1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/mmdebug.h> 22 #include <linux/sched/signal.h> 23 #include <linux/rmap.h> 24 #include <linux/string_helpers.h> 25 #include <linux/swap.h> 26 #include <linux/swapops.h> 27 #include <linux/jhash.h> 28 29 #include <asm/page.h> 30 #include <asm/pgtable.h> 31 #include <asm/tlb.h> 32 33 #include <linux/io.h> 34 #include <linux/hugetlb.h> 35 #include <linux/hugetlb_cgroup.h> 36 #include <linux/node.h> 37 #include <linux/userfaultfd_k.h> 38 #include <linux/page_owner.h> 39 #include "internal.h" 40 41 int hugetlb_max_hstate __read_mostly; 42 unsigned int default_hstate_idx; 43 struct hstate hstates[HUGE_MAX_HSTATE]; 44 /* 45 * Minimum page order among possible hugepage sizes, set to a proper value 46 * at boot time. 47 */ 48 static unsigned int minimum_order __read_mostly = UINT_MAX; 49 50 __initdata LIST_HEAD(huge_boot_pages); 51 52 /* for command line parsing */ 53 static struct hstate * __initdata parsed_hstate; 54 static unsigned long __initdata default_hstate_max_huge_pages; 55 static unsigned long __initdata default_hstate_size; 56 static bool __initdata parsed_valid_hugepagesz = true; 57 58 /* 59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 60 * free_huge_pages, and surplus_huge_pages. 61 */ 62 DEFINE_SPINLOCK(hugetlb_lock); 63 64 /* 65 * Serializes faults on the same logical page. This is used to 66 * prevent spurious OOMs when the hugepage pool is fully utilized. 67 */ 68 static int num_fault_mutexes; 69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 70 71 /* Forward declaration */ 72 static int hugetlb_acct_memory(struct hstate *h, long delta); 73 74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 75 { 76 bool free = (spool->count == 0) && (spool->used_hpages == 0); 77 78 spin_unlock(&spool->lock); 79 80 /* If no pages are used, and no other handles to the subpool 81 * remain, give up any reservations mased on minimum size and 82 * free the subpool */ 83 if (free) { 84 if (spool->min_hpages != -1) 85 hugetlb_acct_memory(spool->hstate, 86 -spool->min_hpages); 87 kfree(spool); 88 } 89 } 90 91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 92 long min_hpages) 93 { 94 struct hugepage_subpool *spool; 95 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 97 if (!spool) 98 return NULL; 99 100 spin_lock_init(&spool->lock); 101 spool->count = 1; 102 spool->max_hpages = max_hpages; 103 spool->hstate = h; 104 spool->min_hpages = min_hpages; 105 106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 107 kfree(spool); 108 return NULL; 109 } 110 spool->rsv_hpages = min_hpages; 111 112 return spool; 113 } 114 115 void hugepage_put_subpool(struct hugepage_subpool *spool) 116 { 117 spin_lock(&spool->lock); 118 BUG_ON(!spool->count); 119 spool->count--; 120 unlock_or_release_subpool(spool); 121 } 122 123 /* 124 * Subpool accounting for allocating and reserving pages. 125 * Return -ENOMEM if there are not enough resources to satisfy the 126 * the request. Otherwise, return the number of pages by which the 127 * global pools must be adjusted (upward). The returned value may 128 * only be different than the passed value (delta) in the case where 129 * a subpool minimum size must be manitained. 130 */ 131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 132 long delta) 133 { 134 long ret = delta; 135 136 if (!spool) 137 return ret; 138 139 spin_lock(&spool->lock); 140 141 if (spool->max_hpages != -1) { /* maximum size accounting */ 142 if ((spool->used_hpages + delta) <= spool->max_hpages) 143 spool->used_hpages += delta; 144 else { 145 ret = -ENOMEM; 146 goto unlock_ret; 147 } 148 } 149 150 /* minimum size accounting */ 151 if (spool->min_hpages != -1 && spool->rsv_hpages) { 152 if (delta > spool->rsv_hpages) { 153 /* 154 * Asking for more reserves than those already taken on 155 * behalf of subpool. Return difference. 156 */ 157 ret = delta - spool->rsv_hpages; 158 spool->rsv_hpages = 0; 159 } else { 160 ret = 0; /* reserves already accounted for */ 161 spool->rsv_hpages -= delta; 162 } 163 } 164 165 unlock_ret: 166 spin_unlock(&spool->lock); 167 return ret; 168 } 169 170 /* 171 * Subpool accounting for freeing and unreserving pages. 172 * Return the number of global page reservations that must be dropped. 173 * The return value may only be different than the passed value (delta) 174 * in the case where a subpool minimum size must be maintained. 175 */ 176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 177 long delta) 178 { 179 long ret = delta; 180 181 if (!spool) 182 return delta; 183 184 spin_lock(&spool->lock); 185 186 if (spool->max_hpages != -1) /* maximum size accounting */ 187 spool->used_hpages -= delta; 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 191 if (spool->rsv_hpages + delta <= spool->min_hpages) 192 ret = 0; 193 else 194 ret = spool->rsv_hpages + delta - spool->min_hpages; 195 196 spool->rsv_hpages += delta; 197 if (spool->rsv_hpages > spool->min_hpages) 198 spool->rsv_hpages = spool->min_hpages; 199 } 200 201 /* 202 * If hugetlbfs_put_super couldn't free spool due to an outstanding 203 * quota reference, free it now. 204 */ 205 unlock_or_release_subpool(spool); 206 207 return ret; 208 } 209 210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 211 { 212 return HUGETLBFS_SB(inode->i_sb)->spool; 213 } 214 215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 216 { 217 return subpool_inode(file_inode(vma->vm_file)); 218 } 219 220 /* 221 * Region tracking -- allows tracking of reservations and instantiated pages 222 * across the pages in a mapping. 223 * 224 * The region data structures are embedded into a resv_map and protected 225 * by a resv_map's lock. The set of regions within the resv_map represent 226 * reservations for huge pages, or huge pages that have already been 227 * instantiated within the map. The from and to elements are huge page 228 * indicies into the associated mapping. from indicates the starting index 229 * of the region. to represents the first index past the end of the region. 230 * 231 * For example, a file region structure with from == 0 and to == 4 represents 232 * four huge pages in a mapping. It is important to note that the to element 233 * represents the first element past the end of the region. This is used in 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 235 * 236 * Interval notation of the form [from, to) will be used to indicate that 237 * the endpoint from is inclusive and to is exclusive. 238 */ 239 struct file_region { 240 struct list_head link; 241 long from; 242 long to; 243 }; 244 245 /* 246 * Add the huge page range represented by [f, t) to the reserve 247 * map. In the normal case, existing regions will be expanded 248 * to accommodate the specified range. Sufficient regions should 249 * exist for expansion due to the previous call to region_chg 250 * with the same range. However, it is possible that region_del 251 * could have been called after region_chg and modifed the map 252 * in such a way that no region exists to be expanded. In this 253 * case, pull a region descriptor from the cache associated with 254 * the map and use that for the new range. 255 * 256 * Return the number of new huge pages added to the map. This 257 * number is greater than or equal to zero. 258 */ 259 static long region_add(struct resv_map *resv, long f, long t) 260 { 261 struct list_head *head = &resv->regions; 262 struct file_region *rg, *nrg, *trg; 263 long add = 0; 264 265 spin_lock(&resv->lock); 266 /* Locate the region we are either in or before. */ 267 list_for_each_entry(rg, head, link) 268 if (f <= rg->to) 269 break; 270 271 /* 272 * If no region exists which can be expanded to include the 273 * specified range, the list must have been modified by an 274 * interleving call to region_del(). Pull a region descriptor 275 * from the cache and use it for this range. 276 */ 277 if (&rg->link == head || t < rg->from) { 278 VM_BUG_ON(resv->region_cache_count <= 0); 279 280 resv->region_cache_count--; 281 nrg = list_first_entry(&resv->region_cache, struct file_region, 282 link); 283 list_del(&nrg->link); 284 285 nrg->from = f; 286 nrg->to = t; 287 list_add(&nrg->link, rg->link.prev); 288 289 add += t - f; 290 goto out_locked; 291 } 292 293 /* Round our left edge to the current segment if it encloses us. */ 294 if (f > rg->from) 295 f = rg->from; 296 297 /* Check for and consume any regions we now overlap with. */ 298 nrg = rg; 299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 300 if (&rg->link == head) 301 break; 302 if (rg->from > t) 303 break; 304 305 /* If this area reaches higher then extend our area to 306 * include it completely. If this is not the first area 307 * which we intend to reuse, free it. */ 308 if (rg->to > t) 309 t = rg->to; 310 if (rg != nrg) { 311 /* Decrement return value by the deleted range. 312 * Another range will span this area so that by 313 * end of routine add will be >= zero 314 */ 315 add -= (rg->to - rg->from); 316 list_del(&rg->link); 317 kfree(rg); 318 } 319 } 320 321 add += (nrg->from - f); /* Added to beginning of region */ 322 nrg->from = f; 323 add += t - nrg->to; /* Added to end of region */ 324 nrg->to = t; 325 326 out_locked: 327 resv->adds_in_progress--; 328 spin_unlock(&resv->lock); 329 VM_BUG_ON(add < 0); 330 return add; 331 } 332 333 /* 334 * Examine the existing reserve map and determine how many 335 * huge pages in the specified range [f, t) are NOT currently 336 * represented. This routine is called before a subsequent 337 * call to region_add that will actually modify the reserve 338 * map to add the specified range [f, t). region_chg does 339 * not change the number of huge pages represented by the 340 * map. However, if the existing regions in the map can not 341 * be expanded to represent the new range, a new file_region 342 * structure is added to the map as a placeholder. This is 343 * so that the subsequent region_add call will have all the 344 * regions it needs and will not fail. 345 * 346 * Upon entry, region_chg will also examine the cache of region descriptors 347 * associated with the map. If there are not enough descriptors cached, one 348 * will be allocated for the in progress add operation. 349 * 350 * Returns the number of huge pages that need to be added to the existing 351 * reservation map for the range [f, t). This number is greater or equal to 352 * zero. -ENOMEM is returned if a new file_region structure or cache entry 353 * is needed and can not be allocated. 354 */ 355 static long region_chg(struct resv_map *resv, long f, long t) 356 { 357 struct list_head *head = &resv->regions; 358 struct file_region *rg, *nrg = NULL; 359 long chg = 0; 360 361 retry: 362 spin_lock(&resv->lock); 363 retry_locked: 364 resv->adds_in_progress++; 365 366 /* 367 * Check for sufficient descriptors in the cache to accommodate 368 * the number of in progress add operations. 369 */ 370 if (resv->adds_in_progress > resv->region_cache_count) { 371 struct file_region *trg; 372 373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 374 /* Must drop lock to allocate a new descriptor. */ 375 resv->adds_in_progress--; 376 spin_unlock(&resv->lock); 377 378 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 379 if (!trg) { 380 kfree(nrg); 381 return -ENOMEM; 382 } 383 384 spin_lock(&resv->lock); 385 list_add(&trg->link, &resv->region_cache); 386 resv->region_cache_count++; 387 goto retry_locked; 388 } 389 390 /* Locate the region we are before or in. */ 391 list_for_each_entry(rg, head, link) 392 if (f <= rg->to) 393 break; 394 395 /* If we are below the current region then a new region is required. 396 * Subtle, allocate a new region at the position but make it zero 397 * size such that we can guarantee to record the reservation. */ 398 if (&rg->link == head || t < rg->from) { 399 if (!nrg) { 400 resv->adds_in_progress--; 401 spin_unlock(&resv->lock); 402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 403 if (!nrg) 404 return -ENOMEM; 405 406 nrg->from = f; 407 nrg->to = f; 408 INIT_LIST_HEAD(&nrg->link); 409 goto retry; 410 } 411 412 list_add(&nrg->link, rg->link.prev); 413 chg = t - f; 414 goto out_nrg; 415 } 416 417 /* Round our left edge to the current segment if it encloses us. */ 418 if (f > rg->from) 419 f = rg->from; 420 chg = t - f; 421 422 /* Check for and consume any regions we now overlap with. */ 423 list_for_each_entry(rg, rg->link.prev, link) { 424 if (&rg->link == head) 425 break; 426 if (rg->from > t) 427 goto out; 428 429 /* We overlap with this area, if it extends further than 430 * us then we must extend ourselves. Account for its 431 * existing reservation. */ 432 if (rg->to > t) { 433 chg += rg->to - t; 434 t = rg->to; 435 } 436 chg -= rg->to - rg->from; 437 } 438 439 out: 440 spin_unlock(&resv->lock); 441 /* We already know we raced and no longer need the new region */ 442 kfree(nrg); 443 return chg; 444 out_nrg: 445 spin_unlock(&resv->lock); 446 return chg; 447 } 448 449 /* 450 * Abort the in progress add operation. The adds_in_progress field 451 * of the resv_map keeps track of the operations in progress between 452 * calls to region_chg and region_add. Operations are sometimes 453 * aborted after the call to region_chg. In such cases, region_abort 454 * is called to decrement the adds_in_progress counter. 455 * 456 * NOTE: The range arguments [f, t) are not needed or used in this 457 * routine. They are kept to make reading the calling code easier as 458 * arguments will match the associated region_chg call. 459 */ 460 static void region_abort(struct resv_map *resv, long f, long t) 461 { 462 spin_lock(&resv->lock); 463 VM_BUG_ON(!resv->region_cache_count); 464 resv->adds_in_progress--; 465 spin_unlock(&resv->lock); 466 } 467 468 /* 469 * Delete the specified range [f, t) from the reserve map. If the 470 * t parameter is LONG_MAX, this indicates that ALL regions after f 471 * should be deleted. Locate the regions which intersect [f, t) 472 * and either trim, delete or split the existing regions. 473 * 474 * Returns the number of huge pages deleted from the reserve map. 475 * In the normal case, the return value is zero or more. In the 476 * case where a region must be split, a new region descriptor must 477 * be allocated. If the allocation fails, -ENOMEM will be returned. 478 * NOTE: If the parameter t == LONG_MAX, then we will never split 479 * a region and possibly return -ENOMEM. Callers specifying 480 * t == LONG_MAX do not need to check for -ENOMEM error. 481 */ 482 static long region_del(struct resv_map *resv, long f, long t) 483 { 484 struct list_head *head = &resv->regions; 485 struct file_region *rg, *trg; 486 struct file_region *nrg = NULL; 487 long del = 0; 488 489 retry: 490 spin_lock(&resv->lock); 491 list_for_each_entry_safe(rg, trg, head, link) { 492 /* 493 * Skip regions before the range to be deleted. file_region 494 * ranges are normally of the form [from, to). However, there 495 * may be a "placeholder" entry in the map which is of the form 496 * (from, to) with from == to. Check for placeholder entries 497 * at the beginning of the range to be deleted. 498 */ 499 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 500 continue; 501 502 if (rg->from >= t) 503 break; 504 505 if (f > rg->from && t < rg->to) { /* Must split region */ 506 /* 507 * Check for an entry in the cache before dropping 508 * lock and attempting allocation. 509 */ 510 if (!nrg && 511 resv->region_cache_count > resv->adds_in_progress) { 512 nrg = list_first_entry(&resv->region_cache, 513 struct file_region, 514 link); 515 list_del(&nrg->link); 516 resv->region_cache_count--; 517 } 518 519 if (!nrg) { 520 spin_unlock(&resv->lock); 521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 522 if (!nrg) 523 return -ENOMEM; 524 goto retry; 525 } 526 527 del += t - f; 528 529 /* New entry for end of split region */ 530 nrg->from = t; 531 nrg->to = rg->to; 532 INIT_LIST_HEAD(&nrg->link); 533 534 /* Original entry is trimmed */ 535 rg->to = f; 536 537 list_add(&nrg->link, &rg->link); 538 nrg = NULL; 539 break; 540 } 541 542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 543 del += rg->to - rg->from; 544 list_del(&rg->link); 545 kfree(rg); 546 continue; 547 } 548 549 if (f <= rg->from) { /* Trim beginning of region */ 550 del += t - rg->from; 551 rg->from = t; 552 } else { /* Trim end of region */ 553 del += rg->to - f; 554 rg->to = f; 555 } 556 } 557 558 spin_unlock(&resv->lock); 559 kfree(nrg); 560 return del; 561 } 562 563 /* 564 * A rare out of memory error was encountered which prevented removal of 565 * the reserve map region for a page. The huge page itself was free'ed 566 * and removed from the page cache. This routine will adjust the subpool 567 * usage count, and the global reserve count if needed. By incrementing 568 * these counts, the reserve map entry which could not be deleted will 569 * appear as a "reserved" entry instead of simply dangling with incorrect 570 * counts. 571 */ 572 void hugetlb_fix_reserve_counts(struct inode *inode) 573 { 574 struct hugepage_subpool *spool = subpool_inode(inode); 575 long rsv_adjust; 576 577 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 578 if (rsv_adjust) { 579 struct hstate *h = hstate_inode(inode); 580 581 hugetlb_acct_memory(h, 1); 582 } 583 } 584 585 /* 586 * Count and return the number of huge pages in the reserve map 587 * that intersect with the range [f, t). 