1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 46 int hugetlb_max_hstate __read_mostly; 47 unsigned int default_hstate_idx; 48 struct hstate hstates[HUGE_MAX_HSTATE]; 49 50 #ifdef CONFIG_CMA 51 static struct cma *hugetlb_cma[MAX_NUMNODES]; 52 #endif 53 static unsigned long hugetlb_cma_size __initdata; 54 55 /* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59 static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61 __initdata LIST_HEAD(huge_boot_pages); 62 63 /* for command line parsing */ 64 static struct hstate * __initdata parsed_hstate; 65 static unsigned long __initdata default_hstate_max_huge_pages; 66 static bool __initdata parsed_valid_hugepagesz = true; 67 static bool __initdata parsed_default_hugepagesz; 68 69 /* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73 DEFINE_SPINLOCK(hugetlb_lock); 74 75 /* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79 static int num_fault_mutexes; 80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82 static inline bool PageHugeFreed(struct page *head) 83 { 84 return page_private(head + 4) == -1UL; 85 } 86 87 static inline void SetPageHugeFreed(struct page *head) 88 { 89 set_page_private(head + 4, -1UL); 90 } 91 92 static inline void ClearPageHugeFreed(struct page *head) 93 { 94 set_page_private(head + 4, 0); 95 } 96 97 /* Forward declaration */ 98 static int hugetlb_acct_memory(struct hstate *h, long delta); 99 100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 101 { 102 bool free = (spool->count == 0) && (spool->used_hpages == 0); 103 104 spin_unlock(&spool->lock); 105 106 /* If no pages are used, and no other handles to the subpool 107 * remain, give up any reservations based on minimum size and 108 * free the subpool */ 109 if (free) { 110 if (spool->min_hpages != -1) 111 hugetlb_acct_memory(spool->hstate, 112 -spool->min_hpages); 113 kfree(spool); 114 } 115 } 116 117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 118 long min_hpages) 119 { 120 struct hugepage_subpool *spool; 121 122 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 123 if (!spool) 124 return NULL; 125 126 spin_lock_init(&spool->lock); 127 spool->count = 1; 128 spool->max_hpages = max_hpages; 129 spool->hstate = h; 130 spool->min_hpages = min_hpages; 131 132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 133 kfree(spool); 134 return NULL; 135 } 136 spool->rsv_hpages = min_hpages; 137 138 return spool; 139 } 140 141 void hugepage_put_subpool(struct hugepage_subpool *spool) 142 { 143 spin_lock(&spool->lock); 144 BUG_ON(!spool->count); 145 spool->count--; 146 unlock_or_release_subpool(spool); 147 } 148 149 /* 150 * Subpool accounting for allocating and reserving pages. 151 * Return -ENOMEM if there are not enough resources to satisfy the 152 * request. Otherwise, return the number of pages by which the 153 * global pools must be adjusted (upward). The returned value may 154 * only be different than the passed value (delta) in the case where 155 * a subpool minimum size must be maintained. 156 */ 157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 158 long delta) 159 { 160 long ret = delta; 161 162 if (!spool) 163 return ret; 164 165 spin_lock(&spool->lock); 166 167 if (spool->max_hpages != -1) { /* maximum size accounting */ 168 if ((spool->used_hpages + delta) <= spool->max_hpages) 169 spool->used_hpages += delta; 170 else { 171 ret = -ENOMEM; 172 goto unlock_ret; 173 } 174 } 175 176 /* minimum size accounting */ 177 if (spool->min_hpages != -1 && spool->rsv_hpages) { 178 if (delta > spool->rsv_hpages) { 179 /* 180 * Asking for more reserves than those already taken on 181 * behalf of subpool. Return difference. 182 */ 183 ret = delta - spool->rsv_hpages; 184 spool->rsv_hpages = 0; 185 } else { 186 ret = 0; /* reserves already accounted for */ 187 spool->rsv_hpages -= delta; 188 } 189 } 190 191 unlock_ret: 192 spin_unlock(&spool->lock); 193 return ret; 194 } 195 196 /* 197 * Subpool accounting for freeing and unreserving pages. 198 * Return the number of global page reservations that must be dropped. 199 * The return value may only be different than the passed value (delta) 200 * in the case where a subpool minimum size must be maintained. 201 */ 202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 203 long delta) 204 { 205 long ret = delta; 206 207 if (!spool) 208 return delta; 209 210 spin_lock(&spool->lock); 211 212 if (spool->max_hpages != -1) /* maximum size accounting */ 213 spool->used_hpages -= delta; 214 215 /* minimum size accounting */ 216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 217 if (spool->rsv_hpages + delta <= spool->min_hpages) 218 ret = 0; 219 else 220 ret = spool->rsv_hpages + delta - spool->min_hpages; 221 222 spool->rsv_hpages += delta; 223 if (spool->rsv_hpages > spool->min_hpages) 224 spool->rsv_hpages = spool->min_hpages; 225 } 226 227 /* 228 * If hugetlbfs_put_super couldn't free spool due to an outstanding 229 * quota reference, free it now. 230 */ 231 unlock_or_release_subpool(spool); 232 233 return ret; 234 } 235 236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 237 { 238 return HUGETLBFS_SB(inode->i_sb)->spool; 239 } 240 241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 242 { 243 return subpool_inode(file_inode(vma->vm_file)); 244 } 245 246 /* Helper that removes a struct file_region from the resv_map cache and returns 247 * it for use. 248 */ 249 static struct file_region * 250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 251 { 252 struct file_region *nrg = NULL; 253 254 VM_BUG_ON(resv->region_cache_count <= 0); 255 256 resv->region_cache_count--; 257 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 258 list_del(&nrg->link); 259 260 nrg->from = from; 261 nrg->to = to; 262 263 return nrg; 264 } 265 266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 267 struct file_region *rg) 268 { 269 #ifdef CONFIG_CGROUP_HUGETLB 270 nrg->reservation_counter = rg->reservation_counter; 271 nrg->css = rg->css; 272 if (rg->css) 273 css_get(rg->css); 274 #endif 275 } 276 277 /* Helper that records hugetlb_cgroup uncharge info. */ 278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 279 struct hstate *h, 280 struct resv_map *resv, 281 struct file_region *nrg) 282 { 283 #ifdef CONFIG_CGROUP_HUGETLB 284 if (h_cg) { 285 nrg->reservation_counter = 286 &h_cg->rsvd_hugepage[hstate_index(h)]; 287 nrg->css = &h_cg->css; 288 if (!resv->pages_per_hpage) 289 resv->pages_per_hpage = pages_per_huge_page(h); 290 /* pages_per_hpage should be the same for all entries in 291 * a resv_map. 292 */ 293 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 294 } else { 295 nrg->reservation_counter = NULL; 296 nrg->css = NULL; 297 } 298 #endif 299 } 300 301 static bool has_same_uncharge_info(struct file_region *rg, 302 struct file_region *org) 303 { 304 #ifdef CONFIG_CGROUP_HUGETLB 305 return rg && org && 306 rg->reservation_counter == org->reservation_counter && 307 rg->css == org->css; 308 309 #else 310 return true; 311 #endif 312 } 313 314 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 315 { 316 struct file_region *nrg = NULL, *prg = NULL; 317 318 prg = list_prev_entry(rg, link); 319 if (&prg->link != &resv->regions && prg->to == rg->from && 320 has_same_uncharge_info(prg, rg)) { 321 prg->to = rg->to; 322 323 list_del(&rg->link); 324 kfree(rg); 325 326 rg = prg; 327 } 328 329 nrg = list_next_entry(rg, link); 330 if (&nrg->link != &resv->regions && nrg->from == rg->to && 331 has_same_uncharge_info(nrg, rg)) { 332 nrg->from = rg->from; 333 334 list_del(&rg->link); 335 kfree(rg); 336 } 337 } 338 339 /* 340 * Must be called with resv->lock held. 341 * 342 * Calling this with regions_needed != NULL will count the number of pages 343 * to be added but will not modify the linked list. And regions_needed will 344 * indicate the number of file_regions needed in the cache to carry out to add 345 * the regions for this range. 346 */ 347 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 348 struct hugetlb_cgroup *h_cg, 349 struct hstate *h, long *regions_needed) 350 { 351 long add = 0; 352 struct list_head *head = &resv->regions; 353 long last_accounted_offset = f; 354 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 355 356 if (regions_needed) 357 *regions_needed = 0; 358 359 /* In this loop, we essentially handle an entry for the range 360 * [last_accounted_offset, rg->from), at every iteration, with some 361 * bounds checking. 362 */ 363 list_for_each_entry_safe(rg, trg, head, link) { 364 /* Skip irrelevant regions that start before our range. */ 365 if (rg->from < f) { 366 /* If this region ends after the last accounted offset, 367 * then we need to update last_accounted_offset. 368 */ 369 if (rg->to > last_accounted_offset) 370 last_accounted_offset = rg->to; 371 continue; 372 } 373 374 /* When we find a region that starts beyond our range, we've 375 * finished. 376 */ 377 if (rg->from > t) 378 break; 379 380 /* Add an entry for last_accounted_offset -> rg->from, and 381 * update last_accounted_offset. 382 */ 383 if (rg->from > last_accounted_offset) { 384 add += rg->from - last_accounted_offset; 385 if (!regions_needed) { 386 nrg = get_file_region_entry_from_cache( 387 resv, last_accounted_offset, rg->from); 388 record_hugetlb_cgroup_uncharge_info(h_cg, h, 389 resv, nrg); 390 list_add(&nrg->link, rg->link.prev); 391 coalesce_file_region(resv, nrg); 392 } else 393 *regions_needed += 1; 394 } 395 396 last_accounted_offset = rg->to; 397 } 398 399 /* Handle the case where our range extends beyond 400 * last_accounted_offset. 401 */ 402 if (last_accounted_offset < t) { 403 add += t - last_accounted_offset; 404 if (!regions_needed) { 405 nrg = get_file_region_entry_from_cache( 406 resv, last_accounted_offset, t); 407 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 408 list_add(&nrg->link, rg->link.prev); 409 coalesce_file_region(resv, nrg); 410 } else 411 *regions_needed += 1; 412 } 413 414 VM_BUG_ON(add < 0); 415 return add; 416 } 417 418 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 419 */ 420 static int allocate_file_region_entries(struct resv_map *resv, 421 int regions_needed) 422 __must_hold(&resv->lock) 423 { 424 struct list_head allocated_regions; 425 int to_allocate = 0, i = 0; 426 struct file_region *trg = NULL, *rg = NULL; 427 428 VM_BUG_ON(regions_needed < 0); 429 430 INIT_LIST_HEAD(&allocated_regions); 431 432 /* 433 * Check for sufficient descriptors in the cache to accommodate 434 * the number of in progress add operations plus regions_needed. 435 * 436 * This is a while loop because when we drop the lock, some other call 437 * to region_add or region_del may have consumed some region_entries, 438 * so we keep looping here until we finally have enough entries for 439 * (adds_in_progress + regions_needed). 440 */ 441 while (resv->region_cache_count < 442 (resv->adds_in_progress + regions_needed)) { 443 to_allocate = resv->adds_in_progress + regions_needed - 444 resv->region_cache_count; 445 446 /* At this point, we should have enough entries in the cache 447 * for all the existings adds_in_progress. We should only be 448 * needing to allocate for regions_needed. 449 */ 450 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 451 452 spin_unlock(&resv->lock); 453 for (i = 0; i < to_allocate; i++) { 454 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 455 if (!trg) 456 goto out_of_memory; 457 list_add(&trg->link, &allocated_regions); 458 } 459 460 spin_lock(&resv->lock); 461 462 list_splice(&allocated_regions, &resv->region_cache); 463 resv->region_cache_count += to_allocate; 464 } 465 466 return 0; 467 468 out_of_memory: 469 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 470 list_del(&rg->link); 471 kfree(rg); 472 } 473 return -ENOMEM; 474 } 475 476 /* 477 * Add the huge page range represented by [f, t) to the reserve 478 * map. Regions will be taken from the cache to fill in this range. 479 * Sufficient regions should exist in the cache due to the previous 480 * call to region_chg with the same range, but in some cases the cache will not 481 * have sufficient entries due to races with other code doing region_add or 482 * region_del. The extra needed entries will be allocated. 483 * 484 * regions_needed is the out value provided by a previous call to region_chg. 485 * 486 * Return the number of new huge pages added to the map. This number is greater 487 * than or equal to zero. If file_region entries needed to be allocated for 488 * this operation and we were not able to allocate, it returns -ENOMEM. 489 * region_add of regions of length 1 never allocate file_regions and cannot 490 * fail; region_chg will always allocate at least 1 entry and a region_add for 491 * 1 page will only require at most 1 entry. 492 */ 493 static long region_add(struct resv_map *resv, long f, long t, 494 long in_regions_needed, struct hstate *h, 495 struct hugetlb_cgroup *h_cg) 496 { 497 long add = 0, actual_regions_needed = 0; 498 499 spin_lock(&resv->lock); 500 retry: 501 502 /* Count how many regions are actually needed to execute this add. */ 503 add_reservation_in_range(resv, f, t, NULL, NULL, 504 &actual_regions_needed); 505 506 /* 507 * Check for sufficient descriptors in the cache to accommodate 508 * this add operation. Note that actual_regions_needed may be greater 509 * than in_regions_needed, as the resv_map may have been modified since 510 * the region_chg call. In this case, we need to make sure that we 511 * allocate extra entries, such that we have enough for all the 512 * existing adds_in_progress, plus the excess needed for this 513 * operation. 514 */ 515 if (actual_regions_needed > in_regions_needed && 516 resv->region_cache_count < 517 resv->adds_in_progress + 518 (actual_regions_needed - in_regions_needed)) { 519 /* region_add operation of range 1 should never need to 520 * allocate file_region entries. 521 */ 522 VM_BUG_ON(t - f <= 1); 523 524 if (allocate_file_region_entries( 525 resv, actual_regions_needed - in_regions_needed)) { 526 return -ENOMEM; 527 } 528 529 goto retry; 530 } 531 532 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 533 534 resv->adds_in_progress -= in_regions_needed; 535 536 spin_unlock(&resv->lock); 537 VM_BUG_ON(add < 0); 538 return add; 539 } 540 541 /* 542 * Examine the existing reserve map and determine how many 543 * huge pages in the specified range [f, t) are NOT currently 544 * represented. This routine is called before a subsequent 545 * call to region_add that will actually modify the reserve 546 * map to add the specified range [f, t). region_chg does 547 * not change the number of huge pages represented by the 548 * map. A number of new file_region structures is added to the cache as a 549 * placeholder, for the subsequent region_add call to use. At least 1 550 * file_region structure is added. 551 * 552 * out_regions_needed is the number of regions added to the 553 * resv->adds_in_progress. This value needs to be provided to a follow up call 554 * to region_add or region_abort for proper accounting. 555 * 556 * Returns the number of huge pages that need to be added to the existing 557 * reservation map for the range [f, t). This number is greater or equal to 558 * zero. -ENOMEM is returned if a new file_region structure or cache entry 559 * is needed and can not be allocated. 560 */ 561 static long region_chg(struct resv_map *resv, long f, long t, 562 long *out_regions_needed) 563 { 564 long chg = 0; 565 566 spin_lock(&resv->lock); 567 568 /* Count how many hugepages in this range are NOT represented. */ 569 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 570 out_regions_needed); 571 572 if (*out_regions_needed == 0) 573 *out_regions_needed = 1; 574 575 if (allocate_file_region_entries(resv, *out_regions_needed)) 576 return -ENOMEM; 577 578 resv->adds_in_progress += *out_regions_needed; 579 580 spin_unlock(&resv->lock); 581 return chg; 582 } 583 584 /* 585 * Abort the in progress add operation. The adds_in_progress field 586 * of the resv_map keeps track of the operations in progress between 587 * calls to region_chg and region_add. Operations are sometimes 588 * aborted after the call to region_chg. In such cases, region_abort 589 * is called to decrement the adds_in_progress counter. regions_needed 590 * is the value returned by the region_chg call, it is used to decrement 591 * the adds_in_progress counter. 592 * 593 * NOTE: The range arguments [f, t) are not needed or used in this 594 * routine. They are kept to make reading the calling code easier as 595 * arguments will match the associated region_chg call. 596 */ 597 static void region_abort(struct resv_map *resv, long f, long t, 598 long regions_needed) 599 { 600 spin_lock(&resv->lock); 601 VM_BUG_ON(!resv->region_cache_count); 602 resv->adds_in_progress -= regions_needed; 603 spin_unlock(&resv->lock); 604 } 605 606 /* 607 * Delete the specified range [f, t) from the reserve map. If the 608 * t parameter is LONG_MAX, this indicates that ALL regions after f 609 * should be deleted. Locate the regions which intersect [f, t) 610 * and either trim, delete or split the existing regions. 611 * 612 * Returns the number of huge pages deleted from the reserve map. 613 * In the normal case, the return value is zero or more. In the 614 * case where a region must be split, a new region descriptor must 615 * be allocated. If the allocation fails, -ENOMEM will be returned. 616 * NOTE: If the parameter t == LONG_MAX, then we will never split 617 * a region and possibly return -ENOMEM. Callers specifying 618 * t == LONG_MAX do not need to check for -ENOMEM error. 619 */ 620 static long region_del(struct resv_map *resv, long f, long t) 621 { 622 struct list_head *head = &resv->regions; 623 struct file_region *rg, *trg; 624 struct file_region *nrg = NULL; 625 long del = 0; 626 627 retry: 628 spin_lock(&resv->lock); 629 list_for_each_entry_safe(rg, trg, head, link) { 630 /* 631 * Skip regions before the range to be deleted. file_region 632 * ranges are normally of the form [from, to). However, there 633 * may be a "placeholder" entry in the map which is of the form 634 * (from, to) with from == to. Check for placeholder entries 635 * at the beginning of the range to be deleted. 636 */ 637 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 638 continue; 639 640 if (rg->from >= t) 641 break; 642 643 if (f > rg->from && t < rg->to) { /* Must split region */ 644 /* 645 * Check for an entry in the cache before dropping 646 * lock and attempting allocation. 647 */ 648 if (!nrg && 649 resv->region_cache_count > resv->adds_in_progress) { 650 nrg = list_first_entry(&resv->region_cache, 651 struct file_region, 652 link); 653 list_del(&nrg->link); 654 resv->region_cache_count--; 655 } 656 657 if (!nrg) { 658 spin_unlock(&resv->lock); 659 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 660 if (!nrg) 661 return -ENOMEM; 662 goto retry; 663 } 664 665 del += t - f; 666 hugetlb_cgroup_uncharge_file_region( 667 resv, rg, t - f); 668 669 /* New entry for end of split region */ 670 nrg->from = t; 671 nrg->to = rg->to; 672 673 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 674 675 INIT_LIST_HEAD(&nrg->link); 676 677 /* Original entry is trimmed */ 678 rg->to = f; 679 680 list_add(&nrg->link, &rg->link); 681 nrg = NULL; 682 break; 683 } 684 685 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 686 del += rg->to - rg->from; 687 hugetlb_cgroup_uncharge_file_region(resv, rg, 688 rg->to - rg->from); 689 list_del(&rg->link); 690 kfree(rg); 691 continue; 692 } 693 694 if (f <= rg->from) { /* Trim beginning of region */ 695 hugetlb_cgroup_uncharge_file_region(resv, rg, 696 t - rg->from); 697 698 del += t - rg->from; 699 rg->from = t; 700 } else { /* Trim end of region */ 701 hugetlb_cgroup_uncharge_file_region(resv, rg, 702 rg->to - f); 703 704 del += rg->to - f; 705 rg->to = f; 706 } 707 } 708 709 spin_unlock(&resv->lock); 710 kfree(nrg); 711 return del; 712 } 713 714 /* 715 * A rare out of memory error was encountered which prevented removal of 716 * the reserve map region for a page. The huge page itself was free'ed 717 * and removed from the page cache. This routine will adjust the subpool 718 * usage count, and the global reserve count if needed. By incrementing 719 * these counts, the reserve map entry which could not be deleted will 720 * appear as a "reserved" entry instead of simply dangling with incorrect 721 * counts. 722 */ 723 void hugetlb_fix_reserve_counts(struct inode *inode) 724 { 725 struct hugepage_subpool *spool = subpool_inode(inode); 726 long rsv_adjust; 727 728 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 729 if (rsv_adjust) { 730 struct hstate *h = hstate_inode(inode); 731 732 hugetlb_acct_memory(h, 1); 733 } 734 } 735 736 /* 737 * Count and return the number of huge pages in the reserve map 738 * that intersect with the range [f, t). 739 */ 740 static long region_count(struct resv_map *resv, long f, long t) 741 { 742 struct list_head *head = &resv->regions; 743 struct file_region *rg; 744 long chg = 0; 745 746 spin_lock(&resv->lock); 747 /* Locate each segment we overlap with, and count that overlap. */ 748 list_for_each_entry(rg, head, link) { 749 long seg_from; 750 long seg_to; 751 752 if (rg->to <= f) 753 continue; 754 if (rg->from >= t) 755 break; 756 757 seg_from = max(rg->from, f); 758 seg_to = min(rg->to, t); 759 760 chg += seg_to - seg_from; 761 } 762 spin_unlock(&resv->lock); 763 764 return chg; 765 } 766 767 /* 768 * Convert the address within this vma to the page offset within 769 * the mapping, in pagecache page units; huge pages here. 770 */ 771 static pgoff_t vma_hugecache_offset(struct hstate *h, 772 struct vm_area_struct *vma, unsigned long address) 773 { 774 return ((address - vma->vm_start) >> huge_page_shift(h)) + 775 (vma->vm_pgoff >> huge_page_order(h)); 776 } 777 778 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 779 unsigned long address) 780 { 781 return vma_hugecache_offset(hstate_vma(vma), vma, address); 782 } 783 EXPORT_SYMBOL_GPL(linear_hugepage_index); 784 785 /* 786 * Return the size of the pages allocated when backing a VMA. In the majority 787 * cases this will be same size as used by the page table entries. 