1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/cpuset.h> 16 #include <linux/mutex.h> 17 18 #include <asm/page.h> 19 #include <asm/pgtable.h> 20 21 #include <linux/hugetlb.h> 22 #include "internal.h" 23 24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; 26 unsigned long max_huge_pages; 27 static struct list_head hugepage_freelists[MAX_NUMNODES]; 28 static unsigned int nr_huge_pages_node[MAX_NUMNODES]; 29 static unsigned int free_huge_pages_node[MAX_NUMNODES]; 30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 31 unsigned long hugepages_treat_as_movable; 32 33 /* 34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 35 */ 36 static DEFINE_SPINLOCK(hugetlb_lock); 37 38 static void clear_huge_page(struct page *page, unsigned long addr) 39 { 40 int i; 41 42 might_sleep(); 43 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { 44 cond_resched(); 45 clear_user_highpage(page + i, addr); 46 } 47 } 48 49 static void copy_huge_page(struct page *dst, struct page *src, 50 unsigned long addr, struct vm_area_struct *vma) 51 { 52 int i; 53 54 might_sleep(); 55 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { 56 cond_resched(); 57 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 58 } 59 } 60 61 static void enqueue_huge_page(struct page *page) 62 { 63 int nid = page_to_nid(page); 64 list_add(&page->lru, &hugepage_freelists[nid]); 65 free_huge_pages++; 66 free_huge_pages_node[nid]++; 67 } 68 69 static struct page *dequeue_huge_page(struct vm_area_struct *vma, 70 unsigned long address) 71 { 72 int nid; 73 struct page *page = NULL; 74 struct zonelist *zonelist = huge_zonelist(vma, address, 75 htlb_alloc_mask); 76 struct zone **z; 77 78 for (z = zonelist->zones; *z; z++) { 79 nid = zone_to_nid(*z); 80 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) && 81 !list_empty(&hugepage_freelists[nid])) { 82 page = list_entry(hugepage_freelists[nid].next, 83 struct page, lru); 84 list_del(&page->lru); 85 free_huge_pages--; 86 free_huge_pages_node[nid]--; 87 break; 88 } 89 } 90 return page; 91 } 92 93 static void free_huge_page(struct page *page) 94 { 95 BUG_ON(page_count(page)); 96 97 INIT_LIST_HEAD(&page->lru); 98 99 spin_lock(&hugetlb_lock); 100 enqueue_huge_page(page); 101 spin_unlock(&hugetlb_lock); 102 } 103 104 static int alloc_fresh_huge_page(void) 105 { 106 static int prev_nid; 107 struct page *page; 108 int nid; 109 110 /* 111 * Copy static prev_nid to local nid, work on that, then copy it 112 * back to prev_nid afterwards: otherwise there's a window in which 113 * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node. 114 * But we don't need to use a spin_lock here: it really doesn't 115 * matter if occasionally a racer chooses the same nid as we do. 116 */ 117 nid = next_node(prev_nid, node_online_map); 118 if (nid == MAX_NUMNODES) 119 nid = first_node(node_online_map); 120 prev_nid = nid; 121 122 page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN, 123 HUGETLB_PAGE_ORDER); 124 if (page) { 125 set_compound_page_dtor(page, free_huge_page); 126 spin_lock(&hugetlb_lock); 127 nr_huge_pages++; 128 nr_huge_pages_node[page_to_nid(page)]++; 129 spin_unlock(&hugetlb_lock); 130 put_page(page); /* free it into the hugepage allocator */ 131 return 1; 132 } 133 return 0; 134 } 135 136 static struct page *alloc_huge_page(struct vm_area_struct *vma, 137 unsigned long addr) 138 { 139 struct page *page; 140 141 spin_lock(&hugetlb_lock); 142 if (vma->vm_flags & VM_MAYSHARE) 143 resv_huge_pages--; 144 else if (free_huge_pages <= resv_huge_pages) 145 goto fail; 146 147 page = dequeue_huge_page(vma, addr); 148 if (!page) 149 goto fail; 150 151 spin_unlock(&hugetlb_lock); 152 set_page_refcounted(page); 153 return page; 154 155 fail: 156 if (vma->vm_flags & VM_MAYSHARE) 157 resv_huge_pages++; 158 spin_unlock(&hugetlb_lock); 159 return NULL; 160 } 161 162 static int __init hugetlb_init(void) 163 { 164 