xref: /openbmc/linux/mm/hugetlb.c (revision b34081f1)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29 
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35 
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 
43 __initdata LIST_HEAD(huge_boot_pages);
44 
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49 
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55 
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59 
60 	spin_unlock(&spool->lock);
61 
62 	/* If no pages are used, and no other handles to the subpool
63 	 * remain, free the subpool the subpool remain */
64 	if (free)
65 		kfree(spool);
66 }
67 
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 	struct hugepage_subpool *spool;
71 
72 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 	if (!spool)
74 		return NULL;
75 
76 	spin_lock_init(&spool->lock);
77 	spool->count = 1;
78 	spool->max_hpages = nr_blocks;
79 	spool->used_hpages = 0;
80 
81 	return spool;
82 }
83 
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 	spin_lock(&spool->lock);
87 	BUG_ON(!spool->count);
88 	spool->count--;
89 	unlock_or_release_subpool(spool);
90 }
91 
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 				      long delta)
94 {
95 	int ret = 0;
96 
97 	if (!spool)
98 		return 0;
99 
100 	spin_lock(&spool->lock);
101 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 		spool->used_hpages += delta;
103 	} else {
104 		ret = -ENOMEM;
105 	}
106 	spin_unlock(&spool->lock);
107 
108 	return ret;
109 }
110 
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 				       long delta)
113 {
114 	if (!spool)
115 		return;
116 
117 	spin_lock(&spool->lock);
118 	spool->used_hpages -= delta;
119 	/* If hugetlbfs_put_super couldn't free spool due to
120 	* an outstanding quota reference, free it now. */
121 	unlock_or_release_subpool(spool);
122 }
123 
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 	return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128 
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 	return subpool_inode(file_inode(vma->vm_file));
132 }
133 
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *	down_write(&mm->mmap_sem);
144  * or
145  *	down_read(&mm->mmap_sem);
146  *	mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149 	struct list_head link;
150 	long from;
151 	long to;
152 };
153 
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 	struct file_region *rg, *nrg, *trg;
157 
158 	/* Locate the region we are either in or before. */
159 	list_for_each_entry(rg, head, link)
160 		if (f <= rg->to)
161 			break;
162 
163 	/* Round our left edge to the current segment if it encloses us. */
164 	if (f > rg->from)
165 		f = rg->from;
166 
167 	/* Check for and consume any regions we now overlap with. */
168 	nrg = rg;
169 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 		if (&rg->link == head)
171 			break;
172 		if (rg->from > t)
173 			break;
174 
175 		/* If this area reaches higher then extend our area to
176 		 * include it completely.  If this is not the first area
177 		 * which we intend to reuse, free it. */
178 		if (rg->to > t)
179 			t = rg->to;
180 		if (rg != nrg) {
181 			list_del(&rg->link);
182 			kfree(rg);
183 		}
184 	}
185 	nrg->from = f;
186 	nrg->to = t;
187 	return 0;
188 }
189 
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 	struct file_region *rg, *nrg;
193 	long chg = 0;
194 
195 	/* Locate the region we are before or in. */
196 	list_for_each_entry(rg, head, link)
197 		if (f <= rg->to)
198 			break;
199 
200 	/* If we are below the current region then a new region is required.
201 	 * Subtle, allocate a new region at the position but make it zero
202 	 * size such that we can guarantee to record the reservation. */
203 	if (&rg->link == head || t < rg->from) {
204 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 		if (!nrg)
206 			return -ENOMEM;
207 		nrg->from = f;
208 		nrg->to   = f;
209 		INIT_LIST_HEAD(&nrg->link);
210 		list_add(&nrg->link, rg->link.prev);
211 
212 		return t - f;
213 	}
214 
215 	/* Round our left edge to the current segment if it encloses us. */
216 	if (f > rg->from)
217 		f = rg->from;
218 	chg = t - f;
219 
220 	/* Check for and consume any regions we now overlap with. */
221 	list_for_each_entry(rg, rg->link.prev, link) {
222 		if (&rg->link == head)
223 			break;
224 		if (rg->from > t)
225 			return chg;
226 
227 		/* We overlap with this area, if it extends further than
228 		 * us then we must extend ourselves.  Account for its
229 		 * existing reservation. */
230 		if (rg->to > t) {
231 			chg += rg->to - t;
232 			t = rg->to;
233 		}
234 		chg -= rg->to - rg->from;
235 	}
236 	return chg;
237 }
238 
239 static long region_truncate(struct list_head *head, long end)
240 {
241 	struct file_region *rg, *trg;
242 	long chg = 0;
243 
244 	/* Locate the region we are either in or before. */
245 	list_for_each_entry(rg, head, link)
246 		if (end <= rg->to)
247 			break;
248 	if (&rg->link == head)
249 		return 0;
250 
251 	/* If we are in the middle of a region then adjust it. */
252 	if (end > rg->from) {
253 		chg = rg->to - end;
254 		rg->to = end;
255 		rg = list_entry(rg->link.next, typeof(*rg), link);
256 	}
257 
258 	/* Drop any remaining regions. */
259 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 		if (&rg->link == head)
261 			break;
262 		chg += rg->to - rg->from;
263 		list_del(&rg->link);
264 		kfree(rg);
265 	}
266 	return chg;
267 }
268 
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 	struct file_region *rg;
272 	long chg = 0;
273 
274 	/* Locate each segment we overlap with, and count that overlap. */
275 	list_for_each_entry(rg, head, link) {
276 		long seg_from;
277 		long seg_to;
278 
279 		if (rg->to <= f)
280 			continue;
281 		if (rg->from >= t)
282 			break;
283 
284 		seg_from = max(rg->from, f);
285 		seg_to = min(rg->to, t);
286 
287 		chg += seg_to - seg_from;
288 	}
289 
290 	return chg;
291 }
292 
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 			struct vm_area_struct *vma, unsigned long address)
299 {
300 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 			(vma->vm_pgoff >> huge_page_order(h));
302 }
303 
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 				     unsigned long address)
306 {
307 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309 
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 	struct hstate *hstate;
317 
318 	if (!is_vm_hugetlb_page(vma))
319 		return PAGE_SIZE;
320 
321 	hstate = hstate_vma(vma);
322 
323 	return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326 
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 	return vma_kernel_pagesize(vma);
337 }
338 #endif
339 
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348 
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 	return (unsigned long)vma->vm_private_data;
371 }
372 
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 							unsigned long value)
375 {
376 	vma->vm_private_data = (void *)value;
377 }
378 
379 struct resv_map {
380 	struct kref refs;
381 	struct list_head regions;
382 };
383 
384 static struct resv_map *resv_map_alloc(void)
385 {
386 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 	if (!resv_map)
388 		return NULL;
389 
390 	kref_init(&resv_map->refs);
391 	INIT_LIST_HEAD(&resv_map->regions);
392 
393 	return resv_map;
394 }
395 
396 static void resv_map_release(struct kref *ref)
397 {
398 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399 
400 	/* Clear out any active regions before we release the map. */
401 	region_truncate(&resv_map->regions, 0);
402 	kfree(resv_map);
403 }
404 
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 	if (!(vma->vm_flags & VM_MAYSHARE))
409 		return (struct resv_map *)(get_vma_private_data(vma) &
410 							~HPAGE_RESV_MASK);
411 	return NULL;
412 }
413 
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 
419 	set_vma_private_data(vma, (get_vma_private_data(vma) &
420 				HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422 
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 
428 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430 
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 
435 	return (get_vma_private_data(vma) & flag) != 0;
436 }
437 
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 	if (!(vma->vm_flags & VM_MAYSHARE))
443 		vma->vm_private_data = (void *)0;
444 }
445 
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449 	if (vma->vm_flags & VM_NORESERVE) {
450 		/*
451 		 * This address is already reserved by other process(chg == 0),
452 		 * so, we should decrement reserved count. Without decrementing,
453 		 * reserve count remains after releasing inode, because this
454 		 * allocated page will go into page cache and is regarded as
455 		 * coming from reserved pool in releasing step.  Currently, we
456 		 * don't have any other solution to deal with this situation
457 		 * properly, so add work-around here.
458 		 */
459 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 			return 1;
461 		else
462 			return 0;
463 	}
464 
465 	/* Shared mappings always use reserves */
466 	if (vma->vm_flags & VM_MAYSHARE)
467 		return 1;
468 
469 	/*
470 	 * Only the process that called mmap() has reserves for
471 	 * private mappings.
472 	 */
473 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 		return 1;
475 
476 	return 0;
477 }
478 
479 static void copy_gigantic_page(struct page *dst, struct page *src)
480 {
481 	int i;
482 	struct hstate *h = page_hstate(src);
483 	struct page *dst_base = dst;
484 	struct page *src_base = src;
485 
486 	for (i = 0; i < pages_per_huge_page(h); ) {
487 		cond_resched();
488 		copy_highpage(dst, src);
489 
490 		i++;
491 		dst = mem_map_next(dst, dst_base, i);
492 		src = mem_map_next(src, src_base, i);
493 	}
494 }
495 
496 void copy_huge_page(struct page *dst, struct page *src)
497 {
498 	int i;
499 	struct hstate *h = page_hstate(src);
500 
501 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502 		copy_gigantic_page(dst, src);
503 		return;
504 	}
505 
506 	might_sleep();
507 	for (i = 0; i < pages_per_huge_page(h); i++) {
508 		cond_resched();
509 		copy_highpage(dst + i, src + i);
510 	}
511 }
512 
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
514 {
515 	int nid = page_to_nid(page);
516 	list_move(&page->lru, &h->hugepage_freelists[nid]);
517 	h->free_huge_pages++;
518 	h->free_huge_pages_node[nid]++;
519 }
520 
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522 {
523 	struct page *page;
524 
525 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526 		if (!is_migrate_isolate_page(page))
527 			break;
528 	/*
529 	 * if 'non-isolated free hugepage' not found on the list,
530 	 * the allocation fails.
531 	 */
532 	if (&h->hugepage_freelists[nid] == &page->lru)
533 		return NULL;
534 	list_move(&page->lru, &h->hugepage_activelist);
535 	set_page_refcounted(page);
536 	h->free_huge_pages--;
537 	h->free_huge_pages_node[nid]--;
538 	return page;
539 }
540 
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t htlb_alloc_mask(struct hstate *h)
543 {
544 	if (hugepages_treat_as_movable || hugepage_migration_support(h))
545 		return GFP_HIGHUSER_MOVABLE;
546 	else
547 		return GFP_HIGHUSER;
548 }
549 
550 static struct page *dequeue_huge_page_vma(struct hstate *h,
551 				struct vm_area_struct *vma,
552 				unsigned long address, int avoid_reserve,
553 				long chg)
554 {
555 	struct page *page = NULL;
556 	struct mempolicy *mpol;
557 	nodemask_t *nodemask;
558 	struct zonelist *zonelist;
559 	struct zone *zone;
560 	struct zoneref *z;
561 	unsigned int cpuset_mems_cookie;
562 
563 	/*
564 	 * A child process with MAP_PRIVATE mappings created by their parent
565 	 * have no page reserves. This check ensures that reservations are
566 	 * not "stolen". The child may still get SIGKILLed
567 	 */
568 	if (!vma_has_reserves(vma, chg) &&
569 			h->free_huge_pages - h->resv_huge_pages == 0)
570 		goto err;
571 
572 	/* If reserves cannot be used, ensure enough pages are in the pool */
573 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574 		goto err;
575 
576 retry_cpuset:
577 	cpuset_mems_cookie = get_mems_allowed();
578 	zonelist = huge_zonelist(vma, address,
579 					htlb_alloc_mask(h), &mpol, &nodemask);
580 
581 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
582 						MAX_NR_ZONES - 1, nodemask) {
583 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
585 			if (page) {
586 				if (avoid_reserve)
587 					break;
588 				if (!vma_has_reserves(vma, chg))
589 					break;
590 
591 				SetPagePrivate(page);
592 				h->resv_huge_pages--;
593 				break;
594 			}
595 		}
596 	}
597 
598 	mpol_cond_put(mpol);
599 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
600 		goto retry_cpuset;
601 	return page;
602 
603 err:
604 	return NULL;
605 }
606 
607 static void update_and_free_page(struct hstate *h, struct page *page)
608 {
609 	int i;
610 
611 	VM_BUG_ON(h->order >= MAX_ORDER);
612 
613 	h->nr_huge_pages--;
614 	h->nr_huge_pages_node[page_to_nid(page)]--;
615 	for (i = 0; i < pages_per_huge_page(h); i++) {
616 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
617 				1 << PG_referenced | 1 << PG_dirty |
618 				1 << PG_active | 1 << PG_reserved |
619 				1 << PG_private | 1 << PG_writeback);
620 	}
621 	VM_BUG_ON(hugetlb_cgroup_from_page(page));
622 	set_compound_page_dtor(page, NULL);
623 	set_page_refcounted(page);
624 	arch_release_hugepage(page);
625 	__free_pages(page, huge_page_order(h));
626 }
627 
628 struct hstate *size_to_hstate(unsigned long size)
629 {
630 	struct hstate *h;
631 
632 	for_each_hstate(h) {
633 		if (huge_page_size(h) == size)
634 			return h;
635 	}
636 	return NULL;
637 }
638 
639 static void free_huge_page(struct page *page)
640 {
641 	/*
642 	 * Can't pass hstate in here because it is called from the
643 	 * compound page destructor.