588 */ 589 static long region_count(struct resv_map *resv, long f, long t) 590 { 591 struct list_head *head = &resv->regions; 592 struct file_region *rg; 593 long chg = 0; 594 595 spin_lock(&resv->lock); 596 /* Locate each segment we overlap with, and count that overlap. */ 597 list_for_each_entry(rg, head, link) { 598 long seg_from; 599 long seg_to; 600 601 if (rg->to <= f) 602 continue; 603 if (rg->from >= t) 604 break; 605 606 seg_from = max(rg->from, f); 607 seg_to = min(rg->to, t); 608 609 chg += seg_to - seg_from; 610 } 611 spin_unlock(&resv->lock); 612 613 return chg; 614 } 615 616 /* 617 * Convert the address within this vma to the page offset within 618 * the mapping, in pagecache page units; huge pages here. 619 */ 620 static pgoff_t vma_hugecache_offset(struct hstate *h, 621 struct vm_area_struct *vma, unsigned long address) 622 { 623 return ((address - vma->vm_start) >> huge_page_shift(h)) + 624 (vma->vm_pgoff >> huge_page_order(h)); 625 } 626 627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 628 unsigned long address) 629 { 630 return vma_hugecache_offset(hstate_vma(vma), vma, address); 631 } 632 EXPORT_SYMBOL_GPL(linear_hugepage_index); 633 634 /* 635 * Return the size of the pages allocated when backing a VMA. In the majority 636 * cases this will be same size as used by the page table entries. 637 */ 638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 639 { 640 if (vma->vm_ops && vma->vm_ops->pagesize) 641 return vma->vm_ops->pagesize(vma); 642 return PAGE_SIZE; 643 } 644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 645 646 /* 647 * Return the page size being used by the MMU to back a VMA. In the majority 648 * of cases, the page size used by the kernel matches the MMU size. On 649 * architectures where it differs, an architecture-specific 'strong' 650 * version of this symbol is required. 651 */ 652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 653 { 654 return vma_kernel_pagesize(vma); 655 } 656 657 /* 658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 659 * bits of the reservation map pointer, which are always clear due to 660 * alignment. 661 */ 662 #define HPAGE_RESV_OWNER (1UL << 0) 663 #define HPAGE_RESV_UNMAPPED (1UL << 1) 664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 665 666 /* 667 * These helpers are used to track how many pages are reserved for 668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 669 * is guaranteed to have their future faults succeed. 670 * 671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 672 * the reserve counters are updated with the hugetlb_lock held. It is safe 673 * to reset the VMA at fork() time as it is not in use yet and there is no 674 * chance of the global counters getting corrupted as a result of the values. 675 * 676 * The private mapping reservation is represented in a subtly different 677 * manner to a shared mapping. A shared mapping has a region map associated 678 * with the underlying file, this region map represents the backing file 679 * pages which have ever had a reservation assigned which this persists even 680 * after the page is instantiated. A private mapping has a region map 681 * associated with the original mmap which is attached to all VMAs which 682 * reference it, this region map represents those offsets which have consumed 683 * reservation ie. where pages have been instantiated. 684 */ 685 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 686 { 687 return (unsigned long)vma->vm_private_data; 688 } 689 690 static void set_vma_private_data(struct vm_area_struct *vma, 691 unsigned long value) 692 { 693 vma->vm_private_data = (void *)value; 694 } 695 696 struct resv_map *resv_map_alloc(void) 697 { 698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 700 701 if (!resv_map || !rg) { 702 kfree(resv_map); 703 kfree(rg); 704 return NULL; 705 } 706 707 kref_init(&resv_map->refs); 708 spin_lock_init(&resv_map->lock); 709 INIT_LIST_HEAD(&resv_map->regions); 710 711 resv_map->adds_in_progress = 0; 712 713 INIT_LIST_HEAD(&resv_map->region_cache); 714 list_add(&rg->link, &resv_map->region_cache); 715 resv_map->region_cache_count = 1; 716 717 return resv_map; 718 } 719 720 void resv_map_release(struct kref *ref) 721 { 722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 723 struct list_head *head = &resv_map->region_cache; 724 struct file_region *rg, *trg; 725 726 /* Clear out any active regions before we release the map. */ 727 region_del(resv_map, 0, LONG_MAX); 728 729 /* ... and any entries left in the cache */ 730 list_for_each_entry_safe(rg, trg, head, link) { 731 list_del(&rg->link); 732 kfree(rg); 733 } 734 735 VM_BUG_ON(resv_map->adds_in_progress); 736 737 kfree(resv_map); 738 } 739 740 static inline struct resv_map *inode_resv_map(struct inode *inode) 741 { 742 return inode->i_mapping->private_data; 743 } 744 745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 746 { 747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 748 if (vma->vm_flags & VM_MAYSHARE) { 749 struct address_space *mapping = vma->vm_file->f_mapping; 750 struct inode *inode = mapping->host; 751 752 return inode_resv_map(inode); 753 754 } else { 755 return (struct resv_map *)(get_vma_private_data(vma) & 756 ~HPAGE_RESV_MASK); 757 } 758 } 759 760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 761 { 762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 764 765 set_vma_private_data(vma, (get_vma_private_data(vma) & 766 HPAGE_RESV_MASK) | (unsigned long)map); 767 } 768 769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 770 { 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 773 774 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 775 } 776 777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 778 { 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 780 781 return (get_vma_private_data(vma) & flag) != 0; 782 } 783 784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 786 { 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 788 if (!(vma->vm_flags & VM_MAYSHARE)) 789 vma->vm_private_data = (void *)0; 790 } 791 792 /* Returns true if the VMA has associated reserve pages */ 793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 794 { 795 if (vma->vm_flags & VM_NORESERVE) { 796 /* 797 * This address is already reserved by other process(chg == 0), 798 * so, we should decrement reserved count. Without decrementing, 799 * reserve count remains after releasing inode, because this 800 * allocated page will go into page cache and is regarded as 801 * coming from reserved pool in releasing step. Currently, we 802 * don't have any other solution to deal with this situation 803 * properly, so add work-around here. 804 */ 805 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 806 return true; 807 else 808 return false; 809 } 810 811 /* Shared mappings always use reserves */ 812 if (vma->vm_flags & VM_MAYSHARE) { 813 /* 814 * We know VM_NORESERVE is not set. Therefore, there SHOULD 815 * be a region map for all pages. The only situation where 816 * there is no region map is if a hole was punched via 817 * fallocate. In this case, there really are no reverves to 818 * use. This situation is indicated if chg != 0. 819 */ 820 if (chg) 821 return false; 822 else 823 return true; 824 } 825 826 /* 827 * Only the process that called mmap() has reserves for 828 * private mappings. 829 */ 830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 831 /* 832 * Like the shared case above, a hole punch or truncate 833 * could have been performed on the private mapping. 834 * Examine the value of chg to determine if reserves 835 * actually exist or were previously consumed. 836 * Very Subtle - The value of chg comes from a previous 837 * call to vma_needs_reserves(). The reserve map for 838 * private mappings has different (opposite) semantics 839 * than that of shared mappings. vma_needs_reserves() 840 * has already taken this difference in semantics into 841 * account. Therefore, the meaning of chg is the same 842 * as in the shared case above. Code could easily be 843 * combined, but keeping it separate draws attention to 844 * subtle differences. 845 */ 846 if (chg) 847 return false; 848 else 849 return true; 850 } 851 852 return false; 853 } 854 855 static void enqueue_huge_page(struct hstate *h, struct page *page) 856 { 857 int nid = page_to_nid(page); 858 list_move(&page->lru, &h->hugepage_freelists[nid]); 859 h->free_huge_pages++; 860 h->free_huge_pages_node[nid]++; 861 } 862 863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 864 { 865 struct page *page; 866 867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 868 if (!PageHWPoison(page)) 869 break; 870 /* 871 * if 'non-isolated free hugepage' not found on the list, 872 * the allocation fails. 873 */ 874 if (&h->hugepage_freelists[nid] == &page->lru) 875 return NULL; 876 list_move(&page->lru, &h->hugepage_activelist); 877 set_page_refcounted(page); 878 h->free_huge_pages--; 879 h->free_huge_pages_node[nid]--; 880 return page; 881 } 882 883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 884 nodemask_t *nmask) 885 { 886 unsigned int cpuset_mems_cookie; 887 struct zonelist *zonelist; 888 struct zone *zone; 889 struct zoneref *z; 890 int node = -1; 891 892 zonelist = node_zonelist(nid, gfp_mask); 893 894 retry_cpuset: 895 cpuset_mems_cookie = read_mems_allowed_begin(); 896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 897 struct page *page; 898 899 if (!cpuset_zone_allowed(zone, gfp_mask)) 900 continue; 901 /* 902 * no need to ask again on the same node. Pool is node rather than 903 * zone aware 904 */ 905 if (zone_to_nid(zone) == node) 906 continue; 907 node = zone_to_nid(zone); 908 909 page = dequeue_huge_page_node_exact(h, node); 910 if (page) 911 return page; 912 } 913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 914 goto retry_cpuset; 915 916 return NULL; 917 } 918 919 /* Movability of hugepages depends on migration support. */ 920 static inline gfp_t htlb_alloc_mask(struct hstate *h) 921 { 922 if (hugepage_migration_supported(h)) 923 return GFP_HIGHUSER_MOVABLE; 924 else 925 return GFP_HIGHUSER; 926 } 927 928 static struct page *dequeue_huge_page_vma(struct hstate *h, 929 struct vm_area_struct *vma, 930 unsigned long address, int avoid_reserve, 931 long chg) 932 { 933 struct page *page; 934 struct mempolicy *mpol; 935 gfp_t gfp_mask; 936 nodemask_t *nodemask; 937 int nid; 938 939 /* 940 * A child process with MAP_PRIVATE mappings created by their parent 941 * have no page reserves. This check ensures that reservations are 942 * not "stolen". The child may still get SIGKILLed 943 */ 944 if (!vma_has_reserves(vma, chg) && 945 h->free_huge_pages - h->resv_huge_pages == 0) 946 goto err; 947 948 /* If reserves cannot be used, ensure enough pages are in the pool */ 949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 950 goto err; 951 952 gfp_mask = htlb_alloc_mask(h); 953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 956 SetPagePrivate(page); 957 h->resv_huge_pages--; 958 } 959 960 mpol_cond_put(mpol); 961 return page; 962 963 err: 964 return NULL; 965 } 966 967 /* 968 * common helper functions for hstate_next_node_to_{alloc|free}. 969 * We may have allocated or freed a huge page based on a different 970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 971 * be outside of *nodes_allowed. Ensure that we use an allowed 972 * node for alloc or free. 973 */ 974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 975 { 976 nid = next_node_in(nid, *nodes_allowed); 977 VM_BUG_ON(nid >= MAX_NUMNODES); 978 979 return nid; 980 } 981 982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 983 { 984 if (!node_isset(nid, *nodes_allowed)) 985 nid = next_node_allowed(nid, nodes_allowed); 986 return nid; 987 } 988 989 /* 990 * returns the previously saved node ["this node"] from which to 991 * allocate a persistent huge page for the pool and advance the 992 * next node from which to allocate, handling wrap at end of node 993 * mask. 994 */ 995 static int hstate_next_node_to_alloc(struct hstate *h, 996 nodemask_t *nodes_allowed) 997 { 998 int nid; 999 1000 VM_BUG_ON(!nodes_allowed); 1001 1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1004 1005 return nid; 1006 } 1007 1008 /* 1009 * helper for free_pool_huge_page() - return the previously saved 1010 * node ["this node"] from which to free a huge page. Advance the 1011 * next node id whether or not we find a free huge page to free so 1012 * that the next attempt to free addresses the next node. 1013 */ 1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1015 { 1016 int nid; 1017 1018 VM_BUG_ON(!nodes_allowed); 1019 1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1022 1023 return nid; 1024 } 1025 1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1027 for (nr_nodes = nodes_weight(*mask); \ 1028 nr_nodes > 0 && \ 1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1030 nr_nodes--) 1031 1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1033 for (nr_nodes = nodes_weight(*mask); \ 1034 nr_nodes > 0 && \ 1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1036 nr_nodes--) 1037 1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1039 static void destroy_compound_gigantic_page(struct page *page, 1040 unsigned int order) 1041 { 1042 int i; 1043 int nr_pages = 1 << order; 1044 struct page *p = page + 1; 1045 1046 atomic_set(compound_mapcount_ptr(page), 0); 1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1048 clear_compound_head(p); 1049 set_page_refcounted(p); 1050 } 1051 1052 set_compound_order(page, 0); 1053 __ClearPageHead(page); 1054 } 1055 1056 static void free_gigantic_page(struct page *page, unsigned int order) 1057 { 1058 free_contig_range(page_to_pfn(page), 1 << order); 1059 } 1060 1061 static int __alloc_gigantic_page(unsigned long start_pfn, 1062 unsigned long nr_pages, gfp_t gfp_mask) 1063 { 1064 unsigned long end_pfn = start_pfn + nr_pages; 1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1066 gfp_mask); 1067 } 1068 1069 static bool pfn_range_valid_gigantic(struct zone *z, 1070 unsigned long start_pfn, unsigned long nr_pages) 1071 { 1072 unsigned long i, end_pfn = start_pfn + nr_pages; 1073 struct page *page; 1074 1075 for (i = start_pfn; i < end_pfn; i++) { 1076 if (!pfn_valid(i)) 1077 return false; 1078 1079 page = pfn_to_page(i); 1080 1081 if (page_zone(page) != z) 1082 return false; 1083 1084 if (PageReserved(page)) 1085 return false; 1086 1087 if (page_count(page) > 0) 1088 return false; 1089 1090 if (PageHuge(page)) 1091 return false; 1092 } 1093 1094 return true; 1095 } 1096 1097 static bool zone_spans_last_pfn(const struct zone *zone, 1098 unsigned long start_pfn, unsigned long nr_pages) 1099 { 1100 unsigned long last_pfn = start_pfn + nr_pages - 1; 1101 return zone_spans_pfn(zone, last_pfn); 1102 } 1103 1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1105 int nid, nodemask_t *nodemask) 1106 { 1107 unsigned int order = huge_page_order(h); 1108 unsigned long nr_pages = 1 << order; 1109 unsigned long ret, pfn, flags; 1110 struct zonelist *zonelist; 1111 struct zone *zone; 1112 struct zoneref *z; 1113 1114 zonelist = node_zonelist(nid, gfp_mask); 1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1116 spin_lock_irqsave(&zone->lock, flags); 1117 1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1121 /* 1122 * We release the zone lock here because 1123 * alloc_contig_range() will also lock the zone 1124 * at some point. If there's an allocation 1125 * spinning on this lock, it may win the race 1126 * and cause alloc_contig_range() to fail... 1127 */ 1128 spin_unlock_irqrestore(&zone->lock, flags); 1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1130 if (!ret) 1131 return pfn_to_page(pfn); 1132 spin_lock_irqsave(&zone->lock, flags); 1133 } 1134 pfn += nr_pages; 1135 } 1136 1137 spin_unlock_irqrestore(&zone->lock, flags); 1138 } 1139 1140 return NULL; 1141 } 1142 1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1145 1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1147 static inline bool gigantic_page_supported(void) { return false; } 1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1149 int nid, nodemask_t *nodemask) { return NULL; } 1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1151 static inline void destroy_compound_gigantic_page(struct page *page, 1152 unsigned int order) { } 1153 #endif 1154 1155 static void update_and_free_page(struct hstate *h, struct page *page) 1156 { 1157 int i; 1158 1159 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1160 return; 1161 1162 h->nr_huge_pages--; 1163 h->nr_huge_pages_node[page_to_nid(page)]--; 1164 for (i = 0; i < pages_per_huge_page(h); i++) { 1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1166 1 << PG_referenced | 1 << PG_dirty | 1167 1 << PG_active | 1 << PG_private | 1168 1 << PG_writeback); 1169 } 1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1172 set_page_refcounted(page); 1173 if (hstate_is_gigantic(h)) { 1174 destroy_compound_gigantic_page(page, huge_page_order(h)); 1175 free_gigantic_page(page, huge_page_order(h)); 1176 } else { 1177 __free_pages(page, huge_page_order(h)); 1178 } 1179 } 1180 1181 struct hstate *size_to_hstate(unsigned long size) 1182 { 1183 struct hstate *h; 1184 1185 for_each_hstate(h) { 1186 if (huge_page_size(h) == size) 1187 return h; 1188 } 1189 return NULL; 1190 } 1191 1192 /* 1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1194 * to hstate->hugepage_activelist.) 1195 * 1196 * This function can be called for tail pages, but never returns true for them. 1197 */ 1198 bool page_huge_active(struct page *page) 1199 { 1200 VM_BUG_ON_PAGE(!PageHuge(page), page); 1201 return PageHead(page) && PagePrivate(&page[1]); 1202 } 1203 1204 /* never called for tail page */ 1205 static void set_page_huge_active(struct page *page) 1206 { 1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1208 SetPagePrivate(&page[1]); 1209 } 1210 1211 static void clear_page_huge_active(struct page *page) 1212 { 1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1214 ClearPagePrivate(&page[1]); 1215 } 1216 1217 /* 1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1219 * code 1220 */ 1221 static inline bool PageHugeTemporary(struct page *page) 1222 { 1223 if (!PageHuge(page)) 1224 return false; 1225 1226 return (unsigned long)page[2].mapping == -1U; 1227 } 1228 1229 static inline void SetPageHugeTemporary(struct page *page) 1230 { 1231 page[2].mapping = (void *)-1U; 1232 } 1233 1234 static inline void ClearPageHugeTemporary(struct page *page) 1235 { 1236 page[2].mapping = NULL; 1237 } 1238 1239 void free_huge_page(struct page *page) 1240 { 1241 /* 1242 * Can't pass hstate in here because it is called from the 1243 * compound page destructor. 