unsigned long i; 165 166 if (HPAGE_SHIFT == 0) 167 return 0; 168 169 for (i = 0; i < MAX_NUMNODES; ++i) 170 INIT_LIST_HEAD(&hugepage_freelists[i]); 171 172 for (i = 0; i < max_huge_pages; ++i) { 173 if (!alloc_fresh_huge_page()) 174 break; 175 } 176 max_huge_pages = free_huge_pages = nr_huge_pages = i; 177 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); 178 return 0; 179 } 180 module_init(hugetlb_init); 181 182 static int __init hugetlb_setup(char *s) 183 { 184 if (sscanf(s, "%lu", &max_huge_pages) <= 0) 185 max_huge_pages = 0; 186 return 1; 187 } 188 __setup("hugepages=", hugetlb_setup); 189 190 static unsigned int cpuset_mems_nr(unsigned int *array) 191 { 192 int node; 193 unsigned int nr = 0; 194 195 for_each_node_mask(node, cpuset_current_mems_allowed) 196 nr += array[node]; 197 198 return nr; 199 } 200 201 #ifdef CONFIG_SYSCTL 202 static void update_and_free_page(struct page *page) 203 { 204 int i; 205 nr_huge_pages--; 206 nr_huge_pages_node[page_to_nid(page)]--; 207 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { 208 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 209 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 210 1 << PG_private | 1<< PG_writeback); 211 } 212 set_compound_page_dtor(page, NULL); 213 set_page_refcounted(page); 214 __free_pages(page, HUGETLB_PAGE_ORDER); 215 } 216 217 #ifdef CONFIG_HIGHMEM 218 static void try_to_free_low(unsigned long count) 219 { 220 int i; 221 222 for (i = 0; i < MAX_NUMNODES; ++i) { 223 struct page *page, *next; 224 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { 225 if (PageHighMem(page)) 226 continue; 227 list_del(&page->lru); 228 update_and_free_page(page); 229 free_huge_pages--; 230 free_huge_pages_node[page_to_nid(page)]--; 231 if (count >= nr_huge_pages) 232 return; 233 } 234 } 235 } 236 #else 237 static inline void try_to_free_low(unsigned long count) 238 { 239 } 240 #endif 241 242 static unsigned long set_max_huge_pages(unsigned long count) 243 { 244 while (count > nr_huge_pages) { 245 if (!alloc_fresh_huge_page()) 246 return nr_huge_pages; 247 } 248 if (count >= nr_huge_pages) 249 return nr_huge_pages; 250 251 spin_lock(&hugetlb_lock); 252 count = max(count, resv_huge_pages); 253 try_to_free_low(count); 254 while (count < nr_huge_pages) { 255 struct page *page = dequeue_huge_page(NULL, 0); 256 if (!page) 257 break; 258 update_and_free_page(page); 259 } 260 spin_unlock(&hugetlb_lock); 261 return nr_huge_pages; 262 } 263 264 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 265 struct file *file, void __user *buffer, 266 size_t *length, loff_t *ppos) 267 { 268 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 269 max_huge_pages = set_max_huge_pages(max_huge_pages); 270 return 0; 271 } 272 273 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 274 struct file *file, void __user *buffer, 275 size_t *length, loff_t *ppos) 276 { 277 proc_dointvec(table, write, file, buffer, length, ppos); 278 if (hugepages_treat_as_movable) 279 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 280 else 281 htlb_alloc_mask = GFP_HIGHUSER; 282 return 0; 283 } 284 285 #endif /* CONFIG_SYSCTL */ 286 287 int hugetlb_report_meminfo(char *buf) 288 { 289 return sprintf(buf, 290 "HugePages_Total: %5lu\n" 291 "HugePages_Free: %5lu\n" 292 "HugePages_Rsvd: %5lu\n" 293 "Hugepagesize: %5lu kB\n", 294 nr_huge_pages, 295 free_huge_pages, 296 resv_huge_pages, 297 HPAGE_SIZE/1024); 298 } 299 300 int hugetlb_report_node_meminfo(int nid, char *buf) 301 { 302 return sprintf(buf, 303 "Node %d HugePages_Total: %5u\n" 304 "Node %d HugePages_Free: %5u\n", 305 nid, nr_huge_pages_node[nid], 306 nid, free_huge_pages_node[nid]); 307 } 308 309 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 310 unsigned long hugetlb_total_pages(void) 311 { 312 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); 313 } 314 315 /* 316 * We cannot handle pagefaults