xref: /openbmc/linux/mm/hugetlb.c (revision b664e06d)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
29 
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33 
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41 
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50 
51 __initdata LIST_HEAD(huge_boot_pages);
52 
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58 
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64 
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71 
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74 
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
78 
79 	spin_unlock(&spool->lock);
80 
81 	/* If no pages are used, and no other handles to the subpool
82 	 * remain, give up any reservations mased on minimum size and
83 	 * free the subpool */
84 	if (free) {
85 		if (spool->min_hpages != -1)
86 			hugetlb_acct_memory(spool->hstate,
87 						-spool->min_hpages);
88 		kfree(spool);
89 	}
90 }
91 
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 						long min_hpages)
94 {
95 	struct hugepage_subpool *spool;
96 
97 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 	if (!spool)
99 		return NULL;
100 
101 	spin_lock_init(&spool->lock);
102 	spool->count = 1;
103 	spool->max_hpages = max_hpages;
104 	spool->hstate = h;
105 	spool->min_hpages = min_hpages;
106 
107 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 		kfree(spool);
109 		return NULL;
110 	}
111 	spool->rsv_hpages = min_hpages;
112 
113 	return spool;
114 }
115 
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118 	spin_lock(&spool->lock);
119 	BUG_ON(!spool->count);
120 	spool->count--;
121 	unlock_or_release_subpool(spool);
122 }
123 
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133 				      long delta)
134 {
135 	long ret = delta;
136 
137 	if (!spool)
138 		return ret;
139 
140 	spin_lock(&spool->lock);
141 
142 	if (spool->max_hpages != -1) {		/* maximum size accounting */
143 		if ((spool->used_hpages + delta) <= spool->max_hpages)
144 			spool->used_hpages += delta;
145 		else {
146 			ret = -ENOMEM;
147 			goto unlock_ret;
148 		}
149 	}
150 
151 	/* minimum size accounting */
152 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
153 		if (delta > spool->rsv_hpages) {
154 			/*
155 			 * Asking for more reserves than those already taken on
156 			 * behalf of subpool.  Return difference.
157 			 */
158 			ret = delta - spool->rsv_hpages;
159 			spool->rsv_hpages = 0;
160 		} else {
161 			ret = 0;	/* reserves already accounted for */
162 			spool->rsv_hpages -= delta;
163 		}
164 	}
165 
166 unlock_ret:
167 	spin_unlock(&spool->lock);
168 	return ret;
169 }
170 
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178 				       long delta)
179 {
180 	long ret = delta;
181 
182 	if (!spool)
183 		return delta;
184 
185 	spin_lock(&spool->lock);
186 
187 	if (spool->max_hpages != -1)		/* maximum size accounting */
188 		spool->used_hpages -= delta;
189 
190 	 /* minimum size accounting */
191 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192 		if (spool->rsv_hpages + delta <= spool->min_hpages)
193 			ret = 0;
194 		else
195 			ret = spool->rsv_hpages + delta - spool->min_hpages;
196 
197 		spool->rsv_hpages += delta;
198 		if (spool->rsv_hpages > spool->min_hpages)
199 			spool->rsv_hpages = spool->min_hpages;
200 	}
201 
202 	/*
203 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 	 * quota reference, free it now.
205 	 */
206 	unlock_or_release_subpool(spool);
207 
208 	return ret;
209 }
210 
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213 	return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215 
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218 	return subpool_inode(file_inode(vma->vm_file));
219 }
220 
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241 	struct list_head link;
242 	long from;
243 	long to;
244 };
245 
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262 	struct list_head *head = &resv->regions;
263 	struct file_region *rg, *nrg, *trg;
264 	long add = 0;
265 
266 	spin_lock(&resv->lock);
267 	/* Locate the region we are either in or before. */
268 	list_for_each_entry(rg, head, link)
269 		if (f <= rg->to)
270 			break;
271 
272 	/*
273 	 * If no region exists which can be expanded to include the
274 	 * specified range, the list must have been modified by an
275 	 * interleving call to region_del().  Pull a region descriptor
276 	 * from the cache and use it for this range.
277 	 */
278 	if (&rg->link == head || t < rg->from) {
279 		VM_BUG_ON(resv->region_cache_count <= 0);
280 
281 		resv->region_cache_count--;
282 		nrg = list_first_entry(&resv->region_cache, struct file_region,
283 					link);
284 		list_del(&nrg->link);
285 
286 		nrg->from = f;
287 		nrg->to = t;
288 		list_add(&nrg->link, rg->link.prev);
289 
290 		add += t - f;
291 		goto out_locked;
292 	}
293 
294 	/* Round our left edge to the current segment if it encloses us. */
295 	if (f > rg->from)
296 		f = rg->from;
297 
298 	/* Check for and consume any regions we now overlap with. */
299 	nrg = rg;
300 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 		if (&rg->link == head)
302 			break;
303 		if (rg->from > t)
304 			break;
305 
306 		/* If this area reaches higher then extend our area to
307 		 * include it completely.  If this is not the first area
308 		 * which we intend to reuse, free it. */
309 		if (rg->to > t)
310 			t = rg->to;
311 		if (rg != nrg) {
312 			/* Decrement return value by the deleted range.
313 			 * Another range will span this area so that by
314 			 * end of routine add will be >= zero
315 			 */
316 			add -= (rg->to - rg->from);
317 			list_del(&rg->link);
318 			kfree(rg);
319 		}
320 	}
321 
322 	add += (nrg->from - f);		/* Added to beginning of region */
323 	nrg->from = f;
324 	add += t - nrg->to;		/* Added to end of region */
325 	nrg->to = t;
326 
327 out_locked:
328 	resv->adds_in_progress--;
329 	spin_unlock(&resv->lock);
330 	VM_BUG_ON(add < 0);
331 	return add;
332 }
333 
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358 	struct list_head *head = &resv->regions;
359 	struct file_region *rg, *nrg = NULL;
360 	long chg = 0;
361 
362 retry:
363 	spin_lock(&resv->lock);
364 retry_locked:
365 	resv->adds_in_progress++;
366 
367 	/*
368 	 * Check for sufficient descriptors in the cache to accommodate
369 	 * the number of in progress add operations.
370 	 */
371 	if (resv->adds_in_progress > resv->region_cache_count) {
372 		struct file_region *trg;
373 
374 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 		/* Must drop lock to allocate a new descriptor. */
376 		resv->adds_in_progress--;
377 		spin_unlock(&resv->lock);
378 
379 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380 		if (!trg) {
381 			kfree(nrg);
382 			return -ENOMEM;
383 		}
384 
385 		spin_lock(&resv->lock);
386 		list_add(&trg->link, &resv->region_cache);
387 		resv->region_cache_count++;
388 		goto retry_locked;
389 	}
390 
391 	/* Locate the region we are before or in. */
392 	list_for_each_entry(rg, head, link)
393 		if (f <= rg->to)
394 			break;
395 
396 	/* If we are below the current region then a new region is required.
397 	 * Subtle, allocate a new region at the position but make it zero
398 	 * size such that we can guarantee to record the reservation. */
399 	if (&rg->link == head || t < rg->from) {
400 		if (!nrg) {
401 			resv->adds_in_progress--;
402 			spin_unlock(&resv->lock);
403 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 			if (!nrg)
405 				return -ENOMEM;
406 
407 			nrg->from = f;
408 			nrg->to   = f;
409 			INIT_LIST_HEAD(&nrg->link);
410 			goto retry;
411 		}
412 
413 		list_add(&nrg->link, rg->link.prev);
414 		chg = t - f;
415 		goto out_nrg;
416 	}
417 
418 	/* Round our left edge to the current segment if it encloses us. */
419 	if (f > rg->from)
420 		f = rg->from;
421 	chg = t - f;
422 
423 	/* Check for and consume any regions we now overlap with. */
424 	list_for_each_entry(rg, rg->link.prev, link) {
425 		if (&rg->link == head)
426 			break;
427 		if (rg->from > t)
428 			goto out;
429 
430 		/* We overlap with this area, if it extends further than
431 		 * us then we must extend ourselves.  Account for its
432 		 * existing reservation. */
433 		if (rg->to > t) {
434 			chg += rg->to - t;
435 			t = rg->to;
436 		}
437 		chg -= rg->to - rg->from;
438 	}
439 
440 out:
441 	spin_unlock(&resv->lock);
442 	/*  We already know we raced and no longer need the new region */
443 	kfree(nrg);
444 	return chg;
445 out_nrg:
446 	spin_unlock(&resv->lock);
447 	return chg;
448 }
449 
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463 	spin_lock(&resv->lock);
464 	VM_BUG_ON(!resv->region_cache_count);
465 	resv->adds_in_progress--;
466 	spin_unlock(&resv->lock);
467 }
468 
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485 	struct list_head *head = &resv->regions;
486 	struct file_region *rg, *trg;
487 	struct file_region *nrg = NULL;
488 	long del = 0;
489 
490 retry:
491 	spin_lock(&resv->lock);
492 	list_for_each_entry_safe(rg, trg, head, link) {
493 		/*
494 		 * Skip regions before the range to be deleted.  file_region
495 		 * ranges are normally of the form [from, to).  However, there
496 		 * may be a "placeholder" entry in the map which is of the form
497 		 * (from, to) with from == to.  Check for placeholder entries
498 		 * at the beginning of the range to be deleted.
499 		 */
500 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501 			continue;
502 
503 		if (rg->from >= t)
504 			break;
505 
506 		if (f > rg->from && t < rg->to) { /* Must split region */
507 			/*
508 			 * Check for an entry in the cache before dropping
509 			 * lock and attempting allocation.
510 			 */
511 			if (!nrg &&
512 			    resv->region_cache_count > resv->adds_in_progress) {
513 				nrg = list_first_entry(&resv->region_cache,
514 							struct file_region,
515 							link);
516 				list_del(&nrg->link);
517 				resv->region_cache_count--;
518 			}
519 
520 			if (!nrg) {
521 				spin_unlock(&resv->lock);
522 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 				if (!nrg)
524 					return -ENOMEM;
525 				goto retry;
526 			}
527 
528 			del += t - f;
529 
530 			/* New entry for end of split region */
531 			nrg->from = t;
532 			nrg->to = rg->to;
533 			INIT_LIST_HEAD(&nrg->link);
534 
535 			/* Original entry is trimmed */
536 			rg->to = f;
537 
538 			list_add(&nrg->link, &rg->link);
539 			nrg = NULL;
540 			break;
541 		}
542 
543 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 			del += rg->to - rg->from;
545 			list_del(&rg->link);
546 			kfree(rg);
547 			continue;
548 		}
549 
550 		if (f <= rg->from) {	/* Trim beginning of region */
551 			del += t - rg->from;
552 			rg->from = t;
553 		} else {		/* Trim end of region */
554 			del += rg->to - f;
555 			rg->to = f;
556 		}
557 	}
558 
559 	spin_unlock(&resv->lock);
560 	kfree(nrg);
561 	return del;
562 }
563 
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575 	struct hugepage_subpool *spool = subpool_inode(inode);
576 	long rsv_adjust;
577 
578 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 	if (rsv_adjust) {
580 		struct hstate *h = hstate_inode(inode);
581 
582 		hugetlb_acct_memory(h, 1);
583 	}
584 }
585 
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592 	struct list_head *head = &resv->regions;
593 	struct file_region *rg;
594 	long chg = 0;
595 
596 	spin_lock(&resv->lock);
597 	/* Locate each segment we overlap with, and count that overlap. */
598 	list_for_each_entry(rg, head, link) {
599 		long seg_from;
600 		long seg_to;
601 
602 		if (rg->to <= f)
603 			continue;
604 		if (rg->from >= t)
605 			break;
606 
607 		seg_from = max(rg->from, f);
608 		seg_to = min(rg->to, t);
609 
610 		chg += seg_to - seg_from;
611 	}
612 	spin_unlock(&resv->lock);
613 
614 	return chg;
615 }
616 
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622 			struct vm_area_struct *vma, unsigned long address)
623 {
624 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 			(vma->vm_pgoff >> huge_page_order(h));
626 }
627 
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 				     unsigned long address)
630 {
631 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634 
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641 	if (vma->vm_ops && vma->vm_ops->pagesize)
642 		return vma->vm_ops->pagesize(vma);
643 	return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646 
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655 	return vma_kernel_pagesize(vma);
656 }
657 
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666 
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688 	return (unsigned long)vma->vm_private_data;
689 }
690 
691 static void set_vma_private_data(struct vm_area_struct *vma,
692 							unsigned long value)
693 {
694 	vma->vm_private_data = (void *)value;
695 }
696 
697 struct resv_map *resv_map_alloc(void)
698 {
699 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701 
702 	if (!resv_map || !rg) {
703 		kfree(resv_map);
704 		kfree(rg);
705 		return NULL;
706 	}
707 
708 	kref_init(&resv_map->refs);
709 	spin_lock_init(&resv_map->lock);
710 	INIT_LIST_HEAD(&resv_map->regions);
711 
712 	resv_map->adds_in_progress = 0;
713 
714 	INIT_LIST_HEAD(&resv_map->region_cache);
715 	list_add(&rg->link, &resv_map->region_cache);
716 	resv_map->region_cache_count = 1;
717 
718 	return resv_map;
719 }
720 
721 void resv_map_release(struct kref *ref)
722 {
723 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724 	struct list_head *head = &resv_map->region_cache;
725 	struct file_region *rg, *trg;
726 
727 	/* Clear out any active regions before we release the map. */
728 	region_del(resv_map, 0, LONG_MAX);
729 
730 	/* ... and any entries left in the cache */
731 	list_for_each_entry_safe(rg, trg, head, link) {
732 		list_del(&rg->link);
733 		kfree(rg);
734 	}
735 
736 	VM_BUG_ON(resv_map->adds_in_progress);
737 
738 	kfree(resv_map);
739 }
740 
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743 	/*
744 	 * At inode evict time, i_mapping may not point to the original
745 	 * address space within the inode.  This original address space
746 	 * contains the pointer to the resv_map.  So, always use the
747 	 * address space embedded within the inode.
748 	 * The VERY common case is inode->mapping == &inode->i_data but,
749 	 * this may not be true for device special inodes.
750 	 */
751 	return (struct resv_map *)(&inode->i_data)->private_data;
752 }
753 
754 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
755 {
756 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
757 	if (vma->vm_flags & VM_MAYSHARE) {
758 		struct address_space *mapping = vma->vm_file->f_mapping;
759 		struct inode *inode = mapping->host;
760 
761 		return inode_resv_map(inode);
762 
763 	} else {
764 		return (struct resv_map *)(get_vma_private_data(vma) &
765 							~HPAGE_RESV_MASK);
766 	}
767 }
768 
769 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
770 {
771 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773 
774 	set_vma_private_data(vma, (get_vma_private_data(vma) &
775 				HPAGE_RESV_MASK) | (unsigned long)map);
776 }
777 
778 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
779 {
780 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
782 
783 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
784 }
785 
786 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
787 {
788 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 
790 	return (get_vma_private_data(vma) & flag) != 0;
791 }
792 
793 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
794 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
795 {
796 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
797 	if (!(vma->vm_flags & VM_MAYSHARE))
798 		vma->vm_private_data = (void *)0;
799 }
800 
801 /* Returns true if the VMA has associated reserve pages */
802 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
803 {
804 	if (vma->vm_flags & VM_NORESERVE) {
805 		/*
806 		 * This address is already reserved by other process(chg == 0),
807 		 * so, we should decrement reserved count. Without decrementing,
808 		 * reserve count remains after releasing inode, because this
809 		 * allocated page will go into page cache and is regarded as
810 		 * coming from reserved pool in releasing step.  Currently, we
811 		 * don't have any other solution to deal with this situation
812 		 * properly, so add work-around here.
813 		 */
814 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
815 			return true;
816 		else
817 			return false;
818 	}
819 
820 	/* Shared mappings always use reserves */
821 	if (vma->vm_flags & VM_MAYSHARE) {
822 		/*
823 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
824 		 * be a region map for all pages.  The only situation where
825 		 * there is no region map is if a hole was punched via
826 		 * fallocate.  In this case, there really are no reverves to
827 		 * use.  This situation is indicated if chg != 0.
828 		 */
829 		if (chg)
830 			return false;
831 		else
832 			return true;
833 	}
834 
835 	/*
836 	 * Only the process that called mmap() has reserves for
837 	 * private mappings.
838 	 */
839 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
840 		/*
841 		 * Like the shared case above, a hole punch or truncate
842 		 * could have been performed on the private mapping.
843 		 * Examine the value of chg to determine if reserves
844 		 * actually exist or were previously consumed.
845 		 * Very Subtle - The value of chg comes from a previous
846 		 * call to vma_needs_reserves().  The reserve map for
847 		 * private mappings has different (opposite) semantics
848 		 * than that of shared mappings.  vma_needs_reserves()
849 		 * has already taken this difference in semantics into
850 		 * account.  Therefore, the meaning of chg is the same
851 		 * as in the shared case above.  Code could easily be
852 		 * combined, but keeping it separate draws attention to
853 		 * subtle differences.
854 		 */
855 		if (chg)
856 			return false;
857 		else
858 			return true;
859 	}
860 
861 	return false;
862 }
863 
864 static void enqueue_huge_page(struct hstate *h, struct page *page)
865 {
866 	int nid = page_to_nid(page);
867 	list_move(&page->lru, &h->hugepage_freelists[nid]);
868 	h->free_huge_pages++;
869 	h->free_huge_pages_node[nid]++;
870 }
871 
872 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
873 {
874 	struct page *page;
875 
876 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
877 		if (!PageHWPoison(page))
878 			break;
879 	/*
880 	 * if 'non-isolated free hugepage' not found on the list,
881 	 * the allocation fails.