1244 */ 1245 struct hstate *h = page_hstate(page); 1246 int nid = page_to_nid(page); 1247 struct hugepage_subpool *spool = 1248 (struct hugepage_subpool *)page_private(page); 1249 bool restore_reserve; 1250 1251 set_page_private(page, 0); 1252 page->mapping = NULL; 1253 VM_BUG_ON_PAGE(page_count(page), page); 1254 VM_BUG_ON_PAGE(page_mapcount(page), page); 1255 restore_reserve = PagePrivate(page); 1256 ClearPagePrivate(page); 1257 1258 /* 1259 * A return code of zero implies that the subpool will be under its 1260 * minimum size if the reservation is not restored after page is free. 1261 * Therefore, force restore_reserve operation. 1262 */ 1263 if (hugepage_subpool_put_pages(spool, 1) == 0) 1264 restore_reserve = true; 1265 1266 spin_lock(&hugetlb_lock); 1267 clear_page_huge_active(page); 1268 hugetlb_cgroup_uncharge_page(hstate_index(h), 1269 pages_per_huge_page(h), page); 1270 if (restore_reserve) 1271 h->resv_huge_pages++; 1272 1273 if (PageHugeTemporary(page)) { 1274 list_del(&page->lru); 1275 ClearPageHugeTemporary(page); 1276 update_and_free_page(h, page); 1277 } else if (h->surplus_huge_pages_node[nid]) { 1278 /* remove the page from active list */ 1279 list_del(&page->lru); 1280 update_and_free_page(h, page); 1281 h->surplus_huge_pages--; 1282 h->surplus_huge_pages_node[nid]--; 1283 } else { 1284 arch_clear_hugepage_flags(page); 1285 enqueue_huge_page(h, page); 1286 } 1287 spin_unlock(&hugetlb_lock); 1288 } 1289 1290 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1291 { 1292 INIT_LIST_HEAD(&page->lru); 1293 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1294 spin_lock(&hugetlb_lock); 1295 set_hugetlb_cgroup(page, NULL); 1296 h->nr_huge_pages++; 1297 h->nr_huge_pages_node[nid]++; 1298 spin_unlock(&hugetlb_lock); 1299 } 1300 1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1302 { 1303 int i; 1304 int nr_pages = 1 << order; 1305 struct page *p = page + 1; 1306 1307 /* we rely on prep_new_huge_page to set the destructor */ 1308 set_compound_order(page, order); 1309 __ClearPageReserved(page); 1310 __SetPageHead(page); 1311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1312 /* 1313 * For gigantic hugepages allocated through bootmem at 1314 * boot, it's safer to be consistent with the not-gigantic 1315 * hugepages and clear the PG_reserved bit from all tail pages 1316 * too. Otherwse drivers using get_user_pages() to access tail 1317 * pages may get the reference counting wrong if they see 1318 * PG_reserved set on a tail page (despite the head page not 1319 * having PG_reserved set). Enforcing this consistency between 1320 * head and tail pages allows drivers to optimize away a check 1321 * on the head page when they need know if put_page() is needed 1322 * after get_user_pages(). 1323 */ 1324 __ClearPageReserved(p); 1325 set_page_count(p, 0); 1326 set_compound_head(p, page); 1327 } 1328 atomic_set(compound_mapcount_ptr(page), -1); 1329 } 1330 1331 /* 1332 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1333 * transparent huge pages. See the PageTransHuge() documentation for more 1334 * details. 1335 */ 1336 int PageHuge(struct page *page) 1337 { 1338 if (!PageCompound(page)) 1339 return 0; 1340 1341 page = compound_head(page); 1342 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1343 } 1344 EXPORT_SYMBOL_GPL(PageHuge); 1345 1346 /* 1347 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1348 * normal or transparent huge pages. 1349 */ 1350 int PageHeadHuge(struct page *page_head) 1351 { 1352 if (!PageHead(page_head)) 1353 return 0; 1354 1355 return get_compound_page_dtor(page_head) == free_huge_page; 1356 } 1357 1358 pgoff_t __basepage_index(struct page *page) 1359 { 1360 struct page *page_head = compound_head(page); 1361 pgoff_t index = page_index(page_head); 1362 unsigned long compound_idx; 1363 1364 if (!PageHuge(page_head)) 1365 return page_index(page); 1366 1367 if (compound_order(page_head) >= MAX_ORDER) 1368 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1369 else 1370 compound_idx = page - page_head; 1371 1372 return (index << compound_order(page_head)) + compound_idx; 1373 } 1374 1375 static struct page *alloc_buddy_huge_page(struct hstate *h, 1376 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1377 { 1378 int order = huge_page_order(h); 1379 struct page *page; 1380 1381 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1382 if (nid == NUMA_NO_NODE) 1383 nid = numa_mem_id(); 1384 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1385 if (page) 1386 __count_vm_event(HTLB_BUDDY_PGALLOC); 1387 else 1388 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1389 1390 return page; 1391 } 1392 1393 /* 1394 * Common helper to allocate a fresh hugetlb page. All specific allocators 1395 * should use this function to get new hugetlb pages 1396 */ 1397 static struct page *alloc_fresh_huge_page(struct hstate *h, 1398 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1399 { 1400 struct page *page; 1401 1402 if (hstate_is_gigantic(h)) 1403 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1404 else 1405 page = alloc_buddy_huge_page(h, gfp_mask, 1406 nid, nmask); 1407 if (!page) 1408 return NULL; 1409 1410 if (hstate_is_gigantic(h)) 1411 prep_compound_gigantic_page(page, huge_page_order(h)); 1412 prep_new_huge_page(h, page, page_to_nid(page)); 1413 1414 return page; 1415 } 1416 1417 /* 1418 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1419 * manner. 1420 */ 1421 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1422 { 1423 struct page *page; 1424 int nr_nodes, node; 1425 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1426 1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1428 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1429 if (page) 1430 break; 1431 } 1432 1433 if (!page) 1434 return 0; 1435 1436 put_page(page); /* free it into the hugepage allocator */ 1437 1438 return 1; 1439 } 1440 1441 /* 1442 * Free huge page from pool from next node to free. 1443 * Attempt to keep persistent huge pages more or less 1444 * balanced over allowed nodes. 1445 * Called with hugetlb_lock locked. 1446 */ 1447 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1448 bool acct_surplus) 1449 { 1450 int nr_nodes, node; 1451 int ret = 0; 1452 1453 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1454 /* 1455 * If we're returning unused surplus pages, only examine 1456 * nodes with surplus pages. 1457 */ 1458 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1459 !list_empty(&h->hugepage_freelists[node])) { 1460 struct page *page = 1461 list_entry(h->hugepage_freelists[node].next, 1462 struct page, lru); 1463 list_del(&page->lru); 1464 h->free_huge_pages--; 1465 h->free_huge_pages_node[node]--; 1466 if (acct_surplus) { 1467 h->surplus_huge_pages--; 1468 h->surplus_huge_pages_node[node]--; 1469 } 1470 update_and_free_page(h, page); 1471 ret = 1; 1472 break; 1473 } 1474 } 1475 1476 return ret; 1477 } 1478 1479 /* 1480 * Dissolve a given free hugepage into free buddy pages. This function does 1481 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1482 * number of free hugepages would be reduced below the number of reserved 1483 * hugepages. 1484 */ 1485 int dissolve_free_huge_page(struct page *page) 1486 { 1487 int rc = 0; 1488 1489 spin_lock(&hugetlb_lock); 1490 if (PageHuge(page) && !page_count(page)) { 1491 struct page *head = compound_head(page); 1492 struct hstate *h = page_hstate(head); 1493 int nid = page_to_nid(head); 1494 if (h->free_huge_pages - h->resv_huge_pages == 0) { 1495 rc = -EBUSY; 1496 goto out; 1497 } 1498 /* 1499 * Move PageHWPoison flag from head page to the raw error page, 1500 * which makes any subpages rather than the error page reusable. 1501 */ 1502 if (PageHWPoison(head) && page != head) { 1503 SetPageHWPoison(page); 1504 ClearPageHWPoison(head); 1505 } 1506 list_del(&head->lru); 1507 h->free_huge_pages--; 1508 h->free_huge_pages_node[nid]--; 1509 h->max_huge_pages--; 1510 update_and_free_page(h, head); 1511 } 1512 out: 1513 spin_unlock(&hugetlb_lock); 1514 return rc; 1515 } 1516 1517 /* 1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1519 * make specified memory blocks removable from the system. 1520 * Note that this will dissolve a free gigantic hugepage completely, if any 1521 * part of it lies within the given range. 1522 * Also note that if dissolve_free_huge_page() returns with an error, all 1523 * free hugepages that were dissolved before that error are lost. 1524 */ 1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1526 { 1527 unsigned long pfn; 1528 struct page *page; 1529 int rc = 0; 1530 1531 if (!hugepages_supported()) 1532 return rc; 1533 1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1535 page = pfn_to_page(pfn); 1536 if (PageHuge(page) && !page_count(page)) { 1537 rc = dissolve_free_huge_page(page); 1538 if (rc) 1539 break; 1540 } 1541 } 1542 1543 return rc; 1544 } 1545 1546 /* 1547 * Allocates a fresh surplus page from the page allocator. 1548 */ 1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1550 int nid, nodemask_t *nmask) 1551 { 1552 struct page *page = NULL; 1553 1554 if (hstate_is_gigantic(h)) 1555 return NULL; 1556 1557 spin_lock(&hugetlb_lock); 1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1559 goto out_unlock; 1560 spin_unlock(&hugetlb_lock); 1561 1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1563 if (!page) 1564 return NULL; 1565 1566 spin_lock(&hugetlb_lock); 1567 /* 1568 * We could have raced with the pool size change. 1569 * Double check that and simply deallocate the new page 1570 * if we would end up overcommiting the surpluses. Abuse 1571 * temporary page to workaround the nasty free_huge_page 1572 * codeflow 1573 */ 1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1575 SetPageHugeTemporary(page); 1576 put_page(page); 1577 page = NULL; 1578 } else { 1579 h->surplus_huge_pages++; 1580 h->surplus_huge_pages_node[page_to_nid(page)]++; 1581 } 1582 1583 out_unlock: 1584 spin_unlock(&hugetlb_lock); 1585 1586 return page; 1587 } 1588 1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1590 int nid, nodemask_t *nmask) 1591 { 1592 struct page *page; 1593 1594 if (hstate_is_gigantic(h)) 1595 return NULL; 1596 1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1598 if (!page) 1599 return NULL; 1600 1601 /* 1602 * We do not account these pages as surplus because they are only 1603 * temporary and will be released properly on the last reference 1604 */ 1605 SetPageHugeTemporary(page); 1606 1607 return page; 1608 } 1609 1610 /* 1611 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1612 */ 1613 static 1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1615 struct vm_area_struct *vma, unsigned long addr) 1616 { 1617 struct page *page; 1618 struct mempolicy *mpol; 1619 gfp_t gfp_mask = htlb_alloc_mask(h); 1620 int nid; 1621 nodemask_t *nodemask; 1622 1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1625 mpol_cond_put(mpol); 1626 1627 return page; 1628 } 1629 1630 /* page migration callback function */ 1631 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1632 { 1633 gfp_t gfp_mask = htlb_alloc_mask(h); 1634 struct page *page = NULL; 1635 1636 if (nid != NUMA_NO_NODE) 1637 gfp_mask |= __GFP_THISNODE; 1638 1639 spin_lock(&hugetlb_lock); 1640 if (h->free_huge_pages - h->resv_huge_pages > 0) 1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1642 spin_unlock(&hugetlb_lock); 1643 1644 if (!page) 1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1646 1647 return page; 1648 } 1649 1650 /* page migration callback function */ 1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1652 nodemask_t *nmask) 1653 { 1654 gfp_t gfp_mask = htlb_alloc_mask(h); 1655 1656 spin_lock(&hugetlb_lock); 1657 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1658 struct page *page; 1659 1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1661 if (page) { 1662 spin_unlock(&hugetlb_lock); 1663 return page; 1664 } 1665 } 1666 spin_unlock(&hugetlb_lock); 1667 1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1669 } 1670 1671 /* mempolicy aware migration callback */ 1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1673 unsigned long address) 1674 { 1675 struct mempolicy *mpol; 1676 nodemask_t *nodemask; 1677 struct page *page; 1678 gfp_t gfp_mask; 1679 int node; 1680 1681 gfp_mask = htlb_alloc_mask(h); 1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1683 page = alloc_huge_page_nodemask(h, node, nodemask); 1684 mpol_cond_put(mpol); 1685 1686 return page; 1687 } 1688 1689 /* 1690 * Increase the hugetlb pool such that it can accommodate a reservation 1691 * of size 'delta'. 1692 */ 1693 static int gather_surplus_pages(struct hstate *h, int delta) 1694 { 1695 struct list_head surplus_list; 1696 struct page *page, *tmp; 1697 int ret, i; 1698 int needed, allocated; 1699 bool alloc_ok = true; 1700 1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1702 if (needed <= 0) { 1703 h->resv_huge_pages += delta; 1704 return 0; 1705 } 1706 1707 allocated = 0; 1708 INIT_LIST_HEAD(&surplus_list); 1709 1710 ret = -ENOMEM; 1711 retry: 1712 spin_unlock(&hugetlb_lock); 1713 for (i = 0; i < needed; i++) { 1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1715 NUMA_NO_NODE, NULL); 1716 if (!page) { 1717 alloc_ok = false; 1718 break; 1719 } 1720 list_add(&page->lru, &surplus_list); 1721 cond_resched(); 1722 } 1723 allocated += i; 1724 1725 /* 1726 * After retaking hugetlb_lock, we need to recalculate 'needed' 1727 * because either resv_huge_pages or free_huge_pages may have changed. 1728 */ 1729 spin_lock(&hugetlb_lock); 1730 needed = (h->resv_huge_pages + delta) - 1731 (h->free_huge_pages + allocated); 1732 if (needed > 0) { 1733 if (alloc_ok) 1734 goto retry; 1735 /* 1736 * We were not able to allocate enough pages to 1737 * satisfy the entire reservation so we free what 1738 * we've allocated so far. 1739 */ 1740 goto free; 1741 } 1742 /* 1743 * The surplus_list now contains _at_least_ the number of extra pages 1744 * needed to accommodate the reservation. Add the appropriate number 1745 * of pages to the hugetlb pool and free the extras back to the buddy 1746 * allocator. Commit the entire reservation here to prevent another 1747 * process from stealing the pages as they are added to the pool but 1748 * before they are reserved. 1749 */ 1750 needed += allocated; 1751 h->resv_huge_pages += delta; 1752 ret = 0; 1753 1754 /* Free the needed pages to the hugetlb pool */ 1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1756 if ((--needed) < 0) 1757 break; 1758 /* 1759 * This page is now managed by the hugetlb allocator and has 1760 * no users -- drop the buddy allocator's reference. 1761 */ 1762 put_page_testzero(page); 1763 VM_BUG_ON_PAGE(page_count(page), page); 1764 enqueue_huge_page(h, page); 1765 } 1766 free: 1767 spin_unlock(&hugetlb_lock); 1768 1769 /* Free unnecessary surplus pages to the buddy allocator */ 1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1771 put_page(page); 1772 spin_lock(&hugetlb_lock); 1773 1774 return ret; 1775 } 1776 1777 /* 1778 * This routine has two main purposes: 1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1780 * in unused_resv_pages. This corresponds to the prior adjustments made 1781 * to the associated reservation map. 1782 * 2) Free any unused surplus pages that may have been allocated to satisfy 1783 * the reservation. As many as unused_resv_pages may be freed. 1784 * 1785 * Called with hugetlb_lock held. However, the lock could be dropped (and 1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1787 * we must make sure nobody else can claim pages we are in the process of 1788 * freeing. Do this by ensuring resv_huge_page always is greater than the 1789 * number of huge pages we plan to free when dropping the lock. 1790 */ 1791 static void return_unused_surplus_pages(struct hstate *h, 1792 unsigned long unused_resv_pages) 1793 { 1794 unsigned long nr_pages; 1795 1796 /* Cannot return gigantic pages currently */ 1797 if (hstate_is_gigantic(h)) 1798 goto out; 1799 1800 /* 1801 * Part (or even all) of the reservation could have been backed 1802 * by pre-allocated pages. Only free surplus pages. 1803 */ 1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1805 1806 /* 1807 * We want to release as many surplus pages as possible, spread 1808 * evenly across all nodes with memory. Iterate across these nodes 1809 * until we can no longer free unreserved surplus pages. This occurs 1810 * when the nodes with surplus pages have no free pages. 1811 * free_pool_huge_page() will balance the the freed pages across the 1812 * on-line nodes with memory and will handle the hstate accounting. 1813 * 1814 * Note that we decrement resv_huge_pages as we free the pages. If 1815 * we drop the lock, resv_huge_pages will still be sufficiently large 1816 * to cover subsequent pages we may free. 1817 */ 1818 while (nr_pages--) { 1819 h->resv_huge_pages--; 1820 unused_resv_pages--; 1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1822 goto out; 1823 cond_resched_lock(&hugetlb_lock); 1824 } 1825 1826 out: 1827 /* Fully uncommit the reservation */ 1828 h->resv_huge_pages -= unused_resv_pages; 1829 } 1830 1831 1832 /* 1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1834 * are used by the huge page allocation routines to manage reservations. 1835 * 1836 * vma_needs_reservation is called to determine if the huge page at addr 1837 * within the vma has an associated reservation. If a reservation is 1838 * needed, the value 1 is returned. The caller is then responsible for 1839 * managing the global reservation and subpool usage counts. After 1840 * the huge page has been allocated, vma_commit_reservation is called 1841 * to add the page to the reservation map. If the page allocation fails, 1842 * the reservation must be ended instead of committed. vma_end_reservation 1843 * is called in such cases. 