against hugetlb pages at all. They cause 317 * handle_mm_fault() to try to instantiate regular-sized pages in the 318 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 319 * this far. 320 */ 321 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 322 { 323 BUG(); 324 return 0; 325 } 326 327 struct vm_operations_struct hugetlb_vm_ops = { 328 .fault = hugetlb_vm_op_fault, 329 }; 330 331 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 332 int writable) 333 { 334 pte_t entry; 335 336 if (writable) { 337 entry = 338 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 339 } else { 340 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 341 } 342 entry = pte_mkyoung(entry); 343 entry = pte_mkhuge(entry); 344 345 return entry; 346 } 347 348 static void set_huge_ptep_writable(struct vm_area_struct *vma, 349 unsigned long address, pte_t *ptep) 350 { 351 pte_t entry; 352 353 entry = pte_mkwrite(pte_mkdirty(*ptep)); 354 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) { 355 update_mmu_cache(vma, address, entry); 356 lazy_mmu_prot_update(entry); 357 } 358 } 359 360 361 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 362 struct vm_area_struct *vma) 363 { 364 pte_t *src_pte, *dst_pte, entry; 365 struct page *ptepage; 366 unsigned long addr; 367 int cow; 368 369 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 370 371 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { 372 src_pte = huge_pte_offset(src, addr); 373 if (!src_pte) 374 continue; 375 dst_pte = huge_pte_alloc(dst, addr); 376 if (!dst_pte) 377 goto nomem; 378 spin_lock(&dst->page_table_lock); 379 spin_lock(&src->page_table_lock); 380 if (!pte_none(*src_pte)) { 381 if (cow) 382 ptep_set_wrprotect(src, addr, src_pte); 383 entry = *src_pte; 384 ptepage = pte_page(entry); 385 get_page(ptepage); 386 set_huge_pte_at(dst, addr, dst_pte, entry); 387 } 388 spin_unlock(&src->page_table_lock); 389 spin_unlock(&dst->page_table_lock); 390 } 391 return 0; 392 393 nomem: 394 return -ENOMEM; 395 } 396 397 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 398 unsigned long end) 399 { 400 struct mm_struct *mm = vma->vm_mm; 401 unsigned long address; 402 pte_t *ptep; 403 pte_t pte; 404 struct page *page; 405 struct page *tmp; 406 /* 407 * A page gathering list, protected by per file i_mmap_lock. The 408 * lock is used to avoid list corruption from multiple unmapping 409 * of the same page since we are using page->lru. 410 */ 411 LIST_HEAD(page_list); 412 413 WARN_ON(!is_vm_hugetlb_page(vma)); 414 BUG_ON(start & ~HPAGE_MASK); 415 BUG_ON(end & ~HPAGE_MASK); 416 417 spin_lock(&mm->page_table_lock); 418 for (address = start; address < end; address += HPAGE_SIZE) { 419 ptep = huge_pte_offset(mm, address); 420 if (!ptep) 421 continue; 422 423 if (huge_pmd_unshare(mm, &address, ptep)) 424 continue; 425 426 pte = huge_ptep_get_and_clear(mm, address, ptep); 427 if (pte_none(pte)) 428 continue; 429 430 page = pte_page(pte); 431 if (pte_dirty(pte)) 432 set_page_dirty(page); 433 list_add(&page->lru, &page_list); 434 } 435 spin_unlock(&mm->page_table_lock); 436 flush_tlb_range(vma, start, end); 437 list_for_each_entry_safe(page, tmp, &page_list, lru) { 438 list_del(&page->lru); 439 put_page(page); 440 } 441 } 442 443 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 444 unsigned long end) 445 { 446 /* 447 * It is undesirable to test vma->vm_file as it should be non-null 448 * for valid hugetlb area. However, vm_file will be NULL in the error 449 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, 450 * do_mmap_pgoff() nullifies vma->vm_file before calling this function 451 * to clean up. Since no pte has actually been setup, it is safe to 452 * do nothing in this case. 453 */ 454 if (vma->vm_file) { 455 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 456 __unmap_hugepage_range(vma, start, end); 457 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 