xref: /openbmc/linux/mm/hugetlb.c (revision b9df3997)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34 
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42 
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47  * Minimum page order among possible hugepage sizes, set to a proper value
48  * at boot time.
49  */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51 
52 __initdata LIST_HEAD(huge_boot_pages);
53 
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59 
60 /*
61  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62  * free_huge_pages, and surplus_huge_pages.
63  */
64 DEFINE_SPINLOCK(hugetlb_lock);
65 
66 /*
67  * Serializes faults on the same logical page.  This is used to
68  * prevent spurious OOMs when the hugepage pool is fully utilized.
69  */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72 
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75 
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
79 
80 	spin_unlock(&spool->lock);
81 
82 	/* If no pages are used, and no other handles to the subpool
83 	 * remain, give up any reservations mased on minimum size and
84 	 * free the subpool */
85 	if (free) {
86 		if (spool->min_hpages != -1)
87 			hugetlb_acct_memory(spool->hstate,
88 						-spool->min_hpages);
89 		kfree(spool);
90 	}
91 }
92 
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 						long min_hpages)
95 {
96 	struct hugepage_subpool *spool;
97 
98 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 	if (!spool)
100 		return NULL;
101 
102 	spin_lock_init(&spool->lock);
103 	spool->count = 1;
104 	spool->max_hpages = max_hpages;
105 	spool->hstate = h;
106 	spool->min_hpages = min_hpages;
107 
108 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 		kfree(spool);
110 		return NULL;
111 	}
112 	spool->rsv_hpages = min_hpages;
113 
114 	return spool;
115 }
116 
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119 	spin_lock(&spool->lock);
120 	BUG_ON(!spool->count);
121 	spool->count--;
122 	unlock_or_release_subpool(spool);
123 }
124 
125 /*
126  * Subpool accounting for allocating and reserving pages.
127  * Return -ENOMEM if there are not enough resources to satisfy the
128  * the request.  Otherwise, return the number of pages by which the
129  * global pools must be adjusted (upward).  The returned value may
130  * only be different than the passed value (delta) in the case where
131  * a subpool minimum size must be manitained.
132  */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 				      long delta)
135 {
136 	long ret = delta;
137 
138 	if (!spool)
139 		return ret;
140 
141 	spin_lock(&spool->lock);
142 
143 	if (spool->max_hpages != -1) {		/* maximum size accounting */
144 		if ((spool->used_hpages + delta) <= spool->max_hpages)
145 			spool->used_hpages += delta;
146 		else {
147 			ret = -ENOMEM;
148 			goto unlock_ret;
149 		}
150 	}
151 
152 	/* minimum size accounting */
153 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 		if (delta > spool->rsv_hpages) {
155 			/*
156 			 * Asking for more reserves than those already taken on
157 			 * behalf of subpool.  Return difference.
158 			 */
159 			ret = delta - spool->rsv_hpages;
160 			spool->rsv_hpages = 0;
161 		} else {
162 			ret = 0;	/* reserves already accounted for */
163 			spool->rsv_hpages -= delta;
164 		}
165 	}
166 
167 unlock_ret:
168 	spin_unlock(&spool->lock);
169 	return ret;
170 }
171 
172 /*
173  * Subpool accounting for freeing and unreserving pages.
174  * Return the number of global page reservations that must be dropped.
175  * The return value may only be different than the passed value (delta)
176  * in the case where a subpool minimum size must be maintained.
177  */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 				       long delta)
180 {
181 	long ret = delta;
182 
183 	if (!spool)
184 		return delta;
185 
186 	spin_lock(&spool->lock);
187 
188 	if (spool->max_hpages != -1)		/* maximum size accounting */
189 		spool->used_hpages -= delta;
190 
191 	 /* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 		if (spool->rsv_hpages + delta <= spool->min_hpages)
194 			ret = 0;
195 		else
196 			ret = spool->rsv_hpages + delta - spool->min_hpages;
197 
198 		spool->rsv_hpages += delta;
199 		if (spool->rsv_hpages > spool->min_hpages)
200 			spool->rsv_hpages = spool->min_hpages;
201 	}
202 
203 	/*
204 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 	 * quota reference, free it now.
206 	 */
207 	unlock_or_release_subpool(spool);
208 
209 	return ret;
210 }
211 
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214 	return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216 
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219 	return subpool_inode(file_inode(vma->vm_file));
220 }
221 
222 /*
223  * Region tracking -- allows tracking of reservations and instantiated pages
224  *                    across the pages in a mapping.
225  *
226  * The region data structures are embedded into a resv_map and protected
227  * by a resv_map's lock.  The set of regions within the resv_map represent
228  * reservations for huge pages, or huge pages that have already been
229  * instantiated within the map.  The from and to elements are huge page
230  * indicies into the associated mapping.  from indicates the starting index
231  * of the region.  to represents the first index past the end of  the region.
232  *
233  * For example, a file region structure with from == 0 and to == 4 represents
234  * four huge pages in a mapping.  It is important to note that the to element
235  * represents the first element past the end of the region. This is used in
236  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237  *
238  * Interval notation of the form [from, to) will be used to indicate that
239  * the endpoint from is inclusive and to is exclusive.
240  */
241 struct file_region {
242 	struct list_head link;
243 	long from;
244 	long to;
245 };
246 
247 /*
248  * Add the huge page range represented by [f, t) to the reserve
249  * map.  In the normal case, existing regions will be expanded
250  * to accommodate the specified range.  Sufficient regions should
251  * exist for expansion due to the previous call to region_chg
252  * with the same range.  However, it is possible that region_del
253  * could have been called after region_chg and modifed the map
254  * in such a way that no region exists to be expanded.  In this
255  * case, pull a region descriptor from the cache associated with
256  * the map and use that for the new range.
257  *
258  * Return the number of new huge pages added to the map.  This
259  * number is greater than or equal to zero.
260  */
261 static long region_add(struct resv_map *resv, long f, long t)
262 {
263 	struct list_head *head = &resv->regions;
264 	struct file_region *rg, *nrg, *trg;
265 	long add = 0;
266 
267 	spin_lock(&resv->lock);
268 	/* Locate the region we are either in or before. */
269 	list_for_each_entry(rg, head, link)
270 		if (f <= rg->to)
271 			break;
272 
273 	/*
274 	 * If no region exists which can be expanded to include the
275 	 * specified range, the list must have been modified by an
276 	 * interleving call to region_del().  Pull a region descriptor
277 	 * from the cache and use it for this range.
278 	 */
279 	if (&rg->link == head || t < rg->from) {
280 		VM_BUG_ON(resv->region_cache_count <= 0);
281 
282 		resv->region_cache_count--;
283 		nrg = list_first_entry(&resv->region_cache, struct file_region,
284 					link);
285 		list_del(&nrg->link);
286 
287 		nrg->from = f;
288 		nrg->to = t;
289 		list_add(&nrg->link, rg->link.prev);
290 
291 		add += t - f;
292 		goto out_locked;
293 	}
294 
295 	/* Round our left edge to the current segment if it encloses us. */
296 	if (f > rg->from)
297 		f = rg->from;
298 
299 	/* Check for and consume any regions we now overlap with. */
300 	nrg = rg;
301 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 		if (&rg->link == head)
303 			break;
304 		if (rg->from > t)
305 			break;
306 
307 		/* If this area reaches higher then extend our area to
308 		 * include it completely.  If this is not the first area
309 		 * which we intend to reuse, free it. */
310 		if (rg->to > t)
311 			t = rg->to;
312 		if (rg != nrg) {
313 			/* Decrement return value by the deleted range.
314 			 * Another range will span this area so that by
315 			 * end of routine add will be >= zero
316 			 */
317 			add -= (rg->to - rg->from);
318 			list_del(&rg->link);
319 			kfree(rg);
320 		}
321 	}
322 
323 	add += (nrg->from - f);		/* Added to beginning of region */
324 	nrg->from = f;
325 	add += t - nrg->to;		/* Added to end of region */
326 	nrg->to = t;
327 
328 out_locked:
329 	resv->adds_in_progress--;
330 	spin_unlock(&resv->lock);
331 	VM_BUG_ON(add < 0);
332 	return add;
333 }
334 
335 /*
336  * Examine the existing reserve map and determine how many
337  * huge pages in the specified range [f, t) are NOT currently
338  * represented.  This routine is called before a subsequent
339  * call to region_add that will actually modify the reserve
340  * map to add the specified range [f, t).  region_chg does
341  * not change the number of huge pages represented by the
342  * map.  However, if the existing regions in the map can not
343  * be expanded to represent the new range, a new file_region
344  * structure is added to the map as a placeholder.  This is
345  * so that the subsequent region_add call will have all the
346  * regions it needs and will not fail.
347  *
348  * Upon entry, region_chg will also examine the cache of region descriptors
349  * associated with the map.  If there are not enough descriptors cached, one
350  * will be allocated for the in progress add operation.
351  *
352  * Returns the number of huge pages that need to be added to the existing
353  * reservation map for the range [f, t).  This number is greater or equal to
354  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
355  * is needed and can not be allocated.
356  */
357 static long region_chg(struct resv_map *resv, long f, long t)
358 {
359 	struct list_head *head = &resv->regions;
360 	struct file_region *rg, *nrg = NULL;
361 	long chg = 0;
362 
363 retry:
364 	spin_lock(&resv->lock);
365 retry_locked:
366 	resv->adds_in_progress++;
367 
368 	/*
369 	 * Check for sufficient descriptors in the cache to accommodate
370 	 * the number of in progress add operations.
371 	 */
372 	if (resv->adds_in_progress > resv->region_cache_count) {
373 		struct file_region *trg;
374 
375 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 		/* Must drop lock to allocate a new descriptor. */
377 		resv->adds_in_progress--;
378 		spin_unlock(&resv->lock);
379 
380 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 		if (!trg) {
382 			kfree(nrg);
383 			return -ENOMEM;
384 		}
385 
386 		spin_lock(&resv->lock);
387 		list_add(&trg->link, &resv->region_cache);
388 		resv->region_cache_count++;
389 		goto retry_locked;
390 	}
391 
392 	/* Locate the region we are before or in. */
393 	list_for_each_entry(rg, head, link)
394 		if (f <= rg->to)
395 			break;
396 
397 	/* If we are below the current region then a new region is required.
398 	 * Subtle, allocate a new region at the position but make it zero
399 	 * size such that we can guarantee to record the reservation. */
400 	if (&rg->link == head || t < rg->from) {
401 		if (!nrg) {
402 			resv->adds_in_progress--;
403 			spin_unlock(&resv->lock);
404 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 			if (!nrg)
406 				return -ENOMEM;
407 
408 			nrg->from = f;
409 			nrg->to   = f;
410 			INIT_LIST_HEAD(&nrg->link);
411 			goto retry;
412 		}
413 
414 		list_add(&nrg->link, rg->link.prev);
415 		chg = t - f;
416 		goto out_nrg;
417 	}
418 
419 	/* Round our left edge to the current segment if it encloses us. */
420 	if (f > rg->from)
421 		f = rg->from;
422 	chg = t - f;
423 
424 	/* Check for and consume any regions we now overlap with. */
425 	list_for_each_entry(rg, rg->link.prev, link) {
426 		if (&rg->link == head)
427 			break;
428 		if (rg->from > t)
429 			goto out;
430 
431 		/* We overlap with this area, if it extends further than
432 		 * us then we must extend ourselves.  Account for its
433 		 * existing reservation. */
434 		if (rg->to > t) {
435 			chg += rg->to - t;
436 			t = rg->to;
437 		}
438 		chg -= rg->to - rg->from;
439 	}
440 
441 out:
442 	spin_unlock(&resv->lock);
443 	/*  We already know we raced and no longer need the new region */
444 	kfree(nrg);
445 	return chg;
446 out_nrg:
447 	spin_unlock(&resv->lock);
448 	return chg;
449 }
450 
451 /*
452  * Abort the in progress add operation.  The adds_in_progress field
453  * of the resv_map keeps track of the operations in progress between
454  * calls to region_chg and region_add.  Operations are sometimes
455  * aborted after the call to region_chg.  In such cases, region_abort
456  * is called to decrement the adds_in_progress counter.
457  *
458  * NOTE: The range arguments [f, t) are not needed or used in this
459  * routine.  They are kept to make reading the calling code easier as
460  * arguments will match the associated region_chg call.
461  */
462 static void region_abort(struct resv_map *resv, long f, long t)
463 {
464 	spin_lock(&resv->lock);
465 	VM_BUG_ON(!resv->region_cache_count);
466 	resv->adds_in_progress--;
467 	spin_unlock(&resv->lock);
468 }
469 
470 /*
471  * Delete the specified range [f, t) from the reserve map.  If the
472  * t parameter is LONG_MAX, this indicates that ALL regions after f
473  * should be deleted.  Locate the regions which intersect [f, t)
474  * and either trim, delete or split the existing regions.
475  *
476  * Returns the number of huge pages deleted from the reserve map.
477  * In the normal case, the return value is zero or more.  In the
478  * case where a region must be split, a new region descriptor must
479  * be allocated.  If the allocation fails, -ENOMEM will be returned.
480  * NOTE: If the parameter t == LONG_MAX, then we will never split
481  * a region and possibly return -ENOMEM.  Callers specifying
482  * t == LONG_MAX do not need to check for -ENOMEM error.
483  */
484 static long region_del(struct resv_map *resv, long f, long t)
485 {
486 	struct list_head *head = &resv->regions;
487 	struct file_region *rg, *trg;
488 	struct file_region *nrg = NULL;
489 	long del = 0;
490 
491 retry:
492 	spin_lock(&resv->lock);
493 	list_for_each_entry_safe(rg, trg, head, link) {
494 		/*
495 		 * Skip regions before the range to be deleted.  file_region
496 		 * ranges are normally of the form [from, to).  However, there
497 		 * may be a "placeholder" entry in the map which is of the form
498 		 * (from, to) with from == to.  Check for placeholder entries
499 		 * at the beginning of the range to be deleted.
500 		 */
501 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 			continue;
503 
504 		if (rg->from >= t)
505 			break;
506 
507 		if (f > rg->from && t < rg->to) { /* Must split region */
508 			/*
509 			 * Check for an entry in the cache before dropping
510 			 * lock and attempting allocation.
511 			 */
512 			if (!nrg &&
513 			    resv->region_cache_count > resv->adds_in_progress) {
514 				nrg = list_first_entry(&resv->region_cache,
515 							struct file_region,
516 							link);
517 				list_del(&nrg->link);
518 				resv->region_cache_count--;
519 			}
520 
521 			if (!nrg) {
522 				spin_unlock(&resv->lock);
523 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 				if (!nrg)
525 					return -ENOMEM;
526 				goto retry;
527 			}
528 
529 			del += t - f;
530 
531 			/* New entry for end of split region */
532 			nrg->from = t;
533 			nrg->to = rg->to;
534 			INIT_LIST_HEAD(&nrg->link);
535 
536 			/* Original entry is trimmed */
537 			rg->to = f;
538 
539 			list_add(&nrg->link, &rg->link);
540 			nrg = NULL;
541 			break;
542 		}
543 
544 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 			del += rg->to - rg->from;
546 			list_del(&rg->link);
547 			kfree(rg);
548 			continue;
549 		}
550 
551 		if (f <= rg->from) {	/* Trim beginning of region */
552 			del += t - rg->from;
553 			rg->from = t;
554 		} else {		/* Trim end of region */
555 			del += rg->to - f;
556 			rg->to = f;
557 		}
558 	}
559 
560 	spin_unlock(&resv->lock);
561 	kfree(nrg);
562 	return del;
563 }
564 
565 /*
566  * A rare out of memory error was encountered which prevented removal of
567  * the reserve map region for a page.  The huge page itself was free'ed
568  * and removed from the page cache.  This routine will adjust the subpool
569  * usage count, and the global reserve count if needed.  By incrementing
570  * these counts, the reserve map entry which could not be deleted will
571  * appear as a "reserved" entry instead of simply dangling with incorrect
572  * counts.
573  */
574 void hugetlb_fix_reserve_counts(struct inode *inode)
575 {
576 	struct hugepage_subpool *spool = subpool_inode(inode);
577 	long rsv_adjust;
578 
579 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 	if (rsv_adjust) {
581 		struct hstate *h = hstate_inode(inode);
582 
583 		hugetlb_acct_memory(h, 1);
584 	}
585 }
586 
587 /*
588  * Count and return the number of huge pages in the reserve map
589  * that intersect with the range [f, t).
590  */
591 static long region_count(struct resv_map *resv, long f, long t)
592 {
593 	struct list_head *head = &resv->regions;
594 	struct file_region *rg;
595 	long chg = 0;
596 
597 	spin_lock(&resv->lock);
598 	/* Locate each segment we overlap with, and count that overlap. */
599 	list_for_each_entry(rg, head, link) {
600 		long seg_from;
601 		long seg_to;
602 
603 		if (rg->to <= f)
604 			continue;
605 		if (rg->from >= t)
606 			break;
607 
608 		seg_from = max(rg->from, f);
609 		seg_to = min(rg->to, t);
610 
611 		chg += seg_to - seg_from;
612 	}
613 	spin_unlock(&resv->lock);
614 
615 	return chg;
616 }
617 
618 /*
619  * Convert the address within this vma to the page offset within
620  * the mapping, in pagecache page units; huge pages here.
621  */
622 static pgoff_t vma_hugecache_offset(struct hstate *h,
623 			struct vm_area_struct *vma, unsigned long address)
624 {
625 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 			(vma->vm_pgoff >> huge_page_order(h));
627 }
628 
629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 				     unsigned long address)
631 {
632 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
633 }
634 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 
636 /*
637  * Return the size of the pages allocated when backing a VMA. In the majority
638  * cases this will be same size as used by the page table entries.
639  */
640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641 {
642 	if (vma->vm_ops && vma->vm_ops->pagesize)
643 		return vma->vm_ops->pagesize(vma);
644 	return PAGE_SIZE;
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 
648 /*
649  * Return the page size being used by the MMU to back a VMA. In the majority
650  * of cases, the page size used by the kernel matches the MMU size. On
651  * architectures where it differs, an architecture-specific 'strong'
652  * version of this symbol is required.
653  */
654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655 {
656 	return vma_kernel_pagesize(vma);
657 }
658 
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689 	return (unsigned long)vma->vm_private_data;
690 }
691 
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 							unsigned long value)
694 {
695 	vma->vm_private_data = (void *)value;
696 }
697 
698 struct resv_map *resv_map_alloc(void)
699 {
700 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702 
703 	if (!resv_map || !rg) {
704 		kfree(resv_map);
705 		kfree(rg);
706 		return NULL;
707 	}
708 
709 	kref_init(&resv_map->refs);
710 	spin_lock_init(&resv_map->lock);
711 	INIT_LIST_HEAD(&resv_map->regions);
712 
713 	resv_map->adds_in_progress = 0;
714 
715 	INIT_LIST_HEAD(&resv_map->region_cache);
716 	list_add(&rg->link, &resv_map->region_cache);
717 	resv_map->region_cache_count = 1;
718 
719 	return resv_map;
720 }
721 
722 void resv_map_release(struct kref *ref)
723 {
724 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 	struct list_head *head = &resv_map->region_cache;
726 	struct file_region *rg, *trg;
727 
728 	/* Clear out any active regions before we release the map. */
729 	region_del(resv_map, 0, LONG_MAX);
730 
731 	/* ... and any entries left in the cache */
732 	list_for_each_entry_safe(rg, trg, head, link) {
733 		list_del(&rg->link);
734 		kfree(rg);
735 	}
736 
737 	VM_BUG_ON(resv_map->adds_in_progress);
738 
739 	kfree(resv_map);
740 }
741 
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744 	/*
745 	 * At inode evict time, i_mapping may not point to the original
746 	 * address space within the inode.  This original address space
747 	 * contains the pointer to the resv_map.  So, always use the
748 	 * address space embedded within the inode.