882 	 */
883 	if (&h->hugepage_freelists[nid] == &page->lru)
884 		return NULL;
885 	list_move(&page->lru, &h->hugepage_activelist);
886 	set_page_refcounted(page);
887 	h->free_huge_pages--;
888 	h->free_huge_pages_node[nid]--;
889 	return page;
890 }
891 
892 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
893 		nodemask_t *nmask)
894 {
895 	unsigned int cpuset_mems_cookie;
896 	struct zonelist *zonelist;
897 	struct zone *zone;
898 	struct zoneref *z;
899 	int node = NUMA_NO_NODE;
900 
901 	zonelist = node_zonelist(nid, gfp_mask);
902 
903 retry_cpuset:
904 	cpuset_mems_cookie = read_mems_allowed_begin();
905 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
906 		struct page *page;
907 
908 		if (!cpuset_zone_allowed(zone, gfp_mask))
909 			continue;
910 		/*
911 		 * no need to ask again on the same node. Pool is node rather than
912 		 * zone aware
913 		 */
914 		if (zone_to_nid(zone) == node)
915 			continue;
916 		node = zone_to_nid(zone);
917 
918 		page = dequeue_huge_page_node_exact(h, node);
919 		if (page)
920 			return page;
921 	}
922 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
923 		goto retry_cpuset;
924 
925 	return NULL;
926 }
927 
928 /* Movability of hugepages depends on migration support. */
929 static inline gfp_t htlb_alloc_mask(struct hstate *h)
930 {
931 	if (hugepage_movable_supported(h))
932 		return GFP_HIGHUSER_MOVABLE;
933 	else
934 		return GFP_HIGHUSER;
935 }
936 
937 static struct page *dequeue_huge_page_vma(struct hstate *h,
938 				struct vm_area_struct *vma,
939 				unsigned long address, int avoid_reserve,
940 				long chg)
941 {
942 	struct page *page;
943 	struct mempolicy *mpol;
944 	gfp_t gfp_mask;
945 	nodemask_t *nodemask;
946 	int nid;
947 
948 	/*
949 	 * A child process with MAP_PRIVATE mappings created by their parent
950 	 * have no page reserves. This check ensures that reservations are
951 	 * not "stolen". The child may still get SIGKILLed
952 	 */
953 	if (!vma_has_reserves(vma, chg) &&
954 			h->free_huge_pages - h->resv_huge_pages == 0)
955 		goto err;
956 
957 	/* If reserves cannot be used, ensure enough pages are in the pool */
958 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
959 		goto err;
960 
961 	gfp_mask = htlb_alloc_mask(h);
962 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
963 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
964 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
965 		SetPagePrivate(page);
966 		h->resv_huge_pages--;
967 	}
968 
969 	mpol_cond_put(mpol);
970 	return page;
971 
972 err:
973 	return NULL;
974 }
975 
976 /*
977  * common helper functions for hstate_next_node_to_{alloc|free}.
978  * We may have allocated or freed a huge page based on a different
979  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
980  * be outside of *nodes_allowed.  Ensure that we use an allowed
981  * node for alloc or free.
982  */
983 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985 	nid = next_node_in(nid, *nodes_allowed);
986 	VM_BUG_ON(nid >= MAX_NUMNODES);
987 
988 	return nid;
989 }
990 
991 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
992 {
993 	if (!node_isset(nid, *nodes_allowed))
994 		nid = next_node_allowed(nid, nodes_allowed);
995 	return nid;
996 }
997 
998 /*
999  * returns the previously saved node ["this node"] from which to
1000  * allocate a persistent huge page for the pool and advance the
1001  * next node from which to allocate, handling wrap at end of node
1002  * mask.
1003  */
1004 static int hstate_next_node_to_alloc(struct hstate *h,
1005 					nodemask_t *nodes_allowed)
1006 {
1007 	int nid;
1008 
1009 	VM_BUG_ON(!nodes_allowed);
1010 
1011 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1012 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1013 
1014 	return nid;
1015 }
1016 
1017 /*
1018  * helper for free_pool_huge_page() - return the previously saved
1019  * node ["this node"] from which to free a huge page.  Advance the
1020  * next node id whether or not we find a free huge page to free so
1021  * that the next attempt to free addresses the next node.
1022  */
1023 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1024 {
1025 	int nid;
1026 
1027 	VM_BUG_ON(!nodes_allowed);
1028 
1029 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1030 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1031 
1032 	return nid;
1033 }
1034 
1035 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1036 	for (nr_nodes = nodes_weight(*mask);				\
1037 		nr_nodes > 0 &&						\
1038 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1039 		nr_nodes--)
1040 
1041 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1042 	for (nr_nodes = nodes_weight(*mask);				\
1043 		nr_nodes > 0 &&						\
1044 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1045 		nr_nodes--)
1046 
1047 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1048 static void destroy_compound_gigantic_page(struct page *page,
1049 					unsigned int order)
1050 {
1051 	int i;
1052 	int nr_pages = 1 << order;
1053 	struct page *p = page + 1;
1054 
1055 	atomic_set(compound_mapcount_ptr(page), 0);
1056 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1057 		clear_compound_head(p);
1058 		set_page_refcounted(p);
1059 	}
1060 
1061 	set_compound_order(page, 0);
1062 	__ClearPageHead(page);
1063 }
1064 
1065 static void free_gigantic_page(struct page *page, unsigned int order)
1066 {
1067 	free_contig_range(page_to_pfn(page), 1 << order);
1068 }
1069 
1070 #ifdef CONFIG_CONTIG_ALLOC
1071 static int __alloc_gigantic_page(unsigned long start_pfn,
1072 				unsigned long nr_pages, gfp_t gfp_mask)
1073 {
1074 	unsigned long end_pfn = start_pfn + nr_pages;
1075 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1076 				  gfp_mask);
1077 }
1078 
1079 static bool pfn_range_valid_gigantic(struct zone *z,
1080 			unsigned long start_pfn, unsigned long nr_pages)
1081 {
1082 	unsigned long i, end_pfn = start_pfn + nr_pages;
1083 	struct page *page;
1084 
1085 	for (i = start_pfn; i < end_pfn; i++) {
1086 		if (!pfn_valid(i))
1087 			return false;
1088 
1089 		page = pfn_to_page(i);
1090 
1091 		if (page_zone(page) != z)
1092 			return false;
1093 
1094 		if (PageReserved(page))
1095 			return false;
1096 
1097 		if (page_count(page) > 0)
1098 			return false;
1099 
1100 		if (PageHuge(page))
1101 			return false;
1102 	}
1103 
1104 	return true;
1105 }
1106 
1107 static bool zone_spans_last_pfn(const struct zone *zone,
1108 			unsigned long start_pfn, unsigned long nr_pages)
1109 {
1110 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1111 	return zone_spans_pfn(zone, last_pfn);
1112 }
1113 
1114 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115 		int nid, nodemask_t *nodemask)
1116 {
1117 	unsigned int order = huge_page_order(h);
1118 	unsigned long nr_pages = 1 << order;
1119 	unsigned long ret, pfn, flags;
1120 	struct zonelist *zonelist;
1121 	struct zone *zone;
1122 	struct zoneref *z;
1123 
1124 	zonelist = node_zonelist(nid, gfp_mask);
1125 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1126 		spin_lock_irqsave(&zone->lock, flags);
1127 
1128 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1131 				/*
1132 				 * We release the zone lock here because
1133 				 * alloc_contig_range() will also lock the zone
1134 				 * at some point. If there's an allocation
1135 				 * spinning on this lock, it may win the race
1136 				 * and cause alloc_contig_range() to fail...
1137 				 */
1138 				spin_unlock_irqrestore(&zone->lock, flags);
1139 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1140 				if (!ret)
1141 					return pfn_to_page(pfn);
1142 				spin_lock_irqsave(&zone->lock, flags);
1143 			}
1144 			pfn += nr_pages;
1145 		}
1146 
1147 		spin_unlock_irqrestore(&zone->lock, flags);
1148 	}
1149 
1150 	return NULL;
1151 }
1152 
1153 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1154 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1155 #else /* !CONFIG_CONTIG_ALLOC */
1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157 					int nid, nodemask_t *nodemask)
1158 {
1159 	return NULL;
1160 }
1161 #endif /* CONFIG_CONTIG_ALLOC */
1162 
1163 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1164 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1165 					int nid, nodemask_t *nodemask)
1166 {
1167 	return NULL;
1168 }
1169 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1170 static inline void destroy_compound_gigantic_page(struct page *page,
1171 						unsigned int order) { }
1172 #endif
1173 
1174 static void update_and_free_page(struct hstate *h, struct page *page)
1175 {
1176 	int i;
1177 
1178 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1179 		return;
1180 
1181 	h->nr_huge_pages--;
1182 	h->nr_huge_pages_node[page_to_nid(page)]--;
1183 	for (i = 0; i < pages_per_huge_page(h); i++) {
1184 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185 				1 << PG_referenced | 1 << PG_dirty |
1186 				1 << PG_active | 1 << PG_private |
1187 				1 << PG_writeback);
1188 	}
1189 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1190 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1191 	set_page_refcounted(page);
1192 	if (hstate_is_gigantic(h)) {
1193 		destroy_compound_gigantic_page(page, huge_page_order(h));
1194 		free_gigantic_page(page, huge_page_order(h));
1195 	} else {
1196 		__free_pages(page, huge_page_order(h));
1197 	}
1198 }
1199 
1200 struct hstate *size_to_hstate(unsigned long size)
1201 {
1202 	struct hstate *h;
1203 
1204 	for_each_hstate(h) {
1205 		if (huge_page_size(h) == size)
1206 			return h;
1207 	}
1208 	return NULL;
1209 }
1210 
1211 /*
1212  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213  * to hstate->hugepage_activelist.)
1214  *
1215  * This function can be called for tail pages, but never returns true for them.
1216  */
1217 bool page_huge_active(struct page *page)
1218 {
1219 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1220 	return PageHead(page) && PagePrivate(&page[1]);
1221 }
1222 
1223 /* never called for tail page */
1224 static void set_page_huge_active(struct page *page)
1225 {
1226 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 	SetPagePrivate(&page[1]);
1228 }
1229 
1230 static void clear_page_huge_active(struct page *page)
1231 {
1232 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233 	ClearPagePrivate(&page[1]);
1234 }
1235 
1236 /*
1237  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238  * code
1239  */
1240 static inline bool PageHugeTemporary(struct page *page)
1241 {
1242 	if (!PageHuge(page))
1243 		return false;
1244 
1245 	return (unsigned long)page[2].mapping == -1U;
1246 }
1247 
1248 static inline void SetPageHugeTemporary(struct page *page)
1249 {
1250 	page[2].mapping = (void *)-1U;
1251 }
1252 
1253 static inline void ClearPageHugeTemporary(struct page *page)
1254 {
1255 	page[2].mapping = NULL;
1256 }
1257 
1258 void free_huge_page(struct page *page)
1259 {
1260 	/*
1261 	 * Can't pass hstate in here because it is called from the
1262 	 * compound page destructor.
1263 	 */
1264 	struct hstate *h = page_hstate(page);
1265 	int nid = page_to_nid(page);
1266 	struct hugepage_subpool *spool =
1267 		(struct hugepage_subpool *)page_private(page);
1268 	bool restore_reserve;
1269 
1270 	VM_BUG_ON_PAGE(page_count(page), page);
1271 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1272 
1273 	set_page_private(page, 0);
1274 	page->mapping = NULL;
1275 	restore_reserve = PagePrivate(page);
1276 	ClearPagePrivate(page);
1277 
1278 	/*
1279 	 * If PagePrivate() was set on page, page allocation consumed a
1280 	 * reservation.  If the page was associated with a subpool, there
1281 	 * would have been a page reserved in the subpool before allocation
1282 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1283 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284 	 * remove the reserved page from the subpool.
1285 	 */
1286 	if (!restore_reserve) {
1287 		/*
1288 		 * A return code of zero implies that the subpool will be
1289 		 * under its minimum size if the reservation is not restored
1290 		 * after page is free.  Therefore, force restore_reserve
1291 		 * operation.
1292 		 */
1293 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1294 			restore_reserve = true;
1295 	}
1296 
1297 	spin_lock(&hugetlb_lock);
1298 	clear_page_huge_active(page);
1299 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1300 				     pages_per_huge_page(h), page);
1301 	if (restore_reserve)
1302 		h->resv_huge_pages++;
1303 
1304 	if (PageHugeTemporary(page)) {
1305 		list_del(&page->lru);
1306 		ClearPageHugeTemporary(page);
1307 		update_and_free_page(h, page);
1308 	} else if (h->surplus_huge_pages_node[nid]) {
1309 		/* remove the page from active list */
1310 		list_del(&page->lru);
1311 		update_and_free_page(h, page);
1312 		h->surplus_huge_pages--;
1313 		h->surplus_huge_pages_node[nid]--;
1314 	} else {
1315 		arch_clear_hugepage_flags(page);
1316 		enqueue_huge_page(h, page);
1317 	}
1318 	spin_unlock(&hugetlb_lock);
1319 }
1320 
1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1322 {
1323 	INIT_LIST_HEAD(&page->lru);
1324 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1325 	spin_lock(&hugetlb_lock);
1326 	set_hugetlb_cgroup(page, NULL);
1327 	h->nr_huge_pages++;
1328 	h->nr_huge_pages_node[nid]++;
1329 	spin_unlock(&hugetlb_lock);
1330 }
1331 
1332 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1333 {
1334 	int i;
1335 	int nr_pages = 1 << order;
1336 	struct page *p = page + 1;
1337 
1338 	/* we rely on prep_new_huge_page to set the destructor */
1339 	set_compound_order(page, order);
1340 	__ClearPageReserved(page);
1341 	__SetPageHead(page);
1342 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1343 		/*
1344 		 * For gigantic hugepages allocated through bootmem at
1345 		 * boot, it's safer to be consistent with the not-gigantic
1346 		 * hugepages and clear the PG_reserved bit from all tail pages
1347 		 * too.  Otherwse drivers using get_user_pages() to access tail
1348 		 * pages may get the reference counting wrong if they see
1349 		 * PG_reserved set on a tail page (despite the head page not
1350 		 * having PG_reserved set).  Enforcing this consistency between
1351 		 * head and tail pages allows drivers to optimize away a check
1352 		 * on the head page when they need know if put_page() is needed
1353 		 * after get_user_pages().
1354 		 */
1355 		__ClearPageReserved(p);
1356 		set_page_count(p, 0);
1357 		set_compound_head(p, page);
1358 	}
1359 	atomic_set(compound_mapcount_ptr(page), -1);
1360 }
1361 
1362 /*
1363  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364  * transparent huge pages.  See the PageTransHuge() documentation for more
1365  * details.
1366  */
1367 int PageHuge(struct page *page)
1368 {
1369 	if (!PageCompound(page))
1370 		return 0;
1371 
1372 	page = compound_head(page);
1373 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1374 }
1375 EXPORT_SYMBOL_GPL(PageHuge);
1376 
1377 /*
1378  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379  * normal or transparent huge pages.
1380  */
1381 int PageHeadHuge(struct page *page_head)
1382 {
1383 	if (!PageHead(page_head))
1384 		return 0;
1385 
1386 	return get_compound_page_dtor(page_head) == free_huge_page;
1387 }
1388 
1389 pgoff_t __basepage_index(struct page *page)
1390 {
1391 	struct page *page_head = compound_head(page);
1392 	pgoff_t index = page_index(page_head);
1393 	unsigned long compound_idx;
1394 
1395 	if (!PageHuge(page_head))
1396 		return page_index(page);
1397 
1398 	if (compound_order(page_head) >= MAX_ORDER)
1399 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400 	else
1401 		compound_idx = page - page_head;
1402 
1403 	return (index << compound_order(page_head)) + compound_idx;
1404 }
1405 
1406 static struct page *alloc_buddy_huge_page(struct hstate *h,
1407 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1408 {
1409 	int order = huge_page_order(h);
1410 	struct page *page;
1411 
1412 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1413 	if (nid == NUMA_NO_NODE)
1414 		nid = numa_mem_id();
1415 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1416 	if (page)
1417 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1418 	else
1419 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1420 
1421 	return page;
1422 }
1423 
1424 /*
1425  * Common helper to allocate a fresh hugetlb page. All specific allocators
1426  * should use this function to get new hugetlb pages
1427  */
1428 static struct page *alloc_fresh_huge_page(struct hstate *h,
1429 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1430 {
1431 	struct page *page;
1432 
1433 	if (hstate_is_gigantic(h))
1434 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1435 	else
1436 		page = alloc_buddy_huge_page(h, gfp_mask,
1437 				nid, nmask);
1438 	if (!page)
1439 		return NULL;
1440 
1441 	if (hstate_is_gigantic(h))
1442 		prep_compound_gigantic_page(page, huge_page_order(h));
1443 	prep_new_huge_page(h, page, page_to_nid(page));
1444 
1445 	return page;
1446 }
1447 
1448 /*
1449  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1450  * manner.
1451  */
1452 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1453 {
1454 	struct page *page;
1455 	int nr_nodes, node;
1456 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1457 
1458 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1459 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1460 		if (page)
1461 			break;
1462 	}
1463 
1464 	if (!page)
1465 		return 0;
1466 
1467 	put_page(page); /* free it into the hugepage allocator */
1468 
1469 	return 1;
1470 }
1471 
1472 /*
1473  * Free huge page from pool from next node to free.
1474  * Attempt to keep persistent huge pages more or less
1475  * balanced over allowed nodes.
1476  * Called with hugetlb_lock locked.
1477  */
1478 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1479 							 bool acct_surplus)
1480 {
1481 	int nr_nodes, node;
1482 	int ret = 0;
1483 
1484 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1485 		/*
1486 		 * If we're returning unused surplus pages, only examine
1487 		 * nodes with surplus pages.
1488 		 */
1489 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1490 		    !list_empty(&h->hugepage_freelists[node])) {
1491 			struct page *page =
1492 				list_entry(h->hugepage_freelists[node].next,
1493 					  struct page, lru);
1494 			list_del(&page->lru);
1495 			h->free_huge_pages--;
1496 			h->free_huge_pages_node[node]--;
1497 			if (acct_surplus) {
1498 				h->surplus_huge_pages--;
1499 				h->surplus_huge_pages_node[node]--;
1500 			}
1501 			update_and_free_page(h, page);
1502 			ret = 1;
1503 			break;
1504 		}
1505 	}
1506 
1507 	return ret;
1508 }
1509 
1510 /*
1511  * Dissolve a given free hugepage into free buddy pages. This function does
1512  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1513  * dissolution fails because a give page is not a free hugepage, or because
1514  * free hugepages are fully reserved.
1515  */
1516 int dissolve_free_huge_page(struct page *page)
1517 {
1518 	int rc = -EBUSY;
1519 
1520 	spin_lock(&hugetlb_lock);
1521 	if (PageHuge(page) && !page_count(page)) {
1522 		struct page *head = compound_head(page);
1523 		struct hstate *h = page_hstate(head);
1524 		int nid = page_to_nid(head);
1525 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1526 			goto out;
1527 		/*
1528 		 * Move PageHWPoison flag from head page to the raw error page,
1529 		 * which makes any subpages rather than the error page reusable.
