1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/page_owner.h> 44 #include "internal.h" 45 46 int hugetlb_max_hstate __read_mostly; 47 unsigned int default_hstate_idx; 48 struct hstate hstates[HUGE_MAX_HSTATE]; 49 50 #ifdef CONFIG_CMA 51 static struct cma *hugetlb_cma[MAX_NUMNODES]; 52 #endif 53 static unsigned long hugetlb_cma_size __initdata; 54 55 /* 56 * Minimum page order among possible hugepage sizes, set to a proper value 57 * at boot time. 58 */ 59 static unsigned int minimum_order __read_mostly = UINT_MAX; 60 61 __initdata LIST_HEAD(huge_boot_pages); 62 63 /* for command line parsing */ 64 static struct hstate * __initdata parsed_hstate; 65 static unsigned long __initdata default_hstate_max_huge_pages; 66 static bool __initdata parsed_valid_hugepagesz = true; 67 static bool __initdata parsed_default_hugepagesz; 68 69 /* 70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 71 * free_huge_pages, and surplus_huge_pages. 72 */ 73 DEFINE_SPINLOCK(hugetlb_lock); 74 75 /* 76 * Serializes faults on the same logical page. This is used to 77 * prevent spurious OOMs when the hugepage pool is fully utilized. 78 */ 79 static int num_fault_mutexes; 80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 81 82 /* Forward declaration */ 83 static int hugetlb_acct_memory(struct hstate *h, long delta); 84 85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 86 { 87 bool free = (spool->count == 0) && (spool->used_hpages == 0); 88 89 spin_unlock(&spool->lock); 90 91 /* If no pages are used, and no other handles to the subpool 92 * remain, give up any reservations based on minimum size and 93 * free the subpool */ 94 if (free) { 95 if (spool->min_hpages != -1) 96 hugetlb_acct_memory(spool->hstate, 97 -spool->min_hpages); 98 kfree(spool); 99 } 100 } 101 102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 103 long min_hpages) 104 { 105 struct hugepage_subpool *spool; 106 107 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 108 if (!spool) 109 return NULL; 110 111 spin_lock_init(&spool->lock); 112 spool->count = 1; 113 spool->max_hpages = max_hpages; 114 spool->hstate = h; 115 spool->min_hpages = min_hpages; 116 117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 118 kfree(spool); 119 return NULL; 120 } 121 spool->rsv_hpages = min_hpages; 122 123 return spool; 124 } 125 126 void hugepage_put_subpool(struct hugepage_subpool *spool) 127 { 128 spin_lock(&spool->lock); 129 BUG_ON(!spool->count); 130 spool->count--; 131 unlock_or_release_subpool(spool); 132 } 133 134 /* 135 * Subpool accounting for allocating and reserving pages. 136 * Return -ENOMEM if there are not enough resources to satisfy the 137 * request. Otherwise, return the number of pages by which the 138 * global pools must be adjusted (upward). The returned value may 139 * only be different than the passed value (delta) in the case where 140 * a subpool minimum size must be maintained. 141 */ 142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 143 long delta) 144 { 145 long ret = delta; 146 147 if (!spool) 148 return ret; 149 150 spin_lock(&spool->lock); 151 152 if (spool->max_hpages != -1) { /* maximum size accounting */ 153 if ((spool->used_hpages + delta) <= spool->max_hpages) 154 spool->used_hpages += delta; 155 else { 156 ret = -ENOMEM; 157 goto unlock_ret; 158 } 159 } 160 161 /* minimum size accounting */ 162 if (spool->min_hpages != -1 && spool->rsv_hpages) { 163 if (delta > spool->rsv_hpages) { 164 /* 165 * Asking for more reserves than those already taken on 166 * behalf of subpool. Return difference. 167 */ 168 ret = delta - spool->rsv_hpages; 169 spool->rsv_hpages = 0; 170 } else { 171 ret = 0; /* reserves already accounted for */ 172 spool->rsv_hpages -= delta; 173 } 174 } 175 176 unlock_ret: 177 spin_unlock(&spool->lock); 178 return ret; 179 } 180 181 /* 182 * Subpool accounting for freeing and unreserving pages. 183 * Return the number of global page reservations that must be dropped. 184 * The return value may only be different than the passed value (delta) 185 * in the case where a subpool minimum size must be maintained. 186 */ 187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 188 long delta) 189 { 190 long ret = delta; 191 192 if (!spool) 193 return delta; 194 195 spin_lock(&spool->lock); 196 197 if (spool->max_hpages != -1) /* maximum size accounting */ 198 spool->used_hpages -= delta; 199 200 /* minimum size accounting */ 201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 202 if (spool->rsv_hpages + delta <= spool->min_hpages) 203 ret = 0; 204 else 205 ret = spool->rsv_hpages + delta - spool->min_hpages; 206 207 spool->rsv_hpages += delta; 208 if (spool->rsv_hpages > spool->min_hpages) 209 spool->rsv_hpages = spool->min_hpages; 210 } 211 212 /* 213 * If hugetlbfs_put_super couldn't free spool due to an outstanding 214 * quota reference, free it now. 215 */ 216 unlock_or_release_subpool(spool); 217 218 return ret; 219 } 220 221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 222 { 223 return HUGETLBFS_SB(inode->i_sb)->spool; 224 } 225 226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 227 { 228 return subpool_inode(file_inode(vma->vm_file)); 229 } 230 231 /* Helper that removes a struct file_region from the resv_map cache and returns 232 * it for use. 233 */ 234 static struct file_region * 235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 236 { 237 struct file_region *nrg = NULL; 238 239 VM_BUG_ON(resv->region_cache_count <= 0); 240 241 resv->region_cache_count--; 242 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 243 VM_BUG_ON(!nrg); 244 list_del(&nrg->link); 245 246 nrg->from = from; 247 nrg->to = to; 248 249 return nrg; 250 } 251 252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 253 struct file_region *rg) 254 { 255 #ifdef CONFIG_CGROUP_HUGETLB 256 nrg->reservation_counter = rg->reservation_counter; 257 nrg->css = rg->css; 258 if (rg->css) 259 css_get(rg->css); 260 #endif 261 } 262 263 /* Helper that records hugetlb_cgroup uncharge info. */ 264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 265 struct hstate *h, 266 struct resv_map *resv, 267 struct file_region *nrg) 268 { 269 #ifdef CONFIG_CGROUP_HUGETLB 270 if (h_cg) { 271 nrg->reservation_counter = 272 &h_cg->rsvd_hugepage[hstate_index(h)]; 273 nrg->css = &h_cg->css; 274 if (!resv->pages_per_hpage) 275 resv->pages_per_hpage = pages_per_huge_page(h); 276 /* pages_per_hpage should be the same for all entries in 277 * a resv_map. 278 */ 279 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 280 } else { 281 nrg->reservation_counter = NULL; 282 nrg->css = NULL; 283 } 284 #endif 285 } 286 287 static bool has_same_uncharge_info(struct file_region *rg, 288 struct file_region *org) 289 { 290 #ifdef CONFIG_CGROUP_HUGETLB 291 return rg && org && 292 rg->reservation_counter == org->reservation_counter && 293 rg->css == org->css; 294 295 #else 296 return true; 297 #endif 298 } 299 300 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 301 { 302 struct file_region *nrg = NULL, *prg = NULL; 303 304 prg = list_prev_entry(rg, link); 305 if (&prg->link != &resv->regions && prg->to == rg->from && 306 has_same_uncharge_info(prg, rg)) { 307 prg->to = rg->to; 308 309 list_del(&rg->link); 310 kfree(rg); 311 312 coalesce_file_region(resv, prg); 313 return; 314 } 315 316 nrg = list_next_entry(rg, link); 317 if (&nrg->link != &resv->regions && nrg->from == rg->to && 318 has_same_uncharge_info(nrg, rg)) { 319 nrg->from = rg->from; 320 321 list_del(&rg->link); 322 kfree(rg); 323 324 coalesce_file_region(resv, nrg); 325 return; 326 } 327 } 328 329 /* Must be called with resv->lock held. Calling this with count_only == true 330 * will count the number of pages to be added but will not modify the linked 331 * list. If regions_needed != NULL and count_only == true, then regions_needed 332 * will indicate the number of file_regions needed in the cache to carry out to 333 * add the regions for this range. 334 */ 335 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 336 struct hugetlb_cgroup *h_cg, 337 struct hstate *h, long *regions_needed, 338 bool count_only) 339 { 340 long add = 0; 341 struct list_head *head = &resv->regions; 342 long last_accounted_offset = f; 343 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; 344 345 if (regions_needed) 346 *regions_needed = 0; 347 348 /* In this loop, we essentially handle an entry for the range 349 * [last_accounted_offset, rg->from), at every iteration, with some 350 * bounds checking. 351 */ 352 list_for_each_entry_safe(rg, trg, head, link) { 353 /* Skip irrelevant regions that start before our range. */ 354 if (rg->from < f) { 355 /* If this region ends after the last accounted offset, 356 * then we need to update last_accounted_offset. 357 */ 358 if (rg->to > last_accounted_offset) 359 last_accounted_offset = rg->to; 360 continue; 361 } 362 363 /* When we find a region that starts beyond our range, we've 364 * finished. 365 */ 366 if (rg->from > t) 367 break; 368 369 /* Add an entry for last_accounted_offset -> rg->from, and 370 * update last_accounted_offset. 371 */ 372 if (rg->from > last_accounted_offset) { 373 add += rg->from - last_accounted_offset; 374 if (!count_only) { 375 nrg = get_file_region_entry_from_cache( 376 resv, last_accounted_offset, rg->from); 377 record_hugetlb_cgroup_uncharge_info(h_cg, h, 378 resv, nrg); 379 list_add(&nrg->link, rg->link.prev); 380 coalesce_file_region(resv, nrg); 381 } else if (regions_needed) 382 *regions_needed += 1; 383 } 384 385 last_accounted_offset = rg->to; 386 } 387 388 /* Handle the case where our range extends beyond 389 * last_accounted_offset. 390 */ 391 if (last_accounted_offset < t) { 392 add += t - last_accounted_offset; 393 if (!count_only) { 394 nrg = get_file_region_entry_from_cache( 395 resv, last_accounted_offset, t); 396 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); 397 list_add(&nrg->link, rg->link.prev); 398 coalesce_file_region(resv, nrg); 399 } else if (regions_needed) 400 *regions_needed += 1; 401 } 402 403 VM_BUG_ON(add < 0); 404 return add; 405 } 406 407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 408 */ 409 static int allocate_file_region_entries(struct resv_map *resv, 410 int regions_needed) 411 __must_hold(&resv->lock) 412 { 413 struct list_head allocated_regions; 414 int to_allocate = 0, i = 0; 415 struct file_region *trg = NULL, *rg = NULL; 416 417 VM_BUG_ON(regions_needed < 0); 418 419 INIT_LIST_HEAD(&allocated_regions); 420 421 /* 422 * Check for sufficient descriptors in the cache to accommodate 423 * the number of in progress add operations plus regions_needed. 424 * 425 * This is a while loop because when we drop the lock, some other call 426 * to region_add or region_del may have consumed some region_entries, 427 * so we keep looping here until we finally have enough entries for 428 * (adds_in_progress + regions_needed). 429 */ 430 while (resv->region_cache_count < 431 (resv->adds_in_progress + regions_needed)) { 432 to_allocate = resv->adds_in_progress + regions_needed - 433 resv->region_cache_count; 434 435 /* At this point, we should have enough entries in the cache 436 * for all the existings adds_in_progress. We should only be 437 * needing to allocate for regions_needed. 438 */ 439 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 440 441 spin_unlock(&resv->lock); 442 for (i = 0; i < to_allocate; i++) { 443 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 444 if (!trg) 445 goto out_of_memory; 446 list_add(&trg->link, &allocated_regions); 447 } 448 449 spin_lock(&resv->lock); 450 451 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 452 list_del(&rg->link); 453 list_add(&rg->link, &resv->region_cache); 454 resv->region_cache_count++; 455 } 456 } 457 458 return 0; 459 460 out_of_memory: 461 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 462 list_del(&rg->link); 463 kfree(rg); 464 } 465 return -ENOMEM; 466 } 467 468 /* 469 * Add the huge page range represented by [f, t) to the reserve 470 * map. Regions will be taken from the cache to fill in this range. 471 * Sufficient regions should exist in the cache due to the previous 472 * call to region_chg with the same range, but in some cases the cache will not 473 * have sufficient entries due to races with other code doing region_add or 474 * region_del. The extra needed entries will be allocated. 475 * 476 * regions_needed is the out value provided by a previous call to region_chg. 477 * 478 * Return the number of new huge pages added to the map. This number is greater 479 * than or equal to zero. If file_region entries needed to be allocated for 480 * this operation and we were not able to allocate, it returns -ENOMEM. 481 * region_add of regions of length 1 never allocate file_regions and cannot 482 * fail; region_chg will always allocate at least 1 entry and a region_add for 483 * 1 page will only require at most 1 entry. 484 */ 485 static long region_add(struct resv_map *resv, long f, long t, 486 long in_regions_needed, struct hstate *h, 487 struct hugetlb_cgroup *h_cg) 488 { 489 long add = 0, actual_regions_needed = 0; 490 491 spin_lock(&resv->lock); 492 retry: 493 494 /* Count how many regions are actually needed to execute this add. */ 495 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed, 496 true); 497 498 /* 499 * Check for sufficient descriptors in the cache to accommodate 500 * this add operation. Note that actual_regions_needed may be greater 501 * than in_regions_needed, as the resv_map may have been modified since 502 * the region_chg call. In this case, we need to make sure that we 503 * allocate extra entries, such that we have enough for all the 504 * existing adds_in_progress, plus the excess needed for this 505 * operation. 506 */ 507 if (actual_regions_needed > in_regions_needed && 508 resv->region_cache_count < 509 resv->adds_in_progress + 510 (actual_regions_needed - in_regions_needed)) { 511 /* region_add operation of range 1 should never need to 512 * allocate file_region entries. 513 */ 514 VM_BUG_ON(t - f <= 1); 515 516 if (allocate_file_region_entries( 517 resv, actual_regions_needed - in_regions_needed)) { 518 return -ENOMEM; 519 } 520 521 goto retry; 522 } 523 524 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false); 525 526 resv->adds_in_progress -= in_regions_needed; 527 528 spin_unlock(&resv->lock); 529 VM_BUG_ON(add < 0); 530 return add; 531 } 532 533 /* 534 * Examine the existing reserve map and determine how many 535 * huge pages in the specified range [f, t) are NOT currently 536 * represented. This routine is called before a subsequent 537 * call to region_add that will actually modify the reserve 538 * map to add the specified range [f, t). region_chg does 539 * not change the number of huge pages represented by the 540 * map. A number of new file_region structures is added to the cache as a 541 * placeholder, for the subsequent region_add call to use. At least 1 542 * file_region structure is added. 543 * 544 * out_regions_needed is the number of regions added to the 545 * resv->adds_in_progress. This value needs to be provided to a follow up call 546 * to region_add or region_abort for proper accounting. 547 * 548 * Returns the number of huge pages that need to be added to the existing 549 * reservation map for the range [f, t). This number is greater or equal to 550 * zero. -ENOMEM is returned if a new file_region structure or cache entry 551 * is needed and can not be allocated. 552 */ 553 static long region_chg(struct resv_map *resv, long f, long t, 554 long *out_regions_needed) 555 { 556 long chg = 0; 557 558 spin_lock(&resv->lock); 559 560 /* Count how many hugepages in this range are NOT respresented. */ 561 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 562 out_regions_needed, true); 563 564 if (*out_regions_needed == 0) 565 *out_regions_needed = 1; 566 567 if (allocate_file_region_entries(resv, *out_regions_needed)) 568 return -ENOMEM; 569 570 resv->adds_in_progress += *out_regions_needed; 571 572 spin_unlock(&resv->lock); 573 return chg; 574 } 575 576 /* 577 * Abort the in progress add operation. The adds_in_progress field 578 * of the resv_map keeps track of the operations in progress between 579 * calls to region_chg and region_add. Operations are sometimes 580 * aborted after the call to region_chg. In such cases, region_abort 581 * is called to decrement the adds_in_progress counter. regions_needed 582 * is the value returned by the region_chg call, it is used to decrement 583 * the adds_in_progress counter. 584 * 585 * NOTE: The range arguments [f, t) are not needed or used in this 586 * routine. They are kept to make reading the calling code easier as 587 * arguments will match the associated region_chg call. 588 */ 589 static void region_abort(struct resv_map *resv, long f, long t, 590 long regions_needed) 591 { 592 spin_lock(&resv->lock); 593 VM_BUG_ON(!resv->region_cache_count); 594 resv->adds_in_progress -= regions_needed; 595 spin_unlock(&resv->lock); 596 } 597 598 /* 599 * Delete the specified range [f, t) from the reserve map. If the 600 * t parameter is LONG_MAX, this indicates that ALL regions after f 601 * should be deleted. Locate the regions which intersect [f, t) 602 * and either trim, delete or split the existing regions. 603 * 604 * Returns the number of huge pages deleted from the reserve map. 605 * In the normal case, the return value is zero or more. In the 606 * case where a region must be split, a new region descriptor must 607 * be allocated. If the allocation fails, -ENOMEM will be returned. 608 * NOTE: If the parameter t == LONG_MAX, then we will never split 609 * a region and possibly return -ENOMEM. Callers specifying 610 * t == LONG_MAX do not need to check for -ENOMEM error. 611 */ 612 static long region_del(struct resv_map *resv, long f, long t) 613 { 614 struct list_head *head = &resv->regions; 615 struct file_region *rg, *trg; 616 struct file_region *nrg = NULL; 617 long del = 0; 618 619 retry: 620 spin_lock(&resv->lock); 621 list_for_each_entry_safe(rg, trg, head, link) { 622 /* 623 * Skip regions before the range to be deleted. file_region 624 * ranges are normally of the form [from, to). However, there 625 * may be a "placeholder" entry in the map which is of the form 626 * (from, to) with from == to. Check for placeholder entries 627 * at the beginning of the range to be deleted. 628 */ 629 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 630 continue; 631 632 if (rg->from >= t) 633 break; 634 635 if (f > rg->from && t < rg->to) { /* Must split region */ 636 /* 637 * Check for an entry in the cache before dropping 638 * lock and attempting allocation. 639 */ 640 if (!nrg && 641 resv->region_cache_count > resv->adds_in_progress) { 642 nrg = list_first_entry(&resv->region_cache, 643 struct file_region, 644 link); 645 list_del(&nrg->link); 646 resv->region_cache_count--; 647 } 648 649 if (!nrg) { 650 spin_unlock(&resv->lock); 651 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 652 if (!nrg) 653 return -ENOMEM; 654 goto retry; 655 } 656 657 del += t - f; 658 659 /* New entry for end of split region */ 660 nrg->from = t; 661 nrg->to = rg->to; 662 663 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 664 665 INIT_LIST_HEAD(&nrg->link); 666 667 /* Original entry is trimmed */ 668 rg->to = f; 669 670 hugetlb_cgroup_uncharge_file_region( 671 resv, rg, nrg->to - nrg->from); 672 673 list_add(&nrg->link, &rg->link); 674 nrg = NULL; 675 break; 676 } 677 678 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 679 del += rg->to - rg->from; 680 hugetlb_cgroup_uncharge_file_region(resv, rg, 681 rg->to - rg->from); 682 list_del(&rg->link); 683 kfree(rg); 684 continue; 685 } 686 687 if (f <= rg->from) { /* Trim beginning of region */ 688 del += t - rg->from; 689 rg->from = t; 690 691 hugetlb_cgroup_uncharge_file_region(resv, rg, 692 t - rg->from); 693 } else { /* Trim end of region */ 694 del += rg->to - f; 695 rg->to = f; 696 697 hugetlb_cgroup_uncharge_file_region(resv, rg, 698 rg->to - f); 699 } 700 } 701 702 spin_unlock(&resv->lock); 703 kfree(nrg); 704 return del; 705 } 706 707 /* 708 * A rare out of memory error was encountered which prevented removal of 709 * the reserve map region for a page. The huge page itself was free'ed 710 * and removed from the page cache. This routine will adjust the subpool 711 * usage count, and the global reserve count if needed. By incrementing 712 * these counts, the reserve map entry which could not be deleted will 713 * appear as a "reserved" entry instead of simply dangling with incorrect 714 * counts. 715 */ 716 void hugetlb_fix_reserve_counts(struct inode *inode) 717 { 718 struct hugepage_subpool *spool = subpool_inode(inode); 719 long rsv_adjust; 720 721 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 722 if (rsv_adjust) { 723 struct hstate *h = hstate_inode(inode); 724 725 hugetlb_acct_memory(h, 1); 726 } 727 } 728 729 /* 730 * Count and return the number of huge pages in the reserve map 731 * that intersect with the range [f, t). 