1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 30 #include <linux/io.h> 31 #include <linux/hugetlb.h> 32 #include <linux/hugetlb_cgroup.h> 33 #include <linux/node.h> 34 #include "internal.h" 35 36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 37 unsigned long hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 43 __initdata LIST_HEAD(huge_boot_pages); 44 45 /* for command line parsing */ 46 static struct hstate * __initdata parsed_hstate; 47 static unsigned long __initdata default_hstate_max_huge_pages; 48 static unsigned long __initdata default_hstate_size; 49 50 /* 51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 52 * free_huge_pages, and surplus_huge_pages. 53 */ 54 DEFINE_SPINLOCK(hugetlb_lock); 55 56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 57 { 58 bool free = (spool->count == 0) && (spool->used_hpages == 0); 59 60 spin_unlock(&spool->lock); 61 62 /* If no pages are used, and no other handles to the subpool 63 * remain, free the subpool the subpool remain */ 64 if (free) 65 kfree(spool); 66 } 67 68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 69 { 70 struct hugepage_subpool *spool; 71 72 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 73 if (!spool) 74 return NULL; 75 76 spin_lock_init(&spool->lock); 77 spool->count = 1; 78 spool->max_hpages = nr_blocks; 79 spool->used_hpages = 0; 80 81 return spool; 82 } 83 84 void hugepage_put_subpool(struct hugepage_subpool *spool) 85 { 86 spin_lock(&spool->lock); 87 BUG_ON(!spool->count); 88 spool->count--; 89 unlock_or_release_subpool(spool); 90 } 91 92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 93 long delta) 94 { 95 int ret = 0; 96 97 if (!spool) 98 return 0; 99 100 spin_lock(&spool->lock); 101 if ((spool->used_hpages + delta) <= spool->max_hpages) { 102 spool->used_hpages += delta; 103 } else { 104 ret = -ENOMEM; 105 } 106 spin_unlock(&spool->lock); 107 108 return ret; 109 } 110 111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 112 long delta) 113 { 114 if (!spool) 115 return; 116 117 spin_lock(&spool->lock); 118 spool->used_hpages -= delta; 119 /* If hugetlbfs_put_super couldn't free spool due to 120 * an outstanding quota reference, free it now. */ 121 unlock_or_release_subpool(spool); 122 } 123 124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 125 { 126 return HUGETLBFS_SB(inode->i_sb)->spool; 127 } 128 129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 130 { 131 return subpool_inode(file_inode(vma->vm_file)); 132 } 133 134 /* 135 * Region tracking -- allows tracking of reservations and instantiated pages 136 * across the pages in a mapping. 137 * 138 * The region data structures are protected by a combination of the mmap_sem 139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller 140 * must either hold the mmap_sem for write, or the mmap_sem for read and 141 * the hugetlb_instantiation_mutex: 142 * 143 * down_write(&mm->mmap_sem); 144 * or 145 * down_read(&mm->mmap_sem); 146 * mutex_lock(&hugetlb_instantiation_mutex); 147 */ 148 struct file_region { 149 struct list_head link; 150 long from; 151 long to; 152 }; 153 154 static long region_add(struct list_head *head, long f, long t) 155 { 156 struct file_region *rg, *nrg, *trg; 157 158 /* Locate the region we are either in or before. */ 159 list_for_each_entry(rg, head, link) 160 if (f <= rg->to) 161 break; 162 163 /* Round our left edge to the current segment if it encloses us. */ 164 if (f > rg->from) 165 f = rg->from; 166 167 /* Check for and consume any regions we now overlap with. */ 168 nrg = rg; 169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 170 if (&rg->link == head) 171 break; 172 if (rg->from > t) 173 break; 174 175 /* If this area reaches higher then extend our area to 176 * include it completely. If this is not the first area 177 * which we intend to reuse, free it. */ 178 if (rg->to > t) 179 t = rg->to; 180 if (rg != nrg) { 181 list_del(&rg->link); 182 kfree(rg); 183 } 184 } 185 nrg->from = f; 186 nrg->to = t; 187 return 0; 188 } 189 190 static long region_chg(struct list_head *head, long f, long t) 191 { 192 struct file_region *rg, *nrg; 193 long chg = 0; 194 195 /* Locate the region we are before or in. */ 196 list_for_each_entry(rg, head, link) 197 if (f <= rg->to) 198 break; 199 200 /* If we are below the current region then a new region is required. 201 * Subtle, allocate a new region at the position but make it zero 202 * size such that we can guarantee to record the reservation. */ 203 if (&rg->link == head || t < rg->from) { 204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 205 if (!nrg) 206 return -ENOMEM; 207 nrg->from = f; 208 nrg->to = f; 209 INIT_LIST_HEAD(&nrg->link); 210 list_add(&nrg->link, rg->link.prev); 211 212 return t - f; 213 } 214 215 /* Round our left edge to the current segment if it encloses us. */ 216 if (f > rg->from) 217 f = rg->from; 218 chg = t - f; 219 220 /* Check for and consume any regions we now overlap with. */ 221 list_for_each_entry(rg, rg->link.prev, link) { 222 if (&rg->link == head) 223 break; 224 if (rg->from > t) 225 return chg; 226 227 /* We overlap with this area, if it extends further than 228 * us then we must extend ourselves. Account for its 229 * existing reservation. */ 230 if (rg->to > t) { 231 chg += rg->to - t; 232 t = rg->to; 233 } 234 chg -= rg->to - rg->from; 235 } 236 return chg; 237 } 238 239 static long region_truncate(struct list_head *head, long end) 240 { 241 struct file_region *rg, *trg; 242 long chg = 0; 243 244 /* Locate the region we are either in or before. */ 245 list_for_each_entry(rg, head, link) 246 if (end <= rg->to) 247 break; 248 if (&rg->link == head) 249 return 0; 250 251 /* If we are in the middle of a region then adjust it. */ 252 if (end > rg->from) { 253 chg = rg->to - end; 254 rg->to = end; 255 rg = list_entry(rg->link.next, typeof(*rg), link); 256 } 257 258 /* Drop any remaining regions. */ 259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 260 if (&rg->link == head) 261 break; 262 chg += rg->to - rg->from; 263 list_del(&rg->link); 264 kfree(rg); 265 } 266 return chg; 267 } 268 269 static long region_count(struct list_head *head, long f, long t) 270 { 271 struct file_region *rg; 272 long chg = 0; 273 274 /* Locate each segment we overlap with, and count that overlap. */ 275 list_for_each_entry(rg, head, link) { 276 long seg_from; 277 long seg_to; 278 279 if (rg->to <= f) 280 continue; 281 if (rg->from >= t) 282 break; 283 284 seg_from = max(rg->from, f); 285 seg_to = min(rg->to, t); 286 287 chg += seg_to - seg_from; 288 } 289 290 return chg; 291 } 292 293 /* 294 * Convert the address within this vma to the page offset within 295 * the mapping, in pagecache page units; huge pages here. 296 */ 297 static pgoff_t vma_hugecache_offset(struct hstate *h, 298 struct vm_area_struct *vma, unsigned long address) 299 { 300 return ((address - vma->vm_start) >> huge_page_shift(h)) + 301 (vma->vm_pgoff >> huge_page_order(h)); 302 } 303 304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 305 unsigned long address) 306 { 307 return vma_hugecache_offset(hstate_vma(vma), vma, address); 308 } 309 310 /* 311 * Return the size of the pages allocated when backing a VMA. In the majority 312 * cases this will be same size as used by the page table entries. 313 */ 314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 315 { 316 struct hstate *hstate; 317 318 if (!is_vm_hugetlb_page(vma)) 319 return PAGE_SIZE; 320 321 hstate = hstate_vma(vma); 322 323 return 1UL << huge_page_shift(hstate); 324 } 325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 326 327 /* 328 * Return the page size being used by the MMU to back a VMA. In the majority 329 * of cases, the page size used by the kernel matches the MMU size. On 330 * architectures where it differs, an architecture-specific version of this 331 * function is required. 332 */ 333 #ifndef vma_mmu_pagesize 334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 335 { 336 return vma_kernel_pagesize(vma); 337 } 338 #endif 339 340 /* 341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 342 * bits of the reservation map pointer, which are always clear due to 343 * alignment. 344 */ 345 #define HPAGE_RESV_OWNER (1UL << 0) 346 #define HPAGE_RESV_UNMAPPED (1UL << 1) 347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 348 349 /* 350 * These helpers are used to track how many pages are reserved for 351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 352 * is guaranteed to have their future faults succeed. 353 * 354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 355 * the reserve counters are updated with the hugetlb_lock held. It is safe 356 * to reset the VMA at fork() time as it is not in use yet and there is no 357 * chance of the global counters getting corrupted as a result of the values. 358 * 359 * The private mapping reservation is represented in a subtly different 360 * manner to a shared mapping. A shared mapping has a region map associated 361 * with the underlying file, this region map represents the backing file 362 * pages which have ever had a reservation assigned which this persists even 363 * after the page is instantiated. A private mapping has a region map 364 * associated with the original mmap which is attached to all VMAs which 365 * reference it, this region map represents those offsets which have consumed 366 * reservation ie. where pages have been instantiated. 367 */ 368 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 369 { 370 return (unsigned long)vma->vm_private_data; 371 } 372 373 static void set_vma_private_data(struct vm_area_struct *vma, 374 unsigned long value) 375 { 376 vma->vm_private_data = (void *)value; 377 } 378 379 struct resv_map { 380 struct kref refs; 381 struct list_head regions; 382 }; 383 384 static struct resv_map *resv_map_alloc(void) 385 { 386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 387 if (!resv_map) 388 return NULL; 389 390 kref_init(&resv_map->refs); 391 INIT_LIST_HEAD(&resv_map->regions); 392 393 return resv_map; 394 } 395 396 static void resv_map_release(struct kref *ref) 397 { 398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 399 400 /* Clear out any active regions before we release the map. */ 401 region_truncate(&resv_map->regions, 0); 402 kfree(resv_map); 403 } 404 405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 406 { 407 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 408 if (!(vma->vm_flags & VM_MAYSHARE)) 409 return (struct resv_map *)(get_vma_private_data(vma) & 410 ~HPAGE_RESV_MASK); 411 return NULL; 412 } 413 414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 415 { 416 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 418 419 set_vma_private_data(vma, (get_vma_private_data(vma) & 420 HPAGE_RESV_MASK) | (unsigned long)map); 421 } 422 423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 424 { 425 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 427 428 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 429 } 430 431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 432 { 433 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 434 435 return (get_vma_private_data(vma) & flag) != 0; 436 } 437 438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 440 { 441 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 442 if (!(vma->vm_flags & VM_MAYSHARE)) 443 vma->vm_private_data = (void *)0; 444 } 445 446 /* Returns true if the VMA has associated reserve pages */ 447 static int vma_has_reserves(struct vm_area_struct *vma, long chg) 448 { 449 if (vma->vm_flags & VM_NORESERVE) { 450 /* 451 * This address is already reserved by other process(chg == 0), 452 * so, we should decrement reserved count. Without decrementing, 453 * reserve count remains after releasing inode, because this 454 * allocated page will go into page cache and is regarded as 455 * coming from reserved pool in releasing step. Currently, we 456 * don't have any other solution to deal with this situation 457 * properly, so add work-around here. 458 */ 459 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 460 return 1; 461 else 462 return 0; 463 } 464 465 /* Shared mappings always use reserves */ 466 if (vma->vm_flags & VM_MAYSHARE) 467 return 1; 468 469 /* 470 * Only the process that called mmap() has reserves for 471 * private mappings. 