 3340 static void __init hugetlb_init_hstates(void) 3341 { 3342 struct hstate *h, *h2; 3343 3344 for_each_hstate(h) { 3345 /* oversize hugepages were init'ed in early boot */ 3346 if (!hstate_is_gigantic(h)) 3347 hugetlb_hstate_alloc_pages(h); 3348 3349 /* 3350 * Set demote order for each hstate. Note that 3351 * h->demote_order is initially 0. 3352 * - We can not demote gigantic pages if runtime freeing 3353 * is not supported, so skip this. 3354 * - If CMA allocation is possible, we can not demote 3355 * HUGETLB_PAGE_ORDER or smaller size pages. 3356 */ 3357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3358 continue; 3359 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3360 continue; 3361 for_each_hstate(h2) { 3362 if (h2 == h) 3363 continue; 3364 if (h2->order < h->order && 3365 h2->order > h->demote_order) 3366 h->demote_order = h2->order; 3367 } 3368 } 3369 } 3370 3371 static void __init report_hugepages(void) 3372 { 3373 struct hstate *h; 3374 3375 for_each_hstate(h) { 3376 char buf[32]; 3377 3378 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3379 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3380 buf, h->free_huge_pages); 3381 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3382 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3383 } 3384 } 3385 3386 #ifdef CONFIG_HIGHMEM 3387 static void try_to_free_low(struct hstate *h, unsigned long count, 3388 nodemask_t *nodes_allowed) 3389 { 3390 int i; 3391 LIST_HEAD(page_list); 3392 3393 lockdep_assert_held(&hugetlb_lock); 3394 if (hstate_is_gigantic(h)) 3395 return; 3396 3397 /* 3398 * Collect pages to be freed on a list, and free after dropping lock 3399 */ 3400 for_each_node_mask(i, *nodes_allowed) { 3401 struct page *page, *next; 3402 struct list_head *freel = &h->hugepage_freelists[i]; 3403 list_for_each_entry_safe(page, next, freel, lru) { 3404 if (count >= h->nr_huge_pages) 3405 goto out; 3406 if (PageHighMem(page)) 3407 continue; 3408 remove_hugetlb_folio(h, page_folio(page), false); 3409 list_add(&page->lru, &page_list); 3410 } 3411 } 3412 3413 out: 3414 spin_unlock_irq(&hugetlb_lock); 3415 update_and_free_pages_bulk(h, &page_list); 3416 spin_lock_irq(&hugetlb_lock); 3417 } 3418 #else 3419 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3420 nodemask_t *nodes_allowed) 3421 { 3422 } 3423 #endif 3424 3425 /* 3426 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3427 * balanced by operating on them in a round-robin fashion. 3428 * Returns 1 if an adjustment was made. 3429 */ 3430 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3431 int delta) 3432 { 3433 int nr_nodes, node; 3434 3435 lockdep_assert_held(&hugetlb_lock); 3436 VM_BUG_ON(delta != -1 && delta != 1); 3437 3438 if (delta < 0) { 3439 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3440 if (h->surplus_huge_pages_node[node]) 3441 goto found; 3442 } 3443 } else { 3444 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3445 if (h->surplus_huge_pages_node[node] < 3446 h->nr_huge_pages_node[node]) 3447 goto found; 3448 } 3449 } 3450 return 0; 3451 3452 found: 3453 h->surplus_huge_pages += delta; 3454 h->surplus_huge_pages_node[node] += delta; 3455 return 1; 3456 } 3457 3458 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3459 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3460 nodemask_t *nodes_allowed) 3461 { 3462 unsigned long min_count, ret; 3463 struct page *page; 3464 LIST_HEAD(page_list); 3465 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3466 3467 /* 3468 * Bit mask controlling how hard we retry per-node allocations. 3469 * If we can not allocate the bit mask, do not attempt to allocate 3470 * the requested huge pages. 3471 */ 3472 if (node_alloc_noretry) 3473 nodes_clear(*node_alloc_noretry); 3474 else 3475 return -ENOMEM; 3476 3477 /* 3478 * resize_lock mutex prevents concurrent adjustments to number of 3479 * pages in hstate via the proc/sysfs interfaces. 3480 */ 3481 mutex_lock(&h->resize_lock); 3482 flush_free_hpage_work(h); 3483 spin_lock_irq(&hugetlb_lock); 3484 3485 /* 3486 * Check for a node specific request. 3487 * Changing node specific huge page count may require a corresponding 3488 * change to the global count. In any case, the passed node mask 3489 * (nodes_allowed) will restrict alloc/free to the specified node. 3490 */ 3491 if (nid != NUMA_NO_NODE) { 3492 unsigned long old_count = count; 3493 3494 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3495 /* 3496 * User may have specified a large count value which caused the 3497 * above calculation to overflow. In this case, they wanted 3498 * to allocate as many huge pages as possible. Set count to 3499 * largest possible value to align with their intention. 3500 */ 3501 if (count < old_count) 3502 count = ULONG_MAX; 3503 } 3504 3505 /* 3506 * Gigantic pages runtime allocation depend on the capability for large 3507 * page range allocation. 3508 * If the system does not provide this feature, return an error when 3509 * the user tries to allocate gigantic pages but let the user free the 3510 * boottime allocated gigantic pages. 3511 */ 3512 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3513 if (count > persistent_huge_pages(h)) { 3514 spin_unlock_irq(&hugetlb_lock); 3515 mutex_unlock(&h->resize_lock); 3516 NODEMASK_FREE(node_alloc_noretry); 3517 return -EINVAL; 3518 } 3519 /* Fall through to decrease pool */ 3520 } 3521 3522 /* 3523 * Increase the pool size 3524 * First take pages out of surplus state. Then make up the 3525 * remaining difference by allocating fresh huge pages. 3526 * 3527 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3528 * to convert a surplus huge page to a normal huge page. That is 3529 * not critical, though, it just means the overall size of the 3530 * pool might be one hugepage larger than it needs to be, but 3531 * within all the constraints specified by the sysctls. 3532 */ 3533 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3534 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3535 break; 3536 } 3537 3538 while (count > persistent_huge_pages(h)) { 3539 /* 3540 * If this allocation races such that we no longer need the 3541 * page, free_huge_folio will handle it by freeing the page 3542 * and reducing the surplus. 3543 */ 3544 spin_unlock_irq(&hugetlb_lock); 3545 3546 /* yield cpu to avoid soft lockup */ 3547 cond_resched(); 3548 3549 ret = alloc_pool_huge_page(h, nodes_allowed, 3550 node_alloc_noretry); 3551 spin_lock_irq(&hugetlb_lock); 3552 if (!ret) 3553 goto out; 3554 3555 /* Bail for signals. Probably ctrl-c from user */ 3556 if (signal_pending(current)) 3557 goto out; 3558 } 3559 3560 /* 3561 * Decrease the pool size 3562 * First return free pages to the buddy allocator (being careful 3563 * to keep enough around to satisfy reservations). Then place 3564 * pages into surplus state as needed so the pool will shrink 3565 * to the desired size as pages become free. 3566 * 3567 * By placing pages into the surplus state independent of the 3568 * overcommit value, we are allowing the surplus pool size to 3569 * exceed overcommit. There are few sane options here. Since 3570 * alloc_surplus_hugetlb_folio() is checking the global counter, 3571 * though, we'll note that we're not allowed to exceed surplus 3572 * and won't grow the pool anywhere else. Not until one of the 3573 * sysctls are changed, or the surplus pages go out of use. 3574 */ 3575 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3576 min_count = max(count, min_count); 3577 try_to_free_low(h, min_count, nodes_allowed); 3578 3579 /* 3580 * Collect pages to be removed on list without dropping lock 3581 */ 3582 while (min_count < persistent_huge_pages(h)) { 3583 page = remove_pool_huge_page(h, nodes_allowed, 0); 3584 if (!page) 3585 break; 3586 3587 list_add(&page->lru, &page_list); 3588 } 3589 /* free the pages after dropping lock */ 3590 spin_unlock_irq(&hugetlb_lock); 3591 update_and_free_pages_bulk(h, &page_list); 3592 flush_free_hpage_work(h); 3593 spin_lock_irq(&hugetlb_lock); 3594 3595 while (count < persistent_huge_pages(h)) { 3596 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3597 break; 3598 } 3599 out: 3600 h->max_huge_pages = persistent_huge_pages(h); 3601 spin_unlock_irq(&hugetlb_lock); 3602 mutex_unlock(&h->resize_lock); 3603 3604 NODEMASK_FREE(node_alloc_noretry); 3605 3606 return 0; 3607 } 3608 3609 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3610 { 3611 int i, nid = folio_nid(folio); 3612 struct hstate *target_hstate; 3613 struct page *subpage; 3614 struct folio *inner_folio; 3615 int rc = 0; 3616 3617 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3618 3619 remove_hugetlb_folio_for_demote(h, folio, false); 3620 spin_unlock_irq(&hugetlb_lock); 3621 3622 rc = hugetlb_vmemmap_restore(h, &folio->page); 3623 if (rc) { 3624 /* Allocation of vmemmmap failed, we can not demote folio */ 3625 spin_lock_irq(&hugetlb_lock); 3626 folio_ref_unfreeze(folio, 1); 3627 add_hugetlb_folio(h, folio, false); 3628 return rc; 3629 } 3630 3631 /* 3632 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3633 * sizes as it will not ref count folios. 3634 */ 3635 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3636 3637 /* 3638 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3639 * Without the mutex, pages added to target hstate could be marked 3640 * as surplus. 3641 * 3642 * Note that we already hold h->resize_lock. To prevent deadlock, 3643 * use the convention of always taking larger size hstate mutex first. 3644 */ 3645 mutex_lock(&target_hstate->resize_lock); 3646 for (i = 0; i < pages_per_huge_page(h); 3647 i += pages_per_huge_page(target_hstate)) { 3648 subpage = folio_page(folio, i); 3649 inner_folio = page_folio(subpage); 3650 if (hstate_is_gigantic(target_hstate)) 3651 prep_compound_gigantic_folio_for_demote(inner_folio, 3652 target_hstate->order); 3653 else 3654 prep_compound_page(subpage, target_hstate->order); 3655 folio_change_private(inner_folio, NULL); 3656 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3657 free_huge_folio(inner_folio); 3658 } 3659 mutex_unlock(&target_hstate->resize_lock); 3660 3661 spin_lock_irq(&hugetlb_lock); 3662 3663 /* 3664 * Not absolutely necessary, but for consistency update max_huge_pages 3665 * based on pool changes for the demoted page. 3666 */ 3667 h->max_huge_pages--; 3668 target_hstate->max_huge_pages += 3669 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3670 3671 return rc; 3672 } 3673 3674 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3675 __must_hold(&hugetlb_lock) 3676 { 3677 int nr_nodes, node; 3678 struct folio *folio; 3679 3680 lockdep_assert_held(&hugetlb_lock); 3681 3682 /* We should never get here if no demote order */ 3683 if (!h->demote_order) { 3684 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3685 return -EINVAL; /* internal error */ 3686 } 3687 3688 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3689 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3690 if (folio_test_hwpoison(folio)) 3691 continue; 3692 return demote_free_hugetlb_folio(h, folio); 3693 } 3694 } 3695 3696 /* 3697 * Only way to get here is if all pages on free lists are poisoned. 3698 * Return -EBUSY so that caller will not retry. 3699 */ 3700 return -EBUSY; 3701 } 3702 3703 #define HSTATE_ATTR_RO(_name) \ 3704 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3705 3706 #define HSTATE_ATTR_WO(_name) \ 3707 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3708 3709 #define HSTATE_ATTR(_name) \ 3710 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3711 3712 static struct kobject *hugepages_kobj; 3713 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3714 3715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3716 3717 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3718 { 3719 int i; 3720 3721 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3722 if (hstate_kobjs[i] == kobj) { 3723 if (nidp) 3724 *nidp = NUMA_NO_NODE; 3725 return &hstates[i]; 3726 } 3727 3728 return kobj_to_node_hstate(kobj, nidp); 3729 } 3730 3731 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3732 struct kobj_attribute *attr, char *buf) 3733 { 3734 struct hstate *h; 3735 unsigned long nr_huge_pages; 3736 int nid; 3737 3738 h = kobj_to_hstate(kobj, &nid); 3739 if (nid == NUMA_NO_NODE) 3740 nr_huge_pages = h->nr_huge_pages; 3741 else 3742 nr_huge_pages = h->nr_huge_pages_node[nid]; 3743 3744 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3745 } 3746 3747 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3748 struct hstate *h, int nid, 3749 unsigned long count, size_t len) 3750 { 3751 int err; 3752 nodemask_t nodes_allowed, *n_mask; 3753 3754 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3755 return -EINVAL; 3756 3757 if (nid == NUMA_NO_NODE) { 3758 /* 3759 * global hstate attribute 3760 */ 3761 if (!(obey_mempolicy && 3762 init_nodemask_of_mempolicy(&nodes_allowed))) 3763 n_mask = &node_states[N_MEMORY]; 3764 else 3765 n_mask = &nodes_allowed; 3766 } else { 3767 /* 3768 * Node specific request. count adjustment happens in 3769 * set_max_huge_pages() after acquiring hugetlb_lock. 3770 */ 3771 init_nodemask_of_node(&nodes_allowed, nid); 3772 n_mask = &nodes_allowed; 3773 } 3774 3775 err = set_max_huge_pages(h, count, nid, n_mask); 3776 3777 return err ? err : len; 3778 } 3779 3780 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3781 struct kobject *kobj, const char *buf, 3782 size_t len) 3783 { 3784 struct hstate *h; 3785 unsigned long count; 3786 int nid; 3787 int err; 3788 3789 err = kstrtoul(buf, 10, &count); 3790 if (err) 3791 return err; 3792 3793 h = kobj_to_hstate(kobj, &nid); 3794 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3795 } 3796 3797 static ssize_t nr_hugepages_show(struct kobject *kobj, 3798 struct kobj_attribute *attr, char *buf) 3799 { 3800 return nr_hugepages_show_common(kobj, attr, buf); 3801 } 3802 3803 static ssize_t nr_hugepages_store(struct kobject *kobj, 3804 struct kobj_attribute *attr, const char *buf, size_t len) 3805 { 3806 return nr_hugepages_store_common(false, kobj, buf, len); 3807 } 3808 HSTATE_ATTR(nr_hugepages); 3809 3810 #ifdef CONFIG_NUMA 3811 3812 /* 3813 * hstate attribute for optionally mempolicy-based constraint on persistent 3814 * huge page alloc/free. 3815 */ 3816 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3817 struct kobj_attribute *attr, 3818 char *buf) 3819 { 3820 return nr_hugepages_show_common(kobj, attr, buf); 3821 } 3822 3823 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3824 struct kobj_attribute *attr, const char *buf, size_t len) 3825 { 3826 return nr_hugepages_store_common(true, kobj, buf, len); 3827 } 3828 HSTATE_ATTR(nr_hugepages_mempolicy); 3829 #endif 3830 3831 3832 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3833 struct kobj_attribute *attr, char *buf) 3834 { 3835 struct hstate *h = kobj_to_hstate(kobj, NULL); 3836 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3837 } 3838 3839 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3840 struct kobj_attribute *attr, const char *buf, size_t count) 3841 { 3842 int err; 3843 unsigned long input; 3844 struct hstate *h = kobj_to_hstate(kobj, NULL); 3845 3846 if (hstate_is_gigantic(h)) 3847 return -EINVAL; 3848 3849 err = kstrtoul(buf, 10, &input); 3850 if (err) 3851 return err; 3852 3853 spin_lock_irq(&hugetlb_lock); 3854 h->nr_overcommit_huge_pages = input; 3855 spin_unlock_irq(&hugetlb_lock); 3856 3857 return count; 3858 } 3859 HSTATE_ATTR(nr_overcommit_hugepages); 3860 3861 static ssize_t free_hugepages_show(struct kobject *kobj, 3862 struct kobj_attribute *attr, char *buf) 3863 { 3864 struct hstate *h; 3865 unsigned long free_huge_pages; 3866 int nid; 3867 3868 h = kobj_to_hstate(kobj, &nid); 3869 if (nid == NUMA_NO_NODE) 3870 free_huge_pages = h->free_huge_pages; 3871 else 3872 free_huge_pages = h->free_huge_pages_node[nid]; 3873 3874 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3875 } 3876 HSTATE_ATTR_RO(free_hugepages); 3877 3878 static ssize_t resv_hugepages_show(struct kobject *kobj, 3879 struct kobj_attribute *attr, char *buf) 3880 { 3881 struct hstate *h = kobj_to_hstate(kobj, NULL); 3882 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3883 } 3884 HSTATE_ATTR_RO(resv_hugepages); 3885 3886 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3887 struct kobj_attribute *attr, char *buf) 3888 { 3889 struct hstate *h; 3890 unsigned long surplus_huge_pages; 3891 int nid; 3892 3893 h = kobj_to_hstate(kobj, &nid); 3894 if (nid == NUMA_NO_NODE) 3895 surplus_huge_pages = h->surplus_huge_pages; 3896 else 3897 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3898 3899 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3900 } 3901 HSTATE_ATTR_RO(surplus_hugepages); 3902 3903 static ssize_t demote_store(struct kobject *kobj, 3904 struct kobj_attribute *attr, const char *buf, size_t len) 3905 { 3906 unsigned long nr_demote; 3907 unsigned long nr_available; 3908 nodemask_t nodes_allowed, *n_mask; 3909 struct hstate *h; 3910 int err; 3911 int nid; 3912 3913 err = kstrtoul(buf, 10, &nr_demote); 3914 if (err) 3915 return err; 3916 h = kobj_to_hstate(kobj, &nid); 3917 3918 if (nid != NUMA_NO_NODE) { 3919 init_nodemask_of_node(&nodes_allowed, nid); 3920 n_mask = &nodes_allowed; 3921 } else { 3922 n_mask = &node_states[N_MEMORY]; 3923 } 3924 3925 /* Synchronize with other sysfs operations modifying huge pages */ 3926 mutex_lock(&h->resize_lock); 3927 spin_lock_irq(&hugetlb_lock); 3928 3929 while (nr_demote) { 3930 /* 3931 * Check for available pages to demote each time thorough the 3932 * loop as demote_pool_huge_page will drop hugetlb_lock. 3933 */ 3934 if (nid != NUMA_NO_NODE) 3935 nr_available = h->free_huge_pages_node[nid]; 3936 else 3937 nr_available = h->free_huge_pages; 3938 nr_available -= h->resv_huge_pages; 3939 if (!nr_available) 3940 break; 3941 3942 err = demote_pool_huge_page(h, n_mask); 3943 if (err) 3944 break; 3945 3946 nr_demote--; 3947 } 3948 3949 spin_unlock_irq(&hugetlb_lock); 3950 mutex_unlock(&h->resize_lock); 3951 3952 if (err) 3953 return err; 3954 return len; 3955 } 3956 HSTATE_ATTR_WO(demote); 3957 3958 static ssize_t demote_size_show(struct kobject *kobj, 3959 struct kobj_attribute *attr, char *buf) 3960 { 3961 struct hstate *h = kobj_to_hstate(kobj, NULL); 3962 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3963 3964 return sysfs_emit(buf, "%lukB\n", demote_size); 3965 } 3966 3967 static ssize_t demote_size_store(struct kobject *kobj, 3968 struct kobj_attribute *attr, 3969 const char *buf, size_t count) 3970 { 3971 struct hstate *h, *demote_hstate; 3972 unsigned long demote_size; 3973 unsigned int demote_order; 3974 3975 demote_size = (unsigned long)memparse(buf, NULL); 3976 3977 demote_hstate = size_to_hstate(demote_size); 3978 if (!demote_hstate) 3979 return -EINVAL; 3980 demote_order = demote_hstate->order; 3981 if (demote_order < HUGETLB_PAGE_ORDER) 3982 return -EINVAL; 3983 3984 /* demote order must be smaller than hstate order */ 3985 h = kobj_to_hstate(kobj, NULL); 3986 if (demote_order >= h->order) 3987 return -EINVAL; 3988 3989 /* resize_lock synchronizes access to demote size and writes */ 3990 mutex_lock(&h->resize_lock); 3991 h->demote_order = demote_order; 3992 mutex_unlock(&h->resize_lock); 3993 3994 return count; 3995 } 3996 HSTATE_ATTR(demote_size); 3997 3998 static struct attribute *hstate_attrs[] = { 3999 &nr_hugepages_attr.attr, 4000 &nr_overcommit_hugepages_attr.attr, 4001 &free_hugepages_attr.attr, 4002 &resv_hugepages_attr.attr, 4003 &surplus_hugepages_attr.attr, 4004 #ifdef CONFIG_NUMA 4005 &nr_hugepages_mempolicy_attr.attr, 4006 #endif 4007 NULL, 4008 }; 4009 4010 static const struct attribute_group hstate_attr_group = { 4011 .attrs = hstate_attrs, 4012 }; 4013 4014 static struct attribute *hstate_demote_attrs[] = { 4015 &demote_size_attr.attr, 4016 &demote_attr.attr, 4017 NULL, 4018 }; 4019 4020 static const struct attribute_group hstate_demote_attr_group = { 4021 .attrs = hstate_demote_attrs, 4022 }; 4023 4024 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4025 struct kobject **hstate_kobjs, 4026 const struct attribute_group *hstate_attr_group) 4027 { 4028 int retval; 4029 int hi = hstate_index(h); 4030 4031 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4032 if (!hstate_kobjs[hi]) 4033 return -ENOMEM; 4034 4035 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4036 if (retval) { 4037 kobject_put(hstate_kobjs[hi]); 4038 hstate_kobjs[hi] = NULL; 4039 return retval; 4040 } 4041 4042 if (h->demote_order) { 4043 retval = sysfs_create_group(hstate_kobjs[hi], 4044 &hstate_demote_attr_group); 4045 if (retval) { 4046 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4047 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4048 kobject_put(hstate_kobjs[hi]); 4049 hstate_kobjs[hi] = NULL; 4050 return retval; 4051 } 4052 } 4053 4054 return 0; 4055 } 4056 4057 #ifdef CONFIG_NUMA 4058 static bool hugetlb_sysfs_initialized __ro_after_init; 4059 4060 /* 4061 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4062 * with node devices in node_devices[] using a parallel array. The array 4063 * index of a node device or _hstate == node id. 4064 * This is here to avoid any static dependency of the node device driver, in 4065 * the base kernel, on the hugetlb module. 4066 */ 4067 struct node_hstate { 4068 struct kobject *hugepages_kobj; 4069 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4070 }; 4071 static struct node_hstate node_hstates[MAX_NUMNODES]; 4072 4073 /* 4074 * A subset of global hstate attributes for node devices 4075 */ 4076 static struct attribute *per_node_hstate_attrs[] = { 4077 &nr_hugepages_attr.attr, 4078 &free_hugepages_attr.attr, 4079 &surplus_hugepages_attr.attr, 4080 NULL, 4081 }; 4082 4083 static const struct attribute_group per_node_hstate_attr_group = { 4084 .attrs = per_node_hstate_attrs, 4085 }; 4086 4087 /* 4088 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4089 * Returns node id via non-NULL nidp. 4090 */ 4091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4092 { 4093 int nid; 4094 4095 for (nid = 0; nid < nr_node_ids; nid++) { 4096 struct node_hstate *nhs = &node_hstates[nid]; 4097 int i; 4098 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4099 if (nhs->hstate_kobjs[i] == kobj) { 4100 if (nidp) 4101 *nidp = nid; 4102 return &hstates[i]; 4103 } 4104 } 4105 4106 BUG(); 4107 return NULL; 4108 } 4109 4110 /* 4111 * Unregister hstate attributes from a single node device. 4112 * No-op if no hstate attributes attached. 4113 */ 4114 void hugetlb_unregister_node(struct node *node) 4115 { 4116 struct hstate *h; 4117 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4118 4119 if (!nhs->hugepages_kobj) 4120 return; /* no hstate attributes */ 4121 4122 for_each_hstate(h) { 4123 int idx = hstate_index(h); 4124 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4125 4126 if (!hstate_kobj) 4127 continue; 4128 if (h->demote_order) 4129 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4130 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4131 kobject_put(hstate_kobj); 4132 nhs->hstate_kobjs[idx] = NULL; 4133 } 4134 4135 kobject_put(nhs->hugepages_kobj); 4136 nhs->hugepages_kobj = NULL; 4137 } 4138 4139 4140 /* 4141 * Register hstate attributes for a single node device. 4142 * No-op if attributes already registered. 4143 */ 4144 void hugetlb_register_node(struct node *node) 4145 { 4146 struct hstate *h; 4147 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4148 int err; 4149 4150 if (!hugetlb_sysfs_initialized) 4151 return; 4152 4153 if (nhs->hugepages_kobj) 4154 return; /* already allocated */ 4155 4156 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4157 &node->dev.kobj); 4158 if (!nhs->hugepages_kobj) 4159 return; 4160 4161 for_each_hstate(h) { 4162 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4163 nhs->hstate_kobjs, 4164 &per_node_hstate_attr_group); 4165 if (err) { 4166 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4167 h->name, node->dev.id); 4168 hugetlb_unregister_node(node); 4169 break; 4170 } 4171 } 4172 } 4173 4174 /* 4175 * hugetlb init time: register hstate attributes for all registered node 4176 * devices of nodes that have memory. All on-line nodes should have 4177 * registered their associated device by this time. 4178 */ 4179 static void __init hugetlb_register_all_nodes(void) 4180 { 4181 int nid; 4182 4183 for_each_online_node(nid) 4184 hugetlb_register_node(node_devices[nid]); 4185 } 4186 #else /* !CONFIG_NUMA */ 4187 4188 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4189 { 4190 BUG(); 4191 if (nidp) 4192 *nidp = -1; 4193 return NULL; 4194 } 4195 4196 static void hugetlb_register_all_nodes(void) { } 4197 4198 #endif 4199 4200 #ifdef CONFIG_CMA 4201 static void __init hugetlb_cma_check(void); 4202 #else 4203 static inline __init void hugetlb_cma_check(void) 4204 { 4205 } 4206 #endif 4207 4208 static void __init hugetlb_sysfs_init(void) 4209 { 4210 struct hstate *h; 4211 int err; 4212 4213 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4214 if (!hugepages_kobj) 4215 return; 4216 4217 for_each_hstate(h) { 4218 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4219 hstate_kobjs, &hstate_attr_group); 4220 if (err) 4221 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4222 } 4223 4224 #ifdef CONFIG_NUMA 4225 hugetlb_sysfs_initialized = true; 4226 #endif 4227 hugetlb_register_all_nodes(); 4228 } 4229 4230 #ifdef CONFIG_SYSCTL 4231 static void hugetlb_sysctl_init(void); 4232 #else 4233 static inline void hugetlb_sysctl_init(void) { } 4234 #endif 4235 4236 static int __init hugetlb_init(void) 4237 { 4238 int i; 4239 4240 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4241 __NR_HPAGEFLAGS); 4242 4243 if (!hugepages_supported()) { 4244 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4245 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4246 return 0; 4247 } 4248 4249 /* 4250 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4251 * architectures depend on setup being done here. 4252 */ 4253 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4254 if (!parsed_default_hugepagesz) { 4255 /* 4256 * If we did not parse a default huge page size, set 4257 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4258 * number of huge pages for this default size was implicitly 4259 * specified, set that here as well. 4260 * Note that the implicit setting will overwrite an explicit 4261 * setting. A warning will be printed in this case. 4262 */ 4263 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4264 if (default_hstate_max_huge_pages) { 4265 if (default_hstate.max_huge_pages) { 4266 char buf[32]; 4267 4268 string_get_size(huge_page_size(&default_hstate), 4269 1, STRING_UNITS_2, buf, 32); 4270 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4271 default_hstate.max_huge_pages, buf); 4272 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4273 default_hstate_max_huge_pages); 4274 } 4275 default_hstate.max_huge_pages = 4276 default_hstate_max_huge_pages; 4277 4278 for_each_online_node(i) 4279 default_hstate.max_huge_pages_node[i] = 4280 default_hugepages_in_node[i]; 4281 } 4282 } 4283 4284 hugetlb_cma_check(); 4285 hugetlb_init_hstates(); 4286 gather_bootmem_prealloc(); 4287 report_hugepages(); 4288 4289 hugetlb_sysfs_init(); 4290 hugetlb_cgroup_file_init(); 4291 hugetlb_sysctl_init(); 4292 4293 #ifdef CONFIG_SMP 4294 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4295 #else 4296 num_fault_mutexes = 1; 4297 #endif 4298 hugetlb_fault_mutex_table = 4299 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4300 GFP_KERNEL); 4301 BUG_ON(!hugetlb_fault_mutex_table); 4302 4303 for (i = 0; i < num_fault_mutexes; i++) 4304 mutex_init(&hugetlb_fault_mutex_table[i]); 4305 return 0; 4306 } 4307 subsys_initcall(hugetlb_init); 4308 4309 /* Overwritten by architectures with more huge page sizes */ 4310 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4311 { 4312 return size == HPAGE_SIZE; 4313 } 4314 4315 void __init hugetlb_add_hstate(unsigned int order) 4316 { 4317 struct hstate *h; 4318 unsigned long i; 4319 4320 if (size_to_hstate(PAGE_SIZE << order)) { 4321 return; 4322 } 4323 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4324 BUG_ON(order == 0); 4325 h = &hstates[hugetlb_max_hstate++]; 4326 mutex_init(&h->resize_lock); 4327 h->order = order; 4328 h->mask = ~(huge_page_size(h) - 1); 4329 for (i = 0; i < MAX_NUMNODES; ++i) 4330 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4331 INIT_LIST_HEAD(&h->hugepage_activelist); 4332 h->next_nid_to_alloc = first_memory_node; 4333 h->next_nid_to_free = first_memory_node; 4334 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4335 huge_page_size(h)/SZ_1K); 4336 4337 parsed_hstate = h; 4338 } 4339 4340 bool __init __weak hugetlb_node_alloc_supported(void) 4341 { 4342 return true; 4343 } 4344 4345 static void __init hugepages_clear_pages_in_node(void) 4346 { 4347 if (!hugetlb_max_hstate) { 4348 default_hstate_max_huge_pages = 0; 4349 memset(default_hugepages_in_node, 0, 4350 sizeof(default_hugepages_in_node)); 4351 } else { 4352 parsed_hstate->max_huge_pages = 0; 4353 memset(parsed_hstate->max_huge_pages_node, 0, 4354 sizeof(parsed_hstate->max_huge_pages_node)); 4355 } 4356 } 4357 4358 /* 4359 * hugepages command line processing 4360 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4361 * specification. If not, ignore the hugepages value. hugepages can also 4362 * be the first huge page command line option in which case it implicitly 4363 * specifies the number of huge pages for the default size. 4364 */ 4365 static int __init hugepages_setup(char *s) 4366 { 4367 unsigned long *mhp; 4368 static unsigned long *last_mhp; 4369 int node = NUMA_NO_NODE; 4370 int count; 4371 unsigned long tmp; 4372 char *p = s; 4373 4374 if (!parsed_valid_hugepagesz) { 4375 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4376 parsed_valid_hugepagesz = true; 4377 return 1; 4378 } 4379 4380 /* 4381 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4382 * yet, so this hugepages= parameter goes to the "default hstate". 4383 * Otherwise, it goes with the previously parsed hugepagesz or 4384 * default_hugepagesz. 4385 */ 4386 else if (!hugetlb_max_hstate) 4387 mhp = &default_hstate_max_huge_pages; 4388 else 4389 mhp = &parsed_hstate->max_huge_pages; 4390 4391 if (mhp == last_mhp) { 4392 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4393 return 1; 4394 } 4395 4396 while (*p) { 4397 count = 0; 4398 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4399 goto invalid; 4400 /* Parameter is node format */ 4401 if (p[count] == ':') { 4402 if (!hugetlb_node_alloc_supported()) { 4403 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4404 return 1; 4405 } 4406 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4407 goto invalid; 4408 node = array_index_nospec(tmp, MAX_NUMNODES); 4409 p += count + 1; 4410 /* Parse hugepages */ 4411 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4412 goto invalid; 4413 if (!hugetlb_max_hstate) 4414 default_hugepages_in_node[node] = tmp; 4415 else 4416 parsed_hstate->max_huge_pages_node[node] = tmp; 4417 *mhp += tmp; 4418 /* Go to parse next node*/ 4419 if (p[count] == ',') 4420 p += count + 1; 4421 else 4422 break; 4423 } else { 4424 if (p != s) 4425 goto invalid; 4426 *mhp = tmp; 4427 break; 4428 } 4429 } 4430 4431 /* 4432 * Global state is always initialized later in hugetlb_init. 4433 * But we need to allocate gigantic hstates here early to still 4434 * use the bootmem allocator. 