732 */ 733 static long region_count(struct resv_map *resv, long f, long t) 734 { 735 struct list_head *head = &resv->regions; 736 struct file_region *rg; 737 long chg = 0; 738 739 spin_lock(&resv->lock); 740 /* Locate each segment we overlap with, and count that overlap. */ 741 list_for_each_entry(rg, head, link) { 742 long seg_from; 743 long seg_to; 744 745 if (rg->to <= f) 746 continue; 747 if (rg->from >= t) 748 break; 749 750 seg_from = max(rg->from, f); 751 seg_to = min(rg->to, t); 752 753 chg += seg_to - seg_from; 754 } 755 spin_unlock(&resv->lock); 756 757 return chg; 758 } 759 760 /* 761 * Convert the address within this vma to the page offset within 762 * the mapping, in pagecache page units; huge pages here. 763 */ 764 static pgoff_t vma_hugecache_offset(struct hstate *h, 765 struct vm_area_struct *vma, unsigned long address) 766 { 767 return ((address - vma->vm_start) >> huge_page_shift(h)) + 768 (vma->vm_pgoff >> huge_page_order(h)); 769 } 770 771 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 772 unsigned long address) 773 { 774 return vma_hugecache_offset(hstate_vma(vma), vma, address); 775 } 776 EXPORT_SYMBOL_GPL(linear_hugepage_index); 777 778 /* 779 * Return the size of the pages allocated when backing a VMA. In the majority 780 * cases this will be same size as used by the page table entries. 781 */ 782 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 783 { 784 if (vma->vm_ops && vma->vm_ops->pagesize) 785 return vma->vm_ops->pagesize(vma); 786 return PAGE_SIZE; 787 } 788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 789 790 /* 791 * Return the page size being used by the MMU to back a VMA. In the majority 792 * of cases, the page size used by the kernel matches the MMU size. On 793 * architectures where it differs, an architecture-specific 'strong' 794 * version of this symbol is required. 795 */ 796 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 797 { 798 return vma_kernel_pagesize(vma); 799 } 800 801 /* 802 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 803 * bits of the reservation map pointer, which are always clear due to 804 * alignment. 805 */ 806 #define HPAGE_RESV_OWNER (1UL << 0) 807 #define HPAGE_RESV_UNMAPPED (1UL << 1) 808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 809 810 /* 811 * These helpers are used to track how many pages are reserved for 812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 813 * is guaranteed to have their future faults succeed. 814 * 815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 816 * the reserve counters are updated with the hugetlb_lock held. It is safe 817 * to reset the VMA at fork() time as it is not in use yet and there is no 818 * chance of the global counters getting corrupted as a result of the values. 819 * 820 * The private mapping reservation is represented in a subtly different 821 * manner to a shared mapping. A shared mapping has a region map associated 822 * with the underlying file, this region map represents the backing file 823 * pages which have ever had a reservation assigned which this persists even 824 * after the page is instantiated. A private mapping has a region map 825 * associated with the original mmap which is attached to all VMAs which 826 * reference it, this region map represents those offsets which have consumed 827 * reservation ie. where pages have been instantiated. 828 */ 829 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 830 { 831 return (unsigned long)vma->vm_private_data; 832 } 833 834 static void set_vma_private_data(struct vm_area_struct *vma, 835 unsigned long value) 836 { 837 vma->vm_private_data = (void *)value; 838 } 839 840 static void 841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 842 struct hugetlb_cgroup *h_cg, 843 struct hstate *h) 844 { 845 #ifdef CONFIG_CGROUP_HUGETLB 846 if (!h_cg || !h) { 847 resv_map->reservation_counter = NULL; 848 resv_map->pages_per_hpage = 0; 849 resv_map->css = NULL; 850 } else { 851 resv_map->reservation_counter = 852 &h_cg->rsvd_hugepage[hstate_index(h)]; 853 resv_map->pages_per_hpage = pages_per_huge_page(h); 854 resv_map->css = &h_cg->css; 855 } 856 #endif 857 } 858 859 struct resv_map *resv_map_alloc(void) 860 { 861 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 862 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 863 864 if (!resv_map || !rg) { 865 kfree(resv_map); 866 kfree(rg); 867 return NULL; 868 } 869 870 kref_init(&resv_map->refs); 871 spin_lock_init(&resv_map->lock); 872 INIT_LIST_HEAD(&resv_map->regions); 873 874 resv_map->adds_in_progress = 0; 875 /* 876 * Initialize these to 0. On shared mappings, 0's here indicate these 877 * fields don't do cgroup accounting. On private mappings, these will be 878 * re-initialized to the proper values, to indicate that hugetlb cgroup 879 * reservations are to be un-charged from here. 880 */ 881 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 882 883 INIT_LIST_HEAD(&resv_map->region_cache); 884 list_add(&rg->link, &resv_map->region_cache); 885 resv_map->region_cache_count = 1; 886 887 return resv_map; 888 } 889 890 void resv_map_release(struct kref *ref) 891 { 892 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 893 struct list_head *head = &resv_map->region_cache; 894 struct file_region *rg, *trg; 895 896 /* Clear out any active regions before we release the map. */ 897 region_del(resv_map, 0, LONG_MAX); 898 899 /* ... and any entries left in the cache */ 900 list_for_each_entry_safe(rg, trg, head, link) { 901 list_del(&rg->link); 902 kfree(rg); 903 } 904 905 VM_BUG_ON(resv_map->adds_in_progress); 906 907 kfree(resv_map); 908 } 909 910 static inline struct resv_map *inode_resv_map(struct inode *inode) 911 { 912 /* 913 * At inode evict time, i_mapping may not point to the original 914 * address space within the inode. This original address space 915 * contains the pointer to the resv_map. So, always use the 916 * address space embedded within the inode. 917 * The VERY common case is inode->mapping == &inode->i_data but, 918 * this may not be true for device special inodes. 919 */ 920 return (struct resv_map *)(&inode->i_data)->private_data; 921 } 922 923 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 924 { 925 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 926 if (vma->vm_flags & VM_MAYSHARE) { 927 struct address_space *mapping = vma->vm_file->f_mapping; 928 struct inode *inode = mapping->host; 929 930 return inode_resv_map(inode); 931 932 } else { 933 return (struct resv_map *)(get_vma_private_data(vma) & 934 ~HPAGE_RESV_MASK); 935 } 936 } 937 938 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 939 { 940 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 941 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 942 943 set_vma_private_data(vma, (get_vma_private_data(vma) & 944 HPAGE_RESV_MASK) | (unsigned long)map); 945 } 946 947 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 948 { 949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 950 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 951 952 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 953 } 954 955 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 956 { 957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 958 959 return (get_vma_private_data(vma) & flag) != 0; 960 } 961 962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 963 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 964 { 965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 966 if (!(vma->vm_flags & VM_MAYSHARE)) 967 vma->vm_private_data = (void *)0; 968 } 969 970 /* Returns true if the VMA has associated reserve pages */ 971 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 972 { 973 if (vma->vm_flags & VM_NORESERVE) { 974 /* 975 * This address is already reserved by other process(chg == 0), 976 * so, we should decrement reserved count. Without decrementing, 977 * reserve count remains after releasing inode, because this 978 * allocated page will go into page cache and is regarded as 979 * coming from reserved pool in releasing step. Currently, we 980 * don't have any other solution to deal with this situation 981 * properly, so add work-around here. 982 */ 983 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 984 return true; 985 else 986 return false; 987 } 988 989 /* Shared mappings always use reserves */ 990 if (vma->vm_flags & VM_MAYSHARE) { 991 /* 992 * We know VM_NORESERVE is not set. Therefore, there SHOULD 993 * be a region map for all pages. The only situation where 994 * there is no region map is if a hole was punched via 995 * fallocate. In this case, there really are no reserves to 996 * use. This situation is indicated if chg != 0. 997 */ 998 if (chg) 999 return false; 1000 else 1001 return true; 1002 } 1003 1004 /* 1005 * Only the process that called mmap() has reserves for 1006 * private mappings. 1007 */ 1008 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1009 /* 1010 * Like the shared case above, a hole punch or truncate 1011 * could have been performed on the private mapping. 1012 * Examine the value of chg to determine if reserves 1013 * actually exist or were previously consumed. 1014 * Very Subtle - The value of chg comes from a previous 1015 * call to vma_needs_reserves(). The reserve map for 1016 * private mappings has different (opposite) semantics 1017 * than that of shared mappings. vma_needs_reserves() 1018 * has already taken this difference in semantics into 1019 * account. Therefore, the meaning of chg is the same 1020 * as in the shared case above. Code could easily be 1021 * combined, but keeping it separate draws attention to 1022 * subtle differences. 1023 */ 1024 if (chg) 1025 return false; 1026 else 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 static void enqueue_huge_page(struct hstate *h, struct page *page) 1034 { 1035 int nid = page_to_nid(page); 1036 list_move(&page->lru, &h->hugepage_freelists[nid]); 1037 h->free_huge_pages++; 1038 h->free_huge_pages_node[nid]++; 1039 } 1040 1041 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1042 { 1043 struct page *page; 1044 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA); 1045 1046 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1047 if (nocma && is_migrate_cma_page(page)) 1048 continue; 1049 1050 if (!PageHWPoison(page)) 1051 break; 1052 } 1053 1054 /* 1055 * if 'non-isolated free hugepage' not found on the list, 1056 * the allocation fails. 1057 */ 1058 if (&h->hugepage_freelists[nid] == &page->lru) 1059 return NULL; 1060 list_move(&page->lru, &h->hugepage_activelist); 1061 set_page_refcounted(page); 1062 h->free_huge_pages--; 1063 h->free_huge_pages_node[nid]--; 1064 return page; 1065 } 1066 1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1068 nodemask_t *nmask) 1069 { 1070 unsigned int cpuset_mems_cookie; 1071 struct zonelist *zonelist; 1072 struct zone *zone; 1073 struct zoneref *z; 1074 int node = NUMA_NO_NODE; 1075 1076 zonelist = node_zonelist(nid, gfp_mask); 1077 1078 retry_cpuset: 1079 cpuset_mems_cookie = read_mems_allowed_begin(); 1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1081 struct page *page; 1082 1083 if (!cpuset_zone_allowed(zone, gfp_mask)) 1084 continue; 1085 /* 1086 * no need to ask again on the same node. Pool is node rather than 1087 * zone aware 1088 */ 1089 if (zone_to_nid(zone) == node) 1090 continue; 1091 node = zone_to_nid(zone); 1092 1093 page = dequeue_huge_page_node_exact(h, node); 1094 if (page) 1095 return page; 1096 } 1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1098 goto retry_cpuset; 1099 1100 return NULL; 1101 } 1102 1103 static struct page *dequeue_huge_page_vma(struct hstate *h, 1104 struct vm_area_struct *vma, 1105 unsigned long address, int avoid_reserve, 1106 long chg) 1107 { 1108 struct page *page; 1109 struct mempolicy *mpol; 1110 gfp_t gfp_mask; 1111 nodemask_t *nodemask; 1112 int nid; 1113 1114 /* 1115 * A child process with MAP_PRIVATE mappings created by their parent 1116 * have no page reserves. This check ensures that reservations are 1117 * not "stolen". The child may still get SIGKILLed 1118 */ 1119 if (!vma_has_reserves(vma, chg) && 1120 h->free_huge_pages - h->resv_huge_pages == 0) 1121 goto err; 1122 1123 /* If reserves cannot be used, ensure enough pages are in the pool */ 1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1125 goto err; 1126 1127 gfp_mask = htlb_alloc_mask(h); 1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1131 SetPagePrivate(page); 1132 h->resv_huge_pages--; 1133 } 1134 1135 mpol_cond_put(mpol); 1136 return page; 1137 1138 err: 1139 return NULL; 1140 } 1141 1142 /* 1143 * common helper functions for hstate_next_node_to_{alloc|free}. 1144 * We may have allocated or freed a huge page based on a different 1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1146 * be outside of *nodes_allowed. Ensure that we use an allowed 1147 * node for alloc or free. 1148 */ 1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1150 { 1151 nid = next_node_in(nid, *nodes_allowed); 1152 VM_BUG_ON(nid >= MAX_NUMNODES); 1153 1154 return nid; 1155 } 1156 1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1158 { 1159 if (!node_isset(nid, *nodes_allowed)) 1160 nid = next_node_allowed(nid, nodes_allowed); 1161 return nid; 1162 } 1163 1164 /* 1165 * returns the previously saved node ["this node"] from which to 1166 * allocate a persistent huge page for the pool and advance the 1167 * next node from which to allocate, handling wrap at end of node 1168 * mask. 1169 */ 1170 static int hstate_next_node_to_alloc(struct hstate *h, 1171 nodemask_t *nodes_allowed) 1172 { 1173 int nid; 1174 1175 VM_BUG_ON(!nodes_allowed); 1176 1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1179 1180 return nid; 1181 } 1182 1183 /* 1184 * helper for free_pool_huge_page() - return the previously saved 1185 * node ["this node"] from which to free a huge page. Advance the 1186 * next node id whether or not we find a free huge page to free so 1187 * that the next attempt to free addresses the next node. 1188 */ 1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1190 { 1191 int nid; 1192 1193 VM_BUG_ON(!nodes_allowed); 1194 1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1197 1198 return nid; 1199 } 1200 1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1202 for (nr_nodes = nodes_weight(*mask); \ 1203 nr_nodes > 0 && \ 1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1205 nr_nodes--) 1206 1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1208 for (nr_nodes = nodes_weight(*mask); \ 1209 nr_nodes > 0 && \ 1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1211 nr_nodes--) 1212 1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1214 static void destroy_compound_gigantic_page(struct page *page, 1215 unsigned int order) 1216 { 1217 int i; 1218 int nr_pages = 1 << order; 1219 struct page *p = page + 1; 1220 1221 atomic_set(compound_mapcount_ptr(page), 0); 1222 if (hpage_pincount_available(page)) 1223 atomic_set(compound_pincount_ptr(page), 0); 1224 1225 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1226 clear_compound_head(p); 1227 set_page_refcounted(p); 1228 } 1229 1230 set_compound_order(page, 0); 1231 __ClearPageHead(page); 1232 } 1233 1234 static void free_gigantic_page(struct page *page, unsigned int order) 1235 { 1236 /* 1237 * If the page isn't allocated using the cma allocator, 1238 * cma_release() returns false. 1239 */ 1240 #ifdef CONFIG_CMA 1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1242 return; 1243 #endif 1244 1245 free_contig_range(page_to_pfn(page), 1 << order); 1246 } 1247 1248 #ifdef CONFIG_CONTIG_ALLOC 1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1250 int nid, nodemask_t *nodemask) 1251 { 1252 unsigned long nr_pages = 1UL << huge_page_order(h); 1253 1254 #ifdef CONFIG_CMA 1255 { 1256 struct page *page; 1257 int node; 1258 1259 for_each_node_mask(node, *nodemask) { 1260 if (!hugetlb_cma[node]) 1261 continue; 1262 1263 page = cma_alloc(hugetlb_cma[node], nr_pages, 1264 huge_page_order(h), true); 1265 if (page) 1266 return page; 1267 } 1268 } 1269 #endif 1270 1271 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1272 } 1273 1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1275 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1276 #else /* !CONFIG_CONTIG_ALLOC */ 1277 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1278 int nid, nodemask_t *nodemask) 1279 { 1280 return NULL; 1281 } 1282 #endif /* CONFIG_CONTIG_ALLOC */ 1283 1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1286 int nid, nodemask_t *nodemask) 1287 { 1288 return NULL; 1289 } 1290 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1291 static inline void destroy_compound_gigantic_page(struct page *page, 1292 unsigned int order) { } 1293 #endif 1294 1295 static void update_and_free_page(struct hstate *h, struct page *page) 1296 { 1297 int i; 1298 1299 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1300 return; 1301 1302 h->nr_huge_pages--; 1303 h->nr_huge_pages_node[page_to_nid(page)]--; 1304 for (i = 0; i < pages_per_huge_page(h); i++) { 1305 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1306 1 << PG_referenced | 1 << PG_dirty | 1307 1 << PG_active | 1 << PG_private | 1308 1 << PG_writeback); 1309 } 1310 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1311 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1312 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1313 set_page_refcounted(page); 1314 if (hstate_is_gigantic(h)) { 1315 /* 1316 * Temporarily drop the hugetlb_lock, because 1317 * we might block in free_gigantic_page(). 1318 */ 1319 spin_unlock(&hugetlb_lock); 1320 destroy_compound_gigantic_page(page, huge_page_order(h)); 1321 free_gigantic_page(page, huge_page_order(h)); 1322 spin_lock(&hugetlb_lock); 1323 } else { 1324 __free_pages(page, huge_page_order(h)); 1325 } 1326 } 1327 1328 struct hstate *size_to_hstate(unsigned long size) 1329 { 1330 struct hstate *h; 1331 1332 for_each_hstate(h) { 1333 if (huge_page_size(h) == size) 1334 return h; 1335 } 1336 return NULL; 1337 } 1338 1339 /* 1340 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1341 * to hstate->hugepage_activelist.) 1342 * 1343 * This function can be called for tail pages, but never returns true for them. 1344 */ 1345 bool page_huge_active(struct page *page) 1346 { 1347 VM_BUG_ON_PAGE(!PageHuge(page), page); 1348 return PageHead(page) && PagePrivate(&page[1]); 1349 } 1350 1351 /* never called for tail page */ 1352 static void set_page_huge_active(struct page *page) 1353 { 1354 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1355 SetPagePrivate(&page[1]); 1356 } 1357 1358 static void clear_page_huge_active(struct page *page) 1359 { 1360 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1361 ClearPagePrivate(&page[1]); 1362 } 1363 1364 /* 1365 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1366 * code 1367 */ 1368 static inline bool PageHugeTemporary(struct page *page) 1369 { 1370 if (!PageHuge(page)) 1371 return false; 1372 1373 return (unsigned long)page[2].mapping == -1U; 1374 } 1375 1376 static inline void SetPageHugeTemporary(struct page *page) 1377 { 1378 page[2].mapping = (void *)-1U; 1379 } 1380 1381 static inline void ClearPageHugeTemporary(struct page *page) 1382 { 1383 page[2].mapping = NULL; 1384 } 1385 1386 static void __free_huge_page(struct page *page) 1387 { 1388 /* 1389 * Can't pass hstate in here because it is called from the 1390 * compound page destructor. 1391 */ 1392 struct hstate *h = page_hstate(page); 1393 int nid = page_to_nid(page); 1394 struct hugepage_subpool *spool = 1395 (struct hugepage_subpool *)page_private(page); 1396 bool restore_reserve; 1397 1398 VM_BUG_ON_PAGE(page_count(page), page); 1399 VM_BUG_ON_PAGE(page_mapcount(page), page); 1400 1401 set_page_private(page, 0); 1402 page->mapping = NULL; 1403 restore_reserve = PagePrivate(page); 1404 ClearPagePrivate(page); 1405 1406 /* 1407 * If PagePrivate() was set on page, page allocation consumed a 1408 * reservation. If the page was associated with a subpool, there 1409 * would have been a page reserved in the subpool before allocation 1410 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1411 * reservtion, do not call hugepage_subpool_put_pages() as this will 1412 * remove the reserved page from the subpool. 1413 */ 1414 if (!restore_reserve) { 1415 /* 1416 * A return code of zero implies that the subpool will be 1417 * under its minimum size if the reservation is not restored 1418 * after page is free. Therefore, force restore_reserve 1419 * operation. 1420 */ 1421 if (hugepage_subpool_put_pages(spool, 1) == 0) 1422 restore_reserve = true; 1423 } 1424 1425 spin_lock(&hugetlb_lock); 1426 clear_page_huge_active(page); 1427 hugetlb_cgroup_uncharge_page(hstate_index(h), 1428 pages_per_huge_page(h), page); 1429 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1430 pages_per_huge_page(h), page); 1431 if (restore_reserve) 1432 h->resv_huge_pages++; 1433 1434 if (PageHugeTemporary(page)) { 1435 list_del(&page->lru); 1436 ClearPageHugeTemporary(page); 1437 update_and_free_page(h, page); 1438 } else if (h->surplus_huge_pages_node[nid]) { 1439 /* remove the page from active list */ 1440 list_del(&page->lru); 1441 update_and_free_page(h, page); 1442 h->surplus_huge_pages--; 1443 h->surplus_huge_pages_node[nid]--; 1444 } else { 1445 arch_clear_hugepage_flags(page); 1446 enqueue_huge_page(h, page); 1447 } 1448 spin_unlock(&hugetlb_lock); 1449 } 1450 1451 /* 1452 * As free_huge_page() can be called from a non-task context, we have 1453 * to defer the actual freeing in a workqueue to prevent potential 1454 * hugetlb_lock deadlock. 1455 * 1456 * free_hpage_workfn() locklessly retrieves the linked list of pages to 1457 * be freed and frees them one-by-one. As the page->mapping pointer is 1458 * going to be cleared in __free_huge_page() anyway, it is reused as the 1459 * llist_node structure of a lockless linked list of huge pages to be freed. 