472 */ 473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 474 return 1; 475 476 return 0; 477 } 478 479 static void copy_gigantic_page(struct page *dst, struct page *src) 480 { 481 int i; 482 struct hstate *h = page_hstate(src); 483 struct page *dst_base = dst; 484 struct page *src_base = src; 485 486 for (i = 0; i < pages_per_huge_page(h); ) { 487 cond_resched(); 488 copy_highpage(dst, src); 489 490 i++; 491 dst = mem_map_next(dst, dst_base, i); 492 src = mem_map_next(src, src_base, i); 493 } 494 } 495 496 void copy_huge_page(struct page *dst, struct page *src) 497 { 498 int i; 499 struct hstate *h = page_hstate(src); 500 501 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 502 copy_gigantic_page(dst, src); 503 return; 504 } 505 506 might_sleep(); 507 for (i = 0; i < pages_per_huge_page(h); i++) { 508 cond_resched(); 509 copy_highpage(dst + i, src + i); 510 } 511 } 512 513 static void enqueue_huge_page(struct hstate *h, struct page *page) 514 { 515 int nid = page_to_nid(page); 516 list_move(&page->lru, &h->hugepage_freelists[nid]); 517 h->free_huge_pages++; 518 h->free_huge_pages_node[nid]++; 519 } 520 521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 522 { 523 struct page *page; 524 525 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 526 if (!is_migrate_isolate_page(page)) 527 break; 528 /* 529 * if 'non-isolated free hugepage' not found on the list, 530 * the allocation fails. 531 */ 532 if (&h->hugepage_freelists[nid] == &page->lru) 533 return NULL; 534 list_move(&page->lru, &h->hugepage_activelist); 535 set_page_refcounted(page); 536 h->free_huge_pages--; 537 h->free_huge_pages_node[nid]--; 538 return page; 539 } 540 541 /* Movability of hugepages depends on migration support. */ 542 static inline gfp_t htlb_alloc_mask(struct hstate *h) 543 { 544 if (hugepages_treat_as_movable || hugepage_migration_support(h)) 545 return GFP_HIGHUSER_MOVABLE; 546 else 547 return GFP_HIGHUSER; 548 } 549 550 static struct page *dequeue_huge_page_vma(struct hstate *h, 551 struct vm_area_struct *vma, 552 unsigned long address, int avoid_reserve, 553 long chg) 554 { 555 struct page *page = NULL; 556 struct mempolicy *mpol; 557 nodemask_t *nodemask; 558 struct zonelist *zonelist; 559 struct zone *zone; 560 struct zoneref *z; 561 unsigned int cpuset_mems_cookie; 562 563 /* 564 * A child process with MAP_PRIVATE mappings created by their parent 565 * have no page reserves. This check ensures that reservations are 566 * not "stolen". The child may still get SIGKILLed 567 */ 568 if (!vma_has_reserves(vma, chg) && 569 h->free_huge_pages - h->resv_huge_pages == 0) 570 goto err; 571 572 /* If reserves cannot be used, ensure enough pages are in the pool */ 573 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 574 goto err; 575 576 retry_cpuset: 577 cpuset_mems_cookie = get_mems_allowed(); 578 zonelist = huge_zonelist(vma, address, 579 htlb_alloc_mask(h), &mpol, &nodemask); 580 581 for_each_zone_zonelist_nodemask(zone, z, zonelist, 582 MAX_NR_ZONES - 1, nodemask) { 583 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) { 584 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 585 if (page) { 586 if (avoid_reserve) 587 break; 588 if (!vma_has_reserves(vma, chg)) 589 break; 590 591 SetPagePrivate(page); 592 h->resv_huge_pages--; 593 break; 594 } 595 } 596 } 597 598 mpol_cond_put(mpol); 599 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 600 goto retry_cpuset; 601 return page; 602 603 err: 604 return NULL; 605 } 606 607 static void update_and_free_page(struct hstate *h, struct page *page) 608 { 609 int i; 610 611 VM_BUG_ON(h->order >= MAX_ORDER); 612 613 h->nr_huge_pages--; 614 h->nr_huge_pages_node[page_to_nid(page)]--; 615 for (i = 0; i < pages_per_huge_page(h); i++) { 616 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 617 1 << PG_referenced | 1 << PG_dirty | 618 1 << PG_active | 1 << PG_reserved | 619 1 << PG_private | 1 << PG_writeback); 620 } 621 VM_BUG_ON(hugetlb_cgroup_from_page(page)); 622 set_compound_page_dtor(page, NULL); 623 set_page_refcounted(page); 624 arch_release_hugepage(page); 625 __free_pages(page, huge_page_order(h)); 626 } 627 628 struct hstate *size_to_hstate(unsigned long size) 629 { 630 struct hstate *h; 631 632 for_each_hstate(h) { 633 if (huge_page_size(h) == size) 634 return h; 635 } 636 return NULL; 637 } 638 639 static void free_huge_page(struct page *page) 640 { 641 /* 642 * Can't pass hstate in here because it is called from the 643 * compound page destructor. 644 */ 645 struct hstate *h = page_hstate(page); 646 int nid = page_to_nid(page); 647 struct hugepage_subpool *spool = 648 (struct hugepage_subpool *)page_private(page); 649 bool restore_reserve; 650 651 set_page_private(page, 0); 652 page->mapping = NULL; 653 BUG_ON(page_count(page)); 654 BUG_ON(page_mapcount(page)); 655 restore_reserve = PagePrivate(page); 656 657 spin_lock(&hugetlb_lock); 658 hugetlb_cgroup_uncharge_page(hstate_index(h), 659 pages_per_huge_page(h), page); 660 if (restore_reserve) 661 h->resv_huge_pages++; 662 663 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 664 /* remove the page from active list */ 665 list_del(&page->lru); 666 update_and_free_page(h, page); 667 h->surplus_huge_pages--; 668 h->surplus_huge_pages_node[nid]--; 669 } else { 670 arch_clear_hugepage_flags(page); 671 enqueue_huge_page(h, page); 672 } 673 spin_unlock(&hugetlb_lock); 674 hugepage_subpool_put_pages(spool, 1); 675 } 676 677 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 678 { 679 INIT_LIST_HEAD(&page->lru); 680 set_compound_page_dtor(page, free_huge_page); 681 spin_lock(&hugetlb_lock); 682 set_hugetlb_cgroup(page, NULL); 683 h->nr_huge_pages++; 684 h->nr_huge_pages_node[nid]++; 685 spin_unlock(&hugetlb_lock); 686 put_page(page); /* free it into the hugepage allocator */ 687 } 688 689 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 690 { 691 int i; 692 int nr_pages = 1 << order; 693 struct page *p = page + 1; 694 695 /* we rely on prep_new_huge_page to set the destructor */ 696 set_compound_order(page, order); 697 __SetPageHead(page); 698 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 699 __SetPageTail(p); 700 set_page_count(p, 0); 701 p->first_page = page; 702 } 703 } 704 705 /* 706 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 707 * transparent huge pages. See the PageTransHuge() documentation for more 708 * details. 709 */ 710 int PageHuge(struct page *page) 711 { 712 compound_page_dtor *dtor; 713 714 if (!PageCompound(page)) 715 return 0; 716 717 page = compound_head(page); 718 dtor = get_compound_page_dtor(page); 719 720 return dtor == free_huge_page; 721 } 722 EXPORT_SYMBOL_GPL(PageHuge); 723 724 pgoff_t __basepage_index(struct page *page) 725 { 726 struct page *page_head = compound_head(page); 727 pgoff_t index = page_index(page_head); 728 unsigned long compound_idx; 729 730 if (!PageHuge(page_head)) 731 return page_index(page); 732 733 if (compound_order(page_head) >= MAX_ORDER) 734 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 735 else 736 compound_idx = page - page_head; 737 738 return (index << compound_order(page_head)) + compound_idx; 739 } 740 741 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 742 { 743 struct page *page; 744 745 if (h->order >= MAX_ORDER) 746 return NULL; 747 748 page = alloc_pages_exact_node(nid, 749 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 750 __GFP_REPEAT|__GFP_NOWARN, 751 huge_page_order(h)); 752 if (page) { 753 if (arch_prepare_hugepage(page)) { 754 __free_pages(page, huge_page_order(h)); 755 return NULL; 756 } 757 prep_new_huge_page(h, page, nid); 758 } 759 760 return page; 761 } 762 763 /* 764 * common helper functions for hstate_next_node_to_{alloc|free}. 765 * We may have allocated or freed a huge page based on a different 766 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 767 * be outside of *nodes_allowed. Ensure that we use an allowed 768 * node for alloc or free. 769 */ 770 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 771 { 772 nid = next_node(nid, *nodes_allowed); 773 if (nid == MAX_NUMNODES) 774 nid = first_node(*nodes_allowed); 775 VM_BUG_ON(nid >= MAX_NUMNODES); 776 777 return nid; 778 } 779 780 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 781 { 782 if (!node_isset(nid, *nodes_allowed)) 783 nid = next_node_allowed(nid, nodes_allowed); 784 return nid; 785 } 786 787 /* 788 * returns the previously saved node ["this node"] from which to 789 * allocate a persistent huge page for the pool and advance the 790 * next node from which to allocate, handling wrap at end of node 791 * mask. 792 */ 793 static int hstate_next_node_to_alloc(struct hstate *h, 794 nodemask_t *nodes_allowed) 795 { 796 int nid; 797 798 VM_BUG_ON(!nodes_allowed); 799 800 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 801 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 802 803 return nid; 804 } 805 806 /* 807 * helper for free_pool_huge_page() - return the previously saved 808 * node ["this node"] from which to free a huge page. Advance the 809 * next node id whether or not we find a free huge page to free so 810 * that the next attempt to free addresses the next node. 811 */ 812 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 813 { 814 int nid; 815 816 VM_BUG_ON(!nodes_allowed); 817 818 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 819 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 820 821 return nid; 822 } 823 824 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 825 for (nr_nodes = nodes_weight(*mask); \ 826 nr_nodes > 0 && \ 827 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 828 nr_nodes--) 829 830 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 831 for (nr_nodes = nodes_weight(*mask); \ 832 nr_nodes > 0 && \ 833 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 834 nr_nodes--) 835 836 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 837 { 838 struct page *page; 839 int nr_nodes, node; 840 int ret = 0; 841 842 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 843 page = alloc_fresh_huge_page_node(h, node); 844 if (page) { 845 ret = 1; 846 break; 847 } 848 } 849 850 if (ret) 851 count_vm_event(HTLB_BUDDY_PGALLOC); 852 else 853 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 854 855 return ret; 856 } 857 858 /* 859 * Free huge page from pool from next node to free. 860 * Attempt to keep persistent huge pages more or less 861 * balanced over allowed nodes. 862 * Called with hugetlb_lock locked. 863 */ 864 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 865 bool acct_surplus) 866 { 867 int nr_nodes, node; 868 int ret = 0; 869 870 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 871 /* 872 * If we're returning unused surplus pages, only examine 873 * nodes with surplus pages. 874 */ 875 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 876 !list_empty(&h->hugepage_freelists[node])) { 877 struct page *page = 878 list_entry(h->hugepage_freelists[node].next, 879 struct page, lru); 880 list_del(&page->lru); 881 h->free_huge_pages--; 882 h->free_huge_pages_node[node]--; 883 if (acct_surplus) { 884 h->surplus_huge_pages--; 885 h->surplus_huge_pages_node[node]--; 886 } 887 update_and_free_page(h, page); 888 ret = 1; 889 break; 890 } 891 } 892 893 return ret; 894 } 895 896 /* 897 * Dissolve a given free hugepage into free buddy pages. This function does 898 * nothing for in-use (including surplus) hugepages. 899 */ 900 static void dissolve_free_huge_page(struct page *page) 901 { 902 spin_lock(&hugetlb_lock); 903 if (PageHuge(page) && !page_count(page)) { 904 struct hstate *h = page_hstate(page); 905 int nid = page_to_nid(page); 906 list_del(&page->lru); 907 h->free_huge_pages--; 908 h->free_huge_pages_node[nid]--; 909 update_and_free_page(h, page); 910 } 911 spin_unlock(&hugetlb_lock); 912 } 913 914 /* 915 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 916 * make specified memory blocks removable from the system. 917 * Note that start_pfn should aligned with (minimum) hugepage size. 918 */ 919 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 920 { 921 unsigned int order = 8 * sizeof(void *); 922 unsigned long pfn; 923 struct hstate *h; 924 925 /* Set scan step to minimum hugepage size */ 926 for_each_hstate(h) 927 if (order > huge_page_order(h)) 928 order = huge_page_order(h); 929 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); 930 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) 931 dissolve_free_huge_page(pfn_to_page(pfn)); 932 } 933 934 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 935 { 936 struct page *page; 937 unsigned int r_nid; 938 939 if (h->order >= MAX_ORDER) 940 return NULL; 941 942 /* 943 * Assume we will successfully allocate the surplus page to 944 * prevent racing processes from causing the surplus to exceed 945 * overcommit 946 * 947 * This however introduces a different race, where a process B 948 * tries to grow the static hugepage pool while alloc_pages() is 949 * called by process A. B will only examine the per-node 950 * counters in determining if surplus huge pages can be 951 * converted to normal huge pages in adjust_pool_surplus(). A 952 * won't be able to increment the per-node counter, until the 953 * lock is dropped by B, but B doesn't drop hugetlb_lock until 954 * no more huge pages can be converted from surplus to normal 955 * state (and doesn't try to convert again). Thus, we have a 956 * case where a surplus huge page exists, the pool is grown, and 957 * the surplus huge page still exists after, even though it 958 * should just have been converted to a normal huge page. This 959 * does not leak memory, though, as the hugepage will be freed 960 * once it is out of use. It also does not allow the counters to 961 * go out of whack in adjust_pool_surplus() as we don't modify 962 * the node values until we've gotten the hugepage and only the 963 * per-node value is checked there. 