749 	 * The VERY common case is inode->mapping == &inode->i_data but,
750 	 * this may not be true for device special inodes.
751 	 */
752 	return (struct resv_map *)(&inode->i_data)->private_data;
753 }
754 
755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756 {
757 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 	if (vma->vm_flags & VM_MAYSHARE) {
759 		struct address_space *mapping = vma->vm_file->f_mapping;
760 		struct inode *inode = mapping->host;
761 
762 		return inode_resv_map(inode);
763 
764 	} else {
765 		return (struct resv_map *)(get_vma_private_data(vma) &
766 							~HPAGE_RESV_MASK);
767 	}
768 }
769 
770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771 {
772 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 
775 	set_vma_private_data(vma, (get_vma_private_data(vma) &
776 				HPAGE_RESV_MASK) | (unsigned long)map);
777 }
778 
779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780 {
781 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783 
784 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785 }
786 
787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788 {
789 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790 
791 	return (get_vma_private_data(vma) & flag) != 0;
792 }
793 
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796 {
797 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 	if (!(vma->vm_flags & VM_MAYSHARE))
799 		vma->vm_private_data = (void *)0;
800 }
801 
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804 {
805 	if (vma->vm_flags & VM_NORESERVE) {
806 		/*
807 		 * This address is already reserved by other process(chg == 0),
808 		 * so, we should decrement reserved count. Without decrementing,
809 		 * reserve count remains after releasing inode, because this
810 		 * allocated page will go into page cache and is regarded as
811 		 * coming from reserved pool in releasing step.  Currently, we
812 		 * don't have any other solution to deal with this situation
813 		 * properly, so add work-around here.
814 		 */
815 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 			return true;
817 		else
818 			return false;
819 	}
820 
821 	/* Shared mappings always use reserves */
822 	if (vma->vm_flags & VM_MAYSHARE) {
823 		/*
824 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
825 		 * be a region map for all pages.  The only situation where
826 		 * there is no region map is if a hole was punched via
827 		 * fallocate.  In this case, there really are no reverves to
828 		 * use.  This situation is indicated if chg != 0.
829 		 */
830 		if (chg)
831 			return false;
832 		else
833 			return true;
834 	}
835 
836 	/*
837 	 * Only the process that called mmap() has reserves for
838 	 * private mappings.
839 	 */
840 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 		/*
842 		 * Like the shared case above, a hole punch or truncate
843 		 * could have been performed on the private mapping.
844 		 * Examine the value of chg to determine if reserves
845 		 * actually exist or were previously consumed.
846 		 * Very Subtle - The value of chg comes from a previous
847 		 * call to vma_needs_reserves().  The reserve map for
848 		 * private mappings has different (opposite) semantics
849 		 * than that of shared mappings.  vma_needs_reserves()
850 		 * has already taken this difference in semantics into
851 		 * account.  Therefore, the meaning of chg is the same
852 		 * as in the shared case above.  Code could easily be
853 		 * combined, but keeping it separate draws attention to
854 		 * subtle differences.
855 		 */
856 		if (chg)
857 			return false;
858 		else
859 			return true;
860 	}
861 
862 	return false;
863 }
864 
865 static void enqueue_huge_page(struct hstate *h, struct page *page)
866 {
867 	int nid = page_to_nid(page);
868 	list_move(&page->lru, &h->hugepage_freelists[nid]);
869 	h->free_huge_pages++;
870 	h->free_huge_pages_node[nid]++;
871 }
872 
873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874 {
875 	struct page *page;
876 
877 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 		if (!PageHWPoison(page))
879 			break;
880 	/*
881 	 * if 'non-isolated free hugepage' not found on the list,
882 	 * the allocation fails.
883 	 */
884 	if (&h->hugepage_freelists[nid] == &page->lru)
885 		return NULL;
886 	list_move(&page->lru, &h->hugepage_activelist);
887 	set_page_refcounted(page);
888 	h->free_huge_pages--;
889 	h->free_huge_pages_node[nid]--;
890 	return page;
891 }
892 
893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 		nodemask_t *nmask)
895 {
896 	unsigned int cpuset_mems_cookie;
897 	struct zonelist *zonelist;
898 	struct zone *zone;
899 	struct zoneref *z;
900 	int node = NUMA_NO_NODE;
901 
902 	zonelist = node_zonelist(nid, gfp_mask);
903 
904 retry_cpuset:
905 	cpuset_mems_cookie = read_mems_allowed_begin();
906 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 		struct page *page;
908 
909 		if (!cpuset_zone_allowed(zone, gfp_mask))
910 			continue;
911 		/*
912 		 * no need to ask again on the same node. Pool is node rather than
913 		 * zone aware
914 		 */
915 		if (zone_to_nid(zone) == node)
916 			continue;
917 		node = zone_to_nid(zone);
918 
919 		page = dequeue_huge_page_node_exact(h, node);
920 		if (page)
921 			return page;
922 	}
923 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 		goto retry_cpuset;
925 
926 	return NULL;
927 }
928 
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t htlb_alloc_mask(struct hstate *h)
931 {
932 	if (hugepage_movable_supported(h))
933 		return GFP_HIGHUSER_MOVABLE;
934 	else
935 		return GFP_HIGHUSER;
936 }
937 
938 static struct page *dequeue_huge_page_vma(struct hstate *h,
939 				struct vm_area_struct *vma,
940 				unsigned long address, int avoid_reserve,
941 				long chg)
942 {
943 	struct page *page;
944 	struct mempolicy *mpol;
945 	gfp_t gfp_mask;
946 	nodemask_t *nodemask;
947 	int nid;
948 
949 	/*
950 	 * A child process with MAP_PRIVATE mappings created by their parent
951 	 * have no page reserves. This check ensures that reservations are
952 	 * not "stolen". The child may still get SIGKILLed
953 	 */
954 	if (!vma_has_reserves(vma, chg) &&
955 			h->free_huge_pages - h->resv_huge_pages == 0)
956 		goto err;
957 
958 	/* If reserves cannot be used, ensure enough pages are in the pool */
959 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 		goto err;
961 
962 	gfp_mask = htlb_alloc_mask(h);
963 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 		SetPagePrivate(page);
967 		h->resv_huge_pages--;
968 	}
969 
970 	mpol_cond_put(mpol);
971 	return page;
972 
973 err:
974 	return NULL;
975 }
976 
977 /*
978  * common helper functions for hstate_next_node_to_{alloc|free}.
979  * We may have allocated or freed a huge page based on a different
980  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981  * be outside of *nodes_allowed.  Ensure that we use an allowed
982  * node for alloc or free.
983  */
984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985 {
986 	nid = next_node_in(nid, *nodes_allowed);
987 	VM_BUG_ON(nid >= MAX_NUMNODES);
988 
989 	return nid;
990 }
991 
992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994 	if (!node_isset(nid, *nodes_allowed))
995 		nid = next_node_allowed(nid, nodes_allowed);
996 	return nid;
997 }
998 
999 /*
1000  * returns the previously saved node ["this node"] from which to
1001  * allocate a persistent huge page for the pool and advance the
1002  * next node from which to allocate, handling wrap at end of node
1003  * mask.
1004  */
1005 static int hstate_next_node_to_alloc(struct hstate *h,
1006 					nodemask_t *nodes_allowed)
1007 {
1008 	int nid;
1009 
1010 	VM_BUG_ON(!nodes_allowed);
1011 
1012 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014 
1015 	return nid;
1016 }
1017 
1018 /*
1019  * helper for free_pool_huge_page() - return the previously saved
1020  * node ["this node"] from which to free a huge page.  Advance the
1021  * next node id whether or not we find a free huge page to free so
1022  * that the next attempt to free addresses the next node.
1023  */
1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025 {
1026 	int nid;
1027 
1028 	VM_BUG_ON(!nodes_allowed);
1029 
1030 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032 
1033 	return nid;
1034 }
1035 
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037 	for (nr_nodes = nodes_weight(*mask);				\
1038 		nr_nodes > 0 &&						\
1039 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040 		nr_nodes--)
1041 
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043 	for (nr_nodes = nodes_weight(*mask);				\
1044 		nr_nodes > 0 &&						\
1045 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046 		nr_nodes--)
1047 
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page *page,
1050 					unsigned int order)
1051 {
1052 	int i;
1053 	int nr_pages = 1 << order;
1054 	struct page *p = page + 1;
1055 
1056 	atomic_set(compound_mapcount_ptr(page), 0);
1057 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 		clear_compound_head(p);
1059 		set_page_refcounted(p);
1060 	}
1061 
1062 	set_compound_order(page, 0);
1063 	__ClearPageHead(page);
1064 }
1065 
1066 static void free_gigantic_page(struct page *page, unsigned int order)
1067 {
1068 	free_contig_range(page_to_pfn(page), 1 << order);
1069 }
1070 
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn,
1073 				unsigned long nr_pages, gfp_t gfp_mask)
1074 {
1075 	unsigned long end_pfn = start_pfn + nr_pages;
1076 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 				  gfp_mask);
1078 }
1079 
1080 static bool pfn_range_valid_gigantic(struct zone *z,
1081 			unsigned long start_pfn, unsigned long nr_pages)
1082 {
1083 	unsigned long i, end_pfn = start_pfn + nr_pages;
1084 	struct page *page;
1085 
1086 	for (i = start_pfn; i < end_pfn; i++) {
1087 		if (!pfn_valid(i))
1088 			return false;
1089 
1090 		page = pfn_to_page(i);
1091 
1092 		if (page_zone(page) != z)
1093 			return false;
1094 
1095 		if (PageReserved(page))
1096 			return false;
1097 
1098 		if (page_count(page) > 0)
1099 			return false;
1100 
1101 		if (PageHuge(page))
1102 			return false;
1103 	}
1104 
1105 	return true;
1106 }
1107 
1108 static bool zone_spans_last_pfn(const struct zone *zone,
1109 			unsigned long start_pfn, unsigned long nr_pages)
1110 {
1111 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 	return zone_spans_pfn(zone, last_pfn);
1113 }
1114 
1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 		int nid, nodemask_t *nodemask)
1117 {
1118 	unsigned int order = huge_page_order(h);
1119 	unsigned long nr_pages = 1 << order;
1120 	unsigned long ret, pfn, flags;
1121 	struct zonelist *zonelist;
1122 	struct zone *zone;
1123 	struct zoneref *z;
1124 
1125 	zonelist = node_zonelist(nid, gfp_mask);
1126 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127 		spin_lock_irqsave(&zone->lock, flags);
1128 
1129 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1132 				/*
1133 				 * We release the zone lock here because
1134 				 * alloc_contig_range() will also lock the zone
1135 				 * at some point. If there's an allocation
1136 				 * spinning on this lock, it may win the race
1137 				 * and cause alloc_contig_range() to fail...
1138 				 */
1139 				spin_unlock_irqrestore(&zone->lock, flags);
1140 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141 				if (!ret)
1142 					return pfn_to_page(pfn);
1143 				spin_lock_irqsave(&zone->lock, flags);
1144 			}
1145 			pfn += nr_pages;
1146 		}
1147 
1148 		spin_unlock_irqrestore(&zone->lock, flags);
1149 	}
1150 
1151 	return NULL;
1152 }
1153 
1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 					int nid, nodemask_t *nodemask)
1159 {
1160 	return NULL;
1161 }
1162 #endif /* CONFIG_CONTIG_ALLOC */
1163 
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166 					int nid, nodemask_t *nodemask)
1167 {
1168 	return NULL;
1169 }
1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1171 static inline void destroy_compound_gigantic_page(struct page *page,
1172 						unsigned int order) { }
1173 #endif
1174 
1175 static void update_and_free_page(struct hstate *h, struct page *page)
1176 {
1177 	int i;
1178 
1179 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180 		return;
1181 
1182 	h->nr_huge_pages--;
1183 	h->nr_huge_pages_node[page_to_nid(page)]--;
1184 	for (i = 0; i < pages_per_huge_page(h); i++) {
1185 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 				1 << PG_referenced | 1 << PG_dirty |
1187 				1 << PG_active | 1 << PG_private |
1188 				1 << PG_writeback);
1189 	}
1190 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192 	set_page_refcounted(page);
1193 	if (hstate_is_gigantic(h)) {
1194 		destroy_compound_gigantic_page(page, huge_page_order(h));
1195 		free_gigantic_page(page, huge_page_order(h));
1196 	} else {
1197 		__free_pages(page, huge_page_order(h));
1198 	}
1199 }
1200 
1201 struct hstate *size_to_hstate(unsigned long size)
1202 {
1203 	struct hstate *h;
1204 
1205 	for_each_hstate(h) {
1206 		if (huge_page_size(h) == size)
1207 			return h;
1208 	}
1209 	return NULL;
1210 }
1211 
1212 /*
1213  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214  * to hstate->hugepage_activelist.)
1215  *
1216  * This function can be called for tail pages, but never returns true for them.
1217  */
1218 bool page_huge_active(struct page *page)
1219 {
1220 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 	return PageHead(page) && PagePrivate(&page[1]);
1222 }
1223 
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page *page)
1226 {
1227 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 	SetPagePrivate(&page[1]);
1229 }
1230 
1231 static void clear_page_huge_active(struct page *page)
1232 {
1233 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 	ClearPagePrivate(&page[1]);
1235 }
1236 
1237 /*
1238  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239  * code
1240  */
1241 static inline bool PageHugeTemporary(struct page *page)
1242 {
1243 	if (!PageHuge(page))
1244 		return false;
1245 
1246 	return (unsigned long)page[2].mapping == -1U;
1247 }
1248 
1249 static inline void SetPageHugeTemporary(struct page *page)
1250 {
1251 	page[2].mapping = (void *)-1U;
1252 }
1253 
1254 static inline void ClearPageHugeTemporary(struct page *page)
1255 {
1256 	page[2].mapping = NULL;
1257 }
1258 
1259 void free_huge_page(struct page *page)
1260 {
1261 	/*
1262 	 * Can't pass hstate in here because it is called from the
1263 	 * compound page destructor.
1264 	 */
1265 	struct hstate *h = page_hstate(page);
1266 	int nid = page_to_nid(page);
1267 	struct hugepage_subpool *spool =
1268 		(struct hugepage_subpool *)page_private(page);
1269 	bool restore_reserve;
1270 
1271 	VM_BUG_ON_PAGE(page_count(page), page);
1272 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1273 
1274 	set_page_private(page, 0);
1275 	page->mapping = NULL;
1276 	restore_reserve = PagePrivate(page);
1277 	ClearPagePrivate(page);
1278 
1279 	/*
1280 	 * If PagePrivate() was set on page, page allocation consumed a
1281 	 * reservation.  If the page was associated with a subpool, there
1282 	 * would have been a page reserved in the subpool before allocation
1283 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1284 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 	 * remove the reserved page from the subpool.
1286 	 */
1287 	if (!restore_reserve) {
1288 		/*
1289 		 * A return code of zero implies that the subpool will be
1290 		 * under its minimum size if the reservation is not restored
1291 		 * after page is free.  Therefore, force restore_reserve
1292 		 * operation.
1293 		 */
1294 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 			restore_reserve = true;
1296 	}
1297 
1298 	spin_lock(&hugetlb_lock);
1299 	clear_page_huge_active(page);
1300 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 				     pages_per_huge_page(h), page);
1302 	if (restore_reserve)
1303 		h->resv_huge_pages++;
1304 
1305 	if (PageHugeTemporary(page)) {
1306 		list_del(&page->lru);
1307 		ClearPageHugeTemporary(page);
1308 		update_and_free_page(h, page);
1309 	} else if (h->surplus_huge_pages_node[nid]) {
1310 		/* remove the page from active list */
1311 		list_del(&page->lru);
1312 		update_and_free_page(h, page);
1313 		h->surplus_huge_pages--;
1314 		h->surplus_huge_pages_node[nid]--;
1315 	} else {
1316 		arch_clear_hugepage_flags(page);
1317 		enqueue_huge_page(h, page);
1318 	}
1319 	spin_unlock(&hugetlb_lock);
1320 }
1321 
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1323 {
1324 	INIT_LIST_HEAD(&page->lru);
1325 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1326 	spin_lock(&hugetlb_lock);
1327 	set_hugetlb_cgroup(page, NULL);
1328 	h->nr_huge_pages++;
1329 	h->nr_huge_pages_node[nid]++;
1330 	spin_unlock(&hugetlb_lock);
1331 }
1332 
1333 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1334 {
1335 	int i;
1336 	int nr_pages = 1 << order;
1337 	struct page *p = page + 1;
1338 
1339 	/* we rely on prep_new_huge_page to set the destructor */
1340 	set_compound_order(page, order);
1341 	__ClearPageReserved(page);
1342 	__SetPageHead(page);
1343 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1344 		/*
1345 		 * For gigantic hugepages allocated through bootmem at
1346 		 * boot, it's safer to be consistent with the not-gigantic
1347 		 * hugepages and clear the PG_reserved bit from all tail pages
1348 		 * too.  Otherwse drivers using get_user_pages() to access tail
1349 		 * pages may get the reference counting wrong if they see
1350 		 * PG_reserved set on a tail page (despite the head page not
1351 		 * having PG_reserved set).  Enforcing this consistency between
1352 		 * head and tail pages allows drivers to optimize away a check
1353 		 * on the head page when they need know if put_page() is needed
1354 		 * after get_user_pages().
1355 		 */
1356 		__ClearPageReserved(p);
1357 		set_page_count(p, 0);
1358 		set_compound_head(p, page);
1359 	}
1360 	atomic_set(compound_mapcount_ptr(page), -1);
1361 }
1362 
1363 /*
1364  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365  * transparent huge pages.  See the PageTransHuge() documentation for more
1366  * details.
1367  */
1368 int PageHuge(struct page *page)
1369 {
1370 	if (!PageCompound(page))
1371 		return 0;
1372 
1373 	page = compound_head(page);
1374 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1375 }
1376 EXPORT_SYMBOL_GPL(PageHuge);
1377 
1378 /*
1379  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380  * normal or transparent huge pages.
1381  */
1382 int PageHeadHuge(struct page *page_head)
1383 {
1384 	if (!PageHead(page_head))
1385 		return 0;
1386 
1387 	return get_compound_page_dtor(page_head) == free_huge_page;
1388 }
1389 
1390 pgoff_t __basepage_index(struct page *page)
1391 {
1392 	struct page *page_head = compound_head(page);
1393 	pgoff_t index = page_index(page_head);
1394 	unsigned long compound_idx;
1395 
1396 	if (!PageHuge(page_head))
1397 		return page_index(page);
1398 
1399 	if (compound_order(page_head) >= MAX_ORDER)
1400 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401 	else
1402 		compound_idx = page - page_head;
1403 
1404 	return (index << compound_order(page_head)) + compound_idx;
1405 }
1406 
1407 static struct page *alloc_buddy_huge_page(struct hstate *h,
1408 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1409 		nodemask_t *node_alloc_noretry)
1410 {
1411 	int order = huge_page_order(h);
1412 	struct page *page;
1413 	bool alloc_try_hard = true;
1414 
1415 	/*
1416 	 * By default we always try hard to allocate the page with
1417 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1418 	 * a loop (to adjust global huge page counts) and previous allocation
1419 	 * failed, do not continue to try hard on the same node.  Use the
1420 	 * node_alloc_noretry bitmap to manage this state information.
