1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/seq_file.h> 11 #include <linux/sysctl.h> 12 #include <linux/highmem.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/nodemask.h> 15 #include <linux/pagemap.h> 16 #include <linux/mempolicy.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 22 #include <asm/page.h> 23 #include <asm/pgtable.h> 24 #include <asm/io.h> 25 26 #include <linux/hugetlb.h> 27 #include <linux/node.h> 28 #include "internal.h" 29 30 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 31 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 32 unsigned long hugepages_treat_as_movable; 33 34 static int max_hstate; 35 unsigned int default_hstate_idx; 36 struct hstate hstates[HUGE_MAX_HSTATE]; 37 38 __initdata LIST_HEAD(huge_boot_pages); 39 40 /* for command line parsing */ 41 static struct hstate * __initdata parsed_hstate; 42 static unsigned long __initdata default_hstate_max_huge_pages; 43 static unsigned long __initdata default_hstate_size; 44 45 #define for_each_hstate(h) \ 46 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 47 48 /* 49 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 50 */ 51 static DEFINE_SPINLOCK(hugetlb_lock); 52 53 /* 54 * Region tracking -- allows tracking of reservations and instantiated pages 55 * across the pages in a mapping. 56 * 57 * The region data structures are protected by a combination of the mmap_sem 58 * and the hugetlb_instantion_mutex. To access or modify a region the caller 59 * must either hold the mmap_sem for write, or the mmap_sem for read and 60 * the hugetlb_instantiation mutex: 61 * 62 * down_write(&mm->mmap_sem); 63 * or 64 * down_read(&mm->mmap_sem); 65 * mutex_lock(&hugetlb_instantiation_mutex); 66 */ 67 struct file_region { 68 struct list_head link; 69 long from; 70 long to; 71 }; 72 73 static long region_add(struct list_head *head, long f, long t) 74 { 75 struct file_region *rg, *nrg, *trg; 76 77 /* Locate the region we are either in or before. */ 78 list_for_each_entry(rg, head, link) 79 if (f <= rg->to) 80 break; 81 82 /* Round our left edge to the current segment if it encloses us. */ 83 if (f > rg->from) 84 f = rg->from; 85 86 /* Check for and consume any regions we now overlap with. */ 87 nrg = rg; 88 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 89 if (&rg->link == head) 90 break; 91 if (rg->from > t) 92 break; 93 94 /* If this area reaches higher then extend our area to 95 * include it completely. If this is not the first area 96 * which we intend to reuse, free it. */ 97 if (rg->to > t) 98 t = rg->to; 99 if (rg != nrg) { 100 list_del(&rg->link); 101 kfree(rg); 102 } 103 } 104 nrg->from = f; 105 nrg->to = t; 106 return 0; 107 } 108 109 static long region_chg(struct list_head *head, long f, long t) 110 { 111 struct file_region *rg, *nrg; 112 long chg = 0; 113 114 /* Locate the region we are before or in. */ 115 list_for_each_entry(rg, head, link) 116 if (f <= rg->to) 117 break; 118 119 /* If we are below the current region then a new region is required. 120 * Subtle, allocate a new region at the position but make it zero 121 * size such that we can guarantee to record the reservation. */ 122 if (&rg->link == head || t < rg->from) { 123 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 124 if (!nrg) 125 return -ENOMEM; 126 nrg->from = f; 127 nrg->to = f; 128 INIT_LIST_HEAD(&nrg->link); 129 list_add(&nrg->link, rg->link.prev); 130 131 return t - f; 132 } 133 134 /* Round our left edge to the current segment if it encloses us. */ 135 if (f > rg->from) 136 f = rg->from; 137 chg = t - f; 138 139 /* Check for and consume any regions we now overlap with. */ 140 list_for_each_entry(rg, rg->link.prev, link) { 141 if (&rg->link == head) 142 break; 143 if (rg->from > t) 144 return chg; 145 146 /* We overlap with this area, if it extends futher than 147 * us then we must extend ourselves. Account for its 148 * existing reservation. */ 149 if (rg->to > t) { 150 chg += rg->to - t; 151 t = rg->to; 152 } 153 chg -= rg->to - rg->from; 154 } 155 return chg; 156 } 157 158 static long region_truncate(struct list_head *head, long end) 159 { 160 struct file_region *rg, *trg; 161 long chg = 0; 162 163 /* Locate the region we are either in or before. */ 164 list_for_each_entry(rg, head, link) 165 if (end <= rg->to) 166 break; 167 if (&rg->link == head) 168 return 0; 169 170 /* If we are in the middle of a region then adjust it. */ 171 if (end > rg->from) { 172 chg = rg->to - end; 173 rg->to = end; 174 rg = list_entry(rg->link.next, typeof(*rg), link); 175 } 176 177 /* Drop any remaining regions. */ 178 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 179 if (&rg->link == head) 180 break; 181 chg += rg->to - rg->from; 182 list_del(&rg->link); 183 kfree(rg); 184 } 185 return chg; 186 } 187 188 static long region_count(struct list_head *head, long f, long t) 189 { 190 struct file_region *rg; 191 long chg = 0; 192 193 /* Locate each segment we overlap with, and count that overlap. */ 194 list_for_each_entry(rg, head, link) { 195 int seg_from; 196 int seg_to; 197 198 if (rg->to <= f) 199 continue; 200 if (rg->from >= t) 201 break; 202 203 seg_from = max(rg->from, f); 204 seg_to = min(rg->to, t); 205 206 chg += seg_to - seg_from; 207 } 208 209 return chg; 210 } 211 212 /* 213 * Convert the address within this vma to the page offset within 214 * the mapping, in pagecache page units; huge pages here. 215 */ 216 static pgoff_t vma_hugecache_offset(struct hstate *h, 217 struct vm_area_struct *vma, unsigned long address) 218 { 219 return ((address - vma->vm_start) >> huge_page_shift(h)) + 220 (vma->vm_pgoff >> huge_page_order(h)); 221 } 222 223 /* 224 * Return the size of the pages allocated when backing a VMA. In the majority 225 * cases this will be same size as used by the page table entries. 226 */ 227 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 228 { 229 struct hstate *hstate; 230 231 if (!is_vm_hugetlb_page(vma)) 232 return PAGE_SIZE; 233 234 hstate = hstate_vma(vma); 235 236 return 1UL << (hstate->order + PAGE_SHIFT); 237 } 238 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 239 240 /* 241 * Return the page size being used by the MMU to back a VMA. In the majority 242 * of cases, the page size used by the kernel matches the MMU size. On 243 * architectures where it differs, an architecture-specific version of this 244 * function is required. 245 */ 246 #ifndef vma_mmu_pagesize 247 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 248 { 249 return vma_kernel_pagesize(vma); 250 } 251 #endif 252 253 /* 254 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 255 * bits of the reservation map pointer, which are always clear due to 256 * alignment. 257 */ 258 #define HPAGE_RESV_OWNER (1UL << 0) 259 #define HPAGE_RESV_UNMAPPED (1UL << 1) 260 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 261 262 /* 263 * These helpers are used to track how many pages are reserved for 264 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 265 * is guaranteed to have their future faults succeed. 266 * 267 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 268 * the reserve counters are updated with the hugetlb_lock held. It is safe 269 * to reset the VMA at fork() time as it is not in use yet and there is no 270 * chance of the global counters getting corrupted as a result of the values. 271 * 272 * The private mapping reservation is represented in a subtly different 273 * manner to a shared mapping. A shared mapping has a region map associated 274 * with the underlying file, this region map represents the backing file 275 * pages which have ever had a reservation assigned which this persists even 276 * after the page is instantiated. A private mapping has a region map 277 * associated with the original mmap which is attached to all VMAs which 278 * reference it, this region map represents those offsets which have consumed 279 * reservation ie. where pages have been instantiated. 280 */ 281 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 282 { 283 return (unsigned long)vma->vm_private_data; 284 } 285 286 static void set_vma_private_data(struct vm_area_struct *vma, 287 unsigned long value) 288 { 289 vma->vm_private_data = (void *)value; 290 } 291 292 struct resv_map { 293 struct kref refs; 294 struct list_head regions; 295 }; 296 297 static struct resv_map *resv_map_alloc(void) 298 { 299 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 300 if (!resv_map) 301 return NULL; 302 303 kref_init(&resv_map->refs); 304 INIT_LIST_HEAD(&resv_map->regions); 305 306 return resv_map; 307 } 308 309 static void resv_map_release(struct kref *ref) 310 { 311 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 312 313 /* Clear out any active regions before we release the map. */ 314 region_truncate(&resv_map->regions, 0); 315 kfree(resv_map); 316 } 317 318 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 319 { 320 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 321 if (!(vma->vm_flags & VM_MAYSHARE)) 322 return (struct resv_map *)(get_vma_private_data(vma) & 323 ~HPAGE_RESV_MASK); 324 return NULL; 325 } 326 327 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 328 { 329 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 330 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 331 332 set_vma_private_data(vma, (get_vma_private_data(vma) & 333 HPAGE_RESV_MASK) | (unsigned long)map); 334 } 335 336 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 337 { 338 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 340 341 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 342 } 343 344 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 345 { 346 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 347 348 return (get_vma_private_data(vma) & flag) != 0; 349 } 350 351 /* Decrement the reserved pages in the hugepage pool by one */ 352 static void decrement_hugepage_resv_vma(struct hstate *h, 353 struct vm_area_struct *vma) 354 { 355 if (vma->vm_flags & VM_NORESERVE) 356 return; 357 358 if (vma->vm_flags & VM_MAYSHARE) { 359 /* Shared mappings always use reserves */ 360 h->resv_huge_pages--; 361 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 362 /* 363 * Only the process that called mmap() has reserves for 364 * private mappings. 