xref: /openbmc/linux/mm/hugetlb.c (revision b3b77c8c)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25 
26 #include <linux/hugetlb.h>
27 #include <linux/node.h>
28 #include "internal.h"
29 
30 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
32 unsigned long hugepages_treat_as_movable;
33 
34 static int max_hstate;
35 unsigned int default_hstate_idx;
36 struct hstate hstates[HUGE_MAX_HSTATE];
37 
38 __initdata LIST_HEAD(huge_boot_pages);
39 
40 /* for command line parsing */
41 static struct hstate * __initdata parsed_hstate;
42 static unsigned long __initdata default_hstate_max_huge_pages;
43 static unsigned long __initdata default_hstate_size;
44 
45 #define for_each_hstate(h) \
46 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47 
48 /*
49  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
50  */
51 static DEFINE_SPINLOCK(hugetlb_lock);
52 
53 /*
54  * Region tracking -- allows tracking of reservations and instantiated pages
55  *                    across the pages in a mapping.
56  *
57  * The region data structures are protected by a combination of the mmap_sem
58  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
59  * must either hold the mmap_sem for write, or the mmap_sem for read and
60  * the hugetlb_instantiation mutex:
61  *
62  * 	down_write(&mm->mmap_sem);
63  * or
64  * 	down_read(&mm->mmap_sem);
65  * 	mutex_lock(&hugetlb_instantiation_mutex);
66  */
67 struct file_region {
68 	struct list_head link;
69 	long from;
70 	long to;
71 };
72 
73 static long region_add(struct list_head *head, long f, long t)
74 {
75 	struct file_region *rg, *nrg, *trg;
76 
77 	/* Locate the region we are either in or before. */
78 	list_for_each_entry(rg, head, link)
79 		if (f <= rg->to)
80 			break;
81 
82 	/* Round our left edge to the current segment if it encloses us. */
83 	if (f > rg->from)
84 		f = rg->from;
85 
86 	/* Check for and consume any regions we now overlap with. */
87 	nrg = rg;
88 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
89 		if (&rg->link == head)
90 			break;
91 		if (rg->from > t)
92 			break;
93 
94 		/* If this area reaches higher then extend our area to
95 		 * include it completely.  If this is not the first area
96 		 * which we intend to reuse, free it. */
97 		if (rg->to > t)
98 			t = rg->to;
99 		if (rg != nrg) {
100 			list_del(&rg->link);
101 			kfree(rg);
102 		}
103 	}
104 	nrg->from = f;
105 	nrg->to = t;
106 	return 0;
107 }
108 
109 static long region_chg(struct list_head *head, long f, long t)
110 {
111 	struct file_region *rg, *nrg;
112 	long chg = 0;
113 
114 	/* Locate the region we are before or in. */
115 	list_for_each_entry(rg, head, link)
116 		if (f <= rg->to)
117 			break;
118 
119 	/* If we are below the current region then a new region is required.
120 	 * Subtle, allocate a new region at the position but make it zero
121 	 * size such that we can guarantee to record the reservation. */
122 	if (&rg->link == head || t < rg->from) {
123 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
124 		if (!nrg)
125 			return -ENOMEM;
126 		nrg->from = f;
127 		nrg->to   = f;
128 		INIT_LIST_HEAD(&nrg->link);
129 		list_add(&nrg->link, rg->link.prev);
130 
131 		return t - f;
132 	}
133 
134 	/* Round our left edge to the current segment if it encloses us. */
135 	if (f > rg->from)
136 		f = rg->from;
137 	chg = t - f;
138 
139 	/* Check for and consume any regions we now overlap with. */
140 	list_for_each_entry(rg, rg->link.prev, link) {
141 		if (&rg->link == head)
142 			break;
143 		if (rg->from > t)
144 			return chg;
145 
146 		/* We overlap with this area, if it extends futher than
147 		 * us then we must extend ourselves.  Account for its
148 		 * existing reservation. */
149 		if (rg->to > t) {
150 			chg += rg->to - t;
151 			t = rg->to;
152 		}
153 		chg -= rg->to - rg->from;
154 	}
155 	return chg;
156 }
157 
158 static long region_truncate(struct list_head *head, long end)
159 {
160 	struct file_region *rg, *trg;
161 	long chg = 0;
162 
163 	/* Locate the region we are either in or before. */
164 	list_for_each_entry(rg, head, link)
165 		if (end <= rg->to)
166 			break;
167 	if (&rg->link == head)
168 		return 0;
169 
170 	/* If we are in the middle of a region then adjust it. */
171 	if (end > rg->from) {
172 		chg = rg->to - end;
173 		rg->to = end;
174 		rg = list_entry(rg->link.next, typeof(*rg), link);
175 	}
176 
177 	/* Drop any remaining regions. */
178 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
179 		if (&rg->link == head)
180 			break;
181 		chg += rg->to - rg->from;
182 		list_del(&rg->link);
183 		kfree(rg);
184 	}
185 	return chg;
186 }
187 
188 static long region_count(struct list_head *head, long f, long t)
189 {
190 	struct file_region *rg;
191 	long chg = 0;
192 
193 	/* Locate each segment we overlap with, and count that overlap. */
194 	list_for_each_entry(rg, head, link) {
195 		int seg_from;
196 		int seg_to;
197 
198 		if (rg->to <= f)
199 			continue;
200 		if (rg->from >= t)
201 			break;
202 
203 		seg_from = max(rg->from, f);
204 		seg_to = min(rg->to, t);
205 
206 		chg += seg_to - seg_from;
207 	}
208 
209 	return chg;
210 }
211 
212 /*
213  * Convert the address within this vma to the page offset within
214  * the mapping, in pagecache page units; huge pages here.
215  */
216 static pgoff_t vma_hugecache_offset(struct hstate *h,
217 			struct vm_area_struct *vma, unsigned long address)
218 {
219 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
220 			(vma->vm_pgoff >> huge_page_order(h));
221 }
222 
223 /*
224  * Return the size of the pages allocated when backing a VMA. In the majority
225  * cases this will be same size as used by the page table entries.
226  */
227 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
228 {
229 	struct hstate *hstate;
230 
231 	if (!is_vm_hugetlb_page(vma))
232 		return PAGE_SIZE;
233 
234 	hstate = hstate_vma(vma);
235 
236 	return 1UL << (hstate->order + PAGE_SHIFT);
237 }
238 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239 
240 /*
241  * Return the page size being used by the MMU to back a VMA. In the majority
242  * of cases, the page size used by the kernel matches the MMU size. On
243  * architectures where it differs, an architecture-specific version of this
244  * function is required.
245  */
246 #ifndef vma_mmu_pagesize
247 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
248 {
249 	return vma_kernel_pagesize(vma);
250 }
251 #endif
252 
253 /*
254  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
255  * bits of the reservation map pointer, which are always clear due to
256  * alignment.
257  */
258 #define HPAGE_RESV_OWNER    (1UL << 0)
259 #define HPAGE_RESV_UNMAPPED (1UL << 1)
260 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261 
262 /*
263  * These helpers are used to track how many pages are reserved for
264  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
265  * is guaranteed to have their future faults succeed.
266  *
267  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
268  * the reserve counters are updated with the hugetlb_lock held. It is safe
269  * to reset the VMA at fork() time as it is not in use yet and there is no
270  * chance of the global counters getting corrupted as a result of the values.
271  *
272  * The private mapping reservation is represented in a subtly different
273  * manner to a shared mapping.  A shared mapping has a region map associated
274  * with the underlying file, this region map represents the backing file
275  * pages which have ever had a reservation assigned which this persists even
276  * after the page is instantiated.  A private mapping has a region map
277  * associated with the original mmap which is attached to all VMAs which
278  * reference it, this region map represents those offsets which have consumed
279  * reservation ie. where pages have been instantiated.
280  */
281 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
282 {
283 	return (unsigned long)vma->vm_private_data;
284 }
285 
286 static void set_vma_private_data(struct vm_area_struct *vma,
287 							unsigned long value)
288 {
289 	vma->vm_private_data = (void *)value;
290 }
291 
292 struct resv_map {
293 	struct kref refs;
294 	struct list_head regions;
295 };
296 
297 static struct resv_map *resv_map_alloc(void)
298 {
299 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
300 	if (!resv_map)
301 		return NULL;
302 
303 	kref_init(&resv_map->refs);
304 	INIT_LIST_HEAD(&resv_map->regions);
305 
306 	return resv_map;
307 }
308 
309 static void resv_map_release(struct kref *ref)
310 {
311 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
312 
313 	/* Clear out any active regions before we release the map. */
314 	region_truncate(&resv_map->regions, 0);
315 	kfree(resv_map);
316 }
317 
318 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319 {
320 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
321 	if (!(vma->vm_flags & VM_MAYSHARE))
322 		return (struct resv_map *)(get_vma_private_data(vma) &
323 							~HPAGE_RESV_MASK);
324 	return NULL;
325 }
326 
327 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328 {
329 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331 
332 	set_vma_private_data(vma, (get_vma_private_data(vma) &
333 				HPAGE_RESV_MASK) | (unsigned long)map);
334 }
335 
336 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
337 {
338 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 
341 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342 }
343 
344 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
345 {
346 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
347 
348 	return (get_vma_private_data(vma) & flag) != 0;
349 }
350 
351 /* Decrement the reserved pages in the hugepage pool by one */
352 static void decrement_hugepage_resv_vma(struct hstate *h,
353 			struct vm_area_struct *vma)
354 {
355 	if (vma->vm_flags & VM_NORESERVE)
356 		return;
357 
358 	if (vma->vm_flags & VM_MAYSHARE) {
359 		/* Shared mappings always use reserves */
360 		h->resv_huge_pages--;
361 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362 		/*
363 		 * Only the process that called mmap() has reserves for
364 		 * private mappings.