1530 		 */
1531 		if (PageHWPoison(head) && page != head) {
1532 			SetPageHWPoison(page);
1533 			ClearPageHWPoison(head);
1534 		}
1535 		list_del(&head->lru);
1536 		h->free_huge_pages--;
1537 		h->free_huge_pages_node[nid]--;
1538 		h->max_huge_pages--;
1539 		update_and_free_page(h, head);
1540 		rc = 0;
1541 	}
1542 out:
1543 	spin_unlock(&hugetlb_lock);
1544 	return rc;
1545 }
1546 
1547 /*
1548  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1549  * make specified memory blocks removable from the system.
1550  * Note that this will dissolve a free gigantic hugepage completely, if any
1551  * part of it lies within the given range.
1552  * Also note that if dissolve_free_huge_page() returns with an error, all
1553  * free hugepages that were dissolved before that error are lost.
1554  */
1555 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1556 {
1557 	unsigned long pfn;
1558 	struct page *page;
1559 	int rc = 0;
1560 
1561 	if (!hugepages_supported())
1562 		return rc;
1563 
1564 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1565 		page = pfn_to_page(pfn);
1566 		if (PageHuge(page) && !page_count(page)) {
1567 			rc = dissolve_free_huge_page(page);
1568 			if (rc)
1569 				break;
1570 		}
1571 	}
1572 
1573 	return rc;
1574 }
1575 
1576 /*
1577  * Allocates a fresh surplus page from the page allocator.
1578  */
1579 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1580 		int nid, nodemask_t *nmask)
1581 {
1582 	struct page *page = NULL;
1583 
1584 	if (hstate_is_gigantic(h))
1585 		return NULL;
1586 
1587 	spin_lock(&hugetlb_lock);
1588 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1589 		goto out_unlock;
1590 	spin_unlock(&hugetlb_lock);
1591 
1592 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1593 	if (!page)
1594 		return NULL;
1595 
1596 	spin_lock(&hugetlb_lock);
1597 	/*
1598 	 * We could have raced with the pool size change.
1599 	 * Double check that and simply deallocate the new page
1600 	 * if we would end up overcommiting the surpluses. Abuse
1601 	 * temporary page to workaround the nasty free_huge_page
1602 	 * codeflow
1603 	 */
1604 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1605 		SetPageHugeTemporary(page);
1606 		spin_unlock(&hugetlb_lock);
1607 		put_page(page);
1608 		return NULL;
1609 	} else {
1610 		h->surplus_huge_pages++;
1611 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1612 	}
1613 
1614 out_unlock:
1615 	spin_unlock(&hugetlb_lock);
1616 
1617 	return page;
1618 }
1619 
1620 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1621 				     int nid, nodemask_t *nmask)
1622 {
1623 	struct page *page;
1624 
1625 	if (hstate_is_gigantic(h))
1626 		return NULL;
1627 
1628 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1629 	if (!page)
1630 		return NULL;
1631 
1632 	/*
1633 	 * We do not account these pages as surplus because they are only
1634 	 * temporary and will be released properly on the last reference
1635 	 */
1636 	SetPageHugeTemporary(page);
1637 
1638 	return page;
1639 }
1640 
1641 /*
1642  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1643  */
1644 static
1645 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1646 		struct vm_area_struct *vma, unsigned long addr)
1647 {
1648 	struct page *page;
1649 	struct mempolicy *mpol;
1650 	gfp_t gfp_mask = htlb_alloc_mask(h);
1651 	int nid;
1652 	nodemask_t *nodemask;
1653 
1654 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1655 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1656 	mpol_cond_put(mpol);
1657 
1658 	return page;
1659 }
1660 
1661 /* page migration callback function */
1662 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1663 {
1664 	gfp_t gfp_mask = htlb_alloc_mask(h);
1665 	struct page *page = NULL;
1666 
1667 	if (nid != NUMA_NO_NODE)
1668 		gfp_mask |= __GFP_THISNODE;
1669 
1670 	spin_lock(&hugetlb_lock);
1671 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1672 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1673 	spin_unlock(&hugetlb_lock);
1674 
1675 	if (!page)
1676 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1677 
1678 	return page;
1679 }
1680 
1681 /* page migration callback function */
1682 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1683 		nodemask_t *nmask)
1684 {
1685 	gfp_t gfp_mask = htlb_alloc_mask(h);
1686 
1687 	spin_lock(&hugetlb_lock);
1688 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1689 		struct page *page;
1690 
1691 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1692 		if (page) {
1693 			spin_unlock(&hugetlb_lock);
1694 			return page;
1695 		}
1696 	}
1697 	spin_unlock(&hugetlb_lock);
1698 
1699 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1700 }
1701 
1702 /* mempolicy aware migration callback */
1703 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1704 		unsigned long address)
1705 {
1706 	struct mempolicy *mpol;
1707 	nodemask_t *nodemask;
1708 	struct page *page;
1709 	gfp_t gfp_mask;
1710 	int node;
1711 
1712 	gfp_mask = htlb_alloc_mask(h);
1713 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1714 	page = alloc_huge_page_nodemask(h, node, nodemask);
1715 	mpol_cond_put(mpol);
1716 
1717 	return page;
1718 }
1719 
1720 /*
1721  * Increase the hugetlb pool such that it can accommodate a reservation
1722  * of size 'delta'.
1723  */
1724 static int gather_surplus_pages(struct hstate *h, int delta)
1725 {
1726 	struct list_head surplus_list;
1727 	struct page *page, *tmp;
1728 	int ret, i;
1729 	int needed, allocated;
1730 	bool alloc_ok = true;
1731 
1732 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1733 	if (needed <= 0) {
1734 		h->resv_huge_pages += delta;
1735 		return 0;
1736 	}
1737 
1738 	allocated = 0;
1739 	INIT_LIST_HEAD(&surplus_list);
1740 
1741 	ret = -ENOMEM;
1742 retry:
1743 	spin_unlock(&hugetlb_lock);
1744 	for (i = 0; i < needed; i++) {
1745 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1746 				NUMA_NO_NODE, NULL);
1747 		if (!page) {
1748 			alloc_ok = false;
1749 			break;
1750 		}
1751 		list_add(&page->lru, &surplus_list);
1752 		cond_resched();
1753 	}
1754 	allocated += i;
1755 
1756 	/*
1757 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1758 	 * because either resv_huge_pages or free_huge_pages may have changed.
1759 	 */
1760 	spin_lock(&hugetlb_lock);
1761 	needed = (h->resv_huge_pages + delta) -
1762 			(h->free_huge_pages + allocated);
1763 	if (needed > 0) {
1764 		if (alloc_ok)
1765 			goto retry;
1766 		/*
1767 		 * We were not able to allocate enough pages to
1768 		 * satisfy the entire reservation so we free what
1769 		 * we've allocated so far.
1770 		 */
1771 		goto free;
1772 	}
1773 	/*
1774 	 * The surplus_list now contains _at_least_ the number of extra pages
1775 	 * needed to accommodate the reservation.  Add the appropriate number
1776 	 * of pages to the hugetlb pool and free the extras back to the buddy
1777 	 * allocator.  Commit the entire reservation here to prevent another
1778 	 * process from stealing the pages as they are added to the pool but
1779 	 * before they are reserved.
1780 	 */
1781 	needed += allocated;
1782 	h->resv_huge_pages += delta;
1783 	ret = 0;
1784 
1785 	/* Free the needed pages to the hugetlb pool */
1786 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1787 		if ((--needed) < 0)
1788 			break;
1789 		/*
1790 		 * This page is now managed by the hugetlb allocator and has
1791 		 * no users -- drop the buddy allocator's reference.
1792 		 */
1793 		put_page_testzero(page);
1794 		VM_BUG_ON_PAGE(page_count(page), page);
1795 		enqueue_huge_page(h, page);
1796 	}
1797 free:
1798 	spin_unlock(&hugetlb_lock);
1799 
1800 	/* Free unnecessary surplus pages to the buddy allocator */
1801 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1802 		put_page(page);
1803 	spin_lock(&hugetlb_lock);
1804 
1805 	return ret;
1806 }
1807 
1808 /*
1809  * This routine has two main purposes:
1810  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1811  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1812  *    to the associated reservation map.
1813  * 2) Free any unused surplus pages that may have been allocated to satisfy
1814  *    the reservation.  As many as unused_resv_pages may be freed.
1815  *
1816  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1817  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1818  * we must make sure nobody else can claim pages we are in the process of
1819  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1820  * number of huge pages we plan to free when dropping the lock.
1821  */
1822 static void return_unused_surplus_pages(struct hstate *h,
1823 					unsigned long unused_resv_pages)
1824 {
1825 	unsigned long nr_pages;
1826 
1827 	/* Cannot return gigantic pages currently */
1828 	if (hstate_is_gigantic(h))
1829 		goto out;
1830 
1831 	/*
1832 	 * Part (or even all) of the reservation could have been backed
1833 	 * by pre-allocated pages. Only free surplus pages.
1834 	 */
1835 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1836 
1837 	/*
1838 	 * We want to release as many surplus pages as possible, spread
1839 	 * evenly across all nodes with memory. Iterate across these nodes
1840 	 * until we can no longer free unreserved surplus pages. This occurs
1841 	 * when the nodes with surplus pages have no free pages.
1842 	 * free_pool_huge_page() will balance the the freed pages across the
1843 	 * on-line nodes with memory and will handle the hstate accounting.
1844 	 *
1845 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1846 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1847 	 * to cover subsequent pages we may free.
1848 	 */
1849 	while (nr_pages--) {
1850 		h->resv_huge_pages--;
1851 		unused_resv_pages--;
1852 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1853 			goto out;
1854 		cond_resched_lock(&hugetlb_lock);
1855 	}
1856 
1857 out:
1858 	/* Fully uncommit the reservation */
1859 	h->resv_huge_pages -= unused_resv_pages;
1860 }
1861 
1862 
1863 /*
1864  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1865  * are used by the huge page allocation routines to manage reservations.
1866  *
1867  * vma_needs_reservation is called to determine if the huge page at addr
1868  * within the vma has an associated reservation.  If a reservation is
1869  * needed, the value 1 is returned.  The caller is then responsible for
1870  * managing the global reservation and subpool usage counts.  After
1871  * the huge page has been allocated, vma_commit_reservation is called
1872  * to add the page to the reservation map.  If the page allocation fails,
1873  * the reservation must be ended instead of committed.  vma_end_reservation
1874  * is called in such cases.
1875  *
1876  * In the normal case, vma_commit_reservation returns the same value
1877  * as the preceding vma_needs_reservation call.  The only time this
1878  * is not the case is if a reserve map was changed between calls.  It
1879  * is the responsibility of the caller to notice the difference and
1880  * take appropriate action.
1881  *
1882  * vma_add_reservation is used in error paths where a reservation must
1883  * be restored when a newly allocated huge page must be freed.  It is
1884  * to be called after calling vma_needs_reservation to determine if a
1885  * reservation exists.
1886  */
1887 enum vma_resv_mode {
1888 	VMA_NEEDS_RESV,
1889 	VMA_COMMIT_RESV,
1890 	VMA_END_RESV,
1891 	VMA_ADD_RESV,
1892 };
1893 static long __vma_reservation_common(struct hstate *h,
1894 				struct vm_area_struct *vma, unsigned long addr,
1895 				enum vma_resv_mode mode)
1896 {
1897 	struct resv_map *resv;
1898 	pgoff_t idx;
1899 	long ret;
1900 
1901 	resv = vma_resv_map(vma);
1902 	if (!resv)
1903 		return 1;
1904 
1905 	idx = vma_hugecache_offset(h, vma, addr);
1906 	switch (mode) {
1907 	case VMA_NEEDS_RESV:
1908 		ret = region_chg(resv, idx, idx + 1);
1909 		break;
1910 	case VMA_COMMIT_RESV:
1911 		ret = region_add(resv, idx, idx + 1);
1912 		break;
1913 	case VMA_END_RESV:
1914 		region_abort(resv, idx, idx + 1);
1915 		ret = 0;
1916 		break;
1917 	case VMA_ADD_RESV:
1918 		if (vma->vm_flags & VM_MAYSHARE)
1919 			ret = region_add(resv, idx, idx + 1);
1920 		else {
1921 			region_abort(resv, idx, idx + 1);
1922 			ret = region_del(resv, idx, idx + 1);
1923 		}
1924 		break;
1925 	default:
1926 		BUG();
1927 	}
1928 
1929 	if (vma->vm_flags & VM_MAYSHARE)
1930 		return ret;
1931 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1932 		/*
1933 		 * In most cases, reserves always exist for private mappings.
1934 		 * However, a file associated with mapping could have been
1935 		 * hole punched or truncated after reserves were consumed.
1936 		 * As subsequent fault on such a range will not use reserves.
1937 		 * Subtle - The reserve map for private mappings has the
1938 		 * opposite meaning than that of shared mappings.  If NO
1939 		 * entry is in the reserve map, it means a reservation exists.
1940 		 * If an entry exists in the reserve map, it means the
1941 		 * reservation has already been consumed.  As a result, the
1942 		 * return value of this routine is the opposite of the
1943 		 * value returned from reserve map manipulation routines above.
1944 		 */
1945 		if (ret)
1946 			return 0;
1947 		else
1948 			return 1;
1949 	}
1950 	else
1951 		return ret < 0 ? ret : 0;
1952 }
1953 
1954 static long vma_needs_reservation(struct hstate *h,
1955 			struct vm_area_struct *vma, unsigned long addr)
1956 {
1957 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1958 }
1959 
1960 static long vma_commit_reservation(struct hstate *h,
1961 			struct vm_area_struct *vma, unsigned long addr)
1962 {
1963 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1964 }
1965 
1966 static void vma_end_reservation(struct hstate *h,
1967 			struct vm_area_struct *vma, unsigned long addr)
1968 {
1969 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1970 }
1971 
1972 static long vma_add_reservation(struct hstate *h,
1973 			struct vm_area_struct *vma, unsigned long addr)
1974 {
1975 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1976 }
1977 
1978 /*
1979  * This routine is called to restore a reservation on error paths.  In the
1980  * specific error paths, a huge page was allocated (via alloc_huge_page)
1981  * and is about to be freed.  If a reservation for the page existed,
1982  * alloc_huge_page would have consumed the reservation and set PagePrivate
1983  * in the newly allocated page.  When the page is freed via free_huge_page,
1984  * the global reservation count will be incremented if PagePrivate is set.
1985  * However, free_huge_page can not adjust the reserve map.  Adjust the
1986  * reserve map here to be consistent with global reserve count adjustments
1987  * to be made by free_huge_page.
1988  */
1989 static void restore_reserve_on_error(struct hstate *h,
1990 			struct vm_area_struct *vma, unsigned long address,
1991 			struct page *page)
1992 {
1993 	if (unlikely(PagePrivate(page))) {
1994 		long rc = vma_needs_reservation(h, vma, address);
1995 
1996 		if (unlikely(rc < 0)) {
1997 			/*
1998 			 * Rare out of memory condition in reserve map
1999 			 * manipulation.  Clear PagePrivate so that
2000 			 * global reserve count will not be incremented
2001 			 * by free_huge_page.  This will make it appear
2002 			 * as though the reservation for this page was
2003 			 * consumed.  This may prevent the task from
2004 			 * faulting in the page at a later time.  This
2005 			 * is better than inconsistent global huge page
2006 			 * accounting of reserve counts.
2007 			 */
2008 			ClearPagePrivate(page);
2009 		} else if (rc) {
2010 			rc = vma_add_reservation(h, vma, address);
2011 			if (unlikely(rc < 0))
2012 				/*
2013 				 * See above comment about rare out of
2014 				 * memory condition.
2015 				 */
2016 				ClearPagePrivate(page);
2017 		} else
2018 			vma_end_reservation(h, vma, address);
2019 	}
2020 }
2021 
2022 struct page *alloc_huge_page(struct vm_area_struct *vma,
2023 				    unsigned long addr, int avoid_reserve)
2024 {
2025 	struct hugepage_subpool *spool = subpool_vma(vma);
2026 	struct hstate *h = hstate_vma(vma);
2027 	struct page *page;
2028 	long map_chg, map_commit;
2029 	long gbl_chg;
2030 	int ret, idx;
2031 	struct hugetlb_cgroup *h_cg;
2032 
2033 	idx = hstate_index(h);
2034 	/*
2035 	 * Examine the region/reserve map to determine if the process
2036 	 * has a reservation for the page to be allocated.  A return
2037 	 * code of zero indicates a reservation exists (no change).
2038 	 */
2039 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2040 	if (map_chg < 0)
2041 		return ERR_PTR(-ENOMEM);
2042 
2043 	/*
2044 	 * Processes that did not create the mapping will have no
2045 	 * reserves as indicated by the region/reserve map. Check
2046 	 * that the allocation will not exceed the subpool limit.
2047 	 * Allocations for MAP_NORESERVE mappings also need to be
2048 	 * checked against any subpool limit.
2049 	 */
2050 	if (map_chg || avoid_reserve) {
2051 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2052 		if (gbl_chg < 0) {
2053 			vma_end_reservation(h, vma, addr);
2054 			return ERR_PTR(-ENOSPC);
2055 		}
2056 
2057 		/*
2058 		 * Even though there was no reservation in the region/reserve
2059 		 * map, there could be reservations associated with the
2060 		 * subpool that can be used.  This would be indicated if the
2061 		 * return value of hugepage_subpool_get_pages() is zero.
2062 		 * However, if avoid_reserve is specified we still avoid even
2063 		 * the subpool reservations.
2064 		 */
2065 		if (avoid_reserve)
2066 			gbl_chg = 1;
2067 	}
2068 
2069 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2070 	if (ret)
2071 		goto out_subpool_put;
2072 
2073 	spin_lock(&hugetlb_lock);
2074 	/*
2075 	 * glb_chg is passed to indicate whether or not a page must be taken
2076 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2077 	 * a reservation exists for the allocation.
2078 	 */
2079 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2080 	if (!page) {
2081 		spin_unlock(&hugetlb_lock);
2082 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2083 		if (!page)
2084 			goto out_uncharge_cgroup;
2085 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2086 			SetPagePrivate(page);
2087 			h->resv_huge_pages--;
2088 		}
2089 		spin_lock(&hugetlb_lock);
2090 		list_move(&page->lru, &h->hugepage_activelist);
2091 		/* Fall through */
2092 	}
2093 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2094 	spin_unlock(&hugetlb_lock);
2095 
2096 	set_page_private(page, (unsigned long)spool);
2097 
2098 	map_commit = vma_commit_reservation(h, vma, addr);
2099 	if (unlikely(map_chg > map_commit)) {
2100 		/*
2101 		 * The page was added to the reservation map between
2102 		 * vma_needs_reservation and vma_commit_reservation.
2103 		 * This indicates a race with hugetlb_reserve_pages.