4435 */ 4436 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4437 hugetlb_hstate_alloc_pages(parsed_hstate); 4438 4439 last_mhp = mhp; 4440 4441 return 1; 4442 4443 invalid: 4444 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4445 hugepages_clear_pages_in_node(); 4446 return 1; 4447 } 4448 __setup("hugepages=", hugepages_setup); 4449 4450 /* 4451 * hugepagesz command line processing 4452 * A specific huge page size can only be specified once with hugepagesz. 4453 * hugepagesz is followed by hugepages on the command line. The global 4454 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4455 * hugepagesz argument was valid. 4456 */ 4457 static int __init hugepagesz_setup(char *s) 4458 { 4459 unsigned long size; 4460 struct hstate *h; 4461 4462 parsed_valid_hugepagesz = false; 4463 size = (unsigned long)memparse(s, NULL); 4464 4465 if (!arch_hugetlb_valid_size(size)) { 4466 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4467 return 1; 4468 } 4469 4470 h = size_to_hstate(size); 4471 if (h) { 4472 /* 4473 * hstate for this size already exists. This is normally 4474 * an error, but is allowed if the existing hstate is the 4475 * default hstate. More specifically, it is only allowed if 4476 * the number of huge pages for the default hstate was not 4477 * previously specified. 4478 */ 4479 if (!parsed_default_hugepagesz || h != &default_hstate || 4480 default_hstate.max_huge_pages) { 4481 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4482 return 1; 4483 } 4484 4485 /* 4486 * No need to call hugetlb_add_hstate() as hstate already 4487 * exists. But, do set parsed_hstate so that a following 4488 * hugepages= parameter will be applied to this hstate. 4489 */ 4490 parsed_hstate = h; 4491 parsed_valid_hugepagesz = true; 4492 return 1; 4493 } 4494 4495 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4496 parsed_valid_hugepagesz = true; 4497 return 1; 4498 } 4499 __setup("hugepagesz=", hugepagesz_setup); 4500 4501 /* 4502 * default_hugepagesz command line input 4503 * Only one instance of default_hugepagesz allowed on command line. 4504 */ 4505 static int __init default_hugepagesz_setup(char *s) 4506 { 4507 unsigned long size; 4508 int i; 4509 4510 parsed_valid_hugepagesz = false; 4511 if (parsed_default_hugepagesz) { 4512 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4513 return 1; 4514 } 4515 4516 size = (unsigned long)memparse(s, NULL); 4517 4518 if (!arch_hugetlb_valid_size(size)) { 4519 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4520 return 1; 4521 } 4522 4523 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4524 parsed_valid_hugepagesz = true; 4525 parsed_default_hugepagesz = true; 4526 default_hstate_idx = hstate_index(size_to_hstate(size)); 4527 4528 /* 4529 * The number of default huge pages (for this size) could have been 4530 * specified as the first hugetlb parameter: hugepages=X. If so, 4531 * then default_hstate_max_huge_pages is set. If the default huge 4532 * page size is gigantic (> MAX_ORDER), then the pages must be 4533 * allocated here from bootmem allocator. 4534 */ 4535 if (default_hstate_max_huge_pages) { 4536 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4537 for_each_online_node(i) 4538 default_hstate.max_huge_pages_node[i] = 4539 default_hugepages_in_node[i]; 4540 if (hstate_is_gigantic(&default_hstate)) 4541 hugetlb_hstate_alloc_pages(&default_hstate); 4542 default_hstate_max_huge_pages = 0; 4543 } 4544 4545 return 1; 4546 } 4547 __setup("default_hugepagesz=", default_hugepagesz_setup); 4548 4549 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4550 { 4551 #ifdef CONFIG_NUMA 4552 struct mempolicy *mpol = get_task_policy(current); 4553 4554 /* 4555 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4556 * (from policy_nodemask) specifically for hugetlb case 4557 */ 4558 if (mpol->mode == MPOL_BIND && 4559 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4560 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4561 return &mpol->nodes; 4562 #endif 4563 return NULL; 4564 } 4565 4566 static unsigned int allowed_mems_nr(struct hstate *h) 4567 { 4568 int node; 4569 unsigned int nr = 0; 4570 nodemask_t *mbind_nodemask; 4571 unsigned int *array = h->free_huge_pages_node; 4572 gfp_t gfp_mask = htlb_alloc_mask(h); 4573 4574 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4575 for_each_node_mask(node, cpuset_current_mems_allowed) { 4576 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4577 nr += array[node]; 4578 } 4579 4580 return nr; 4581 } 4582 4583 #ifdef CONFIG_SYSCTL 4584 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4585 void *buffer, size_t *length, 4586 loff_t *ppos, unsigned long *out) 4587 { 4588 struct ctl_table dup_table; 4589 4590 /* 4591 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4592 * can duplicate the @table and alter the duplicate of it. 4593 */ 4594 dup_table = *table; 4595 dup_table.data = out; 4596 4597 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4598 } 4599 4600 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4601 struct ctl_table *table, int write, 4602 void *buffer, size_t *length, loff_t *ppos) 4603 { 4604 struct hstate *h = &default_hstate; 4605 unsigned long tmp = h->max_huge_pages; 4606 int ret; 4607 4608 if (!hugepages_supported()) 4609 return -EOPNOTSUPP; 4610 4611 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4612 &tmp); 4613 if (ret) 4614 goto out; 4615 4616 if (write) 4617 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4618 NUMA_NO_NODE, tmp, *length); 4619 out: 4620 return ret; 4621 } 4622 4623 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4624 void *buffer, size_t *length, loff_t *ppos) 4625 { 4626 4627 return hugetlb_sysctl_handler_common(false, table, write, 4628 buffer, length, ppos); 4629 } 4630 4631 #ifdef CONFIG_NUMA 4632 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4633 void *buffer, size_t *length, loff_t *ppos) 4634 { 4635 return hugetlb_sysctl_handler_common(true, table, write, 4636 buffer, length, ppos); 4637 } 4638 #endif /* CONFIG_NUMA */ 4639 4640 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4641 void *buffer, size_t *length, loff_t *ppos) 4642 { 4643 struct hstate *h = &default_hstate; 4644 unsigned long tmp; 4645 int ret; 4646 4647 if (!hugepages_supported()) 4648 return -EOPNOTSUPP; 4649 4650 tmp = h->nr_overcommit_huge_pages; 4651 4652 if (write && hstate_is_gigantic(h)) 4653 return -EINVAL; 4654 4655 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4656 &tmp); 4657 if (ret) 4658 goto out; 4659 4660 if (write) { 4661 spin_lock_irq(&hugetlb_lock); 4662 h->nr_overcommit_huge_pages = tmp; 4663 spin_unlock_irq(&hugetlb_lock); 4664 } 4665 out: 4666 return ret; 4667 } 4668 4669 static struct ctl_table hugetlb_table[] = { 4670 { 4671 .procname = "nr_hugepages", 4672 .data = NULL, 4673 .maxlen = sizeof(unsigned long), 4674 .mode = 0644, 4675 .proc_handler = hugetlb_sysctl_handler, 4676 }, 4677 #ifdef CONFIG_NUMA 4678 { 4679 .procname = "nr_hugepages_mempolicy", 4680 .data = NULL, 4681 .maxlen = sizeof(unsigned long), 4682 .mode = 0644, 4683 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4684 }, 4685 #endif 4686 { 4687 .procname = "hugetlb_shm_group", 4688 .data = &sysctl_hugetlb_shm_group, 4689 .maxlen = sizeof(gid_t), 4690 .mode = 0644, 4691 .proc_handler = proc_dointvec, 4692 }, 4693 { 4694 .procname = "nr_overcommit_hugepages", 4695 .data = NULL, 4696 .maxlen = sizeof(unsigned long), 4697 .mode = 0644, 4698 .proc_handler = hugetlb_overcommit_handler, 4699 }, 4700 { } 4701 }; 4702 4703 static void hugetlb_sysctl_init(void) 4704 { 4705 register_sysctl_init("vm", hugetlb_table); 4706 } 4707 #endif /* CONFIG_SYSCTL */ 4708 4709 void hugetlb_report_meminfo(struct seq_file *m) 4710 { 4711 struct hstate *h; 4712 unsigned long total = 0; 4713 4714 if (!hugepages_supported()) 4715 return; 4716 4717 for_each_hstate(h) { 4718 unsigned long count = h->nr_huge_pages; 4719 4720 total += huge_page_size(h) * count; 4721 4722 if (h == &default_hstate) 4723 seq_printf(m, 4724 "HugePages_Total: %5lu\n" 4725 "HugePages_Free: %5lu\n" 4726 "HugePages_Rsvd: %5lu\n" 4727 "HugePages_Surp: %5lu\n" 4728 "Hugepagesize: %8lu kB\n", 4729 count, 4730 h->free_huge_pages, 4731 h->resv_huge_pages, 4732 h->surplus_huge_pages, 4733 huge_page_size(h) / SZ_1K); 4734 } 4735 4736 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4737 } 4738 4739 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4740 { 4741 struct hstate *h = &default_hstate; 4742 4743 if (!hugepages_supported()) 4744 return 0; 4745 4746 return sysfs_emit_at(buf, len, 4747 "Node %d HugePages_Total: %5u\n" 4748 "Node %d HugePages_Free: %5u\n" 4749 "Node %d HugePages_Surp: %5u\n", 4750 nid, h->nr_huge_pages_node[nid], 4751 nid, h->free_huge_pages_node[nid], 4752 nid, h->surplus_huge_pages_node[nid]); 4753 } 4754 4755 void hugetlb_show_meminfo_node(int nid) 4756 { 4757 struct hstate *h; 4758 4759 if (!hugepages_supported()) 4760 return; 4761 4762 for_each_hstate(h) 4763 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4764 nid, 4765 h->nr_huge_pages_node[nid], 4766 h->free_huge_pages_node[nid], 4767 h->surplus_huge_pages_node[nid], 4768 huge_page_size(h) / SZ_1K); 4769 } 4770 4771 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4772 { 4773 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4774 K(atomic_long_read(&mm->hugetlb_usage))); 4775 } 4776 4777 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4778 unsigned long hugetlb_total_pages(void) 4779 { 4780 struct hstate *h; 4781 unsigned long nr_total_pages = 0; 4782 4783 for_each_hstate(h) 4784 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4785 return nr_total_pages; 4786 } 4787 4788 static int hugetlb_acct_memory(struct hstate *h, long delta) 4789 { 4790 int ret = -ENOMEM; 4791 4792 if (!delta) 4793 return 0; 4794 4795 spin_lock_irq(&hugetlb_lock); 4796 /* 4797 * When cpuset is configured, it breaks the strict hugetlb page 4798 * reservation as the accounting is done on a global variable. Such 4799 * reservation is completely rubbish in the presence of cpuset because 4800 * the reservation is not checked against page availability for the 4801 * current cpuset. Application can still potentially OOM'ed by kernel 4802 * with lack of free htlb page in cpuset that the task is in. 4803 * Attempt to enforce strict accounting with cpuset is almost 4804 * impossible (or too ugly) because cpuset is too fluid that 4805 * task or memory node can be dynamically moved between cpusets. 4806 * 4807 * The change of semantics for shared hugetlb mapping with cpuset is 4808 * undesirable. However, in order to preserve some of the semantics, 4809 * we fall back to check against current free page availability as 4810 * a best attempt and hopefully to minimize the impact of changing 4811 * semantics that cpuset has. 4812 * 4813 * Apart from cpuset, we also have memory policy mechanism that 4814 * also determines from which node the kernel will allocate memory 4815 * in a NUMA system. So similar to cpuset, we also should consider 4816 * the memory policy of the current task. Similar to the description 4817 * above. 4818 */ 4819 if (delta > 0) { 4820 if (gather_surplus_pages(h, delta) < 0) 4821 goto out; 4822 4823 if (delta > allowed_mems_nr(h)) { 4824 return_unused_surplus_pages(h, delta); 4825 goto out; 4826 } 4827 } 4828 4829 ret = 0; 4830 if (delta < 0) 4831 return_unused_surplus_pages(h, (unsigned long) -delta); 4832 4833 out: 4834 spin_unlock_irq(&hugetlb_lock); 4835 return ret; 4836 } 4837 4838 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4839 { 4840 struct resv_map *resv = vma_resv_map(vma); 4841 4842 /* 4843 * HPAGE_RESV_OWNER indicates a private mapping. 4844 * This new VMA should share its siblings reservation map if present. 4845 * The VMA will only ever have a valid reservation map pointer where 4846 * it is being copied for another still existing VMA. As that VMA 4847 * has a reference to the reservation map it cannot disappear until 4848 * after this open call completes. It is therefore safe to take a 4849 * new reference here without additional locking. 4850 */ 4851 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4852 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4853 kref_get(&resv->refs); 4854 } 4855 4856 /* 4857 * vma_lock structure for sharable mappings is vma specific. 4858 * Clear old pointer (if copied via vm_area_dup) and allocate 4859 * new structure. Before clearing, make sure vma_lock is not 4860 * for this vma. 4861 */ 4862 if (vma->vm_flags & VM_MAYSHARE) { 4863 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4864 4865 if (vma_lock) { 4866 if (vma_lock->vma != vma) { 4867 vma->vm_private_data = NULL; 4868 hugetlb_vma_lock_alloc(vma); 4869 } else 4870 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4871 } else 4872 hugetlb_vma_lock_alloc(vma); 4873 } 4874 } 4875 4876 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4877 { 4878 struct hstate *h = hstate_vma(vma); 4879 struct resv_map *resv; 4880 struct hugepage_subpool *spool = subpool_vma(vma); 4881 unsigned long reserve, start, end; 4882 long gbl_reserve; 4883 4884 hugetlb_vma_lock_free(vma); 4885 4886 resv = vma_resv_map(vma); 4887 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4888 return; 4889 4890 start = vma_hugecache_offset(h, vma, vma->vm_start); 4891 end = vma_hugecache_offset(h, vma, vma->vm_end); 4892 4893 reserve = (end - start) - region_count(resv, start, end); 4894 hugetlb_cgroup_uncharge_counter(resv, start, end); 4895 if (reserve) { 4896 /* 4897 * Decrement reserve counts. The global reserve count may be 4898 * adjusted if the subpool has a minimum size. 4899 */ 4900 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4901 hugetlb_acct_memory(h, -gbl_reserve); 4902 } 4903 4904 kref_put(&resv->refs, resv_map_release); 4905 } 4906 4907 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4908 { 4909 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4910 return -EINVAL; 4911 4912 /* 4913 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4914 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4915 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4916 */ 4917 if (addr & ~PUD_MASK) { 4918 /* 4919 * hugetlb_vm_op_split is called right before we attempt to 4920 * split the VMA. We will need to unshare PMDs in the old and 4921 * new VMAs, so let's unshare before we split. 