365 */ 366 h->resv_huge_pages--; 367 } 368 } 369 370 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 371 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 372 { 373 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 374 if (!(vma->vm_flags & VM_MAYSHARE)) 375 vma->vm_private_data = (void *)0; 376 } 377 378 /* Returns true if the VMA has associated reserve pages */ 379 static int vma_has_reserves(struct vm_area_struct *vma) 380 { 381 if (vma->vm_flags & VM_MAYSHARE) 382 return 1; 383 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 384 return 1; 385 return 0; 386 } 387 388 static void clear_gigantic_page(struct page *page, 389 unsigned long addr, unsigned long sz) 390 { 391 int i; 392 struct page *p = page; 393 394 might_sleep(); 395 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { 396 cond_resched(); 397 clear_user_highpage(p, addr + i * PAGE_SIZE); 398 } 399 } 400 static void clear_huge_page(struct page *page, 401 unsigned long addr, unsigned long sz) 402 { 403 int i; 404 405 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) { 406 clear_gigantic_page(page, addr, sz); 407 return; 408 } 409 410 might_sleep(); 411 for (i = 0; i < sz/PAGE_SIZE; i++) { 412 cond_resched(); 413 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 414 } 415 } 416 417 static void copy_gigantic_page(struct page *dst, struct page *src, 418 unsigned long addr, struct vm_area_struct *vma) 419 { 420 int i; 421 struct hstate *h = hstate_vma(vma); 422 struct page *dst_base = dst; 423 struct page *src_base = src; 424 might_sleep(); 425 for (i = 0; i < pages_per_huge_page(h); ) { 426 cond_resched(); 427 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 428 429 i++; 430 dst = mem_map_next(dst, dst_base, i); 431 src = mem_map_next(src, src_base, i); 432 } 433 } 434 static void copy_huge_page(struct page *dst, struct page *src, 435 unsigned long addr, struct vm_area_struct *vma) 436 { 437 int i; 438 struct hstate *h = hstate_vma(vma); 439 440 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 441 copy_gigantic_page(dst, src, addr, vma); 442 return; 443 } 444 445 might_sleep(); 446 for (i = 0; i < pages_per_huge_page(h); i++) { 447 cond_resched(); 448 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 449 } 450 } 451 452 static void enqueue_huge_page(struct hstate *h, struct page *page) 453 { 454 int nid = page_to_nid(page); 455 list_add(&page->lru, &h->hugepage_freelists[nid]); 456 h->free_huge_pages++; 457 h->free_huge_pages_node[nid]++; 458 } 459 460 static struct page *dequeue_huge_page_vma(struct hstate *h, 461 struct vm_area_struct *vma, 462 unsigned long address, int avoid_reserve) 463 { 464 int nid; 465 struct page *page = NULL; 466 struct mempolicy *mpol; 467 nodemask_t *nodemask; 468 struct zonelist *zonelist = huge_zonelist(vma, address, 469 htlb_alloc_mask, &mpol, &nodemask); 470 struct zone *zone; 471 struct zoneref *z; 472 473 /* 474 * A child process with MAP_PRIVATE mappings created by their parent 475 * have no page reserves. This check ensures that reservations are 476 * not "stolen". The child may still get SIGKILLed 477 */ 478 if (!vma_has_reserves(vma) && 479 h->free_huge_pages - h->resv_huge_pages == 0) 480 return NULL; 481 482 /* If reserves cannot be used, ensure enough pages are in the pool */ 483 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 484 return NULL; 485 486 for_each_zone_zonelist_nodemask(zone, z, zonelist, 487 MAX_NR_ZONES - 1, nodemask) { 488 nid = zone_to_nid(zone); 489 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && 490 !list_empty(&h->hugepage_freelists[nid])) { 491 page = list_entry(h->hugepage_freelists[nid].next, 492 struct page, lru); 493 list_del(&page->lru); 494 h->free_huge_pages--; 495 h->free_huge_pages_node[nid]--; 496 497 if (!avoid_reserve) 498 decrement_hugepage_resv_vma(h, vma); 499 500 break; 501 } 502 } 503 mpol_cond_put(mpol); 504 return page; 505 } 506 507 static void update_and_free_page(struct hstate *h, struct page *page) 508 { 509 int i; 510 511 VM_BUG_ON(h->order >= MAX_ORDER); 512 513 h->nr_huge_pages--; 514 h->nr_huge_pages_node[page_to_nid(page)]--; 515 for (i = 0; i < pages_per_huge_page(h); i++) { 516 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 517 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 518 1 << PG_private | 1<< PG_writeback); 519 } 520 set_compound_page_dtor(page, NULL); 521 set_page_refcounted(page); 522 arch_release_hugepage(page); 523 __free_pages(page, huge_page_order(h)); 524 } 525 526 struct hstate *size_to_hstate(unsigned long size) 527 { 528 struct hstate *h; 529 530 for_each_hstate(h) { 531 if (huge_page_size(h) == size) 532 return h; 533 } 534 return NULL; 535 } 536 537 static void free_huge_page(struct page *page) 538 { 539 /* 540 * Can't pass hstate in here because it is called from the 541 * compound page destructor. 542 */ 543 struct hstate *h = page_hstate(page); 544 int nid = page_to_nid(page); 545 struct address_space *mapping; 546 547 mapping = (struct address_space *) page_private(page); 548 set_page_private(page, 0); 549 BUG_ON(page_count(page)); 550 INIT_LIST_HEAD(&page->lru); 551 552 spin_lock(&hugetlb_lock); 553 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 554 update_and_free_page(h, page); 555 h->surplus_huge_pages--; 556 h->surplus_huge_pages_node[nid]--; 557 } else { 558 enqueue_huge_page(h, page); 559 } 560 spin_unlock(&hugetlb_lock); 561 if (mapping) 562 hugetlb_put_quota(mapping, 1); 563 } 564 565 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 566 { 567 set_compound_page_dtor(page, free_huge_page); 568 spin_lock(&hugetlb_lock); 569 h->nr_huge_pages++; 570 h->nr_huge_pages_node[nid]++; 571 spin_unlock(&hugetlb_lock); 572 put_page(page); /* free it into the hugepage allocator */ 573 } 574 575 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 576 { 577 int i; 578 int nr_pages = 1 << order; 579 struct page *p = page + 1; 580 581 /* we rely on prep_new_huge_page to set the destructor */ 582 set_compound_order(page, order); 583 __SetPageHead(page); 584 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 585 __SetPageTail(p); 586 p->first_page = page; 587 } 588 } 589 590 int PageHuge(struct page *page) 591 { 592 compound_page_dtor *dtor; 593 594 if (!PageCompound(page)) 595 return 0; 596 597 page = compound_head(page); 598 dtor = get_compound_page_dtor(page); 599 600 return dtor == free_huge_page; 601 } 602 603 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 604 { 605 struct page *page; 606 607 if (h->order >= MAX_ORDER) 608 return NULL; 609 610 page = alloc_pages_exact_node(nid, 611 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 612 __GFP_REPEAT|__GFP_NOWARN, 613 huge_page_order(h)); 614 if (page) { 615 if (arch_prepare_hugepage(page)) { 616 __free_pages(page, huge_page_order(h)); 617 return NULL; 618 } 619 prep_new_huge_page(h, page, nid); 620 } 621 622 return page; 623 } 624 625 /* 626 * common helper functions for hstate_next_node_to_{alloc|free}. 627 * We may have allocated or freed a huge page based on a different 628 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 629 * be outside of *nodes_allowed. Ensure that we use an allowed 630 * node for alloc or free. 631 */ 632 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 633 { 634 nid = next_node(nid, *nodes_allowed); 635 if (nid == MAX_NUMNODES) 636 nid = first_node(*nodes_allowed); 637 VM_BUG_ON(nid >= MAX_NUMNODES); 638 639 return nid; 640 } 641 642 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 643 { 644 if (!node_isset(nid, *nodes_allowed)) 645 nid = next_node_allowed(nid, nodes_allowed); 646 return nid; 647 } 648 649 /* 650 * returns the previously saved node ["this node"] from which to 651 * allocate a persistent huge page for the pool and advance the 652 * next node from which to allocate, handling wrap at end of node 653 * mask. 654 */ 655 static int hstate_next_node_to_alloc(struct hstate *h, 656 nodemask_t *nodes_allowed) 657 { 658 int nid; 659 660 VM_BUG_ON(!nodes_allowed); 661 662 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 663 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 664 665 return nid; 666 } 667 668 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 669 { 670 struct page *page; 671 int start_nid; 672 int next_nid; 673 int ret = 0; 674 675 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 676 next_nid = start_nid; 677 678 do { 679 page = alloc_fresh_huge_page_node(h, next_nid); 680 if (page) { 681 ret = 1; 682 break; 683 } 684 next_nid = hstate_next_node_to_alloc(h, nodes_allowed); 685 } while (next_nid != start_nid); 686 687 if (ret) 688 count_vm_event(HTLB_BUDDY_PGALLOC); 689 else 690 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 691 692 return ret; 693 } 694 695 /* 696 * helper for free_pool_huge_page() - return the previously saved 697 * node ["this node"] from which to free a huge page. Advance the 698 * next node id whether or not we find a free huge page to free so 699 * that the next attempt to free addresses the next node. 700 */ 701 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 702 { 703 int nid; 704 705 VM_BUG_ON(!nodes_allowed); 706 707 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 708 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 709 710 return nid; 711 } 712 713 /* 714 * Free huge page from pool from next node to free. 715 * Attempt to keep persistent huge pages more or less 716 * balanced over allowed nodes. 717 * Called with hugetlb_lock locked. 718 */ 719 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 720 bool acct_surplus) 721 { 722 int start_nid; 723 int next_nid; 724 int ret = 0; 725 726 start_nid = hstate_next_node_to_free(h, nodes_allowed); 727 next_nid = start_nid; 728 729 do { 730 /* 731 * If we're returning unused surplus pages, only examine 732 * nodes with surplus pages. 