2104 		 * Adjust for the subpool count incremented above AND
2105 		 * in hugetlb_reserve_pages for the same page.  Also,
2106 		 * the reservation count added in hugetlb_reserve_pages
2107 		 * no longer applies.
2108 		 */
2109 		long rsv_adjust;
2110 
2111 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2112 		hugetlb_acct_memory(h, -rsv_adjust);
2113 	}
2114 	return page;
2115 
2116 out_uncharge_cgroup:
2117 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2118 out_subpool_put:
2119 	if (map_chg || avoid_reserve)
2120 		hugepage_subpool_put_pages(spool, 1);
2121 	vma_end_reservation(h, vma, addr);
2122 	return ERR_PTR(-ENOSPC);
2123 }
2124 
2125 int alloc_bootmem_huge_page(struct hstate *h)
2126 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2127 int __alloc_bootmem_huge_page(struct hstate *h)
2128 {
2129 	struct huge_bootmem_page *m;
2130 	int nr_nodes, node;
2131 
2132 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2133 		void *addr;
2134 
2135 		addr = memblock_alloc_try_nid_raw(
2136 				huge_page_size(h), huge_page_size(h),
2137 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2138 		if (addr) {
2139 			/*
2140 			 * Use the beginning of the huge page to store the
2141 			 * huge_bootmem_page struct (until gather_bootmem
2142 			 * puts them into the mem_map).
2143 			 */
2144 			m = addr;
2145 			goto found;
2146 		}
2147 	}
2148 	return 0;
2149 
2150 found:
2151 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2152 	/* Put them into a private list first because mem_map is not up yet */
2153 	INIT_LIST_HEAD(&m->list);
2154 	list_add(&m->list, &huge_boot_pages);
2155 	m->hstate = h;
2156 	return 1;
2157 }
2158 
2159 static void __init prep_compound_huge_page(struct page *page,
2160 		unsigned int order)
2161 {
2162 	if (unlikely(order > (MAX_ORDER - 1)))
2163 		prep_compound_gigantic_page(page, order);
2164 	else
2165 		prep_compound_page(page, order);
2166 }
2167 
2168 /* Put bootmem huge pages into the standard lists after mem_map is up */
2169 static void __init gather_bootmem_prealloc(void)
2170 {
2171 	struct huge_bootmem_page *m;
2172 
2173 	list_for_each_entry(m, &huge_boot_pages, list) {
2174 		struct page *page = virt_to_page(m);
2175 		struct hstate *h = m->hstate;
2176 
2177 		WARN_ON(page_count(page) != 1);
2178 		prep_compound_huge_page(page, h->order);
2179 		WARN_ON(PageReserved(page));
2180 		prep_new_huge_page(h, page, page_to_nid(page));
2181 		put_page(page); /* free it into the hugepage allocator */
2182 
2183 		/*
2184 		 * If we had gigantic hugepages allocated at boot time, we need
2185 		 * to restore the 'stolen' pages to totalram_pages in order to
2186 		 * fix confusing memory reports from free(1) and another
2187 		 * side-effects, like CommitLimit going negative.
2188 		 */
2189 		if (hstate_is_gigantic(h))
2190 			adjust_managed_page_count(page, 1 << h->order);
2191 		cond_resched();
2192 	}
2193 }
2194 
2195 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2196 {
2197 	unsigned long i;
2198 
2199 	for (i = 0; i < h->max_huge_pages; ++i) {
2200 		if (hstate_is_gigantic(h)) {
2201 			if (!alloc_bootmem_huge_page(h))
2202 				break;
2203 		} else if (!alloc_pool_huge_page(h,
2204 					 &node_states[N_MEMORY]))
2205 			break;
2206 		cond_resched();
2207 	}
2208 	if (i < h->max_huge_pages) {
2209 		char buf[32];
2210 
2211 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2212 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2213 			h->max_huge_pages, buf, i);
2214 		h->max_huge_pages = i;
2215 	}
2216 }
2217 
2218 static void __init hugetlb_init_hstates(void)
2219 {
2220 	struct hstate *h;
2221 
2222 	for_each_hstate(h) {
2223 		if (minimum_order > huge_page_order(h))
2224 			minimum_order = huge_page_order(h);
2225 
2226 		/* oversize hugepages were init'ed in early boot */
2227 		if (!hstate_is_gigantic(h))
2228 			hugetlb_hstate_alloc_pages(h);
2229 	}
2230 	VM_BUG_ON(minimum_order == UINT_MAX);
2231 }
2232 
2233 static void __init report_hugepages(void)
2234 {
2235 	struct hstate *h;
2236 
2237 	for_each_hstate(h) {
2238 		char buf[32];
2239 
2240 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2241 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2242 			buf, h->free_huge_pages);
2243 	}
2244 }
2245 
2246 #ifdef CONFIG_HIGHMEM
2247 static void try_to_free_low(struct hstate *h, unsigned long count,
2248 						nodemask_t *nodes_allowed)
2249 {
2250 	int i;
2251 
2252 	if (hstate_is_gigantic(h))
2253 		return;
2254 
2255 	for_each_node_mask(i, *nodes_allowed) {
2256 		struct page *page, *next;
2257 		struct list_head *freel = &h->hugepage_freelists[i];
2258 		list_for_each_entry_safe(page, next, freel, lru) {
2259 			if (count >= h->nr_huge_pages)
2260 				return;
2261 			if (PageHighMem(page))
2262 				continue;
2263 			list_del(&page->lru);
2264 			update_and_free_page(h, page);
2265 			h->free_huge_pages--;
2266 			h->free_huge_pages_node[page_to_nid(page)]--;
2267 		}
2268 	}
2269 }
2270 #else
2271 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2272 						nodemask_t *nodes_allowed)
2273 {
2274 }
2275 #endif
2276 
2277 /*
2278  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2279  * balanced by operating on them in a round-robin fashion.
2280  * Returns 1 if an adjustment was made.
2281  */
2282 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2283 				int delta)
2284 {
2285 	int nr_nodes, node;
2286 
2287 	VM_BUG_ON(delta != -1 && delta != 1);
2288 
2289 	if (delta < 0) {
2290 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2291 			if (h->surplus_huge_pages_node[node])
2292 				goto found;
2293 		}
2294 	} else {
2295 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2296 			if (h->surplus_huge_pages_node[node] <
2297 					h->nr_huge_pages_node[node])
2298 				goto found;
2299 		}
2300 	}
2301 	return 0;
2302 
2303 found:
2304 	h->surplus_huge_pages += delta;
2305 	h->surplus_huge_pages_node[node] += delta;
2306 	return 1;
2307 }
2308 
2309 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2310 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2311 			      nodemask_t *nodes_allowed)
2312 {
2313 	unsigned long min_count, ret;
2314 
2315 	spin_lock(&hugetlb_lock);
2316 
2317 	/*
2318 	 * Check for a node specific request.
2319 	 * Changing node specific huge page count may require a corresponding
2320 	 * change to the global count.  In any case, the passed node mask
2321 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2322 	 */
2323 	if (nid != NUMA_NO_NODE) {
2324 		unsigned long old_count = count;
2325 
2326 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2327 		/*
2328 		 * User may have specified a large count value which caused the
2329 		 * above calculation to overflow.  In this case, they wanted
2330 		 * to allocate as many huge pages as possible.  Set count to
2331 		 * largest possible value to align with their intention.
2332 		 */
2333 		if (count < old_count)
2334 			count = ULONG_MAX;
2335 	}
2336 
2337 	/*
2338 	 * Gigantic pages runtime allocation depend on the capability for large
2339 	 * page range allocation.
2340 	 * If the system does not provide this feature, return an error when
2341 	 * the user tries to allocate gigantic pages but let the user free the
2342 	 * boottime allocated gigantic pages.
2343 	 */
2344 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2345 		if (count > persistent_huge_pages(h)) {
2346 			spin_unlock(&hugetlb_lock);
2347 			return -EINVAL;
2348 		}
2349 		/* Fall through to decrease pool */
2350 	}
2351 
2352 	/*
2353 	 * Increase the pool size
2354 	 * First take pages out of surplus state.  Then make up the
2355 	 * remaining difference by allocating fresh huge pages.
2356 	 *
2357 	 * We might race with alloc_surplus_huge_page() here and be unable
2358 	 * to convert a surplus huge page to a normal huge page. That is
2359 	 * not critical, though, it just means the overall size of the
2360 	 * pool might be one hugepage larger than it needs to be, but
2361 	 * within all the constraints specified by the sysctls.
2362 	 */
2363 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2364 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2365 			break;
2366 	}
2367 
2368 	while (count > persistent_huge_pages(h)) {
2369 		/*
2370 		 * If this allocation races such that we no longer need the
2371 		 * page, free_huge_page will handle it by freeing the page
2372 		 * and reducing the surplus.
2373 		 */
2374 		spin_unlock(&hugetlb_lock);
2375 
2376 		/* yield cpu to avoid soft lockup */
2377 		cond_resched();
2378 
2379 		ret = alloc_pool_huge_page(h, nodes_allowed);
2380 		spin_lock(&hugetlb_lock);
2381 		if (!ret)
2382 			goto out;
2383 
2384 		/* Bail for signals. Probably ctrl-c from user */
2385 		if (signal_pending(current))
2386 			goto out;
2387 	}
2388 
2389 	/*
2390 	 * Decrease the pool size
2391 	 * First return free pages to the buddy allocator (being careful
2392 	 * to keep enough around to satisfy reservations).  Then place
2393 	 * pages into surplus state as needed so the pool will shrink
2394 	 * to the desired size as pages become free.
2395 	 *
2396 	 * By placing pages into the surplus state independent of the
2397 	 * overcommit value, we are allowing the surplus pool size to
2398 	 * exceed overcommit. There are few sane options here. Since
2399 	 * alloc_surplus_huge_page() is checking the global counter,
2400 	 * though, we'll note that we're not allowed to exceed surplus
2401 	 * and won't grow the pool anywhere else. Not until one of the
2402 	 * sysctls are changed, or the surplus pages go out of use.
2403 	 */
2404 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2405 	min_count = max(count, min_count);
2406 	try_to_free_low(h, min_count, nodes_allowed);
2407 	while (min_count < persistent_huge_pages(h)) {
2408 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2409 			break;
2410 		cond_resched_lock(&hugetlb_lock);
2411 	}
2412 	while (count < persistent_huge_pages(h)) {
2413 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2414 			break;
2415 	}
2416 out:
2417 	h->max_huge_pages = persistent_huge_pages(h);
2418 	spin_unlock(&hugetlb_lock);
2419 
2420 	return 0;
2421 }
2422 
2423 #define HSTATE_ATTR_RO(_name) \
2424 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2425 
2426 #define HSTATE_ATTR(_name) \
2427 	static struct kobj_attribute _name##_attr = \
2428 		__ATTR(_name, 0644, _name##_show, _name##_store)
2429 
2430 static struct kobject *hugepages_kobj;
2431 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2432 
2433 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2434 
2435 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2436 {
2437 	int i;
2438 
2439 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2440 		if (hstate_kobjs[i] == kobj) {
2441 			if (nidp)
2442 				*nidp = NUMA_NO_NODE;
2443 			return &hstates[i];
2444 		}
2445 
2446 	return kobj_to_node_hstate(kobj, nidp);
2447 }
2448 
2449 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2450 					struct kobj_attribute *attr, char *buf)
2451 {
2452 	struct hstate *h;
2453 	unsigned long nr_huge_pages;
2454 	int nid;
2455 
2456 	h = kobj_to_hstate(kobj, &nid);
2457 	if (nid == NUMA_NO_NODE)
2458 		nr_huge_pages = h->nr_huge_pages;
2459 	else
2460 		nr_huge_pages = h->nr_huge_pages_node[nid];
2461 
2462 	return sprintf(buf, "%lu\n", nr_huge_pages);
2463 }
2464 
2465 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2466 					   struct hstate *h, int nid,
2467 					   unsigned long count, size_t len)
2468 {
2469 	int err;
2470 	nodemask_t nodes_allowed, *n_mask;
2471 
2472 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2473 		return -EINVAL;
2474 
2475 	if (nid == NUMA_NO_NODE) {
2476 		/*
2477 		 * global hstate attribute
2478 		 */
2479 		if (!(obey_mempolicy &&
2480 				init_nodemask_of_mempolicy(&nodes_allowed)))
2481 			n_mask = &node_states[N_MEMORY];
2482 		else
2483 			n_mask = &nodes_allowed;
2484 	} else {
2485 		/*
2486 		 * Node specific request.  count adjustment happens in
2487 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2488 		 */
2489 		init_nodemask_of_node(&nodes_allowed, nid);
2490 		n_mask = &nodes_allowed;
2491 	}
2492 
2493 	err = set_max_huge_pages(h, count, nid, n_mask);
2494 
2495 	return err ? err : len;
2496 }
2497 
2498 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2499 					 struct kobject *kobj, const char *buf,
2500 					 size_t len)
2501 {
2502 	struct hstate *h;
2503 	unsigned long count;
2504 	int nid;
2505 	int err;
2506 
2507 	err = kstrtoul(buf, 10, &count);
2508 	if (err)
2509 		return err;
2510 
2511 	h = kobj_to_hstate(kobj, &nid);
2512 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2513 }
2514 
2515 static ssize_t nr_hugepages_show(struct kobject *kobj,
2516 				       struct kobj_attribute *attr, char *buf)
2517 {
2518 	return nr_hugepages_show_common(kobj, attr, buf);
2519 }
2520 
2521 static ssize_t nr_hugepages_store(struct kobject *kobj,
2522 	       struct kobj_attribute *attr, const char *buf, size_t len)
2523 {
2524 	return nr_hugepages_store_common(false, kobj, buf, len);
2525 }
2526 HSTATE_ATTR(nr_hugepages);
2527 
2528 #ifdef CONFIG_NUMA
2529 
2530 /*
2531  * hstate attribute for optionally mempolicy-based constraint on persistent
2532  * huge page alloc/free.
2533  */
2534 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2535 				       struct kobj_attribute *attr, char *buf)
2536 {
2537 	return nr_hugepages_show_common(kobj, attr, buf);
2538 }
2539 
2540 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2541 	       struct kobj_attribute *attr, const char *buf, size_t len)
2542 {
2543 	return nr_hugepages_store_common(true, kobj, buf, len);
2544 }
2545 HSTATE_ATTR(nr_hugepages_mempolicy);
2546 #endif
2547 
2548 
2549 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2550 					struct kobj_attribute *attr, char *buf)
2551 {
2552 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2553 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2554 }
2555 
2556 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2557 		struct kobj_attribute *attr, const char *buf, size_t count)
2558 {
2559 	int err;
2560 	unsigned long input;
2561 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2562 
2563 	if (hstate_is_gigantic(h))
2564 		return -EINVAL;
2565 
2566 	err = kstrtoul(buf, 10, &input);
2567 	if (err)
2568 		return err;
2569 
2570 	spin_lock(&hugetlb_lock);
2571 	h->nr_overcommit_huge_pages = input;
2572 	spin_unlock(&hugetlb_lock);
2573 
2574 	return count;
2575 }
2576 HSTATE_ATTR(nr_overcommit_hugepages);
2577 
2578 static ssize_t free_hugepages_show(struct kobject *kobj,
2579 					struct kobj_attribute *attr, char *buf)
2580 {
2581 	struct hstate *h;
2582 	unsigned long free_huge_pages;
2583 	int nid;
2584 
2585 	h = kobj_to_hstate(kobj, &nid);
2586 	if (nid == NUMA_NO_NODE)
2587 		free_huge_pages = h->free_huge_pages;
2588 	else
2589 		free_huge_pages = h->free_huge_pages_node[nid];
2590 
2591 	return sprintf(buf, "%lu\n", free_huge_pages);
2592 }
2593 HSTATE_ATTR_RO(free_hugepages);
2594 
2595 static ssize_t resv_hugepages_show(struct kobject *kobj,
2596 					struct kobj_attribute *attr, char *buf)
2597 {
2598 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2599 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2600 }
2601 HSTATE_ATTR_RO(resv_hugepages);
2602 
2603 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2604 					struct kobj_attribute *attr, char *buf)
2605 {
2606 	struct hstate *h;
2607 	unsigned long surplus_huge_pages;
2608 	int nid;
2609 
2610 	h = kobj_to_hstate(kobj, &nid);
2611 	if (nid == NUMA_NO_NODE)
2612 		surplus_huge_pages = h->surplus_huge_pages;
2613 	else
2614 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2615 
2616 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2617 }
2618 HSTATE_ATTR_RO(surplus_hugepages);
2619 
2620 static struct attribute *hstate_attrs[] = {
2621 	&nr_hugepages_attr.attr,
2622 	&nr_overcommit_hugepages_attr.attr,
2623 	&free_hugepages_attr.attr,
2624 	&resv_hugepages_attr.attr,
2625 	&surplus_hugepages_attr.attr,
2626 #ifdef CONFIG_NUMA
2627 	&nr_hugepages_mempolicy_attr.attr,
2628 #endif
2629 	NULL,
2630 };
2631 
2632 static const struct attribute_group hstate_attr_group = {
2633 	.attrs = hstate_attrs,
2634 };
2635 
2636 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2637 				    struct kobject **hstate_kobjs,
2638 				    const struct attribute_group *hstate_attr_group)
2639 {
2640 	int retval;
2641 	int hi = hstate_index(h);
2642 
2643 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2644 	if (!hstate_kobjs[hi])
2645 		return -ENOMEM;
2646 
2647 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2648 	if (retval)
2649 		kobject_put(hstate_kobjs[hi]);
2650 
2651 	return retval;
2652 }
2653 
2654 static void __init hugetlb_sysfs_init(void)
2655 {
2656 	struct hstate *h;
2657 	int err;
2658 
2659 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2660 	if (!hugepages_kobj)
2661 		return;
2662 
2663 	for_each_hstate(h) {
2664 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2665 					 hstate_kobjs, &hstate_attr_group);
2666 		if (err)
2667 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2668 	}
2669 }
2670 
2671 #ifdef CONFIG_NUMA
2672 
2673 /*
2674  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2675  * with node devices in node_devices[] using a parallel array.  The array
2676  * index of a node device or _hstate == node id.
2677  * This is here to avoid any static dependency of the node device driver, in
2678  * the base kernel, on the hugetlb module.
2679  */
2680 struct node_hstate {
2681 	struct kobject		*hugepages_kobj;
2682 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2683 };
2684 static struct node_hstate node_hstates[MAX_NUMNODES];
2685 
2686 /*
2687  * A subset of global hstate attributes for node devices
2688  */
2689 static struct attribute *per_node_hstate_attrs[] = {
2690 	&nr_hugepages_attr.attr,
2691 	&free_hugepages_attr.attr,
2692 	&surplus_hugepages_attr.attr,
2693 	NULL,
2694 };
2695 
2696 static const struct attribute_group per_node_hstate_attr_group = {
2697 	.attrs = per_node_hstate_attrs,
2698 };
2699 
2700 /*
2701  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2702  * Returns node id via non-NULL nidp.