4922 */ 4923 unsigned long floor = addr & PUD_MASK; 4924 unsigned long ceil = floor + PUD_SIZE; 4925 4926 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4927 hugetlb_unshare_pmds(vma, floor, ceil); 4928 } 4929 4930 return 0; 4931 } 4932 4933 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4934 { 4935 return huge_page_size(hstate_vma(vma)); 4936 } 4937 4938 /* 4939 * We cannot handle pagefaults against hugetlb pages at all. They cause 4940 * handle_mm_fault() to try to instantiate regular-sized pages in the 4941 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4942 * this far. 4943 */ 4944 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4945 { 4946 BUG(); 4947 return 0; 4948 } 4949 4950 /* 4951 * When a new function is introduced to vm_operations_struct and added 4952 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4953 * This is because under System V memory model, mappings created via 4954 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4955 * their original vm_ops are overwritten with shm_vm_ops. 4956 */ 4957 const struct vm_operations_struct hugetlb_vm_ops = { 4958 .fault = hugetlb_vm_op_fault, 4959 .open = hugetlb_vm_op_open, 4960 .close = hugetlb_vm_op_close, 4961 .may_split = hugetlb_vm_op_split, 4962 .pagesize = hugetlb_vm_op_pagesize, 4963 }; 4964 4965 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4966 int writable) 4967 { 4968 pte_t entry; 4969 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4970 4971 if (writable) { 4972 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4973 vma->vm_page_prot))); 4974 } else { 4975 entry = huge_pte_wrprotect(mk_huge_pte(page, 4976 vma->vm_page_prot)); 4977 } 4978 entry = pte_mkyoung(entry); 4979 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4980 4981 return entry; 4982 } 4983 4984 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4985 unsigned long address, pte_t *ptep) 4986 { 4987 pte_t entry; 4988 4989 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4990 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4991 update_mmu_cache(vma, address, ptep); 4992 } 4993 4994 bool is_hugetlb_entry_migration(pte_t pte) 4995 { 4996 swp_entry_t swp; 4997 4998 if (huge_pte_none(pte) || pte_present(pte)) 4999 return false; 5000 swp = pte_to_swp_entry(pte); 5001 if (is_migration_entry(swp)) 5002 return true; 5003 else 5004 return false; 5005 } 5006 5007 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5008 { 5009 swp_entry_t swp; 5010 5011 if (huge_pte_none(pte) || pte_present(pte)) 5012 return false; 5013 swp = pte_to_swp_entry(pte); 5014 if (is_hwpoison_entry(swp)) 5015 return true; 5016 else 5017 return false; 5018 } 5019 5020 static void 5021 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5022 struct folio *new_folio, pte_t old, unsigned long sz) 5023 { 5024 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5025 5026 __folio_mark_uptodate(new_folio); 5027 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5028 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5029 newpte = huge_pte_mkuffd_wp(newpte); 5030 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5031 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5032 folio_set_hugetlb_migratable(new_folio); 5033 } 5034 5035 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5036 struct vm_area_struct *dst_vma, 5037 struct vm_area_struct *src_vma) 5038 { 5039 pte_t *src_pte, *dst_pte, entry; 5040 struct folio *pte_folio; 5041 unsigned long addr; 5042 bool cow = is_cow_mapping(src_vma->vm_flags); 5043 struct hstate *h = hstate_vma(src_vma); 5044 unsigned long sz = huge_page_size(h); 5045 unsigned long npages = pages_per_huge_page(h); 5046 struct mmu_notifier_range range; 5047 unsigned long last_addr_mask; 5048 int ret = 0; 5049 5050 if (cow) { 5051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5052 src_vma->vm_start, 5053 src_vma->vm_end); 5054 mmu_notifier_invalidate_range_start(&range); 5055 vma_assert_write_locked(src_vma); 5056 raw_write_seqcount_begin(&src->write_protect_seq); 5057 } else { 5058 /* 5059 * For shared mappings the vma lock must be held before 5060 * calling hugetlb_walk() in the src vma. Otherwise, the 5061 * returned ptep could go away if part of a shared pmd and 5062 * another thread calls huge_pmd_unshare. 5063 */ 5064 hugetlb_vma_lock_read(src_vma); 5065 } 5066 5067 last_addr_mask = hugetlb_mask_last_page(h); 5068 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5069 spinlock_t *src_ptl, *dst_ptl; 5070 src_pte = hugetlb_walk(src_vma, addr, sz); 5071 if (!src_pte) { 5072 addr |= last_addr_mask; 5073 continue; 5074 } 5075 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5076 if (!dst_pte) { 5077 ret = -ENOMEM; 5078 break; 5079 } 5080 5081 /* 5082 * If the pagetables are shared don't copy or take references. 5083 * 5084 * dst_pte == src_pte is the common case of src/dest sharing. 5085 * However, src could have 'unshared' and dst shares with 5086 * another vma. So page_count of ptep page is checked instead 5087 * to reliably determine whether pte is shared. 5088 */ 5089 if (page_count(virt_to_page(dst_pte)) > 1) { 5090 addr |= last_addr_mask; 5091 continue; 5092 } 5093 5094 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5095 src_ptl = huge_pte_lockptr(h, src, src_pte); 5096 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5097 entry = huge_ptep_get(src_pte); 5098 again: 5099 if (huge_pte_none(entry)) { 5100 /* 5101 * Skip if src entry none. 5102 */ 5103 ; 5104 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5105 if (!userfaultfd_wp(dst_vma)) 5106 entry = huge_pte_clear_uffd_wp(entry); 5107 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5108 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5109 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5110 bool uffd_wp = pte_swp_uffd_wp(entry); 5111 5112 if (!is_readable_migration_entry(swp_entry) && cow) { 5113 /* 5114 * COW mappings require pages in both 5115 * parent and child to be set to read. 5116 */ 5117 swp_entry = make_readable_migration_entry( 5118 swp_offset(swp_entry)); 5119 entry = swp_entry_to_pte(swp_entry); 5120 if (userfaultfd_wp(src_vma) && uffd_wp) 5121 entry = pte_swp_mkuffd_wp(entry); 5122 set_huge_pte_at(src, addr, src_pte, entry, sz); 5123 } 5124 if (!userfaultfd_wp(dst_vma)) 5125 entry = huge_pte_clear_uffd_wp(entry); 5126 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5127 } else if (unlikely(is_pte_marker(entry))) { 5128 pte_marker marker = copy_pte_marker( 5129 pte_to_swp_entry(entry), dst_vma); 5130 5131 if (marker) 5132 set_huge_pte_at(dst, addr, dst_pte, 5133 make_pte_marker(marker), sz); 5134 } else { 5135 entry = huge_ptep_get(src_pte); 5136 pte_folio = page_folio(pte_page(entry)); 5137 folio_get(pte_folio); 5138 5139 /* 5140 * Failing to duplicate the anon rmap is a rare case 5141 * where we see pinned hugetlb pages while they're 5142 * prone to COW. We need to do the COW earlier during 5143 * fork. 5144 * 5145 * When pre-allocating the page or copying data, we 5146 * need to be without the pgtable locks since we could 5147 * sleep during the process. 5148 */ 5149 if (!folio_test_anon(pte_folio)) { 5150 page_dup_file_rmap(&pte_folio->page, true); 5151 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5152 true, src_vma)) { 5153 pte_t src_pte_old = entry; 5154 struct folio *new_folio; 5155 5156 spin_unlock(src_ptl); 5157 spin_unlock(dst_ptl); 5158 /* Do not use reserve as it's private owned */ 5159 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5160 if (IS_ERR(new_folio)) { 5161 folio_put(pte_folio); 5162 ret = PTR_ERR(new_folio); 5163 break; 5164 } 5165 ret = copy_user_large_folio(new_folio, 5166 pte_folio, 5167 addr, dst_vma); 5168 folio_put(pte_folio); 5169 if (ret) { 5170 folio_put(new_folio); 5171 break; 5172 } 5173 5174 /* Install the new hugetlb folio if src pte stable */ 5175 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5176 src_ptl = huge_pte_lockptr(h, src, src_pte); 5177 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5178 entry = huge_ptep_get(src_pte); 5179 if (!pte_same(src_pte_old, entry)) { 5180 restore_reserve_on_error(h, dst_vma, addr, 5181 new_folio); 5182 folio_put(new_folio); 5183 /* huge_ptep of dst_pte won't change as in child */ 5184 goto again; 5185 } 5186 hugetlb_install_folio(dst_vma, dst_pte, addr, 5187 new_folio, src_pte_old, sz); 5188 spin_unlock(src_ptl); 5189 spin_unlock(dst_ptl); 5190 continue; 5191 } 5192 5193 if (cow) { 5194 /* 5195 * No need to notify as we are downgrading page 5196 * table protection not changing it to point 5197 * to a new page. 5198 * 5199 * See Documentation/mm/mmu_notifier.rst 5200 */ 5201 huge_ptep_set_wrprotect(src, addr, src_pte); 5202 entry = huge_pte_wrprotect(entry); 5203 } 5204 5205 if (!userfaultfd_wp(dst_vma)) 5206 entry = huge_pte_clear_uffd_wp(entry); 5207 5208 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5209 hugetlb_count_add(npages, dst); 5210 } 5211 spin_unlock(src_ptl); 5212 spin_unlock(dst_ptl); 5213 } 5214 5215 if (cow) { 5216 raw_write_seqcount_end(&src->write_protect_seq); 5217 mmu_notifier_invalidate_range_end(&range); 5218 } else { 5219 hugetlb_vma_unlock_read(src_vma); 5220 } 5221 5222 return ret; 5223 } 5224 5225 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5226 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5227 unsigned long sz) 5228 { 5229 struct hstate *h = hstate_vma(vma); 5230 struct mm_struct *mm = vma->vm_mm; 5231 spinlock_t *src_ptl, *dst_ptl; 5232 pte_t pte; 5233 5234 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5235 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5236 5237 /* 5238 * We don't have to worry about the ordering of src and dst ptlocks 5239 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5240 */ 5241 if (src_ptl != dst_ptl) 5242 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5243 5244 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5245 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5246 5247 if (src_ptl != dst_ptl) 5248 spin_unlock(src_ptl); 5249 spin_unlock(dst_ptl); 5250 } 5251 5252 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5253 struct vm_area_struct *new_vma, 5254 unsigned long old_addr, unsigned long new_addr, 5255 unsigned long len) 5256 { 5257 struct hstate *h = hstate_vma(vma); 5258 struct address_space *mapping = vma->vm_file->f_mapping; 5259 unsigned long sz = huge_page_size(h); 5260 struct mm_struct *mm = vma->vm_mm; 5261 unsigned long old_end = old_addr + len; 5262 unsigned long last_addr_mask; 5263 pte_t *src_pte, *dst_pte; 5264 struct mmu_notifier_range range; 5265 bool shared_pmd = false; 5266 5267 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5268 old_end); 5269 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5270 /* 5271 * In case of shared PMDs, we should cover the maximum possible 5272 * range. 5273 */ 5274 flush_cache_range(vma, range.start, range.end); 5275 5276 mmu_notifier_invalidate_range_start(&range); 5277 last_addr_mask = hugetlb_mask_last_page(h); 5278 /* Prevent race with file truncation */ 5279 hugetlb_vma_lock_write(vma); 5280 i_mmap_lock_write(mapping); 5281 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5282 src_pte = hugetlb_walk(vma, old_addr, sz); 5283 if (!src_pte) { 5284 old_addr |= last_addr_mask; 5285 new_addr |= last_addr_mask; 5286 continue; 5287 } 5288 if (huge_pte_none(huge_ptep_get(src_pte))) 5289 continue; 5290 5291 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5292 shared_pmd = true; 5293 old_addr |= last_addr_mask; 5294 new_addr |= last_addr_mask; 5295 continue; 5296 } 5297 5298 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5299 if (!dst_pte) 5300 break; 5301 5302 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5303 } 5304 5305 if (shared_pmd) 5306 flush_hugetlb_tlb_range(vma, range.start, range.end); 5307 else 5308 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5309 mmu_notifier_invalidate_range_end(&range); 5310 i_mmap_unlock_write(mapping); 5311 hugetlb_vma_unlock_write(vma); 5312 5313 return len + old_addr - old_end; 5314 } 5315 5316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5317 unsigned long start, unsigned long end, 5318 struct page *ref_page, zap_flags_t zap_flags) 5319 { 5320 struct mm_struct *mm = vma->vm_mm; 5321 unsigned long address; 5322 pte_t *ptep; 5323 pte_t pte; 5324 spinlock_t *ptl; 5325 struct page *page; 5326 struct hstate *h = hstate_vma(vma); 5327 unsigned long sz = huge_page_size(h); 5328 unsigned long last_addr_mask; 5329 bool force_flush = false; 5330 5331 WARN_ON(!is_vm_hugetlb_page(vma)); 5332 BUG_ON(start & ~huge_page_mask(h)); 5333 BUG_ON(end & ~huge_page_mask(h)); 5334 5335 /* 5336 * This is a hugetlb vma, all the pte entries should point 5337 * to huge page. 5338 */ 5339 tlb_change_page_size(tlb, sz); 5340 tlb_start_vma(tlb, vma); 5341 5342 last_addr_mask = hugetlb_mask_last_page(h); 5343 address = start; 5344 for (; address < end; address += sz) { 5345 ptep = hugetlb_walk(vma, address, sz); 5346 if (!ptep) { 5347 address |= last_addr_mask; 5348 continue; 5349 } 5350 5351 ptl = huge_pte_lock(h, mm, ptep); 5352 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5353 spin_unlock(ptl); 5354 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5355 force_flush = true; 5356 address |= last_addr_mask; 5357 continue; 5358 } 5359 5360 pte = huge_ptep_get(ptep); 5361 if (huge_pte_none(pte)) { 5362 spin_unlock(ptl); 5363 continue; 5364 } 5365 5366 /* 5367 * Migrating hugepage or HWPoisoned hugepage is already 5368 * unmapped and its refcount is dropped, so just clear pte here. 5369 */ 5370 if (unlikely(!pte_present(pte))) { 5371 /* 5372 * If the pte was wr-protected by uffd-wp in any of the 5373 * swap forms, meanwhile the caller does not want to 5374 * drop the uffd-wp bit in this zap, then replace the 5375 * pte with a marker. 5376 */ 5377 if (pte_swp_uffd_wp_any(pte) && 5378 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5379 set_huge_pte_at(mm, address, ptep, 5380 make_pte_marker(PTE_MARKER_UFFD_WP), 5381 sz); 5382 else 5383 huge_pte_clear(mm, address, ptep, sz); 5384 spin_unlock(ptl); 5385 continue; 5386 } 5387 5388 page = pte_page(pte); 5389 /* 5390 * If a reference page is supplied, it is because a specific 5391 * page is being unmapped, not a range. Ensure the page we 5392 * are about to unmap is the actual page of interest. 5393 */ 5394 if (ref_page) { 5395 if (page != ref_page) { 5396 spin_unlock(ptl); 5397 continue; 5398 } 5399 /* 5400 * Mark the VMA as having unmapped its page so that 5401 * future faults in this VMA will fail rather than 5402 * looking like data was lost 5403 */ 5404 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5405 } 5406 5407 pte = huge_ptep_get_and_clear(mm, address, ptep); 5408 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5409 if (huge_pte_dirty(pte)) 5410 set_page_dirty(page); 5411 /* Leave a uffd-wp pte marker if needed */ 5412 if (huge_pte_uffd_wp(pte) && 5413 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5414 set_huge_pte_at(mm, address, ptep, 5415 make_pte_marker(PTE_MARKER_UFFD_WP), 5416 sz); 5417 hugetlb_count_sub(pages_per_huge_page(h), mm); 5418 page_remove_rmap(page, vma, true); 5419 5420 spin_unlock(ptl); 5421 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5422 /* 5423 * Bail out after unmapping reference page if supplied 5424 */ 5425 if (ref_page) 5426 break; 5427 } 5428 tlb_end_vma(tlb, vma); 5429 5430 /* 5431 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5432 * could defer the flush until now, since by holding i_mmap_rwsem we 5433 * guaranteed that the last refernece would not be dropped. But we must 5434 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5435 * dropped and the last reference to the shared PMDs page might be 5436 * dropped as well. 5437 * 5438 * In theory we could defer the freeing of the PMD pages as well, but 5439 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5440 * detect sharing, so we cannot defer the release of the page either. 