365 		 */
366 		h->resv_huge_pages--;
367 	}
368 }
369 
370 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
372 {
373 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
374 	if (!(vma->vm_flags & VM_MAYSHARE))
375 		vma->vm_private_data = (void *)0;
376 }
377 
378 /* Returns true if the VMA has associated reserve pages */
379 static int vma_has_reserves(struct vm_area_struct *vma)
380 {
381 	if (vma->vm_flags & VM_MAYSHARE)
382 		return 1;
383 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
384 		return 1;
385 	return 0;
386 }
387 
388 static void clear_gigantic_page(struct page *page,
389 			unsigned long addr, unsigned long sz)
390 {
391 	int i;
392 	struct page *p = page;
393 
394 	might_sleep();
395 	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
396 		cond_resched();
397 		clear_user_highpage(p, addr + i * PAGE_SIZE);
398 	}
399 }
400 static void clear_huge_page(struct page *page,
401 			unsigned long addr, unsigned long sz)
402 {
403 	int i;
404 
405 	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
406 		clear_gigantic_page(page, addr, sz);
407 		return;
408 	}
409 
410 	might_sleep();
411 	for (i = 0; i < sz/PAGE_SIZE; i++) {
412 		cond_resched();
413 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414 	}
415 }
416 
417 static void copy_gigantic_page(struct page *dst, struct page *src,
418 			   unsigned long addr, struct vm_area_struct *vma)
419 {
420 	int i;
421 	struct hstate *h = hstate_vma(vma);
422 	struct page *dst_base = dst;
423 	struct page *src_base = src;
424 	might_sleep();
425 	for (i = 0; i < pages_per_huge_page(h); ) {
426 		cond_resched();
427 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
428 
429 		i++;
430 		dst = mem_map_next(dst, dst_base, i);
431 		src = mem_map_next(src, src_base, i);
432 	}
433 }
434 static void copy_huge_page(struct page *dst, struct page *src,
435 			   unsigned long addr, struct vm_area_struct *vma)
436 {
437 	int i;
438 	struct hstate *h = hstate_vma(vma);
439 
440 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
441 		copy_gigantic_page(dst, src, addr, vma);
442 		return;
443 	}
444 
445 	might_sleep();
446 	for (i = 0; i < pages_per_huge_page(h); i++) {
447 		cond_resched();
448 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449 	}
450 }
451 
452 static void enqueue_huge_page(struct hstate *h, struct page *page)
453 {
454 	int nid = page_to_nid(page);
455 	list_add(&page->lru, &h->hugepage_freelists[nid]);
456 	h->free_huge_pages++;
457 	h->free_huge_pages_node[nid]++;
458 }
459 
460 static struct page *dequeue_huge_page_vma(struct hstate *h,
461 				struct vm_area_struct *vma,
462 				unsigned long address, int avoid_reserve)
463 {
464 	int nid;
465 	struct page *page = NULL;
466 	struct mempolicy *mpol;
467 	nodemask_t *nodemask;
468 	struct zonelist *zonelist;
469 	struct zone *zone;
470 	struct zoneref *z;
471 
472 	get_mems_allowed();
473 	zonelist = huge_zonelist(vma, address,
474 					htlb_alloc_mask, &mpol, &nodemask);
475 	/*
476 	 * A child process with MAP_PRIVATE mappings created by their parent
477 	 * have no page reserves. This check ensures that reservations are
478 	 * not "stolen". The child may still get SIGKILLed
479 	 */
480 	if (!vma_has_reserves(vma) &&
481 			h->free_huge_pages - h->resv_huge_pages == 0)
482 		goto err;
483 
484 	/* If reserves cannot be used, ensure enough pages are in the pool */
485 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
486 		goto err;;
487 
488 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
489 						MAX_NR_ZONES - 1, nodemask) {
490 		nid = zone_to_nid(zone);
491 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
492 		    !list_empty(&h->hugepage_freelists[nid])) {
493 			page = list_entry(h->hugepage_freelists[nid].next,
494 					  struct page, lru);
495 			list_del(&page->lru);
496 			h->free_huge_pages--;
497 			h->free_huge_pages_node[nid]--;
498 
499 			if (!avoid_reserve)
500 				decrement_hugepage_resv_vma(h, vma);
501 
502 			break;
503 		}
504 	}
505 err:
506 	mpol_cond_put(mpol);
507 	put_mems_allowed();
508 	return page;
509 }
510 
511 static void update_and_free_page(struct hstate *h, struct page *page)
512 {
513 	int i;
514 
515 	VM_BUG_ON(h->order >= MAX_ORDER);
516 
517 	h->nr_huge_pages--;
518 	h->nr_huge_pages_node[page_to_nid(page)]--;
519 	for (i = 0; i < pages_per_huge_page(h); i++) {
520 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
521 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
522 				1 << PG_private | 1<< PG_writeback);
523 	}
524 	set_compound_page_dtor(page, NULL);
525 	set_page_refcounted(page);
526 	arch_release_hugepage(page);
527 	__free_pages(page, huge_page_order(h));
528 }
529 
530 struct hstate *size_to_hstate(unsigned long size)
531 {
532 	struct hstate *h;
533 
534 	for_each_hstate(h) {
535 		if (huge_page_size(h) == size)
536 			return h;
537 	}
538 	return NULL;
539 }
540 
541 static void free_huge_page(struct page *page)
542 {
543 	/*
544 	 * Can't pass hstate in here because it is called from the
545 	 * compound page destructor.
546 	 */
547 	struct hstate *h = page_hstate(page);
548 	int nid = page_to_nid(page);
549 	struct address_space *mapping;
550 
551 	mapping = (struct address_space *) page_private(page);
552 	set_page_private(page, 0);
553 	page->mapping = NULL;
554 	BUG_ON(page_count(page));
555 	INIT_LIST_HEAD(&page->lru);
556 
557 	spin_lock(&hugetlb_lock);
558 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
559 		update_and_free_page(h, page);
560 		h->surplus_huge_pages--;
561 		h->surplus_huge_pages_node[nid]--;
562 	} else {
563 		enqueue_huge_page(h, page);
564 	}
565 	spin_unlock(&hugetlb_lock);
566 	if (mapping)
567 		hugetlb_put_quota(mapping, 1);
568 }
569 
570 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
571 {
572 	set_compound_page_dtor(page, free_huge_page);
573 	spin_lock(&hugetlb_lock);
574 	h->nr_huge_pages++;
575 	h->nr_huge_pages_node[nid]++;
576 	spin_unlock(&hugetlb_lock);
577 	put_page(page); /* free it into the hugepage allocator */
578 }
579 
580 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
581 {
582 	int i;
583 	int nr_pages = 1 << order;
584 	struct page *p = page + 1;
585 
586 	/* we rely on prep_new_huge_page to set the destructor */
587 	set_compound_order(page, order);
588 	__SetPageHead(page);
589 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
590 		__SetPageTail(p);
591 		p->first_page = page;
592 	}
593 }
594 
595 int PageHuge(struct page *page)
596 {
597 	compound_page_dtor *dtor;
598 
599 	if (!PageCompound(page))
600 		return 0;
601 
602 	page = compound_head(page);
603 	dtor = get_compound_page_dtor(page);
604 
605 	return dtor == free_huge_page;
606 }
607 
608 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
609 {
610 	struct page *page;
611 
612 	if (h->order >= MAX_ORDER)
613 		return NULL;
614 
615 	page = alloc_pages_exact_node(nid,
616 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
617 						__GFP_REPEAT|__GFP_NOWARN,
618 		huge_page_order(h));
619 	if (page) {
620 		if (arch_prepare_hugepage(page)) {
621 			__free_pages(page, huge_page_order(h));
622 			return NULL;
623 		}
624 		prep_new_huge_page(h, page, nid);
625 	}
626 
627 	return page;
628 }
629 
630 /*
631  * common helper functions for hstate_next_node_to_{alloc|free}.
632  * We may have allocated or freed a huge page based on a different
633  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
634  * be outside of *nodes_allowed.  Ensure that we use an allowed
635  * node for alloc or free.
636  */
637 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
638 {
639 	nid = next_node(nid, *nodes_allowed);
640 	if (nid == MAX_NUMNODES)
641 		nid = first_node(*nodes_allowed);
642 	VM_BUG_ON(nid >= MAX_NUMNODES);
643 
644 	return nid;
645 }
646 
647 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
648 {
649 	if (!node_isset(nid, *nodes_allowed))
650 		nid = next_node_allowed(nid, nodes_allowed);
651 	return nid;
652 }
653 
654 /*
655  * returns the previously saved node ["this node"] from which to
656  * allocate a persistent huge page for the pool and advance the
657  * next node from which to allocate, handling wrap at end of node
658  * mask.
659  */
660 static int hstate_next_node_to_alloc(struct hstate *h,
661 					nodemask_t *nodes_allowed)
662 {
663 	int nid;
664 
665 	VM_BUG_ON(!nodes_allowed);
666 
667 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
668 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
669 
670 	return nid;
671 }
672 
673 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
674 {
675 	struct page *page;
676 	int start_nid;
677 	int next_nid;
678 	int ret = 0;
679 
680 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
681 	next_nid = start_nid;
682 
683 	do {
684 		page = alloc_fresh_huge_page_node(h, next_nid);
685 		if (page) {
686 			ret = 1;
687 			break;
688 		}
689 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
690 	} while (next_nid != start_nid);
691 
692 	if (ret)
693 		count_vm_event(HTLB_BUDDY_PGALLOC);
694 	else
695 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
696 
697 	return ret;
698 }
699 
700 /*
701  * helper for free_pool_huge_page() - return the previously saved
702  * node ["this node"] from which to free a huge page.  Advance the
703  * next node id whether or not we find a free huge page to free so
704  * that the next attempt to free addresses the next node.
705  */
706 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
707 {
708 	int nid;
709 
710 	VM_BUG_ON(!nodes_allowed);
711 
712 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
713 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
714 
715 	return nid;
716 }
717 
718 /*
719  * Free huge page from pool from next node to free.
720  * Attempt to keep persistent huge pages more or less
721  * balanced over allowed nodes.
722  * Called with hugetlb_lock locked.
723  */
724 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
725 							 bool acct_surplus)
726 {
727 	int start_nid;
728 	int next_nid;
729 	int ret = 0;
730 
731 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
732 	next_nid = start_nid;
733 
734 	do {
735 		/*
736 		 * If we're returning unused surplus pages, only examine
737 		 * nodes with surplus pages.
738 		 */
739 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
740 		    !list_empty(&h->hugepage_freelists[next_nid])) {
741 			struct page *page =
742 				list_entry(h->hugepage_freelists[next_nid].next,
743 					  struct page, lru);
744 			list_del(&page->lru);
745 			h->free_huge_pages--;
746 			h->free_huge_pages_node[next_nid]--;
747 			if (acct_surplus) {
748 				h->surplus_huge_pages--;
749 				h->surplus_huge_pages_node[next_nid]--;
750 			}
751 			update_and_free_page(h, page);
752 			ret = 1;
753 			break;
754 		}
755 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
756 	} while (next_nid != start_nid);
757 
758 	return ret;
759 }
760 
761 static struct page *alloc_buddy_huge_page(struct hstate *h,
762 			struct vm_area_struct *vma, unsigned long address)
763 {
764 	struct page *page;
765 	unsigned int nid;
766 
767 	if (h->order >= MAX_ORDER)
768 		return NULL;
769 
770 	/*
771 	 * Assume we will successfully allocate the surplus page to
772 	 * prevent racing processes from causing the surplus to exceed
773 	 * overcommit
774 	 *
775 	 * This however introduces a different race, where a process B
776 	 * tries to grow the static hugepage pool while alloc_pages() is
777 	 * called by process A. B will only examine the per-node
778 	 * counters in determining if surplus huge pages can be
779 	 * converted to normal huge pages in adjust_pool_surplus(). A
780 	 * won't be able to increment the per-node counter, until the
781 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
782 	 * no more huge pages can be converted from surplus to normal
783 	 * state (and doesn't try to convert again). Thus, we have a
784 	 * case where a surplus huge page exists, the pool is grown, and
785 	 * the surplus huge page still exists after, even though it
786 	 * should just have been converted to a normal huge page. This
787 	 * does not leak memory, though, as the hugepage will be freed
788 	 * once it is out of use. It also does not allow the counters to
789 	 * go out of whack in adjust_pool_surplus() as we don't modify
790 	 * the node values until we've gotten the hugepage and only the
791 	 * per-node value is checked there.