733 */ 734 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && 735 !list_empty(&h->hugepage_freelists[next_nid])) { 736 struct page *page = 737 list_entry(h->hugepage_freelists[next_nid].next, 738 struct page, lru); 739 list_del(&page->lru); 740 h->free_huge_pages--; 741 h->free_huge_pages_node[next_nid]--; 742 if (acct_surplus) { 743 h->surplus_huge_pages--; 744 h->surplus_huge_pages_node[next_nid]--; 745 } 746 update_and_free_page(h, page); 747 ret = 1; 748 break; 749 } 750 next_nid = hstate_next_node_to_free(h, nodes_allowed); 751 } while (next_nid != start_nid); 752 753 return ret; 754 } 755 756 static struct page *alloc_buddy_huge_page(struct hstate *h, 757 struct vm_area_struct *vma, unsigned long address) 758 { 759 struct page *page; 760 unsigned int nid; 761 762 if (h->order >= MAX_ORDER) 763 return NULL; 764 765 /* 766 * Assume we will successfully allocate the surplus page to 767 * prevent racing processes from causing the surplus to exceed 768 * overcommit 769 * 770 * This however introduces a different race, where a process B 771 * tries to grow the static hugepage pool while alloc_pages() is 772 * called by process A. B will only examine the per-node 773 * counters in determining if surplus huge pages can be 774 * converted to normal huge pages in adjust_pool_surplus(). A 775 * won't be able to increment the per-node counter, until the 776 * lock is dropped by B, but B doesn't drop hugetlb_lock until 777 * no more huge pages can be converted from surplus to normal 778 * state (and doesn't try to convert again). Thus, we have a 779 * case where a surplus huge page exists, the pool is grown, and 780 * the surplus huge page still exists after, even though it 781 * should just have been converted to a normal huge page. This 782 * does not leak memory, though, as the hugepage will be freed 783 * once it is out of use. It also does not allow the counters to 784 * go out of whack in adjust_pool_surplus() as we don't modify 785 * the node values until we've gotten the hugepage and only the 786 * per-node value is checked there. 787 */ 788 spin_lock(&hugetlb_lock); 789 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 790 spin_unlock(&hugetlb_lock); 791 return NULL; 792 } else { 793 h->nr_huge_pages++; 794 h->surplus_huge_pages++; 795 } 796 spin_unlock(&hugetlb_lock); 797 798 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 799 __GFP_REPEAT|__GFP_NOWARN, 800 huge_page_order(h)); 801 802 if (page && arch_prepare_hugepage(page)) { 803 __free_pages(page, huge_page_order(h)); 804 return NULL; 805 } 806 807 spin_lock(&hugetlb_lock); 808 if (page) { 809 /* 810 * This page is now managed by the hugetlb allocator and has 811 * no users -- drop the buddy allocator's reference. 812 */ 813 put_page_testzero(page); 814 VM_BUG_ON(page_count(page)); 815 nid = page_to_nid(page); 816 set_compound_page_dtor(page, free_huge_page); 817 /* 818 * We incremented the global counters already 819 */ 820 h->nr_huge_pages_node[nid]++; 821 h->surplus_huge_pages_node[nid]++; 822 __count_vm_event(HTLB_BUDDY_PGALLOC); 823 } else { 824 h->nr_huge_pages--; 825 h->surplus_huge_pages--; 826 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 827 } 828 spin_unlock(&hugetlb_lock); 829 830 return page; 831 } 832 833 /* 834 * Increase the hugetlb pool such that it can accomodate a reservation 835 * of size 'delta'. 836 */ 837 static int gather_surplus_pages(struct hstate *h, int delta) 838 { 839 struct list_head surplus_list; 840 struct page *page, *tmp; 841 int ret, i; 842 int needed, allocated; 843 844 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 845 if (needed <= 0) { 846 h->resv_huge_pages += delta; 847 return 0; 848 } 849 850 allocated = 0; 851 INIT_LIST_HEAD(&surplus_list); 852 853 ret = -ENOMEM; 854 retry: 855 spin_unlock(&hugetlb_lock); 856 for (i = 0; i < needed; i++) { 857 page = alloc_buddy_huge_page(h, NULL, 0); 858 if (!page) { 859 /* 860 * We were not able to allocate enough pages to 861 * satisfy the entire reservation so we free what 862 * we've allocated so far. 863 */ 864 spin_lock(&hugetlb_lock); 865 needed = 0; 866 goto free; 867 } 868 869 list_add(&page->lru, &surplus_list); 870 } 871 allocated += needed; 872 873 /* 874 * After retaking hugetlb_lock, we need to recalculate 'needed' 875 * because either resv_huge_pages or free_huge_pages may have changed. 876 */ 877 spin_lock(&hugetlb_lock); 878 needed = (h->resv_huge_pages + delta) - 879 (h->free_huge_pages + allocated); 880 if (needed > 0) 881 goto retry; 882 883 /* 884 * The surplus_list now contains _at_least_ the number of extra pages 885 * needed to accomodate the reservation. Add the appropriate number 886 * of pages to the hugetlb pool and free the extras back to the buddy 887 * allocator. Commit the entire reservation here to prevent another 888 * process from stealing the pages as they are added to the pool but 889 * before they are reserved. 890 */ 891 needed += allocated; 892 h->resv_huge_pages += delta; 893 ret = 0; 894 free: 895 /* Free the needed pages to the hugetlb pool */ 896 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 897 if ((--needed) < 0) 898 break; 899 list_del(&page->lru); 900 enqueue_huge_page(h, page); 901 } 902 903 /* Free unnecessary surplus pages to the buddy allocator */ 904 if (!list_empty(&surplus_list)) { 905 spin_unlock(&hugetlb_lock); 906 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 907 list_del(&page->lru); 908 /* 909 * The page has a reference count of zero already, so 910 * call free_huge_page directly instead of using 911 * put_page. This must be done with hugetlb_lock 912 * unlocked which is safe because free_huge_page takes 913 * hugetlb_lock before deciding how to free the page. 914 */ 915 free_huge_page(page); 916 } 917 spin_lock(&hugetlb_lock); 918 } 919 920 return ret; 921 } 922 923 /* 924 * When releasing a hugetlb pool reservation, any surplus pages that were 925 * allocated to satisfy the reservation must be explicitly freed if they were 926 * never used. 927 * Called with hugetlb_lock held. 928 */ 929 static void return_unused_surplus_pages(struct hstate *h, 930 unsigned long unused_resv_pages) 931 { 932 unsigned long nr_pages; 933 934 /* Uncommit the reservation */ 935 h->resv_huge_pages -= unused_resv_pages; 936 937 /* Cannot return gigantic pages currently */ 938 if (h->order >= MAX_ORDER) 939 return; 940 941 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 942 943 /* 944 * We want to release as many surplus pages as possible, spread 945 * evenly across all nodes with memory. Iterate across these nodes 946 * until we can no longer free unreserved surplus pages. This occurs 947 * when the nodes with surplus pages have no free pages. 948 * free_pool_huge_page() will balance the the freed pages across the 949 * on-line nodes with memory and will handle the hstate accounting. 950 */ 951 while (nr_pages--) { 952 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) 953 break; 954 } 955 } 956 957 /* 958 * Determine if the huge page at addr within the vma has an associated 959 * reservation. Where it does not we will need to logically increase 960 * reservation and actually increase quota before an allocation can occur. 961 * Where any new reservation would be required the reservation change is 962 * prepared, but not committed. Once the page has been quota'd allocated 963 * an instantiated the change should be committed via vma_commit_reservation. 964 * No action is required on failure. 965 */ 966 static long vma_needs_reservation(struct hstate *h, 967 struct vm_area_struct *vma, unsigned long addr) 968 { 969 struct address_space *mapping = vma->vm_file->f_mapping; 970 struct inode *inode = mapping->host; 971 972 if (vma->vm_flags & VM_MAYSHARE) { 973 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 974 return region_chg(&inode->i_mapping->private_list, 975 idx, idx + 1); 976 977 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 978 return 1; 979 980 } else { 981 long err; 982 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 983 struct resv_map *reservations = vma_resv_map(vma); 984 985 err = region_chg(&reservations->regions, idx, idx + 1); 986 if (err < 0) 987 return err; 988 return 0; 989 } 990 } 991 static void vma_commit_reservation(struct hstate *h, 992 struct vm_area_struct *vma, unsigned long addr) 993 { 994 struct address_space *mapping = vma->vm_file->f_mapping; 995 struct inode *inode = mapping->host; 996 997 if (vma->vm_flags & VM_MAYSHARE) { 998 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 999 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1000 1001 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1002 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1003 struct resv_map *reservations = vma_resv_map(vma); 1004 1005 /* Mark this page used in the map. */ 1006 region_add(&reservations->regions, idx, idx + 1); 1007 } 1008 } 1009 1010 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1011 unsigned long addr, int avoid_reserve) 1012 { 1013 struct hstate *h = hstate_vma(vma); 1014 struct page *page; 1015 struct address_space *mapping = vma->vm_file->f_mapping; 1016 struct inode *inode = mapping->host; 1017 long chg; 1018 1019 /* 1020 * Processes that did not create the mapping will have no reserves and 1021 * will not have accounted against quota. Check that the quota can be 1022 * made before satisfying the allocation 1023 * MAP_NORESERVE mappings may also need pages and quota allocated 1024 * if no reserve mapping overlaps. 1025 */ 1026 chg = vma_needs_reservation(h, vma, addr); 1027 if (chg < 0) 1028 return ERR_PTR(chg); 1029 if (chg) 1030 if (hugetlb_get_quota(inode->i_mapping, chg)) 1031 return ERR_PTR(-ENOSPC); 1032 1033 spin_lock(&hugetlb_lock); 1034 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 1035 spin_unlock(&hugetlb_lock); 1036 1037 if (!page) { 1038 page = alloc_buddy_huge_page(h, vma, addr); 1039 if (!page) { 1040 hugetlb_put_quota(inode->i_mapping, chg); 1041 return ERR_PTR(-VM_FAULT_OOM); 1042 } 1043 } 1044 1045 set_page_refcounted(page); 1046 set_page_private(page, (unsigned long) mapping); 1047 1048 vma_commit_reservation(h, vma, addr); 1049 1050 return page; 1051 } 1052 1053 int __weak alloc_bootmem_huge_page(struct hstate *h) 1054 { 1055 struct huge_bootmem_page *m; 1056 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 1057 1058 while (nr_nodes) { 1059 void *addr; 1060 1061 addr = __alloc_bootmem_node_nopanic( 1062 NODE_DATA(hstate_next_node_to_alloc(h, 1063 &node_states[N_HIGH_MEMORY])), 1064 huge_page_size(h), huge_page_size(h), 0); 1065 1066 if (addr) { 1067 /* 1068 * Use the beginning of the huge page to store the 1069 * huge_bootmem_page struct (until gather_bootmem 1070 * puts them into the mem_map). 