5441 * Instead, do flush now. 5442 */ 5443 if (force_flush) 5444 tlb_flush_mmu_tlbonly(tlb); 5445 } 5446 5447 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5448 unsigned long *start, unsigned long *end) 5449 { 5450 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5451 return; 5452 5453 adjust_range_if_pmd_sharing_possible(vma, start, end); 5454 hugetlb_vma_lock_write(vma); 5455 if (vma->vm_file) 5456 i_mmap_lock_write(vma->vm_file->f_mapping); 5457 } 5458 5459 void __hugetlb_zap_end(struct vm_area_struct *vma, 5460 struct zap_details *details) 5461 { 5462 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5463 5464 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5465 return; 5466 5467 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5468 /* 5469 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5470 * When the vma_lock is freed, this makes the vma ineligible 5471 * for pmd sharing. And, i_mmap_rwsem is required to set up 5472 * pmd sharing. This is important as page tables for this 5473 * unmapped range will be asynchrously deleted. If the page 5474 * tables are shared, there will be issues when accessed by 5475 * someone else. 5476 */ 5477 __hugetlb_vma_unlock_write_free(vma); 5478 } else { 5479 hugetlb_vma_unlock_write(vma); 5480 } 5481 5482 if (vma->vm_file) 5483 i_mmap_unlock_write(vma->vm_file->f_mapping); 5484 } 5485 5486 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5487 unsigned long end, struct page *ref_page, 5488 zap_flags_t zap_flags) 5489 { 5490 struct mmu_notifier_range range; 5491 struct mmu_gather tlb; 5492 5493 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5494 start, end); 5495 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5496 mmu_notifier_invalidate_range_start(&range); 5497 tlb_gather_mmu(&tlb, vma->vm_mm); 5498 5499 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5500 5501 mmu_notifier_invalidate_range_end(&range); 5502 tlb_finish_mmu(&tlb); 5503 } 5504 5505 /* 5506 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5507 * mapping it owns the reserve page for. The intention is to unmap the page 5508 * from other VMAs and let the children be SIGKILLed if they are faulting the 5509 * same region. 5510 */ 5511 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5512 struct page *page, unsigned long address) 5513 { 5514 struct hstate *h = hstate_vma(vma); 5515 struct vm_area_struct *iter_vma; 5516 struct address_space *mapping; 5517 pgoff_t pgoff; 5518 5519 /* 5520 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5521 * from page cache lookup which is in HPAGE_SIZE units. 5522 */ 5523 address = address & huge_page_mask(h); 5524 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5525 vma->vm_pgoff; 5526 mapping = vma->vm_file->f_mapping; 5527 5528 /* 5529 * Take the mapping lock for the duration of the table walk. As 5530 * this mapping should be shared between all the VMAs, 5531 * __unmap_hugepage_range() is called as the lock is already held 5532 */ 5533 i_mmap_lock_write(mapping); 5534 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5535 /* Do not unmap the current VMA */ 5536 if (iter_vma == vma) 5537 continue; 5538 5539 /* 5540 * Shared VMAs have their own reserves and do not affect 5541 * MAP_PRIVATE accounting but it is possible that a shared 5542 * VMA is using the same page so check and skip such VMAs. 5543 */ 5544 if (iter_vma->vm_flags & VM_MAYSHARE) 5545 continue; 5546 5547 /* 5548 * Unmap the page from other VMAs without their own reserves. 5549 * They get marked to be SIGKILLed if they fault in these 5550 * areas. This is because a future no-page fault on this VMA 5551 * could insert a zeroed page instead of the data existing 5552 * from the time of fork. This would look like data corruption 5553 */ 5554 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5555 unmap_hugepage_range(iter_vma, address, 5556 address + huge_page_size(h), page, 0); 5557 } 5558 i_mmap_unlock_write(mapping); 5559 } 5560 5561 /* 5562 * hugetlb_wp() should be called with page lock of the original hugepage held. 5563 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5564 * cannot race with other handlers or page migration. 5565 * Keep the pte_same checks anyway to make transition from the mutex easier. 5566 */ 5567 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5568 unsigned long address, pte_t *ptep, unsigned int flags, 5569 struct folio *pagecache_folio, spinlock_t *ptl) 5570 { 5571 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5572 pte_t pte = huge_ptep_get(ptep); 5573 struct hstate *h = hstate_vma(vma); 5574 struct folio *old_folio; 5575 struct folio *new_folio; 5576 int outside_reserve = 0; 5577 vm_fault_t ret = 0; 5578 unsigned long haddr = address & huge_page_mask(h); 5579 struct mmu_notifier_range range; 5580 5581 /* 5582 * Never handle CoW for uffd-wp protected pages. It should be only 5583 * handled when the uffd-wp protection is removed. 5584 * 5585 * Note that only the CoW optimization path (in hugetlb_no_page()) 5586 * can trigger this, because hugetlb_fault() will always resolve 5587 * uffd-wp bit first. 5588 */ 5589 if (!unshare && huge_pte_uffd_wp(pte)) 5590 return 0; 5591 5592 /* 5593 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5594 * PTE mapped R/O such as maybe_mkwrite() would do. 5595 */ 5596 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5597 return VM_FAULT_SIGSEGV; 5598 5599 /* Let's take out MAP_SHARED mappings first. */ 5600 if (vma->vm_flags & VM_MAYSHARE) { 5601 set_huge_ptep_writable(vma, haddr, ptep); 5602 return 0; 5603 } 5604 5605 old_folio = page_folio(pte_page(pte)); 5606 5607 delayacct_wpcopy_start(); 5608 5609 retry_avoidcopy: 5610 /* 5611 * If no-one else is actually using this page, we're the exclusive 5612 * owner and can reuse this page. 5613 */ 5614 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5615 if (!PageAnonExclusive(&old_folio->page)) 5616 page_move_anon_rmap(&old_folio->page, vma); 5617 if (likely(!unshare)) 5618 set_huge_ptep_writable(vma, haddr, ptep); 5619 5620 delayacct_wpcopy_end(); 5621 return 0; 5622 } 5623 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5624 PageAnonExclusive(&old_folio->page), &old_folio->page); 5625 5626 /* 5627 * If the process that created a MAP_PRIVATE mapping is about to 5628 * perform a COW due to a shared page count, attempt to satisfy 5629 * the allocation without using the existing reserves. The pagecache 5630 * page is used to determine if the reserve at this address was 5631 * consumed or not. If reserves were used, a partial faulted mapping 5632 * at the time of fork() could consume its reserves on COW instead 5633 * of the full address range. 5634 */ 5635 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5636 old_folio != pagecache_folio) 5637 outside_reserve = 1; 5638 5639 folio_get(old_folio); 5640 5641 /* 5642 * Drop page table lock as buddy allocator may be called. It will 5643 * be acquired again before returning to the caller, as expected. 5644 */ 5645 spin_unlock(ptl); 5646 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5647 5648 if (IS_ERR(new_folio)) { 5649 /* 5650 * If a process owning a MAP_PRIVATE mapping fails to COW, 5651 * it is due to references held by a child and an insufficient 5652 * huge page pool. To guarantee the original mappers 5653 * reliability, unmap the page from child processes. The child 5654 * may get SIGKILLed if it later faults. 5655 */ 5656 if (outside_reserve) { 5657 struct address_space *mapping = vma->vm_file->f_mapping; 5658 pgoff_t idx; 5659 u32 hash; 5660 5661 folio_put(old_folio); 5662 /* 5663 * Drop hugetlb_fault_mutex and vma_lock before 5664 * unmapping. unmapping needs to hold vma_lock 5665 * in write mode. Dropping vma_lock in read mode 5666 * here is OK as COW mappings do not interact with 5667 * PMD sharing. 5668 * 5669 * Reacquire both after unmap operation. 5670 */ 5671 idx = vma_hugecache_offset(h, vma, haddr); 5672 hash = hugetlb_fault_mutex_hash(mapping, idx); 5673 hugetlb_vma_unlock_read(vma); 5674 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5675 5676 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5677 5678 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5679 hugetlb_vma_lock_read(vma); 5680 spin_lock(ptl); 5681 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5682 if (likely(ptep && 5683 pte_same(huge_ptep_get(ptep), pte))) 5684 goto retry_avoidcopy; 5685 /* 5686 * race occurs while re-acquiring page table 5687 * lock, and our job is done. 5688 */ 5689 delayacct_wpcopy_end(); 5690 return 0; 5691 } 5692 5693 ret = vmf_error(PTR_ERR(new_folio)); 5694 goto out_release_old; 5695 } 5696 5697 /* 5698 * When the original hugepage is shared one, it does not have 5699 * anon_vma prepared. 5700 */ 5701 if (unlikely(anon_vma_prepare(vma))) { 5702 ret = VM_FAULT_OOM; 5703 goto out_release_all; 5704 } 5705 5706 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5707 ret = VM_FAULT_HWPOISON_LARGE; 5708 goto out_release_all; 5709 } 5710 __folio_mark_uptodate(new_folio); 5711 5712 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5713 haddr + huge_page_size(h)); 5714 mmu_notifier_invalidate_range_start(&range); 5715 5716 /* 5717 * Retake the page table lock to check for racing updates 5718 * before the page tables are altered 5719 */ 5720 spin_lock(ptl); 5721 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5722 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5723 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5724 5725 /* Break COW or unshare */ 5726 huge_ptep_clear_flush(vma, haddr, ptep); 5727 page_remove_rmap(&old_folio->page, vma, true); 5728 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5729 if (huge_pte_uffd_wp(pte)) 5730 newpte = huge_pte_mkuffd_wp(newpte); 5731 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 5732 folio_set_hugetlb_migratable(new_folio); 5733 /* Make the old page be freed below */ 5734 new_folio = old_folio; 5735 } 5736 spin_unlock(ptl); 5737 mmu_notifier_invalidate_range_end(&range); 5738 out_release_all: 5739 /* 5740 * No restore in case of successful pagetable update (Break COW or 5741 * unshare) 5742 */ 5743 if (new_folio != old_folio) 5744 restore_reserve_on_error(h, vma, haddr, new_folio); 5745 folio_put(new_folio); 5746 out_release_old: 5747 folio_put(old_folio); 5748 5749 spin_lock(ptl); /* Caller expects lock to be held */ 5750 5751 delayacct_wpcopy_end(); 5752 return ret; 5753 } 5754 5755 /* 5756 * Return whether there is a pagecache page to back given address within VMA. 5757 */ 5758 static bool hugetlbfs_pagecache_present(struct hstate *h, 5759 struct vm_area_struct *vma, unsigned long address) 5760 { 5761 struct address_space *mapping = vma->vm_file->f_mapping; 5762 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5763 struct folio *folio; 5764 5765 folio = filemap_get_folio(mapping, idx); 5766 if (IS_ERR(folio)) 5767 return false; 5768 folio_put(folio); 5769 return true; 5770 } 5771 5772 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5773 pgoff_t idx) 5774 { 5775 struct inode *inode = mapping->host; 5776 struct hstate *h = hstate_inode(inode); 5777 int err; 5778 5779 __folio_set_locked(folio); 5780 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5781 5782 if (unlikely(err)) { 5783 __folio_clear_locked(folio); 5784 return err; 5785 } 5786 folio_clear_hugetlb_restore_reserve(folio); 5787 5788 /* 5789 * mark folio dirty so that it will not be removed from cache/file 5790 * by non-hugetlbfs specific code paths. 5791 */ 5792 folio_mark_dirty(folio); 5793 5794 spin_lock(&inode->i_lock); 5795 inode->i_blocks += blocks_per_huge_page(h); 5796 spin_unlock(&inode->i_lock); 5797 return 0; 5798 } 5799 5800 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5801 struct address_space *mapping, 5802 pgoff_t idx, 5803 unsigned int flags, 5804 unsigned long haddr, 5805 unsigned long addr, 5806 unsigned long reason) 5807 { 5808 u32 hash; 5809 struct vm_fault vmf = { 5810 .vma = vma, 5811 .address = haddr, 5812 .real_address = addr, 5813 .flags = flags, 5814 5815 /* 5816 * Hard to debug if it ends up being 5817 * used by a callee that assumes 5818 * something about the other 5819 * uninitialized fields... same as in 5820 * memory.c 5821 */ 5822 }; 5823 5824 /* 5825 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5826 * userfault. Also mmap_lock could be dropped due to handling 5827 * userfault, any vma operation should be careful from here. 5828 */ 5829 hugetlb_vma_unlock_read(vma); 5830 hash = hugetlb_fault_mutex_hash(mapping, idx); 5831 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5832 return handle_userfault(&vmf, reason); 5833 } 5834 5835 /* 5836 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5837 * false if pte changed or is changing. 5838 */ 5839 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5840 pte_t *ptep, pte_t old_pte) 5841 { 5842 spinlock_t *ptl; 5843 bool same; 5844 5845 ptl = huge_pte_lock(h, mm, ptep); 5846 same = pte_same(huge_ptep_get(ptep), old_pte); 5847 spin_unlock(ptl); 5848 5849 return same; 5850 } 5851 5852 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5853 struct vm_area_struct *vma, 5854 struct address_space *mapping, pgoff_t idx, 5855 unsigned long address, pte_t *ptep, 5856 pte_t old_pte, unsigned int flags) 5857 { 5858 struct hstate *h = hstate_vma(vma); 5859 vm_fault_t ret = VM_FAULT_SIGBUS; 5860 int anon_rmap = 0; 5861 unsigned long size; 5862 struct folio *folio; 5863 pte_t new_pte; 5864 spinlock_t *ptl; 5865 unsigned long haddr = address & huge_page_mask(h); 5866 bool new_folio, new_pagecache_folio = false; 5867 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5868 5869 /* 5870 * Currently, we are forced to kill the process in the event the 5871 * original mapper has unmapped pages from the child due to a failed 5872 * COW/unsharing. Warn that such a situation has occurred as it may not 5873 * be obvious. 5874 */ 5875 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5876 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5877 current->pid); 5878 goto out; 5879 } 5880 5881 /* 5882 * Use page lock to guard against racing truncation 5883 * before we get page_table_lock. 5884 */ 5885 new_folio = false; 5886 folio = filemap_lock_folio(mapping, idx); 5887 if (IS_ERR(folio)) { 5888 size = i_size_read(mapping->host) >> huge_page_shift(h); 5889 if (idx >= size) 5890 goto out; 5891 /* Check for page in userfault range */ 5892 if (userfaultfd_missing(vma)) { 5893 /* 5894 * Since hugetlb_no_page() was examining pte 5895 * without pgtable lock, we need to re-test under 5896 * lock because the pte may not be stable and could 5897 * have changed from under us. Try to detect 5898 * either changed or during-changing ptes and retry 5899 * properly when needed. 5900 * 5901 * Note that userfaultfd is actually fine with 5902 * false positives (e.g. caused by pte changed), 5903 * but not wrong logical events (e.g. caused by 5904 * reading a pte during changing). The latter can 5905 * confuse the userspace, so the strictness is very 5906 * much preferred. E.g., MISSING event should 5907 * never happen on the page after UFFDIO_COPY has 5908 * correctly installed the page and returned. 5909 */ 5910 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5911 ret = 0; 5912 goto out; 5913 } 5914 5915 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5916 haddr, address, 5917 VM_UFFD_MISSING); 5918 } 5919 5920 folio = alloc_hugetlb_folio(vma, haddr, 0); 5921 if (IS_ERR(folio)) { 5922 /* 5923 * Returning error will result in faulting task being 5924 * sent SIGBUS. The hugetlb fault mutex prevents two 5925 * tasks from racing to fault in the same page which 5926 * could result in false unable to allocate errors. 5927 * Page migration does not take the fault mutex, but 5928 * does a clear then write of pte's under page table 5929 * lock. Page fault code could race with migration, 5930 * notice the clear pte and try to allocate a page 5931 * here. Before returning error, get ptl and make 5932 * sure there really is no pte entry. 5933 */ 5934 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5935 ret = vmf_error(PTR_ERR(folio)); 5936 else 5937 ret = 0; 5938 goto out; 5939 } 5940 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5941 __folio_mark_uptodate(folio); 5942 new_folio = true; 5943 5944 if (vma->vm_flags & VM_MAYSHARE) { 5945 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5946 if (err) { 5947 /* 5948 * err can't be -EEXIST which implies someone 5949 * else consumed the reservation since hugetlb 5950 * fault mutex is held when add a hugetlb page 5951 * to the page cache. So it's safe to call 5952 * restore_reserve_on_error() here. 5953 */ 5954 restore_reserve_on_error(h, vma, haddr, folio); 5955 folio_put(folio); 5956 goto out; 5957 } 5958 new_pagecache_folio = true; 5959 } else { 5960 folio_lock(folio); 5961 if (unlikely(anon_vma_prepare(vma))) { 5962 ret = VM_FAULT_OOM; 5963 goto backout_unlocked; 5964 } 5965 anon_rmap = 1; 5966 } 5967 } else { 5968 /* 5969 * If memory error occurs between mmap() and fault, some process 5970 * don't have hwpoisoned swap entry for errored virtual address. 