792 	 */
793 	spin_lock(&hugetlb_lock);
794 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
795 		spin_unlock(&hugetlb_lock);
796 		return NULL;
797 	} else {
798 		h->nr_huge_pages++;
799 		h->surplus_huge_pages++;
800 	}
801 	spin_unlock(&hugetlb_lock);
802 
803 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
804 					__GFP_REPEAT|__GFP_NOWARN,
805 					huge_page_order(h));
806 
807 	if (page && arch_prepare_hugepage(page)) {
808 		__free_pages(page, huge_page_order(h));
809 		return NULL;
810 	}
811 
812 	spin_lock(&hugetlb_lock);
813 	if (page) {
814 		/*
815 		 * This page is now managed by the hugetlb allocator and has
816 		 * no users -- drop the buddy allocator's reference.
817 		 */
818 		put_page_testzero(page);
819 		VM_BUG_ON(page_count(page));
820 		nid = page_to_nid(page);
821 		set_compound_page_dtor(page, free_huge_page);
822 		/*
823 		 * We incremented the global counters already
824 		 */
825 		h->nr_huge_pages_node[nid]++;
826 		h->surplus_huge_pages_node[nid]++;
827 		__count_vm_event(HTLB_BUDDY_PGALLOC);
828 	} else {
829 		h->nr_huge_pages--;
830 		h->surplus_huge_pages--;
831 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832 	}
833 	spin_unlock(&hugetlb_lock);
834 
835 	return page;
836 }
837 
838 /*
839  * Increase the hugetlb pool such that it can accomodate a reservation
840  * of size 'delta'.
841  */
842 static int gather_surplus_pages(struct hstate *h, int delta)
843 {
844 	struct list_head surplus_list;
845 	struct page *page, *tmp;
846 	int ret, i;
847 	int needed, allocated;
848 
849 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
850 	if (needed <= 0) {
851 		h->resv_huge_pages += delta;
852 		return 0;
853 	}
854 
855 	allocated = 0;
856 	INIT_LIST_HEAD(&surplus_list);
857 
858 	ret = -ENOMEM;
859 retry:
860 	spin_unlock(&hugetlb_lock);
861 	for (i = 0; i < needed; i++) {
862 		page = alloc_buddy_huge_page(h, NULL, 0);
863 		if (!page) {
864 			/*
865 			 * We were not able to allocate enough pages to
866 			 * satisfy the entire reservation so we free what
867 			 * we've allocated so far.
868 			 */
869 			spin_lock(&hugetlb_lock);
870 			needed = 0;
871 			goto free;
872 		}
873 
874 		list_add(&page->lru, &surplus_list);
875 	}
876 	allocated += needed;
877 
878 	/*
879 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
880 	 * because either resv_huge_pages or free_huge_pages may have changed.
881 	 */
882 	spin_lock(&hugetlb_lock);
883 	needed = (h->resv_huge_pages + delta) -
884 			(h->free_huge_pages + allocated);
885 	if (needed > 0)
886 		goto retry;
887 
888 	/*
889 	 * The surplus_list now contains _at_least_ the number of extra pages
890 	 * needed to accomodate the reservation.  Add the appropriate number
891 	 * of pages to the hugetlb pool and free the extras back to the buddy
892 	 * allocator.  Commit the entire reservation here to prevent another
893 	 * process from stealing the pages as they are added to the pool but
894 	 * before they are reserved.
895 	 */
896 	needed += allocated;
897 	h->resv_huge_pages += delta;
898 	ret = 0;
899 free:
900 	/* Free the needed pages to the hugetlb pool */
901 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
902 		if ((--needed) < 0)
903 			break;
904 		list_del(&page->lru);
905 		enqueue_huge_page(h, page);
906 	}
907 
908 	/* Free unnecessary surplus pages to the buddy allocator */
909 	if (!list_empty(&surplus_list)) {
910 		spin_unlock(&hugetlb_lock);
911 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
912 			list_del(&page->lru);
913 			/*
914 			 * The page has a reference count of zero already, so
915 			 * call free_huge_page directly instead of using
916 			 * put_page.  This must be done with hugetlb_lock
917 			 * unlocked which is safe because free_huge_page takes
918 			 * hugetlb_lock before deciding how to free the page.
919 			 */
920 			free_huge_page(page);
921 		}
922 		spin_lock(&hugetlb_lock);
923 	}
924 
925 	return ret;
926 }
927 
928 /*
929  * When releasing a hugetlb pool reservation, any surplus pages that were
930  * allocated to satisfy the reservation must be explicitly freed if they were
931  * never used.
932  * Called with hugetlb_lock held.
933  */
934 static void return_unused_surplus_pages(struct hstate *h,
935 					unsigned long unused_resv_pages)
936 {
937 	unsigned long nr_pages;
938 
939 	/* Uncommit the reservation */
940 	h->resv_huge_pages -= unused_resv_pages;
941 
942 	/* Cannot return gigantic pages currently */
943 	if (h->order >= MAX_ORDER)
944 		return;
945 
946 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
947 
948 	/*
949 	 * We want to release as many surplus pages as possible, spread
950 	 * evenly across all nodes with memory. Iterate across these nodes
951 	 * until we can no longer free unreserved surplus pages. This occurs
952 	 * when the nodes with surplus pages have no free pages.
953 	 * free_pool_huge_page() will balance the the freed pages across the
954 	 * on-line nodes with memory and will handle the hstate accounting.
955 	 */
956 	while (nr_pages--) {
957 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
958 			break;
959 	}
960 }
961 
962 /*
963  * Determine if the huge page at addr within the vma has an associated
964  * reservation.  Where it does not we will need to logically increase
965  * reservation and actually increase quota before an allocation can occur.
966  * Where any new reservation would be required the reservation change is
967  * prepared, but not committed.  Once the page has been quota'd allocated
968  * an instantiated the change should be committed via vma_commit_reservation.
969  * No action is required on failure.
970  */
971 static long vma_needs_reservation(struct hstate *h,
972 			struct vm_area_struct *vma, unsigned long addr)
973 {
974 	struct address_space *mapping = vma->vm_file->f_mapping;
975 	struct inode *inode = mapping->host;
976 
977 	if (vma->vm_flags & VM_MAYSHARE) {
978 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
979 		return region_chg(&inode->i_mapping->private_list,
980 							idx, idx + 1);
981 
982 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
983 		return 1;
984 
985 	} else  {
986 		long err;
987 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
988 		struct resv_map *reservations = vma_resv_map(vma);
989 
990 		err = region_chg(&reservations->regions, idx, idx + 1);
991 		if (err < 0)
992 			return err;
993 		return 0;
994 	}
995 }
996 static void vma_commit_reservation(struct hstate *h,
997 			struct vm_area_struct *vma, unsigned long addr)
998 {
999 	struct address_space *mapping = vma->vm_file->f_mapping;
1000 	struct inode *inode = mapping->host;
1001 
1002 	if (vma->vm_flags & VM_MAYSHARE) {
1003 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1004 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1005 
1006 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1007 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008 		struct resv_map *reservations = vma_resv_map(vma);
1009 
1010 		/* Mark this page used in the map. */
1011 		region_add(&reservations->regions, idx, idx + 1);
1012 	}
1013 }
1014 
1015 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1016 				    unsigned long addr, int avoid_reserve)
1017 {
1018 	struct hstate *h = hstate_vma(vma);
1019 	struct page *page;
1020 	struct address_space *mapping = vma->vm_file->f_mapping;
1021 	struct inode *inode = mapping->host;
1022 	long chg;
1023 
1024 	/*
1025 	 * Processes that did not create the mapping will have no reserves and
1026 	 * will not have accounted against quota. Check that the quota can be
1027 	 * made before satisfying the allocation
1028 	 * MAP_NORESERVE mappings may also need pages and quota allocated
1029 	 * if no reserve mapping overlaps.
1030 	 */
1031 	chg = vma_needs_reservation(h, vma, addr);
1032 	if (chg < 0)
1033 		return ERR_PTR(chg);
1034 	if (chg)
1035 		if (hugetlb_get_quota(inode->i_mapping, chg))
1036 			return ERR_PTR(-ENOSPC);
1037 
1038 	spin_lock(&hugetlb_lock);
1039 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1040 	spin_unlock(&hugetlb_lock);
1041 
1042 	if (!page) {
1043 		page = alloc_buddy_huge_page(h, vma, addr);
1044 		if (!page) {
1045 			hugetlb_put_quota(inode->i_mapping, chg);
1046 			return ERR_PTR(-VM_FAULT_SIGBUS);
1047 		}
1048 	}
1049 
1050 	set_page_refcounted(page);
1051 	set_page_private(page, (unsigned long) mapping);
1052 
1053 	vma_commit_reservation(h, vma, addr);
1054 
1055 	return page;
1056 }
1057 
1058 int __weak alloc_bootmem_huge_page(struct hstate *h)
1059 {
1060 	struct huge_bootmem_page *m;
1061 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1062 
1063 	while (nr_nodes) {
1064 		void *addr;
1065 
1066 		addr = __alloc_bootmem_node_nopanic(
1067 				NODE_DATA(hstate_next_node_to_alloc(h,
1068 						&node_states[N_HIGH_MEMORY])),
1069 				huge_page_size(h), huge_page_size(h), 0);
1070 
1071 		if (addr) {
1072 			/*
1073 			 * Use the beginning of the huge page to store the
1074 			 * huge_bootmem_page struct (until gather_bootmem
1075 			 * puts them into the mem_map).