1844 * 1845 * In the normal case, vma_commit_reservation returns the same value 1846 * as the preceding vma_needs_reservation call. The only time this 1847 * is not the case is if a reserve map was changed between calls. It 1848 * is the responsibility of the caller to notice the difference and 1849 * take appropriate action. 1850 * 1851 * vma_add_reservation is used in error paths where a reservation must 1852 * be restored when a newly allocated huge page must be freed. It is 1853 * to be called after calling vma_needs_reservation to determine if a 1854 * reservation exists. 1855 */ 1856 enum vma_resv_mode { 1857 VMA_NEEDS_RESV, 1858 VMA_COMMIT_RESV, 1859 VMA_END_RESV, 1860 VMA_ADD_RESV, 1861 }; 1862 static long __vma_reservation_common(struct hstate *h, 1863 struct vm_area_struct *vma, unsigned long addr, 1864 enum vma_resv_mode mode) 1865 { 1866 struct resv_map *resv; 1867 pgoff_t idx; 1868 long ret; 1869 1870 resv = vma_resv_map(vma); 1871 if (!resv) 1872 return 1; 1873 1874 idx = vma_hugecache_offset(h, vma, addr); 1875 switch (mode) { 1876 case VMA_NEEDS_RESV: 1877 ret = region_chg(resv, idx, idx + 1); 1878 break; 1879 case VMA_COMMIT_RESV: 1880 ret = region_add(resv, idx, idx + 1); 1881 break; 1882 case VMA_END_RESV: 1883 region_abort(resv, idx, idx + 1); 1884 ret = 0; 1885 break; 1886 case VMA_ADD_RESV: 1887 if (vma->vm_flags & VM_MAYSHARE) 1888 ret = region_add(resv, idx, idx + 1); 1889 else { 1890 region_abort(resv, idx, idx + 1); 1891 ret = region_del(resv, idx, idx + 1); 1892 } 1893 break; 1894 default: 1895 BUG(); 1896 } 1897 1898 if (vma->vm_flags & VM_MAYSHARE) 1899 return ret; 1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1901 /* 1902 * In most cases, reserves always exist for private mappings. 1903 * However, a file associated with mapping could have been 1904 * hole punched or truncated after reserves were consumed. 1905 * As subsequent fault on such a range will not use reserves. 1906 * Subtle - The reserve map for private mappings has the 1907 * opposite meaning than that of shared mappings. If NO 1908 * entry is in the reserve map, it means a reservation exists. 1909 * If an entry exists in the reserve map, it means the 1910 * reservation has already been consumed. As a result, the 1911 * return value of this routine is the opposite of the 1912 * value returned from reserve map manipulation routines above. 1913 */ 1914 if (ret) 1915 return 0; 1916 else 1917 return 1; 1918 } 1919 else 1920 return ret < 0 ? ret : 0; 1921 } 1922 1923 static long vma_needs_reservation(struct hstate *h, 1924 struct vm_area_struct *vma, unsigned long addr) 1925 { 1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1927 } 1928 1929 static long vma_commit_reservation(struct hstate *h, 1930 struct vm_area_struct *vma, unsigned long addr) 1931 { 1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1933 } 1934 1935 static void vma_end_reservation(struct hstate *h, 1936 struct vm_area_struct *vma, unsigned long addr) 1937 { 1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1939 } 1940 1941 static long vma_add_reservation(struct hstate *h, 1942 struct vm_area_struct *vma, unsigned long addr) 1943 { 1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1945 } 1946 1947 /* 1948 * This routine is called to restore a reservation on error paths. In the 1949 * specific error paths, a huge page was allocated (via alloc_huge_page) 1950 * and is about to be freed. If a reservation for the page existed, 1951 * alloc_huge_page would have consumed the reservation and set PagePrivate 1952 * in the newly allocated page. When the page is freed via free_huge_page, 1953 * the global reservation count will be incremented if PagePrivate is set. 1954 * However, free_huge_page can not adjust the reserve map. Adjust the 1955 * reserve map here to be consistent with global reserve count adjustments 1956 * to be made by free_huge_page. 1957 */ 1958 static void restore_reserve_on_error(struct hstate *h, 1959 struct vm_area_struct *vma, unsigned long address, 1960 struct page *page) 1961 { 1962 if (unlikely(PagePrivate(page))) { 1963 long rc = vma_needs_reservation(h, vma, address); 1964 1965 if (unlikely(rc < 0)) { 1966 /* 1967 * Rare out of memory condition in reserve map 1968 * manipulation. Clear PagePrivate so that 1969 * global reserve count will not be incremented 1970 * by free_huge_page. This will make it appear 1971 * as though the reservation for this page was 1972 * consumed. This may prevent the task from 1973 * faulting in the page at a later time. This 1974 * is better than inconsistent global huge page 1975 * accounting of reserve counts. 1976 */ 1977 ClearPagePrivate(page); 1978 } else if (rc) { 1979 rc = vma_add_reservation(h, vma, address); 1980 if (unlikely(rc < 0)) 1981 /* 1982 * See above comment about rare out of 1983 * memory condition. 1984 */ 1985 ClearPagePrivate(page); 1986 } else 1987 vma_end_reservation(h, vma, address); 1988 } 1989 } 1990 1991 struct page *alloc_huge_page(struct vm_area_struct *vma, 1992 unsigned long addr, int avoid_reserve) 1993 { 1994 struct hugepage_subpool *spool = subpool_vma(vma); 1995 struct hstate *h = hstate_vma(vma); 1996 struct page *page; 1997 long map_chg, map_commit; 1998 long gbl_chg; 1999 int ret, idx; 2000 struct hugetlb_cgroup *h_cg; 2001 2002 idx = hstate_index(h); 2003 /* 2004 * Examine the region/reserve map to determine if the process 2005 * has a reservation for the page to be allocated. A return 2006 * code of zero indicates a reservation exists (no change). 2007 */ 2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2009 if (map_chg < 0) 2010 return ERR_PTR(-ENOMEM); 2011 2012 /* 2013 * Processes that did not create the mapping will have no 2014 * reserves as indicated by the region/reserve map. Check 2015 * that the allocation will not exceed the subpool limit. 2016 * Allocations for MAP_NORESERVE mappings also need to be 2017 * checked against any subpool limit. 2018 */ 2019 if (map_chg || avoid_reserve) { 2020 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2021 if (gbl_chg < 0) { 2022 vma_end_reservation(h, vma, addr); 2023 return ERR_PTR(-ENOSPC); 2024 } 2025 2026 /* 2027 * Even though there was no reservation in the region/reserve 2028 * map, there could be reservations associated with the 2029 * subpool that can be used. This would be indicated if the 2030 * return value of hugepage_subpool_get_pages() is zero. 2031 * However, if avoid_reserve is specified we still avoid even 2032 * the subpool reservations. 2033 */ 2034 if (avoid_reserve) 2035 gbl_chg = 1; 2036 } 2037 2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2039 if (ret) 2040 goto out_subpool_put; 2041 2042 spin_lock(&hugetlb_lock); 2043 /* 2044 * glb_chg is passed to indicate whether or not a page must be taken 2045 * from the global free pool (global change). gbl_chg == 0 indicates 2046 * a reservation exists for the allocation. 2047 */ 2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2049 if (!page) { 2050 spin_unlock(&hugetlb_lock); 2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2052 if (!page) 2053 goto out_uncharge_cgroup; 2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2055 SetPagePrivate(page); 2056 h->resv_huge_pages--; 2057 } 2058 spin_lock(&hugetlb_lock); 2059 list_move(&page->lru, &h->hugepage_activelist); 2060 /* Fall through */ 2061 } 2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2063 spin_unlock(&hugetlb_lock); 2064 2065 set_page_private(page, (unsigned long)spool); 2066 2067 map_commit = vma_commit_reservation(h, vma, addr); 2068 if (unlikely(map_chg > map_commit)) { 2069 /* 2070 * The page was added to the reservation map between 2071 * vma_needs_reservation and vma_commit_reservation. 2072 * This indicates a race with hugetlb_reserve_pages. 2073 * Adjust for the subpool count incremented above AND 2074 * in hugetlb_reserve_pages for the same page. Also, 2075 * the reservation count added in hugetlb_reserve_pages 2076 * no longer applies. 2077 */ 2078 long rsv_adjust; 2079 2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2081 hugetlb_acct_memory(h, -rsv_adjust); 2082 } 2083 return page; 2084 2085 out_uncharge_cgroup: 2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2087 out_subpool_put: 2088 if (map_chg || avoid_reserve) 2089 hugepage_subpool_put_pages(spool, 1); 2090 vma_end_reservation(h, vma, addr); 2091 return ERR_PTR(-ENOSPC); 2092 } 2093 2094 int alloc_bootmem_huge_page(struct hstate *h) 2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2096 int __alloc_bootmem_huge_page(struct hstate *h) 2097 { 2098 struct huge_bootmem_page *m; 2099 int nr_nodes, node; 2100 2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2102 void *addr; 2103 2104 addr = memblock_virt_alloc_try_nid_nopanic( 2105 huge_page_size(h), huge_page_size(h), 2106 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2107 if (addr) { 2108 /* 2109 * Use the beginning of the huge page to store the 2110 * huge_bootmem_page struct (until gather_bootmem 2111 * puts them into the mem_map). 2112 */ 2113 m = addr; 2114 goto found; 2115 } 2116 } 2117 return 0; 2118 2119 found: 2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2121 /* Put them into a private list first because mem_map is not up yet */ 2122 list_add(&m->list, &huge_boot_pages); 2123 m->hstate = h; 2124 return 1; 2125 } 2126 2127 static void __init prep_compound_huge_page(struct page *page, 2128 unsigned int order) 2129 { 2130 if (unlikely(order > (MAX_ORDER - 1))) 2131 prep_compound_gigantic_page(page, order); 2132 else 2133 prep_compound_page(page, order); 2134 } 2135 2136 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2137 static void __init gather_bootmem_prealloc(void) 2138 { 2139 struct huge_bootmem_page *m; 2140 2141 list_for_each_entry(m, &huge_boot_pages, list) { 2142 struct hstate *h = m->hstate; 2143 struct page *page; 2144 2145 #ifdef CONFIG_HIGHMEM 2146 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2147 memblock_free_late(__pa(m), 2148 sizeof(struct huge_bootmem_page)); 2149 #else 2150 page = virt_to_page(m); 2151 #endif 2152 WARN_ON(page_count(page) != 1); 2153 prep_compound_huge_page(page, h->order); 2154 WARN_ON(PageReserved(page)); 2155 prep_new_huge_page(h, page, page_to_nid(page)); 2156 put_page(page); /* free it into the hugepage allocator */ 2157 2158 /* 2159 * If we had gigantic hugepages allocated at boot time, we need 2160 * to restore the 'stolen' pages to totalram_pages in order to 2161 * fix confusing memory reports from free(1) and another 2162 * side-effects, like CommitLimit going negative. 2163 */ 2164 if (hstate_is_gigantic(h)) 2165 adjust_managed_page_count(page, 1 << h->order); 2166 cond_resched(); 2167 } 2168 } 2169 2170 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2171 { 2172 unsigned long i; 2173 2174 for (i = 0; i < h->max_huge_pages; ++i) { 2175 if (hstate_is_gigantic(h)) { 2176 if (!alloc_bootmem_huge_page(h)) 2177 break; 2178 } else if (!alloc_pool_huge_page(h, 2179 &node_states[N_MEMORY])) 2180 break; 2181 cond_resched(); 2182 } 2183 if (i < h->max_huge_pages) { 2184 char buf[32]; 2185 2186 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2187 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2188 h->max_huge_pages, buf, i); 2189 h->max_huge_pages = i; 2190 } 2191 } 2192 2193 static void __init hugetlb_init_hstates(void) 2194 { 2195 struct hstate *h; 2196 2197 for_each_hstate(h) { 2198 if (minimum_order > huge_page_order(h)) 2199 minimum_order = huge_page_order(h); 2200 2201 /* oversize hugepages were init'ed in early boot */ 2202 if (!hstate_is_gigantic(h)) 2203 hugetlb_hstate_alloc_pages(h); 2204 } 2205 VM_BUG_ON(minimum_order == UINT_MAX); 2206 } 2207 2208 static void __init report_hugepages(void) 2209 { 2210 struct hstate *h; 2211 2212 for_each_hstate(h) { 2213 char buf[32]; 2214 2215 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2216 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2217 buf, h->free_huge_pages); 2218 } 2219 } 2220 2221 #ifdef CONFIG_HIGHMEM 2222 static void try_to_free_low(struct hstate *h, unsigned long count, 2223 nodemask_t *nodes_allowed) 2224 { 2225 int i; 2226 2227 if (hstate_is_gigantic(h)) 2228 return; 2229 2230 for_each_node_mask(i, *nodes_allowed) { 2231 struct page *page, *next; 2232 struct list_head *freel = &h->hugepage_freelists[i]; 2233 list_for_each_entry_safe(page, next, freel, lru) { 2234 if (count >= h->nr_huge_pages) 2235 return; 2236 if (PageHighMem(page)) 2237 continue; 2238 list_del(&page->lru); 2239 update_and_free_page(h, page); 2240 h->free_huge_pages--; 2241 h->free_huge_pages_node[page_to_nid(page)]--; 2242 } 2243 } 2244 } 2245 #else 2246 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2247 nodemask_t *nodes_allowed) 2248 { 2249 } 2250 #endif 2251 2252 /* 2253 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2254 * balanced by operating on them in a round-robin fashion. 2255 * Returns 1 if an adjustment was made. 2256 */ 2257 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2258 int delta) 2259 { 2260 int nr_nodes, node; 2261 2262 VM_BUG_ON(delta != -1 && delta != 1); 2263 2264 if (delta < 0) { 2265 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2266 if (h->surplus_huge_pages_node[node]) 2267 goto found; 2268 } 2269 } else { 2270 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2271 if (h->surplus_huge_pages_node[node] < 2272 h->nr_huge_pages_node[node]) 2273 goto found; 2274 } 2275 } 2276 return 0; 2277 2278 found: 2279 h->surplus_huge_pages += delta; 2280 h->surplus_huge_pages_node[node] += delta; 2281 return 1; 2282 } 2283 2284 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2285 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2286 nodemask_t *nodes_allowed) 2287 { 2288 unsigned long min_count, ret; 2289 2290 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2291 return h->max_huge_pages; 2292 2293 /* 2294 * Increase the pool size 2295 * First take pages out of surplus state. Then make up the 2296 * remaining difference by allocating fresh huge pages. 2297 * 2298 * We might race with alloc_surplus_huge_page() here and be unable 2299 * to convert a surplus huge page to a normal huge page. That is 2300 * not critical, though, it just means the overall size of the 2301 * pool might be one hugepage larger than it needs to be, but 2302 * within all the constraints specified by the sysctls. 2303 */ 2304 spin_lock(&hugetlb_lock); 2305 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2306 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2307 break; 2308 } 2309 2310 while (count > persistent_huge_pages(h)) { 2311 /* 2312 * If this allocation races such that we no longer need the 2313 * page, free_huge_page will handle it by freeing the page 2314 * and reducing the surplus. 2315 */ 2316 spin_unlock(&hugetlb_lock); 2317 2318 /* yield cpu to avoid soft lockup */ 2319 cond_resched(); 2320 2321 ret = alloc_pool_huge_page(h, nodes_allowed); 2322 spin_lock(&hugetlb_lock); 2323 if (!ret) 2324 goto out; 2325 2326 /* Bail for signals. Probably ctrl-c from user */ 2327 if (signal_pending(current)) 2328 goto out; 2329 } 2330 2331 /* 2332 * Decrease the pool size 2333 * First return free pages to the buddy allocator (being careful 2334 * to keep enough around to satisfy reservations). Then place 2335 * pages into surplus state as needed so the pool will shrink 2336 * to the desired size as pages become free. 2337 * 2338 * By placing pages into the surplus state independent of the 2339 * overcommit value, we are allowing the surplus pool size to 2340 * exceed overcommit. There are few sane options here. Since 2341 * alloc_surplus_huge_page() is checking the global counter, 2342 * though, we'll note that we're not allowed to exceed surplus 2343 * and won't grow the pool anywhere else. Not until one of the 2344 * sysctls are changed, or the surplus pages go out of use. 2345 */ 2346 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2347 min_count = max(count, min_count); 2348 try_to_free_low(h, min_count, nodes_allowed); 2349 while (min_count < persistent_huge_pages(h)) { 2350 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2351 break; 2352 cond_resched_lock(&hugetlb_lock); 2353 } 2354 while (count < persistent_huge_pages(h)) { 2355 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2356 break; 2357 } 2358 out: 2359 ret = persistent_huge_pages(h); 2360 spin_unlock(&hugetlb_lock); 2361 return ret; 2362 } 2363 2364 #define HSTATE_ATTR_RO(_name) \ 2365 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2366 2367 #define HSTATE_ATTR(_name) \ 2368 static struct kobj_attribute _name##_attr = \ 2369 __ATTR(_name, 0644, _name##_show, _name##_store) 2370 2371 static struct kobject *hugepages_kobj; 2372 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2373 2374 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2375 2376 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2377 { 2378 int i; 2379 2380 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2381 if (hstate_kobjs[i] == kobj) { 2382 if (nidp) 2383 *nidp = NUMA_NO_NODE; 2384 return &hstates[i]; 2385 } 2386 2387 return kobj_to_node_hstate(kobj, nidp); 2388 } 2389 2390 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2391 struct kobj_attribute *attr, char *buf) 2392 { 2393 struct hstate *h; 2394 unsigned long nr_huge_pages; 2395 int nid; 2396 2397 h = kobj_to_hstate(kobj, &nid); 2398 if (nid == NUMA_NO_NODE) 2399 nr_huge_pages = h->nr_huge_pages; 2400 else 2401 nr_huge_pages = h->nr_huge_pages_node[nid]; 2402 2403 return sprintf(buf, "%lu\n", nr_huge_pages); 2404 } 2405 2406 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2407 struct hstate *h, int nid, 2408 unsigned long count, size_t len) 2409 { 2410 int err; 2411 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2412 2413 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2414 err = -EINVAL; 2415 goto out; 2416 } 2417 2418 if (nid == NUMA_NO_NODE) { 2419 /* 2420 * global hstate attribute 2421 */ 2422 if (!