788 */ 789 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 790 { 791 if (vma->vm_ops && vma->vm_ops->pagesize) 792 return vma->vm_ops->pagesize(vma); 793 return PAGE_SIZE; 794 } 795 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 796 797 /* 798 * Return the page size being used by the MMU to back a VMA. In the majority 799 * of cases, the page size used by the kernel matches the MMU size. On 800 * architectures where it differs, an architecture-specific 'strong' 801 * version of this symbol is required. 802 */ 803 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 804 { 805 return vma_kernel_pagesize(vma); 806 } 807 808 /* 809 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 810 * bits of the reservation map pointer, which are always clear due to 811 * alignment. 812 */ 813 #define HPAGE_RESV_OWNER (1UL << 0) 814 #define HPAGE_RESV_UNMAPPED (1UL << 1) 815 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 816 817 /* 818 * These helpers are used to track how many pages are reserved for 819 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 820 * is guaranteed to have their future faults succeed. 821 * 822 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 823 * the reserve counters are updated with the hugetlb_lock held. It is safe 824 * to reset the VMA at fork() time as it is not in use yet and there is no 825 * chance of the global counters getting corrupted as a result of the values. 826 * 827 * The private mapping reservation is represented in a subtly different 828 * manner to a shared mapping. A shared mapping has a region map associated 829 * with the underlying file, this region map represents the backing file 830 * pages which have ever had a reservation assigned which this persists even 831 * after the page is instantiated. A private mapping has a region map 832 * associated with the original mmap which is attached to all VMAs which 833 * reference it, this region map represents those offsets which have consumed 834 * reservation ie. where pages have been instantiated. 835 */ 836 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 837 { 838 return (unsigned long)vma->vm_private_data; 839 } 840 841 static void set_vma_private_data(struct vm_area_struct *vma, 842 unsigned long value) 843 { 844 vma->vm_private_data = (void *)value; 845 } 846 847 static void 848 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 849 struct hugetlb_cgroup *h_cg, 850 struct hstate *h) 851 { 852 #ifdef CONFIG_CGROUP_HUGETLB 853 if (!h_cg || !h) { 854 resv_map->reservation_counter = NULL; 855 resv_map->pages_per_hpage = 0; 856 resv_map->css = NULL; 857 } else { 858 resv_map->reservation_counter = 859 &h_cg->rsvd_hugepage[hstate_index(h)]; 860 resv_map->pages_per_hpage = pages_per_huge_page(h); 861 resv_map->css = &h_cg->css; 862 } 863 #endif 864 } 865 866 struct resv_map *resv_map_alloc(void) 867 { 868 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 869 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 870 871 if (!resv_map || !rg) { 872 kfree(resv_map); 873 kfree(rg); 874 return NULL; 875 } 876 877 kref_init(&resv_map->refs); 878 spin_lock_init(&resv_map->lock); 879 INIT_LIST_HEAD(&resv_map->regions); 880 881 resv_map->adds_in_progress = 0; 882 /* 883 * Initialize these to 0. On shared mappings, 0's here indicate these 884 * fields don't do cgroup accounting. On private mappings, these will be 885 * re-initialized to the proper values, to indicate that hugetlb cgroup 886 * reservations are to be un-charged from here. 887 */ 888 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 889 890 INIT_LIST_HEAD(&resv_map->region_cache); 891 list_add(&rg->link, &resv_map->region_cache); 892 resv_map->region_cache_count = 1; 893 894 return resv_map; 895 } 896 897 void resv_map_release(struct kref *ref) 898 { 899 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 900 struct list_head *head = &resv_map->region_cache; 901 struct file_region *rg, *trg; 902 903 /* Clear out any active regions before we release the map. */ 904 region_del(resv_map, 0, LONG_MAX); 905 906 /* ... and any entries left in the cache */ 907 list_for_each_entry_safe(rg, trg, head, link) { 908 list_del(&rg->link); 909 kfree(rg); 910 } 911 912 VM_BUG_ON(resv_map->adds_in_progress); 913 914 kfree(resv_map); 915 } 916 917 static inline struct resv_map *inode_resv_map(struct inode *inode) 918 { 919 /* 920 * At inode evict time, i_mapping may not point to the original 921 * address space within the inode. This original address space 922 * contains the pointer to the resv_map. So, always use the 923 * address space embedded within the inode. 924 * The VERY common case is inode->mapping == &inode->i_data but, 925 * this may not be true for device special inodes. 926 */ 927 return (struct resv_map *)(&inode->i_data)->private_data; 928 } 929 930 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 931 { 932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 933 if (vma->vm_flags & VM_MAYSHARE) { 934 struct address_space *mapping = vma->vm_file->f_mapping; 935 struct inode *inode = mapping->host; 936 937 return inode_resv_map(inode); 938 939 } else { 940 return (struct resv_map *)(get_vma_private_data(vma) & 941 ~HPAGE_RESV_MASK); 942 } 943 } 944 945 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 946 { 947 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 948 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 949 950 set_vma_private_data(vma, (get_vma_private_data(vma) & 951 HPAGE_RESV_MASK) | (unsigned long)map); 952 } 953 954 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 955 { 956 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 957 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 958 959 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 960 } 961 962 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 963 { 964 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 965 966 return (get_vma_private_data(vma) & flag) != 0; 967 } 968 969 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 970 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 971 { 972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 973 if (!(vma->vm_flags & VM_MAYSHARE)) 974 vma->vm_private_data = (void *)0; 975 } 976 977 /* Returns true if the VMA has associated reserve pages */ 978 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 979 { 980 if (vma->vm_flags & VM_NORESERVE) { 981 /* 982 * This address is already reserved by other process(chg == 0), 983 * so, we should decrement reserved count. Without decrementing, 984 * reserve count remains after releasing inode, because this 985 * allocated page will go into page cache and is regarded as 986 * coming from reserved pool in releasing step. Currently, we 987 * don't have any other solution to deal with this situation 988 * properly, so add work-around here. 989 */ 990 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 991 return true; 992 else 993 return false; 994 } 995 996 /* Shared mappings always use reserves */ 997 if (vma->vm_flags & VM_MAYSHARE) { 998 /* 999 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1000 * be a region map for all pages. The only situation where 1001 * there is no region map is if a hole was punched via 1002 * fallocate. In this case, there really are no reserves to 1003 * use. This situation is indicated if chg != 0. 1004 */ 1005 if (chg) 1006 return false; 1007 else 1008 return true; 1009 } 1010 1011 /* 1012 * Only the process that called mmap() has reserves for 1013 * private mappings. 1014 */ 1015 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1016 /* 1017 * Like the shared case above, a hole punch or truncate 1018 * could have been performed on the private mapping. 1019 * Examine the value of chg to determine if reserves 1020 * actually exist or were previously consumed. 1021 * Very Subtle - The value of chg comes from a previous 1022 * call to vma_needs_reserves(). The reserve map for 1023 * private mappings has different (opposite) semantics 1024 * than that of shared mappings. vma_needs_reserves() 1025 * has already taken this difference in semantics into 1026 * account. Therefore, the meaning of chg is the same 1027 * as in the shared case above. Code could easily be 1028 * combined, but keeping it separate draws attention to 1029 * subtle differences. 1030 */ 1031 if (chg) 1032 return false; 1033 else 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 static void enqueue_huge_page(struct hstate *h, struct page *page) 1041 { 1042 int nid = page_to_nid(page); 1043 list_move(&page->lru, &h->hugepage_freelists[nid]); 1044 h->free_huge_pages++; 1045 h->free_huge_pages_node[nid]++; 1046 SetPageHugeFreed(page); 1047 } 1048 1049 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1050 { 1051 struct page *page; 1052 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1053 1054 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1055 if (nocma && is_migrate_cma_page(page)) 1056 continue; 1057 1058 if (PageHWPoison(page)) 1059 continue; 1060 1061 list_move(&page->lru, &h->hugepage_activelist); 1062 set_page_refcounted(page); 1063 ClearPageHugeFreed(page); 1064 h->free_huge_pages--; 1065 h->free_huge_pages_node[nid]--; 1066 return page; 1067 } 1068 1069 return NULL; 1070 } 1071 1072 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1073 nodemask_t *nmask) 1074 { 1075 unsigned int cpuset_mems_cookie; 1076 struct zonelist *zonelist; 1077 struct zone *zone; 1078 struct zoneref *z; 1079 int node = NUMA_NO_NODE; 1080 1081 zonelist = node_zonelist(nid, gfp_mask); 1082 1083 retry_cpuset: 1084 cpuset_mems_cookie = read_mems_allowed_begin(); 1085 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1086 struct page *page; 1087 1088 if (!cpuset_zone_allowed(zone, gfp_mask)) 1089 continue; 1090 /* 1091 * no need to ask again on the same node. Pool is node rather than 1092 * zone aware 1093 */ 1094 if (zone_to_nid(zone) == node) 1095 continue; 1096 node = zone_to_nid(zone); 1097 1098 page = dequeue_huge_page_node_exact(h, node); 1099 if (page) 1100 return page; 1101 } 1102 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1103 goto retry_cpuset; 1104 1105 return NULL; 1106 } 1107 1108 static struct page *dequeue_huge_page_vma(struct hstate *h, 1109 struct vm_area_struct *vma, 1110 unsigned long address, int avoid_reserve, 1111 long chg) 1112 { 1113 struct page *page; 1114 struct mempolicy *mpol; 1115 gfp_t gfp_mask; 1116 nodemask_t *nodemask; 1117 int nid; 1118 1119 /* 1120 * A child process with MAP_PRIVATE mappings created by their parent 1121 * have no page reserves. This check ensures that reservations are 1122 * not "stolen". The child may still get SIGKILLed 1123 */ 1124 if (!vma_has_reserves(vma, chg) && 1125 h->free_huge_pages - h->resv_huge_pages == 0) 1126 goto err; 1127 1128 /* If reserves cannot be used, ensure enough pages are in the pool */ 1129 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1130 goto err; 1131 1132 gfp_mask = htlb_alloc_mask(h); 1133 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1134 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1135 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1136 SetPagePrivate(page); 1137 h->resv_huge_pages--; 1138 } 1139 1140 mpol_cond_put(mpol); 1141 return page; 1142 1143 err: 1144 return NULL; 1145 } 1146 1147 /* 1148 * common helper functions for hstate_next_node_to_{alloc|free}. 1149 * We may have allocated or freed a huge page based on a different 1150 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1151 * be outside of *nodes_allowed. Ensure that we use an allowed 1152 * node for alloc or free. 1153 */ 1154 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1155 { 1156 nid = next_node_in(nid, *nodes_allowed); 1157 VM_BUG_ON(nid >= MAX_NUMNODES); 1158 1159 return nid; 1160 } 1161 1162 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1163 { 1164 if (!node_isset(nid, *nodes_allowed)) 1165 nid = next_node_allowed(nid, nodes_allowed); 1166 return nid; 1167 } 1168 1169 /* 1170 * returns the previously saved node ["this node"] from which to 1171 * allocate a persistent huge page for the pool and advance the 1172 * next node from which to allocate, handling wrap at end of node 1173 * mask. 1174 */ 1175 static int hstate_next_node_to_alloc(struct hstate *h, 1176 nodemask_t *nodes_allowed) 1177 { 1178 int nid; 1179 1180 VM_BUG_ON(!nodes_allowed); 1181 1182 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1183 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1184 1185 return nid; 1186 } 1187 1188 /* 1189 * helper for free_pool_huge_page() - return the previously saved 1190 * node ["this node"] from which to free a huge page. Advance the 1191 * next node id whether or not we find a free huge page to free so 1192 * that the next attempt to free addresses the next node. 1193 */ 1194 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1195 { 1196 int nid; 1197 1198 VM_BUG_ON(!nodes_allowed); 1199 1200 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1201 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1202 1203 return nid; 1204 } 1205 1206 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1207 for (nr_nodes = nodes_weight(*mask); \ 1208 nr_nodes > 0 && \ 1209 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1210 nr_nodes--) 1211 1212 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1213 for (nr_nodes = nodes_weight(*mask); \ 1214 nr_nodes > 0 && \ 1215 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1216 nr_nodes--) 1217 1218 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1219 static void destroy_compound_gigantic_page(struct page *page, 1220 unsigned int order) 1221 { 1222 int i; 1223 int nr_pages = 1 << order; 1224 struct page *p = page + 1; 1225 1226 atomic_set(compound_mapcount_ptr(page), 0); 1227 if (hpage_pincount_available(page)) 1228 atomic_set(compound_pincount_ptr(page), 0); 1229 1230 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1231 clear_compound_head(p); 1232 set_page_refcounted(p); 1233 } 1234 1235 set_compound_order(page, 0); 1236 page[1].compound_nr = 0; 1237 __ClearPageHead(page); 1238 } 1239 1240 static void free_gigantic_page(struct page *page, unsigned int order) 1241 { 1242 /* 1243 * If the page isn't allocated using the cma allocator, 1244 * cma_release() returns false. 1245 */ 1246 #ifdef CONFIG_CMA 1247 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1248 return; 1249 #endif 1250 1251 free_contig_range(page_to_pfn(page), 1 << order); 1252 } 1253 1254 #ifdef CONFIG_CONTIG_ALLOC 1255 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1256 int nid, nodemask_t *nodemask) 1257 { 1258 unsigned long nr_pages = 1UL << huge_page_order(h); 1259 if (nid == NUMA_NO_NODE) 1260 nid = numa_mem_id(); 1261 1262 #ifdef CONFIG_CMA 1263 { 1264 struct page *page; 1265 int node; 1266 1267 if (hugetlb_cma[nid]) { 1268 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1269 huge_page_order(h), true); 1270 if (page) 1271 return page; 1272 } 1273 1274 if (!(gfp_mask & __GFP_THISNODE)) { 1275 for_each_node_mask(node, *nodemask) { 1276 if (node == nid || !hugetlb_cma[node]) 1277 continue; 1278 1279 page = cma_alloc(hugetlb_cma[node], nr_pages, 1280 huge_page_order(h), true); 1281 if (page) 1282 return page; 1283 } 1284 } 1285 } 1286 #endif 1287 1288 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1289 } 1290 1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1293 #else /* !CONFIG_CONTIG_ALLOC */ 1294 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1295 int nid, nodemask_t *nodemask) 1296 { 1297 return NULL; 1298 } 1299 #endif /* CONFIG_CONTIG_ALLOC */ 1300 1301 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1302 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1303 int nid, nodemask_t *nodemask) 1304 { 1305 return NULL; 1306 } 1307 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1308 static inline void destroy_compound_gigantic_page(struct page *page, 1309 unsigned int order) { } 1310 #endif 1311 1312 static void update_and_free_page(struct hstate *h, struct page *page) 1313 { 1314 int i; 1315 1316 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1317 return; 1318 1319 h->nr_huge_pages--; 1320 h->nr_huge_pages_node[page_to_nid(page)]--; 1321 for (i = 0; i < pages_per_huge_page(h); i++) { 1322 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1323 1 << PG_referenced | 1 << PG_dirty | 1324 1 << PG_active | 1 << PG_private | 1325 1 << PG_writeback); 1326 } 1327 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1328 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1329 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1330 set_page_refcounted(page); 1331 if (hstate_is_gigantic(h)) { 1332 /* 1333 * Temporarily drop the hugetlb_lock, because 1334 * we might block in free_gigantic_page(). 1335 */ 1336 spin_unlock(&hugetlb_lock); 1337 destroy_compound_gigantic_page(page, huge_page_order(h)); 1338 free_gigantic_page(page, huge_page_order(h)); 1339 spin_lock(&hugetlb_lock); 1340 } else { 1341 __free_pages(page, huge_page_order(h)); 1342 } 1343 } 1344 1345 struct hstate *size_to_hstate(unsigned long size) 1346 { 1347 struct hstate *h; 1348 1349 for_each_hstate(h) { 1350 if (huge_page_size(h) == size) 1351 return h; 1352 } 1353 return NULL; 1354 } 1355 1356 /* 1357 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1358 * to hstate->hugepage_activelist.) 1359 * 1360 * This function can be called for tail pages, but never returns true for them. 1361 */ 1362 bool page_huge_active(struct page *page) 1363 { 1364 return PageHeadHuge(page) && PagePrivate(&page[1]); 1365 } 1366 1367 /* never called for tail page */ 1368 void set_page_huge_active(struct page *page) 1369 { 1370 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1371 SetPagePrivate(&page[1]); 1372 } 1373 1374 static void clear_page_huge_active(struct page *page) 1375 { 1376 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1377 ClearPagePrivate(&page[1]); 1378 } 1379 1380 /* 1381 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1382 * code 1383 */ 1384 static inline bool PageHugeTemporary(struct page *page) 1385 { 1386 if (!PageHuge(page)) 1387 return false; 1388 1389 return (unsigned long)page[2].mapping == -1U; 1390 } 1391 1392 static inline void SetPageHugeTemporary(struct page *page) 1393 { 1394 page[2].mapping = (void *)-1U; 1395 } 1396 1397 static inline void ClearPageHugeTemporary(struct page *page) 1398 { 1399 page[2].mapping = NULL; 1400 } 1401 1402 static void __free_huge_page(struct page *page) 1403 { 1404 /* 1405 * Can't pass hstate in here because it is called from the 1406 * compound page destructor. 1407 */ 1408 struct hstate *h = page_hstate(page); 1409 int nid = page_to_nid(page); 1410 struct hugepage_subpool *spool = 1411 (struct hugepage_subpool *)page_private(page); 1412 bool restore_reserve; 1413 1414 VM_BUG_ON_PAGE(page_count(page), page); 1415 VM_BUG_ON_PAGE(page_mapcount(page), page); 1416 1417 set_page_private(page, 0); 1418 page->mapping = NULL; 1419 restore_reserve = PagePrivate(page); 1420 ClearPagePrivate(page); 1421 1422 /* 1423 * If PagePrivate() was set on page, page allocation consumed a 1424 * reservation. If the page was associated with a subpool, there 1425 * would have been a page reserved in the subpool before allocation 1426 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1427 * reservtion, do not call hugepage_subpool_put_pages() as this will 1428 * remove the reserved page from the subpool. 1429 */ 1430 if (!restore_reserve) { 1431 /* 1432 * A return code of zero implies that the subpool will be 1433 * under its minimum size if the reservation is not restored 1434 * after page is free. Therefore, force restore_reserve 1435 * operation. 1436 */ 1437 if (hugepage_subpool_put_pages(spool, 1) == 0) 1438 restore_reserve = true; 1439 } 1440 1441 spin_lock(&hugetlb_lock); 1442 clear_page_huge_active(page); 1443 hugetlb_cgroup_uncharge_page(hstate_index(h), 1444 pages_per_huge_page(h), page); 1445 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1446 pages_per_huge_page(h), page); 1447 if (restore_reserve) 1448 h->resv_huge_pages++; 1449 1450 if (PageHugeTemporary(page)) { 1451 list_del(&page->lru); 1452 ClearPageHugeTemporary(page); 1453 update_and_free_page(h, page); 1454 } else if (h->surplus_huge_pages_node[nid]) { 1455 /* remove the page from active list */ 1456 list_del(&page->lru); 1457 update_and_free_page(h, page); 1458 h->surplus_huge_pages--; 1459 h->surplus_huge_pages_node[nid]--; 1460 } else { 1461 arch_clear_hugepage_flags(page); 1462 enqueue_huge_page(h, page); 1463 } 1464 spin_unlock(&hugetlb_lock); 1465 } 1466 1467 /* 1468 * As free_huge_page() can be called from a non-task context, we have 1469 * to defer the actual freeing in a workqueue to prevent potential 1470 * hugetlb_lock deadlock. 