1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/mmdebug.h> 23 #include <linux/sched/signal.h> 24 #include <linux/rmap.h> 25 #include <linux/string_helpers.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/jhash.h> 29 #include <linux/numa.h> 30 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/tlb.h> 34 35 #include <linux/io.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/node.h> 39 #include <linux/userfaultfd_k.h> 40 #include <linux/page_owner.h> 41 #include "internal.h" 42 43 int hugetlb_max_hstate __read_mostly; 44 unsigned int default_hstate_idx; 45 struct hstate hstates[HUGE_MAX_HSTATE]; 46 /* 47 * Minimum page order among possible hugepage sizes, set to a proper value 48 * at boot time. 49 */ 50 static unsigned int minimum_order __read_mostly = UINT_MAX; 51 52 __initdata LIST_HEAD(huge_boot_pages); 53 54 /* for command line parsing */ 55 static struct hstate * __initdata parsed_hstate; 56 static unsigned long __initdata default_hstate_max_huge_pages; 57 static unsigned long __initdata default_hstate_size; 58 static bool __initdata parsed_valid_hugepagesz = true; 59 60 /* 61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 62 * free_huge_pages, and surplus_huge_pages. 63 */ 64 DEFINE_SPINLOCK(hugetlb_lock); 65 66 /* 67 * Serializes faults on the same logical page. This is used to 68 * prevent spurious OOMs when the hugepage pool is fully utilized. 69 */ 70 static int num_fault_mutexes; 71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 72 73 /* Forward declaration */ 74 static int hugetlb_acct_memory(struct hstate *h, long delta); 75 76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 77 { 78 bool free = (spool->count == 0) && (spool->used_hpages == 0); 79 80 spin_unlock(&spool->lock); 81 82 /* If no pages are used, and no other handles to the subpool 83 * remain, give up any reservations mased on minimum size and 84 * free the subpool */ 85 if (free) { 86 if (spool->min_hpages != -1) 87 hugetlb_acct_memory(spool->hstate, 88 -spool->min_hpages); 89 kfree(spool); 90 } 91 } 92 93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 94 long min_hpages) 95 { 96 struct hugepage_subpool *spool; 97 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 99 if (!spool) 100 return NULL; 101 102 spin_lock_init(&spool->lock); 103 spool->count = 1; 104 spool->max_hpages = max_hpages; 105 spool->hstate = h; 106 spool->min_hpages = min_hpages; 107 108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 109 kfree(spool); 110 return NULL; 111 } 112 spool->rsv_hpages = min_hpages; 113 114 return spool; 115 } 116 117 void hugepage_put_subpool(struct hugepage_subpool *spool) 118 { 119 spin_lock(&spool->lock); 120 BUG_ON(!spool->count); 121 spool->count--; 122 unlock_or_release_subpool(spool); 123 } 124 125 /* 126 * Subpool accounting for allocating and reserving pages. 127 * Return -ENOMEM if there are not enough resources to satisfy the 128 * the request. Otherwise, return the number of pages by which the 129 * global pools must be adjusted (upward). The returned value may 130 * only be different than the passed value (delta) in the case where 131 * a subpool minimum size must be manitained. 132 */ 133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 134 long delta) 135 { 136 long ret = delta; 137 138 if (!spool) 139 return ret; 140 141 spin_lock(&spool->lock); 142 143 if (spool->max_hpages != -1) { /* maximum size accounting */ 144 if ((spool->used_hpages + delta) <= spool->max_hpages) 145 spool->used_hpages += delta; 146 else { 147 ret = -ENOMEM; 148 goto unlock_ret; 149 } 150 } 151 152 /* minimum size accounting */ 153 if (spool->min_hpages != -1 && spool->rsv_hpages) { 154 if (delta > spool->rsv_hpages) { 155 /* 156 * Asking for more reserves than those already taken on 157 * behalf of subpool. Return difference. 158 */ 159 ret = delta - spool->rsv_hpages; 160 spool->rsv_hpages = 0; 161 } else { 162 ret = 0; /* reserves already accounted for */ 163 spool->rsv_hpages -= delta; 164 } 165 } 166 167 unlock_ret: 168 spin_unlock(&spool->lock); 169 return ret; 170 } 171 172 /* 173 * Subpool accounting for freeing and unreserving pages. 174 * Return the number of global page reservations that must be dropped. 175 * The return value may only be different than the passed value (delta) 176 * in the case where a subpool minimum size must be maintained. 177 */ 178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 179 long delta) 180 { 181 long ret = delta; 182 183 if (!spool) 184 return delta; 185 186 spin_lock(&spool->lock); 187 188 if (spool->max_hpages != -1) /* maximum size accounting */ 189 spool->used_hpages -= delta; 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 193 if (spool->rsv_hpages + delta <= spool->min_hpages) 194 ret = 0; 195 else 196 ret = spool->rsv_hpages + delta - spool->min_hpages; 197 198 spool->rsv_hpages += delta; 199 if (spool->rsv_hpages > spool->min_hpages) 200 spool->rsv_hpages = spool->min_hpages; 201 } 202 203 /* 204 * If hugetlbfs_put_super couldn't free spool due to an outstanding 205 * quota reference, free it now. 206 */ 207 unlock_or_release_subpool(spool); 208 209 return ret; 210 } 211 212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 213 { 214 return HUGETLBFS_SB(inode->i_sb)->spool; 215 } 216 217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 218 { 219 return subpool_inode(file_inode(vma->vm_file)); 220 } 221 222 /* 223 * Region tracking -- allows tracking of reservations and instantiated pages 224 * across the pages in a mapping. 225 * 226 * The region data structures are embedded into a resv_map and protected 227 * by a resv_map's lock. The set of regions within the resv_map represent 228 * reservations for huge pages, or huge pages that have already been 229 * instantiated within the map. The from and to elements are huge page 230 * indicies into the associated mapping. from indicates the starting index 231 * of the region. to represents the first index past the end of the region. 232 * 233 * For example, a file region structure with from == 0 and to == 4 represents 234 * four huge pages in a mapping. It is important to note that the to element 235 * represents the first element past the end of the region. This is used in 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 237 * 238 * Interval notation of the form [from, to) will be used to indicate that 239 * the endpoint from is inclusive and to is exclusive. 240 */ 241 struct file_region { 242 struct list_head link; 243 long from; 244 long to; 245 }; 246 247 /* Must be called with resv->lock held. Calling this with count_only == true 248 * will count the number of pages to be added but will not modify the linked 249 * list. 250 */ 251 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 252 bool count_only) 253 { 254 long chg = 0; 255 struct list_head *head = &resv->regions; 256 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 257 258 /* Locate the region we are before or in. */ 259 list_for_each_entry(rg, head, link) 260 if (f <= rg->to) 261 break; 262 263 /* Round our left edge to the current segment if it encloses us. */ 264 if (f > rg->from) 265 f = rg->from; 266 267 chg = t - f; 268 269 /* Check for and consume any regions we now overlap with. */ 270 nrg = rg; 271 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 272 if (&rg->link == head) 273 break; 274 if (rg->from > t) 275 break; 276 277 /* We overlap with this area, if it extends further than 278 * us then we must extend ourselves. Account for its 279 * existing reservation. 280 */ 281 if (rg->to > t) { 282 chg += rg->to - t; 283 t = rg->to; 284 } 285 chg -= rg->to - rg->from; 286 287 if (!count_only && rg != nrg) { 288 list_del(&rg->link); 289 kfree(rg); 290 } 291 } 292 293 if (!count_only) { 294 nrg->from = f; 295 nrg->to = t; 296 } 297 298 return chg; 299 } 300 301 /* 302 * Add the huge page range represented by [f, t) to the reserve 303 * map. Existing regions will be expanded to accommodate the specified 304 * range, or a region will be taken from the cache. Sufficient regions 305 * must exist in the cache due to the previous call to region_chg with 306 * the same range. 307 * 308 * Return the number of new huge pages added to the map. This 309 * number is greater than or equal to zero. 310 */ 311 static long region_add(struct resv_map *resv, long f, long t) 312 { 313 struct list_head *head = &resv->regions; 314 struct file_region *rg, *nrg; 315 long add = 0; 316 317 spin_lock(&resv->lock); 318 /* Locate the region we are either in or before. */ 319 list_for_each_entry(rg, head, link) 320 if (f <= rg->to) 321 break; 322 323 /* 324 * If no region exists which can be expanded to include the 325 * specified range, pull a region descriptor from the cache 326 * and use it for this range. 327 */ 328 if (&rg->link == head || t < rg->from) { 329 VM_BUG_ON(resv->region_cache_count <= 0); 330 331 resv->region_cache_count--; 332 nrg = list_first_entry(&resv->region_cache, struct file_region, 333 link); 334 list_del(&nrg->link); 335 336 nrg->from = f; 337 nrg->to = t; 338 list_add(&nrg->link, rg->link.prev); 339 340 add += t - f; 341 goto out_locked; 342 } 343 344 add = add_reservation_in_range(resv, f, t, false); 345 346 out_locked: 347 resv->adds_in_progress--; 348 spin_unlock(&resv->lock); 349 VM_BUG_ON(add < 0); 350 return add; 351 } 352 353 /* 354 * Examine the existing reserve map and determine how many 355 * huge pages in the specified range [f, t) are NOT currently 356 * represented. This routine is called before a subsequent 357 * call to region_add that will actually modify the reserve 358 * map to add the specified range [f, t). region_chg does 359 * not change the number of huge pages represented by the 360 * map. A new file_region structure is added to the cache 361 * as a placeholder, so that the subsequent region_add 362 * call will have all the regions it needs and will not fail. 363 * 364 * Returns the number of huge pages that need to be added to the existing 365 * reservation map for the range [f, t). This number is greater or equal to 366 * zero. -ENOMEM is returned if a new file_region structure or cache entry 367 * is needed and can not be allocated. 368 */ 369 static long region_chg(struct resv_map *resv, long f, long t) 370 { 371 long chg = 0; 372 373 spin_lock(&resv->lock); 374 retry_locked: 375 resv->adds_in_progress++; 376 377 /* 378 * Check for sufficient descriptors in the cache to accommodate 379 * the number of in progress add operations. 380 */ 381 if (resv->adds_in_progress > resv->region_cache_count) { 382 struct file_region *trg; 383 384 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 385 /* Must drop lock to allocate a new descriptor. */ 386 resv->adds_in_progress--; 387 spin_unlock(&resv->lock); 388 389 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 390 if (!trg) 391 return -ENOMEM; 392 393 spin_lock(&resv->lock); 394 list_add(&trg->link, &resv->region_cache); 395 resv->region_cache_count++; 396 goto retry_locked; 397 } 398 399 chg = add_reservation_in_range(resv, f, t, true); 400 401 spin_unlock(&resv->lock); 402 return chg; 403 } 404 405 /* 406 * Abort the in progress add operation. The adds_in_progress field 407 * of the resv_map keeps track of the operations in progress between 408 * calls to region_chg and region_add. Operations are sometimes 409 * aborted after the call to region_chg. In such cases, region_abort 410 * is called to decrement the adds_in_progress counter. 411 * 412 * NOTE: The range arguments [f, t) are not needed or used in this 413 * routine. They are kept to make reading the calling code easier as 414 * arguments will match the associated region_chg call. 415 */ 416 static void region_abort(struct resv_map *resv, long f, long t) 417 { 418 spin_lock(&resv->lock); 419 VM_BUG_ON(!resv->region_cache_count); 420 resv->adds_in_progress--; 421 spin_unlock(&resv->lock); 422 } 423 424 /* 425 * Delete the specified range [f, t) from the reserve map. If the 426 * t parameter is LONG_MAX, this indicates that ALL regions after f 427 * should be deleted. Locate the regions which intersect [f, t) 428 * and either trim, delete or split the existing regions. 429 * 430 * Returns the number of huge pages deleted from the reserve map. 431 * In the normal case, the return value is zero or more. In the 432 * case where a region must be split, a new region descriptor must 433 * be allocated. If the allocation fails, -ENOMEM will be returned. 434 * NOTE: If the parameter t == LONG_MAX, then we will never split 435 * a region and possibly return -ENOMEM. Callers specifying 436 * t == LONG_MAX do not need to check for -ENOMEM error. 437 */ 438 static long region_del(struct resv_map *resv, long f, long t) 439 { 440 struct list_head *head = &resv->regions; 441 struct file_region *rg, *trg; 442 struct file_region *nrg = NULL; 443 long del = 0; 444 445 retry: 446 spin_lock(&resv->lock); 447 list_for_each_entry_safe(rg, trg, head, link) { 448 /* 449 * Skip regions before the range to be deleted. file_region 450 * ranges are normally of the form [from, to). However, there 451 * may be a "placeholder" entry in the map which is of the form 452 * (from, to) with from == to. Check for placeholder entries 453 * at the beginning of the range to be deleted. 454 */ 455 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 456 continue; 457 458 if (rg->from >= t) 459 break; 460 461 if (f > rg->from && t < rg->to) { /* Must split region */ 462 /* 463 * Check for an entry in the cache before dropping 464 * lock and attempting allocation. 465 */ 466 if (!nrg && 467 resv->region_cache_count > resv->adds_in_progress) { 468 nrg = list_first_entry(&resv->region_cache, 469 struct file_region, 470 link); 471 list_del(&nrg->link); 472 resv->region_cache_count--; 473 } 474 475 if (!nrg) { 476 spin_unlock(&resv->lock); 477 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 478 if (!nrg) 479 return -ENOMEM; 480 goto retry; 481 } 482 483 del += t - f; 484 485 /* New entry for end of split region */ 486 nrg->from = t; 487 nrg->to = rg->to; 488 INIT_LIST_HEAD(&nrg->link); 489 490 /* Original entry is trimmed */ 491 rg->to = f; 492 493 list_add(&nrg->link, &rg->link); 494 nrg = NULL; 495 break; 496 } 497 498 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 499 del += rg->to - rg->from; 500 list_del(&rg->link); 501 kfree(rg); 502 continue; 503 } 504 505 if (f <= rg->from) { /* Trim beginning of region */ 506 del += t - rg->from; 507 rg->from = t; 508 } else { /* Trim end of region */ 509 del += rg->to - f; 510 rg->to = f; 511 } 512 } 513 514 spin_unlock(&resv->lock); 515 kfree(nrg); 516 return del; 517 } 518 519 /* 520 * A rare out of memory error was encountered which prevented removal of 521 * the reserve map region for a page. The huge page itself was free'ed 522 * and removed from the page cache. This routine will adjust the subpool 523 * usage count, and the global reserve count if needed. By incrementing 524 * these counts, the reserve map entry which could not be deleted will 525 * appear as a "reserved" entry instead of simply dangling with incorrect 526 * counts. 527 */ 528 void hugetlb_fix_reserve_counts(struct inode *inode) 529 { 530 struct hugepage_subpool *spool = subpool_inode(inode); 531 long rsv_adjust; 532 533 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 534 if (rsv_adjust) { 535 struct hstate *h = hstate_inode(inode); 536 537 hugetlb_acct_memory(h, 1); 538 } 539 } 540 541 /* 542 * Count and return the number of huge pages in the reserve map 543 * that intersect with the range [f, t). 544 */ 545 static long region_count(struct resv_map *resv, long f, long t) 546 { 547 struct list_head *head = &resv->regions; 548 struct file_region *rg; 549 long chg = 0; 550 551 spin_lock(&resv->lock); 552 /* Locate each segment we overlap with, and count that overlap. */ 553 list_for_each_entry(rg, head, link) { 554 long seg_from; 555 long seg_to; 556 557 if (rg->to <= f) 558 continue; 559 if (rg->from >= t) 560 break; 561 562 seg_from = max(rg->from, f); 563 seg_to = min(rg->to, t); 564 565 chg += seg_to - seg_from; 566 } 567 spin_unlock(&resv->lock); 568 569 return chg; 570 } 571 572 /* 573 * Convert the address within this vma to the page offset within 574 * the mapping, in pagecache page units; huge pages here. 575 */ 576 static pgoff_t vma_hugecache_offset(struct hstate *h, 577 struct vm_area_struct *vma, unsigned long address) 578 { 579 return ((address - vma->vm_start) >> huge_page_shift(h)) + 580 (vma->vm_pgoff >> huge_page_order(h)); 581 } 582 583 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 584 unsigned long address) 585 { 586 return vma_hugecache_offset(hstate_vma(vma), vma, address); 587 } 588 EXPORT_SYMBOL_GPL(linear_hugepage_index); 589 590 /* 591 * Return the size of the pages allocated when backing a VMA. In the majority 592 * cases this will be same size as used by the page table entries. 593 */ 594 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 595 { 596 if (vma->vm_ops && vma->vm_ops->pagesize) 597 return vma->vm_ops->pagesize(vma); 598 return PAGE_SIZE; 599 } 600 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 601 602 /* 603 * Return the page size being used by the MMU to back a VMA. In the majority 604 * of cases, the page size used by the kernel matches the MMU size. On 605 * architectures where it differs, an architecture-specific 'strong' 606 * version of this symbol is required. 607 */ 608 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 609 { 610 return vma_kernel_pagesize(vma); 611 } 612 613 /* 614 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 615 * bits of the reservation map pointer, which are always clear due to 616 * alignment. 617 */ 618 #define HPAGE_RESV_OWNER (1UL << 0) 619 #define HPAGE_RESV_UNMAPPED (1UL << 1) 620 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 621 622 /* 623 * These helpers are used to track how many pages are reserved for 624 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 625 * is guaranteed to have their future faults succeed. 626 * 627 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 628 * the reserve counters are updated with the hugetlb_lock held. It is safe 629 * to reset the VMA at fork() time as it is not in use yet and there is no 630 * chance of the global counters getting corrupted as a result of the values. 631 * 632 * The private mapping reservation is represented in a subtly different 633 * manner to a shared mapping. A shared mapping has a region map associated 634 * with the underlying file, this region map represents the backing file 635 * pages which have ever had a reservation assigned which this persists even 636 * after the page is instantiated. A private mapping has a region map 637 * associated with the original mmap which is attached to all VMAs which 638 * reference it, this region map represents those offsets which have consumed 639 * reservation ie. where pages have been instantiated. 