xref: /openbmc/linux/mm/hugetlb.c (revision adc286e6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlb.h>
39 
40 #include <linux/io.h>
41 #include <linux/hugetlb.h>
42 #include <linux/hugetlb_cgroup.h>
43 #include <linux/node.h>
44 #include <linux/page_owner.h>
45 #include "internal.h"
46 #include "hugetlb_vmemmap.h"
47 
48 int hugetlb_max_hstate __read_mostly;
49 unsigned int default_hstate_idx;
50 struct hstate hstates[HUGE_MAX_HSTATE];
51 
52 #ifdef CONFIG_CMA
53 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 static bool hugetlb_cma_page(struct page *page, unsigned int order)
56 {
57 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
58 				1 << order);
59 }
60 #else
61 static bool hugetlb_cma_page(struct page *page, unsigned int order)
62 {
63 	return false;
64 }
65 #endif
66 static unsigned long hugetlb_cma_size __initdata;
67 
68 /*
69  * Minimum page order among possible hugepage sizes, set to a proper value
70  * at boot time.
71  */
72 static unsigned int minimum_order __read_mostly = UINT_MAX;
73 
74 __initdata LIST_HEAD(huge_boot_pages);
75 
76 /* for command line parsing */
77 static struct hstate * __initdata parsed_hstate;
78 static unsigned long __initdata default_hstate_max_huge_pages;
79 static bool __initdata parsed_valid_hugepagesz = true;
80 static bool __initdata parsed_default_hugepagesz;
81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82 
83 /*
84  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
85  * free_huge_pages, and surplus_huge_pages.
86  */
87 DEFINE_SPINLOCK(hugetlb_lock);
88 
89 /*
90  * Serializes faults on the same logical page.  This is used to
91  * prevent spurious OOMs when the hugepage pool is fully utilized.
92  */
93 static int num_fault_mutexes;
94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95 
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98 
99 static inline bool subpool_is_free(struct hugepage_subpool *spool)
100 {
101 	if (spool->count)
102 		return false;
103 	if (spool->max_hpages != -1)
104 		return spool->used_hpages == 0;
105 	if (spool->min_hpages != -1)
106 		return spool->rsv_hpages == spool->min_hpages;
107 
108 	return true;
109 }
110 
111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
112 						unsigned long irq_flags)
113 {
114 	spin_unlock_irqrestore(&spool->lock, irq_flags);
115 
116 	/* If no pages are used, and no other handles to the subpool
117 	 * remain, give up any reservations based on minimum size and
118 	 * free the subpool */
119 	if (subpool_is_free(spool)) {
120 		if (spool->min_hpages != -1)
121 			hugetlb_acct_memory(spool->hstate,
122 						-spool->min_hpages);
123 		kfree(spool);
124 	}
125 }
126 
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128 						long min_hpages)
129 {
130 	struct hugepage_subpool *spool;
131 
132 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133 	if (!spool)
134 		return NULL;
135 
136 	spin_lock_init(&spool->lock);
137 	spool->count = 1;
138 	spool->max_hpages = max_hpages;
139 	spool->hstate = h;
140 	spool->min_hpages = min_hpages;
141 
142 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143 		kfree(spool);
144 		return NULL;
145 	}
146 	spool->rsv_hpages = min_hpages;
147 
148 	return spool;
149 }
150 
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&spool->lock, flags);
156 	BUG_ON(!spool->count);
157 	spool->count--;
158 	unlock_or_release_subpool(spool, flags);
159 }
160 
161 /*
162  * Subpool accounting for allocating and reserving pages.
163  * Return -ENOMEM if there are not enough resources to satisfy the
164  * request.  Otherwise, return the number of pages by which the
165  * global pools must be adjusted (upward).  The returned value may
166  * only be different than the passed value (delta) in the case where
167  * a subpool minimum size must be maintained.