5971 * So we need to block hugepage fault by PG_hwpoison bit check. 5972 */ 5973 if (unlikely(folio_test_hwpoison(folio))) { 5974 ret = VM_FAULT_HWPOISON_LARGE | 5975 VM_FAULT_SET_HINDEX(hstate_index(h)); 5976 goto backout_unlocked; 5977 } 5978 5979 /* Check for page in userfault range. */ 5980 if (userfaultfd_minor(vma)) { 5981 folio_unlock(folio); 5982 folio_put(folio); 5983 /* See comment in userfaultfd_missing() block above */ 5984 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5985 ret = 0; 5986 goto out; 5987 } 5988 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5989 haddr, address, 5990 VM_UFFD_MINOR); 5991 } 5992 } 5993 5994 /* 5995 * If we are going to COW a private mapping later, we examine the 5996 * pending reservations for this page now. This will ensure that 5997 * any allocations necessary to record that reservation occur outside 5998 * the spinlock. 5999 */ 6000 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6001 if (vma_needs_reservation(h, vma, haddr) < 0) { 6002 ret = VM_FAULT_OOM; 6003 goto backout_unlocked; 6004 } 6005 /* Just decrements count, does not deallocate */ 6006 vma_end_reservation(h, vma, haddr); 6007 } 6008 6009 ptl = huge_pte_lock(h, mm, ptep); 6010 ret = 0; 6011 /* If pte changed from under us, retry */ 6012 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6013 goto backout; 6014 6015 if (anon_rmap) 6016 hugepage_add_new_anon_rmap(folio, vma, haddr); 6017 else 6018 page_dup_file_rmap(&folio->page, true); 6019 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6020 && (vma->vm_flags & VM_SHARED))); 6021 /* 6022 * If this pte was previously wr-protected, keep it wr-protected even 6023 * if populated. 6024 */ 6025 if (unlikely(pte_marker_uffd_wp(old_pte))) 6026 new_pte = huge_pte_mkuffd_wp(new_pte); 6027 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6028 6029 hugetlb_count_add(pages_per_huge_page(h), mm); 6030 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6031 /* Optimization, do the COW without a second fault */ 6032 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6033 } 6034 6035 spin_unlock(ptl); 6036 6037 /* 6038 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6039 * found in the pagecache may not have hugetlb_migratable if they have 6040 * been isolated for migration. 6041 */ 6042 if (new_folio) 6043 folio_set_hugetlb_migratable(folio); 6044 6045 folio_unlock(folio); 6046 out: 6047 hugetlb_vma_unlock_read(vma); 6048 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6049 return ret; 6050 6051 backout: 6052 spin_unlock(ptl); 6053 backout_unlocked: 6054 if (new_folio && !new_pagecache_folio) 6055 restore_reserve_on_error(h, vma, haddr, folio); 6056 6057 folio_unlock(folio); 6058 folio_put(folio); 6059 goto out; 6060 } 6061 6062 #ifdef CONFIG_SMP 6063 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6064 { 6065 unsigned long key[2]; 6066 u32 hash; 6067 6068 key[0] = (unsigned long) mapping; 6069 key[1] = idx; 6070 6071 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6072 6073 return hash & (num_fault_mutexes - 1); 6074 } 6075 #else 6076 /* 6077 * For uniprocessor systems we always use a single mutex, so just 6078 * return 0 and avoid the hashing overhead. 6079 */ 6080 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6081 { 6082 return 0; 6083 } 6084 #endif 6085 6086 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6087 unsigned long address, unsigned int flags) 6088 { 6089 pte_t *ptep, entry; 6090 spinlock_t *ptl; 6091 vm_fault_t ret; 6092 u32 hash; 6093 pgoff_t idx; 6094 struct folio *folio = NULL; 6095 struct folio *pagecache_folio = NULL; 6096 struct hstate *h = hstate_vma(vma); 6097 struct address_space *mapping; 6098 int need_wait_lock = 0; 6099 unsigned long haddr = address & huge_page_mask(h); 6100 6101 /* TODO: Handle faults under the VMA lock */ 6102 if (flags & FAULT_FLAG_VMA_LOCK) { 6103 vma_end_read(vma); 6104 return VM_FAULT_RETRY; 6105 } 6106 6107 /* 6108 * Serialize hugepage allocation and instantiation, so that we don't 6109 * get spurious allocation failures if two CPUs race to instantiate 6110 * the same page in the page cache. 6111 */ 6112 mapping = vma->vm_file->f_mapping; 6113 idx = vma_hugecache_offset(h, vma, haddr); 6114 hash = hugetlb_fault_mutex_hash(mapping, idx); 6115 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6116 6117 /* 6118 * Acquire vma lock before calling huge_pte_alloc and hold 6119 * until finished with ptep. This prevents huge_pmd_unshare from 6120 * being called elsewhere and making the ptep no longer valid. 6121 */ 6122 hugetlb_vma_lock_read(vma); 6123 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6124 if (!ptep) { 6125 hugetlb_vma_unlock_read(vma); 6126 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6127 return VM_FAULT_OOM; 6128 } 6129 6130 entry = huge_ptep_get(ptep); 6131 if (huge_pte_none_mostly(entry)) { 6132 if (is_pte_marker(entry)) { 6133 pte_marker marker = 6134 pte_marker_get(pte_to_swp_entry(entry)); 6135 6136 if (marker & PTE_MARKER_POISONED) { 6137 ret = VM_FAULT_HWPOISON_LARGE; 6138 goto out_mutex; 6139 } 6140 } 6141 6142 /* 6143 * Other PTE markers should be handled the same way as none PTE. 6144 * 6145 * hugetlb_no_page will drop vma lock and hugetlb fault 6146 * mutex internally, which make us return immediately. 6147 */ 6148 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6149 entry, flags); 6150 } 6151 6152 ret = 0; 6153 6154 /* 6155 * entry could be a migration/hwpoison entry at this point, so this 6156 * check prevents the kernel from going below assuming that we have 6157 * an active hugepage in pagecache. This goto expects the 2nd page 6158 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6159 * properly handle it. 6160 */ 6161 if (!pte_present(entry)) { 6162 if (unlikely(is_hugetlb_entry_migration(entry))) { 6163 /* 6164 * Release the hugetlb fault lock now, but retain 6165 * the vma lock, because it is needed to guard the 6166 * huge_pte_lockptr() later in 6167 * migration_entry_wait_huge(). The vma lock will 6168 * be released there. 6169 */ 6170 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6171 migration_entry_wait_huge(vma, ptep); 6172 return 0; 6173 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6174 ret = VM_FAULT_HWPOISON_LARGE | 6175 VM_FAULT_SET_HINDEX(hstate_index(h)); 6176 goto out_mutex; 6177 } 6178 6179 /* 6180 * If we are going to COW/unshare the mapping later, we examine the 6181 * pending reservations for this page now. This will ensure that any 6182 * allocations necessary to record that reservation occur outside the 6183 * spinlock. Also lookup the pagecache page now as it is used to 6184 * determine if a reservation has been consumed. 6185 */ 6186 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6187 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6188 if (vma_needs_reservation(h, vma, haddr) < 0) { 6189 ret = VM_FAULT_OOM; 6190 goto out_mutex; 6191 } 6192 /* Just decrements count, does not deallocate */ 6193 vma_end_reservation(h, vma, haddr); 6194 6195 pagecache_folio = filemap_lock_folio(mapping, idx); 6196 if (IS_ERR(pagecache_folio)) 6197 pagecache_folio = NULL; 6198 } 6199 6200 ptl = huge_pte_lock(h, mm, ptep); 6201 6202 /* Check for a racing update before calling hugetlb_wp() */ 6203 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6204 goto out_ptl; 6205 6206 /* Handle userfault-wp first, before trying to lock more pages */ 6207 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6208 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6209 struct vm_fault vmf = { 6210 .vma = vma, 6211 .address = haddr, 6212 .real_address = address, 6213 .flags = flags, 6214 }; 6215 6216 spin_unlock(ptl); 6217 if (pagecache_folio) { 6218 folio_unlock(pagecache_folio); 6219 folio_put(pagecache_folio); 6220 } 6221 hugetlb_vma_unlock_read(vma); 6222 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6223 return handle_userfault(&vmf, VM_UFFD_WP); 6224 } 6225 6226 /* 6227 * hugetlb_wp() requires page locks of pte_page(entry) and 6228 * pagecache_folio, so here we need take the former one 6229 * when folio != pagecache_folio or !pagecache_folio. 6230 */ 6231 folio = page_folio(pte_page(entry)); 6232 if (folio != pagecache_folio) 6233 if (!folio_trylock(folio)) { 6234 need_wait_lock = 1; 6235 goto out_ptl; 6236 } 6237 6238 folio_get(folio); 6239 6240 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6241 if (!huge_pte_write(entry)) { 6242 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6243 pagecache_folio, ptl); 6244 goto out_put_page; 6245 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6246 entry = huge_pte_mkdirty(entry); 6247 } 6248 } 6249 entry = pte_mkyoung(entry); 6250 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6251 flags & FAULT_FLAG_WRITE)) 6252 update_mmu_cache(vma, haddr, ptep); 6253 out_put_page: 6254 if (folio != pagecache_folio) 6255 folio_unlock(folio); 6256 folio_put(folio); 6257 out_ptl: 6258 spin_unlock(ptl); 6259 6260 if (pagecache_folio) { 6261 folio_unlock(pagecache_folio); 6262 folio_put(pagecache_folio); 6263 } 6264 out_mutex: 6265 hugetlb_vma_unlock_read(vma); 6266 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6267 /* 6268 * Generally it's safe to hold refcount during waiting page lock. But 6269 * here we just wait to defer the next page fault to avoid busy loop and 6270 * the page is not used after unlocked before returning from the current 6271 * page fault. So we are safe from accessing freed page, even if we wait 6272 * here without taking refcount. 6273 */ 6274 if (need_wait_lock) 6275 folio_wait_locked(folio); 6276 return ret; 6277 } 6278 6279 #ifdef CONFIG_USERFAULTFD 6280 /* 6281 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6282 * with modifications for hugetlb pages. 6283 */ 6284 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6285 struct vm_area_struct *dst_vma, 6286 unsigned long dst_addr, 6287 unsigned long src_addr, 6288 uffd_flags_t flags, 6289 struct folio **foliop) 6290 { 6291 struct mm_struct *dst_mm = dst_vma->vm_mm; 6292 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6293 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6294 struct hstate *h = hstate_vma(dst_vma); 6295 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6296 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6297 unsigned long size; 6298 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6299 pte_t _dst_pte; 6300 spinlock_t *ptl; 6301 int ret = -ENOMEM; 6302 struct folio *folio; 6303 int writable; 6304 bool folio_in_pagecache = false; 6305 6306 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6307 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6308 6309 /* Don't overwrite any existing PTEs (even markers) */ 6310 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6311 spin_unlock(ptl); 6312 return -EEXIST; 6313 } 6314 6315 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6316 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6317 huge_page_size(h)); 6318 6319 /* No need to invalidate - it was non-present before */ 6320 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6321 6322 spin_unlock(ptl); 6323 return 0; 6324 } 6325 6326 if (is_continue) { 6327 ret = -EFAULT; 6328 folio = filemap_lock_folio(mapping, idx); 6329 if (IS_ERR(folio)) 6330 goto out; 6331 folio_in_pagecache = true; 6332 } else if (!*foliop) { 6333 /* If a folio already exists, then it's UFFDIO_COPY for 6334 * a non-missing case. Return -EEXIST. 6335 */ 6336 if (vm_shared && 6337 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6338 ret = -EEXIST; 6339 goto out; 6340 } 6341 6342 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6343 if (IS_ERR(folio)) { 6344 ret = -ENOMEM; 6345 goto out; 6346 } 6347 6348 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6349 false); 6350 6351 /* fallback to copy_from_user outside mmap_lock */ 6352 if (unlikely(ret)) { 6353 ret = -ENOENT; 6354 /* Free the allocated folio which may have 6355 * consumed a reservation. 6356 */ 6357 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6358 folio_put(folio); 6359 6360 /* Allocate a temporary folio to hold the copied 6361 * contents. 6362 */ 6363 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6364 if (!folio) { 6365 ret = -ENOMEM; 6366 goto out; 6367 } 6368 *foliop = folio; 6369 /* Set the outparam foliop and return to the caller to 6370 * copy the contents outside the lock. Don't free the 6371 * folio. 6372 */ 6373 goto out; 6374 } 6375 } else { 6376 if (vm_shared && 6377 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6378 folio_put(*foliop); 6379 ret = -EEXIST; 6380 *foliop = NULL; 6381 goto out; 6382 } 6383 6384 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6385 if (IS_ERR(folio)) { 6386 folio_put(*foliop); 6387 ret = -ENOMEM; 6388 *foliop = NULL; 6389 goto out; 6390 } 6391 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6392 folio_put(*foliop); 6393 *foliop = NULL; 6394 if (ret) { 6395 folio_put(folio); 6396 goto out; 6397 } 6398 } 6399 6400 /* 6401 * The memory barrier inside __folio_mark_uptodate makes sure that 6402 * preceding stores to the page contents become visible before 6403 * the set_pte_at() write. 6404 */ 6405 __folio_mark_uptodate(folio); 6406 6407 /* Add shared, newly allocated pages to the page cache. */ 6408 if (vm_shared && !is_continue) { 6409 size = i_size_read(mapping->host) >> huge_page_shift(h); 6410 ret = -EFAULT; 6411 if (idx >= size) 6412 goto out_release_nounlock; 6413 6414 /* 6415 * Serialization between remove_inode_hugepages() and 6416 * hugetlb_add_to_page_cache() below happens through the 6417 * hugetlb_fault_mutex_table that here must be hold by 6418 * the caller. 