640 */ 641 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 642 { 643 return (unsigned long)vma->vm_private_data; 644 } 645 646 static void set_vma_private_data(struct vm_area_struct *vma, 647 unsigned long value) 648 { 649 vma->vm_private_data = (void *)value; 650 } 651 652 struct resv_map *resv_map_alloc(void) 653 { 654 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 655 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 656 657 if (!resv_map || !rg) { 658 kfree(resv_map); 659 kfree(rg); 660 return NULL; 661 } 662 663 kref_init(&resv_map->refs); 664 spin_lock_init(&resv_map->lock); 665 INIT_LIST_HEAD(&resv_map->regions); 666 667 resv_map->adds_in_progress = 0; 668 669 INIT_LIST_HEAD(&resv_map->region_cache); 670 list_add(&rg->link, &resv_map->region_cache); 671 resv_map->region_cache_count = 1; 672 673 return resv_map; 674 } 675 676 void resv_map_release(struct kref *ref) 677 { 678 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 679 struct list_head *head = &resv_map->region_cache; 680 struct file_region *rg, *trg; 681 682 /* Clear out any active regions before we release the map. */ 683 region_del(resv_map, 0, LONG_MAX); 684 685 /* ... and any entries left in the cache */ 686 list_for_each_entry_safe(rg, trg, head, link) { 687 list_del(&rg->link); 688 kfree(rg); 689 } 690 691 VM_BUG_ON(resv_map->adds_in_progress); 692 693 kfree(resv_map); 694 } 695 696 static inline struct resv_map *inode_resv_map(struct inode *inode) 697 { 698 /* 699 * At inode evict time, i_mapping may not point to the original 700 * address space within the inode. This original address space 701 * contains the pointer to the resv_map. So, always use the 702 * address space embedded within the inode. 703 * The VERY common case is inode->mapping == &inode->i_data but, 704 * this may not be true for device special inodes. 705 */ 706 return (struct resv_map *)(&inode->i_data)->private_data; 707 } 708 709 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 710 { 711 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 712 if (vma->vm_flags & VM_MAYSHARE) { 713 struct address_space *mapping = vma->vm_file->f_mapping; 714 struct inode *inode = mapping->host; 715 716 return inode_resv_map(inode); 717 718 } else { 719 return (struct resv_map *)(get_vma_private_data(vma) & 720 ~HPAGE_RESV_MASK); 721 } 722 } 723 724 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 725 { 726 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 727 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 728 729 set_vma_private_data(vma, (get_vma_private_data(vma) & 730 HPAGE_RESV_MASK) | (unsigned long)map); 731 } 732 733 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 734 { 735 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 736 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 737 738 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 739 } 740 741 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 742 { 743 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 744 745 return (get_vma_private_data(vma) & flag) != 0; 746 } 747 748 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 749 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 750 { 751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 752 if (!(vma->vm_flags & VM_MAYSHARE)) 753 vma->vm_private_data = (void *)0; 754 } 755 756 /* Returns true if the VMA has associated reserve pages */ 757 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 758 { 759 if (vma->vm_flags & VM_NORESERVE) { 760 /* 761 * This address is already reserved by other process(chg == 0), 762 * so, we should decrement reserved count. Without decrementing, 763 * reserve count remains after releasing inode, because this 764 * allocated page will go into page cache and is regarded as 765 * coming from reserved pool in releasing step. Currently, we 766 * don't have any other solution to deal with this situation 767 * properly, so add work-around here. 768 */ 769 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 770 return true; 771 else 772 return false; 773 } 774 775 /* Shared mappings always use reserves */ 776 if (vma->vm_flags & VM_MAYSHARE) { 777 /* 778 * We know VM_NORESERVE is not set. Therefore, there SHOULD 779 * be a region map for all pages. The only situation where 780 * there is no region map is if a hole was punched via 781 * fallocate. In this case, there really are no reverves to 782 * use. This situation is indicated if chg != 0. 783 */ 784 if (chg) 785 return false; 786 else 787 return true; 788 } 789 790 /* 791 * Only the process that called mmap() has reserves for 792 * private mappings. 793 */ 794 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 795 /* 796 * Like the shared case above, a hole punch or truncate 797 * could have been performed on the private mapping. 798 * Examine the value of chg to determine if reserves 799 * actually exist or were previously consumed. 800 * Very Subtle - The value of chg comes from a previous 801 * call to vma_needs_reserves(). The reserve map for 802 * private mappings has different (opposite) semantics 803 * than that of shared mappings. vma_needs_reserves() 804 * has already taken this difference in semantics into 805 * account. Therefore, the meaning of chg is the same 806 * as in the shared case above. Code could easily be 807 * combined, but keeping it separate draws attention to 808 * subtle differences. 809 */ 810 if (chg) 811 return false; 812 else 813 return true; 814 } 815 816 return false; 817 } 818 819 static void enqueue_huge_page(struct hstate *h, struct page *page) 820 { 821 int nid = page_to_nid(page); 822 list_move(&page->lru, &h->hugepage_freelists[nid]); 823 h->free_huge_pages++; 824 h->free_huge_pages_node[nid]++; 825 } 826 827 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 828 { 829 struct page *page; 830 831 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 832 if (!PageHWPoison(page)) 833 break; 834 /* 835 * if 'non-isolated free hugepage' not found on the list, 836 * the allocation fails. 837 */ 838 if (&h->hugepage_freelists[nid] == &page->lru) 839 return NULL; 840 list_move(&page->lru, &h->hugepage_activelist); 841 set_page_refcounted(page); 842 h->free_huge_pages--; 843 h->free_huge_pages_node[nid]--; 844 return page; 845 } 846 847 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 848 nodemask_t *nmask) 849 { 850 unsigned int cpuset_mems_cookie; 851 struct zonelist *zonelist; 852 struct zone *zone; 853 struct zoneref *z; 854 int node = NUMA_NO_NODE; 855 856 zonelist = node_zonelist(nid, gfp_mask); 857 858 retry_cpuset: 859 cpuset_mems_cookie = read_mems_allowed_begin(); 860 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 861 struct page *page; 862 863 if (!cpuset_zone_allowed(zone, gfp_mask)) 864 continue; 865 /* 866 * no need to ask again on the same node. Pool is node rather than 867 * zone aware 868 */ 869 if (zone_to_nid(zone) == node) 870 continue; 871 node = zone_to_nid(zone); 872 873 page = dequeue_huge_page_node_exact(h, node); 874 if (page) 875 return page; 876 } 877 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 878 goto retry_cpuset; 879 880 return NULL; 881 } 882 883 /* Movability of hugepages depends on migration support. */ 884 static inline gfp_t htlb_alloc_mask(struct hstate *h) 885 { 886 if (hugepage_movable_supported(h)) 887 return GFP_HIGHUSER_MOVABLE; 888 else 889 return GFP_HIGHUSER; 890 } 891 892 static struct page *dequeue_huge_page_vma(struct hstate *h, 893 struct vm_area_struct *vma, 894 unsigned long address, int avoid_reserve, 895 long chg) 896 { 897 struct page *page; 898 struct mempolicy *mpol; 899 gfp_t gfp_mask; 900 nodemask_t *nodemask; 901 int nid; 902 903 /* 904 * A child process with MAP_PRIVATE mappings created by their parent 905 * have no page reserves. This check ensures that reservations are 906 * not "stolen". The child may still get SIGKILLed 907 */ 908 if (!vma_has_reserves(vma, chg) && 909 h->free_huge_pages - h->resv_huge_pages == 0) 910 goto err; 911 912 /* If reserves cannot be used, ensure enough pages are in the pool */ 913 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 914 goto err; 915 916 gfp_mask = htlb_alloc_mask(h); 917 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 918 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 919 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 920 SetPagePrivate(page); 921 h->resv_huge_pages--; 922 } 923 924 mpol_cond_put(mpol); 925 return page; 926 927 err: 928 return NULL; 929 } 930 931 /* 932 * common helper functions for hstate_next_node_to_{alloc|free}. 933 * We may have allocated or freed a huge page based on a different 934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 935 * be outside of *nodes_allowed. Ensure that we use an allowed 936 * node for alloc or free. 937 */ 938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 939 { 940 nid = next_node_in(nid, *nodes_allowed); 941 VM_BUG_ON(nid >= MAX_NUMNODES); 942 943 return nid; 944 } 945 946 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 947 { 948 if (!node_isset(nid, *nodes_allowed)) 949 nid = next_node_allowed(nid, nodes_allowed); 950 return nid; 951 } 952 953 /* 954 * returns the previously saved node ["this node"] from which to 955 * allocate a persistent huge page for the pool and advance the 956 * next node from which to allocate, handling wrap at end of node 957 * mask. 958 */ 959 static int hstate_next_node_to_alloc(struct hstate *h, 960 nodemask_t *nodes_allowed) 961 { 962 int nid; 963 964 VM_BUG_ON(!nodes_allowed); 965 966 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 967 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 968 969 return nid; 970 } 971 972 /* 973 * helper for free_pool_huge_page() - return the previously saved 974 * node ["this node"] from which to free a huge page. Advance the 975 * next node id whether or not we find a free huge page to free so 976 * that the next attempt to free addresses the next node. 977 */ 978 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 979 { 980 int nid; 981 982 VM_BUG_ON(!nodes_allowed); 983 984 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 985 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 986 987 return nid; 988 } 989 990 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 991 for (nr_nodes = nodes_weight(*mask); \ 992 nr_nodes > 0 && \ 993 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 994 nr_nodes--) 995 996 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 997 for (nr_nodes = nodes_weight(*mask); \ 998 nr_nodes > 0 && \ 999 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1000 nr_nodes--) 1001 1002 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1003 static void destroy_compound_gigantic_page(struct page *page, 1004 unsigned int order) 1005 { 1006 int i; 1007 int nr_pages = 1 << order; 1008 struct page *p = page + 1; 1009 1010 atomic_set(compound_mapcount_ptr(page), 0); 1011 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1012 clear_compound_head(p); 1013 set_page_refcounted(p); 1014 } 1015 1016 set_compound_order(page, 0); 1017 __ClearPageHead(page); 1018 } 1019 1020 static void free_gigantic_page(struct page *page, unsigned int order) 1021 { 1022 free_contig_range(page_to_pfn(page), 1 << order); 1023 } 1024 1025 #ifdef CONFIG_CONTIG_ALLOC 1026 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1027 int nid, nodemask_t *nodemask) 1028 { 1029 unsigned long nr_pages = 1UL << huge_page_order(h); 1030 1031 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1032 } 1033 1034 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1035 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1036 #else /* !CONFIG_CONTIG_ALLOC */ 1037 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1038 int nid, nodemask_t *nodemask) 1039 { 1040 return NULL; 1041 } 1042 #endif /* CONFIG_CONTIG_ALLOC */ 1043 1044 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1045 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1046 int nid, nodemask_t *nodemask) 1047 { 1048 return NULL; 1049 } 1050 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1051 static inline void destroy_compound_gigantic_page(struct page *page, 1052 unsigned int order) { } 1053 #endif 1054 1055 static void update_and_free_page(struct hstate *h, struct page *page) 1056 { 1057 int i; 1058 1059 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1060 return; 1061 1062 h->nr_huge_pages--; 1063 h->nr_huge_pages_node[page_to_nid(page)]--; 1064 for (i = 0; i < pages_per_huge_page(h); i++) { 1065 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1066 1 << PG_referenced | 1 << PG_dirty | 1067 1 << PG_active | 1 << PG_private | 1068 1 << PG_writeback); 1069 } 1070 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1071 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1072 set_page_refcounted(page); 1073 if (hstate_is_gigantic(h)) { 1074 destroy_compound_gigantic_page(page, huge_page_order(h)); 1075 free_gigantic_page(page, huge_page_order(h)); 1076 } else { 1077 __free_pages(page, huge_page_order(h)); 1078 } 1079 } 1080 1081 struct hstate *size_to_hstate(unsigned long size) 1082 { 1083 struct hstate *h; 1084 1085 for_each_hstate(h) { 1086 if (huge_page_size(h) == size) 1087 return h; 1088 } 1089 return NULL; 1090 } 1091 1092 /* 1093 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1094 * to hstate->hugepage_activelist.) 1095 * 1096 * This function can be called for tail pages, but never returns true for them. 1097 */ 1098 bool page_huge_active(struct page *page) 1099 { 1100 VM_BUG_ON_PAGE(!PageHuge(page), page); 1101 return PageHead(page) && PagePrivate(&page[1]); 1102 } 1103 1104 /* never called for tail page */ 1105 static void set_page_huge_active(struct page *page) 1106 { 1107 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1108 SetPagePrivate(&page[1]); 1109 } 1110 1111 static void clear_page_huge_active(struct page *page) 1112 { 1113 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1114 ClearPagePrivate(&page[1]); 1115 } 1116 1117 /* 1118 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1119 * code 1120 */ 1121 static inline bool PageHugeTemporary(struct page *page) 1122 { 1123 if (!PageHuge(page)) 1124 return false; 1125 1126 return (unsigned long)page[2].mapping == -1U; 1127 } 1128 1129 static inline void SetPageHugeTemporary(struct page *page) 1130 { 1131 page[2].mapping = (void *)-1U; 1132 } 1133 1134 static inline void ClearPageHugeTemporary(struct page *page) 1135 { 1136 page[2].mapping = NULL; 1137 } 1138 1139 void free_huge_page(struct page *page) 1140 { 1141 /* 1142 * Can't pass hstate in here because it is called from the 1143 * compound page destructor. 1144 */ 1145 struct hstate *h = page_hstate(page); 1146 int nid = page_to_nid(page); 1147 struct hugepage_subpool *spool = 1148 (struct hugepage_subpool *)page_private(page); 1149 bool restore_reserve; 1150 1151 VM_BUG_ON_PAGE(page_count(page), page); 1152 VM_BUG_ON_PAGE(page_mapcount(page), page); 1153 1154 set_page_private(page, 0); 1155 page->mapping = NULL; 1156 restore_reserve = PagePrivate(page); 1157 ClearPagePrivate(page); 1158 1159 /* 1160 * If PagePrivate() was set on page, page allocation consumed a 1161 * reservation. If the page was associated with a subpool, there 1162 * would have been a page reserved in the subpool before allocation 1163 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1164 * reservtion, do not call hugepage_subpool_put_pages() as this will 1165 * remove the reserved page from the subpool. 1166 */ 1167 if (!restore_reserve) { 1168 /* 1169 * A return code of zero implies that the subpool will be 1170 * under its minimum size if the reservation is not restored 1171 * after page is free. Therefore, force restore_reserve 1172 * operation. 1173 */ 1174 if (hugepage_subpool_put_pages(spool, 1) == 0) 1175 restore_reserve = true; 1176 } 1177 1178 spin_lock(&hugetlb_lock); 1179 clear_page_huge_active(page); 1180 hugetlb_cgroup_uncharge_page(hstate_index(h), 1181 pages_per_huge_page(h), page); 1182 if (restore_reserve) 1183 h->resv_huge_pages++; 1184 1185 if (PageHugeTemporary(page)) { 1186 list_del(&page->lru); 1187 ClearPageHugeTemporary(page); 1188 update_and_free_page(h, page); 1189 } else if (h->surplus_huge_pages_node[nid]) { 1190 /* remove the page from active list */ 1191 list_del(&page->lru); 1192 update_and_free_page(h, page); 1193 h->surplus_huge_pages--; 1194 h->surplus_huge_pages_node[nid]--; 1195 } else { 1196 arch_clear_hugepage_flags(page); 1197 enqueue_huge_page(h, page); 1198 } 1199 spin_unlock(&hugetlb_lock); 1200 } 1201 1202 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1203 { 1204 INIT_LIST_HEAD(&page->lru); 1205 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1206 spin_lock(&hugetlb_lock); 1207 set_hugetlb_cgroup(page, NULL); 1208 h->nr_huge_pages++; 1209 h->nr_huge_pages_node[nid]++; 1210 spin_unlock(&hugetlb_lock); 1211 } 1212 1213 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1214 { 1215 int i; 1216 int nr_pages = 1 << order; 1217 struct page *p = page + 1; 1218 1219 /* we rely on prep_new_huge_page to set the destructor */ 1220 set_compound_order(page, order); 1221 __ClearPageReserved(page); 1222 __SetPageHead(page); 1223 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1224 /* 1225 * For gigantic hugepages allocated through bootmem at 1226 * boot, it's safer to be consistent with the not-gigantic 1227 * hugepages and clear the PG_reserved bit from all tail pages 1228 * too. Otherwse drivers using get_user_pages() to access tail 1229 * pages may get the reference counting wrong if they see 1230 * PG_reserved set on a tail page (despite the head page not 1231 * having PG_reserved set). Enforcing this consistency between 1232 * head and tail pages allows drivers to optimize away a check 1233 * on the head page when they need know if put_page() is needed 1234 * after get_user_pages(). 1235 */ 1236 __ClearPageReserved(p); 1237 set_page_count(p, 0); 1238 set_compound_head(p, page); 1239 } 1240 atomic_set(compound_mapcount_ptr(page), -1); 1241 } 1242 1243 /* 1244 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1245 * transparent huge pages. See the PageTransHuge() documentation for more 1246 * details. 1247 */ 1248 int PageHuge(struct page *page) 1249 { 1250 if (!PageCompound(page)) 1251 return 0; 1252 1253 page = compound_head(page); 1254 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1255 } 1256 EXPORT_SYMBOL_GPL(PageHuge); 1257 1258 /* 1259 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1260 * normal or transparent huge pages. 