1421 	 */
1422 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1423 		alloc_try_hard = false;
1424 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1425 	if (alloc_try_hard)
1426 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1427 	if (nid == NUMA_NO_NODE)
1428 		nid = numa_mem_id();
1429 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1430 	if (page)
1431 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1432 	else
1433 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1434 
1435 	/*
1436 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1437 	 * indicates an overall state change.  Clear bit so that we resume
1438 	 * normal 'try hard' allocations.
1439 	 */
1440 	if (node_alloc_noretry && page && !alloc_try_hard)
1441 		node_clear(nid, *node_alloc_noretry);
1442 
1443 	/*
1444 	 * If we tried hard to get a page but failed, set bit so that
1445 	 * subsequent attempts will not try as hard until there is an
1446 	 * overall state change.
1447 	 */
1448 	if (node_alloc_noretry && !page && alloc_try_hard)
1449 		node_set(nid, *node_alloc_noretry);
1450 
1451 	return page;
1452 }
1453 
1454 /*
1455  * Common helper to allocate a fresh hugetlb page. All specific allocators
1456  * should use this function to get new hugetlb pages
1457  */
1458 static struct page *alloc_fresh_huge_page(struct hstate *h,
1459 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1460 		nodemask_t *node_alloc_noretry)
1461 {
1462 	struct page *page;
1463 
1464 	if (hstate_is_gigantic(h))
1465 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1466 	else
1467 		page = alloc_buddy_huge_page(h, gfp_mask,
1468 				nid, nmask, node_alloc_noretry);
1469 	if (!page)
1470 		return NULL;
1471 
1472 	if (hstate_is_gigantic(h))
1473 		prep_compound_gigantic_page(page, huge_page_order(h));
1474 	prep_new_huge_page(h, page, page_to_nid(page));
1475 
1476 	return page;
1477 }
1478 
1479 /*
1480  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1481  * manner.
1482  */
1483 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1484 				nodemask_t *node_alloc_noretry)
1485 {
1486 	struct page *page;
1487 	int nr_nodes, node;
1488 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1489 
1490 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1491 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1492 						node_alloc_noretry);
1493 		if (page)
1494 			break;
1495 	}
1496 
1497 	if (!page)
1498 		return 0;
1499 
1500 	put_page(page); /* free it into the hugepage allocator */
1501 
1502 	return 1;
1503 }
1504 
1505 /*
1506  * Free huge page from pool from next node to free.
1507  * Attempt to keep persistent huge pages more or less
1508  * balanced over allowed nodes.
1509  * Called with hugetlb_lock locked.
1510  */
1511 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1512 							 bool acct_surplus)
1513 {
1514 	int nr_nodes, node;
1515 	int ret = 0;
1516 
1517 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1518 		/*
1519 		 * If we're returning unused surplus pages, only examine
1520 		 * nodes with surplus pages.
1521 		 */
1522 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1523 		    !list_empty(&h->hugepage_freelists[node])) {
1524 			struct page *page =
1525 				list_entry(h->hugepage_freelists[node].next,
1526 					  struct page, lru);
1527 			list_del(&page->lru);
1528 			h->free_huge_pages--;
1529 			h->free_huge_pages_node[node]--;
1530 			if (acct_surplus) {
1531 				h->surplus_huge_pages--;
1532 				h->surplus_huge_pages_node[node]--;
1533 			}
1534 			update_and_free_page(h, page);
1535 			ret = 1;
1536 			break;
1537 		}
1538 	}
1539 
1540 	return ret;
1541 }
1542 
1543 /*
1544  * Dissolve a given free hugepage into free buddy pages. This function does
1545  * nothing for in-use hugepages and non-hugepages.
1546  * This function returns values like below:
1547  *
1548  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1549  *          (allocated or reserved.)
1550  *       0: successfully dissolved free hugepages or the page is not a
1551  *          hugepage (considered as already dissolved)
1552  */
1553 int dissolve_free_huge_page(struct page *page)
1554 {
1555 	int rc = -EBUSY;
1556 
1557 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1558 	if (!PageHuge(page))
1559 		return 0;
1560 
1561 	spin_lock(&hugetlb_lock);
1562 	if (!PageHuge(page)) {
1563 		rc = 0;
1564 		goto out;
1565 	}
1566 
1567 	if (!page_count(page)) {
1568 		struct page *head = compound_head(page);
1569 		struct hstate *h = page_hstate(head);
1570 		int nid = page_to_nid(head);
1571 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1572 			goto out;
1573 		/*
1574 		 * Move PageHWPoison flag from head page to the raw error page,
1575 		 * which makes any subpages rather than the error page reusable.
1576 		 */
1577 		if (PageHWPoison(head) && page != head) {
1578 			SetPageHWPoison(page);
1579 			ClearPageHWPoison(head);
1580 		}
1581 		list_del(&head->lru);
1582 		h->free_huge_pages--;
1583 		h->free_huge_pages_node[nid]--;
1584 		h->max_huge_pages--;
1585 		update_and_free_page(h, head);
1586 		rc = 0;
1587 	}
1588 out:
1589 	spin_unlock(&hugetlb_lock);
1590 	return rc;
1591 }
1592 
1593 /*
1594  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1595  * make specified memory blocks removable from the system.
1596  * Note that this will dissolve a free gigantic hugepage completely, if any
1597  * part of it lies within the given range.
1598  * Also note that if dissolve_free_huge_page() returns with an error, all
1599  * free hugepages that were dissolved before that error are lost.
1600  */
1601 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1602 {
1603 	unsigned long pfn;
1604 	struct page *page;
1605 	int rc = 0;
1606 
1607 	if (!hugepages_supported())
1608 		return rc;
1609 
1610 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1611 		page = pfn_to_page(pfn);
1612 		rc = dissolve_free_huge_page(page);
1613 		if (rc)
1614 			break;
1615 	}
1616 
1617 	return rc;
1618 }
1619 
1620 /*
1621  * Allocates a fresh surplus page from the page allocator.
1622  */
1623 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1624 		int nid, nodemask_t *nmask)
1625 {
1626 	struct page *page = NULL;
1627 
1628 	if (hstate_is_gigantic(h))
1629 		return NULL;
1630 
1631 	spin_lock(&hugetlb_lock);
1632 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1633 		goto out_unlock;
1634 	spin_unlock(&hugetlb_lock);
1635 
1636 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1637 	if (!page)
1638 		return NULL;
1639 
1640 	spin_lock(&hugetlb_lock);
1641 	/*
1642 	 * We could have raced with the pool size change.
1643 	 * Double check that and simply deallocate the new page
1644 	 * if we would end up overcommiting the surpluses. Abuse
1645 	 * temporary page to workaround the nasty free_huge_page
1646 	 * codeflow
1647 	 */
1648 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1649 		SetPageHugeTemporary(page);
1650 		spin_unlock(&hugetlb_lock);
1651 		put_page(page);
1652 		return NULL;
1653 	} else {
1654 		h->surplus_huge_pages++;
1655 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1656 	}
1657 
1658 out_unlock:
1659 	spin_unlock(&hugetlb_lock);
1660 
1661 	return page;
1662 }
1663 
1664 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1665 				     int nid, nodemask_t *nmask)
1666 {
1667 	struct page *page;
1668 
1669 	if (hstate_is_gigantic(h))
1670 		return NULL;
1671 
1672 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1673 	if (!page)
1674 		return NULL;
1675 
1676 	/*
1677 	 * We do not account these pages as surplus because they are only
1678 	 * temporary and will be released properly on the last reference
1679 	 */
1680 	SetPageHugeTemporary(page);
1681 
1682 	return page;
1683 }
1684 
1685 /*
1686  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1687  */
1688 static
1689 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1690 		struct vm_area_struct *vma, unsigned long addr)
1691 {
1692 	struct page *page;
1693 	struct mempolicy *mpol;
1694 	gfp_t gfp_mask = htlb_alloc_mask(h);
1695 	int nid;
1696 	nodemask_t *nodemask;
1697 
1698 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1699 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1700 	mpol_cond_put(mpol);
1701 
1702 	return page;
1703 }
1704 
1705 /* page migration callback function */
1706 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1707 {
1708 	gfp_t gfp_mask = htlb_alloc_mask(h);
1709 	struct page *page = NULL;
1710 
1711 	if (nid != NUMA_NO_NODE)
1712 		gfp_mask |= __GFP_THISNODE;
1713 
1714 	spin_lock(&hugetlb_lock);
1715 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1716 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1717 	spin_unlock(&hugetlb_lock);
1718 
1719 	if (!page)
1720 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1721 
1722 	return page;
1723 }
1724 
1725 /* page migration callback function */
1726 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1727 		nodemask_t *nmask)
1728 {
1729 	gfp_t gfp_mask = htlb_alloc_mask(h);
1730 
1731 	spin_lock(&hugetlb_lock);
1732 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1733 		struct page *page;
1734 
1735 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1736 		if (page) {
1737 			spin_unlock(&hugetlb_lock);
1738 			return page;
1739 		}
1740 	}
1741 	spin_unlock(&hugetlb_lock);
1742 
1743 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1744 }
1745 
1746 /* mempolicy aware migration callback */
1747 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1748 		unsigned long address)
1749 {
1750 	struct mempolicy *mpol;
1751 	nodemask_t *nodemask;
1752 	struct page *page;
1753 	gfp_t gfp_mask;
1754 	int node;
1755 
1756 	gfp_mask = htlb_alloc_mask(h);
1757 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1758 	page = alloc_huge_page_nodemask(h, node, nodemask);
1759 	mpol_cond_put(mpol);
1760 
1761 	return page;
1762 }
1763 
1764 /*
1765  * Increase the hugetlb pool such that it can accommodate a reservation
1766  * of size 'delta'.
1767  */
1768 static int gather_surplus_pages(struct hstate *h, int delta)
1769 {
1770 	struct list_head surplus_list;
1771 	struct page *page, *tmp;
1772 	int ret, i;
1773 	int needed, allocated;
1774 	bool alloc_ok = true;
1775 
1776 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1777 	if (needed <= 0) {
1778 		h->resv_huge_pages += delta;
1779 		return 0;
1780 	}
1781 
1782 	allocated = 0;
1783 	INIT_LIST_HEAD(&surplus_list);
1784 
1785 	ret = -ENOMEM;
1786 retry:
1787 	spin_unlock(&hugetlb_lock);
1788 	for (i = 0; i < needed; i++) {
1789 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1790 				NUMA_NO_NODE, NULL);
1791 		if (!page) {
1792 			alloc_ok = false;
1793 			break;
1794 		}
1795 		list_add(&page->lru, &surplus_list);
1796 		cond_resched();
1797 	}
1798 	allocated += i;
1799 
1800 	/*
1801 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1802 	 * because either resv_huge_pages or free_huge_pages may have changed.
1803 	 */
1804 	spin_lock(&hugetlb_lock);
1805 	needed = (h->resv_huge_pages + delta) -
1806 			(h->free_huge_pages + allocated);
1807 	if (needed > 0) {
1808 		if (alloc_ok)
1809 			goto retry;
1810 		/*
1811 		 * We were not able to allocate enough pages to
1812 		 * satisfy the entire reservation so we free what
1813 		 * we've allocated so far.
1814 		 */
1815 		goto free;
1816 	}
1817 	/*
1818 	 * The surplus_list now contains _at_least_ the number of extra pages
1819 	 * needed to accommodate the reservation.  Add the appropriate number
1820 	 * of pages to the hugetlb pool and free the extras back to the buddy
1821 	 * allocator.  Commit the entire reservation here to prevent another
1822 	 * process from stealing the pages as they are added to the pool but
1823 	 * before they are reserved.
1824 	 */
1825 	needed += allocated;
1826 	h->resv_huge_pages += delta;
1827 	ret = 0;
1828 
1829 	/* Free the needed pages to the hugetlb pool */
1830 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1831 		if ((--needed) < 0)
1832 			break;
1833 		/*
1834 		 * This page is now managed by the hugetlb allocator and has
1835 		 * no users -- drop the buddy allocator's reference.
1836 		 */
1837 		put_page_testzero(page);
1838 		VM_BUG_ON_PAGE(page_count(page), page);
1839 		enqueue_huge_page(h, page);
1840 	}
1841 free:
1842 	spin_unlock(&hugetlb_lock);
1843 
1844 	/* Free unnecessary surplus pages to the buddy allocator */
1845 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1846 		put_page(page);
1847 	spin_lock(&hugetlb_lock);
1848 
1849 	return ret;
1850 }
1851 
1852 /*
1853  * This routine has two main purposes:
1854  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1855  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1856  *    to the associated reservation map.
1857  * 2) Free any unused surplus pages that may have been allocated to satisfy
1858  *    the reservation.  As many as unused_resv_pages may be freed.
1859  *
1860  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1861  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1862  * we must make sure nobody else can claim pages we are in the process of
1863  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1864  * number of huge pages we plan to free when dropping the lock.
1865  */
1866 static void return_unused_surplus_pages(struct hstate *h,
1867 					unsigned long unused_resv_pages)
1868 {
1869 	unsigned long nr_pages;
1870 
1871 	/* Cannot return gigantic pages currently */
1872 	if (hstate_is_gigantic(h))
1873 		goto out;
1874 
1875 	/*
1876 	 * Part (or even all) of the reservation could have been backed
1877 	 * by pre-allocated pages. Only free surplus pages.
1878 	 */
1879 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1880 
1881 	/*
1882 	 * We want to release as many surplus pages as possible, spread
1883 	 * evenly across all nodes with memory. Iterate across these nodes
1884 	 * until we can no longer free unreserved surplus pages. This occurs
1885 	 * when the nodes with surplus pages have no free pages.
1886 	 * free_pool_huge_page() will balance the the freed pages across the
1887 	 * on-line nodes with memory and will handle the hstate accounting.
1888 	 *
1889 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1890 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1891 	 * to cover subsequent pages we may free.
1892 	 */
1893 	while (nr_pages--) {
1894 		h->resv_huge_pages--;
1895 		unused_resv_pages--;
1896 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1897 			goto out;
1898 		cond_resched_lock(&hugetlb_lock);
1899 	}
1900 
1901 out:
1902 	/* Fully uncommit the reservation */
1903 	h->resv_huge_pages -= unused_resv_pages;
1904 }
1905 
1906 
1907 /*
1908  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1909  * are used by the huge page allocation routines to manage reservations.
1910  *
1911  * vma_needs_reservation is called to determine if the huge page at addr
1912  * within the vma has an associated reservation.  If a reservation is
1913  * needed, the value 1 is returned.  The caller is then responsible for
1914  * managing the global reservation and subpool usage counts.  After
1915  * the huge page has been allocated, vma_commit_reservation is called
1916  * to add the page to the reservation map.  If the page allocation fails,
1917  * the reservation must be ended instead of committed.  vma_end_reservation
1918  * is called in such cases.
1919  *
1920  * In the normal case, vma_commit_reservation returns the same value
1921  * as the preceding vma_needs_reservation call.  The only time this
1922  * is not the case is if a reserve map was changed between calls.  It
1923  * is the responsibility of the caller to notice the difference and
1924  * take appropriate action.
1925  *
1926  * vma_add_reservation is used in error paths where a reservation must
1927  * be restored when a newly allocated huge page must be freed.  It is
1928  * to be called after calling vma_needs_reservation to determine if a
1929  * reservation exists.
1930  */
1931 enum vma_resv_mode {
1932 	VMA_NEEDS_RESV,
1933 	VMA_COMMIT_RESV,
1934 	VMA_END_RESV,
1935 	VMA_ADD_RESV,
1936 };
1937 static long __vma_reservation_common(struct hstate *h,
1938 				struct vm_area_struct *vma, unsigned long addr,
1939 				enum vma_resv_mode mode)
1940 {
1941 	struct resv_map *resv;
1942 	pgoff_t idx;
1943 	long ret;
1944 
1945 	resv = vma_resv_map(vma);
1946 	if (!resv)
1947 		return 1;
1948 
1949 	idx = vma_hugecache_offset(h, vma, addr);
1950 	switch (mode) {
1951 	case VMA_NEEDS_RESV:
1952 		ret = region_chg(resv, idx, idx + 1);
1953 		break;
1954 	case VMA_COMMIT_RESV:
1955 		ret = region_add(resv, idx, idx + 1);
1956 		break;
1957 	case VMA_END_RESV:
1958 		region_abort(resv, idx, idx + 1);
1959 		ret = 0;
1960 		break;
1961 	case VMA_ADD_RESV:
1962 		if (vma->vm_flags & VM_MAYSHARE)
1963 			ret = region_add(resv, idx, idx + 1);
1964 		else {
1965 			region_abort(resv, idx, idx + 1);
1966 			ret = region_del(resv, idx, idx + 1);
1967 		}
1968 		break;
1969 	default:
1970 		BUG();
1971 	}
1972 
1973 	if (vma->vm_flags & VM_MAYSHARE)
1974 		return ret;
1975 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1976 		/*
1977 		 * In most cases, reserves always exist for private mappings.
1978 		 * However, a file associated with mapping could have been
1979 		 * hole punched or truncated after reserves were consumed.
1980 		 * As subsequent fault on such a range will not use reserves.
1981 		 * Subtle - The reserve map for private mappings has the
1982 		 * opposite meaning than that of shared mappings.  If NO
1983 		 * entry is in the reserve map, it means a reservation exists.
1984 		 * If an entry exists in the reserve map, it means the
1985 		 * reservation has already been consumed.  As a result, the
1986 		 * return value of this routine is the opposite of the
1987 		 * value returned from reserve map manipulation routines above.
1988 		 */
1989 		if (ret)
1990 			return 0;
1991 		else
1992 			return 1;
1993 	}
1994 	else
1995 		return ret < 0 ? ret : 0;
1996 }
1997 
1998 static long vma_needs_reservation(struct hstate *h,
1999 			struct vm_area_struct *vma, unsigned long addr)
2000 {
2001 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2002 }
2003 
2004 static long vma_commit_reservation(struct hstate *h,
2005 			struct vm_area_struct *vma, unsigned long addr)
2006 {
2007 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2008 }
2009 
2010 static void vma_end_reservation(struct hstate *h,
2011 			struct vm_area_struct *vma, unsigned long addr)
2012 {
2013 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2014 }
2015 
2016 static long vma_add_reservation(struct hstate *h,
2017 			struct vm_area_struct *vma, unsigned long addr)
2018 {
2019 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2020 }
2021 
2022 /*
2023  * This routine is called to restore a reservation on error paths.  In the
2024  * specific error paths, a huge page was allocated (via alloc_huge_page)
2025  * and is about to be freed.  If a reservation for the page existed,
2026  * alloc_huge_page would have consumed the reservation and set PagePrivate
2027  * in the newly allocated page.  When the page is freed via free_huge_page,
2028  * the global reservation count will be incremented if PagePrivate is set.
2029  * However, free_huge_page can not adjust the reserve map.  Adjust the
2030  * reserve map here to be consistent with global reserve count adjustments
2031  * to be made by free_huge_page.
2032  */
2033 static void restore_reserve_on_error(struct hstate *h,
2034 			struct vm_area_struct *vma, unsigned long address,
2035 			struct page *page)
2036 {
2037 	if (unlikely(PagePrivate(page))) {
2038 		long rc = vma_needs_reservation(h, vma, address);
2039 
2040 		if (unlikely(rc < 0)) {
2041 			/*
2042 			 * Rare out of memory condition in reserve map
2043 			 * manipulation.  Clear PagePrivate so that
2044 			 * global reserve count will not be incremented
2045 			 * by free_huge_page.  This will make it appear
2046 			 * as though the reservation for this page was
2047 			 * consumed.  This may prevent the task from
2048 			 * faulting in the page at a later time.  This
2049 			 * is better than inconsistent global huge page
2050 			 * accounting of reserve counts.
2051 			 */
2052 			ClearPagePrivate(page);
2053 		} else if (rc) {
2054 			rc = vma_add_reservation(h, vma, address);
2055 			if (unlikely(rc < 0))
2056 				/*
2057 				 * See above comment about rare out of
2058 				 * memory condition.