644 	 */
645 	struct hstate *h = page_hstate(page);
646 	int nid = page_to_nid(page);
647 	struct hugepage_subpool *spool =
648 		(struct hugepage_subpool *)page_private(page);
649 	bool restore_reserve;
650 
651 	set_page_private(page, 0);
652 	page->mapping = NULL;
653 	BUG_ON(page_count(page));
654 	BUG_ON(page_mapcount(page));
655 	restore_reserve = PagePrivate(page);
656 
657 	spin_lock(&hugetlb_lock);
658 	hugetlb_cgroup_uncharge_page(hstate_index(h),
659 				     pages_per_huge_page(h), page);
660 	if (restore_reserve)
661 		h->resv_huge_pages++;
662 
663 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
664 		/* remove the page from active list */
665 		list_del(&page->lru);
666 		update_and_free_page(h, page);
667 		h->surplus_huge_pages--;
668 		h->surplus_huge_pages_node[nid]--;
669 	} else {
670 		arch_clear_hugepage_flags(page);
671 		enqueue_huge_page(h, page);
672 	}
673 	spin_unlock(&hugetlb_lock);
674 	hugepage_subpool_put_pages(spool, 1);
675 }
676 
677 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
678 {
679 	INIT_LIST_HEAD(&page->lru);
680 	set_compound_page_dtor(page, free_huge_page);
681 	spin_lock(&hugetlb_lock);
682 	set_hugetlb_cgroup(page, NULL);
683 	h->nr_huge_pages++;
684 	h->nr_huge_pages_node[nid]++;
685 	spin_unlock(&hugetlb_lock);
686 	put_page(page); /* free it into the hugepage allocator */
687 }
688 
689 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
690 {
691 	int i;
692 	int nr_pages = 1 << order;
693 	struct page *p = page + 1;
694 
695 	/* we rely on prep_new_huge_page to set the destructor */
696 	set_compound_order(page, order);
697 	__SetPageHead(page);
698 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
699 		__SetPageTail(p);
700 		set_page_count(p, 0);
701 		p->first_page = page;
702 	}
703 }
704 
705 /*
706  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
707  * transparent huge pages.  See the PageTransHuge() documentation for more
708  * details.
709  */
710 int PageHuge(struct page *page)
711 {
712 	compound_page_dtor *dtor;
713 
714 	if (!PageCompound(page))
715 		return 0;
716 
717 	page = compound_head(page);
718 	dtor = get_compound_page_dtor(page);
719 
720 	return dtor == free_huge_page;
721 }
722 EXPORT_SYMBOL_GPL(PageHuge);
723 
724 pgoff_t __basepage_index(struct page *page)
725 {
726 	struct page *page_head = compound_head(page);
727 	pgoff_t index = page_index(page_head);
728 	unsigned long compound_idx;
729 
730 	if (!PageHuge(page_head))
731 		return page_index(page);
732 
733 	if (compound_order(page_head) >= MAX_ORDER)
734 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
735 	else
736 		compound_idx = page - page_head;
737 
738 	return (index << compound_order(page_head)) + compound_idx;
739 }
740 
741 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
742 {
743 	struct page *page;
744 
745 	if (h->order >= MAX_ORDER)
746 		return NULL;
747 
748 	page = alloc_pages_exact_node(nid,
749 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
750 						__GFP_REPEAT|__GFP_NOWARN,
751 		huge_page_order(h));
752 	if (page) {
753 		if (arch_prepare_hugepage(page)) {
754 			__free_pages(page, huge_page_order(h));
755 			return NULL;
756 		}
757 		prep_new_huge_page(h, page, nid);
758 	}
759 
760 	return page;
761 }
762 
763 /*
764  * common helper functions for hstate_next_node_to_{alloc|free}.
765  * We may have allocated or freed a huge page based on a different
766  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
767  * be outside of *nodes_allowed.  Ensure that we use an allowed
768  * node for alloc or free.
769  */
770 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
771 {
772 	nid = next_node(nid, *nodes_allowed);
773 	if (nid == MAX_NUMNODES)
774 		nid = first_node(*nodes_allowed);
775 	VM_BUG_ON(nid >= MAX_NUMNODES);
776 
777 	return nid;
778 }
779 
780 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
781 {
782 	if (!node_isset(nid, *nodes_allowed))
783 		nid = next_node_allowed(nid, nodes_allowed);
784 	return nid;
785 }
786 
787 /*
788  * returns the previously saved node ["this node"] from which to
789  * allocate a persistent huge page for the pool and advance the
790  * next node from which to allocate, handling wrap at end of node
791  * mask.
792  */
793 static int hstate_next_node_to_alloc(struct hstate *h,
794 					nodemask_t *nodes_allowed)
795 {
796 	int nid;
797 
798 	VM_BUG_ON(!nodes_allowed);
799 
800 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
801 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
802 
803 	return nid;
804 }
805 
806 /*
807  * helper for free_pool_huge_page() - return the previously saved
808  * node ["this node"] from which to free a huge page.  Advance the
809  * next node id whether or not we find a free huge page to free so
810  * that the next attempt to free addresses the next node.
811  */
812 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
813 {
814 	int nid;
815 
816 	VM_BUG_ON(!nodes_allowed);
817 
818 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
819 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
820 
821 	return nid;
822 }
823 
824 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
825 	for (nr_nodes = nodes_weight(*mask);				\
826 		nr_nodes > 0 &&						\
827 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
828 		nr_nodes--)
829 
830 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
831 	for (nr_nodes = nodes_weight(*mask);				\
832 		nr_nodes > 0 &&						\
833 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
834 		nr_nodes--)
835 
836 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
837 {
838 	struct page *page;
839 	int nr_nodes, node;
840 	int ret = 0;
841 
842 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
843 		page = alloc_fresh_huge_page_node(h, node);
844 		if (page) {
845 			ret = 1;
846 			break;
847 		}
848 	}
849 
850 	if (ret)
851 		count_vm_event(HTLB_BUDDY_PGALLOC);
852 	else
853 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
854 
855 	return ret;
856 }
857 
858 /*
859  * Free huge page from pool from next node to free.
860  * Attempt to keep persistent huge pages more or less
861  * balanced over allowed nodes.
862  * Called with hugetlb_lock locked.
863  */
864 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
865 							 bool acct_surplus)
866 {
867 	int nr_nodes, node;
868 	int ret = 0;
869 
870 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
871 		/*
872 		 * If we're returning unused surplus pages, only examine
873 		 * nodes with surplus pages.
874 		 */
875 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
876 		    !list_empty(&h->hugepage_freelists[node])) {
877 			struct page *page =
878 				list_entry(h->hugepage_freelists[node].next,
879 					  struct page, lru);
880 			list_del(&page->lru);
881 			h->free_huge_pages--;
882 			h->free_huge_pages_node[node]--;
883 			if (acct_surplus) {
884 				h->surplus_huge_pages--;
885 				h->surplus_huge_pages_node[node]--;
886 			}
887 			update_and_free_page(h, page);
888 			ret = 1;
889 			break;
890 		}
891 	}
892 
893 	return ret;
894 }
895 
896 /*
897  * Dissolve a given free hugepage into free buddy pages. This function does
898  * nothing for in-use (including surplus) hugepages.
899  */
900 static void dissolve_free_huge_page(struct page *page)
901 {
902 	spin_lock(&hugetlb_lock);
903 	if (PageHuge(page) && !page_count(page)) {
904 		struct hstate *h = page_hstate(page);
905 		int nid = page_to_nid(page);
906 		list_del(&page->lru);
907 		h->free_huge_pages--;
908 		h->free_huge_pages_node[nid]--;
909 		update_and_free_page(h, page);
910 	}
911 	spin_unlock(&hugetlb_lock);
912 }
913 
914 /*
915  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
916  * make specified memory blocks removable from the system.
917  * Note that start_pfn should aligned with (minimum) hugepage size.
918  */
919 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
920 {
921 	unsigned int order = 8 * sizeof(void *);
922 	unsigned long pfn;
923 	struct hstate *h;
924 
925 	/* Set scan step to minimum hugepage size */
926 	for_each_hstate(h)
927 		if (order > huge_page_order(h))
928 			order = huge_page_order(h);
929 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
930 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
931 		dissolve_free_huge_page(pfn_to_page(pfn));
932 }
933 
934 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
935 {
936 	struct page *page;
937 	unsigned int r_nid;
938 
939 	if (h->order >= MAX_ORDER)
940 		return NULL;
941 
942 	/*
943 	 * Assume we will successfully allocate the surplus page to
944 	 * prevent racing processes from causing the surplus to exceed
945 	 * overcommit
946 	 *
947 	 * This however introduces a different race, where a process B
948 	 * tries to grow the static hugepage pool while alloc_pages() is
949 	 * called by process A. B will only examine the per-node
950 	 * counters in determining if surplus huge pages can be
951 	 * converted to normal huge pages in adjust_pool_surplus(). A
952 	 * won't be able to increment the per-node counter, until the
953 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
954 	 * no more huge pages can be converted from surplus to normal
955 	 * state (and doesn't try to convert again). Thus, we have a
956 	 * case where a surplus huge page exists, the pool is grown, and
957 	 * the surplus huge page still exists after, even though it
958 	 * should just have been converted to a normal huge page. This
959 	 * does not leak memory, though, as the hugepage will be freed
960 	 * once it is out of use. It also does not allow the counters to
961 	 * go out of whack in adjust_pool_surplus() as we don't modify
962 	 * the node values until we've gotten the hugepage and only the
963 	 * per-node value is checked there.
964 	 */
965 	spin_lock(&hugetlb_lock);
966 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
967 		spin_unlock(&hugetlb_lock);
968 		return NULL;
969 	} else {
970 		h->nr_huge_pages++;
971 		h->surplus_huge_pages++;
972 	}
973 	spin_unlock(&hugetlb_lock);
974 
975 	if (nid == NUMA_NO_NODE)
976 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
977 				   __GFP_REPEAT|__GFP_NOWARN,
978 				   huge_page_order(h));
979 	else
980 		page = alloc_pages_exact_node(nid,
981 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
982 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
983 
984 	if (page && arch_prepare_hugepage(page)) {
985 		__free_pages(page, huge_page_order(h));
986 		page = NULL;
987 	}
988 
989 	spin_lock(&hugetlb_lock);
990 	if (page) {
991 		INIT_LIST_HEAD(&page->lru);
992 		r_nid = page_to_nid(page);
993 		set_compound_page_dtor(page, free_huge_page);
994 		set_hugetlb_cgroup(page, NULL);
995 		/*
996 		 * We incremented the global counters already
997 		 */
998 		h->nr_huge_pages_node[r_nid]++;
999 		h->surplus_huge_pages_node[r_nid]++;
1000 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1001 	} else {
1002 		h->nr_huge_pages--;
1003 		h->surplus_huge_pages--;
1004 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1005 	}
1006 	spin_unlock(&hugetlb_lock);
1007 
1008 	return page;
1009 }
1010 
1011 /*
1012  * This allocation function is useful in the context where vma is irrelevant.
1013  * E.g. soft-offlining uses this function because it only cares physical
1014  * address of error page.
1015  */
1016 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1017 {
1018 	struct page *page = NULL;
1019 
1020 	spin_lock(&hugetlb_lock);
1021 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1022 		page = dequeue_huge_page_node(h, nid);
1023 	spin_unlock(&hugetlb_lock);
1024 
1025 	if (!page)
1026 		page = alloc_buddy_huge_page(h, nid);
1027 
1028 	return page;
1029 }
1030 
1031 /*
1032  * Increase the hugetlb pool such that it can accommodate a reservation
1033  * of size 'delta'.
1034  */
1035 static int gather_surplus_pages(struct hstate *h, int delta)
1036 {
1037 	struct list_head surplus_list;
1038 	struct page *page, *tmp;
1039 	int ret, i;
1040 	int needed, allocated;
1041 	bool alloc_ok = true;
1042 
1043 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1044 	if (needed <= 0) {
1045 		h->resv_huge_pages += delta;
1046 		return 0;
1047 	}
1048 
1049 	allocated = 0;
1050 	INIT_LIST_HEAD(&surplus_list);
1051 
1052 	ret = -ENOMEM;
1053 retry:
1054 	spin_unlock(&hugetlb_lock);
1055 	for (i = 0; i < needed; i++) {
1056 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1057 		if (!page) {
1058 			alloc_ok = false;
1059 			break;
1060 		}
1061 		list_add(&page->lru, &surplus_list);
1062 	}
1063 	allocated += i;
1064 
1065 	/*
1066 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1067 	 * because either resv_huge_pages or free_huge_pages may have changed.
1068 	 */
1069 	spin_lock(&hugetlb_lock);
1070 	needed = (h->resv_huge_pages + delta) -
1071 			(h->free_huge_pages + allocated);
1072 	if (needed > 0) {
1073 		if (alloc_ok)
1074 			goto retry;
1075 		/*
1076 		 * We were not able to allocate enough pages to
1077 		 * satisfy the entire reservation so we free what
1078 		 * we've allocated so far.