(obey_mempolicy && 2423 init_nodemask_of_mempolicy(nodes_allowed))) { 2424 NODEMASK_FREE(nodes_allowed); 2425 nodes_allowed = &node_states[N_MEMORY]; 2426 } 2427 } else if (nodes_allowed) { 2428 /* 2429 * per node hstate attribute: adjust count to global, 2430 * but restrict alloc/free to the specified node. 2431 */ 2432 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2433 init_nodemask_of_node(nodes_allowed, nid); 2434 } else 2435 nodes_allowed = &node_states[N_MEMORY]; 2436 2437 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2438 2439 if (nodes_allowed != &node_states[N_MEMORY]) 2440 NODEMASK_FREE(nodes_allowed); 2441 2442 return len; 2443 out: 2444 NODEMASK_FREE(nodes_allowed); 2445 return err; 2446 } 2447 2448 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2449 struct kobject *kobj, const char *buf, 2450 size_t len) 2451 { 2452 struct hstate *h; 2453 unsigned long count; 2454 int nid; 2455 int err; 2456 2457 err = kstrtoul(buf, 10, &count); 2458 if (err) 2459 return err; 2460 2461 h = kobj_to_hstate(kobj, &nid); 2462 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2463 } 2464 2465 static ssize_t nr_hugepages_show(struct kobject *kobj, 2466 struct kobj_attribute *attr, char *buf) 2467 { 2468 return nr_hugepages_show_common(kobj, attr, buf); 2469 } 2470 2471 static ssize_t nr_hugepages_store(struct kobject *kobj, 2472 struct kobj_attribute *attr, const char *buf, size_t len) 2473 { 2474 return nr_hugepages_store_common(false, kobj, buf, len); 2475 } 2476 HSTATE_ATTR(nr_hugepages); 2477 2478 #ifdef CONFIG_NUMA 2479 2480 /* 2481 * hstate attribute for optionally mempolicy-based constraint on persistent 2482 * huge page alloc/free. 2483 */ 2484 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2485 struct kobj_attribute *attr, char *buf) 2486 { 2487 return nr_hugepages_show_common(kobj, attr, buf); 2488 } 2489 2490 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2491 struct kobj_attribute *attr, const char *buf, size_t len) 2492 { 2493 return nr_hugepages_store_common(true, kobj, buf, len); 2494 } 2495 HSTATE_ATTR(nr_hugepages_mempolicy); 2496 #endif 2497 2498 2499 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2500 struct kobj_attribute *attr, char *buf) 2501 { 2502 struct hstate *h = kobj_to_hstate(kobj, NULL); 2503 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2504 } 2505 2506 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2507 struct kobj_attribute *attr, const char *buf, size_t count) 2508 { 2509 int err; 2510 unsigned long input; 2511 struct hstate *h = kobj_to_hstate(kobj, NULL); 2512 2513 if (hstate_is_gigantic(h)) 2514 return -EINVAL; 2515 2516 err = kstrtoul(buf, 10, &input); 2517 if (err) 2518 return err; 2519 2520 spin_lock(&hugetlb_lock); 2521 h->nr_overcommit_huge_pages = input; 2522 spin_unlock(&hugetlb_lock); 2523 2524 return count; 2525 } 2526 HSTATE_ATTR(nr_overcommit_hugepages); 2527 2528 static ssize_t free_hugepages_show(struct kobject *kobj, 2529 struct kobj_attribute *attr, char *buf) 2530 { 2531 struct hstate *h; 2532 unsigned long free_huge_pages; 2533 int nid; 2534 2535 h = kobj_to_hstate(kobj, &nid); 2536 if (nid == NUMA_NO_NODE) 2537 free_huge_pages = h->free_huge_pages; 2538 else 2539 free_huge_pages = h->free_huge_pages_node[nid]; 2540 2541 return sprintf(buf, "%lu\n", free_huge_pages); 2542 } 2543 HSTATE_ATTR_RO(free_hugepages); 2544 2545 static ssize_t resv_hugepages_show(struct kobject *kobj, 2546 struct kobj_attribute *attr, char *buf) 2547 { 2548 struct hstate *h = kobj_to_hstate(kobj, NULL); 2549 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2550 } 2551 HSTATE_ATTR_RO(resv_hugepages); 2552 2553 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2554 struct kobj_attribute *attr, char *buf) 2555 { 2556 struct hstate *h; 2557 unsigned long surplus_huge_pages; 2558 int nid; 2559 2560 h = kobj_to_hstate(kobj, &nid); 2561 if (nid == NUMA_NO_NODE) 2562 surplus_huge_pages = h->surplus_huge_pages; 2563 else 2564 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2565 2566 return sprintf(buf, "%lu\n", surplus_huge_pages); 2567 } 2568 HSTATE_ATTR_RO(surplus_hugepages); 2569 2570 static struct attribute *hstate_attrs[] = { 2571 &nr_hugepages_attr.attr, 2572 &nr_overcommit_hugepages_attr.attr, 2573 &free_hugepages_attr.attr, 2574 &resv_hugepages_attr.attr, 2575 &surplus_hugepages_attr.attr, 2576 #ifdef CONFIG_NUMA 2577 &nr_hugepages_mempolicy_attr.attr, 2578 #endif 2579 NULL, 2580 }; 2581 2582 static const struct attribute_group hstate_attr_group = { 2583 .attrs = hstate_attrs, 2584 }; 2585 2586 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2587 struct kobject **hstate_kobjs, 2588 const struct attribute_group *hstate_attr_group) 2589 { 2590 int retval; 2591 int hi = hstate_index(h); 2592 2593 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2594 if (!hstate_kobjs[hi]) 2595 return -ENOMEM; 2596 2597 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2598 if (retval) 2599 kobject_put(hstate_kobjs[hi]); 2600 2601 return retval; 2602 } 2603 2604 static void __init hugetlb_sysfs_init(void) 2605 { 2606 struct hstate *h; 2607 int err; 2608 2609 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2610 if (!hugepages_kobj) 2611 return; 2612 2613 for_each_hstate(h) { 2614 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2615 hstate_kobjs, &hstate_attr_group); 2616 if (err) 2617 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2618 } 2619 } 2620 2621 #ifdef CONFIG_NUMA 2622 2623 /* 2624 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2625 * with node devices in node_devices[] using a parallel array. The array 2626 * index of a node device or _hstate == node id. 2627 * This is here to avoid any static dependency of the node device driver, in 2628 * the base kernel, on the hugetlb module. 2629 */ 2630 struct node_hstate { 2631 struct kobject *hugepages_kobj; 2632 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2633 }; 2634 static struct node_hstate node_hstates[MAX_NUMNODES]; 2635 2636 /* 2637 * A subset of global hstate attributes for node devices 2638 */ 2639 static struct attribute *per_node_hstate_attrs[] = { 2640 &nr_hugepages_attr.attr, 2641 &free_hugepages_attr.attr, 2642 &surplus_hugepages_attr.attr, 2643 NULL, 2644 }; 2645 2646 static const struct attribute_group per_node_hstate_attr_group = { 2647 .attrs = per_node_hstate_attrs, 2648 }; 2649 2650 /* 2651 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2652 * Returns node id via non-NULL nidp. 2653 */ 2654 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2655 { 2656 int nid; 2657 2658 for (nid = 0; nid < nr_node_ids; nid++) { 2659 struct node_hstate *nhs = &node_hstates[nid]; 2660 int i; 2661 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2662 if (nhs->hstate_kobjs[i] == kobj) { 2663 if (nidp) 2664 *nidp = nid; 2665 return &hstates[i]; 2666 } 2667 } 2668 2669 BUG(); 2670 return NULL; 2671 } 2672 2673 /* 2674 * Unregister hstate attributes from a single node device. 2675 * No-op if no hstate attributes attached. 2676 */ 2677 static void hugetlb_unregister_node(struct node *node) 2678 { 2679 struct hstate *h; 2680 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2681 2682 if (!nhs->hugepages_kobj) 2683 return; /* no hstate attributes */ 2684 2685 for_each_hstate(h) { 2686 int idx = hstate_index(h); 2687 if (nhs->hstate_kobjs[idx]) { 2688 kobject_put(nhs->hstate_kobjs[idx]); 2689 nhs->hstate_kobjs[idx] = NULL; 2690 } 2691 } 2692 2693 kobject_put(nhs->hugepages_kobj); 2694 nhs->hugepages_kobj = NULL; 2695 } 2696 2697 2698 /* 2699 * Register hstate attributes for a single node device. 2700 * No-op if attributes already registered. 2701 */ 2702 static void hugetlb_register_node(struct node *node) 2703 { 2704 struct hstate *h; 2705 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2706 int err; 2707 2708 if (nhs->hugepages_kobj) 2709 return; /* already allocated */ 2710 2711 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2712 &node->dev.kobj); 2713 if (!nhs->hugepages_kobj) 2714 return; 2715 2716 for_each_hstate(h) { 2717 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2718 nhs->hstate_kobjs, 2719 &per_node_hstate_attr_group); 2720 if (err) { 2721 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2722 h->name, node->dev.id); 2723 hugetlb_unregister_node(node); 2724 break; 2725 } 2726 } 2727 } 2728 2729 /* 2730 * hugetlb init time: register hstate attributes for all registered node 2731 * devices of nodes that have memory. All on-line nodes should have 2732 * registered their associated device by this time. 2733 */ 2734 static void __init hugetlb_register_all_nodes(void) 2735 { 2736 int nid; 2737 2738 for_each_node_state(nid, N_MEMORY) { 2739 struct node *node = node_devices[nid]; 2740 if (node->dev.id == nid) 2741 hugetlb_register_node(node); 2742 } 2743 2744 /* 2745 * Let the node device driver know we're here so it can 2746 * [un]register hstate attributes on node hotplug. 2747 */ 2748 register_hugetlbfs_with_node(hugetlb_register_node, 2749 hugetlb_unregister_node); 2750 } 2751 #else /* !CONFIG_NUMA */ 2752 2753 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2754 { 2755 BUG(); 2756 if (nidp) 2757 *nidp = -1; 2758 return NULL; 2759 } 2760 2761 static void hugetlb_register_all_nodes(void) { } 2762 2763 #endif 2764 2765 static int __init hugetlb_init(void) 2766 { 2767 int i; 2768 2769 if (!hugepages_supported()) 2770 return 0; 2771 2772 if (!size_to_hstate(default_hstate_size)) { 2773 if (default_hstate_size != 0) { 2774 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2775 default_hstate_size, HPAGE_SIZE); 2776 } 2777 2778 default_hstate_size = HPAGE_SIZE; 2779 if (!size_to_hstate(default_hstate_size)) 2780 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2781 } 2782 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2783 if (default_hstate_max_huge_pages) { 2784 if (!default_hstate.max_huge_pages) 2785 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2786 } 2787 2788 hugetlb_init_hstates(); 2789 gather_bootmem_prealloc(); 2790 report_hugepages(); 2791 2792 hugetlb_sysfs_init(); 2793 hugetlb_register_all_nodes(); 2794 hugetlb_cgroup_file_init(); 2795 2796 #ifdef CONFIG_SMP 2797 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2798 #else 2799 num_fault_mutexes = 1; 2800 #endif 2801 hugetlb_fault_mutex_table = 2802 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2803 GFP_KERNEL); 2804 BUG_ON(!hugetlb_fault_mutex_table); 2805 2806 for (i = 0; i < num_fault_mutexes; i++) 2807 mutex_init(&hugetlb_fault_mutex_table[i]); 2808 return 0; 2809 } 2810 subsys_initcall(hugetlb_init); 2811 2812 /* Should be called on processing a hugepagesz=... option */ 2813 void __init hugetlb_bad_size(void) 2814 { 2815 parsed_valid_hugepagesz = false; 2816 } 2817 2818 void __init hugetlb_add_hstate(unsigned int order) 2819 { 2820 struct hstate *h; 2821 unsigned long i; 2822 2823 if (size_to_hstate(PAGE_SIZE << order)) { 2824 pr_warn("hugepagesz= specified twice, ignoring\n"); 2825 return; 2826 } 2827 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2828 BUG_ON(order == 0); 2829 h = &hstates[hugetlb_max_hstate++]; 2830 h->order = order; 2831 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2832 h->nr_huge_pages = 0; 2833 h->free_huge_pages = 0; 2834 for (i = 0; i < MAX_NUMNODES; ++i) 2835 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2836 INIT_LIST_HEAD(&h->hugepage_activelist); 2837 h->next_nid_to_alloc = first_memory_node; 2838 h->next_nid_to_free = first_memory_node; 2839 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2840 huge_page_size(h)/1024); 2841 2842 parsed_hstate = h; 2843 } 2844 2845 static int __init hugetlb_nrpages_setup(char *s) 2846 { 2847 unsigned long *mhp; 2848 static unsigned long *last_mhp; 2849 2850 if (!parsed_valid_hugepagesz) { 2851 pr_warn("hugepages = %s preceded by " 2852 "an unsupported hugepagesz, ignoring\n", s); 2853 parsed_valid_hugepagesz = true; 2854 return 1; 2855 } 2856 /* 2857 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2858 * so this hugepages= parameter goes to the "default hstate". 2859 */ 2860 else if (!hugetlb_max_hstate) 2861 mhp = &default_hstate_max_huge_pages; 2862 else 2863 mhp = &parsed_hstate->max_huge_pages; 2864 2865 if (mhp == last_mhp) { 2866 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2867 return 1; 2868 } 2869 2870 if (sscanf(s, "%lu", mhp) <= 0) 2871 *mhp = 0; 2872 2873 /* 2874 * Global state is always initialized later in hugetlb_init. 2875 * But we need to allocate >= MAX_ORDER hstates here early to still 2876 * use the bootmem allocator. 2877 */ 2878 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2879 hugetlb_hstate_alloc_pages(parsed_hstate); 2880 2881 last_mhp = mhp; 2882 2883 return 1; 2884 } 2885 __setup("hugepages=", hugetlb_nrpages_setup); 2886 2887 static int __init hugetlb_default_setup(char *s) 2888 { 2889 default_hstate_size = memparse(s, &s); 2890 return 1; 2891 } 2892 __setup("default_hugepagesz=", hugetlb_default_setup); 2893 2894 static unsigned int cpuset_mems_nr(unsigned int *array) 2895 { 2896 int node; 2897 unsigned int nr = 0; 2898 2899 for_each_node_mask(node, cpuset_current_mems_allowed) 2900 nr += array[node]; 2901 2902 return nr; 2903 } 2904 2905 #ifdef CONFIG_SYSCTL 2906 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2907 struct ctl_table *table, int write, 2908 void __user *buffer, size_t *length, loff_t *ppos) 2909 { 2910 struct hstate *h = &default_hstate; 2911 unsigned long tmp = h->max_huge_pages; 2912 int ret; 2913 2914 if (!hugepages_supported()) 2915 return -EOPNOTSUPP; 2916 2917 table->data = &tmp; 2918 table->maxlen = sizeof(unsigned long); 2919 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2920 if (ret) 2921 goto out; 2922 2923 if (write) 2924 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2925 NUMA_NO_NODE, tmp, *length); 2926 out: 2927 return ret; 2928 } 2929 2930 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2931 void __user *buffer, size_t *length, loff_t *ppos) 2932 { 2933 2934 return hugetlb_sysctl_handler_common(false, table, write, 2935 buffer, length, ppos); 2936 } 2937 2938 #ifdef CONFIG_NUMA 2939 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2940 void __user *buffer, size_t *length, loff_t *ppos) 2941 { 2942 return hugetlb_sysctl_handler_common(true, table, write, 2943 buffer, length, ppos); 2944 } 2945 #endif /* CONFIG_NUMA */ 2946 2947 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2948 void __user *buffer, 2949 size_t *length, loff_t *ppos) 2950 { 2951 struct hstate *h = &default_hstate; 2952 unsigned long tmp; 2953 int ret; 2954 2955 if (!hugepages_supported()) 2956 return -EOPNOTSUPP; 2957 2958 tmp = h->nr_overcommit_huge_pages; 2959 2960 if (write && hstate_is_gigantic(h)) 2961 return -EINVAL; 2962 2963 table->data = &tmp; 2964 table->maxlen = sizeof(unsigned long); 2965 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2966 if (ret) 2967 goto out; 2968 2969 if (write) { 2970 spin_lock(&hugetlb_lock); 2971 h->nr_overcommit_huge_pages = tmp; 2972 spin_unlock(&hugetlb_lock); 2973 } 2974 out: 2975 return ret; 2976 } 2977 2978 #endif /* CONFIG_SYSCTL */ 2979 2980 void hugetlb_report_meminfo(struct seq_file *m) 2981 { 2982 struct hstate *h; 2983 unsigned long total = 0; 2984 2985 if (!hugepages_supported()) 2986 return; 2987 2988 for_each_hstate(h) { 2989 unsigned long count = h->nr_huge_pages; 2990 2991 total += (PAGE_SIZE << huge_page_order(h)) * count; 2992 2993 if (h == &default_hstate) 2994 seq_printf(m, 2995 "HugePages_Total: %5lu\n" 2996 "HugePages_Free: %5lu\n" 2997 "HugePages_Rsvd: %5lu\n" 2998 "HugePages_Surp: %5lu\n" 2999 "Hugepagesize: %8lu kB\n", 3000 count, 3001 h->free_huge_pages, 3002 h->resv_huge_pages, 3003 h->surplus_huge_pages, 3004 (PAGE_SIZE << huge_page_order(h)) / 1024); 3005 } 3006 3007 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3008 } 3009 3010 int hugetlb_report_node_meminfo(int nid, char *buf) 3011 { 3012 struct hstate *h = &default_hstate; 3013 if (!hugepages_supported()) 3014 return 0; 3015 return sprintf(buf, 3016 "Node %d HugePages_Total: %5u\n" 3017 "Node %d HugePages_Free: %5u\n" 3018 "Node %d HugePages_Surp: %5u\n", 3019 nid, h->nr_huge_pages_node[nid], 3020 nid, h->free_huge_pages_node[nid], 3021 nid, h->surplus_huge_pages_node[nid]); 3022 } 3023 3024 void hugetlb_show_meminfo(void) 3025 { 3026 struct hstate *h; 3027 int nid; 3028 3029 if (!hugepages_supported()) 3030 return; 3031 3032 for_each_node_state(nid, N_MEMORY) 3033 for_each_hstate(h) 3034 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3035 nid, 3036 h->nr_huge_pages_node[nid], 3037 h->free_huge_pages_node[nid], 3038 h->surplus_huge_pages_node[nid], 3039 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3040 } 3041 3042 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3043 { 3044 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3045 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3046 } 3047 3048 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3049 unsigned long hugetlb_total_pages(void) 3050 { 3051 struct hstate *h; 3052 unsigned long nr_total_pages = 0; 3053 3054 for_each_hstate(h) 3055 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3056 return nr_total_pages; 3057 } 3058 3059 static int hugetlb_acct_memory(struct hstate *h, long delta) 3060 { 3061 int ret = -ENOMEM; 3062 3063 spin_lock(&hugetlb_lock); 3064 /* 3065 * When cpuset is configured, it breaks the strict hugetlb page 3066 * reservation as the accounting is done on a global variable. Such 3067 * reservation is completely rubbish in the presence of cpuset because 3068 * the reservation is not checked against page availability for the 3069 * current cpuset. Application can still potentially OOM'ed by kernel 3070 * with lack of free htlb page in cpuset that the task is in. 3071 * Attempt to enforce strict accounting with cpuset is almost 3072 * impossible (or too ugly) because cpuset is too fluid that 3073 * task or memory node can be dynamically moved between cpusets. 