1460 */ 1461 static LLIST_HEAD(hpage_freelist); 1462 1463 static void free_hpage_workfn(struct work_struct *work) 1464 { 1465 struct llist_node *node; 1466 struct page *page; 1467 1468 node = llist_del_all(&hpage_freelist); 1469 1470 while (node) { 1471 page = container_of((struct address_space **)node, 1472 struct page, mapping); 1473 node = node->next; 1474 __free_huge_page(page); 1475 } 1476 } 1477 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1478 1479 void free_huge_page(struct page *page) 1480 { 1481 /* 1482 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock. 1483 */ 1484 if (!in_task()) { 1485 /* 1486 * Only call schedule_work() if hpage_freelist is previously 1487 * empty. Otherwise, schedule_work() had been called but the 1488 * workfn hasn't retrieved the list yet. 1489 */ 1490 if (llist_add((struct llist_node *)&page->mapping, 1491 &hpage_freelist)) 1492 schedule_work(&free_hpage_work); 1493 return; 1494 } 1495 1496 __free_huge_page(page); 1497 } 1498 1499 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1500 { 1501 INIT_LIST_HEAD(&page->lru); 1502 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1503 spin_lock(&hugetlb_lock); 1504 set_hugetlb_cgroup(page, NULL); 1505 set_hugetlb_cgroup_rsvd(page, NULL); 1506 h->nr_huge_pages++; 1507 h->nr_huge_pages_node[nid]++; 1508 spin_unlock(&hugetlb_lock); 1509 } 1510 1511 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1512 { 1513 int i; 1514 int nr_pages = 1 << order; 1515 struct page *p = page + 1; 1516 1517 /* we rely on prep_new_huge_page to set the destructor */ 1518 set_compound_order(page, order); 1519 __ClearPageReserved(page); 1520 __SetPageHead(page); 1521 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1522 /* 1523 * For gigantic hugepages allocated through bootmem at 1524 * boot, it's safer to be consistent with the not-gigantic 1525 * hugepages and clear the PG_reserved bit from all tail pages 1526 * too. Otherwise drivers using get_user_pages() to access tail 1527 * pages may get the reference counting wrong if they see 1528 * PG_reserved set on a tail page (despite the head page not 1529 * having PG_reserved set). Enforcing this consistency between 1530 * head and tail pages allows drivers to optimize away a check 1531 * on the head page when they need know if put_page() is needed 1532 * after get_user_pages(). 1533 */ 1534 __ClearPageReserved(p); 1535 set_page_count(p, 0); 1536 set_compound_head(p, page); 1537 } 1538 atomic_set(compound_mapcount_ptr(page), -1); 1539 1540 if (hpage_pincount_available(page)) 1541 atomic_set(compound_pincount_ptr(page), 0); 1542 } 1543 1544 /* 1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1546 * transparent huge pages. See the PageTransHuge() documentation for more 1547 * details. 1548 */ 1549 int PageHuge(struct page *page) 1550 { 1551 if (!PageCompound(page)) 1552 return 0; 1553 1554 page = compound_head(page); 1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1556 } 1557 EXPORT_SYMBOL_GPL(PageHuge); 1558 1559 /* 1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1561 * normal or transparent huge pages. 1562 */ 1563 int PageHeadHuge(struct page *page_head) 1564 { 1565 if (!PageHead(page_head)) 1566 return 0; 1567 1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1569 } 1570 1571 /* 1572 * Find address_space associated with hugetlbfs page. 1573 * Upon entry page is locked and page 'was' mapped although mapped state 1574 * could change. If necessary, use anon_vma to find vma and associated 1575 * address space. The returned mapping may be stale, but it can not be 1576 * invalid as page lock (which is held) is required to destroy mapping. 1577 */ 1578 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage) 1579 { 1580 struct anon_vma *anon_vma; 1581 pgoff_t pgoff_start, pgoff_end; 1582 struct anon_vma_chain *avc; 1583 struct address_space *mapping = page_mapping(hpage); 1584 1585 /* Simple file based mapping */ 1586 if (mapping) 1587 return mapping; 1588 1589 /* 1590 * Even anonymous hugetlbfs mappings are associated with an 1591 * underlying hugetlbfs file (see hugetlb_file_setup in mmap 1592 * code). Find a vma associated with the anonymous vma, and 1593 * use the file pointer to get address_space. 1594 */ 1595 anon_vma = page_lock_anon_vma_read(hpage); 1596 if (!anon_vma) 1597 return mapping; /* NULL */ 1598 1599 /* Use first found vma */ 1600 pgoff_start = page_to_pgoff(hpage); 1601 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1; 1602 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1603 pgoff_start, pgoff_end) { 1604 struct vm_area_struct *vma = avc->vma; 1605 1606 mapping = vma->vm_file->f_mapping; 1607 break; 1608 } 1609 1610 anon_vma_unlock_read(anon_vma); 1611 return mapping; 1612 } 1613 1614 /* 1615 * Find and lock address space (mapping) in write mode. 1616 * 1617 * Upon entry, the page is locked which allows us to find the mapping 1618 * even in the case of an anon page. However, locking order dictates 1619 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs 1620 * specific. So, we first try to lock the sema while still holding the 1621 * page lock. If this works, great! If not, then we need to drop the 1622 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of 1623 * course, need to revalidate state along the way. 1624 */ 1625 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1626 { 1627 struct address_space *mapping, *mapping2; 1628 1629 mapping = _get_hugetlb_page_mapping(hpage); 1630 retry: 1631 if (!mapping) 1632 return mapping; 1633 1634 /* 1635 * If no contention, take lock and return 1636 */ 1637 if (i_mmap_trylock_write(mapping)) 1638 return mapping; 1639 1640 /* 1641 * Must drop page lock and wait on mapping sema. 1642 * Note: Once page lock is dropped, mapping could become invalid. 1643 * As a hack, increase map count until we lock page again. 1644 */ 1645 atomic_inc(&hpage->_mapcount); 1646 unlock_page(hpage); 1647 i_mmap_lock_write(mapping); 1648 lock_page(hpage); 1649 atomic_add_negative(-1, &hpage->_mapcount); 1650 1651 /* verify page is still mapped */ 1652 if (!page_mapped(hpage)) { 1653 i_mmap_unlock_write(mapping); 1654 return NULL; 1655 } 1656 1657 /* 1658 * Get address space again and verify it is the same one 1659 * we locked. If not, drop lock and retry. 1660 */ 1661 mapping2 = _get_hugetlb_page_mapping(hpage); 1662 if (mapping2 != mapping) { 1663 i_mmap_unlock_write(mapping); 1664 mapping = mapping2; 1665 goto retry; 1666 } 1667 1668 return mapping; 1669 } 1670 1671 pgoff_t __basepage_index(struct page *page) 1672 { 1673 struct page *page_head = compound_head(page); 1674 pgoff_t index = page_index(page_head); 1675 unsigned long compound_idx; 1676 1677 if (!PageHuge(page_head)) 1678 return page_index(page); 1679 1680 if (compound_order(page_head) >= MAX_ORDER) 1681 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1682 else 1683 compound_idx = page - page_head; 1684 1685 return (index << compound_order(page_head)) + compound_idx; 1686 } 1687 1688 static struct page *alloc_buddy_huge_page(struct hstate *h, 1689 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1690 nodemask_t *node_alloc_noretry) 1691 { 1692 int order = huge_page_order(h); 1693 struct page *page; 1694 bool alloc_try_hard = true; 1695 1696 /* 1697 * By default we always try hard to allocate the page with 1698 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1699 * a loop (to adjust global huge page counts) and previous allocation 1700 * failed, do not continue to try hard on the same node. Use the 1701 * node_alloc_noretry bitmap to manage this state information. 1702 */ 1703 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1704 alloc_try_hard = false; 1705 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1706 if (alloc_try_hard) 1707 gfp_mask |= __GFP_RETRY_MAYFAIL; 1708 if (nid == NUMA_NO_NODE) 1709 nid = numa_mem_id(); 1710 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1711 if (page) 1712 __count_vm_event(HTLB_BUDDY_PGALLOC); 1713 else 1714 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1715 1716 /* 1717 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1718 * indicates an overall state change. Clear bit so that we resume 1719 * normal 'try hard' allocations. 1720 */ 1721 if (node_alloc_noretry && page && !alloc_try_hard) 1722 node_clear(nid, *node_alloc_noretry); 1723 1724 /* 1725 * If we tried hard to get a page but failed, set bit so that 1726 * subsequent attempts will not try as hard until there is an 1727 * overall state change. 1728 */ 1729 if (node_alloc_noretry && !page && alloc_try_hard) 1730 node_set(nid, *node_alloc_noretry); 1731 1732 return page; 1733 } 1734 1735 /* 1736 * Common helper to allocate a fresh hugetlb page. All specific allocators 1737 * should use this function to get new hugetlb pages 1738 */ 1739 static struct page *alloc_fresh_huge_page(struct hstate *h, 1740 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1741 nodemask_t *node_alloc_noretry) 1742 { 1743 struct page *page; 1744 1745 if (hstate_is_gigantic(h)) 1746 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1747 else 1748 page = alloc_buddy_huge_page(h, gfp_mask, 1749 nid, nmask, node_alloc_noretry); 1750 if (!page) 1751 return NULL; 1752 1753 if (hstate_is_gigantic(h)) 1754 prep_compound_gigantic_page(page, huge_page_order(h)); 1755 prep_new_huge_page(h, page, page_to_nid(page)); 1756 1757 return page; 1758 } 1759 1760 /* 1761 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1762 * manner. 1763 */ 1764 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1765 nodemask_t *node_alloc_noretry) 1766 { 1767 struct page *page; 1768 int nr_nodes, node; 1769 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1770 1771 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1772 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1773 node_alloc_noretry); 1774 if (page) 1775 break; 1776 } 1777 1778 if (!page) 1779 return 0; 1780 1781 put_page(page); /* free it into the hugepage allocator */ 1782 1783 return 1; 1784 } 1785 1786 /* 1787 * Free huge page from pool from next node to free. 1788 * Attempt to keep persistent huge pages more or less 1789 * balanced over allowed nodes. 1790 * Called with hugetlb_lock locked. 1791 */ 1792 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1793 bool acct_surplus) 1794 { 1795 int nr_nodes, node; 1796 int ret = 0; 1797 1798 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1799 /* 1800 * If we're returning unused surplus pages, only examine 1801 * nodes with surplus pages. 1802 */ 1803 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1804 !list_empty(&h->hugepage_freelists[node])) { 1805 struct page *page = 1806 list_entry(h->hugepage_freelists[node].next, 1807 struct page, lru); 1808 list_del(&page->lru); 1809 h->free_huge_pages--; 1810 h->free_huge_pages_node[node]--; 1811 if (acct_surplus) { 1812 h->surplus_huge_pages--; 1813 h->surplus_huge_pages_node[node]--; 1814 } 1815 update_and_free_page(h, page); 1816 ret = 1; 1817 break; 1818 } 1819 } 1820 1821 return ret; 1822 } 1823 1824 /* 1825 * Dissolve a given free hugepage into free buddy pages. This function does 1826 * nothing for in-use hugepages and non-hugepages. 1827 * This function returns values like below: 1828 * 1829 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1830 * (allocated or reserved.) 1831 * 0: successfully dissolved free hugepages or the page is not a 1832 * hugepage (considered as already dissolved) 1833 */ 1834 int dissolve_free_huge_page(struct page *page) 1835 { 1836 int rc = -EBUSY; 1837 1838 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1839 if (!PageHuge(page)) 1840 return 0; 1841 1842 spin_lock(&hugetlb_lock); 1843 if (!PageHuge(page)) { 1844 rc = 0; 1845 goto out; 1846 } 1847 1848 if (!page_count(page)) { 1849 struct page *head = compound_head(page); 1850 struct hstate *h = page_hstate(head); 1851 int nid = page_to_nid(head); 1852 if (h->free_huge_pages - h->resv_huge_pages == 0) 1853 goto out; 1854 /* 1855 * Move PageHWPoison flag from head page to the raw error page, 1856 * which makes any subpages rather than the error page reusable. 1857 */ 1858 if (PageHWPoison(head) && page != head) { 1859 SetPageHWPoison(page); 1860 ClearPageHWPoison(head); 1861 } 1862 list_del(&head->lru); 1863 h->free_huge_pages--; 1864 h->free_huge_pages_node[nid]--; 1865 h->max_huge_pages--; 1866 update_and_free_page(h, head); 1867 rc = 0; 1868 } 1869 out: 1870 spin_unlock(&hugetlb_lock); 1871 return rc; 1872 } 1873 1874 /* 1875 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1876 * make specified memory blocks removable from the system. 1877 * Note that this will dissolve a free gigantic hugepage completely, if any 1878 * part of it lies within the given range. 1879 * Also note that if dissolve_free_huge_page() returns with an error, all 1880 * free hugepages that were dissolved before that error are lost. 1881 */ 1882 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1883 { 1884 unsigned long pfn; 1885 struct page *page; 1886 int rc = 0; 1887 1888 if (!hugepages_supported()) 1889 return rc; 1890 1891 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1892 page = pfn_to_page(pfn); 1893 rc = dissolve_free_huge_page(page); 1894 if (rc) 1895 break; 1896 } 1897 1898 return rc; 1899 } 1900 1901 /* 1902 * Allocates a fresh surplus page from the page allocator. 1903 */ 1904 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1905 int nid, nodemask_t *nmask) 1906 { 1907 struct page *page = NULL; 1908 1909 if (hstate_is_gigantic(h)) 1910 return NULL; 1911 1912 spin_lock(&hugetlb_lock); 1913 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1914 goto out_unlock; 1915 spin_unlock(&hugetlb_lock); 1916 1917 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1918 if (!page) 1919 return NULL; 1920 1921 spin_lock(&hugetlb_lock); 1922 /* 1923 * We could have raced with the pool size change. 1924 * Double check that and simply deallocate the new page 1925 * if we would end up overcommiting the surpluses. Abuse 1926 * temporary page to workaround the nasty free_huge_page 1927 * codeflow 1928 */ 1929 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1930 SetPageHugeTemporary(page); 1931 spin_unlock(&hugetlb_lock); 1932 put_page(page); 1933 return NULL; 1934 } else { 1935 h->surplus_huge_pages++; 1936 h->surplus_huge_pages_node[page_to_nid(page)]++; 1937 } 1938 1939 out_unlock: 1940 spin_unlock(&hugetlb_lock); 1941 1942 return page; 1943 } 1944 1945 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1946 int nid, nodemask_t *nmask) 1947 { 1948 struct page *page; 1949 1950 if (hstate_is_gigantic(h)) 1951 return NULL; 1952 1953 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1954 if (!page) 1955 return NULL; 1956 1957 /* 1958 * We do not account these pages as surplus because they are only 1959 * temporary and will be released properly on the last reference 1960 */ 1961 SetPageHugeTemporary(page); 1962 1963 return page; 1964 } 1965 1966 /* 1967 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1968 */ 1969 static 1970 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1971 struct vm_area_struct *vma, unsigned long addr) 1972 { 1973 struct page *page; 1974 struct mempolicy *mpol; 1975 gfp_t gfp_mask = htlb_alloc_mask(h); 1976 int nid; 1977 nodemask_t *nodemask; 1978 1979 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1980 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1981 mpol_cond_put(mpol); 1982 1983 return page; 1984 } 1985 1986 /* page migration callback function */ 1987 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1988 nodemask_t *nmask, gfp_t gfp_mask) 1989 { 1990 spin_lock(&hugetlb_lock); 1991 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1992 struct page *page; 1993 1994 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1995 if (page) { 1996 spin_unlock(&hugetlb_lock); 1997 return page; 1998 } 1999 } 2000 spin_unlock(&hugetlb_lock); 2001 2002 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2003 } 2004 2005 /* mempolicy aware migration callback */ 2006 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2007 unsigned long address) 2008 { 2009 struct mempolicy *mpol; 2010 nodemask_t *nodemask; 2011 struct page *page; 2012 gfp_t gfp_mask; 2013 int node; 2014 2015 gfp_mask = htlb_alloc_mask(h); 2016 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2017 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2018 mpol_cond_put(mpol); 2019 2020 return page; 2021 } 2022 2023 /* 2024 * Increase the hugetlb pool such that it can accommodate a reservation 2025 * of size 'delta'. 2026 */ 2027 static int gather_surplus_pages(struct hstate *h, int delta) 2028 __must_hold(&hugetlb_lock) 2029 { 2030 struct list_head surplus_list; 2031 struct page *page, *tmp; 2032 int ret, i; 2033 int needed, allocated; 2034 bool alloc_ok = true; 2035 2036 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2037 if (needed <= 0) { 2038 h->resv_huge_pages += delta; 2039 return 0; 2040 } 2041 2042 allocated = 0; 2043 INIT_LIST_HEAD(&surplus_list); 2044 2045 ret = -ENOMEM; 2046 retry: 2047 spin_unlock(&hugetlb_lock); 2048 for (i = 0; i < needed; i++) { 2049 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2050 NUMA_NO_NODE, NULL); 2051 if (!page) { 2052 alloc_ok = false; 2053 break; 2054 } 2055 list_add(&page->lru, &surplus_list); 2056 cond_resched(); 2057 } 2058 allocated += i; 2059 2060 /* 2061 * After retaking hugetlb_lock, we need to recalculate 'needed' 2062 * because either resv_huge_pages or free_huge_pages may have changed. 2063 */ 2064 spin_lock(&hugetlb_lock); 2065 needed = (h->resv_huge_pages + delta) - 2066 (h->free_huge_pages + allocated); 2067 if (needed > 0) { 2068 if (alloc_ok) 2069 goto retry; 2070 /* 2071 * We were not able to allocate enough pages to 2072 * satisfy the entire reservation so we free what 2073 * we've allocated so far. 2074 */ 2075 goto free; 2076 } 2077 /* 2078 * The surplus_list now contains _at_least_ the number of extra pages 2079 * needed to accommodate the reservation. Add the appropriate number 2080 * of pages to the hugetlb pool and free the extras back to the buddy 2081 * allocator. Commit the entire reservation here to prevent another 2082 * process from stealing the pages as they are added to the pool but 2083 * before they are reserved. 2084 */ 2085 needed += allocated; 2086 h->resv_huge_pages += delta; 2087 ret = 0; 2088 2089 /* Free the needed pages to the hugetlb pool */ 2090 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2091 if ((--needed) < 0) 2092 break; 2093 /* 2094 * This page is now managed by the hugetlb allocator and has 2095 * no users -- drop the buddy allocator's reference. 2096 */ 2097 put_page_testzero(page); 2098 VM_BUG_ON_PAGE(page_count(page), page); 2099 enqueue_huge_page(h, page); 2100 } 2101 free: 2102 spin_unlock(&hugetlb_lock); 2103 2104 /* Free unnecessary surplus pages to the buddy allocator */ 2105 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2106 put_page(page); 2107 spin_lock(&hugetlb_lock); 2108 2109 return ret; 2110 } 2111 2112 /* 2113 * This routine has two main purposes: 2114 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2115 * in unused_resv_pages. This corresponds to the prior adjustments made 2116 * to the associated reservation map. 2117 * 2) Free any unused surplus pages that may have been allocated to satisfy 2118 * the reservation. As many as unused_resv_pages may be freed. 2119 * 2120 * Called with hugetlb_lock held. However, the lock could be dropped (and 2121 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 2122 * we must make sure nobody else can claim pages we are in the process of 2123 * freeing. Do this by ensuring resv_huge_page always is greater than the 2124 * number of huge pages we plan to free when dropping the lock. 2125 */ 2126 static void return_unused_surplus_pages(struct hstate *h, 2127 unsigned long unused_resv_pages) 2128 { 2129 unsigned long nr_pages; 2130 2131 /* Cannot return gigantic pages currently */ 2132 if (hstate_is_gigantic(h)) 2133 goto out; 2134 2135 /* 2136 * Part (or even all) of the reservation could have been backed 2137 * by pre-allocated pages. Only free surplus pages. 2138 */ 2139 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2140 2141 /* 2142 * We want to release as many surplus pages as possible, spread 2143 * evenly across all nodes with memory. Iterate across these nodes 2144 * until we can no longer free unreserved surplus pages. This occurs 2145 * when the nodes with surplus pages have no free pages. 2146 * free_pool_huge_page() will balance the freed pages across the 2147 * on-line nodes with memory and will handle the hstate accounting. 2148 * 2149 * Note that we decrement resv_huge_pages as we free the pages. If 2150 * we drop the lock, resv_huge_pages will still be sufficiently large 2151 * to cover subsequent pages we may free. 2152 */ 2153 while (nr_pages--) { 2154 h->resv_huge_pages--; 2155 unused_resv_pages--; 2156 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 2157 goto out; 2158 cond_resched_lock(&hugetlb_lock); 2159 } 2160 2161 out: 2162 /* Fully uncommit the reservation */ 2163 h->resv_huge_pages -= unused_resv_pages; 2164 } 2165 2166 2167 /* 2168 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2169 * are used by the huge page allocation routines to manage reservations. 2170 * 2171 * vma_needs_reservation is called to determine if the huge page at addr 2172 * within the vma has an associated reservation. If a reservation is 2173 * needed, the value 1 is returned. The caller is then responsible for 2174 * managing the global reservation and subpool usage counts. After 2175 * the huge page has been allocated, vma_commit_reservation is called 2176 * to add the page to the reservation map. If the page allocation fails, 2177 * the reservation must be ended instead of committed. vma_end_reservation 2178 * is called in such cases. 