964 */ 965 spin_lock(&hugetlb_lock); 966 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 967 spin_unlock(&hugetlb_lock); 968 return NULL; 969 } else { 970 h->nr_huge_pages++; 971 h->surplus_huge_pages++; 972 } 973 spin_unlock(&hugetlb_lock); 974 975 if (nid == NUMA_NO_NODE) 976 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| 977 __GFP_REPEAT|__GFP_NOWARN, 978 huge_page_order(h)); 979 else 980 page = alloc_pages_exact_node(nid, 981 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 982 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 983 984 if (page && arch_prepare_hugepage(page)) { 985 __free_pages(page, huge_page_order(h)); 986 page = NULL; 987 } 988 989 spin_lock(&hugetlb_lock); 990 if (page) { 991 INIT_LIST_HEAD(&page->lru); 992 r_nid = page_to_nid(page); 993 set_compound_page_dtor(page, free_huge_page); 994 set_hugetlb_cgroup(page, NULL); 995 /* 996 * We incremented the global counters already 997 */ 998 h->nr_huge_pages_node[r_nid]++; 999 h->surplus_huge_pages_node[r_nid]++; 1000 __count_vm_event(HTLB_BUDDY_PGALLOC); 1001 } else { 1002 h->nr_huge_pages--; 1003 h->surplus_huge_pages--; 1004 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1005 } 1006 spin_unlock(&hugetlb_lock); 1007 1008 return page; 1009 } 1010 1011 /* 1012 * This allocation function is useful in the context where vma is irrelevant. 1013 * E.g. soft-offlining uses this function because it only cares physical 1014 * address of error page. 1015 */ 1016 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1017 { 1018 struct page *page = NULL; 1019 1020 spin_lock(&hugetlb_lock); 1021 if (h->free_huge_pages - h->resv_huge_pages > 0) 1022 page = dequeue_huge_page_node(h, nid); 1023 spin_unlock(&hugetlb_lock); 1024 1025 if (!page) 1026 page = alloc_buddy_huge_page(h, nid); 1027 1028 return page; 1029 } 1030 1031 /* 1032 * Increase the hugetlb pool such that it can accommodate a reservation 1033 * of size 'delta'. 1034 */ 1035 static int gather_surplus_pages(struct hstate *h, int delta) 1036 { 1037 struct list_head surplus_list; 1038 struct page *page, *tmp; 1039 int ret, i; 1040 int needed, allocated; 1041 bool alloc_ok = true; 1042 1043 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1044 if (needed <= 0) { 1045 h->resv_huge_pages += delta; 1046 return 0; 1047 } 1048 1049 allocated = 0; 1050 INIT_LIST_HEAD(&surplus_list); 1051 1052 ret = -ENOMEM; 1053 retry: 1054 spin_unlock(&hugetlb_lock); 1055 for (i = 0; i < needed; i++) { 1056 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1057 if (!page) { 1058 alloc_ok = false; 1059 break; 1060 } 1061 list_add(&page->lru, &surplus_list); 1062 } 1063 allocated += i; 1064 1065 /* 1066 * After retaking hugetlb_lock, we need to recalculate 'needed' 1067 * because either resv_huge_pages or free_huge_pages may have changed. 1068 */ 1069 spin_lock(&hugetlb_lock); 1070 needed = (h->resv_huge_pages + delta) - 1071 (h->free_huge_pages + allocated); 1072 if (needed > 0) { 1073 if (alloc_ok) 1074 goto retry; 1075 /* 1076 * We were not able to allocate enough pages to 1077 * satisfy the entire reservation so we free what 1078 * we've allocated so far. 1079 */ 1080 goto free; 1081 } 1082 /* 1083 * The surplus_list now contains _at_least_ the number of extra pages 1084 * needed to accommodate the reservation. Add the appropriate number 1085 * of pages to the hugetlb pool and free the extras back to the buddy 1086 * allocator. Commit the entire reservation here to prevent another 1087 * process from stealing the pages as they are added to the pool but 1088 * before they are reserved. 1089 */ 1090 needed += allocated; 1091 h->resv_huge_pages += delta; 1092 ret = 0; 1093 1094 /* Free the needed pages to the hugetlb pool */ 1095 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1096 if ((--needed) < 0) 1097 break; 1098 /* 1099 * This page is now managed by the hugetlb allocator and has 1100 * no users -- drop the buddy allocator's reference. 1101 */ 1102 put_page_testzero(page); 1103 VM_BUG_ON(page_count(page)); 1104 enqueue_huge_page(h, page); 1105 } 1106 free: 1107 spin_unlock(&hugetlb_lock); 1108 1109 /* Free unnecessary surplus pages to the buddy allocator */ 1110 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1111 put_page(page); 1112 spin_lock(&hugetlb_lock); 1113 1114 return ret; 1115 } 1116 1117 /* 1118 * When releasing a hugetlb pool reservation, any surplus pages that were 1119 * allocated to satisfy the reservation must be explicitly freed if they were 1120 * never used. 1121 * Called with hugetlb_lock held. 1122 */ 1123 static void return_unused_surplus_pages(struct hstate *h, 1124 unsigned long unused_resv_pages) 1125 { 1126 unsigned long nr_pages; 1127 1128 /* Uncommit the reservation */ 1129 h->resv_huge_pages -= unused_resv_pages; 1130 1131 /* Cannot return gigantic pages currently */ 1132 if (h->order >= MAX_ORDER) 1133 return; 1134 1135 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1136 1137 /* 1138 * We want to release as many surplus pages as possible, spread 1139 * evenly across all nodes with memory. Iterate across these nodes 1140 * until we can no longer free unreserved surplus pages. This occurs 1141 * when the nodes with surplus pages have no free pages. 1142 * free_pool_huge_page() will balance the the freed pages across the 1143 * on-line nodes with memory and will handle the hstate accounting. 1144 */ 1145 while (nr_pages--) { 1146 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1147 break; 1148 } 1149 } 1150 1151 /* 1152 * Determine if the huge page at addr within the vma has an associated 1153 * reservation. Where it does not we will need to logically increase 1154 * reservation and actually increase subpool usage before an allocation 1155 * can occur. Where any new reservation would be required the 1156 * reservation change is prepared, but not committed. Once the page 1157 * has been allocated from the subpool and instantiated the change should 1158 * be committed via vma_commit_reservation. No action is required on 1159 * failure. 1160 */ 1161 static long vma_needs_reservation(struct hstate *h, 1162 struct vm_area_struct *vma, unsigned long addr) 1163 { 1164 struct address_space *mapping = vma->vm_file->f_mapping; 1165 struct inode *inode = mapping->host; 1166 1167 if (vma->vm_flags & VM_MAYSHARE) { 1168 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1169 return region_chg(&inode->i_mapping->private_list, 1170 idx, idx + 1); 1171 1172 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1173 return 1; 1174 1175 } else { 1176 long err; 1177 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1178 struct resv_map *resv = vma_resv_map(vma); 1179 1180 err = region_chg(&resv->regions, idx, idx + 1); 1181 if (err < 0) 1182 return err; 1183 return 0; 1184 } 1185 } 1186 static void vma_commit_reservation(struct hstate *h, 1187 struct vm_area_struct *vma, unsigned long addr) 1188 { 1189 struct address_space *mapping = vma->vm_file->f_mapping; 1190 struct inode *inode = mapping->host; 1191 1192 if (vma->vm_flags & VM_MAYSHARE) { 1193 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1194 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1195 1196 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1197 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1198 struct resv_map *resv = vma_resv_map(vma); 1199 1200 /* Mark this page used in the map. */ 1201 region_add(&resv->regions, idx, idx + 1); 1202 } 1203 } 1204 1205 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1206 unsigned long addr, int avoid_reserve) 1207 { 1208 struct hugepage_subpool *spool = subpool_vma(vma); 1209 struct hstate *h = hstate_vma(vma); 1210 struct page *page; 1211 long chg; 1212 int ret, idx; 1213 struct hugetlb_cgroup *h_cg; 1214 1215 idx = hstate_index(h); 1216 /* 1217 * Processes that did not create the mapping will have no 1218 * reserves and will not have accounted against subpool 1219 * limit. Check that the subpool limit can be made before 1220 * satisfying the allocation MAP_NORESERVE mappings may also 1221 * need pages and subpool limit allocated allocated if no reserve 1222 * mapping overlaps. 1223 */ 1224 chg = vma_needs_reservation(h, vma, addr); 1225 if (chg < 0) 1226 return ERR_PTR(-ENOMEM); 1227 if (chg || avoid_reserve) 1228 if (hugepage_subpool_get_pages(spool, 1)) 1229 return ERR_PTR(-ENOSPC); 1230 1231 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1232 if (ret) { 1233 if (chg || avoid_reserve) 1234 hugepage_subpool_put_pages(spool, 1); 1235 return ERR_PTR(-ENOSPC); 1236 } 1237 spin_lock(&hugetlb_lock); 1238 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); 1239 if (!page) { 1240 spin_unlock(&hugetlb_lock); 1241 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1242 if (!page) { 1243 hugetlb_cgroup_uncharge_cgroup(idx, 1244 pages_per_huge_page(h), 1245 h_cg); 1246 if (chg || avoid_reserve) 1247 hugepage_subpool_put_pages(spool, 1); 1248 return ERR_PTR(-ENOSPC); 1249 } 1250 spin_lock(&hugetlb_lock); 1251 list_move(&page->lru, &h->hugepage_activelist); 1252 /* Fall through */ 1253 } 1254 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1255 spin_unlock(&hugetlb_lock); 1256 1257 set_page_private(page, (unsigned long)spool); 1258 1259 vma_commit_reservation(h, vma, addr); 1260 return page; 1261 } 1262 1263 /* 1264 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1265 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1266 * where no ERR_VALUE is expected to be returned. 1267 */ 1268 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1269 unsigned long addr, int avoid_reserve) 1270 { 1271 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1272 if (IS_ERR(page)) 1273 page = NULL; 1274 return page; 1275 } 1276 1277 int __weak alloc_bootmem_huge_page(struct hstate *h) 1278 { 1279 struct huge_bootmem_page *m; 1280 int nr_nodes, node; 1281 1282 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1283 void *addr; 1284 1285 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node), 1286 huge_page_size(h), huge_page_size(h), 0); 1287 1288 if (addr) { 1289 /* 1290 * Use the beginning of the huge page to store the 1291 * huge_bootmem_page struct (until gather_bootmem 1292 * puts them into the mem_map). 1293 */ 1294 m = addr; 1295 goto found; 1296 } 1297 } 1298 return 0; 1299 1300 found: 1301 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1302 /* Put them into a private list first because mem_map is not up yet */ 1303 list_add(&m->list, &huge_boot_pages); 1304 m->hstate = h; 1305 return 1; 1306 } 1307 1308 static void prep_compound_huge_page(struct page *page, int order) 1309 { 1310 if (unlikely(order > (MAX_ORDER - 1))) 1311 prep_compound_gigantic_page(page, order); 1312 else 1313 prep_compound_page(page, order); 1314 } 1315 1316 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1317 static void __init gather_bootmem_prealloc(void) 1318 { 1319 struct huge_bootmem_page *m; 1320 1321 list_for_each_entry(m, &huge_boot_pages, list) { 1322 struct hstate *h = m->hstate; 1323 struct page *page; 1324 1325 #ifdef CONFIG_HIGHMEM 1326 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1327 free_bootmem_late((unsigned long)m, 1328 sizeof(struct huge_bootmem_page)); 1329 #else 1330 page = virt_to_page(m); 1331 #endif 1332 __ClearPageReserved(page); 1333 WARN_ON(page_count(page) != 1); 1334 prep_compound_huge_page(page, h->order); 1335 prep_new_huge_page(h, page, page_to_nid(page)); 1336 /* 1337 * If we had gigantic hugepages allocated at boot time, we need 1338 * to restore the 'stolen' pages to totalram_pages in order to 1339 * fix confusing memory reports from free(1) and another 1340 * side-effects, like CommitLimit going negative. 