1261 */ 1262 int PageHeadHuge(struct page *page_head) 1263 { 1264 if (!PageHead(page_head)) 1265 return 0; 1266 1267 return get_compound_page_dtor(page_head) == free_huge_page; 1268 } 1269 1270 pgoff_t __basepage_index(struct page *page) 1271 { 1272 struct page *page_head = compound_head(page); 1273 pgoff_t index = page_index(page_head); 1274 unsigned long compound_idx; 1275 1276 if (!PageHuge(page_head)) 1277 return page_index(page); 1278 1279 if (compound_order(page_head) >= MAX_ORDER) 1280 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1281 else 1282 compound_idx = page - page_head; 1283 1284 return (index << compound_order(page_head)) + compound_idx; 1285 } 1286 1287 static struct page *alloc_buddy_huge_page(struct hstate *h, 1288 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1289 nodemask_t *node_alloc_noretry) 1290 { 1291 int order = huge_page_order(h); 1292 struct page *page; 1293 bool alloc_try_hard = true; 1294 1295 /* 1296 * By default we always try hard to allocate the page with 1297 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1298 * a loop (to adjust global huge page counts) and previous allocation 1299 * failed, do not continue to try hard on the same node. Use the 1300 * node_alloc_noretry bitmap to manage this state information. 1301 */ 1302 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1303 alloc_try_hard = false; 1304 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1305 if (alloc_try_hard) 1306 gfp_mask |= __GFP_RETRY_MAYFAIL; 1307 if (nid == NUMA_NO_NODE) 1308 nid = numa_mem_id(); 1309 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1310 if (page) 1311 __count_vm_event(HTLB_BUDDY_PGALLOC); 1312 else 1313 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1314 1315 /* 1316 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1317 * indicates an overall state change. Clear bit so that we resume 1318 * normal 'try hard' allocations. 1319 */ 1320 if (node_alloc_noretry && page && !alloc_try_hard) 1321 node_clear(nid, *node_alloc_noretry); 1322 1323 /* 1324 * If we tried hard to get a page but failed, set bit so that 1325 * subsequent attempts will not try as hard until there is an 1326 * overall state change. 1327 */ 1328 if (node_alloc_noretry && !page && alloc_try_hard) 1329 node_set(nid, *node_alloc_noretry); 1330 1331 return page; 1332 } 1333 1334 /* 1335 * Common helper to allocate a fresh hugetlb page. All specific allocators 1336 * should use this function to get new hugetlb pages 1337 */ 1338 static struct page *alloc_fresh_huge_page(struct hstate *h, 1339 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1340 nodemask_t *node_alloc_noretry) 1341 { 1342 struct page *page; 1343 1344 if (hstate_is_gigantic(h)) 1345 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1346 else 1347 page = alloc_buddy_huge_page(h, gfp_mask, 1348 nid, nmask, node_alloc_noretry); 1349 if (!page) 1350 return NULL; 1351 1352 if (hstate_is_gigantic(h)) 1353 prep_compound_gigantic_page(page, huge_page_order(h)); 1354 prep_new_huge_page(h, page, page_to_nid(page)); 1355 1356 return page; 1357 } 1358 1359 /* 1360 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1361 * manner. 1362 */ 1363 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1364 nodemask_t *node_alloc_noretry) 1365 { 1366 struct page *page; 1367 int nr_nodes, node; 1368 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1369 1370 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1371 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1372 node_alloc_noretry); 1373 if (page) 1374 break; 1375 } 1376 1377 if (!page) 1378 return 0; 1379 1380 put_page(page); /* free it into the hugepage allocator */ 1381 1382 return 1; 1383 } 1384 1385 /* 1386 * Free huge page from pool from next node to free. 1387 * Attempt to keep persistent huge pages more or less 1388 * balanced over allowed nodes. 1389 * Called with hugetlb_lock locked. 1390 */ 1391 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1392 bool acct_surplus) 1393 { 1394 int nr_nodes, node; 1395 int ret = 0; 1396 1397 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1398 /* 1399 * If we're returning unused surplus pages, only examine 1400 * nodes with surplus pages. 1401 */ 1402 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1403 !list_empty(&h->hugepage_freelists[node])) { 1404 struct page *page = 1405 list_entry(h->hugepage_freelists[node].next, 1406 struct page, lru); 1407 list_del(&page->lru); 1408 h->free_huge_pages--; 1409 h->free_huge_pages_node[node]--; 1410 if (acct_surplus) { 1411 h->surplus_huge_pages--; 1412 h->surplus_huge_pages_node[node]--; 1413 } 1414 update_and_free_page(h, page); 1415 ret = 1; 1416 break; 1417 } 1418 } 1419 1420 return ret; 1421 } 1422 1423 /* 1424 * Dissolve a given free hugepage into free buddy pages. This function does 1425 * nothing for in-use hugepages and non-hugepages. 1426 * This function returns values like below: 1427 * 1428 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1429 * (allocated or reserved.) 1430 * 0: successfully dissolved free hugepages or the page is not a 1431 * hugepage (considered as already dissolved) 1432 */ 1433 int dissolve_free_huge_page(struct page *page) 1434 { 1435 int rc = -EBUSY; 1436 1437 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1438 if (!PageHuge(page)) 1439 return 0; 1440 1441 spin_lock(&hugetlb_lock); 1442 if (!PageHuge(page)) { 1443 rc = 0; 1444 goto out; 1445 } 1446 1447 if (!page_count(page)) { 1448 struct page *head = compound_head(page); 1449 struct hstate *h = page_hstate(head); 1450 int nid = page_to_nid(head); 1451 if (h->free_huge_pages - h->resv_huge_pages == 0) 1452 goto out; 1453 /* 1454 * Move PageHWPoison flag from head page to the raw error page, 1455 * which makes any subpages rather than the error page reusable. 1456 */ 1457 if (PageHWPoison(head) && page != head) { 1458 SetPageHWPoison(page); 1459 ClearPageHWPoison(head); 1460 } 1461 list_del(&head->lru); 1462 h->free_huge_pages--; 1463 h->free_huge_pages_node[nid]--; 1464 h->max_huge_pages--; 1465 update_and_free_page(h, head); 1466 rc = 0; 1467 } 1468 out: 1469 spin_unlock(&hugetlb_lock); 1470 return rc; 1471 } 1472 1473 /* 1474 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1475 * make specified memory blocks removable from the system. 1476 * Note that this will dissolve a free gigantic hugepage completely, if any 1477 * part of it lies within the given range. 1478 * Also note that if dissolve_free_huge_page() returns with an error, all 1479 * free hugepages that were dissolved before that error are lost. 1480 */ 1481 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1482 { 1483 unsigned long pfn; 1484 struct page *page; 1485 int rc = 0; 1486 1487 if (!hugepages_supported()) 1488 return rc; 1489 1490 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1491 page = pfn_to_page(pfn); 1492 rc = dissolve_free_huge_page(page); 1493 if (rc) 1494 break; 1495 } 1496 1497 return rc; 1498 } 1499 1500 /* 1501 * Allocates a fresh surplus page from the page allocator. 1502 */ 1503 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1504 int nid, nodemask_t *nmask) 1505 { 1506 struct page *page = NULL; 1507 1508 if (hstate_is_gigantic(h)) 1509 return NULL; 1510 1511 spin_lock(&hugetlb_lock); 1512 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1513 goto out_unlock; 1514 spin_unlock(&hugetlb_lock); 1515 1516 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1517 if (!page) 1518 return NULL; 1519 1520 spin_lock(&hugetlb_lock); 1521 /* 1522 * We could have raced with the pool size change. 1523 * Double check that and simply deallocate the new page 1524 * if we would end up overcommiting the surpluses. Abuse 1525 * temporary page to workaround the nasty free_huge_page 1526 * codeflow 1527 */ 1528 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1529 SetPageHugeTemporary(page); 1530 spin_unlock(&hugetlb_lock); 1531 put_page(page); 1532 return NULL; 1533 } else { 1534 h->surplus_huge_pages++; 1535 h->surplus_huge_pages_node[page_to_nid(page)]++; 1536 } 1537 1538 out_unlock: 1539 spin_unlock(&hugetlb_lock); 1540 1541 return page; 1542 } 1543 1544 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1545 int nid, nodemask_t *nmask) 1546 { 1547 struct page *page; 1548 1549 if (hstate_is_gigantic(h)) 1550 return NULL; 1551 1552 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1553 if (!page) 1554 return NULL; 1555 1556 /* 1557 * We do not account these pages as surplus because they are only 1558 * temporary and will be released properly on the last reference 1559 */ 1560 SetPageHugeTemporary(page); 1561 1562 return page; 1563 } 1564 1565 /* 1566 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1567 */ 1568 static 1569 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1570 struct vm_area_struct *vma, unsigned long addr) 1571 { 1572 struct page *page; 1573 struct mempolicy *mpol; 1574 gfp_t gfp_mask = htlb_alloc_mask(h); 1575 int nid; 1576 nodemask_t *nodemask; 1577 1578 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1579 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1580 mpol_cond_put(mpol); 1581 1582 return page; 1583 } 1584 1585 /* page migration callback function */ 1586 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1587 { 1588 gfp_t gfp_mask = htlb_alloc_mask(h); 1589 struct page *page = NULL; 1590 1591 if (nid != NUMA_NO_NODE) 1592 gfp_mask |= __GFP_THISNODE; 1593 1594 spin_lock(&hugetlb_lock); 1595 if (h->free_huge_pages - h->resv_huge_pages > 0) 1596 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1597 spin_unlock(&hugetlb_lock); 1598 1599 if (!page) 1600 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1601 1602 return page; 1603 } 1604 1605 /* page migration callback function */ 1606 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1607 nodemask_t *nmask) 1608 { 1609 gfp_t gfp_mask = htlb_alloc_mask(h); 1610 1611 spin_lock(&hugetlb_lock); 1612 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1613 struct page *page; 1614 1615 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1616 if (page) { 1617 spin_unlock(&hugetlb_lock); 1618 return page; 1619 } 1620 } 1621 spin_unlock(&hugetlb_lock); 1622 1623 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1624 } 1625 1626 /* mempolicy aware migration callback */ 1627 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1628 unsigned long address) 1629 { 1630 struct mempolicy *mpol; 1631 nodemask_t *nodemask; 1632 struct page *page; 1633 gfp_t gfp_mask; 1634 int node; 1635 1636 gfp_mask = htlb_alloc_mask(h); 1637 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1638 page = alloc_huge_page_nodemask(h, node, nodemask); 1639 mpol_cond_put(mpol); 1640 1641 return page; 1642 } 1643 1644 /* 1645 * Increase the hugetlb pool such that it can accommodate a reservation 1646 * of size 'delta'. 1647 */ 1648 static int gather_surplus_pages(struct hstate *h, int delta) 1649 { 1650 struct list_head surplus_list; 1651 struct page *page, *tmp; 1652 int ret, i; 1653 int needed, allocated; 1654 bool alloc_ok = true; 1655 1656 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1657 if (needed <= 0) { 1658 h->resv_huge_pages += delta; 1659 return 0; 1660 } 1661 1662 allocated = 0; 1663 INIT_LIST_HEAD(&surplus_list); 1664 1665 ret = -ENOMEM; 1666 retry: 1667 spin_unlock(&hugetlb_lock); 1668 for (i = 0; i < needed; i++) { 1669 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1670 NUMA_NO_NODE, NULL); 1671 if (!page) { 1672 alloc_ok = false; 1673 break; 1674 } 1675 list_add(&page->lru, &surplus_list); 1676 cond_resched(); 1677 } 1678 allocated += i; 1679 1680 /* 1681 * After retaking hugetlb_lock, we need to recalculate 'needed' 1682 * because either resv_huge_pages or free_huge_pages may have changed. 1683 */ 1684 spin_lock(&hugetlb_lock); 1685 needed = (h->resv_huge_pages + delta) - 1686 (h->free_huge_pages + allocated); 1687 if (needed > 0) { 1688 if (alloc_ok) 1689 goto retry; 1690 /* 1691 * We were not able to allocate enough pages to 1692 * satisfy the entire reservation so we free what 1693 * we've allocated so far. 1694 */ 1695 goto free; 1696 } 1697 /* 1698 * The surplus_list now contains _at_least_ the number of extra pages 1699 * needed to accommodate the reservation. Add the appropriate number 1700 * of pages to the hugetlb pool and free the extras back to the buddy 1701 * allocator. Commit the entire reservation here to prevent another 1702 * process from stealing the pages as they are added to the pool but 1703 * before they are reserved. 1704 */ 1705 needed += allocated; 1706 h->resv_huge_pages += delta; 1707 ret = 0; 1708 1709 /* Free the needed pages to the hugetlb pool */ 1710 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1711 if ((--needed) < 0) 1712 break; 1713 /* 1714 * This page is now managed by the hugetlb allocator and has 1715 * no users -- drop the buddy allocator's reference. 1716 */ 1717 put_page_testzero(page); 1718 VM_BUG_ON_PAGE(page_count(page), page); 1719 enqueue_huge_page(h, page); 1720 } 1721 free: 1722 spin_unlock(&hugetlb_lock); 1723 1724 /* Free unnecessary surplus pages to the buddy allocator */ 1725 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1726 put_page(page); 1727 spin_lock(&hugetlb_lock); 1728 1729 return ret; 1730 } 1731 1732 /* 1733 * This routine has two main purposes: 1734 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1735 * in unused_resv_pages. This corresponds to the prior adjustments made 1736 * to the associated reservation map. 1737 * 2) Free any unused surplus pages that may have been allocated to satisfy 1738 * the reservation. As many as unused_resv_pages may be freed. 1739 * 1740 * Called with hugetlb_lock held. However, the lock could be dropped (and 1741 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1742 * we must make sure nobody else can claim pages we are in the process of 1743 * freeing. Do this by ensuring resv_huge_page always is greater than the 1744 * number of huge pages we plan to free when dropping the lock. 1745 */ 1746 static void return_unused_surplus_pages(struct hstate *h, 1747 unsigned long unused_resv_pages) 1748 { 1749 unsigned long nr_pages; 1750 1751 /* Cannot return gigantic pages currently */ 1752 if (hstate_is_gigantic(h)) 1753 goto out; 1754 1755 /* 1756 * Part (or even all) of the reservation could have been backed 1757 * by pre-allocated pages. Only free surplus pages. 1758 */ 1759 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1760 1761 /* 1762 * We want to release as many surplus pages as possible, spread 1763 * evenly across all nodes with memory. Iterate across these nodes 1764 * until we can no longer free unreserved surplus pages. This occurs 1765 * when the nodes with surplus pages have no free pages. 1766 * free_pool_huge_page() will balance the the freed pages across the 1767 * on-line nodes with memory and will handle the hstate accounting. 1768 * 1769 * Note that we decrement resv_huge_pages as we free the pages. If 1770 * we drop the lock, resv_huge_pages will still be sufficiently large 1771 * to cover subsequent pages we may free. 1772 */ 1773 while (nr_pages--) { 1774 h->resv_huge_pages--; 1775 unused_resv_pages--; 1776 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1777 goto out; 1778 cond_resched_lock(&hugetlb_lock); 1779 } 1780 1781 out: 1782 /* Fully uncommit the reservation */ 1783 h->resv_huge_pages -= unused_resv_pages; 1784 } 1785 1786 1787 /* 1788 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1789 * are used by the huge page allocation routines to manage reservations. 1790 * 1791 * vma_needs_reservation is called to determine if the huge page at addr 1792 * within the vma has an associated reservation. If a reservation is 1793 * needed, the value 1 is returned. The caller is then responsible for 1794 * managing the global reservation and subpool usage counts. After 1795 * the huge page has been allocated, vma_commit_reservation is called 1796 * to add the page to the reservation map. If the page allocation fails, 1797 * the reservation must be ended instead of committed. vma_end_reservation 1798 * is called in such cases. 1799 * 1800 * In the normal case, vma_commit_reservation returns the same value 1801 * as the preceding vma_needs_reservation call. The only time this 1802 * is not the case is if a reserve map was changed between calls. It 1803 * is the responsibility of the caller to notice the difference and 1804 * take appropriate action. 1805 * 1806 * vma_add_reservation is used in error paths where a reservation must 1807 * be restored when a newly allocated huge page must be freed. It is 1808 * to be called after calling vma_needs_reservation to determine if a 1809 * reservation exists. 1810 */ 1811 enum vma_resv_mode { 1812 VMA_NEEDS_RESV, 1813 VMA_COMMIT_RESV, 1814 VMA_END_RESV, 1815 VMA_ADD_RESV, 1816 }; 1817 static long __vma_reservation_common(struct hstate *h, 1818 struct vm_area_struct *vma, unsigned long addr, 1819 enum vma_resv_mode mode) 1820 { 1821 struct resv_map *resv; 1822 pgoff_t idx; 1823 long ret; 1824 1825 resv = vma_resv_map(vma); 1826 if (!resv) 1827 return 1; 1828 1829 idx = vma_hugecache_offset(h, vma, addr); 1830 switch (mode) { 1831 case VMA_NEEDS_RESV: 1832 ret = region_chg(resv, idx, idx + 1); 1833 break; 1834 case VMA_COMMIT_RESV: 1835 ret = region_add(resv, idx, idx + 1); 1836 break; 1837 case VMA_END_RESV: 1838 region_abort(resv, idx, idx + 1); 1839 ret = 0; 1840 break; 1841 case VMA_ADD_RESV: 1842 if (vma->vm_flags & VM_MAYSHARE) 1843 ret = region_add(resv, idx, idx + 1); 1844 else { 1845 region_abort(resv, idx, idx + 1); 1846 ret = region_del(resv, idx, idx + 1); 1847 } 1848 break; 1849 default: 1850 BUG(); 1851 } 1852 1853 if (vma->vm_flags & VM_MAYSHARE) 1854 return ret; 1855 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1856 /* 1857 * In most cases, reserves always exist for private mappings. 1858 * However, a file associated with mapping could have been 1859 * hole punched or truncated after reserves were consumed. 1860 * As subsequent fault on such a range will not use reserves. 1861 * Subtle - The reserve map for private mappings has the 1862 * opposite meaning than that of shared mappings. If NO 1863 * entry is in the reserve map, it means a reservation exists. 1864 * If an entry exists in the reserve map, it means the 1865 * reservation has already been consumed. As a result, the 1866 * return value of this routine is the opposite of the 1867 * value returned from reserve map manipulation routines above. 