2179 * 2180 * In the normal case, vma_commit_reservation returns the same value 2181 * as the preceding vma_needs_reservation call. The only time this 2182 * is not the case is if a reserve map was changed between calls. It 2183 * is the responsibility of the caller to notice the difference and 2184 * take appropriate action. 2185 * 2186 * vma_add_reservation is used in error paths where a reservation must 2187 * be restored when a newly allocated huge page must be freed. It is 2188 * to be called after calling vma_needs_reservation to determine if a 2189 * reservation exists. 2190 */ 2191 enum vma_resv_mode { 2192 VMA_NEEDS_RESV, 2193 VMA_COMMIT_RESV, 2194 VMA_END_RESV, 2195 VMA_ADD_RESV, 2196 }; 2197 static long __vma_reservation_common(struct hstate *h, 2198 struct vm_area_struct *vma, unsigned long addr, 2199 enum vma_resv_mode mode) 2200 { 2201 struct resv_map *resv; 2202 pgoff_t idx; 2203 long ret; 2204 long dummy_out_regions_needed; 2205 2206 resv = vma_resv_map(vma); 2207 if (!resv) 2208 return 1; 2209 2210 idx = vma_hugecache_offset(h, vma, addr); 2211 switch (mode) { 2212 case VMA_NEEDS_RESV: 2213 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2214 /* We assume that vma_reservation_* routines always operate on 2215 * 1 page, and that adding to resv map a 1 page entry can only 2216 * ever require 1 region. 2217 */ 2218 VM_BUG_ON(dummy_out_regions_needed != 1); 2219 break; 2220 case VMA_COMMIT_RESV: 2221 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2222 /* region_add calls of range 1 should never fail. */ 2223 VM_BUG_ON(ret < 0); 2224 break; 2225 case VMA_END_RESV: 2226 region_abort(resv, idx, idx + 1, 1); 2227 ret = 0; 2228 break; 2229 case VMA_ADD_RESV: 2230 if (vma->vm_flags & VM_MAYSHARE) { 2231 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2232 /* region_add calls of range 1 should never fail. */ 2233 VM_BUG_ON(ret < 0); 2234 } else { 2235 region_abort(resv, idx, idx + 1, 1); 2236 ret = region_del(resv, idx, idx + 1); 2237 } 2238 break; 2239 default: 2240 BUG(); 2241 } 2242 2243 if (vma->vm_flags & VM_MAYSHARE) 2244 return ret; 2245 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 2246 /* 2247 * In most cases, reserves always exist for private mappings. 2248 * However, a file associated with mapping could have been 2249 * hole punched or truncated after reserves were consumed. 2250 * As subsequent fault on such a range will not use reserves. 2251 * Subtle - The reserve map for private mappings has the 2252 * opposite meaning than that of shared mappings. If NO 2253 * entry is in the reserve map, it means a reservation exists. 2254 * If an entry exists in the reserve map, it means the 2255 * reservation has already been consumed. As a result, the 2256 * return value of this routine is the opposite of the 2257 * value returned from reserve map manipulation routines above. 2258 */ 2259 if (ret) 2260 return 0; 2261 else 2262 return 1; 2263 } 2264 else 2265 return ret < 0 ? ret : 0; 2266 } 2267 2268 static long vma_needs_reservation(struct hstate *h, 2269 struct vm_area_struct *vma, unsigned long addr) 2270 { 2271 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2272 } 2273 2274 static long vma_commit_reservation(struct hstate *h, 2275 struct vm_area_struct *vma, unsigned long addr) 2276 { 2277 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2278 } 2279 2280 static void vma_end_reservation(struct hstate *h, 2281 struct vm_area_struct *vma, unsigned long addr) 2282 { 2283 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2284 } 2285 2286 static long vma_add_reservation(struct hstate *h, 2287 struct vm_area_struct *vma, unsigned long addr) 2288 { 2289 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2290 } 2291 2292 /* 2293 * This routine is called to restore a reservation on error paths. In the 2294 * specific error paths, a huge page was allocated (via alloc_huge_page) 2295 * and is about to be freed. If a reservation for the page existed, 2296 * alloc_huge_page would have consumed the reservation and set PagePrivate 2297 * in the newly allocated page. When the page is freed via free_huge_page, 2298 * the global reservation count will be incremented if PagePrivate is set. 2299 * However, free_huge_page can not adjust the reserve map. Adjust the 2300 * reserve map here to be consistent with global reserve count adjustments 2301 * to be made by free_huge_page. 2302 */ 2303 static void restore_reserve_on_error(struct hstate *h, 2304 struct vm_area_struct *vma, unsigned long address, 2305 struct page *page) 2306 { 2307 if (unlikely(PagePrivate(page))) { 2308 long rc = vma_needs_reservation(h, vma, address); 2309 2310 if (unlikely(rc < 0)) { 2311 /* 2312 * Rare out of memory condition in reserve map 2313 * manipulation. Clear PagePrivate so that 2314 * global reserve count will not be incremented 2315 * by free_huge_page. This will make it appear 2316 * as though the reservation for this page was 2317 * consumed. This may prevent the task from 2318 * faulting in the page at a later time. This 2319 * is better than inconsistent global huge page 2320 * accounting of reserve counts. 2321 */ 2322 ClearPagePrivate(page); 2323 } else if (rc) { 2324 rc = vma_add_reservation(h, vma, address); 2325 if (unlikely(rc < 0)) 2326 /* 2327 * See above comment about rare out of 2328 * memory condition. 2329 */ 2330 ClearPagePrivate(page); 2331 } else 2332 vma_end_reservation(h, vma, address); 2333 } 2334 } 2335 2336 struct page *alloc_huge_page(struct vm_area_struct *vma, 2337 unsigned long addr, int avoid_reserve) 2338 { 2339 struct hugepage_subpool *spool = subpool_vma(vma); 2340 struct hstate *h = hstate_vma(vma); 2341 struct page *page; 2342 long map_chg, map_commit; 2343 long gbl_chg; 2344 int ret, idx; 2345 struct hugetlb_cgroup *h_cg; 2346 bool deferred_reserve; 2347 2348 idx = hstate_index(h); 2349 /* 2350 * Examine the region/reserve map to determine if the process 2351 * has a reservation for the page to be allocated. A return 2352 * code of zero indicates a reservation exists (no change). 2353 */ 2354 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2355 if (map_chg < 0) 2356 return ERR_PTR(-ENOMEM); 2357 2358 /* 2359 * Processes that did not create the mapping will have no 2360 * reserves as indicated by the region/reserve map. Check 2361 * that the allocation will not exceed the subpool limit. 2362 * Allocations for MAP_NORESERVE mappings also need to be 2363 * checked against any subpool limit. 2364 */ 2365 if (map_chg || avoid_reserve) { 2366 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2367 if (gbl_chg < 0) { 2368 vma_end_reservation(h, vma, addr); 2369 return ERR_PTR(-ENOSPC); 2370 } 2371 2372 /* 2373 * Even though there was no reservation in the region/reserve 2374 * map, there could be reservations associated with the 2375 * subpool that can be used. This would be indicated if the 2376 * return value of hugepage_subpool_get_pages() is zero. 2377 * However, if avoid_reserve is specified we still avoid even 2378 * the subpool reservations. 2379 */ 2380 if (avoid_reserve) 2381 gbl_chg = 1; 2382 } 2383 2384 /* If this allocation is not consuming a reservation, charge it now. 2385 */ 2386 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma); 2387 if (deferred_reserve) { 2388 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2389 idx, pages_per_huge_page(h), &h_cg); 2390 if (ret) 2391 goto out_subpool_put; 2392 } 2393 2394 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2395 if (ret) 2396 goto out_uncharge_cgroup_reservation; 2397 2398 spin_lock(&hugetlb_lock); 2399 /* 2400 * glb_chg is passed to indicate whether or not a page must be taken 2401 * from the global free pool (global change). gbl_chg == 0 indicates 2402 * a reservation exists for the allocation. 2403 */ 2404 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2405 if (!page) { 2406 spin_unlock(&hugetlb_lock); 2407 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2408 if (!page) 2409 goto out_uncharge_cgroup; 2410 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2411 SetPagePrivate(page); 2412 h->resv_huge_pages--; 2413 } 2414 spin_lock(&hugetlb_lock); 2415 list_move(&page->lru, &h->hugepage_activelist); 2416 /* Fall through */ 2417 } 2418 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2419 /* If allocation is not consuming a reservation, also store the 2420 * hugetlb_cgroup pointer on the page. 2421 */ 2422 if (deferred_reserve) { 2423 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2424 h_cg, page); 2425 } 2426 2427 spin_unlock(&hugetlb_lock); 2428 2429 set_page_private(page, (unsigned long)spool); 2430 2431 map_commit = vma_commit_reservation(h, vma, addr); 2432 if (unlikely(map_chg > map_commit)) { 2433 /* 2434 * The page was added to the reservation map between 2435 * vma_needs_reservation and vma_commit_reservation. 2436 * This indicates a race with hugetlb_reserve_pages. 2437 * Adjust for the subpool count incremented above AND 2438 * in hugetlb_reserve_pages for the same page. Also, 2439 * the reservation count added in hugetlb_reserve_pages 2440 * no longer applies. 2441 */ 2442 long rsv_adjust; 2443 2444 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2445 hugetlb_acct_memory(h, -rsv_adjust); 2446 } 2447 return page; 2448 2449 out_uncharge_cgroup: 2450 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2451 out_uncharge_cgroup_reservation: 2452 if (deferred_reserve) 2453 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2454 h_cg); 2455 out_subpool_put: 2456 if (map_chg || avoid_reserve) 2457 hugepage_subpool_put_pages(spool, 1); 2458 vma_end_reservation(h, vma, addr); 2459 return ERR_PTR(-ENOSPC); 2460 } 2461 2462 int alloc_bootmem_huge_page(struct hstate *h) 2463 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2464 int __alloc_bootmem_huge_page(struct hstate *h) 2465 { 2466 struct huge_bootmem_page *m; 2467 int nr_nodes, node; 2468 2469 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2470 void *addr; 2471 2472 addr = memblock_alloc_try_nid_raw( 2473 huge_page_size(h), huge_page_size(h), 2474 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2475 if (addr) { 2476 /* 2477 * Use the beginning of the huge page to store the 2478 * huge_bootmem_page struct (until gather_bootmem 2479 * puts them into the mem_map). 2480 */ 2481 m = addr; 2482 goto found; 2483 } 2484 } 2485 return 0; 2486 2487 found: 2488 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2489 /* Put them into a private list first because mem_map is not up yet */ 2490 INIT_LIST_HEAD(&m->list); 2491 list_add(&m->list, &huge_boot_pages); 2492 m->hstate = h; 2493 return 1; 2494 } 2495 2496 static void __init prep_compound_huge_page(struct page *page, 2497 unsigned int order) 2498 { 2499 if (unlikely(order > (MAX_ORDER - 1))) 2500 prep_compound_gigantic_page(page, order); 2501 else 2502 prep_compound_page(page, order); 2503 } 2504 2505 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2506 static void __init gather_bootmem_prealloc(void) 2507 { 2508 struct huge_bootmem_page *m; 2509 2510 list_for_each_entry(m, &huge_boot_pages, list) { 2511 struct page *page = virt_to_page(m); 2512 struct hstate *h = m->hstate; 2513 2514 WARN_ON(page_count(page) != 1); 2515 prep_compound_huge_page(page, h->order); 2516 WARN_ON(PageReserved(page)); 2517 prep_new_huge_page(h, page, page_to_nid(page)); 2518 put_page(page); /* free it into the hugepage allocator */ 2519 2520 /* 2521 * If we had gigantic hugepages allocated at boot time, we need 2522 * to restore the 'stolen' pages to totalram_pages in order to 2523 * fix confusing memory reports from free(1) and another 2524 * side-effects, like CommitLimit going negative. 2525 */ 2526 if (hstate_is_gigantic(h)) 2527 adjust_managed_page_count(page, 1 << h->order); 2528 cond_resched(); 2529 } 2530 } 2531 2532 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2533 { 2534 unsigned long i; 2535 nodemask_t *node_alloc_noretry; 2536 2537 if (!hstate_is_gigantic(h)) { 2538 /* 2539 * Bit mask controlling how hard we retry per-node allocations. 2540 * Ignore errors as lower level routines can deal with 2541 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2542 * time, we are likely in bigger trouble. 2543 */ 2544 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2545 GFP_KERNEL); 2546 } else { 2547 /* allocations done at boot time */ 2548 node_alloc_noretry = NULL; 2549 } 2550 2551 /* bit mask controlling how hard we retry per-node allocations */ 2552 if (node_alloc_noretry) 2553 nodes_clear(*node_alloc_noretry); 2554 2555 for (i = 0; i < h->max_huge_pages; ++i) { 2556 if (hstate_is_gigantic(h)) { 2557 if (hugetlb_cma_size) { 2558 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2559 break; 2560 } 2561 if (!alloc_bootmem_huge_page(h)) 2562 break; 2563 } else if (!alloc_pool_huge_page(h, 2564 &node_states[N_MEMORY], 2565 node_alloc_noretry)) 2566 break; 2567 cond_resched(); 2568 } 2569 if (i < h->max_huge_pages) { 2570 char buf[32]; 2571 2572 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2573 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2574 h->max_huge_pages, buf, i); 2575 h->max_huge_pages = i; 2576 } 2577 2578 kfree(node_alloc_noretry); 2579 } 2580 2581 static void __init hugetlb_init_hstates(void) 2582 { 2583 struct hstate *h; 2584 2585 for_each_hstate(h) { 2586 if (minimum_order > huge_page_order(h)) 2587 minimum_order = huge_page_order(h); 2588 2589 /* oversize hugepages were init'ed in early boot */ 2590 if (!hstate_is_gigantic(h)) 2591 hugetlb_hstate_alloc_pages(h); 2592 } 2593 VM_BUG_ON(minimum_order == UINT_MAX); 2594 } 2595 2596 static void __init report_hugepages(void) 2597 { 2598 struct hstate *h; 2599 2600 for_each_hstate(h) { 2601 char buf[32]; 2602 2603 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2604 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2605 buf, h->free_huge_pages); 2606 } 2607 } 2608 2609 #ifdef CONFIG_HIGHMEM 2610 static void try_to_free_low(struct hstate *h, unsigned long count, 2611 nodemask_t *nodes_allowed) 2612 { 2613 int i; 2614 2615 if (hstate_is_gigantic(h)) 2616 return; 2617 2618 for_each_node_mask(i, *nodes_allowed) { 2619 struct page *page, *next; 2620 struct list_head *freel = &h->hugepage_freelists[i]; 2621 list_for_each_entry_safe(page, next, freel, lru) { 2622 if (count >= h->nr_huge_pages) 2623 return; 2624 if (PageHighMem(page)) 2625 continue; 2626 list_del(&page->lru); 2627 update_and_free_page(h, page); 2628 h->free_huge_pages--; 2629 h->free_huge_pages_node[page_to_nid(page)]--; 2630 } 2631 } 2632 } 2633 #else 2634 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2635 nodemask_t *nodes_allowed) 2636 { 2637 } 2638 #endif 2639 2640 /* 2641 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2642 * balanced by operating on them in a round-robin fashion. 2643 * Returns 1 if an adjustment was made. 2644 */ 2645 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2646 int delta) 2647 { 2648 int nr_nodes, node; 2649 2650 VM_BUG_ON(delta != -1 && delta != 1); 2651 2652 if (delta < 0) { 2653 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2654 if (h->surplus_huge_pages_node[node]) 2655 goto found; 2656 } 2657 } else { 2658 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2659 if (h->surplus_huge_pages_node[node] < 2660 h->nr_huge_pages_node[node]) 2661 goto found; 2662 } 2663 } 2664 return 0; 2665 2666 found: 2667 h->surplus_huge_pages += delta; 2668 h->surplus_huge_pages_node[node] += delta; 2669 return 1; 2670 } 2671 2672 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2673 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2674 nodemask_t *nodes_allowed) 2675 { 2676 unsigned long min_count, ret; 2677 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2678 2679 /* 2680 * Bit mask controlling how hard we retry per-node allocations. 2681 * If we can not allocate the bit mask, do not attempt to allocate 2682 * the requested huge pages. 2683 */ 2684 if (node_alloc_noretry) 2685 nodes_clear(*node_alloc_noretry); 2686 else 2687 return -ENOMEM; 2688 2689 spin_lock(&hugetlb_lock); 2690 2691 /* 2692 * Check for a node specific request. 2693 * Changing node specific huge page count may require a corresponding 2694 * change to the global count. In any case, the passed node mask 2695 * (nodes_allowed) will restrict alloc/free to the specified node. 2696 */ 2697 if (nid != NUMA_NO_NODE) { 2698 unsigned long old_count = count; 2699 2700 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2701 /* 2702 * User may have specified a large count value which caused the 2703 * above calculation to overflow. In this case, they wanted 2704 * to allocate as many huge pages as possible. Set count to 2705 * largest possible value to align with their intention. 2706 */ 2707 if (count < old_count) 2708 count = ULONG_MAX; 2709 } 2710 2711 /* 2712 * Gigantic pages runtime allocation depend on the capability for large 2713 * page range allocation. 2714 * If the system does not provide this feature, return an error when 2715 * the user tries to allocate gigantic pages but let the user free the 2716 * boottime allocated gigantic pages. 2717 */ 2718 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2719 if (count > persistent_huge_pages(h)) { 2720 spin_unlock(&hugetlb_lock); 2721 NODEMASK_FREE(node_alloc_noretry); 2722 return -EINVAL; 2723 } 2724 /* Fall through to decrease pool */ 2725 } 2726 2727 /* 2728 * Increase the pool size 2729 * First take pages out of surplus state. Then make up the 2730 * remaining difference by allocating fresh huge pages. 2731 * 2732 * We might race with alloc_surplus_huge_page() here and be unable 2733 * to convert a surplus huge page to a normal huge page. That is 2734 * not critical, though, it just means the overall size of the 2735 * pool might be one hugepage larger than it needs to be, but 2736 * within all the constraints specified by the sysctls. 2737 */ 2738 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2739 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2740 break; 2741 } 2742 2743 while (count > persistent_huge_pages(h)) { 2744 /* 2745 * If this allocation races such that we no longer need the 2746 * page, free_huge_page will handle it by freeing the page 2747 * and reducing the surplus. 2748 */ 2749 spin_unlock(&hugetlb_lock); 2750 2751 /* yield cpu to avoid soft lockup */ 2752 cond_resched(); 2753 2754 ret = alloc_pool_huge_page(h, nodes_allowed, 2755 node_alloc_noretry); 2756 spin_lock(&hugetlb_lock); 2757 if (!ret) 2758 goto out; 2759 2760 /* Bail for signals. Probably ctrl-c from user */ 2761 if (signal_pending(current)) 2762 goto out; 2763 } 2764 2765 /* 2766 * Decrease the pool size 2767 * First return free pages to the buddy allocator (being careful 2768 * to keep enough around to satisfy reservations). Then place 2769 * pages into surplus state as needed so the pool will shrink 2770 * to the desired size as pages become free. 2771 * 2772 * By placing pages into the surplus state independent of the 2773 * overcommit value, we are allowing the surplus pool size to 2774 * exceed overcommit. There are few sane options here. Since 2775 * alloc_surplus_huge_page() is checking the global counter, 2776 * though, we'll note that we're not allowed to exceed surplus 2777 * and won't grow the pool anywhere else. Not until one of the 2778 * sysctls are changed, or the surplus pages go out of use. 2779 */ 2780 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2781 min_count = max(count, min_count); 2782 try_to_free_low(h, min_count, nodes_allowed); 2783 while (min_count < persistent_huge_pages(h)) { 2784 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2785 break; 2786 cond_resched_lock(&hugetlb_lock); 2787 } 2788 while (count < persistent_huge_pages(h)) { 2789 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2790 break; 2791 } 2792 out: 2793 h->max_huge_pages = persistent_huge_pages(h); 2794 spin_unlock(&hugetlb_lock); 2795 2796 NODEMASK_FREE(node_alloc_noretry); 2797 2798 return 0; 2799 } 2800 2801 #define HSTATE_ATTR_RO(_name) \ 2802 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2803 2804 #define HSTATE_ATTR(_name) \ 2805 static struct kobj_attribute _name##_attr = \ 2806 __ATTR(_name, 0644, _name##_show, _name##_store) 2807 2808 static struct kobject *hugepages_kobj; 2809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2810 2811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2812 2813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2814 { 2815 int i; 2816 2817 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2818 if (hstate_kobjs[i] == kobj) { 2819 if (nidp) 2820 *nidp = NUMA_NO_NODE; 2821 return &hstates[i]; 2822 } 2823 2824 return kobj_to_node_hstate(kobj, nidp); 2825 } 2826 2827 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2828 struct kobj_attribute *attr, char *buf) 2829 { 2830 struct hstate *h; 2831 unsigned long nr_huge_pages; 2832 int nid; 2833 2834 h = kobj_to_hstate(kobj, &nid); 2835 if (nid == NUMA_NO_NODE) 2836 nr_huge_pages = h->nr_huge_pages; 2837 else 2838 nr_huge_pages = h->nr_huge_pages_node[nid]; 2839 2840 return sprintf(buf, "%lu\n", nr_huge_pages); 2841 } 2842 2843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2844 struct hstate *h, int nid, 2845 unsigned long count, size_t len) 2846 { 2847 int err; 2848 nodemask_t nodes_allowed, *n_mask; 2849 2850 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2851 return -EINVAL; 2852 2853 if (nid == NUMA_NO_NODE) { 2854 /* 2855 * global hstate attribute 2856 */ 2857 if (!