3074 * 3075 * The change of semantics for shared hugetlb mapping with cpuset is 3076 * undesirable. However, in order to preserve some of the semantics, 3077 * we fall back to check against current free page availability as 3078 * a best attempt and hopefully to minimize the impact of changing 3079 * semantics that cpuset has. 3080 */ 3081 if (delta > 0) { 3082 if (gather_surplus_pages(h, delta) < 0) 3083 goto out; 3084 3085 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3086 return_unused_surplus_pages(h, delta); 3087 goto out; 3088 } 3089 } 3090 3091 ret = 0; 3092 if (delta < 0) 3093 return_unused_surplus_pages(h, (unsigned long) -delta); 3094 3095 out: 3096 spin_unlock(&hugetlb_lock); 3097 return ret; 3098 } 3099 3100 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3101 { 3102 struct resv_map *resv = vma_resv_map(vma); 3103 3104 /* 3105 * This new VMA should share its siblings reservation map if present. 3106 * The VMA will only ever have a valid reservation map pointer where 3107 * it is being copied for another still existing VMA. As that VMA 3108 * has a reference to the reservation map it cannot disappear until 3109 * after this open call completes. It is therefore safe to take a 3110 * new reference here without additional locking. 3111 */ 3112 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3113 kref_get(&resv->refs); 3114 } 3115 3116 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3117 { 3118 struct hstate *h = hstate_vma(vma); 3119 struct resv_map *resv = vma_resv_map(vma); 3120 struct hugepage_subpool *spool = subpool_vma(vma); 3121 unsigned long reserve, start, end; 3122 long gbl_reserve; 3123 3124 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3125 return; 3126 3127 start = vma_hugecache_offset(h, vma, vma->vm_start); 3128 end = vma_hugecache_offset(h, vma, vma->vm_end); 3129 3130 reserve = (end - start) - region_count(resv, start, end); 3131 3132 kref_put(&resv->refs, resv_map_release); 3133 3134 if (reserve) { 3135 /* 3136 * Decrement reserve counts. The global reserve count may be 3137 * adjusted if the subpool has a minimum size. 3138 */ 3139 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3140 hugetlb_acct_memory(h, -gbl_reserve); 3141 } 3142 } 3143 3144 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3145 { 3146 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3147 return -EINVAL; 3148 return 0; 3149 } 3150 3151 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3152 { 3153 struct hstate *hstate = hstate_vma(vma); 3154 3155 return 1UL << huge_page_shift(hstate); 3156 } 3157 3158 /* 3159 * We cannot handle pagefaults against hugetlb pages at all. They cause 3160 * handle_mm_fault() to try to instantiate regular-sized pages in the 3161 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3162 * this far. 3163 */ 3164 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3165 { 3166 BUG(); 3167 return 0; 3168 } 3169 3170 const struct vm_operations_struct hugetlb_vm_ops = { 3171 .fault = hugetlb_vm_op_fault, 3172 .open = hugetlb_vm_op_open, 3173 .close = hugetlb_vm_op_close, 3174 .split = hugetlb_vm_op_split, 3175 .pagesize = hugetlb_vm_op_pagesize, 3176 }; 3177 3178 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3179 int writable) 3180 { 3181 pte_t entry; 3182 3183 if (writable) { 3184 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3185 vma->vm_page_prot))); 3186 } else { 3187 entry = huge_pte_wrprotect(mk_huge_pte(page, 3188 vma->vm_page_prot)); 3189 } 3190 entry = pte_mkyoung(entry); 3191 entry = pte_mkhuge(entry); 3192 entry = arch_make_huge_pte(entry, vma, page, writable); 3193 3194 return entry; 3195 } 3196 3197 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3198 unsigned long address, pte_t *ptep) 3199 { 3200 pte_t entry; 3201 3202 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3203 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3204 update_mmu_cache(vma, address, ptep); 3205 } 3206 3207 bool is_hugetlb_entry_migration(pte_t pte) 3208 { 3209 swp_entry_t swp; 3210 3211 if (huge_pte_none(pte) || pte_present(pte)) 3212 return false; 3213 swp = pte_to_swp_entry(pte); 3214 if (non_swap_entry(swp) && is_migration_entry(swp)) 3215 return true; 3216 else 3217 return false; 3218 } 3219 3220 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3221 { 3222 swp_entry_t swp; 3223 3224 if (huge_pte_none(pte) || pte_present(pte)) 3225 return 0; 3226 swp = pte_to_swp_entry(pte); 3227 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3228 return 1; 3229 else 3230 return 0; 3231 } 3232 3233 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3234 struct vm_area_struct *vma) 3235 { 3236 pte_t *src_pte, *dst_pte, entry; 3237 struct page *ptepage; 3238 unsigned long addr; 3239 int cow; 3240 struct hstate *h = hstate_vma(vma); 3241 unsigned long sz = huge_page_size(h); 3242 unsigned long mmun_start; /* For mmu_notifiers */ 3243 unsigned long mmun_end; /* For mmu_notifiers */ 3244 int ret = 0; 3245 3246 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3247 3248 mmun_start = vma->vm_start; 3249 mmun_end = vma->vm_end; 3250 if (cow) 3251 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3252 3253 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3254 spinlock_t *src_ptl, *dst_ptl; 3255 src_pte = huge_pte_offset(src, addr, sz); 3256 if (!src_pte) 3257 continue; 3258 dst_pte = huge_pte_alloc(dst, addr, sz); 3259 if (!dst_pte) { 3260 ret = -ENOMEM; 3261 break; 3262 } 3263 3264 /* If the pagetables are shared don't copy or take references */ 3265 if (dst_pte == src_pte) 3266 continue; 3267 3268 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3269 src_ptl = huge_pte_lockptr(h, src, src_pte); 3270 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3271 entry = huge_ptep_get(src_pte); 3272 if (huge_pte_none(entry)) { /* skip none entry */ 3273 ; 3274 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3275 is_hugetlb_entry_hwpoisoned(entry))) { 3276 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3277 3278 if (is_write_migration_entry(swp_entry) && cow) { 3279 /* 3280 * COW mappings require pages in both 3281 * parent and child to be set to read. 3282 */ 3283 make_migration_entry_read(&swp_entry); 3284 entry = swp_entry_to_pte(swp_entry); 3285 set_huge_swap_pte_at(src, addr, src_pte, 3286 entry, sz); 3287 } 3288 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3289 } else { 3290 if (cow) { 3291 /* 3292 * No need to notify as we are downgrading page 3293 * table protection not changing it to point 3294 * to a new page. 3295 * 3296 * See Documentation/vm/mmu_notifier.rst 3297 */ 3298 huge_ptep_set_wrprotect(src, addr, src_pte); 3299 } 3300 entry = huge_ptep_get(src_pte); 3301 ptepage = pte_page(entry); 3302 get_page(ptepage); 3303 page_dup_rmap(ptepage, true); 3304 set_huge_pte_at(dst, addr, dst_pte, entry); 3305 hugetlb_count_add(pages_per_huge_page(h), dst); 3306 } 3307 spin_unlock(src_ptl); 3308 spin_unlock(dst_ptl); 3309 } 3310 3311 if (cow) 3312 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3313 3314 return ret; 3315 } 3316 3317 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3318 unsigned long start, unsigned long end, 3319 struct page *ref_page) 3320 { 3321 struct mm_struct *mm = vma->vm_mm; 3322 unsigned long address; 3323 pte_t *ptep; 3324 pte_t pte; 3325 spinlock_t *ptl; 3326 struct page *page; 3327 struct hstate *h = hstate_vma(vma); 3328 unsigned long sz = huge_page_size(h); 3329 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3330 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3331 3332 WARN_ON(!is_vm_hugetlb_page(vma)); 3333 BUG_ON(start & ~huge_page_mask(h)); 3334 BUG_ON(end & ~huge_page_mask(h)); 3335 3336 /* 3337 * This is a hugetlb vma, all the pte entries should point 3338 * to huge page. 3339 */ 3340 tlb_remove_check_page_size_change(tlb, sz); 3341 tlb_start_vma(tlb, vma); 3342 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3343 address = start; 3344 for (; address < end; address += sz) { 3345 ptep = huge_pte_offset(mm, address, sz); 3346 if (!ptep) 3347 continue; 3348 3349 ptl = huge_pte_lock(h, mm, ptep); 3350 if (huge_pmd_unshare(mm, &address, ptep)) { 3351 spin_unlock(ptl); 3352 continue; 3353 } 3354 3355 pte = huge_ptep_get(ptep); 3356 if (huge_pte_none(pte)) { 3357 spin_unlock(ptl); 3358 continue; 3359 } 3360 3361 /* 3362 * Migrating hugepage or HWPoisoned hugepage is already 3363 * unmapped and its refcount is dropped, so just clear pte here. 3364 */ 3365 if (unlikely(!pte_present(pte))) { 3366 huge_pte_clear(mm, address, ptep, sz); 3367 spin_unlock(ptl); 3368 continue; 3369 } 3370 3371 page = pte_page(pte); 3372 /* 3373 * If a reference page is supplied, it is because a specific 3374 * page is being unmapped, not a range. Ensure the page we 3375 * are about to unmap is the actual page of interest. 3376 */ 3377 if (ref_page) { 3378 if (page != ref_page) { 3379 spin_unlock(ptl); 3380 continue; 3381 } 3382 /* 3383 * Mark the VMA as having unmapped its page so that 3384 * future faults in this VMA will fail rather than 3385 * looking like data was lost 3386 */ 3387 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3388 } 3389 3390 pte = huge_ptep_get_and_clear(mm, address, ptep); 3391 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3392 if (huge_pte_dirty(pte)) 3393 set_page_dirty(page); 3394 3395 hugetlb_count_sub(pages_per_huge_page(h), mm); 3396 page_remove_rmap(page, true); 3397 3398 spin_unlock(ptl); 3399 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3400 /* 3401 * Bail out after unmapping reference page if supplied 3402 */ 3403 if (ref_page) 3404 break; 3405 } 3406 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3407 tlb_end_vma(tlb, vma); 3408 } 3409 3410 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3411 struct vm_area_struct *vma, unsigned long start, 3412 unsigned long end, struct page *ref_page) 3413 { 3414 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3415 3416 /* 3417 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3418 * test will fail on a vma being torn down, and not grab a page table 3419 * on its way out. We're lucky that the flag has such an appropriate 3420 * name, and can in fact be safely cleared here. We could clear it 3421 * before the __unmap_hugepage_range above, but all that's necessary 3422 * is to clear it before releasing the i_mmap_rwsem. This works 3423 * because in the context this is called, the VMA is about to be 3424 * destroyed and the i_mmap_rwsem is held. 3425 */ 3426 vma->vm_flags &= ~VM_MAYSHARE; 3427 } 3428 3429 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3430 unsigned long end, struct page *ref_page) 3431 { 3432 struct mm_struct *mm; 3433 struct mmu_gather tlb; 3434 3435 mm = vma->vm_mm; 3436 3437 tlb_gather_mmu(&tlb, mm, start, end); 3438 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3439 tlb_finish_mmu(&tlb, start, end); 3440 } 3441 3442 /* 3443 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3444 * mappping it owns the reserve page for. The intention is to unmap the page 3445 * from other VMAs and let the children be SIGKILLed if they are faulting the 3446 * same region. 3447 */ 3448 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3449 struct page *page, unsigned long address) 3450 { 3451 struct hstate *h = hstate_vma(vma); 3452 struct vm_area_struct *iter_vma; 3453 struct address_space *mapping; 3454 pgoff_t pgoff; 3455 3456 /* 3457 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3458 * from page cache lookup which is in HPAGE_SIZE units. 3459 */ 3460 address = address & huge_page_mask(h); 3461 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3462 vma->vm_pgoff; 3463 mapping = vma->vm_file->f_mapping; 3464 3465 /* 3466 * Take the mapping lock for the duration of the table walk. As 3467 * this mapping should be shared between all the VMAs, 3468 * __unmap_hugepage_range() is called as the lock is already held 3469 */ 3470 i_mmap_lock_write(mapping); 3471 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3472 /* Do not unmap the current VMA */ 3473 if (iter_vma == vma) 3474 continue; 3475 3476 /* 3477 * Shared VMAs have their own reserves and do not affect 3478 * MAP_PRIVATE accounting but it is possible that a shared 3479 * VMA is using the same page so check and skip such VMAs. 3480 */ 3481 if (iter_vma->vm_flags & VM_MAYSHARE) 3482 continue; 3483 3484 /* 3485 * Unmap the page from other VMAs without their own reserves. 3486 * They get marked to be SIGKILLed if they fault in these 3487 * areas. This is because a future no-page fault on this VMA 3488 * could insert a zeroed page instead of the data existing 3489 * from the time of fork. This would look like data corruption 3490 */ 3491 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3492 unmap_hugepage_range(iter_vma, address, 3493 address + huge_page_size(h), page); 3494 } 3495 i_mmap_unlock_write(mapping); 3496 } 3497 3498 /* 3499 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3500 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3501 * cannot race with other handlers or page migration. 3502 * Keep the pte_same checks anyway to make transition from the mutex easier. 3503 */ 3504 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3505 unsigned long address, pte_t *ptep, 3506 struct page *pagecache_page, spinlock_t *ptl) 3507 { 3508 pte_t pte; 3509 struct hstate *h = hstate_vma(vma); 3510 struct page *old_page, *new_page; 3511 int ret = 0, outside_reserve = 0; 3512 unsigned long mmun_start; /* For mmu_notifiers */ 3513 unsigned long mmun_end; /* For mmu_notifiers */ 3514 3515 pte = huge_ptep_get(ptep); 3516 old_page = pte_page(pte); 3517 3518 retry_avoidcopy: 3519 /* If no-one else is actually using this page, avoid the copy 3520 * and just make the page writable */ 3521 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3522 page_move_anon_rmap(old_page, vma); 3523 set_huge_ptep_writable(vma, address, ptep); 3524 return 0; 3525 } 3526 3527 /* 3528 * If the process that created a MAP_PRIVATE mapping is about to 3529 * perform a COW due to a shared page count, attempt to satisfy 3530 * the allocation without using the existing reserves. The pagecache 3531 * page is used to determine if the reserve at this address was 3532 * consumed or not. If reserves were used, a partial faulted mapping 3533 * at the time of fork() could consume its reserves on COW instead 3534 * of the full address range. 3535 */ 3536 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3537 old_page != pagecache_page) 3538 outside_reserve = 1; 3539 3540 get_page(old_page); 3541 3542 /* 3543 * Drop page table lock as buddy allocator may be called. It will 3544 * be acquired again before returning to the caller, as expected. 3545 */ 3546 spin_unlock(ptl); 3547 new_page = alloc_huge_page(vma, address, outside_reserve); 3548 3549 if (IS_ERR(new_page)) { 3550 /* 3551 * If a process owning a MAP_PRIVATE mapping fails to COW, 3552 * it is due to references held by a child and an insufficient 3553 * huge page pool. To guarantee the original mappers 3554 * reliability, unmap the page from child processes. The child 3555 * may get SIGKILLed if it later faults. 3556 */ 3557 if (outside_reserve) { 3558 put_page(old_page); 3559 BUG_ON(huge_pte_none(pte)); 3560 unmap_ref_private(mm, vma, old_page, address); 3561 BUG_ON(huge_pte_none(pte)); 3562 spin_lock(ptl); 3563 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3564 huge_page_size(h)); 3565 if (likely(ptep && 3566 pte_same(huge_ptep_get(ptep), pte))) 3567 goto retry_avoidcopy; 3568 /* 3569 * race occurs while re-acquiring page table 3570 * lock, and our job is done. 3571 */ 3572 return 0; 3573 } 3574 3575 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3576 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3577 goto out_release_old; 3578 } 3579 3580 /* 3581 * When the original hugepage is shared one, it does not have 3582 * anon_vma prepared. 