1076 			 */
1077 			m = addr;
1078 			goto found;
1079 		}
1080 		nr_nodes--;
1081 	}
1082 	return 0;
1083 
1084 found:
1085 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1086 	/* Put them into a private list first because mem_map is not up yet */
1087 	list_add(&m->list, &huge_boot_pages);
1088 	m->hstate = h;
1089 	return 1;
1090 }
1091 
1092 static void prep_compound_huge_page(struct page *page, int order)
1093 {
1094 	if (unlikely(order > (MAX_ORDER - 1)))
1095 		prep_compound_gigantic_page(page, order);
1096 	else
1097 		prep_compound_page(page, order);
1098 }
1099 
1100 /* Put bootmem huge pages into the standard lists after mem_map is up */
1101 static void __init gather_bootmem_prealloc(void)
1102 {
1103 	struct huge_bootmem_page *m;
1104 
1105 	list_for_each_entry(m, &huge_boot_pages, list) {
1106 		struct page *page = virt_to_page(m);
1107 		struct hstate *h = m->hstate;
1108 		__ClearPageReserved(page);
1109 		WARN_ON(page_count(page) != 1);
1110 		prep_compound_huge_page(page, h->order);
1111 		prep_new_huge_page(h, page, page_to_nid(page));
1112 	}
1113 }
1114 
1115 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1116 {
1117 	unsigned long i;
1118 
1119 	for (i = 0; i < h->max_huge_pages; ++i) {
1120 		if (h->order >= MAX_ORDER) {
1121 			if (!alloc_bootmem_huge_page(h))
1122 				break;
1123 		} else if (!alloc_fresh_huge_page(h,
1124 					 &node_states[N_HIGH_MEMORY]))
1125 			break;
1126 	}
1127 	h->max_huge_pages = i;
1128 }
1129 
1130 static void __init hugetlb_init_hstates(void)
1131 {
1132 	struct hstate *h;
1133 
1134 	for_each_hstate(h) {
1135 		/* oversize hugepages were init'ed in early boot */
1136 		if (h->order < MAX_ORDER)
1137 			hugetlb_hstate_alloc_pages(h);
1138 	}
1139 }
1140 
1141 static char * __init memfmt(char *buf, unsigned long n)
1142 {
1143 	if (n >= (1UL << 30))
1144 		sprintf(buf, "%lu GB", n >> 30);
1145 	else if (n >= (1UL << 20))
1146 		sprintf(buf, "%lu MB", n >> 20);
1147 	else
1148 		sprintf(buf, "%lu KB", n >> 10);
1149 	return buf;
1150 }
1151 
1152 static void __init report_hugepages(void)
1153 {
1154 	struct hstate *h;
1155 
1156 	for_each_hstate(h) {
1157 		char buf[32];
1158 		printk(KERN_INFO "HugeTLB registered %s page size, "
1159 				 "pre-allocated %ld pages\n",
1160 			memfmt(buf, huge_page_size(h)),
1161 			h->free_huge_pages);
1162 	}
1163 }
1164 
1165 #ifdef CONFIG_HIGHMEM
1166 static void try_to_free_low(struct hstate *h, unsigned long count,
1167 						nodemask_t *nodes_allowed)
1168 {
1169 	int i;
1170 
1171 	if (h->order >= MAX_ORDER)
1172 		return;
1173 
1174 	for_each_node_mask(i, *nodes_allowed) {
1175 		struct page *page, *next;
1176 		struct list_head *freel = &h->hugepage_freelists[i];
1177 		list_for_each_entry_safe(page, next, freel, lru) {
1178 			if (count >= h->nr_huge_pages)
1179 				return;
1180 			if (PageHighMem(page))
1181 				continue;
1182 			list_del(&page->lru);
1183 			update_and_free_page(h, page);
1184 			h->free_huge_pages--;
1185 			h->free_huge_pages_node[page_to_nid(page)]--;
1186 		}
1187 	}
1188 }
1189 #else
1190 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1191 						nodemask_t *nodes_allowed)
1192 {
1193 }
1194 #endif
1195 
1196 /*
1197  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1198  * balanced by operating on them in a round-robin fashion.
1199  * Returns 1 if an adjustment was made.
1200  */
1201 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1202 				int delta)
1203 {
1204 	int start_nid, next_nid;
1205 	int ret = 0;
1206 
1207 	VM_BUG_ON(delta != -1 && delta != 1);
1208 
1209 	if (delta < 0)
1210 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1211 	else
1212 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1213 	next_nid = start_nid;
1214 
1215 	do {
1216 		int nid = next_nid;
1217 		if (delta < 0)  {
1218 			/*
1219 			 * To shrink on this node, there must be a surplus page
1220 			 */
1221 			if (!h->surplus_huge_pages_node[nid]) {
1222 				next_nid = hstate_next_node_to_alloc(h,
1223 								nodes_allowed);
1224 				continue;
1225 			}
1226 		}
1227 		if (delta > 0) {
1228 			/*
1229 			 * Surplus cannot exceed the total number of pages
1230 			 */
1231 			if (h->surplus_huge_pages_node[nid] >=
1232 						h->nr_huge_pages_node[nid]) {
1233 				next_nid = hstate_next_node_to_free(h,
1234 								nodes_allowed);
1235 				continue;
1236 			}
1237 		}
1238 
1239 		h->surplus_huge_pages += delta;
1240 		h->surplus_huge_pages_node[nid] += delta;
1241 		ret = 1;
1242 		break;
1243 	} while (next_nid != start_nid);
1244 
1245 	return ret;
1246 }
1247 
1248 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1249 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1250 						nodemask_t *nodes_allowed)
1251 {
1252 	unsigned long min_count, ret;
1253 
1254 	if (h->order >= MAX_ORDER)
1255 		return h->max_huge_pages;
1256 
1257 	/*
1258 	 * Increase the pool size
1259 	 * First take pages out of surplus state.  Then make up the
1260 	 * remaining difference by allocating fresh huge pages.
1261 	 *
1262 	 * We might race with alloc_buddy_huge_page() here and be unable
1263 	 * to convert a surplus huge page to a normal huge page. That is
1264 	 * not critical, though, it just means the overall size of the
1265 	 * pool might be one hugepage larger than it needs to be, but
1266 	 * within all the constraints specified by the sysctls.
1267 	 */
1268 	spin_lock(&hugetlb_lock);
1269 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1270 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1271 			break;
1272 	}
1273 
1274 	while (count > persistent_huge_pages(h)) {
1275 		/*
1276 		 * If this allocation races such that we no longer need the
1277 		 * page, free_huge_page will handle it by freeing the page
1278 		 * and reducing the surplus.
1279 		 */
1280 		spin_unlock(&hugetlb_lock);
1281 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1282 		spin_lock(&hugetlb_lock);
1283 		if (!ret)
1284 			goto out;
1285 
1286 		/* Bail for signals. Probably ctrl-c from user */
1287 		if (signal_pending(current))
1288 			goto out;
1289 	}
1290 
1291 	/*
1292 	 * Decrease the pool size
1293 	 * First return free pages to the buddy allocator (being careful
1294 	 * to keep enough around to satisfy reservations).  Then place
1295 	 * pages into surplus state as needed so the pool will shrink
1296 	 * to the desired size as pages become free.
1297 	 *
1298 	 * By placing pages into the surplus state independent of the
1299 	 * overcommit value, we are allowing the surplus pool size to
1300 	 * exceed overcommit. There are few sane options here. Since
1301 	 * alloc_buddy_huge_page() is checking the global counter,
1302 	 * though, we'll note that we're not allowed to exceed surplus
1303 	 * and won't grow the pool anywhere else. Not until one of the
1304 	 * sysctls are changed, or the surplus pages go out of use.
1305 	 */
1306 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1307 	min_count = max(count, min_count);
1308 	try_to_free_low(h, min_count, nodes_allowed);
1309 	while (min_count < persistent_huge_pages(h)) {
1310 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1311 			break;
1312 	}
1313 	while (count < persistent_huge_pages(h)) {
1314 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1315 			break;
1316 	}
1317 out:
1318 	ret = persistent_huge_pages(h);
1319 	spin_unlock(&hugetlb_lock);
1320 	return ret;
1321 }
1322 
1323 #define HSTATE_ATTR_RO(_name) \
1324 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1325 
1326 #define HSTATE_ATTR(_name) \
1327 	static struct kobj_attribute _name##_attr = \
1328 		__ATTR(_name, 0644, _name##_show, _name##_store)
1329 
1330 static struct kobject *hugepages_kobj;
1331 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1332 
1333 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1334 
1335 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1336 {
1337 	int i;
1338 
1339 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1340 		if (hstate_kobjs[i] == kobj) {
1341 			if (nidp)
1342 				*nidp = NUMA_NO_NODE;
1343 			return &hstates[i];
1344 		}
1345 
1346 	return kobj_to_node_hstate(kobj, nidp);
1347 }
1348 
1349 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1350 					struct kobj_attribute *attr, char *buf)
1351 {
1352 	struct hstate *h;
1353 	unsigned long nr_huge_pages;
1354 	int nid;
1355 
1356 	h = kobj_to_hstate(kobj, &nid);
1357 	if (nid == NUMA_NO_NODE)
1358 		nr_huge_pages = h->nr_huge_pages;
1359 	else
1360 		nr_huge_pages = h->nr_huge_pages_node[nid];
1361 
1362 	return sprintf(buf, "%lu\n", nr_huge_pages);
1363 }
1364 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1365 			struct kobject *kobj, struct kobj_attribute *attr,
1366 			const char *buf, size_t len)
1367 {
1368 	int err;
1369 	int nid;
1370 	unsigned long count;
1371 	struct hstate *h;
1372 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1373 
1374 	err = strict_strtoul(buf, 10, &count);
1375 	if (err)
1376 		return 0;
1377 
1378 	h = kobj_to_hstate(kobj, &nid);
1379 	if (nid == NUMA_NO_NODE) {
1380 		/*
1381 		 * global hstate attribute
1382 		 */
1383 		if (!(obey_mempolicy &&
1384 				init_nodemask_of_mempolicy(nodes_allowed))) {
1385 			NODEMASK_FREE(nodes_allowed);
1386 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1387 		}
1388 	} else if (nodes_allowed) {
1389 		/*
1390 		 * per node hstate attribute: adjust count to global,
1391 		 * but restrict alloc/free to the specified node.
1392 		 */
1393 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1394 		init_nodemask_of_node(nodes_allowed, nid);
1395 	} else
1396 		nodes_allowed = &node_states[N_HIGH_MEMORY];
1397 
1398 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1399 
1400 	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1401 		NODEMASK_FREE(nodes_allowed);
1402 
1403 	return len;
1404 }
1405 
1406 static ssize_t nr_hugepages_show(struct kobject *kobj,
1407 				       struct kobj_attribute *attr, char *buf)
1408 {
1409 	return nr_hugepages_show_common(kobj, attr, buf);
1410 }
1411 
1412 static ssize_t nr_hugepages_store(struct kobject *kobj,
1413 	       struct kobj_attribute *attr, const char *buf, size_t len)
1414 {
1415 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1416 }
1417 HSTATE_ATTR(nr_hugepages);
1418 
1419 #ifdef CONFIG_NUMA
1420 
1421 /*
1422  * hstate attribute for optionally mempolicy-based constraint on persistent
1423  * huge page alloc/free.