2703  */
2704 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2705 {
2706 	int nid;
2707 
2708 	for (nid = 0; nid < nr_node_ids; nid++) {
2709 		struct node_hstate *nhs = &node_hstates[nid];
2710 		int i;
2711 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2712 			if (nhs->hstate_kobjs[i] == kobj) {
2713 				if (nidp)
2714 					*nidp = nid;
2715 				return &hstates[i];
2716 			}
2717 	}
2718 
2719 	BUG();
2720 	return NULL;
2721 }
2722 
2723 /*
2724  * Unregister hstate attributes from a single node device.
2725  * No-op if no hstate attributes attached.
2726  */
2727 static void hugetlb_unregister_node(struct node *node)
2728 {
2729 	struct hstate *h;
2730 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2731 
2732 	if (!nhs->hugepages_kobj)
2733 		return;		/* no hstate attributes */
2734 
2735 	for_each_hstate(h) {
2736 		int idx = hstate_index(h);
2737 		if (nhs->hstate_kobjs[idx]) {
2738 			kobject_put(nhs->hstate_kobjs[idx]);
2739 			nhs->hstate_kobjs[idx] = NULL;
2740 		}
2741 	}
2742 
2743 	kobject_put(nhs->hugepages_kobj);
2744 	nhs->hugepages_kobj = NULL;
2745 }
2746 
2747 
2748 /*
2749  * Register hstate attributes for a single node device.
2750  * No-op if attributes already registered.
2751  */
2752 static void hugetlb_register_node(struct node *node)
2753 {
2754 	struct hstate *h;
2755 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2756 	int err;
2757 
2758 	if (nhs->hugepages_kobj)
2759 		return;		/* already allocated */
2760 
2761 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2762 							&node->dev.kobj);
2763 	if (!nhs->hugepages_kobj)
2764 		return;
2765 
2766 	for_each_hstate(h) {
2767 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2768 						nhs->hstate_kobjs,
2769 						&per_node_hstate_attr_group);
2770 		if (err) {
2771 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2772 				h->name, node->dev.id);
2773 			hugetlb_unregister_node(node);
2774 			break;
2775 		}
2776 	}
2777 }
2778 
2779 /*
2780  * hugetlb init time:  register hstate attributes for all registered node
2781  * devices of nodes that have memory.  All on-line nodes should have
2782  * registered their associated device by this time.
2783  */
2784 static void __init hugetlb_register_all_nodes(void)
2785 {
2786 	int nid;
2787 
2788 	for_each_node_state(nid, N_MEMORY) {
2789 		struct node *node = node_devices[nid];
2790 		if (node->dev.id == nid)
2791 			hugetlb_register_node(node);
2792 	}
2793 
2794 	/*
2795 	 * Let the node device driver know we're here so it can
2796 	 * [un]register hstate attributes on node hotplug.
2797 	 */
2798 	register_hugetlbfs_with_node(hugetlb_register_node,
2799 				     hugetlb_unregister_node);
2800 }
2801 #else	/* !CONFIG_NUMA */
2802 
2803 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2804 {
2805 	BUG();
2806 	if (nidp)
2807 		*nidp = -1;
2808 	return NULL;
2809 }
2810 
2811 static void hugetlb_register_all_nodes(void) { }
2812 
2813 #endif
2814 
2815 static int __init hugetlb_init(void)
2816 {
2817 	int i;
2818 
2819 	if (!hugepages_supported())
2820 		return 0;
2821 
2822 	if (!size_to_hstate(default_hstate_size)) {
2823 		if (default_hstate_size != 0) {
2824 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2825 			       default_hstate_size, HPAGE_SIZE);
2826 		}
2827 
2828 		default_hstate_size = HPAGE_SIZE;
2829 		if (!size_to_hstate(default_hstate_size))
2830 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2831 	}
2832 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2833 	if (default_hstate_max_huge_pages) {
2834 		if (!default_hstate.max_huge_pages)
2835 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2836 	}
2837 
2838 	hugetlb_init_hstates();
2839 	gather_bootmem_prealloc();
2840 	report_hugepages();
2841 
2842 	hugetlb_sysfs_init();
2843 	hugetlb_register_all_nodes();
2844 	hugetlb_cgroup_file_init();
2845 
2846 #ifdef CONFIG_SMP
2847 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2848 #else
2849 	num_fault_mutexes = 1;
2850 #endif
2851 	hugetlb_fault_mutex_table =
2852 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2853 			      GFP_KERNEL);
2854 	BUG_ON(!hugetlb_fault_mutex_table);
2855 
2856 	for (i = 0; i < num_fault_mutexes; i++)
2857 		mutex_init(&hugetlb_fault_mutex_table[i]);
2858 	return 0;
2859 }
2860 subsys_initcall(hugetlb_init);
2861 
2862 /* Should be called on processing a hugepagesz=... option */
2863 void __init hugetlb_bad_size(void)
2864 {
2865 	parsed_valid_hugepagesz = false;
2866 }
2867 
2868 void __init hugetlb_add_hstate(unsigned int order)
2869 {
2870 	struct hstate *h;
2871 	unsigned long i;
2872 
2873 	if (size_to_hstate(PAGE_SIZE << order)) {
2874 		pr_warn("hugepagesz= specified twice, ignoring\n");
2875 		return;
2876 	}
2877 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2878 	BUG_ON(order == 0);
2879 	h = &hstates[hugetlb_max_hstate++];
2880 	h->order = order;
2881 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2882 	h->nr_huge_pages = 0;
2883 	h->free_huge_pages = 0;
2884 	for (i = 0; i < MAX_NUMNODES; ++i)
2885 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2886 	INIT_LIST_HEAD(&h->hugepage_activelist);
2887 	h->next_nid_to_alloc = first_memory_node;
2888 	h->next_nid_to_free = first_memory_node;
2889 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2890 					huge_page_size(h)/1024);
2891 
2892 	parsed_hstate = h;
2893 }
2894 
2895 static int __init hugetlb_nrpages_setup(char *s)
2896 {
2897 	unsigned long *mhp;
2898 	static unsigned long *last_mhp;
2899 
2900 	if (!parsed_valid_hugepagesz) {
2901 		pr_warn("hugepages = %s preceded by "
2902 			"an unsupported hugepagesz, ignoring\n", s);
2903 		parsed_valid_hugepagesz = true;
2904 		return 1;
2905 	}
2906 	/*
2907 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2908 	 * so this hugepages= parameter goes to the "default hstate".
2909 	 */
2910 	else if (!hugetlb_max_hstate)
2911 		mhp = &default_hstate_max_huge_pages;
2912 	else
2913 		mhp = &parsed_hstate->max_huge_pages;
2914 
2915 	if (mhp == last_mhp) {
2916 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2917 		return 1;
2918 	}
2919 
2920 	if (sscanf(s, "%lu", mhp) <= 0)
2921 		*mhp = 0;
2922 
2923 	/*
2924 	 * Global state is always initialized later in hugetlb_init.
2925 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2926 	 * use the bootmem allocator.
2927 	 */
2928 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2929 		hugetlb_hstate_alloc_pages(parsed_hstate);
2930 
2931 	last_mhp = mhp;
2932 
2933 	return 1;
2934 }
2935 __setup("hugepages=", hugetlb_nrpages_setup);
2936 
2937 static int __init hugetlb_default_setup(char *s)
2938 {
2939 	default_hstate_size = memparse(s, &s);
2940 	return 1;
2941 }
2942 __setup("default_hugepagesz=", hugetlb_default_setup);
2943 
2944 static unsigned int cpuset_mems_nr(unsigned int *array)
2945 {
2946 	int node;
2947 	unsigned int nr = 0;
2948 
2949 	for_each_node_mask(node, cpuset_current_mems_allowed)
2950 		nr += array[node];
2951 
2952 	return nr;
2953 }
2954 
2955 #ifdef CONFIG_SYSCTL
2956 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2957 			 struct ctl_table *table, int write,
2958 			 void __user *buffer, size_t *length, loff_t *ppos)
2959 {
2960 	struct hstate *h = &default_hstate;
2961 	unsigned long tmp = h->max_huge_pages;
2962 	int ret;
2963 
2964 	if (!hugepages_supported())
2965 		return -EOPNOTSUPP;
2966 
2967 	table->data = &tmp;
2968 	table->maxlen = sizeof(unsigned long);
2969 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2970 	if (ret)
2971 		goto out;
2972 
2973 	if (write)
2974 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2975 						  NUMA_NO_NODE, tmp, *length);
2976 out:
2977 	return ret;
2978 }
2979 
2980 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2981 			  void __user *buffer, size_t *length, loff_t *ppos)
2982 {
2983 
2984 	return hugetlb_sysctl_handler_common(false, table, write,
2985 							buffer, length, ppos);
2986 }
2987 
2988 #ifdef CONFIG_NUMA
2989 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2990 			  void __user *buffer, size_t *length, loff_t *ppos)
2991 {
2992 	return hugetlb_sysctl_handler_common(true, table, write,
2993 							buffer, length, ppos);
2994 }
2995 #endif /* CONFIG_NUMA */
2996 
2997 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2998 			void __user *buffer,
2999 			size_t *length, loff_t *ppos)
3000 {
3001 	struct hstate *h = &default_hstate;
3002 	unsigned long tmp;
3003 	int ret;
3004 
3005 	if (!hugepages_supported())
3006 		return -EOPNOTSUPP;
3007 
3008 	tmp = h->nr_overcommit_huge_pages;
3009 
3010 	if (write && hstate_is_gigantic(h))
3011 		return -EINVAL;
3012 
3013 	table->data = &tmp;
3014 	table->maxlen = sizeof(unsigned long);
3015 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3016 	if (ret)
3017 		goto out;
3018 
3019 	if (write) {
3020 		spin_lock(&hugetlb_lock);
3021 		h->nr_overcommit_huge_pages = tmp;
3022 		spin_unlock(&hugetlb_lock);
3023 	}
3024 out:
3025 	return ret;
3026 }
3027 
3028 #endif /* CONFIG_SYSCTL */
3029 
3030 void hugetlb_report_meminfo(struct seq_file *m)
3031 {
3032 	struct hstate *h;
3033 	unsigned long total = 0;
3034 
3035 	if (!hugepages_supported())
3036 		return;
3037 
3038 	for_each_hstate(h) {
3039 		unsigned long count = h->nr_huge_pages;
3040 
3041 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3042 
3043 		if (h == &default_hstate)
3044 			seq_printf(m,
3045 				   "HugePages_Total:   %5lu\n"
3046 				   "HugePages_Free:    %5lu\n"
3047 				   "HugePages_Rsvd:    %5lu\n"
3048 				   "HugePages_Surp:    %5lu\n"
3049 				   "Hugepagesize:   %8lu kB\n",
3050 				   count,
3051 				   h->free_huge_pages,
3052 				   h->resv_huge_pages,
3053 				   h->surplus_huge_pages,
3054 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3055 	}
3056 
3057 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3058 }
3059 
3060 int hugetlb_report_node_meminfo(int nid, char *buf)
3061 {
3062 	struct hstate *h = &default_hstate;
3063 	if (!hugepages_supported())
3064 		return 0;
3065 	return sprintf(buf,
3066 		"Node %d HugePages_Total: %5u\n"
3067 		"Node %d HugePages_Free:  %5u\n"
3068 		"Node %d HugePages_Surp:  %5u\n",
3069 		nid, h->nr_huge_pages_node[nid],
3070 		nid, h->free_huge_pages_node[nid],
3071 		nid, h->surplus_huge_pages_node[nid]);
3072 }
3073 
3074 void hugetlb_show_meminfo(void)
3075 {
3076 	struct hstate *h;
3077 	int nid;
3078 
3079 	if (!hugepages_supported())
3080 		return;
3081 
3082 	for_each_node_state(nid, N_MEMORY)
3083 		for_each_hstate(h)
3084 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3085 				nid,
3086 				h->nr_huge_pages_node[nid],
3087 				h->free_huge_pages_node[nid],
3088 				h->surplus_huge_pages_node[nid],
3089 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3090 }
3091 
3092 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3093 {
3094 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3095 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3096 }
3097 
3098 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3099 unsigned long hugetlb_total_pages(void)
3100 {
3101 	struct hstate *h;
3102 	unsigned long nr_total_pages = 0;
3103 
3104 	for_each_hstate(h)
3105 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3106 	return nr_total_pages;
3107 }
3108 
3109 static int hugetlb_acct_memory(struct hstate *h, long delta)
3110 {
3111 	int ret = -ENOMEM;
3112 
3113 	spin_lock(&hugetlb_lock);
3114 	/*
3115 	 * When cpuset is configured, it breaks the strict hugetlb page
3116 	 * reservation as the accounting is done on a global variable. Such
3117 	 * reservation is completely rubbish in the presence of cpuset because
3118 	 * the reservation is not checked against page availability for the
3119 	 * current cpuset. Application can still potentially OOM'ed by kernel
3120 	 * with lack of free htlb page in cpuset that the task is in.
3121 	 * Attempt to enforce strict accounting with cpuset is almost
3122 	 * impossible (or too ugly) because cpuset is too fluid that
3123 	 * task or memory node can be dynamically moved between cpusets.
3124 	 *
3125 	 * The change of semantics for shared hugetlb mapping with cpuset is
3126 	 * undesirable. However, in order to preserve some of the semantics,
3127 	 * we fall back to check against current free page availability as
3128 	 * a best attempt and hopefully to minimize the impact of changing
3129 	 * semantics that cpuset has.
3130 	 */
3131 	if (delta > 0) {
3132 		if (gather_surplus_pages(h, delta) < 0)
3133 			goto out;
3134 
3135 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3136 			return_unused_surplus_pages(h, delta);
3137 			goto out;
3138 		}
3139 	}
3140 
3141 	ret = 0;
3142 	if (delta < 0)
3143 		return_unused_surplus_pages(h, (unsigned long) -delta);
3144 
3145 out:
3146 	spin_unlock(&hugetlb_lock);
3147 	return ret;
3148 }
3149 
3150 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3151 {
3152 	struct resv_map *resv = vma_resv_map(vma);
3153 
3154 	/*
3155 	 * This new VMA should share its siblings reservation map if present.
3156 	 * The VMA will only ever have a valid reservation map pointer where
3157 	 * it is being copied for another still existing VMA.  As that VMA
3158 	 * has a reference to the reservation map it cannot disappear until
3159 	 * after this open call completes.  It is therefore safe to take a
3160 	 * new reference here without additional locking.
3161 	 */
3162 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3163 		kref_get(&resv->refs);
3164 }
3165 
3166 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3167 {
3168 	struct hstate *h = hstate_vma(vma);
3169 	struct resv_map *resv = vma_resv_map(vma);
3170 	struct hugepage_subpool *spool = subpool_vma(vma);
3171 	unsigned long reserve, start, end;
3172 	long gbl_reserve;
3173 
3174 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3175 		return;
3176 
3177 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3178 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3179 
3180 	reserve = (end - start) - region_count(resv, start, end);
3181 
3182 	kref_put(&resv->refs, resv_map_release);
3183 
3184 	if (reserve) {
3185 		/*
3186 		 * Decrement reserve counts.  The global reserve count may be
3187 		 * adjusted if the subpool has a minimum size.
3188 		 */
3189 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3190 		hugetlb_acct_memory(h, -gbl_reserve);
3191 	}
3192 }
3193 
3194 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3195 {
3196 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3197 		return -EINVAL;
3198 	return 0;
3199 }
3200 
3201 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3202 {
3203 	struct hstate *hstate = hstate_vma(vma);
3204 
3205 	return 1UL << huge_page_shift(hstate);
3206 }
3207 
3208 /*
3209  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3210  * handle_mm_fault() to try to instantiate regular-sized pages in the
3211  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3212  * this far.
3213  */
3214 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3215 {
3216 	BUG();
3217 	return 0;
3218 }
3219 
3220 /*
3221  * When a new function is introduced to vm_operations_struct and added
3222  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3223  * This is because under System V memory model, mappings created via
3224  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3225  * their original vm_ops are overwritten with shm_vm_ops.
3226  */
3227 const struct vm_operations_struct hugetlb_vm_ops = {
3228 	.fault = hugetlb_vm_op_fault,
3229 	.open = hugetlb_vm_op_open,
3230 	.close = hugetlb_vm_op_close,
3231 	.split = hugetlb_vm_op_split,
3232 	.pagesize = hugetlb_vm_op_pagesize,
3233 };
3234 
3235 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3236 				int writable)
3237 {
3238 	pte_t entry;
3239 
3240 	if (writable) {
3241 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3242 					 vma->vm_page_prot)));
3243 	} else {
3244 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3245 					   vma->vm_page_prot));
3246 	}
3247 	entry = pte_mkyoung(entry);
3248 	entry = pte_mkhuge(entry);
3249 	entry = arch_make_huge_pte(entry, vma, page, writable);
3250 
3251 	return entry;
3252 }
3253 
3254 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3255 				   unsigned long address, pte_t *ptep)
3256 {
3257 	pte_t entry;
3258 
3259 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3260 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3261 		update_mmu_cache(vma, address, ptep);
3262 }
3263 
3264 bool is_hugetlb_entry_migration(pte_t pte)
3265 {
3266 	swp_entry_t swp;
3267 
3268 	if (huge_pte_none(pte) || pte_present(pte))
3269 		return false;
3270 	swp = pte_to_swp_entry(pte);
3271 	if (non_swap_entry(swp) && is_migration_entry(swp))
3272 		return true;
3273 	else
3274 		return false;
3275 }
3276 
3277 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3278 {
3279 	swp_entry_t swp;
3280 
3281 	if (huge_pte_none(pte) || pte_present(pte))
3282 		return 0;
3283 	swp = pte_to_swp_entry(pte);
3284 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3285 		return 1;
3286 	else
3287 		return 0;
3288 }
3289 
3290 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3291 			    struct vm_area_struct *vma)
3292 {
3293 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3294 	struct page *ptepage;
3295 	unsigned long addr;
3296 	int cow;
3297 	struct hstate *h = hstate_vma(vma);
3298 	unsigned long sz = huge_page_size(h);
3299 	struct mmu_notifier_range range;
3300 	int ret = 0;
3301 
3302 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3303 
3304 	if (cow) {
3305 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3306 					vma->vm_start,
3307 					vma->vm_end);
3308 		mmu_notifier_invalidate_range_start(&range);
3309 	}
3310 
3311 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3312 		spinlock_t *src_ptl, *dst_ptl;
3313 		src_pte = huge_pte_offset(src, addr, sz);
3314 		if (!src_pte)
3315 			continue;
3316 		dst_pte = huge_pte_alloc(dst, addr, sz);
3317 		if (!dst_pte) {
3318 			ret = -ENOMEM;
3319 			break;
3320 		}
3321 
3322 		/*
3323 		 * If the pagetables are shared don't copy or take references.