1471 * 1472 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1473 * be freed and frees them one-by-one. As the page->mapping pointer is 1474 * going to be cleared in __free_huge_page() anyway, it is reused as the 1475 * llist_node structure of a lockless linked list of huge pages to be freed. 1476 */ 1477 static LLIST_HEAD(hpage_freelist); 1478 1479 static void free_hpage_workfn(struct work_struct *work) 1480 { 1481 struct llist_node *node; 1482 struct page *page; 1483 1484 node = llist_del_all(&hpage_freelist); 1485 1486 while (node) { 1487 page = container_of((struct address_space **)node, 1488 struct page, mapping); 1489 node = node->next; 1490 __free_huge_page(page); 1491 } 1492 } 1493 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1494 1495 void free_huge_page(struct page *page) 1496 { 1497 /* 1498 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1499 */ 1500 if (!in_task()) { 1501 /* 1502 * Only call schedule_work() if hpage_freelist is previously 1503 * empty. Otherwise, schedule_work() had been called but the 1504 * workfn hasn't retrieved the list yet. 1505 */ 1506 if (llist_add((struct llist_node *)&page->mapping, 1507 &hpage_freelist)) 1508 schedule_work(&free_hpage_work); 1509 return; 1510 } 1511 1512 __free_huge_page(page); 1513 } 1514 1515 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1516 { 1517 INIT_LIST_HEAD(&page->lru); 1518 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1519 set_hugetlb_cgroup(page, NULL); 1520 set_hugetlb_cgroup_rsvd(page, NULL); 1521 spin_lock(&hugetlb_lock); 1522 h->nr_huge_pages++; 1523 h->nr_huge_pages_node[nid]++; 1524 ClearPageHugeFreed(page); 1525 spin_unlock(&hugetlb_lock); 1526 } 1527 1528 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1529 { 1530 int i; 1531 int nr_pages = 1 << order; 1532 struct page *p = page + 1; 1533 1534 /* we rely on prep_new_huge_page to set the destructor */ 1535 set_compound_order(page, order); 1536 __ClearPageReserved(page); 1537 __SetPageHead(page); 1538 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1539 /* 1540 * For gigantic hugepages allocated through bootmem at 1541 * boot, it's safer to be consistent with the not-gigantic 1542 * hugepages and clear the PG_reserved bit from all tail pages 1543 * too. Otherwise drivers using get_user_pages() to access tail 1544 * pages may get the reference counting wrong if they see 1545 * PG_reserved set on a tail page (despite the head page not 1546 * having PG_reserved set). Enforcing this consistency between 1547 * head and tail pages allows drivers to optimize away a check 1548 * on the head page when they need know if put_page() is needed 1549 * after get_user_pages(). 1550 */ 1551 __ClearPageReserved(p); 1552 set_page_count(p, 0); 1553 set_compound_head(p, page); 1554 } 1555 atomic_set(compound_mapcount_ptr(page), -1); 1556 1557 if (hpage_pincount_available(page)) 1558 atomic_set(compound_pincount_ptr(page), 0); 1559 } 1560 1561 /* 1562 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1563 * transparent huge pages. See the PageTransHuge() documentation for more 1564 * details. 1565 */ 1566 int PageHuge(struct page *page) 1567 { 1568 if (!PageCompound(page)) 1569 return 0; 1570 1571 page = compound_head(page); 1572 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1573 } 1574 EXPORT_SYMBOL_GPL(PageHuge); 1575 1576 /* 1577 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1578 * normal or transparent huge pages. 1579 */ 1580 int PageHeadHuge(struct page *page_head) 1581 { 1582 if (!PageHead(page_head)) 1583 return 0; 1584 1585 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1586 } 1587 1588 /* 1589 * Find and lock address space (mapping) in write mode. 1590 * 1591 * Upon entry, the page is locked which means that page_mapping() is 1592 * stable. Due to locking order, we can only trylock_write. If we can 1593 * not get the lock, simply return NULL to caller. 1594 */ 1595 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1596 { 1597 struct address_space *mapping = page_mapping(hpage); 1598 1599 if (!mapping) 1600 return mapping; 1601 1602 if (i_mmap_trylock_write(mapping)) 1603 return mapping; 1604 1605 return NULL; 1606 } 1607 1608 pgoff_t __basepage_index(struct page *page) 1609 { 1610 struct page *page_head = compound_head(page); 1611 pgoff_t index = page_index(page_head); 1612 unsigned long compound_idx; 1613 1614 if (!PageHuge(page_head)) 1615 return page_index(page); 1616 1617 if (compound_order(page_head) >= MAX_ORDER) 1618 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1619 else 1620 compound_idx = page - page_head; 1621 1622 return (index << compound_order(page_head)) + compound_idx; 1623 } 1624 1625 static struct page *alloc_buddy_huge_page(struct hstate *h, 1626 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1627 nodemask_t *node_alloc_noretry) 1628 { 1629 int order = huge_page_order(h); 1630 struct page *page; 1631 bool alloc_try_hard = true; 1632 1633 /* 1634 * By default we always try hard to allocate the page with 1635 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1636 * a loop (to adjust global huge page counts) and previous allocation 1637 * failed, do not continue to try hard on the same node. Use the 1638 * node_alloc_noretry bitmap to manage this state information. 1639 */ 1640 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1641 alloc_try_hard = false; 1642 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1643 if (alloc_try_hard) 1644 gfp_mask |= __GFP_RETRY_MAYFAIL; 1645 if (nid == NUMA_NO_NODE) 1646 nid = numa_mem_id(); 1647 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1648 if (page) 1649 __count_vm_event(HTLB_BUDDY_PGALLOC); 1650 else 1651 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1652 1653 /* 1654 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1655 * indicates an overall state change. Clear bit so that we resume 1656 * normal 'try hard' allocations. 1657 */ 1658 if (node_alloc_noretry && page && !alloc_try_hard) 1659 node_clear(nid, *node_alloc_noretry); 1660 1661 /* 1662 * If we tried hard to get a page but failed, set bit so that 1663 * subsequent attempts will not try as hard until there is an 1664 * overall state change. 1665 */ 1666 if (node_alloc_noretry && !page && alloc_try_hard) 1667 node_set(nid, *node_alloc_noretry); 1668 1669 return page; 1670 } 1671 1672 /* 1673 * Common helper to allocate a fresh hugetlb page. All specific allocators 1674 * should use this function to get new hugetlb pages 1675 */ 1676 static struct page *alloc_fresh_huge_page(struct hstate *h, 1677 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1678 nodemask_t *node_alloc_noretry) 1679 { 1680 struct page *page; 1681 1682 if (hstate_is_gigantic(h)) 1683 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1684 else 1685 page = alloc_buddy_huge_page(h, gfp_mask, 1686 nid, nmask, node_alloc_noretry); 1687 if (!page) 1688 return NULL; 1689 1690 if (hstate_is_gigantic(h)) 1691 prep_compound_gigantic_page(page, huge_page_order(h)); 1692 prep_new_huge_page(h, page, page_to_nid(page)); 1693 1694 return page; 1695 } 1696 1697 /* 1698 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1699 * manner. 1700 */ 1701 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1702 nodemask_t *node_alloc_noretry) 1703 { 1704 struct page *page; 1705 int nr_nodes, node; 1706 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1707 1708 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1709 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1710 node_alloc_noretry); 1711 if (page) 1712 break; 1713 } 1714 1715 if (!page) 1716 return 0; 1717 1718 put_page(page); /* free it into the hugepage allocator */ 1719 1720 return 1; 1721 } 1722 1723 /* 1724 * Free huge page from pool from next node to free. 1725 * Attempt to keep persistent huge pages more or less 1726 * balanced over allowed nodes. 1727 * Called with hugetlb_lock locked. 1728 */ 1729 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1730 bool acct_surplus) 1731 { 1732 int nr_nodes, node; 1733 int ret = 0; 1734 1735 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1736 /* 1737 * If we're returning unused surplus pages, only examine 1738 * nodes with surplus pages. 1739 */ 1740 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1741 !list_empty(&h->hugepage_freelists[node])) { 1742 struct page *page = 1743 list_entry(h->hugepage_freelists[node].next, 1744 struct page, lru); 1745 list_del(&page->lru); 1746 h->free_huge_pages--; 1747 h->free_huge_pages_node[node]--; 1748 if (acct_surplus) { 1749 h->surplus_huge_pages--; 1750 h->surplus_huge_pages_node[node]--; 1751 } 1752 update_and_free_page(h, page); 1753 ret = 1; 1754 break; 1755 } 1756 } 1757 1758 return ret; 1759 } 1760 1761 /* 1762 * Dissolve a given free hugepage into free buddy pages. This function does 1763 * nothing for in-use hugepages and non-hugepages. 1764 * This function returns values like below: 1765 * 1766 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1767 * (allocated or reserved.) 1768 * 0: successfully dissolved free hugepages or the page is not a 1769 * hugepage (considered as already dissolved) 1770 */ 1771 int dissolve_free_huge_page(struct page *page) 1772 { 1773 int rc = -EBUSY; 1774 1775 retry: 1776 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1777 if (!PageHuge(page)) 1778 return 0; 1779 1780 spin_lock(&hugetlb_lock); 1781 if (!PageHuge(page)) { 1782 rc = 0; 1783 goto out; 1784 } 1785 1786 if (!page_count(page)) { 1787 struct page *head = compound_head(page); 1788 struct hstate *h = page_hstate(head); 1789 int nid = page_to_nid(head); 1790 if (h->free_huge_pages - h->resv_huge_pages == 0) 1791 goto out; 1792 1793 /* 1794 * We should make sure that the page is already on the free list 1795 * when it is dissolved. 1796 */ 1797 if (unlikely(!PageHugeFreed(head))) { 1798 spin_unlock(&hugetlb_lock); 1799 cond_resched(); 1800 1801 /* 1802 * Theoretically, we should return -EBUSY when we 1803 * encounter this race. In fact, we have a chance 1804 * to successfully dissolve the page if we do a 1805 * retry. Because the race window is quite small. 1806 * If we seize this opportunity, it is an optimization 1807 * for increasing the success rate of dissolving page. 1808 */ 1809 goto retry; 1810 } 1811 1812 /* 1813 * Move PageHWPoison flag from head page to the raw error page, 1814 * which makes any subpages rather than the error page reusable. 1815 */ 1816 if (PageHWPoison(head) && page != head) { 1817 SetPageHWPoison(page); 1818 ClearPageHWPoison(head); 1819 } 1820 list_del(&head->lru); 1821 h->free_huge_pages--; 1822 h->free_huge_pages_node[nid]--; 1823 h->max_huge_pages--; 1824 update_and_free_page(h, head); 1825 rc = 0; 1826 } 1827 out: 1828 spin_unlock(&hugetlb_lock); 1829 return rc; 1830 } 1831 1832 /* 1833 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1834 * make specified memory blocks removable from the system. 1835 * Note that this will dissolve a free gigantic hugepage completely, if any 1836 * part of it lies within the given range. 1837 * Also note that if dissolve_free_huge_page() returns with an error, all 1838 * free hugepages that were dissolved before that error are lost. 1839 */ 1840 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1841 { 1842 unsigned long pfn; 1843 struct page *page; 1844 int rc = 0; 1845 1846 if (!hugepages_supported()) 1847 return rc; 1848 1849 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1850 page = pfn_to_page(pfn); 1851 rc = dissolve_free_huge_page(page); 1852 if (rc) 1853 break; 1854 } 1855 1856 return rc; 1857 } 1858 1859 /* 1860 * Allocates a fresh surplus page from the page allocator. 1861 */ 1862 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1863 int nid, nodemask_t *nmask) 1864 { 1865 struct page *page = NULL; 1866 1867 if (hstate_is_gigantic(h)) 1868 return NULL; 1869 1870 spin_lock(&hugetlb_lock); 1871 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1872 goto out_unlock; 1873 spin_unlock(&hugetlb_lock); 1874 1875 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1876 if (!page) 1877 return NULL; 1878 1879 spin_lock(&hugetlb_lock); 1880 /* 1881 * We could have raced with the pool size change. 1882 * Double check that and simply deallocate the new page 1883 * if we would end up overcommiting the surpluses. Abuse 1884 * temporary page to workaround the nasty free_huge_page 1885 * codeflow 1886 */ 1887 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1888 SetPageHugeTemporary(page); 1889 spin_unlock(&hugetlb_lock); 1890 put_page(page); 1891 return NULL; 1892 } else { 1893 h->surplus_huge_pages++; 1894 h->surplus_huge_pages_node[page_to_nid(page)]++; 1895 } 1896 1897 out_unlock: 1898 spin_unlock(&hugetlb_lock); 1899 1900 return page; 1901 } 1902 1903 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1904 int nid, nodemask_t *nmask) 1905 { 1906 struct page *page; 1907 1908 if (hstate_is_gigantic(h)) 1909 return NULL; 1910 1911 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1912 if (!page) 1913 return NULL; 1914 1915 /* 1916 * We do not account these pages as surplus because they are only 1917 * temporary and will be released properly on the last reference 1918 */ 1919 SetPageHugeTemporary(page); 1920 1921 return page; 1922 } 1923 1924 /* 1925 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1926 */ 1927 static 1928 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1929 struct vm_area_struct *vma, unsigned long addr) 1930 { 1931 struct page *page; 1932 struct mempolicy *mpol; 1933 gfp_t gfp_mask = htlb_alloc_mask(h); 1934 int nid; 1935 nodemask_t *nodemask; 1936 1937 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1938 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1939 mpol_cond_put(mpol); 1940 1941 return page; 1942 } 1943 1944 /* page migration callback function */ 1945 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1946 nodemask_t *nmask, gfp_t gfp_mask) 1947 { 1948 spin_lock(&hugetlb_lock); 1949 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1950 struct page *page; 1951 1952 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1953 if (page) { 1954 spin_unlock(&hugetlb_lock); 1955 return page; 1956 } 1957 } 1958 spin_unlock(&hugetlb_lock); 1959 1960 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1961 } 1962 1963 /* mempolicy aware migration callback */ 1964 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1965 unsigned long address) 1966 { 1967 struct mempolicy *mpol; 1968 nodemask_t *nodemask; 1969 struct page *page; 1970 gfp_t gfp_mask; 1971 int node; 1972 1973 gfp_mask = htlb_alloc_mask(h); 1974 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1975 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 1976 mpol_cond_put(mpol); 1977 1978 return page; 1979 } 1980 1981 /* 1982 * Increase the hugetlb pool such that it can accommodate a reservation 1983 * of size 'delta'. 1984 */ 1985 static int gather_surplus_pages(struct hstate *h, long delta) 1986 __must_hold(&hugetlb_lock) 1987 { 1988 struct list_head surplus_list; 1989 struct page *page, *tmp; 1990 int ret; 1991 long i; 1992 long needed, allocated; 1993 bool alloc_ok = true; 1994 1995 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1996 if (needed <= 0) { 1997 h->resv_huge_pages += delta; 1998 return 0; 1999 } 2000 2001 allocated = 0; 2002 INIT_LIST_HEAD(&surplus_list); 2003 2004 ret = -ENOMEM; 2005 retry: 2006 spin_unlock(&hugetlb_lock); 2007 for (i = 0; i < needed; i++) { 2008 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2009 NUMA_NO_NODE, NULL); 2010 if (!page) { 2011 alloc_ok = false; 2012 break; 2013 } 2014 list_add(&page->lru, &surplus_list); 2015 cond_resched(); 2016 } 2017 allocated += i; 2018 2019 /* 2020 * After retaking hugetlb_lock, we need to recalculate 'needed' 2021 * because either resv_huge_pages or free_huge_pages may have changed. 2022 */ 2023 spin_lock(&hugetlb_lock); 2024 needed = (h->resv_huge_pages + delta) - 2025 (h->free_huge_pages + allocated); 2026 if (needed > 0) { 2027 if (alloc_ok) 2028 goto retry; 2029 /* 2030 * We were not able to allocate enough pages to 2031 * satisfy the entire reservation so we free what 2032 * we've allocated so far. 2033 */ 2034 goto free; 2035 } 2036 /* 2037 * The surplus_list now contains _at_least_ the number of extra pages 2038 * needed to accommodate the reservation. Add the appropriate number 2039 * of pages to the hugetlb pool and free the extras back to the buddy 2040 * allocator. Commit the entire reservation here to prevent another 2041 * process from stealing the pages as they are added to the pool but 2042 * before they are reserved. 2043 */ 2044 needed += allocated; 2045 h->resv_huge_pages += delta; 2046 ret = 0; 2047 2048 /* Free the needed pages to the hugetlb pool */ 2049 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2050 int zeroed; 2051 2052 if ((--needed) < 0) 2053 break; 2054 /* 2055 * This page is now managed by the hugetlb allocator and has 2056 * no users -- drop the buddy allocator's reference. 2057 */ 2058 zeroed = put_page_testzero(page); 2059 VM_BUG_ON_PAGE(!zeroed, page); 2060 enqueue_huge_page(h, page); 2061 } 2062 free: 2063 spin_unlock(&hugetlb_lock); 2064 2065 /* Free unnecessary surplus pages to the buddy allocator */ 2066 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2067 put_page(page); 2068 spin_lock(&hugetlb_lock); 2069 2070 return ret; 2071 } 2072 2073 /* 2074 * This routine has two main purposes: 2075 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2076 * in unused_resv_pages. This corresponds to the prior adjustments made 2077 * to the associated reservation map. 2078 * 2) Free any unused surplus pages that may have been allocated to satisfy 2079 * the reservation. As many as unused_resv_pages may be freed. 2080 * 2081 * Called with hugetlb_lock held. However, the lock could be dropped (and 2082 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2083 * we must make sure nobody else can claim pages we are in the process of 2084 * freeing. Do this by ensuring resv_huge_page always is greater than the 2085 * number of huge pages we plan to free when dropping the lock. 2086 */ 2087 static void return_unused_surplus_pages(struct hstate *h, 2088 unsigned long unused_resv_pages) 2089 { 2090 unsigned long nr_pages; 2091 2092 /* Cannot return gigantic pages currently */ 2093 if (hstate_is_gigantic(h)) 2094 goto out; 2095 2096 /* 2097 * Part (or even all) of the reservation could have been backed 2098 * by pre-allocated pages. Only free surplus pages. 2099 */ 2100 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2101 2102 /* 2103 * We want to release as many surplus pages as possible, spread 2104 * evenly across all nodes with memory. Iterate across these nodes 2105 * until we can no longer free unreserved surplus pages. This occurs 2106 * when the nodes with surplus pages have no free pages. 2107 * free_pool_huge_page() will balance the freed pages across the 2108 * on-line nodes with memory and will handle the hstate accounting. 2109 * 2110 * Note that we decrement resv_huge_pages as we free the pages. If 2111 * we drop the lock, resv_huge_pages will still be sufficiently large 2112 * to cover subsequent pages we may free. 2113 */ 2114 while (nr_pages--) { 2115 h->resv_huge_pages--; 2116 unused_resv_pages--; 2117 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2118 goto out; 2119 cond_resched_lock(&hugetlb_lock); 2120 } 2121 2122 out: 2123 /* Fully uncommit the reservation */ 2124 h->resv_huge_pages -= unused_resv_pages; 2125 } 2126 2127 2128 /* 2129 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2130 * are used by the huge page allocation routines to manage reservations. 2131 * 2132 * vma_needs_reservation is called to determine if the huge page at addr 2133 * within the vma has an associated reservation. If a reservation is 2134 * needed, the value 1 is returned. The caller is then responsible for 2135 * managing the global reservation and subpool usage counts. After 2136 * the huge page has been allocated, vma_commit_reservation is called 2137 * to add the page to the reservation map. If the page allocation fails, 2138 * the reservation must be ended instead of committed. vma_end_reservation 2139 * is called in such cases. 2140 * 2141 * In the normal case, vma_commit_reservation returns the same value 2142 * as the preceding vma_needs_reservation call. The only time this 2143 * is not the case is if a reserve map was changed between calls. It 2144 * is the responsibility of the caller to notice the difference and 2145 * take appropriate action. 2146 * 2147 * vma_add_reservation is used in error paths where a reservation must 2148 * be restored when a newly allocated huge page must be freed. It is 2149 * to be called after calling vma_needs_reservation to determine if a 2150 * reservation exists. 2151 */ 2152 enum vma_resv_mode { 2153 VMA_NEEDS_RESV, 2154 VMA_COMMIT_RESV, 2155 VMA_END_RESV, 2156 VMA_ADD_RESV, 2157 }; 2158 static long __vma_reservation_common(struct hstate *h, 2159 struct vm_area_struct *vma, unsigned long addr, 2160 enum vma_resv_mode mode) 2161 { 2162 struct resv_map *resv; 2163 pgoff_t idx; 2164 long ret; 2165 long dummy_out_regions_needed; 2166 2167 resv = vma_resv_map(vma); 2168 if (!resv) 2169 return 1; 2170 2171 idx = vma_hugecache_offset(h, vma, addr); 2172 switch (mode) { 2173 case VMA_NEEDS_RESV: 2174 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2175 /* We assume that vma_reservation_* routines always operate on 2176 * 1 page, and that adding to resv map a 1 page entry can only 2177 * ever require 1 region. 