1071 */ 1072 m = addr; 1073 goto found; 1074 } 1075 nr_nodes--; 1076 } 1077 return 0; 1078 1079 found: 1080 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1081 /* Put them into a private list first because mem_map is not up yet */ 1082 list_add(&m->list, &huge_boot_pages); 1083 m->hstate = h; 1084 return 1; 1085 } 1086 1087 static void prep_compound_huge_page(struct page *page, int order) 1088 { 1089 if (unlikely(order > (MAX_ORDER - 1))) 1090 prep_compound_gigantic_page(page, order); 1091 else 1092 prep_compound_page(page, order); 1093 } 1094 1095 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1096 static void __init gather_bootmem_prealloc(void) 1097 { 1098 struct huge_bootmem_page *m; 1099 1100 list_for_each_entry(m, &huge_boot_pages, list) { 1101 struct page *page = virt_to_page(m); 1102 struct hstate *h = m->hstate; 1103 __ClearPageReserved(page); 1104 WARN_ON(page_count(page) != 1); 1105 prep_compound_huge_page(page, h->order); 1106 prep_new_huge_page(h, page, page_to_nid(page)); 1107 } 1108 } 1109 1110 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1111 { 1112 unsigned long i; 1113 1114 for (i = 0; i < h->max_huge_pages; ++i) { 1115 if (h->order >= MAX_ORDER) { 1116 if (!alloc_bootmem_huge_page(h)) 1117 break; 1118 } else if (!alloc_fresh_huge_page(h, 1119 &node_states[N_HIGH_MEMORY])) 1120 break; 1121 } 1122 h->max_huge_pages = i; 1123 } 1124 1125 static void __init hugetlb_init_hstates(void) 1126 { 1127 struct hstate *h; 1128 1129 for_each_hstate(h) { 1130 /* oversize hugepages were init'ed in early boot */ 1131 if (h->order < MAX_ORDER) 1132 hugetlb_hstate_alloc_pages(h); 1133 } 1134 } 1135 1136 static char * __init memfmt(char *buf, unsigned long n) 1137 { 1138 if (n >= (1UL << 30)) 1139 sprintf(buf, "%lu GB", n >> 30); 1140 else if (n >= (1UL << 20)) 1141 sprintf(buf, "%lu MB", n >> 20); 1142 else 1143 sprintf(buf, "%lu KB", n >> 10); 1144 return buf; 1145 } 1146 1147 static void __init report_hugepages(void) 1148 { 1149 struct hstate *h; 1150 1151 for_each_hstate(h) { 1152 char buf[32]; 1153 printk(KERN_INFO "HugeTLB registered %s page size, " 1154 "pre-allocated %ld pages\n", 1155 memfmt(buf, huge_page_size(h)), 1156 h->free_huge_pages); 1157 } 1158 } 1159 1160 #ifdef CONFIG_HIGHMEM 1161 static void try_to_free_low(struct hstate *h, unsigned long count, 1162 nodemask_t *nodes_allowed) 1163 { 1164 int i; 1165 1166 if (h->order >= MAX_ORDER) 1167 return; 1168 1169 for_each_node_mask(i, *nodes_allowed) { 1170 struct page *page, *next; 1171 struct list_head *freel = &h->hugepage_freelists[i]; 1172 list_for_each_entry_safe(page, next, freel, lru) { 1173 if (count >= h->nr_huge_pages) 1174 return; 1175 if (PageHighMem(page)) 1176 continue; 1177 list_del(&page->lru); 1178 update_and_free_page(h, page); 1179 h->free_huge_pages--; 1180 h->free_huge_pages_node[page_to_nid(page)]--; 1181 } 1182 } 1183 } 1184 #else 1185 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1186 nodemask_t *nodes_allowed) 1187 { 1188 } 1189 #endif 1190 1191 /* 1192 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1193 * balanced by operating on them in a round-robin fashion. 1194 * Returns 1 if an adjustment was made. 1195 */ 1196 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1197 int delta) 1198 { 1199 int start_nid, next_nid; 1200 int ret = 0; 1201 1202 VM_BUG_ON(delta != -1 && delta != 1); 1203 1204 if (delta < 0) 1205 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 1206 else 1207 start_nid = hstate_next_node_to_free(h, nodes_allowed); 1208 next_nid = start_nid; 1209 1210 do { 1211 int nid = next_nid; 1212 if (delta < 0) { 1213 /* 1214 * To shrink on this node, there must be a surplus page 1215 */ 1216 if (!h->surplus_huge_pages_node[nid]) { 1217 next_nid = hstate_next_node_to_alloc(h, 1218 nodes_allowed); 1219 continue; 1220 } 1221 } 1222 if (delta > 0) { 1223 /* 1224 * Surplus cannot exceed the total number of pages 1225 */ 1226 if (h->surplus_huge_pages_node[nid] >= 1227 h->nr_huge_pages_node[nid]) { 1228 next_nid = hstate_next_node_to_free(h, 1229 nodes_allowed); 1230 continue; 1231 } 1232 } 1233 1234 h->surplus_huge_pages += delta; 1235 h->surplus_huge_pages_node[nid] += delta; 1236 ret = 1; 1237 break; 1238 } while (next_nid != start_nid); 1239 1240 return ret; 1241 } 1242 1243 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1244 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1245 nodemask_t *nodes_allowed) 1246 { 1247 unsigned long min_count, ret; 1248 1249 if (h->order >= MAX_ORDER) 1250 return h->max_huge_pages; 1251 1252 /* 1253 * Increase the pool size 1254 * First take pages out of surplus state. Then make up the 1255 * remaining difference by allocating fresh huge pages. 1256 * 1257 * We might race with alloc_buddy_huge_page() here and be unable 1258 * to convert a surplus huge page to a normal huge page. That is 1259 * not critical, though, it just means the overall size of the 1260 * pool might be one hugepage larger than it needs to be, but 1261 * within all the constraints specified by the sysctls. 1262 */ 1263 spin_lock(&hugetlb_lock); 1264 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1265 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1266 break; 1267 } 1268 1269 while (count > persistent_huge_pages(h)) { 1270 /* 1271 * If this allocation races such that we no longer need the 1272 * page, free_huge_page will handle it by freeing the page 1273 * and reducing the surplus. 1274 */ 1275 spin_unlock(&hugetlb_lock); 1276 ret = alloc_fresh_huge_page(h, nodes_allowed); 1277 spin_lock(&hugetlb_lock); 1278 if (!ret) 1279 goto out; 1280 1281 /* Bail for signals. Probably ctrl-c from user */ 1282 if (signal_pending(current)) 1283 goto out; 1284 } 1285 1286 /* 1287 * Decrease the pool size 1288 * First return free pages to the buddy allocator (being careful 1289 * to keep enough around to satisfy reservations). Then place 1290 * pages into surplus state as needed so the pool will shrink 1291 * to the desired size as pages become free. 1292 * 1293 * By placing pages into the surplus state independent of the 1294 * overcommit value, we are allowing the surplus pool size to 1295 * exceed overcommit. There are few sane options here. Since 1296 * alloc_buddy_huge_page() is checking the global counter, 1297 * though, we'll note that we're not allowed to exceed surplus 1298 * and won't grow the pool anywhere else. Not until one of the 1299 * sysctls are changed, or the surplus pages go out of use. 1300 */ 1301 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1302 min_count = max(count, min_count); 1303 try_to_free_low(h, min_count, nodes_allowed); 1304 while (min_count < persistent_huge_pages(h)) { 1305 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1306 break; 1307 } 1308 while (count < persistent_huge_pages(h)) { 1309 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1310 break; 1311 } 1312 out: 1313 ret = persistent_huge_pages(h); 1314 spin_unlock(&hugetlb_lock); 1315 return ret; 1316 } 1317 1318 #define HSTATE_ATTR_RO(_name) \ 1319 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1320 1321 #define HSTATE_ATTR(_name) \ 1322 static struct kobj_attribute _name##_attr = \ 1323 __ATTR(_name, 0644, _name##_show, _name##_store) 1324 1325 static struct kobject *hugepages_kobj; 1326 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1327 1328 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1329 1330 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1331 { 1332 int i; 1333 1334 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1335 if (hstate_kobjs[i] == kobj) { 1336 if (nidp) 1337 *nidp = NUMA_NO_NODE; 1338 return &hstates[i]; 1339 } 1340 1341 return kobj_to_node_hstate(kobj, nidp); 1342 } 1343 1344 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1345 struct kobj_attribute *attr, char *buf) 1346 { 1347 struct hstate *h; 1348 unsigned long nr_huge_pages; 1349 int nid; 1350 1351 h = kobj_to_hstate(kobj, &nid); 1352 if (nid == NUMA_NO_NODE) 1353 nr_huge_pages = h->nr_huge_pages; 1354 else 1355 nr_huge_pages = h->nr_huge_pages_node[nid]; 1356 1357 return sprintf(buf, "%lu\n", nr_huge_pages); 1358 } 1359 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1360 struct kobject *kobj, struct kobj_attribute *attr, 1361 const char *buf, size_t len) 1362 { 1363 int err; 1364 int nid; 1365 unsigned long count; 1366 struct hstate *h; 1367 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1368 1369 err = strict_strtoul(buf, 10, &count); 1370 if (err) 1371 return 0; 1372 1373 h = kobj_to_hstate(kobj, &nid); 1374 if (nid == NUMA_NO_NODE) { 1375 /* 1376 * global hstate attribute 1377 */ 1378 if (!