1079 		 */
1080 		goto free;
1081 	}
1082 	/*
1083 	 * The surplus_list now contains _at_least_ the number of extra pages
1084 	 * needed to accommodate the reservation.  Add the appropriate number
1085 	 * of pages to the hugetlb pool and free the extras back to the buddy
1086 	 * allocator.  Commit the entire reservation here to prevent another
1087 	 * process from stealing the pages as they are added to the pool but
1088 	 * before they are reserved.
1089 	 */
1090 	needed += allocated;
1091 	h->resv_huge_pages += delta;
1092 	ret = 0;
1093 
1094 	/* Free the needed pages to the hugetlb pool */
1095 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1096 		if ((--needed) < 0)
1097 			break;
1098 		/*
1099 		 * This page is now managed by the hugetlb allocator and has
1100 		 * no users -- drop the buddy allocator's reference.
1101 		 */
1102 		put_page_testzero(page);
1103 		VM_BUG_ON(page_count(page));
1104 		enqueue_huge_page(h, page);
1105 	}
1106 free:
1107 	spin_unlock(&hugetlb_lock);
1108 
1109 	/* Free unnecessary surplus pages to the buddy allocator */
1110 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1111 		put_page(page);
1112 	spin_lock(&hugetlb_lock);
1113 
1114 	return ret;
1115 }
1116 
1117 /*
1118  * When releasing a hugetlb pool reservation, any surplus pages that were
1119  * allocated to satisfy the reservation must be explicitly freed if they were
1120  * never used.
1121  * Called with hugetlb_lock held.
1122  */
1123 static void return_unused_surplus_pages(struct hstate *h,
1124 					unsigned long unused_resv_pages)
1125 {
1126 	unsigned long nr_pages;
1127 
1128 	/* Uncommit the reservation */
1129 	h->resv_huge_pages -= unused_resv_pages;
1130 
1131 	/* Cannot return gigantic pages currently */
1132 	if (h->order >= MAX_ORDER)
1133 		return;
1134 
1135 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1136 
1137 	/*
1138 	 * We want to release as many surplus pages as possible, spread
1139 	 * evenly across all nodes with memory. Iterate across these nodes
1140 	 * until we can no longer free unreserved surplus pages. This occurs
1141 	 * when the nodes with surplus pages have no free pages.
1142 	 * free_pool_huge_page() will balance the the freed pages across the
1143 	 * on-line nodes with memory and will handle the hstate accounting.
1144 	 */
1145 	while (nr_pages--) {
1146 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1147 			break;
1148 	}
1149 }
1150 
1151 /*
1152  * Determine if the huge page at addr within the vma has an associated
1153  * reservation.  Where it does not we will need to logically increase
1154  * reservation and actually increase subpool usage before an allocation
1155  * can occur.  Where any new reservation would be required the
1156  * reservation change is prepared, but not committed.  Once the page
1157  * has been allocated from the subpool and instantiated the change should
1158  * be committed via vma_commit_reservation.  No action is required on
1159  * failure.
1160  */
1161 static long vma_needs_reservation(struct hstate *h,
1162 			struct vm_area_struct *vma, unsigned long addr)
1163 {
1164 	struct address_space *mapping = vma->vm_file->f_mapping;
1165 	struct inode *inode = mapping->host;
1166 
1167 	if (vma->vm_flags & VM_MAYSHARE) {
1168 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1169 		return region_chg(&inode->i_mapping->private_list,
1170 							idx, idx + 1);
1171 
1172 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1173 		return 1;
1174 
1175 	} else  {
1176 		long err;
1177 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1178 		struct resv_map *resv = vma_resv_map(vma);
1179 
1180 		err = region_chg(&resv->regions, idx, idx + 1);
1181 		if (err < 0)
1182 			return err;
1183 		return 0;
1184 	}
1185 }
1186 static void vma_commit_reservation(struct hstate *h,
1187 			struct vm_area_struct *vma, unsigned long addr)
1188 {
1189 	struct address_space *mapping = vma->vm_file->f_mapping;
1190 	struct inode *inode = mapping->host;
1191 
1192 	if (vma->vm_flags & VM_MAYSHARE) {
1193 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1194 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1195 
1196 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1197 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1198 		struct resv_map *resv = vma_resv_map(vma);
1199 
1200 		/* Mark this page used in the map. */
1201 		region_add(&resv->regions, idx, idx + 1);
1202 	}
1203 }
1204 
1205 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1206 				    unsigned long addr, int avoid_reserve)
1207 {
1208 	struct hugepage_subpool *spool = subpool_vma(vma);
1209 	struct hstate *h = hstate_vma(vma);
1210 	struct page *page;
1211 	long chg;
1212 	int ret, idx;
1213 	struct hugetlb_cgroup *h_cg;
1214 
1215 	idx = hstate_index(h);
1216 	/*
1217 	 * Processes that did not create the mapping will have no
1218 	 * reserves and will not have accounted against subpool
1219 	 * limit. Check that the subpool limit can be made before
1220 	 * satisfying the allocation MAP_NORESERVE mappings may also
1221 	 * need pages and subpool limit allocated allocated if no reserve
1222 	 * mapping overlaps.
1223 	 */
1224 	chg = vma_needs_reservation(h, vma, addr);
1225 	if (chg < 0)
1226 		return ERR_PTR(-ENOMEM);
1227 	if (chg || avoid_reserve)
1228 		if (hugepage_subpool_get_pages(spool, 1))
1229 			return ERR_PTR(-ENOSPC);
1230 
1231 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1232 	if (ret) {
1233 		if (chg || avoid_reserve)
1234 			hugepage_subpool_put_pages(spool, 1);
1235 		return ERR_PTR(-ENOSPC);
1236 	}
1237 	spin_lock(&hugetlb_lock);
1238 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1239 	if (!page) {
1240 		spin_unlock(&hugetlb_lock);
1241 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1242 		if (!page) {
1243 			hugetlb_cgroup_uncharge_cgroup(idx,
1244 						       pages_per_huge_page(h),
1245 						       h_cg);
1246 			if (chg || avoid_reserve)
1247 				hugepage_subpool_put_pages(spool, 1);
1248 			return ERR_PTR(-ENOSPC);
1249 		}
1250 		spin_lock(&hugetlb_lock);
1251 		list_move(&page->lru, &h->hugepage_activelist);
1252 		/* Fall through */
1253 	}
1254 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1255 	spin_unlock(&hugetlb_lock);
1256 
1257 	set_page_private(page, (unsigned long)spool);
1258 
1259 	vma_commit_reservation(h, vma, addr);
1260 	return page;
1261 }
1262 
1263 /*
1264  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1265  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1266  * where no ERR_VALUE is expected to be returned.
1267  */
1268 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1269 				unsigned long addr, int avoid_reserve)
1270 {
1271 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1272 	if (IS_ERR(page))
1273 		page = NULL;
1274 	return page;
1275 }
1276 
1277 int __weak alloc_bootmem_huge_page(struct hstate *h)
1278 {
1279 	struct huge_bootmem_page *m;
1280 	int nr_nodes, node;
1281 
1282 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1283 		void *addr;
1284 
1285 		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1286 				huge_page_size(h), huge_page_size(h), 0);
1287 
1288 		if (addr) {
1289 			/*
1290 			 * Use the beginning of the huge page to store the
1291 			 * huge_bootmem_page struct (until gather_bootmem
1292 			 * puts them into the mem_map).
1293 			 */
1294 			m = addr;
1295 			goto found;
1296 		}
1297 	}
1298 	return 0;
1299 
1300 found:
1301 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1302 	/* Put them into a private list first because mem_map is not up yet */
1303 	list_add(&m->list, &huge_boot_pages);
1304 	m->hstate = h;
1305 	return 1;
1306 }
1307 
1308 static void prep_compound_huge_page(struct page *page, int order)
1309 {
1310 	if (unlikely(order > (MAX_ORDER - 1)))
1311 		prep_compound_gigantic_page(page, order);
1312 	else
1313 		prep_compound_page(page, order);
1314 }
1315 
1316 /* Put bootmem huge pages into the standard lists after mem_map is up */
1317 static void __init gather_bootmem_prealloc(void)
1318 {
1319 	struct huge_bootmem_page *m;
1320 
1321 	list_for_each_entry(m, &huge_boot_pages, list) {
1322 		struct hstate *h = m->hstate;
1323 		struct page *page;
1324 
1325 #ifdef CONFIG_HIGHMEM
1326 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1327 		free_bootmem_late((unsigned long)m,
1328 				  sizeof(struct huge_bootmem_page));
1329 #else
1330 		page = virt_to_page(m);
1331 #endif
1332 		__ClearPageReserved(page);
1333 		WARN_ON(page_count(page) != 1);
1334 		prep_compound_huge_page(page, h->order);
1335 		prep_new_huge_page(h, page, page_to_nid(page));
1336 		/*
1337 		 * If we had gigantic hugepages allocated at boot time, we need
1338 		 * to restore the 'stolen' pages to totalram_pages in order to
1339 		 * fix confusing memory reports from free(1) and another
1340 		 * side-effects, like CommitLimit going negative.
1341 		 */
1342 		if (h->order > (MAX_ORDER - 1))
1343 			adjust_managed_page_count(page, 1 << h->order);
1344 	}
1345 }
1346 
1347 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1348 {
1349 	unsigned long i;
1350 
1351 	for (i = 0; i < h->max_huge_pages; ++i) {
1352 		if (h->order >= MAX_ORDER) {
1353 			if (!alloc_bootmem_huge_page(h))
1354 				break;
1355 		} else if (!alloc_fresh_huge_page(h,
1356 					 &node_states[N_MEMORY]))
1357 			break;
1358 	}
1359 	h->max_huge_pages = i;
1360 }
1361 
1362 static void __init hugetlb_init_hstates(void)
1363 {
1364 	struct hstate *h;
1365 
1366 	for_each_hstate(h) {
1367 		/* oversize hugepages were init'ed in early boot */
1368 		if (h->order < MAX_ORDER)
1369 			hugetlb_hstate_alloc_pages(h);
1370 	}
1371 }
1372 
1373 static char * __init memfmt(char *buf, unsigned long n)
1374 {
1375 	if (n >= (1UL << 30))
1376 		sprintf(buf, "%lu GB", n >> 30);
1377 	else if (n >= (1UL << 20))
1378 		sprintf(buf, "%lu MB", n >> 20);
1379 	else
1380 		sprintf(buf, "%lu KB", n >> 10);
1381 	return buf;
1382 }
1383 
1384 static void __init report_hugepages(void)
1385 {
1386 	struct hstate *h;
1387 
1388 	for_each_hstate(h) {
1389 		char buf[32];
1390 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1391 			memfmt(buf, huge_page_size(h)),
1392 			h->free_huge_pages);
1393 	}
1394 }
1395 
1396 #ifdef CONFIG_HIGHMEM
1397 static void try_to_free_low(struct hstate *h, unsigned long count,
1398 						nodemask_t *nodes_allowed)
1399 {
1400 	int i;
1401 
1402 	if (h->order >= MAX_ORDER)
1403 		return;
1404 
1405 	for_each_node_mask(i, *nodes_allowed) {
1406 		struct page *page, *next;
1407 		struct list_head *freel = &h->hugepage_freelists[i];
1408 		list_for_each_entry_safe(page, next, freel, lru) {
1409 			if (count >= h->nr_huge_pages)
1410 				return;
1411 			if (PageHighMem(page))
1412 				continue;
1413 			list_del(&page->lru);
1414 			update_and_free_page(h, page);
1415 			h->free_huge_pages--;
1416 			h->free_huge_pages_node[page_to_nid(page)]--;
1417 		}
1418 	}
1419 }
1420 #else
1421 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1422 						nodemask_t *nodes_allowed)
1423 {
1424 }
1425 #endif
1426 
1427 /*
1428  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1429  * balanced by operating on them in a round-robin fashion.
1430  * Returns 1 if an adjustment was made.
1431  */
1432 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1433 				int delta)
1434 {
1435 	int nr_nodes, node;
1436 
1437 	VM_BUG_ON(delta != -1 && delta != 1);
1438 
1439 	if (delta < 0) {
1440 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1441 			if (h->surplus_huge_pages_node[node])
1442 				goto found;
1443 		}
1444 	} else {
1445 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1446 			if (h->surplus_huge_pages_node[node] <
1447 					h->nr_huge_pages_node[node])
1448 				goto found;
1449 		}
1450 	}
1451 	return 0;
1452 
1453 found:
1454 	h->surplus_huge_pages += delta;
1455 	h->surplus_huge_pages_node[node] += delta;
1456 	return 1;
1457 }
1458 
1459 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1460 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1461 						nodemask_t *nodes_allowed)
1462 {
1463 	unsigned long min_count, ret;
1464 
1465 	if (h->order >= MAX_ORDER)
1466 		return h->max_huge_pages;
1467 
1468 	/*
1469 	 * Increase the pool size
1470 	 * First take pages out of surplus state.  Then make up the
1471 	 * remaining difference by allocating fresh huge pages.
1472 	 *
1473 	 * We might race with alloc_buddy_huge_page() here and be unable
1474 	 * to convert a surplus huge page to a normal huge page. That is
1475 	 * not critical, though, it just means the overall size of the
1476 	 * pool might be one hugepage larger than it needs to be, but
1477 	 * within all the constraints specified by the sysctls.