2059 				 */
2060 				ClearPagePrivate(page);
2061 		} else
2062 			vma_end_reservation(h, vma, address);
2063 	}
2064 }
2065 
2066 struct page *alloc_huge_page(struct vm_area_struct *vma,
2067 				    unsigned long addr, int avoid_reserve)
2068 {
2069 	struct hugepage_subpool *spool = subpool_vma(vma);
2070 	struct hstate *h = hstate_vma(vma);
2071 	struct page *page;
2072 	long map_chg, map_commit;
2073 	long gbl_chg;
2074 	int ret, idx;
2075 	struct hugetlb_cgroup *h_cg;
2076 
2077 	idx = hstate_index(h);
2078 	/*
2079 	 * Examine the region/reserve map to determine if the process
2080 	 * has a reservation for the page to be allocated.  A return
2081 	 * code of zero indicates a reservation exists (no change).
2082 	 */
2083 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2084 	if (map_chg < 0)
2085 		return ERR_PTR(-ENOMEM);
2086 
2087 	/*
2088 	 * Processes that did not create the mapping will have no
2089 	 * reserves as indicated by the region/reserve map. Check
2090 	 * that the allocation will not exceed the subpool limit.
2091 	 * Allocations for MAP_NORESERVE mappings also need to be
2092 	 * checked against any subpool limit.
2093 	 */
2094 	if (map_chg || avoid_reserve) {
2095 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2096 		if (gbl_chg < 0) {
2097 			vma_end_reservation(h, vma, addr);
2098 			return ERR_PTR(-ENOSPC);
2099 		}
2100 
2101 		/*
2102 		 * Even though there was no reservation in the region/reserve
2103 		 * map, there could be reservations associated with the
2104 		 * subpool that can be used.  This would be indicated if the
2105 		 * return value of hugepage_subpool_get_pages() is zero.
2106 		 * However, if avoid_reserve is specified we still avoid even
2107 		 * the subpool reservations.
2108 		 */
2109 		if (avoid_reserve)
2110 			gbl_chg = 1;
2111 	}
2112 
2113 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2114 	if (ret)
2115 		goto out_subpool_put;
2116 
2117 	spin_lock(&hugetlb_lock);
2118 	/*
2119 	 * glb_chg is passed to indicate whether or not a page must be taken
2120 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2121 	 * a reservation exists for the allocation.
2122 	 */
2123 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2124 	if (!page) {
2125 		spin_unlock(&hugetlb_lock);
2126 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2127 		if (!page)
2128 			goto out_uncharge_cgroup;
2129 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2130 			SetPagePrivate(page);
2131 			h->resv_huge_pages--;
2132 		}
2133 		spin_lock(&hugetlb_lock);
2134 		list_move(&page->lru, &h->hugepage_activelist);
2135 		/* Fall through */
2136 	}
2137 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2138 	spin_unlock(&hugetlb_lock);
2139 
2140 	set_page_private(page, (unsigned long)spool);
2141 
2142 	map_commit = vma_commit_reservation(h, vma, addr);
2143 	if (unlikely(map_chg > map_commit)) {
2144 		/*
2145 		 * The page was added to the reservation map between
2146 		 * vma_needs_reservation and vma_commit_reservation.
2147 		 * This indicates a race with hugetlb_reserve_pages.
2148 		 * Adjust for the subpool count incremented above AND
2149 		 * in hugetlb_reserve_pages for the same page.  Also,
2150 		 * the reservation count added in hugetlb_reserve_pages
2151 		 * no longer applies.
2152 		 */
2153 		long rsv_adjust;
2154 
2155 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2156 		hugetlb_acct_memory(h, -rsv_adjust);
2157 	}
2158 	return page;
2159 
2160 out_uncharge_cgroup:
2161 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2162 out_subpool_put:
2163 	if (map_chg || avoid_reserve)
2164 		hugepage_subpool_put_pages(spool, 1);
2165 	vma_end_reservation(h, vma, addr);
2166 	return ERR_PTR(-ENOSPC);
2167 }
2168 
2169 int alloc_bootmem_huge_page(struct hstate *h)
2170 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2171 int __alloc_bootmem_huge_page(struct hstate *h)
2172 {
2173 	struct huge_bootmem_page *m;
2174 	int nr_nodes, node;
2175 
2176 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2177 		void *addr;
2178 
2179 		addr = memblock_alloc_try_nid_raw(
2180 				huge_page_size(h), huge_page_size(h),
2181 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2182 		if (addr) {
2183 			/*
2184 			 * Use the beginning of the huge page to store the
2185 			 * huge_bootmem_page struct (until gather_bootmem
2186 			 * puts them into the mem_map).
2187 			 */
2188 			m = addr;
2189 			goto found;
2190 		}
2191 	}
2192 	return 0;
2193 
2194 found:
2195 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2196 	/* Put them into a private list first because mem_map is not up yet */
2197 	INIT_LIST_HEAD(&m->list);
2198 	list_add(&m->list, &huge_boot_pages);
2199 	m->hstate = h;
2200 	return 1;
2201 }
2202 
2203 static void __init prep_compound_huge_page(struct page *page,
2204 		unsigned int order)
2205 {
2206 	if (unlikely(order > (MAX_ORDER - 1)))
2207 		prep_compound_gigantic_page(page, order);
2208 	else
2209 		prep_compound_page(page, order);
2210 }
2211 
2212 /* Put bootmem huge pages into the standard lists after mem_map is up */
2213 static void __init gather_bootmem_prealloc(void)
2214 {
2215 	struct huge_bootmem_page *m;
2216 
2217 	list_for_each_entry(m, &huge_boot_pages, list) {
2218 		struct page *page = virt_to_page(m);
2219 		struct hstate *h = m->hstate;
2220 
2221 		WARN_ON(page_count(page) != 1);
2222 		prep_compound_huge_page(page, h->order);
2223 		WARN_ON(PageReserved(page));
2224 		prep_new_huge_page(h, page, page_to_nid(page));
2225 		put_page(page); /* free it into the hugepage allocator */
2226 
2227 		/*
2228 		 * If we had gigantic hugepages allocated at boot time, we need
2229 		 * to restore the 'stolen' pages to totalram_pages in order to
2230 		 * fix confusing memory reports from free(1) and another
2231 		 * side-effects, like CommitLimit going negative.
2232 		 */
2233 		if (hstate_is_gigantic(h))
2234 			adjust_managed_page_count(page, 1 << h->order);
2235 		cond_resched();
2236 	}
2237 }
2238 
2239 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2240 {
2241 	unsigned long i;
2242 	nodemask_t *node_alloc_noretry;
2243 
2244 	if (!hstate_is_gigantic(h)) {
2245 		/*
2246 		 * Bit mask controlling how hard we retry per-node allocations.
2247 		 * Ignore errors as lower level routines can deal with
2248 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2249 		 * time, we are likely in bigger trouble.
2250 		 */
2251 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2252 						GFP_KERNEL);
2253 	} else {
2254 		/* allocations done at boot time */
2255 		node_alloc_noretry = NULL;
2256 	}
2257 
2258 	/* bit mask controlling how hard we retry per-node allocations */
2259 	if (node_alloc_noretry)
2260 		nodes_clear(*node_alloc_noretry);
2261 
2262 	for (i = 0; i < h->max_huge_pages; ++i) {
2263 		if (hstate_is_gigantic(h)) {
2264 			if (!alloc_bootmem_huge_page(h))
2265 				break;
2266 		} else if (!alloc_pool_huge_page(h,
2267 					 &node_states[N_MEMORY],
2268 					 node_alloc_noretry))
2269 			break;
2270 		cond_resched();
2271 	}
2272 	if (i < h->max_huge_pages) {
2273 		char buf[32];
2274 
2275 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2276 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2277 			h->max_huge_pages, buf, i);
2278 		h->max_huge_pages = i;
2279 	}
2280 
2281 	kfree(node_alloc_noretry);
2282 }
2283 
2284 static void __init hugetlb_init_hstates(void)
2285 {
2286 	struct hstate *h;
2287 
2288 	for_each_hstate(h) {
2289 		if (minimum_order > huge_page_order(h))
2290 			minimum_order = huge_page_order(h);
2291 
2292 		/* oversize hugepages were init'ed in early boot */
2293 		if (!hstate_is_gigantic(h))
2294 			hugetlb_hstate_alloc_pages(h);
2295 	}
2296 	VM_BUG_ON(minimum_order == UINT_MAX);
2297 }
2298 
2299 static void __init report_hugepages(void)
2300 {
2301 	struct hstate *h;
2302 
2303 	for_each_hstate(h) {
2304 		char buf[32];
2305 
2306 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2307 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2308 			buf, h->free_huge_pages);
2309 	}
2310 }
2311 
2312 #ifdef CONFIG_HIGHMEM
2313 static void try_to_free_low(struct hstate *h, unsigned long count,
2314 						nodemask_t *nodes_allowed)
2315 {
2316 	int i;
2317 
2318 	if (hstate_is_gigantic(h))
2319 		return;
2320 
2321 	for_each_node_mask(i, *nodes_allowed) {
2322 		struct page *page, *next;
2323 		struct list_head *freel = &h->hugepage_freelists[i];
2324 		list_for_each_entry_safe(page, next, freel, lru) {
2325 			if (count >= h->nr_huge_pages)
2326 				return;
2327 			if (PageHighMem(page))
2328 				continue;
2329 			list_del(&page->lru);
2330 			update_and_free_page(h, page);
2331 			h->free_huge_pages--;
2332 			h->free_huge_pages_node[page_to_nid(page)]--;
2333 		}
2334 	}
2335 }
2336 #else
2337 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2338 						nodemask_t *nodes_allowed)
2339 {
2340 }
2341 #endif
2342 
2343 /*
2344  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2345  * balanced by operating on them in a round-robin fashion.
2346  * Returns 1 if an adjustment was made.
2347  */
2348 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2349 				int delta)
2350 {
2351 	int nr_nodes, node;
2352 
2353 	VM_BUG_ON(delta != -1 && delta != 1);
2354 
2355 	if (delta < 0) {
2356 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2357 			if (h->surplus_huge_pages_node[node])
2358 				goto found;
2359 		}
2360 	} else {
2361 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2362 			if (h->surplus_huge_pages_node[node] <
2363 					h->nr_huge_pages_node[node])
2364 				goto found;
2365 		}
2366 	}
2367 	return 0;
2368 
2369 found:
2370 	h->surplus_huge_pages += delta;
2371 	h->surplus_huge_pages_node[node] += delta;
2372 	return 1;
2373 }
2374 
2375 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2376 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2377 			      nodemask_t *nodes_allowed)
2378 {
2379 	unsigned long min_count, ret;
2380 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2381 
2382 	/*
2383 	 * Bit mask controlling how hard we retry per-node allocations.
2384 	 * If we can not allocate the bit mask, do not attempt to allocate
2385 	 * the requested huge pages.
2386 	 */
2387 	if (node_alloc_noretry)
2388 		nodes_clear(*node_alloc_noretry);
2389 	else
2390 		return -ENOMEM;
2391 
2392 	spin_lock(&hugetlb_lock);
2393 
2394 	/*
2395 	 * Check for a node specific request.
2396 	 * Changing node specific huge page count may require a corresponding
2397 	 * change to the global count.  In any case, the passed node mask
2398 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2399 	 */
2400 	if (nid != NUMA_NO_NODE) {
2401 		unsigned long old_count = count;
2402 
2403 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2404 		/*
2405 		 * User may have specified a large count value which caused the
2406 		 * above calculation to overflow.  In this case, they wanted
2407 		 * to allocate as many huge pages as possible.  Set count to
2408 		 * largest possible value to align with their intention.
2409 		 */
2410 		if (count < old_count)
2411 			count = ULONG_MAX;
2412 	}
2413 
2414 	/*
2415 	 * Gigantic pages runtime allocation depend on the capability for large
2416 	 * page range allocation.
2417 	 * If the system does not provide this feature, return an error when
2418 	 * the user tries to allocate gigantic pages but let the user free the
2419 	 * boottime allocated gigantic pages.
2420 	 */
2421 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2422 		if (count > persistent_huge_pages(h)) {
2423 			spin_unlock(&hugetlb_lock);
2424 			NODEMASK_FREE(node_alloc_noretry);
2425 			return -EINVAL;
2426 		}
2427 		/* Fall through to decrease pool */
2428 	}
2429 
2430 	/*
2431 	 * Increase the pool size
2432 	 * First take pages out of surplus state.  Then make up the
2433 	 * remaining difference by allocating fresh huge pages.
2434 	 *
2435 	 * We might race with alloc_surplus_huge_page() here and be unable
2436 	 * to convert a surplus huge page to a normal huge page. That is
2437 	 * not critical, though, it just means the overall size of the
2438 	 * pool might be one hugepage larger than it needs to be, but
2439 	 * within all the constraints specified by the sysctls.
2440 	 */
2441 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2442 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2443 			break;
2444 	}
2445 
2446 	while (count > persistent_huge_pages(h)) {
2447 		/*
2448 		 * If this allocation races such that we no longer need the
2449 		 * page, free_huge_page will handle it by freeing the page
2450 		 * and reducing the surplus.
2451 		 */
2452 		spin_unlock(&hugetlb_lock);
2453 
2454 		/* yield cpu to avoid soft lockup */
2455 		cond_resched();
2456 
2457 		ret = alloc_pool_huge_page(h, nodes_allowed,
2458 						node_alloc_noretry);
2459 		spin_lock(&hugetlb_lock);
2460 		if (!ret)
2461 			goto out;
2462 
2463 		/* Bail for signals. Probably ctrl-c from user */
2464 		if (signal_pending(current))
2465 			goto out;
2466 	}
2467 
2468 	/*
2469 	 * Decrease the pool size
2470 	 * First return free pages to the buddy allocator (being careful
2471 	 * to keep enough around to satisfy reservations).  Then place
2472 	 * pages into surplus state as needed so the pool will shrink
2473 	 * to the desired size as pages become free.
2474 	 *
2475 	 * By placing pages into the surplus state independent of the
2476 	 * overcommit value, we are allowing the surplus pool size to
2477 	 * exceed overcommit. There are few sane options here. Since
2478 	 * alloc_surplus_huge_page() is checking the global counter,
2479 	 * though, we'll note that we're not allowed to exceed surplus
2480 	 * and won't grow the pool anywhere else. Not until one of the
2481 	 * sysctls are changed, or the surplus pages go out of use.
2482 	 */
2483 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2484 	min_count = max(count, min_count);
2485 	try_to_free_low(h, min_count, nodes_allowed);
2486 	while (min_count < persistent_huge_pages(h)) {
2487 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2488 			break;
2489 		cond_resched_lock(&hugetlb_lock);
2490 	}
2491 	while (count < persistent_huge_pages(h)) {
2492 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2493 			break;
2494 	}
2495 out:
2496 	h->max_huge_pages = persistent_huge_pages(h);
2497 	spin_unlock(&hugetlb_lock);
2498 
2499 	NODEMASK_FREE(node_alloc_noretry);
2500 
2501 	return 0;
2502 }
2503 
2504 #define HSTATE_ATTR_RO(_name) \
2505 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2506 
2507 #define HSTATE_ATTR(_name) \
2508 	static struct kobj_attribute _name##_attr = \
2509 		__ATTR(_name, 0644, _name##_show, _name##_store)
2510 
2511 static struct kobject *hugepages_kobj;
2512 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2513 
2514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2515 
2516 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2517 {
2518 	int i;
2519 
2520 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2521 		if (hstate_kobjs[i] == kobj) {
2522 			if (nidp)
2523 				*nidp = NUMA_NO_NODE;
2524 			return &hstates[i];
2525 		}
2526 
2527 	return kobj_to_node_hstate(kobj, nidp);
2528 }
2529 
2530 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2531 					struct kobj_attribute *attr, char *buf)
2532 {
2533 	struct hstate *h;
2534 	unsigned long nr_huge_pages;
2535 	int nid;
2536 
2537 	h = kobj_to_hstate(kobj, &nid);
2538 	if (nid == NUMA_NO_NODE)
2539 		nr_huge_pages = h->nr_huge_pages;
2540 	else
2541 		nr_huge_pages = h->nr_huge_pages_node[nid];
2542 
2543 	return sprintf(buf, "%lu\n", nr_huge_pages);
2544 }
2545 
2546 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2547 					   struct hstate *h, int nid,
2548 					   unsigned long count, size_t len)
2549 {
2550 	int err;
2551 	nodemask_t nodes_allowed, *n_mask;
2552 
2553 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2554 		return -EINVAL;
2555 
2556 	if (nid == NUMA_NO_NODE) {
2557 		/*
2558 		 * global hstate attribute
2559 		 */
2560 		if (!(obey_mempolicy &&
2561 				init_nodemask_of_mempolicy(&nodes_allowed)))
2562 			n_mask = &node_states[N_MEMORY];
2563 		else
2564 			n_mask = &nodes_allowed;
2565 	} else {
2566 		/*
2567 		 * Node specific request.  count adjustment happens in
2568 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2569 		 */
2570 		init_nodemask_of_node(&nodes_allowed, nid);
2571 		n_mask = &nodes_allowed;
2572 	}
2573 
2574 	err = set_max_huge_pages(h, count, nid, n_mask);
2575 
2576 	return err ? err : len;
2577 }
2578 
2579 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2580 					 struct kobject *kobj, const char *buf,
2581 					 size_t len)
2582 {
2583 	struct hstate *h;
2584 	unsigned long count;
2585 	int nid;
2586 	int err;
2587 
2588 	err = kstrtoul(buf, 10, &count);
2589 	if (err)
2590 		return err;
2591 
2592 	h = kobj_to_hstate(kobj, &nid);
2593 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2594 }
2595 
2596 static ssize_t nr_hugepages_show(struct kobject *kobj,
2597 				       struct kobj_attribute *attr, char *buf)
2598 {
2599 	return nr_hugepages_show_common(kobj, attr, buf);
2600 }
2601 
2602 static ssize_t nr_hugepages_store(struct kobject *kobj,
2603 	       struct kobj_attribute *attr, const char *buf, size_t len)
2604 {
2605 	return nr_hugepages_store_common(false, kobj, buf, len);
2606 }
2607 HSTATE_ATTR(nr_hugepages);
2608 
2609 #ifdef CONFIG_NUMA
2610 
2611 /*
2612  * hstate attribute for optionally mempolicy-based constraint on persistent
2613  * huge page alloc/free.