3583 */ 3584 if (unlikely(anon_vma_prepare(vma))) { 3585 ret = VM_FAULT_OOM; 3586 goto out_release_all; 3587 } 3588 3589 copy_user_huge_page(new_page, old_page, address, vma, 3590 pages_per_huge_page(h)); 3591 __SetPageUptodate(new_page); 3592 set_page_huge_active(new_page); 3593 3594 mmun_start = address & huge_page_mask(h); 3595 mmun_end = mmun_start + huge_page_size(h); 3596 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3597 3598 /* 3599 * Retake the page table lock to check for racing updates 3600 * before the page tables are altered 3601 */ 3602 spin_lock(ptl); 3603 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3604 huge_page_size(h)); 3605 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3606 ClearPagePrivate(new_page); 3607 3608 /* Break COW */ 3609 huge_ptep_clear_flush(vma, address, ptep); 3610 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3611 set_huge_pte_at(mm, address, ptep, 3612 make_huge_pte(vma, new_page, 1)); 3613 page_remove_rmap(old_page, true); 3614 hugepage_add_new_anon_rmap(new_page, vma, address); 3615 /* Make the old page be freed below */ 3616 new_page = old_page; 3617 } 3618 spin_unlock(ptl); 3619 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3620 out_release_all: 3621 restore_reserve_on_error(h, vma, address, new_page); 3622 put_page(new_page); 3623 out_release_old: 3624 put_page(old_page); 3625 3626 spin_lock(ptl); /* Caller expects lock to be held */ 3627 return ret; 3628 } 3629 3630 /* Return the pagecache page at a given address within a VMA */ 3631 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3632 struct vm_area_struct *vma, unsigned long address) 3633 { 3634 struct address_space *mapping; 3635 pgoff_t idx; 3636 3637 mapping = vma->vm_file->f_mapping; 3638 idx = vma_hugecache_offset(h, vma, address); 3639 3640 return find_lock_page(mapping, idx); 3641 } 3642 3643 /* 3644 * Return whether there is a pagecache page to back given address within VMA. 3645 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3646 */ 3647 static bool hugetlbfs_pagecache_present(struct hstate *h, 3648 struct vm_area_struct *vma, unsigned long address) 3649 { 3650 struct address_space *mapping; 3651 pgoff_t idx; 3652 struct page *page; 3653 3654 mapping = vma->vm_file->f_mapping; 3655 idx = vma_hugecache_offset(h, vma, address); 3656 3657 page = find_get_page(mapping, idx); 3658 if (page) 3659 put_page(page); 3660 return page != NULL; 3661 } 3662 3663 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3664 pgoff_t idx) 3665 { 3666 struct inode *inode = mapping->host; 3667 struct hstate *h = hstate_inode(inode); 3668 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3669 3670 if (err) 3671 return err; 3672 ClearPagePrivate(page); 3673 3674 spin_lock(&inode->i_lock); 3675 inode->i_blocks += blocks_per_huge_page(h); 3676 spin_unlock(&inode->i_lock); 3677 return 0; 3678 } 3679 3680 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3681 struct address_space *mapping, pgoff_t idx, 3682 unsigned long address, pte_t *ptep, unsigned int flags) 3683 { 3684 struct hstate *h = hstate_vma(vma); 3685 int ret = VM_FAULT_SIGBUS; 3686 int anon_rmap = 0; 3687 unsigned long size; 3688 struct page *page; 3689 pte_t new_pte; 3690 spinlock_t *ptl; 3691 unsigned long haddr = address & huge_page_mask(h); 3692 3693 /* 3694 * Currently, we are forced to kill the process in the event the 3695 * original mapper has unmapped pages from the child due to a failed 3696 * COW. Warn that such a situation has occurred as it may not be obvious 3697 */ 3698 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3699 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3700 current->pid); 3701 return ret; 3702 } 3703 3704 /* 3705 * Use page lock to guard against racing truncation 3706 * before we get page_table_lock. 3707 */ 3708 retry: 3709 page = find_lock_page(mapping, idx); 3710 if (!page) { 3711 size = i_size_read(mapping->host) >> huge_page_shift(h); 3712 if (idx >= size) 3713 goto out; 3714 3715 /* 3716 * Check for page in userfault range 3717 */ 3718 if (userfaultfd_missing(vma)) { 3719 u32 hash; 3720 struct vm_fault vmf = { 3721 .vma = vma, 3722 .address = haddr, 3723 .flags = flags, 3724 /* 3725 * Hard to debug if it ends up being 3726 * used by a callee that assumes 3727 * something about the other 3728 * uninitialized fields... same as in 3729 * memory.c 3730 */ 3731 }; 3732 3733 /* 3734 * hugetlb_fault_mutex must be dropped before 3735 * handling userfault. Reacquire after handling 3736 * fault to make calling code simpler. 3737 */ 3738 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3739 idx, haddr); 3740 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3741 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3742 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3743 goto out; 3744 } 3745 3746 page = alloc_huge_page(vma, haddr, 0); 3747 if (IS_ERR(page)) { 3748 ret = PTR_ERR(page); 3749 if (ret == -ENOMEM) 3750 ret = VM_FAULT_OOM; 3751 else 3752 ret = VM_FAULT_SIGBUS; 3753 goto out; 3754 } 3755 clear_huge_page(page, address, pages_per_huge_page(h)); 3756 __SetPageUptodate(page); 3757 set_page_huge_active(page); 3758 3759 if (vma->vm_flags & VM_MAYSHARE) { 3760 int err = huge_add_to_page_cache(page, mapping, idx); 3761 if (err) { 3762 put_page(page); 3763 if (err == -EEXIST) 3764 goto retry; 3765 goto out; 3766 } 3767 } else { 3768 lock_page(page); 3769 if (unlikely(anon_vma_prepare(vma))) { 3770 ret = VM_FAULT_OOM; 3771 goto backout_unlocked; 3772 } 3773 anon_rmap = 1; 3774 } 3775 } else { 3776 /* 3777 * If memory error occurs between mmap() and fault, some process 3778 * don't have hwpoisoned swap entry for errored virtual address. 3779 * So we need to block hugepage fault by PG_hwpoison bit check. 3780 */ 3781 if (unlikely(PageHWPoison(page))) { 3782 ret = VM_FAULT_HWPOISON | 3783 VM_FAULT_SET_HINDEX(hstate_index(h)); 3784 goto backout_unlocked; 3785 } 3786 } 3787 3788 /* 3789 * If we are going to COW a private mapping later, we examine the 3790 * pending reservations for this page now. This will ensure that 3791 * any allocations necessary to record that reservation occur outside 3792 * the spinlock. 3793 */ 3794 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3795 if (vma_needs_reservation(h, vma, haddr) < 0) { 3796 ret = VM_FAULT_OOM; 3797 goto backout_unlocked; 3798 } 3799 /* Just decrements count, does not deallocate */ 3800 vma_end_reservation(h, vma, haddr); 3801 } 3802 3803 ptl = huge_pte_lock(h, mm, ptep); 3804 size = i_size_read(mapping->host) >> huge_page_shift(h); 3805 if (idx >= size) 3806 goto backout; 3807 3808 ret = 0; 3809 if (!huge_pte_none(huge_ptep_get(ptep))) 3810 goto backout; 3811 3812 if (anon_rmap) { 3813 ClearPagePrivate(page); 3814 hugepage_add_new_anon_rmap(page, vma, haddr); 3815 } else 3816 page_dup_rmap(page, true); 3817 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3818 && (vma->vm_flags & VM_SHARED))); 3819 set_huge_pte_at(mm, haddr, ptep, new_pte); 3820 3821 hugetlb_count_add(pages_per_huge_page(h), mm); 3822 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3823 /* Optimization, do the COW without a second fault */ 3824 ret = hugetlb_cow(mm, vma, haddr, ptep, page, ptl); 3825 } 3826 3827 spin_unlock(ptl); 3828 unlock_page(page); 3829 out: 3830 return ret; 3831 3832 backout: 3833 spin_unlock(ptl); 3834 backout_unlocked: 3835 unlock_page(page); 3836 restore_reserve_on_error(h, vma, haddr, page); 3837 put_page(page); 3838 goto out; 3839 } 3840 3841 #ifdef CONFIG_SMP 3842 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3843 struct vm_area_struct *vma, 3844 struct address_space *mapping, 3845 pgoff_t idx, unsigned long address) 3846 { 3847 unsigned long key[2]; 3848 u32 hash; 3849 3850 if (vma->vm_flags & VM_SHARED) { 3851 key[0] = (unsigned long) mapping; 3852 key[1] = idx; 3853 } else { 3854 key[0] = (unsigned long) mm; 3855 key[1] = address >> huge_page_shift(h); 3856 } 3857 3858 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3859 3860 return hash & (num_fault_mutexes - 1); 3861 } 3862 #else 3863 /* 3864 * For uniprocesor systems we always use a single mutex, so just 3865 * return 0 and avoid the hashing overhead. 3866 */ 3867 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3868 struct vm_area_struct *vma, 3869 struct address_space *mapping, 3870 pgoff_t idx, unsigned long address) 3871 { 3872 return 0; 3873 } 3874 #endif 3875 3876 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3877 unsigned long address, unsigned int flags) 3878 { 3879 pte_t *ptep, entry; 3880 spinlock_t *ptl; 3881 int ret; 3882 u32 hash; 3883 pgoff_t idx; 3884 struct page *page = NULL; 3885 struct page *pagecache_page = NULL; 3886 struct hstate *h = hstate_vma(vma); 3887 struct address_space *mapping; 3888 int need_wait_lock = 0; 3889 unsigned long haddr = address & huge_page_mask(h); 3890 3891 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3892 if (ptep) { 3893 entry = huge_ptep_get(ptep); 3894 if (unlikely(is_hugetlb_entry_migration(entry))) { 3895 migration_entry_wait_huge(vma, mm, ptep); 3896 return 0; 3897 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3898 return VM_FAULT_HWPOISON_LARGE | 3899 VM_FAULT_SET_HINDEX(hstate_index(h)); 3900 } else { 3901 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3902 if (!ptep) 3903 return VM_FAULT_OOM; 3904 } 3905 3906 mapping = vma->vm_file->f_mapping; 3907 idx = vma_hugecache_offset(h, vma, haddr); 3908 3909 /* 3910 * Serialize hugepage allocation and instantiation, so that we don't 3911 * get spurious allocation failures if two CPUs race to instantiate 3912 * the same page in the page cache. 3913 */ 3914 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); 3915 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3916 3917 entry = huge_ptep_get(ptep); 3918 if (huge_pte_none(entry)) { 3919 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3920 goto out_mutex; 3921 } 3922 3923 ret = 0; 3924 3925 /* 3926 * entry could be a migration/hwpoison entry at this point, so this 3927 * check prevents the kernel from going below assuming that we have 3928 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3929 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3930 * handle it. 3931 */ 3932 if (!pte_present(entry)) 3933 goto out_mutex; 3934 3935 /* 3936 * If we are going to COW the mapping later, we examine the pending 3937 * reservations for this page now. This will ensure that any 3938 * allocations necessary to record that reservation occur outside the 3939 * spinlock. For private mappings, we also lookup the pagecache 3940 * page now as it is used to determine if a reservation has been 3941 * consumed. 3942 */ 3943 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3944 if (vma_needs_reservation(h, vma, haddr) < 0) { 3945 ret = VM_FAULT_OOM; 3946 goto out_mutex; 3947 } 3948 /* Just decrements count, does not deallocate */ 3949 vma_end_reservation(h, vma, haddr); 3950 3951 if (!(vma->vm_flags & VM_MAYSHARE)) 3952 pagecache_page = hugetlbfs_pagecache_page(h, 3953 vma, haddr); 3954 } 3955 3956 ptl = huge_pte_lock(h, mm, ptep); 3957 3958 /* Check for a racing update before calling hugetlb_cow */ 3959 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3960 goto out_ptl; 3961 3962 /* 3963 * hugetlb_cow() requires page locks of pte_page(entry) and 3964 * pagecache_page, so here we need take the former one 3965 * when page != pagecache_page or !pagecache_page. 3966 */ 3967 page = pte_page(entry); 3968 if (page != pagecache_page) 3969 if (!trylock_page(page)) { 3970 need_wait_lock = 1; 3971 goto out_ptl; 3972 } 3973 3974 get_page(page); 3975 3976 if (flags & FAULT_FLAG_WRITE) { 3977 if (!huge_pte_write(entry)) { 3978 ret = hugetlb_cow(mm, vma, haddr, ptep, 3979 pagecache_page, ptl); 3980 goto out_put_page; 3981 } 3982 entry = huge_pte_mkdirty(entry); 3983 } 3984 entry = pte_mkyoung(entry); 3985 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 3986 flags & FAULT_FLAG_WRITE)) 3987 update_mmu_cache(vma, haddr, ptep); 3988 out_put_page: 3989 if (page != pagecache_page) 3990 unlock_page(page); 3991 put_page(page); 3992 out_ptl: 3993 spin_unlock(ptl); 3994 3995 if (pagecache_page) { 3996 unlock_page(pagecache_page); 3997 put_page(pagecache_page); 3998 } 3999 out_mutex: 4000 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4001 /* 4002 * Generally it's safe to hold refcount during waiting page lock. But 4003 * here we just wait to defer the next page fault to avoid busy loop and 4004 * the page is not used after unlocked before returning from the current 4005 * page fault. So we are safe from accessing freed page, even if we wait 4006 * here without taking refcount. 4007 */ 4008 if (need_wait_lock) 4009 wait_on_page_locked(page); 4010 return ret; 4011 } 4012 4013 /* 4014 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4015 * modifications for huge pages. 4016 */ 4017 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4018 pte_t *dst_pte, 4019 struct vm_area_struct *dst_vma, 4020 unsigned long dst_addr, 4021 unsigned long src_addr, 4022 struct page **pagep) 4023 { 4024 struct address_space *mapping; 4025 pgoff_t idx; 4026 unsigned long size; 4027 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4028 struct hstate *h = hstate_vma(dst_vma); 4029 pte_t _dst_pte; 4030 spinlock_t *ptl; 4031 int ret; 4032 struct page *page; 4033 4034 if (!*pagep) { 4035 ret = -ENOMEM; 4036 page = alloc_huge_page(dst_vma, dst_addr, 0); 4037 if (IS_ERR(page)) 4038 goto out; 4039 4040 ret = copy_huge_page_from_user(page, 4041 (const void __user *) src_addr, 4042 pages_per_huge_page(h), false); 4043 4044 /* fallback to copy_from_user outside mmap_sem */ 4045 if (unlikely(ret)) { 4046 ret = -EFAULT; 4047 *pagep = page; 4048 /* don't free the page */ 4049 goto out; 4050 } 4051 } else { 4052 page = *pagep; 4053 *pagep = NULL; 4054 } 4055 4056 /* 4057 * The memory barrier inside __SetPageUptodate makes sure that 4058 * preceding stores to the page contents become visible before 4059 * the set_pte_at() write. 4060 */ 4061 __SetPageUptodate(page); 4062 set_page_huge_active(page); 4063 4064 mapping = dst_vma->vm_file->f_mapping; 4065 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4066 4067 /* 4068 * If shared, add to page cache 4069 */ 4070 if (vm_shared) { 4071 size = i_size_read(mapping->host) >> huge_page_shift(h); 4072 ret = -EFAULT; 4073 if (idx >= size) 4074 goto out_release_nounlock; 4075 4076 /* 4077 * Serialization between remove_inode_hugepages() and 4078 * huge_add_to_page_cache() below happens through the 4079 * hugetlb_fault_mutex_table that here must be hold by 4080 * the caller. 4081 */ 4082 ret = huge_add_to_page_cache(page, mapping, idx); 4083 if (ret) 4084 goto out_release_nounlock; 4085 } 4086 4087 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4088 spin_lock(ptl); 4089 4090 /* 4091 * Recheck the i_size after holding PT lock to make sure not 4092 * to leave any page mapped (as page_mapped()) beyond the end 4093 * of the i_size (remove_inode_hugepages() is strict about 4094 * enforcing that). If we bail out here, we'll also leave a 4095 * page in the radix tree in the vm_shared case beyond the end 4096 * of the i_size, but remove_inode_hugepages() will take care 4097 * of it as soon as we drop the hugetlb_fault_mutex_table. 4098 */ 4099 size = i_size_read(mapping->host) >> huge_page_shift(h); 4100 ret = -EFAULT; 4101 if (idx >= size) 4102 goto out_release_unlock; 4103 4104 ret = -EEXIST; 4105 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4106 goto out_release_unlock; 4107 4108 if (vm_shared) { 4109 page_dup_rmap(page, true); 4110 } else { 4111 ClearPagePrivate(page); 4112 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4113 } 4114 4115 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4116 if (dst_vma->vm_flags & VM_WRITE) 4117 _dst_pte = huge_pte_mkdirty(_dst_pte); 4118 _dst_pte = pte_mkyoung(_dst_pte); 4119 4120 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4121 4122 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4123 dst_vma->vm_flags & VM_WRITE); 4124 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4125 4126 /* No need to invalidate - it was non-present before */ 4127 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4128 4129 spin_unlock(ptl); 4130 if (vm_shared) 4131 unlock_page(page); 4132 ret = 0; 4133 out: 4134 return ret; 4135 out_release_unlock: 4136 spin_unlock(ptl); 4137 if (vm_shared) 4138 unlock_page(page); 4139 out_release_nounlock: 4140 put_page(page); 4141 goto out; 4142 } 4143 4144 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4145 struct page **pages, struct vm_area_struct **vmas, 4146 unsigned long *position, unsigned long *nr_pages, 4147 long i, unsigned int flags, int *nonblocking) 4148 { 4149 unsigned long pfn_offset; 4150 unsigned long vaddr = *position; 4151 unsigned long remainder = *nr_pages; 4152 struct hstate *h = hstate_vma(vma); 4153 int err = -EFAULT; 4154 4155 while (vaddr < vma->vm_end && remainder) { 4156 pte_t *pte; 4157 spinlock_t *ptl = NULL; 4158 int absent; 4159 struct page *page; 4160 4161 /* 4162 * If we have a pending SIGKILL, don't keep faulting pages and 4163 * potentially allocating memory. 4164 */ 4165 if (unlikely(fatal_signal_pending(current))) { 4166 remainder = 0; 4167 break; 4168 } 4169 4170 /* 4171 * Some archs (sparc64, sh*) have multiple pte_ts to 4172 * each hugepage. We have to make sure we get the 4173 * first, for the page indexing below to work. 4174 * 4175 * Note that page table lock is not held when pte is null. 4176 */ 4177 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4178 huge_page_size(h)); 4179 if (pte) 4180 ptl = huge_pte_lock(h, mm, pte); 4181 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4182 4183 /* 4184 * When coredumping, it suits get_dump_page if we just return 4185 * an error where there's an empty slot with no huge pagecache 4186 * to back it. This way, we avoid allocating a hugepage, and 4187 * the sparse dumpfile avoids allocating disk blocks, but its 4188 * huge holes still show up with zeroes where they need to be. 4189 */ 4190 if (absent && (flags & FOLL_DUMP) && 4191 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4192 if (pte) 4193 spin_unlock(ptl); 4194 remainder = 0; 4195 break; 4196 } 4197 4198 /* 4199 * We need call hugetlb_fault for both hugepages under migration 4200 * (in which case hugetlb_fault waits for the migration,) and 4201 * hwpoisoned hugepages (in which case we need to prevent the 4202 * caller from accessing to them.) In order to do this, we use 4203 * here is_swap_pte instead of is_hugetlb_entry_migration and 4204 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4205 * both cases, and because we can't follow correct pages 4206 * directly from any kind of swap entries. 4207 */ 4208 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4209 ((flags & FOLL_WRITE) && 4210 !huge_pte_write(huge_ptep_get(pte)))) { 4211 int ret; 4212 unsigned int fault_flags = 0; 4213 4214 if (pte) 4215 spin_unlock(ptl); 4216 if (flags & FOLL_WRITE) 4217 fault_flags |= FAULT_FLAG_WRITE; 4218 if (nonblocking) 4219 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4220 if (flags & FOLL_NOWAIT) 4221 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4222 FAULT_FLAG_RETRY_NOWAIT; 4223 if (flags & FOLL_TRIED) { 4224 VM_WARN_ON_ONCE(fault_flags & 4225 FAULT_FLAG_ALLOW_RETRY); 4226 fault_flags |= FAULT_FLAG_TRIED; 4227 } 4228 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4229 if (ret & VM_FAULT_ERROR) { 4230 err = vm_fault_to_errno(ret, flags); 4231 remainder = 0; 4232 break; 4233 } 4234 if (ret & VM_FAULT_RETRY) { 4235 if (nonblocking) 4236 *nonblocking = 0; 4237 *nr_pages = 0; 4238 /* 4239 * VM_FAULT_RETRY must not return an 4240 * error, it will return zero 4241 * instead. 4242 * 4243 * No need to update "position" as the 4244 * caller will not check it after 4245 * *nr_pages is set to 0. 