1478 	 */
1479 	spin_lock(&hugetlb_lock);
1480 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1481 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1482 			break;
1483 	}
1484 
1485 	while (count > persistent_huge_pages(h)) {
1486 		/*
1487 		 * If this allocation races such that we no longer need the
1488 		 * page, free_huge_page will handle it by freeing the page
1489 		 * and reducing the surplus.
1490 		 */
1491 		spin_unlock(&hugetlb_lock);
1492 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1493 		spin_lock(&hugetlb_lock);
1494 		if (!ret)
1495 			goto out;
1496 
1497 		/* Bail for signals. Probably ctrl-c from user */
1498 		if (signal_pending(current))
1499 			goto out;
1500 	}
1501 
1502 	/*
1503 	 * Decrease the pool size
1504 	 * First return free pages to the buddy allocator (being careful
1505 	 * to keep enough around to satisfy reservations).  Then place
1506 	 * pages into surplus state as needed so the pool will shrink
1507 	 * to the desired size as pages become free.
1508 	 *
1509 	 * By placing pages into the surplus state independent of the
1510 	 * overcommit value, we are allowing the surplus pool size to
1511 	 * exceed overcommit. There are few sane options here. Since
1512 	 * alloc_buddy_huge_page() is checking the global counter,
1513 	 * though, we'll note that we're not allowed to exceed surplus
1514 	 * and won't grow the pool anywhere else. Not until one of the
1515 	 * sysctls are changed, or the surplus pages go out of use.
1516 	 */
1517 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1518 	min_count = max(count, min_count);
1519 	try_to_free_low(h, min_count, nodes_allowed);
1520 	while (min_count < persistent_huge_pages(h)) {
1521 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1522 			break;
1523 	}
1524 	while (count < persistent_huge_pages(h)) {
1525 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1526 			break;
1527 	}
1528 out:
1529 	ret = persistent_huge_pages(h);
1530 	spin_unlock(&hugetlb_lock);
1531 	return ret;
1532 }
1533 
1534 #define HSTATE_ATTR_RO(_name) \
1535 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1536 
1537 #define HSTATE_ATTR(_name) \
1538 	static struct kobj_attribute _name##_attr = \
1539 		__ATTR(_name, 0644, _name##_show, _name##_store)
1540 
1541 static struct kobject *hugepages_kobj;
1542 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1543 
1544 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1545 
1546 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1547 {
1548 	int i;
1549 
1550 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1551 		if (hstate_kobjs[i] == kobj) {
1552 			if (nidp)
1553 				*nidp = NUMA_NO_NODE;
1554 			return &hstates[i];
1555 		}
1556 
1557 	return kobj_to_node_hstate(kobj, nidp);
1558 }
1559 
1560 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1561 					struct kobj_attribute *attr, char *buf)
1562 {
1563 	struct hstate *h;
1564 	unsigned long nr_huge_pages;
1565 	int nid;
1566 
1567 	h = kobj_to_hstate(kobj, &nid);
1568 	if (nid == NUMA_NO_NODE)
1569 		nr_huge_pages = h->nr_huge_pages;
1570 	else
1571 		nr_huge_pages = h->nr_huge_pages_node[nid];
1572 
1573 	return sprintf(buf, "%lu\n", nr_huge_pages);
1574 }
1575 
1576 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1577 			struct kobject *kobj, struct kobj_attribute *attr,
1578 			const char *buf, size_t len)
1579 {
1580 	int err;
1581 	int nid;
1582 	unsigned long count;
1583 	struct hstate *h;
1584 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1585 
1586 	err = kstrtoul(buf, 10, &count);
1587 	if (err)
1588 		goto out;
1589 
1590 	h = kobj_to_hstate(kobj, &nid);
1591 	if (h->order >= MAX_ORDER) {
1592 		err = -EINVAL;
1593 		goto out;
1594 	}
1595 
1596 	if (nid == NUMA_NO_NODE) {
1597 		/*
1598 		 * global hstate attribute
1599 		 */
1600 		if (!(obey_mempolicy &&
1601 				init_nodemask_of_mempolicy(nodes_allowed))) {
1602 			NODEMASK_FREE(nodes_allowed);
1603 			nodes_allowed = &node_states[N_MEMORY];
1604 		}
1605 	} else if (nodes_allowed) {
1606 		/*
1607 		 * per node hstate attribute: adjust count to global,
1608 		 * but restrict alloc/free to the specified node.
1609 		 */
1610 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1611 		init_nodemask_of_node(nodes_allowed, nid);
1612 	} else
1613 		nodes_allowed = &node_states[N_MEMORY];
1614 
1615 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1616 
1617 	if (nodes_allowed != &node_states[N_MEMORY])
1618 		NODEMASK_FREE(nodes_allowed);
1619 
1620 	return len;
1621 out:
1622 	NODEMASK_FREE(nodes_allowed);
1623 	return err;
1624 }
1625 
1626 static ssize_t nr_hugepages_show(struct kobject *kobj,
1627 				       struct kobj_attribute *attr, char *buf)
1628 {
1629 	return nr_hugepages_show_common(kobj, attr, buf);
1630 }
1631 
1632 static ssize_t nr_hugepages_store(struct kobject *kobj,
1633 	       struct kobj_attribute *attr, const char *buf, size_t len)
1634 {
1635 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1636 }
1637 HSTATE_ATTR(nr_hugepages);
1638 
1639 #ifdef CONFIG_NUMA
1640 
1641 /*
1642  * hstate attribute for optionally mempolicy-based constraint on persistent
1643  * huge page alloc/free.
1644  */
1645 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1646 				       struct kobj_attribute *attr, char *buf)
1647 {
1648 	return nr_hugepages_show_common(kobj, attr, buf);
1649 }
1650 
1651 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1652 	       struct kobj_attribute *attr, const char *buf, size_t len)
1653 {
1654 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1655 }
1656 HSTATE_ATTR(nr_hugepages_mempolicy);
1657 #endif
1658 
1659 
1660 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1661 					struct kobj_attribute *attr, char *buf)
1662 {
1663 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1664 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1665 }
1666 
1667 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1668 		struct kobj_attribute *attr, const char *buf, size_t count)
1669 {
1670 	int err;
1671 	unsigned long input;
1672 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1673 
1674 	if (h->order >= MAX_ORDER)
1675 		return -EINVAL;
1676 
1677 	err = kstrtoul(buf, 10, &input);
1678 	if (err)
1679 		return err;
1680 
1681 	spin_lock(&hugetlb_lock);
1682 	h->nr_overcommit_huge_pages = input;
1683 	spin_unlock(&hugetlb_lock);
1684 
1685 	return count;
1686 }
1687 HSTATE_ATTR(nr_overcommit_hugepages);
1688 
1689 static ssize_t free_hugepages_show(struct kobject *kobj,
1690 					struct kobj_attribute *attr, char *buf)
1691 {
1692 	struct hstate *h;
1693 	unsigned long free_huge_pages;
1694 	int nid;
1695 
1696 	h = kobj_to_hstate(kobj, &nid);
1697 	if (nid == NUMA_NO_NODE)
1698 		free_huge_pages = h->free_huge_pages;
1699 	else
1700 		free_huge_pages = h->free_huge_pages_node[nid];
1701 
1702 	return sprintf(buf, "%lu\n", free_huge_pages);
1703 }
1704 HSTATE_ATTR_RO(free_hugepages);
1705 
1706 static ssize_t resv_hugepages_show(struct kobject *kobj,
1707 					struct kobj_attribute *attr, char *buf)
1708 {
1709 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1710 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1711 }
1712 HSTATE_ATTR_RO(resv_hugepages);
1713 
1714 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1715 					struct kobj_attribute *attr, char *buf)
1716 {
1717 	struct hstate *h;
1718 	unsigned long surplus_huge_pages;
1719 	int nid;
1720 
1721 	h = kobj_to_hstate(kobj, &nid);
1722 	if (nid == NUMA_NO_NODE)
1723 		surplus_huge_pages = h->surplus_huge_pages;
1724 	else
1725 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1726 
1727 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1728 }
1729 HSTATE_ATTR_RO(surplus_hugepages);
1730 
1731 static struct attribute *hstate_attrs[] = {
1732 	&nr_hugepages_attr.attr,
1733 	&nr_overcommit_hugepages_attr.attr,
1734 	&free_hugepages_attr.attr,
1735 	&resv_hugepages_attr.attr,
1736 	&surplus_hugepages_attr.attr,
1737 #ifdef CONFIG_NUMA
1738 	&nr_hugepages_mempolicy_attr.attr,
1739 #endif
1740 	NULL,
1741 };
1742 
1743 static struct attribute_group hstate_attr_group = {
1744 	.attrs = hstate_attrs,
1745 };
1746 
1747 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1748 				    struct kobject **hstate_kobjs,
1749 				    struct attribute_group *hstate_attr_group)
1750 {
1751 	int retval;
1752 	int hi = hstate_index(h);
1753 
1754 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1755 	if (!hstate_kobjs[hi])
1756 		return -ENOMEM;
1757 
1758 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1759 	if (retval)
1760 		kobject_put(hstate_kobjs[hi]);
1761 
1762 	return retval;
1763 }
1764 
1765 static void __init hugetlb_sysfs_init(void)
1766 {
1767 	struct hstate *h;
1768 	int err;
1769 
1770 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1771 	if (!hugepages_kobj)
1772 		return;
1773 
1774 	for_each_hstate(h) {
1775 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1776 					 hstate_kobjs, &hstate_attr_group);
1777 		if (err)
1778 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1779 	}
1780 }
1781 
1782 #ifdef CONFIG_NUMA
1783 
1784 /*
1785  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1786  * with node devices in node_devices[] using a parallel array.  The array
1787  * index of a node device or _hstate == node id.
1788  * This is here to avoid any static dependency of the node device driver, in
1789  * the base kernel, on the hugetlb module.
1790  */
1791 struct node_hstate {
1792 	struct kobject		*hugepages_kobj;
1793 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1794 };
1795 struct node_hstate node_hstates[MAX_NUMNODES];
1796 
1797 /*
1798  * A subset of global hstate attributes for node devices
1799  */
1800 static struct attribute *per_node_hstate_attrs[] = {
1801 	&nr_hugepages_attr.attr,
1802 	&free_hugepages_attr.attr,
1803 	&surplus_hugepages_attr.attr,
1804 	NULL,
1805 };
1806 
1807 static struct attribute_group per_node_hstate_attr_group = {
1808 	.attrs = per_node_hstate_attrs,
1809 };
1810 
1811 /*
1812  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1813  * Returns node id via non-NULL nidp.
1814  */
1815 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1816 {
1817 	int nid;
1818 
1819 	for (nid = 0; nid < nr_node_ids; nid++) {
1820 		struct node_hstate *nhs = &node_hstates[nid];
1821 		int i;
1822 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1823 			if (nhs->hstate_kobjs[i] == kobj) {
1824 				if (nidp)
1825 					*nidp = nid;
1826 				return &hstates[i];
1827 			}
1828 	}
1829 
1830 	BUG();
1831 	return NULL;
1832 }
1833 
1834 /*
1835  * Unregister hstate attributes from a single node device.
1836  * No-op if no hstate attributes attached.
1837  */
1838 static void hugetlb_unregister_node(struct node *node)
1839 {
1840 	struct hstate *h;
1841 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1842 
1843 	if (!nhs->hugepages_kobj)
1844 		return;		/* no hstate attributes */
1845 
1846 	for_each_hstate(h) {
1847 		int idx = hstate_index(h);
1848 		if (nhs->hstate_kobjs[idx]) {
1849 			kobject_put(nhs->hstate_kobjs[idx]);
1850 			nhs->hstate_kobjs[idx] = NULL;
1851 		}
1852 	}
1853 
1854 	kobject_put(nhs->hugepages_kobj);
1855 	nhs->hugepages_kobj = NULL;
1856 }
1857 
1858 /*
1859  * hugetlb module exit:  unregister hstate attributes from node devices
1860  * that have them.
1861  */
1862 static void hugetlb_unregister_all_nodes(void)
1863 {
1864 	int nid;
1865 
1866 	/*
1867 	 * disable node device registrations.
1868 	 */
1869 	register_hugetlbfs_with_node(NULL, NULL);
1870 
1871 	/*
1872 	 * remove hstate attributes from any nodes that have them.
1873 	 */
1874 	for (nid = 0; nid < nr_node_ids; nid++)
1875 		hugetlb_unregister_node(node_devices[nid]);
1876 }
1877 
1878 /*
1879  * Register hstate attributes for a single node device.
1880  * No-op if attributes already registered.
1881  */
1882 static void hugetlb_register_node(struct node *node)
1883 {
1884 	struct hstate *h;
1885 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1886 	int err;
1887 
1888 	if (nhs->hugepages_kobj)
1889 		return;		/* already allocated */
1890 
1891 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1892 							&node->dev.kobj);
1893 	if (!nhs->hugepages_kobj)
1894 		return;
1895 
1896 	for_each_hstate(h) {
1897 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1898 						nhs->hstate_kobjs,
1899 						&per_node_hstate_attr_group);
1900 		if (err) {
1901 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1902 				h->name, node->dev.id);
1903 			hugetlb_unregister_node(node);
1904 			break;
1905 		}
1906 	}
1907 }
1908 
1909 /*
1910  * hugetlb init time:  register hstate attributes for all registered node
1911  * devices of nodes that have memory.  All on-line nodes should have
1912  * registered their associated device by this time.