(obey_mempolicy && 1379 init_nodemask_of_mempolicy(nodes_allowed))) { 1380 NODEMASK_FREE(nodes_allowed); 1381 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1382 } 1383 } else if (nodes_allowed) { 1384 /* 1385 * per node hstate attribute: adjust count to global, 1386 * but restrict alloc/free to the specified node. 1387 */ 1388 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1389 init_nodemask_of_node(nodes_allowed, nid); 1390 } else 1391 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1392 1393 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1394 1395 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1396 NODEMASK_FREE(nodes_allowed); 1397 1398 return len; 1399 } 1400 1401 static ssize_t nr_hugepages_show(struct kobject *kobj, 1402 struct kobj_attribute *attr, char *buf) 1403 { 1404 return nr_hugepages_show_common(kobj, attr, buf); 1405 } 1406 1407 static ssize_t nr_hugepages_store(struct kobject *kobj, 1408 struct kobj_attribute *attr, const char *buf, size_t len) 1409 { 1410 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1411 } 1412 HSTATE_ATTR(nr_hugepages); 1413 1414 #ifdef CONFIG_NUMA 1415 1416 /* 1417 * hstate attribute for optionally mempolicy-based constraint on persistent 1418 * huge page alloc/free. 1419 */ 1420 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1421 struct kobj_attribute *attr, char *buf) 1422 { 1423 return nr_hugepages_show_common(kobj, attr, buf); 1424 } 1425 1426 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1427 struct kobj_attribute *attr, const char *buf, size_t len) 1428 { 1429 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1430 } 1431 HSTATE_ATTR(nr_hugepages_mempolicy); 1432 #endif 1433 1434 1435 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1436 struct kobj_attribute *attr, char *buf) 1437 { 1438 struct hstate *h = kobj_to_hstate(kobj, NULL); 1439 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1440 } 1441 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1442 struct kobj_attribute *attr, const char *buf, size_t count) 1443 { 1444 int err; 1445 unsigned long input; 1446 struct hstate *h = kobj_to_hstate(kobj, NULL); 1447 1448 err = strict_strtoul(buf, 10, &input); 1449 if (err) 1450 return 0; 1451 1452 spin_lock(&hugetlb_lock); 1453 h->nr_overcommit_huge_pages = input; 1454 spin_unlock(&hugetlb_lock); 1455 1456 return count; 1457 } 1458 HSTATE_ATTR(nr_overcommit_hugepages); 1459 1460 static ssize_t free_hugepages_show(struct kobject *kobj, 1461 struct kobj_attribute *attr, char *buf) 1462 { 1463 struct hstate *h; 1464 unsigned long free_huge_pages; 1465 int nid; 1466 1467 h = kobj_to_hstate(kobj, &nid); 1468 if (nid == NUMA_NO_NODE) 1469 free_huge_pages = h->free_huge_pages; 1470 else 1471 free_huge_pages = h->free_huge_pages_node[nid]; 1472 1473 return sprintf(buf, "%lu\n", free_huge_pages); 1474 } 1475 HSTATE_ATTR_RO(free_hugepages); 1476 1477 static ssize_t resv_hugepages_show(struct kobject *kobj, 1478 struct kobj_attribute *attr, char *buf) 1479 { 1480 struct hstate *h = kobj_to_hstate(kobj, NULL); 1481 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1482 } 1483 HSTATE_ATTR_RO(resv_hugepages); 1484 1485 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1486 struct kobj_attribute *attr, char *buf) 1487 { 1488 struct hstate *h; 1489 unsigned long surplus_huge_pages; 1490 int nid; 1491 1492 h = kobj_to_hstate(kobj, &nid); 1493 if (nid == NUMA_NO_NODE) 1494 surplus_huge_pages = h->surplus_huge_pages; 1495 else 1496 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1497 1498 return sprintf(buf, "%lu\n", surplus_huge_pages); 1499 } 1500 HSTATE_ATTR_RO(surplus_hugepages); 1501 1502 static struct attribute *hstate_attrs[] = { 1503 &nr_hugepages_attr.attr, 1504 &nr_overcommit_hugepages_attr.attr, 1505 &free_hugepages_attr.attr, 1506 &resv_hugepages_attr.attr, 1507 &surplus_hugepages_attr.attr, 1508 #ifdef CONFIG_NUMA 1509 &nr_hugepages_mempolicy_attr.attr, 1510 #endif 1511 NULL, 1512 }; 1513 1514 static struct attribute_group hstate_attr_group = { 1515 .attrs = hstate_attrs, 1516 }; 1517 1518 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1519 struct kobject **hstate_kobjs, 1520 struct attribute_group *hstate_attr_group) 1521 { 1522 int retval; 1523 int hi = h - hstates; 1524 1525 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1526 if (!hstate_kobjs[hi]) 1527 return -ENOMEM; 1528 1529 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1530 if (retval) 1531 kobject_put(hstate_kobjs[hi]); 1532 1533 return retval; 1534 } 1535 1536 static void __init hugetlb_sysfs_init(void) 1537 { 1538 struct hstate *h; 1539 int err; 1540 1541 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1542 if (!hugepages_kobj) 1543 return; 1544 1545 for_each_hstate(h) { 1546 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1547 hstate_kobjs, &hstate_attr_group); 1548 if (err) 1549 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1550 h->name); 1551 } 1552 } 1553 1554 #ifdef CONFIG_NUMA 1555 1556 /* 1557 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1558 * with node sysdevs in node_devices[] using a parallel array. The array 1559 * index of a node sysdev or _hstate == node id. 1560 * This is here to avoid any static dependency of the node sysdev driver, in 1561 * the base kernel, on the hugetlb module. 1562 */ 1563 struct node_hstate { 1564 struct kobject *hugepages_kobj; 1565 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1566 }; 1567 struct node_hstate node_hstates[MAX_NUMNODES]; 1568 1569 /* 1570 * A subset of global hstate attributes for node sysdevs 1571 */ 1572 static struct attribute *per_node_hstate_attrs[] = { 1573 &nr_hugepages_attr.attr, 1574 &free_hugepages_attr.attr, 1575 &surplus_hugepages_attr.attr, 1576 NULL, 1577 }; 1578 1579 static struct attribute_group per_node_hstate_attr_group = { 1580 .attrs = per_node_hstate_attrs, 1581 }; 1582 1583 /* 1584 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. 1585 * Returns node id via non-NULL nidp. 1586 */ 1587 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1588 { 1589 int nid; 1590 1591 for (nid = 0; nid < nr_node_ids; nid++) { 1592 struct node_hstate *nhs = &node_hstates[nid]; 1593 int i; 1594 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1595 if (nhs->hstate_kobjs[i] == kobj) { 1596 if (nidp) 1597 *nidp = nid; 1598 return &hstates[i]; 1599 } 1600 } 1601 1602 BUG(); 1603 return NULL; 1604 } 1605 1606 /* 1607 * Unregister hstate attributes from a single node sysdev. 1608 * No-op if no hstate attributes attached. 1609 */ 1610 void hugetlb_unregister_node(struct node *node) 1611 { 1612 struct hstate *h; 1613 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1614 1615 if (!nhs->hugepages_kobj) 1616 return; /* no hstate attributes */ 1617 1618 for_each_hstate(h) 1619 if (nhs->hstate_kobjs[h - hstates]) { 1620 kobject_put(nhs->hstate_kobjs[h - hstates]); 1621 nhs->hstate_kobjs[h - hstates] = NULL; 1622 } 1623 1624 kobject_put(nhs->hugepages_kobj); 1625 nhs->hugepages_kobj = NULL; 1626 } 1627 1628 /* 1629 * hugetlb module exit: unregister hstate attributes from node sysdevs 1630 * that have them. 1631 */ 1632 static void hugetlb_unregister_all_nodes(void) 1633 { 1634 int nid; 1635 1636 /* 1637 * disable node sysdev registrations. 1638 */ 1639 register_hugetlbfs_with_node(NULL, NULL); 1640 1641 /* 1642 * remove hstate attributes from any nodes that have them. 1643 */ 1644 for (nid = 0; nid < nr_node_ids; nid++) 1645 hugetlb_unregister_node(&node_devices[nid]); 1646 } 1647 1648 /* 1649 * Register hstate attributes for a single node sysdev. 1650 * No-op if attributes already registered. 1651 */ 1652 void hugetlb_register_node(struct node *node) 1653 { 1654 struct hstate *h; 1655 struct node_hstate *nhs = &node_hstates[node->sysdev.id]; 1656 int err; 1657 1658 if (nhs->hugepages_kobj) 1659 return; /* already allocated */ 1660 1661 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1662 &node->sysdev.kobj); 1663 if (!nhs->hugepages_kobj) 1664 return; 1665 1666 for_each_hstate(h) { 1667 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1668 nhs->hstate_kobjs, 1669 &per_node_hstate_attr_group); 1670 if (err) { 1671 printk(KERN_ERR "Hugetlb: Unable to add hstate %s" 1672 " for node %d\n", 1673 h->name, node->sysdev.id); 1674 hugetlb_unregister_node(node); 1675 break; 1676 } 1677 } 1678 } 1679 1680 /* 1681 * hugetlb init time: register hstate attributes for all registered node 1682 * sysdevs of nodes that have memory. All on-line nodes should have 1683 * registered their associated sysdev by this time. 1684 */ 1685 static void hugetlb_register_all_nodes(void) 1686 { 1687 int nid; 1688 1689 for_each_node_state(nid, N_HIGH_MEMORY) { 1690 struct node *node = &node_devices[nid]; 1691 if (node->sysdev.id == nid) 1692 hugetlb_register_node(node); 1693 } 1694 1695 /* 1696 * Let the node sysdev driver know we're here so it can 1697 * [un]register hstate attributes on node hotplug. 1698 */ 1699 register_hugetlbfs_with_node(hugetlb_register_node, 1700 hugetlb_unregister_node); 1701 } 1702 #else /* !CONFIG_NUMA */ 1703 1704 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1705 { 1706 BUG(); 1707 if (nidp) 1708 *nidp = -1; 1709 return NULL; 1710 } 1711 1712 static void hugetlb_unregister_all_nodes(void) { } 1713 1714 static void hugetlb_register_all_nodes(void) { } 1715 1716 #endif 1717 1718 static void __exit hugetlb_exit(void) 1719 { 1720 struct hstate *h; 1721 1722 hugetlb_unregister_all_nodes(); 1723 1724 for_each_hstate(h) { 1725 kobject_put(hstate_kobjs[h - hstates]); 1726 } 1727 1728 kobject_put(hugepages_kobj); 1729 } 1730 module_exit(hugetlb_exit); 1731 1732 static int __init hugetlb_init(void) 1733 { 1734 /* Some platform decide whether they support huge pages at boot 1735 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1736 * there is no such support 1737 */ 1738 if (HPAGE_SHIFT == 0) 1739 return 0; 1740 1741 if (!size_to_hstate(default_hstate_size)) { 1742 default_hstate_size = HPAGE_SIZE; 1743 if (!size_to_hstate(default_hstate_size)) 1744 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1745 } 1746 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1747 if (default_hstate_max_huge_pages) 1748 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1749 1750 hugetlb_init_hstates(); 1751 1752 gather_bootmem_prealloc(); 1753 1754 report_hugepages(); 1755 1756 hugetlb_sysfs_init(); 1757 1758 hugetlb_register_all_nodes(); 1759 1760 return 0; 1761 } 1762 module_init(hugetlb_init); 1763 1764 /* Should be called on processing a hugepagesz=... option */ 1765 void __init hugetlb_add_hstate(unsigned order) 1766 { 1767 struct hstate *h; 1768 unsigned long i; 1769 1770 if (size_to_hstate(PAGE_SIZE << order)) { 1771 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1772 return; 1773 } 1774 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1775 BUG_ON(order == 0); 1776 h = &hstates[max_hstate++]; 1777 h->order = order; 1778 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1779 h->nr_huge_pages = 0; 1780 h->free_huge_pages = 0; 1781 for (i = 0; i < MAX_NUMNODES; ++i) 1782 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1783 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); 1784 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); 1785 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1786 huge_page_size(h)/1024); 1787 1788 parsed_hstate = h; 1789 } 1790 1791 static int __init hugetlb_nrpages_setup(char *s) 1792 { 1793 unsigned long *mhp; 1794 static unsigned long *last_mhp; 1795 1796 /* 1797 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1798 * so this hugepages= parameter goes to the "default hstate". 