2614  */
2615 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2616 				       struct kobj_attribute *attr, char *buf)
2617 {
2618 	return nr_hugepages_show_common(kobj, attr, buf);
2619 }
2620 
2621 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2622 	       struct kobj_attribute *attr, const char *buf, size_t len)
2623 {
2624 	return nr_hugepages_store_common(true, kobj, buf, len);
2625 }
2626 HSTATE_ATTR(nr_hugepages_mempolicy);
2627 #endif
2628 
2629 
2630 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2631 					struct kobj_attribute *attr, char *buf)
2632 {
2633 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2634 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2635 }
2636 
2637 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2638 		struct kobj_attribute *attr, const char *buf, size_t count)
2639 {
2640 	int err;
2641 	unsigned long input;
2642 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2643 
2644 	if (hstate_is_gigantic(h))
2645 		return -EINVAL;
2646 
2647 	err = kstrtoul(buf, 10, &input);
2648 	if (err)
2649 		return err;
2650 
2651 	spin_lock(&hugetlb_lock);
2652 	h->nr_overcommit_huge_pages = input;
2653 	spin_unlock(&hugetlb_lock);
2654 
2655 	return count;
2656 }
2657 HSTATE_ATTR(nr_overcommit_hugepages);
2658 
2659 static ssize_t free_hugepages_show(struct kobject *kobj,
2660 					struct kobj_attribute *attr, char *buf)
2661 {
2662 	struct hstate *h;
2663 	unsigned long free_huge_pages;
2664 	int nid;
2665 
2666 	h = kobj_to_hstate(kobj, &nid);
2667 	if (nid == NUMA_NO_NODE)
2668 		free_huge_pages = h->free_huge_pages;
2669 	else
2670 		free_huge_pages = h->free_huge_pages_node[nid];
2671 
2672 	return sprintf(buf, "%lu\n", free_huge_pages);
2673 }
2674 HSTATE_ATTR_RO(free_hugepages);
2675 
2676 static ssize_t resv_hugepages_show(struct kobject *kobj,
2677 					struct kobj_attribute *attr, char *buf)
2678 {
2679 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2680 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2681 }
2682 HSTATE_ATTR_RO(resv_hugepages);
2683 
2684 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2685 					struct kobj_attribute *attr, char *buf)
2686 {
2687 	struct hstate *h;
2688 	unsigned long surplus_huge_pages;
2689 	int nid;
2690 
2691 	h = kobj_to_hstate(kobj, &nid);
2692 	if (nid == NUMA_NO_NODE)
2693 		surplus_huge_pages = h->surplus_huge_pages;
2694 	else
2695 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2696 
2697 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2698 }
2699 HSTATE_ATTR_RO(surplus_hugepages);
2700 
2701 static struct attribute *hstate_attrs[] = {
2702 	&nr_hugepages_attr.attr,
2703 	&nr_overcommit_hugepages_attr.attr,
2704 	&free_hugepages_attr.attr,
2705 	&resv_hugepages_attr.attr,
2706 	&surplus_hugepages_attr.attr,
2707 #ifdef CONFIG_NUMA
2708 	&nr_hugepages_mempolicy_attr.attr,
2709 #endif
2710 	NULL,
2711 };
2712 
2713 static const struct attribute_group hstate_attr_group = {
2714 	.attrs = hstate_attrs,
2715 };
2716 
2717 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2718 				    struct kobject **hstate_kobjs,
2719 				    const struct attribute_group *hstate_attr_group)
2720 {
2721 	int retval;
2722 	int hi = hstate_index(h);
2723 
2724 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2725 	if (!hstate_kobjs[hi])
2726 		return -ENOMEM;
2727 
2728 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2729 	if (retval)
2730 		kobject_put(hstate_kobjs[hi]);
2731 
2732 	return retval;
2733 }
2734 
2735 static void __init hugetlb_sysfs_init(void)
2736 {
2737 	struct hstate *h;
2738 	int err;
2739 
2740 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2741 	if (!hugepages_kobj)
2742 		return;
2743 
2744 	for_each_hstate(h) {
2745 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2746 					 hstate_kobjs, &hstate_attr_group);
2747 		if (err)
2748 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2749 	}
2750 }
2751 
2752 #ifdef CONFIG_NUMA
2753 
2754 /*
2755  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2756  * with node devices in node_devices[] using a parallel array.  The array
2757  * index of a node device or _hstate == node id.
2758  * This is here to avoid any static dependency of the node device driver, in
2759  * the base kernel, on the hugetlb module.
2760  */
2761 struct node_hstate {
2762 	struct kobject		*hugepages_kobj;
2763 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2764 };
2765 static struct node_hstate node_hstates[MAX_NUMNODES];
2766 
2767 /*
2768  * A subset of global hstate attributes for node devices
2769  */
2770 static struct attribute *per_node_hstate_attrs[] = {
2771 	&nr_hugepages_attr.attr,
2772 	&free_hugepages_attr.attr,
2773 	&surplus_hugepages_attr.attr,
2774 	NULL,
2775 };
2776 
2777 static const struct attribute_group per_node_hstate_attr_group = {
2778 	.attrs = per_node_hstate_attrs,
2779 };
2780 
2781 /*
2782  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2783  * Returns node id via non-NULL nidp.
2784  */
2785 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2786 {
2787 	int nid;
2788 
2789 	for (nid = 0; nid < nr_node_ids; nid++) {
2790 		struct node_hstate *nhs = &node_hstates[nid];
2791 		int i;
2792 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2793 			if (nhs->hstate_kobjs[i] == kobj) {
2794 				if (nidp)
2795 					*nidp = nid;
2796 				return &hstates[i];
2797 			}
2798 	}
2799 
2800 	BUG();
2801 	return NULL;
2802 }
2803 
2804 /*
2805  * Unregister hstate attributes from a single node device.
2806  * No-op if no hstate attributes attached.
2807  */
2808 static void hugetlb_unregister_node(struct node *node)
2809 {
2810 	struct hstate *h;
2811 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2812 
2813 	if (!nhs->hugepages_kobj)
2814 		return;		/* no hstate attributes */
2815 
2816 	for_each_hstate(h) {
2817 		int idx = hstate_index(h);
2818 		if (nhs->hstate_kobjs[idx]) {
2819 			kobject_put(nhs->hstate_kobjs[idx]);
2820 			nhs->hstate_kobjs[idx] = NULL;
2821 		}
2822 	}
2823 
2824 	kobject_put(nhs->hugepages_kobj);
2825 	nhs->hugepages_kobj = NULL;
2826 }
2827 
2828 
2829 /*
2830  * Register hstate attributes for a single node device.
2831  * No-op if attributes already registered.
2832  */
2833 static void hugetlb_register_node(struct node *node)
2834 {
2835 	struct hstate *h;
2836 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2837 	int err;
2838 
2839 	if (nhs->hugepages_kobj)
2840 		return;		/* already allocated */
2841 
2842 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2843 							&node->dev.kobj);
2844 	if (!nhs->hugepages_kobj)
2845 		return;
2846 
2847 	for_each_hstate(h) {
2848 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2849 						nhs->hstate_kobjs,
2850 						&per_node_hstate_attr_group);
2851 		if (err) {
2852 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2853 				h->name, node->dev.id);
2854 			hugetlb_unregister_node(node);
2855 			break;
2856 		}
2857 	}
2858 }
2859 
2860 /*
2861  * hugetlb init time:  register hstate attributes for all registered node
2862  * devices of nodes that have memory.  All on-line nodes should have
2863  * registered their associated device by this time.
2864  */
2865 static void __init hugetlb_register_all_nodes(void)
2866 {
2867 	int nid;
2868 
2869 	for_each_node_state(nid, N_MEMORY) {
2870 		struct node *node = node_devices[nid];
2871 		if (node->dev.id == nid)
2872 			hugetlb_register_node(node);
2873 	}
2874 
2875 	/*
2876 	 * Let the node device driver know we're here so it can
2877 	 * [un]register hstate attributes on node hotplug.
2878 	 */
2879 	register_hugetlbfs_with_node(hugetlb_register_node,
2880 				     hugetlb_unregister_node);
2881 }
2882 #else	/* !CONFIG_NUMA */
2883 
2884 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2885 {
2886 	BUG();
2887 	if (nidp)
2888 		*nidp = -1;
2889 	return NULL;
2890 }
2891 
2892 static void hugetlb_register_all_nodes(void) { }
2893 
2894 #endif
2895 
2896 static int __init hugetlb_init(void)
2897 {
2898 	int i;
2899 
2900 	if (!hugepages_supported())
2901 		return 0;
2902 
2903 	if (!size_to_hstate(default_hstate_size)) {
2904 		if (default_hstate_size != 0) {
2905 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2906 			       default_hstate_size, HPAGE_SIZE);
2907 		}
2908 
2909 		default_hstate_size = HPAGE_SIZE;
2910 		if (!size_to_hstate(default_hstate_size))
2911 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2912 	}
2913 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2914 	if (default_hstate_max_huge_pages) {
2915 		if (!default_hstate.max_huge_pages)
2916 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2917 	}
2918 
2919 	hugetlb_init_hstates();
2920 	gather_bootmem_prealloc();
2921 	report_hugepages();
2922 
2923 	hugetlb_sysfs_init();
2924 	hugetlb_register_all_nodes();
2925 	hugetlb_cgroup_file_init();
2926 
2927 #ifdef CONFIG_SMP
2928 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2929 #else
2930 	num_fault_mutexes = 1;
2931 #endif
2932 	hugetlb_fault_mutex_table =
2933 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2934 			      GFP_KERNEL);
2935 	BUG_ON(!hugetlb_fault_mutex_table);
2936 
2937 	for (i = 0; i < num_fault_mutexes; i++)
2938 		mutex_init(&hugetlb_fault_mutex_table[i]);
2939 	return 0;
2940 }
2941 subsys_initcall(hugetlb_init);
2942 
2943 /* Should be called on processing a hugepagesz=... option */
2944 void __init hugetlb_bad_size(void)
2945 {
2946 	parsed_valid_hugepagesz = false;
2947 }
2948 
2949 void __init hugetlb_add_hstate(unsigned int order)
2950 {
2951 	struct hstate *h;
2952 	unsigned long i;
2953 
2954 	if (size_to_hstate(PAGE_SIZE << order)) {
2955 		pr_warn("hugepagesz= specified twice, ignoring\n");
2956 		return;
2957 	}
2958 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2959 	BUG_ON(order == 0);
2960 	h = &hstates[hugetlb_max_hstate++];
2961 	h->order = order;
2962 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2963 	h->nr_huge_pages = 0;
2964 	h->free_huge_pages = 0;
2965 	for (i = 0; i < MAX_NUMNODES; ++i)
2966 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2967 	INIT_LIST_HEAD(&h->hugepage_activelist);
2968 	h->next_nid_to_alloc = first_memory_node;
2969 	h->next_nid_to_free = first_memory_node;
2970 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2971 					huge_page_size(h)/1024);
2972 
2973 	parsed_hstate = h;
2974 }
2975 
2976 static int __init hugetlb_nrpages_setup(char *s)
2977 {
2978 	unsigned long *mhp;
2979 	static unsigned long *last_mhp;
2980 
2981 	if (!parsed_valid_hugepagesz) {
2982 		pr_warn("hugepages = %s preceded by "
2983 			"an unsupported hugepagesz, ignoring\n", s);
2984 		parsed_valid_hugepagesz = true;
2985 		return 1;
2986 	}
2987 	/*
2988 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2989 	 * so this hugepages= parameter goes to the "default hstate".
2990 	 */
2991 	else if (!hugetlb_max_hstate)
2992 		mhp = &default_hstate_max_huge_pages;
2993 	else
2994 		mhp = &parsed_hstate->max_huge_pages;
2995 
2996 	if (mhp == last_mhp) {
2997 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2998 		return 1;
2999 	}
3000 
3001 	if (sscanf(s, "%lu", mhp) <= 0)
3002 		*mhp = 0;
3003 
3004 	/*
3005 	 * Global state is always initialized later in hugetlb_init.
3006 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3007 	 * use the bootmem allocator.
3008 	 */
3009 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3010 		hugetlb_hstate_alloc_pages(parsed_hstate);
3011 
3012 	last_mhp = mhp;
3013 
3014 	return 1;
3015 }
3016 __setup("hugepages=", hugetlb_nrpages_setup);
3017 
3018 static int __init hugetlb_default_setup(char *s)
3019 {
3020 	default_hstate_size = memparse(s, &s);
3021 	return 1;
3022 }
3023 __setup("default_hugepagesz=", hugetlb_default_setup);
3024 
3025 static unsigned int cpuset_mems_nr(unsigned int *array)
3026 {
3027 	int node;
3028 	unsigned int nr = 0;
3029 
3030 	for_each_node_mask(node, cpuset_current_mems_allowed)
3031 		nr += array[node];
3032 
3033 	return nr;
3034 }
3035 
3036 #ifdef CONFIG_SYSCTL
3037 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3038 			 struct ctl_table *table, int write,
3039 			 void __user *buffer, size_t *length, loff_t *ppos)
3040 {
3041 	struct hstate *h = &default_hstate;
3042 	unsigned long tmp = h->max_huge_pages;
3043 	int ret;
3044 
3045 	if (!hugepages_supported())
3046 		return -EOPNOTSUPP;
3047 
3048 	table->data = &tmp;
3049 	table->maxlen = sizeof(unsigned long);
3050 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3051 	if (ret)
3052 		goto out;
3053 
3054 	if (write)
3055 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3056 						  NUMA_NO_NODE, tmp, *length);
3057 out:
3058 	return ret;
3059 }
3060 
3061 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3062 			  void __user *buffer, size_t *length, loff_t *ppos)
3063 {
3064 
3065 	return hugetlb_sysctl_handler_common(false, table, write,
3066 							buffer, length, ppos);
3067 }
3068 
3069 #ifdef CONFIG_NUMA
3070 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3071 			  void __user *buffer, size_t *length, loff_t *ppos)
3072 {
3073 	return hugetlb_sysctl_handler_common(true, table, write,
3074 							buffer, length, ppos);
3075 }
3076 #endif /* CONFIG_NUMA */
3077 
3078 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3079 			void __user *buffer,
3080 			size_t *length, loff_t *ppos)
3081 {
3082 	struct hstate *h = &default_hstate;
3083 	unsigned long tmp;
3084 	int ret;
3085 
3086 	if (!hugepages_supported())
3087 		return -EOPNOTSUPP;
3088 
3089 	tmp = h->nr_overcommit_huge_pages;
3090 
3091 	if (write && hstate_is_gigantic(h))
3092 		return -EINVAL;
3093 
3094 	table->data = &tmp;
3095 	table->maxlen = sizeof(unsigned long);
3096 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3097 	if (ret)
3098 		goto out;
3099 
3100 	if (write) {
3101 		spin_lock(&hugetlb_lock);
3102 		h->nr_overcommit_huge_pages = tmp;
3103 		spin_unlock(&hugetlb_lock);
3104 	}
3105 out:
3106 	return ret;
3107 }
3108 
3109 #endif /* CONFIG_SYSCTL */
3110 
3111 void hugetlb_report_meminfo(struct seq_file *m)
3112 {
3113 	struct hstate *h;
3114 	unsigned long total = 0;
3115 
3116 	if (!hugepages_supported())
3117 		return;
3118 
3119 	for_each_hstate(h) {
3120 		unsigned long count = h->nr_huge_pages;
3121 
3122 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3123 
3124 		if (h == &default_hstate)
3125 			seq_printf(m,
3126 				   "HugePages_Total:   %5lu\n"
3127 				   "HugePages_Free:    %5lu\n"
3128 				   "HugePages_Rsvd:    %5lu\n"
3129 				   "HugePages_Surp:    %5lu\n"
3130 				   "Hugepagesize:   %8lu kB\n",
3131 				   count,
3132 				   h->free_huge_pages,
3133 				   h->resv_huge_pages,
3134 				   h->surplus_huge_pages,
3135 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3136 	}
3137 
3138 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3139 }
3140 
3141 int hugetlb_report_node_meminfo(int nid, char *buf)
3142 {
3143 	struct hstate *h = &default_hstate;
3144 	if (!hugepages_supported())
3145 		return 0;
3146 	return sprintf(buf,
3147 		"Node %d HugePages_Total: %5u\n"
3148 		"Node %d HugePages_Free:  %5u\n"
3149 		"Node %d HugePages_Surp:  %5u\n",
3150 		nid, h->nr_huge_pages_node[nid],
3151 		nid, h->free_huge_pages_node[nid],
3152 		nid, h->surplus_huge_pages_node[nid]);
3153 }
3154 
3155 void hugetlb_show_meminfo(void)
3156 {
3157 	struct hstate *h;
3158 	int nid;
3159 
3160 	if (!hugepages_supported())
3161 		return;
3162 
3163 	for_each_node_state(nid, N_MEMORY)
3164 		for_each_hstate(h)
3165 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3166 				nid,
3167 				h->nr_huge_pages_node[nid],
3168 				h->free_huge_pages_node[nid],
3169 				h->surplus_huge_pages_node[nid],
3170 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3171 }
3172 
3173 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3174 {
3175 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3176 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3177 }
3178 
3179 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3180 unsigned long hugetlb_total_pages(void)
3181 {
3182 	struct hstate *h;
3183 	unsigned long nr_total_pages = 0;
3184 
3185 	for_each_hstate(h)
3186 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3187 	return nr_total_pages;
3188 }
3189 
3190 static int hugetlb_acct_memory(struct hstate *h, long delta)
3191 {
3192 	int ret = -ENOMEM;
3193 
3194 	spin_lock(&hugetlb_lock);
3195 	/*
3196 	 * When cpuset is configured, it breaks the strict hugetlb page
3197 	 * reservation as the accounting is done on a global variable. Such
3198 	 * reservation is completely rubbish in the presence of cpuset because
3199 	 * the reservation is not checked against page availability for the
3200 	 * current cpuset. Application can still potentially OOM'ed by kernel
3201 	 * with lack of free htlb page in cpuset that the task is in.
3202 	 * Attempt to enforce strict accounting with cpuset is almost
3203 	 * impossible (or too ugly) because cpuset is too fluid that
3204 	 * task or memory node can be dynamically moved between cpusets.
3205 	 *
3206 	 * The change of semantics for shared hugetlb mapping with cpuset is
3207 	 * undesirable. However, in order to preserve some of the semantics,
3208 	 * we fall back to check against current free page availability as
3209 	 * a best attempt and hopefully to minimize the impact of changing
3210 	 * semantics that cpuset has.
3211 	 */
3212 	if (delta > 0) {
3213 		if (gather_surplus_pages(h, delta) < 0)
3214 			goto out;
3215 
3216 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3217 			return_unused_surplus_pages(h, delta);
3218 			goto out;
3219 		}
3220 	}
3221 
3222 	ret = 0;
3223 	if (delta < 0)
3224 		return_unused_surplus_pages(h, (unsigned long) -delta);
3225 
3226 out:
3227 	spin_unlock(&hugetlb_lock);
3228 	return ret;
3229 }
3230 
3231 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3232 {
3233 	struct resv_map *resv = vma_resv_map(vma);
3234 
3235 	/*
3236 	 * This new VMA should share its siblings reservation map if present.
3237 	 * The VMA will only ever have a valid reservation map pointer where
3238 	 * it is being copied for another still existing VMA.  As that VMA
3239 	 * has a reference to the reservation map it cannot disappear until
3240 	 * after this open call completes.  It is therefore safe to take a
3241 	 * new reference here without additional locking.
3242 	 */
3243 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3244 		kref_get(&resv->refs);
3245 }
3246 
3247 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3248 {
3249 	struct hstate *h = hstate_vma(vma);
3250 	struct resv_map *resv = vma_resv_map(vma);
3251 	struct hugepage_subpool *spool = subpool_vma(vma);
3252 	unsigned long reserve, start, end;
3253 	long gbl_reserve;
3254 
3255 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3256 		return;
3257 
3258 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3259 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3260 
3261 	reserve = (end - start) - region_count(resv, start, end);
3262 
3263 	kref_put(&resv->refs, resv_map_release);
3264 
3265 	if (reserve) {
3266 		/*
3267 		 * Decrement reserve counts.  The global reserve count may be
3268 		 * adjusted if the subpool has a minimum size.
3269 		 */
3270 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3271 		hugetlb_acct_memory(h, -gbl_reserve);
3272 	}
3273 }
3274 
3275 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3276 {
3277 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3278 		return -EINVAL;
3279 	return 0;
3280 }
3281 
3282 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3283 {
3284 	struct hstate *hstate = hstate_vma(vma);
3285 
3286 	return 1UL << huge_page_shift(hstate);
3287 }
3288 
3289 /*
3290  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3291  * handle_mm_fault() to try to instantiate regular-sized pages in the
3292  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3293  * this far.