3324 		 * dst_pte == src_pte is the common case of src/dest sharing.
3325 		 *
3326 		 * However, src could have 'unshared' and dst shares with
3327 		 * another vma.  If dst_pte !none, this implies sharing.
3328 		 * Check here before taking page table lock, and once again
3329 		 * after taking the lock below.
3330 		 */
3331 		dst_entry = huge_ptep_get(dst_pte);
3332 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3333 			continue;
3334 
3335 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3336 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3337 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3338 		entry = huge_ptep_get(src_pte);
3339 		dst_entry = huge_ptep_get(dst_pte);
3340 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3341 			/*
3342 			 * Skip if src entry none.  Also, skip in the
3343 			 * unlikely case dst entry !none as this implies
3344 			 * sharing with another vma.
3345 			 */
3346 			;
3347 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3348 				    is_hugetlb_entry_hwpoisoned(entry))) {
3349 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3350 
3351 			if (is_write_migration_entry(swp_entry) && cow) {
3352 				/*
3353 				 * COW mappings require pages in both
3354 				 * parent and child to be set to read.
3355 				 */
3356 				make_migration_entry_read(&swp_entry);
3357 				entry = swp_entry_to_pte(swp_entry);
3358 				set_huge_swap_pte_at(src, addr, src_pte,
3359 						     entry, sz);
3360 			}
3361 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3362 		} else {
3363 			if (cow) {
3364 				/*
3365 				 * No need to notify as we are downgrading page
3366 				 * table protection not changing it to point
3367 				 * to a new page.
3368 				 *
3369 				 * See Documentation/vm/mmu_notifier.rst
3370 				 */
3371 				huge_ptep_set_wrprotect(src, addr, src_pte);
3372 			}
3373 			entry = huge_ptep_get(src_pte);
3374 			ptepage = pte_page(entry);
3375 			get_page(ptepage);
3376 			page_dup_rmap(ptepage, true);
3377 			set_huge_pte_at(dst, addr, dst_pte, entry);
3378 			hugetlb_count_add(pages_per_huge_page(h), dst);
3379 		}
3380 		spin_unlock(src_ptl);
3381 		spin_unlock(dst_ptl);
3382 	}
3383 
3384 	if (cow)
3385 		mmu_notifier_invalidate_range_end(&range);
3386 
3387 	return ret;
3388 }
3389 
3390 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3391 			    unsigned long start, unsigned long end,
3392 			    struct page *ref_page)
3393 {
3394 	struct mm_struct *mm = vma->vm_mm;
3395 	unsigned long address;
3396 	pte_t *ptep;
3397 	pte_t pte;
3398 	spinlock_t *ptl;
3399 	struct page *page;
3400 	struct hstate *h = hstate_vma(vma);
3401 	unsigned long sz = huge_page_size(h);
3402 	struct mmu_notifier_range range;
3403 
3404 	WARN_ON(!is_vm_hugetlb_page(vma));
3405 	BUG_ON(start & ~huge_page_mask(h));
3406 	BUG_ON(end & ~huge_page_mask(h));
3407 
3408 	/*
3409 	 * This is a hugetlb vma, all the pte entries should point
3410 	 * to huge page.
3411 	 */
3412 	tlb_change_page_size(tlb, sz);
3413 	tlb_start_vma(tlb, vma);
3414 
3415 	/*
3416 	 * If sharing possible, alert mmu notifiers of worst case.
3417 	 */
3418 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3419 				end);
3420 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3421 	mmu_notifier_invalidate_range_start(&range);
3422 	address = start;
3423 	for (; address < end; address += sz) {
3424 		ptep = huge_pte_offset(mm, address, sz);
3425 		if (!ptep)
3426 			continue;
3427 
3428 		ptl = huge_pte_lock(h, mm, ptep);
3429 		if (huge_pmd_unshare(mm, &address, ptep)) {
3430 			spin_unlock(ptl);
3431 			/*
3432 			 * We just unmapped a page of PMDs by clearing a PUD.
3433 			 * The caller's TLB flush range should cover this area.
3434 			 */
3435 			continue;
3436 		}
3437 
3438 		pte = huge_ptep_get(ptep);
3439 		if (huge_pte_none(pte)) {
3440 			spin_unlock(ptl);
3441 			continue;
3442 		}
3443 
3444 		/*
3445 		 * Migrating hugepage or HWPoisoned hugepage is already
3446 		 * unmapped and its refcount is dropped, so just clear pte here.
3447 		 */
3448 		if (unlikely(!pte_present(pte))) {
3449 			huge_pte_clear(mm, address, ptep, sz);
3450 			spin_unlock(ptl);
3451 			continue;
3452 		}
3453 
3454 		page = pte_page(pte);
3455 		/*
3456 		 * If a reference page is supplied, it is because a specific
3457 		 * page is being unmapped, not a range. Ensure the page we
3458 		 * are about to unmap is the actual page of interest.
3459 		 */
3460 		if (ref_page) {
3461 			if (page != ref_page) {
3462 				spin_unlock(ptl);
3463 				continue;
3464 			}
3465 			/*
3466 			 * Mark the VMA as having unmapped its page so that
3467 			 * future faults in this VMA will fail rather than
3468 			 * looking like data was lost
3469 			 */
3470 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3471 		}
3472 
3473 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3474 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3475 		if (huge_pte_dirty(pte))
3476 			set_page_dirty(page);
3477 
3478 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3479 		page_remove_rmap(page, true);
3480 
3481 		spin_unlock(ptl);
3482 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3483 		/*
3484 		 * Bail out after unmapping reference page if supplied
3485 		 */
3486 		if (ref_page)
3487 			break;
3488 	}
3489 	mmu_notifier_invalidate_range_end(&range);
3490 	tlb_end_vma(tlb, vma);
3491 }
3492 
3493 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3494 			  struct vm_area_struct *vma, unsigned long start,
3495 			  unsigned long end, struct page *ref_page)
3496 {
3497 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3498 
3499 	/*
3500 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3501 	 * test will fail on a vma being torn down, and not grab a page table
3502 	 * on its way out.  We're lucky that the flag has such an appropriate
3503 	 * name, and can in fact be safely cleared here. We could clear it
3504 	 * before the __unmap_hugepage_range above, but all that's necessary
3505 	 * is to clear it before releasing the i_mmap_rwsem. This works
3506 	 * because in the context this is called, the VMA is about to be
3507 	 * destroyed and the i_mmap_rwsem is held.
3508 	 */
3509 	vma->vm_flags &= ~VM_MAYSHARE;
3510 }
3511 
3512 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3513 			  unsigned long end, struct page *ref_page)
3514 {
3515 	struct mm_struct *mm;
3516 	struct mmu_gather tlb;
3517 	unsigned long tlb_start = start;
3518 	unsigned long tlb_end = end;
3519 
3520 	/*
3521 	 * If shared PMDs were possibly used within this vma range, adjust
3522 	 * start/end for worst case tlb flushing.
3523 	 * Note that we can not be sure if PMDs are shared until we try to
3524 	 * unmap pages.  However, we want to make sure TLB flushing covers
3525 	 * the largest possible range.
3526 	 */
3527 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3528 
3529 	mm = vma->vm_mm;
3530 
3531 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3532 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3533 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3534 }
3535 
3536 /*
3537  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3538  * mappping it owns the reserve page for. The intention is to unmap the page
3539  * from other VMAs and let the children be SIGKILLed if they are faulting the
3540  * same region.
3541  */
3542 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3543 			      struct page *page, unsigned long address)
3544 {
3545 	struct hstate *h = hstate_vma(vma);
3546 	struct vm_area_struct *iter_vma;
3547 	struct address_space *mapping;
3548 	pgoff_t pgoff;
3549 
3550 	/*
3551 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3552 	 * from page cache lookup which is in HPAGE_SIZE units.
3553 	 */
3554 	address = address & huge_page_mask(h);
3555 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3556 			vma->vm_pgoff;
3557 	mapping = vma->vm_file->f_mapping;
3558 
3559 	/*
3560 	 * Take the mapping lock for the duration of the table walk. As
3561 	 * this mapping should be shared between all the VMAs,
3562 	 * __unmap_hugepage_range() is called as the lock is already held
3563 	 */
3564 	i_mmap_lock_write(mapping);
3565 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3566 		/* Do not unmap the current VMA */
3567 		if (iter_vma == vma)
3568 			continue;
3569 
3570 		/*
3571 		 * Shared VMAs have their own reserves and do not affect
3572 		 * MAP_PRIVATE accounting but it is possible that a shared
3573 		 * VMA is using the same page so check and skip such VMAs.
3574 		 */
3575 		if (iter_vma->vm_flags & VM_MAYSHARE)
3576 			continue;
3577 
3578 		/*
3579 		 * Unmap the page from other VMAs without their own reserves.
3580 		 * They get marked to be SIGKILLed if they fault in these
3581 		 * areas. This is because a future no-page fault on this VMA
3582 		 * could insert a zeroed page instead of the data existing
3583 		 * from the time of fork. This would look like data corruption
3584 		 */
3585 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3586 			unmap_hugepage_range(iter_vma, address,
3587 					     address + huge_page_size(h), page);
3588 	}
3589 	i_mmap_unlock_write(mapping);
3590 }
3591 
3592 /*
3593  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3594  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3595  * cannot race with other handlers or page migration.
3596  * Keep the pte_same checks anyway to make transition from the mutex easier.
3597  */
3598 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3599 		       unsigned long address, pte_t *ptep,
3600 		       struct page *pagecache_page, spinlock_t *ptl)
3601 {
3602 	pte_t pte;
3603 	struct hstate *h = hstate_vma(vma);
3604 	struct page *old_page, *new_page;
3605 	int outside_reserve = 0;
3606 	vm_fault_t ret = 0;
3607 	unsigned long haddr = address & huge_page_mask(h);
3608 	struct mmu_notifier_range range;
3609 
3610 	pte = huge_ptep_get(ptep);
3611 	old_page = pte_page(pte);
3612 
3613 retry_avoidcopy:
3614 	/* If no-one else is actually using this page, avoid the copy
3615 	 * and just make the page writable */
3616 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3617 		page_move_anon_rmap(old_page, vma);
3618 		set_huge_ptep_writable(vma, haddr, ptep);
3619 		return 0;
3620 	}
3621 
3622 	/*
3623 	 * If the process that created a MAP_PRIVATE mapping is about to
3624 	 * perform a COW due to a shared page count, attempt to satisfy
3625 	 * the allocation without using the existing reserves. The pagecache
3626 	 * page is used to determine if the reserve at this address was
3627 	 * consumed or not. If reserves were used, a partial faulted mapping
3628 	 * at the time of fork() could consume its reserves on COW instead
3629 	 * of the full address range.
3630 	 */
3631 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3632 			old_page != pagecache_page)
3633 		outside_reserve = 1;
3634 
3635 	get_page(old_page);
3636 
3637 	/*
3638 	 * Drop page table lock as buddy allocator may be called. It will
3639 	 * be acquired again before returning to the caller, as expected.
3640 	 */
3641 	spin_unlock(ptl);
3642 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3643 
3644 	if (IS_ERR(new_page)) {
3645 		/*
3646 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3647 		 * it is due to references held by a child and an insufficient
3648 		 * huge page pool. To guarantee the original mappers
3649 		 * reliability, unmap the page from child processes. The child
3650 		 * may get SIGKILLed if it later faults.
3651 		 */
3652 		if (outside_reserve) {
3653 			put_page(old_page);
3654 			BUG_ON(huge_pte_none(pte));
3655 			unmap_ref_private(mm, vma, old_page, haddr);
3656 			BUG_ON(huge_pte_none(pte));
3657 			spin_lock(ptl);
3658 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3659 			if (likely(ptep &&
3660 				   pte_same(huge_ptep_get(ptep), pte)))
3661 				goto retry_avoidcopy;
3662 			/*
3663 			 * race occurs while re-acquiring page table
3664 			 * lock, and our job is done.
3665 			 */
3666 			return 0;
3667 		}
3668 
3669 		ret = vmf_error(PTR_ERR(new_page));
3670 		goto out_release_old;
3671 	}
3672 
3673 	/*
3674 	 * When the original hugepage is shared one, it does not have
3675 	 * anon_vma prepared.
3676 	 */
3677 	if (unlikely(anon_vma_prepare(vma))) {
3678 		ret = VM_FAULT_OOM;
3679 		goto out_release_all;
3680 	}
3681 
3682 	copy_user_huge_page(new_page, old_page, address, vma,
3683 			    pages_per_huge_page(h));
3684 	__SetPageUptodate(new_page);
3685 
3686 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3687 				haddr + huge_page_size(h));
3688 	mmu_notifier_invalidate_range_start(&range);
3689 
3690 	/*
3691 	 * Retake the page table lock to check for racing updates
3692 	 * before the page tables are altered
3693 	 */
3694 	spin_lock(ptl);
3695 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3696 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3697 		ClearPagePrivate(new_page);
3698 
3699 		/* Break COW */
3700 		huge_ptep_clear_flush(vma, haddr, ptep);
3701 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3702 		set_huge_pte_at(mm, haddr, ptep,
3703 				make_huge_pte(vma, new_page, 1));
3704 		page_remove_rmap(old_page, true);
3705 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3706 		set_page_huge_active(new_page);
3707 		/* Make the old page be freed below */
3708 		new_page = old_page;
3709 	}
3710 	spin_unlock(ptl);
3711 	mmu_notifier_invalidate_range_end(&range);
3712 out_release_all:
3713 	restore_reserve_on_error(h, vma, haddr, new_page);
3714 	put_page(new_page);
3715 out_release_old:
3716 	put_page(old_page);
3717 
3718 	spin_lock(ptl); /* Caller expects lock to be held */
3719 	return ret;
3720 }
3721 
3722 /* Return the pagecache page at a given address within a VMA */
3723 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3724 			struct vm_area_struct *vma, unsigned long address)
3725 {
3726 	struct address_space *mapping;
3727 	pgoff_t idx;
3728 
3729 	mapping = vma->vm_file->f_mapping;
3730 	idx = vma_hugecache_offset(h, vma, address);
3731 
3732 	return find_lock_page(mapping, idx);
3733 }
3734 
3735 /*
3736  * Return whether there is a pagecache page to back given address within VMA.
3737  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3738  */
3739 static bool hugetlbfs_pagecache_present(struct hstate *h,
3740 			struct vm_area_struct *vma, unsigned long address)
3741 {
3742 	struct address_space *mapping;
3743 	pgoff_t idx;
3744 	struct page *page;
3745 
3746 	mapping = vma->vm_file->f_mapping;
3747 	idx = vma_hugecache_offset(h, vma, address);
3748 
3749 	page = find_get_page(mapping, idx);
3750 	if (page)
3751 		put_page(page);
3752 	return page != NULL;
3753 }
3754 
3755 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3756 			   pgoff_t idx)
3757 {
3758 	struct inode *inode = mapping->host;
3759 	struct hstate *h = hstate_inode(inode);
3760 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3761 
3762 	if (err)
3763 		return err;
3764 	ClearPagePrivate(page);
3765 
3766 	/*
3767 	 * set page dirty so that it will not be removed from cache/file
3768 	 * by non-hugetlbfs specific code paths.
3769 	 */
3770 	set_page_dirty(page);
3771 
3772 	spin_lock(&inode->i_lock);
3773 	inode->i_blocks += blocks_per_huge_page(h);
3774 	spin_unlock(&inode->i_lock);
3775 	return 0;
3776 }
3777 
3778 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3779 			struct vm_area_struct *vma,
3780 			struct address_space *mapping, pgoff_t idx,
3781 			unsigned long address, pte_t *ptep, unsigned int flags)
3782 {
3783 	struct hstate *h = hstate_vma(vma);
3784 	vm_fault_t ret = VM_FAULT_SIGBUS;
3785 	int anon_rmap = 0;
3786 	unsigned long size;
3787 	struct page *page;
3788 	pte_t new_pte;
3789 	spinlock_t *ptl;
3790 	unsigned long haddr = address & huge_page_mask(h);
3791 	bool new_page = false;
3792 
3793 	/*
3794 	 * Currently, we are forced to kill the process in the event the
3795 	 * original mapper has unmapped pages from the child due to a failed
3796 	 * COW. Warn that such a situation has occurred as it may not be obvious
3797 	 */
3798 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3799 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3800 			   current->pid);
3801 		return ret;
3802 	}
3803 
3804 	/*
3805 	 * Use page lock to guard against racing truncation
3806 	 * before we get page_table_lock.
3807 	 */
3808 retry:
3809 	page = find_lock_page(mapping, idx);
3810 	if (!page) {
3811 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3812 		if (idx >= size)
3813 			goto out;
3814 
3815 		/*
3816 		 * Check for page in userfault range
3817 		 */
3818 		if (userfaultfd_missing(vma)) {
3819 			u32 hash;
3820 			struct vm_fault vmf = {
3821 				.vma = vma,
3822 				.address = haddr,
3823 				.flags = flags,
3824 				/*
3825 				 * Hard to debug if it ends up being
3826 				 * used by a callee that assumes
3827 				 * something about the other
3828 				 * uninitialized fields... same as in
3829 				 * memory.c
3830 				 */
3831 			};
3832 
3833 			/*
3834 			 * hugetlb_fault_mutex must be dropped before
3835 			 * handling userfault.  Reacquire after handling
3836 			 * fault to make calling code simpler.
3837 			 */
3838 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3839 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3840 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3841 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3842 			goto out;
3843 		}
3844 
3845 		page = alloc_huge_page(vma, haddr, 0);
3846 		if (IS_ERR(page)) {
3847 			ret = vmf_error(PTR_ERR(page));
3848 			goto out;
3849 		}
3850 		clear_huge_page(page, address, pages_per_huge_page(h));
3851 		__SetPageUptodate(page);
3852 		new_page = true;
3853 
3854 		if (vma->vm_flags & VM_MAYSHARE) {
3855 			int err = huge_add_to_page_cache(page, mapping, idx);
3856 			if (err) {
3857 				put_page(page);
3858 				if (err == -EEXIST)
3859 					goto retry;
3860 				goto out;
3861 			}
3862 		} else {
3863 			lock_page(page);
3864 			if (unlikely(anon_vma_prepare(vma))) {
3865 				ret = VM_FAULT_OOM;
3866 				goto backout_unlocked;
3867 			}
3868 			anon_rmap = 1;
3869 		}
3870 	} else {
3871 		/*
3872 		 * If memory error occurs between mmap() and fault, some process
3873 		 * don't have hwpoisoned swap entry for errored virtual address.