1799 */ 1800 if (!max_hstate) 1801 mhp = &default_hstate_max_huge_pages; 1802 else 1803 mhp = &parsed_hstate->max_huge_pages; 1804 1805 if (mhp == last_mhp) { 1806 printk(KERN_WARNING "hugepages= specified twice without " 1807 "interleaving hugepagesz=, ignoring\n"); 1808 return 1; 1809 } 1810 1811 if (sscanf(s, "%lu", mhp) <= 0) 1812 *mhp = 0; 1813 1814 /* 1815 * Global state is always initialized later in hugetlb_init. 1816 * But we need to allocate >= MAX_ORDER hstates here early to still 1817 * use the bootmem allocator. 1818 */ 1819 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1820 hugetlb_hstate_alloc_pages(parsed_hstate); 1821 1822 last_mhp = mhp; 1823 1824 return 1; 1825 } 1826 __setup("hugepages=", hugetlb_nrpages_setup); 1827 1828 static int __init hugetlb_default_setup(char *s) 1829 { 1830 default_hstate_size = memparse(s, &s); 1831 return 1; 1832 } 1833 __setup("default_hugepagesz=", hugetlb_default_setup); 1834 1835 static unsigned int cpuset_mems_nr(unsigned int *array) 1836 { 1837 int node; 1838 unsigned int nr = 0; 1839 1840 for_each_node_mask(node, cpuset_current_mems_allowed) 1841 nr += array[node]; 1842 1843 return nr; 1844 } 1845 1846 #ifdef CONFIG_SYSCTL 1847 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 1848 struct ctl_table *table, int write, 1849 void __user *buffer, size_t *length, loff_t *ppos) 1850 { 1851 struct hstate *h = &default_hstate; 1852 unsigned long tmp; 1853 1854 if (!write) 1855 tmp = h->max_huge_pages; 1856 1857 table->data = &tmp; 1858 table->maxlen = sizeof(unsigned long); 1859 proc_doulongvec_minmax(table, write, buffer, length, ppos); 1860 1861 if (write) { 1862 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 1863 GFP_KERNEL | __GFP_NORETRY); 1864 if (!(obey_mempolicy && 1865 init_nodemask_of_mempolicy(nodes_allowed))) { 1866 NODEMASK_FREE(nodes_allowed); 1867 nodes_allowed = &node_states[N_HIGH_MEMORY]; 1868 } 1869 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 1870 1871 if (nodes_allowed != &node_states[N_HIGH_MEMORY]) 1872 NODEMASK_FREE(nodes_allowed); 1873 } 1874 1875 return 0; 1876 } 1877 1878 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1879 void __user *buffer, size_t *length, loff_t *ppos) 1880 { 1881 1882 return hugetlb_sysctl_handler_common(false, table, write, 1883 buffer, length, ppos); 1884 } 1885 1886 #ifdef CONFIG_NUMA 1887 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 1888 void __user *buffer, size_t *length, loff_t *ppos) 1889 { 1890 return hugetlb_sysctl_handler_common(true, table, write, 1891 buffer, length, ppos); 1892 } 1893 #endif /* CONFIG_NUMA */ 1894 1895 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1896 void __user *buffer, 1897 size_t *length, loff_t *ppos) 1898 { 1899 proc_dointvec(table, write, buffer, length, ppos); 1900 if (hugepages_treat_as_movable) 1901 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1902 else 1903 htlb_alloc_mask = GFP_HIGHUSER; 1904 return 0; 1905 } 1906 1907 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1908 void __user *buffer, 1909 size_t *length, loff_t *ppos) 1910 { 1911 struct hstate *h = &default_hstate; 1912 unsigned long tmp; 1913 1914 if (!write) 1915 tmp = h->nr_overcommit_huge_pages; 1916 1917 table->data = &tmp; 1918 table->maxlen = sizeof(unsigned long); 1919 proc_doulongvec_minmax(table, write, buffer, length, ppos); 1920 1921 if (write) { 1922 spin_lock(&hugetlb_lock); 1923 h->nr_overcommit_huge_pages = tmp; 1924 spin_unlock(&hugetlb_lock); 1925 } 1926 1927 return 0; 1928 } 1929 1930 #endif /* CONFIG_SYSCTL */ 1931 1932 void hugetlb_report_meminfo(struct seq_file *m) 1933 { 1934 struct hstate *h = &default_hstate; 1935 seq_printf(m, 1936 "HugePages_Total: %5lu\n" 1937 "HugePages_Free: %5lu\n" 1938 "HugePages_Rsvd: %5lu\n" 1939 "HugePages_Surp: %5lu\n" 1940 "Hugepagesize: %8lu kB\n", 1941 h->nr_huge_pages, 1942 h->free_huge_pages, 1943 h->resv_huge_pages, 1944 h->surplus_huge_pages, 1945 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1946 } 1947 1948 int hugetlb_report_node_meminfo(int nid, char *buf) 1949 { 1950 struct hstate *h = &default_hstate; 1951 return sprintf(buf, 1952 "Node %d HugePages_Total: %5u\n" 1953 "Node %d HugePages_Free: %5u\n" 1954 "Node %d HugePages_Surp: %5u\n", 1955 nid, h->nr_huge_pages_node[nid], 1956 nid, h->free_huge_pages_node[nid], 1957 nid, h->surplus_huge_pages_node[nid]); 1958 } 1959 1960 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1961 unsigned long hugetlb_total_pages(void) 1962 { 1963 struct hstate *h = &default_hstate; 1964 return h->nr_huge_pages * pages_per_huge_page(h); 1965 } 1966 1967 static int hugetlb_acct_memory(struct hstate *h, long delta) 1968 { 1969 int ret = -ENOMEM; 1970 1971 spin_lock(&hugetlb_lock); 1972 /* 1973 * When cpuset is configured, it breaks the strict hugetlb page 1974 * reservation as the accounting is done on a global variable. Such 1975 * reservation is completely rubbish in the presence of cpuset because 1976 * the reservation is not checked against page availability for the 1977 * current cpuset. Application can still potentially OOM'ed by kernel 1978 * with lack of free htlb page in cpuset that the task is in. 1979 * Attempt to enforce strict accounting with cpuset is almost 1980 * impossible (or too ugly) because cpuset is too fluid that 1981 * task or memory node can be dynamically moved between cpusets. 1982 * 1983 * The change of semantics for shared hugetlb mapping with cpuset is 1984 * undesirable. However, in order to preserve some of the semantics, 1985 * we fall back to check against current free page availability as 1986 * a best attempt and hopefully to minimize the impact of changing 1987 * semantics that cpuset has. 1988 */ 1989 if (delta > 0) { 1990 if (gather_surplus_pages(h, delta) < 0) 1991 goto out; 1992 1993 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 1994 return_unused_surplus_pages(h, delta); 1995 goto out; 1996 } 1997 } 1998 1999 ret = 0; 2000 if (delta < 0) 2001 return_unused_surplus_pages(h, (unsigned long) -delta); 2002 2003 out: 2004 spin_unlock(&hugetlb_lock); 2005 return ret; 2006 } 2007 2008 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2009 { 2010 struct resv_map *reservations = vma_resv_map(vma); 2011 2012 /* 2013 * This new VMA should share its siblings reservation map if present. 2014 * The VMA will only ever have a valid reservation map pointer where 2015 * it is being copied for another still existing VMA. As that VMA 2016 * has a reference to the reservation map it cannot dissappear until 2017 * after this open call completes. It is therefore safe to take a 2018 * new reference here without additional locking. 2019 */ 2020 if (reservations) 2021 kref_get(&reservations->refs); 2022 } 2023 2024 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2025 { 2026 struct hstate *h = hstate_vma(vma); 2027 struct resv_map *reservations = vma_resv_map(vma); 2028 unsigned long reserve; 2029 unsigned long start; 2030 unsigned long end; 2031 2032 if (reservations) { 2033 start = vma_hugecache_offset(h, vma, vma->vm_start); 2034 end = vma_hugecache_offset(h, vma, vma->vm_end); 2035 2036 reserve = (end - start) - 2037 region_count(&reservations->regions, start, end); 2038 2039 kref_put(&reservations->refs, resv_map_release); 2040 2041 if (reserve) { 2042 hugetlb_acct_memory(h, -reserve); 2043 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 2044 } 2045 } 2046 } 2047 2048 /* 2049 * We cannot handle pagefaults against hugetlb pages at all. They cause 2050 * handle_mm_fault() to try to instantiate regular-sized pages in the 2051 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2052 * this far. 2053 */ 2054 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2055 { 2056 BUG(); 2057 return 0; 2058 } 2059 2060 const struct vm_operations_struct hugetlb_vm_ops = { 2061 .fault = hugetlb_vm_op_fault, 2062 .open = hugetlb_vm_op_open, 2063 .close = hugetlb_vm_op_close, 2064 }; 2065 2066 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2067 int writable) 2068 { 2069 pte_t entry; 2070 2071 if (writable) { 2072 entry = 2073 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 2074 } else { 2075 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 2076 } 2077 entry = pte_mkyoung(entry); 2078 entry = pte_mkhuge(entry); 2079 2080 return entry; 2081 } 2082 2083 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2084 unsigned long address, pte_t *ptep) 2085 { 2086 pte_t entry; 2087 2088 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 2089 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { 2090 update_mmu_cache(vma, address, entry); 2091 } 2092 } 2093 2094 2095 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2096 struct vm_area_struct *vma) 2097 { 2098 pte_t *src_pte, *dst_pte, entry; 2099 struct page *ptepage; 2100 unsigned long addr; 2101 int cow; 2102 struct hstate *h = hstate_vma(vma); 2103 unsigned long sz = huge_page_size(h); 2104 2105 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2106 2107 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2108 src_pte = huge_pte_offset(src, addr); 2109 if (!src_pte) 2110 continue; 2111 dst_pte = huge_pte_alloc(dst, addr, sz); 2112 if (!dst_pte) 2113 goto nomem; 2114 2115 /* If the pagetables are shared don't copy or take references */ 2116 if (dst_pte == src_pte) 2117 continue; 2118 2119 spin_lock(&dst->page_table_lock); 2120 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2121 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2122 if (cow) 2123 huge_ptep_set_wrprotect(src, addr, src_pte); 2124 entry = huge_ptep_get(src_pte); 2125 ptepage = pte_page(entry); 2126 get_page(ptepage); 2127 set_huge_pte_at(dst, addr, dst_pte, entry); 2128 } 2129 spin_unlock(&src->page_table_lock); 2130 spin_unlock(&dst->page_table_lock); 2131 } 2132 return 0; 2133 2134 nomem: 2135 return -ENOMEM; 2136 } 2137 2138 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2139 unsigned long end, struct page *ref_page) 2140 { 2141 struct mm_struct *mm = vma->vm_mm; 2142 unsigned long address; 2143 pte_t *ptep; 2144 pte_t pte; 2145 struct page *page; 2146 struct page *tmp; 2147 struct hstate *h = hstate_vma(vma); 2148 unsigned long sz = huge_page_size(h); 2149 2150 /* 2151 * A page gathering list, protected by per file i_mmap_lock. The 2152 * lock is used to avoid list corruption from multiple unmapping 2153 * of the same page since we are using page->lru. 2154 */ 2155 LIST_HEAD(page_list); 2156 2157 WARN_ON(!is_vm_hugetlb_page(vma)); 2158 BUG_ON(start & ~huge_page_mask(h)); 2159 BUG_ON(end & ~huge_page_mask(h)); 2160 2161 mmu_notifier_invalidate_range_start(mm, start, end); 2162 spin_lock(&mm->page_table_lock); 2163 for (address = start; address < end; address += sz) { 2164 ptep = huge_pte_offset(mm, address); 2165 if (!ptep) 2166 continue; 2167 2168 if (huge_pmd_unshare(mm, &address, ptep)) 2169 continue; 2170 2171 /* 2172 * If a reference page is supplied, it is because a specific 2173 * page is being unmapped, not a range. Ensure the page we 2174 * are about to unmap is the actual page of interest. 