3294  */
3295 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3296 {
3297 	BUG();
3298 	return 0;
3299 }
3300 
3301 /*
3302  * When a new function is introduced to vm_operations_struct and added
3303  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3304  * This is because under System V memory model, mappings created via
3305  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3306  * their original vm_ops are overwritten with shm_vm_ops.
3307  */
3308 const struct vm_operations_struct hugetlb_vm_ops = {
3309 	.fault = hugetlb_vm_op_fault,
3310 	.open = hugetlb_vm_op_open,
3311 	.close = hugetlb_vm_op_close,
3312 	.split = hugetlb_vm_op_split,
3313 	.pagesize = hugetlb_vm_op_pagesize,
3314 };
3315 
3316 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3317 				int writable)
3318 {
3319 	pte_t entry;
3320 
3321 	if (writable) {
3322 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3323 					 vma->vm_page_prot)));
3324 	} else {
3325 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3326 					   vma->vm_page_prot));
3327 	}
3328 	entry = pte_mkyoung(entry);
3329 	entry = pte_mkhuge(entry);
3330 	entry = arch_make_huge_pte(entry, vma, page, writable);
3331 
3332 	return entry;
3333 }
3334 
3335 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3336 				   unsigned long address, pte_t *ptep)
3337 {
3338 	pte_t entry;
3339 
3340 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3341 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3342 		update_mmu_cache(vma, address, ptep);
3343 }
3344 
3345 bool is_hugetlb_entry_migration(pte_t pte)
3346 {
3347 	swp_entry_t swp;
3348 
3349 	if (huge_pte_none(pte) || pte_present(pte))
3350 		return false;
3351 	swp = pte_to_swp_entry(pte);
3352 	if (non_swap_entry(swp) && is_migration_entry(swp))
3353 		return true;
3354 	else
3355 		return false;
3356 }
3357 
3358 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3359 {
3360 	swp_entry_t swp;
3361 
3362 	if (huge_pte_none(pte) || pte_present(pte))
3363 		return 0;
3364 	swp = pte_to_swp_entry(pte);
3365 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3366 		return 1;
3367 	else
3368 		return 0;
3369 }
3370 
3371 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3372 			    struct vm_area_struct *vma)
3373 {
3374 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3375 	struct page *ptepage;
3376 	unsigned long addr;
3377 	int cow;
3378 	struct hstate *h = hstate_vma(vma);
3379 	unsigned long sz = huge_page_size(h);
3380 	struct mmu_notifier_range range;
3381 	int ret = 0;
3382 
3383 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3384 
3385 	if (cow) {
3386 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3387 					vma->vm_start,
3388 					vma->vm_end);
3389 		mmu_notifier_invalidate_range_start(&range);
3390 	}
3391 
3392 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3393 		spinlock_t *src_ptl, *dst_ptl;
3394 		src_pte = huge_pte_offset(src, addr, sz);
3395 		if (!src_pte)
3396 			continue;
3397 		dst_pte = huge_pte_alloc(dst, addr, sz);
3398 		if (!dst_pte) {
3399 			ret = -ENOMEM;
3400 			break;
3401 		}
3402 
3403 		/*
3404 		 * If the pagetables are shared don't copy or take references.
3405 		 * dst_pte == src_pte is the common case of src/dest sharing.
3406 		 *
3407 		 * However, src could have 'unshared' and dst shares with
3408 		 * another vma.  If dst_pte !none, this implies sharing.
3409 		 * Check here before taking page table lock, and once again
3410 		 * after taking the lock below.
3411 		 */
3412 		dst_entry = huge_ptep_get(dst_pte);
3413 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3414 			continue;
3415 
3416 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3417 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3418 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3419 		entry = huge_ptep_get(src_pte);
3420 		dst_entry = huge_ptep_get(dst_pte);
3421 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3422 			/*
3423 			 * Skip if src entry none.  Also, skip in the
3424 			 * unlikely case dst entry !none as this implies
3425 			 * sharing with another vma.
3426 			 */
3427 			;
3428 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3429 				    is_hugetlb_entry_hwpoisoned(entry))) {
3430 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3431 
3432 			if (is_write_migration_entry(swp_entry) && cow) {
3433 				/*
3434 				 * COW mappings require pages in both
3435 				 * parent and child to be set to read.
3436 				 */
3437 				make_migration_entry_read(&swp_entry);
3438 				entry = swp_entry_to_pte(swp_entry);
3439 				set_huge_swap_pte_at(src, addr, src_pte,
3440 						     entry, sz);
3441 			}
3442 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3443 		} else {
3444 			if (cow) {
3445 				/*
3446 				 * No need to notify as we are downgrading page
3447 				 * table protection not changing it to point
3448 				 * to a new page.
3449 				 *
3450 				 * See Documentation/vm/mmu_notifier.rst
3451 				 */
3452 				huge_ptep_set_wrprotect(src, addr, src_pte);
3453 			}
3454 			entry = huge_ptep_get(src_pte);
3455 			ptepage = pte_page(entry);
3456 			get_page(ptepage);
3457 			page_dup_rmap(ptepage, true);
3458 			set_huge_pte_at(dst, addr, dst_pte, entry);
3459 			hugetlb_count_add(pages_per_huge_page(h), dst);
3460 		}
3461 		spin_unlock(src_ptl);
3462 		spin_unlock(dst_ptl);
3463 	}
3464 
3465 	if (cow)
3466 		mmu_notifier_invalidate_range_end(&range);
3467 
3468 	return ret;
3469 }
3470 
3471 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3472 			    unsigned long start, unsigned long end,
3473 			    struct page *ref_page)
3474 {
3475 	struct mm_struct *mm = vma->vm_mm;
3476 	unsigned long address;
3477 	pte_t *ptep;
3478 	pte_t pte;
3479 	spinlock_t *ptl;
3480 	struct page *page;
3481 	struct hstate *h = hstate_vma(vma);
3482 	unsigned long sz = huge_page_size(h);
3483 	struct mmu_notifier_range range;
3484 
3485 	WARN_ON(!is_vm_hugetlb_page(vma));
3486 	BUG_ON(start & ~huge_page_mask(h));
3487 	BUG_ON(end & ~huge_page_mask(h));
3488 
3489 	/*
3490 	 * This is a hugetlb vma, all the pte entries should point
3491 	 * to huge page.
3492 	 */
3493 	tlb_change_page_size(tlb, sz);
3494 	tlb_start_vma(tlb, vma);
3495 
3496 	/*
3497 	 * If sharing possible, alert mmu notifiers of worst case.
3498 	 */
3499 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3500 				end);
3501 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3502 	mmu_notifier_invalidate_range_start(&range);
3503 	address = start;
3504 	for (; address < end; address += sz) {
3505 		ptep = huge_pte_offset(mm, address, sz);
3506 		if (!ptep)
3507 			continue;
3508 
3509 		ptl = huge_pte_lock(h, mm, ptep);
3510 		if (huge_pmd_unshare(mm, &address, ptep)) {
3511 			spin_unlock(ptl);
3512 			/*
3513 			 * We just unmapped a page of PMDs by clearing a PUD.
3514 			 * The caller's TLB flush range should cover this area.
3515 			 */
3516 			continue;
3517 		}
3518 
3519 		pte = huge_ptep_get(ptep);
3520 		if (huge_pte_none(pte)) {
3521 			spin_unlock(ptl);
3522 			continue;
3523 		}
3524 
3525 		/*
3526 		 * Migrating hugepage or HWPoisoned hugepage is already
3527 		 * unmapped and its refcount is dropped, so just clear pte here.
3528 		 */
3529 		if (unlikely(!pte_present(pte))) {
3530 			huge_pte_clear(mm, address, ptep, sz);
3531 			spin_unlock(ptl);
3532 			continue;
3533 		}
3534 
3535 		page = pte_page(pte);
3536 		/*
3537 		 * If a reference page is supplied, it is because a specific
3538 		 * page is being unmapped, not a range. Ensure the page we
3539 		 * are about to unmap is the actual page of interest.
3540 		 */
3541 		if (ref_page) {
3542 			if (page != ref_page) {
3543 				spin_unlock(ptl);
3544 				continue;
3545 			}
3546 			/*
3547 			 * Mark the VMA as having unmapped its page so that
3548 			 * future faults in this VMA will fail rather than
3549 			 * looking like data was lost
3550 			 */
3551 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3552 		}
3553 
3554 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3555 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3556 		if (huge_pte_dirty(pte))
3557 			set_page_dirty(page);
3558 
3559 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3560 		page_remove_rmap(page, true);
3561 
3562 		spin_unlock(ptl);
3563 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3564 		/*
3565 		 * Bail out after unmapping reference page if supplied
3566 		 */
3567 		if (ref_page)
3568 			break;
3569 	}
3570 	mmu_notifier_invalidate_range_end(&range);
3571 	tlb_end_vma(tlb, vma);
3572 }
3573 
3574 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3575 			  struct vm_area_struct *vma, unsigned long start,
3576 			  unsigned long end, struct page *ref_page)
3577 {
3578 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3579 
3580 	/*
3581 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3582 	 * test will fail on a vma being torn down, and not grab a page table
3583 	 * on its way out.  We're lucky that the flag has such an appropriate
3584 	 * name, and can in fact be safely cleared here. We could clear it
3585 	 * before the __unmap_hugepage_range above, but all that's necessary
3586 	 * is to clear it before releasing the i_mmap_rwsem. This works
3587 	 * because in the context this is called, the VMA is about to be
3588 	 * destroyed and the i_mmap_rwsem is held.
3589 	 */
3590 	vma->vm_flags &= ~VM_MAYSHARE;
3591 }
3592 
3593 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3594 			  unsigned long end, struct page *ref_page)
3595 {
3596 	struct mm_struct *mm;
3597 	struct mmu_gather tlb;
3598 	unsigned long tlb_start = start;
3599 	unsigned long tlb_end = end;
3600 
3601 	/*
3602 	 * If shared PMDs were possibly used within this vma range, adjust
3603 	 * start/end for worst case tlb flushing.
3604 	 * Note that we can not be sure if PMDs are shared until we try to
3605 	 * unmap pages.  However, we want to make sure TLB flushing covers
3606 	 * the largest possible range.
3607 	 */
3608 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3609 
3610 	mm = vma->vm_mm;
3611 
3612 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3613 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3614 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3615 }
3616 
3617 /*
3618  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3619  * mappping it owns the reserve page for. The intention is to unmap the page
3620  * from other VMAs and let the children be SIGKILLed if they are faulting the
3621  * same region.
3622  */
3623 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3624 			      struct page *page, unsigned long address)
3625 {
3626 	struct hstate *h = hstate_vma(vma);
3627 	struct vm_area_struct *iter_vma;
3628 	struct address_space *mapping;
3629 	pgoff_t pgoff;
3630 
3631 	/*
3632 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3633 	 * from page cache lookup which is in HPAGE_SIZE units.
3634 	 */
3635 	address = address & huge_page_mask(h);
3636 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3637 			vma->vm_pgoff;
3638 	mapping = vma->vm_file->f_mapping;
3639 
3640 	/*
3641 	 * Take the mapping lock for the duration of the table walk. As
3642 	 * this mapping should be shared between all the VMAs,
3643 	 * __unmap_hugepage_range() is called as the lock is already held
3644 	 */
3645 	i_mmap_lock_write(mapping);
3646 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3647 		/* Do not unmap the current VMA */
3648 		if (iter_vma == vma)
3649 			continue;
3650 
3651 		/*
3652 		 * Shared VMAs have their own reserves and do not affect
3653 		 * MAP_PRIVATE accounting but it is possible that a shared
3654 		 * VMA is using the same page so check and skip such VMAs.
3655 		 */
3656 		if (iter_vma->vm_flags & VM_MAYSHARE)
3657 			continue;
3658 
3659 		/*
3660 		 * Unmap the page from other VMAs without their own reserves.
3661 		 * They get marked to be SIGKILLed if they fault in these
3662 		 * areas. This is because a future no-page fault on this VMA
3663 		 * could insert a zeroed page instead of the data existing
3664 		 * from the time of fork. This would look like data corruption
3665 		 */
3666 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3667 			unmap_hugepage_range(iter_vma, address,
3668 					     address + huge_page_size(h), page);
3669 	}
3670 	i_mmap_unlock_write(mapping);
3671 }
3672 
3673 /*
3674  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3675  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3676  * cannot race with other handlers or page migration.
3677  * Keep the pte_same checks anyway to make transition from the mutex easier.
3678  */
3679 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3680 		       unsigned long address, pte_t *ptep,
3681 		       struct page *pagecache_page, spinlock_t *ptl)
3682 {
3683 	pte_t pte;
3684 	struct hstate *h = hstate_vma(vma);
3685 	struct page *old_page, *new_page;
3686 	int outside_reserve = 0;
3687 	vm_fault_t ret = 0;
3688 	unsigned long haddr = address & huge_page_mask(h);
3689 	struct mmu_notifier_range range;
3690 
3691 	pte = huge_ptep_get(ptep);
3692 	old_page = pte_page(pte);
3693 
3694 retry_avoidcopy:
3695 	/* If no-one else is actually using this page, avoid the copy
3696 	 * and just make the page writable */
3697 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3698 		page_move_anon_rmap(old_page, vma);
3699 		set_huge_ptep_writable(vma, haddr, ptep);
3700 		return 0;
3701 	}
3702 
3703 	/*
3704 	 * If the process that created a MAP_PRIVATE mapping is about to
3705 	 * perform a COW due to a shared page count, attempt to satisfy
3706 	 * the allocation without using the existing reserves. The pagecache
3707 	 * page is used to determine if the reserve at this address was
3708 	 * consumed or not. If reserves were used, a partial faulted mapping
3709 	 * at the time of fork() could consume its reserves on COW instead
3710 	 * of the full address range.
3711 	 */
3712 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3713 			old_page != pagecache_page)
3714 		outside_reserve = 1;
3715 
3716 	get_page(old_page);
3717 
3718 	/*
3719 	 * Drop page table lock as buddy allocator may be called. It will
3720 	 * be acquired again before returning to the caller, as expected.
3721 	 */
3722 	spin_unlock(ptl);
3723 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3724 
3725 	if (IS_ERR(new_page)) {
3726 		/*
3727 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3728 		 * it is due to references held by a child and an insufficient
3729 		 * huge page pool. To guarantee the original mappers
3730 		 * reliability, unmap the page from child processes. The child
3731 		 * may get SIGKILLed if it later faults.
3732 		 */
3733 		if (outside_reserve) {
3734 			put_page(old_page);
3735 			BUG_ON(huge_pte_none(pte));
3736 			unmap_ref_private(mm, vma, old_page, haddr);
3737 			BUG_ON(huge_pte_none(pte));
3738 			spin_lock(ptl);
3739 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3740 			if (likely(ptep &&
3741 				   pte_same(huge_ptep_get(ptep), pte)))
3742 				goto retry_avoidcopy;
3743 			/*
3744 			 * race occurs while re-acquiring page table
3745 			 * lock, and our job is done.
3746 			 */
3747 			return 0;
3748 		}
3749 
3750 		ret = vmf_error(PTR_ERR(new_page));
3751 		goto out_release_old;
3752 	}
3753 
3754 	/*
3755 	 * When the original hugepage is shared one, it does not have
3756 	 * anon_vma prepared.
3757 	 */
3758 	if (unlikely(anon_vma_prepare(vma))) {
3759 		ret = VM_FAULT_OOM;
3760 		goto out_release_all;
3761 	}
3762 
3763 	copy_user_huge_page(new_page, old_page, address, vma,
3764 			    pages_per_huge_page(h));
3765 	__SetPageUptodate(new_page);
3766 
3767 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3768 				haddr + huge_page_size(h));
3769 	mmu_notifier_invalidate_range_start(&range);
3770 
3771 	/*
3772 	 * Retake the page table lock to check for racing updates
3773 	 * before the page tables are altered
3774 	 */
3775 	spin_lock(ptl);
3776 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3777 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3778 		ClearPagePrivate(new_page);
3779 
3780 		/* Break COW */
3781 		huge_ptep_clear_flush(vma, haddr, ptep);
3782 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3783 		set_huge_pte_at(mm, haddr, ptep,
3784 				make_huge_pte(vma, new_page, 1));
3785 		page_remove_rmap(old_page, true);
3786 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3787 		set_page_huge_active(new_page);
3788 		/* Make the old page be freed below */
3789 		new_page = old_page;
3790 	}
3791 	spin_unlock(ptl);
3792 	mmu_notifier_invalidate_range_end(&range);
3793 out_release_all:
3794 	restore_reserve_on_error(h, vma, haddr, new_page);
3795 	put_page(new_page);
3796 out_release_old:
3797 	put_page(old_page);
3798 
3799 	spin_lock(ptl); /* Caller expects lock to be held */
3800 	return ret;
3801 }
3802 
3803 /* Return the pagecache page at a given address within a VMA */
3804 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3805 			struct vm_area_struct *vma, unsigned long address)
3806 {
3807 	struct address_space *mapping;
3808 	pgoff_t idx;
3809 
3810 	mapping = vma->vm_file->f_mapping;
3811 	idx = vma_hugecache_offset(h, vma, address);
3812 
3813 	return find_lock_page(mapping, idx);
3814 }
3815 
3816 /*
3817  * Return whether there is a pagecache page to back given address within VMA.
3818  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3819  */
3820 static bool hugetlbfs_pagecache_present(struct hstate *h,
3821 			struct vm_area_struct *vma, unsigned long address)
3822 {
3823 	struct address_space *mapping;
3824 	pgoff_t idx;
3825 	struct page *page;
3826 
3827 	mapping = vma->vm_file->f_mapping;
3828 	idx = vma_hugecache_offset(h, vma, address);
3829 
3830 	page = find_get_page(mapping, idx);
3831 	if (page)
3832 		put_page(page);
3833 	return page != NULL;
3834 }
3835 
3836 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3837 			   pgoff_t idx)
3838 {
3839 	struct inode *inode = mapping->host;
3840 	struct hstate *h = hstate_inode(inode);
3841 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3842 
3843 	if (err)
3844 		return err;
3845 	ClearPagePrivate(page);
3846 
3847 	/*
3848 	 * set page dirty so that it will not be removed from cache/file
3849 	 * by non-hugetlbfs specific code paths.
3850 	 */
3851 	set_page_dirty(page);
3852 
3853 	spin_lock(&inode->i_lock);
3854 	inode->i_blocks += blocks_per_huge_page(h);
3855 	spin_unlock(&inode->i_lock);
3856 	return 0;
3857 }
3858 
3859 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3860 			struct vm_area_struct *vma,
3861 			struct address_space *mapping, pgoff_t idx,
3862 			unsigned long address, pte_t *ptep, unsigned int flags)
3863 {
3864 	struct hstate *h = hstate_vma(vma);
3865 	vm_fault_t ret = VM_FAULT_SIGBUS;
3866 	int anon_rmap = 0;
3867 	unsigned long size;
3868 	struct page *page;
3869 	pte_t new_pte;
3870 	spinlock_t *ptl;
3871 	unsigned long haddr = address & huge_page_mask(h);
3872 	bool new_page = false;
3873 
3874 	/*
3875 	 * Currently, we are forced to kill the process in the event the
3876 	 * original mapper has unmapped pages from the child due to a failed
3877 	 * COW. Warn that such a situation has occurred as it may not be obvious
3878 	 */
3879 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3880 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3881 			   current->pid);
3882 		return ret;
3883 	}
3884 
3885 	/*
3886 	 * Use page lock to guard against racing truncation
3887 	 * before we get page_table_lock.