1868 */ 1869 if (ret) 1870 return 0; 1871 else 1872 return 1; 1873 } 1874 else 1875 return ret < 0 ? ret : 0; 1876 } 1877 1878 static long vma_needs_reservation(struct hstate *h, 1879 struct vm_area_struct *vma, unsigned long addr) 1880 { 1881 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1882 } 1883 1884 static long vma_commit_reservation(struct hstate *h, 1885 struct vm_area_struct *vma, unsigned long addr) 1886 { 1887 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1888 } 1889 1890 static void vma_end_reservation(struct hstate *h, 1891 struct vm_area_struct *vma, unsigned long addr) 1892 { 1893 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1894 } 1895 1896 static long vma_add_reservation(struct hstate *h, 1897 struct vm_area_struct *vma, unsigned long addr) 1898 { 1899 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1900 } 1901 1902 /* 1903 * This routine is called to restore a reservation on error paths. In the 1904 * specific error paths, a huge page was allocated (via alloc_huge_page) 1905 * and is about to be freed. If a reservation for the page existed, 1906 * alloc_huge_page would have consumed the reservation and set PagePrivate 1907 * in the newly allocated page. When the page is freed via free_huge_page, 1908 * the global reservation count will be incremented if PagePrivate is set. 1909 * However, free_huge_page can not adjust the reserve map. Adjust the 1910 * reserve map here to be consistent with global reserve count adjustments 1911 * to be made by free_huge_page. 1912 */ 1913 static void restore_reserve_on_error(struct hstate *h, 1914 struct vm_area_struct *vma, unsigned long address, 1915 struct page *page) 1916 { 1917 if (unlikely(PagePrivate(page))) { 1918 long rc = vma_needs_reservation(h, vma, address); 1919 1920 if (unlikely(rc < 0)) { 1921 /* 1922 * Rare out of memory condition in reserve map 1923 * manipulation. Clear PagePrivate so that 1924 * global reserve count will not be incremented 1925 * by free_huge_page. This will make it appear 1926 * as though the reservation for this page was 1927 * consumed. This may prevent the task from 1928 * faulting in the page at a later time. This 1929 * is better than inconsistent global huge page 1930 * accounting of reserve counts. 1931 */ 1932 ClearPagePrivate(page); 1933 } else if (rc) { 1934 rc = vma_add_reservation(h, vma, address); 1935 if (unlikely(rc < 0)) 1936 /* 1937 * See above comment about rare out of 1938 * memory condition. 1939 */ 1940 ClearPagePrivate(page); 1941 } else 1942 vma_end_reservation(h, vma, address); 1943 } 1944 } 1945 1946 struct page *alloc_huge_page(struct vm_area_struct *vma, 1947 unsigned long addr, int avoid_reserve) 1948 { 1949 struct hugepage_subpool *spool = subpool_vma(vma); 1950 struct hstate *h = hstate_vma(vma); 1951 struct page *page; 1952 long map_chg, map_commit; 1953 long gbl_chg; 1954 int ret, idx; 1955 struct hugetlb_cgroup *h_cg; 1956 1957 idx = hstate_index(h); 1958 /* 1959 * Examine the region/reserve map to determine if the process 1960 * has a reservation for the page to be allocated. A return 1961 * code of zero indicates a reservation exists (no change). 1962 */ 1963 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1964 if (map_chg < 0) 1965 return ERR_PTR(-ENOMEM); 1966 1967 /* 1968 * Processes that did not create the mapping will have no 1969 * reserves as indicated by the region/reserve map. Check 1970 * that the allocation will not exceed the subpool limit. 1971 * Allocations for MAP_NORESERVE mappings also need to be 1972 * checked against any subpool limit. 1973 */ 1974 if (map_chg || avoid_reserve) { 1975 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1976 if (gbl_chg < 0) { 1977 vma_end_reservation(h, vma, addr); 1978 return ERR_PTR(-ENOSPC); 1979 } 1980 1981 /* 1982 * Even though there was no reservation in the region/reserve 1983 * map, there could be reservations associated with the 1984 * subpool that can be used. This would be indicated if the 1985 * return value of hugepage_subpool_get_pages() is zero. 1986 * However, if avoid_reserve is specified we still avoid even 1987 * the subpool reservations. 1988 */ 1989 if (avoid_reserve) 1990 gbl_chg = 1; 1991 } 1992 1993 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1994 if (ret) 1995 goto out_subpool_put; 1996 1997 spin_lock(&hugetlb_lock); 1998 /* 1999 * glb_chg is passed to indicate whether or not a page must be taken 2000 * from the global free pool (global change). gbl_chg == 0 indicates 2001 * a reservation exists for the allocation. 2002 */ 2003 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2004 if (!page) { 2005 spin_unlock(&hugetlb_lock); 2006 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2007 if (!page) 2008 goto out_uncharge_cgroup; 2009 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2010 SetPagePrivate(page); 2011 h->resv_huge_pages--; 2012 } 2013 spin_lock(&hugetlb_lock); 2014 list_move(&page->lru, &h->hugepage_activelist); 2015 /* Fall through */ 2016 } 2017 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2018 spin_unlock(&hugetlb_lock); 2019 2020 set_page_private(page, (unsigned long)spool); 2021 2022 map_commit = vma_commit_reservation(h, vma, addr); 2023 if (unlikely(map_chg > map_commit)) { 2024 /* 2025 * The page was added to the reservation map between 2026 * vma_needs_reservation and vma_commit_reservation. 2027 * This indicates a race with hugetlb_reserve_pages. 2028 * Adjust for the subpool count incremented above AND 2029 * in hugetlb_reserve_pages for the same page. Also, 2030 * the reservation count added in hugetlb_reserve_pages 2031 * no longer applies. 2032 */ 2033 long rsv_adjust; 2034 2035 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2036 hugetlb_acct_memory(h, -rsv_adjust); 2037 } 2038 return page; 2039 2040 out_uncharge_cgroup: 2041 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2042 out_subpool_put: 2043 if (map_chg || avoid_reserve) 2044 hugepage_subpool_put_pages(spool, 1); 2045 vma_end_reservation(h, vma, addr); 2046 return ERR_PTR(-ENOSPC); 2047 } 2048 2049 int alloc_bootmem_huge_page(struct hstate *h) 2050 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2051 int __alloc_bootmem_huge_page(struct hstate *h) 2052 { 2053 struct huge_bootmem_page *m; 2054 int nr_nodes, node; 2055 2056 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2057 void *addr; 2058 2059 addr = memblock_alloc_try_nid_raw( 2060 huge_page_size(h), huge_page_size(h), 2061 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2062 if (addr) { 2063 /* 2064 * Use the beginning of the huge page to store the 2065 * huge_bootmem_page struct (until gather_bootmem 2066 * puts them into the mem_map). 2067 */ 2068 m = addr; 2069 goto found; 2070 } 2071 } 2072 return 0; 2073 2074 found: 2075 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2076 /* Put them into a private list first because mem_map is not up yet */ 2077 INIT_LIST_HEAD(&m->list); 2078 list_add(&m->list, &huge_boot_pages); 2079 m->hstate = h; 2080 return 1; 2081 } 2082 2083 static void __init prep_compound_huge_page(struct page *page, 2084 unsigned int order) 2085 { 2086 if (unlikely(order > (MAX_ORDER - 1))) 2087 prep_compound_gigantic_page(page, order); 2088 else 2089 prep_compound_page(page, order); 2090 } 2091 2092 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2093 static void __init gather_bootmem_prealloc(void) 2094 { 2095 struct huge_bootmem_page *m; 2096 2097 list_for_each_entry(m, &huge_boot_pages, list) { 2098 struct page *page = virt_to_page(m); 2099 struct hstate *h = m->hstate; 2100 2101 WARN_ON(page_count(page) != 1); 2102 prep_compound_huge_page(page, h->order); 2103 WARN_ON(PageReserved(page)); 2104 prep_new_huge_page(h, page, page_to_nid(page)); 2105 put_page(page); /* free it into the hugepage allocator */ 2106 2107 /* 2108 * If we had gigantic hugepages allocated at boot time, we need 2109 * to restore the 'stolen' pages to totalram_pages in order to 2110 * fix confusing memory reports from free(1) and another 2111 * side-effects, like CommitLimit going negative. 2112 */ 2113 if (hstate_is_gigantic(h)) 2114 adjust_managed_page_count(page, 1 << h->order); 2115 cond_resched(); 2116 } 2117 } 2118 2119 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2120 { 2121 unsigned long i; 2122 nodemask_t *node_alloc_noretry; 2123 2124 if (!hstate_is_gigantic(h)) { 2125 /* 2126 * Bit mask controlling how hard we retry per-node allocations. 2127 * Ignore errors as lower level routines can deal with 2128 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2129 * time, we are likely in bigger trouble. 2130 */ 2131 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2132 GFP_KERNEL); 2133 } else { 2134 /* allocations done at boot time */ 2135 node_alloc_noretry = NULL; 2136 } 2137 2138 /* bit mask controlling how hard we retry per-node allocations */ 2139 if (node_alloc_noretry) 2140 nodes_clear(*node_alloc_noretry); 2141 2142 for (i = 0; i < h->max_huge_pages; ++i) { 2143 if (hstate_is_gigantic(h)) { 2144 if (!alloc_bootmem_huge_page(h)) 2145 break; 2146 } else if (!alloc_pool_huge_page(h, 2147 &node_states[N_MEMORY], 2148 node_alloc_noretry)) 2149 break; 2150 cond_resched(); 2151 } 2152 if (i < h->max_huge_pages) { 2153 char buf[32]; 2154 2155 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2156 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2157 h->max_huge_pages, buf, i); 2158 h->max_huge_pages = i; 2159 } 2160 2161 kfree(node_alloc_noretry); 2162 } 2163 2164 static void __init hugetlb_init_hstates(void) 2165 { 2166 struct hstate *h; 2167 2168 for_each_hstate(h) { 2169 if (minimum_order > huge_page_order(h)) 2170 minimum_order = huge_page_order(h); 2171 2172 /* oversize hugepages were init'ed in early boot */ 2173 if (!hstate_is_gigantic(h)) 2174 hugetlb_hstate_alloc_pages(h); 2175 } 2176 VM_BUG_ON(minimum_order == UINT_MAX); 2177 } 2178 2179 static void __init report_hugepages(void) 2180 { 2181 struct hstate *h; 2182 2183 for_each_hstate(h) { 2184 char buf[32]; 2185 2186 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2187 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2188 buf, h->free_huge_pages); 2189 } 2190 } 2191 2192 #ifdef CONFIG_HIGHMEM 2193 static void try_to_free_low(struct hstate *h, unsigned long count, 2194 nodemask_t *nodes_allowed) 2195 { 2196 int i; 2197 2198 if (hstate_is_gigantic(h)) 2199 return; 2200 2201 for_each_node_mask(i, *nodes_allowed) { 2202 struct page *page, *next; 2203 struct list_head *freel = &h->hugepage_freelists[i]; 2204 list_for_each_entry_safe(page, next, freel, lru) { 2205 if (count >= h->nr_huge_pages) 2206 return; 2207 if (PageHighMem(page)) 2208 continue; 2209 list_del(&page->lru); 2210 update_and_free_page(h, page); 2211 h->free_huge_pages--; 2212 h->free_huge_pages_node[page_to_nid(page)]--; 2213 } 2214 } 2215 } 2216 #else 2217 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2218 nodemask_t *nodes_allowed) 2219 { 2220 } 2221 #endif 2222 2223 /* 2224 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2225 * balanced by operating on them in a round-robin fashion. 2226 * Returns 1 if an adjustment was made. 2227 */ 2228 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2229 int delta) 2230 { 2231 int nr_nodes, node; 2232 2233 VM_BUG_ON(delta != -1 && delta != 1); 2234 2235 if (delta < 0) { 2236 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2237 if (h->surplus_huge_pages_node[node]) 2238 goto found; 2239 } 2240 } else { 2241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2242 if (h->surplus_huge_pages_node[node] < 2243 h->nr_huge_pages_node[node]) 2244 goto found; 2245 } 2246 } 2247 return 0; 2248 2249 found: 2250 h->surplus_huge_pages += delta; 2251 h->surplus_huge_pages_node[node] += delta; 2252 return 1; 2253 } 2254 2255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2257 nodemask_t *nodes_allowed) 2258 { 2259 unsigned long min_count, ret; 2260 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2261 2262 /* 2263 * Bit mask controlling how hard we retry per-node allocations. 2264 * If we can not allocate the bit mask, do not attempt to allocate 2265 * the requested huge pages. 2266 */ 2267 if (node_alloc_noretry) 2268 nodes_clear(*node_alloc_noretry); 2269 else 2270 return -ENOMEM; 2271 2272 spin_lock(&hugetlb_lock); 2273 2274 /* 2275 * Check for a node specific request. 2276 * Changing node specific huge page count may require a corresponding 2277 * change to the global count. In any case, the passed node mask 2278 * (nodes_allowed) will restrict alloc/free to the specified node. 2279 */ 2280 if (nid != NUMA_NO_NODE) { 2281 unsigned long old_count = count; 2282 2283 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2284 /* 2285 * User may have specified a large count value which caused the 2286 * above calculation to overflow. In this case, they wanted 2287 * to allocate as many huge pages as possible. Set count to 2288 * largest possible value to align with their intention. 2289 */ 2290 if (count < old_count) 2291 count = ULONG_MAX; 2292 } 2293 2294 /* 2295 * Gigantic pages runtime allocation depend on the capability for large 2296 * page range allocation. 2297 * If the system does not provide this feature, return an error when 2298 * the user tries to allocate gigantic pages but let the user free the 2299 * boottime allocated gigantic pages. 2300 */ 2301 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2302 if (count > persistent_huge_pages(h)) { 2303 spin_unlock(&hugetlb_lock); 2304 NODEMASK_FREE(node_alloc_noretry); 2305 return -EINVAL; 2306 } 2307 /* Fall through to decrease pool */ 2308 } 2309 2310 /* 2311 * Increase the pool size 2312 * First take pages out of surplus state. Then make up the 2313 * remaining difference by allocating fresh huge pages. 2314 * 2315 * We might race with alloc_surplus_huge_page() here and be unable 2316 * to convert a surplus huge page to a normal huge page. That is 2317 * not critical, though, it just means the overall size of the 2318 * pool might be one hugepage larger than it needs to be, but 2319 * within all the constraints specified by the sysctls. 2320 */ 2321 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2322 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2323 break; 2324 } 2325 2326 while (count > persistent_huge_pages(h)) { 2327 /* 2328 * If this allocation races such that we no longer need the 2329 * page, free_huge_page will handle it by freeing the page 2330 * and reducing the surplus. 2331 */ 2332 spin_unlock(&hugetlb_lock); 2333 2334 /* yield cpu to avoid soft lockup */ 2335 cond_resched(); 2336 2337 ret = alloc_pool_huge_page(h, nodes_allowed, 2338 node_alloc_noretry); 2339 spin_lock(&hugetlb_lock); 2340 if (!ret) 2341 goto out; 2342 2343 /* Bail for signals. Probably ctrl-c from user */ 2344 if (signal_pending(current)) 2345 goto out; 2346 } 2347 2348 /* 2349 * Decrease the pool size 2350 * First return free pages to the buddy allocator (being careful 2351 * to keep enough around to satisfy reservations). Then place 2352 * pages into surplus state as needed so the pool will shrink 2353 * to the desired size as pages become free. 2354 * 2355 * By placing pages into the surplus state independent of the 2356 * overcommit value, we are allowing the surplus pool size to 2357 * exceed overcommit. There are few sane options here. Since 2358 * alloc_surplus_huge_page() is checking the global counter, 2359 * though, we'll note that we're not allowed to exceed surplus 2360 * and won't grow the pool anywhere else. Not until one of the 2361 * sysctls are changed, or the surplus pages go out of use. 2362 */ 2363 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2364 min_count = max(count, min_count); 2365 try_to_free_low(h, min_count, nodes_allowed); 2366 while (min_count < persistent_huge_pages(h)) { 2367 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2368 break; 2369 cond_resched_lock(&hugetlb_lock); 2370 } 2371 while (count < persistent_huge_pages(h)) { 2372 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2373 break; 2374 } 2375 out: 2376 h->max_huge_pages = persistent_huge_pages(h); 2377 spin_unlock(&hugetlb_lock); 2378 2379 NODEMASK_FREE(node_alloc_noretry); 2380 2381 return 0; 2382 } 2383 2384 #define HSTATE_ATTR_RO(_name) \ 2385 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2386 2387 #define HSTATE_ATTR(_name) \ 2388 static struct kobj_attribute _name##_attr = \ 2389 __ATTR(_name, 0644, _name##_show, _name##_store) 2390 2391 static struct kobject *hugepages_kobj; 2392 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2393 2394 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2395 2396 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2397 { 2398 int i; 2399 2400 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2401 if (hstate_kobjs[i] == kobj) { 2402 if (nidp) 2403 *nidp = NUMA_NO_NODE; 2404 return &hstates[i]; 2405 } 2406 2407 return kobj_to_node_hstate(kobj, nidp); 2408 } 2409 2410 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2411 struct kobj_attribute *attr, char *buf) 2412 { 2413 struct hstate *h; 2414 unsigned long nr_huge_pages; 2415 int nid; 2416 2417 h = kobj_to_hstate(kobj, &nid); 2418 if (nid == NUMA_NO_NODE) 2419 nr_huge_pages = h->nr_huge_pages; 2420 else 2421 nr_huge_pages = h->nr_huge_pages_node[nid]; 2422 2423 return sprintf(buf, "%lu\n", nr_huge_pages); 2424 } 2425 2426 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2427 struct hstate *h, int nid, 2428 unsigned long count, size_t len) 2429 { 2430 int err; 2431 nodemask_t nodes_allowed, *n_mask; 2432 2433 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2434 return -EINVAL; 2435 2436 if (nid == NUMA_NO_NODE) { 2437 /* 2438 * global hstate attribute 2439 */ 2440 if (!