3874 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3875 		 */
3876 		if (unlikely(PageHWPoison(page))) {
3877 			ret = VM_FAULT_HWPOISON |
3878 				VM_FAULT_SET_HINDEX(hstate_index(h));
3879 			goto backout_unlocked;
3880 		}
3881 	}
3882 
3883 	/*
3884 	 * If we are going to COW a private mapping later, we examine the
3885 	 * pending reservations for this page now. This will ensure that
3886 	 * any allocations necessary to record that reservation occur outside
3887 	 * the spinlock.
3888 	 */
3889 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3890 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3891 			ret = VM_FAULT_OOM;
3892 			goto backout_unlocked;
3893 		}
3894 		/* Just decrements count, does not deallocate */
3895 		vma_end_reservation(h, vma, haddr);
3896 	}
3897 
3898 	ptl = huge_pte_lock(h, mm, ptep);
3899 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3900 	if (idx >= size)
3901 		goto backout;
3902 
3903 	ret = 0;
3904 	if (!huge_pte_none(huge_ptep_get(ptep)))
3905 		goto backout;
3906 
3907 	if (anon_rmap) {
3908 		ClearPagePrivate(page);
3909 		hugepage_add_new_anon_rmap(page, vma, haddr);
3910 	} else
3911 		page_dup_rmap(page, true);
3912 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3913 				&& (vma->vm_flags & VM_SHARED)));
3914 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3915 
3916 	hugetlb_count_add(pages_per_huge_page(h), mm);
3917 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3918 		/* Optimization, do the COW without a second fault */
3919 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3920 	}
3921 
3922 	spin_unlock(ptl);
3923 
3924 	/*
3925 	 * Only make newly allocated pages active.  Existing pages found
3926 	 * in the pagecache could be !page_huge_active() if they have been
3927 	 * isolated for migration.
3928 	 */
3929 	if (new_page)
3930 		set_page_huge_active(page);
3931 
3932 	unlock_page(page);
3933 out:
3934 	return ret;
3935 
3936 backout:
3937 	spin_unlock(ptl);
3938 backout_unlocked:
3939 	unlock_page(page);
3940 	restore_reserve_on_error(h, vma, haddr, page);
3941 	put_page(page);
3942 	goto out;
3943 }
3944 
3945 #ifdef CONFIG_SMP
3946 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3947 			    pgoff_t idx, unsigned long address)
3948 {
3949 	unsigned long key[2];
3950 	u32 hash;
3951 
3952 	key[0] = (unsigned long) mapping;
3953 	key[1] = idx;
3954 
3955 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3956 
3957 	return hash & (num_fault_mutexes - 1);
3958 }
3959 #else
3960 /*
3961  * For uniprocesor systems we always use a single mutex, so just
3962  * return 0 and avoid the hashing overhead.
3963  */
3964 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3965 			    pgoff_t idx, unsigned long address)
3966 {
3967 	return 0;
3968 }
3969 #endif
3970 
3971 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3972 			unsigned long address, unsigned int flags)
3973 {
3974 	pte_t *ptep, entry;
3975 	spinlock_t *ptl;
3976 	vm_fault_t ret;
3977 	u32 hash;
3978 	pgoff_t idx;
3979 	struct page *page = NULL;
3980 	struct page *pagecache_page = NULL;
3981 	struct hstate *h = hstate_vma(vma);
3982 	struct address_space *mapping;
3983 	int need_wait_lock = 0;
3984 	unsigned long haddr = address & huge_page_mask(h);
3985 
3986 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3987 	if (ptep) {
3988 		entry = huge_ptep_get(ptep);
3989 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3990 			migration_entry_wait_huge(vma, mm, ptep);
3991 			return 0;
3992 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3993 			return VM_FAULT_HWPOISON_LARGE |
3994 				VM_FAULT_SET_HINDEX(hstate_index(h));
3995 	} else {
3996 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3997 		if (!ptep)
3998 			return VM_FAULT_OOM;
3999 	}
4000 
4001 	mapping = vma->vm_file->f_mapping;
4002 	idx = vma_hugecache_offset(h, vma, haddr);
4003 
4004 	/*
4005 	 * Serialize hugepage allocation and instantiation, so that we don't
4006 	 * get spurious allocation failures if two CPUs race to instantiate
4007 	 * the same page in the page cache.
4008 	 */
4009 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4010 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4011 
4012 	entry = huge_ptep_get(ptep);
4013 	if (huge_pte_none(entry)) {
4014 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4015 		goto out_mutex;
4016 	}
4017 
4018 	ret = 0;
4019 
4020 	/*
4021 	 * entry could be a migration/hwpoison entry at this point, so this
4022 	 * check prevents the kernel from going below assuming that we have
4023 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4024 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4025 	 * handle it.
4026 	 */
4027 	if (!pte_present(entry))
4028 		goto out_mutex;
4029 
4030 	/*
4031 	 * If we are going to COW the mapping later, we examine the pending
4032 	 * reservations for this page now. This will ensure that any
4033 	 * allocations necessary to record that reservation occur outside the
4034 	 * spinlock. For private mappings, we also lookup the pagecache
4035 	 * page now as it is used to determine if a reservation has been
4036 	 * consumed.
4037 	 */
4038 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4039 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4040 			ret = VM_FAULT_OOM;
4041 			goto out_mutex;
4042 		}
4043 		/* Just decrements count, does not deallocate */
4044 		vma_end_reservation(h, vma, haddr);
4045 
4046 		if (!(vma->vm_flags & VM_MAYSHARE))
4047 			pagecache_page = hugetlbfs_pagecache_page(h,
4048 								vma, haddr);
4049 	}
4050 
4051 	ptl = huge_pte_lock(h, mm, ptep);
4052 
4053 	/* Check for a racing update before calling hugetlb_cow */
4054 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4055 		goto out_ptl;
4056 
4057 	/*
4058 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4059 	 * pagecache_page, so here we need take the former one
4060 	 * when page != pagecache_page or !pagecache_page.
4061 	 */
4062 	page = pte_page(entry);
4063 	if (page != pagecache_page)
4064 		if (!trylock_page(page)) {
4065 			need_wait_lock = 1;
4066 			goto out_ptl;
4067 		}
4068 
4069 	get_page(page);
4070 
4071 	if (flags & FAULT_FLAG_WRITE) {
4072 		if (!huge_pte_write(entry)) {
4073 			ret = hugetlb_cow(mm, vma, address, ptep,
4074 					  pagecache_page, ptl);
4075 			goto out_put_page;
4076 		}
4077 		entry = huge_pte_mkdirty(entry);
4078 	}
4079 	entry = pte_mkyoung(entry);
4080 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4081 						flags & FAULT_FLAG_WRITE))
4082 		update_mmu_cache(vma, haddr, ptep);
4083 out_put_page:
4084 	if (page != pagecache_page)
4085 		unlock_page(page);
4086 	put_page(page);
4087 out_ptl:
4088 	spin_unlock(ptl);
4089 
4090 	if (pagecache_page) {
4091 		unlock_page(pagecache_page);
4092 		put_page(pagecache_page);
4093 	}
4094 out_mutex:
4095 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4096 	/*
4097 	 * Generally it's safe to hold refcount during waiting page lock. But
4098 	 * here we just wait to defer the next page fault to avoid busy loop and
4099 	 * the page is not used after unlocked before returning from the current
4100 	 * page fault. So we are safe from accessing freed page, even if we wait
4101 	 * here without taking refcount.
4102 	 */
4103 	if (need_wait_lock)
4104 		wait_on_page_locked(page);
4105 	return ret;
4106 }
4107 
4108 /*
4109  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4110  * modifications for huge pages.
4111  */
4112 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4113 			    pte_t *dst_pte,
4114 			    struct vm_area_struct *dst_vma,
4115 			    unsigned long dst_addr,
4116 			    unsigned long src_addr,
4117 			    struct page **pagep)
4118 {
4119 	struct address_space *mapping;
4120 	pgoff_t idx;
4121 	unsigned long size;
4122 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4123 	struct hstate *h = hstate_vma(dst_vma);
4124 	pte_t _dst_pte;
4125 	spinlock_t *ptl;
4126 	int ret;
4127 	struct page *page;
4128 
4129 	if (!*pagep) {
4130 		ret = -ENOMEM;
4131 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4132 		if (IS_ERR(page))
4133 			goto out;
4134 
4135 		ret = copy_huge_page_from_user(page,
4136 						(const void __user *) src_addr,
4137 						pages_per_huge_page(h), false);
4138 
4139 		/* fallback to copy_from_user outside mmap_sem */
4140 		if (unlikely(ret)) {
4141 			ret = -ENOENT;
4142 			*pagep = page;
4143 			/* don't free the page */
4144 			goto out;
4145 		}
4146 	} else {
4147 		page = *pagep;
4148 		*pagep = NULL;
4149 	}
4150 
4151 	/*
4152 	 * The memory barrier inside __SetPageUptodate makes sure that
4153 	 * preceding stores to the page contents become visible before
4154 	 * the set_pte_at() write.
4155 	 */
4156 	__SetPageUptodate(page);
4157 
4158 	mapping = dst_vma->vm_file->f_mapping;
4159 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4160 
4161 	/*
4162 	 * If shared, add to page cache
4163 	 */
4164 	if (vm_shared) {
4165 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4166 		ret = -EFAULT;
4167 		if (idx >= size)
4168 			goto out_release_nounlock;
4169 
4170 		/*
4171 		 * Serialization between remove_inode_hugepages() and
4172 		 * huge_add_to_page_cache() below happens through the
4173 		 * hugetlb_fault_mutex_table that here must be hold by
4174 		 * the caller.
4175 		 */
4176 		ret = huge_add_to_page_cache(page, mapping, idx);
4177 		if (ret)
4178 			goto out_release_nounlock;
4179 	}
4180 
4181 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4182 	spin_lock(ptl);
4183 
4184 	/*
4185 	 * Recheck the i_size after holding PT lock to make sure not
4186 	 * to leave any page mapped (as page_mapped()) beyond the end
4187 	 * of the i_size (remove_inode_hugepages() is strict about
4188 	 * enforcing that). If we bail out here, we'll also leave a
4189 	 * page in the radix tree in the vm_shared case beyond the end
4190 	 * of the i_size, but remove_inode_hugepages() will take care
4191 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4192 	 */
4193 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4194 	ret = -EFAULT;
4195 	if (idx >= size)
4196 		goto out_release_unlock;
4197 
4198 	ret = -EEXIST;
4199 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4200 		goto out_release_unlock;
4201 
4202 	if (vm_shared) {
4203 		page_dup_rmap(page, true);
4204 	} else {
4205 		ClearPagePrivate(page);
4206 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4207 	}
4208 
4209 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4210 	if (dst_vma->vm_flags & VM_WRITE)
4211 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4212 	_dst_pte = pte_mkyoung(_dst_pte);
4213 
4214 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4215 
4216 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4217 					dst_vma->vm_flags & VM_WRITE);
4218 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4219 
4220 	/* No need to invalidate - it was non-present before */
4221 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4222 
4223 	spin_unlock(ptl);
4224 	set_page_huge_active(page);
4225 	if (vm_shared)
4226 		unlock_page(page);
4227 	ret = 0;
4228 out:
4229 	return ret;
4230 out_release_unlock:
4231 	spin_unlock(ptl);
4232 	if (vm_shared)
4233 		unlock_page(page);
4234 out_release_nounlock:
4235 	put_page(page);
4236 	goto out;
4237 }
4238 
4239 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4240 			 struct page **pages, struct vm_area_struct **vmas,
4241 			 unsigned long *position, unsigned long *nr_pages,
4242 			 long i, unsigned int flags, int *nonblocking)
4243 {
4244 	unsigned long pfn_offset;
4245 	unsigned long vaddr = *position;
4246 	unsigned long remainder = *nr_pages;
4247 	struct hstate *h = hstate_vma(vma);
4248 	int err = -EFAULT;
4249 
4250 	while (vaddr < vma->vm_end && remainder) {
4251 		pte_t *pte;
4252 		spinlock_t *ptl = NULL;
4253 		int absent;
4254 		struct page *page;
4255 
4256 		/*
4257 		 * If we have a pending SIGKILL, don't keep faulting pages and
4258 		 * potentially allocating memory.
4259 		 */
4260 		if (fatal_signal_pending(current)) {
4261 			remainder = 0;
4262 			break;
4263 		}
4264 
4265 		/*
4266 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4267 		 * each hugepage.  We have to make sure we get the
4268 		 * first, for the page indexing below to work.
4269 		 *
4270 		 * Note that page table lock is not held when pte is null.
4271 		 */
4272 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4273 				      huge_page_size(h));
4274 		if (pte)
4275 			ptl = huge_pte_lock(h, mm, pte);
4276 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4277 
4278 		/*
4279 		 * When coredumping, it suits get_dump_page if we just return
4280 		 * an error where there's an empty slot with no huge pagecache
4281 		 * to back it.  This way, we avoid allocating a hugepage, and
4282 		 * the sparse dumpfile avoids allocating disk blocks, but its
4283 		 * huge holes still show up with zeroes where they need to be.
4284 		 */
4285 		if (absent && (flags & FOLL_DUMP) &&
4286 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4287 			if (pte)
4288 				spin_unlock(ptl);
4289 			remainder = 0;
4290 			break;
4291 		}
4292 
4293 		/*
4294 		 * We need call hugetlb_fault for both hugepages under migration
4295 		 * (in which case hugetlb_fault waits for the migration,) and
4296 		 * hwpoisoned hugepages (in which case we need to prevent the
4297 		 * caller from accessing to them.) In order to do this, we use
4298 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4299 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4300 		 * both cases, and because we can't follow correct pages
4301 		 * directly from any kind of swap entries.
4302 		 */
4303 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4304 		    ((flags & FOLL_WRITE) &&
4305 		      !huge_pte_write(huge_ptep_get(pte)))) {
4306 			vm_fault_t ret;
4307 			unsigned int fault_flags = 0;
4308 
4309 			if (pte)
4310 				spin_unlock(ptl);
4311 			if (flags & FOLL_WRITE)
4312 				fault_flags |= FAULT_FLAG_WRITE;
4313 			if (nonblocking)
4314 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4315 			if (flags & FOLL_NOWAIT)
4316 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4317 					FAULT_FLAG_RETRY_NOWAIT;
4318 			if (flags & FOLL_TRIED) {
4319 				VM_WARN_ON_ONCE(fault_flags &
4320 						FAULT_FLAG_ALLOW_RETRY);
4321 				fault_flags |= FAULT_FLAG_TRIED;
4322 			}
4323 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4324 			if (ret & VM_FAULT_ERROR) {
4325 				err = vm_fault_to_errno(ret, flags);
4326 				remainder = 0;
4327 				break;
4328 			}
4329 			if (ret & VM_FAULT_RETRY) {
4330 				if (nonblocking &&
4331 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4332 					*nonblocking = 0;
4333 				*nr_pages = 0;
4334 				/*
4335 				 * VM_FAULT_RETRY must not return an
4336 				 * error, it will return zero
4337 				 * instead.
4338 				 *
4339 				 * No need to update "position" as the
4340 				 * caller will not check it after
4341 				 * *nr_pages is set to 0.
4342 				 */
4343 				return i;
4344 			}
4345 			continue;
4346 		}
4347 
4348 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4349 		page = pte_page(huge_ptep_get(pte));
4350 
4351 		/*
4352 		 * Instead of doing 'try_get_page()' below in the same_page
4353 		 * loop, just check the count once here.
4354 		 */
4355 		if (unlikely(page_count(page) <= 0)) {
4356 			if (pages) {
4357 				spin_unlock(ptl);
4358 				remainder = 0;
4359 				err = -ENOMEM;
4360 				break;
4361 			}
4362 		}
4363 same_page:
4364 		if (pages) {
4365 			pages[i] = mem_map_offset(page, pfn_offset);
4366 			get_page(pages[i]);
4367 		}
4368 
4369 		if (vmas)
4370 			vmas[i] = vma;
4371 
4372 		vaddr += PAGE_SIZE;
4373 		++pfn_offset;
4374 		--remainder;
4375 		++i;
4376 		if (vaddr < vma->vm_end && remainder &&
4377 				pfn_offset < pages_per_huge_page(h)) {
4378 			/*
4379 			 * We use pfn_offset to avoid touching the pageframes
4380 			 * of this compound page.
4381 			 */
4382 			goto same_page;
4383 		}
4384 		spin_unlock(ptl);
4385 	}
4386 	*nr_pages = remainder;
4387 	/*
4388 	 * setting position is actually required only if remainder is
4389 	 * not zero but it's faster not to add a "if (remainder)"
4390 	 * branch.
4391 	 */
4392 	*position = vaddr;
4393 
4394 	return i ? i : err;
4395 }
4396 
4397 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4398 /*
4399  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4400  * implement this.
4401  */
4402 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4403 #endif
4404 
4405 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4406 		unsigned long address, unsigned long end, pgprot_t newprot)
4407 {
4408 	struct mm_struct *mm = vma->vm_mm;
4409 	unsigned long start = address;
4410 	pte_t *ptep;
4411 	pte_t pte;
4412 	struct hstate *h = hstate_vma(vma);
4413 	unsigned long pages = 0;
4414 	bool shared_pmd = false;
4415 	struct mmu_notifier_range range;
4416 
4417 	/*
4418 	 * In the case of shared PMDs, the area to flush could be beyond
4419 	 * start/end.  Set range.start/range.end to cover the maximum possible
4420 	 * range if PMD sharing is possible.