458 } 459 } 460 461 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 462 unsigned long address, pte_t *ptep, pte_t pte) 463 { 464 struct page *old_page, *new_page; 465 int avoidcopy; 466 467 old_page = pte_page(pte); 468 469 /* If no-one else is actually using this page, avoid the copy 470 * and just make the page writable */ 471 avoidcopy = (page_count(old_page) == 1); 472 if (avoidcopy) { 473 set_huge_ptep_writable(vma, address, ptep); 474 return 0; 475 } 476 477 page_cache_get(old_page); 478 new_page = alloc_huge_page(vma, address); 479 480 if (!new_page) { 481 page_cache_release(old_page); 482 return VM_FAULT_OOM; 483 } 484 485 spin_unlock(&mm->page_table_lock); 486 copy_huge_page(new_page, old_page, address, vma); 487 spin_lock(&mm->page_table_lock); 488 489 ptep = huge_pte_offset(mm, address & HPAGE_MASK); 490 if (likely(pte_same(*ptep, pte))) { 491 /* Break COW */ 492 set_huge_pte_at(mm, address, ptep, 493 make_huge_pte(vma, new_page, 1)); 494 /* Make the old page be freed below */ 495 new_page = old_page; 496 } 497 page_cache_release(new_page); 498 page_cache_release(old_page); 499 return 0; 500 } 501 502 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 503 unsigned long address, pte_t *ptep, int write_access) 504 { 505 int ret = VM_FAULT_SIGBUS; 506 unsigned long idx; 507 unsigned long size; 508 struct page *page; 509 struct address_space *mapping; 510 pte_t new_pte; 511 512 mapping = vma->vm_file->f_mapping; 513 idx = ((address - vma->vm_start) >> HPAGE_SHIFT) 514 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); 515 516 /* 517 * Use page lock to guard against racing truncation 518 * before we get page_table_lock. 519 */ 520 retry: 521 page = find_lock_page(mapping, idx); 522 if (!page) { 523 size = i_size_read(mapping->host) >> HPAGE_SHIFT; 524 if (idx >= size) 525 goto out; 526 if (hugetlb_get_quota(mapping)) 527 goto out; 528 page = alloc_huge_page(vma, address); 529 if (!page) { 530 hugetlb_put_quota(mapping); 531 ret = VM_FAULT_OOM; 532 goto out; 533 } 534 clear_huge_page(page, address); 535 536 if (vma->vm_flags & VM_SHARED) { 537 int err; 538 539 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 540 if (err) { 541 put_page(page); 542 hugetlb_put_quota(mapping); 543 if (err == -EEXIST) 544 goto retry; 545 goto out; 546 } 547 } else 548 lock_page(page); 549 } 550 551 spin_lock(&mm->page_table_lock); 552 size = i_size_read(mapping->host) >> HPAGE_SHIFT; 553 if (idx >= size) 554 goto backout; 555 556 ret = 0; 557 if (!pte_none(*ptep)) 558 goto backout; 559 560 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 561 && (vma->vm_flags & VM_SHARED))); 562 set_huge_pte_at(mm, address, ptep, new_pte); 563 564 if (write_access && !(vma->vm_flags & VM_SHARED)) { 565 /* Optimization, do the COW without a second fault */ 566 ret = hugetlb_cow(mm, vma, address, ptep, new_pte); 567 } 568 569 spin_unlock(&mm->page_table_lock); 570 unlock_page(page); 571 out: 572 return ret; 573 574 backout: 575 spin_unlock(&mm->page_table_lock); 576 hugetlb_put_quota(mapping); 577 unlock_page(page); 578 put_page(page); 579 goto out; 580 } 581 582 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 583 unsigned long address, int write_access) 584 { 585 pte_t *ptep; 586 pte_t entry; 587 int ret; 588 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 589 590 ptep = huge_pte_alloc(mm, address); 591 if (!ptep) 592 return VM_FAULT_OOM; 593 594 /* 595 * Serialize hugepage allocation and instantiation, so that we don't 596 * get spurious allocation failures if two CPUs race to instantiate 597 * the same page in the page cache. 