1341 */ 1342 if (h->order > (MAX_ORDER - 1)) 1343 adjust_managed_page_count(page, 1 << h->order); 1344 } 1345 } 1346 1347 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1348 { 1349 unsigned long i; 1350 1351 for (i = 0; i < h->max_huge_pages; ++i) { 1352 if (h->order >= MAX_ORDER) { 1353 if (!alloc_bootmem_huge_page(h)) 1354 break; 1355 } else if (!alloc_fresh_huge_page(h, 1356 &node_states[N_MEMORY])) 1357 break; 1358 } 1359 h->max_huge_pages = i; 1360 } 1361 1362 static void __init hugetlb_init_hstates(void) 1363 { 1364 struct hstate *h; 1365 1366 for_each_hstate(h) { 1367 /* oversize hugepages were init'ed in early boot */ 1368 if (h->order < MAX_ORDER) 1369 hugetlb_hstate_alloc_pages(h); 1370 } 1371 } 1372 1373 static char * __init memfmt(char *buf, unsigned long n) 1374 { 1375 if (n >= (1UL << 30)) 1376 sprintf(buf, "%lu GB", n >> 30); 1377 else if (n >= (1UL << 20)) 1378 sprintf(buf, "%lu MB", n >> 20); 1379 else 1380 sprintf(buf, "%lu KB", n >> 10); 1381 return buf; 1382 } 1383 1384 static void __init report_hugepages(void) 1385 { 1386 struct hstate *h; 1387 1388 for_each_hstate(h) { 1389 char buf[32]; 1390 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1391 memfmt(buf, huge_page_size(h)), 1392 h->free_huge_pages); 1393 } 1394 } 1395 1396 #ifdef CONFIG_HIGHMEM 1397 static void try_to_free_low(struct hstate *h, unsigned long count, 1398 nodemask_t *nodes_allowed) 1399 { 1400 int i; 1401 1402 if (h->order >= MAX_ORDER) 1403 return; 1404 1405 for_each_node_mask(i, *nodes_allowed) { 1406 struct page *page, *next; 1407 struct list_head *freel = &h->hugepage_freelists[i]; 1408 list_for_each_entry_safe(page, next, freel, lru) { 1409 if (count >= h->nr_huge_pages) 1410 return; 1411 if (PageHighMem(page)) 1412 continue; 1413 list_del(&page->lru); 1414 update_and_free_page(h, page); 1415 h->free_huge_pages--; 1416 h->free_huge_pages_node[page_to_nid(page)]--; 1417 } 1418 } 1419 } 1420 #else 1421 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1422 nodemask_t *nodes_allowed) 1423 { 1424 } 1425 #endif 1426 1427 /* 1428 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1429 * balanced by operating on them in a round-robin fashion. 1430 * Returns 1 if an adjustment was made. 1431 */ 1432 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1433 int delta) 1434 { 1435 int nr_nodes, node; 1436 1437 VM_BUG_ON(delta != -1 && delta != 1); 1438 1439 if (delta < 0) { 1440 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1441 if (h->surplus_huge_pages_node[node]) 1442 goto found; 1443 } 1444 } else { 1445 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1446 if (h->surplus_huge_pages_node[node] < 1447 h->nr_huge_pages_node[node]) 1448 goto found; 1449 } 1450 } 1451 return 0; 1452 1453 found: 1454 h->surplus_huge_pages += delta; 1455 h->surplus_huge_pages_node[node] += delta; 1456 return 1; 1457 } 1458 1459 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1460 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1461 nodemask_t *nodes_allowed) 1462 { 1463 unsigned long min_count, ret; 1464 1465 if (h->order >= MAX_ORDER) 1466 return h->max_huge_pages; 1467 1468 /* 1469 * Increase the pool size 1470 * First take pages out of surplus state. Then make up the 1471 * remaining difference by allocating fresh huge pages. 1472 * 1473 * We might race with alloc_buddy_huge_page() here and be unable 1474 * to convert a surplus huge page to a normal huge page. That is 1475 * not critical, though, it just means the overall size of the 1476 * pool might be one hugepage larger than it needs to be, but 1477 * within all the constraints specified by the sysctls. 1478 */ 1479 spin_lock(&hugetlb_lock); 1480 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1481 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1482 break; 1483 } 1484 1485 while (count > persistent_huge_pages(h)) { 1486 /* 1487 * If this allocation races such that we no longer need the 1488 * page, free_huge_page will handle it by freeing the page 1489 * and reducing the surplus. 1490 */ 1491 spin_unlock(&hugetlb_lock); 1492 ret = alloc_fresh_huge_page(h, nodes_allowed); 1493 spin_lock(&hugetlb_lock); 1494 if (!ret) 1495 goto out; 1496 1497 /* Bail for signals. Probably ctrl-c from user */ 1498 if (signal_pending(current)) 1499 goto out; 1500 } 1501 1502 /* 1503 * Decrease the pool size 1504 * First return free pages to the buddy allocator (being careful 1505 * to keep enough around to satisfy reservations). Then place 1506 * pages into surplus state as needed so the pool will shrink 1507 * to the desired size as pages become free. 1508 * 1509 * By placing pages into the surplus state independent of the 1510 * overcommit value, we are allowing the surplus pool size to 1511 * exceed overcommit. There are few sane options here. Since 1512 * alloc_buddy_huge_page() is checking the global counter, 1513 * though, we'll note that we're not allowed to exceed surplus 1514 * and won't grow the pool anywhere else. Not until one of the 1515 * sysctls are changed, or the surplus pages go out of use. 1516 */ 1517 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1518 min_count = max(count, min_count); 1519 try_to_free_low(h, min_count, nodes_allowed); 1520 while (min_count < persistent_huge_pages(h)) { 1521 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1522 break; 1523 } 1524 while (count < persistent_huge_pages(h)) { 1525 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1526 break; 1527 } 1528 out: 1529 ret = persistent_huge_pages(h); 1530 spin_unlock(&hugetlb_lock); 1531 return ret; 1532 } 1533 1534 #define HSTATE_ATTR_RO(_name) \ 1535 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1536 1537 #define HSTATE_ATTR(_name) \ 1538 static struct kobj_attribute _name##_attr = \ 1539 __ATTR(_name, 0644, _name##_show, _name##_store) 1540 1541 static struct kobject *hugepages_kobj; 1542 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1543 1544 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1545 1546 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1547 { 1548 int i; 1549 1550 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1551 if (hstate_kobjs[i] == kobj) { 1552 if (nidp) 1553 *nidp = NUMA_NO_NODE; 1554 return &hstates[i]; 1555 } 1556 1557 return kobj_to_node_hstate(kobj, nidp); 1558 } 1559 1560 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1561 struct kobj_attribute *attr, char *buf) 1562 { 1563 struct hstate *h; 1564 unsigned long nr_huge_pages; 1565 int nid; 1566 1567 h = kobj_to_hstate(kobj, &nid); 1568 if (nid == NUMA_NO_NODE) 1569 nr_huge_pages = h->nr_huge_pages; 1570 else 1571 nr_huge_pages = h->nr_huge_pages_node[nid]; 1572 1573 return sprintf(buf, "%lu\n", nr_huge_pages); 1574 } 1575 1576 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1577 struct kobject *kobj, struct kobj_attribute *attr, 1578 const char *buf, size_t len) 1579 { 1580 int err; 1581 int nid; 1582 unsigned long count; 1583 struct hstate *h; 1584 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1585 1586 err = kstrtoul(buf, 10, &count); 1587 if (err) 1588 goto out; 1589 1590 h = kobj_to_hstate(kobj, &nid); 1591 if (h->order >= MAX_ORDER) { 1592 err = -EINVAL; 1593 goto out; 1594 } 1595 1596 if (nid == NUMA_NO_NODE) { 1597 /* 1598 * global hstate attribute 1599 */ 1600 if (!(obey_mempolicy && 1601 init_nodemask_of_mempolicy(nodes_allowed))) { 1602 NODEMASK_FREE(nodes_allowed); 1603 nodes_allowed = &node_states[N_MEMORY]; 1604 } 1605 } else if (nodes_allowed) { 1606 /* 1607 * per node hstate attribute: adjust count to global, 1608 * but restrict alloc/free to the specified node. 1609 */ 1610 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1611 init_nodemask_of_node(nodes_allowed, nid); 1612 } else 1613 nodes_allowed = &node_states[N_MEMORY]; 1614 1615 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1616 1617 if (nodes_allowed != &node_states[N_MEMORY]) 1618 NODEMASK_FREE(nodes_allowed); 1619 1620 return len; 1621 out: 1622 NODEMASK_FREE(nodes_allowed); 1623 return err; 1624 } 1625 1626 static ssize_t nr_hugepages_show(struct kobject *kobj, 1627 struct kobj_attribute *attr, char *buf) 1628 { 1629 return nr_hugepages_show_common(kobj, attr, buf); 1630 } 1631 1632 static ssize_t nr_hugepages_store(struct kobject *kobj, 1633 struct kobj_attribute *attr, const char *buf, size_t len) 1634 { 1635 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1636 } 1637 HSTATE_ATTR(nr_hugepages); 1638 1639 #ifdef CONFIG_NUMA 1640 1641 /* 1642 * hstate attribute for optionally mempolicy-based constraint on persistent 1643 * huge page alloc/free. 1644 */ 1645 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1646 struct kobj_attribute *attr, char *buf) 1647 { 1648 return nr_hugepages_show_common(kobj, attr, buf); 1649 } 1650 1651 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1652 struct kobj_attribute *attr, const char *buf, size_t len) 1653 { 1654 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1655 } 1656 HSTATE_ATTR(nr_hugepages_mempolicy); 1657 #endif 1658 1659 1660 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1661 struct kobj_attribute *attr, char *buf) 1662 { 1663 struct hstate *h = kobj_to_hstate(kobj, NULL); 1664 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1665 } 1666 1667 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1668 struct kobj_attribute *attr, const char *buf, size_t count) 1669 { 1670 int err; 1671 unsigned long input; 1672 struct hstate *h = kobj_to_hstate(kobj, NULL); 1673 1674 if (h->order >= MAX_ORDER) 1675 return -EINVAL; 1676 1677 err = kstrtoul(buf, 10, &input); 1678 if (err) 1679 return err; 1680 1681 spin_lock(&hugetlb_lock); 1682 h->nr_overcommit_huge_pages = input; 1683 spin_unlock(&hugetlb_lock); 1684 1685 return count; 1686 } 1687 HSTATE_ATTR(nr_overcommit_hugepages); 1688 1689 static ssize_t free_hugepages_show(struct kobject *kobj, 1690 struct kobj_attribute *attr, char *buf) 1691 { 1692 struct hstate *h; 1693 unsigned long free_huge_pages; 1694 int nid; 1695 1696 h = kobj_to_hstate(kobj, &nid); 1697 if (nid == NUMA_NO_NODE) 1698 free_huge_pages = h->free_huge_pages; 1699 else 1700 free_huge_pages = h->free_huge_pages_node[nid]; 1701 1702 return sprintf(buf, "%lu\n", free_huge_pages); 1703 } 1704 HSTATE_ATTR_RO(free_hugepages); 1705 1706 static ssize_t resv_hugepages_show(struct kobject *kobj, 1707 struct kobj_attribute *attr, char *buf) 1708 { 1709 struct hstate *h = kobj_to_hstate(kobj, NULL); 1710 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1711 } 1712 HSTATE_ATTR_RO(resv_hugepages); 1713 1714 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1715 struct kobj_attribute *attr, char *buf) 1716 { 1717 struct hstate *h; 1718 unsigned long surplus_huge_pages; 1719 int nid; 1720 1721 h = kobj_to_hstate(kobj, &nid); 1722 if (nid == NUMA_NO_NODE) 1723 surplus_huge_pages = h->surplus_huge_pages; 1724 else 1725 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1726 1727 return sprintf(buf, "%lu\n", surplus_huge_pages); 1728 } 1729 HSTATE_ATTR_RO(surplus_hugepages); 1730 1731 static struct attribute *hstate_attrs[] = { 1732 &nr_hugepages_attr.attr, 1733 &nr_overcommit_hugepages_attr.attr, 1734 &free_hugepages_attr.attr, 1735 &resv_hugepages_attr.attr, 1736 &surplus_hugepages_attr.attr, 1737 #ifdef CONFIG_NUMA 1738 &nr_hugepages_mempolicy_attr.attr, 1739 #endif 1740 NULL, 1741 }; 1742 1743 static struct attribute_group hstate_attr_group = { 1744 .attrs = hstate_attrs, 1745 }; 1746 1747 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1748 struct kobject **hstate_kobjs, 1749 struct attribute_group *hstate_attr_group) 1750 { 1751 int retval; 1752 int hi = hstate_index(h); 1753 1754 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1755 if (!hstate_kobjs[hi]) 1756 return -ENOMEM; 1757 1758 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1759 if (retval) 1760 kobject_put(hstate_kobjs[hi]); 1761 1762 return retval; 1763 } 1764 1765 static void __init hugetlb_sysfs_init(void) 1766 { 1767 struct hstate *h; 1768 int err; 1769 1770 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1771 if (!hugepages_kobj) 1772 return; 1773 1774 for_each_hstate(h) { 1775 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1776 hstate_kobjs, &hstate_attr_group); 1777 if (err) 1778 pr_err("Hugetlb: Unable to add hstate %s", h->name); 1779 } 1780 } 1781 1782 #ifdef CONFIG_NUMA 1783 1784 /* 1785 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1786 * with node devices in node_devices[] using a parallel array. The array 1787 * index of a node device or _hstate == node id. 1788 * This is here to avoid any static dependency of the node device driver, in 1789 * the base kernel, on the hugetlb module. 