1913  */
1914 static void hugetlb_register_all_nodes(void)
1915 {
1916 	int nid;
1917 
1918 	for_each_node_state(nid, N_MEMORY) {
1919 		struct node *node = node_devices[nid];
1920 		if (node->dev.id == nid)
1921 			hugetlb_register_node(node);
1922 	}
1923 
1924 	/*
1925 	 * Let the node device driver know we're here so it can
1926 	 * [un]register hstate attributes on node hotplug.
1927 	 */
1928 	register_hugetlbfs_with_node(hugetlb_register_node,
1929 				     hugetlb_unregister_node);
1930 }
1931 #else	/* !CONFIG_NUMA */
1932 
1933 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1934 {
1935 	BUG();
1936 	if (nidp)
1937 		*nidp = -1;
1938 	return NULL;
1939 }
1940 
1941 static void hugetlb_unregister_all_nodes(void) { }
1942 
1943 static void hugetlb_register_all_nodes(void) { }
1944 
1945 #endif
1946 
1947 static void __exit hugetlb_exit(void)
1948 {
1949 	struct hstate *h;
1950 
1951 	hugetlb_unregister_all_nodes();
1952 
1953 	for_each_hstate(h) {
1954 		kobject_put(hstate_kobjs[hstate_index(h)]);
1955 	}
1956 
1957 	kobject_put(hugepages_kobj);
1958 }
1959 module_exit(hugetlb_exit);
1960 
1961 static int __init hugetlb_init(void)
1962 {
1963 	/* Some platform decide whether they support huge pages at boot
1964 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1965 	 * there is no such support
1966 	 */
1967 	if (HPAGE_SHIFT == 0)
1968 		return 0;
1969 
1970 	if (!size_to_hstate(default_hstate_size)) {
1971 		default_hstate_size = HPAGE_SIZE;
1972 		if (!size_to_hstate(default_hstate_size))
1973 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1974 	}
1975 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1976 	if (default_hstate_max_huge_pages)
1977 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1978 
1979 	hugetlb_init_hstates();
1980 	gather_bootmem_prealloc();
1981 	report_hugepages();
1982 
1983 	hugetlb_sysfs_init();
1984 	hugetlb_register_all_nodes();
1985 	hugetlb_cgroup_file_init();
1986 
1987 	return 0;
1988 }
1989 module_init(hugetlb_init);
1990 
1991 /* Should be called on processing a hugepagesz=... option */
1992 void __init hugetlb_add_hstate(unsigned order)
1993 {
1994 	struct hstate *h;
1995 	unsigned long i;
1996 
1997 	if (size_to_hstate(PAGE_SIZE << order)) {
1998 		pr_warning("hugepagesz= specified twice, ignoring\n");
1999 		return;
2000 	}
2001 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2002 	BUG_ON(order == 0);
2003 	h = &hstates[hugetlb_max_hstate++];
2004 	h->order = order;
2005 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2006 	h->nr_huge_pages = 0;
2007 	h->free_huge_pages = 0;
2008 	for (i = 0; i < MAX_NUMNODES; ++i)
2009 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2010 	INIT_LIST_HEAD(&h->hugepage_activelist);
2011 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2012 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2013 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2014 					huge_page_size(h)/1024);
2015 
2016 	parsed_hstate = h;
2017 }
2018 
2019 static int __init hugetlb_nrpages_setup(char *s)
2020 {
2021 	unsigned long *mhp;
2022 	static unsigned long *last_mhp;
2023 
2024 	/*
2025 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2026 	 * so this hugepages= parameter goes to the "default hstate".
2027 	 */
2028 	if (!hugetlb_max_hstate)
2029 		mhp = &default_hstate_max_huge_pages;
2030 	else
2031 		mhp = &parsed_hstate->max_huge_pages;
2032 
2033 	if (mhp == last_mhp) {
2034 		pr_warning("hugepages= specified twice without "
2035 			   "interleaving hugepagesz=, ignoring\n");
2036 		return 1;
2037 	}
2038 
2039 	if (sscanf(s, "%lu", mhp) <= 0)
2040 		*mhp = 0;
2041 
2042 	/*
2043 	 * Global state is always initialized later in hugetlb_init.
2044 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2045 	 * use the bootmem allocator.
2046 	 */
2047 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2048 		hugetlb_hstate_alloc_pages(parsed_hstate);
2049 
2050 	last_mhp = mhp;
2051 
2052 	return 1;
2053 }
2054 __setup("hugepages=", hugetlb_nrpages_setup);
2055 
2056 static int __init hugetlb_default_setup(char *s)
2057 {
2058 	default_hstate_size = memparse(s, &s);
2059 	return 1;
2060 }
2061 __setup("default_hugepagesz=", hugetlb_default_setup);
2062 
2063 static unsigned int cpuset_mems_nr(unsigned int *array)
2064 {
2065 	int node;
2066 	unsigned int nr = 0;
2067 
2068 	for_each_node_mask(node, cpuset_current_mems_allowed)
2069 		nr += array[node];
2070 
2071 	return nr;
2072 }
2073 
2074 #ifdef CONFIG_SYSCTL
2075 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2076 			 struct ctl_table *table, int write,
2077 			 void __user *buffer, size_t *length, loff_t *ppos)
2078 {
2079 	struct hstate *h = &default_hstate;
2080 	unsigned long tmp;
2081 	int ret;
2082 
2083 	tmp = h->max_huge_pages;
2084 
2085 	if (write && h->order >= MAX_ORDER)
2086 		return -EINVAL;
2087 
2088 	table->data = &tmp;
2089 	table->maxlen = sizeof(unsigned long);
2090 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2091 	if (ret)
2092 		goto out;
2093 
2094 	if (write) {
2095 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2096 						GFP_KERNEL | __GFP_NORETRY);
2097 		if (!(obey_mempolicy &&
2098 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2099 			NODEMASK_FREE(nodes_allowed);
2100 			nodes_allowed = &node_states[N_MEMORY];
2101 		}
2102 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2103 
2104 		if (nodes_allowed != &node_states[N_MEMORY])
2105 			NODEMASK_FREE(nodes_allowed);
2106 	}
2107 out:
2108 	return ret;
2109 }
2110 
2111 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2112 			  void __user *buffer, size_t *length, loff_t *ppos)
2113 {
2114 
2115 	return hugetlb_sysctl_handler_common(false, table, write,
2116 							buffer, length, ppos);
2117 }
2118 
2119 #ifdef CONFIG_NUMA
2120 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2121 			  void __user *buffer, size_t *length, loff_t *ppos)
2122 {
2123 	return hugetlb_sysctl_handler_common(true, table, write,
2124 							buffer, length, ppos);
2125 }
2126 #endif /* CONFIG_NUMA */
2127 
2128 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2129 			void __user *buffer,
2130 			size_t *length, loff_t *ppos)
2131 {
2132 	struct hstate *h = &default_hstate;
2133 	unsigned long tmp;
2134 	int ret;
2135 
2136 	tmp = h->nr_overcommit_huge_pages;
2137 
2138 	if (write && h->order >= MAX_ORDER)
2139 		return -EINVAL;
2140 
2141 	table->data = &tmp;
2142 	table->maxlen = sizeof(unsigned long);
2143 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2144 	if (ret)
2145 		goto out;
2146 
2147 	if (write) {
2148 		spin_lock(&hugetlb_lock);
2149 		h->nr_overcommit_huge_pages = tmp;
2150 		spin_unlock(&hugetlb_lock);
2151 	}
2152 out:
2153 	return ret;
2154 }
2155 
2156 #endif /* CONFIG_SYSCTL */
2157 
2158 void hugetlb_report_meminfo(struct seq_file *m)
2159 {
2160 	struct hstate *h = &default_hstate;
2161 	seq_printf(m,
2162 			"HugePages_Total:   %5lu\n"
2163 			"HugePages_Free:    %5lu\n"
2164 			"HugePages_Rsvd:    %5lu\n"
2165 			"HugePages_Surp:    %5lu\n"
2166 			"Hugepagesize:   %8lu kB\n",
2167 			h->nr_huge_pages,
2168 			h->free_huge_pages,
2169 			h->resv_huge_pages,
2170 			h->surplus_huge_pages,
2171 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2172 }
2173 
2174 int hugetlb_report_node_meminfo(int nid, char *buf)
2175 {
2176 	struct hstate *h = &default_hstate;
2177 	return sprintf(buf,
2178 		"Node %d HugePages_Total: %5u\n"
2179 		"Node %d HugePages_Free:  %5u\n"
2180 		"Node %d HugePages_Surp:  %5u\n",
2181 		nid, h->nr_huge_pages_node[nid],
2182 		nid, h->free_huge_pages_node[nid],
2183 		nid, h->surplus_huge_pages_node[nid]);
2184 }
2185 
2186 void hugetlb_show_meminfo(void)
2187 {
2188 	struct hstate *h;
2189 	int nid;
2190 
2191 	for_each_node_state(nid, N_MEMORY)
2192 		for_each_hstate(h)
2193 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2194 				nid,
2195 				h->nr_huge_pages_node[nid],
2196 				h->free_huge_pages_node[nid],
2197 				h->surplus_huge_pages_node[nid],
2198 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2199 }
2200 
2201 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2202 unsigned long hugetlb_total_pages(void)
2203 {
2204 	struct hstate *h;
2205 	unsigned long nr_total_pages = 0;
2206 
2207 	for_each_hstate(h)
2208 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2209 	return nr_total_pages;
2210 }
2211 
2212 static int hugetlb_acct_memory(struct hstate *h, long delta)
2213 {
2214 	int ret = -ENOMEM;
2215 
2216 	spin_lock(&hugetlb_lock);
2217 	/*
2218 	 * When cpuset is configured, it breaks the strict hugetlb page
2219 	 * reservation as the accounting is done on a global variable. Such
2220 	 * reservation is completely rubbish in the presence of cpuset because
2221 	 * the reservation is not checked against page availability for the
2222 	 * current cpuset. Application can still potentially OOM'ed by kernel
2223 	 * with lack of free htlb page in cpuset that the task is in.
2224 	 * Attempt to enforce strict accounting with cpuset is almost
2225 	 * impossible (or too ugly) because cpuset is too fluid that
2226 	 * task or memory node can be dynamically moved between cpusets.
2227 	 *
2228 	 * The change of semantics for shared hugetlb mapping with cpuset is
2229 	 * undesirable. However, in order to preserve some of the semantics,
2230 	 * we fall back to check against current free page availability as
2231 	 * a best attempt and hopefully to minimize the impact of changing
2232 	 * semantics that cpuset has.
2233 	 */
2234 	if (delta > 0) {
2235 		if (gather_surplus_pages(h, delta) < 0)
2236 			goto out;
2237 
2238 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2239 			return_unused_surplus_pages(h, delta);
2240 			goto out;
2241 		}
2242 	}
2243 
2244 	ret = 0;
2245 	if (delta < 0)
2246 		return_unused_surplus_pages(h, (unsigned long) -delta);
2247 
2248 out:
2249 	spin_unlock(&hugetlb_lock);
2250 	return ret;
2251 }
2252 
2253 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2254 {
2255 	struct resv_map *resv = vma_resv_map(vma);
2256 
2257 	/*
2258 	 * This new VMA should share its siblings reservation map if present.
2259 	 * The VMA will only ever have a valid reservation map pointer where
2260 	 * it is being copied for another still existing VMA.  As that VMA
2261 	 * has a reference to the reservation map it cannot disappear until
2262 	 * after this open call completes.  It is therefore safe to take a
2263 	 * new reference here without additional locking.
2264 	 */
2265 	if (resv)
2266 		kref_get(&resv->refs);
2267 }
2268 
2269 static void resv_map_put(struct vm_area_struct *vma)
2270 {
2271 	struct resv_map *resv = vma_resv_map(vma);
2272 
2273 	if (!resv)
2274 		return;
2275 	kref_put(&resv->refs, resv_map_release);
2276 }
2277 
2278 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2279 {
2280 	struct hstate *h = hstate_vma(vma);
2281 	struct resv_map *resv = vma_resv_map(vma);
2282 	struct hugepage_subpool *spool = subpool_vma(vma);
2283 	unsigned long reserve;
2284 	unsigned long start;
2285 	unsigned long end;
2286 
2287 	if (resv) {
2288 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2289 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2290 
2291 		reserve = (end - start) -
2292 			region_count(&resv->regions, start, end);
2293 
2294 		resv_map_put(vma);
2295 
2296 		if (reserve) {
2297 			hugetlb_acct_memory(h, -reserve);
2298 			hugepage_subpool_put_pages(spool, reserve);
2299 		}
2300 	}
2301 }
2302 
2303 /*
2304  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2305  * handle_mm_fault() to try to instantiate regular-sized pages in the
2306  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2307  * this far.