2178 */ 2179 VM_BUG_ON(dummy_out_regions_needed != 1); 2180 break; 2181 case VMA_COMMIT_RESV: 2182 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2183 /* region_add calls of range 1 should never fail. */ 2184 VM_BUG_ON(ret < 0); 2185 break; 2186 case VMA_END_RESV: 2187 region_abort(resv, idx, idx + 1, 1); 2188 ret = 0; 2189 break; 2190 case VMA_ADD_RESV: 2191 if (vma->vm_flags & VM_MAYSHARE) { 2192 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2193 /* region_add calls of range 1 should never fail. */ 2194 VM_BUG_ON(ret < 0); 2195 } else { 2196 region_abort(resv, idx, idx + 1, 1); 2197 ret = region_del(resv, idx, idx + 1); 2198 } 2199 break; 2200 default: 2201 BUG(); 2202 } 2203 2204 if (vma->vm_flags & VM_MAYSHARE) 2205 return ret; 2206 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2207 /* 2208 * In most cases, reserves always exist for private mappings. 2209 * However, a file associated with mapping could have been 2210 * hole punched or truncated after reserves were consumed. 2211 * As subsequent fault on such a range will not use reserves. 2212 * Subtle - The reserve map for private mappings has the 2213 * opposite meaning than that of shared mappings. If NO 2214 * entry is in the reserve map, it means a reservation exists. 2215 * If an entry exists in the reserve map, it means the 2216 * reservation has already been consumed. As a result, the 2217 * return value of this routine is the opposite of the 2218 * value returned from reserve map manipulation routines above. 2219 */ 2220 if (ret) 2221 return 0; 2222 else 2223 return 1; 2224 } 2225 else 2226 return ret < 0 ? ret : 0; 2227 } 2228 2229 static long vma_needs_reservation(struct hstate *h, 2230 struct vm_area_struct *vma, unsigned long addr) 2231 { 2232 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2233 } 2234 2235 static long vma_commit_reservation(struct hstate *h, 2236 struct vm_area_struct *vma, unsigned long addr) 2237 { 2238 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2239 } 2240 2241 static void vma_end_reservation(struct hstate *h, 2242 struct vm_area_struct *vma, unsigned long addr) 2243 { 2244 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2245 } 2246 2247 static long vma_add_reservation(struct hstate *h, 2248 struct vm_area_struct *vma, unsigned long addr) 2249 { 2250 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2251 } 2252 2253 /* 2254 * This routine is called to restore a reservation on error paths. In the 2255 * specific error paths, a huge page was allocated (via alloc_huge_page) 2256 * and is about to be freed. If a reservation for the page existed, 2257 * alloc_huge_page would have consumed the reservation and set PagePrivate 2258 * in the newly allocated page. When the page is freed via free_huge_page, 2259 * the global reservation count will be incremented if PagePrivate is set. 2260 * However, free_huge_page can not adjust the reserve map. Adjust the 2261 * reserve map here to be consistent with global reserve count adjustments 2262 * to be made by free_huge_page. 2263 */ 2264 static void restore_reserve_on_error(struct hstate *h, 2265 struct vm_area_struct *vma, unsigned long address, 2266 struct page *page) 2267 { 2268 if (unlikely(PagePrivate(page))) { 2269 long rc = vma_needs_reservation(h, vma, address); 2270 2271 if (unlikely(rc < 0)) { 2272 /* 2273 * Rare out of memory condition in reserve map 2274 * manipulation. Clear PagePrivate so that 2275 * global reserve count will not be incremented 2276 * by free_huge_page. This will make it appear 2277 * as though the reservation for this page was 2278 * consumed. This may prevent the task from 2279 * faulting in the page at a later time. This 2280 * is better than inconsistent global huge page 2281 * accounting of reserve counts. 2282 */ 2283 ClearPagePrivate(page); 2284 } else if (rc) { 2285 rc = vma_add_reservation(h, vma, address); 2286 if (unlikely(rc < 0)) 2287 /* 2288 * See above comment about rare out of 2289 * memory condition. 2290 */ 2291 ClearPagePrivate(page); 2292 } else 2293 vma_end_reservation(h, vma, address); 2294 } 2295 } 2296 2297 struct page *alloc_huge_page(struct vm_area_struct *vma, 2298 unsigned long addr, int avoid_reserve) 2299 { 2300 struct hugepage_subpool *spool = subpool_vma(vma); 2301 struct hstate *h = hstate_vma(vma); 2302 struct page *page; 2303 long map_chg, map_commit; 2304 long gbl_chg; 2305 int ret, idx; 2306 struct hugetlb_cgroup *h_cg; 2307 bool deferred_reserve; 2308 2309 idx = hstate_index(h); 2310 /* 2311 * Examine the region/reserve map to determine if the process 2312 * has a reservation for the page to be allocated. A return 2313 * code of zero indicates a reservation exists (no change). 2314 */ 2315 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2316 if (map_chg < 0) 2317 return ERR_PTR(-ENOMEM); 2318 2319 /* 2320 * Processes that did not create the mapping will have no 2321 * reserves as indicated by the region/reserve map. Check 2322 * that the allocation will not exceed the subpool limit. 2323 * Allocations for MAP_NORESERVE mappings also need to be 2324 * checked against any subpool limit. 2325 */ 2326 if (map_chg || avoid_reserve) { 2327 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2328 if (gbl_chg < 0) { 2329 vma_end_reservation(h, vma, addr); 2330 return ERR_PTR(-ENOSPC); 2331 } 2332 2333 /* 2334 * Even though there was no reservation in the region/reserve 2335 * map, there could be reservations associated with the 2336 * subpool that can be used. This would be indicated if the 2337 * return value of hugepage_subpool_get_pages() is zero. 2338 * However, if avoid_reserve is specified we still avoid even 2339 * the subpool reservations. 2340 */ 2341 if (avoid_reserve) 2342 gbl_chg = 1; 2343 } 2344 2345 /* If this allocation is not consuming a reservation, charge it now. 2346 */ 2347 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2348 if (deferred_reserve) { 2349 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2350 idx, pages_per_huge_page(h), &h_cg); 2351 if (ret) 2352 goto out_subpool_put; 2353 } 2354 2355 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2356 if (ret) 2357 goto out_uncharge_cgroup_reservation; 2358 2359 spin_lock(&hugetlb_lock); 2360 /* 2361 * glb_chg is passed to indicate whether or not a page must be taken 2362 * from the global free pool (global change). gbl_chg == 0 indicates 2363 * a reservation exists for the allocation. 2364 */ 2365 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2366 if (!page) { 2367 spin_unlock(&hugetlb_lock); 2368 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2369 if (!page) 2370 goto out_uncharge_cgroup; 2371 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2372 SetPagePrivate(page); 2373 h->resv_huge_pages--; 2374 } 2375 spin_lock(&hugetlb_lock); 2376 list_add(&page->lru, &h->hugepage_activelist); 2377 /* Fall through */ 2378 } 2379 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2380 /* If allocation is not consuming a reservation, also store the 2381 * hugetlb_cgroup pointer on the page. 2382 */ 2383 if (deferred_reserve) { 2384 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2385 h_cg, page); 2386 } 2387 2388 spin_unlock(&hugetlb_lock); 2389 2390 set_page_private(page, (unsigned long)spool); 2391 2392 map_commit = vma_commit_reservation(h, vma, addr); 2393 if (unlikely(map_chg > map_commit)) { 2394 /* 2395 * The page was added to the reservation map between 2396 * vma_needs_reservation and vma_commit_reservation. 2397 * This indicates a race with hugetlb_reserve_pages. 2398 * Adjust for the subpool count incremented above AND 2399 * in hugetlb_reserve_pages for the same page. Also, 2400 * the reservation count added in hugetlb_reserve_pages 2401 * no longer applies. 2402 */ 2403 long rsv_adjust; 2404 2405 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2406 hugetlb_acct_memory(h, -rsv_adjust); 2407 if (deferred_reserve) 2408 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2409 pages_per_huge_page(h), page); 2410 } 2411 return page; 2412 2413 out_uncharge_cgroup: 2414 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2415 out_uncharge_cgroup_reservation: 2416 if (deferred_reserve) 2417 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2418 h_cg); 2419 out_subpool_put: 2420 if (map_chg || avoid_reserve) 2421 hugepage_subpool_put_pages(spool, 1); 2422 vma_end_reservation(h, vma, addr); 2423 return ERR_PTR(-ENOSPC); 2424 } 2425 2426 int alloc_bootmem_huge_page(struct hstate *h) 2427 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2428 int __alloc_bootmem_huge_page(struct hstate *h) 2429 { 2430 struct huge_bootmem_page *m; 2431 int nr_nodes, node; 2432 2433 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2434 void *addr; 2435 2436 addr = memblock_alloc_try_nid_raw( 2437 huge_page_size(h), huge_page_size(h), 2438 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2439 if (addr) { 2440 /* 2441 * Use the beginning of the huge page to store the 2442 * huge_bootmem_page struct (until gather_bootmem 2443 * puts them into the mem_map). 2444 */ 2445 m = addr; 2446 goto found; 2447 } 2448 } 2449 return 0; 2450 2451 found: 2452 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2453 /* Put them into a private list first because mem_map is not up yet */ 2454 INIT_LIST_HEAD(&m->list); 2455 list_add(&m->list, &huge_boot_pages); 2456 m->hstate = h; 2457 return 1; 2458 } 2459 2460 static void __init prep_compound_huge_page(struct page *page, 2461 unsigned int order) 2462 { 2463 if (unlikely(order > (MAX_ORDER - 1))) 2464 prep_compound_gigantic_page(page, order); 2465 else 2466 prep_compound_page(page, order); 2467 } 2468 2469 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2470 static void __init gather_bootmem_prealloc(void) 2471 { 2472 struct huge_bootmem_page *m; 2473 2474 list_for_each_entry(m, &huge_boot_pages, list) { 2475 struct page *page = virt_to_page(m); 2476 struct hstate *h = m->hstate; 2477 2478 WARN_ON(page_count(page) != 1); 2479 prep_compound_huge_page(page, h->order); 2480 WARN_ON(PageReserved(page)); 2481 prep_new_huge_page(h, page, page_to_nid(page)); 2482 put_page(page); /* free it into the hugepage allocator */ 2483 2484 /* 2485 * If we had gigantic hugepages allocated at boot time, we need 2486 * to restore the 'stolen' pages to totalram_pages in order to 2487 * fix confusing memory reports from free(1) and another 2488 * side-effects, like CommitLimit going negative. 2489 */ 2490 if (hstate_is_gigantic(h)) 2491 adjust_managed_page_count(page, 1 << h->order); 2492 cond_resched(); 2493 } 2494 } 2495 2496 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2497 { 2498 unsigned long i; 2499 nodemask_t *node_alloc_noretry; 2500 2501 if (!hstate_is_gigantic(h)) { 2502 /* 2503 * Bit mask controlling how hard we retry per-node allocations. 2504 * Ignore errors as lower level routines can deal with 2505 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2506 * time, we are likely in bigger trouble. 2507 */ 2508 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2509 GFP_KERNEL); 2510 } else { 2511 /* allocations done at boot time */ 2512 node_alloc_noretry = NULL; 2513 } 2514 2515 /* bit mask controlling how hard we retry per-node allocations */ 2516 if (node_alloc_noretry) 2517 nodes_clear(*node_alloc_noretry); 2518 2519 for (i = 0; i < h->max_huge_pages; ++i) { 2520 if (hstate_is_gigantic(h)) { 2521 if (hugetlb_cma_size) { 2522 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2523 break; 2524 } 2525 if (!alloc_bootmem_huge_page(h)) 2526 break; 2527 } else if (!alloc_pool_huge_page(h, 2528 &node_states[N_MEMORY], 2529 node_alloc_noretry)) 2530 break; 2531 cond_resched(); 2532 } 2533 if (i < h->max_huge_pages) { 2534 char buf[32]; 2535 2536 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2537 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2538 h->max_huge_pages, buf, i); 2539 h->max_huge_pages = i; 2540 } 2541 2542 kfree(node_alloc_noretry); 2543 } 2544 2545 static void __init hugetlb_init_hstates(void) 2546 { 2547 struct hstate *h; 2548 2549 for_each_hstate(h) { 2550 if (minimum_order > huge_page_order(h)) 2551 minimum_order = huge_page_order(h); 2552 2553 /* oversize hugepages were init'ed in early boot */ 2554 if (!hstate_is_gigantic(h)) 2555 hugetlb_hstate_alloc_pages(h); 2556 } 2557 VM_BUG_ON(minimum_order == UINT_MAX); 2558 } 2559 2560 static void __init report_hugepages(void) 2561 { 2562 struct hstate *h; 2563 2564 for_each_hstate(h) { 2565 char buf[32]; 2566 2567 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2568 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2569 buf, h->free_huge_pages); 2570 } 2571 } 2572 2573 #ifdef CONFIG_HIGHMEM 2574 static void try_to_free_low(struct hstate *h, unsigned long count, 2575 nodemask_t *nodes_allowed) 2576 { 2577 int i; 2578 2579 if (hstate_is_gigantic(h)) 2580 return; 2581 2582 for_each_node_mask(i, *nodes_allowed) { 2583 struct page *page, *next; 2584 struct list_head *freel = &h->hugepage_freelists[i]; 2585 list_for_each_entry_safe(page, next, freel, lru) { 2586 if (count >= h->nr_huge_pages) 2587 return; 2588 if (PageHighMem(page)) 2589 continue; 2590 list_del(&page->lru); 2591 update_and_free_page(h, page); 2592 h->free_huge_pages--; 2593 h->free_huge_pages_node[page_to_nid(page)]--; 2594 } 2595 } 2596 } 2597 #else 2598 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2599 nodemask_t *nodes_allowed) 2600 { 2601 } 2602 #endif 2603 2604 /* 2605 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2606 * balanced by operating on them in a round-robin fashion. 2607 * Returns 1 if an adjustment was made. 2608 */ 2609 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2610 int delta) 2611 { 2612 int nr_nodes, node; 2613 2614 VM_BUG_ON(delta != -1 && delta != 1); 2615 2616 if (delta < 0) { 2617 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2618 if (h->surplus_huge_pages_node[node]) 2619 goto found; 2620 } 2621 } else { 2622 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2623 if (h->surplus_huge_pages_node[node] < 2624 h->nr_huge_pages_node[node]) 2625 goto found; 2626 } 2627 } 2628 return 0; 2629 2630 found: 2631 h->surplus_huge_pages += delta; 2632 h->surplus_huge_pages_node[node] += delta; 2633 return 1; 2634 } 2635 2636 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2637 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2638 nodemask_t *nodes_allowed) 2639 { 2640 unsigned long min_count, ret; 2641 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2642 2643 /* 2644 * Bit mask controlling how hard we retry per-node allocations. 2645 * If we can not allocate the bit mask, do not attempt to allocate 2646 * the requested huge pages. 2647 */ 2648 if (node_alloc_noretry) 2649 nodes_clear(*node_alloc_noretry); 2650 else 2651 return -ENOMEM; 2652 2653 spin_lock(&hugetlb_lock); 2654 2655 /* 2656 * Check for a node specific request. 2657 * Changing node specific huge page count may require a corresponding 2658 * change to the global count. In any case, the passed node mask 2659 * (nodes_allowed) will restrict alloc/free to the specified node. 2660 */ 2661 if (nid != NUMA_NO_NODE) { 2662 unsigned long old_count = count; 2663 2664 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2665 /* 2666 * User may have specified a large count value which caused the 2667 * above calculation to overflow. In this case, they wanted 2668 * to allocate as many huge pages as possible. Set count to 2669 * largest possible value to align with their intention. 2670 */ 2671 if (count < old_count) 2672 count = ULONG_MAX; 2673 } 2674 2675 /* 2676 * Gigantic pages runtime allocation depend on the capability for large 2677 * page range allocation. 2678 * If the system does not provide this feature, return an error when 2679 * the user tries to allocate gigantic pages but let the user free the 2680 * boottime allocated gigantic pages. 2681 */ 2682 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2683 if (count > persistent_huge_pages(h)) { 2684 spin_unlock(&hugetlb_lock); 2685 NODEMASK_FREE(node_alloc_noretry); 2686 return -EINVAL; 2687 } 2688 /* Fall through to decrease pool */ 2689 } 2690 2691 /* 2692 * Increase the pool size 2693 * First take pages out of surplus state. Then make up the 2694 * remaining difference by allocating fresh huge pages. 2695 * 2696 * We might race with alloc_surplus_huge_page() here and be unable 2697 * to convert a surplus huge page to a normal huge page. That is 2698 * not critical, though, it just means the overall size of the 2699 * pool might be one hugepage larger than it needs to be, but 2700 * within all the constraints specified by the sysctls. 2701 */ 2702 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2703 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2704 break; 2705 } 2706 2707 while (count > persistent_huge_pages(h)) { 2708 /* 2709 * If this allocation races such that we no longer need the 2710 * page, free_huge_page will handle it by freeing the page 2711 * and reducing the surplus. 2712 */ 2713 spin_unlock(&hugetlb_lock); 2714 2715 /* yield cpu to avoid soft lockup */ 2716 cond_resched(); 2717 2718 ret = alloc_pool_huge_page(h, nodes_allowed, 2719 node_alloc_noretry); 2720 spin_lock(&hugetlb_lock); 2721 if (!ret) 2722 goto out; 2723 2724 /* Bail for signals. Probably ctrl-c from user */ 2725 if (signal_pending(current)) 2726 goto out; 2727 } 2728 2729 /* 2730 * Decrease the pool size 2731 * First return free pages to the buddy allocator (being careful 2732 * to keep enough around to satisfy reservations). Then place 2733 * pages into surplus state as needed so the pool will shrink 2734 * to the desired size as pages become free. 2735 * 2736 * By placing pages into the surplus state independent of the 2737 * overcommit value, we are allowing the surplus pool size to 2738 * exceed overcommit. There are few sane options here. Since 2739 * alloc_surplus_huge_page() is checking the global counter, 2740 * though, we'll note that we're not allowed to exceed surplus 2741 * and won't grow the pool anywhere else. Not until one of the 2742 * sysctls are changed, or the surplus pages go out of use. 2743 */ 2744 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2745 min_count = max(count, min_count); 2746 try_to_free_low(h, min_count, nodes_allowed); 2747 while (min_count < persistent_huge_pages(h)) { 2748 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2749 break; 2750 cond_resched_lock(&hugetlb_lock); 2751 } 2752 while (count < persistent_huge_pages(h)) { 2753 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2754 break; 2755 } 2756 out: 2757 h->max_huge_pages = persistent_huge_pages(h); 2758 spin_unlock(&hugetlb_lock); 2759 2760 NODEMASK_FREE(node_alloc_noretry); 2761 2762 return 0; 2763 } 2764 2765 #define HSTATE_ATTR_RO(_name) \ 2766 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2767 2768 #define HSTATE_ATTR(_name) \ 2769 static struct kobj_attribute _name##_attr = \ 2770 __ATTR(_name, 0644, _name##_show, _name##_store) 2771 2772 static struct kobject *hugepages_kobj; 2773 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2774 2775 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2776 2777 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2778 { 2779 int i; 2780 2781 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2782 if (hstate_kobjs[i] == kobj) { 2783 if (nidp) 2784 *nidp = NUMA_NO_NODE; 2785 return &hstates[i]; 2786 } 2787 2788 return kobj_to_node_hstate(kobj, nidp); 2789 } 2790 2791 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2792 struct kobj_attribute *attr, char *buf) 2793 { 2794 struct hstate *h; 2795 unsigned long nr_huge_pages; 2796 int nid; 2797 2798 h = kobj_to_hstate(kobj, &nid); 2799 if (nid == NUMA_NO_NODE) 2800 nr_huge_pages = h->nr_huge_pages; 2801 else 2802 nr_huge_pages = h->nr_huge_pages_node[nid]; 2803 2804 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 2805 } 2806 2807 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2808 struct hstate *h, int nid, 2809 unsigned long count, size_t len) 2810 { 2811 int err; 2812 nodemask_t nodes_allowed, *n_mask; 2813 2814 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2815 return -EINVAL; 2816 2817 if (nid == NUMA_NO_NODE) { 2818 /* 2819 * global hstate attribute 2820 */ 2821 if (!