1424  */
1425 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1426 				       struct kobj_attribute *attr, char *buf)
1427 {
1428 	return nr_hugepages_show_common(kobj, attr, buf);
1429 }
1430 
1431 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1432 	       struct kobj_attribute *attr, const char *buf, size_t len)
1433 {
1434 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1435 }
1436 HSTATE_ATTR(nr_hugepages_mempolicy);
1437 #endif
1438 
1439 
1440 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1441 					struct kobj_attribute *attr, char *buf)
1442 {
1443 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1444 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1445 }
1446 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1447 		struct kobj_attribute *attr, const char *buf, size_t count)
1448 {
1449 	int err;
1450 	unsigned long input;
1451 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1452 
1453 	err = strict_strtoul(buf, 10, &input);
1454 	if (err)
1455 		return 0;
1456 
1457 	spin_lock(&hugetlb_lock);
1458 	h->nr_overcommit_huge_pages = input;
1459 	spin_unlock(&hugetlb_lock);
1460 
1461 	return count;
1462 }
1463 HSTATE_ATTR(nr_overcommit_hugepages);
1464 
1465 static ssize_t free_hugepages_show(struct kobject *kobj,
1466 					struct kobj_attribute *attr, char *buf)
1467 {
1468 	struct hstate *h;
1469 	unsigned long free_huge_pages;
1470 	int nid;
1471 
1472 	h = kobj_to_hstate(kobj, &nid);
1473 	if (nid == NUMA_NO_NODE)
1474 		free_huge_pages = h->free_huge_pages;
1475 	else
1476 		free_huge_pages = h->free_huge_pages_node[nid];
1477 
1478 	return sprintf(buf, "%lu\n", free_huge_pages);
1479 }
1480 HSTATE_ATTR_RO(free_hugepages);
1481 
1482 static ssize_t resv_hugepages_show(struct kobject *kobj,
1483 					struct kobj_attribute *attr, char *buf)
1484 {
1485 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1486 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1487 }
1488 HSTATE_ATTR_RO(resv_hugepages);
1489 
1490 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1491 					struct kobj_attribute *attr, char *buf)
1492 {
1493 	struct hstate *h;
1494 	unsigned long surplus_huge_pages;
1495 	int nid;
1496 
1497 	h = kobj_to_hstate(kobj, &nid);
1498 	if (nid == NUMA_NO_NODE)
1499 		surplus_huge_pages = h->surplus_huge_pages;
1500 	else
1501 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1502 
1503 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1504 }
1505 HSTATE_ATTR_RO(surplus_hugepages);
1506 
1507 static struct attribute *hstate_attrs[] = {
1508 	&nr_hugepages_attr.attr,
1509 	&nr_overcommit_hugepages_attr.attr,
1510 	&free_hugepages_attr.attr,
1511 	&resv_hugepages_attr.attr,
1512 	&surplus_hugepages_attr.attr,
1513 #ifdef CONFIG_NUMA
1514 	&nr_hugepages_mempolicy_attr.attr,
1515 #endif
1516 	NULL,
1517 };
1518 
1519 static struct attribute_group hstate_attr_group = {
1520 	.attrs = hstate_attrs,
1521 };
1522 
1523 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1524 				    struct kobject **hstate_kobjs,
1525 				    struct attribute_group *hstate_attr_group)
1526 {
1527 	int retval;
1528 	int hi = h - hstates;
1529 
1530 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1531 	if (!hstate_kobjs[hi])
1532 		return -ENOMEM;
1533 
1534 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1535 	if (retval)
1536 		kobject_put(hstate_kobjs[hi]);
1537 
1538 	return retval;
1539 }
1540 
1541 static void __init hugetlb_sysfs_init(void)
1542 {
1543 	struct hstate *h;
1544 	int err;
1545 
1546 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1547 	if (!hugepages_kobj)
1548 		return;
1549 
1550 	for_each_hstate(h) {
1551 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1552 					 hstate_kobjs, &hstate_attr_group);
1553 		if (err)
1554 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1555 								h->name);
1556 	}
1557 }
1558 
1559 #ifdef CONFIG_NUMA
1560 
1561 /*
1562  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1563  * with node sysdevs in node_devices[] using a parallel array.  The array
1564  * index of a node sysdev or _hstate == node id.
1565  * This is here to avoid any static dependency of the node sysdev driver, in
1566  * the base kernel, on the hugetlb module.
1567  */
1568 struct node_hstate {
1569 	struct kobject		*hugepages_kobj;
1570 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1571 };
1572 struct node_hstate node_hstates[MAX_NUMNODES];
1573 
1574 /*
1575  * A subset of global hstate attributes for node sysdevs
1576  */
1577 static struct attribute *per_node_hstate_attrs[] = {
1578 	&nr_hugepages_attr.attr,
1579 	&free_hugepages_attr.attr,
1580 	&surplus_hugepages_attr.attr,
1581 	NULL,
1582 };
1583 
1584 static struct attribute_group per_node_hstate_attr_group = {
1585 	.attrs = per_node_hstate_attrs,
1586 };
1587 
1588 /*
1589  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1590  * Returns node id via non-NULL nidp.
1591  */
1592 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1593 {
1594 	int nid;
1595 
1596 	for (nid = 0; nid < nr_node_ids; nid++) {
1597 		struct node_hstate *nhs = &node_hstates[nid];
1598 		int i;
1599 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1600 			if (nhs->hstate_kobjs[i] == kobj) {
1601 				if (nidp)
1602 					*nidp = nid;
1603 				return &hstates[i];
1604 			}
1605 	}
1606 
1607 	BUG();
1608 	return NULL;
1609 }
1610 
1611 /*
1612  * Unregister hstate attributes from a single node sysdev.
1613  * No-op if no hstate attributes attached.
1614  */
1615 void hugetlb_unregister_node(struct node *node)
1616 {
1617 	struct hstate *h;
1618 	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1619 
1620 	if (!nhs->hugepages_kobj)
1621 		return;		/* no hstate attributes */
1622 
1623 	for_each_hstate(h)
1624 		if (nhs->hstate_kobjs[h - hstates]) {
1625 			kobject_put(nhs->hstate_kobjs[h - hstates]);
1626 			nhs->hstate_kobjs[h - hstates] = NULL;
1627 		}
1628 
1629 	kobject_put(nhs->hugepages_kobj);
1630 	nhs->hugepages_kobj = NULL;
1631 }
1632 
1633 /*
1634  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1635  * that have them.
1636  */
1637 static void hugetlb_unregister_all_nodes(void)
1638 {
1639 	int nid;
1640 
1641 	/*
1642 	 * disable node sysdev registrations.
1643 	 */
1644 	register_hugetlbfs_with_node(NULL, NULL);
1645 
1646 	/*
1647 	 * remove hstate attributes from any nodes that have them.
1648 	 */
1649 	for (nid = 0; nid < nr_node_ids; nid++)
1650 		hugetlb_unregister_node(&node_devices[nid]);
1651 }
1652 
1653 /*
1654  * Register hstate attributes for a single node sysdev.
1655  * No-op if attributes already registered.
1656  */
1657 void hugetlb_register_node(struct node *node)
1658 {
1659 	struct hstate *h;
1660 	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1661 	int err;
1662 
1663 	if (nhs->hugepages_kobj)
1664 		return;		/* already allocated */
1665 
1666 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1667 							&node->sysdev.kobj);
1668 	if (!nhs->hugepages_kobj)
1669 		return;
1670 
1671 	for_each_hstate(h) {
1672 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1673 						nhs->hstate_kobjs,
1674 						&per_node_hstate_attr_group);
1675 		if (err) {
1676 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1677 					" for node %d\n",
1678 						h->name, node->sysdev.id);
1679 			hugetlb_unregister_node(node);
1680 			break;
1681 		}
1682 	}
1683 }
1684 
1685 /*
1686  * hugetlb init time:  register hstate attributes for all registered node
1687  * sysdevs of nodes that have memory.  All on-line nodes should have
1688  * registered their associated sysdev by this time.
1689  */
1690 static void hugetlb_register_all_nodes(void)
1691 {
1692 	int nid;
1693 
1694 	for_each_node_state(nid, N_HIGH_MEMORY) {
1695 		struct node *node = &node_devices[nid];
1696 		if (node->sysdev.id == nid)
1697 			hugetlb_register_node(node);
1698 	}
1699 
1700 	/*
1701 	 * Let the node sysdev driver know we're here so it can
1702 	 * [un]register hstate attributes on node hotplug.
1703 	 */
1704 	register_hugetlbfs_with_node(hugetlb_register_node,
1705 				     hugetlb_unregister_node);
1706 }
1707 #else	/* !CONFIG_NUMA */
1708 
1709 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1710 {
1711 	BUG();
1712 	if (nidp)
1713 		*nidp = -1;
1714 	return NULL;
1715 }
1716 
1717 static void hugetlb_unregister_all_nodes(void) { }
1718 
1719 static void hugetlb_register_all_nodes(void) { }
1720 
1721 #endif
1722 
1723 static void __exit hugetlb_exit(void)
1724 {
1725 	struct hstate *h;
1726 
1727 	hugetlb_unregister_all_nodes();
1728 
1729 	for_each_hstate(h) {
1730 		kobject_put(hstate_kobjs[h - hstates]);
1731 	}
1732 
1733 	kobject_put(hugepages_kobj);
1734 }
1735 module_exit(hugetlb_exit);
1736 
1737 static int __init hugetlb_init(void)
1738 {
1739 	/* Some platform decide whether they support huge pages at boot
1740 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1741 	 * there is no such support
1742 	 */
1743 	if (HPAGE_SHIFT == 0)
1744 		return 0;
1745 
1746 	if (!size_to_hstate(default_hstate_size)) {
1747 		default_hstate_size = HPAGE_SIZE;
1748 		if (!size_to_hstate(default_hstate_size))
1749 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1750 	}
1751 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1752 	if (default_hstate_max_huge_pages)
1753 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1754 
1755 	hugetlb_init_hstates();
1756 
1757 	gather_bootmem_prealloc();
1758 
1759 	report_hugepages();
1760 
1761 	hugetlb_sysfs_init();
1762 
1763 	hugetlb_register_all_nodes();
1764 
1765 	return 0;
1766 }
1767 module_init(hugetlb_init);
1768 
1769 /* Should be called on processing a hugepagesz=... option */
1770 void __init hugetlb_add_hstate(unsigned order)
1771 {
1772 	struct hstate *h;
1773 	unsigned long i;
1774 
1775 	if (size_to_hstate(PAGE_SIZE << order)) {
1776 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1777 		return;
1778 	}
1779 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1780 	BUG_ON(order == 0);
1781 	h = &hstates[max_hstate++];
1782 	h->order = order;
1783 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1784 	h->nr_huge_pages = 0;
1785 	h->free_huge_pages = 0;
1786 	for (i = 0; i < MAX_NUMNODES; ++i)
1787 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1788 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1789 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1790 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1791 					huge_page_size(h)/1024);
1792 
1793 	parsed_hstate = h;
1794 }
1795 
1796 static int __init hugetlb_nrpages_setup(char *s)
1797 {
1798 	unsigned long *mhp;
1799 	static unsigned long *last_mhp;
1800 
1801 	/*
1802 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1803 	 * so this hugepages= parameter goes to the "default hstate".