2308  */
2309 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2310 {
2311 	BUG();
2312 	return 0;
2313 }
2314 
2315 const struct vm_operations_struct hugetlb_vm_ops = {
2316 	.fault = hugetlb_vm_op_fault,
2317 	.open = hugetlb_vm_op_open,
2318 	.close = hugetlb_vm_op_close,
2319 };
2320 
2321 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2322 				int writable)
2323 {
2324 	pte_t entry;
2325 
2326 	if (writable) {
2327 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2328 					 vma->vm_page_prot)));
2329 	} else {
2330 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2331 					   vma->vm_page_prot));
2332 	}
2333 	entry = pte_mkyoung(entry);
2334 	entry = pte_mkhuge(entry);
2335 	entry = arch_make_huge_pte(entry, vma, page, writable);
2336 
2337 	return entry;
2338 }
2339 
2340 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2341 				   unsigned long address, pte_t *ptep)
2342 {
2343 	pte_t entry;
2344 
2345 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2346 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2347 		update_mmu_cache(vma, address, ptep);
2348 }
2349 
2350 
2351 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2352 			    struct vm_area_struct *vma)
2353 {
2354 	pte_t *src_pte, *dst_pte, entry;
2355 	struct page *ptepage;
2356 	unsigned long addr;
2357 	int cow;
2358 	struct hstate *h = hstate_vma(vma);
2359 	unsigned long sz = huge_page_size(h);
2360 
2361 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2362 
2363 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2364 		src_pte = huge_pte_offset(src, addr);
2365 		if (!src_pte)
2366 			continue;
2367 		dst_pte = huge_pte_alloc(dst, addr, sz);
2368 		if (!dst_pte)
2369 			goto nomem;
2370 
2371 		/* If the pagetables are shared don't copy or take references */
2372 		if (dst_pte == src_pte)
2373 			continue;
2374 
2375 		spin_lock(&dst->page_table_lock);
2376 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2377 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2378 			if (cow)
2379 				huge_ptep_set_wrprotect(src, addr, src_pte);
2380 			entry = huge_ptep_get(src_pte);
2381 			ptepage = pte_page(entry);
2382 			get_page(ptepage);
2383 			page_dup_rmap(ptepage);
2384 			set_huge_pte_at(dst, addr, dst_pte, entry);
2385 		}
2386 		spin_unlock(&src->page_table_lock);
2387 		spin_unlock(&dst->page_table_lock);
2388 	}
2389 	return 0;
2390 
2391 nomem:
2392 	return -ENOMEM;
2393 }
2394 
2395 static int is_hugetlb_entry_migration(pte_t pte)
2396 {
2397 	swp_entry_t swp;
2398 
2399 	if (huge_pte_none(pte) || pte_present(pte))
2400 		return 0;
2401 	swp = pte_to_swp_entry(pte);
2402 	if (non_swap_entry(swp) && is_migration_entry(swp))
2403 		return 1;
2404 	else
2405 		return 0;
2406 }
2407 
2408 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2409 {
2410 	swp_entry_t swp;
2411 
2412 	if (huge_pte_none(pte) || pte_present(pte))
2413 		return 0;
2414 	swp = pte_to_swp_entry(pte);
2415 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2416 		return 1;
2417 	else
2418 		return 0;
2419 }
2420 
2421 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2422 			    unsigned long start, unsigned long end,
2423 			    struct page *ref_page)
2424 {
2425 	int force_flush = 0;
2426 	struct mm_struct *mm = vma->vm_mm;
2427 	unsigned long address;
2428 	pte_t *ptep;
2429 	pte_t pte;
2430 	struct page *page;
2431 	struct hstate *h = hstate_vma(vma);
2432 	unsigned long sz = huge_page_size(h);
2433 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2434 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2435 
2436 	WARN_ON(!is_vm_hugetlb_page(vma));
2437 	BUG_ON(start & ~huge_page_mask(h));
2438 	BUG_ON(end & ~huge_page_mask(h));
2439 
2440 	tlb_start_vma(tlb, vma);
2441 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2442 again:
2443 	spin_lock(&mm->page_table_lock);
2444 	for (address = start; address < end; address += sz) {
2445 		ptep = huge_pte_offset(mm, address);
2446 		if (!ptep)
2447 			continue;
2448 
2449 		if (huge_pmd_unshare(mm, &address, ptep))
2450 			continue;
2451 
2452 		pte = huge_ptep_get(ptep);
2453 		if (huge_pte_none(pte))
2454 			continue;
2455 
2456 		/*
2457 		 * HWPoisoned hugepage is already unmapped and dropped reference
2458 		 */
2459 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2460 			huge_pte_clear(mm, address, ptep);
2461 			continue;
2462 		}
2463 
2464 		page = pte_page(pte);
2465 		/*
2466 		 * If a reference page is supplied, it is because a specific
2467 		 * page is being unmapped, not a range. Ensure the page we
2468 		 * are about to unmap is the actual page of interest.
2469 		 */
2470 		if (ref_page) {
2471 			if (page != ref_page)
2472 				continue;
2473 
2474 			/*
2475 			 * Mark the VMA as having unmapped its page so that
2476 			 * future faults in this VMA will fail rather than
2477 			 * looking like data was lost
2478 			 */
2479 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2480 		}
2481 
2482 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2483 		tlb_remove_tlb_entry(tlb, ptep, address);
2484 		if (huge_pte_dirty(pte))
2485 			set_page_dirty(page);
2486 
2487 		page_remove_rmap(page);
2488 		force_flush = !__tlb_remove_page(tlb, page);
2489 		if (force_flush)
2490 			break;
2491 		/* Bail out after unmapping reference page if supplied */
2492 		if (ref_page)
2493 			break;
2494 	}
2495 	spin_unlock(&mm->page_table_lock);
2496 	/*
2497 	 * mmu_gather ran out of room to batch pages, we break out of
2498 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2499 	 * and page-free while holding it.
2500 	 */
2501 	if (force_flush) {
2502 		force_flush = 0;
2503 		tlb_flush_mmu(tlb);
2504 		if (address < end && !ref_page)
2505 			goto again;
2506 	}
2507 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2508 	tlb_end_vma(tlb, vma);
2509 }
2510 
2511 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2512 			  struct vm_area_struct *vma, unsigned long start,
2513 			  unsigned long end, struct page *ref_page)
2514 {
2515 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2516 
2517 	/*
2518 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2519 	 * test will fail on a vma being torn down, and not grab a page table
2520 	 * on its way out.  We're lucky that the flag has such an appropriate
2521 	 * name, and can in fact be safely cleared here. We could clear it
2522 	 * before the __unmap_hugepage_range above, but all that's necessary
2523 	 * is to clear it before releasing the i_mmap_mutex. This works
2524 	 * because in the context this is called, the VMA is about to be
2525 	 * destroyed and the i_mmap_mutex is held.
2526 	 */
2527 	vma->vm_flags &= ~VM_MAYSHARE;
2528 }
2529 
2530 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2531 			  unsigned long end, struct page *ref_page)
2532 {
2533 	struct mm_struct *mm;
2534 	struct mmu_gather tlb;
2535 
2536 	mm = vma->vm_mm;
2537 
2538 	tlb_gather_mmu(&tlb, mm, start, end);
2539 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2540 	tlb_finish_mmu(&tlb, start, end);
2541 }
2542 
2543 /*
2544  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2545  * mappping it owns the reserve page for. The intention is to unmap the page
2546  * from other VMAs and let the children be SIGKILLed if they are faulting the
2547  * same region.
2548  */
2549 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2550 				struct page *page, unsigned long address)
2551 {
2552 	struct hstate *h = hstate_vma(vma);
2553 	struct vm_area_struct *iter_vma;
2554 	struct address_space *mapping;
2555 	pgoff_t pgoff;
2556 
2557 	/*
2558 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2559 	 * from page cache lookup which is in HPAGE_SIZE units.
2560 	 */
2561 	address = address & huge_page_mask(h);
2562 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2563 			vma->vm_pgoff;
2564 	mapping = file_inode(vma->vm_file)->i_mapping;
2565 
2566 	/*
2567 	 * Take the mapping lock for the duration of the table walk. As
2568 	 * this mapping should be shared between all the VMAs,
2569 	 * __unmap_hugepage_range() is called as the lock is already held
2570 	 */
2571 	mutex_lock(&mapping->i_mmap_mutex);
2572 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2573 		/* Do not unmap the current VMA */
2574 		if (iter_vma == vma)
2575 			continue;
2576 
2577 		/*
2578 		 * Unmap the page from other VMAs without their own reserves.
2579 		 * They get marked to be SIGKILLed if they fault in these
2580 		 * areas. This is because a future no-page fault on this VMA
2581 		 * could insert a zeroed page instead of the data existing
2582 		 * from the time of fork. This would look like data corruption
2583 		 */
2584 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2585 			unmap_hugepage_range(iter_vma, address,
2586 					     address + huge_page_size(h), page);
2587 	}
2588 	mutex_unlock(&mapping->i_mmap_mutex);
2589 
2590 	return 1;
2591 }
2592 
2593 /*
2594  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2595  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2596  * cannot race with other handlers or page migration.
2597  * Keep the pte_same checks anyway to make transition from the mutex easier.
2598  */
2599 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2600 			unsigned long address, pte_t *ptep, pte_t pte,
2601 			struct page *pagecache_page)
2602 {
2603 	struct hstate *h = hstate_vma(vma);
2604 	struct page *old_page, *new_page;
2605 	int outside_reserve = 0;
2606 	unsigned long mmun_start;	/* For mmu_notifiers */
2607 	unsigned long mmun_end;		/* For mmu_notifiers */
2608 
2609 	old_page = pte_page(pte);
2610 
2611 retry_avoidcopy:
2612 	/* If no-one else is actually using this page, avoid the copy
2613 	 * and just make the page writable */
2614 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2615 		page_move_anon_rmap(old_page, vma, address);
2616 		set_huge_ptep_writable(vma, address, ptep);
2617 		return 0;
2618 	}
2619 
2620 	/*
2621 	 * If the process that created a MAP_PRIVATE mapping is about to
2622 	 * perform a COW due to a shared page count, attempt to satisfy
2623 	 * the allocation without using the existing reserves. The pagecache
2624 	 * page is used to determine if the reserve at this address was
2625 	 * consumed or not. If reserves were used, a partial faulted mapping
2626 	 * at the time of fork() could consume its reserves on COW instead
2627 	 * of the full address range.
2628 	 */
2629 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2630 			old_page != pagecache_page)
2631 		outside_reserve = 1;
2632 
2633 	page_cache_get(old_page);
2634 
2635 	/* Drop page_table_lock as buddy allocator may be called */
2636 	spin_unlock(&mm->page_table_lock);
2637 	new_page = alloc_huge_page(vma, address, outside_reserve);
2638 
2639 	if (IS_ERR(new_page)) {
2640 		long err = PTR_ERR(new_page);
2641 		page_cache_release(old_page);
2642 
2643 		/*
2644 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2645 		 * it is due to references held by a child and an insufficient
2646 		 * huge page pool. To guarantee the original mappers
2647 		 * reliability, unmap the page from child processes. The child
2648 		 * may get SIGKILLed if it later faults.
2649 		 */
2650 		if (outside_reserve) {
2651 			BUG_ON(huge_pte_none(pte));
2652 			if (unmap_ref_private(mm, vma, old_page, address)) {
2653 				BUG_ON(huge_pte_none(pte));
2654 				spin_lock(&mm->page_table_lock);
2655 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2656 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2657 					goto retry_avoidcopy;
2658 				/*
2659 				 * race occurs while re-acquiring page_table_lock, and
2660 				 * our job is done.
2661 				 */
2662 				return 0;
2663 			}
2664 			WARN_ON_ONCE(1);
2665 		}
2666 
2667 		/* Caller expects lock to be held */
2668 		spin_lock(&mm->page_table_lock);
2669 		if (err == -ENOMEM)
2670 			return VM_FAULT_OOM;
2671 		else
2672 			return VM_FAULT_SIGBUS;
2673 	}
2674 
2675 	/*
2676 	 * When the original hugepage is shared one, it does not have
2677 	 * anon_vma prepared.
2678 	 */
2679 	if (unlikely(anon_vma_prepare(vma))) {
2680 		page_cache_release(new_page);
2681 		page_cache_release(old_page);
2682 		/* Caller expects lock to be held */
2683 		spin_lock(&mm->page_table_lock);
2684 		return VM_FAULT_OOM;
2685 	}
2686 
2687 	copy_user_huge_page(new_page, old_page, address, vma,
2688 			    pages_per_huge_page(h));
2689 	__SetPageUptodate(new_page);
2690 
2691 	mmun_start = address & huge_page_mask(h);
2692 	mmun_end = mmun_start + huge_page_size(h);
2693 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2694 	/*
2695 	 * Retake the page_table_lock to check for racing updates
2696 	 * before the page tables are altered
2697 	 */
2698 	spin_lock(&mm->page_table_lock);
2699 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2700 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2701 		ClearPagePrivate(new_page);
2702 
2703 		/* Break COW */
2704 		huge_ptep_clear_flush(vma, address, ptep);
2705 		set_huge_pte_at(mm, address, ptep,
2706 				make_huge_pte(vma, new_page, 1));
2707 		page_remove_rmap(old_page);
2708 		hugepage_add_new_anon_rmap(new_page, vma, address);
2709 		/* Make the old page be freed below */
2710 		new_page = old_page;
2711 	}
2712 	spin_unlock(&mm->page_table_lock);
2713 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2714 	page_cache_release(new_page);
2715 	page_cache_release(old_page);
2716 
2717 	/* Caller expects lock to be held */
2718 	spin_lock(&mm->page_table_lock);
2719 	return 0;
2720 }
2721 
2722 /* Return the pagecache page at a given address within a VMA */
2723 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2724 			struct vm_area_struct *vma, unsigned long address)
2725 {
2726 	struct address_space *mapping;
2727 	pgoff_t idx;
2728 
2729 	mapping = vma->vm_file->f_mapping;
2730 	idx = vma_hugecache_offset(h, vma, address);
2731 
2732 	return find_lock_page(mapping, idx);
2733 }
2734 
2735 /*
2736  * Return whether there is a pagecache page to back given address within VMA.