4246 */ 4247 return i; 4248 } 4249 continue; 4250 } 4251 4252 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4253 page = pte_page(huge_ptep_get(pte)); 4254 same_page: 4255 if (pages) { 4256 pages[i] = mem_map_offset(page, pfn_offset); 4257 get_page(pages[i]); 4258 } 4259 4260 if (vmas) 4261 vmas[i] = vma; 4262 4263 vaddr += PAGE_SIZE; 4264 ++pfn_offset; 4265 --remainder; 4266 ++i; 4267 if (vaddr < vma->vm_end && remainder && 4268 pfn_offset < pages_per_huge_page(h)) { 4269 /* 4270 * We use pfn_offset to avoid touching the pageframes 4271 * of this compound page. 4272 */ 4273 goto same_page; 4274 } 4275 spin_unlock(ptl); 4276 } 4277 *nr_pages = remainder; 4278 /* 4279 * setting position is actually required only if remainder is 4280 * not zero but it's faster not to add a "if (remainder)" 4281 * branch. 4282 */ 4283 *position = vaddr; 4284 4285 return i ? i : err; 4286 } 4287 4288 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4289 /* 4290 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4291 * implement this. 4292 */ 4293 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4294 #endif 4295 4296 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4297 unsigned long address, unsigned long end, pgprot_t newprot) 4298 { 4299 struct mm_struct *mm = vma->vm_mm; 4300 unsigned long start = address; 4301 pte_t *ptep; 4302 pte_t pte; 4303 struct hstate *h = hstate_vma(vma); 4304 unsigned long pages = 0; 4305 4306 BUG_ON(address >= end); 4307 flush_cache_range(vma, address, end); 4308 4309 mmu_notifier_invalidate_range_start(mm, start, end); 4310 i_mmap_lock_write(vma->vm_file->f_mapping); 4311 for (; address < end; address += huge_page_size(h)) { 4312 spinlock_t *ptl; 4313 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4314 if (!ptep) 4315 continue; 4316 ptl = huge_pte_lock(h, mm, ptep); 4317 if (huge_pmd_unshare(mm, &address, ptep)) { 4318 pages++; 4319 spin_unlock(ptl); 4320 continue; 4321 } 4322 pte = huge_ptep_get(ptep); 4323 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4324 spin_unlock(ptl); 4325 continue; 4326 } 4327 if (unlikely(is_hugetlb_entry_migration(pte))) { 4328 swp_entry_t entry = pte_to_swp_entry(pte); 4329 4330 if (is_write_migration_entry(entry)) { 4331 pte_t newpte; 4332 4333 make_migration_entry_read(&entry); 4334 newpte = swp_entry_to_pte(entry); 4335 set_huge_swap_pte_at(mm, address, ptep, 4336 newpte, huge_page_size(h)); 4337 pages++; 4338 } 4339 spin_unlock(ptl); 4340 continue; 4341 } 4342 if (!huge_pte_none(pte)) { 4343 pte = huge_ptep_get_and_clear(mm, address, ptep); 4344 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4345 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4346 set_huge_pte_at(mm, address, ptep, pte); 4347 pages++; 4348 } 4349 spin_unlock(ptl); 4350 } 4351 /* 4352 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4353 * may have cleared our pud entry and done put_page on the page table: 4354 * once we release i_mmap_rwsem, another task can do the final put_page 4355 * and that page table be reused and filled with junk. 4356 */ 4357 flush_hugetlb_tlb_range(vma, start, end); 4358 /* 4359 * No need to call mmu_notifier_invalidate_range() we are downgrading 4360 * page table protection not changing it to point to a new page. 4361 * 4362 * See Documentation/vm/mmu_notifier.rst 4363 */ 4364 i_mmap_unlock_write(vma->vm_file->f_mapping); 4365 mmu_notifier_invalidate_range_end(mm, start, end); 4366 4367 return pages << h->order; 4368 } 4369 4370 int hugetlb_reserve_pages(struct inode *inode, 4371 long from, long to, 4372 struct vm_area_struct *vma, 4373 vm_flags_t vm_flags) 4374 { 4375 long ret, chg; 4376 struct hstate *h = hstate_inode(inode); 4377 struct hugepage_subpool *spool = subpool_inode(inode); 4378 struct resv_map *resv_map; 4379 long gbl_reserve; 4380 4381 /* This should never happen */ 4382 if (from > to) { 4383 VM_WARN(1, "%s called with a negative range\n", __func__); 4384 return -EINVAL; 4385 } 4386 4387 /* 4388 * Only apply hugepage reservation if asked. At fault time, an 4389 * attempt will be made for VM_NORESERVE to allocate a page 4390 * without using reserves 4391 */ 4392 if (vm_flags & VM_NORESERVE) 4393 return 0; 4394 4395 /* 4396 * Shared mappings base their reservation on the number of pages that 4397 * are already allocated on behalf of the file. Private mappings need 4398 * to reserve the full area even if read-only as mprotect() may be 4399 * called to make the mapping read-write. Assume !vma is a shm mapping 4400 */ 4401 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4402 resv_map = inode_resv_map(inode); 4403 4404 chg = region_chg(resv_map, from, to); 4405 4406 } else { 4407 resv_map = resv_map_alloc(); 4408 if (!resv_map) 4409 return -ENOMEM; 4410 4411 chg = to - from; 4412 4413 set_vma_resv_map(vma, resv_map); 4414 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4415 } 4416 4417 if (chg < 0) { 4418 ret = chg; 4419 goto out_err; 4420 } 4421 4422 /* 4423 * There must be enough pages in the subpool for the mapping. If 4424 * the subpool has a minimum size, there may be some global 4425 * reservations already in place (gbl_reserve). 4426 */ 4427 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4428 if (gbl_reserve < 0) { 4429 ret = -ENOSPC; 4430 goto out_err; 4431 } 4432 4433 /* 4434 * Check enough hugepages are available for the reservation. 4435 * Hand the pages back to the subpool if there are not 4436 */ 4437 ret = hugetlb_acct_memory(h, gbl_reserve); 4438 if (ret < 0) { 4439 /* put back original number of pages, chg */ 4440 (void)hugepage_subpool_put_pages(spool, chg); 4441 goto out_err; 4442 } 4443 4444 /* 4445 * Account for the reservations made. Shared mappings record regions 4446 * that have reservations as they are shared by multiple VMAs. 4447 * When the last VMA disappears, the region map says how much 4448 * the reservation was and the page cache tells how much of 4449 * the reservation was consumed. Private mappings are per-VMA and 4450 * only the consumed reservations are tracked. When the VMA 4451 * disappears, the original reservation is the VMA size and the 4452 * consumed reservations are stored in the map. Hence, nothing 4453 * else has to be done for private mappings here 4454 */ 4455 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4456 long add = region_add(resv_map, from, to); 4457 4458 if (unlikely(chg > add)) { 4459 /* 4460 * pages in this range were added to the reserve 4461 * map between region_chg and region_add. This 4462 * indicates a race with alloc_huge_page. Adjust 4463 * the subpool and reserve counts modified above 4464 * based on the difference. 4465 */ 4466 long rsv_adjust; 4467 4468 rsv_adjust = hugepage_subpool_put_pages(spool, 4469 chg - add); 4470 hugetlb_acct_memory(h, -rsv_adjust); 4471 } 4472 } 4473 return 0; 4474 out_err: 4475 if (!vma || vma->vm_flags & VM_MAYSHARE) 4476 /* Don't call region_abort if region_chg failed */ 4477 if (chg >= 0) 4478 region_abort(resv_map, from, to); 4479 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4480 kref_put(&resv_map->refs, resv_map_release); 4481 return ret; 4482 } 4483 4484 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4485 long freed) 4486 { 4487 struct hstate *h = hstate_inode(inode); 4488 struct resv_map *resv_map = inode_resv_map(inode); 4489 long chg = 0; 4490 struct hugepage_subpool *spool = subpool_inode(inode); 4491 long gbl_reserve; 4492 4493 if (resv_map) { 4494 chg = region_del(resv_map, start, end); 4495 /* 4496 * region_del() can fail in the rare case where a region 4497 * must be split and another region descriptor can not be 4498 * allocated. If end == LONG_MAX, it will not fail. 4499 */ 4500 if (chg < 0) 4501 return chg; 4502 } 4503 4504 spin_lock(&inode->i_lock); 4505 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4506 spin_unlock(&inode->i_lock); 4507 4508 /* 4509 * If the subpool has a minimum size, the number of global 4510 * reservations to be released may be adjusted. 4511 */ 4512 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4513 hugetlb_acct_memory(h, -gbl_reserve); 4514 4515 return 0; 4516 } 4517 4518 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4519 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4520 struct vm_area_struct *vma, 4521 unsigned long addr, pgoff_t idx) 4522 { 4523 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4524 svma->vm_start; 4525 unsigned long sbase = saddr & PUD_MASK; 4526 unsigned long s_end = sbase + PUD_SIZE; 4527 4528 /* Allow segments to share if only one is marked locked */ 4529 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4530 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4531 4532 /* 4533 * match the virtual addresses, permission and the alignment of the 4534 * page table page. 4535 */ 4536 if (pmd_index(addr) != pmd_index(saddr) || 4537 vm_flags != svm_flags || 4538 sbase < svma->vm_start || svma->vm_end < s_end) 4539 return 0; 4540 4541 return saddr; 4542 } 4543 4544 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4545 { 4546 unsigned long base = addr & PUD_MASK; 4547 unsigned long end = base + PUD_SIZE; 4548 4549 /* 4550 * check on proper vm_flags and page table alignment 4551 */ 4552 if (vma->vm_flags & VM_MAYSHARE && 4553 vma->vm_start <= base && end <= vma->vm_end) 4554 return true; 4555 return false; 4556 } 4557 4558 /* 4559 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4560 * and returns the corresponding pte. While this is not necessary for the 4561 * !shared pmd case because we can allocate the pmd later as well, it makes the 4562 * code much cleaner. pmd allocation is essential for the shared case because 4563 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4564 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4565 * bad pmd for sharing. 4566 */ 4567 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4568 { 4569 struct vm_area_struct *vma = find_vma(mm, addr); 4570 struct address_space *mapping = vma->vm_file->f_mapping; 4571 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4572 vma->vm_pgoff; 4573 struct vm_area_struct *svma; 4574 unsigned long saddr; 4575 pte_t *spte = NULL; 4576 pte_t *pte; 4577 spinlock_t *ptl; 4578 4579 if (!vma_shareable(vma, addr)) 4580 return (pte_t *)pmd_alloc(mm, pud, addr); 4581 4582 i_mmap_lock_write(mapping); 4583 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4584 if (svma == vma) 4585 continue; 4586 4587 saddr = page_table_shareable(svma, vma, addr, idx); 4588 if (saddr) { 4589 spte = huge_pte_offset(svma->vm_mm, saddr, 4590 vma_mmu_pagesize(svma)); 4591 if (spte) { 4592 get_page(virt_to_page(spte)); 4593 break; 4594 } 4595 } 4596 } 4597 4598 if (!spte) 4599 goto out; 4600 4601 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4602 if (pud_none(*pud)) { 4603 pud_populate(mm, pud, 4604 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4605 mm_inc_nr_pmds(mm); 4606 } else { 4607 put_page(virt_to_page(spte)); 4608 } 4609 spin_unlock(ptl); 4610 out: 4611 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4612 i_mmap_unlock_write(mapping); 4613 return pte; 4614 } 4615 4616 /* 4617 * unmap huge page backed by shared pte. 4618 * 4619 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4620 * indicated by page_count > 1, unmap is achieved by clearing pud and 4621 * decrementing the ref count. If count == 1, the pte page is not shared. 4622 * 4623 * called with page table lock held. 4624 * 4625 * returns: 1 successfully unmapped a shared pte page 4626 * 0 the underlying pte page is not shared, or it is the last user 4627 */ 4628 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4629 { 4630 pgd_t *pgd = pgd_offset(mm, *addr); 4631 p4d_t *p4d = p4d_offset(pgd, *addr); 4632 pud_t *pud = pud_offset(p4d, *addr); 4633 4634 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4635 if (page_count(virt_to_page(ptep)) == 1) 4636 return 0; 4637 4638 pud_clear(pud); 4639 put_page(virt_to_page(ptep)); 4640 mm_dec_nr_pmds(mm); 4641 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4642 return 1; 4643 } 4644 #define want_pmd_share() (1) 4645 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4646 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4647 { 4648 return NULL; 4649 } 4650 4651 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4652 { 4653 return 0; 4654 } 4655 #define want_pmd_share() (0) 4656 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4657 4658 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4659 pte_t *huge_pte_alloc(struct mm_struct *mm, 4660 unsigned long addr, unsigned long sz) 4661 { 4662 pgd_t *pgd; 4663 p4d_t *p4d; 4664 pud_t *pud; 4665 pte_t *pte = NULL; 4666 4667 pgd = pgd_offset(mm, addr); 4668 p4d = p4d_alloc(mm, pgd, addr); 4669 if (!p4d) 4670 return NULL; 4671 pud = pud_alloc(mm, p4d, addr); 4672 if (pud) { 4673 if (sz == PUD_SIZE) { 4674 pte = (pte_t *)pud; 4675 } else { 4676 BUG_ON(sz != PMD_SIZE); 4677 if (want_pmd_share() && pud_none(*pud)) 4678 pte = huge_pmd_share(mm, addr, pud); 4679 else 4680 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4681 } 4682 } 4683 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4684 4685 return pte; 4686 } 4687 4688 /* 4689 * huge_pte_offset() - Walk the page table to resolve the hugepage 4690 * entry at address @addr 4691 * 4692 * Return: Pointer to page table or swap entry (PUD or PMD) for 4693 * address @addr, or NULL if a p*d_none() entry is encountered and the 4694 * size @sz doesn't match the hugepage size at this level of the page 4695 * table. 4696 */ 4697 pte_t *huge_pte_offset(struct mm_struct *mm, 4698 unsigned long addr, unsigned long sz) 4699 { 4700 pgd_t *pgd; 4701 p4d_t *p4d; 4702 pud_t *pud; 4703 pmd_t *pmd; 4704 4705 pgd = pgd_offset(mm, addr); 4706 if (!pgd_present(*pgd)) 4707 return NULL; 4708 p4d = p4d_offset(pgd, addr); 4709 if (!p4d_present(*p4d)) 4710 return NULL; 4711 4712 pud = pud_offset(p4d, addr); 4713 if (sz != PUD_SIZE && pud_none(*pud)) 4714 return NULL; 4715 /* hugepage or swap? */ 4716 if (pud_huge(*pud) || !pud_present(*pud)) 4717 return (pte_t *)pud; 4718 4719 pmd = pmd_offset(pud, addr); 4720 if (sz != PMD_SIZE && pmd_none(*pmd)) 4721 return NULL; 4722 /* hugepage or swap? */ 4723 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4724 return (pte_t *)pmd; 4725 4726 return NULL; 4727 } 4728 4729 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4730 4731 /* 4732 * These functions are overwritable if your architecture needs its own 4733 * behavior. 4734 */ 4735 struct page * __weak 4736 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4737 int write) 4738 { 4739 return ERR_PTR(-EINVAL); 4740 } 4741 4742 struct page * __weak 4743 follow_huge_pd(struct vm_area_struct *vma, 4744 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4745 { 4746 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4747 return NULL; 4748 } 4749 4750 struct page * __weak 4751 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4752 pmd_t *pmd, int flags) 4753 { 4754 struct page *page = NULL; 4755 spinlock_t *ptl; 4756 pte_t pte; 4757 retry: 4758 ptl = pmd_lockptr(mm, pmd); 4759 spin_lock(ptl); 4760 /* 4761 * make sure that the address range covered by this pmd is not 4762 * unmapped from other threads. 4763 */ 4764 if (!pmd_huge(*pmd)) 4765 goto out; 4766 pte = huge_ptep_get((pte_t *)pmd); 4767 if (pte_present(pte)) { 4768 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4769 if (flags & FOLL_GET) 4770 get_page(page); 4771 } else { 4772 if (is_hugetlb_entry_migration(pte)) { 4773 spin_unlock(ptl); 4774 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4775 goto retry; 4776 } 4777 /* 4778 * hwpoisoned entry is treated as no_page_table in 4779 * follow_page_mask(). 4780 */ 4781 } 4782 out: 4783 spin_unlock(ptl); 4784 return page; 4785 } 4786 4787 struct page * __weak 4788 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4789 pud_t *pud, int flags) 4790 { 4791 if (flags & FOLL_GET) 4792 return NULL; 4793 4794 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4795 } 4796 4797 struct page * __weak 4798 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4799 { 4800 if (flags & FOLL_GET) 4801 return NULL; 4802 4803 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4804 } 4805 4806 bool isolate_huge_page(struct page *page, struct list_head *list) 4807 { 4808 bool ret = true; 4809 4810 VM_BUG_ON_PAGE(!PageHead(page), page); 4811 spin_lock(&hugetlb_lock); 4812 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4813 ret = false; 4814 goto unlock; 4815 } 4816 clear_page_huge_active(page); 4817 list_move_tail(&page->lru, list); 4818 unlock: 4819 spin_unlock(&hugetlb_lock); 4820 return ret; 4821 } 4822 4823 void putback_active_hugepage(struct page *page) 4824 { 4825 VM_BUG_ON_PAGE(!PageHead(page), page); 4826 spin_lock(&hugetlb_lock); 4827 set_page_huge_active(page); 4828 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4829 spin_unlock(&hugetlb_lock); 4830 put_page(page); 4831 } 4832 4833 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4834 { 4835 struct hstate *h = page_hstate(oldpage); 4836 4837 hugetlb_cgroup_migrate(oldpage, newpage); 4838 set_page_owner_migrate_reason(newpage, reason); 4839 4840 /* 4841 * transfer temporary state of the new huge page. This is 4842 * reverse to other transitions because the newpage is going to 4843 * be final while the old one will be freed so it takes over 4844 * the temporary status. 4845 * 4846 * Also note that we have to transfer the per-node surplus state 4847 * here as well otherwise the global surplus count will not match 4848 * the per-node's. 4849 */ 4850 if (PageHugeTemporary(newpage)) { 4851 int old_nid = page_to_nid(oldpage); 4852 int new_nid = page_to_nid(newpage); 4853 4854 SetPageHugeTemporary(oldpage); 4855 ClearPageHugeTemporary(newpage); 4856 4857 spin_lock(&hugetlb_lock); 4858 if (h->surplus_huge_pages_node[old_nid]) { 4859 h->surplus_huge_pages_node[old_nid]--; 4860 h->surplus_huge_pages_node[new_nid]++; 4861 } 4862 spin_unlock(&hugetlb_lock); 4863 } 4864 } 4865