6419 */ 6420 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6421 if (ret) 6422 goto out_release_nounlock; 6423 folio_in_pagecache = true; 6424 } 6425 6426 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6427 6428 ret = -EIO; 6429 if (folio_test_hwpoison(folio)) 6430 goto out_release_unlock; 6431 6432 /* 6433 * We allow to overwrite a pte marker: consider when both MISSING|WP 6434 * registered, we firstly wr-protect a none pte which has no page cache 6435 * page backing it, then access the page. 6436 */ 6437 ret = -EEXIST; 6438 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6439 goto out_release_unlock; 6440 6441 if (folio_in_pagecache) 6442 page_dup_file_rmap(&folio->page, true); 6443 else 6444 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6445 6446 /* 6447 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6448 * with wp flag set, don't set pte write bit. 6449 */ 6450 if (wp_enabled || (is_continue && !vm_shared)) 6451 writable = 0; 6452 else 6453 writable = dst_vma->vm_flags & VM_WRITE; 6454 6455 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6456 /* 6457 * Always mark UFFDIO_COPY page dirty; note that this may not be 6458 * extremely important for hugetlbfs for now since swapping is not 6459 * supported, but we should still be clear in that this page cannot be 6460 * thrown away at will, even if write bit not set. 6461 */ 6462 _dst_pte = huge_pte_mkdirty(_dst_pte); 6463 _dst_pte = pte_mkyoung(_dst_pte); 6464 6465 if (wp_enabled) 6466 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6467 6468 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6469 6470 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6471 6472 /* No need to invalidate - it was non-present before */ 6473 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6474 6475 spin_unlock(ptl); 6476 if (!is_continue) 6477 folio_set_hugetlb_migratable(folio); 6478 if (vm_shared || is_continue) 6479 folio_unlock(folio); 6480 ret = 0; 6481 out: 6482 return ret; 6483 out_release_unlock: 6484 spin_unlock(ptl); 6485 if (vm_shared || is_continue) 6486 folio_unlock(folio); 6487 out_release_nounlock: 6488 if (!folio_in_pagecache) 6489 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6490 folio_put(folio); 6491 goto out; 6492 } 6493 #endif /* CONFIG_USERFAULTFD */ 6494 6495 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6496 unsigned long address, unsigned int flags, 6497 unsigned int *page_mask) 6498 { 6499 struct hstate *h = hstate_vma(vma); 6500 struct mm_struct *mm = vma->vm_mm; 6501 unsigned long haddr = address & huge_page_mask(h); 6502 struct page *page = NULL; 6503 spinlock_t *ptl; 6504 pte_t *pte, entry; 6505 int ret; 6506 6507 hugetlb_vma_lock_read(vma); 6508 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6509 if (!pte) 6510 goto out_unlock; 6511 6512 ptl = huge_pte_lock(h, mm, pte); 6513 entry = huge_ptep_get(pte); 6514 if (pte_present(entry)) { 6515 page = pte_page(entry); 6516 6517 if (!huge_pte_write(entry)) { 6518 if (flags & FOLL_WRITE) { 6519 page = NULL; 6520 goto out; 6521 } 6522 6523 if (gup_must_unshare(vma, flags, page)) { 6524 /* Tell the caller to do unsharing */ 6525 page = ERR_PTR(-EMLINK); 6526 goto out; 6527 } 6528 } 6529 6530 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT)); 6531 6532 /* 6533 * Note that page may be a sub-page, and with vmemmap 6534 * optimizations the page struct may be read only. 6535 * try_grab_page() will increase the ref count on the 6536 * head page, so this will be OK. 6537 * 6538 * try_grab_page() should always be able to get the page here, 6539 * because we hold the ptl lock and have verified pte_present(). 6540 */ 6541 ret = try_grab_page(page, flags); 6542 6543 if (WARN_ON_ONCE(ret)) { 6544 page = ERR_PTR(ret); 6545 goto out; 6546 } 6547 6548 *page_mask = (1U << huge_page_order(h)) - 1; 6549 } 6550 out: 6551 spin_unlock(ptl); 6552 out_unlock: 6553 hugetlb_vma_unlock_read(vma); 6554 6555 /* 6556 * Fixup retval for dump requests: if pagecache doesn't exist, 6557 * don't try to allocate a new page but just skip it. 6558 */ 6559 if (!page && (flags & FOLL_DUMP) && 6560 !hugetlbfs_pagecache_present(h, vma, address)) 6561 page = ERR_PTR(-EFAULT); 6562 6563 return page; 6564 } 6565 6566 long hugetlb_change_protection(struct vm_area_struct *vma, 6567 unsigned long address, unsigned long end, 6568 pgprot_t newprot, unsigned long cp_flags) 6569 { 6570 struct mm_struct *mm = vma->vm_mm; 6571 unsigned long start = address; 6572 pte_t *ptep; 6573 pte_t pte; 6574 struct hstate *h = hstate_vma(vma); 6575 long pages = 0, psize = huge_page_size(h); 6576 bool shared_pmd = false; 6577 struct mmu_notifier_range range; 6578 unsigned long last_addr_mask; 6579 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6580 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6581 6582 /* 6583 * In the case of shared PMDs, the area to flush could be beyond 6584 * start/end. Set range.start/range.end to cover the maximum possible 6585 * range if PMD sharing is possible. 6586 */ 6587 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6588 0, mm, start, end); 6589 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6590 6591 BUG_ON(address >= end); 6592 flush_cache_range(vma, range.start, range.end); 6593 6594 mmu_notifier_invalidate_range_start(&range); 6595 hugetlb_vma_lock_write(vma); 6596 i_mmap_lock_write(vma->vm_file->f_mapping); 6597 last_addr_mask = hugetlb_mask_last_page(h); 6598 for (; address < end; address += psize) { 6599 spinlock_t *ptl; 6600 ptep = hugetlb_walk(vma, address, psize); 6601 if (!ptep) { 6602 if (!uffd_wp) { 6603 address |= last_addr_mask; 6604 continue; 6605 } 6606 /* 6607 * Userfaultfd wr-protect requires pgtable 6608 * pre-allocations to install pte markers. 6609 */ 6610 ptep = huge_pte_alloc(mm, vma, address, psize); 6611 if (!ptep) { 6612 pages = -ENOMEM; 6613 break; 6614 } 6615 } 6616 ptl = huge_pte_lock(h, mm, ptep); 6617 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6618 /* 6619 * When uffd-wp is enabled on the vma, unshare 6620 * shouldn't happen at all. Warn about it if it 6621 * happened due to some reason. 6622 */ 6623 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6624 pages++; 6625 spin_unlock(ptl); 6626 shared_pmd = true; 6627 address |= last_addr_mask; 6628 continue; 6629 } 6630 pte = huge_ptep_get(ptep); 6631 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6632 /* Nothing to do. */ 6633 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6634 swp_entry_t entry = pte_to_swp_entry(pte); 6635 struct page *page = pfn_swap_entry_to_page(entry); 6636 pte_t newpte = pte; 6637 6638 if (is_writable_migration_entry(entry)) { 6639 if (PageAnon(page)) 6640 entry = make_readable_exclusive_migration_entry( 6641 swp_offset(entry)); 6642 else 6643 entry = make_readable_migration_entry( 6644 swp_offset(entry)); 6645 newpte = swp_entry_to_pte(entry); 6646 pages++; 6647 } 6648 6649 if (uffd_wp) 6650 newpte = pte_swp_mkuffd_wp(newpte); 6651 else if (uffd_wp_resolve) 6652 newpte = pte_swp_clear_uffd_wp(newpte); 6653 if (!pte_same(pte, newpte)) 6654 set_huge_pte_at(mm, address, ptep, newpte, psize); 6655 } else if (unlikely(is_pte_marker(pte))) { 6656 /* 6657 * Do nothing on a poison marker; page is 6658 * corrupted, permissons do not apply. Here 6659 * pte_marker_uffd_wp()==true implies !poison 6660 * because they're mutual exclusive. 6661 */ 6662 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve) 6663 /* Safe to modify directly (non-present->none). */ 6664 huge_pte_clear(mm, address, ptep, psize); 6665 } else if (!huge_pte_none(pte)) { 6666 pte_t old_pte; 6667 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6668 6669 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6670 pte = huge_pte_modify(old_pte, newprot); 6671 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6672 if (uffd_wp) 6673 pte = huge_pte_mkuffd_wp(pte); 6674 else if (uffd_wp_resolve) 6675 pte = huge_pte_clear_uffd_wp(pte); 6676 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6677 pages++; 6678 } else { 6679 /* None pte */ 6680 if (unlikely(uffd_wp)) 6681 /* Safe to modify directly (none->non-present). */ 6682 set_huge_pte_at(mm, address, ptep, 6683 make_pte_marker(PTE_MARKER_UFFD_WP), 6684 psize); 6685 } 6686 spin_unlock(ptl); 6687 } 6688 /* 6689 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6690 * may have cleared our pud entry and done put_page on the page table: 6691 * once we release i_mmap_rwsem, another task can do the final put_page 6692 * and that page table be reused and filled with junk. If we actually 6693 * did unshare a page of pmds, flush the range corresponding to the pud. 6694 */ 6695 if (shared_pmd) 6696 flush_hugetlb_tlb_range(vma, range.start, range.end); 6697 else 6698 flush_hugetlb_tlb_range(vma, start, end); 6699 /* 6700 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6701 * downgrading page table protection not changing it to point to a new 6702 * page. 6703 * 6704 * See Documentation/mm/mmu_notifier.rst 6705 */ 6706 i_mmap_unlock_write(vma->vm_file->f_mapping); 6707 hugetlb_vma_unlock_write(vma); 6708 mmu_notifier_invalidate_range_end(&range); 6709 6710 return pages > 0 ? (pages << h->order) : pages; 6711 } 6712 6713 /* Return true if reservation was successful, false otherwise. */ 6714 bool hugetlb_reserve_pages(struct inode *inode, 6715 long from, long to, 6716 struct vm_area_struct *vma, 6717 vm_flags_t vm_flags) 6718 { 6719 long chg = -1, add = -1; 6720 struct hstate *h = hstate_inode(inode); 6721 struct hugepage_subpool *spool = subpool_inode(inode); 6722 struct resv_map *resv_map; 6723 struct hugetlb_cgroup *h_cg = NULL; 6724 long gbl_reserve, regions_needed = 0; 6725 6726 /* This should never happen */ 6727 if (from > to) { 6728 VM_WARN(1, "%s called with a negative range\n", __func__); 6729 return false; 6730 } 6731 6732 /* 6733 * vma specific semaphore used for pmd sharing and fault/truncation 6734 * synchronization 6735 */ 6736 hugetlb_vma_lock_alloc(vma); 6737 6738 /* 6739 * Only apply hugepage reservation if asked. At fault time, an 6740 * attempt will be made for VM_NORESERVE to allocate a page 6741 * without using reserves 6742 */ 6743 if (vm_flags & VM_NORESERVE) 6744 return true; 6745 6746 /* 6747 * Shared mappings base their reservation on the number of pages that 6748 * are already allocated on behalf of the file. Private mappings need 6749 * to reserve the full area even if read-only as mprotect() may be 6750 * called to make the mapping read-write. Assume !vma is a shm mapping 6751 */ 6752 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6753 /* 6754 * resv_map can not be NULL as hugetlb_reserve_pages is only 6755 * called for inodes for which resv_maps were created (see 6756 * hugetlbfs_get_inode). 6757 */ 6758 resv_map = inode_resv_map(inode); 6759 6760 chg = region_chg(resv_map, from, to, ®ions_needed); 6761 } else { 6762 /* Private mapping. */ 6763 resv_map = resv_map_alloc(); 6764 if (!resv_map) 6765 goto out_err; 6766 6767 chg = to - from; 6768 6769 set_vma_resv_map(vma, resv_map); 6770 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6771 } 6772 6773 if (chg < 0) 6774 goto out_err; 6775 6776 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6777 chg * pages_per_huge_page(h), &h_cg) < 0) 6778 goto out_err; 6779 6780 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6781 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6782 * of the resv_map. 6783 */ 6784 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6785 } 6786 6787 /* 6788 * There must be enough pages in the subpool for the mapping. If 6789 * the subpool has a minimum size, there may be some global 6790 * reservations already in place (gbl_reserve). 6791 */ 6792 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6793 if (gbl_reserve < 0) 6794 goto out_uncharge_cgroup; 6795 6796 /* 6797 * Check enough hugepages are available for the reservation. 6798 * Hand the pages back to the subpool if there are not 6799 */ 6800 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6801 goto out_put_pages; 6802 6803 /* 6804 * Account for the reservations made. Shared mappings record regions 6805 * that have reservations as they are shared by multiple VMAs. 6806 * When the last VMA disappears, the region map says how much 6807 * the reservation was and the page cache tells how much of 6808 * the reservation was consumed. Private mappings are per-VMA and 6809 * only the consumed reservations are tracked. When the VMA 6810 * disappears, the original reservation is the VMA size and the 6811 * consumed reservations are stored in the map. Hence, nothing 6812 * else has to be done for private mappings here 6813 */ 6814 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6815 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6816 6817 if (unlikely(add < 0)) { 6818 hugetlb_acct_memory(h, -gbl_reserve); 6819 goto out_put_pages; 6820 } else if (unlikely(chg > add)) { 6821 /* 6822 * pages in this range were added to the reserve 6823 * map between region_chg and region_add. This 6824 * indicates a race with alloc_hugetlb_folio. Adjust 6825 * the subpool and reserve counts modified above 6826 * based on the difference. 6827 */ 6828 long rsv_adjust; 6829 6830 /* 6831 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6832 * reference to h_cg->css. See comment below for detail. 6833 */ 6834 hugetlb_cgroup_uncharge_cgroup_rsvd( 6835 hstate_index(h), 6836 (chg - add) * pages_per_huge_page(h), h_cg); 6837 6838 rsv_adjust = hugepage_subpool_put_pages(spool, 6839 chg - add); 6840 hugetlb_acct_memory(h, -rsv_adjust); 6841 } else if (h_cg) { 6842 /* 6843 * The file_regions will hold their own reference to 6844 * h_cg->css. So we should release the reference held 6845 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6846 * done. 6847 */ 6848 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6849 } 6850 } 6851 return true; 6852 6853 out_put_pages: 6854 /* put back original number of pages, chg */ 6855 (void)hugepage_subpool_put_pages(spool, chg); 6856 out_uncharge_cgroup: 6857 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6858 chg * pages_per_huge_page(h), h_cg); 6859 out_err: 6860 hugetlb_vma_lock_free(vma); 6861 if (!vma || vma->vm_flags & VM_MAYSHARE) 6862 /* Only call region_abort if the region_chg succeeded but the 6863 * region_add failed or didn't run. 6864 */ 6865 if (chg >= 0 && add < 0) 6866 region_abort(resv_map, from, to, regions_needed); 6867 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 6868 kref_put(&resv_map->refs, resv_map_release); 6869 set_vma_resv_map(vma, NULL); 6870 } 6871 return false; 6872 } 6873 6874 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6875 long freed) 6876 { 6877 struct hstate *h = hstate_inode(inode); 6878 struct resv_map *resv_map = inode_resv_map(inode); 6879 long chg = 0; 6880 struct hugepage_subpool *spool = subpool_inode(inode); 6881 long gbl_reserve; 6882 6883 /* 6884 * Since this routine can be called in the evict inode path for all 6885 * hugetlbfs inodes, resv_map could be NULL. 6886 */ 6887 if (resv_map) { 6888 chg = region_del(resv_map, start, end); 6889 /* 6890 * region_del() can fail in the rare case where a region 6891 * must be split and another region descriptor can not be 6892 * allocated. If end == LONG_MAX, it will not fail. 6893 */ 6894 if (chg < 0) 6895 return chg; 6896 } 6897 6898 spin_lock(&inode->i_lock); 6899 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6900 spin_unlock(&inode->i_lock); 6901 6902 /* 6903 * If the subpool has a minimum size, the number of global 6904 * reservations to be released may be adjusted. 6905 * 6906 * Note that !resv_map implies freed == 0. So (chg - freed) 6907 * won't go negative. 6908 */ 6909 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6910 hugetlb_acct_memory(h, -gbl_reserve); 6911 6912 return 0; 6913 } 6914 6915 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6916 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6917 struct vm_area_struct *vma, 6918 unsigned long addr, pgoff_t idx) 6919 { 6920 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6921 svma->vm_start; 6922 unsigned long sbase = saddr & PUD_MASK; 6923 unsigned long s_end = sbase + PUD_SIZE; 6924 6925 /* Allow segments to share if only one is marked locked */ 6926 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6927 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6928 6929 /* 6930 * match the virtual addresses, permission and the alignment of the 6931 * page table page. 6932 * 6933 * Also, vma_lock (vm_private_data) is required for sharing. 6934 */ 6935 if (pmd_index(addr) != pmd_index(saddr) || 6936 vm_flags != svm_flags || 6937 !range_in_vma(svma, sbase, s_end) || 6938 !svma->vm_private_data) 6939 return 0; 6940 6941 return saddr; 6942 } 6943 6944 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6945 { 6946 unsigned long start = addr & PUD_MASK; 6947 unsigned long end = start + PUD_SIZE; 6948 6949 #ifdef CONFIG_USERFAULTFD 6950 if (uffd_disable_huge_pmd_share(vma)) 6951 return false; 6952 #endif 6953 /* 6954 * check on proper vm_flags and page table alignment 6955 */ 6956 if (!