(obey_mempolicy && 2441 init_nodemask_of_mempolicy(&nodes_allowed))) 2442 n_mask = &node_states[N_MEMORY]; 2443 else 2444 n_mask = &nodes_allowed; 2445 } else { 2446 /* 2447 * Node specific request. count adjustment happens in 2448 * set_max_huge_pages() after acquiring hugetlb_lock. 2449 */ 2450 init_nodemask_of_node(&nodes_allowed, nid); 2451 n_mask = &nodes_allowed; 2452 } 2453 2454 err = set_max_huge_pages(h, count, nid, n_mask); 2455 2456 return err ? err : len; 2457 } 2458 2459 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2460 struct kobject *kobj, const char *buf, 2461 size_t len) 2462 { 2463 struct hstate *h; 2464 unsigned long count; 2465 int nid; 2466 int err; 2467 2468 err = kstrtoul(buf, 10, &count); 2469 if (err) 2470 return err; 2471 2472 h = kobj_to_hstate(kobj, &nid); 2473 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2474 } 2475 2476 static ssize_t nr_hugepages_show(struct kobject *kobj, 2477 struct kobj_attribute *attr, char *buf) 2478 { 2479 return nr_hugepages_show_common(kobj, attr, buf); 2480 } 2481 2482 static ssize_t nr_hugepages_store(struct kobject *kobj, 2483 struct kobj_attribute *attr, const char *buf, size_t len) 2484 { 2485 return nr_hugepages_store_common(false, kobj, buf, len); 2486 } 2487 HSTATE_ATTR(nr_hugepages); 2488 2489 #ifdef CONFIG_NUMA 2490 2491 /* 2492 * hstate attribute for optionally mempolicy-based constraint on persistent 2493 * huge page alloc/free. 2494 */ 2495 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2496 struct kobj_attribute *attr, char *buf) 2497 { 2498 return nr_hugepages_show_common(kobj, attr, buf); 2499 } 2500 2501 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2502 struct kobj_attribute *attr, const char *buf, size_t len) 2503 { 2504 return nr_hugepages_store_common(true, kobj, buf, len); 2505 } 2506 HSTATE_ATTR(nr_hugepages_mempolicy); 2507 #endif 2508 2509 2510 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2511 struct kobj_attribute *attr, char *buf) 2512 { 2513 struct hstate *h = kobj_to_hstate(kobj, NULL); 2514 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2515 } 2516 2517 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2518 struct kobj_attribute *attr, const char *buf, size_t count) 2519 { 2520 int err; 2521 unsigned long input; 2522 struct hstate *h = kobj_to_hstate(kobj, NULL); 2523 2524 if (hstate_is_gigantic(h)) 2525 return -EINVAL; 2526 2527 err = kstrtoul(buf, 10, &input); 2528 if (err) 2529 return err; 2530 2531 spin_lock(&hugetlb_lock); 2532 h->nr_overcommit_huge_pages = input; 2533 spin_unlock(&hugetlb_lock); 2534 2535 return count; 2536 } 2537 HSTATE_ATTR(nr_overcommit_hugepages); 2538 2539 static ssize_t free_hugepages_show(struct kobject *kobj, 2540 struct kobj_attribute *attr, char *buf) 2541 { 2542 struct hstate *h; 2543 unsigned long free_huge_pages; 2544 int nid; 2545 2546 h = kobj_to_hstate(kobj, &nid); 2547 if (nid == NUMA_NO_NODE) 2548 free_huge_pages = h->free_huge_pages; 2549 else 2550 free_huge_pages = h->free_huge_pages_node[nid]; 2551 2552 return sprintf(buf, "%lu\n", free_huge_pages); 2553 } 2554 HSTATE_ATTR_RO(free_hugepages); 2555 2556 static ssize_t resv_hugepages_show(struct kobject *kobj, 2557 struct kobj_attribute *attr, char *buf) 2558 { 2559 struct hstate *h = kobj_to_hstate(kobj, NULL); 2560 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2561 } 2562 HSTATE_ATTR_RO(resv_hugepages); 2563 2564 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2565 struct kobj_attribute *attr, char *buf) 2566 { 2567 struct hstate *h; 2568 unsigned long surplus_huge_pages; 2569 int nid; 2570 2571 h = kobj_to_hstate(kobj, &nid); 2572 if (nid == NUMA_NO_NODE) 2573 surplus_huge_pages = h->surplus_huge_pages; 2574 else 2575 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2576 2577 return sprintf(buf, "%lu\n", surplus_huge_pages); 2578 } 2579 HSTATE_ATTR_RO(surplus_hugepages); 2580 2581 static struct attribute *hstate_attrs[] = { 2582 &nr_hugepages_attr.attr, 2583 &nr_overcommit_hugepages_attr.attr, 2584 &free_hugepages_attr.attr, 2585 &resv_hugepages_attr.attr, 2586 &surplus_hugepages_attr.attr, 2587 #ifdef CONFIG_NUMA 2588 &nr_hugepages_mempolicy_attr.attr, 2589 #endif 2590 NULL, 2591 }; 2592 2593 static const struct attribute_group hstate_attr_group = { 2594 .attrs = hstate_attrs, 2595 }; 2596 2597 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2598 struct kobject **hstate_kobjs, 2599 const struct attribute_group *hstate_attr_group) 2600 { 2601 int retval; 2602 int hi = hstate_index(h); 2603 2604 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2605 if (!hstate_kobjs[hi]) 2606 return -ENOMEM; 2607 2608 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2609 if (retval) 2610 kobject_put(hstate_kobjs[hi]); 2611 2612 return retval; 2613 } 2614 2615 static void __init hugetlb_sysfs_init(void) 2616 { 2617 struct hstate *h; 2618 int err; 2619 2620 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2621 if (!hugepages_kobj) 2622 return; 2623 2624 for_each_hstate(h) { 2625 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2626 hstate_kobjs, &hstate_attr_group); 2627 if (err) 2628 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2629 } 2630 } 2631 2632 #ifdef CONFIG_NUMA 2633 2634 /* 2635 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2636 * with node devices in node_devices[] using a parallel array. The array 2637 * index of a node device or _hstate == node id. 2638 * This is here to avoid any static dependency of the node device driver, in 2639 * the base kernel, on the hugetlb module. 2640 */ 2641 struct node_hstate { 2642 struct kobject *hugepages_kobj; 2643 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2644 }; 2645 static struct node_hstate node_hstates[MAX_NUMNODES]; 2646 2647 /* 2648 * A subset of global hstate attributes for node devices 2649 */ 2650 static struct attribute *per_node_hstate_attrs[] = { 2651 &nr_hugepages_attr.attr, 2652 &free_hugepages_attr.attr, 2653 &surplus_hugepages_attr.attr, 2654 NULL, 2655 }; 2656 2657 static const struct attribute_group per_node_hstate_attr_group = { 2658 .attrs = per_node_hstate_attrs, 2659 }; 2660 2661 /* 2662 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2663 * Returns node id via non-NULL nidp. 2664 */ 2665 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2666 { 2667 int nid; 2668 2669 for (nid = 0; nid < nr_node_ids; nid++) { 2670 struct node_hstate *nhs = &node_hstates[nid]; 2671 int i; 2672 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2673 if (nhs->hstate_kobjs[i] == kobj) { 2674 if (nidp) 2675 *nidp = nid; 2676 return &hstates[i]; 2677 } 2678 } 2679 2680 BUG(); 2681 return NULL; 2682 } 2683 2684 /* 2685 * Unregister hstate attributes from a single node device. 2686 * No-op if no hstate attributes attached. 2687 */ 2688 static void hugetlb_unregister_node(struct node *node) 2689 { 2690 struct hstate *h; 2691 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2692 2693 if (!nhs->hugepages_kobj) 2694 return; /* no hstate attributes */ 2695 2696 for_each_hstate(h) { 2697 int idx = hstate_index(h); 2698 if (nhs->hstate_kobjs[idx]) { 2699 kobject_put(nhs->hstate_kobjs[idx]); 2700 nhs->hstate_kobjs[idx] = NULL; 2701 } 2702 } 2703 2704 kobject_put(nhs->hugepages_kobj); 2705 nhs->hugepages_kobj = NULL; 2706 } 2707 2708 2709 /* 2710 * Register hstate attributes for a single node device. 2711 * No-op if attributes already registered. 2712 */ 2713 static void hugetlb_register_node(struct node *node) 2714 { 2715 struct hstate *h; 2716 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2717 int err; 2718 2719 if (nhs->hugepages_kobj) 2720 return; /* already allocated */ 2721 2722 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2723 &node->dev.kobj); 2724 if (!nhs->hugepages_kobj) 2725 return; 2726 2727 for_each_hstate(h) { 2728 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2729 nhs->hstate_kobjs, 2730 &per_node_hstate_attr_group); 2731 if (err) { 2732 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2733 h->name, node->dev.id); 2734 hugetlb_unregister_node(node); 2735 break; 2736 } 2737 } 2738 } 2739 2740 /* 2741 * hugetlb init time: register hstate attributes for all registered node 2742 * devices of nodes that have memory. All on-line nodes should have 2743 * registered their associated device by this time. 2744 */ 2745 static void __init hugetlb_register_all_nodes(void) 2746 { 2747 int nid; 2748 2749 for_each_node_state(nid, N_MEMORY) { 2750 struct node *node = node_devices[nid]; 2751 if (node->dev.id == nid) 2752 hugetlb_register_node(node); 2753 } 2754 2755 /* 2756 * Let the node device driver know we're here so it can 2757 * [un]register hstate attributes on node hotplug. 2758 */ 2759 register_hugetlbfs_with_node(hugetlb_register_node, 2760 hugetlb_unregister_node); 2761 } 2762 #else /* !CONFIG_NUMA */ 2763 2764 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2765 { 2766 BUG(); 2767 if (nidp) 2768 *nidp = -1; 2769 return NULL; 2770 } 2771 2772 static void hugetlb_register_all_nodes(void) { } 2773 2774 #endif 2775 2776 static int __init hugetlb_init(void) 2777 { 2778 int i; 2779 2780 if (!hugepages_supported()) 2781 return 0; 2782 2783 if (!size_to_hstate(default_hstate_size)) { 2784 if (default_hstate_size != 0) { 2785 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2786 default_hstate_size, HPAGE_SIZE); 2787 } 2788 2789 default_hstate_size = HPAGE_SIZE; 2790 if (!size_to_hstate(default_hstate_size)) 2791 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2792 } 2793 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2794 if (default_hstate_max_huge_pages) { 2795 if (!default_hstate.max_huge_pages) 2796 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2797 } 2798 2799 hugetlb_init_hstates(); 2800 gather_bootmem_prealloc(); 2801 report_hugepages(); 2802 2803 hugetlb_sysfs_init(); 2804 hugetlb_register_all_nodes(); 2805 hugetlb_cgroup_file_init(); 2806 2807 #ifdef CONFIG_SMP 2808 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2809 #else 2810 num_fault_mutexes = 1; 2811 #endif 2812 hugetlb_fault_mutex_table = 2813 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2814 GFP_KERNEL); 2815 BUG_ON(!hugetlb_fault_mutex_table); 2816 2817 for (i = 0; i < num_fault_mutexes; i++) 2818 mutex_init(&hugetlb_fault_mutex_table[i]); 2819 return 0; 2820 } 2821 subsys_initcall(hugetlb_init); 2822 2823 /* Should be called on processing a hugepagesz=... option */ 2824 void __init hugetlb_bad_size(void) 2825 { 2826 parsed_valid_hugepagesz = false; 2827 } 2828 2829 void __init hugetlb_add_hstate(unsigned int order) 2830 { 2831 struct hstate *h; 2832 unsigned long i; 2833 2834 if (size_to_hstate(PAGE_SIZE << order)) { 2835 pr_warn("hugepagesz= specified twice, ignoring\n"); 2836 return; 2837 } 2838 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2839 BUG_ON(order == 0); 2840 h = &hstates[hugetlb_max_hstate++]; 2841 h->order = order; 2842 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2843 h->nr_huge_pages = 0; 2844 h->free_huge_pages = 0; 2845 for (i = 0; i < MAX_NUMNODES; ++i) 2846 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2847 INIT_LIST_HEAD(&h->hugepage_activelist); 2848 h->next_nid_to_alloc = first_memory_node; 2849 h->next_nid_to_free = first_memory_node; 2850 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2851 huge_page_size(h)/1024); 2852 2853 parsed_hstate = h; 2854 } 2855 2856 static int __init hugetlb_nrpages_setup(char *s) 2857 { 2858 unsigned long *mhp; 2859 static unsigned long *last_mhp; 2860 2861 if (!parsed_valid_hugepagesz) { 2862 pr_warn("hugepages = %s preceded by " 2863 "an unsupported hugepagesz, ignoring\n", s); 2864 parsed_valid_hugepagesz = true; 2865 return 1; 2866 } 2867 /* 2868 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2869 * so this hugepages= parameter goes to the "default hstate". 2870 */ 2871 else if (!hugetlb_max_hstate) 2872 mhp = &default_hstate_max_huge_pages; 2873 else 2874 mhp = &parsed_hstate->max_huge_pages; 2875 2876 if (mhp == last_mhp) { 2877 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2878 return 1; 2879 } 2880 2881 if (sscanf(s, "%lu", mhp) <= 0) 2882 *mhp = 0; 2883 2884 /* 2885 * Global state is always initialized later in hugetlb_init. 2886 * But we need to allocate >= MAX_ORDER hstates here early to still 2887 * use the bootmem allocator. 2888 */ 2889 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2890 hugetlb_hstate_alloc_pages(parsed_hstate); 2891 2892 last_mhp = mhp; 2893 2894 return 1; 2895 } 2896 __setup("hugepages=", hugetlb_nrpages_setup); 2897 2898 static int __init hugetlb_default_setup(char *s) 2899 { 2900 default_hstate_size = memparse(s, &s); 2901 return 1; 2902 } 2903 __setup("default_hugepagesz=", hugetlb_default_setup); 2904 2905 static unsigned int cpuset_mems_nr(unsigned int *array) 2906 { 2907 int node; 2908 unsigned int nr = 0; 2909 2910 for_each_node_mask(node, cpuset_current_mems_allowed) 2911 nr += array[node]; 2912 2913 return nr; 2914 } 2915 2916 #ifdef CONFIG_SYSCTL 2917 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2918 struct ctl_table *table, int write, 2919 void __user *buffer, size_t *length, loff_t *ppos) 2920 { 2921 struct hstate *h = &default_hstate; 2922 unsigned long tmp = h->max_huge_pages; 2923 int ret; 2924 2925 if (!hugepages_supported()) 2926 return -EOPNOTSUPP; 2927 2928 table->data = &tmp; 2929 table->maxlen = sizeof(unsigned long); 2930 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2931 if (ret) 2932 goto out; 2933 2934 if (write) 2935 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2936 NUMA_NO_NODE, tmp, *length); 2937 out: 2938 return ret; 2939 } 2940 2941 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2942 void __user *buffer, size_t *length, loff_t *ppos) 2943 { 2944 2945 return hugetlb_sysctl_handler_common(false, table, write, 2946 buffer, length, ppos); 2947 } 2948 2949 #ifdef CONFIG_NUMA 2950 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2951 void __user *buffer, size_t *length, loff_t *ppos) 2952 { 2953 return hugetlb_sysctl_handler_common(true, table, write, 2954 buffer, length, ppos); 2955 } 2956 #endif /* CONFIG_NUMA */ 2957 2958 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2959 void __user *buffer, 2960 size_t *length, loff_t *ppos) 2961 { 2962 struct hstate *h = &default_hstate; 2963 unsigned long tmp; 2964 int ret; 2965 2966 if (!hugepages_supported()) 2967 return -EOPNOTSUPP; 2968 2969 tmp = h->nr_overcommit_huge_pages; 2970 2971 if (write && hstate_is_gigantic(h)) 2972 return -EINVAL; 2973 2974 table->data = &tmp; 2975 table->maxlen = sizeof(unsigned long); 2976 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2977 if (ret) 2978 goto out; 2979 2980 if (write) { 2981 spin_lock(&hugetlb_lock); 2982 h->nr_overcommit_huge_pages = tmp; 2983 spin_unlock(&hugetlb_lock); 2984 } 2985 out: 2986 return ret; 2987 } 2988 2989 #endif /* CONFIG_SYSCTL */ 2990 2991 void hugetlb_report_meminfo(struct seq_file *m) 2992 { 2993 struct hstate *h; 2994 unsigned long total = 0; 2995 2996 if (!hugepages_supported()) 2997 return; 2998 2999 for_each_hstate(h) { 3000 unsigned long count = h->nr_huge_pages; 3001 3002 total += (PAGE_SIZE << huge_page_order(h)) * count; 3003 3004 if (h == &default_hstate) 3005 seq_printf(m, 3006 "HugePages_Total: %5lu\n" 3007 "HugePages_Free: %5lu\n" 3008 "HugePages_Rsvd: %5lu\n" 3009 "HugePages_Surp: %5lu\n" 3010 "Hugepagesize: %8lu kB\n", 3011 count, 3012 h->free_huge_pages, 3013 h->resv_huge_pages, 3014 h->surplus_huge_pages, 3015 (PAGE_SIZE << huge_page_order(h)) / 1024); 3016 } 3017 3018 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3019 } 3020 3021 int hugetlb_report_node_meminfo(int nid, char *buf) 3022 { 3023 struct hstate *h = &default_hstate; 3024 if (!hugepages_supported()) 3025 return 0; 3026 return sprintf(buf, 3027 "Node %d HugePages_Total: %5u\n" 3028 "Node %d HugePages_Free: %5u\n" 3029 "Node %d HugePages_Surp: %5u\n", 3030 nid, h->nr_huge_pages_node[nid], 3031 nid, h->free_huge_pages_node[nid], 3032 nid, h->surplus_huge_pages_node[nid]); 3033 } 3034 3035 void hugetlb_show_meminfo(void) 3036 { 3037 struct hstate *h; 3038 int nid; 3039 3040 if (!hugepages_supported()) 3041 return; 3042 3043 for_each_node_state(nid, N_MEMORY) 3044 for_each_hstate(h) 3045 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3046 nid, 3047 h->nr_huge_pages_node[nid], 3048 h->free_huge_pages_node[nid], 3049 h->surplus_huge_pages_node[nid], 3050 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3051 } 3052 3053 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3054 { 3055 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3056 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3057 } 3058 3059 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3060 unsigned long hugetlb_total_pages(void) 3061 { 3062 struct hstate *h; 3063 unsigned long nr_total_pages = 0; 3064 3065 for_each_hstate(h) 3066 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3067 return nr_total_pages; 3068 } 3069 3070 static int hugetlb_acct_memory(struct hstate *h, long delta) 3071 { 3072 int ret = -ENOMEM; 3073 3074 spin_lock(&hugetlb_lock); 3075 /* 3076 * When cpuset is configured, it breaks the strict hugetlb page 3077 * reservation as the accounting is done on a global variable. Such 3078 * reservation is completely rubbish in the presence of cpuset because 3079 * the reservation is not checked against page availability for the 3080 * current cpuset. Application can still potentially OOM'ed by kernel 3081 * with lack of free htlb page in cpuset that the task is in. 3082 * Attempt to enforce strict accounting with cpuset is almost 3083 * impossible (or too ugly) because cpuset is too fluid that 3084 * task or memory node can be dynamically moved between cpusets. 3085 * 3086 * The change of semantics for shared hugetlb mapping with cpuset is 3087 * undesirable. However, in order to preserve some of the semantics, 3088 * we fall back to check against current free page availability as 3089 * a best attempt and hopefully to minimize the impact of changing 3090 * semantics that cpuset has. 3091 */ 3092 if (delta > 0) { 3093 if (gather_surplus_pages(h, delta) < 0) 3094 goto out; 3095 3096 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3097 return_unused_surplus_pages(h, delta); 3098 goto out; 3099 } 3100 } 3101 3102 ret = 0; 3103 if (delta < 0) 3104 return_unused_surplus_pages(h, (unsigned long) -delta); 3105 3106 out: 3107 spin_unlock(&hugetlb_lock); 3108 return ret; 3109 } 3110 3111 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3112 { 3113 struct resv_map *resv = vma_resv_map(vma); 3114 3115 /* 3116 * This new VMA should share its siblings reservation map if present. 3117 * The VMA will only ever have a valid reservation map pointer where 3118 * it is being copied for another still existing VMA. As that VMA 3119 * has a reference to the reservation map it cannot disappear until 3120 * after this open call completes. It is therefore safe to take a 3121 * new reference here without additional locking. 