(obey_mempolicy && 2822 init_nodemask_of_mempolicy(&nodes_allowed))) 2823 n_mask = &node_states[N_MEMORY]; 2824 else 2825 n_mask = &nodes_allowed; 2826 } else { 2827 /* 2828 * Node specific request. count adjustment happens in 2829 * set_max_huge_pages() after acquiring hugetlb_lock. 2830 */ 2831 init_nodemask_of_node(&nodes_allowed, nid); 2832 n_mask = &nodes_allowed; 2833 } 2834 2835 err = set_max_huge_pages(h, count, nid, n_mask); 2836 2837 return err ? err : len; 2838 } 2839 2840 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2841 struct kobject *kobj, const char *buf, 2842 size_t len) 2843 { 2844 struct hstate *h; 2845 unsigned long count; 2846 int nid; 2847 int err; 2848 2849 err = kstrtoul(buf, 10, &count); 2850 if (err) 2851 return err; 2852 2853 h = kobj_to_hstate(kobj, &nid); 2854 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2855 } 2856 2857 static ssize_t nr_hugepages_show(struct kobject *kobj, 2858 struct kobj_attribute *attr, char *buf) 2859 { 2860 return nr_hugepages_show_common(kobj, attr, buf); 2861 } 2862 2863 static ssize_t nr_hugepages_store(struct kobject *kobj, 2864 struct kobj_attribute *attr, const char *buf, size_t len) 2865 { 2866 return nr_hugepages_store_common(false, kobj, buf, len); 2867 } 2868 HSTATE_ATTR(nr_hugepages); 2869 2870 #ifdef CONFIG_NUMA 2871 2872 /* 2873 * hstate attribute for optionally mempolicy-based constraint on persistent 2874 * huge page alloc/free. 2875 */ 2876 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2877 struct kobj_attribute *attr, 2878 char *buf) 2879 { 2880 return nr_hugepages_show_common(kobj, attr, buf); 2881 } 2882 2883 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2884 struct kobj_attribute *attr, const char *buf, size_t len) 2885 { 2886 return nr_hugepages_store_common(true, kobj, buf, len); 2887 } 2888 HSTATE_ATTR(nr_hugepages_mempolicy); 2889 #endif 2890 2891 2892 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2893 struct kobj_attribute *attr, char *buf) 2894 { 2895 struct hstate *h = kobj_to_hstate(kobj, NULL); 2896 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 2897 } 2898 2899 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2900 struct kobj_attribute *attr, const char *buf, size_t count) 2901 { 2902 int err; 2903 unsigned long input; 2904 struct hstate *h = kobj_to_hstate(kobj, NULL); 2905 2906 if (hstate_is_gigantic(h)) 2907 return -EINVAL; 2908 2909 err = kstrtoul(buf, 10, &input); 2910 if (err) 2911 return err; 2912 2913 spin_lock(&hugetlb_lock); 2914 h->nr_overcommit_huge_pages = input; 2915 spin_unlock(&hugetlb_lock); 2916 2917 return count; 2918 } 2919 HSTATE_ATTR(nr_overcommit_hugepages); 2920 2921 static ssize_t free_hugepages_show(struct kobject *kobj, 2922 struct kobj_attribute *attr, char *buf) 2923 { 2924 struct hstate *h; 2925 unsigned long free_huge_pages; 2926 int nid; 2927 2928 h = kobj_to_hstate(kobj, &nid); 2929 if (nid == NUMA_NO_NODE) 2930 free_huge_pages = h->free_huge_pages; 2931 else 2932 free_huge_pages = h->free_huge_pages_node[nid]; 2933 2934 return sysfs_emit(buf, "%lu\n", free_huge_pages); 2935 } 2936 HSTATE_ATTR_RO(free_hugepages); 2937 2938 static ssize_t resv_hugepages_show(struct kobject *kobj, 2939 struct kobj_attribute *attr, char *buf) 2940 { 2941 struct hstate *h = kobj_to_hstate(kobj, NULL); 2942 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 2943 } 2944 HSTATE_ATTR_RO(resv_hugepages); 2945 2946 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2947 struct kobj_attribute *attr, char *buf) 2948 { 2949 struct hstate *h; 2950 unsigned long surplus_huge_pages; 2951 int nid; 2952 2953 h = kobj_to_hstate(kobj, &nid); 2954 if (nid == NUMA_NO_NODE) 2955 surplus_huge_pages = h->surplus_huge_pages; 2956 else 2957 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2958 2959 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 2960 } 2961 HSTATE_ATTR_RO(surplus_hugepages); 2962 2963 static struct attribute *hstate_attrs[] = { 2964 &nr_hugepages_attr.attr, 2965 &nr_overcommit_hugepages_attr.attr, 2966 &free_hugepages_attr.attr, 2967 &resv_hugepages_attr.attr, 2968 &surplus_hugepages_attr.attr, 2969 #ifdef CONFIG_NUMA 2970 &nr_hugepages_mempolicy_attr.attr, 2971 #endif 2972 NULL, 2973 }; 2974 2975 static const struct attribute_group hstate_attr_group = { 2976 .attrs = hstate_attrs, 2977 }; 2978 2979 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2980 struct kobject **hstate_kobjs, 2981 const struct attribute_group *hstate_attr_group) 2982 { 2983 int retval; 2984 int hi = hstate_index(h); 2985 2986 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2987 if (!hstate_kobjs[hi]) 2988 return -ENOMEM; 2989 2990 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2991 if (retval) 2992 kobject_put(hstate_kobjs[hi]); 2993 2994 return retval; 2995 } 2996 2997 static void __init hugetlb_sysfs_init(void) 2998 { 2999 struct hstate *h; 3000 int err; 3001 3002 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3003 if (!hugepages_kobj) 3004 return; 3005 3006 for_each_hstate(h) { 3007 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3008 hstate_kobjs, &hstate_attr_group); 3009 if (err) 3010 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3011 } 3012 } 3013 3014 #ifdef CONFIG_NUMA 3015 3016 /* 3017 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3018 * with node devices in node_devices[] using a parallel array. The array 3019 * index of a node device or _hstate == node id. 3020 * This is here to avoid any static dependency of the node device driver, in 3021 * the base kernel, on the hugetlb module. 3022 */ 3023 struct node_hstate { 3024 struct kobject *hugepages_kobj; 3025 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3026 }; 3027 static struct node_hstate node_hstates[MAX_NUMNODES]; 3028 3029 /* 3030 * A subset of global hstate attributes for node devices 3031 */ 3032 static struct attribute *per_node_hstate_attrs[] = { 3033 &nr_hugepages_attr.attr, 3034 &free_hugepages_attr.attr, 3035 &surplus_hugepages_attr.attr, 3036 NULL, 3037 }; 3038 3039 static const struct attribute_group per_node_hstate_attr_group = { 3040 .attrs = per_node_hstate_attrs, 3041 }; 3042 3043 /* 3044 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3045 * Returns node id via non-NULL nidp. 3046 */ 3047 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3048 { 3049 int nid; 3050 3051 for (nid = 0; nid < nr_node_ids; nid++) { 3052 struct node_hstate *nhs = &node_hstates[nid]; 3053 int i; 3054 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3055 if (nhs->hstate_kobjs[i] == kobj) { 3056 if (nidp) 3057 *nidp = nid; 3058 return &hstates[i]; 3059 } 3060 } 3061 3062 BUG(); 3063 return NULL; 3064 } 3065 3066 /* 3067 * Unregister hstate attributes from a single node device. 3068 * No-op if no hstate attributes attached. 3069 */ 3070 static void hugetlb_unregister_node(struct node *node) 3071 { 3072 struct hstate *h; 3073 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3074 3075 if (!nhs->hugepages_kobj) 3076 return; /* no hstate attributes */ 3077 3078 for_each_hstate(h) { 3079 int idx = hstate_index(h); 3080 if (nhs->hstate_kobjs[idx]) { 3081 kobject_put(nhs->hstate_kobjs[idx]); 3082 nhs->hstate_kobjs[idx] = NULL; 3083 } 3084 } 3085 3086 kobject_put(nhs->hugepages_kobj); 3087 nhs->hugepages_kobj = NULL; 3088 } 3089 3090 3091 /* 3092 * Register hstate attributes for a single node device. 3093 * No-op if attributes already registered. 3094 */ 3095 static void hugetlb_register_node(struct node *node) 3096 { 3097 struct hstate *h; 3098 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3099 int err; 3100 3101 if (nhs->hugepages_kobj) 3102 return; /* already allocated */ 3103 3104 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3105 &node->dev.kobj); 3106 if (!nhs->hugepages_kobj) 3107 return; 3108 3109 for_each_hstate(h) { 3110 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3111 nhs->hstate_kobjs, 3112 &per_node_hstate_attr_group); 3113 if (err) { 3114 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3115 h->name, node->dev.id); 3116 hugetlb_unregister_node(node); 3117 break; 3118 } 3119 } 3120 } 3121 3122 /* 3123 * hugetlb init time: register hstate attributes for all registered node 3124 * devices of nodes that have memory. All on-line nodes should have 3125 * registered their associated device by this time. 3126 */ 3127 static void __init hugetlb_register_all_nodes(void) 3128 { 3129 int nid; 3130 3131 for_each_node_state(nid, N_MEMORY) { 3132 struct node *node = node_devices[nid]; 3133 if (node->dev.id == nid) 3134 hugetlb_register_node(node); 3135 } 3136 3137 /* 3138 * Let the node device driver know we're here so it can 3139 * [un]register hstate attributes on node hotplug. 3140 */ 3141 register_hugetlbfs_with_node(hugetlb_register_node, 3142 hugetlb_unregister_node); 3143 } 3144 #else /* !CONFIG_NUMA */ 3145 3146 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3147 { 3148 BUG(); 3149 if (nidp) 3150 *nidp = -1; 3151 return NULL; 3152 } 3153 3154 static void hugetlb_register_all_nodes(void) { } 3155 3156 #endif 3157 3158 static int __init hugetlb_init(void) 3159 { 3160 int i; 3161 3162 if (!hugepages_supported()) { 3163 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3164 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3165 return 0; 3166 } 3167 3168 /* 3169 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3170 * architectures depend on setup being done here. 3171 */ 3172 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3173 if (!parsed_default_hugepagesz) { 3174 /* 3175 * If we did not parse a default huge page size, set 3176 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3177 * number of huge pages for this default size was implicitly 3178 * specified, set that here as well. 3179 * Note that the implicit setting will overwrite an explicit 3180 * setting. A warning will be printed in this case. 3181 */ 3182 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3183 if (default_hstate_max_huge_pages) { 3184 if (default_hstate.max_huge_pages) { 3185 char buf[32]; 3186 3187 string_get_size(huge_page_size(&default_hstate), 3188 1, STRING_UNITS_2, buf, 32); 3189 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3190 default_hstate.max_huge_pages, buf); 3191 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3192 default_hstate_max_huge_pages); 3193 } 3194 default_hstate.max_huge_pages = 3195 default_hstate_max_huge_pages; 3196 } 3197 } 3198 3199 hugetlb_cma_check(); 3200 hugetlb_init_hstates(); 3201 gather_bootmem_prealloc(); 3202 report_hugepages(); 3203 3204 hugetlb_sysfs_init(); 3205 hugetlb_register_all_nodes(); 3206 hugetlb_cgroup_file_init(); 3207 3208 #ifdef CONFIG_SMP 3209 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3210 #else 3211 num_fault_mutexes = 1; 3212 #endif 3213 hugetlb_fault_mutex_table = 3214 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3215 GFP_KERNEL); 3216 BUG_ON(!hugetlb_fault_mutex_table); 3217 3218 for (i = 0; i < num_fault_mutexes; i++) 3219 mutex_init(&hugetlb_fault_mutex_table[i]); 3220 return 0; 3221 } 3222 subsys_initcall(hugetlb_init); 3223 3224 /* Overwritten by architectures with more huge page sizes */ 3225 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3226 { 3227 return size == HPAGE_SIZE; 3228 } 3229 3230 void __init hugetlb_add_hstate(unsigned int order) 3231 { 3232 struct hstate *h; 3233 unsigned long i; 3234 3235 if (size_to_hstate(PAGE_SIZE << order)) { 3236 return; 3237 } 3238 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3239 BUG_ON(order == 0); 3240 h = &hstates[hugetlb_max_hstate++]; 3241 h->order = order; 3242 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3243 for (i = 0; i < MAX_NUMNODES; ++i) 3244 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3245 INIT_LIST_HEAD(&h->hugepage_activelist); 3246 h->next_nid_to_alloc = first_memory_node; 3247 h->next_nid_to_free = first_memory_node; 3248 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3249 huge_page_size(h)/1024); 3250 3251 parsed_hstate = h; 3252 } 3253 3254 /* 3255 * hugepages command line processing 3256 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3257 * specification. If not, ignore the hugepages value. hugepages can also 3258 * be the first huge page command line option in which case it implicitly 3259 * specifies the number of huge pages for the default size. 3260 */ 3261 static int __init hugepages_setup(char *s) 3262 { 3263 unsigned long *mhp; 3264 static unsigned long *last_mhp; 3265 3266 if (!parsed_valid_hugepagesz) { 3267 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3268 parsed_valid_hugepagesz = true; 3269 return 0; 3270 } 3271 3272 /* 3273 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3274 * yet, so this hugepages= parameter goes to the "default hstate". 3275 * Otherwise, it goes with the previously parsed hugepagesz or 3276 * default_hugepagesz. 3277 */ 3278 else if (!hugetlb_max_hstate) 3279 mhp = &default_hstate_max_huge_pages; 3280 else 3281 mhp = &parsed_hstate->max_huge_pages; 3282 3283 if (mhp == last_mhp) { 3284 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3285 return 0; 3286 } 3287 3288 if (sscanf(s, "%lu", mhp) <= 0) 3289 *mhp = 0; 3290 3291 /* 3292 * Global state is always initialized later in hugetlb_init. 3293 * But we need to allocate >= MAX_ORDER hstates here early to still 3294 * use the bootmem allocator. 3295 */ 3296 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3297 hugetlb_hstate_alloc_pages(parsed_hstate); 3298 3299 last_mhp = mhp; 3300 3301 return 1; 3302 } 3303 __setup("hugepages=", hugepages_setup); 3304 3305 /* 3306 * hugepagesz command line processing 3307 * A specific huge page size can only be specified once with hugepagesz. 3308 * hugepagesz is followed by hugepages on the command line. The global 3309 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3310 * hugepagesz argument was valid. 3311 */ 3312 static int __init hugepagesz_setup(char *s) 3313 { 3314 unsigned long size; 3315 struct hstate *h; 3316 3317 parsed_valid_hugepagesz = false; 3318 size = (unsigned long)memparse(s, NULL); 3319 3320 if (!arch_hugetlb_valid_size(size)) { 3321 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3322 return 0; 3323 } 3324 3325 h = size_to_hstate(size); 3326 if (h) { 3327 /* 3328 * hstate for this size already exists. This is normally 3329 * an error, but is allowed if the existing hstate is the 3330 * default hstate. More specifically, it is only allowed if 3331 * the number of huge pages for the default hstate was not 3332 * previously specified. 3333 */ 3334 if (!parsed_default_hugepagesz || h != &default_hstate || 3335 default_hstate.max_huge_pages) { 3336 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3337 return 0; 3338 } 3339 3340 /* 3341 * No need to call hugetlb_add_hstate() as hstate already 3342 * exists. But, do set parsed_hstate so that a following 3343 * hugepages= parameter will be applied to this hstate. 3344 */ 3345 parsed_hstate = h; 3346 parsed_valid_hugepagesz = true; 3347 return 1; 3348 } 3349 3350 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3351 parsed_valid_hugepagesz = true; 3352 return 1; 3353 } 3354 __setup("hugepagesz=", hugepagesz_setup); 3355 3356 /* 3357 * default_hugepagesz command line input 3358 * Only one instance of default_hugepagesz allowed on command line. 3359 */ 3360 static int __init default_hugepagesz_setup(char *s) 3361 { 3362 unsigned long size; 3363 3364 parsed_valid_hugepagesz = false; 3365 if (parsed_default_hugepagesz) { 3366 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3367 return 0; 3368 } 3369 3370 size = (unsigned long)memparse(s, NULL); 3371 3372 if (!arch_hugetlb_valid_size(size)) { 3373 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3374 return 0; 3375 } 3376 3377 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3378 parsed_valid_hugepagesz = true; 3379 parsed_default_hugepagesz = true; 3380 default_hstate_idx = hstate_index(size_to_hstate(size)); 3381 3382 /* 3383 * The number of default huge pages (for this size) could have been 3384 * specified as the first hugetlb parameter: hugepages=X. If so, 3385 * then default_hstate_max_huge_pages is set. If the default huge 3386 * page size is gigantic (>= MAX_ORDER), then the pages must be 3387 * allocated here from bootmem allocator. 3388 */ 3389 if (default_hstate_max_huge_pages) { 3390 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3391 if (hstate_is_gigantic(&default_hstate)) 3392 hugetlb_hstate_alloc_pages(&default_hstate); 3393 default_hstate_max_huge_pages = 0; 3394 } 3395 3396 return 1; 3397 } 3398 __setup("default_hugepagesz=", default_hugepagesz_setup); 3399 3400 static unsigned int allowed_mems_nr(struct hstate *h) 3401 { 3402 int node; 3403 unsigned int nr = 0; 3404 nodemask_t *mpol_allowed; 3405 unsigned int *array = h->free_huge_pages_node; 3406 gfp_t gfp_mask = htlb_alloc_mask(h); 3407 3408 mpol_allowed = policy_nodemask_current(gfp_mask); 3409 3410 for_each_node_mask(node, cpuset_current_mems_allowed) { 3411 if (!mpol_allowed || 3412 (mpol_allowed && node_isset(node, *mpol_allowed))) 3413 nr += array[node]; 3414 } 3415 3416 return nr; 3417 } 3418 3419 #ifdef CONFIG_SYSCTL 3420 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3421 void *buffer, size_t *length, 3422 loff_t *ppos, unsigned long *out) 3423 { 3424 struct ctl_table dup_table; 3425 3426 /* 3427 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3428 * can duplicate the @table and alter the duplicate of it. 3429 */ 3430 dup_table = *table; 3431 dup_table.data = out; 3432 3433 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3434 } 3435 3436 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3437 struct ctl_table *table, int write, 3438 void *buffer, size_t *length, loff_t *ppos) 3439 { 3440 struct hstate *h = &default_hstate; 3441 unsigned long tmp = h->max_huge_pages; 3442 int ret; 3443 3444 if (!hugepages_supported()) 3445 return -EOPNOTSUPP; 3446 3447 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3448 &tmp); 3449 if (ret) 3450 goto out; 3451 3452 if (write) 3453 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3454 NUMA_NO_NODE, tmp, *length); 3455 out: 3456 return ret; 3457 } 3458 3459 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3460 void *buffer, size_t *length, loff_t *ppos) 3461 { 3462 3463 return hugetlb_sysctl_handler_common(false, table, write, 3464 buffer, length, ppos); 3465 } 3466 3467 #ifdef CONFIG_NUMA 3468 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3469 void *buffer, size_t *length, loff_t *ppos) 3470 { 3471 return hugetlb_sysctl_handler_common(true, table, write, 3472 buffer, length, ppos); 3473 } 3474 #endif /* CONFIG_NUMA */ 3475 3476 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3477 void *buffer, size_t *length, loff_t *ppos) 3478 { 3479 struct hstate *h = &default_hstate; 3480 unsigned long tmp; 3481 int ret; 3482 3483 if (!hugepages_supported()) 3484 return -EOPNOTSUPP; 3485 3486 tmp = h->nr_overcommit_huge_pages; 3487 3488 if (write && hstate_is_gigantic(h)) 3489 return -EINVAL; 3490 3491 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3492 &tmp); 3493 if (ret) 3494 goto out; 3495 3496 if (write) { 3497 spin_lock(&hugetlb_lock); 3498 h->nr_overcommit_huge_pages = tmp; 3499 spin_unlock(&hugetlb_lock); 3500 } 3501 out: 3502 return ret; 3503 } 3504 3505 #endif /* CONFIG_SYSCTL */ 3506 3507 void hugetlb_report_meminfo(struct seq_file *m) 3508 { 3509 struct hstate *h; 3510 unsigned long total = 0; 3511 3512 if (!hugepages_supported()) 3513 return; 3514 3515 for_each_hstate(h) { 3516 unsigned long count = h->nr_huge_pages; 3517 3518 total += (PAGE_SIZE << huge_page_order(h)) * count; 3519 3520 if (h == &default_hstate) 3521 seq_printf(m, 3522 "HugePages_Total: %5lu\n" 3523 "HugePages_Free: %5lu\n" 3524 "HugePages_Rsvd: %5lu\n" 3525 "HugePages_Surp: %5lu\n" 3526 "Hugepagesize: %8lu kB\n", 3527 count, 3528 h->free_huge_pages, 3529 h->resv_huge_pages, 3530 h->surplus_huge_pages, 3531 (PAGE_SIZE << huge_page_order(h)) / 1024); 3532 } 3533 3534 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3535 } 3536 3537 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3538 { 3539 struct hstate *h = &default_hstate; 3540 3541 if (!hugepages_supported()) 3542 return 0; 3543 3544 return sysfs_emit_at(buf, len, 3545 "Node %d HugePages_Total: %5u\n" 3546 "Node %d HugePages_Free: %5u\n" 3547 "Node %d HugePages_Surp: %5u\n", 3548 nid, h->nr_huge_pages_node[nid], 3549 nid, h->free_huge_pages_node[nid], 3550 nid, h->surplus_huge_pages_node[nid]); 3551 } 3552 3553 void hugetlb_show_meminfo(void) 3554 { 3555 struct hstate *h; 3556 int nid; 3557 3558 if (!hugepages_supported()) 3559 return; 3560 3561 for_each_node_state(nid, N_MEMORY) 3562 for_each_hstate(h) 3563 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3564 nid, 3565 h->nr_huge_pages_node[nid], 3566 h->free_huge_pages_node[nid], 3567 h->surplus_huge_pages_node[nid], 3568 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3569 } 3570 3571 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3572 { 3573 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3574 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3575 } 3576 3577 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3578 unsigned long hugetlb_total_pages(void) 3579 { 3580 struct hstate *h; 3581 unsigned long nr_total_pages = 0; 3582 3583 for_each_hstate(h) 3584 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3585 return nr_total_pages; 3586 } 3587 3588 static int hugetlb_acct_memory(struct hstate *h, long delta) 3589 { 3590 int ret = -ENOMEM; 3591 3592 spin_lock(&hugetlb_lock); 3593 /* 3594 * When cpuset is configured, it breaks the strict hugetlb page 3595 * reservation as the accounting is done on a global variable. Such 3596 * reservation is completely rubbish in the presence of cpuset because 3597 * the reservation is not checked against page availability for the 3598 * current cpuset. Application can still potentially OOM'ed by kernel 3599 * with lack of free htlb page in cpuset that the task is in. 3600 * Attempt to enforce strict accounting with cpuset is almost 3601 * impossible (or too ugly) because cpuset is too fluid that 3602 * task or memory node can be dynamically moved between cpusets. 3603 * 3604 * The change of semantics for shared hugetlb mapping with cpuset is 3605 * undesirable. However, in order to preserve some of the semantics, 3606 * we fall back to check against current free page availability as 3607 * a best attempt and hopefully to minimize the impact of changing 3608 * semantics that cpuset has. 3609 * 3610 * Apart from cpuset, we also have memory policy mechanism that 3611 * also determines from which node the kernel will allocate memory 3612 * in a NUMA system. So similar to cpuset, we also should consider 3613 * the memory policy of the current task. Similar to the description 3614 * above. 