598 */ 599 mutex_lock(&hugetlb_instantiation_mutex); 600 entry = *ptep; 601 if (pte_none(entry)) { 602 ret = hugetlb_no_page(mm, vma, address, ptep, write_access); 603 mutex_unlock(&hugetlb_instantiation_mutex); 604 return ret; 605 } 606 607 ret = 0; 608 609 spin_lock(&mm->page_table_lock); 610 /* Check for a racing update before calling hugetlb_cow */ 611 if (likely(pte_same(entry, *ptep))) 612 if (write_access && !pte_write(entry)) 613 ret = hugetlb_cow(mm, vma, address, ptep, entry); 614 spin_unlock(&mm->page_table_lock); 615 mutex_unlock(&hugetlb_instantiation_mutex); 616 617 return ret; 618 } 619 620 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 621 struct page **pages, struct vm_area_struct **vmas, 622 unsigned long *position, int *length, int i) 623 { 624 unsigned long pfn_offset; 625 unsigned long vaddr = *position; 626 int remainder = *length; 627 628 spin_lock(&mm->page_table_lock); 629 while (vaddr < vma->vm_end && remainder) { 630 pte_t *pte; 631 struct page *page; 632 633 /* 634 * Some archs (sparc64, sh*) have multiple pte_ts to 635 * each hugepage. We have to make * sure we get the 636 * first, for the page indexing below to work. 637 */ 638 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); 639 640 if (!pte || pte_none(*pte)) { 641 int ret; 642 643 spin_unlock(&mm->page_table_lock); 644 ret = hugetlb_fault(mm, vma, vaddr, 0); 645 spin_lock(&mm->page_table_lock); 646 if (!(ret & VM_FAULT_MAJOR)) 647 continue; 648 649 remainder = 0; 650 if (!i) 651 i = -EFAULT; 652 break; 653 } 654 655 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; 656 page = pte_page(*pte); 657 same_page: 658 if (pages) { 659 get_page(page); 660 pages[i] = page + pfn_offset; 661 } 662 663 if (vmas) 664 vmas[i] = vma; 665 666 vaddr += PAGE_SIZE; 667 ++pfn_offset; 668 --remainder; 669 ++i; 670 if (vaddr < vma->vm_end && remainder && 671 pfn_offset < HPAGE_SIZE/PAGE_SIZE) { 672 /* 673 * We use pfn_offset to avoid touching the pageframes 674 * of this compound page. 675 */ 676 goto same_page; 677 } 678 } 679 spin_unlock(&mm->page_table_lock); 680 *length = remainder; 681 *position = vaddr; 682 683 return i; 684 } 685 686 void hugetlb_change_protection(struct vm_area_struct *vma, 687 unsigned long address, unsigned long end, pgprot_t newprot) 688 { 689 struct mm_struct *mm = vma->vm_mm; 690 unsigned long start = address; 691 pte_t *ptep; 692 pte_t pte; 693 694 BUG_ON(address >= end); 695 flush_cache_range(vma, address, end); 696 697 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 698 spin_lock(&mm->page_table_lock); 699 for (; address < end; address += HPAGE_SIZE) { 700 ptep = huge_pte_offset(mm, address); 701 if (!ptep) 702 continue; 703 if (huge_pmd_unshare(mm, &address, ptep)) 704 continue; 705 if (!pte_none(*ptep)) { 706 pte = huge_ptep_get_and_clear(mm, address, ptep); 707 pte = pte_mkhuge(pte_modify(pte, newprot)); 708 set_huge_pte_at(mm, address, ptep, pte); 709 lazy_mmu_prot_update(pte); 710 } 711 } 712 spin_unlock(&mm->page_table_lock); 713 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 714 715 flush_tlb_range(vma, start, end); 716 } 717 718 struct file_region { 719 struct list_head link; 720 long from; 721 long to; 722 }; 723 724 static long region_add(struct list_head *head, long f, long t) 725 { 726 struct file_region *rg, *nrg, *trg; 727 728 /* Locate the region we are either in or before. */ 729 list_for_each_entry(rg, head, link) 730 if (f <= rg->to) 731 break; 732 733 /* Round our left edge to the current segment if it encloses us. */ 734 if (f > rg->from) 735 f = rg->from; 736 737 /* Check for and consume any regions we now overlap with. */ 738 nrg = rg; 739 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 740 if (&rg->link == head) 741 break; 742 if (rg->from > t) 743 break; 744 745 /* If this area reaches higher then extend our area to 746 * include it completely. If this is not the first area 747 * which we intend to reuse, free it. */ 748 if (rg->to > t) 749 t = rg->to; 750 if (rg != nrg) { 751 list_del(&rg->link); 752 kfree(rg); 753 } 754 } 755 nrg->from = f; 756 nrg->to = t; 757 return 0; 758 } 759 760 static long region_chg(struct list_head *head, long f, long t) 761 { 762 struct file_region *rg, *nrg; 763 long chg = 0; 764 765 /* Locate the region we are before or in. */ 766 list_for_each_entry(rg, head, link) 767 if (f <= rg->to) 768 break; 769 770 /* If we are below the current region then a new region is required. 