(obey_mempolicy && 2858 init_nodemask_of_mempolicy(&nodes_allowed))) 2859 n_mask = &node_states[N_MEMORY]; 2860 else 2861 n_mask = &nodes_allowed; 2862 } else { 2863 /* 2864 * Node specific request. count adjustment happens in 2865 * set_max_huge_pages() after acquiring hugetlb_lock. 2866 */ 2867 init_nodemask_of_node(&nodes_allowed, nid); 2868 n_mask = &nodes_allowed; 2869 } 2870 2871 err = set_max_huge_pages(h, count, nid, n_mask); 2872 2873 return err ? err : len; 2874 } 2875 2876 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2877 struct kobject *kobj, const char *buf, 2878 size_t len) 2879 { 2880 struct hstate *h; 2881 unsigned long count; 2882 int nid; 2883 int err; 2884 2885 err = kstrtoul(buf, 10, &count); 2886 if (err) 2887 return err; 2888 2889 h = kobj_to_hstate(kobj, &nid); 2890 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2891 } 2892 2893 static ssize_t nr_hugepages_show(struct kobject *kobj, 2894 struct kobj_attribute *attr, char *buf) 2895 { 2896 return nr_hugepages_show_common(kobj, attr, buf); 2897 } 2898 2899 static ssize_t nr_hugepages_store(struct kobject *kobj, 2900 struct kobj_attribute *attr, const char *buf, size_t len) 2901 { 2902 return nr_hugepages_store_common(false, kobj, buf, len); 2903 } 2904 HSTATE_ATTR(nr_hugepages); 2905 2906 #ifdef CONFIG_NUMA 2907 2908 /* 2909 * hstate attribute for optionally mempolicy-based constraint on persistent 2910 * huge page alloc/free. 2911 */ 2912 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2913 struct kobj_attribute *attr, char *buf) 2914 { 2915 return nr_hugepages_show_common(kobj, attr, buf); 2916 } 2917 2918 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2919 struct kobj_attribute *attr, const char *buf, size_t len) 2920 { 2921 return nr_hugepages_store_common(true, kobj, buf, len); 2922 } 2923 HSTATE_ATTR(nr_hugepages_mempolicy); 2924 #endif 2925 2926 2927 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2928 struct kobj_attribute *attr, char *buf) 2929 { 2930 struct hstate *h = kobj_to_hstate(kobj, NULL); 2931 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2932 } 2933 2934 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2935 struct kobj_attribute *attr, const char *buf, size_t count) 2936 { 2937 int err; 2938 unsigned long input; 2939 struct hstate *h = kobj_to_hstate(kobj, NULL); 2940 2941 if (hstate_is_gigantic(h)) 2942 return -EINVAL; 2943 2944 err = kstrtoul(buf, 10, &input); 2945 if (err) 2946 return err; 2947 2948 spin_lock(&hugetlb_lock); 2949 h->nr_overcommit_huge_pages = input; 2950 spin_unlock(&hugetlb_lock); 2951 2952 return count; 2953 } 2954 HSTATE_ATTR(nr_overcommit_hugepages); 2955 2956 static ssize_t free_hugepages_show(struct kobject *kobj, 2957 struct kobj_attribute *attr, char *buf) 2958 { 2959 struct hstate *h; 2960 unsigned long free_huge_pages; 2961 int nid; 2962 2963 h = kobj_to_hstate(kobj, &nid); 2964 if (nid == NUMA_NO_NODE) 2965 free_huge_pages = h->free_huge_pages; 2966 else 2967 free_huge_pages = h->free_huge_pages_node[nid]; 2968 2969 return sprintf(buf, "%lu\n", free_huge_pages); 2970 } 2971 HSTATE_ATTR_RO(free_hugepages); 2972 2973 static ssize_t resv_hugepages_show(struct kobject *kobj, 2974 struct kobj_attribute *attr, char *buf) 2975 { 2976 struct hstate *h = kobj_to_hstate(kobj, NULL); 2977 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2978 } 2979 HSTATE_ATTR_RO(resv_hugepages); 2980 2981 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2982 struct kobj_attribute *attr, char *buf) 2983 { 2984 struct hstate *h; 2985 unsigned long surplus_huge_pages; 2986 int nid; 2987 2988 h = kobj_to_hstate(kobj, &nid); 2989 if (nid == NUMA_NO_NODE) 2990 surplus_huge_pages = h->surplus_huge_pages; 2991 else 2992 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2993 2994 return sprintf(buf, "%lu\n", surplus_huge_pages); 2995 } 2996 HSTATE_ATTR_RO(surplus_hugepages); 2997 2998 static struct attribute *hstate_attrs[] = { 2999 &nr_hugepages_attr.attr, 3000 &nr_overcommit_hugepages_attr.attr, 3001 &free_hugepages_attr.attr, 3002 &resv_hugepages_attr.attr, 3003 &surplus_hugepages_attr.attr, 3004 #ifdef CONFIG_NUMA 3005 &nr_hugepages_mempolicy_attr.attr, 3006 #endif 3007 NULL, 3008 }; 3009 3010 static const struct attribute_group hstate_attr_group = { 3011 .attrs = hstate_attrs, 3012 }; 3013 3014 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3015 struct kobject **hstate_kobjs, 3016 const struct attribute_group *hstate_attr_group) 3017 { 3018 int retval; 3019 int hi = hstate_index(h); 3020 3021 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3022 if (!hstate_kobjs[hi]) 3023 return -ENOMEM; 3024 3025 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3026 if (retval) 3027 kobject_put(hstate_kobjs[hi]); 3028 3029 return retval; 3030 } 3031 3032 static void __init hugetlb_sysfs_init(void) 3033 { 3034 struct hstate *h; 3035 int err; 3036 3037 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3038 if (!hugepages_kobj) 3039 return; 3040 3041 for_each_hstate(h) { 3042 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3043 hstate_kobjs, &hstate_attr_group); 3044 if (err) 3045 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3046 } 3047 } 3048 3049 #ifdef CONFIG_NUMA 3050 3051 /* 3052 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3053 * with node devices in node_devices[] using a parallel array. The array 3054 * index of a node device or _hstate == node id. 3055 * This is here to avoid any static dependency of the node device driver, in 3056 * the base kernel, on the hugetlb module. 3057 */ 3058 struct node_hstate { 3059 struct kobject *hugepages_kobj; 3060 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3061 }; 3062 static struct node_hstate node_hstates[MAX_NUMNODES]; 3063 3064 /* 3065 * A subset of global hstate attributes for node devices 3066 */ 3067 static struct attribute *per_node_hstate_attrs[] = { 3068 &nr_hugepages_attr.attr, 3069 &free_hugepages_attr.attr, 3070 &surplus_hugepages_attr.attr, 3071 NULL, 3072 }; 3073 3074 static const struct attribute_group per_node_hstate_attr_group = { 3075 .attrs = per_node_hstate_attrs, 3076 }; 3077 3078 /* 3079 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3080 * Returns node id via non-NULL nidp. 3081 */ 3082 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3083 { 3084 int nid; 3085 3086 for (nid = 0; nid < nr_node_ids; nid++) { 3087 struct node_hstate *nhs = &node_hstates[nid]; 3088 int i; 3089 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3090 if (nhs->hstate_kobjs[i] == kobj) { 3091 if (nidp) 3092 *nidp = nid; 3093 return &hstates[i]; 3094 } 3095 } 3096 3097 BUG(); 3098 return NULL; 3099 } 3100 3101 /* 3102 * Unregister hstate attributes from a single node device. 3103 * No-op if no hstate attributes attached. 3104 */ 3105 static void hugetlb_unregister_node(struct node *node) 3106 { 3107 struct hstate *h; 3108 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3109 3110 if (!nhs->hugepages_kobj) 3111 return; /* no hstate attributes */ 3112 3113 for_each_hstate(h) { 3114 int idx = hstate_index(h); 3115 if (nhs->hstate_kobjs[idx]) { 3116 kobject_put(nhs->hstate_kobjs[idx]); 3117 nhs->hstate_kobjs[idx] = NULL; 3118 } 3119 } 3120 3121 kobject_put(nhs->hugepages_kobj); 3122 nhs->hugepages_kobj = NULL; 3123 } 3124 3125 3126 /* 3127 * Register hstate attributes for a single node device. 3128 * No-op if attributes already registered. 3129 */ 3130 static void hugetlb_register_node(struct node *node) 3131 { 3132 struct hstate *h; 3133 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3134 int err; 3135 3136 if (nhs->hugepages_kobj) 3137 return; /* already allocated */ 3138 3139 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3140 &node->dev.kobj); 3141 if (!nhs->hugepages_kobj) 3142 return; 3143 3144 for_each_hstate(h) { 3145 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3146 nhs->hstate_kobjs, 3147 &per_node_hstate_attr_group); 3148 if (err) { 3149 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3150 h->name, node->dev.id); 3151 hugetlb_unregister_node(node); 3152 break; 3153 } 3154 } 3155 } 3156 3157 /* 3158 * hugetlb init time: register hstate attributes for all registered node 3159 * devices of nodes that have memory. All on-line nodes should have 3160 * registered their associated device by this time. 3161 */ 3162 static void __init hugetlb_register_all_nodes(void) 3163 { 3164 int nid; 3165 3166 for_each_node_state(nid, N_MEMORY) { 3167 struct node *node = node_devices[nid]; 3168 if (node->dev.id == nid) 3169 hugetlb_register_node(node); 3170 } 3171 3172 /* 3173 * Let the node device driver know we're here so it can 3174 * [un]register hstate attributes on node hotplug. 3175 */ 3176 register_hugetlbfs_with_node(hugetlb_register_node, 3177 hugetlb_unregister_node); 3178 } 3179 #else /* !CONFIG_NUMA */ 3180 3181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3182 { 3183 BUG(); 3184 if (nidp) 3185 *nidp = -1; 3186 return NULL; 3187 } 3188 3189 static void hugetlb_register_all_nodes(void) { } 3190 3191 #endif 3192 3193 static int __init hugetlb_init(void) 3194 { 3195 int i; 3196 3197 if (!hugepages_supported()) { 3198 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3199 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3200 return 0; 3201 } 3202 3203 /* 3204 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3205 * architectures depend on setup being done here. 3206 */ 3207 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3208 if (!parsed_default_hugepagesz) { 3209 /* 3210 * If we did not parse a default huge page size, set 3211 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3212 * number of huge pages for this default size was implicitly 3213 * specified, set that here as well. 3214 * Note that the implicit setting will overwrite an explicit 3215 * setting. A warning will be printed in this case. 3216 */ 3217 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3218 if (default_hstate_max_huge_pages) { 3219 if (default_hstate.max_huge_pages) { 3220 char buf[32]; 3221 3222 string_get_size(huge_page_size(&default_hstate), 3223 1, STRING_UNITS_2, buf, 32); 3224 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3225 default_hstate.max_huge_pages, buf); 3226 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3227 default_hstate_max_huge_pages); 3228 } 3229 default_hstate.max_huge_pages = 3230 default_hstate_max_huge_pages; 3231 } 3232 } 3233 3234 hugetlb_cma_check(); 3235 hugetlb_init_hstates(); 3236 gather_bootmem_prealloc(); 3237 report_hugepages(); 3238 3239 hugetlb_sysfs_init(); 3240 hugetlb_register_all_nodes(); 3241 hugetlb_cgroup_file_init(); 3242 3243 #ifdef CONFIG_SMP 3244 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3245 #else 3246 num_fault_mutexes = 1; 3247 #endif 3248 hugetlb_fault_mutex_table = 3249 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3250 GFP_KERNEL); 3251 BUG_ON(!hugetlb_fault_mutex_table); 3252 3253 for (i = 0; i < num_fault_mutexes; i++) 3254 mutex_init(&hugetlb_fault_mutex_table[i]); 3255 return 0; 3256 } 3257 subsys_initcall(hugetlb_init); 3258 3259 /* Overwritten by architectures with more huge page sizes */ 3260 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3261 { 3262 return size == HPAGE_SIZE; 3263 } 3264 3265 void __init hugetlb_add_hstate(unsigned int order) 3266 { 3267 struct hstate *h; 3268 unsigned long i; 3269 3270 if (size_to_hstate(PAGE_SIZE << order)) { 3271 return; 3272 } 3273 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3274 BUG_ON(order == 0); 3275 h = &hstates[hugetlb_max_hstate++]; 3276 h->order = order; 3277 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 3278 h->nr_huge_pages = 0; 3279 h->free_huge_pages = 0; 3280 for (i = 0; i < MAX_NUMNODES; ++i) 3281 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3282 INIT_LIST_HEAD(&h->hugepage_activelist); 3283 h->next_nid_to_alloc = first_memory_node; 3284 h->next_nid_to_free = first_memory_node; 3285 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3286 huge_page_size(h)/1024); 3287 3288 parsed_hstate = h; 3289 } 3290 3291 /* 3292 * hugepages command line processing 3293 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3294 * specification. If not, ignore the hugepages value. hugepages can also 3295 * be the first huge page command line option in which case it implicitly 3296 * specifies the number of huge pages for the default size. 3297 */ 3298 static int __init hugepages_setup(char *s) 3299 { 3300 unsigned long *mhp; 3301 static unsigned long *last_mhp; 3302 3303 if (!parsed_valid_hugepagesz) { 3304 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3305 parsed_valid_hugepagesz = true; 3306 return 0; 3307 } 3308 3309 /* 3310 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3311 * yet, so this hugepages= parameter goes to the "default hstate". 3312 * Otherwise, it goes with the previously parsed hugepagesz or 3313 * default_hugepagesz. 3314 */ 3315 else if (!hugetlb_max_hstate) 3316 mhp = &default_hstate_max_huge_pages; 3317 else 3318 mhp = &parsed_hstate->max_huge_pages; 3319 3320 if (mhp == last_mhp) { 3321 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3322 return 0; 3323 } 3324 3325 if (sscanf(s, "%lu", mhp) <= 0) 3326 *mhp = 0; 3327 3328 /* 3329 * Global state is always initialized later in hugetlb_init. 3330 * But we need to allocate >= MAX_ORDER hstates here early to still 3331 * use the bootmem allocator. 3332 */ 3333 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3334 hugetlb_hstate_alloc_pages(parsed_hstate); 3335 3336 last_mhp = mhp; 3337 3338 return 1; 3339 } 3340 __setup("hugepages=", hugepages_setup); 3341 3342 /* 3343 * hugepagesz command line processing 3344 * A specific huge page size can only be specified once with hugepagesz. 3345 * hugepagesz is followed by hugepages on the command line. The global 3346 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3347 * hugepagesz argument was valid. 3348 */ 3349 static int __init hugepagesz_setup(char *s) 3350 { 3351 unsigned long size; 3352 struct hstate *h; 3353 3354 parsed_valid_hugepagesz = false; 3355 size = (unsigned long)memparse(s, NULL); 3356 3357 if (!arch_hugetlb_valid_size(size)) { 3358 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3359 return 0; 3360 } 3361 3362 h = size_to_hstate(size); 3363 if (h) { 3364 /* 3365 * hstate for this size already exists. This is normally 3366 * an error, but is allowed if the existing hstate is the 3367 * default hstate. More specifically, it is only allowed if 3368 * the number of huge pages for the default hstate was not 3369 * previously specified. 3370 */ 3371 if (!parsed_default_hugepagesz || h != &default_hstate || 3372 default_hstate.max_huge_pages) { 3373 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3374 return 0; 3375 } 3376 3377 /* 3378 * No need to call hugetlb_add_hstate() as hstate already 3379 * exists. But, do set parsed_hstate so that a following 3380 * hugepages= parameter will be applied to this hstate. 3381 */ 3382 parsed_hstate = h; 3383 parsed_valid_hugepagesz = true; 3384 return 1; 3385 } 3386 3387 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3388 parsed_valid_hugepagesz = true; 3389 return 1; 3390 } 3391 __setup("hugepagesz=", hugepagesz_setup); 3392 3393 /* 3394 * default_hugepagesz command line input 3395 * Only one instance of default_hugepagesz allowed on command line. 3396 */ 3397 static int __init default_hugepagesz_setup(char *s) 3398 { 3399 unsigned long size; 3400 3401 parsed_valid_hugepagesz = false; 3402 if (parsed_default_hugepagesz) { 3403 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3404 return 0; 3405 } 3406 3407 size = (unsigned long)memparse(s, NULL); 3408 3409 if (!arch_hugetlb_valid_size(size)) { 3410 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3411 return 0; 3412 } 3413 3414 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3415 parsed_valid_hugepagesz = true; 3416 parsed_default_hugepagesz = true; 3417 default_hstate_idx = hstate_index(size_to_hstate(size)); 3418 3419 /* 3420 * The number of default huge pages (for this size) could have been 3421 * specified as the first hugetlb parameter: hugepages=X. If so, 3422 * then default_hstate_max_huge_pages is set. If the default huge 3423 * page size is gigantic (>= MAX_ORDER), then the pages must be 3424 * allocated here from bootmem allocator. 3425 */ 3426 if (default_hstate_max_huge_pages) { 3427 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3428 if (hstate_is_gigantic(&default_hstate)) 3429 hugetlb_hstate_alloc_pages(&default_hstate); 3430 default_hstate_max_huge_pages = 0; 3431 } 3432 3433 return 1; 3434 } 3435 __setup("default_hugepagesz=", default_hugepagesz_setup); 3436 3437 static unsigned int allowed_mems_nr(struct hstate *h) 3438 { 3439 int node; 3440 unsigned int nr = 0; 3441 nodemask_t *mpol_allowed; 3442 unsigned int *array = h->free_huge_pages_node; 3443 gfp_t gfp_mask = htlb_alloc_mask(h); 3444 3445 mpol_allowed = policy_nodemask_current(gfp_mask); 3446 3447 for_each_node_mask(node, cpuset_current_mems_allowed) { 3448 if (!mpol_allowed || 3449 (mpol_allowed && node_isset(node, *mpol_allowed))) 3450 nr += array[node]; 3451 } 3452 3453 return nr; 3454 } 3455 3456 #ifdef CONFIG_SYSCTL 3457 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3458 struct ctl_table *table, int write, 3459 void *buffer, size_t *length, loff_t *ppos) 3460 { 3461 struct hstate *h = &default_hstate; 3462 unsigned long tmp = h->max_huge_pages; 3463 int ret; 3464 3465 if (!hugepages_supported()) 3466 return -EOPNOTSUPP; 3467 3468 table->data = &tmp; 3469 table->maxlen = sizeof(unsigned long); 3470 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3471 if (ret) 3472 goto out; 3473 3474 if (write) 3475 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3476 NUMA_NO_NODE, tmp, *length); 3477 out: 3478 return ret; 3479 } 3480 3481 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3482 void *buffer, size_t *length, loff_t *ppos) 3483 { 3484 3485 return hugetlb_sysctl_handler_common(false, table, write, 3486 buffer, length, ppos); 3487 } 3488 3489 #ifdef CONFIG_NUMA 3490 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3491 void *buffer, size_t *length, loff_t *ppos) 3492 { 3493 return hugetlb_sysctl_handler_common(true, table, write, 3494 buffer, length, ppos); 3495 } 3496 #endif /* CONFIG_NUMA */ 3497 3498 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3499 void *buffer, size_t *length, loff_t *ppos) 3500 { 3501 struct hstate *h = &default_hstate; 3502 unsigned long tmp; 3503 int ret; 3504 3505 if (!hugepages_supported()) 3506 return -EOPNOTSUPP; 3507 3508 tmp = h->nr_overcommit_huge_pages; 3509 3510 if (write && hstate_is_gigantic(h)) 3511 return -EINVAL; 3512 3513 table->data = &tmp; 3514 table->maxlen = sizeof(unsigned long); 3515 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3516 if (ret) 3517 goto out; 3518 3519 if (write) { 3520 spin_lock(&hugetlb_lock); 3521 h->nr_overcommit_huge_pages = tmp; 3522 spin_unlock(&hugetlb_lock); 3523 } 3524 out: 3525 return ret; 3526 } 3527 3528 #endif /* CONFIG_SYSCTL */ 3529 3530 void hugetlb_report_meminfo(struct seq_file *m) 3531 { 3532 struct hstate *h; 3533 unsigned long total = 0; 3534 3535 if (!hugepages_supported()) 3536 return; 3537 3538 for_each_hstate(h) { 3539 unsigned long count = h->nr_huge_pages; 3540 3541 total += (PAGE_SIZE << huge_page_order(h)) * count; 3542 3543 if (h == &default_hstate) 3544 seq_printf(m, 3545 "HugePages_Total: %5lu\n" 3546 "HugePages_Free: %5lu\n" 3547 "HugePages_Rsvd: %5lu\n" 3548 "HugePages_Surp: %5lu\n" 3549 "Hugepagesize: %8lu kB\n", 3550 count, 3551 h->free_huge_pages, 3552 h->resv_huge_pages, 3553 h->surplus_huge_pages, 3554 (PAGE_SIZE << huge_page_order(h)) / 1024); 3555 } 3556 3557 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3558 } 3559 3560 int hugetlb_report_node_meminfo(int nid, char *buf) 3561 { 3562 struct hstate *h = &default_hstate; 3563 if (!hugepages_supported()) 3564 return 0; 3565 return sprintf(buf, 3566 "Node %d HugePages_Total: %5u\n" 3567 "Node %d HugePages_Free: %5u\n" 3568 "Node %d HugePages_Surp: %5u\n", 3569 nid, h->nr_huge_pages_node[nid], 3570 nid, h->free_huge_pages_node[nid], 3571 nid, h->surplus_huge_pages_node[nid]); 3572 } 3573 3574 void hugetlb_show_meminfo(void) 3575 { 3576 struct hstate *h; 3577 int nid; 3578 3579 if (!hugepages_supported()) 3580 return; 3581 3582 for_each_node_state(nid, N_MEMORY) 3583 for_each_hstate(h) 3584 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3585 nid, 3586 h->nr_huge_pages_node[nid], 3587 h->free_huge_pages_node[nid], 3588 h->surplus_huge_pages_node[nid], 3589 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3590 } 3591 3592 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3593 { 3594 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3595 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3596 } 3597 3598 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3599 unsigned long hugetlb_total_pages(void) 3600 { 3601 struct hstate *h; 3602 unsigned long nr_total_pages = 0; 3603 3604 for_each_hstate(h) 3605 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3606 return nr_total_pages; 3607 } 3608 3609 static int hugetlb_acct_memory(struct hstate *h, long delta) 3610 { 3611 int ret = -ENOMEM; 3612 3613 spin_lock(&hugetlb_lock); 3614 /* 3615 * When cpuset is configured, it breaks the strict hugetlb page 3616 * reservation as the accounting is done on a global variable. Such 3617 * reservation is completely rubbish in the presence of cpuset because 3618 * the reservation is not checked against page availability for the 3619 * current cpuset. Application can still potentially OOM'ed by kernel 3620 * with lack of free htlb page in cpuset that the task is in. 3621 * Attempt to enforce strict accounting with cpuset is almost 3622 * impossible (or too ugly) because cpuset is too fluid that 3623 * task or memory node can be dynamically moved between cpusets. 