1804 	 */
1805 	if (!max_hstate)
1806 		mhp = &default_hstate_max_huge_pages;
1807 	else
1808 		mhp = &parsed_hstate->max_huge_pages;
1809 
1810 	if (mhp == last_mhp) {
1811 		printk(KERN_WARNING "hugepages= specified twice without "
1812 			"interleaving hugepagesz=, ignoring\n");
1813 		return 1;
1814 	}
1815 
1816 	if (sscanf(s, "%lu", mhp) <= 0)
1817 		*mhp = 0;
1818 
1819 	/*
1820 	 * Global state is always initialized later in hugetlb_init.
1821 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1822 	 * use the bootmem allocator.
1823 	 */
1824 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1825 		hugetlb_hstate_alloc_pages(parsed_hstate);
1826 
1827 	last_mhp = mhp;
1828 
1829 	return 1;
1830 }
1831 __setup("hugepages=", hugetlb_nrpages_setup);
1832 
1833 static int __init hugetlb_default_setup(char *s)
1834 {
1835 	default_hstate_size = memparse(s, &s);
1836 	return 1;
1837 }
1838 __setup("default_hugepagesz=", hugetlb_default_setup);
1839 
1840 static unsigned int cpuset_mems_nr(unsigned int *array)
1841 {
1842 	int node;
1843 	unsigned int nr = 0;
1844 
1845 	for_each_node_mask(node, cpuset_current_mems_allowed)
1846 		nr += array[node];
1847 
1848 	return nr;
1849 }
1850 
1851 #ifdef CONFIG_SYSCTL
1852 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1853 			 struct ctl_table *table, int write,
1854 			 void __user *buffer, size_t *length, loff_t *ppos)
1855 {
1856 	struct hstate *h = &default_hstate;
1857 	unsigned long tmp;
1858 
1859 	if (!write)
1860 		tmp = h->max_huge_pages;
1861 
1862 	table->data = &tmp;
1863 	table->maxlen = sizeof(unsigned long);
1864 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1865 
1866 	if (write) {
1867 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1868 						GFP_KERNEL | __GFP_NORETRY);
1869 		if (!(obey_mempolicy &&
1870 			       init_nodemask_of_mempolicy(nodes_allowed))) {
1871 			NODEMASK_FREE(nodes_allowed);
1872 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1873 		}
1874 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1875 
1876 		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1877 			NODEMASK_FREE(nodes_allowed);
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1884 			  void __user *buffer, size_t *length, loff_t *ppos)
1885 {
1886 
1887 	return hugetlb_sysctl_handler_common(false, table, write,
1888 							buffer, length, ppos);
1889 }
1890 
1891 #ifdef CONFIG_NUMA
1892 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1893 			  void __user *buffer, size_t *length, loff_t *ppos)
1894 {
1895 	return hugetlb_sysctl_handler_common(true, table, write,
1896 							buffer, length, ppos);
1897 }
1898 #endif /* CONFIG_NUMA */
1899 
1900 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1901 			void __user *buffer,
1902 			size_t *length, loff_t *ppos)
1903 {
1904 	proc_dointvec(table, write, buffer, length, ppos);
1905 	if (hugepages_treat_as_movable)
1906 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1907 	else
1908 		htlb_alloc_mask = GFP_HIGHUSER;
1909 	return 0;
1910 }
1911 
1912 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1913 			void __user *buffer,
1914 			size_t *length, loff_t *ppos)
1915 {
1916 	struct hstate *h = &default_hstate;
1917 	unsigned long tmp;
1918 
1919 	if (!write)
1920 		tmp = h->nr_overcommit_huge_pages;
1921 
1922 	table->data = &tmp;
1923 	table->maxlen = sizeof(unsigned long);
1924 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1925 
1926 	if (write) {
1927 		spin_lock(&hugetlb_lock);
1928 		h->nr_overcommit_huge_pages = tmp;
1929 		spin_unlock(&hugetlb_lock);
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 #endif /* CONFIG_SYSCTL */
1936 
1937 void hugetlb_report_meminfo(struct seq_file *m)
1938 {
1939 	struct hstate *h = &default_hstate;
1940 	seq_printf(m,
1941 			"HugePages_Total:   %5lu\n"
1942 			"HugePages_Free:    %5lu\n"
1943 			"HugePages_Rsvd:    %5lu\n"
1944 			"HugePages_Surp:    %5lu\n"
1945 			"Hugepagesize:   %8lu kB\n",
1946 			h->nr_huge_pages,
1947 			h->free_huge_pages,
1948 			h->resv_huge_pages,
1949 			h->surplus_huge_pages,
1950 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1951 }
1952 
1953 int hugetlb_report_node_meminfo(int nid, char *buf)
1954 {
1955 	struct hstate *h = &default_hstate;
1956 	return sprintf(buf,
1957 		"Node %d HugePages_Total: %5u\n"
1958 		"Node %d HugePages_Free:  %5u\n"
1959 		"Node %d HugePages_Surp:  %5u\n",
1960 		nid, h->nr_huge_pages_node[nid],
1961 		nid, h->free_huge_pages_node[nid],
1962 		nid, h->surplus_huge_pages_node[nid]);
1963 }
1964 
1965 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1966 unsigned long hugetlb_total_pages(void)
1967 {
1968 	struct hstate *h = &default_hstate;
1969 	return h->nr_huge_pages * pages_per_huge_page(h);
1970 }
1971 
1972 static int hugetlb_acct_memory(struct hstate *h, long delta)
1973 {
1974 	int ret = -ENOMEM;
1975 
1976 	spin_lock(&hugetlb_lock);
1977 	/*
1978 	 * When cpuset is configured, it breaks the strict hugetlb page
1979 	 * reservation as the accounting is done on a global variable. Such
1980 	 * reservation is completely rubbish in the presence of cpuset because
1981 	 * the reservation is not checked against page availability for the
1982 	 * current cpuset. Application can still potentially OOM'ed by kernel
1983 	 * with lack of free htlb page in cpuset that the task is in.
1984 	 * Attempt to enforce strict accounting with cpuset is almost
1985 	 * impossible (or too ugly) because cpuset is too fluid that
1986 	 * task or memory node can be dynamically moved between cpusets.
1987 	 *
1988 	 * The change of semantics for shared hugetlb mapping with cpuset is
1989 	 * undesirable. However, in order to preserve some of the semantics,
1990 	 * we fall back to check against current free page availability as
1991 	 * a best attempt and hopefully to minimize the impact of changing
1992 	 * semantics that cpuset has.
1993 	 */
1994 	if (delta > 0) {
1995 		if (gather_surplus_pages(h, delta) < 0)
1996 			goto out;
1997 
1998 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1999 			return_unused_surplus_pages(h, delta);
2000 			goto out;
2001 		}
2002 	}
2003 
2004 	ret = 0;
2005 	if (delta < 0)
2006 		return_unused_surplus_pages(h, (unsigned long) -delta);
2007 
2008 out:
2009 	spin_unlock(&hugetlb_lock);
2010 	return ret;
2011 }
2012 
2013 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2014 {
2015 	struct resv_map *reservations = vma_resv_map(vma);
2016 
2017 	/*
2018 	 * This new VMA should share its siblings reservation map if present.
2019 	 * The VMA will only ever have a valid reservation map pointer where
2020 	 * it is being copied for another still existing VMA.  As that VMA
2021 	 * has a reference to the reservation map it cannot dissappear until
2022 	 * after this open call completes.  It is therefore safe to take a
2023 	 * new reference here without additional locking.
2024 	 */
2025 	if (reservations)
2026 		kref_get(&reservations->refs);
2027 }
2028 
2029 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2030 {
2031 	struct hstate *h = hstate_vma(vma);
2032 	struct resv_map *reservations = vma_resv_map(vma);
2033 	unsigned long reserve;
2034 	unsigned long start;
2035 	unsigned long end;
2036 
2037 	if (reservations) {
2038 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2039 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2040 
2041 		reserve = (end - start) -
2042 			region_count(&reservations->regions, start, end);
2043 
2044 		kref_put(&reservations->refs, resv_map_release);
2045 
2046 		if (reserve) {
2047 			hugetlb_acct_memory(h, -reserve);
2048 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2049 		}
2050 	}
2051 }
2052 
2053 /*
2054  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2055  * handle_mm_fault() to try to instantiate regular-sized pages in the
2056  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2057  * this far.
2058  */
2059 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2060 {
2061 	BUG();
2062 	return 0;
2063 }
2064 
2065 const struct vm_operations_struct hugetlb_vm_ops = {
2066 	.fault = hugetlb_vm_op_fault,
2067 	.open = hugetlb_vm_op_open,
2068 	.close = hugetlb_vm_op_close,
2069 };
2070 
2071 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2072 				int writable)
2073 {
2074 	pte_t entry;
2075 
2076 	if (writable) {
2077 		entry =
2078 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2079 	} else {
2080 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2081 	}
2082 	entry = pte_mkyoung(entry);
2083 	entry = pte_mkhuge(entry);
2084 
2085 	return entry;
2086 }
2087 
2088 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2089 				   unsigned long address, pte_t *ptep)
2090 {
2091 	pte_t entry;
2092 
2093 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2094 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2095 		update_mmu_cache(vma, address, ptep);
2096 	}
2097 }
2098 
2099 
2100 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2101 			    struct vm_area_struct *vma)
2102 {
2103 	pte_t *src_pte, *dst_pte, entry;
2104 	struct page *ptepage;
2105 	unsigned long addr;
2106 	int cow;
2107 	struct hstate *h = hstate_vma(vma);
2108 	unsigned long sz = huge_page_size(h);
2109 
2110 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2111 
2112 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2113 		src_pte = huge_pte_offset(src, addr);
2114 		if (!src_pte)
2115 			continue;
2116 		dst_pte = huge_pte_alloc(dst, addr, sz);
2117 		if (!dst_pte)
2118 			goto nomem;
2119 
2120 		/* If the pagetables are shared don't copy or take references */
2121 		if (dst_pte == src_pte)
2122 			continue;
2123 
2124 		spin_lock(&dst->page_table_lock);
2125 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2126 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2127 			if (cow)
2128 				huge_ptep_set_wrprotect(src, addr, src_pte);
2129 			entry = huge_ptep_get(src_pte);
2130 			ptepage = pte_page(entry);
2131 			get_page(ptepage);
2132 			set_huge_pte_at(dst, addr, dst_pte, entry);
2133 		}
2134 		spin_unlock(&src->page_table_lock);
2135 		spin_unlock(&dst->page_table_lock);
2136 	}
2137 	return 0;
2138 
2139 nomem:
2140 	return -ENOMEM;
2141 }
2142 
2143 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2144 			    unsigned long end, struct page *ref_page)
2145 {
2146 	struct mm_struct *mm = vma->vm_mm;
2147 	unsigned long address;
2148 	pte_t *ptep;
2149 	pte_t pte;
2150 	struct page *page;
2151 	struct page *tmp;
2152 	struct hstate *h = hstate_vma(vma);
2153 	unsigned long sz = huge_page_size(h);
2154 
2155 	/*
2156 	 * A page gathering list, protected by per file i_mmap_lock. The
2157 	 * lock is used to avoid list corruption from multiple unmapping
2158 	 * of the same page since we are using page->lru.