3615 */ 3616 if (delta > 0) { 3617 if (gather_surplus_pages(h, delta) < 0) 3618 goto out; 3619 3620 if (delta > allowed_mems_nr(h)) { 3621 return_unused_surplus_pages(h, delta); 3622 goto out; 3623 } 3624 } 3625 3626 ret = 0; 3627 if (delta < 0) 3628 return_unused_surplus_pages(h, (unsigned long) -delta); 3629 3630 out: 3631 spin_unlock(&hugetlb_lock); 3632 return ret; 3633 } 3634 3635 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3636 { 3637 struct resv_map *resv = vma_resv_map(vma); 3638 3639 /* 3640 * This new VMA should share its siblings reservation map if present. 3641 * The VMA will only ever have a valid reservation map pointer where 3642 * it is being copied for another still existing VMA. As that VMA 3643 * has a reference to the reservation map it cannot disappear until 3644 * after this open call completes. It is therefore safe to take a 3645 * new reference here without additional locking. 3646 */ 3647 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3648 kref_get(&resv->refs); 3649 } 3650 3651 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3652 { 3653 struct hstate *h = hstate_vma(vma); 3654 struct resv_map *resv = vma_resv_map(vma); 3655 struct hugepage_subpool *spool = subpool_vma(vma); 3656 unsigned long reserve, start, end; 3657 long gbl_reserve; 3658 3659 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3660 return; 3661 3662 start = vma_hugecache_offset(h, vma, vma->vm_start); 3663 end = vma_hugecache_offset(h, vma, vma->vm_end); 3664 3665 reserve = (end - start) - region_count(resv, start, end); 3666 hugetlb_cgroup_uncharge_counter(resv, start, end); 3667 if (reserve) { 3668 /* 3669 * Decrement reserve counts. The global reserve count may be 3670 * adjusted if the subpool has a minimum size. 3671 */ 3672 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3673 hugetlb_acct_memory(h, -gbl_reserve); 3674 } 3675 3676 kref_put(&resv->refs, resv_map_release); 3677 } 3678 3679 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3680 { 3681 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3682 return -EINVAL; 3683 return 0; 3684 } 3685 3686 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3687 { 3688 struct hstate *hstate = hstate_vma(vma); 3689 3690 return 1UL << huge_page_shift(hstate); 3691 } 3692 3693 /* 3694 * We cannot handle pagefaults against hugetlb pages at all. They cause 3695 * handle_mm_fault() to try to instantiate regular-sized pages in the 3696 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3697 * this far. 3698 */ 3699 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3700 { 3701 BUG(); 3702 return 0; 3703 } 3704 3705 /* 3706 * When a new function is introduced to vm_operations_struct and added 3707 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3708 * This is because under System V memory model, mappings created via 3709 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3710 * their original vm_ops are overwritten with shm_vm_ops. 3711 */ 3712 const struct vm_operations_struct hugetlb_vm_ops = { 3713 .fault = hugetlb_vm_op_fault, 3714 .open = hugetlb_vm_op_open, 3715 .close = hugetlb_vm_op_close, 3716 .may_split = hugetlb_vm_op_split, 3717 .pagesize = hugetlb_vm_op_pagesize, 3718 }; 3719 3720 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3721 int writable) 3722 { 3723 pte_t entry; 3724 3725 if (writable) { 3726 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3727 vma->vm_page_prot))); 3728 } else { 3729 entry = huge_pte_wrprotect(mk_huge_pte(page, 3730 vma->vm_page_prot)); 3731 } 3732 entry = pte_mkyoung(entry); 3733 entry = pte_mkhuge(entry); 3734 entry = arch_make_huge_pte(entry, vma, page, writable); 3735 3736 return entry; 3737 } 3738 3739 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3740 unsigned long address, pte_t *ptep) 3741 { 3742 pte_t entry; 3743 3744 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3745 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3746 update_mmu_cache(vma, address, ptep); 3747 } 3748 3749 bool is_hugetlb_entry_migration(pte_t pte) 3750 { 3751 swp_entry_t swp; 3752 3753 if (huge_pte_none(pte) || pte_present(pte)) 3754 return false; 3755 swp = pte_to_swp_entry(pte); 3756 if (is_migration_entry(swp)) 3757 return true; 3758 else 3759 return false; 3760 } 3761 3762 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3763 { 3764 swp_entry_t swp; 3765 3766 if (huge_pte_none(pte) || pte_present(pte)) 3767 return false; 3768 swp = pte_to_swp_entry(pte); 3769 if (is_hwpoison_entry(swp)) 3770 return true; 3771 else 3772 return false; 3773 } 3774 3775 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3776 struct vm_area_struct *vma) 3777 { 3778 pte_t *src_pte, *dst_pte, entry, dst_entry; 3779 struct page *ptepage; 3780 unsigned long addr; 3781 int cow; 3782 struct hstate *h = hstate_vma(vma); 3783 unsigned long sz = huge_page_size(h); 3784 struct address_space *mapping = vma->vm_file->f_mapping; 3785 struct mmu_notifier_range range; 3786 int ret = 0; 3787 3788 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3789 3790 if (cow) { 3791 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3792 vma->vm_start, 3793 vma->vm_end); 3794 mmu_notifier_invalidate_range_start(&range); 3795 } else { 3796 /* 3797 * For shared mappings i_mmap_rwsem must be held to call 3798 * huge_pte_alloc, otherwise the returned ptep could go 3799 * away if part of a shared pmd and another thread calls 3800 * huge_pmd_unshare. 3801 */ 3802 i_mmap_lock_read(mapping); 3803 } 3804 3805 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3806 spinlock_t *src_ptl, *dst_ptl; 3807 src_pte = huge_pte_offset(src, addr, sz); 3808 if (!src_pte) 3809 continue; 3810 dst_pte = huge_pte_alloc(dst, addr, sz); 3811 if (!dst_pte) { 3812 ret = -ENOMEM; 3813 break; 3814 } 3815 3816 /* 3817 * If the pagetables are shared don't copy or take references. 3818 * dst_pte == src_pte is the common case of src/dest sharing. 3819 * 3820 * However, src could have 'unshared' and dst shares with 3821 * another vma. If dst_pte !none, this implies sharing. 3822 * Check here before taking page table lock, and once again 3823 * after taking the lock below. 3824 */ 3825 dst_entry = huge_ptep_get(dst_pte); 3826 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3827 continue; 3828 3829 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3830 src_ptl = huge_pte_lockptr(h, src, src_pte); 3831 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3832 entry = huge_ptep_get(src_pte); 3833 dst_entry = huge_ptep_get(dst_pte); 3834 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3835 /* 3836 * Skip if src entry none. Also, skip in the 3837 * unlikely case dst entry !none as this implies 3838 * sharing with another vma. 3839 */ 3840 ; 3841 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3842 is_hugetlb_entry_hwpoisoned(entry))) { 3843 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3844 3845 if (is_write_migration_entry(swp_entry) && cow) { 3846 /* 3847 * COW mappings require pages in both 3848 * parent and child to be set to read. 3849 */ 3850 make_migration_entry_read(&swp_entry); 3851 entry = swp_entry_to_pte(swp_entry); 3852 set_huge_swap_pte_at(src, addr, src_pte, 3853 entry, sz); 3854 } 3855 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3856 } else { 3857 if (cow) { 3858 /* 3859 * No need to notify as we are downgrading page 3860 * table protection not changing it to point 3861 * to a new page. 3862 * 3863 * See Documentation/vm/mmu_notifier.rst 3864 */ 3865 huge_ptep_set_wrprotect(src, addr, src_pte); 3866 } 3867 entry = huge_ptep_get(src_pte); 3868 ptepage = pte_page(entry); 3869 get_page(ptepage); 3870 page_dup_rmap(ptepage, true); 3871 set_huge_pte_at(dst, addr, dst_pte, entry); 3872 hugetlb_count_add(pages_per_huge_page(h), dst); 3873 } 3874 spin_unlock(src_ptl); 3875 spin_unlock(dst_ptl); 3876 } 3877 3878 if (cow) 3879 mmu_notifier_invalidate_range_end(&range); 3880 else 3881 i_mmap_unlock_read(mapping); 3882 3883 return ret; 3884 } 3885 3886 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3887 unsigned long start, unsigned long end, 3888 struct page *ref_page) 3889 { 3890 struct mm_struct *mm = vma->vm_mm; 3891 unsigned long address; 3892 pte_t *ptep; 3893 pte_t pte; 3894 spinlock_t *ptl; 3895 struct page *page; 3896 struct hstate *h = hstate_vma(vma); 3897 unsigned long sz = huge_page_size(h); 3898 struct mmu_notifier_range range; 3899 3900 WARN_ON(!is_vm_hugetlb_page(vma)); 3901 BUG_ON(start & ~huge_page_mask(h)); 3902 BUG_ON(end & ~huge_page_mask(h)); 3903 3904 /* 3905 * This is a hugetlb vma, all the pte entries should point 3906 * to huge page. 3907 */ 3908 tlb_change_page_size(tlb, sz); 3909 tlb_start_vma(tlb, vma); 3910 3911 /* 3912 * If sharing possible, alert mmu notifiers of worst case. 3913 */ 3914 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3915 end); 3916 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3917 mmu_notifier_invalidate_range_start(&range); 3918 address = start; 3919 for (; address < end; address += sz) { 3920 ptep = huge_pte_offset(mm, address, sz); 3921 if (!ptep) 3922 continue; 3923 3924 ptl = huge_pte_lock(h, mm, ptep); 3925 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3926 spin_unlock(ptl); 3927 /* 3928 * We just unmapped a page of PMDs by clearing a PUD. 3929 * The caller's TLB flush range should cover this area. 3930 */ 3931 continue; 3932 } 3933 3934 pte = huge_ptep_get(ptep); 3935 if (huge_pte_none(pte)) { 3936 spin_unlock(ptl); 3937 continue; 3938 } 3939 3940 /* 3941 * Migrating hugepage or HWPoisoned hugepage is already 3942 * unmapped and its refcount is dropped, so just clear pte here. 3943 */ 3944 if (unlikely(!pte_present(pte))) { 3945 huge_pte_clear(mm, address, ptep, sz); 3946 spin_unlock(ptl); 3947 continue; 3948 } 3949 3950 page = pte_page(pte); 3951 /* 3952 * If a reference page is supplied, it is because a specific 3953 * page is being unmapped, not a range. Ensure the page we 3954 * are about to unmap is the actual page of interest. 3955 */ 3956 if (ref_page) { 3957 if (page != ref_page) { 3958 spin_unlock(ptl); 3959 continue; 3960 } 3961 /* 3962 * Mark the VMA as having unmapped its page so that 3963 * future faults in this VMA will fail rather than 3964 * looking like data was lost 3965 */ 3966 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3967 } 3968 3969 pte = huge_ptep_get_and_clear(mm, address, ptep); 3970 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3971 if (huge_pte_dirty(pte)) 3972 set_page_dirty(page); 3973 3974 hugetlb_count_sub(pages_per_huge_page(h), mm); 3975 page_remove_rmap(page, true); 3976 3977 spin_unlock(ptl); 3978 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3979 /* 3980 * Bail out after unmapping reference page if supplied 3981 */ 3982 if (ref_page) 3983 break; 3984 } 3985 mmu_notifier_invalidate_range_end(&range); 3986 tlb_end_vma(tlb, vma); 3987 } 3988 3989 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3990 struct vm_area_struct *vma, unsigned long start, 3991 unsigned long end, struct page *ref_page) 3992 { 3993 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3994 3995 /* 3996 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3997 * test will fail on a vma being torn down, and not grab a page table 3998 * on its way out. We're lucky that the flag has such an appropriate 3999 * name, and can in fact be safely cleared here. We could clear it 4000 * before the __unmap_hugepage_range above, but all that's necessary 4001 * is to clear it before releasing the i_mmap_rwsem. This works 4002 * because in the context this is called, the VMA is about to be 4003 * destroyed and the i_mmap_rwsem is held. 4004 */ 4005 vma->vm_flags &= ~VM_MAYSHARE; 4006 } 4007 4008 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4009 unsigned long end, struct page *ref_page) 4010 { 4011 struct mm_struct *mm; 4012 struct mmu_gather tlb; 4013 unsigned long tlb_start = start; 4014 unsigned long tlb_end = end; 4015 4016 /* 4017 * If shared PMDs were possibly used within this vma range, adjust 4018 * start/end for worst case tlb flushing. 4019 * Note that we can not be sure if PMDs are shared until we try to 4020 * unmap pages. However, we want to make sure TLB flushing covers 4021 * the largest possible range. 4022 */ 4023 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 4024 4025 mm = vma->vm_mm; 4026 4027 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 4028 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4029 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 4030 } 4031 4032 /* 4033 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4034 * mappping it owns the reserve page for. The intention is to unmap the page 4035 * from other VMAs and let the children be SIGKILLed if they are faulting the 4036 * same region. 4037 */ 4038 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4039 struct page *page, unsigned long address) 4040 { 4041 struct hstate *h = hstate_vma(vma); 4042 struct vm_area_struct *iter_vma; 4043 struct address_space *mapping; 4044 pgoff_t pgoff; 4045 4046 /* 4047 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4048 * from page cache lookup which is in HPAGE_SIZE units. 4049 */ 4050 address = address & huge_page_mask(h); 4051 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4052 vma->vm_pgoff; 4053 mapping = vma->vm_file->f_mapping; 4054 4055 /* 4056 * Take the mapping lock for the duration of the table walk. As 4057 * this mapping should be shared between all the VMAs, 4058 * __unmap_hugepage_range() is called as the lock is already held 4059 */ 4060 i_mmap_lock_write(mapping); 4061 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4062 /* Do not unmap the current VMA */ 4063 if (iter_vma == vma) 4064 continue; 4065 4066 /* 4067 * Shared VMAs have their own reserves and do not affect 4068 * MAP_PRIVATE accounting but it is possible that a shared 4069 * VMA is using the same page so check and skip such VMAs. 4070 */ 4071 if (iter_vma->vm_flags & VM_MAYSHARE) 4072 continue; 4073 4074 /* 4075 * Unmap the page from other VMAs without their own reserves. 4076 * They get marked to be SIGKILLed if they fault in these 4077 * areas. This is because a future no-page fault on this VMA 4078 * could insert a zeroed page instead of the data existing 4079 * from the time of fork. This would look like data corruption 4080 */ 4081 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4082 unmap_hugepage_range(iter_vma, address, 4083 address + huge_page_size(h), page); 4084 } 4085 i_mmap_unlock_write(mapping); 4086 } 4087 4088 /* 4089 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4090 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4091 * cannot race with other handlers or page migration. 4092 * Keep the pte_same checks anyway to make transition from the mutex easier. 4093 */ 4094 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4095 unsigned long address, pte_t *ptep, 4096 struct page *pagecache_page, spinlock_t *ptl) 4097 { 4098 pte_t pte; 4099 struct hstate *h = hstate_vma(vma); 4100 struct page *old_page, *new_page; 4101 int outside_reserve = 0; 4102 vm_fault_t ret = 0; 4103 unsigned long haddr = address & huge_page_mask(h); 4104 struct mmu_notifier_range range; 4105 4106 pte = huge_ptep_get(ptep); 4107 old_page = pte_page(pte); 4108 4109 retry_avoidcopy: 4110 /* If no-one else is actually using this page, avoid the copy 4111 * and just make the page writable */ 4112 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4113 page_move_anon_rmap(old_page, vma); 4114 set_huge_ptep_writable(vma, haddr, ptep); 4115 return 0; 4116 } 4117 4118 /* 4119 * If the process that created a MAP_PRIVATE mapping is about to 4120 * perform a COW due to a shared page count, attempt to satisfy 4121 * the allocation without using the existing reserves. The pagecache 4122 * page is used to determine if the reserve at this address was 4123 * consumed or not. If reserves were used, a partial faulted mapping 4124 * at the time of fork() could consume its reserves on COW instead 4125 * of the full address range. 4126 */ 4127 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4128 old_page != pagecache_page) 4129 outside_reserve = 1; 4130 4131 get_page(old_page); 4132 4133 /* 4134 * Drop page table lock as buddy allocator may be called. It will 4135 * be acquired again before returning to the caller, as expected. 4136 */ 4137 spin_unlock(ptl); 4138 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4139 4140 if (IS_ERR(new_page)) { 4141 /* 4142 * If a process owning a MAP_PRIVATE mapping fails to COW, 4143 * it is due to references held by a child and an insufficient 4144 * huge page pool. To guarantee the original mappers 4145 * reliability, unmap the page from child processes. The child 4146 * may get SIGKILLed if it later faults. 4147 */ 4148 if (outside_reserve) { 4149 struct address_space *mapping = vma->vm_file->f_mapping; 4150 pgoff_t idx; 4151 u32 hash; 4152 4153 put_page(old_page); 4154 BUG_ON(huge_pte_none(pte)); 4155 /* 4156 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4157 * unmapping. unmapping needs to hold i_mmap_rwsem 4158 * in write mode. Dropping i_mmap_rwsem in read mode 4159 * here is OK as COW mappings do not interact with 4160 * PMD sharing. 4161 * 4162 * Reacquire both after unmap operation. 4163 */ 4164 idx = vma_hugecache_offset(h, vma, haddr); 4165 hash = hugetlb_fault_mutex_hash(mapping, idx); 4166 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4167 i_mmap_unlock_read(mapping); 4168 4169 unmap_ref_private(mm, vma, old_page, haddr); 4170 4171 i_mmap_lock_read(mapping); 4172 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4173 spin_lock(ptl); 4174 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4175 if (likely(ptep && 4176 pte_same(huge_ptep_get(ptep), pte))) 4177 goto retry_avoidcopy; 4178 /* 4179 * race occurs while re-acquiring page table 4180 * lock, and our job is done. 4181 */ 4182 return 0; 4183 } 4184 4185 ret = vmf_error(PTR_ERR(new_page)); 4186 goto out_release_old; 4187 } 4188 4189 /* 4190 * When the original hugepage is shared one, it does not have 4191 * anon_vma prepared. 4192 */ 4193 if (unlikely(anon_vma_prepare(vma))) { 4194 ret = VM_FAULT_OOM; 4195 goto out_release_all; 4196 } 4197 4198 copy_user_huge_page(new_page, old_page, address, vma, 4199 pages_per_huge_page(h)); 4200 __SetPageUptodate(new_page); 4201 4202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4203 haddr + huge_page_size(h)); 4204 mmu_notifier_invalidate_range_start(&range); 4205 4206 /* 4207 * Retake the page table lock to check for racing updates 4208 * before the page tables are altered 4209 */ 4210 spin_lock(ptl); 4211 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4212 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4213 ClearPagePrivate(new_page); 4214 4215 /* Break COW */ 4216 huge_ptep_clear_flush(vma, haddr, ptep); 4217 mmu_notifier_invalidate_range(mm, range.start, range.end); 4218 set_huge_pte_at(mm, haddr, ptep, 4219 make_huge_pte(vma, new_page, 1)); 4220 page_remove_rmap(old_page, true); 4221 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4222 set_page_huge_active(new_page); 4223 /* Make the old page be freed below */ 4224 new_page = old_page; 4225 } 4226 spin_unlock(ptl); 4227 mmu_notifier_invalidate_range_end(&range); 4228 out_release_all: 4229 restore_reserve_on_error(h, vma, haddr, new_page); 4230 put_page(new_page); 4231 out_release_old: 4232 put_page(old_page); 4233 4234 spin_lock(ptl); /* Caller expects lock to be held */ 4235 return ret; 4236 } 4237 4238 /* Return the pagecache page at a given address within a VMA */ 4239 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4240 struct vm_area_struct *vma, unsigned long address) 4241 { 4242 struct address_space *mapping; 4243 pgoff_t idx; 4244 4245 mapping = vma->vm_file->f_mapping; 4246 idx = vma_hugecache_offset(h, vma, address); 4247 4248 return find_lock_page(mapping, idx); 4249 } 4250 4251 /* 4252 * Return whether there is a pagecache page to back given address within VMA. 4253 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4254 */ 4255 static bool hugetlbfs_pagecache_present(struct hstate *h, 4256 struct vm_area_struct *vma, unsigned long address) 4257 { 4258 struct address_space *mapping; 4259 pgoff_t idx; 4260 struct page *page; 4261 4262 mapping = vma->vm_file->f_mapping; 4263 idx = vma_hugecache_offset(h, vma, address); 4264 4265 page = find_get_page(mapping, idx); 4266 if (page) 4267 put_page(page); 4268 return page != NULL; 4269 } 4270 4271 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4272 pgoff_t idx) 4273 { 4274 struct inode *inode = mapping->host; 4275 struct hstate *h = hstate_inode(inode); 4276 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4277 4278 if (err) 4279 return err; 4280 ClearPagePrivate(page); 4281 4282 /* 4283 * set page dirty so that it will not be removed from cache/file 4284 * by non-hugetlbfs specific code paths. 