3624 * 3625 * The change of semantics for shared hugetlb mapping with cpuset is 3626 * undesirable. However, in order to preserve some of the semantics, 3627 * we fall back to check against current free page availability as 3628 * a best attempt and hopefully to minimize the impact of changing 3629 * semantics that cpuset has. 3630 * 3631 * Apart from cpuset, we also have memory policy mechanism that 3632 * also determines from which node the kernel will allocate memory 3633 * in a NUMA system. So similar to cpuset, we also should consider 3634 * the memory policy of the current task. Similar to the description 3635 * above. 3636 */ 3637 if (delta > 0) { 3638 if (gather_surplus_pages(h, delta) < 0) 3639 goto out; 3640 3641 if (delta > allowed_mems_nr(h)) { 3642 return_unused_surplus_pages(h, delta); 3643 goto out; 3644 } 3645 } 3646 3647 ret = 0; 3648 if (delta < 0) 3649 return_unused_surplus_pages(h, (unsigned long) -delta); 3650 3651 out: 3652 spin_unlock(&hugetlb_lock); 3653 return ret; 3654 } 3655 3656 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3657 { 3658 struct resv_map *resv = vma_resv_map(vma); 3659 3660 /* 3661 * This new VMA should share its siblings reservation map if present. 3662 * The VMA will only ever have a valid reservation map pointer where 3663 * it is being copied for another still existing VMA. As that VMA 3664 * has a reference to the reservation map it cannot disappear until 3665 * after this open call completes. It is therefore safe to take a 3666 * new reference here without additional locking. 3667 */ 3668 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3669 kref_get(&resv->refs); 3670 } 3671 3672 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3673 { 3674 struct hstate *h = hstate_vma(vma); 3675 struct resv_map *resv = vma_resv_map(vma); 3676 struct hugepage_subpool *spool = subpool_vma(vma); 3677 unsigned long reserve, start, end; 3678 long gbl_reserve; 3679 3680 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3681 return; 3682 3683 start = vma_hugecache_offset(h, vma, vma->vm_start); 3684 end = vma_hugecache_offset(h, vma, vma->vm_end); 3685 3686 reserve = (end - start) - region_count(resv, start, end); 3687 hugetlb_cgroup_uncharge_counter(resv, start, end); 3688 if (reserve) { 3689 /* 3690 * Decrement reserve counts. The global reserve count may be 3691 * adjusted if the subpool has a minimum size. 3692 */ 3693 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3694 hugetlb_acct_memory(h, -gbl_reserve); 3695 } 3696 3697 kref_put(&resv->refs, resv_map_release); 3698 } 3699 3700 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3701 { 3702 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3703 return -EINVAL; 3704 return 0; 3705 } 3706 3707 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3708 { 3709 struct hstate *hstate = hstate_vma(vma); 3710 3711 return 1UL << huge_page_shift(hstate); 3712 } 3713 3714 /* 3715 * We cannot handle pagefaults against hugetlb pages at all. They cause 3716 * handle_mm_fault() to try to instantiate regular-sized pages in the 3717 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3718 * this far. 3719 */ 3720 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3721 { 3722 BUG(); 3723 return 0; 3724 } 3725 3726 /* 3727 * When a new function is introduced to vm_operations_struct and added 3728 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3729 * This is because under System V memory model, mappings created via 3730 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3731 * their original vm_ops are overwritten with shm_vm_ops. 3732 */ 3733 const struct vm_operations_struct hugetlb_vm_ops = { 3734 .fault = hugetlb_vm_op_fault, 3735 .open = hugetlb_vm_op_open, 3736 .close = hugetlb_vm_op_close, 3737 .split = hugetlb_vm_op_split, 3738 .pagesize = hugetlb_vm_op_pagesize, 3739 }; 3740 3741 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3742 int writable) 3743 { 3744 pte_t entry; 3745 3746 if (writable) { 3747 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3748 vma->vm_page_prot))); 3749 } else { 3750 entry = huge_pte_wrprotect(mk_huge_pte(page, 3751 vma->vm_page_prot)); 3752 } 3753 entry = pte_mkyoung(entry); 3754 entry = pte_mkhuge(entry); 3755 entry = arch_make_huge_pte(entry, vma, page, writable); 3756 3757 return entry; 3758 } 3759 3760 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3761 unsigned long address, pte_t *ptep) 3762 { 3763 pte_t entry; 3764 3765 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3766 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3767 update_mmu_cache(vma, address, ptep); 3768 } 3769 3770 bool is_hugetlb_entry_migration(pte_t pte) 3771 { 3772 swp_entry_t swp; 3773 3774 if (huge_pte_none(pte) || pte_present(pte)) 3775 return false; 3776 swp = pte_to_swp_entry(pte); 3777 if (non_swap_entry(swp) && is_migration_entry(swp)) 3778 return true; 3779 else 3780 return false; 3781 } 3782 3783 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3784 { 3785 swp_entry_t swp; 3786 3787 if (huge_pte_none(pte) || pte_present(pte)) 3788 return 0; 3789 swp = pte_to_swp_entry(pte); 3790 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3791 return 1; 3792 else 3793 return 0; 3794 } 3795 3796 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3797 struct vm_area_struct *vma) 3798 { 3799 pte_t *src_pte, *dst_pte, entry, dst_entry; 3800 struct page *ptepage; 3801 unsigned long addr; 3802 int cow; 3803 struct hstate *h = hstate_vma(vma); 3804 unsigned long sz = huge_page_size(h); 3805 struct address_space *mapping = vma->vm_file->f_mapping; 3806 struct mmu_notifier_range range; 3807 int ret = 0; 3808 3809 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3810 3811 if (cow) { 3812 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3813 vma->vm_start, 3814 vma->vm_end); 3815 mmu_notifier_invalidate_range_start(&range); 3816 } else { 3817 /* 3818 * For shared mappings i_mmap_rwsem must be held to call 3819 * huge_pte_alloc, otherwise the returned ptep could go 3820 * away if part of a shared pmd and another thread calls 3821 * huge_pmd_unshare. 3822 */ 3823 i_mmap_lock_read(mapping); 3824 } 3825 3826 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3827 spinlock_t *src_ptl, *dst_ptl; 3828 src_pte = huge_pte_offset(src, addr, sz); 3829 if (!src_pte) 3830 continue; 3831 dst_pte = huge_pte_alloc(dst, addr, sz); 3832 if (!dst_pte) { 3833 ret = -ENOMEM; 3834 break; 3835 } 3836 3837 /* 3838 * If the pagetables are shared don't copy or take references. 3839 * dst_pte == src_pte is the common case of src/dest sharing. 3840 * 3841 * However, src could have 'unshared' and dst shares with 3842 * another vma. If dst_pte !none, this implies sharing. 3843 * Check here before taking page table lock, and once again 3844 * after taking the lock below. 3845 */ 3846 dst_entry = huge_ptep_get(dst_pte); 3847 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3848 continue; 3849 3850 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3851 src_ptl = huge_pte_lockptr(h, src, src_pte); 3852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3853 entry = huge_ptep_get(src_pte); 3854 dst_entry = huge_ptep_get(dst_pte); 3855 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3856 /* 3857 * Skip if src entry none. Also, skip in the 3858 * unlikely case dst entry !none as this implies 3859 * sharing with another vma. 3860 */ 3861 ; 3862 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3863 is_hugetlb_entry_hwpoisoned(entry))) { 3864 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3865 3866 if (is_write_migration_entry(swp_entry) && cow) { 3867 /* 3868 * COW mappings require pages in both 3869 * parent and child to be set to read. 3870 */ 3871 make_migration_entry_read(&swp_entry); 3872 entry = swp_entry_to_pte(swp_entry); 3873 set_huge_swap_pte_at(src, addr, src_pte, 3874 entry, sz); 3875 } 3876 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3877 } else { 3878 if (cow) { 3879 /* 3880 * No need to notify as we are downgrading page 3881 * table protection not changing it to point 3882 * to a new page. 3883 * 3884 * See Documentation/vm/mmu_notifier.rst 3885 */ 3886 huge_ptep_set_wrprotect(src, addr, src_pte); 3887 } 3888 entry = huge_ptep_get(src_pte); 3889 ptepage = pte_page(entry); 3890 get_page(ptepage); 3891 page_dup_rmap(ptepage, true); 3892 set_huge_pte_at(dst, addr, dst_pte, entry); 3893 hugetlb_count_add(pages_per_huge_page(h), dst); 3894 } 3895 spin_unlock(src_ptl); 3896 spin_unlock(dst_ptl); 3897 } 3898 3899 if (cow) 3900 mmu_notifier_invalidate_range_end(&range); 3901 else 3902 i_mmap_unlock_read(mapping); 3903 3904 return ret; 3905 } 3906 3907 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3908 unsigned long start, unsigned long end, 3909 struct page *ref_page) 3910 { 3911 struct mm_struct *mm = vma->vm_mm; 3912 unsigned long address; 3913 pte_t *ptep; 3914 pte_t pte; 3915 spinlock_t *ptl; 3916 struct page *page; 3917 struct hstate *h = hstate_vma(vma); 3918 unsigned long sz = huge_page_size(h); 3919 struct mmu_notifier_range range; 3920 3921 WARN_ON(!is_vm_hugetlb_page(vma)); 3922 BUG_ON(start & ~huge_page_mask(h)); 3923 BUG_ON(end & ~huge_page_mask(h)); 3924 3925 /* 3926 * This is a hugetlb vma, all the pte entries should point 3927 * to huge page. 3928 */ 3929 tlb_change_page_size(tlb, sz); 3930 tlb_start_vma(tlb, vma); 3931 3932 /* 3933 * If sharing possible, alert mmu notifiers of worst case. 3934 */ 3935 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3936 end); 3937 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3938 mmu_notifier_invalidate_range_start(&range); 3939 address = start; 3940 for (; address < end; address += sz) { 3941 ptep = huge_pte_offset(mm, address, sz); 3942 if (!ptep) 3943 continue; 3944 3945 ptl = huge_pte_lock(h, mm, ptep); 3946 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 3947 spin_unlock(ptl); 3948 /* 3949 * We just unmapped a page of PMDs by clearing a PUD. 3950 * The caller's TLB flush range should cover this area. 3951 */ 3952 continue; 3953 } 3954 3955 pte = huge_ptep_get(ptep); 3956 if (huge_pte_none(pte)) { 3957 spin_unlock(ptl); 3958 continue; 3959 } 3960 3961 /* 3962 * Migrating hugepage or HWPoisoned hugepage is already 3963 * unmapped and its refcount is dropped, so just clear pte here. 3964 */ 3965 if (unlikely(!pte_present(pte))) { 3966 huge_pte_clear(mm, address, ptep, sz); 3967 spin_unlock(ptl); 3968 continue; 3969 } 3970 3971 page = pte_page(pte); 3972 /* 3973 * If a reference page is supplied, it is because a specific 3974 * page is being unmapped, not a range. Ensure the page we 3975 * are about to unmap is the actual page of interest. 3976 */ 3977 if (ref_page) { 3978 if (page != ref_page) { 3979 spin_unlock(ptl); 3980 continue; 3981 } 3982 /* 3983 * Mark the VMA as having unmapped its page so that 3984 * future faults in this VMA will fail rather than 3985 * looking like data was lost 3986 */ 3987 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3988 } 3989 3990 pte = huge_ptep_get_and_clear(mm, address, ptep); 3991 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3992 if (huge_pte_dirty(pte)) 3993 set_page_dirty(page); 3994 3995 hugetlb_count_sub(pages_per_huge_page(h), mm); 3996 page_remove_rmap(page, true); 3997 3998 spin_unlock(ptl); 3999 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4000 /* 4001 * Bail out after unmapping reference page if supplied 4002 */ 4003 if (ref_page) 4004 break; 4005 } 4006 mmu_notifier_invalidate_range_end(&range); 4007 tlb_end_vma(tlb, vma); 4008 } 4009 4010 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4011 struct vm_area_struct *vma, unsigned long start, 4012 unsigned long end, struct page *ref_page) 4013 { 4014 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4015 4016 /* 4017 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4018 * test will fail on a vma being torn down, and not grab a page table 4019 * on its way out. We're lucky that the flag has such an appropriate 4020 * name, and can in fact be safely cleared here. We could clear it 4021 * before the __unmap_hugepage_range above, but all that's necessary 4022 * is to clear it before releasing the i_mmap_rwsem. This works 4023 * because in the context this is called, the VMA is about to be 4024 * destroyed and the i_mmap_rwsem is held. 4025 */ 4026 vma->vm_flags &= ~VM_MAYSHARE; 4027 } 4028 4029 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4030 unsigned long end, struct page *ref_page) 4031 { 4032 struct mm_struct *mm; 4033 struct mmu_gather tlb; 4034 unsigned long tlb_start = start; 4035 unsigned long tlb_end = end; 4036 4037 /* 4038 * If shared PMDs were possibly used within this vma range, adjust 4039 * start/end for worst case tlb flushing. 4040 * Note that we can not be sure if PMDs are shared until we try to 4041 * unmap pages. However, we want to make sure TLB flushing covers 4042 * the largest possible range. 4043 */ 4044 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 4045 4046 mm = vma->vm_mm; 4047 4048 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 4049 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4050 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 4051 } 4052 4053 /* 4054 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4055 * mappping it owns the reserve page for. The intention is to unmap the page 4056 * from other VMAs and let the children be SIGKILLed if they are faulting the 4057 * same region. 4058 */ 4059 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4060 struct page *page, unsigned long address) 4061 { 4062 struct hstate *h = hstate_vma(vma); 4063 struct vm_area_struct *iter_vma; 4064 struct address_space *mapping; 4065 pgoff_t pgoff; 4066 4067 /* 4068 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4069 * from page cache lookup which is in HPAGE_SIZE units. 4070 */ 4071 address = address & huge_page_mask(h); 4072 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4073 vma->vm_pgoff; 4074 mapping = vma->vm_file->f_mapping; 4075 4076 /* 4077 * Take the mapping lock for the duration of the table walk. As 4078 * this mapping should be shared between all the VMAs, 4079 * __unmap_hugepage_range() is called as the lock is already held 4080 */ 4081 i_mmap_lock_write(mapping); 4082 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4083 /* Do not unmap the current VMA */ 4084 if (iter_vma == vma) 4085 continue; 4086 4087 /* 4088 * Shared VMAs have their own reserves and do not affect 4089 * MAP_PRIVATE accounting but it is possible that a shared 4090 * VMA is using the same page so check and skip such VMAs. 4091 */ 4092 if (iter_vma->vm_flags & VM_MAYSHARE) 4093 continue; 4094 4095 /* 4096 * Unmap the page from other VMAs without their own reserves. 4097 * They get marked to be SIGKILLed if they fault in these 4098 * areas. This is because a future no-page fault on this VMA 4099 * could insert a zeroed page instead of the data existing 4100 * from the time of fork. This would look like data corruption 4101 */ 4102 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4103 unmap_hugepage_range(iter_vma, address, 4104 address + huge_page_size(h), page); 4105 } 4106 i_mmap_unlock_write(mapping); 4107 } 4108 4109 /* 4110 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4111 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4112 * cannot race with other handlers or page migration. 4113 * Keep the pte_same checks anyway to make transition from the mutex easier. 4114 */ 4115 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4116 unsigned long address, pte_t *ptep, 4117 struct page *pagecache_page, spinlock_t *ptl) 4118 { 4119 pte_t pte; 4120 struct hstate *h = hstate_vma(vma); 4121 struct page *old_page, *new_page; 4122 int outside_reserve = 0; 4123 vm_fault_t ret = 0; 4124 unsigned long haddr = address & huge_page_mask(h); 4125 struct mmu_notifier_range range; 4126 4127 pte = huge_ptep_get(ptep); 4128 old_page = pte_page(pte); 4129 4130 retry_avoidcopy: 4131 /* If no-one else is actually using this page, avoid the copy 4132 * and just make the page writable */ 4133 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4134 page_move_anon_rmap(old_page, vma); 4135 set_huge_ptep_writable(vma, haddr, ptep); 4136 return 0; 4137 } 4138 4139 /* 4140 * If the process that created a MAP_PRIVATE mapping is about to 4141 * perform a COW due to a shared page count, attempt to satisfy 4142 * the allocation without using the existing reserves. The pagecache 4143 * page is used to determine if the reserve at this address was 4144 * consumed or not. If reserves were used, a partial faulted mapping 4145 * at the time of fork() could consume its reserves on COW instead 4146 * of the full address range. 4147 */ 4148 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4149 old_page != pagecache_page) 4150 outside_reserve = 1; 4151 4152 get_page(old_page); 4153 4154 /* 4155 * Drop page table lock as buddy allocator may be called. It will 4156 * be acquired again before returning to the caller, as expected. 4157 */ 4158 spin_unlock(ptl); 4159 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4160 4161 if (IS_ERR(new_page)) { 4162 /* 4163 * If a process owning a MAP_PRIVATE mapping fails to COW, 4164 * it is due to references held by a child and an insufficient 4165 * huge page pool. To guarantee the original mappers 4166 * reliability, unmap the page from child processes. The child 4167 * may get SIGKILLed if it later faults. 4168 */ 4169 if (outside_reserve) { 4170 put_page(old_page); 4171 BUG_ON(huge_pte_none(pte)); 4172 unmap_ref_private(mm, vma, old_page, haddr); 4173 BUG_ON(huge_pte_none(pte)); 4174 spin_lock(ptl); 4175 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4176 if (likely(ptep && 4177 pte_same(huge_ptep_get(ptep), pte))) 4178 goto retry_avoidcopy; 4179 /* 4180 * race occurs while re-acquiring page table 4181 * lock, and our job is done. 4182 */ 4183 return 0; 4184 } 4185 4186 ret = vmf_error(PTR_ERR(new_page)); 4187 goto out_release_old; 4188 } 4189 4190 /* 4191 * When the original hugepage is shared one, it does not have 4192 * anon_vma prepared. 4193 */ 4194 if (unlikely(anon_vma_prepare(vma))) { 4195 ret = VM_FAULT_OOM; 4196 goto out_release_all; 4197 } 4198 4199 copy_user_huge_page(new_page, old_page, address, vma, 4200 pages_per_huge_page(h)); 4201 __SetPageUptodate(new_page); 4202 4203 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4204 haddr + huge_page_size(h)); 4205 mmu_notifier_invalidate_range_start(&range); 4206 4207 /* 4208 * Retake the page table lock to check for racing updates 4209 * before the page tables are altered 4210 */ 4211 spin_lock(ptl); 4212 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4213 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4214 ClearPagePrivate(new_page); 4215 4216 /* Break COW */ 4217 huge_ptep_clear_flush(vma, haddr, ptep); 4218 mmu_notifier_invalidate_range(mm, range.start, range.end); 4219 set_huge_pte_at(mm, haddr, ptep, 4220 make_huge_pte(vma, new_page, 1)); 4221 page_remove_rmap(old_page, true); 4222 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4223 set_page_huge_active(new_page); 4224 /* Make the old page be freed below */ 4225 new_page = old_page; 4226 } 4227 spin_unlock(ptl); 4228 mmu_notifier_invalidate_range_end(&range); 4229 out_release_all: 4230 restore_reserve_on_error(h, vma, haddr, new_page); 4231 put_page(new_page); 4232 out_release_old: 4233 put_page(old_page); 4234 4235 spin_lock(ptl); /* Caller expects lock to be held */ 4236 return ret; 4237 } 4238 4239 /* Return the pagecache page at a given address within a VMA */ 4240 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4241 struct vm_area_struct *vma, unsigned long address) 4242 { 4243 struct address_space *mapping; 4244 pgoff_t idx; 4245 4246 mapping = vma->vm_file->f_mapping; 4247 idx = vma_hugecache_offset(h, vma, address); 4248 4249 return find_lock_page(mapping, idx); 4250 } 4251 4252 /* 4253 * Return whether there is a pagecache page to back given address within VMA. 4254 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4255 */ 4256 static bool hugetlbfs_pagecache_present(struct hstate *h, 4257 struct vm_area_struct *vma, unsigned long address) 4258 { 4259 struct address_space *mapping; 4260 pgoff_t idx; 4261 struct page *page; 4262 4263 mapping = vma->vm_file->f_mapping; 4264 idx = vma_hugecache_offset(h, vma, address); 4265 4266 page = find_get_page(mapping, idx); 4267 if (page) 4268 put_page(page); 4269 return page != NULL; 4270 } 4271 4272 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4273 pgoff_t idx) 4274 { 4275 struct inode *inode = mapping->host; 4276 struct hstate *h = hstate_inode(inode); 4277 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4278 4279 if (err) 4280 return err; 4281 ClearPagePrivate(page); 4282 4283 /* 4284 * set page dirty so that it will not be removed from cache/file 4285 * by non-hugetlbfs specific code paths. 