771 * Subtle, allocate a new region at the position but make it zero 772 * size such that we can guarentee to record the reservation. */ 773 if (&rg->link == head || t < rg->from) { 774 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 775 if (nrg == 0) 776 return -ENOMEM; 777 nrg->from = f; 778 nrg->to = f; 779 INIT_LIST_HEAD(&nrg->link); 780 list_add(&nrg->link, rg->link.prev); 781 782 return t - f; 783 } 784 785 /* Round our left edge to the current segment if it encloses us. */ 786 if (f > rg->from) 787 f = rg->from; 788 chg = t - f; 789 790 /* Check for and consume any regions we now overlap with. */ 791 list_for_each_entry(rg, rg->link.prev, link) { 792 if (&rg->link == head) 793 break; 794 if (rg->from > t) 795 return chg; 796 797 /* We overlap with this area, if it extends futher than 798 * us then we must extend ourselves. Account for its 799 * existing reservation. */ 800 if (rg->to > t) { 801 chg += rg->to - t; 802 t = rg->to; 803 } 804 chg -= rg->to - rg->from; 805 } 806 return chg; 807 } 808 809 static long region_truncate(struct list_head *head, long end) 810 { 811 struct file_region *rg, *trg; 812 long chg = 0; 813 814 /* Locate the region we are either in or before. */ 815 list_for_each_entry(rg, head, link) 816 if (end <= rg->to) 817 break; 818 if (&rg->link == head) 819 return 0; 820 821 /* If we are in the middle of a region then adjust it. */ 822 if (end > rg->from) { 823 chg = rg->to - end; 824 rg->to = end; 825 rg = list_entry(rg->link.next, typeof(*rg), link); 826 } 827 828 /* Drop any remaining regions. */ 829 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 830 if (&rg->link == head) 831 break; 832 chg += rg->to - rg->from; 833 list_del(&rg->link); 834 kfree(rg); 835 } 836 return chg; 837 } 838 839 static int hugetlb_acct_memory(long delta) 840 { 841 int ret = -ENOMEM; 842 843 spin_lock(&hugetlb_lock); 844 if ((delta + resv_huge_pages) <= free_huge_pages) { 845 resv_huge_pages += delta; 846 ret = 0; 847 } 848 spin_unlock(&hugetlb_lock); 849 return ret; 850 } 851 852 int hugetlb_reserve_pages(struct inode *inode, long from, long to) 853 { 854 long ret, chg; 855 856 chg = region_chg(&inode->i_mapping->private_list, from, to); 857 if (chg < 0) 858 return chg; 859 /* 860 * When cpuset is configured, it breaks the strict hugetlb page 861 * reservation as the accounting is done on a global variable. Such 862 * reservation is completely rubbish in the presence of cpuset because 863 * the reservation is not checked against page availability for the 864 * current cpuset. Application can still potentially OOM'ed by kernel 865 * with lack of free htlb page in cpuset that the task is in. 866 * Attempt to enforce strict accounting with cpuset is almost 867 * impossible (or too ugly) because cpuset is too fluid that 868 * task or memory node can be dynamically moved between cpusets. 869 * 870 * The change of semantics for shared hugetlb mapping with cpuset is 871 * undesirable. However, in order to preserve some of the semantics, 872 * we fall back to check against current free page availability as 873 * a best attempt and hopefully to minimize the impact of changing 874 * semantics that cpuset has. 875 */ 876 if (chg > cpuset_mems_nr(free_huge_pages_node)) 877 return -ENOMEM; 878 879 ret = hugetlb_acct_memory(chg); 880 if (ret < 0) 881 return ret; 882 region_add(&inode->i_mapping->private_list, from, to); 883 return 0; 884 } 885 886 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 887 { 888 long chg = region_truncate(&inode->i_mapping->private_list, offset); 889 hugetlb_acct_memory(freed - chg); 890 } 891