3888 	 */
3889 retry:
3890 	page = find_lock_page(mapping, idx);
3891 	if (!page) {
3892 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3893 		if (idx >= size)
3894 			goto out;
3895 
3896 		/*
3897 		 * Check for page in userfault range
3898 		 */
3899 		if (userfaultfd_missing(vma)) {
3900 			u32 hash;
3901 			struct vm_fault vmf = {
3902 				.vma = vma,
3903 				.address = haddr,
3904 				.flags = flags,
3905 				/*
3906 				 * Hard to debug if it ends up being
3907 				 * used by a callee that assumes
3908 				 * something about the other
3909 				 * uninitialized fields... same as in
3910 				 * memory.c
3911 				 */
3912 			};
3913 
3914 			/*
3915 			 * hugetlb_fault_mutex must be dropped before
3916 			 * handling userfault.  Reacquire after handling
3917 			 * fault to make calling code simpler.
3918 			 */
3919 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3920 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3921 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3922 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3923 			goto out;
3924 		}
3925 
3926 		page = alloc_huge_page(vma, haddr, 0);
3927 		if (IS_ERR(page)) {
3928 			/*
3929 			 * Returning error will result in faulting task being
3930 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3931 			 * tasks from racing to fault in the same page which
3932 			 * could result in false unable to allocate errors.
3933 			 * Page migration does not take the fault mutex, but
3934 			 * does a clear then write of pte's under page table
3935 			 * lock.  Page fault code could race with migration,
3936 			 * notice the clear pte and try to allocate a page
3937 			 * here.  Before returning error, get ptl and make
3938 			 * sure there really is no pte entry.
3939 			 */
3940 			ptl = huge_pte_lock(h, mm, ptep);
3941 			if (!huge_pte_none(huge_ptep_get(ptep))) {
3942 				ret = 0;
3943 				spin_unlock(ptl);
3944 				goto out;
3945 			}
3946 			spin_unlock(ptl);
3947 			ret = vmf_error(PTR_ERR(page));
3948 			goto out;
3949 		}
3950 		clear_huge_page(page, address, pages_per_huge_page(h));
3951 		__SetPageUptodate(page);
3952 		new_page = true;
3953 
3954 		if (vma->vm_flags & VM_MAYSHARE) {
3955 			int err = huge_add_to_page_cache(page, mapping, idx);
3956 			if (err) {
3957 				put_page(page);
3958 				if (err == -EEXIST)
3959 					goto retry;
3960 				goto out;
3961 			}
3962 		} else {
3963 			lock_page(page);
3964 			if (unlikely(anon_vma_prepare(vma))) {
3965 				ret = VM_FAULT_OOM;
3966 				goto backout_unlocked;
3967 			}
3968 			anon_rmap = 1;
3969 		}
3970 	} else {
3971 		/*
3972 		 * If memory error occurs between mmap() and fault, some process
3973 		 * don't have hwpoisoned swap entry for errored virtual address.
3974 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3975 		 */
3976 		if (unlikely(PageHWPoison(page))) {
3977 			ret = VM_FAULT_HWPOISON |
3978 				VM_FAULT_SET_HINDEX(hstate_index(h));
3979 			goto backout_unlocked;
3980 		}
3981 	}
3982 
3983 	/*
3984 	 * If we are going to COW a private mapping later, we examine the
3985 	 * pending reservations for this page now. This will ensure that
3986 	 * any allocations necessary to record that reservation occur outside
3987 	 * the spinlock.
3988 	 */
3989 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3990 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3991 			ret = VM_FAULT_OOM;
3992 			goto backout_unlocked;
3993 		}
3994 		/* Just decrements count, does not deallocate */
3995 		vma_end_reservation(h, vma, haddr);
3996 	}
3997 
3998 	ptl = huge_pte_lock(h, mm, ptep);
3999 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4000 	if (idx >= size)
4001 		goto backout;
4002 
4003 	ret = 0;
4004 	if (!huge_pte_none(huge_ptep_get(ptep)))
4005 		goto backout;
4006 
4007 	if (anon_rmap) {
4008 		ClearPagePrivate(page);
4009 		hugepage_add_new_anon_rmap(page, vma, haddr);
4010 	} else
4011 		page_dup_rmap(page, true);
4012 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4013 				&& (vma->vm_flags & VM_SHARED)));
4014 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4015 
4016 	hugetlb_count_add(pages_per_huge_page(h), mm);
4017 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4018 		/* Optimization, do the COW without a second fault */
4019 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4020 	}
4021 
4022 	spin_unlock(ptl);
4023 
4024 	/*
4025 	 * Only make newly allocated pages active.  Existing pages found
4026 	 * in the pagecache could be !page_huge_active() if they have been
4027 	 * isolated for migration.
4028 	 */
4029 	if (new_page)
4030 		set_page_huge_active(page);
4031 
4032 	unlock_page(page);
4033 out:
4034 	return ret;
4035 
4036 backout:
4037 	spin_unlock(ptl);
4038 backout_unlocked:
4039 	unlock_page(page);
4040 	restore_reserve_on_error(h, vma, haddr, page);
4041 	put_page(page);
4042 	goto out;
4043 }
4044 
4045 #ifdef CONFIG_SMP
4046 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4047 			    pgoff_t idx, unsigned long address)
4048 {
4049 	unsigned long key[2];
4050 	u32 hash;
4051 
4052 	key[0] = (unsigned long) mapping;
4053 	key[1] = idx;
4054 
4055 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
4056 
4057 	return hash & (num_fault_mutexes - 1);
4058 }
4059 #else
4060 /*
4061  * For uniprocesor systems we always use a single mutex, so just
4062  * return 0 and avoid the hashing overhead.
4063  */
4064 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4065 			    pgoff_t idx, unsigned long address)
4066 {
4067 	return 0;
4068 }
4069 #endif
4070 
4071 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4072 			unsigned long address, unsigned int flags)
4073 {
4074 	pte_t *ptep, entry;
4075 	spinlock_t *ptl;
4076 	vm_fault_t ret;
4077 	u32 hash;
4078 	pgoff_t idx;
4079 	struct page *page = NULL;
4080 	struct page *pagecache_page = NULL;
4081 	struct hstate *h = hstate_vma(vma);
4082 	struct address_space *mapping;
4083 	int need_wait_lock = 0;
4084 	unsigned long haddr = address & huge_page_mask(h);
4085 
4086 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4087 	if (ptep) {
4088 		entry = huge_ptep_get(ptep);
4089 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4090 			migration_entry_wait_huge(vma, mm, ptep);
4091 			return 0;
4092 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4093 			return VM_FAULT_HWPOISON_LARGE |
4094 				VM_FAULT_SET_HINDEX(hstate_index(h));
4095 	} else {
4096 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4097 		if (!ptep)
4098 			return VM_FAULT_OOM;
4099 	}
4100 
4101 	mapping = vma->vm_file->f_mapping;
4102 	idx = vma_hugecache_offset(h, vma, haddr);
4103 
4104 	/*
4105 	 * Serialize hugepage allocation and instantiation, so that we don't
4106 	 * get spurious allocation failures if two CPUs race to instantiate
4107 	 * the same page in the page cache.
4108 	 */
4109 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4110 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4111 
4112 	entry = huge_ptep_get(ptep);
4113 	if (huge_pte_none(entry)) {
4114 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4115 		goto out_mutex;
4116 	}
4117 
4118 	ret = 0;
4119 
4120 	/*
4121 	 * entry could be a migration/hwpoison entry at this point, so this
4122 	 * check prevents the kernel from going below assuming that we have
4123 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4124 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4125 	 * handle it.
4126 	 */
4127 	if (!pte_present(entry))
4128 		goto out_mutex;
4129 
4130 	/*
4131 	 * If we are going to COW the mapping later, we examine the pending
4132 	 * reservations for this page now. This will ensure that any
4133 	 * allocations necessary to record that reservation occur outside the
4134 	 * spinlock. For private mappings, we also lookup the pagecache
4135 	 * page now as it is used to determine if a reservation has been
4136 	 * consumed.
4137 	 */
4138 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4139 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4140 			ret = VM_FAULT_OOM;
4141 			goto out_mutex;
4142 		}
4143 		/* Just decrements count, does not deallocate */
4144 		vma_end_reservation(h, vma, haddr);
4145 
4146 		if (!(vma->vm_flags & VM_MAYSHARE))
4147 			pagecache_page = hugetlbfs_pagecache_page(h,
4148 								vma, haddr);
4149 	}
4150 
4151 	ptl = huge_pte_lock(h, mm, ptep);
4152 
4153 	/* Check for a racing update before calling hugetlb_cow */
4154 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4155 		goto out_ptl;
4156 
4157 	/*
4158 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4159 	 * pagecache_page, so here we need take the former one
4160 	 * when page != pagecache_page or !pagecache_page.
4161 	 */
4162 	page = pte_page(entry);
4163 	if (page != pagecache_page)
4164 		if (!trylock_page(page)) {
4165 			need_wait_lock = 1;
4166 			goto out_ptl;
4167 		}
4168 
4169 	get_page(page);
4170 
4171 	if (flags & FAULT_FLAG_WRITE) {
4172 		if (!huge_pte_write(entry)) {
4173 			ret = hugetlb_cow(mm, vma, address, ptep,
4174 					  pagecache_page, ptl);
4175 			goto out_put_page;
4176 		}
4177 		entry = huge_pte_mkdirty(entry);
4178 	}
4179 	entry = pte_mkyoung(entry);
4180 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4181 						flags & FAULT_FLAG_WRITE))
4182 		update_mmu_cache(vma, haddr, ptep);
4183 out_put_page:
4184 	if (page != pagecache_page)
4185 		unlock_page(page);
4186 	put_page(page);
4187 out_ptl:
4188 	spin_unlock(ptl);
4189 
4190 	if (pagecache_page) {
4191 		unlock_page(pagecache_page);
4192 		put_page(pagecache_page);
4193 	}
4194 out_mutex:
4195 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4196 	/*
4197 	 * Generally it's safe to hold refcount during waiting page lock. But
4198 	 * here we just wait to defer the next page fault to avoid busy loop and
4199 	 * the page is not used after unlocked before returning from the current
4200 	 * page fault. So we are safe from accessing freed page, even if we wait
4201 	 * here without taking refcount.
4202 	 */
4203 	if (need_wait_lock)
4204 		wait_on_page_locked(page);
4205 	return ret;
4206 }
4207 
4208 /*
4209  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4210  * modifications for huge pages.
4211  */
4212 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4213 			    pte_t *dst_pte,
4214 			    struct vm_area_struct *dst_vma,
4215 			    unsigned long dst_addr,
4216 			    unsigned long src_addr,
4217 			    struct page **pagep)
4218 {
4219 	struct address_space *mapping;
4220 	pgoff_t idx;
4221 	unsigned long size;
4222 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4223 	struct hstate *h = hstate_vma(dst_vma);
4224 	pte_t _dst_pte;
4225 	spinlock_t *ptl;
4226 	int ret;
4227 	struct page *page;
4228 
4229 	if (!*pagep) {
4230 		ret = -ENOMEM;
4231 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4232 		if (IS_ERR(page))
4233 			goto out;
4234 
4235 		ret = copy_huge_page_from_user(page,
4236 						(const void __user *) src_addr,
4237 						pages_per_huge_page(h), false);
4238 
4239 		/* fallback to copy_from_user outside mmap_sem */
4240 		if (unlikely(ret)) {
4241 			ret = -ENOENT;
4242 			*pagep = page;
4243 			/* don't free the page */
4244 			goto out;
4245 		}
4246 	} else {
4247 		page = *pagep;
4248 		*pagep = NULL;
4249 	}
4250 
4251 	/*
4252 	 * The memory barrier inside __SetPageUptodate makes sure that
4253 	 * preceding stores to the page contents become visible before
4254 	 * the set_pte_at() write.
4255 	 */
4256 	__SetPageUptodate(page);
4257 
4258 	mapping = dst_vma->vm_file->f_mapping;
4259 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4260 
4261 	/*
4262 	 * If shared, add to page cache
4263 	 */
4264 	if (vm_shared) {
4265 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4266 		ret = -EFAULT;
4267 		if (idx >= size)
4268 			goto out_release_nounlock;
4269 
4270 		/*
4271 		 * Serialization between remove_inode_hugepages() and
4272 		 * huge_add_to_page_cache() below happens through the
4273 		 * hugetlb_fault_mutex_table that here must be hold by
4274 		 * the caller.
4275 		 */
4276 		ret = huge_add_to_page_cache(page, mapping, idx);
4277 		if (ret)
4278 			goto out_release_nounlock;
4279 	}
4280 
4281 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4282 	spin_lock(ptl);
4283 
4284 	/*
4285 	 * Recheck the i_size after holding PT lock to make sure not
4286 	 * to leave any page mapped (as page_mapped()) beyond the end
4287 	 * of the i_size (remove_inode_hugepages() is strict about
4288 	 * enforcing that). If we bail out here, we'll also leave a
4289 	 * page in the radix tree in the vm_shared case beyond the end
4290 	 * of the i_size, but remove_inode_hugepages() will take care
4291 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4292 	 */
4293 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4294 	ret = -EFAULT;
4295 	if (idx >= size)
4296 		goto out_release_unlock;
4297 
4298 	ret = -EEXIST;
4299 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4300 		goto out_release_unlock;
4301 
4302 	if (vm_shared) {
4303 		page_dup_rmap(page, true);
4304 	} else {
4305 		ClearPagePrivate(page);
4306 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4307 	}
4308 
4309 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4310 	if (dst_vma->vm_flags & VM_WRITE)
4311 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4312 	_dst_pte = pte_mkyoung(_dst_pte);
4313 
4314 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4315 
4316 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4317 					dst_vma->vm_flags & VM_WRITE);
4318 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4319 
4320 	/* No need to invalidate - it was non-present before */
4321 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4322 
4323 	spin_unlock(ptl);
4324 	set_page_huge_active(page);
4325 	if (vm_shared)
4326 		unlock_page(page);
4327 	ret = 0;
4328 out:
4329 	return ret;
4330 out_release_unlock:
4331 	spin_unlock(ptl);
4332 	if (vm_shared)
4333 		unlock_page(page);
4334 out_release_nounlock:
4335 	put_page(page);
4336 	goto out;
4337 }
4338 
4339 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4340 			 struct page **pages, struct vm_area_struct **vmas,
4341 			 unsigned long *position, unsigned long *nr_pages,
4342 			 long i, unsigned int flags, int *nonblocking)
4343 {
4344 	unsigned long pfn_offset;
4345 	unsigned long vaddr = *position;
4346 	unsigned long remainder = *nr_pages;
4347 	struct hstate *h = hstate_vma(vma);
4348 	int err = -EFAULT;
4349 
4350 	while (vaddr < vma->vm_end && remainder) {
4351 		pte_t *pte;
4352 		spinlock_t *ptl = NULL;
4353 		int absent;
4354 		struct page *page;
4355 
4356 		/*
4357 		 * If we have a pending SIGKILL, don't keep faulting pages and
4358 		 * potentially allocating memory.
4359 		 */
4360 		if (fatal_signal_pending(current)) {
4361 			remainder = 0;
4362 			break;
4363 		}
4364 
4365 		/*
4366 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4367 		 * each hugepage.  We have to make sure we get the
4368 		 * first, for the page indexing below to work.
4369 		 *
4370 		 * Note that page table lock is not held when pte is null.
4371 		 */
4372 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4373 				      huge_page_size(h));
4374 		if (pte)
4375 			ptl = huge_pte_lock(h, mm, pte);
4376 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4377 
4378 		/*
4379 		 * When coredumping, it suits get_dump_page if we just return
4380 		 * an error where there's an empty slot with no huge pagecache
4381 		 * to back it.  This way, we avoid allocating a hugepage, and
4382 		 * the sparse dumpfile avoids allocating disk blocks, but its
4383 		 * huge holes still show up with zeroes where they need to be.
4384 		 */
4385 		if (absent && (flags & FOLL_DUMP) &&
4386 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4387 			if (pte)
4388 				spin_unlock(ptl);
4389 			remainder = 0;
4390 			break;
4391 		}
4392 
4393 		/*
4394 		 * We need call hugetlb_fault for both hugepages under migration
4395 		 * (in which case hugetlb_fault waits for the migration,) and
4396 		 * hwpoisoned hugepages (in which case we need to prevent the
4397 		 * caller from accessing to them.) In order to do this, we use
4398 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4399 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4400 		 * both cases, and because we can't follow correct pages
4401 		 * directly from any kind of swap entries.
4402 		 */
4403 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4404 		    ((flags & FOLL_WRITE) &&
4405 		      !huge_pte_write(huge_ptep_get(pte)))) {
4406 			vm_fault_t ret;
4407 			unsigned int fault_flags = 0;
4408 
4409 			if (pte)
4410 				spin_unlock(ptl);
4411 			if (flags & FOLL_WRITE)
4412 				fault_flags |= FAULT_FLAG_WRITE;
4413 			if (nonblocking)
4414 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4415 			if (flags & FOLL_NOWAIT)
4416 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4417 					FAULT_FLAG_RETRY_NOWAIT;
4418 			if (flags & FOLL_TRIED) {
4419 				VM_WARN_ON_ONCE(fault_flags &
4420 						FAULT_FLAG_ALLOW_RETRY);
4421 				fault_flags |= FAULT_FLAG_TRIED;
4422 			}
4423 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4424 			if (ret & VM_FAULT_ERROR) {
4425 				err = vm_fault_to_errno(ret, flags);
4426 				remainder = 0;
4427 				break;
4428 			}
4429 			if (ret & VM_FAULT_RETRY) {
4430 				if (nonblocking &&
4431 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4432 					*nonblocking = 0;
4433 				*nr_pages = 0;
4434 				/*
4435 				 * VM_FAULT_RETRY must not return an
4436 				 * error, it will return zero
4437 				 * instead.
4438 				 *
4439 				 * No need to update "position" as the
4440 				 * caller will not check it after
4441 				 * *nr_pages is set to 0.
4442 				 */
4443 				return i;
4444 			}
4445 			continue;
4446 		}
4447 
4448 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4449 		page = pte_page(huge_ptep_get(pte));
4450 
4451 		/*
4452 		 * Instead of doing 'try_get_page()' below in the same_page
4453 		 * loop, just check the count once here.
4454 		 */
4455 		if (unlikely(page_count(page) <= 0)) {
4456 			if (pages) {
4457 				spin_unlock(ptl);
4458 				remainder = 0;
4459 				err = -ENOMEM;
4460 				break;
4461 			}
4462 		}
4463 same_page:
4464 		if (pages) {
4465 			pages[i] = mem_map_offset(page, pfn_offset);
4466 			get_page(pages[i]);
4467 		}
4468 
4469 		if (vmas)
4470 			vmas[i] = vma;
4471 
4472 		vaddr += PAGE_SIZE;
4473 		++pfn_offset;
4474 		--remainder;
4475 		++i;
4476 		if (vaddr < vma->vm_end && remainder &&
4477 				pfn_offset < pages_per_huge_page(h)) {
4478 			/*
4479 			 * We use pfn_offset to avoid touching the pageframes
4480 			 * of this compound page.
4481 			 */
4482 			goto same_page;
4483 		}
4484 		spin_unlock(ptl);
4485 	}
4486 	*nr_pages = remainder;
4487 	/*
4488 	 * setting position is actually required only if remainder is
4489 	 * not zero but it's faster not to add a "if (remainder)"
4490 	 * branch.
4491 	 */
4492 	*position = vaddr;
4493 
4494 	return i ? i : err;
4495 }
4496 
4497 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4498 /*
4499  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4500  * implement this.