2175 */ 2176 if (ref_page) { 2177 pte = huge_ptep_get(ptep); 2178 if (huge_pte_none(pte)) 2179 continue; 2180 page = pte_page(pte); 2181 if (page != ref_page) 2182 continue; 2183 2184 /* 2185 * Mark the VMA as having unmapped its page so that 2186 * future faults in this VMA will fail rather than 2187 * looking like data was lost 2188 */ 2189 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2190 } 2191 2192 pte = huge_ptep_get_and_clear(mm, address, ptep); 2193 if (huge_pte_none(pte)) 2194 continue; 2195 2196 page = pte_page(pte); 2197 if (pte_dirty(pte)) 2198 set_page_dirty(page); 2199 list_add(&page->lru, &page_list); 2200 } 2201 spin_unlock(&mm->page_table_lock); 2202 flush_tlb_range(vma, start, end); 2203 mmu_notifier_invalidate_range_end(mm, start, end); 2204 list_for_each_entry_safe(page, tmp, &page_list, lru) { 2205 list_del(&page->lru); 2206 put_page(page); 2207 } 2208 } 2209 2210 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2211 unsigned long end, struct page *ref_page) 2212 { 2213 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2214 __unmap_hugepage_range(vma, start, end, ref_page); 2215 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2216 } 2217 2218 /* 2219 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2220 * mappping it owns the reserve page for. The intention is to unmap the page 2221 * from other VMAs and let the children be SIGKILLed if they are faulting the 2222 * same region. 2223 */ 2224 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2225 struct page *page, unsigned long address) 2226 { 2227 struct hstate *h = hstate_vma(vma); 2228 struct vm_area_struct *iter_vma; 2229 struct address_space *mapping; 2230 struct prio_tree_iter iter; 2231 pgoff_t pgoff; 2232 2233 /* 2234 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2235 * from page cache lookup which is in HPAGE_SIZE units. 2236 */ 2237 address = address & huge_page_mask(h); 2238 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 2239 + (vma->vm_pgoff >> PAGE_SHIFT); 2240 mapping = (struct address_space *)page_private(page); 2241 2242 /* 2243 * Take the mapping lock for the duration of the table walk. As 2244 * this mapping should be shared between all the VMAs, 2245 * __unmap_hugepage_range() is called as the lock is already held 2246 */ 2247 spin_lock(&mapping->i_mmap_lock); 2248 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 2249 /* Do not unmap the current VMA */ 2250 if (iter_vma == vma) 2251 continue; 2252 2253 /* 2254 * Unmap the page from other VMAs without their own reserves. 2255 * They get marked to be SIGKILLed if they fault in these 2256 * areas. This is because a future no-page fault on this VMA 2257 * could insert a zeroed page instead of the data existing 2258 * from the time of fork. This would look like data corruption 2259 */ 2260 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2261 __unmap_hugepage_range(iter_vma, 2262 address, address + huge_page_size(h), 2263 page); 2264 } 2265 spin_unlock(&mapping->i_mmap_lock); 2266 2267 return 1; 2268 } 2269 2270 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2271 unsigned long address, pte_t *ptep, pte_t pte, 2272 struct page *pagecache_page) 2273 { 2274 struct hstate *h = hstate_vma(vma); 2275 struct page *old_page, *new_page; 2276 int avoidcopy; 2277 int outside_reserve = 0; 2278 2279 old_page = pte_page(pte); 2280 2281 retry_avoidcopy: 2282 /* If no-one else is actually using this page, avoid the copy 2283 * and just make the page writable */ 2284 avoidcopy = (page_count(old_page) == 1); 2285 if (avoidcopy) { 2286 set_huge_ptep_writable(vma, address, ptep); 2287 return 0; 2288 } 2289 2290 /* 2291 * If the process that created a MAP_PRIVATE mapping is about to 2292 * perform a COW due to a shared page count, attempt to satisfy 2293 * the allocation without using the existing reserves. The pagecache 2294 * page is used to determine if the reserve at this address was 2295 * consumed or not. If reserves were used, a partial faulted mapping 2296 * at the time of fork() could consume its reserves on COW instead 2297 * of the full address range. 2298 */ 2299 if (!(vma->vm_flags & VM_MAYSHARE) && 2300 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2301 old_page != pagecache_page) 2302 outside_reserve = 1; 2303 2304 page_cache_get(old_page); 2305 2306 /* Drop page_table_lock as buddy allocator may be called */ 2307 spin_unlock(&mm->page_table_lock); 2308 new_page = alloc_huge_page(vma, address, outside_reserve); 2309 2310 if (IS_ERR(new_page)) { 2311 page_cache_release(old_page); 2312 2313 /* 2314 * If a process owning a MAP_PRIVATE mapping fails to COW, 2315 * it is due to references held by a child and an insufficient 2316 * huge page pool. To guarantee the original mappers 2317 * reliability, unmap the page from child processes. The child 2318 * may get SIGKILLed if it later faults. 2319 */ 2320 if (outside_reserve) { 2321 BUG_ON(huge_pte_none(pte)); 2322 if (unmap_ref_private(mm, vma, old_page, address)) { 2323 BUG_ON(page_count(old_page) != 1); 2324 BUG_ON(huge_pte_none(pte)); 2325 spin_lock(&mm->page_table_lock); 2326 goto retry_avoidcopy; 2327 } 2328 WARN_ON_ONCE(1); 2329 } 2330 2331 /* Caller expects lock to be held */ 2332 spin_lock(&mm->page_table_lock); 2333 return -PTR_ERR(new_page); 2334 } 2335 2336 copy_huge_page(new_page, old_page, address, vma); 2337 __SetPageUptodate(new_page); 2338 2339 /* 2340 * Retake the page_table_lock to check for racing updates 2341 * before the page tables are altered 2342 */ 2343 spin_lock(&mm->page_table_lock); 2344 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2345 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2346 /* Break COW */ 2347 huge_ptep_clear_flush(vma, address, ptep); 2348 set_huge_pte_at(mm, address, ptep, 2349 make_huge_pte(vma, new_page, 1)); 2350 /* Make the old page be freed below */ 2351 new_page = old_page; 2352 } 2353 page_cache_release(new_page); 2354 page_cache_release(old_page); 2355 return 0; 2356 } 2357 2358 /* Return the pagecache page at a given address within a VMA */ 2359 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2360 struct vm_area_struct *vma, unsigned long address) 2361 { 2362 struct address_space *mapping; 2363 pgoff_t idx; 2364 2365 mapping = vma->vm_file->f_mapping; 2366 idx = vma_hugecache_offset(h, vma, address); 2367 2368 return find_lock_page(mapping, idx); 2369 } 2370 2371 /* 2372 * Return whether there is a pagecache page to back given address within VMA. 2373 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2374 */ 2375 static bool hugetlbfs_pagecache_present(struct hstate *h, 2376 struct vm_area_struct *vma, unsigned long address) 2377 { 2378 struct address_space *mapping; 2379 pgoff_t idx; 2380 struct page *page; 2381 2382 mapping = vma->vm_file->f_mapping; 2383 idx = vma_hugecache_offset(h, vma, address); 2384 2385 page = find_get_page(mapping, idx); 2386 if (page) 2387 put_page(page); 2388 return page != NULL; 2389 } 2390 2391 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2392 unsigned long address, pte_t *ptep, unsigned int flags) 2393 { 2394 struct hstate *h = hstate_vma(vma); 2395 int ret = VM_FAULT_SIGBUS; 2396 pgoff_t idx; 2397 unsigned long size; 2398 struct page *page; 2399 struct address_space *mapping; 2400 pte_t new_pte; 2401 2402 /* 2403 * Currently, we are forced to kill the process in the event the 2404 * original mapper has unmapped pages from the child due to a failed 2405 * COW. Warn that such a situation has occured as it may not be obvious 2406 */ 2407 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2408 printk(KERN_WARNING 2409 "PID %d killed due to inadequate hugepage pool\n", 2410 current->pid); 2411 return ret; 2412 } 2413 2414 mapping = vma->vm_file->f_mapping; 2415 idx = vma_hugecache_offset(h, vma, address); 2416 2417 /* 2418 * Use page lock to guard against racing truncation 2419 * before we get page_table_lock. 2420 */ 2421 retry: 2422 page = find_lock_page(mapping, idx); 2423 if (!page) { 2424 size = i_size_read(mapping->host) >> huge_page_shift(h); 2425 if (idx >= size) 2426 goto out; 2427 page = alloc_huge_page(vma, address, 0); 2428 if (IS_ERR(page)) { 2429 ret = -PTR_ERR(page); 2430 goto out; 2431 } 2432 clear_huge_page(page, address, huge_page_size(h)); 2433 __SetPageUptodate(page); 2434 2435 if (vma->vm_flags & VM_MAYSHARE) { 2436 int err; 2437 struct inode *inode = mapping->host; 2438 2439 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2440 if (err) { 2441 put_page(page); 2442 if (err == -EEXIST) 2443 goto retry; 2444 goto out; 2445 } 2446 2447 spin_lock(&inode->i_lock); 2448 inode->i_blocks += blocks_per_huge_page(h); 2449 spin_unlock(&inode->i_lock); 2450 } else 2451 lock_page(page); 2452 } 2453 2454 /* 2455 * If we are going to COW a private mapping later, we examine the 2456 * pending reservations for this page now. This will ensure that 2457 * any allocations necessary to record that reservation occur outside 2458 * the spinlock. 