3122 */ 3123 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3124 kref_get(&resv->refs); 3125 } 3126 3127 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3128 { 3129 struct hstate *h = hstate_vma(vma); 3130 struct resv_map *resv = vma_resv_map(vma); 3131 struct hugepage_subpool *spool = subpool_vma(vma); 3132 unsigned long reserve, start, end; 3133 long gbl_reserve; 3134 3135 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3136 return; 3137 3138 start = vma_hugecache_offset(h, vma, vma->vm_start); 3139 end = vma_hugecache_offset(h, vma, vma->vm_end); 3140 3141 reserve = (end - start) - region_count(resv, start, end); 3142 3143 kref_put(&resv->refs, resv_map_release); 3144 3145 if (reserve) { 3146 /* 3147 * Decrement reserve counts. The global reserve count may be 3148 * adjusted if the subpool has a minimum size. 3149 */ 3150 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3151 hugetlb_acct_memory(h, -gbl_reserve); 3152 } 3153 } 3154 3155 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3156 { 3157 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3158 return -EINVAL; 3159 return 0; 3160 } 3161 3162 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3163 { 3164 struct hstate *hstate = hstate_vma(vma); 3165 3166 return 1UL << huge_page_shift(hstate); 3167 } 3168 3169 /* 3170 * We cannot handle pagefaults against hugetlb pages at all. They cause 3171 * handle_mm_fault() to try to instantiate regular-sized pages in the 3172 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3173 * this far. 3174 */ 3175 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3176 { 3177 BUG(); 3178 return 0; 3179 } 3180 3181 /* 3182 * When a new function is introduced to vm_operations_struct and added 3183 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3184 * This is because under System V memory model, mappings created via 3185 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3186 * their original vm_ops are overwritten with shm_vm_ops. 3187 */ 3188 const struct vm_operations_struct hugetlb_vm_ops = { 3189 .fault = hugetlb_vm_op_fault, 3190 .open = hugetlb_vm_op_open, 3191 .close = hugetlb_vm_op_close, 3192 .split = hugetlb_vm_op_split, 3193 .pagesize = hugetlb_vm_op_pagesize, 3194 }; 3195 3196 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3197 int writable) 3198 { 3199 pte_t entry; 3200 3201 if (writable) { 3202 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3203 vma->vm_page_prot))); 3204 } else { 3205 entry = huge_pte_wrprotect(mk_huge_pte(page, 3206 vma->vm_page_prot)); 3207 } 3208 entry = pte_mkyoung(entry); 3209 entry = pte_mkhuge(entry); 3210 entry = arch_make_huge_pte(entry, vma, page, writable); 3211 3212 return entry; 3213 } 3214 3215 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3216 unsigned long address, pte_t *ptep) 3217 { 3218 pte_t entry; 3219 3220 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3221 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3222 update_mmu_cache(vma, address, ptep); 3223 } 3224 3225 bool is_hugetlb_entry_migration(pte_t pte) 3226 { 3227 swp_entry_t swp; 3228 3229 if (huge_pte_none(pte) || pte_present(pte)) 3230 return false; 3231 swp = pte_to_swp_entry(pte); 3232 if (non_swap_entry(swp) && is_migration_entry(swp)) 3233 return true; 3234 else 3235 return false; 3236 } 3237 3238 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3239 { 3240 swp_entry_t swp; 3241 3242 if (huge_pte_none(pte) || pte_present(pte)) 3243 return 0; 3244 swp = pte_to_swp_entry(pte); 3245 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3246 return 1; 3247 else 3248 return 0; 3249 } 3250 3251 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3252 struct vm_area_struct *vma) 3253 { 3254 pte_t *src_pte, *dst_pte, entry, dst_entry; 3255 struct page *ptepage; 3256 unsigned long addr; 3257 int cow; 3258 struct hstate *h = hstate_vma(vma); 3259 unsigned long sz = huge_page_size(h); 3260 struct mmu_notifier_range range; 3261 int ret = 0; 3262 3263 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3264 3265 if (cow) { 3266 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3267 vma->vm_start, 3268 vma->vm_end); 3269 mmu_notifier_invalidate_range_start(&range); 3270 } 3271 3272 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3273 spinlock_t *src_ptl, *dst_ptl; 3274 src_pte = huge_pte_offset(src, addr, sz); 3275 if (!src_pte) 3276 continue; 3277 dst_pte = huge_pte_alloc(dst, addr, sz); 3278 if (!dst_pte) { 3279 ret = -ENOMEM; 3280 break; 3281 } 3282 3283 /* 3284 * If the pagetables are shared don't copy or take references. 3285 * dst_pte == src_pte is the common case of src/dest sharing. 3286 * 3287 * However, src could have 'unshared' and dst shares with 3288 * another vma. If dst_pte !none, this implies sharing. 3289 * Check here before taking page table lock, and once again 3290 * after taking the lock below. 3291 */ 3292 dst_entry = huge_ptep_get(dst_pte); 3293 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3294 continue; 3295 3296 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3297 src_ptl = huge_pte_lockptr(h, src, src_pte); 3298 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3299 entry = huge_ptep_get(src_pte); 3300 dst_entry = huge_ptep_get(dst_pte); 3301 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3302 /* 3303 * Skip if src entry none. Also, skip in the 3304 * unlikely case dst entry !none as this implies 3305 * sharing with another vma. 3306 */ 3307 ; 3308 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3309 is_hugetlb_entry_hwpoisoned(entry))) { 3310 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3311 3312 if (is_write_migration_entry(swp_entry) && cow) { 3313 /* 3314 * COW mappings require pages in both 3315 * parent and child to be set to read. 3316 */ 3317 make_migration_entry_read(&swp_entry); 3318 entry = swp_entry_to_pte(swp_entry); 3319 set_huge_swap_pte_at(src, addr, src_pte, 3320 entry, sz); 3321 } 3322 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3323 } else { 3324 if (cow) { 3325 /* 3326 * No need to notify as we are downgrading page 3327 * table protection not changing it to point 3328 * to a new page. 3329 * 3330 * See Documentation/vm/mmu_notifier.rst 3331 */ 3332 huge_ptep_set_wrprotect(src, addr, src_pte); 3333 } 3334 entry = huge_ptep_get(src_pte); 3335 ptepage = pte_page(entry); 3336 get_page(ptepage); 3337 page_dup_rmap(ptepage, true); 3338 set_huge_pte_at(dst, addr, dst_pte, entry); 3339 hugetlb_count_add(pages_per_huge_page(h), dst); 3340 } 3341 spin_unlock(src_ptl); 3342 spin_unlock(dst_ptl); 3343 } 3344 3345 if (cow) 3346 mmu_notifier_invalidate_range_end(&range); 3347 3348 return ret; 3349 } 3350 3351 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3352 unsigned long start, unsigned long end, 3353 struct page *ref_page) 3354 { 3355 struct mm_struct *mm = vma->vm_mm; 3356 unsigned long address; 3357 pte_t *ptep; 3358 pte_t pte; 3359 spinlock_t *ptl; 3360 struct page *page; 3361 struct hstate *h = hstate_vma(vma); 3362 unsigned long sz = huge_page_size(h); 3363 struct mmu_notifier_range range; 3364 3365 WARN_ON(!is_vm_hugetlb_page(vma)); 3366 BUG_ON(start & ~huge_page_mask(h)); 3367 BUG_ON(end & ~huge_page_mask(h)); 3368 3369 /* 3370 * This is a hugetlb vma, all the pte entries should point 3371 * to huge page. 3372 */ 3373 tlb_change_page_size(tlb, sz); 3374 tlb_start_vma(tlb, vma); 3375 3376 /* 3377 * If sharing possible, alert mmu notifiers of worst case. 3378 */ 3379 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3380 end); 3381 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3382 mmu_notifier_invalidate_range_start(&range); 3383 address = start; 3384 for (; address < end; address += sz) { 3385 ptep = huge_pte_offset(mm, address, sz); 3386 if (!ptep) 3387 continue; 3388 3389 ptl = huge_pte_lock(h, mm, ptep); 3390 if (huge_pmd_unshare(mm, &address, ptep)) { 3391 spin_unlock(ptl); 3392 /* 3393 * We just unmapped a page of PMDs by clearing a PUD. 3394 * The caller's TLB flush range should cover this area. 3395 */ 3396 continue; 3397 } 3398 3399 pte = huge_ptep_get(ptep); 3400 if (huge_pte_none(pte)) { 3401 spin_unlock(ptl); 3402 continue; 3403 } 3404 3405 /* 3406 * Migrating hugepage or HWPoisoned hugepage is already 3407 * unmapped and its refcount is dropped, so just clear pte here. 3408 */ 3409 if (unlikely(!pte_present(pte))) { 3410 huge_pte_clear(mm, address, ptep, sz); 3411 spin_unlock(ptl); 3412 continue; 3413 } 3414 3415 page = pte_page(pte); 3416 /* 3417 * If a reference page is supplied, it is because a specific 3418 * page is being unmapped, not a range. Ensure the page we 3419 * are about to unmap is the actual page of interest. 3420 */ 3421 if (ref_page) { 3422 if (page != ref_page) { 3423 spin_unlock(ptl); 3424 continue; 3425 } 3426 /* 3427 * Mark the VMA as having unmapped its page so that 3428 * future faults in this VMA will fail rather than 3429 * looking like data was lost 3430 */ 3431 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3432 } 3433 3434 pte = huge_ptep_get_and_clear(mm, address, ptep); 3435 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3436 if (huge_pte_dirty(pte)) 3437 set_page_dirty(page); 3438 3439 hugetlb_count_sub(pages_per_huge_page(h), mm); 3440 page_remove_rmap(page, true); 3441 3442 spin_unlock(ptl); 3443 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3444 /* 3445 * Bail out after unmapping reference page if supplied 3446 */ 3447 if (ref_page) 3448 break; 3449 } 3450 mmu_notifier_invalidate_range_end(&range); 3451 tlb_end_vma(tlb, vma); 3452 } 3453 3454 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3455 struct vm_area_struct *vma, unsigned long start, 3456 unsigned long end, struct page *ref_page) 3457 { 3458 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3459 3460 /* 3461 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3462 * test will fail on a vma being torn down, and not grab a page table 3463 * on its way out. We're lucky that the flag has such an appropriate 3464 * name, and can in fact be safely cleared here. We could clear it 3465 * before the __unmap_hugepage_range above, but all that's necessary 3466 * is to clear it before releasing the i_mmap_rwsem. This works 3467 * because in the context this is called, the VMA is about to be 3468 * destroyed and the i_mmap_rwsem is held. 3469 */ 3470 vma->vm_flags &= ~VM_MAYSHARE; 3471 } 3472 3473 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3474 unsigned long end, struct page *ref_page) 3475 { 3476 struct mm_struct *mm; 3477 struct mmu_gather tlb; 3478 unsigned long tlb_start = start; 3479 unsigned long tlb_end = end; 3480 3481 /* 3482 * If shared PMDs were possibly used within this vma range, adjust 3483 * start/end for worst case tlb flushing. 3484 * Note that we can not be sure if PMDs are shared until we try to 3485 * unmap pages. However, we want to make sure TLB flushing covers 3486 * the largest possible range. 3487 */ 3488 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3489 3490 mm = vma->vm_mm; 3491 3492 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3493 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3494 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3495 } 3496 3497 /* 3498 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3499 * mappping it owns the reserve page for. The intention is to unmap the page 3500 * from other VMAs and let the children be SIGKILLed if they are faulting the 3501 * same region. 3502 */ 3503 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3504 struct page *page, unsigned long address) 3505 { 3506 struct hstate *h = hstate_vma(vma); 3507 struct vm_area_struct *iter_vma; 3508 struct address_space *mapping; 3509 pgoff_t pgoff; 3510 3511 /* 3512 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3513 * from page cache lookup which is in HPAGE_SIZE units. 3514 */ 3515 address = address & huge_page_mask(h); 3516 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3517 vma->vm_pgoff; 3518 mapping = vma->vm_file->f_mapping; 3519 3520 /* 3521 * Take the mapping lock for the duration of the table walk. As 3522 * this mapping should be shared between all the VMAs, 3523 * __unmap_hugepage_range() is called as the lock is already held 3524 */ 3525 i_mmap_lock_write(mapping); 3526 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3527 /* Do not unmap the current VMA */ 3528 if (iter_vma == vma) 3529 continue; 3530 3531 /* 3532 * Shared VMAs have their own reserves and do not affect 3533 * MAP_PRIVATE accounting but it is possible that a shared 3534 * VMA is using the same page so check and skip such VMAs. 3535 */ 3536 if (iter_vma->vm_flags & VM_MAYSHARE) 3537 continue; 3538 3539 /* 3540 * Unmap the page from other VMAs without their own reserves. 3541 * They get marked to be SIGKILLed if they fault in these 3542 * areas. This is because a future no-page fault on this VMA 3543 * could insert a zeroed page instead of the data existing 3544 * from the time of fork. This would look like data corruption 3545 */ 3546 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3547 unmap_hugepage_range(iter_vma, address, 3548 address + huge_page_size(h), page); 3549 } 3550 i_mmap_unlock_write(mapping); 3551 } 3552 3553 /* 3554 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3555 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3556 * cannot race with other handlers or page migration. 3557 * Keep the pte_same checks anyway to make transition from the mutex easier. 3558 */ 3559 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3560 unsigned long address, pte_t *ptep, 3561 struct page *pagecache_page, spinlock_t *ptl) 3562 { 3563 pte_t pte; 3564 struct hstate *h = hstate_vma(vma); 3565 struct page *old_page, *new_page; 3566 int outside_reserve = 0; 3567 vm_fault_t ret = 0; 3568 unsigned long haddr = address & huge_page_mask(h); 3569 struct mmu_notifier_range range; 3570 3571 pte = huge_ptep_get(ptep); 3572 old_page = pte_page(pte); 3573 3574 retry_avoidcopy: 3575 /* If no-one else is actually using this page, avoid the copy 3576 * and just make the page writable */ 3577 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3578 page_move_anon_rmap(old_page, vma); 3579 set_huge_ptep_writable(vma, haddr, ptep); 3580 return 0; 3581 } 3582 3583 /* 3584 * If the process that created a MAP_PRIVATE mapping is about to 3585 * perform a COW due to a shared page count, attempt to satisfy 3586 * the allocation without using the existing reserves. The pagecache 3587 * page is used to determine if the reserve at this address was 3588 * consumed or not. If reserves were used, a partial faulted mapping 3589 * at the time of fork() could consume its reserves on COW instead 3590 * of the full address range. 3591 */ 3592 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3593 old_page != pagecache_page) 3594 outside_reserve = 1; 3595 3596 get_page(old_page); 3597 3598 /* 3599 * Drop page table lock as buddy allocator may be called. It will 3600 * be acquired again before returning to the caller, as expected. 3601 */ 3602 spin_unlock(ptl); 3603 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3604 3605 if (IS_ERR(new_page)) { 3606 /* 3607 * If a process owning a MAP_PRIVATE mapping fails to COW, 3608 * it is due to references held by a child and an insufficient 3609 * huge page pool. To guarantee the original mappers 3610 * reliability, unmap the page from child processes. The child 3611 * may get SIGKILLed if it later faults. 3612 */ 3613 if (outside_reserve) { 3614 put_page(old_page); 3615 BUG_ON(huge_pte_none(pte)); 3616 unmap_ref_private(mm, vma, old_page, haddr); 3617 BUG_ON(huge_pte_none(pte)); 3618 spin_lock(ptl); 3619 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3620 if (likely(ptep && 3621 pte_same(huge_ptep_get(ptep), pte))) 3622 goto retry_avoidcopy; 3623 /* 3624 * race occurs while re-acquiring page table 3625 * lock, and our job is done. 3626 */ 3627 return 0; 3628 } 3629 3630 ret = vmf_error(PTR_ERR(new_page)); 3631 goto out_release_old; 3632 } 3633 3634 /* 3635 * When the original hugepage is shared one, it does not have 3636 * anon_vma prepared. 3637 */ 3638 if (unlikely(anon_vma_prepare(vma))) { 3639 ret = VM_FAULT_OOM; 3640 goto out_release_all; 3641 } 3642 3643 copy_user_huge_page(new_page, old_page, address, vma, 3644 pages_per_huge_page(h)); 3645 __SetPageUptodate(new_page); 3646 3647 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 3648 haddr + huge_page_size(h)); 3649 mmu_notifier_invalidate_range_start(&range); 3650 3651 /* 3652 * Retake the page table lock to check for racing updates 3653 * before the page tables are altered 3654 */ 3655 spin_lock(ptl); 3656 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3657 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3658 ClearPagePrivate(new_page); 3659 3660 /* Break COW */ 3661 huge_ptep_clear_flush(vma, haddr, ptep); 3662 mmu_notifier_invalidate_range(mm, range.start, range.end); 3663 set_huge_pte_at(mm, haddr, ptep, 3664 make_huge_pte(vma, new_page, 1)); 3665 page_remove_rmap(old_page, true); 3666 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3667 set_page_huge_active(new_page); 3668 /* Make the old page be freed below */ 3669 new_page = old_page; 3670 } 3671 spin_unlock(ptl); 3672 mmu_notifier_invalidate_range_end(&range); 3673 out_release_all: 3674 restore_reserve_on_error(h, vma, haddr, new_page); 3675 put_page(new_page); 3676 out_release_old: 3677 put_page(old_page); 3678 3679 spin_lock(ptl); /* Caller expects lock to be held */ 3680 return ret; 3681 } 3682 3683 /* Return the pagecache page at a given address within a VMA */ 3684 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3685 struct vm_area_struct *vma, unsigned long address) 3686 { 3687 struct address_space *mapping; 3688 pgoff_t idx; 3689 3690 mapping = vma->vm_file->f_mapping; 3691 idx = vma_hugecache_offset(h, vma, address); 3692 3693 return find_lock_page(mapping, idx); 3694 } 3695 3696 /* 3697 * Return whether there is a pagecache page to back given address within VMA. 3698 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3699 */ 3700 static bool hugetlbfs_pagecache_present(struct hstate *h, 3701 struct vm_area_struct *vma, unsigned long address) 3702 { 3703 struct address_space *mapping; 3704 pgoff_t idx; 3705 struct page *page; 3706 3707 mapping = vma->vm_file->f_mapping; 3708 idx = vma_hugecache_offset(h, vma, address); 3709 3710 page = find_get_page(mapping, idx); 3711 if (page) 3712 put_page(page); 3713 return page != NULL; 3714 } 3715 3716 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3717 pgoff_t idx) 3718 { 3719 struct inode *inode = mapping->host; 3720 struct hstate *h = hstate_inode(inode); 3721 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3722 3723 if (err) 3724 return err; 3725 ClearPagePrivate(page); 3726 3727 /* 3728 * set page dirty so that it will not be removed from cache/file 3729 * by non-hugetlbfs specific code paths. 