2159 	 */
2160 	LIST_HEAD(page_list);
2161 
2162 	WARN_ON(!is_vm_hugetlb_page(vma));
2163 	BUG_ON(start & ~huge_page_mask(h));
2164 	BUG_ON(end & ~huge_page_mask(h));
2165 
2166 	mmu_notifier_invalidate_range_start(mm, start, end);
2167 	spin_lock(&mm->page_table_lock);
2168 	for (address = start; address < end; address += sz) {
2169 		ptep = huge_pte_offset(mm, address);
2170 		if (!ptep)
2171 			continue;
2172 
2173 		if (huge_pmd_unshare(mm, &address, ptep))
2174 			continue;
2175 
2176 		/*
2177 		 * If a reference page is supplied, it is because a specific
2178 		 * page is being unmapped, not a range. Ensure the page we
2179 		 * are about to unmap is the actual page of interest.
2180 		 */
2181 		if (ref_page) {
2182 			pte = huge_ptep_get(ptep);
2183 			if (huge_pte_none(pte))
2184 				continue;
2185 			page = pte_page(pte);
2186 			if (page != ref_page)
2187 				continue;
2188 
2189 			/*
2190 			 * Mark the VMA as having unmapped its page so that
2191 			 * future faults in this VMA will fail rather than
2192 			 * looking like data was lost
2193 			 */
2194 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2195 		}
2196 
2197 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2198 		if (huge_pte_none(pte))
2199 			continue;
2200 
2201 		page = pte_page(pte);
2202 		if (pte_dirty(pte))
2203 			set_page_dirty(page);
2204 		list_add(&page->lru, &page_list);
2205 	}
2206 	spin_unlock(&mm->page_table_lock);
2207 	flush_tlb_range(vma, start, end);
2208 	mmu_notifier_invalidate_range_end(mm, start, end);
2209 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2210 		list_del(&page->lru);
2211 		put_page(page);
2212 	}
2213 }
2214 
2215 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2216 			  unsigned long end, struct page *ref_page)
2217 {
2218 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2219 	__unmap_hugepage_range(vma, start, end, ref_page);
2220 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2221 }
2222 
2223 /*
2224  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2225  * mappping it owns the reserve page for. The intention is to unmap the page
2226  * from other VMAs and let the children be SIGKILLed if they are faulting the
2227  * same region.
2228  */
2229 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2230 				struct page *page, unsigned long address)
2231 {
2232 	struct hstate *h = hstate_vma(vma);
2233 	struct vm_area_struct *iter_vma;
2234 	struct address_space *mapping;
2235 	struct prio_tree_iter iter;
2236 	pgoff_t pgoff;
2237 
2238 	/*
2239 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2240 	 * from page cache lookup which is in HPAGE_SIZE units.
2241 	 */
2242 	address = address & huge_page_mask(h);
2243 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2244 		+ (vma->vm_pgoff >> PAGE_SHIFT);
2245 	mapping = (struct address_space *)page_private(page);
2246 
2247 	/*
2248 	 * Take the mapping lock for the duration of the table walk. As
2249 	 * this mapping should be shared between all the VMAs,
2250 	 * __unmap_hugepage_range() is called as the lock is already held
2251 	 */
2252 	spin_lock(&mapping->i_mmap_lock);
2253 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2254 		/* Do not unmap the current VMA */
2255 		if (iter_vma == vma)
2256 			continue;
2257 
2258 		/*
2259 		 * Unmap the page from other VMAs without their own reserves.
2260 		 * They get marked to be SIGKILLed if they fault in these
2261 		 * areas. This is because a future no-page fault on this VMA
2262 		 * could insert a zeroed page instead of the data existing
2263 		 * from the time of fork. This would look like data corruption
2264 		 */
2265 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2266 			__unmap_hugepage_range(iter_vma,
2267 				address, address + huge_page_size(h),
2268 				page);
2269 	}
2270 	spin_unlock(&mapping->i_mmap_lock);
2271 
2272 	return 1;
2273 }
2274 
2275 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2276 			unsigned long address, pte_t *ptep, pte_t pte,
2277 			struct page *pagecache_page)
2278 {
2279 	struct hstate *h = hstate_vma(vma);
2280 	struct page *old_page, *new_page;
2281 	int avoidcopy;
2282 	int outside_reserve = 0;
2283 
2284 	old_page = pte_page(pte);
2285 
2286 retry_avoidcopy:
2287 	/* If no-one else is actually using this page, avoid the copy
2288 	 * and just make the page writable */
2289 	avoidcopy = (page_count(old_page) == 1);
2290 	if (avoidcopy) {
2291 		set_huge_ptep_writable(vma, address, ptep);
2292 		return 0;
2293 	}
2294 
2295 	/*
2296 	 * If the process that created a MAP_PRIVATE mapping is about to
2297 	 * perform a COW due to a shared page count, attempt to satisfy
2298 	 * the allocation without using the existing reserves. The pagecache
2299 	 * page is used to determine if the reserve at this address was
2300 	 * consumed or not. If reserves were used, a partial faulted mapping
2301 	 * at the time of fork() could consume its reserves on COW instead
2302 	 * of the full address range.
2303 	 */
2304 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2305 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2306 			old_page != pagecache_page)
2307 		outside_reserve = 1;
2308 
2309 	page_cache_get(old_page);
2310 
2311 	/* Drop page_table_lock as buddy allocator may be called */
2312 	spin_unlock(&mm->page_table_lock);
2313 	new_page = alloc_huge_page(vma, address, outside_reserve);
2314 
2315 	if (IS_ERR(new_page)) {
2316 		page_cache_release(old_page);
2317 
2318 		/*
2319 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2320 		 * it is due to references held by a child and an insufficient
2321 		 * huge page pool. To guarantee the original mappers
2322 		 * reliability, unmap the page from child processes. The child
2323 		 * may get SIGKILLed if it later faults.
2324 		 */
2325 		if (outside_reserve) {
2326 			BUG_ON(huge_pte_none(pte));
2327 			if (unmap_ref_private(mm, vma, old_page, address)) {
2328 				BUG_ON(page_count(old_page) != 1);
2329 				BUG_ON(huge_pte_none(pte));
2330 				spin_lock(&mm->page_table_lock);
2331 				goto retry_avoidcopy;
2332 			}
2333 			WARN_ON_ONCE(1);
2334 		}
2335 
2336 		/* Caller expects lock to be held */
2337 		spin_lock(&mm->page_table_lock);
2338 		return -PTR_ERR(new_page);
2339 	}
2340 
2341 	copy_huge_page(new_page, old_page, address, vma);
2342 	__SetPageUptodate(new_page);
2343 
2344 	/*
2345 	 * Retake the page_table_lock to check for racing updates
2346 	 * before the page tables are altered
2347 	 */
2348 	spin_lock(&mm->page_table_lock);
2349 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2350 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2351 		/* Break COW */
2352 		huge_ptep_clear_flush(vma, address, ptep);
2353 		set_huge_pte_at(mm, address, ptep,
2354 				make_huge_pte(vma, new_page, 1));
2355 		/* Make the old page be freed below */
2356 		new_page = old_page;
2357 	}
2358 	page_cache_release(new_page);
2359 	page_cache_release(old_page);
2360 	return 0;
2361 }
2362 
2363 /* Return the pagecache page at a given address within a VMA */
2364 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2365 			struct vm_area_struct *vma, unsigned long address)
2366 {
2367 	struct address_space *mapping;
2368 	pgoff_t idx;
2369 
2370 	mapping = vma->vm_file->f_mapping;
2371 	idx = vma_hugecache_offset(h, vma, address);
2372 
2373 	return find_lock_page(mapping, idx);
2374 }
2375 
2376 /*
2377  * Return whether there is a pagecache page to back given address within VMA.
2378  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2379  */
2380 static bool hugetlbfs_pagecache_present(struct hstate *h,
2381 			struct vm_area_struct *vma, unsigned long address)
2382 {
2383 	struct address_space *mapping;
2384 	pgoff_t idx;
2385 	struct page *page;
2386 
2387 	mapping = vma->vm_file->f_mapping;
2388 	idx = vma_hugecache_offset(h, vma, address);
2389 
2390 	page = find_get_page(mapping, idx);
2391 	if (page)
2392 		put_page(page);
2393 	return page != NULL;
2394 }
2395 
2396 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397 			unsigned long address, pte_t *ptep, unsigned int flags)
2398 {
2399 	struct hstate *h = hstate_vma(vma);
2400 	int ret = VM_FAULT_SIGBUS;
2401 	pgoff_t idx;
2402 	unsigned long size;
2403 	struct page *page;
2404 	struct address_space *mapping;
2405 	pte_t new_pte;
2406 
2407 	/*
2408 	 * Currently, we are forced to kill the process in the event the
2409 	 * original mapper has unmapped pages from the child due to a failed
2410 	 * COW. Warn that such a situation has occured as it may not be obvious
2411 	 */
2412 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2413 		printk(KERN_WARNING
2414 			"PID %d killed due to inadequate hugepage pool\n",
2415 			current->pid);
2416 		return ret;
2417 	}
2418 
2419 	mapping = vma->vm_file->f_mapping;
2420 	idx = vma_hugecache_offset(h, vma, address);
2421 
2422 	/*
2423 	 * Use page lock to guard against racing truncation
2424 	 * before we get page_table_lock.
2425 	 */
2426 retry:
2427 	page = find_lock_page(mapping, idx);
2428 	if (!page) {
2429 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2430 		if (idx >= size)
2431 			goto out;
2432 		page = alloc_huge_page(vma, address, 0);
2433 		if (IS_ERR(page)) {
2434 			ret = -PTR_ERR(page);
2435 			goto out;
2436 		}
2437 		clear_huge_page(page, address, huge_page_size(h));
2438 		__SetPageUptodate(page);
2439 
2440 		if (vma->vm_flags & VM_MAYSHARE) {
2441 			int err;
2442 			struct inode *inode = mapping->host;
2443 
2444 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2445 			if (err) {
2446 				put_page(page);
2447 				if (err == -EEXIST)
2448 					goto retry;
2449 				goto out;
2450 			}
2451 
2452 			spin_lock(&inode->i_lock);
2453 			inode->i_blocks += blocks_per_huge_page(h);
2454 			spin_unlock(&inode->i_lock);
2455 		} else {
2456 			lock_page(page);
2457 			page->mapping = HUGETLB_POISON;
2458 		}
2459 	}
2460 
2461 	/*
2462 	 * If we are going to COW a private mapping later, we examine the
2463 	 * pending reservations for this page now. This will ensure that
2464 	 * any allocations necessary to record that reservation occur outside
2465 	 * the spinlock.