1790 */ 1791 struct node_hstate { 1792 struct kobject *hugepages_kobj; 1793 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1794 }; 1795 struct node_hstate node_hstates[MAX_NUMNODES]; 1796 1797 /* 1798 * A subset of global hstate attributes for node devices 1799 */ 1800 static struct attribute *per_node_hstate_attrs[] = { 1801 &nr_hugepages_attr.attr, 1802 &free_hugepages_attr.attr, 1803 &surplus_hugepages_attr.attr, 1804 NULL, 1805 }; 1806 1807 static struct attribute_group per_node_hstate_attr_group = { 1808 .attrs = per_node_hstate_attrs, 1809 }; 1810 1811 /* 1812 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1813 * Returns node id via non-NULL nidp. 1814 */ 1815 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1816 { 1817 int nid; 1818 1819 for (nid = 0; nid < nr_node_ids; nid++) { 1820 struct node_hstate *nhs = &node_hstates[nid]; 1821 int i; 1822 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1823 if (nhs->hstate_kobjs[i] == kobj) { 1824 if (nidp) 1825 *nidp = nid; 1826 return &hstates[i]; 1827 } 1828 } 1829 1830 BUG(); 1831 return NULL; 1832 } 1833 1834 /* 1835 * Unregister hstate attributes from a single node device. 1836 * No-op if no hstate attributes attached. 1837 */ 1838 static void hugetlb_unregister_node(struct node *node) 1839 { 1840 struct hstate *h; 1841 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1842 1843 if (!nhs->hugepages_kobj) 1844 return; /* no hstate attributes */ 1845 1846 for_each_hstate(h) { 1847 int idx = hstate_index(h); 1848 if (nhs->hstate_kobjs[idx]) { 1849 kobject_put(nhs->hstate_kobjs[idx]); 1850 nhs->hstate_kobjs[idx] = NULL; 1851 } 1852 } 1853 1854 kobject_put(nhs->hugepages_kobj); 1855 nhs->hugepages_kobj = NULL; 1856 } 1857 1858 /* 1859 * hugetlb module exit: unregister hstate attributes from node devices 1860 * that have them. 1861 */ 1862 static void hugetlb_unregister_all_nodes(void) 1863 { 1864 int nid; 1865 1866 /* 1867 * disable node device registrations. 1868 */ 1869 register_hugetlbfs_with_node(NULL, NULL); 1870 1871 /* 1872 * remove hstate attributes from any nodes that have them. 1873 */ 1874 for (nid = 0; nid < nr_node_ids; nid++) 1875 hugetlb_unregister_node(node_devices[nid]); 1876 } 1877 1878 /* 1879 * Register hstate attributes for a single node device. 1880 * No-op if attributes already registered. 1881 */ 1882 static void hugetlb_register_node(struct node *node) 1883 { 1884 struct hstate *h; 1885 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1886 int err; 1887 1888 if (nhs->hugepages_kobj) 1889 return; /* already allocated */ 1890 1891 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1892 &node->dev.kobj); 1893 if (!nhs->hugepages_kobj) 1894 return; 1895 1896 for_each_hstate(h) { 1897 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1898 nhs->hstate_kobjs, 1899 &per_node_hstate_attr_group); 1900 if (err) { 1901 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 1902 h->name, node->dev.id); 1903 hugetlb_unregister_node(node); 1904 break; 1905 } 1906 } 1907 } 1908 1909 /* 1910 * hugetlb init time: register hstate attributes for all registered node 1911 * devices of nodes that have memory. All on-line nodes should have 1912 * registered their associated device by this time. 1913 */ 1914 static void hugetlb_register_all_nodes(void) 1915 { 1916 int nid; 1917 1918 for_each_node_state(nid, N_MEMORY) { 1919 struct node *node = node_devices[nid]; 1920 if (node->dev.id == nid) 1921 hugetlb_register_node(node); 1922 } 1923 1924 /* 1925 * Let the node device driver know we're here so it can 1926 * [un]register hstate attributes on node hotplug. 1927 */ 1928 register_hugetlbfs_with_node(hugetlb_register_node, 1929 hugetlb_unregister_node); 1930 } 1931 #else /* !CONFIG_NUMA */ 1932 1933 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1934 { 1935 BUG(); 1936 if (nidp) 1937 *nidp = -1; 1938 return NULL; 1939 } 1940 1941 static void hugetlb_unregister_all_nodes(void) { } 1942 1943 static void hugetlb_register_all_nodes(void) { } 1944 1945 #endif 1946 1947 static void __exit hugetlb_exit(void) 1948 { 1949 struct hstate *h; 1950 1951 hugetlb_unregister_all_nodes(); 1952 1953 for_each_hstate(h) { 1954 kobject_put(hstate_kobjs[hstate_index(h)]); 1955 } 1956 1957 kobject_put(hugepages_kobj); 1958 } 1959 module_exit(hugetlb_exit); 1960 1961 static int __init hugetlb_init(void) 1962 { 1963 /* Some platform decide whether they support huge pages at boot 1964 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1965 * there is no such support 1966 */ 1967 if (HPAGE_SHIFT == 0) 1968 return 0; 1969 1970 if (!size_to_hstate(default_hstate_size)) { 1971 default_hstate_size = HPAGE_SIZE; 1972 if (!size_to_hstate(default_hstate_size)) 1973 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1974 } 1975 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 1976 if (default_hstate_max_huge_pages) 1977 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1978 1979 hugetlb_init_hstates(); 1980 gather_bootmem_prealloc(); 1981 report_hugepages(); 1982 1983 hugetlb_sysfs_init(); 1984 hugetlb_register_all_nodes(); 1985 hugetlb_cgroup_file_init(); 1986 1987 return 0; 1988 } 1989 module_init(hugetlb_init); 1990 1991 /* Should be called on processing a hugepagesz=... option */ 1992 void __init hugetlb_add_hstate(unsigned order) 1993 { 1994 struct hstate *h; 1995 unsigned long i; 1996 1997 if (size_to_hstate(PAGE_SIZE << order)) { 1998 pr_warning("hugepagesz= specified twice, ignoring\n"); 1999 return; 2000 } 2001 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2002 BUG_ON(order == 0); 2003 h = &hstates[hugetlb_max_hstate++]; 2004 h->order = order; 2005 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2006 h->nr_huge_pages = 0; 2007 h->free_huge_pages = 0; 2008 for (i = 0; i < MAX_NUMNODES; ++i) 2009 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2010 INIT_LIST_HEAD(&h->hugepage_activelist); 2011 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2012 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2013 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2014 huge_page_size(h)/1024); 2015 2016 parsed_hstate = h; 2017 } 2018 2019 static int __init hugetlb_nrpages_setup(char *s) 2020 { 2021 unsigned long *mhp; 2022 static unsigned long *last_mhp; 2023 2024 /* 2025 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2026 * so this hugepages= parameter goes to the "default hstate". 2027 */ 2028 if (!hugetlb_max_hstate) 2029 mhp = &default_hstate_max_huge_pages; 2030 else 2031 mhp = &parsed_hstate->max_huge_pages; 2032 2033 if (mhp == last_mhp) { 2034 pr_warning("hugepages= specified twice without " 2035 "interleaving hugepagesz=, ignoring\n"); 2036 return 1; 2037 } 2038 2039 if (sscanf(s, "%lu", mhp) <= 0) 2040 *mhp = 0; 2041 2042 /* 2043 * Global state is always initialized later in hugetlb_init. 2044 * But we need to allocate >= MAX_ORDER hstates here early to still 2045 * use the bootmem allocator. 2046 */ 2047 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2048 hugetlb_hstate_alloc_pages(parsed_hstate); 2049 2050 last_mhp = mhp; 2051 2052 return 1; 2053 } 2054 __setup("hugepages=", hugetlb_nrpages_setup); 2055 2056 static int __init hugetlb_default_setup(char *s) 2057 { 2058 default_hstate_size = memparse(s, &s); 2059 return 1; 2060 } 2061 __setup("default_hugepagesz=", hugetlb_default_setup); 2062 2063 static unsigned int cpuset_mems_nr(unsigned int *array) 2064 { 2065 int node; 2066 unsigned int nr = 0; 2067 2068 for_each_node_mask(node, cpuset_current_mems_allowed) 2069 nr += array[node]; 2070 2071 return nr; 2072 } 2073 2074 #ifdef CONFIG_SYSCTL 2075 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2076 struct ctl_table *table, int write, 2077 void __user *buffer, size_t *length, loff_t *ppos) 2078 { 2079 struct hstate *h = &default_hstate; 2080 unsigned long tmp; 2081 int ret; 2082 2083 tmp = h->max_huge_pages; 2084 2085 if (write && h->order >= MAX_ORDER) 2086 return -EINVAL; 2087 2088 table->data = &tmp; 2089 table->maxlen = sizeof(unsigned long); 2090 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2091 if (ret) 2092 goto out; 2093 2094 if (write) { 2095 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 2096 GFP_KERNEL | __GFP_NORETRY); 2097 if (!(obey_mempolicy && 2098 init_nodemask_of_mempolicy(nodes_allowed))) { 2099 NODEMASK_FREE(nodes_allowed); 2100 nodes_allowed = &node_states[N_MEMORY]; 2101 } 2102 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 2103 2104 if (nodes_allowed != &node_states[N_MEMORY]) 2105 NODEMASK_FREE(nodes_allowed); 2106 } 2107 out: 2108 return ret; 2109 } 2110 2111 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2112 void __user *buffer, size_t *length, loff_t *ppos) 2113 { 2114 2115 return hugetlb_sysctl_handler_common(false, table, write, 2116 buffer, length, ppos); 2117 } 2118 2119 #ifdef CONFIG_NUMA 2120 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2121 void __user *buffer, size_t *length, loff_t *ppos) 2122 { 2123 return hugetlb_sysctl_handler_common(true, table, write, 2124 buffer, length, ppos); 2125 } 2126 #endif /* CONFIG_NUMA */ 2127 2128 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2129 void __user *buffer, 2130 size_t *length, loff_t *ppos) 2131 { 2132 struct hstate *h = &default_hstate; 2133 unsigned long tmp; 2134 int ret; 2135 2136 tmp = h->nr_overcommit_huge_pages; 2137 2138 if (write && h->order >= MAX_ORDER) 2139 return -EINVAL; 2140 2141 table->data = &tmp; 2142 table->maxlen = sizeof(unsigned long); 2143 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2144 if (ret) 2145 goto out; 2146 2147 if (write) { 2148 spin_lock(&hugetlb_lock); 2149 h->nr_overcommit_huge_pages = tmp; 2150 spin_unlock(&hugetlb_lock); 2151 } 2152 out: 2153 return ret; 2154 } 2155 2156 #endif /* CONFIG_SYSCTL */ 2157 2158 void hugetlb_report_meminfo(struct seq_file *m) 2159 { 2160 struct hstate *h = &default_hstate; 2161 seq_printf(m, 2162 "HugePages_Total: %5lu\n" 2163 "HugePages_Free: %5lu\n" 2164 "HugePages_Rsvd: %5lu\n" 2165 "HugePages_Surp: %5lu\n" 2166 "Hugepagesize: %8lu kB\n", 2167 h->nr_huge_pages, 2168 h->free_huge_pages, 2169 h->resv_huge_pages, 2170 h->surplus_huge_pages, 2171 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2172 } 2173 2174 int hugetlb_report_node_meminfo(int nid, char *buf) 2175 { 2176 struct hstate *h = &default_hstate; 2177 return sprintf(buf, 2178 "Node %d HugePages_Total: %5u\n" 2179 "Node %d HugePages_Free: %5u\n" 2180 "Node %d HugePages_Surp: %5u\n", 2181 nid, h->nr_huge_pages_node[nid], 2182 nid, h->free_huge_pages_node[nid], 2183 nid, h->surplus_huge_pages_node[nid]); 2184 } 2185 2186 void hugetlb_show_meminfo(void) 2187 { 2188 struct hstate *h; 2189 int nid; 2190 2191 for_each_node_state(nid, N_MEMORY) 2192 for_each_hstate(h) 2193 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2194 nid, 2195 h->nr_huge_pages_node[nid], 2196 h->free_huge_pages_node[nid], 2197 h->surplus_huge_pages_node[nid], 2198 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2199 } 2200 2201 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2202 unsigned long hugetlb_total_pages(void) 2203 { 2204 struct hstate *h; 2205 unsigned long nr_total_pages = 0; 2206 2207 for_each_hstate(h) 2208 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2209 return nr_total_pages; 2210 } 2211 2212 static int hugetlb_acct_memory(struct hstate *h, long delta) 2213 { 2214 int ret = -ENOMEM; 2215 2216 spin_lock(&hugetlb_lock); 2217 /* 2218 * When cpuset is configured, it breaks the strict hugetlb page 2219 * reservation as the accounting is done on a global variable. Such 2220 * reservation is completely rubbish in the presence of cpuset because 2221 * the reservation is not checked against page availability for the 2222 * current cpuset. Application can still potentially OOM'ed by kernel 2223 * with lack of free htlb page in cpuset that the task is in. 2224 * Attempt to enforce strict accounting with cpuset is almost 2225 * impossible (or too ugly) because cpuset is too fluid that 2226 * task or memory node can be dynamically moved between cpusets. 2227 * 2228 * The change of semantics for shared hugetlb mapping with cpuset is 2229 * undesirable. However, in order to preserve some of the semantics, 2230 * we fall back to check against current free page availability as 2231 * a best attempt and hopefully to minimize the impact of changing 2232 * semantics that cpuset has. 2233 */ 2234 if (delta > 0) { 2235 if (gather_surplus_pages(h, delta) < 0) 2236 goto out; 2237 2238 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2239 return_unused_surplus_pages(h, delta); 2240 goto out; 2241 } 2242 } 2243 2244 ret = 0; 2245 if (delta < 0) 2246 return_unused_surplus_pages(h, (unsigned long) -delta); 2247 2248 out: 2249 spin_unlock(&hugetlb_lock); 2250 return ret; 2251 } 2252 2253 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2254 { 2255 struct resv_map *resv = vma_resv_map(vma); 2256 2257 /* 2258 * This new VMA should share its siblings reservation map if present. 2259 * The VMA will only ever have a valid reservation map pointer where 2260 * it is being copied for another still existing VMA. As that VMA 2261 * has a reference to the reservation map it cannot disappear until 2262 * after this open call completes. It is therefore safe to take a 2263 * new reference here without additional locking. 