2737  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2738  */
2739 static bool hugetlbfs_pagecache_present(struct hstate *h,
2740 			struct vm_area_struct *vma, unsigned long address)
2741 {
2742 	struct address_space *mapping;
2743 	pgoff_t idx;
2744 	struct page *page;
2745 
2746 	mapping = vma->vm_file->f_mapping;
2747 	idx = vma_hugecache_offset(h, vma, address);
2748 
2749 	page = find_get_page(mapping, idx);
2750 	if (page)
2751 		put_page(page);
2752 	return page != NULL;
2753 }
2754 
2755 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2756 			unsigned long address, pte_t *ptep, unsigned int flags)
2757 {
2758 	struct hstate *h = hstate_vma(vma);
2759 	int ret = VM_FAULT_SIGBUS;
2760 	int anon_rmap = 0;
2761 	pgoff_t idx;
2762 	unsigned long size;
2763 	struct page *page;
2764 	struct address_space *mapping;
2765 	pte_t new_pte;
2766 
2767 	/*
2768 	 * Currently, we are forced to kill the process in the event the
2769 	 * original mapper has unmapped pages from the child due to a failed
2770 	 * COW. Warn that such a situation has occurred as it may not be obvious
2771 	 */
2772 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2773 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2774 			   current->pid);
2775 		return ret;
2776 	}
2777 
2778 	mapping = vma->vm_file->f_mapping;
2779 	idx = vma_hugecache_offset(h, vma, address);
2780 
2781 	/*
2782 	 * Use page lock to guard against racing truncation
2783 	 * before we get page_table_lock.
2784 	 */
2785 retry:
2786 	page = find_lock_page(mapping, idx);
2787 	if (!page) {
2788 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2789 		if (idx >= size)
2790 			goto out;
2791 		page = alloc_huge_page(vma, address, 0);
2792 		if (IS_ERR(page)) {
2793 			ret = PTR_ERR(page);
2794 			if (ret == -ENOMEM)
2795 				ret = VM_FAULT_OOM;
2796 			else
2797 				ret = VM_FAULT_SIGBUS;
2798 			goto out;
2799 		}
2800 		clear_huge_page(page, address, pages_per_huge_page(h));
2801 		__SetPageUptodate(page);
2802 
2803 		if (vma->vm_flags & VM_MAYSHARE) {
2804 			int err;
2805 			struct inode *inode = mapping->host;
2806 
2807 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2808 			if (err) {
2809 				put_page(page);
2810 				if (err == -EEXIST)
2811 					goto retry;
2812 				goto out;
2813 			}
2814 			ClearPagePrivate(page);
2815 
2816 			spin_lock(&inode->i_lock);
2817 			inode->i_blocks += blocks_per_huge_page(h);
2818 			spin_unlock(&inode->i_lock);
2819 		} else {
2820 			lock_page(page);
2821 			if (unlikely(anon_vma_prepare(vma))) {
2822 				ret = VM_FAULT_OOM;
2823 				goto backout_unlocked;
2824 			}
2825 			anon_rmap = 1;
2826 		}
2827 	} else {
2828 		/*
2829 		 * If memory error occurs between mmap() and fault, some process
2830 		 * don't have hwpoisoned swap entry for errored virtual address.
2831 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2832 		 */
2833 		if (unlikely(PageHWPoison(page))) {
2834 			ret = VM_FAULT_HWPOISON |
2835 				VM_FAULT_SET_HINDEX(hstate_index(h));
2836 			goto backout_unlocked;
2837 		}
2838 	}
2839 
2840 	/*
2841 	 * If we are going to COW a private mapping later, we examine the
2842 	 * pending reservations for this page now. This will ensure that
2843 	 * any allocations necessary to record that reservation occur outside
2844 	 * the spinlock.
2845 	 */
2846 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2847 		if (vma_needs_reservation(h, vma, address) < 0) {
2848 			ret = VM_FAULT_OOM;
2849 			goto backout_unlocked;
2850 		}
2851 
2852 	spin_lock(&mm->page_table_lock);
2853 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2854 	if (idx >= size)
2855 		goto backout;
2856 
2857 	ret = 0;
2858 	if (!huge_pte_none(huge_ptep_get(ptep)))
2859 		goto backout;
2860 
2861 	if (anon_rmap) {
2862 		ClearPagePrivate(page);
2863 		hugepage_add_new_anon_rmap(page, vma, address);
2864 	}
2865 	else
2866 		page_dup_rmap(page);
2867 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2868 				&& (vma->vm_flags & VM_SHARED)));
2869 	set_huge_pte_at(mm, address, ptep, new_pte);
2870 
2871 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2872 		/* Optimization, do the COW without a second fault */
2873 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2874 	}
2875 
2876 	spin_unlock(&mm->page_table_lock);
2877 	unlock_page(page);
2878 out:
2879 	return ret;
2880 
2881 backout:
2882 	spin_unlock(&mm->page_table_lock);
2883 backout_unlocked:
2884 	unlock_page(page);
2885 	put_page(page);
2886 	goto out;
2887 }
2888 
2889 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2890 			unsigned long address, unsigned int flags)
2891 {
2892 	pte_t *ptep;
2893 	pte_t entry;
2894 	int ret;
2895 	struct page *page = NULL;
2896 	struct page *pagecache_page = NULL;
2897 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2898 	struct hstate *h = hstate_vma(vma);
2899 
2900 	address &= huge_page_mask(h);
2901 
2902 	ptep = huge_pte_offset(mm, address);
2903 	if (ptep) {
2904 		entry = huge_ptep_get(ptep);
2905 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2906 			migration_entry_wait_huge(mm, ptep);
2907 			return 0;
2908 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2909 			return VM_FAULT_HWPOISON_LARGE |
2910 				VM_FAULT_SET_HINDEX(hstate_index(h));
2911 	}
2912 
2913 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2914 	if (!ptep)
2915 		return VM_FAULT_OOM;
2916 
2917 	/*
2918 	 * Serialize hugepage allocation and instantiation, so that we don't
2919 	 * get spurious allocation failures if two CPUs race to instantiate
2920 	 * the same page in the page cache.
2921 	 */
2922 	mutex_lock(&hugetlb_instantiation_mutex);
2923 	entry = huge_ptep_get(ptep);
2924 	if (huge_pte_none(entry)) {
2925 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2926 		goto out_mutex;
2927 	}
2928 
2929 	ret = 0;
2930 
2931 	/*
2932 	 * If we are going to COW the mapping later, we examine the pending
2933 	 * reservations for this page now. This will ensure that any
2934 	 * allocations necessary to record that reservation occur outside the
2935 	 * spinlock. For private mappings, we also lookup the pagecache
2936 	 * page now as it is used to determine if a reservation has been
2937 	 * consumed.
2938 	 */
2939 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2940 		if (vma_needs_reservation(h, vma, address) < 0) {
2941 			ret = VM_FAULT_OOM;
2942 			goto out_mutex;
2943 		}
2944 
2945 		if (!(vma->vm_flags & VM_MAYSHARE))
2946 			pagecache_page = hugetlbfs_pagecache_page(h,
2947 								vma, address);
2948 	}
2949 
2950 	/*
2951 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2952 	 * pagecache_page, so here we need take the former one
2953 	 * when page != pagecache_page or !pagecache_page.
2954 	 * Note that locking order is always pagecache_page -> page,
2955 	 * so no worry about deadlock.
2956 	 */
2957 	page = pte_page(entry);
2958 	get_page(page);
2959 	if (page != pagecache_page)
2960 		lock_page(page);
2961 
2962 	spin_lock(&mm->page_table_lock);
2963 	/* Check for a racing update before calling hugetlb_cow */
2964 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2965 		goto out_page_table_lock;
2966 
2967 
2968 	if (flags & FAULT_FLAG_WRITE) {
2969 		if (!huge_pte_write(entry)) {
2970 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2971 							pagecache_page);
2972 			goto out_page_table_lock;
2973 		}
2974 		entry = huge_pte_mkdirty(entry);
2975 	}
2976 	entry = pte_mkyoung(entry);
2977 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2978 						flags & FAULT_FLAG_WRITE))
2979 		update_mmu_cache(vma, address, ptep);
2980 
2981 out_page_table_lock:
2982 	spin_unlock(&mm->page_table_lock);
2983 
2984 	if (pagecache_page) {
2985 		unlock_page(pagecache_page);
2986 		put_page(pagecache_page);
2987 	}
2988 	if (page != pagecache_page)
2989 		unlock_page(page);
2990 	put_page(page);
2991 
2992 out_mutex:
2993 	mutex_unlock(&hugetlb_instantiation_mutex);
2994 
2995 	return ret;
2996 }
2997 
2998 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2999 			 struct page **pages, struct vm_area_struct **vmas,
3000 			 unsigned long *position, unsigned long *nr_pages,
3001 			 long i, unsigned int flags)
3002 {
3003 	unsigned long pfn_offset;
3004 	unsigned long vaddr = *position;
3005 	unsigned long remainder = *nr_pages;
3006 	struct hstate *h = hstate_vma(vma);
3007 
3008 	spin_lock(&mm->page_table_lock);
3009 	while (vaddr < vma->vm_end && remainder) {
3010 		pte_t *pte;
3011 		int absent;
3012 		struct page *page;
3013 
3014 		/*
3015 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3016 		 * each hugepage.  We have to make sure we get the
3017 		 * first, for the page indexing below to work.
3018 		 */
3019 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3020 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3021 
3022 		/*
3023 		 * When coredumping, it suits get_dump_page if we just return
3024 		 * an error where there's an empty slot with no huge pagecache
3025 		 * to back it.  This way, we avoid allocating a hugepage, and
3026 		 * the sparse dumpfile avoids allocating disk blocks, but its
3027 		 * huge holes still show up with zeroes where they need to be.
3028 		 */
3029 		if (absent && (flags & FOLL_DUMP) &&
3030 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3031 			remainder = 0;
3032 			break;
3033 		}
3034 
3035 		/*
3036 		 * We need call hugetlb_fault for both hugepages under migration
3037 		 * (in which case hugetlb_fault waits for the migration,) and
3038 		 * hwpoisoned hugepages (in which case we need to prevent the
3039 		 * caller from accessing to them.) In order to do this, we use
3040 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3041 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3042 		 * both cases, and because we can't follow correct pages
3043 		 * directly from any kind of swap entries.
3044 		 */
3045 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3046 		    ((flags & FOLL_WRITE) &&
3047 		      !huge_pte_write(huge_ptep_get(pte)))) {
3048 			int ret;
3049 
3050 			spin_unlock(&mm->page_table_lock);
3051 			ret = hugetlb_fault(mm, vma, vaddr,
3052 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3053 			spin_lock(&mm->page_table_lock);
3054 			if (!(ret & VM_FAULT_ERROR))
3055 				continue;
3056 
3057 			remainder = 0;
3058 			break;
3059 		}
3060 
3061 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3062 		page = pte_page(huge_ptep_get(pte));
3063 same_page:
3064 		if (pages) {
3065 			pages[i] = mem_map_offset(page, pfn_offset);
3066 			get_page(pages[i]);
3067 		}
3068 
3069 		if (vmas)
3070 			vmas[i] = vma;
3071 
3072 		vaddr += PAGE_SIZE;
3073 		++pfn_offset;
3074 		--remainder;
3075 		++i;
3076 		if (vaddr < vma->vm_end && remainder &&
3077 				pfn_offset < pages_per_huge_page(h)) {
3078 			/*
3079 			 * We use pfn_offset to avoid touching the pageframes
3080 			 * of this compound page.