2466 	 */
2467 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2468 		if (vma_needs_reservation(h, vma, address) < 0) {
2469 			ret = VM_FAULT_OOM;
2470 			goto backout_unlocked;
2471 		}
2472 
2473 	spin_lock(&mm->page_table_lock);
2474 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2475 	if (idx >= size)
2476 		goto backout;
2477 
2478 	ret = 0;
2479 	if (!huge_pte_none(huge_ptep_get(ptep)))
2480 		goto backout;
2481 
2482 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2483 				&& (vma->vm_flags & VM_SHARED)));
2484 	set_huge_pte_at(mm, address, ptep, new_pte);
2485 
2486 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2487 		/* Optimization, do the COW without a second fault */
2488 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2489 	}
2490 
2491 	spin_unlock(&mm->page_table_lock);
2492 	unlock_page(page);
2493 out:
2494 	return ret;
2495 
2496 backout:
2497 	spin_unlock(&mm->page_table_lock);
2498 backout_unlocked:
2499 	unlock_page(page);
2500 	put_page(page);
2501 	goto out;
2502 }
2503 
2504 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2505 			unsigned long address, unsigned int flags)
2506 {
2507 	pte_t *ptep;
2508 	pte_t entry;
2509 	int ret;
2510 	struct page *pagecache_page = NULL;
2511 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2512 	struct hstate *h = hstate_vma(vma);
2513 
2514 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2515 	if (!ptep)
2516 		return VM_FAULT_OOM;
2517 
2518 	/*
2519 	 * Serialize hugepage allocation and instantiation, so that we don't
2520 	 * get spurious allocation failures if two CPUs race to instantiate
2521 	 * the same page in the page cache.
2522 	 */
2523 	mutex_lock(&hugetlb_instantiation_mutex);
2524 	entry = huge_ptep_get(ptep);
2525 	if (huge_pte_none(entry)) {
2526 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2527 		goto out_mutex;
2528 	}
2529 
2530 	ret = 0;
2531 
2532 	/*
2533 	 * If we are going to COW the mapping later, we examine the pending
2534 	 * reservations for this page now. This will ensure that any
2535 	 * allocations necessary to record that reservation occur outside the
2536 	 * spinlock. For private mappings, we also lookup the pagecache
2537 	 * page now as it is used to determine if a reservation has been
2538 	 * consumed.
2539 	 */
2540 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2541 		if (vma_needs_reservation(h, vma, address) < 0) {
2542 			ret = VM_FAULT_OOM;
2543 			goto out_mutex;
2544 		}
2545 
2546 		if (!(vma->vm_flags & VM_MAYSHARE))
2547 			pagecache_page = hugetlbfs_pagecache_page(h,
2548 								vma, address);
2549 	}
2550 
2551 	spin_lock(&mm->page_table_lock);
2552 	/* Check for a racing update before calling hugetlb_cow */
2553 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2554 		goto out_page_table_lock;
2555 
2556 
2557 	if (flags & FAULT_FLAG_WRITE) {
2558 		if (!pte_write(entry)) {
2559 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2560 							pagecache_page);
2561 			goto out_page_table_lock;
2562 		}
2563 		entry = pte_mkdirty(entry);
2564 	}
2565 	entry = pte_mkyoung(entry);
2566 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2567 						flags & FAULT_FLAG_WRITE))
2568 		update_mmu_cache(vma, address, ptep);
2569 
2570 out_page_table_lock:
2571 	spin_unlock(&mm->page_table_lock);
2572 
2573 	if (pagecache_page) {
2574 		unlock_page(pagecache_page);
2575 		put_page(pagecache_page);
2576 	}
2577 
2578 out_mutex:
2579 	mutex_unlock(&hugetlb_instantiation_mutex);
2580 
2581 	return ret;
2582 }
2583 
2584 /* Can be overriden by architectures */
2585 __attribute__((weak)) struct page *
2586 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2587 	       pud_t *pud, int write)
2588 {
2589 	BUG();
2590 	return NULL;
2591 }
2592 
2593 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2594 			struct page **pages, struct vm_area_struct **vmas,
2595 			unsigned long *position, int *length, int i,
2596 			unsigned int flags)
2597 {
2598 	unsigned long pfn_offset;
2599 	unsigned long vaddr = *position;
2600 	int remainder = *length;
2601 	struct hstate *h = hstate_vma(vma);
2602 
2603 	spin_lock(&mm->page_table_lock);
2604 	while (vaddr < vma->vm_end && remainder) {
2605 		pte_t *pte;
2606 		int absent;
2607 		struct page *page;
2608 
2609 		/*
2610 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2611 		 * each hugepage.  We have to make sure we get the
2612 		 * first, for the page indexing below to work.
2613 		 */
2614 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2615 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2616 
2617 		/*
2618 		 * When coredumping, it suits get_dump_page if we just return
2619 		 * an error where there's an empty slot with no huge pagecache
2620 		 * to back it.  This way, we avoid allocating a hugepage, and
2621 		 * the sparse dumpfile avoids allocating disk blocks, but its
2622 		 * huge holes still show up with zeroes where they need to be.
2623 		 */
2624 		if (absent && (flags & FOLL_DUMP) &&
2625 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2626 			remainder = 0;
2627 			break;
2628 		}
2629 
2630 		if (absent ||
2631 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2632 			int ret;
2633 
2634 			spin_unlock(&mm->page_table_lock);
2635 			ret = hugetlb_fault(mm, vma, vaddr,
2636 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2637 			spin_lock(&mm->page_table_lock);
2638 			if (!(ret & VM_FAULT_ERROR))
2639 				continue;
2640 
2641 			remainder = 0;
2642 			break;
2643 		}
2644 
2645 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2646 		page = pte_page(huge_ptep_get(pte));
2647 same_page:
2648 		if (pages) {
2649 			pages[i] = mem_map_offset(page, pfn_offset);
2650 			get_page(pages[i]);
2651 		}
2652 
2653 		if (vmas)
2654 			vmas[i] = vma;
2655 
2656 		vaddr += PAGE_SIZE;
2657 		++pfn_offset;
2658 		--remainder;
2659 		++i;
2660 		if (vaddr < vma->vm_end && remainder &&
2661 				pfn_offset < pages_per_huge_page(h)) {
2662 			/*
2663 			 * We use pfn_offset to avoid touching the pageframes
2664 			 * of this compound page.
2665 			 */
2666 			goto same_page;
2667 		}
2668 	}
2669 	spin_unlock(&mm->page_table_lock);
2670 	*length = remainder;
2671 	*position = vaddr;
2672 
2673 	return i ? i : -EFAULT;
2674 }
2675 
2676 void hugetlb_change_protection(struct vm_area_struct *vma,
2677 		unsigned long address, unsigned long end, pgprot_t newprot)
2678 {
2679 	struct mm_struct *mm = vma->vm_mm;
2680 	unsigned long start = address;
2681 	pte_t *ptep;
2682 	pte_t pte;
2683 	struct hstate *h = hstate_vma(vma);
2684 
2685 	BUG_ON(address >= end);
2686 	flush_cache_range(vma, address, end);
2687 
2688 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2689 	spin_lock(&mm->page_table_lock);
2690 	for (; address < end; address += huge_page_size(h)) {
2691 		ptep = huge_pte_offset(mm, address);
2692 		if (!ptep)
2693 			continue;
2694 		if (huge_pmd_unshare(mm, &address, ptep))
2695 			continue;
2696 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2697 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2698 			pte = pte_mkhuge(pte_modify(pte, newprot));
2699 			set_huge_pte_at(mm, address, ptep, pte);
2700 		}
2701 	}
2702 	spin_unlock(&mm->page_table_lock);
2703 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2704 
2705 	flush_tlb_range(vma, start, end);
2706 }
2707 
2708 int hugetlb_reserve_pages(struct inode *inode,
2709 					long from, long to,
2710 					struct vm_area_struct *vma,
2711 					int acctflag)
2712 {
2713 	long ret, chg;
2714 	struct hstate *h = hstate_inode(inode);
2715 
2716 	/*
2717 	 * Only apply hugepage reservation if asked. At fault time, an
2718 	 * attempt will be made for VM_NORESERVE to allocate a page
2719 	 * and filesystem quota without using reserves
2720 	 */
2721 	if (acctflag & VM_NORESERVE)
2722 		return 0;
2723 
2724 	/*
2725 	 * Shared mappings base their reservation on the number of pages that
2726 	 * are already allocated on behalf of the file. Private mappings need
2727 	 * to reserve the full area even if read-only as mprotect() may be
2728 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2729 	 */
2730 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2731 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2732 	else {
2733 		struct resv_map *resv_map = resv_map_alloc();
2734 		if (!resv_map)
2735 			return -ENOMEM;
2736 
2737 		chg = to - from;
2738 
2739 		set_vma_resv_map(vma, resv_map);
2740 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2741 	}
2742 
2743 	if (chg < 0)
2744 		return chg;
2745 
2746 	/* There must be enough filesystem quota for the mapping */
2747 	if (hugetlb_get_quota(inode->i_mapping, chg))
2748 		return -ENOSPC;
2749 
2750 	/*
2751 	 * Check enough hugepages are available for the reservation.
2752 	 * Hand back the quota if there are not
2753 	 */
2754 	ret = hugetlb_acct_memory(h, chg);
2755 	if (ret < 0) {
2756 		hugetlb_put_quota(inode->i_mapping, chg);
2757 		return ret;
2758 	}
2759 
2760 	/*
2761 	 * Account for the reservations made. Shared mappings record regions
2762 	 * that have reservations as they are shared by multiple VMAs.
2763 	 * When the last VMA disappears, the region map says how much
2764 	 * the reservation was and the page cache tells how much of
2765 	 * the reservation was consumed. Private mappings are per-VMA and
2766 	 * only the consumed reservations are tracked. When the VMA
2767 	 * disappears, the original reservation is the VMA size and the
2768 	 * consumed reservations are stored in the map. Hence, nothing
2769 	 * else has to be done for private mappings here
2770 	 */
2771 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2772 		region_add(&inode->i_mapping->private_list, from, to);
2773 	return 0;
2774 }
2775 
2776 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2777 {
2778 	struct hstate *h = hstate_inode(inode);
2779 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2780 
2781 	spin_lock(&inode->i_lock);
2782 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2783 	spin_unlock(&inode->i_lock);
2784 
2785 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2786 	hugetlb_acct_memory(h, -(chg - freed));
2787 }
2788