4421 	 */
4422 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4423 				0, vma, mm, start, end);
4424 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4425 
4426 	BUG_ON(address >= end);
4427 	flush_cache_range(vma, range.start, range.end);
4428 
4429 	mmu_notifier_invalidate_range_start(&range);
4430 	i_mmap_lock_write(vma->vm_file->f_mapping);
4431 	for (; address < end; address += huge_page_size(h)) {
4432 		spinlock_t *ptl;
4433 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4434 		if (!ptep)
4435 			continue;
4436 		ptl = huge_pte_lock(h, mm, ptep);
4437 		if (huge_pmd_unshare(mm, &address, ptep)) {
4438 			pages++;
4439 			spin_unlock(ptl);
4440 			shared_pmd = true;
4441 			continue;
4442 		}
4443 		pte = huge_ptep_get(ptep);
4444 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4445 			spin_unlock(ptl);
4446 			continue;
4447 		}
4448 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4449 			swp_entry_t entry = pte_to_swp_entry(pte);
4450 
4451 			if (is_write_migration_entry(entry)) {
4452 				pte_t newpte;
4453 
4454 				make_migration_entry_read(&entry);
4455 				newpte = swp_entry_to_pte(entry);
4456 				set_huge_swap_pte_at(mm, address, ptep,
4457 						     newpte, huge_page_size(h));
4458 				pages++;
4459 			}
4460 			spin_unlock(ptl);
4461 			continue;
4462 		}
4463 		if (!huge_pte_none(pte)) {
4464 			pte_t old_pte;
4465 
4466 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4467 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4468 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4469 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4470 			pages++;
4471 		}
4472 		spin_unlock(ptl);
4473 	}
4474 	/*
4475 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4476 	 * may have cleared our pud entry and done put_page on the page table:
4477 	 * once we release i_mmap_rwsem, another task can do the final put_page
4478 	 * and that page table be reused and filled with junk.  If we actually
4479 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4480 	 */
4481 	if (shared_pmd)
4482 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4483 	else
4484 		flush_hugetlb_tlb_range(vma, start, end);
4485 	/*
4486 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4487 	 * page table protection not changing it to point to a new page.
4488 	 *
4489 	 * See Documentation/vm/mmu_notifier.rst
4490 	 */
4491 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4492 	mmu_notifier_invalidate_range_end(&range);
4493 
4494 	return pages << h->order;
4495 }
4496 
4497 int hugetlb_reserve_pages(struct inode *inode,
4498 					long from, long to,
4499 					struct vm_area_struct *vma,
4500 					vm_flags_t vm_flags)
4501 {
4502 	long ret, chg;
4503 	struct hstate *h = hstate_inode(inode);
4504 	struct hugepage_subpool *spool = subpool_inode(inode);
4505 	struct resv_map *resv_map;
4506 	long gbl_reserve;
4507 
4508 	/* This should never happen */
4509 	if (from > to) {
4510 		VM_WARN(1, "%s called with a negative range\n", __func__);
4511 		return -EINVAL;
4512 	}
4513 
4514 	/*
4515 	 * Only apply hugepage reservation if asked. At fault time, an
4516 	 * attempt will be made for VM_NORESERVE to allocate a page
4517 	 * without using reserves
4518 	 */
4519 	if (vm_flags & VM_NORESERVE)
4520 		return 0;
4521 
4522 	/*
4523 	 * Shared mappings base their reservation on the number of pages that
4524 	 * are already allocated on behalf of the file. Private mappings need
4525 	 * to reserve the full area even if read-only as mprotect() may be
4526 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4527 	 */
4528 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4529 		/*
4530 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4531 		 * called for inodes for which resv_maps were created (see
4532 		 * hugetlbfs_get_inode).
4533 		 */
4534 		resv_map = inode_resv_map(inode);
4535 
4536 		chg = region_chg(resv_map, from, to);
4537 
4538 	} else {
4539 		resv_map = resv_map_alloc();
4540 		if (!resv_map)
4541 			return -ENOMEM;
4542 
4543 		chg = to - from;
4544 
4545 		set_vma_resv_map(vma, resv_map);
4546 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4547 	}
4548 
4549 	if (chg < 0) {
4550 		ret = chg;
4551 		goto out_err;
4552 	}
4553 
4554 	/*
4555 	 * There must be enough pages in the subpool for the mapping. If
4556 	 * the subpool has a minimum size, there may be some global
4557 	 * reservations already in place (gbl_reserve).
4558 	 */
4559 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4560 	if (gbl_reserve < 0) {
4561 		ret = -ENOSPC;
4562 		goto out_err;
4563 	}
4564 
4565 	/*
4566 	 * Check enough hugepages are available for the reservation.
4567 	 * Hand the pages back to the subpool if there are not
4568 	 */
4569 	ret = hugetlb_acct_memory(h, gbl_reserve);
4570 	if (ret < 0) {
4571 		/* put back original number of pages, chg */
4572 		(void)hugepage_subpool_put_pages(spool, chg);
4573 		goto out_err;
4574 	}
4575 
4576 	/*
4577 	 * Account for the reservations made. Shared mappings record regions
4578 	 * that have reservations as they are shared by multiple VMAs.
4579 	 * When the last VMA disappears, the region map says how much
4580 	 * the reservation was and the page cache tells how much of
4581 	 * the reservation was consumed. Private mappings are per-VMA and
4582 	 * only the consumed reservations are tracked. When the VMA
4583 	 * disappears, the original reservation is the VMA size and the
4584 	 * consumed reservations are stored in the map. Hence, nothing
4585 	 * else has to be done for private mappings here
4586 	 */
4587 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4588 		long add = region_add(resv_map, from, to);
4589 
4590 		if (unlikely(chg > add)) {
4591 			/*
4592 			 * pages in this range were added to the reserve
4593 			 * map between region_chg and region_add.  This
4594 			 * indicates a race with alloc_huge_page.  Adjust
4595 			 * the subpool and reserve counts modified above
4596 			 * based on the difference.
4597 			 */
4598 			long rsv_adjust;
4599 
4600 			rsv_adjust = hugepage_subpool_put_pages(spool,
4601 								chg - add);
4602 			hugetlb_acct_memory(h, -rsv_adjust);
4603 		}
4604 	}
4605 	return 0;
4606 out_err:
4607 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4608 		/* Don't call region_abort if region_chg failed */
4609 		if (chg >= 0)
4610 			region_abort(resv_map, from, to);
4611 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4612 		kref_put(&resv_map->refs, resv_map_release);
4613 	return ret;
4614 }
4615 
4616 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4617 								long freed)
4618 {
4619 	struct hstate *h = hstate_inode(inode);
4620 	struct resv_map *resv_map = inode_resv_map(inode);
4621 	long chg = 0;
4622 	struct hugepage_subpool *spool = subpool_inode(inode);
4623 	long gbl_reserve;
4624 
4625 	/*
4626 	 * Since this routine can be called in the evict inode path for all
4627 	 * hugetlbfs inodes, resv_map could be NULL.
4628 	 */
4629 	if (resv_map) {
4630 		chg = region_del(resv_map, start, end);
4631 		/*
4632 		 * region_del() can fail in the rare case where a region
4633 		 * must be split and another region descriptor can not be
4634 		 * allocated.  If end == LONG_MAX, it will not fail.
4635 		 */
4636 		if (chg < 0)
4637 			return chg;
4638 	}
4639 
4640 	spin_lock(&inode->i_lock);
4641 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4642 	spin_unlock(&inode->i_lock);
4643 
4644 	/*
4645 	 * If the subpool has a minimum size, the number of global
4646 	 * reservations to be released may be adjusted.
4647 	 */
4648 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4649 	hugetlb_acct_memory(h, -gbl_reserve);
4650 
4651 	return 0;
4652 }
4653 
4654 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4655 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4656 				struct vm_area_struct *vma,
4657 				unsigned long addr, pgoff_t idx)
4658 {
4659 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4660 				svma->vm_start;
4661 	unsigned long sbase = saddr & PUD_MASK;
4662 	unsigned long s_end = sbase + PUD_SIZE;
4663 
4664 	/* Allow segments to share if only one is marked locked */
4665 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4666 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4667 
4668 	/*
4669 	 * match the virtual addresses, permission and the alignment of the
4670 	 * page table page.
4671 	 */
4672 	if (pmd_index(addr) != pmd_index(saddr) ||
4673 	    vm_flags != svm_flags ||
4674 	    sbase < svma->vm_start || svma->vm_end < s_end)
4675 		return 0;
4676 
4677 	return saddr;
4678 }
4679 
4680 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4681 {
4682 	unsigned long base = addr & PUD_MASK;
4683 	unsigned long end = base + PUD_SIZE;
4684 
4685 	/*
4686 	 * check on proper vm_flags and page table alignment
4687 	 */
4688 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4689 		return true;
4690 	return false;
4691 }
4692 
4693 /*
4694  * Determine if start,end range within vma could be mapped by shared pmd.
4695  * If yes, adjust start and end to cover range associated with possible
4696  * shared pmd mappings.
4697  */
4698 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4699 				unsigned long *start, unsigned long *end)
4700 {
4701 	unsigned long check_addr = *start;
4702 
4703 	if (!(vma->vm_flags & VM_MAYSHARE))
4704 		return;
4705 
4706 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4707 		unsigned long a_start = check_addr & PUD_MASK;
4708 		unsigned long a_end = a_start + PUD_SIZE;
4709 
4710 		/*
4711 		 * If sharing is possible, adjust start/end if necessary.
4712 		 */
4713 		if (range_in_vma(vma, a_start, a_end)) {
4714 			if (a_start < *start)
4715 				*start = a_start;
4716 			if (a_end > *end)
4717 				*end = a_end;
4718 		}
4719 	}
4720 }
4721 
4722 /*
4723  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4724  * and returns the corresponding pte. While this is not necessary for the
4725  * !shared pmd case because we can allocate the pmd later as well, it makes the
4726  * code much cleaner. pmd allocation is essential for the shared case because
4727  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4728  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4729  * bad pmd for sharing.
4730  */
4731 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4732 {
4733 	struct vm_area_struct *vma = find_vma(mm, addr);
4734 	struct address_space *mapping = vma->vm_file->f_mapping;
4735 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4736 			vma->vm_pgoff;
4737 	struct vm_area_struct *svma;
4738 	unsigned long saddr;
4739 	pte_t *spte = NULL;
4740 	pte_t *pte;
4741 	spinlock_t *ptl;
4742 
4743 	if (!vma_shareable(vma, addr))
4744 		return (pte_t *)pmd_alloc(mm, pud, addr);
4745 
4746 	i_mmap_lock_write(mapping);
4747 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4748 		if (svma == vma)
4749 			continue;
4750 
4751 		saddr = page_table_shareable(svma, vma, addr, idx);
4752 		if (saddr) {
4753 			spte = huge_pte_offset(svma->vm_mm, saddr,
4754 					       vma_mmu_pagesize(svma));
4755 			if (spte) {
4756 				get_page(virt_to_page(spte));
4757 				break;
4758 			}
4759 		}
4760 	}
4761 
4762 	if (!spte)
4763 		goto out;
4764 
4765 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4766 	if (pud_none(*pud)) {
4767 		pud_populate(mm, pud,
4768 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4769 		mm_inc_nr_pmds(mm);
4770 	} else {
4771 		put_page(virt_to_page(spte));
4772 	}
4773 	spin_unlock(ptl);
4774 out:
4775 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4776 	i_mmap_unlock_write(mapping);
4777 	return pte;
4778 }
4779 
4780 /*
4781  * unmap huge page backed by shared pte.
4782  *
4783  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4784  * indicated by page_count > 1, unmap is achieved by clearing pud and
4785  * decrementing the ref count. If count == 1, the pte page is not shared.
4786  *
4787  * called with page table lock held.
4788  *
4789  * returns: 1 successfully unmapped a shared pte page
4790  *	    0 the underlying pte page is not shared, or it is the last user
4791  */
4792 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4793 {
4794 	pgd_t *pgd = pgd_offset(mm, *addr);
4795 	p4d_t *p4d = p4d_offset(pgd, *addr);
4796 	pud_t *pud = pud_offset(p4d, *addr);
4797 
4798 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4799 	if (page_count(virt_to_page(ptep)) == 1)
4800 		return 0;
4801 
4802 	pud_clear(pud);
4803 	put_page(virt_to_page(ptep));
4804 	mm_dec_nr_pmds(mm);
4805 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4806 	return 1;
4807 }
4808 #define want_pmd_share()	(1)
4809 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4810 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4811 {
4812 	return NULL;
4813 }
4814 
4815 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4816 {
4817 	return 0;
4818 }
4819 
4820 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4821 				unsigned long *start, unsigned long *end)
4822 {
4823 }
4824 #define want_pmd_share()	(0)
4825 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4826 
4827 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4828 pte_t *huge_pte_alloc(struct mm_struct *mm,
4829 			unsigned long addr, unsigned long sz)
4830 {
4831 	pgd_t *pgd;
4832 	p4d_t *p4d;
4833 	pud_t *pud;
4834 	pte_t *pte = NULL;
4835 
4836 	pgd = pgd_offset(mm, addr);
4837 	p4d = p4d_alloc(mm, pgd, addr);
4838 	if (!p4d)
4839 		return NULL;
4840 	pud = pud_alloc(mm, p4d, addr);
4841 	if (pud) {
4842 		if (sz == PUD_SIZE) {
4843 			pte = (pte_t *)pud;
4844 		} else {
4845 			BUG_ON(sz != PMD_SIZE);
4846 			if (want_pmd_share() && pud_none(*pud))
4847 				pte = huge_pmd_share(mm, addr, pud);
4848 			else
4849 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4850 		}
4851 	}
4852 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4853 
4854 	return pte;
4855 }
4856 
4857 /*
4858  * huge_pte_offset() - Walk the page table to resolve the hugepage
4859  * entry at address @addr
4860  *
4861  * Return: Pointer to page table or swap entry (PUD or PMD) for
4862  * address @addr, or NULL if a p*d_none() entry is encountered and the
4863  * size @sz doesn't match the hugepage size at this level of the page
4864  * table.
4865  */
4866 pte_t *huge_pte_offset(struct mm_struct *mm,
4867 		       unsigned long addr, unsigned long sz)
4868 {
4869 	pgd_t *pgd;
4870 	p4d_t *p4d;
4871 	pud_t *pud;
4872 	pmd_t *pmd;
4873 
4874 	pgd = pgd_offset(mm, addr);
4875 	if (!pgd_present(*pgd))
4876 		return NULL;
4877 	p4d = p4d_offset(pgd, addr);
4878 	if (!p4d_present(*p4d))
4879 		return NULL;
4880 
4881 	pud = pud_offset(p4d, addr);
4882 	if (sz != PUD_SIZE && pud_none(*pud))
4883 		return NULL;
4884 	/* hugepage or swap? */
4885 	if (pud_huge(*pud) || !pud_present(*pud))
4886 		return (pte_t *)pud;
4887 
4888 	pmd = pmd_offset(pud, addr);
4889 	if (sz != PMD_SIZE && pmd_none(*pmd))
4890 		return NULL;
4891 	/* hugepage or swap? */
4892 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4893 		return (pte_t *)pmd;
4894 
4895 	return NULL;
4896 }
4897 
4898 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4899 
4900 /*
4901  * These functions are overwritable if your architecture needs its own
4902  * behavior.
4903  */
4904 struct page * __weak
4905 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4906 			      int write)
4907 {
4908 	return ERR_PTR(-EINVAL);
4909 }
4910 
4911 struct page * __weak
4912 follow_huge_pd(struct vm_area_struct *vma,
4913 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4914 {
4915 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4916 	return NULL;
4917 }
4918 
4919 struct page * __weak
4920 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4921 		pmd_t *pmd, int flags)
4922 {
4923 	struct page *page = NULL;
4924 	spinlock_t *ptl;
4925 	pte_t pte;
4926 retry:
4927 	ptl = pmd_lockptr(mm, pmd);
4928 	spin_lock(ptl);
4929 	/*
4930 	 * make sure that the address range covered by this pmd is not
4931 	 * unmapped from other threads.
4932 	 */
4933 	if (!pmd_huge(*pmd))
4934 		goto out;
4935 	pte = huge_ptep_get((pte_t *)pmd);
4936 	if (pte_present(pte)) {
4937 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4938 		if (flags & FOLL_GET)
4939 			get_page(page);
4940 	} else {
4941 		if (is_hugetlb_entry_migration(pte)) {
4942 			spin_unlock(ptl);
4943 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4944 			goto retry;
4945 		}
4946 		/*
4947 		 * hwpoisoned entry is treated as no_page_table in
4948 		 * follow_page_mask().
4949 		 */
4950 	}
4951 out:
4952 	spin_unlock(ptl);
4953 	return page;
4954 }
4955 
4956 struct page * __weak
4957 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4958 		pud_t *pud, int flags)
4959 {
4960 	if (flags & FOLL_GET)
4961 		return NULL;
4962 
4963 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4964 }
4965 
4966 struct page * __weak
4967 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4968 {
4969 	if (flags & FOLL_GET)
4970 		return NULL;
4971 
4972 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4973 }
4974 
4975 bool isolate_huge_page(struct page *page, struct list_head *list)
4976 {
4977 	bool ret = true;
4978 
4979 	VM_BUG_ON_PAGE(!PageHead(page), page);
4980 	spin_lock(&hugetlb_lock);
4981 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4982 		ret = false;
4983 		goto unlock;
4984 	}
4985 	clear_page_huge_active(page);
4986 	list_move_tail(&page->lru, list);
4987 unlock:
4988 	spin_unlock(&hugetlb_lock);
4989 	return ret;
4990 }
4991 
4992 void putback_active_hugepage(struct page *page)
4993 {
4994 	VM_BUG_ON_PAGE(!PageHead(page), page);
4995 	spin_lock(&hugetlb_lock);
4996 	set_page_huge_active(page);
4997 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4998 	spin_unlock(&hugetlb_lock);
4999 	put_page(page);
5000 }
5001 
5002 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5003 {
5004 	struct hstate *h = page_hstate(oldpage);
5005 
5006 	hugetlb_cgroup_migrate(oldpage, newpage);
5007 	set_page_owner_migrate_reason(newpage, reason);
5008 
5009 	/*
5010 	 * transfer temporary state of the new huge page. This is
5011 	 * reverse to other transitions because the newpage is going to
5012 	 * be final while the old one will be freed so it takes over
5013 	 * the temporary status.
5014 	 *
5015 	 * Also note that we have to transfer the per-node surplus state
5016 	 * here as well otherwise the global surplus count will not match
5017 	 * the per-node's.
5018 	 */
5019 	if (PageHugeTemporary(newpage)) {
5020 		int old_nid = page_to_nid(oldpage);
5021 		int new_nid = page_to_nid(newpage);
5022 
5023 		SetPageHugeTemporary(oldpage);
5024 		ClearPageHugeTemporary(newpage);
5025 
5026 		spin_lock(&hugetlb_lock);
5027 		if (h->surplus_huge_pages_node[old_nid]) {
5028 			h->surplus_huge_pages_node[old_nid]--;
5029 			h->surplus_huge_pages_node[new_nid]++;
5030 		}
5031 		spin_unlock(&hugetlb_lock);
5032 	}
5033 }
5034