4286 */ 4287 set_page_dirty(page); 4288 4289 spin_lock(&inode->i_lock); 4290 inode->i_blocks += blocks_per_huge_page(h); 4291 spin_unlock(&inode->i_lock); 4292 return 0; 4293 } 4294 4295 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4296 struct vm_area_struct *vma, 4297 struct address_space *mapping, pgoff_t idx, 4298 unsigned long address, pte_t *ptep, unsigned int flags) 4299 { 4300 struct hstate *h = hstate_vma(vma); 4301 vm_fault_t ret = VM_FAULT_SIGBUS; 4302 int anon_rmap = 0; 4303 unsigned long size; 4304 struct page *page; 4305 pte_t new_pte; 4306 spinlock_t *ptl; 4307 unsigned long haddr = address & huge_page_mask(h); 4308 bool new_page = false; 4309 4310 /* 4311 * Currently, we are forced to kill the process in the event the 4312 * original mapper has unmapped pages from the child due to a failed 4313 * COW. Warn that such a situation has occurred as it may not be obvious 4314 */ 4315 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4316 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4317 current->pid); 4318 return ret; 4319 } 4320 4321 /* 4322 * We can not race with truncation due to holding i_mmap_rwsem. 4323 * i_size is modified when holding i_mmap_rwsem, so check here 4324 * once for faults beyond end of file. 4325 */ 4326 size = i_size_read(mapping->host) >> huge_page_shift(h); 4327 if (idx >= size) 4328 goto out; 4329 4330 retry: 4331 page = find_lock_page(mapping, idx); 4332 if (!page) { 4333 /* 4334 * Check for page in userfault range 4335 */ 4336 if (userfaultfd_missing(vma)) { 4337 u32 hash; 4338 struct vm_fault vmf = { 4339 .vma = vma, 4340 .address = haddr, 4341 .flags = flags, 4342 /* 4343 * Hard to debug if it ends up being 4344 * used by a callee that assumes 4345 * something about the other 4346 * uninitialized fields... same as in 4347 * memory.c 4348 */ 4349 }; 4350 4351 /* 4352 * hugetlb_fault_mutex and i_mmap_rwsem must be 4353 * dropped before handling userfault. Reacquire 4354 * after handling fault to make calling code simpler. 4355 */ 4356 hash = hugetlb_fault_mutex_hash(mapping, idx); 4357 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4358 i_mmap_unlock_read(mapping); 4359 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 4360 i_mmap_lock_read(mapping); 4361 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4362 goto out; 4363 } 4364 4365 page = alloc_huge_page(vma, haddr, 0); 4366 if (IS_ERR(page)) { 4367 /* 4368 * Returning error will result in faulting task being 4369 * sent SIGBUS. The hugetlb fault mutex prevents two 4370 * tasks from racing to fault in the same page which 4371 * could result in false unable to allocate errors. 4372 * Page migration does not take the fault mutex, but 4373 * does a clear then write of pte's under page table 4374 * lock. Page fault code could race with migration, 4375 * notice the clear pte and try to allocate a page 4376 * here. Before returning error, get ptl and make 4377 * sure there really is no pte entry. 4378 */ 4379 ptl = huge_pte_lock(h, mm, ptep); 4380 if (!huge_pte_none(huge_ptep_get(ptep))) { 4381 ret = 0; 4382 spin_unlock(ptl); 4383 goto out; 4384 } 4385 spin_unlock(ptl); 4386 ret = vmf_error(PTR_ERR(page)); 4387 goto out; 4388 } 4389 clear_huge_page(page, address, pages_per_huge_page(h)); 4390 __SetPageUptodate(page); 4391 new_page = true; 4392 4393 if (vma->vm_flags & VM_MAYSHARE) { 4394 int err = huge_add_to_page_cache(page, mapping, idx); 4395 if (err) { 4396 put_page(page); 4397 if (err == -EEXIST) 4398 goto retry; 4399 goto out; 4400 } 4401 } else { 4402 lock_page(page); 4403 if (unlikely(anon_vma_prepare(vma))) { 4404 ret = VM_FAULT_OOM; 4405 goto backout_unlocked; 4406 } 4407 anon_rmap = 1; 4408 } 4409 } else { 4410 /* 4411 * If memory error occurs between mmap() and fault, some process 4412 * don't have hwpoisoned swap entry for errored virtual address. 4413 * So we need to block hugepage fault by PG_hwpoison bit check. 4414 */ 4415 if (unlikely(PageHWPoison(page))) { 4416 ret = VM_FAULT_HWPOISON | 4417 VM_FAULT_SET_HINDEX(hstate_index(h)); 4418 goto backout_unlocked; 4419 } 4420 } 4421 4422 /* 4423 * If we are going to COW a private mapping later, we examine the 4424 * pending reservations for this page now. This will ensure that 4425 * any allocations necessary to record that reservation occur outside 4426 * the spinlock. 4427 */ 4428 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4429 if (vma_needs_reservation(h, vma, haddr) < 0) { 4430 ret = VM_FAULT_OOM; 4431 goto backout_unlocked; 4432 } 4433 /* Just decrements count, does not deallocate */ 4434 vma_end_reservation(h, vma, haddr); 4435 } 4436 4437 ptl = huge_pte_lock(h, mm, ptep); 4438 ret = 0; 4439 if (!huge_pte_none(huge_ptep_get(ptep))) 4440 goto backout; 4441 4442 if (anon_rmap) { 4443 ClearPagePrivate(page); 4444 hugepage_add_new_anon_rmap(page, vma, haddr); 4445 } else 4446 page_dup_rmap(page, true); 4447 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4448 && (vma->vm_flags & VM_SHARED))); 4449 set_huge_pte_at(mm, haddr, ptep, new_pte); 4450 4451 hugetlb_count_add(pages_per_huge_page(h), mm); 4452 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4453 /* Optimization, do the COW without a second fault */ 4454 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4455 } 4456 4457 spin_unlock(ptl); 4458 4459 /* 4460 * Only make newly allocated pages active. Existing pages found 4461 * in the pagecache could be !page_huge_active() if they have been 4462 * isolated for migration. 4463 */ 4464 if (new_page) 4465 set_page_huge_active(page); 4466 4467 unlock_page(page); 4468 out: 4469 return ret; 4470 4471 backout: 4472 spin_unlock(ptl); 4473 backout_unlocked: 4474 unlock_page(page); 4475 restore_reserve_on_error(h, vma, haddr, page); 4476 put_page(page); 4477 goto out; 4478 } 4479 4480 #ifdef CONFIG_SMP 4481 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4482 { 4483 unsigned long key[2]; 4484 u32 hash; 4485 4486 key[0] = (unsigned long) mapping; 4487 key[1] = idx; 4488 4489 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4490 4491 return hash & (num_fault_mutexes - 1); 4492 } 4493 #else 4494 /* 4495 * For uniprocesor systems we always use a single mutex, so just 4496 * return 0 and avoid the hashing overhead. 4497 */ 4498 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4499 { 4500 return 0; 4501 } 4502 #endif 4503 4504 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4505 unsigned long address, unsigned int flags) 4506 { 4507 pte_t *ptep, entry; 4508 spinlock_t *ptl; 4509 vm_fault_t ret; 4510 u32 hash; 4511 pgoff_t idx; 4512 struct page *page = NULL; 4513 struct page *pagecache_page = NULL; 4514 struct hstate *h = hstate_vma(vma); 4515 struct address_space *mapping; 4516 int need_wait_lock = 0; 4517 unsigned long haddr = address & huge_page_mask(h); 4518 4519 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4520 if (ptep) { 4521 /* 4522 * Since we hold no locks, ptep could be stale. That is 4523 * OK as we are only making decisions based on content and 4524 * not actually modifying content here. 4525 */ 4526 entry = huge_ptep_get(ptep); 4527 if (unlikely(is_hugetlb_entry_migration(entry))) { 4528 migration_entry_wait_huge(vma, mm, ptep); 4529 return 0; 4530 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4531 return VM_FAULT_HWPOISON_LARGE | 4532 VM_FAULT_SET_HINDEX(hstate_index(h)); 4533 } 4534 4535 /* 4536 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4537 * until finished with ptep. This serves two purposes: 4538 * 1) It prevents huge_pmd_unshare from being called elsewhere 4539 * and making the ptep no longer valid. 4540 * 2) It synchronizes us with i_size modifications during truncation. 4541 * 4542 * ptep could have already be assigned via huge_pte_offset. That 4543 * is OK, as huge_pte_alloc will return the same value unless 4544 * something has changed. 4545 */ 4546 mapping = vma->vm_file->f_mapping; 4547 i_mmap_lock_read(mapping); 4548 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4549 if (!ptep) { 4550 i_mmap_unlock_read(mapping); 4551 return VM_FAULT_OOM; 4552 } 4553 4554 /* 4555 * Serialize hugepage allocation and instantiation, so that we don't 4556 * get spurious allocation failures if two CPUs race to instantiate 4557 * the same page in the page cache. 4558 */ 4559 idx = vma_hugecache_offset(h, vma, haddr); 4560 hash = hugetlb_fault_mutex_hash(mapping, idx); 4561 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4562 4563 entry = huge_ptep_get(ptep); 4564 if (huge_pte_none(entry)) { 4565 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4566 goto out_mutex; 4567 } 4568 4569 ret = 0; 4570 4571 /* 4572 * entry could be a migration/hwpoison entry at this point, so this 4573 * check prevents the kernel from going below assuming that we have 4574 * an active hugepage in pagecache. This goto expects the 2nd page 4575 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4576 * properly handle it. 4577 */ 4578 if (!pte_present(entry)) 4579 goto out_mutex; 4580 4581 /* 4582 * If we are going to COW the mapping later, we examine the pending 4583 * reservations for this page now. This will ensure that any 4584 * allocations necessary to record that reservation occur outside the 4585 * spinlock. For private mappings, we also lookup the pagecache 4586 * page now as it is used to determine if a reservation has been 4587 * consumed. 4588 */ 4589 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4590 if (vma_needs_reservation(h, vma, haddr) < 0) { 4591 ret = VM_FAULT_OOM; 4592 goto out_mutex; 4593 } 4594 /* Just decrements count, does not deallocate */ 4595 vma_end_reservation(h, vma, haddr); 4596 4597 if (!(vma->vm_flags & VM_MAYSHARE)) 4598 pagecache_page = hugetlbfs_pagecache_page(h, 4599 vma, haddr); 4600 } 4601 4602 ptl = huge_pte_lock(h, mm, ptep); 4603 4604 /* Check for a racing update before calling hugetlb_cow */ 4605 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4606 goto out_ptl; 4607 4608 /* 4609 * hugetlb_cow() requires page locks of pte_page(entry) and 4610 * pagecache_page, so here we need take the former one 4611 * when page != pagecache_page or !pagecache_page. 4612 */ 4613 page = pte_page(entry); 4614 if (page != pagecache_page) 4615 if (!trylock_page(page)) { 4616 need_wait_lock = 1; 4617 goto out_ptl; 4618 } 4619 4620 get_page(page); 4621 4622 if (flags & FAULT_FLAG_WRITE) { 4623 if (!huge_pte_write(entry)) { 4624 ret = hugetlb_cow(mm, vma, address, ptep, 4625 pagecache_page, ptl); 4626 goto out_put_page; 4627 } 4628 entry = huge_pte_mkdirty(entry); 4629 } 4630 entry = pte_mkyoung(entry); 4631 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4632 flags & FAULT_FLAG_WRITE)) 4633 update_mmu_cache(vma, haddr, ptep); 4634 out_put_page: 4635 if (page != pagecache_page) 4636 unlock_page(page); 4637 put_page(page); 4638 out_ptl: 4639 spin_unlock(ptl); 4640 4641 if (pagecache_page) { 4642 unlock_page(pagecache_page); 4643 put_page(pagecache_page); 4644 } 4645 out_mutex: 4646 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4647 i_mmap_unlock_read(mapping); 4648 /* 4649 * Generally it's safe to hold refcount during waiting page lock. But 4650 * here we just wait to defer the next page fault to avoid busy loop and 4651 * the page is not used after unlocked before returning from the current 4652 * page fault. So we are safe from accessing freed page, even if we wait 4653 * here without taking refcount. 4654 */ 4655 if (need_wait_lock) 4656 wait_on_page_locked(page); 4657 return ret; 4658 } 4659 4660 /* 4661 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4662 * modifications for huge pages. 4663 */ 4664 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4665 pte_t *dst_pte, 4666 struct vm_area_struct *dst_vma, 4667 unsigned long dst_addr, 4668 unsigned long src_addr, 4669 struct page **pagep) 4670 { 4671 struct address_space *mapping; 4672 pgoff_t idx; 4673 unsigned long size; 4674 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4675 struct hstate *h = hstate_vma(dst_vma); 4676 pte_t _dst_pte; 4677 spinlock_t *ptl; 4678 int ret; 4679 struct page *page; 4680 4681 if (!*pagep) { 4682 ret = -ENOMEM; 4683 page = alloc_huge_page(dst_vma, dst_addr, 0); 4684 if (IS_ERR(page)) 4685 goto out; 4686 4687 ret = copy_huge_page_from_user(page, 4688 (const void __user *) src_addr, 4689 pages_per_huge_page(h), false); 4690 4691 /* fallback to copy_from_user outside mmap_lock */ 4692 if (unlikely(ret)) { 4693 ret = -ENOENT; 4694 *pagep = page; 4695 /* don't free the page */ 4696 goto out; 4697 } 4698 } else { 4699 page = *pagep; 4700 *pagep = NULL; 4701 } 4702 4703 /* 4704 * The memory barrier inside __SetPageUptodate makes sure that 4705 * preceding stores to the page contents become visible before 4706 * the set_pte_at() write. 4707 */ 4708 __SetPageUptodate(page); 4709 4710 mapping = dst_vma->vm_file->f_mapping; 4711 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4712 4713 /* 4714 * If shared, add to page cache 4715 */ 4716 if (vm_shared) { 4717 size = i_size_read(mapping->host) >> huge_page_shift(h); 4718 ret = -EFAULT; 4719 if (idx >= size) 4720 goto out_release_nounlock; 4721 4722 /* 4723 * Serialization between remove_inode_hugepages() and 4724 * huge_add_to_page_cache() below happens through the 4725 * hugetlb_fault_mutex_table that here must be hold by 4726 * the caller. 4727 */ 4728 ret = huge_add_to_page_cache(page, mapping, idx); 4729 if (ret) 4730 goto out_release_nounlock; 4731 } 4732 4733 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4734 spin_lock(ptl); 4735 4736 /* 4737 * Recheck the i_size after holding PT lock to make sure not 4738 * to leave any page mapped (as page_mapped()) beyond the end 4739 * of the i_size (remove_inode_hugepages() is strict about 4740 * enforcing that). If we bail out here, we'll also leave a 4741 * page in the radix tree in the vm_shared case beyond the end 4742 * of the i_size, but remove_inode_hugepages() will take care 4743 * of it as soon as we drop the hugetlb_fault_mutex_table. 4744 */ 4745 size = i_size_read(mapping->host) >> huge_page_shift(h); 4746 ret = -EFAULT; 4747 if (idx >= size) 4748 goto out_release_unlock; 4749 4750 ret = -EEXIST; 4751 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4752 goto out_release_unlock; 4753 4754 if (vm_shared) { 4755 page_dup_rmap(page, true); 4756 } else { 4757 ClearPagePrivate(page); 4758 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4759 } 4760 4761 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4762 if (dst_vma->vm_flags & VM_WRITE) 4763 _dst_pte = huge_pte_mkdirty(_dst_pte); 4764 _dst_pte = pte_mkyoung(_dst_pte); 4765 4766 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4767 4768 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4769 dst_vma->vm_flags & VM_WRITE); 4770 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4771 4772 /* No need to invalidate - it was non-present before */ 4773 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4774 4775 spin_unlock(ptl); 4776 set_page_huge_active(page); 4777 if (vm_shared) 4778 unlock_page(page); 4779 ret = 0; 4780 out: 4781 return ret; 4782 out_release_unlock: 4783 spin_unlock(ptl); 4784 if (vm_shared) 4785 unlock_page(page); 4786 out_release_nounlock: 4787 put_page(page); 4788 goto out; 4789 } 4790 4791 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4792 struct page **pages, struct vm_area_struct **vmas, 4793 unsigned long *position, unsigned long *nr_pages, 4794 long i, unsigned int flags, int *locked) 4795 { 4796 unsigned long pfn_offset; 4797 unsigned long vaddr = *position; 4798 unsigned long remainder = *nr_pages; 4799 struct hstate *h = hstate_vma(vma); 4800 int err = -EFAULT; 4801 4802 while (vaddr < vma->vm_end && remainder) { 4803 pte_t *pte; 4804 spinlock_t *ptl = NULL; 4805 int absent; 4806 struct page *page; 4807 4808 /* 4809 * If we have a pending SIGKILL, don't keep faulting pages and 4810 * potentially allocating memory. 4811 */ 4812 if (fatal_signal_pending(current)) { 4813 remainder = 0; 4814 break; 4815 } 4816 4817 /* 4818 * Some archs (sparc64, sh*) have multiple pte_ts to 4819 * each hugepage. We have to make sure we get the 4820 * first, for the page indexing below to work. 4821 * 4822 * Note that page table lock is not held when pte is null. 4823 */ 4824 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4825 huge_page_size(h)); 4826 if (pte) 4827 ptl = huge_pte_lock(h, mm, pte); 4828 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4829 4830 /* 4831 * When coredumping, it suits get_dump_page if we just return 4832 * an error where there's an empty slot with no huge pagecache 4833 * to back it. This way, we avoid allocating a hugepage, and 4834 * the sparse dumpfile avoids allocating disk blocks, but its 4835 * huge holes still show up with zeroes where they need to be. 4836 */ 4837 if (absent && (flags & FOLL_DUMP) && 4838 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4839 if (pte) 4840 spin_unlock(ptl); 4841 remainder = 0; 4842 break; 4843 } 4844 4845 /* 4846 * We need call hugetlb_fault for both hugepages under migration 4847 * (in which case hugetlb_fault waits for the migration,) and 4848 * hwpoisoned hugepages (in which case we need to prevent the 4849 * caller from accessing to them.) In order to do this, we use 4850 * here is_swap_pte instead of is_hugetlb_entry_migration and 4851 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4852 * both cases, and because we can't follow correct pages 4853 * directly from any kind of swap entries. 4854 */ 4855 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4856 ((flags & FOLL_WRITE) && 4857 !huge_pte_write(huge_ptep_get(pte)))) { 4858 vm_fault_t ret; 4859 unsigned int fault_flags = 0; 4860 4861 if (pte) 4862 spin_unlock(ptl); 4863 if (flags & FOLL_WRITE) 4864 fault_flags |= FAULT_FLAG_WRITE; 4865 if (locked) 4866 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4867 FAULT_FLAG_KILLABLE; 4868 if (flags & FOLL_NOWAIT) 4869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4870 FAULT_FLAG_RETRY_NOWAIT; 4871 if (flags & FOLL_TRIED) { 4872 /* 4873 * Note: FAULT_FLAG_ALLOW_RETRY and 4874 * FAULT_FLAG_TRIED can co-exist 4875 */ 4876 fault_flags |= FAULT_FLAG_TRIED; 4877 } 4878 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4879 if (ret & VM_FAULT_ERROR) { 4880 err = vm_fault_to_errno(ret, flags); 4881 remainder = 0; 4882 break; 4883 } 4884 if (ret & VM_FAULT_RETRY) { 4885 if (locked && 4886 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4887 *locked = 0; 4888 *nr_pages = 0; 4889 /* 4890 * VM_FAULT_RETRY must not return an 4891 * error, it will return zero 4892 * instead. 4893 * 4894 * No need to update "position" as the 4895 * caller will not check it after 4896 * *nr_pages is set to 0. 4897 */ 4898 return i; 4899 } 4900 continue; 4901 } 4902 4903 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4904 page = pte_page(huge_ptep_get(pte)); 4905 4906 /* 4907 * If subpage information not requested, update counters 4908 * and skip the same_page loop below. 4909 */ 4910 if (!pages && !vmas && !pfn_offset && 4911 (vaddr + huge_page_size(h) < vma->vm_end) && 4912 (remainder >= pages_per_huge_page(h))) { 4913 vaddr += huge_page_size(h); 4914 remainder -= pages_per_huge_page(h); 4915 i += pages_per_huge_page(h); 4916 spin_unlock(ptl); 4917 continue; 4918 } 4919 4920 same_page: 4921 if (pages) { 4922 pages[i] = mem_map_offset(page, pfn_offset); 4923 /* 4924 * try_grab_page() should always succeed here, because: 4925 * a) we hold the ptl lock, and b) we've just checked 4926 * that the huge page is present in the page tables. If 4927 * the huge page is present, then the tail pages must 4928 * also be present. The ptl prevents the head page and 4929 * tail pages from being rearranged in any way. So this 4930 * page must be available at this point, unless the page 4931 * refcount overflowed: 4932 */ 4933 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { 4934 spin_unlock(ptl); 4935 remainder = 0; 4936 err = -ENOMEM; 4937 break; 4938 } 4939 } 4940 4941 if (vmas) 4942 vmas[i] = vma; 4943 4944 vaddr += PAGE_SIZE; 4945 ++pfn_offset; 4946 --remainder; 4947 ++i; 4948 if (vaddr < vma->vm_end && remainder && 4949 pfn_offset < pages_per_huge_page(h)) { 4950 /* 4951 * We use pfn_offset to avoid touching the pageframes 4952 * of this compound page. 4953 */ 4954 goto same_page; 4955 } 4956 spin_unlock(ptl); 4957 } 4958 *nr_pages = remainder; 4959 /* 4960 * setting position is actually required only if remainder is 4961 * not zero but it's faster not to add a "if (remainder)" 4962 * branch. 4963 */ 4964 *position = vaddr; 4965 4966 return i ? i : err; 4967 } 4968 4969 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4970 /* 4971 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4972 * implement this. 4973 */ 4974 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4975 #endif 4976 4977 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4978 unsigned long address, unsigned long end, pgprot_t newprot) 4979 { 4980 struct mm_struct *mm = vma->vm_mm; 4981 unsigned long start = address; 4982 pte_t *ptep; 4983 pte_t pte; 4984 struct hstate *h = hstate_vma(vma); 4985 unsigned long pages = 0; 4986 bool shared_pmd = false; 4987 struct mmu_notifier_range range; 4988 4989 /* 4990 * In the case of shared PMDs, the area to flush could be beyond 4991 * start/end. Set range.start/range.end to cover the maximum possible 4992 * range if PMD sharing is possible. 