2459 */ 2460 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2461 if (vma_needs_reservation(h, vma, address) < 0) { 2462 ret = VM_FAULT_OOM; 2463 goto backout_unlocked; 2464 } 2465 2466 spin_lock(&mm->page_table_lock); 2467 size = i_size_read(mapping->host) >> huge_page_shift(h); 2468 if (idx >= size) 2469 goto backout; 2470 2471 ret = 0; 2472 if (!huge_pte_none(huge_ptep_get(ptep))) 2473 goto backout; 2474 2475 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2476 && (vma->vm_flags & VM_SHARED))); 2477 set_huge_pte_at(mm, address, ptep, new_pte); 2478 2479 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2480 /* Optimization, do the COW without a second fault */ 2481 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2482 } 2483 2484 spin_unlock(&mm->page_table_lock); 2485 unlock_page(page); 2486 out: 2487 return ret; 2488 2489 backout: 2490 spin_unlock(&mm->page_table_lock); 2491 backout_unlocked: 2492 unlock_page(page); 2493 put_page(page); 2494 goto out; 2495 } 2496 2497 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2498 unsigned long address, unsigned int flags) 2499 { 2500 pte_t *ptep; 2501 pte_t entry; 2502 int ret; 2503 struct page *pagecache_page = NULL; 2504 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2505 struct hstate *h = hstate_vma(vma); 2506 2507 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2508 if (!ptep) 2509 return VM_FAULT_OOM; 2510 2511 /* 2512 * Serialize hugepage allocation and instantiation, so that we don't 2513 * get spurious allocation failures if two CPUs race to instantiate 2514 * the same page in the page cache. 2515 */ 2516 mutex_lock(&hugetlb_instantiation_mutex); 2517 entry = huge_ptep_get(ptep); 2518 if (huge_pte_none(entry)) { 2519 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2520 goto out_mutex; 2521 } 2522 2523 ret = 0; 2524 2525 /* 2526 * If we are going to COW the mapping later, we examine the pending 2527 * reservations for this page now. This will ensure that any 2528 * allocations necessary to record that reservation occur outside the 2529 * spinlock. For private mappings, we also lookup the pagecache 2530 * page now as it is used to determine if a reservation has been 2531 * consumed. 2532 */ 2533 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { 2534 if (vma_needs_reservation(h, vma, address) < 0) { 2535 ret = VM_FAULT_OOM; 2536 goto out_mutex; 2537 } 2538 2539 if (!(vma->vm_flags & VM_MAYSHARE)) 2540 pagecache_page = hugetlbfs_pagecache_page(h, 2541 vma, address); 2542 } 2543 2544 spin_lock(&mm->page_table_lock); 2545 /* Check for a racing update before calling hugetlb_cow */ 2546 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2547 goto out_page_table_lock; 2548 2549 2550 if (flags & FAULT_FLAG_WRITE) { 2551 if (!pte_write(entry)) { 2552 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2553 pagecache_page); 2554 goto out_page_table_lock; 2555 } 2556 entry = pte_mkdirty(entry); 2557 } 2558 entry = pte_mkyoung(entry); 2559 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2560 flags & FAULT_FLAG_WRITE)) 2561 update_mmu_cache(vma, address, entry); 2562 2563 out_page_table_lock: 2564 spin_unlock(&mm->page_table_lock); 2565 2566 if (pagecache_page) { 2567 unlock_page(pagecache_page); 2568 put_page(pagecache_page); 2569 } 2570 2571 out_mutex: 2572 mutex_unlock(&hugetlb_instantiation_mutex); 2573 2574 return ret; 2575 } 2576 2577 /* Can be overriden by architectures */ 2578 __attribute__((weak)) struct page * 2579 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2580 pud_t *pud, int write) 2581 { 2582 BUG(); 2583 return NULL; 2584 } 2585 2586 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2587 struct page **pages, struct vm_area_struct **vmas, 2588 unsigned long *position, int *length, int i, 2589 unsigned int flags) 2590 { 2591 unsigned long pfn_offset; 2592 unsigned long vaddr = *position; 2593 int remainder = *length; 2594 struct hstate *h = hstate_vma(vma); 2595 2596 spin_lock(&mm->page_table_lock); 2597 while (vaddr < vma->vm_end && remainder) { 2598 pte_t *pte; 2599 int absent; 2600 struct page *page; 2601 2602 /* 2603 * Some archs (sparc64, sh*) have multiple pte_ts to 2604 * each hugepage. We have to make sure we get the 2605 * first, for the page indexing below to work. 2606 */ 2607 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2608 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 2609 2610 /* 2611 * When coredumping, it suits get_dump_page if we just return 2612 * an error where there's an empty slot with no huge pagecache 2613 * to back it. This way, we avoid allocating a hugepage, and 2614 * the sparse dumpfile avoids allocating disk blocks, but its 2615 * huge holes still show up with zeroes where they need to be. 2616 */ 2617 if (absent && (flags & FOLL_DUMP) && 2618 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 2619 remainder = 0; 2620 break; 2621 } 2622 2623 if (absent || 2624 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { 2625 int ret; 2626 2627 spin_unlock(&mm->page_table_lock); 2628 ret = hugetlb_fault(mm, vma, vaddr, 2629 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 2630 spin_lock(&mm->page_table_lock); 2631 if (!(ret & VM_FAULT_ERROR)) 2632 continue; 2633 2634 remainder = 0; 2635 break; 2636 } 2637 2638 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2639 page = pte_page(huge_ptep_get(pte)); 2640 same_page: 2641 if (pages) { 2642 pages[i] = mem_map_offset(page, pfn_offset); 2643 get_page(pages[i]); 2644 } 2645 2646 if (vmas) 2647 vmas[i] = vma; 2648 2649 vaddr += PAGE_SIZE; 2650 ++pfn_offset; 2651 --remainder; 2652 ++i; 2653 if (vaddr < vma->vm_end && remainder && 2654 pfn_offset < pages_per_huge_page(h)) { 2655 /* 2656 * We use pfn_offset to avoid touching the pageframes 2657 * of this compound page. 2658 */ 2659 goto same_page; 2660 } 2661 } 2662 spin_unlock(&mm->page_table_lock); 2663 *length = remainder; 2664 *position = vaddr; 2665 2666 return i ? i : -EFAULT; 2667 } 2668 2669 void hugetlb_change_protection(struct vm_area_struct *vma, 2670 unsigned long address, unsigned long end, pgprot_t newprot) 2671 { 2672 struct mm_struct *mm = vma->vm_mm; 2673 unsigned long start = address; 2674 pte_t *ptep; 2675 pte_t pte; 2676 struct hstate *h = hstate_vma(vma); 2677 2678 BUG_ON(address >= end); 2679 flush_cache_range(vma, address, end); 2680 2681 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2682 spin_lock(&mm->page_table_lock); 2683 for (; address < end; address += huge_page_size(h)) { 2684 ptep = huge_pte_offset(mm, address); 2685 if (!ptep) 2686 continue; 2687 if (huge_pmd_unshare(mm, &address, ptep)) 2688 continue; 2689 if (!huge_pte_none(huge_ptep_get(ptep))) { 2690 pte = huge_ptep_get_and_clear(mm, address, ptep); 2691 pte = pte_mkhuge(pte_modify(pte, newprot)); 2692 set_huge_pte_at(mm, address, ptep, pte); 2693 } 2694 } 2695 spin_unlock(&mm->page_table_lock); 2696 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2697 2698 flush_tlb_range(vma, start, end); 2699 } 2700 2701 int hugetlb_reserve_pages(struct inode *inode, 2702 long from, long to, 2703 struct vm_area_struct *vma, 2704 int acctflag) 2705 { 2706 long ret, chg; 2707 struct hstate *h = hstate_inode(inode); 2708 2709 /* 2710 * Only apply hugepage reservation if asked. At fault time, an 2711 * attempt will be made for VM_NORESERVE to allocate a page 2712 * and filesystem quota without using reserves 2713 */ 2714 if (acctflag & VM_NORESERVE) 2715 return 0; 2716 2717 /* 2718 * Shared mappings base their reservation on the number of pages that 2719 * are already allocated on behalf of the file. Private mappings need 2720 * to reserve the full area even if read-only as mprotect() may be 2721 * called to make the mapping read-write. Assume !vma is a shm mapping 2722 */ 2723 if (!vma || vma->vm_flags & VM_MAYSHARE) 2724 chg = region_chg(&inode->i_mapping->private_list, from, to); 2725 else { 2726 struct resv_map *resv_map = resv_map_alloc(); 2727 if (!resv_map) 2728 return -ENOMEM; 2729 2730 chg = to - from; 2731 2732 set_vma_resv_map(vma, resv_map); 2733 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2734 } 2735 2736 if (chg < 0) 2737 return chg; 2738 2739 /* There must be enough filesystem quota for the mapping */ 2740 if (hugetlb_get_quota(inode->i_mapping, chg)) 2741 return -ENOSPC; 2742 2743 /* 2744 * Check enough hugepages are available for the reservation. 2745 * Hand back the quota if there are not 2746 */ 2747 ret = hugetlb_acct_memory(h, chg); 2748 if (ret < 0) { 2749 hugetlb_put_quota(inode->i_mapping, chg); 2750 return ret; 2751 } 2752 2753 /* 2754 * Account for the reservations made. Shared mappings record regions 2755 * that have reservations as they are shared by multiple VMAs. 2756 * When the last VMA disappears, the region map says how much 2757 * the reservation was and the page cache tells how much of 2758 * the reservation was consumed. Private mappings are per-VMA and 2759 * only the consumed reservations are tracked. When the VMA 2760 * disappears, the original reservation is the VMA size and the 2761 * consumed reservations are stored in the map. Hence, nothing 2762 * else has to be done for private mappings here 2763 */ 2764 if (!vma || vma->vm_flags & VM_MAYSHARE) 2765 region_add(&inode->i_mapping->private_list, from, to); 2766 return 0; 2767 } 2768 2769 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2770 { 2771 struct hstate *h = hstate_inode(inode); 2772 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2773 2774 spin_lock(&inode->i_lock); 2775 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 2776 spin_unlock(&inode->i_lock); 2777 2778 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2779 hugetlb_acct_memory(h, -(chg - freed)); 2780 } 2781