3730 */ 3731 set_page_dirty(page); 3732 3733 spin_lock(&inode->i_lock); 3734 inode->i_blocks += blocks_per_huge_page(h); 3735 spin_unlock(&inode->i_lock); 3736 return 0; 3737 } 3738 3739 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3740 struct vm_area_struct *vma, 3741 struct address_space *mapping, pgoff_t idx, 3742 unsigned long address, pte_t *ptep, unsigned int flags) 3743 { 3744 struct hstate *h = hstate_vma(vma); 3745 vm_fault_t ret = VM_FAULT_SIGBUS; 3746 int anon_rmap = 0; 3747 unsigned long size; 3748 struct page *page; 3749 pte_t new_pte; 3750 spinlock_t *ptl; 3751 unsigned long haddr = address & huge_page_mask(h); 3752 bool new_page = false; 3753 3754 /* 3755 * Currently, we are forced to kill the process in the event the 3756 * original mapper has unmapped pages from the child due to a failed 3757 * COW. Warn that such a situation has occurred as it may not be obvious 3758 */ 3759 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3760 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3761 current->pid); 3762 return ret; 3763 } 3764 3765 /* 3766 * Use page lock to guard against racing truncation 3767 * before we get page_table_lock. 3768 */ 3769 retry: 3770 page = find_lock_page(mapping, idx); 3771 if (!page) { 3772 size = i_size_read(mapping->host) >> huge_page_shift(h); 3773 if (idx >= size) 3774 goto out; 3775 3776 /* 3777 * Check for page in userfault range 3778 */ 3779 if (userfaultfd_missing(vma)) { 3780 u32 hash; 3781 struct vm_fault vmf = { 3782 .vma = vma, 3783 .address = haddr, 3784 .flags = flags, 3785 /* 3786 * Hard to debug if it ends up being 3787 * used by a callee that assumes 3788 * something about the other 3789 * uninitialized fields... same as in 3790 * memory.c 3791 */ 3792 }; 3793 3794 /* 3795 * hugetlb_fault_mutex must be dropped before 3796 * handling userfault. Reacquire after handling 3797 * fault to make calling code simpler. 3798 */ 3799 hash = hugetlb_fault_mutex_hash(mapping, idx); 3800 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3801 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3802 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3803 goto out; 3804 } 3805 3806 page = alloc_huge_page(vma, haddr, 0); 3807 if (IS_ERR(page)) { 3808 /* 3809 * Returning error will result in faulting task being 3810 * sent SIGBUS. The hugetlb fault mutex prevents two 3811 * tasks from racing to fault in the same page which 3812 * could result in false unable to allocate errors. 3813 * Page migration does not take the fault mutex, but 3814 * does a clear then write of pte's under page table 3815 * lock. Page fault code could race with migration, 3816 * notice the clear pte and try to allocate a page 3817 * here. Before returning error, get ptl and make 3818 * sure there really is no pte entry. 3819 */ 3820 ptl = huge_pte_lock(h, mm, ptep); 3821 if (!huge_pte_none(huge_ptep_get(ptep))) { 3822 ret = 0; 3823 spin_unlock(ptl); 3824 goto out; 3825 } 3826 spin_unlock(ptl); 3827 ret = vmf_error(PTR_ERR(page)); 3828 goto out; 3829 } 3830 clear_huge_page(page, address, pages_per_huge_page(h)); 3831 __SetPageUptodate(page); 3832 new_page = true; 3833 3834 if (vma->vm_flags & VM_MAYSHARE) { 3835 int err = huge_add_to_page_cache(page, mapping, idx); 3836 if (err) { 3837 put_page(page); 3838 if (err == -EEXIST) 3839 goto retry; 3840 goto out; 3841 } 3842 } else { 3843 lock_page(page); 3844 if (unlikely(anon_vma_prepare(vma))) { 3845 ret = VM_FAULT_OOM; 3846 goto backout_unlocked; 3847 } 3848 anon_rmap = 1; 3849 } 3850 } else { 3851 /* 3852 * If memory error occurs between mmap() and fault, some process 3853 * don't have hwpoisoned swap entry for errored virtual address. 3854 * So we need to block hugepage fault by PG_hwpoison bit check. 3855 */ 3856 if (unlikely(PageHWPoison(page))) { 3857 ret = VM_FAULT_HWPOISON | 3858 VM_FAULT_SET_HINDEX(hstate_index(h)); 3859 goto backout_unlocked; 3860 } 3861 } 3862 3863 /* 3864 * If we are going to COW a private mapping later, we examine the 3865 * pending reservations for this page now. This will ensure that 3866 * any allocations necessary to record that reservation occur outside 3867 * the spinlock. 3868 */ 3869 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3870 if (vma_needs_reservation(h, vma, haddr) < 0) { 3871 ret = VM_FAULT_OOM; 3872 goto backout_unlocked; 3873 } 3874 /* Just decrements count, does not deallocate */ 3875 vma_end_reservation(h, vma, haddr); 3876 } 3877 3878 ptl = huge_pte_lock(h, mm, ptep); 3879 size = i_size_read(mapping->host) >> huge_page_shift(h); 3880 if (idx >= size) 3881 goto backout; 3882 3883 ret = 0; 3884 if (!huge_pte_none(huge_ptep_get(ptep))) 3885 goto backout; 3886 3887 if (anon_rmap) { 3888 ClearPagePrivate(page); 3889 hugepage_add_new_anon_rmap(page, vma, haddr); 3890 } else 3891 page_dup_rmap(page, true); 3892 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3893 && (vma->vm_flags & VM_SHARED))); 3894 set_huge_pte_at(mm, haddr, ptep, new_pte); 3895 3896 hugetlb_count_add(pages_per_huge_page(h), mm); 3897 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3898 /* Optimization, do the COW without a second fault */ 3899 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3900 } 3901 3902 spin_unlock(ptl); 3903 3904 /* 3905 * Only make newly allocated pages active. Existing pages found 3906 * in the pagecache could be !page_huge_active() if they have been 3907 * isolated for migration. 3908 */ 3909 if (new_page) 3910 set_page_huge_active(page); 3911 3912 unlock_page(page); 3913 out: 3914 return ret; 3915 3916 backout: 3917 spin_unlock(ptl); 3918 backout_unlocked: 3919 unlock_page(page); 3920 restore_reserve_on_error(h, vma, haddr, page); 3921 put_page(page); 3922 goto out; 3923 } 3924 3925 #ifdef CONFIG_SMP 3926 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 3927 { 3928 unsigned long key[2]; 3929 u32 hash; 3930 3931 key[0] = (unsigned long) mapping; 3932 key[1] = idx; 3933 3934 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 3935 3936 return hash & (num_fault_mutexes - 1); 3937 } 3938 #else 3939 /* 3940 * For uniprocesor systems we always use a single mutex, so just 3941 * return 0 and avoid the hashing overhead. 3942 */ 3943 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 3944 { 3945 return 0; 3946 } 3947 #endif 3948 3949 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3950 unsigned long address, unsigned int flags) 3951 { 3952 pte_t *ptep, entry; 3953 spinlock_t *ptl; 3954 vm_fault_t ret; 3955 u32 hash; 3956 pgoff_t idx; 3957 struct page *page = NULL; 3958 struct page *pagecache_page = NULL; 3959 struct hstate *h = hstate_vma(vma); 3960 struct address_space *mapping; 3961 int need_wait_lock = 0; 3962 unsigned long haddr = address & huge_page_mask(h); 3963 3964 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3965 if (ptep) { 3966 entry = huge_ptep_get(ptep); 3967 if (unlikely(is_hugetlb_entry_migration(entry))) { 3968 migration_entry_wait_huge(vma, mm, ptep); 3969 return 0; 3970 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3971 return VM_FAULT_HWPOISON_LARGE | 3972 VM_FAULT_SET_HINDEX(hstate_index(h)); 3973 } else { 3974 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3975 if (!ptep) 3976 return VM_FAULT_OOM; 3977 } 3978 3979 mapping = vma->vm_file->f_mapping; 3980 idx = vma_hugecache_offset(h, vma, haddr); 3981 3982 /* 3983 * Serialize hugepage allocation and instantiation, so that we don't 3984 * get spurious allocation failures if two CPUs race to instantiate 3985 * the same page in the page cache. 3986 */ 3987 hash = hugetlb_fault_mutex_hash(mapping, idx); 3988 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3989 3990 entry = huge_ptep_get(ptep); 3991 if (huge_pte_none(entry)) { 3992 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3993 goto out_mutex; 3994 } 3995 3996 ret = 0; 3997 3998 /* 3999 * entry could be a migration/hwpoison entry at this point, so this 4000 * check prevents the kernel from going below assuming that we have 4001 * a active hugepage in pagecache. This goto expects the 2nd page fault, 4002 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 4003 * handle it. 4004 */ 4005 if (!pte_present(entry)) 4006 goto out_mutex; 4007 4008 /* 4009 * If we are going to COW the mapping later, we examine the pending 4010 * reservations for this page now. This will ensure that any 4011 * allocations necessary to record that reservation occur outside the 4012 * spinlock. For private mappings, we also lookup the pagecache 4013 * page now as it is used to determine if a reservation has been 4014 * consumed. 4015 */ 4016 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4017 if (vma_needs_reservation(h, vma, haddr) < 0) { 4018 ret = VM_FAULT_OOM; 4019 goto out_mutex; 4020 } 4021 /* Just decrements count, does not deallocate */ 4022 vma_end_reservation(h, vma, haddr); 4023 4024 if (!(vma->vm_flags & VM_MAYSHARE)) 4025 pagecache_page = hugetlbfs_pagecache_page(h, 4026 vma, haddr); 4027 } 4028 4029 ptl = huge_pte_lock(h, mm, ptep); 4030 4031 /* Check for a racing update before calling hugetlb_cow */ 4032 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4033 goto out_ptl; 4034 4035 /* 4036 * hugetlb_cow() requires page locks of pte_page(entry) and 4037 * pagecache_page, so here we need take the former one 4038 * when page != pagecache_page or !pagecache_page. 4039 */ 4040 page = pte_page(entry); 4041 if (page != pagecache_page) 4042 if (!trylock_page(page)) { 4043 need_wait_lock = 1; 4044 goto out_ptl; 4045 } 4046 4047 get_page(page); 4048 4049 if (flags & FAULT_FLAG_WRITE) { 4050 if (!huge_pte_write(entry)) { 4051 ret = hugetlb_cow(mm, vma, address, ptep, 4052 pagecache_page, ptl); 4053 goto out_put_page; 4054 } 4055 entry = huge_pte_mkdirty(entry); 4056 } 4057 entry = pte_mkyoung(entry); 4058 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4059 flags & FAULT_FLAG_WRITE)) 4060 update_mmu_cache(vma, haddr, ptep); 4061 out_put_page: 4062 if (page != pagecache_page) 4063 unlock_page(page); 4064 put_page(page); 4065 out_ptl: 4066 spin_unlock(ptl); 4067 4068 if (pagecache_page) { 4069 unlock_page(pagecache_page); 4070 put_page(pagecache_page); 4071 } 4072 out_mutex: 4073 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4074 /* 4075 * Generally it's safe to hold refcount during waiting page lock. But 4076 * here we just wait to defer the next page fault to avoid busy loop and 4077 * the page is not used after unlocked before returning from the current 4078 * page fault. So we are safe from accessing freed page, even if we wait 4079 * here without taking refcount. 4080 */ 4081 if (need_wait_lock) 4082 wait_on_page_locked(page); 4083 return ret; 4084 } 4085 4086 /* 4087 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4088 * modifications for huge pages. 4089 */ 4090 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4091 pte_t *dst_pte, 4092 struct vm_area_struct *dst_vma, 4093 unsigned long dst_addr, 4094 unsigned long src_addr, 4095 struct page **pagep) 4096 { 4097 struct address_space *mapping; 4098 pgoff_t idx; 4099 unsigned long size; 4100 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4101 struct hstate *h = hstate_vma(dst_vma); 4102 pte_t _dst_pte; 4103 spinlock_t *ptl; 4104 int ret; 4105 struct page *page; 4106 4107 if (!*pagep) { 4108 ret = -ENOMEM; 4109 page = alloc_huge_page(dst_vma, dst_addr, 0); 4110 if (IS_ERR(page)) 4111 goto out; 4112 4113 ret = copy_huge_page_from_user(page, 4114 (const void __user *) src_addr, 4115 pages_per_huge_page(h), false); 4116 4117 /* fallback to copy_from_user outside mmap_sem */ 4118 if (unlikely(ret)) { 4119 ret = -ENOENT; 4120 *pagep = page; 4121 /* don't free the page */ 4122 goto out; 4123 } 4124 } else { 4125 page = *pagep; 4126 *pagep = NULL; 4127 } 4128 4129 /* 4130 * The memory barrier inside __SetPageUptodate makes sure that 4131 * preceding stores to the page contents become visible before 4132 * the set_pte_at() write. 4133 */ 4134 __SetPageUptodate(page); 4135 4136 mapping = dst_vma->vm_file->f_mapping; 4137 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4138 4139 /* 4140 * If shared, add to page cache 4141 */ 4142 if (vm_shared) { 4143 size = i_size_read(mapping->host) >> huge_page_shift(h); 4144 ret = -EFAULT; 4145 if (idx >= size) 4146 goto out_release_nounlock; 4147 4148 /* 4149 * Serialization between remove_inode_hugepages() and 4150 * huge_add_to_page_cache() below happens through the 4151 * hugetlb_fault_mutex_table that here must be hold by 4152 * the caller. 4153 */ 4154 ret = huge_add_to_page_cache(page, mapping, idx); 4155 if (ret) 4156 goto out_release_nounlock; 4157 } 4158 4159 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4160 spin_lock(ptl); 4161 4162 /* 4163 * Recheck the i_size after holding PT lock to make sure not 4164 * to leave any page mapped (as page_mapped()) beyond the end 4165 * of the i_size (remove_inode_hugepages() is strict about 4166 * enforcing that). If we bail out here, we'll also leave a 4167 * page in the radix tree in the vm_shared case beyond the end 4168 * of the i_size, but remove_inode_hugepages() will take care 4169 * of it as soon as we drop the hugetlb_fault_mutex_table. 4170 */ 4171 size = i_size_read(mapping->host) >> huge_page_shift(h); 4172 ret = -EFAULT; 4173 if (idx >= size) 4174 goto out_release_unlock; 4175 4176 ret = -EEXIST; 4177 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4178 goto out_release_unlock; 4179 4180 if (vm_shared) { 4181 page_dup_rmap(page, true); 4182 } else { 4183 ClearPagePrivate(page); 4184 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4185 } 4186 4187 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4188 if (dst_vma->vm_flags & VM_WRITE) 4189 _dst_pte = huge_pte_mkdirty(_dst_pte); 4190 _dst_pte = pte_mkyoung(_dst_pte); 4191 4192 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4193 4194 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4195 dst_vma->vm_flags & VM_WRITE); 4196 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4197 4198 /* No need to invalidate - it was non-present before */ 4199 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4200 4201 spin_unlock(ptl); 4202 set_page_huge_active(page); 4203 if (vm_shared) 4204 unlock_page(page); 4205 ret = 0; 4206 out: 4207 return ret; 4208 out_release_unlock: 4209 spin_unlock(ptl); 4210 if (vm_shared) 4211 unlock_page(page); 4212 out_release_nounlock: 4213 put_page(page); 4214 goto out; 4215 } 4216 4217 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4218 struct page **pages, struct vm_area_struct **vmas, 4219 unsigned long *position, unsigned long *nr_pages, 4220 long i, unsigned int flags, int *nonblocking) 4221 { 4222 unsigned long pfn_offset; 4223 unsigned long vaddr = *position; 4224 unsigned long remainder = *nr_pages; 4225 struct hstate *h = hstate_vma(vma); 4226 int err = -EFAULT; 4227 4228 while (vaddr < vma->vm_end && remainder) { 4229 pte_t *pte; 4230 spinlock_t *ptl = NULL; 4231 int absent; 4232 struct page *page; 4233 4234 /* 4235 * If we have a pending SIGKILL, don't keep faulting pages and 4236 * potentially allocating memory. 4237 */ 4238 if (fatal_signal_pending(current)) { 4239 remainder = 0; 4240 break; 4241 } 4242 4243 /* 4244 * Some archs (sparc64, sh*) have multiple pte_ts to 4245 * each hugepage. We have to make sure we get the 4246 * first, for the page indexing below to work. 4247 * 4248 * Note that page table lock is not held when pte is null. 4249 */ 4250 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4251 huge_page_size(h)); 4252 if (pte) 4253 ptl = huge_pte_lock(h, mm, pte); 4254 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4255 4256 /* 4257 * When coredumping, it suits get_dump_page if we just return 4258 * an error where there's an empty slot with no huge pagecache 4259 * to back it. This way, we avoid allocating a hugepage, and 4260 * the sparse dumpfile avoids allocating disk blocks, but its 4261 * huge holes still show up with zeroes where they need to be. 4262 */ 4263 if (absent && (flags & FOLL_DUMP) && 4264 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4265 if (pte) 4266 spin_unlock(ptl); 4267 remainder = 0; 4268 break; 4269 } 4270 4271 /* 4272 * We need call hugetlb_fault for both hugepages under migration 4273 * (in which case hugetlb_fault waits for the migration,) and 4274 * hwpoisoned hugepages (in which case we need to prevent the 4275 * caller from accessing to them.) In order to do this, we use 4276 * here is_swap_pte instead of is_hugetlb_entry_migration and 4277 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4278 * both cases, and because we can't follow correct pages 4279 * directly from any kind of swap entries. 4280 */ 4281 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4282 ((flags & FOLL_WRITE) && 4283 !huge_pte_write(huge_ptep_get(pte)))) { 4284 vm_fault_t ret; 4285 unsigned int fault_flags = 0; 4286 4287 if (pte) 4288 spin_unlock(ptl); 4289 if (flags & FOLL_WRITE) 4290 fault_flags |= FAULT_FLAG_WRITE; 4291 if (nonblocking) 4292 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4293 if (flags & FOLL_NOWAIT) 4294 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4295 FAULT_FLAG_RETRY_NOWAIT; 4296 if (flags & FOLL_TRIED) { 4297 VM_WARN_ON_ONCE(fault_flags & 4298 FAULT_FLAG_ALLOW_RETRY); 4299 fault_flags |= FAULT_FLAG_TRIED; 4300 } 4301 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4302 if (ret & VM_FAULT_ERROR) { 4303 err = vm_fault_to_errno(ret, flags); 4304 remainder = 0; 4305 break; 4306 } 4307 if (ret & VM_FAULT_RETRY) { 4308 if (nonblocking && 4309 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4310 *nonblocking = 0; 4311 *nr_pages = 0; 4312 /* 4313 * VM_FAULT_RETRY must not return an 4314 * error, it will return zero 4315 * instead. 4316 * 4317 * No need to update "position" as the 4318 * caller will not check it after 4319 * *nr_pages is set to 0. 4320 */ 4321 return i; 4322 } 4323 continue; 4324 } 4325 4326 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4327 page = pte_page(huge_ptep_get(pte)); 4328 4329 /* 4330 * Instead of doing 'try_get_page()' below in the same_page 4331 * loop, just check the count once here. 4332 */ 4333 if (unlikely(page_count(page) <= 0)) { 4334 if (pages) { 4335 spin_unlock(ptl); 4336 remainder = 0; 4337 err = -ENOMEM; 4338 break; 4339 } 4340 } 4341 4342 /* 4343 * If subpage information not requested, update counters 4344 * and skip the same_page loop below. 4345 */ 4346 if (!pages && !vmas && !pfn_offset && 4347 (vaddr + huge_page_size(h) < vma->vm_end) && 4348 (remainder >= pages_per_huge_page(h))) { 4349 vaddr += huge_page_size(h); 4350 remainder -= pages_per_huge_page(h); 4351 i += pages_per_huge_page(h); 4352 spin_unlock(ptl); 4353 continue; 4354 } 4355 4356 same_page: 4357 if (pages) { 4358 pages[i] = mem_map_offset(page, pfn_offset); 4359 get_page(pages[i]); 4360 } 4361 4362 if (vmas) 4363 vmas[i] = vma; 4364 4365 vaddr += PAGE_SIZE; 4366 ++pfn_offset; 4367 --remainder; 4368 ++i; 4369 if (vaddr < vma->vm_end && remainder && 4370 pfn_offset < pages_per_huge_page(h)) { 4371 /* 4372 * We use pfn_offset to avoid touching the pageframes 4373 * of this compound page. 4374 */ 4375 goto same_page; 4376 } 4377 spin_unlock(ptl); 4378 } 4379 *nr_pages = remainder; 4380 /* 4381 * setting position is actually required only if remainder is 4382 * not zero but it's faster not to add a "if (remainder)" 4383 * branch. 