2264 */ 2265 if (resv) 2266 kref_get(&resv->refs); 2267 } 2268 2269 static void resv_map_put(struct vm_area_struct *vma) 2270 { 2271 struct resv_map *resv = vma_resv_map(vma); 2272 2273 if (!resv) 2274 return; 2275 kref_put(&resv->refs, resv_map_release); 2276 } 2277 2278 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2279 { 2280 struct hstate *h = hstate_vma(vma); 2281 struct resv_map *resv = vma_resv_map(vma); 2282 struct hugepage_subpool *spool = subpool_vma(vma); 2283 unsigned long reserve; 2284 unsigned long start; 2285 unsigned long end; 2286 2287 if (resv) { 2288 start = vma_hugecache_offset(h, vma, vma->vm_start); 2289 end = vma_hugecache_offset(h, vma, vma->vm_end); 2290 2291 reserve = (end - start) - 2292 region_count(&resv->regions, start, end); 2293 2294 resv_map_put(vma); 2295 2296 if (reserve) { 2297 hugetlb_acct_memory(h, -reserve); 2298 hugepage_subpool_put_pages(spool, reserve); 2299 } 2300 } 2301 } 2302 2303 /* 2304 * We cannot handle pagefaults against hugetlb pages at all. They cause 2305 * handle_mm_fault() to try to instantiate regular-sized pages in the 2306 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2307 * this far. 2308 */ 2309 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2310 { 2311 BUG(); 2312 return 0; 2313 } 2314 2315 const struct vm_operations_struct hugetlb_vm_ops = { 2316 .fault = hugetlb_vm_op_fault, 2317 .open = hugetlb_vm_op_open, 2318 .close = hugetlb_vm_op_close, 2319 }; 2320 2321 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2322 int writable) 2323 { 2324 pte_t entry; 2325 2326 if (writable) { 2327 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2328 vma->vm_page_prot))); 2329 } else { 2330 entry = huge_pte_wrprotect(mk_huge_pte(page, 2331 vma->vm_page_prot)); 2332 } 2333 entry = pte_mkyoung(entry); 2334 entry = pte_mkhuge(entry); 2335 entry = arch_make_huge_pte(entry, vma, page, writable); 2336 2337 return entry; 2338 } 2339 2340 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2341 unsigned long address, pte_t *ptep) 2342 { 2343 pte_t entry; 2344 2345 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2346 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2347 update_mmu_cache(vma, address, ptep); 2348 } 2349 2350 2351 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2352 struct vm_area_struct *vma) 2353 { 2354 pte_t *src_pte, *dst_pte, entry; 2355 struct page *ptepage; 2356 unsigned long addr; 2357 int cow; 2358 struct hstate *h = hstate_vma(vma); 2359 unsigned long sz = huge_page_size(h); 2360 2361 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2362 2363 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2364 src_pte = huge_pte_offset(src, addr); 2365 if (!src_pte) 2366 continue; 2367 dst_pte = huge_pte_alloc(dst, addr, sz); 2368 if (!dst_pte) 2369 goto nomem; 2370 2371 /* If the pagetables are shared don't copy or take references */ 2372 if (dst_pte == src_pte) 2373 continue; 2374 2375 spin_lock(&dst->page_table_lock); 2376 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2377 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2378 if (cow) 2379 huge_ptep_set_wrprotect(src, addr, src_pte); 2380 entry = huge_ptep_get(src_pte); 2381 ptepage = pte_page(entry); 2382 get_page(ptepage); 2383 page_dup_rmap(ptepage); 2384 set_huge_pte_at(dst, addr, dst_pte, entry); 2385 } 2386 spin_unlock(&src->page_table_lock); 2387 spin_unlock(&dst->page_table_lock); 2388 } 2389 return 0; 2390 2391 nomem: 2392 return -ENOMEM; 2393 } 2394 2395 static int is_hugetlb_entry_migration(pte_t pte) 2396 { 2397 swp_entry_t swp; 2398 2399 if (huge_pte_none(pte) || pte_present(pte)) 2400 return 0; 2401 swp = pte_to_swp_entry(pte); 2402 if (non_swap_entry(swp) && is_migration_entry(swp)) 2403 return 1; 2404 else 2405 return 0; 2406 } 2407 2408 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2409 { 2410 swp_entry_t swp; 2411 2412 if (huge_pte_none(pte) || pte_present(pte)) 2413 return 0; 2414 swp = pte_to_swp_entry(pte); 2415 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2416 return 1; 2417 else 2418 return 0; 2419 } 2420 2421 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 2422 unsigned long start, unsigned long end, 2423 struct page *ref_page) 2424 { 2425 int force_flush = 0; 2426 struct mm_struct *mm = vma->vm_mm; 2427 unsigned long address; 2428 pte_t *ptep; 2429 pte_t pte; 2430 struct page *page; 2431 struct hstate *h = hstate_vma(vma); 2432 unsigned long sz = huge_page_size(h); 2433 const unsigned long mmun_start = start; /* For mmu_notifiers */ 2434 const unsigned long mmun_end = end; /* For mmu_notifiers */ 2435 2436 WARN_ON(!is_vm_hugetlb_page(vma)); 2437 BUG_ON(start & ~huge_page_mask(h)); 2438 BUG_ON(end & ~huge_page_mask(h)); 2439 2440 tlb_start_vma(tlb, vma); 2441 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2442 again: 2443 spin_lock(&mm->page_table_lock); 2444 for (address = start; address < end; address += sz) { 2445 ptep = huge_pte_offset(mm, address); 2446 if (!ptep) 2447 continue; 2448 2449 if (huge_pmd_unshare(mm, &address, ptep)) 2450 continue; 2451 2452 pte = huge_ptep_get(ptep); 2453 if (huge_pte_none(pte)) 2454 continue; 2455 2456 /* 2457 * HWPoisoned hugepage is already unmapped and dropped reference 2458 */ 2459 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 2460 huge_pte_clear(mm, address, ptep); 2461 continue; 2462 } 2463 2464 page = pte_page(pte); 2465 /* 2466 * If a reference page is supplied, it is because a specific 2467 * page is being unmapped, not a range. Ensure the page we 2468 * are about to unmap is the actual page of interest. 2469 */ 2470 if (ref_page) { 2471 if (page != ref_page) 2472 continue; 2473 2474 /* 2475 * Mark the VMA as having unmapped its page so that 2476 * future faults in this VMA will fail rather than 2477 * looking like data was lost 2478 */ 2479 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2480 } 2481 2482 pte = huge_ptep_get_and_clear(mm, address, ptep); 2483 tlb_remove_tlb_entry(tlb, ptep, address); 2484 if (huge_pte_dirty(pte)) 2485 set_page_dirty(page); 2486 2487 page_remove_rmap(page); 2488 force_flush = !__tlb_remove_page(tlb, page); 2489 if (force_flush) 2490 break; 2491 /* Bail out after unmapping reference page if supplied */ 2492 if (ref_page) 2493 break; 2494 } 2495 spin_unlock(&mm->page_table_lock); 2496 /* 2497 * mmu_gather ran out of room to batch pages, we break out of 2498 * the PTE lock to avoid doing the potential expensive TLB invalidate 2499 * and page-free while holding it. 2500 */ 2501 if (force_flush) { 2502 force_flush = 0; 2503 tlb_flush_mmu(tlb); 2504 if (address < end && !ref_page) 2505 goto again; 2506 } 2507 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2508 tlb_end_vma(tlb, vma); 2509 } 2510 2511 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 2512 struct vm_area_struct *vma, unsigned long start, 2513 unsigned long end, struct page *ref_page) 2514 { 2515 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 2516 2517 /* 2518 * Clear this flag so that x86's huge_pmd_share page_table_shareable 2519 * test will fail on a vma being torn down, and not grab a page table 2520 * on its way out. We're lucky that the flag has such an appropriate 2521 * name, and can in fact be safely cleared here. We could clear it 2522 * before the __unmap_hugepage_range above, but all that's necessary 2523 * is to clear it before releasing the i_mmap_mutex. This works 2524 * because in the context this is called, the VMA is about to be 2525 * destroyed and the i_mmap_mutex is held. 2526 */ 2527 vma->vm_flags &= ~VM_MAYSHARE; 2528 } 2529 2530 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2531 unsigned long end, struct page *ref_page) 2532 { 2533 struct mm_struct *mm; 2534 struct mmu_gather tlb; 2535 2536 mm = vma->vm_mm; 2537 2538 tlb_gather_mmu(&tlb, mm, start, end); 2539 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 2540 tlb_finish_mmu(&tlb, start, end); 2541 } 2542 2543 /* 2544 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2545 * mappping it owns the reserve page for. The intention is to unmap the page 2546 * from other VMAs and let the children be SIGKILLed if they are faulting the 2547 * same region. 2548 */ 2549 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2550 struct page *page, unsigned long address) 2551 { 2552 struct hstate *h = hstate_vma(vma); 2553 struct vm_area_struct *iter_vma; 2554 struct address_space *mapping; 2555 pgoff_t pgoff; 2556 2557 /* 2558 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2559 * from page cache lookup which is in HPAGE_SIZE units. 2560 */ 2561 address = address & huge_page_mask(h); 2562 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 2563 vma->vm_pgoff; 2564 mapping = file_inode(vma->vm_file)->i_mapping; 2565 2566 /* 2567 * Take the mapping lock for the duration of the table walk. As 2568 * this mapping should be shared between all the VMAs, 2569 * __unmap_hugepage_range() is called as the lock is already held 2570 */ 2571 mutex_lock(&mapping->i_mmap_mutex); 2572 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 2573 /* Do not unmap the current VMA */ 2574 if (iter_vma == vma) 2575 continue; 2576 2577 /* 2578 * Unmap the page from other VMAs without their own reserves. 2579 * They get marked to be SIGKILLed if they fault in these 2580 * areas. This is because a future no-page fault on this VMA 2581 * could insert a zeroed page instead of the data existing 2582 * from the time of fork. This would look like data corruption 2583 */ 2584 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2585 unmap_hugepage_range(iter_vma, address, 2586 address + huge_page_size(h), page); 2587 } 2588 mutex_unlock(&mapping->i_mmap_mutex); 2589 2590 return 1; 2591 } 2592 2593 /* 2594 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2595 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2596 * cannot race with other handlers or page migration. 2597 * Keep the pte_same checks anyway to make transition from the mutex easier. 2598 */ 2599 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2600 unsigned long address, pte_t *ptep, pte_t pte, 2601 struct page *pagecache_page) 2602 { 2603 struct hstate *h = hstate_vma(vma); 2604 struct page *old_page, *new_page; 2605 int outside_reserve = 0; 2606 unsigned long mmun_start; /* For mmu_notifiers */ 2607 unsigned long mmun_end; /* For mmu_notifiers */ 2608 2609 old_page = pte_page(pte); 2610 2611 retry_avoidcopy: 2612 /* If no-one else is actually using this page, avoid the copy 2613 * and just make the page writable */ 2614 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 2615 page_move_anon_rmap(old_page, vma, address); 2616 set_huge_ptep_writable(vma, address, ptep); 2617 return 0; 2618 } 2619 2620 /* 2621 * If the process that created a MAP_PRIVATE mapping is about to 2622 * perform a COW due to a shared page count, attempt to satisfy 2623 * the allocation without using the existing reserves. The pagecache 2624 * page is used to determine if the reserve at this address was 2625 * consumed or not. If reserves were used, a partial faulted mapping 2626 * at the time of fork() could consume its reserves on COW instead 2627 * of the full address range. 2628 */ 2629 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2630 old_page != pagecache_page) 2631 outside_reserve = 1; 2632 2633 page_cache_get(old_page); 2634 2635 /* Drop page_table_lock as buddy allocator may be called */ 2636 spin_unlock(&mm->page_table_lock); 2637 new_page = alloc_huge_page(vma, address, outside_reserve); 2638 2639 if (IS_ERR(new_page)) { 2640 long err = PTR_ERR(new_page); 2641 page_cache_release(old_page); 2642 2643 /* 2644 * If a process owning a MAP_PRIVATE mapping fails to COW, 2645 * it is due to references held by a child and an insufficient 2646 * huge page pool. To guarantee the original mappers 2647 * reliability, unmap the page from child processes. The child 2648 * may get SIGKILLed if it later faults. 2649 */ 2650 if (outside_reserve) { 2651 BUG_ON(huge_pte_none(pte)); 2652 if (unmap_ref_private(mm, vma, old_page, address)) { 2653 BUG_ON(huge_pte_none(pte)); 2654 spin_lock(&mm->page_table_lock); 2655 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2656 if (likely(pte_same(huge_ptep_get(ptep), pte))) 2657 goto retry_avoidcopy; 2658 /* 2659 * race occurs while re-acquiring page_table_lock, and 2660 * our job is done. 2661 */ 2662 return 0; 2663 } 2664 WARN_ON_ONCE(1); 2665 } 2666 2667 /* Caller expects lock to be held */ 2668 spin_lock(&mm->page_table_lock); 2669 if (err == -ENOMEM) 2670 return VM_FAULT_OOM; 2671 else 2672 return VM_FAULT_SIGBUS; 2673 } 2674 2675 /* 2676 * When the original hugepage is shared one, it does not have 2677 * anon_vma prepared. 