4501  */
4502 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4503 #endif
4504 
4505 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4506 		unsigned long address, unsigned long end, pgprot_t newprot)
4507 {
4508 	struct mm_struct *mm = vma->vm_mm;
4509 	unsigned long start = address;
4510 	pte_t *ptep;
4511 	pte_t pte;
4512 	struct hstate *h = hstate_vma(vma);
4513 	unsigned long pages = 0;
4514 	bool shared_pmd = false;
4515 	struct mmu_notifier_range range;
4516 
4517 	/*
4518 	 * In the case of shared PMDs, the area to flush could be beyond
4519 	 * start/end.  Set range.start/range.end to cover the maximum possible
4520 	 * range if PMD sharing is possible.
4521 	 */
4522 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4523 				0, vma, mm, start, end);
4524 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4525 
4526 	BUG_ON(address >= end);
4527 	flush_cache_range(vma, range.start, range.end);
4528 
4529 	mmu_notifier_invalidate_range_start(&range);
4530 	i_mmap_lock_write(vma->vm_file->f_mapping);
4531 	for (; address < end; address += huge_page_size(h)) {
4532 		spinlock_t *ptl;
4533 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4534 		if (!ptep)
4535 			continue;
4536 		ptl = huge_pte_lock(h, mm, ptep);
4537 		if (huge_pmd_unshare(mm, &address, ptep)) {
4538 			pages++;
4539 			spin_unlock(ptl);
4540 			shared_pmd = true;
4541 			continue;
4542 		}
4543 		pte = huge_ptep_get(ptep);
4544 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4545 			spin_unlock(ptl);
4546 			continue;
4547 		}
4548 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4549 			swp_entry_t entry = pte_to_swp_entry(pte);
4550 
4551 			if (is_write_migration_entry(entry)) {
4552 				pte_t newpte;
4553 
4554 				make_migration_entry_read(&entry);
4555 				newpte = swp_entry_to_pte(entry);
4556 				set_huge_swap_pte_at(mm, address, ptep,
4557 						     newpte, huge_page_size(h));
4558 				pages++;
4559 			}
4560 			spin_unlock(ptl);
4561 			continue;
4562 		}
4563 		if (!huge_pte_none(pte)) {
4564 			pte_t old_pte;
4565 
4566 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4567 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4568 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4569 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4570 			pages++;
4571 		}
4572 		spin_unlock(ptl);
4573 	}
4574 	/*
4575 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4576 	 * may have cleared our pud entry and done put_page on the page table:
4577 	 * once we release i_mmap_rwsem, another task can do the final put_page
4578 	 * and that page table be reused and filled with junk.  If we actually
4579 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4580 	 */
4581 	if (shared_pmd)
4582 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4583 	else
4584 		flush_hugetlb_tlb_range(vma, start, end);
4585 	/*
4586 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4587 	 * page table protection not changing it to point to a new page.
4588 	 *
4589 	 * See Documentation/vm/mmu_notifier.rst
4590 	 */
4591 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4592 	mmu_notifier_invalidate_range_end(&range);
4593 
4594 	return pages << h->order;
4595 }
4596 
4597 int hugetlb_reserve_pages(struct inode *inode,
4598 					long from, long to,
4599 					struct vm_area_struct *vma,
4600 					vm_flags_t vm_flags)
4601 {
4602 	long ret, chg;
4603 	struct hstate *h = hstate_inode(inode);
4604 	struct hugepage_subpool *spool = subpool_inode(inode);
4605 	struct resv_map *resv_map;
4606 	long gbl_reserve;
4607 
4608 	/* This should never happen */
4609 	if (from > to) {
4610 		VM_WARN(1, "%s called with a negative range\n", __func__);
4611 		return -EINVAL;
4612 	}
4613 
4614 	/*
4615 	 * Only apply hugepage reservation if asked. At fault time, an
4616 	 * attempt will be made for VM_NORESERVE to allocate a page
4617 	 * without using reserves
4618 	 */
4619 	if (vm_flags & VM_NORESERVE)
4620 		return 0;
4621 
4622 	/*
4623 	 * Shared mappings base their reservation on the number of pages that
4624 	 * are already allocated on behalf of the file. Private mappings need
4625 	 * to reserve the full area even if read-only as mprotect() may be
4626 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4627 	 */
4628 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4629 		/*
4630 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4631 		 * called for inodes for which resv_maps were created (see
4632 		 * hugetlbfs_get_inode).
4633 		 */
4634 		resv_map = inode_resv_map(inode);
4635 
4636 		chg = region_chg(resv_map, from, to);
4637 
4638 	} else {
4639 		resv_map = resv_map_alloc();
4640 		if (!resv_map)
4641 			return -ENOMEM;
4642 
4643 		chg = to - from;
4644 
4645 		set_vma_resv_map(vma, resv_map);
4646 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4647 	}
4648 
4649 	if (chg < 0) {
4650 		ret = chg;
4651 		goto out_err;
4652 	}
4653 
4654 	/*
4655 	 * There must be enough pages in the subpool for the mapping. If
4656 	 * the subpool has a minimum size, there may be some global
4657 	 * reservations already in place (gbl_reserve).
4658 	 */
4659 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4660 	if (gbl_reserve < 0) {
4661 		ret = -ENOSPC;
4662 		goto out_err;
4663 	}
4664 
4665 	/*
4666 	 * Check enough hugepages are available for the reservation.
4667 	 * Hand the pages back to the subpool if there are not
4668 	 */
4669 	ret = hugetlb_acct_memory(h, gbl_reserve);
4670 	if (ret < 0) {
4671 		/* put back original number of pages, chg */
4672 		(void)hugepage_subpool_put_pages(spool, chg);
4673 		goto out_err;
4674 	}
4675 
4676 	/*
4677 	 * Account for the reservations made. Shared mappings record regions
4678 	 * that have reservations as they are shared by multiple VMAs.
4679 	 * When the last VMA disappears, the region map says how much
4680 	 * the reservation was and the page cache tells how much of
4681 	 * the reservation was consumed. Private mappings are per-VMA and
4682 	 * only the consumed reservations are tracked. When the VMA
4683 	 * disappears, the original reservation is the VMA size and the
4684 	 * consumed reservations are stored in the map. Hence, nothing
4685 	 * else has to be done for private mappings here
4686 	 */
4687 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4688 		long add = region_add(resv_map, from, to);
4689 
4690 		if (unlikely(chg > add)) {
4691 			/*
4692 			 * pages in this range were added to the reserve
4693 			 * map between region_chg and region_add.  This
4694 			 * indicates a race with alloc_huge_page.  Adjust
4695 			 * the subpool and reserve counts modified above
4696 			 * based on the difference.
4697 			 */
4698 			long rsv_adjust;
4699 
4700 			rsv_adjust = hugepage_subpool_put_pages(spool,
4701 								chg - add);
4702 			hugetlb_acct_memory(h, -rsv_adjust);
4703 		}
4704 	}
4705 	return 0;
4706 out_err:
4707 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4708 		/* Don't call region_abort if region_chg failed */
4709 		if (chg >= 0)
4710 			region_abort(resv_map, from, to);
4711 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4712 		kref_put(&resv_map->refs, resv_map_release);
4713 	return ret;
4714 }
4715 
4716 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4717 								long freed)
4718 {
4719 	struct hstate *h = hstate_inode(inode);
4720 	struct resv_map *resv_map = inode_resv_map(inode);
4721 	long chg = 0;
4722 	struct hugepage_subpool *spool = subpool_inode(inode);
4723 	long gbl_reserve;
4724 
4725 	/*
4726 	 * Since this routine can be called in the evict inode path for all
4727 	 * hugetlbfs inodes, resv_map could be NULL.
4728 	 */
4729 	if (resv_map) {
4730 		chg = region_del(resv_map, start, end);
4731 		/*
4732 		 * region_del() can fail in the rare case where a region
4733 		 * must be split and another region descriptor can not be
4734 		 * allocated.  If end == LONG_MAX, it will not fail.
4735 		 */
4736 		if (chg < 0)
4737 			return chg;
4738 	}
4739 
4740 	spin_lock(&inode->i_lock);
4741 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4742 	spin_unlock(&inode->i_lock);
4743 
4744 	/*
4745 	 * If the subpool has a minimum size, the number of global
4746 	 * reservations to be released may be adjusted.
4747 	 */
4748 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4749 	hugetlb_acct_memory(h, -gbl_reserve);
4750 
4751 	return 0;
4752 }
4753 
4754 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4755 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4756 				struct vm_area_struct *vma,
4757 				unsigned long addr, pgoff_t idx)
4758 {
4759 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4760 				svma->vm_start;
4761 	unsigned long sbase = saddr & PUD_MASK;
4762 	unsigned long s_end = sbase + PUD_SIZE;
4763 
4764 	/* Allow segments to share if only one is marked locked */
4765 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4766 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4767 
4768 	/*
4769 	 * match the virtual addresses, permission and the alignment of the
4770 	 * page table page.
4771 	 */
4772 	if (pmd_index(addr) != pmd_index(saddr) ||
4773 	    vm_flags != svm_flags ||
4774 	    sbase < svma->vm_start || svma->vm_end < s_end)
4775 		return 0;
4776 
4777 	return saddr;
4778 }
4779 
4780 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4781 {
4782 	unsigned long base = addr & PUD_MASK;
4783 	unsigned long end = base + PUD_SIZE;
4784 
4785 	/*
4786 	 * check on proper vm_flags and page table alignment
4787 	 */
4788 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4789 		return true;
4790 	return false;
4791 }
4792 
4793 /*
4794  * Determine if start,end range within vma could be mapped by shared pmd.
4795  * If yes, adjust start and end to cover range associated with possible
4796  * shared pmd mappings.
4797  */
4798 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4799 				unsigned long *start, unsigned long *end)
4800 {
4801 	unsigned long check_addr = *start;
4802 
4803 	if (!(vma->vm_flags & VM_MAYSHARE))
4804 		return;
4805 
4806 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4807 		unsigned long a_start = check_addr & PUD_MASK;
4808 		unsigned long a_end = a_start + PUD_SIZE;
4809 
4810 		/*
4811 		 * If sharing is possible, adjust start/end if necessary.
4812 		 */
4813 		if (range_in_vma(vma, a_start, a_end)) {
4814 			if (a_start < *start)
4815 				*start = a_start;
4816 			if (a_end > *end)
4817 				*end = a_end;
4818 		}
4819 	}
4820 }
4821 
4822 /*
4823  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4824  * and returns the corresponding pte. While this is not necessary for the
4825  * !shared pmd case because we can allocate the pmd later as well, it makes the
4826  * code much cleaner. pmd allocation is essential for the shared case because
4827  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4828  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4829  * bad pmd for sharing.
4830  */
4831 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4832 {
4833 	struct vm_area_struct *vma = find_vma(mm, addr);
4834 	struct address_space *mapping = vma->vm_file->f_mapping;
4835 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4836 			vma->vm_pgoff;
4837 	struct vm_area_struct *svma;
4838 	unsigned long saddr;
4839 	pte_t *spte = NULL;
4840 	pte_t *pte;
4841 	spinlock_t *ptl;
4842 
4843 	if (!vma_shareable(vma, addr))
4844 		return (pte_t *)pmd_alloc(mm, pud, addr);
4845 
4846 	i_mmap_lock_write(mapping);
4847 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4848 		if (svma == vma)
4849 			continue;
4850 
4851 		saddr = page_table_shareable(svma, vma, addr, idx);
4852 		if (saddr) {
4853 			spte = huge_pte_offset(svma->vm_mm, saddr,
4854 					       vma_mmu_pagesize(svma));
4855 			if (spte) {
4856 				get_page(virt_to_page(spte));
4857 				break;
4858 			}
4859 		}
4860 	}
4861 
4862 	if (!spte)
4863 		goto out;
4864 
4865 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4866 	if (pud_none(*pud)) {
4867 		pud_populate(mm, pud,
4868 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4869 		mm_inc_nr_pmds(mm);
4870 	} else {
4871 		put_page(virt_to_page(spte));
4872 	}
4873 	spin_unlock(ptl);
4874 out:
4875 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4876 	i_mmap_unlock_write(mapping);
4877 	return pte;
4878 }
4879 
4880 /*
4881  * unmap huge page backed by shared pte.
4882  *
4883  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4884  * indicated by page_count > 1, unmap is achieved by clearing pud and
4885  * decrementing the ref count. If count == 1, the pte page is not shared.
4886  *
4887  * called with page table lock held.
4888  *
4889  * returns: 1 successfully unmapped a shared pte page
4890  *	    0 the underlying pte page is not shared, or it is the last user
4891  */
4892 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4893 {
4894 	pgd_t *pgd = pgd_offset(mm, *addr);
4895 	p4d_t *p4d = p4d_offset(pgd, *addr);
4896 	pud_t *pud = pud_offset(p4d, *addr);
4897 
4898 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4899 	if (page_count(virt_to_page(ptep)) == 1)
4900 		return 0;
4901 
4902 	pud_clear(pud);
4903 	put_page(virt_to_page(ptep));
4904 	mm_dec_nr_pmds(mm);
4905 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4906 	return 1;
4907 }
4908 #define want_pmd_share()	(1)
4909 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4910 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4911 {
4912 	return NULL;
4913 }
4914 
4915 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4916 {
4917 	return 0;
4918 }
4919 
4920 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4921 				unsigned long *start, unsigned long *end)
4922 {
4923 }
4924 #define want_pmd_share()	(0)
4925 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4926 
4927 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4928 pte_t *huge_pte_alloc(struct mm_struct *mm,
4929 			unsigned long addr, unsigned long sz)
4930 {
4931 	pgd_t *pgd;
4932 	p4d_t *p4d;
4933 	pud_t *pud;
4934 	pte_t *pte = NULL;
4935 
4936 	pgd = pgd_offset(mm, addr);
4937 	p4d = p4d_alloc(mm, pgd, addr);
4938 	if (!p4d)
4939 		return NULL;
4940 	pud = pud_alloc(mm, p4d, addr);
4941 	if (pud) {
4942 		if (sz == PUD_SIZE) {
4943 			pte = (pte_t *)pud;
4944 		} else {
4945 			BUG_ON(sz != PMD_SIZE);
4946 			if (want_pmd_share() && pud_none(*pud))
4947 				pte = huge_pmd_share(mm, addr, pud);
4948 			else
4949 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4950 		}
4951 	}
4952 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4953 
4954 	return pte;
4955 }
4956 
4957 /*
4958  * huge_pte_offset() - Walk the page table to resolve the hugepage
4959  * entry at address @addr
4960  *
4961  * Return: Pointer to page table or swap entry (PUD or PMD) for
4962  * address @addr, or NULL if a p*d_none() entry is encountered and the
4963  * size @sz doesn't match the hugepage size at this level of the page
4964  * table.
4965  */
4966 pte_t *huge_pte_offset(struct mm_struct *mm,
4967 		       unsigned long addr, unsigned long sz)
4968 {
4969 	pgd_t *pgd;
4970 	p4d_t *p4d;
4971 	pud_t *pud;
4972 	pmd_t *pmd;
4973 
4974 	pgd = pgd_offset(mm, addr);
4975 	if (!pgd_present(*pgd))
4976 		return NULL;
4977 	p4d = p4d_offset(pgd, addr);
4978 	if (!p4d_present(*p4d))
4979 		return NULL;
4980 
4981 	pud = pud_offset(p4d, addr);
4982 	if (sz != PUD_SIZE && pud_none(*pud))
4983 		return NULL;
4984 	/* hugepage or swap? */
4985 	if (pud_huge(*pud) || !pud_present(*pud))
4986 		return (pte_t *)pud;
4987 
4988 	pmd = pmd_offset(pud, addr);
4989 	if (sz != PMD_SIZE && pmd_none(*pmd))
4990 		return NULL;
4991 	/* hugepage or swap? */
4992 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4993 		return (pte_t *)pmd;
4994 
4995 	return NULL;
4996 }
4997 
4998 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4999 
5000 /*
5001  * These functions are overwritable if your architecture needs its own
5002  * behavior.
5003  */
5004 struct page * __weak
5005 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5006 			      int write)
5007 {
5008 	return ERR_PTR(-EINVAL);
5009 }
5010 
5011 struct page * __weak
5012 follow_huge_pd(struct vm_area_struct *vma,
5013 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5014 {
5015 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5016 	return NULL;
5017 }
5018 
5019 struct page * __weak
5020 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5021 		pmd_t *pmd, int flags)
5022 {
5023 	struct page *page = NULL;
5024 	spinlock_t *ptl;
5025 	pte_t pte;
5026 retry:
5027 	ptl = pmd_lockptr(mm, pmd);
5028 	spin_lock(ptl);
5029 	/*
5030 	 * make sure that the address range covered by this pmd is not
5031 	 * unmapped from other threads.
5032 	 */
5033 	if (!pmd_huge(*pmd))
5034 		goto out;
5035 	pte = huge_ptep_get((pte_t *)pmd);
5036 	if (pte_present(pte)) {
5037 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5038 		if (flags & FOLL_GET)
5039 			get_page(page);
5040 	} else {
5041 		if (is_hugetlb_entry_migration(pte)) {
5042 			spin_unlock(ptl);
5043 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5044 			goto retry;
5045 		}
5046 		/*
5047 		 * hwpoisoned entry is treated as no_page_table in
5048 		 * follow_page_mask().
5049 		 */
5050 	}
5051 out:
5052 	spin_unlock(ptl);
5053 	return page;
5054 }
5055 
5056 struct page * __weak
5057 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5058 		pud_t *pud, int flags)
5059 {
5060 	if (flags & FOLL_GET)
5061 		return NULL;
5062 
5063 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5064 }
5065 
5066 struct page * __weak
5067 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5068 {
5069 	if (flags & FOLL_GET)
5070 		return NULL;
5071 
5072 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5073 }
5074 
5075 bool isolate_huge_page(struct page *page, struct list_head *list)
5076 {
5077 	bool ret = true;
5078 
5079 	VM_BUG_ON_PAGE(!PageHead(page), page);
5080 	spin_lock(&hugetlb_lock);
5081 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5082 		ret = false;
5083 		goto unlock;
5084 	}
5085 	clear_page_huge_active(page);
5086 	list_move_tail(&page->lru, list);
5087 unlock:
5088 	spin_unlock(&hugetlb_lock);
5089 	return ret;
5090 }
5091 
5092 void putback_active_hugepage(struct page *page)
5093 {
5094 	VM_BUG_ON_PAGE(!PageHead(page), page);
5095 	spin_lock(&hugetlb_lock);
5096 	set_page_huge_active(page);
5097 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5098 	spin_unlock(&hugetlb_lock);
5099 	put_page(page);
5100 }
5101 
5102 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5103 {
5104 	struct hstate *h = page_hstate(oldpage);
5105 
5106 	hugetlb_cgroup_migrate(oldpage, newpage);
5107 	set_page_owner_migrate_reason(newpage, reason);
5108 
5109 	/*
5110 	 * transfer temporary state of the new huge page. This is
5111 	 * reverse to other transitions because the newpage is going to
5112 	 * be final while the old one will be freed so it takes over
5113 	 * the temporary status.
5114 	 *
5115 	 * Also note that we have to transfer the per-node surplus state
5116 	 * here as well otherwise the global surplus count will not match
5117 	 * the per-node's.
5118 	 */
5119 	if (PageHugeTemporary(newpage)) {
5120 		int old_nid = page_to_nid(oldpage);
5121 		int new_nid = page_to_nid(newpage);
5122 
5123 		SetPageHugeTemporary(oldpage);
5124 		ClearPageHugeTemporary(newpage);
5125 
5126 		spin_lock(&hugetlb_lock);
5127 		if (h->surplus_huge_pages_node[old_nid]) {
5128 			h->surplus_huge_pages_node[old_nid]--;
5129 			h->surplus_huge_pages_node[new_nid]++;
5130 		}
5131 		spin_unlock(&hugetlb_lock);
5132 	}
5133 }
5134