4285 */ 4286 set_page_dirty(page); 4287 4288 spin_lock(&inode->i_lock); 4289 inode->i_blocks += blocks_per_huge_page(h); 4290 spin_unlock(&inode->i_lock); 4291 return 0; 4292 } 4293 4294 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4295 struct vm_area_struct *vma, 4296 struct address_space *mapping, pgoff_t idx, 4297 unsigned long address, pte_t *ptep, unsigned int flags) 4298 { 4299 struct hstate *h = hstate_vma(vma); 4300 vm_fault_t ret = VM_FAULT_SIGBUS; 4301 int anon_rmap = 0; 4302 unsigned long size; 4303 struct page *page; 4304 pte_t new_pte; 4305 spinlock_t *ptl; 4306 unsigned long haddr = address & huge_page_mask(h); 4307 bool new_page = false; 4308 4309 /* 4310 * Currently, we are forced to kill the process in the event the 4311 * original mapper has unmapped pages from the child due to a failed 4312 * COW. Warn that such a situation has occurred as it may not be obvious 4313 */ 4314 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4315 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4316 current->pid); 4317 return ret; 4318 } 4319 4320 /* 4321 * We can not race with truncation due to holding i_mmap_rwsem. 4322 * i_size is modified when holding i_mmap_rwsem, so check here 4323 * once for faults beyond end of file. 4324 */ 4325 size = i_size_read(mapping->host) >> huge_page_shift(h); 4326 if (idx >= size) 4327 goto out; 4328 4329 retry: 4330 page = find_lock_page(mapping, idx); 4331 if (!page) { 4332 /* 4333 * Check for page in userfault range 4334 */ 4335 if (userfaultfd_missing(vma)) { 4336 u32 hash; 4337 struct vm_fault vmf = { 4338 .vma = vma, 4339 .address = haddr, 4340 .flags = flags, 4341 /* 4342 * Hard to debug if it ends up being 4343 * used by a callee that assumes 4344 * something about the other 4345 * uninitialized fields... same as in 4346 * memory.c 4347 */ 4348 }; 4349 4350 /* 4351 * hugetlb_fault_mutex and i_mmap_rwsem must be 4352 * dropped before handling userfault. Reacquire 4353 * after handling fault to make calling code simpler. 4354 */ 4355 hash = hugetlb_fault_mutex_hash(mapping, idx); 4356 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4357 i_mmap_unlock_read(mapping); 4358 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4359 i_mmap_lock_read(mapping); 4360 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4361 goto out; 4362 } 4363 4364 page = alloc_huge_page(vma, haddr, 0); 4365 if (IS_ERR(page)) { 4366 /* 4367 * Returning error will result in faulting task being 4368 * sent SIGBUS. The hugetlb fault mutex prevents two 4369 * tasks from racing to fault in the same page which 4370 * could result in false unable to allocate errors. 4371 * Page migration does not take the fault mutex, but 4372 * does a clear then write of pte's under page table 4373 * lock. Page fault code could race with migration, 4374 * notice the clear pte and try to allocate a page 4375 * here. Before returning error, get ptl and make 4376 * sure there really is no pte entry. 4377 */ 4378 ptl = huge_pte_lock(h, mm, ptep); 4379 if (!huge_pte_none(huge_ptep_get(ptep))) { 4380 ret = 0; 4381 spin_unlock(ptl); 4382 goto out; 4383 } 4384 spin_unlock(ptl); 4385 ret = vmf_error(PTR_ERR(page)); 4386 goto out; 4387 } 4388 clear_huge_page(page, address, pages_per_huge_page(h)); 4389 __SetPageUptodate(page); 4390 new_page = true; 4391 4392 if (vma->vm_flags & VM_MAYSHARE) { 4393 int err = huge_add_to_page_cache(page, mapping, idx); 4394 if (err) { 4395 put_page(page); 4396 if (err == -EEXIST) 4397 goto retry; 4398 goto out; 4399 } 4400 } else { 4401 lock_page(page); 4402 if (unlikely(anon_vma_prepare(vma))) { 4403 ret = VM_FAULT_OOM; 4404 goto backout_unlocked; 4405 } 4406 anon_rmap = 1; 4407 } 4408 } else { 4409 /* 4410 * If memory error occurs between mmap() and fault, some process 4411 * don't have hwpoisoned swap entry for errored virtual address. 4412 * So we need to block hugepage fault by PG_hwpoison bit check. 4413 */ 4414 if (unlikely(PageHWPoison(page))) { 4415 ret = VM_FAULT_HWPOISON_LARGE | 4416 VM_FAULT_SET_HINDEX(hstate_index(h)); 4417 goto backout_unlocked; 4418 } 4419 } 4420 4421 /* 4422 * If we are going to COW a private mapping later, we examine the 4423 * pending reservations for this page now. This will ensure that 4424 * any allocations necessary to record that reservation occur outside 4425 * the spinlock. 4426 */ 4427 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4428 if (vma_needs_reservation(h, vma, haddr) < 0) { 4429 ret = VM_FAULT_OOM; 4430 goto backout_unlocked; 4431 } 4432 /* Just decrements count, does not deallocate */ 4433 vma_end_reservation(h, vma, haddr); 4434 } 4435 4436 ptl = huge_pte_lock(h, mm, ptep); 4437 ret = 0; 4438 if (!huge_pte_none(huge_ptep_get(ptep))) 4439 goto backout; 4440 4441 if (anon_rmap) { 4442 ClearPagePrivate(page); 4443 hugepage_add_new_anon_rmap(page, vma, haddr); 4444 } else 4445 page_dup_rmap(page, true); 4446 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4447 && (vma->vm_flags & VM_SHARED))); 4448 set_huge_pte_at(mm, haddr, ptep, new_pte); 4449 4450 hugetlb_count_add(pages_per_huge_page(h), mm); 4451 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4452 /* Optimization, do the COW without a second fault */ 4453 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4454 } 4455 4456 spin_unlock(ptl); 4457 4458 /* 4459 * Only make newly allocated pages active. Existing pages found 4460 * in the pagecache could be !page_huge_active() if they have been 4461 * isolated for migration. 4462 */ 4463 if (new_page) 4464 set_page_huge_active(page); 4465 4466 unlock_page(page); 4467 out: 4468 return ret; 4469 4470 backout: 4471 spin_unlock(ptl); 4472 backout_unlocked: 4473 unlock_page(page); 4474 restore_reserve_on_error(h, vma, haddr, page); 4475 put_page(page); 4476 goto out; 4477 } 4478 4479 #ifdef CONFIG_SMP 4480 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4481 { 4482 unsigned long key[2]; 4483 u32 hash; 4484 4485 key[0] = (unsigned long) mapping; 4486 key[1] = idx; 4487 4488 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4489 4490 return hash & (num_fault_mutexes - 1); 4491 } 4492 #else 4493 /* 4494 * For uniprocesor systems we always use a single mutex, so just 4495 * return 0 and avoid the hashing overhead. 4496 */ 4497 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4498 { 4499 return 0; 4500 } 4501 #endif 4502 4503 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4504 unsigned long address, unsigned int flags) 4505 { 4506 pte_t *ptep, entry; 4507 spinlock_t *ptl; 4508 vm_fault_t ret; 4509 u32 hash; 4510 pgoff_t idx; 4511 struct page *page = NULL; 4512 struct page *pagecache_page = NULL; 4513 struct hstate *h = hstate_vma(vma); 4514 struct address_space *mapping; 4515 int need_wait_lock = 0; 4516 unsigned long haddr = address & huge_page_mask(h); 4517 4518 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4519 if (ptep) { 4520 /* 4521 * Since we hold no locks, ptep could be stale. That is 4522 * OK as we are only making decisions based on content and 4523 * not actually modifying content here. 4524 */ 4525 entry = huge_ptep_get(ptep); 4526 if (unlikely(is_hugetlb_entry_migration(entry))) { 4527 migration_entry_wait_huge(vma, mm, ptep); 4528 return 0; 4529 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4530 return VM_FAULT_HWPOISON_LARGE | 4531 VM_FAULT_SET_HINDEX(hstate_index(h)); 4532 } 4533 4534 /* 4535 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4536 * until finished with ptep. This serves two purposes: 4537 * 1) It prevents huge_pmd_unshare from being called elsewhere 4538 * and making the ptep no longer valid. 4539 * 2) It synchronizes us with i_size modifications during truncation. 4540 * 4541 * ptep could have already be assigned via huge_pte_offset. That 4542 * is OK, as huge_pte_alloc will return the same value unless 4543 * something has changed. 4544 */ 4545 mapping = vma->vm_file->f_mapping; 4546 i_mmap_lock_read(mapping); 4547 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4548 if (!ptep) { 4549 i_mmap_unlock_read(mapping); 4550 return VM_FAULT_OOM; 4551 } 4552 4553 /* 4554 * Serialize hugepage allocation and instantiation, so that we don't 4555 * get spurious allocation failures if two CPUs race to instantiate 4556 * the same page in the page cache. 4557 */ 4558 idx = vma_hugecache_offset(h, vma, haddr); 4559 hash = hugetlb_fault_mutex_hash(mapping, idx); 4560 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4561 4562 entry = huge_ptep_get(ptep); 4563 if (huge_pte_none(entry)) { 4564 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4565 goto out_mutex; 4566 } 4567 4568 ret = 0; 4569 4570 /* 4571 * entry could be a migration/hwpoison entry at this point, so this 4572 * check prevents the kernel from going below assuming that we have 4573 * an active hugepage in pagecache. This goto expects the 2nd page 4574 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4575 * properly handle it. 4576 */ 4577 if (!pte_present(entry)) 4578 goto out_mutex; 4579 4580 /* 4581 * If we are going to COW the mapping later, we examine the pending 4582 * reservations for this page now. This will ensure that any 4583 * allocations necessary to record that reservation occur outside the 4584 * spinlock. For private mappings, we also lookup the pagecache 4585 * page now as it is used to determine if a reservation has been 4586 * consumed. 4587 */ 4588 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4589 if (vma_needs_reservation(h, vma, haddr) < 0) { 4590 ret = VM_FAULT_OOM; 4591 goto out_mutex; 4592 } 4593 /* Just decrements count, does not deallocate */ 4594 vma_end_reservation(h, vma, haddr); 4595 4596 if (!(vma->vm_flags & VM_MAYSHARE)) 4597 pagecache_page = hugetlbfs_pagecache_page(h, 4598 vma, haddr); 4599 } 4600 4601 ptl = huge_pte_lock(h, mm, ptep); 4602 4603 /* Check for a racing update before calling hugetlb_cow */ 4604 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4605 goto out_ptl; 4606 4607 /* 4608 * hugetlb_cow() requires page locks of pte_page(entry) and 4609 * pagecache_page, so here we need take the former one 4610 * when page != pagecache_page or !pagecache_page. 4611 */ 4612 page = pte_page(entry); 4613 if (page != pagecache_page) 4614 if (!trylock_page(page)) { 4615 need_wait_lock = 1; 4616 goto out_ptl; 4617 } 4618 4619 get_page(page); 4620 4621 if (flags & FAULT_FLAG_WRITE) { 4622 if (!huge_pte_write(entry)) { 4623 ret = hugetlb_cow(mm, vma, address, ptep, 4624 pagecache_page, ptl); 4625 goto out_put_page; 4626 } 4627 entry = huge_pte_mkdirty(entry); 4628 } 4629 entry = pte_mkyoung(entry); 4630 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4631 flags & FAULT_FLAG_WRITE)) 4632 update_mmu_cache(vma, haddr, ptep); 4633 out_put_page: 4634 if (page != pagecache_page) 4635 unlock_page(page); 4636 put_page(page); 4637 out_ptl: 4638 spin_unlock(ptl); 4639 4640 if (pagecache_page) { 4641 unlock_page(pagecache_page); 4642 put_page(pagecache_page); 4643 } 4644 out_mutex: 4645 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4646 i_mmap_unlock_read(mapping); 4647 /* 4648 * Generally it's safe to hold refcount during waiting page lock. But 4649 * here we just wait to defer the next page fault to avoid busy loop and 4650 * the page is not used after unlocked before returning from the current 4651 * page fault. So we are safe from accessing freed page, even if we wait 4652 * here without taking refcount. 4653 */ 4654 if (need_wait_lock) 4655 wait_on_page_locked(page); 4656 return ret; 4657 } 4658 4659 /* 4660 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4661 * modifications for huge pages. 4662 */ 4663 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4664 pte_t *dst_pte, 4665 struct vm_area_struct *dst_vma, 4666 unsigned long dst_addr, 4667 unsigned long src_addr, 4668 struct page **pagep) 4669 { 4670 struct address_space *mapping; 4671 pgoff_t idx; 4672 unsigned long size; 4673 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4674 struct hstate *h = hstate_vma(dst_vma); 4675 pte_t _dst_pte; 4676 spinlock_t *ptl; 4677 int ret; 4678 struct page *page; 4679 4680 if (!*pagep) { 4681 ret = -ENOMEM; 4682 page = alloc_huge_page(dst_vma, dst_addr, 0); 4683 if (IS_ERR(page)) 4684 goto out; 4685 4686 ret = copy_huge_page_from_user(page, 4687 (const void __user *) src_addr, 4688 pages_per_huge_page(h), false); 4689 4690 /* fallback to copy_from_user outside mmap_lock */ 4691 if (unlikely(ret)) { 4692 ret = -ENOENT; 4693 *pagep = page; 4694 /* don't free the page */ 4695 goto out; 4696 } 4697 } else { 4698 page = *pagep; 4699 *pagep = NULL; 4700 } 4701 4702 /* 4703 * The memory barrier inside __SetPageUptodate makes sure that 4704 * preceding stores to the page contents become visible before 4705 * the set_pte_at() write. 4706 */ 4707 __SetPageUptodate(page); 4708 4709 mapping = dst_vma->vm_file->f_mapping; 4710 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4711 4712 /* 4713 * If shared, add to page cache 4714 */ 4715 if (vm_shared) { 4716 size = i_size_read(mapping->host) >> huge_page_shift(h); 4717 ret = -EFAULT; 4718 if (idx >= size) 4719 goto out_release_nounlock; 4720 4721 /* 4722 * Serialization between remove_inode_hugepages() and 4723 * huge_add_to_page_cache() below happens through the 4724 * hugetlb_fault_mutex_table that here must be hold by 4725 * the caller. 4726 */ 4727 ret = huge_add_to_page_cache(page, mapping, idx); 4728 if (ret) 4729 goto out_release_nounlock; 4730 } 4731 4732 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4733 spin_lock(ptl); 4734 4735 /* 4736 * Recheck the i_size after holding PT lock to make sure not 4737 * to leave any page mapped (as page_mapped()) beyond the end 4738 * of the i_size (remove_inode_hugepages() is strict about 4739 * enforcing that). If we bail out here, we'll also leave a 4740 * page in the radix tree in the vm_shared case beyond the end 4741 * of the i_size, but remove_inode_hugepages() will take care 4742 * of it as soon as we drop the hugetlb_fault_mutex_table. 4743 */ 4744 size = i_size_read(mapping->host) >> huge_page_shift(h); 4745 ret = -EFAULT; 4746 if (idx >= size) 4747 goto out_release_unlock; 4748 4749 ret = -EEXIST; 4750 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4751 goto out_release_unlock; 4752 4753 if (vm_shared) { 4754 page_dup_rmap(page, true); 4755 } else { 4756 ClearPagePrivate(page); 4757 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4758 } 4759 4760 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4761 if (dst_vma->vm_flags & VM_WRITE) 4762 _dst_pte = huge_pte_mkdirty(_dst_pte); 4763 _dst_pte = pte_mkyoung(_dst_pte); 4764 4765 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4766 4767 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4768 dst_vma->vm_flags & VM_WRITE); 4769 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4770 4771 /* No need to invalidate - it was non-present before */ 4772 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4773 4774 spin_unlock(ptl); 4775 set_page_huge_active(page); 4776 if (vm_shared) 4777 unlock_page(page); 4778 ret = 0; 4779 out: 4780 return ret; 4781 out_release_unlock: 4782 spin_unlock(ptl); 4783 if (vm_shared) 4784 unlock_page(page); 4785 out_release_nounlock: 4786 put_page(page); 4787 goto out; 4788 } 4789 4790 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4791 struct page **pages, struct vm_area_struct **vmas, 4792 unsigned long *position, unsigned long *nr_pages, 4793 long i, unsigned int flags, int *locked) 4794 { 4795 unsigned long pfn_offset; 4796 unsigned long vaddr = *position; 4797 unsigned long remainder = *nr_pages; 4798 struct hstate *h = hstate_vma(vma); 4799 int err = -EFAULT; 4800 4801 while (vaddr < vma->vm_end && remainder) { 4802 pte_t *pte; 4803 spinlock_t *ptl = NULL; 4804 int absent; 4805 struct page *page; 4806 4807 /* 4808 * If we have a pending SIGKILL, don't keep faulting pages and 4809 * potentially allocating memory. 4810 */ 4811 if (fatal_signal_pending(current)) { 4812 remainder = 0; 4813 break; 4814 } 4815 4816 /* 4817 * Some archs (sparc64, sh*) have multiple pte_ts to 4818 * each hugepage. We have to make sure we get the 4819 * first, for the page indexing below to work. 4820 * 4821 * Note that page table lock is not held when pte is null. 4822 */ 4823 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4824 huge_page_size(h)); 4825 if (pte) 4826 ptl = huge_pte_lock(h, mm, pte); 4827 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4828 4829 /* 4830 * When coredumping, it suits get_dump_page if we just return 4831 * an error where there's an empty slot with no huge pagecache 4832 * to back it. This way, we avoid allocating a hugepage, and 4833 * the sparse dumpfile avoids allocating disk blocks, but its 4834 * huge holes still show up with zeroes where they need to be. 4835 */ 4836 if (absent && (flags & FOLL_DUMP) && 4837 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4838 if (pte) 4839 spin_unlock(ptl); 4840 remainder = 0; 4841 break; 4842 } 4843 4844 /* 4845 * We need call hugetlb_fault for both hugepages under migration 4846 * (in which case hugetlb_fault waits for the migration,) and 4847 * hwpoisoned hugepages (in which case we need to prevent the 4848 * caller from accessing to them.) In order to do this, we use 4849 * here is_swap_pte instead of is_hugetlb_entry_migration and 4850 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4851 * both cases, and because we can't follow correct pages 4852 * directly from any kind of swap entries. 4853 */ 4854 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4855 ((flags & FOLL_WRITE) && 4856 !huge_pte_write(huge_ptep_get(pte)))) { 4857 vm_fault_t ret; 4858 unsigned int fault_flags = 0; 4859 4860 if (pte) 4861 spin_unlock(ptl); 4862 if (flags & FOLL_WRITE) 4863 fault_flags |= FAULT_FLAG_WRITE; 4864 if (locked) 4865 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4866 FAULT_FLAG_KILLABLE; 4867 if (flags & FOLL_NOWAIT) 4868 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4869 FAULT_FLAG_RETRY_NOWAIT; 4870 if (flags & FOLL_TRIED) { 4871 /* 4872 * Note: FAULT_FLAG_ALLOW_RETRY and 4873 * FAULT_FLAG_TRIED can co-exist 4874 */ 4875 fault_flags |= FAULT_FLAG_TRIED; 4876 } 4877 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4878 if (ret & VM_FAULT_ERROR) { 4879 err = vm_fault_to_errno(ret, flags); 4880 remainder = 0; 4881 break; 4882 } 4883 if (ret & VM_FAULT_RETRY) { 4884 if (locked && 4885 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4886 *locked = 0; 4887 *nr_pages = 0; 4888 /* 4889 * VM_FAULT_RETRY must not return an 4890 * error, it will return zero 4891 * instead. 4892 * 4893 * No need to update "position" as the 4894 * caller will not check it after 4895 * *nr_pages is set to 0. 4896 */ 4897 return i; 4898 } 4899 continue; 4900 } 4901 4902 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4903 page = pte_page(huge_ptep_get(pte)); 4904 4905 /* 4906 * If subpage information not requested, update counters 4907 * and skip the same_page loop below. 4908 */ 4909 if (!pages && !vmas && !pfn_offset && 4910 (vaddr + huge_page_size(h) < vma->vm_end) && 4911 (remainder >= pages_per_huge_page(h))) { 4912 vaddr += huge_page_size(h); 4913 remainder -= pages_per_huge_page(h); 4914 i += pages_per_huge_page(h); 4915 spin_unlock(ptl); 4916 continue; 4917 } 4918 4919 same_page: 4920 if (pages) { 4921 pages[i] = mem_map_offset(page, pfn_offset); 4922 /* 4923 * try_grab_page() should always succeed here, because: 4924 * a) we hold the ptl lock, and b) we've just checked 4925 * that the huge page is present in the page tables. If 4926 * the huge page is present, then the tail pages must 4927 * also be present. The ptl prevents the head page and 4928 * tail pages from being rearranged in any way. So this 4929 * page must be available at this point, unless the page 4930 * refcount overflowed: 4931 */ 4932 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4933 spin_unlock(ptl); 4934 remainder = 0; 4935 err = -ENOMEM; 4936 break; 4937 } 4938 } 4939 4940 if (vmas) 4941 vmas[i] = vma; 4942 4943 vaddr += PAGE_SIZE; 4944 ++pfn_offset; 4945 --remainder; 4946 ++i; 4947 if (vaddr < vma->vm_end && remainder && 4948 pfn_offset < pages_per_huge_page(h)) { 4949 /* 4950 * We use pfn_offset to avoid touching the pageframes 4951 * of this compound page. 4952 */ 4953 goto same_page; 4954 } 4955 spin_unlock(ptl); 4956 } 4957 *nr_pages = remainder; 4958 /* 4959 * setting position is actually required only if remainder is 4960 * not zero but it's faster not to add a "if (remainder)" 4961 * branch. 4962 */ 4963 *position = vaddr; 4964 4965 return i ? i : err; 4966 } 4967 4968 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4969 /* 4970 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4971 * implement this. 4972 */ 4973 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4974 #endif 4975 4976 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4977 unsigned long address, unsigned long end, pgprot_t newprot) 4978 { 4979 struct mm_struct *mm = vma->vm_mm; 4980 unsigned long start = address; 4981 pte_t *ptep; 4982 pte_t pte; 4983 struct hstate *h = hstate_vma(vma); 4984 unsigned long pages = 0; 4985 bool shared_pmd = false; 4986 struct mmu_notifier_range range; 4987 4988 /* 4989 * In the case of shared PMDs, the area to flush could be beyond 4990 * start/end. Set range.start/range.end to cover the maximum possible 4991 * range if PMD sharing is possible. 