2678 */ 2679 if (unlikely(anon_vma_prepare(vma))) { 2680 page_cache_release(new_page); 2681 page_cache_release(old_page); 2682 /* Caller expects lock to be held */ 2683 spin_lock(&mm->page_table_lock); 2684 return VM_FAULT_OOM; 2685 } 2686 2687 copy_user_huge_page(new_page, old_page, address, vma, 2688 pages_per_huge_page(h)); 2689 __SetPageUptodate(new_page); 2690 2691 mmun_start = address & huge_page_mask(h); 2692 mmun_end = mmun_start + huge_page_size(h); 2693 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2694 /* 2695 * Retake the page_table_lock to check for racing updates 2696 * before the page tables are altered 2697 */ 2698 spin_lock(&mm->page_table_lock); 2699 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2700 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2701 ClearPagePrivate(new_page); 2702 2703 /* Break COW */ 2704 huge_ptep_clear_flush(vma, address, ptep); 2705 set_huge_pte_at(mm, address, ptep, 2706 make_huge_pte(vma, new_page, 1)); 2707 page_remove_rmap(old_page); 2708 hugepage_add_new_anon_rmap(new_page, vma, address); 2709 /* Make the old page be freed below */ 2710 new_page = old_page; 2711 } 2712 spin_unlock(&mm->page_table_lock); 2713 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2714 page_cache_release(new_page); 2715 page_cache_release(old_page); 2716 2717 /* Caller expects lock to be held */ 2718 spin_lock(&mm->page_table_lock); 2719 return 0; 2720 } 2721 2722 /* Return the pagecache page at a given address within a VMA */ 2723 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2724 struct vm_area_struct *vma, unsigned long address) 2725 { 2726 struct address_space *mapping; 2727 pgoff_t idx; 2728 2729 mapping = vma->vm_file->f_mapping; 2730 idx = vma_hugecache_offset(h, vma, address); 2731 2732 return find_lock_page(mapping, idx); 2733 } 2734 2735 /* 2736 * Return whether there is a pagecache page to back given address within VMA. 2737 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2738 */ 2739 static bool hugetlbfs_pagecache_present(struct hstate *h, 2740 struct vm_area_struct *vma, unsigned long address) 2741 { 2742 struct address_space *mapping; 2743 pgoff_t idx; 2744 struct page *page; 2745 2746 mapping = vma->vm_file->f_mapping; 2747 idx = vma_hugecache_offset(h, vma, address); 2748 2749 page = find_get_page(mapping, idx); 2750 if (page) 2751 put_page(page); 2752 return page != NULL; 2753 } 2754 2755 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2756 unsigned long address, pte_t *ptep, unsigned int flags) 2757 { 2758 struct hstate *h = hstate_vma(vma); 2759 int ret = VM_FAULT_SIGBUS; 2760 int anon_rmap = 0; 2761 pgoff_t idx; 2762 unsigned long size; 2763 struct page *page; 2764 struct address_space *mapping; 2765 pte_t new_pte; 2766 2767 /* 2768 * Currently, we are forced to kill the process in the event the 2769 * original mapper has unmapped pages from the child due to a failed 2770 * COW. Warn that such a situation has occurred as it may not be obvious 2771 */ 2772 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2773 pr_warning("PID %d killed due to inadequate hugepage pool\n", 2774 current->pid); 2775 return ret; 2776 } 2777 2778 mapping = vma->vm_file->f_mapping; 2779 idx = vma_hugecache_offset(h, vma, address); 2780 2781 /* 2782 * Use page lock to guard against racing truncation 2783 * before we get page_table_lock. 2784 */ 2785 retry: 2786 page = find_lock_page(mapping, idx); 2787 if (!page) { 2788 size = i_size_read(mapping->host) >> huge_page_shift(h); 2789 if (idx >= size) 2790 goto out; 2791 page = alloc_huge_page(vma, address, 0); 2792 if (IS_ERR(page)) { 2793 ret = PTR_ERR(page); 2794 if (ret == -ENOMEM) 2795 ret = VM_FAULT_OOM; 2796 else 2797 ret = VM_FAULT_SIGBUS; 2798 goto out; 2799 } 2800 clear_huge_page(page, address, pages_per_huge_page(h)); 2801 __SetPageUptodate(page); 2802 2803 if (vma->vm_flags & VM_MAYSHARE) { 2804 int err; 2805 struct inode *inode = mapping->host; 2806 2807 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2808 if (err) { 2809 put_page(page); 2810 if (err == -EEXIST) 2811 goto retry; 2812 goto out; 2813 } 2814 ClearPagePrivate(page); 2815 2816 spin_lock(&inode->i_lock); 2817 inode->i_blocks += blocks_per_huge_page(h); 2818 spin_unlock(&inode->i_lock); 2819 } else { 2820 lock_page(page); 2821 if (unlikely(anon_vma_prepare(vma))) { 2822 ret = VM_FAULT_OOM; 2823 goto backout_unlocked; 2824 } 2825 anon_rmap = 1; 2826 } 2827 } else { 2828 /* 2829 * If memory error occurs between mmap() and fault, some process 2830 * don't have hwpoisoned swap entry for errored virtual address. 2831 * So we need to block hugepage fault by PG_hwpoison bit check. 2832 */ 2833 if (unlikely(PageHWPoison(page))) { 2834 ret = VM_FAULT_HWPOISON | 2835 VM_FAULT_SET_HINDEX(hstate_index(h)); 2836 goto backout_unlocked; 2837 } 2838 } 2839 2840 /* 2841 * If we are going to COW a private mapping later, we examine the 2842 * pending reservations for this page now. This will ensure that 2843 * any allocations necessary to record that reservation occur outside 2844 * the spinlock. 2845 */ 2846 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2847 if (vma_needs_reservation(h, vma, address) < 0) { 2848 ret = VM_FAULT_OOM; 2849 goto backout_unlocked; 2850 } 2851 2852 spin_lock(&mm->page_table_lock); 2853 size = i_size_read(mapping->host) >> huge_page_shift(h); 2854 if (idx >= size) 2855 goto backout; 2856 2857 ret = 0; 2858 if (!huge_pte_none(huge_ptep_get(ptep))) 2859 goto backout; 2860 2861 if (anon_rmap) { 2862 ClearPagePrivate(page); 2863 hugepage_add_new_anon_rmap(page, vma, address); 2864 } 2865 else 2866 page_dup_rmap(page); 2867 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2868 && (vma->vm_flags & VM_SHARED))); 2869 set_huge_pte_at(mm, address, ptep, new_pte); 2870 2871 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2872 /* Optimization, do the COW without a second fault */ 2873 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2874 } 2875 2876 spin_unlock(&mm->page_table_lock); 2877 unlock_page(page); 2878 out: 2879 return ret; 2880 2881 backout: 2882 spin_unlock(&mm->page_table_lock); 2883 backout_unlocked: 2884 unlock_page(page); 2885 put_page(page); 2886 goto out; 2887 } 2888 2889 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2890 unsigned long address, unsigned int flags) 2891 { 2892 pte_t *ptep; 2893 pte_t entry; 2894 int ret; 2895 struct page *page = NULL; 2896 struct page *pagecache_page = NULL; 2897 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2898 struct hstate *h = hstate_vma(vma); 2899 2900 address &= huge_page_mask(h); 2901 2902 ptep = huge_pte_offset(mm, address); 2903 if (ptep) { 2904 entry = huge_ptep_get(ptep); 2905 if (unlikely(is_hugetlb_entry_migration(entry))) { 2906 migration_entry_wait_huge(mm, ptep); 2907 return 0; 2908 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2909 return VM_FAULT_HWPOISON_LARGE | 2910 VM_FAULT_SET_HINDEX(hstate_index(h)); 2911 } 2912 2913 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2914 if (!ptep) 2915 return VM_FAULT_OOM; 2916 2917 /* 2918 * Serialize hugepage allocation and instantiation, so that we don't 2919 * get spurious allocation failures if two CPUs race to instantiate 2920 * the same page in the page cache. 2921 */ 2922 mutex_lock(&hugetlb_instantiation_mutex); 2923 entry = huge_ptep_get(ptep); 2924 if (huge_pte_none(entry)) { 2925 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2926 goto out_mutex; 2927 } 2928 2929 ret = 0; 2930 2931 /* 2932 * If we are going to COW the mapping later, we examine the pending 2933 * reservations for this page now. This will ensure that any 2934 * allocations necessary to record that reservation occur outside the 2935 * spinlock. For private mappings, we also lookup the pagecache 2936 * page now as it is used to determine if a reservation has been 2937 * consumed. 2938 */ 2939 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 2940 if (vma_needs_reservation(h, vma, address) < 0) { 2941 ret = VM_FAULT_OOM; 2942 goto out_mutex; 2943 } 2944 2945 if (!(vma->vm_flags & VM_MAYSHARE)) 2946 pagecache_page = hugetlbfs_pagecache_page(h, 2947 vma, address); 2948 } 2949 2950 /* 2951 * hugetlb_cow() requires page locks of pte_page(entry) and 2952 * pagecache_page, so here we need take the former one 2953 * when page != pagecache_page or !pagecache_page. 2954 * Note that locking order is always pagecache_page -> page, 2955 * so no worry about deadlock. 2956 */ 2957 page = pte_page(entry); 2958 get_page(page); 2959 if (page != pagecache_page) 2960 lock_page(page); 2961 2962 spin_lock(&mm->page_table_lock); 2963 /* Check for a racing update before calling hugetlb_cow */ 2964 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2965 goto out_page_table_lock; 2966 2967 2968 if (flags & FAULT_FLAG_WRITE) { 2969 if (!huge_pte_write(entry)) { 2970 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2971 pagecache_page); 2972 goto out_page_table_lock; 2973 } 2974 entry = huge_pte_mkdirty(entry); 2975 } 2976 entry = pte_mkyoung(entry); 2977 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2978 flags & FAULT_FLAG_WRITE)) 2979 update_mmu_cache(vma, address, ptep); 2980 2981 out_page_table_lock: 2982 spin_unlock(&mm->page_table_lock); 2983 2984 if (pagecache_page) { 2985 unlock_page(pagecache_page); 2986 put_page(pagecache_page); 2987 } 2988 if (page != pagecache_page) 2989 unlock_page(page); 2990 put_page(page); 2991 2992 out_mutex: 2993 mutex_unlock(&hugetlb_instantiation_mutex); 2994 2995 return ret; 2996 } 2997 2998 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2999 struct page **pages, struct vm_area_struct **vmas, 3000 unsigned long *position, unsigned long *nr_pages, 3001 long i, unsigned int flags) 3002 { 3003 unsigned long pfn_offset; 3004 unsigned long vaddr = *position; 3005 unsigned long remainder = *nr_pages; 3006 struct hstate *h = hstate_vma(vma); 3007 3008 spin_lock(&mm->page_table_lock); 3009 while (vaddr < vma->vm_end && remainder) { 3010 pte_t *pte; 3011 int absent; 3012 struct page *page; 3013 3014 /* 3015 * Some archs (sparc64, sh*) have multiple pte_ts to 3016 * each hugepage. We have to make sure we get the 3017 * first, for the page indexing below to work. 3018 */ 3019 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3020 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3021 3022 /* 3023 * When coredumping, it suits get_dump_page if we just return 3024 * an error where there's an empty slot with no huge pagecache 3025 * to back it. This way, we avoid allocating a hugepage, and 3026 * the sparse dumpfile avoids allocating disk blocks, but its 3027 * huge holes still show up with zeroes where they need to be. 3028 */ 3029 if (absent && (flags & FOLL_DUMP) && 3030 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3031 remainder = 0; 3032 break; 3033 } 3034 3035 /* 3036 * We need call hugetlb_fault for both hugepages under migration 3037 * (in which case hugetlb_fault waits for the migration,) and 3038 * hwpoisoned hugepages (in which case we need to prevent the 3039 * caller from accessing to them.) In order to do this, we use 3040 * here is_swap_pte instead of is_hugetlb_entry_migration and 3041 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3042 * both cases, and because we can't follow correct pages 3043 * directly from any kind of swap entries. 3044 */ 3045 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3046 ((flags & FOLL_WRITE) && 3047 !huge_pte_write(huge_ptep_get(pte)))) { 3048 int ret; 3049 3050 spin_unlock(&mm->page_table_lock); 3051 ret = hugetlb_fault(mm, vma, vaddr, 3052 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3053 spin_lock(&mm->page_table_lock); 3054 if (!