(vma->vm_flags & VM_MAYSHARE)) 6957 return false; 6958 if (!vma->vm_private_data) /* vma lock required for sharing */ 6959 return false; 6960 if (!range_in_vma(vma, start, end)) 6961 return false; 6962 return true; 6963 } 6964 6965 /* 6966 * Determine if start,end range within vma could be mapped by shared pmd. 6967 * If yes, adjust start and end to cover range associated with possible 6968 * shared pmd mappings. 6969 */ 6970 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6971 unsigned long *start, unsigned long *end) 6972 { 6973 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6974 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6975 6976 /* 6977 * vma needs to span at least one aligned PUD size, and the range 6978 * must be at least partially within in. 6979 */ 6980 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6981 (*end <= v_start) || (*start >= v_end)) 6982 return; 6983 6984 /* Extend the range to be PUD aligned for a worst case scenario */ 6985 if (*start > v_start) 6986 *start = ALIGN_DOWN(*start, PUD_SIZE); 6987 6988 if (*end < v_end) 6989 *end = ALIGN(*end, PUD_SIZE); 6990 } 6991 6992 /* 6993 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6994 * and returns the corresponding pte. While this is not necessary for the 6995 * !shared pmd case because we can allocate the pmd later as well, it makes the 6996 * code much cleaner. pmd allocation is essential for the shared case because 6997 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6998 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6999 * bad pmd for sharing. 7000 */ 7001 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7002 unsigned long addr, pud_t *pud) 7003 { 7004 struct address_space *mapping = vma->vm_file->f_mapping; 7005 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7006 vma->vm_pgoff; 7007 struct vm_area_struct *svma; 7008 unsigned long saddr; 7009 pte_t *spte = NULL; 7010 pte_t *pte; 7011 7012 i_mmap_lock_read(mapping); 7013 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7014 if (svma == vma) 7015 continue; 7016 7017 saddr = page_table_shareable(svma, vma, addr, idx); 7018 if (saddr) { 7019 spte = hugetlb_walk(svma, saddr, 7020 vma_mmu_pagesize(svma)); 7021 if (spte) { 7022 get_page(virt_to_page(spte)); 7023 break; 7024 } 7025 } 7026 } 7027 7028 if (!spte) 7029 goto out; 7030 7031 spin_lock(&mm->page_table_lock); 7032 if (pud_none(*pud)) { 7033 pud_populate(mm, pud, 7034 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7035 mm_inc_nr_pmds(mm); 7036 } else { 7037 put_page(virt_to_page(spte)); 7038 } 7039 spin_unlock(&mm->page_table_lock); 7040 out: 7041 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7042 i_mmap_unlock_read(mapping); 7043 return pte; 7044 } 7045 7046 /* 7047 * unmap huge page backed by shared pte. 7048 * 7049 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7050 * indicated by page_count > 1, unmap is achieved by clearing pud and 7051 * decrementing the ref count. If count == 1, the pte page is not shared. 7052 * 7053 * Called with page table lock held. 7054 * 7055 * returns: 1 successfully unmapped a shared pte page 7056 * 0 the underlying pte page is not shared, or it is the last user 7057 */ 7058 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7059 unsigned long addr, pte_t *ptep) 7060 { 7061 pgd_t *pgd = pgd_offset(mm, addr); 7062 p4d_t *p4d = p4d_offset(pgd, addr); 7063 pud_t *pud = pud_offset(p4d, addr); 7064 7065 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7066 hugetlb_vma_assert_locked(vma); 7067 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7068 if (page_count(virt_to_page(ptep)) == 1) 7069 return 0; 7070 7071 pud_clear(pud); 7072 put_page(virt_to_page(ptep)); 7073 mm_dec_nr_pmds(mm); 7074 return 1; 7075 } 7076 7077 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7078 7079 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7080 unsigned long addr, pud_t *pud) 7081 { 7082 return NULL; 7083 } 7084 7085 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7086 unsigned long addr, pte_t *ptep) 7087 { 7088 return 0; 7089 } 7090 7091 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7092 unsigned long *start, unsigned long *end) 7093 { 7094 } 7095 7096 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7097 { 7098 return false; 7099 } 7100 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7101 7102 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7103 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7104 unsigned long addr, unsigned long sz) 7105 { 7106 pgd_t *pgd; 7107 p4d_t *p4d; 7108 pud_t *pud; 7109 pte_t *pte = NULL; 7110 7111 pgd = pgd_offset(mm, addr); 7112 p4d = p4d_alloc(mm, pgd, addr); 7113 if (!p4d) 7114 return NULL; 7115 pud = pud_alloc(mm, p4d, addr); 7116 if (pud) { 7117 if (sz == PUD_SIZE) { 7118 pte = (pte_t *)pud; 7119 } else { 7120 BUG_ON(sz != PMD_SIZE); 7121 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7122 pte = huge_pmd_share(mm, vma, addr, pud); 7123 else 7124 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7125 } 7126 } 7127 7128 if (pte) { 7129 pte_t pteval = ptep_get_lockless(pte); 7130 7131 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7132 } 7133 7134 return pte; 7135 } 7136 7137 /* 7138 * huge_pte_offset() - Walk the page table to resolve the hugepage 7139 * entry at address @addr 7140 * 7141 * Return: Pointer to page table entry (PUD or PMD) for 7142 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7143 * size @sz doesn't match the hugepage size at this level of the page 7144 * table. 7145 */ 7146 pte_t *huge_pte_offset(struct mm_struct *mm, 7147 unsigned long addr, unsigned long sz) 7148 { 7149 pgd_t *pgd; 7150 p4d_t *p4d; 7151 pud_t *pud; 7152 pmd_t *pmd; 7153 7154 pgd = pgd_offset(mm, addr); 7155 if (!pgd_present(*pgd)) 7156 return NULL; 7157 p4d = p4d_offset(pgd, addr); 7158 if (!p4d_present(*p4d)) 7159 return NULL; 7160 7161 pud = pud_offset(p4d, addr); 7162 if (sz == PUD_SIZE) 7163 /* must be pud huge, non-present or none */ 7164 return (pte_t *)pud; 7165 if (!pud_present(*pud)) 7166 return NULL; 7167 /* must have a valid entry and size to go further */ 7168 7169 pmd = pmd_offset(pud, addr); 7170 /* must be pmd huge, non-present or none */ 7171 return (pte_t *)pmd; 7172 } 7173 7174 /* 7175 * Return a mask that can be used to update an address to the last huge 7176 * page in a page table page mapping size. Used to skip non-present 7177 * page table entries when linearly scanning address ranges. Architectures 7178 * with unique huge page to page table relationships can define their own 7179 * version of this routine. 7180 */ 7181 unsigned long hugetlb_mask_last_page(struct hstate *h) 7182 { 7183 unsigned long hp_size = huge_page_size(h); 7184 7185 if (hp_size == PUD_SIZE) 7186 return P4D_SIZE - PUD_SIZE; 7187 else if (hp_size == PMD_SIZE) 7188 return PUD_SIZE - PMD_SIZE; 7189 else 7190 return 0UL; 7191 } 7192 7193 #else 7194 7195 /* See description above. Architectures can provide their own version. */ 7196 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7197 { 7198 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7199 if (huge_page_size(h) == PMD_SIZE) 7200 return PUD_SIZE - PMD_SIZE; 7201 #endif 7202 return 0UL; 7203 } 7204 7205 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7206 7207 /* 7208 * These functions are overwritable if your architecture needs its own 7209 * behavior. 7210 */ 7211 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7212 { 7213 bool ret = true; 7214 7215 spin_lock_irq(&hugetlb_lock); 7216 if (!folio_test_hugetlb(folio) || 7217 !folio_test_hugetlb_migratable(folio) || 7218 !folio_try_get(folio)) { 7219 ret = false; 7220 goto unlock; 7221 } 7222 folio_clear_hugetlb_migratable(folio); 7223 list_move_tail(&folio->lru, list); 7224 unlock: 7225 spin_unlock_irq(&hugetlb_lock); 7226 return ret; 7227 } 7228 7229 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7230 { 7231 int ret = 0; 7232 7233 *hugetlb = false; 7234 spin_lock_irq(&hugetlb_lock); 7235 if (folio_test_hugetlb(folio)) { 7236 *hugetlb = true; 7237 if (folio_test_hugetlb_freed(folio)) 7238 ret = 0; 7239 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7240 ret = folio_try_get(folio); 7241 else 7242 ret = -EBUSY; 7243 } 7244 spin_unlock_irq(&hugetlb_lock); 7245 return ret; 7246 } 7247 7248 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7249 bool *migratable_cleared) 7250 { 7251 int ret; 7252 7253 spin_lock_irq(&hugetlb_lock); 7254 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7255 spin_unlock_irq(&hugetlb_lock); 7256 return ret; 7257 } 7258 7259 void folio_putback_active_hugetlb(struct folio *folio) 7260 { 7261 spin_lock_irq(&hugetlb_lock); 7262 folio_set_hugetlb_migratable(folio); 7263 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7264 spin_unlock_irq(&hugetlb_lock); 7265 folio_put(folio); 7266 } 7267 7268 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7269 { 7270 struct hstate *h = folio_hstate(old_folio); 7271 7272 hugetlb_cgroup_migrate(old_folio, new_folio); 7273 set_page_owner_migrate_reason(&new_folio->page, reason); 7274 7275 /* 7276 * transfer temporary state of the new hugetlb folio. This is 7277 * reverse to other transitions because the newpage is going to 7278 * be final while the old one will be freed so it takes over 7279 * the temporary status. 7280 * 7281 * Also note that we have to transfer the per-node surplus state 7282 * here as well otherwise the global surplus count will not match 7283 * the per-node's. 7284 */ 7285 if (folio_test_hugetlb_temporary(new_folio)) { 7286 int old_nid = folio_nid(old_folio); 7287 int new_nid = folio_nid(new_folio); 7288 7289 folio_set_hugetlb_temporary(old_folio); 7290 folio_clear_hugetlb_temporary(new_folio); 7291 7292 7293 /* 7294 * There is no need to transfer the per-node surplus state 7295 * when we do not cross the node. 7296 */ 7297 if (new_nid == old_nid) 7298 return; 7299 spin_lock_irq(&hugetlb_lock); 7300 if (h->surplus_huge_pages_node[old_nid]) { 7301 h->surplus_huge_pages_node[old_nid]--; 7302 h->surplus_huge_pages_node[new_nid]++; 7303 } 7304 spin_unlock_irq(&hugetlb_lock); 7305 } 7306 } 7307 7308 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7309 unsigned long start, 7310 unsigned long end) 7311 { 7312 struct hstate *h = hstate_vma(vma); 7313 unsigned long sz = huge_page_size(h); 7314 struct mm_struct *mm = vma->vm_mm; 7315 struct mmu_notifier_range range; 7316 unsigned long address; 7317 spinlock_t *ptl; 7318 pte_t *ptep; 7319 7320 if (!(vma->vm_flags & VM_MAYSHARE)) 7321 return; 7322 7323 if (start >= end) 7324 return; 7325 7326 flush_cache_range(vma, start, end); 7327 /* 7328 * No need to call adjust_range_if_pmd_sharing_possible(), because 7329 * we have already done the PUD_SIZE alignment. 7330 */ 7331 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7332 start, end); 7333 mmu_notifier_invalidate_range_start(&range); 7334 hugetlb_vma_lock_write(vma); 7335 i_mmap_lock_write(vma->vm_file->f_mapping); 7336 for (address = start; address < end; address += PUD_SIZE) { 7337 ptep = hugetlb_walk(vma, address, sz); 7338 if (!ptep) 7339 continue; 7340 ptl = huge_pte_lock(h, mm, ptep); 7341 huge_pmd_unshare(mm, vma, address, ptep); 7342 spin_unlock(ptl); 7343 } 7344 flush_hugetlb_tlb_range(vma, start, end); 7345 i_mmap_unlock_write(vma->vm_file->f_mapping); 7346 hugetlb_vma_unlock_write(vma); 7347 /* 7348 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7349 * Documentation/mm/mmu_notifier.rst. 7350 */ 7351 mmu_notifier_invalidate_range_end(&range); 7352 } 7353 7354 /* 7355 * This function will unconditionally remove all the shared pmd pgtable entries 7356 * within the specific vma for a hugetlbfs memory range. 7357 */ 7358 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7359 { 7360 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7361 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7362 } 7363 7364 #ifdef CONFIG_CMA 7365 static bool cma_reserve_called __initdata; 7366 7367 static int __init cmdline_parse_hugetlb_cma(char *p) 7368 { 7369 int nid, count = 0; 7370 unsigned long tmp; 7371 char *s = p; 7372 7373 while (*s) { 7374 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7375 break; 7376 7377 if (s[count] == ':') { 7378 if (tmp >= MAX_NUMNODES) 7379 break; 7380 nid = array_index_nospec(tmp, MAX_NUMNODES); 7381 7382 s += count + 1; 7383 tmp = memparse(s, &s); 7384 hugetlb_cma_size_in_node[nid] = tmp; 7385 hugetlb_cma_size += tmp; 7386 7387 /* 7388 * Skip the separator if have one, otherwise 7389 * break the parsing. 7390 */ 7391 if (*s == ',') 7392 s++; 7393 else 7394 break; 7395 } else { 7396 hugetlb_cma_size = memparse(p, &p); 7397 break; 7398 } 7399 } 7400 7401 return 0; 7402 } 7403 7404 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7405 7406 void __init hugetlb_cma_reserve(int order) 7407 { 7408 unsigned long size, reserved, per_node; 7409 bool node_specific_cma_alloc = false; 7410 int nid; 7411 7412 cma_reserve_called = true; 7413 7414 if (!hugetlb_cma_size) 7415 return; 7416 7417 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7418 if (hugetlb_cma_size_in_node[nid] == 0) 7419 continue; 7420 7421 if (!node_online(nid)) { 7422 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7423 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7424 hugetlb_cma_size_in_node[nid] = 0; 7425 continue; 7426 } 7427 7428 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7429 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7430 nid, (PAGE_SIZE << order) / SZ_1M); 7431 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7432 hugetlb_cma_size_in_node[nid] = 0; 7433 } else { 7434 node_specific_cma_alloc = true; 7435 } 7436 } 7437 7438 /* Validate the CMA size again in case some invalid nodes specified. */ 7439 if (!hugetlb_cma_size) 7440 return; 7441 7442 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7443 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7444 (PAGE_SIZE << order) / SZ_1M); 7445 hugetlb_cma_size = 0; 7446 return; 7447 } 7448 7449 if (!node_specific_cma_alloc) { 7450 /* 7451 * If 3 GB area is requested on a machine with 4 numa nodes, 7452 * let's allocate 1 GB on first three nodes and ignore the last one. 7453 */ 7454 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7455 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7456 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7457 } 7458 7459 reserved = 0; 7460 for_each_online_node(nid) { 7461 int res; 7462 char name[CMA_MAX_NAME]; 7463 7464 if (node_specific_cma_alloc) { 7465 if (hugetlb_cma_size_in_node[nid] == 0) 7466 continue; 7467 7468 size = hugetlb_cma_size_in_node[nid]; 7469 } else { 7470 size = min(per_node, hugetlb_cma_size - reserved); 7471 } 7472 7473 size = round_up(size, PAGE_SIZE << order); 7474 7475 snprintf(name, sizeof(name), "hugetlb%d", nid); 7476 /* 7477 * Note that 'order per bit' is based on smallest size that 7478 * may be returned to CMA allocator in the case of 7479 * huge page demotion. 7480 */ 7481 res = cma_declare_contiguous_nid(0, size, 0, 7482 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7483 0, false, name, 7484 &hugetlb_cma[nid], nid); 7485 if (res) { 7486 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7487 res, nid); 7488 continue; 7489 } 7490 7491 reserved += size; 7492 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7493 size / SZ_1M, nid); 7494 7495 if (reserved >= hugetlb_cma_size) 7496 break; 7497 } 7498 7499 if (!reserved) 7500 /* 7501 * hugetlb_cma_size is used to determine if allocations from 7502 * cma are possible. Set to zero if no cma regions are set up. 7503 */ 7504 hugetlb_cma_size = 0; 7505 } 7506 7507 static void __init hugetlb_cma_check(void) 7508 { 7509 if (!hugetlb_cma_size || cma_reserve_called) 7510 return; 7511 7512 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7513 } 7514 7515 #endif /* CONFIG_CMA */ 7516