4384 */ 4385 *position = vaddr; 4386 4387 return i ? i : err; 4388 } 4389 4390 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4391 /* 4392 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4393 * implement this. 4394 */ 4395 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4396 #endif 4397 4398 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4399 unsigned long address, unsigned long end, pgprot_t newprot) 4400 { 4401 struct mm_struct *mm = vma->vm_mm; 4402 unsigned long start = address; 4403 pte_t *ptep; 4404 pte_t pte; 4405 struct hstate *h = hstate_vma(vma); 4406 unsigned long pages = 0; 4407 bool shared_pmd = false; 4408 struct mmu_notifier_range range; 4409 4410 /* 4411 * In the case of shared PMDs, the area to flush could be beyond 4412 * start/end. Set range.start/range.end to cover the maximum possible 4413 * range if PMD sharing is possible. 4414 */ 4415 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4416 0, vma, mm, start, end); 4417 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4418 4419 BUG_ON(address >= end); 4420 flush_cache_range(vma, range.start, range.end); 4421 4422 mmu_notifier_invalidate_range_start(&range); 4423 i_mmap_lock_write(vma->vm_file->f_mapping); 4424 for (; address < end; address += huge_page_size(h)) { 4425 spinlock_t *ptl; 4426 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4427 if (!ptep) 4428 continue; 4429 ptl = huge_pte_lock(h, mm, ptep); 4430 if (huge_pmd_unshare(mm, &address, ptep)) { 4431 pages++; 4432 spin_unlock(ptl); 4433 shared_pmd = true; 4434 continue; 4435 } 4436 pte = huge_ptep_get(ptep); 4437 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4438 spin_unlock(ptl); 4439 continue; 4440 } 4441 if (unlikely(is_hugetlb_entry_migration(pte))) { 4442 swp_entry_t entry = pte_to_swp_entry(pte); 4443 4444 if (is_write_migration_entry(entry)) { 4445 pte_t newpte; 4446 4447 make_migration_entry_read(&entry); 4448 newpte = swp_entry_to_pte(entry); 4449 set_huge_swap_pte_at(mm, address, ptep, 4450 newpte, huge_page_size(h)); 4451 pages++; 4452 } 4453 spin_unlock(ptl); 4454 continue; 4455 } 4456 if (!huge_pte_none(pte)) { 4457 pte_t old_pte; 4458 4459 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4460 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4461 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4462 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4463 pages++; 4464 } 4465 spin_unlock(ptl); 4466 } 4467 /* 4468 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4469 * may have cleared our pud entry and done put_page on the page table: 4470 * once we release i_mmap_rwsem, another task can do the final put_page 4471 * and that page table be reused and filled with junk. If we actually 4472 * did unshare a page of pmds, flush the range corresponding to the pud. 4473 */ 4474 if (shared_pmd) 4475 flush_hugetlb_tlb_range(vma, range.start, range.end); 4476 else 4477 flush_hugetlb_tlb_range(vma, start, end); 4478 /* 4479 * No need to call mmu_notifier_invalidate_range() we are downgrading 4480 * page table protection not changing it to point to a new page. 4481 * 4482 * See Documentation/vm/mmu_notifier.rst 4483 */ 4484 i_mmap_unlock_write(vma->vm_file->f_mapping); 4485 mmu_notifier_invalidate_range_end(&range); 4486 4487 return pages << h->order; 4488 } 4489 4490 int hugetlb_reserve_pages(struct inode *inode, 4491 long from, long to, 4492 struct vm_area_struct *vma, 4493 vm_flags_t vm_flags) 4494 { 4495 long ret, chg; 4496 struct hstate *h = hstate_inode(inode); 4497 struct hugepage_subpool *spool = subpool_inode(inode); 4498 struct resv_map *resv_map; 4499 long gbl_reserve; 4500 4501 /* This should never happen */ 4502 if (from > to) { 4503 VM_WARN(1, "%s called with a negative range\n", __func__); 4504 return -EINVAL; 4505 } 4506 4507 /* 4508 * Only apply hugepage reservation if asked. At fault time, an 4509 * attempt will be made for VM_NORESERVE to allocate a page 4510 * without using reserves 4511 */ 4512 if (vm_flags & VM_NORESERVE) 4513 return 0; 4514 4515 /* 4516 * Shared mappings base their reservation on the number of pages that 4517 * are already allocated on behalf of the file. Private mappings need 4518 * to reserve the full area even if read-only as mprotect() may be 4519 * called to make the mapping read-write. Assume !vma is a shm mapping 4520 */ 4521 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4522 /* 4523 * resv_map can not be NULL as hugetlb_reserve_pages is only 4524 * called for inodes for which resv_maps were created (see 4525 * hugetlbfs_get_inode). 4526 */ 4527 resv_map = inode_resv_map(inode); 4528 4529 chg = region_chg(resv_map, from, to); 4530 4531 } else { 4532 resv_map = resv_map_alloc(); 4533 if (!resv_map) 4534 return -ENOMEM; 4535 4536 chg = to - from; 4537 4538 set_vma_resv_map(vma, resv_map); 4539 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4540 } 4541 4542 if (chg < 0) { 4543 ret = chg; 4544 goto out_err; 4545 } 4546 4547 /* 4548 * There must be enough pages in the subpool for the mapping. If 4549 * the subpool has a minimum size, there may be some global 4550 * reservations already in place (gbl_reserve). 4551 */ 4552 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4553 if (gbl_reserve < 0) { 4554 ret = -ENOSPC; 4555 goto out_err; 4556 } 4557 4558 /* 4559 * Check enough hugepages are available for the reservation. 4560 * Hand the pages back to the subpool if there are not 4561 */ 4562 ret = hugetlb_acct_memory(h, gbl_reserve); 4563 if (ret < 0) { 4564 /* put back original number of pages, chg */ 4565 (void)hugepage_subpool_put_pages(spool, chg); 4566 goto out_err; 4567 } 4568 4569 /* 4570 * Account for the reservations made. Shared mappings record regions 4571 * that have reservations as they are shared by multiple VMAs. 4572 * When the last VMA disappears, the region map says how much 4573 * the reservation was and the page cache tells how much of 4574 * the reservation was consumed. Private mappings are per-VMA and 4575 * only the consumed reservations are tracked. When the VMA 4576 * disappears, the original reservation is the VMA size and the 4577 * consumed reservations are stored in the map. Hence, nothing 4578 * else has to be done for private mappings here 4579 */ 4580 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4581 long add = region_add(resv_map, from, to); 4582 4583 if (unlikely(chg > add)) { 4584 /* 4585 * pages in this range were added to the reserve 4586 * map between region_chg and region_add. This 4587 * indicates a race with alloc_huge_page. Adjust 4588 * the subpool and reserve counts modified above 4589 * based on the difference. 4590 */ 4591 long rsv_adjust; 4592 4593 rsv_adjust = hugepage_subpool_put_pages(spool, 4594 chg - add); 4595 hugetlb_acct_memory(h, -rsv_adjust); 4596 } 4597 } 4598 return 0; 4599 out_err: 4600 if (!vma || vma->vm_flags & VM_MAYSHARE) 4601 /* Don't call region_abort if region_chg failed */ 4602 if (chg >= 0) 4603 region_abort(resv_map, from, to); 4604 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4605 kref_put(&resv_map->refs, resv_map_release); 4606 return ret; 4607 } 4608 4609 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4610 long freed) 4611 { 4612 struct hstate *h = hstate_inode(inode); 4613 struct resv_map *resv_map = inode_resv_map(inode); 4614 long chg = 0; 4615 struct hugepage_subpool *spool = subpool_inode(inode); 4616 long gbl_reserve; 4617 4618 /* 4619 * Since this routine can be called in the evict inode path for all 4620 * hugetlbfs inodes, resv_map could be NULL. 4621 */ 4622 if (resv_map) { 4623 chg = region_del(resv_map, start, end); 4624 /* 4625 * region_del() can fail in the rare case where a region 4626 * must be split and another region descriptor can not be 4627 * allocated. If end == LONG_MAX, it will not fail. 4628 */ 4629 if (chg < 0) 4630 return chg; 4631 } 4632 4633 spin_lock(&inode->i_lock); 4634 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4635 spin_unlock(&inode->i_lock); 4636 4637 /* 4638 * If the subpool has a minimum size, the number of global 4639 * reservations to be released may be adjusted. 4640 */ 4641 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4642 hugetlb_acct_memory(h, -gbl_reserve); 4643 4644 return 0; 4645 } 4646 4647 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4648 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4649 struct vm_area_struct *vma, 4650 unsigned long addr, pgoff_t idx) 4651 { 4652 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4653 svma->vm_start; 4654 unsigned long sbase = saddr & PUD_MASK; 4655 unsigned long s_end = sbase + PUD_SIZE; 4656 4657 /* Allow segments to share if only one is marked locked */ 4658 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4659 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4660 4661 /* 4662 * match the virtual addresses, permission and the alignment of the 4663 * page table page. 4664 */ 4665 if (pmd_index(addr) != pmd_index(saddr) || 4666 vm_flags != svm_flags || 4667 sbase < svma->vm_start || svma->vm_end < s_end) 4668 return 0; 4669 4670 return saddr; 4671 } 4672 4673 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4674 { 4675 unsigned long base = addr & PUD_MASK; 4676 unsigned long end = base + PUD_SIZE; 4677 4678 /* 4679 * check on proper vm_flags and page table alignment 4680 */ 4681 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4682 return true; 4683 return false; 4684 } 4685 4686 /* 4687 * Determine if start,end range within vma could be mapped by shared pmd. 4688 * If yes, adjust start and end to cover range associated with possible 4689 * shared pmd mappings. 4690 */ 4691 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4692 unsigned long *start, unsigned long *end) 4693 { 4694 unsigned long check_addr = *start; 4695 4696 if (!(vma->vm_flags & VM_MAYSHARE)) 4697 return; 4698 4699 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4700 unsigned long a_start = check_addr & PUD_MASK; 4701 unsigned long a_end = a_start + PUD_SIZE; 4702 4703 /* 4704 * If sharing is possible, adjust start/end if necessary. 4705 */ 4706 if (range_in_vma(vma, a_start, a_end)) { 4707 if (a_start < *start) 4708 *start = a_start; 4709 if (a_end > *end) 4710 *end = a_end; 4711 } 4712 } 4713 } 4714 4715 /* 4716 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4717 * and returns the corresponding pte. While this is not necessary for the 4718 * !shared pmd case because we can allocate the pmd later as well, it makes the 4719 * code much cleaner. pmd allocation is essential for the shared case because 4720 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4721 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4722 * bad pmd for sharing. 4723 */ 4724 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4725 { 4726 struct vm_area_struct *vma = find_vma(mm, addr); 4727 struct address_space *mapping = vma->vm_file->f_mapping; 4728 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4729 vma->vm_pgoff; 4730 struct vm_area_struct *svma; 4731 unsigned long saddr; 4732 pte_t *spte = NULL; 4733 pte_t *pte; 4734 spinlock_t *ptl; 4735 4736 if (!vma_shareable(vma, addr)) 4737 return (pte_t *)pmd_alloc(mm, pud, addr); 4738 4739 i_mmap_lock_read(mapping); 4740 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4741 if (svma == vma) 4742 continue; 4743 4744 saddr = page_table_shareable(svma, vma, addr, idx); 4745 if (saddr) { 4746 spte = huge_pte_offset(svma->vm_mm, saddr, 4747 vma_mmu_pagesize(svma)); 4748 if (spte) { 4749 get_page(virt_to_page(spte)); 4750 break; 4751 } 4752 } 4753 } 4754 4755 if (!spte) 4756 goto out; 4757 4758 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4759 if (pud_none(*pud)) { 4760 pud_populate(mm, pud, 4761 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4762 mm_inc_nr_pmds(mm); 4763 } else { 4764 put_page(virt_to_page(spte)); 4765 } 4766 spin_unlock(ptl); 4767 out: 4768 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4769 i_mmap_unlock_read(mapping); 4770 return pte; 4771 } 4772 4773 /* 4774 * unmap huge page backed by shared pte. 4775 * 4776 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4777 * indicated by page_count > 1, unmap is achieved by clearing pud and 4778 * decrementing the ref count. If count == 1, the pte page is not shared. 4779 * 4780 * called with page table lock held. 4781 * 4782 * returns: 1 successfully unmapped a shared pte page 4783 * 0 the underlying pte page is not shared, or it is the last user 4784 */ 4785 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4786 { 4787 pgd_t *pgd = pgd_offset(mm, *addr); 4788 p4d_t *p4d = p4d_offset(pgd, *addr); 4789 pud_t *pud = pud_offset(p4d, *addr); 4790 4791 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4792 if (page_count(virt_to_page(ptep)) == 1) 4793 return 0; 4794 4795 pud_clear(pud); 4796 put_page(virt_to_page(ptep)); 4797 mm_dec_nr_pmds(mm); 4798 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4799 return 1; 4800 } 4801 #define want_pmd_share() (1) 4802 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4803 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4804 { 4805 return NULL; 4806 } 4807 4808 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4809 { 4810 return 0; 4811 } 4812 4813 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4814 unsigned long *start, unsigned long *end) 4815 { 4816 } 4817 #define want_pmd_share() (0) 4818 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4819 4820 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4821 pte_t *huge_pte_alloc(struct mm_struct *mm, 4822 unsigned long addr, unsigned long sz) 4823 { 4824 pgd_t *pgd; 4825 p4d_t *p4d; 4826 pud_t *pud; 4827 pte_t *pte = NULL; 4828 4829 pgd = pgd_offset(mm, addr); 4830 p4d = p4d_alloc(mm, pgd, addr); 4831 if (!p4d) 4832 return NULL; 4833 pud = pud_alloc(mm, p4d, addr); 4834 if (pud) { 4835 if (sz == PUD_SIZE) { 4836 pte = (pte_t *)pud; 4837 } else { 4838 BUG_ON(sz != PMD_SIZE); 4839 if (want_pmd_share() && pud_none(*pud)) 4840 pte = huge_pmd_share(mm, addr, pud); 4841 else 4842 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4843 } 4844 } 4845 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4846 4847 return pte; 4848 } 4849 4850 /* 4851 * huge_pte_offset() - Walk the page table to resolve the hugepage 4852 * entry at address @addr 4853 * 4854 * Return: Pointer to page table or swap entry (PUD or PMD) for 4855 * address @addr, or NULL if a p*d_none() entry is encountered and the 4856 * size @sz doesn't match the hugepage size at this level of the page 4857 * table. 4858 */ 4859 pte_t *huge_pte_offset(struct mm_struct *mm, 4860 unsigned long addr, unsigned long sz) 4861 { 4862 pgd_t *pgd; 4863 p4d_t *p4d; 4864 pud_t *pud; 4865 pmd_t *pmd; 4866 4867 pgd = pgd_offset(mm, addr); 4868 if (!pgd_present(*pgd)) 4869 return NULL; 4870 p4d = p4d_offset(pgd, addr); 4871 if (!p4d_present(*p4d)) 4872 return NULL; 4873 4874 pud = pud_offset(p4d, addr); 4875 if (sz != PUD_SIZE && pud_none(*pud)) 4876 return NULL; 4877 /* hugepage or swap? */ 4878 if (pud_huge(*pud) || !pud_present(*pud)) 4879 return (pte_t *)pud; 4880 4881 pmd = pmd_offset(pud, addr); 4882 if (sz != PMD_SIZE && pmd_none(*pmd)) 4883 return NULL; 4884 /* hugepage or swap? */ 4885 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4886 return (pte_t *)pmd; 4887 4888 return NULL; 4889 } 4890 4891 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4892 4893 /* 4894 * These functions are overwritable if your architecture needs its own 4895 * behavior. 4896 */ 4897 struct page * __weak 4898 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4899 int write) 4900 { 4901 return ERR_PTR(-EINVAL); 4902 } 4903 4904 struct page * __weak 4905 follow_huge_pd(struct vm_area_struct *vma, 4906 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4907 { 4908 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4909 return NULL; 4910 } 4911 4912 struct page * __weak 4913 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4914 pmd_t *pmd, int flags) 4915 { 4916 struct page *page = NULL; 4917 spinlock_t *ptl; 4918 pte_t pte; 4919 retry: 4920 ptl = pmd_lockptr(mm, pmd); 4921 spin_lock(ptl); 4922 /* 4923 * make sure that the address range covered by this pmd is not 4924 * unmapped from other threads. 4925 */ 4926 if (!pmd_huge(*pmd)) 4927 goto out; 4928 pte = huge_ptep_get((pte_t *)pmd); 4929 if (pte_present(pte)) { 4930 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4931 if (flags & FOLL_GET) 4932 get_page(page); 4933 } else { 4934 if (is_hugetlb_entry_migration(pte)) { 4935 spin_unlock(ptl); 4936 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4937 goto retry; 4938 } 4939 /* 4940 * hwpoisoned entry is treated as no_page_table in 4941 * follow_page_mask(). 4942 */ 4943 } 4944 out: 4945 spin_unlock(ptl); 4946 return page; 4947 } 4948 4949 struct page * __weak 4950 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4951 pud_t *pud, int flags) 4952 { 4953 if (flags & FOLL_GET) 4954 return NULL; 4955 4956 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4957 } 4958 4959 struct page * __weak 4960 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4961 { 4962 if (flags & FOLL_GET) 4963 return NULL; 4964 4965 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4966 } 4967 4968 bool isolate_huge_page(struct page *page, struct list_head *list) 4969 { 4970 bool ret = true; 4971 4972 VM_BUG_ON_PAGE(!PageHead(page), page); 4973 spin_lock(&hugetlb_lock); 4974 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4975 ret = false; 4976 goto unlock; 4977 } 4978 clear_page_huge_active(page); 4979 list_move_tail(&page->lru, list); 4980 unlock: 4981 spin_unlock(&hugetlb_lock); 4982 return ret; 4983 } 4984 4985 void putback_active_hugepage(struct page *page) 4986 { 4987 VM_BUG_ON_PAGE(!PageHead(page), page); 4988 spin_lock(&hugetlb_lock); 4989 set_page_huge_active(page); 4990 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4991 spin_unlock(&hugetlb_lock); 4992 put_page(page); 4993 } 4994 4995 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4996 { 4997 struct hstate *h = page_hstate(oldpage); 4998 4999 hugetlb_cgroup_migrate(oldpage, newpage); 5000 set_page_owner_migrate_reason(newpage, reason); 5001 5002 /* 5003 * transfer temporary state of the new huge page. This is 5004 * reverse to other transitions because the newpage is going to 5005 * be final while the old one will be freed so it takes over 5006 * the temporary status. 5007 * 5008 * Also note that we have to transfer the per-node surplus state 5009 * here as well otherwise the global surplus count will not match 5010 * the per-node's. 5011 */ 5012 if (PageHugeTemporary(newpage)) { 5013 int old_nid = page_to_nid(oldpage); 5014 int new_nid = page_to_nid(newpage); 5015 5016 SetPageHugeTemporary(oldpage); 5017 ClearPageHugeTemporary(newpage); 5018 5019 spin_lock(&hugetlb_lock); 5020 if (h->surplus_huge_pages_node[old_nid]) { 5021 h->surplus_huge_pages_node[old_nid]--; 5022 h->surplus_huge_pages_node[new_nid]++; 5023 } 5024 spin_unlock(&hugetlb_lock); 5025 } 5026 } 5027