(ret & VM_FAULT_ERROR)) 3055 continue; 3056 3057 remainder = 0; 3058 break; 3059 } 3060 3061 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3062 page = pte_page(huge_ptep_get(pte)); 3063 same_page: 3064 if (pages) { 3065 pages[i] = mem_map_offset(page, pfn_offset); 3066 get_page(pages[i]); 3067 } 3068 3069 if (vmas) 3070 vmas[i] = vma; 3071 3072 vaddr += PAGE_SIZE; 3073 ++pfn_offset; 3074 --remainder; 3075 ++i; 3076 if (vaddr < vma->vm_end && remainder && 3077 pfn_offset < pages_per_huge_page(h)) { 3078 /* 3079 * We use pfn_offset to avoid touching the pageframes 3080 * of this compound page. 3081 */ 3082 goto same_page; 3083 } 3084 } 3085 spin_unlock(&mm->page_table_lock); 3086 *nr_pages = remainder; 3087 *position = vaddr; 3088 3089 return i ? i : -EFAULT; 3090 } 3091 3092 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3093 unsigned long address, unsigned long end, pgprot_t newprot) 3094 { 3095 struct mm_struct *mm = vma->vm_mm; 3096 unsigned long start = address; 3097 pte_t *ptep; 3098 pte_t pte; 3099 struct hstate *h = hstate_vma(vma); 3100 unsigned long pages = 0; 3101 3102 BUG_ON(address >= end); 3103 flush_cache_range(vma, address, end); 3104 3105 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 3106 spin_lock(&mm->page_table_lock); 3107 for (; address < end; address += huge_page_size(h)) { 3108 ptep = huge_pte_offset(mm, address); 3109 if (!ptep) 3110 continue; 3111 if (huge_pmd_unshare(mm, &address, ptep)) { 3112 pages++; 3113 continue; 3114 } 3115 if (!huge_pte_none(huge_ptep_get(ptep))) { 3116 pte = huge_ptep_get_and_clear(mm, address, ptep); 3117 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3118 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3119 set_huge_pte_at(mm, address, ptep, pte); 3120 pages++; 3121 } 3122 } 3123 spin_unlock(&mm->page_table_lock); 3124 /* 3125 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare 3126 * may have cleared our pud entry and done put_page on the page table: 3127 * once we release i_mmap_mutex, another task can do the final put_page 3128 * and that page table be reused and filled with junk. 3129 */ 3130 flush_tlb_range(vma, start, end); 3131 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 3132 3133 return pages << h->order; 3134 } 3135 3136 int hugetlb_reserve_pages(struct inode *inode, 3137 long from, long to, 3138 struct vm_area_struct *vma, 3139 vm_flags_t vm_flags) 3140 { 3141 long ret, chg; 3142 struct hstate *h = hstate_inode(inode); 3143 struct hugepage_subpool *spool = subpool_inode(inode); 3144 3145 /* 3146 * Only apply hugepage reservation if asked. At fault time, an 3147 * attempt will be made for VM_NORESERVE to allocate a page 3148 * without using reserves 3149 */ 3150 if (vm_flags & VM_NORESERVE) 3151 return 0; 3152 3153 /* 3154 * Shared mappings base their reservation on the number of pages that 3155 * are already allocated on behalf of the file. Private mappings need 3156 * to reserve the full area even if read-only as mprotect() may be 3157 * called to make the mapping read-write. Assume !vma is a shm mapping 3158 */ 3159 if (!vma || vma->vm_flags & VM_MAYSHARE) 3160 chg = region_chg(&inode->i_mapping->private_list, from, to); 3161 else { 3162 struct resv_map *resv_map = resv_map_alloc(); 3163 if (!resv_map) 3164 return -ENOMEM; 3165 3166 chg = to - from; 3167 3168 set_vma_resv_map(vma, resv_map); 3169 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3170 } 3171 3172 if (chg < 0) { 3173 ret = chg; 3174 goto out_err; 3175 } 3176 3177 /* There must be enough pages in the subpool for the mapping */ 3178 if (hugepage_subpool_get_pages(spool, chg)) { 3179 ret = -ENOSPC; 3180 goto out_err; 3181 } 3182 3183 /* 3184 * Check enough hugepages are available for the reservation. 3185 * Hand the pages back to the subpool if there are not 3186 */ 3187 ret = hugetlb_acct_memory(h, chg); 3188 if (ret < 0) { 3189 hugepage_subpool_put_pages(spool, chg); 3190 goto out_err; 3191 } 3192 3193 /* 3194 * Account for the reservations made. Shared mappings record regions 3195 * that have reservations as they are shared by multiple VMAs. 3196 * When the last VMA disappears, the region map says how much 3197 * the reservation was and the page cache tells how much of 3198 * the reservation was consumed. Private mappings are per-VMA and 3199 * only the consumed reservations are tracked. When the VMA 3200 * disappears, the original reservation is the VMA size and the 3201 * consumed reservations are stored in the map. Hence, nothing 3202 * else has to be done for private mappings here 3203 */ 3204 if (!vma || vma->vm_flags & VM_MAYSHARE) 3205 region_add(&inode->i_mapping->private_list, from, to); 3206 return 0; 3207 out_err: 3208 if (vma) 3209 resv_map_put(vma); 3210 return ret; 3211 } 3212 3213 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3214 { 3215 struct hstate *h = hstate_inode(inode); 3216 long chg = region_truncate(&inode->i_mapping->private_list, offset); 3217 struct hugepage_subpool *spool = subpool_inode(inode); 3218 3219 spin_lock(&inode->i_lock); 3220 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3221 spin_unlock(&inode->i_lock); 3222 3223 hugepage_subpool_put_pages(spool, (chg - freed)); 3224 hugetlb_acct_memory(h, -(chg - freed)); 3225 } 3226 3227 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 3228 static unsigned long page_table_shareable(struct vm_area_struct *svma, 3229 struct vm_area_struct *vma, 3230 unsigned long addr, pgoff_t idx) 3231 { 3232 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 3233 svma->vm_start; 3234 unsigned long sbase = saddr & PUD_MASK; 3235 unsigned long s_end = sbase + PUD_SIZE; 3236 3237 /* Allow segments to share if only one is marked locked */ 3238 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 3239 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 3240 3241 /* 3242 * match the virtual addresses, permission and the alignment of the 3243 * page table page. 3244 */ 3245 if (pmd_index(addr) != pmd_index(saddr) || 3246 vm_flags != svm_flags || 3247 sbase < svma->vm_start || svma->vm_end < s_end) 3248 return 0; 3249 3250 return saddr; 3251 } 3252 3253 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) 3254 { 3255 unsigned long base = addr & PUD_MASK; 3256 unsigned long end = base + PUD_SIZE; 3257 3258 /* 3259 * check on proper vm_flags and page table alignment 3260 */ 3261 if (vma->vm_flags & VM_MAYSHARE && 3262 vma->vm_start <= base && end <= vma->vm_end) 3263 return 1; 3264 return 0; 3265 } 3266 3267 /* 3268 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 3269 * and returns the corresponding pte. While this is not necessary for the 3270 * !shared pmd case because we can allocate the pmd later as well, it makes the 3271 * code much cleaner. pmd allocation is essential for the shared case because 3272 * pud has to be populated inside the same i_mmap_mutex section - otherwise 3273 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 3274 * bad pmd for sharing. 3275 */ 3276 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3277 { 3278 struct vm_area_struct *vma = find_vma(mm, addr); 3279 struct address_space *mapping = vma->vm_file->f_mapping; 3280 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 3281 vma->vm_pgoff; 3282 struct vm_area_struct *svma; 3283 unsigned long saddr; 3284 pte_t *spte = NULL; 3285 pte_t *pte; 3286 3287 if (!vma_shareable(vma, addr)) 3288 return (pte_t *)pmd_alloc(mm, pud, addr); 3289 3290 mutex_lock(&mapping->i_mmap_mutex); 3291 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 3292 if (svma == vma) 3293 continue; 3294 3295 saddr = page_table_shareable(svma, vma, addr, idx); 3296 if (saddr) { 3297 spte = huge_pte_offset(svma->vm_mm, saddr); 3298 if (spte) { 3299 get_page(virt_to_page(spte)); 3300 break; 3301 } 3302 } 3303 } 3304 3305 if (!spte) 3306 goto out; 3307 3308 spin_lock(&mm->page_table_lock); 3309 if (pud_none(*pud)) 3310 pud_populate(mm, pud, 3311 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 3312 else 3313 put_page(virt_to_page(spte)); 3314 spin_unlock(&mm->page_table_lock); 3315 out: 3316 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3317 mutex_unlock(&mapping->i_mmap_mutex); 3318 return pte; 3319 } 3320 3321 /* 3322 * unmap huge page backed by shared pte. 3323 * 3324 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 3325 * indicated by page_count > 1, unmap is achieved by clearing pud and 3326 * decrementing the ref count. If count == 1, the pte page is not shared. 3327 * 3328 * called with vma->vm_mm->page_table_lock held. 3329 * 3330 * returns: 1 successfully unmapped a shared pte page 3331 * 0 the underlying pte page is not shared, or it is the last user 3332 */ 3333 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 3334 { 3335 pgd_t *pgd = pgd_offset(mm, *addr); 3336 pud_t *pud = pud_offset(pgd, *addr); 3337 3338 BUG_ON(page_count(virt_to_page(ptep)) == 0); 3339 if (page_count(virt_to_page(ptep)) == 1) 3340 return 0; 3341 3342 pud_clear(pud); 3343 put_page(virt_to_page(ptep)); 3344 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 3345 return 1; 3346 } 3347 #define want_pmd_share() (1) 3348 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3349 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3350 { 3351 return NULL; 3352 } 3353 #define want_pmd_share() (0) 3354 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3355 3356 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 3357 pte_t *huge_pte_alloc(struct mm_struct *mm, 3358 unsigned long addr, unsigned long sz) 3359 { 3360 pgd_t *pgd; 3361 pud_t *pud; 3362 pte_t *pte = NULL; 3363 3364 pgd = pgd_offset(mm, addr); 3365 pud = pud_alloc(mm, pgd, addr); 3366 if (pud) { 3367 if (sz == PUD_SIZE) { 3368 pte = (pte_t *)pud; 3369 } else { 3370 BUG_ON(sz != PMD_SIZE); 3371 if (want_pmd_share() && pud_none(*pud)) 3372 pte = huge_pmd_share(mm, addr, pud); 3373 else 3374 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3375 } 3376 } 3377 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 3378 3379 return pte; 3380 } 3381 3382 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 3383 { 3384 pgd_t *pgd; 3385 pud_t *pud; 3386 pmd_t *pmd = NULL; 3387 3388 pgd = pgd_offset(mm, addr); 3389 if (pgd_present(*pgd)) { 3390 pud = pud_offset(pgd, addr); 3391 if (pud_present(*pud)) { 3392 if (pud_huge(*pud)) 3393 return (pte_t *)pud; 3394 pmd = pmd_offset(pud, addr); 3395 } 3396 } 3397 return (pte_t *) pmd; 3398 } 3399 3400 struct page * 3401 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 3402 pmd_t *pmd, int write) 3403 { 3404 struct page *page; 3405 3406 page = pte_page(*(pte_t *)pmd); 3407 if (page) 3408 page += ((address & ~PMD_MASK) >> PAGE_SHIFT); 3409 return page; 3410 } 3411 3412 struct page * 3413 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3414 pud_t *pud, int write) 3415 { 3416 struct page *page; 3417 3418 page = pte_page(*(pte_t *)pud); 3419 if (page) 3420 page += ((address & ~PUD_MASK) >> PAGE_SHIFT); 3421 return page; 3422 } 3423 3424 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3425 3426 /* Can be overriden by architectures */ 3427 __attribute__((weak)) struct page * 3428 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3429 pud_t *pud, int write) 3430 { 3431 BUG(); 3432 return NULL; 3433 } 3434 3435 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3436 3437 #ifdef CONFIG_MEMORY_FAILURE 3438 3439 /* Should be called in hugetlb_lock */ 3440 static int is_hugepage_on_freelist(struct page *hpage) 3441 { 3442 struct page *page; 3443 struct page *tmp; 3444 struct hstate *h = page_hstate(hpage); 3445 int nid = page_to_nid(hpage); 3446 3447 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3448 if (page == hpage) 3449 return 1; 3450 return 0; 3451 } 3452 3453 /* 3454 * This function is called from memory failure code. 3455 * Assume the caller holds page lock of the head page. 3456 */ 3457 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3458 { 3459 struct hstate *h = page_hstate(hpage); 3460 int nid = page_to_nid(hpage); 3461 int ret = -EBUSY; 3462 3463 spin_lock(&hugetlb_lock); 3464 if (is_hugepage_on_freelist(hpage)) { 3465 /* 3466 * Hwpoisoned hugepage isn't linked to activelist or freelist, 3467 * but dangling hpage->lru can trigger list-debug warnings 3468 * (this happens when we call unpoison_memory() on it), 3469 * so let it point to itself with list_del_init(). 3470 */ 3471 list_del_init(&hpage->lru); 3472 set_page_refcounted(hpage); 3473 h->free_huge_pages--; 3474 h->free_huge_pages_node[nid]--; 3475 ret = 0; 3476 } 3477 spin_unlock(&hugetlb_lock); 3478 return ret; 3479 } 3480 #endif 3481 3482 bool isolate_huge_page(struct page *page, struct list_head *list) 3483 { 3484 VM_BUG_ON(!PageHead(page)); 3485 if (!get_page_unless_zero(page)) 3486 return false; 3487 spin_lock(&hugetlb_lock); 3488 list_move_tail(&page->lru, list); 3489 spin_unlock(&hugetlb_lock); 3490 return true; 3491 } 3492 3493 void putback_active_hugepage(struct page *page) 3494 { 3495 VM_BUG_ON(!PageHead(page)); 3496 spin_lock(&hugetlb_lock); 3497 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 3498 spin_unlock(&hugetlb_lock); 3499 put_page(page); 3500 } 3501 3502 bool is_hugepage_active(struct page *page) 3503 { 3504 VM_BUG_ON(!PageHuge(page)); 3505 /* 3506 * This function can be called for a tail page because the caller, 3507 * scan_movable_pages, scans through a given pfn-range which typically 3508 * covers one memory block. In systems using gigantic hugepage (1GB 3509 * for x86_64,) a hugepage is larger than a memory block, and we don't 3510 * support migrating such large hugepages for now, so return false 3511 * when called for tail pages. 3512 */ 3513 if (PageTail(page)) 3514 return false; 3515 /* 3516 * Refcount of a hwpoisoned hugepages is 1, but they are not active, 3517 * so we should return false for them. 3518 */ 3519 if (unlikely(PageHWPoison(page))) 3520 return false; 3521 return page_count(page) > 0; 3522 } 3523