4993 */ 4994 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4995 0, vma, mm, start, end); 4996 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4997 4998 BUG_ON(address >= end); 4999 flush_cache_range(vma, range.start, range.end); 5000 5001 mmu_notifier_invalidate_range_start(&range); 5002 i_mmap_lock_write(vma->vm_file->f_mapping); 5003 for (; address < end; address += huge_page_size(h)) { 5004 spinlock_t *ptl; 5005 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5006 if (!ptep) 5007 continue; 5008 ptl = huge_pte_lock(h, mm, ptep); 5009 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5010 pages++; 5011 spin_unlock(ptl); 5012 shared_pmd = true; 5013 continue; 5014 } 5015 pte = huge_ptep_get(ptep); 5016 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5017 spin_unlock(ptl); 5018 continue; 5019 } 5020 if (unlikely(is_hugetlb_entry_migration(pte))) { 5021 swp_entry_t entry = pte_to_swp_entry(pte); 5022 5023 if (is_write_migration_entry(entry)) { 5024 pte_t newpte; 5025 5026 make_migration_entry_read(&entry); 5027 newpte = swp_entry_to_pte(entry); 5028 set_huge_swap_pte_at(mm, address, ptep, 5029 newpte, huge_page_size(h)); 5030 pages++; 5031 } 5032 spin_unlock(ptl); 5033 continue; 5034 } 5035 if (!huge_pte_none(pte)) { 5036 pte_t old_pte; 5037 5038 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5039 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5040 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5041 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5042 pages++; 5043 } 5044 spin_unlock(ptl); 5045 } 5046 /* 5047 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5048 * may have cleared our pud entry and done put_page on the page table: 5049 * once we release i_mmap_rwsem, another task can do the final put_page 5050 * and that page table be reused and filled with junk. If we actually 5051 * did unshare a page of pmds, flush the range corresponding to the pud. 5052 */ 5053 if (shared_pmd) 5054 flush_hugetlb_tlb_range(vma, range.start, range.end); 5055 else 5056 flush_hugetlb_tlb_range(vma, start, end); 5057 /* 5058 * No need to call mmu_notifier_invalidate_range() we are downgrading 5059 * page table protection not changing it to point to a new page. 5060 * 5061 * See Documentation/vm/mmu_notifier.rst 5062 */ 5063 i_mmap_unlock_write(vma->vm_file->f_mapping); 5064 mmu_notifier_invalidate_range_end(&range); 5065 5066 return pages << h->order; 5067 } 5068 5069 int hugetlb_reserve_pages(struct inode *inode, 5070 long from, long to, 5071 struct vm_area_struct *vma, 5072 vm_flags_t vm_flags) 5073 { 5074 long ret, chg, add = -1; 5075 struct hstate *h = hstate_inode(inode); 5076 struct hugepage_subpool *spool = subpool_inode(inode); 5077 struct resv_map *resv_map; 5078 struct hugetlb_cgroup *h_cg = NULL; 5079 long gbl_reserve, regions_needed = 0; 5080 5081 /* This should never happen */ 5082 if (from > to) { 5083 VM_WARN(1, "%s called with a negative range\n", __func__); 5084 return -EINVAL; 5085 } 5086 5087 /* 5088 * Only apply hugepage reservation if asked. At fault time, an 5089 * attempt will be made for VM_NORESERVE to allocate a page 5090 * without using reserves 5091 */ 5092 if (vm_flags & VM_NORESERVE) 5093 return 0; 5094 5095 /* 5096 * Shared mappings base their reservation on the number of pages that 5097 * are already allocated on behalf of the file. Private mappings need 5098 * to reserve the full area even if read-only as mprotect() may be 5099 * called to make the mapping read-write. Assume !vma is a shm mapping 5100 */ 5101 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5102 /* 5103 * resv_map can not be NULL as hugetlb_reserve_pages is only 5104 * called for inodes for which resv_maps were created (see 5105 * hugetlbfs_get_inode). 5106 */ 5107 resv_map = inode_resv_map(inode); 5108 5109 chg = region_chg(resv_map, from, to, ®ions_needed); 5110 5111 } else { 5112 /* Private mapping. */ 5113 resv_map = resv_map_alloc(); 5114 if (!resv_map) 5115 return -ENOMEM; 5116 5117 chg = to - from; 5118 5119 set_vma_resv_map(vma, resv_map); 5120 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5121 } 5122 5123 if (chg < 0) { 5124 ret = chg; 5125 goto out_err; 5126 } 5127 5128 ret = hugetlb_cgroup_charge_cgroup_rsvd( 5129 hstate_index(h), chg * pages_per_huge_page(h), &h_cg); 5130 5131 if (ret < 0) { 5132 ret = -ENOMEM; 5133 goto out_err; 5134 } 5135 5136 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5137 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5138 * of the resv_map. 5139 */ 5140 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5141 } 5142 5143 /* 5144 * There must be enough pages in the subpool for the mapping. If 5145 * the subpool has a minimum size, there may be some global 5146 * reservations already in place (gbl_reserve). 5147 */ 5148 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5149 if (gbl_reserve < 0) { 5150 ret = -ENOSPC; 5151 goto out_uncharge_cgroup; 5152 } 5153 5154 /* 5155 * Check enough hugepages are available for the reservation. 5156 * Hand the pages back to the subpool if there are not 5157 */ 5158 ret = hugetlb_acct_memory(h, gbl_reserve); 5159 if (ret < 0) { 5160 goto out_put_pages; 5161 } 5162 5163 /* 5164 * Account for the reservations made. Shared mappings record regions 5165 * that have reservations as they are shared by multiple VMAs. 5166 * When the last VMA disappears, the region map says how much 5167 * the reservation was and the page cache tells how much of 5168 * the reservation was consumed. Private mappings are per-VMA and 5169 * only the consumed reservations are tracked. When the VMA 5170 * disappears, the original reservation is the VMA size and the 5171 * consumed reservations are stored in the map. Hence, nothing 5172 * else has to be done for private mappings here 5173 */ 5174 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5175 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5176 5177 if (unlikely(add < 0)) { 5178 hugetlb_acct_memory(h, -gbl_reserve); 5179 goto out_put_pages; 5180 } else if (unlikely(chg > add)) { 5181 /* 5182 * pages in this range were added to the reserve 5183 * map between region_chg and region_add. This 5184 * indicates a race with alloc_huge_page. Adjust 5185 * the subpool and reserve counts modified above 5186 * based on the difference. 5187 */ 5188 long rsv_adjust; 5189 5190 hugetlb_cgroup_uncharge_cgroup_rsvd( 5191 hstate_index(h), 5192 (chg - add) * pages_per_huge_page(h), h_cg); 5193 5194 rsv_adjust = hugepage_subpool_put_pages(spool, 5195 chg - add); 5196 hugetlb_acct_memory(h, -rsv_adjust); 5197 } 5198 } 5199 return 0; 5200 out_put_pages: 5201 /* put back original number of pages, chg */ 5202 (void)hugepage_subpool_put_pages(spool, chg); 5203 out_uncharge_cgroup: 5204 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5205 chg * pages_per_huge_page(h), h_cg); 5206 out_err: 5207 if (!vma || vma->vm_flags & VM_MAYSHARE) 5208 /* Only call region_abort if the region_chg succeeded but the 5209 * region_add failed or didn't run. 5210 */ 5211 if (chg >= 0 && add < 0) 5212 region_abort(resv_map, from, to, regions_needed); 5213 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5214 kref_put(&resv_map->refs, resv_map_release); 5215 return ret; 5216 } 5217 5218 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5219 long freed) 5220 { 5221 struct hstate *h = hstate_inode(inode); 5222 struct resv_map *resv_map = inode_resv_map(inode); 5223 long chg = 0; 5224 struct hugepage_subpool *spool = subpool_inode(inode); 5225 long gbl_reserve; 5226 5227 /* 5228 * Since this routine can be called in the evict inode path for all 5229 * hugetlbfs inodes, resv_map could be NULL. 5230 */ 5231 if (resv_map) { 5232 chg = region_del(resv_map, start, end); 5233 /* 5234 * region_del() can fail in the rare case where a region 5235 * must be split and another region descriptor can not be 5236 * allocated. If end == LONG_MAX, it will not fail. 5237 */ 5238 if (chg < 0) 5239 return chg; 5240 } 5241 5242 spin_lock(&inode->i_lock); 5243 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5244 spin_unlock(&inode->i_lock); 5245 5246 /* 5247 * If the subpool has a minimum size, the number of global 5248 * reservations to be released may be adjusted. 5249 */ 5250 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5251 hugetlb_acct_memory(h, -gbl_reserve); 5252 5253 return 0; 5254 } 5255 5256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5257 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5258 struct vm_area_struct *vma, 5259 unsigned long addr, pgoff_t idx) 5260 { 5261 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5262 svma->vm_start; 5263 unsigned long sbase = saddr & PUD_MASK; 5264 unsigned long s_end = sbase + PUD_SIZE; 5265 5266 /* Allow segments to share if only one is marked locked */ 5267 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5268 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5269 5270 /* 5271 * match the virtual addresses, permission and the alignment of the 5272 * page table page. 5273 */ 5274 if (pmd_index(addr) != pmd_index(saddr) || 5275 vm_flags != svm_flags || 5276 sbase < svma->vm_start || svma->vm_end < s_end) 5277 return 0; 5278 5279 return saddr; 5280 } 5281 5282 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5283 { 5284 unsigned long base = addr & PUD_MASK; 5285 unsigned long end = base + PUD_SIZE; 5286 5287 /* 5288 * check on proper vm_flags and page table alignment 5289 */ 5290 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5291 return true; 5292 return false; 5293 } 5294 5295 /* 5296 * Determine if start,end range within vma could be mapped by shared pmd. 5297 * If yes, adjust start and end to cover range associated with possible 5298 * shared pmd mappings. 5299 */ 5300 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5301 unsigned long *start, unsigned long *end) 5302 { 5303 unsigned long a_start, a_end; 5304 5305 if (!(vma->vm_flags & VM_MAYSHARE)) 5306 return; 5307 5308 /* Extend the range to be PUD aligned for a worst case scenario */ 5309 a_start = ALIGN_DOWN(*start, PUD_SIZE); 5310 a_end = ALIGN(*end, PUD_SIZE); 5311 5312 /* 5313 * Intersect the range with the vma range, since pmd sharing won't be 5314 * across vma after all 5315 */ 5316 *start = max(vma->vm_start, a_start); 5317 *end = min(vma->vm_end, a_end); 5318 } 5319 5320 /* 5321 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5322 * and returns the corresponding pte. While this is not necessary for the 5323 * !shared pmd case because we can allocate the pmd later as well, it makes the 5324 * code much cleaner. 5325 * 5326 * This routine must be called with i_mmap_rwsem held in at least read mode. 5327 * For hugetlbfs, this prevents removal of any page table entries associated 5328 * with the address space. This is important as we are setting up sharing 5329 * based on existing page table entries (mappings). 5330 */ 5331 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5332 { 5333 struct vm_area_struct *vma = find_vma(mm, addr); 5334 struct address_space *mapping = vma->vm_file->f_mapping; 5335 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5336 vma->vm_pgoff; 5337 struct vm_area_struct *svma; 5338 unsigned long saddr; 5339 pte_t *spte = NULL; 5340 pte_t *pte; 5341 spinlock_t *ptl; 5342 5343 if (!vma_shareable(vma, addr)) 5344 return (pte_t *)pmd_alloc(mm, pud, addr); 5345 5346 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5347 if (svma == vma) 5348 continue; 5349 5350 saddr = page_table_shareable(svma, vma, addr, idx); 5351 if (saddr) { 5352 spte = huge_pte_offset(svma->vm_mm, saddr, 5353 vma_mmu_pagesize(svma)); 5354 if (spte) { 5355 get_page(virt_to_page(spte)); 5356 break; 5357 } 5358 } 5359 } 5360 5361 if (!spte) 5362 goto out; 5363 5364 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5365 if (pud_none(*pud)) { 5366 pud_populate(mm, pud, 5367 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5368 mm_inc_nr_pmds(mm); 5369 } else { 5370 put_page(virt_to_page(spte)); 5371 } 5372 spin_unlock(ptl); 5373 out: 5374 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5375 return pte; 5376 } 5377 5378 /* 5379 * unmap huge page backed by shared pte. 5380 * 5381 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5382 * indicated by page_count > 1, unmap is achieved by clearing pud and 5383 * decrementing the ref count. If count == 1, the pte page is not shared. 5384 * 5385 * Called with page table lock held and i_mmap_rwsem held in write mode. 5386 * 5387 * returns: 1 successfully unmapped a shared pte page 5388 * 0 the underlying pte page is not shared, or it is the last user 5389 */ 5390 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5391 unsigned long *addr, pte_t *ptep) 5392 { 5393 pgd_t *pgd = pgd_offset(mm, *addr); 5394 p4d_t *p4d = p4d_offset(pgd, *addr); 5395 pud_t *pud = pud_offset(p4d, *addr); 5396 5397 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5398 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5399 if (page_count(virt_to_page(ptep)) == 1) 5400 return 0; 5401 5402 pud_clear(pud); 5403 put_page(virt_to_page(ptep)); 5404 mm_dec_nr_pmds(mm); 5405 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5406 return 1; 5407 } 5408 #define want_pmd_share() (1) 5409 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5410 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 5411 { 5412 return NULL; 5413 } 5414 5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5416 unsigned long *addr, pte_t *ptep) 5417 { 5418 return 0; 5419 } 5420 5421 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5422 unsigned long *start, unsigned long *end) 5423 { 5424 } 5425 #define want_pmd_share() (0) 5426 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5427 5428 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5429 pte_t *huge_pte_alloc(struct mm_struct *mm, 5430 unsigned long addr, unsigned long sz) 5431 { 5432 pgd_t *pgd; 5433 p4d_t *p4d; 5434 pud_t *pud; 5435 pte_t *pte = NULL; 5436 5437 pgd = pgd_offset(mm, addr); 5438 p4d = p4d_alloc(mm, pgd, addr); 5439 if (!p4d) 5440 return NULL; 5441 pud = pud_alloc(mm, p4d, addr); 5442 if (pud) { 5443 if (sz == PUD_SIZE) { 5444 pte = (pte_t *)pud; 5445 } else { 5446 BUG_ON(sz != PMD_SIZE); 5447 if (want_pmd_share() && pud_none(*pud)) 5448 pte = huge_pmd_share(mm, addr, pud); 5449 else 5450 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5451 } 5452 } 5453 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5454 5455 return pte; 5456 } 5457 5458 /* 5459 * huge_pte_offset() - Walk the page table to resolve the hugepage 5460 * entry at address @addr 5461 * 5462 * Return: Pointer to page table entry (PUD or PMD) for 5463 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5464 * size @sz doesn't match the hugepage size at this level of the page 5465 * table. 5466 */ 5467 pte_t *huge_pte_offset(struct mm_struct *mm, 5468 unsigned long addr, unsigned long sz) 5469 { 5470 pgd_t *pgd; 5471 p4d_t *p4d; 5472 pud_t *pud; 5473 pmd_t *pmd; 5474 5475 pgd = pgd_offset(mm, addr); 5476 if (!pgd_present(*pgd)) 5477 return NULL; 5478 p4d = p4d_offset(pgd, addr); 5479 if (!p4d_present(*p4d)) 5480 return NULL; 5481 5482 pud = pud_offset(p4d, addr); 5483 if (sz == PUD_SIZE) 5484 /* must be pud huge, non-present or none */ 5485 return (pte_t *)pud; 5486 if (!pud_present(*pud)) 5487 return NULL; 5488 /* must have a valid entry and size to go further */ 5489 5490 pmd = pmd_offset(pud, addr); 5491 /* must be pmd huge, non-present or none */ 5492 return (pte_t *)pmd; 5493 } 5494 5495 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5496 5497 /* 5498 * These functions are overwritable if your architecture needs its own 5499 * behavior. 5500 */ 5501 struct page * __weak 5502 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5503 int write) 5504 { 5505 return ERR_PTR(-EINVAL); 5506 } 5507 5508 struct page * __weak 5509 follow_huge_pd(struct vm_area_struct *vma, 5510 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5511 { 5512 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5513 return NULL; 5514 } 5515 5516 struct page * __weak 5517 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5518 pmd_t *pmd, int flags) 5519 { 5520 struct page *page = NULL; 5521 spinlock_t *ptl; 5522 pte_t pte; 5523 5524 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5525 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5526 (FOLL_PIN | FOLL_GET))) 5527 return NULL; 5528 5529 retry: 5530 ptl = pmd_lockptr(mm, pmd); 5531 spin_lock(ptl); 5532 /* 5533 * make sure that the address range covered by this pmd is not 5534 * unmapped from other threads. 5535 */ 5536 if (!pmd_huge(*pmd)) 5537 goto out; 5538 pte = huge_ptep_get((pte_t *)pmd); 5539 if (pte_present(pte)) { 5540 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5541 /* 5542 * try_grab_page() should always succeed here, because: a) we 5543 * hold the pmd (ptl) lock, and b) we've just checked that the 5544 * huge pmd (head) page is present in the page tables. The ptl 5545 * prevents the head page and tail pages from being rearranged 5546 * in any way. So this page must be available at this point, 5547 * unless the page refcount overflowed: 5548 */ 5549 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5550 page = NULL; 5551 goto out; 5552 } 5553 } else { 5554 if (is_hugetlb_entry_migration(pte)) { 5555 spin_unlock(ptl); 5556 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5557 goto retry; 5558 } 5559 /* 5560 * hwpoisoned entry is treated as no_page_table in 5561 * follow_page_mask(). 5562 */ 5563 } 5564 out: 5565 spin_unlock(ptl); 5566 return page; 5567 } 5568 5569 struct page * __weak 5570 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5571 pud_t *pud, int flags) 5572 { 5573 if (flags & (FOLL_GET | FOLL_PIN)) 5574 return NULL; 5575 5576 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5577 } 5578 5579 struct page * __weak 5580 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5581 { 5582 if (flags & (FOLL_GET | FOLL_PIN)) 5583 return NULL; 5584 5585 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5586 } 5587 5588 bool isolate_huge_page(struct page *page, struct list_head *list) 5589 { 5590 bool ret = true; 5591 5592 VM_BUG_ON_PAGE(!PageHead(page), page); 5593 spin_lock(&hugetlb_lock); 5594 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5595 ret = false; 5596 goto unlock; 5597 } 5598 clear_page_huge_active(page); 5599 list_move_tail(&page->lru, list); 5600 unlock: 5601 spin_unlock(&hugetlb_lock); 5602 return ret; 5603 } 5604 5605 void putback_active_hugepage(struct page *page) 5606 { 5607 VM_BUG_ON_PAGE(!PageHead(page), page); 5608 spin_lock(&hugetlb_lock); 5609 set_page_huge_active(page); 5610 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5611 spin_unlock(&hugetlb_lock); 5612 put_page(page); 5613 } 5614 5615 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5616 { 5617 struct hstate *h = page_hstate(oldpage); 5618 5619 hugetlb_cgroup_migrate(oldpage, newpage); 5620 set_page_owner_migrate_reason(newpage, reason); 5621 5622 /* 5623 * transfer temporary state of the new huge page. This is 5624 * reverse to other transitions because the newpage is going to 5625 * be final while the old one will be freed so it takes over 5626 * the temporary status. 5627 * 5628 * Also note that we have to transfer the per-node surplus state 5629 * here as well otherwise the global surplus count will not match 5630 * the per-node's. 5631 */ 5632 if (PageHugeTemporary(newpage)) { 5633 int old_nid = page_to_nid(oldpage); 5634 int new_nid = page_to_nid(newpage); 5635 5636 SetPageHugeTemporary(oldpage); 5637 ClearPageHugeTemporary(newpage); 5638 5639 spin_lock(&hugetlb_lock); 5640 if (h->surplus_huge_pages_node[old_nid]) { 5641 h->surplus_huge_pages_node[old_nid]--; 5642 h->surplus_huge_pages_node[new_nid]++; 5643 } 5644 spin_unlock(&hugetlb_lock); 5645 } 5646 } 5647 5648 #ifdef CONFIG_CMA 5649 static bool cma_reserve_called __initdata; 5650 5651 static int __init cmdline_parse_hugetlb_cma(char *p) 5652 { 5653 hugetlb_cma_size = memparse(p, &p); 5654 return 0; 5655 } 5656 5657 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 5658 5659 void __init hugetlb_cma_reserve(int order) 5660 { 5661 unsigned long size, reserved, per_node; 5662 int nid; 5663 5664 cma_reserve_called = true; 5665 5666 if (!hugetlb_cma_size) 5667 return; 5668 5669 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 5670 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 5671 (PAGE_SIZE << order) / SZ_1M); 5672 return; 5673 } 5674 5675 /* 5676 * If 3 GB area is requested on a machine with 4 numa nodes, 5677 * let's allocate 1 GB on first three nodes and ignore the last one. 5678 */ 5679 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 5680 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 5681 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 5682 5683 reserved = 0; 5684 for_each_node_state(nid, N_ONLINE) { 5685 int res; 5686 char name[20]; 5687 5688 size = min(per_node, hugetlb_cma_size - reserved); 5689 size = round_up(size, PAGE_SIZE << order); 5690 5691 snprintf(name, 20, "hugetlb%d", nid); 5692 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 5693 0, false, name, 5694 &hugetlb_cma[nid], nid); 5695 if (res) { 5696 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 5697 res, nid); 5698 continue; 5699 } 5700 5701 reserved += size; 5702 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 5703 size / SZ_1M, nid); 5704 5705 if (reserved >= hugetlb_cma_size) 5706 break; 5707 } 5708 } 5709 5710 void __init hugetlb_cma_check(void) 5711 { 5712 if (!hugetlb_cma_size || cma_reserve_called) 5713 return; 5714 5715 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 5716 } 5717 5718 #endif /* CONFIG_CMA */ 5719