3081 			 */
3082 			goto same_page;
3083 		}
3084 	}
3085 	spin_unlock(&mm->page_table_lock);
3086 	*nr_pages = remainder;
3087 	*position = vaddr;
3088 
3089 	return i ? i : -EFAULT;
3090 }
3091 
3092 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3093 		unsigned long address, unsigned long end, pgprot_t newprot)
3094 {
3095 	struct mm_struct *mm = vma->vm_mm;
3096 	unsigned long start = address;
3097 	pte_t *ptep;
3098 	pte_t pte;
3099 	struct hstate *h = hstate_vma(vma);
3100 	unsigned long pages = 0;
3101 
3102 	BUG_ON(address >= end);
3103 	flush_cache_range(vma, address, end);
3104 
3105 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3106 	spin_lock(&mm->page_table_lock);
3107 	for (; address < end; address += huge_page_size(h)) {
3108 		ptep = huge_pte_offset(mm, address);
3109 		if (!ptep)
3110 			continue;
3111 		if (huge_pmd_unshare(mm, &address, ptep)) {
3112 			pages++;
3113 			continue;
3114 		}
3115 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3116 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3117 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3118 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3119 			set_huge_pte_at(mm, address, ptep, pte);
3120 			pages++;
3121 		}
3122 	}
3123 	spin_unlock(&mm->page_table_lock);
3124 	/*
3125 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3126 	 * may have cleared our pud entry and done put_page on the page table:
3127 	 * once we release i_mmap_mutex, another task can do the final put_page
3128 	 * and that page table be reused and filled with junk.
3129 	 */
3130 	flush_tlb_range(vma, start, end);
3131 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3132 
3133 	return pages << h->order;
3134 }
3135 
3136 int hugetlb_reserve_pages(struct inode *inode,
3137 					long from, long to,
3138 					struct vm_area_struct *vma,
3139 					vm_flags_t vm_flags)
3140 {
3141 	long ret, chg;
3142 	struct hstate *h = hstate_inode(inode);
3143 	struct hugepage_subpool *spool = subpool_inode(inode);
3144 
3145 	/*
3146 	 * Only apply hugepage reservation if asked. At fault time, an
3147 	 * attempt will be made for VM_NORESERVE to allocate a page
3148 	 * without using reserves
3149 	 */
3150 	if (vm_flags & VM_NORESERVE)
3151 		return 0;
3152 
3153 	/*
3154 	 * Shared mappings base their reservation on the number of pages that
3155 	 * are already allocated on behalf of the file. Private mappings need
3156 	 * to reserve the full area even if read-only as mprotect() may be
3157 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3158 	 */
3159 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3160 		chg = region_chg(&inode->i_mapping->private_list, from, to);
3161 	else {
3162 		struct resv_map *resv_map = resv_map_alloc();
3163 		if (!resv_map)
3164 			return -ENOMEM;
3165 
3166 		chg = to - from;
3167 
3168 		set_vma_resv_map(vma, resv_map);
3169 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3170 	}
3171 
3172 	if (chg < 0) {
3173 		ret = chg;
3174 		goto out_err;
3175 	}
3176 
3177 	/* There must be enough pages in the subpool for the mapping */
3178 	if (hugepage_subpool_get_pages(spool, chg)) {
3179 		ret = -ENOSPC;
3180 		goto out_err;
3181 	}
3182 
3183 	/*
3184 	 * Check enough hugepages are available for the reservation.
3185 	 * Hand the pages back to the subpool if there are not
3186 	 */
3187 	ret = hugetlb_acct_memory(h, chg);
3188 	if (ret < 0) {
3189 		hugepage_subpool_put_pages(spool, chg);
3190 		goto out_err;
3191 	}
3192 
3193 	/*
3194 	 * Account for the reservations made. Shared mappings record regions
3195 	 * that have reservations as they are shared by multiple VMAs.
3196 	 * When the last VMA disappears, the region map says how much
3197 	 * the reservation was and the page cache tells how much of
3198 	 * the reservation was consumed. Private mappings are per-VMA and
3199 	 * only the consumed reservations are tracked. When the VMA
3200 	 * disappears, the original reservation is the VMA size and the
3201 	 * consumed reservations are stored in the map. Hence, nothing
3202 	 * else has to be done for private mappings here
3203 	 */
3204 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3205 		region_add(&inode->i_mapping->private_list, from, to);
3206 	return 0;
3207 out_err:
3208 	if (vma)
3209 		resv_map_put(vma);
3210 	return ret;
3211 }
3212 
3213 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3214 {
3215 	struct hstate *h = hstate_inode(inode);
3216 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3217 	struct hugepage_subpool *spool = subpool_inode(inode);
3218 
3219 	spin_lock(&inode->i_lock);
3220 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3221 	spin_unlock(&inode->i_lock);
3222 
3223 	hugepage_subpool_put_pages(spool, (chg - freed));
3224 	hugetlb_acct_memory(h, -(chg - freed));
3225 }
3226 
3227 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3228 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3229 				struct vm_area_struct *vma,
3230 				unsigned long addr, pgoff_t idx)
3231 {
3232 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3233 				svma->vm_start;
3234 	unsigned long sbase = saddr & PUD_MASK;
3235 	unsigned long s_end = sbase + PUD_SIZE;
3236 
3237 	/* Allow segments to share if only one is marked locked */
3238 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3239 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3240 
3241 	/*
3242 	 * match the virtual addresses, permission and the alignment of the
3243 	 * page table page.
3244 	 */
3245 	if (pmd_index(addr) != pmd_index(saddr) ||
3246 	    vm_flags != svm_flags ||
3247 	    sbase < svma->vm_start || svma->vm_end < s_end)
3248 		return 0;
3249 
3250 	return saddr;
3251 }
3252 
3253 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3254 {
3255 	unsigned long base = addr & PUD_MASK;
3256 	unsigned long end = base + PUD_SIZE;
3257 
3258 	/*
3259 	 * check on proper vm_flags and page table alignment
3260 	 */
3261 	if (vma->vm_flags & VM_MAYSHARE &&
3262 	    vma->vm_start <= base && end <= vma->vm_end)
3263 		return 1;
3264 	return 0;
3265 }
3266 
3267 /*
3268  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3269  * and returns the corresponding pte. While this is not necessary for the
3270  * !shared pmd case because we can allocate the pmd later as well, it makes the
3271  * code much cleaner. pmd allocation is essential for the shared case because
3272  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3273  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3274  * bad pmd for sharing.
3275  */
3276 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3277 {
3278 	struct vm_area_struct *vma = find_vma(mm, addr);
3279 	struct address_space *mapping = vma->vm_file->f_mapping;
3280 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3281 			vma->vm_pgoff;
3282 	struct vm_area_struct *svma;
3283 	unsigned long saddr;
3284 	pte_t *spte = NULL;
3285 	pte_t *pte;
3286 
3287 	if (!vma_shareable(vma, addr))
3288 		return (pte_t *)pmd_alloc(mm, pud, addr);
3289 
3290 	mutex_lock(&mapping->i_mmap_mutex);
3291 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3292 		if (svma == vma)
3293 			continue;
3294 
3295 		saddr = page_table_shareable(svma, vma, addr, idx);
3296 		if (saddr) {
3297 			spte = huge_pte_offset(svma->vm_mm, saddr);
3298 			if (spte) {
3299 				get_page(virt_to_page(spte));
3300 				break;
3301 			}
3302 		}
3303 	}
3304 
3305 	if (!spte)
3306 		goto out;
3307 
3308 	spin_lock(&mm->page_table_lock);
3309 	if (pud_none(*pud))
3310 		pud_populate(mm, pud,
3311 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3312 	else
3313 		put_page(virt_to_page(spte));
3314 	spin_unlock(&mm->page_table_lock);
3315 out:
3316 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3317 	mutex_unlock(&mapping->i_mmap_mutex);
3318 	return pte;
3319 }
3320 
3321 /*
3322  * unmap huge page backed by shared pte.
3323  *
3324  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3325  * indicated by page_count > 1, unmap is achieved by clearing pud and
3326  * decrementing the ref count. If count == 1, the pte page is not shared.
3327  *
3328  * called with vma->vm_mm->page_table_lock held.
3329  *
3330  * returns: 1 successfully unmapped a shared pte page
3331  *	    0 the underlying pte page is not shared, or it is the last user
3332  */
3333 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3334 {
3335 	pgd_t *pgd = pgd_offset(mm, *addr);
3336 	pud_t *pud = pud_offset(pgd, *addr);
3337 
3338 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3339 	if (page_count(virt_to_page(ptep)) == 1)
3340 		return 0;
3341 
3342 	pud_clear(pud);
3343 	put_page(virt_to_page(ptep));
3344 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3345 	return 1;
3346 }
3347 #define want_pmd_share()	(1)
3348 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3349 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3350 {
3351 	return NULL;
3352 }
3353 #define want_pmd_share()	(0)
3354 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3355 
3356 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3357 pte_t *huge_pte_alloc(struct mm_struct *mm,
3358 			unsigned long addr, unsigned long sz)
3359 {
3360 	pgd_t *pgd;
3361 	pud_t *pud;
3362 	pte_t *pte = NULL;
3363 
3364 	pgd = pgd_offset(mm, addr);
3365 	pud = pud_alloc(mm, pgd, addr);
3366 	if (pud) {
3367 		if (sz == PUD_SIZE) {
3368 			pte = (pte_t *)pud;
3369 		} else {
3370 			BUG_ON(sz != PMD_SIZE);
3371 			if (want_pmd_share() && pud_none(*pud))
3372 				pte = huge_pmd_share(mm, addr, pud);
3373 			else
3374 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3375 		}
3376 	}
3377 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3378 
3379 	return pte;
3380 }
3381 
3382 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3383 {
3384 	pgd_t *pgd;
3385 	pud_t *pud;
3386 	pmd_t *pmd = NULL;
3387 
3388 	pgd = pgd_offset(mm, addr);
3389 	if (pgd_present(*pgd)) {
3390 		pud = pud_offset(pgd, addr);
3391 		if (pud_present(*pud)) {
3392 			if (pud_huge(*pud))
3393 				return (pte_t *)pud;
3394 			pmd = pmd_offset(pud, addr);
3395 		}
3396 	}
3397 	return (pte_t *) pmd;
3398 }
3399 
3400 struct page *
3401 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3402 		pmd_t *pmd, int write)
3403 {
3404 	struct page *page;
3405 
3406 	page = pte_page(*(pte_t *)pmd);
3407 	if (page)
3408 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3409 	return page;
3410 }
3411 
3412 struct page *
3413 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3414 		pud_t *pud, int write)
3415 {
3416 	struct page *page;
3417 
3418 	page = pte_page(*(pte_t *)pud);
3419 	if (page)
3420 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3421 	return page;
3422 }
3423 
3424 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3425 
3426 /* Can be overriden by architectures */
3427 __attribute__((weak)) struct page *
3428 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3429 	       pud_t *pud, int write)
3430 {
3431 	BUG();
3432 	return NULL;
3433 }
3434 
3435 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3436 
3437 #ifdef CONFIG_MEMORY_FAILURE
3438 
3439 /* Should be called in hugetlb_lock */
3440 static int is_hugepage_on_freelist(struct page *hpage)
3441 {
3442 	struct page *page;
3443 	struct page *tmp;
3444 	struct hstate *h = page_hstate(hpage);
3445 	int nid = page_to_nid(hpage);
3446 
3447 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3448 		if (page == hpage)
3449 			return 1;
3450 	return 0;
3451 }
3452 
3453 /*
3454  * This function is called from memory failure code.
3455  * Assume the caller holds page lock of the head page.
3456  */
3457 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3458 {
3459 	struct hstate *h = page_hstate(hpage);
3460 	int nid = page_to_nid(hpage);
3461 	int ret = -EBUSY;
3462 
3463 	spin_lock(&hugetlb_lock);
3464 	if (is_hugepage_on_freelist(hpage)) {
3465 		/*
3466 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3467 		 * but dangling hpage->lru can trigger list-debug warnings
3468 		 * (this happens when we call unpoison_memory() on it),
3469 		 * so let it point to itself with list_del_init().
3470 		 */
3471 		list_del_init(&hpage->lru);
3472 		set_page_refcounted(hpage);
3473 		h->free_huge_pages--;
3474 		h->free_huge_pages_node[nid]--;
3475 		ret = 0;
3476 	}
3477 	spin_unlock(&hugetlb_lock);
3478 	return ret;
3479 }
3480 #endif
3481 
3482 bool isolate_huge_page(struct page *page, struct list_head *list)
3483 {
3484 	VM_BUG_ON(!PageHead(page));
3485 	if (!get_page_unless_zero(page))
3486 		return false;
3487 	spin_lock(&hugetlb_lock);
3488 	list_move_tail(&page->lru, list);
3489 	spin_unlock(&hugetlb_lock);
3490 	return true;
3491 }
3492 
3493 void putback_active_hugepage(struct page *page)
3494 {
3495 	VM_BUG_ON(!PageHead(page));
3496 	spin_lock(&hugetlb_lock);
3497 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3498 	spin_unlock(&hugetlb_lock);
3499 	put_page(page);
3500 }
3501 
3502 bool is_hugepage_active(struct page *page)
3503 {
3504 	VM_BUG_ON(!PageHuge(page));
3505 	/*
3506 	 * This function can be called for a tail page because the caller,
3507 	 * scan_movable_pages, scans through a given pfn-range which typically
3508 	 * covers one memory block. In systems using gigantic hugepage (1GB
3509 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3510 	 * support migrating such large hugepages for now, so return false
3511 	 * when called for tail pages.
3512 	 */
3513 	if (PageTail(page))
3514 		return false;
3515 	/*
3516 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3517 	 * so we should return false for them.
3518 	 */
3519 	if (unlikely(PageHWPoison(page)))
3520 		return false;
3521 	return page_count(page) > 0;
3522 }
3523