4992 */ 4993 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4994 0, vma, mm, start, end); 4995 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4996 4997 BUG_ON(address >= end); 4998 flush_cache_range(vma, range.start, range.end); 4999 5000 mmu_notifier_invalidate_range_start(&range); 5001 i_mmap_lock_write(vma->vm_file->f_mapping); 5002 for (; address < end; address += huge_page_size(h)) { 5003 spinlock_t *ptl; 5004 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5005 if (!ptep) 5006 continue; 5007 ptl = huge_pte_lock(h, mm, ptep); 5008 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5009 pages++; 5010 spin_unlock(ptl); 5011 shared_pmd = true; 5012 continue; 5013 } 5014 pte = huge_ptep_get(ptep); 5015 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5016 spin_unlock(ptl); 5017 continue; 5018 } 5019 if (unlikely(is_hugetlb_entry_migration(pte))) { 5020 swp_entry_t entry = pte_to_swp_entry(pte); 5021 5022 if (is_write_migration_entry(entry)) { 5023 pte_t newpte; 5024 5025 make_migration_entry_read(&entry); 5026 newpte = swp_entry_to_pte(entry); 5027 set_huge_swap_pte_at(mm, address, ptep, 5028 newpte, huge_page_size(h)); 5029 pages++; 5030 } 5031 spin_unlock(ptl); 5032 continue; 5033 } 5034 if (!huge_pte_none(pte)) { 5035 pte_t old_pte; 5036 5037 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5038 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5039 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5040 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5041 pages++; 5042 } 5043 spin_unlock(ptl); 5044 } 5045 /* 5046 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5047 * may have cleared our pud entry and done put_page on the page table: 5048 * once we release i_mmap_rwsem, another task can do the final put_page 5049 * and that page table be reused and filled with junk. If we actually 5050 * did unshare a page of pmds, flush the range corresponding to the pud. 5051 */ 5052 if (shared_pmd) 5053 flush_hugetlb_tlb_range(vma, range.start, range.end); 5054 else 5055 flush_hugetlb_tlb_range(vma, start, end); 5056 /* 5057 * No need to call mmu_notifier_invalidate_range() we are downgrading 5058 * page table protection not changing it to point to a new page. 5059 * 5060 * See Documentation/vm/mmu_notifier.rst 5061 */ 5062 i_mmap_unlock_write(vma->vm_file->f_mapping); 5063 mmu_notifier_invalidate_range_end(&range); 5064 5065 return pages << h->order; 5066 } 5067 5068 int hugetlb_reserve_pages(struct inode *inode, 5069 long from, long to, 5070 struct vm_area_struct *vma, 5071 vm_flags_t vm_flags) 5072 { 5073 long ret, chg, add = -1; 5074 struct hstate *h = hstate_inode(inode); 5075 struct hugepage_subpool *spool = subpool_inode(inode); 5076 struct resv_map *resv_map; 5077 struct hugetlb_cgroup *h_cg = NULL; 5078 long gbl_reserve, regions_needed = 0; 5079 5080 /* This should never happen */ 5081 if (from > to) { 5082 VM_WARN(1, "%s called with a negative range\n", __func__); 5083 return -EINVAL; 5084 } 5085 5086 /* 5087 * Only apply hugepage reservation if asked. At fault time, an 5088 * attempt will be made for VM_NORESERVE to allocate a page 5089 * without using reserves 5090 */ 5091 if (vm_flags & VM_NORESERVE) 5092 return 0; 5093 5094 /* 5095 * Shared mappings base their reservation on the number of pages that 5096 * are already allocated on behalf of the file. Private mappings need 5097 * to reserve the full area even if read-only as mprotect() may be 5098 * called to make the mapping read-write. Assume !vma is a shm mapping 5099 */ 5100 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5101 /* 5102 * resv_map can not be NULL as hugetlb_reserve_pages is only 5103 * called for inodes for which resv_maps were created (see 5104 * hugetlbfs_get_inode). 5105 */ 5106 resv_map = inode_resv_map(inode); 5107 5108 chg = region_chg(resv_map, from, to, ®ions_needed); 5109 5110 } else { 5111 /* Private mapping. */ 5112 resv_map = resv_map_alloc(); 5113 if (!resv_map) 5114 return -ENOMEM; 5115 5116 chg = to - from; 5117 5118 set_vma_resv_map(vma, resv_map); 5119 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5120 } 5121 5122 if (chg < 0) { 5123 ret = chg; 5124 goto out_err; 5125 } 5126 5127 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5128 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5129 5130 if (ret < 0) { 5131 ret = -ENOMEM; 5132 goto out_err; 5133 } 5134 5135 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5136 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5137 * of the resv_map. 5138 */ 5139 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5140 } 5141 5142 /* 5143 * There must be enough pages in the subpool for the mapping. If 5144 * the subpool has a minimum size, there may be some global 5145 * reservations already in place (gbl_reserve). 5146 */ 5147 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5148 if (gbl_reserve < 0) { 5149 ret = -ENOSPC; 5150 goto out_uncharge_cgroup; 5151 } 5152 5153 /* 5154 * Check enough hugepages are available for the reservation. 5155 * Hand the pages back to the subpool if there are not 5156 */ 5157 ret = hugetlb_acct_memory(h, gbl_reserve); 5158 if (ret < 0) { 5159 goto out_put_pages; 5160 } 5161 5162 /* 5163 * Account for the reservations made. Shared mappings record regions 5164 * that have reservations as they are shared by multiple VMAs. 5165 * When the last VMA disappears, the region map says how much 5166 * the reservation was and the page cache tells how much of 5167 * the reservation was consumed. Private mappings are per-VMA and 5168 * only the consumed reservations are tracked. When the VMA 5169 * disappears, the original reservation is the VMA size and the 5170 * consumed reservations are stored in the map. Hence, nothing 5171 * else has to be done for private mappings here 5172 */ 5173 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5174 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5175 5176 if (unlikely(add < 0)) { 5177 hugetlb_acct_memory(h, -gbl_reserve); 5178 ret = add; 5179 goto out_put_pages; 5180 } else if (unlikely(chg > add)) { 5181 /* 5182 * pages in this range were added to the reserve 5183 * map between region_chg and region_add. This 5184 * indicates a race with alloc_huge_page. Adjust 5185 * the subpool and reserve counts modified above 5186 * based on the difference. 5187 */ 5188 long rsv_adjust; 5189 5190 hugetlb_cgroup_uncharge_cgroup_rsvd( 5191 hstate_index(h), 5192 (chg - add) * pages_per_huge_page(h), h_cg); 5193 5194 rsv_adjust = hugepage_subpool_put_pages(spool, 5195 chg - add); 5196 hugetlb_acct_memory(h, -rsv_adjust); 5197 } 5198 } 5199 return 0; 5200 out_put_pages: 5201 /* put back original number of pages, chg */ 5202 (void)hugepage_subpool_put_pages(spool, chg); 5203 out_uncharge_cgroup: 5204 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5205 chg * pages_per_huge_page(h), h_cg); 5206 out_err: 5207 if (!vma || vma->vm_flags & VM_MAYSHARE) 5208 /* Only call region_abort if the region_chg succeeded but the 5209 * region_add failed or didn't run. 5210 */ 5211 if (chg >= 0 && add < 0) 5212 region_abort(resv_map, from, to, regions_needed); 5213 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5214 kref_put(&resv_map->refs, resv_map_release); 5215 return ret; 5216 } 5217 5218 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5219 long freed) 5220 { 5221 struct hstate *h = hstate_inode(inode); 5222 struct resv_map *resv_map = inode_resv_map(inode); 5223 long chg = 0; 5224 struct hugepage_subpool *spool = subpool_inode(inode); 5225 long gbl_reserve; 5226 5227 /* 5228 * Since this routine can be called in the evict inode path for all 5229 * hugetlbfs inodes, resv_map could be NULL. 5230 */ 5231 if (resv_map) { 5232 chg = region_del(resv_map, start, end); 5233 /* 5234 * region_del() can fail in the rare case where a region 5235 * must be split and another region descriptor can not be 5236 * allocated. If end == LONG_MAX, it will not fail. 5237 */ 5238 if (chg < 0) 5239 return chg; 5240 } 5241 5242 spin_lock(&inode->i_lock); 5243 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5244 spin_unlock(&inode->i_lock); 5245 5246 /* 5247 * If the subpool has a minimum size, the number of global 5248 * reservations to be released may be adjusted. 5249 */ 5250 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5251 hugetlb_acct_memory(h, -gbl_reserve); 5252 5253 return 0; 5254 } 5255 5256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5257 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5258 struct vm_area_struct *vma, 5259 unsigned long addr, pgoff_t idx) 5260 { 5261 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5262 svma->vm_start; 5263 unsigned long sbase = saddr & PUD_MASK; 5264 unsigned long s_end = sbase + PUD_SIZE; 5265 5266 /* Allow segments to share if only one is marked locked */ 5267 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5268 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5269 5270 /* 5271 * match the virtual addresses, permission and the alignment of the 5272 * page table page. 5273 */ 5274 if (pmd_index(addr) != pmd_index(saddr) || 5275 vm_flags != svm_flags || 5276 sbase < svma->vm_start || svma->vm_end < s_end) 5277 return 0; 5278 5279 return saddr; 5280 } 5281 5282 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5283 { 5284 unsigned long base = addr & PUD_MASK; 5285 unsigned long end = base + PUD_SIZE; 5286 5287 /* 5288 * check on proper vm_flags and page table alignment 5289 */ 5290 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5291 return true; 5292 return false; 5293 } 5294 5295 /* 5296 * Determine if start,end range within vma could be mapped by shared pmd. 5297 * If yes, adjust start and end to cover range associated with possible 5298 * shared pmd mappings. 5299 */ 5300 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5301 unsigned long *start, unsigned long *end) 5302 { 5303 unsigned long a_start, a_end; 5304 5305 if (!(vma->vm_flags & VM_MAYSHARE)) 5306 return; 5307 5308 /* Extend the range to be PUD aligned for a worst case scenario */ 5309 a_start = ALIGN_DOWN(*start, PUD_SIZE); 5310 a_end = ALIGN(*end, PUD_SIZE); 5311 5312 /* 5313 * Intersect the range with the vma range, since pmd sharing won't be 5314 * across vma after all 5315 */ 5316 *start = max(vma->vm_start, a_start); 5317 *end = min(vma->vm_end, a_end); 5318 } 5319 5320 /* 5321 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5322 * and returns the corresponding pte. While this is not necessary for the 5323 * !shared pmd case because we can allocate the pmd later as well, it makes the 5324 * code much cleaner. 5325 * 5326 * This routine must be called with i_mmap_rwsem held in at least read mode if 5327 * sharing is possible. For hugetlbfs, this prevents removal of any page 5328 * table entries associated with the address space. This is important as we 5329 * are setting up sharing based on existing page table entries (mappings). 5330 * 5331 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5332 * huge_pte_alloc know that sharing is not possible and do not take 5333 * i_mmap_rwsem as a performance optimization. This is handled by the 5334 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5335 * only required for subsequent processing. 5336 */ 5337 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5338 { 5339 struct vm_area_struct *vma = find_vma(mm, addr); 5340 struct address_space *mapping = vma->vm_file->f_mapping; 5341 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5342 vma->vm_pgoff; 5343 struct vm_area_struct *svma; 5344 unsigned long saddr; 5345 pte_t *spte = NULL; 5346 pte_t *pte; 5347 spinlock_t *ptl; 5348 5349 if (!vma_shareable(vma, addr)) 5350 return (pte_t *)pmd_alloc(mm, pud, addr); 5351 5352 i_mmap_assert_locked(mapping); 5353 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5354 if (svma == vma) 5355 continue; 5356 5357 saddr = page_table_shareable(svma, vma, addr, idx); 5358 if (saddr) { 5359 spte = huge_pte_offset(svma->vm_mm, saddr, 5360 vma_mmu_pagesize(svma)); 5361 if (spte) { 5362 get_page(virt_to_page(spte)); 5363 break; 5364 } 5365 } 5366 } 5367 5368 if (!spte) 5369 goto out; 5370 5371 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5372 if (pud_none(*pud)) { 5373 pud_populate(mm, pud, 5374 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5375 mm_inc_nr_pmds(mm); 5376 } else { 5377 put_page(virt_to_page(spte)); 5378 } 5379 spin_unlock(ptl); 5380 out: 5381 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5382 return pte; 5383 } 5384 5385 /* 5386 * unmap huge page backed by shared pte. 5387 * 5388 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5389 * indicated by page_count > 1, unmap is achieved by clearing pud and 5390 * decrementing the ref count. If count == 1, the pte page is not shared. 5391 * 5392 * Called with page table lock held and i_mmap_rwsem held in write mode. 5393 * 5394 * returns: 1 successfully unmapped a shared pte page 5395 * 0 the underlying pte page is not shared, or it is the last user 5396 */ 5397 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5398 unsigned long *addr, pte_t *ptep) 5399 { 5400 pgd_t *pgd = pgd_offset(mm, *addr); 5401 p4d_t *p4d = p4d_offset(pgd, *addr); 5402 pud_t *pud = pud_offset(p4d, *addr); 5403 5404 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5405 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5406 if (page_count(virt_to_page(ptep)) == 1) 5407 return 0; 5408 5409 pud_clear(pud); 5410 put_page(virt_to_page(ptep)); 5411 mm_dec_nr_pmds(mm); 5412 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5413 return 1; 5414 } 5415 #define want_pmd_share() (1) 5416 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5417 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5418 { 5419 return NULL; 5420 } 5421 5422 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5423 unsigned long *addr, pte_t *ptep) 5424 { 5425 return 0; 5426 } 5427 5428 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5429 unsigned long *start, unsigned long *end) 5430 { 5431 } 5432 #define want_pmd_share() (0) 5433 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5434 5435 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5436 pte_t *huge_pte_alloc(struct mm_struct *mm, 5437 unsigned long addr, unsigned long sz) 5438 { 5439 pgd_t *pgd; 5440 p4d_t *p4d; 5441 pud_t *pud; 5442 pte_t *pte = NULL; 5443 5444 pgd = pgd_offset(mm, addr); 5445 p4d = p4d_alloc(mm, pgd, addr); 5446 if (!p4d) 5447 return NULL; 5448 pud = pud_alloc(mm, p4d, addr); 5449 if (pud) { 5450 if (sz == PUD_SIZE) { 5451 pte = (pte_t *)pud; 5452 } else { 5453 BUG_ON(sz != PMD_SIZE); 5454 if (want_pmd_share() && pud_none(*pud)) 5455 pte = huge_pmd_share(mm, addr, pud); 5456 else 5457 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5458 } 5459 } 5460 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5461 5462 return pte; 5463 } 5464 5465 /* 5466 * huge_pte_offset() - Walk the page table to resolve the hugepage 5467 * entry at address @addr 5468 * 5469 * Return: Pointer to page table entry (PUD or PMD) for 5470 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5471 * size @sz doesn't match the hugepage size at this level of the page 5472 * table. 5473 */ 5474 pte_t *huge_pte_offset(struct mm_struct *mm, 5475 unsigned long addr, unsigned long sz) 5476 { 5477 pgd_t *pgd; 5478 p4d_t *p4d; 5479 pud_t *pud; 5480 pmd_t *pmd; 5481 5482 pgd = pgd_offset(mm, addr); 5483 if (!pgd_present(*pgd)) 5484 return NULL; 5485 p4d = p4d_offset(pgd, addr); 5486 if (!p4d_present(*p4d)) 5487 return NULL; 5488 5489 pud = pud_offset(p4d, addr); 5490 if (sz == PUD_SIZE) 5491 /* must be pud huge, non-present or none */ 5492 return (pte_t *)pud; 5493 if (!pud_present(*pud)) 5494 return NULL; 5495 /* must have a valid entry and size to go further */ 5496 5497 pmd = pmd_offset(pud, addr); 5498 /* must be pmd huge, non-present or none */ 5499 return (pte_t *)pmd; 5500 } 5501 5502 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5503 5504 /* 5505 * These functions are overwritable if your architecture needs its own 5506 * behavior. 5507 */ 5508 struct page * __weak 5509 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5510 int write) 5511 { 5512 return ERR_PTR(-EINVAL); 5513 } 5514 5515 struct page * __weak 5516 follow_huge_pd(struct vm_area_struct *vma, 5517 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5518 { 5519 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5520 return NULL; 5521 } 5522 5523 struct page * __weak 5524 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5525 pmd_t *pmd, int flags) 5526 { 5527 struct page *page = NULL; 5528 spinlock_t *ptl; 5529 pte_t pte; 5530 5531 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5532 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5533 (FOLL_PIN | FOLL_GET))) 5534 return NULL; 5535 5536 retry: 5537 ptl = pmd_lockptr(mm, pmd); 5538 spin_lock(ptl); 5539 /* 5540 * make sure that the address range covered by this pmd is not 5541 * unmapped from other threads. 5542 */ 5543 if (!pmd_huge(*pmd)) 5544 goto out; 5545 pte = huge_ptep_get((pte_t *)pmd); 5546 if (pte_present(pte)) { 5547 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5548 /* 5549 * try_grab_page() should always succeed here, because: a) we 5550 * hold the pmd (ptl) lock, and b) we've just checked that the 5551 * huge pmd (head) page is present in the page tables. The ptl 5552 * prevents the head page and tail pages from being rearranged 5553 * in any way. So this page must be available at this point, 5554 * unless the page refcount overflowed: 5555 */ 5556 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5557 page = NULL; 5558 goto out; 5559 } 5560 } else { 5561 if (is_hugetlb_entry_migration(pte)) { 5562 spin_unlock(ptl); 5563 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5564 goto retry; 5565 } 5566 /* 5567 * hwpoisoned entry is treated as no_page_table in 5568 * follow_page_mask(). 5569 */ 5570 } 5571 out: 5572 spin_unlock(ptl); 5573 return page; 5574 } 5575 5576 struct page * __weak 5577 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5578 pud_t *pud, int flags) 5579 { 5580 if (flags & (FOLL_GET | FOLL_PIN)) 5581 return NULL; 5582 5583 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5584 } 5585 5586 struct page * __weak 5587 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5588 { 5589 if (flags & (FOLL_GET | FOLL_PIN)) 5590 return NULL; 5591 5592 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5593 } 5594 5595 bool isolate_huge_page(struct page *page, struct list_head *list) 5596 { 5597 bool ret = true; 5598 5599 spin_lock(&hugetlb_lock); 5600 if (!PageHeadHuge(page) || !page_huge_active(page) || 5601 !get_page_unless_zero(page)) { 5602 ret = false; 5603 goto unlock; 5604 } 5605 clear_page_huge_active(page); 5606 list_move_tail(&page->lru, list); 5607 unlock: 5608 spin_unlock(&hugetlb_lock); 5609 return ret; 5610 } 5611 5612 void putback_active_hugepage(struct page *page) 5613 { 5614 VM_BUG_ON_PAGE(!PageHead(page), page); 5615 spin_lock(&hugetlb_lock); 5616 set_page_huge_active(page); 5617 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5618 spin_unlock(&hugetlb_lock); 5619 put_page(page); 5620 } 5621 5622 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5623 { 5624 struct hstate *h = page_hstate(oldpage); 5625 5626 hugetlb_cgroup_migrate(oldpage, newpage); 5627 set_page_owner_migrate_reason(newpage, reason); 5628 5629 /* 5630 * transfer temporary state of the new huge page. This is 5631 * reverse to other transitions because the newpage is going to 5632 * be final while the old one will be freed so it takes over 5633 * the temporary status. 5634 * 5635 * Also note that we have to transfer the per-node surplus state 5636 * here as well otherwise the global surplus count will not match 5637 * the per-node's. 5638 */ 5639 if (PageHugeTemporary(newpage)) { 5640 int old_nid = page_to_nid(oldpage); 5641 int new_nid = page_to_nid(newpage); 5642 5643 SetPageHugeTemporary(oldpage); 5644 ClearPageHugeTemporary(newpage); 5645 5646 spin_lock(&hugetlb_lock); 5647 if (h->surplus_huge_pages_node[old_nid]) { 5648 h->surplus_huge_pages_node[old_nid]--; 5649 h->surplus_huge_pages_node[new_nid]++; 5650 } 5651 spin_unlock(&hugetlb_lock); 5652 } 5653 } 5654 5655 #ifdef CONFIG_CMA 5656 static bool cma_reserve_called __initdata; 5657 5658 static int __init cmdline_parse_hugetlb_cma(char *p) 5659 { 5660 hugetlb_cma_size = memparse(p, &p); 5661 return 0; 5662 } 5663 5664 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5665 5666 void __init hugetlb_cma_reserve(int order) 5667 { 5668 unsigned long size, reserved, per_node; 5669 int nid; 5670 5671 cma_reserve_called = true; 5672 5673 if (!hugetlb_cma_size) 5674 return; 5675 5676 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5677 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5678 (PAGE_SIZE << order) / SZ_1M); 5679 return; 5680 } 5681 5682 /* 5683 * If 3 GB area is requested on a machine with 4 numa nodes, 5684 * let's allocate 1 GB on first three nodes and ignore the last one. 5685 */ 5686 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5687 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5688 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5689 5690 reserved = 0; 5691 for_each_node_state(nid, N_ONLINE) { 5692 int res; 5693 char name[CMA_MAX_NAME]; 5694 5695 size = min(per_node, hugetlb_cma_size - reserved); 5696 size = round_up(size, PAGE_SIZE << order); 5697 5698 snprintf(name, sizeof(name), "hugetlb%d", nid); 5699 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5700 0, false, name, 5701 &hugetlb_cma[nid], nid); 5702 if (res) { 5703 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5704 res, nid); 5705 continue; 5706 } 5707 5708 reserved += size; 5709 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5710 size / SZ_1M, nid); 5711 5712 if (reserved >= hugetlb_cma_size) 5713 break; 5714 } 5715 } 5716 5717 void __init hugetlb_cma_check(void) 5718 { 5719 if (!hugetlb_cma_size || cma_reserve_called) 5720 return; 5721 5722 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5723 } 5724 5725 #endif /* CONFIG_CMA */ 5726