168  */
169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
170 				      long delta)
171 {
172 	long ret = delta;
173 
174 	if (!spool)
175 		return ret;
176 
177 	spin_lock_irq(&spool->lock);
178 
179 	if (spool->max_hpages != -1) {		/* maximum size accounting */
180 		if ((spool->used_hpages + delta) <= spool->max_hpages)
181 			spool->used_hpages += delta;
182 		else {
183 			ret = -ENOMEM;
184 			goto unlock_ret;
185 		}
186 	}
187 
188 	/* minimum size accounting */
189 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
190 		if (delta > spool->rsv_hpages) {
191 			/*
192 			 * Asking for more reserves than those already taken on
193 			 * behalf of subpool.  Return difference.
194 			 */
195 			ret = delta - spool->rsv_hpages;
196 			spool->rsv_hpages = 0;
197 		} else {
198 			ret = 0;	/* reserves already accounted for */
199 			spool->rsv_hpages -= delta;
200 		}
201 	}
202 
203 unlock_ret:
204 	spin_unlock_irq(&spool->lock);
205 	return ret;
206 }
207 
208 /*
209  * Subpool accounting for freeing and unreserving pages.
210  * Return the number of global page reservations that must be dropped.
211  * The return value may only be different than the passed value (delta)
212  * in the case where a subpool minimum size must be maintained.
213  */
214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
215 				       long delta)
216 {
217 	long ret = delta;
218 	unsigned long flags;
219 
220 	if (!spool)
221 		return delta;
222 
223 	spin_lock_irqsave(&spool->lock, flags);
224 
225 	if (spool->max_hpages != -1)		/* maximum size accounting */
226 		spool->used_hpages -= delta;
227 
228 	 /* minimum size accounting */
229 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230 		if (spool->rsv_hpages + delta <= spool->min_hpages)
231 			ret = 0;
232 		else
233 			ret = spool->rsv_hpages + delta - spool->min_hpages;
234 
235 		spool->rsv_hpages += delta;
236 		if (spool->rsv_hpages > spool->min_hpages)
237 			spool->rsv_hpages = spool->min_hpages;
238 	}
239 
240 	/*
241 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
242 	 * quota reference, free it now.
243 	 */
244 	unlock_or_release_subpool(spool, flags);
245 
246 	return ret;
247 }
248 
249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 {
251 	return HUGETLBFS_SB(inode->i_sb)->spool;
252 }
253 
254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 {
256 	return subpool_inode(file_inode(vma->vm_file));
257 }
258 
259 /* Helper that removes a struct file_region from the resv_map cache and returns
260  * it for use.
261  */
262 static struct file_region *
263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 {
265 	struct file_region *nrg = NULL;
266 
267 	VM_BUG_ON(resv->region_cache_count <= 0);
268 
269 	resv->region_cache_count--;
270 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
271 	list_del(&nrg->link);
272 
273 	nrg->from = from;
274 	nrg->to = to;
275 
276 	return nrg;
277 }
278 
279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
280 					      struct file_region *rg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	nrg->reservation_counter = rg->reservation_counter;
284 	nrg->css = rg->css;
285 	if (rg->css)
286 		css_get(rg->css);
287 #endif
288 }
289 
290 /* Helper that records hugetlb_cgroup uncharge info. */
291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 						struct hstate *h,
293 						struct resv_map *resv,
294 						struct file_region *nrg)
295 {
296 #ifdef CONFIG_CGROUP_HUGETLB
297 	if (h_cg) {
298 		nrg->reservation_counter =
299 			&h_cg->rsvd_hugepage[hstate_index(h)];
300 		nrg->css = &h_cg->css;
301 		/*
302 		 * The caller will hold exactly one h_cg->css reference for the
303 		 * whole contiguous reservation region. But this area might be
304 		 * scattered when there are already some file_regions reside in
305 		 * it. As a result, many file_regions may share only one css
306 		 * reference. In order to ensure that one file_region must hold
307 		 * exactly one h_cg->css reference, we should do css_get for
308 		 * each file_region and leave the reference held by caller
309 		 * untouched.
310 		 */
311 		css_get(&h_cg->css);
312 		if (!resv->pages_per_hpage)
313 			resv->pages_per_hpage = pages_per_huge_page(h);
314 		/* pages_per_hpage should be the same for all entries in
315 		 * a resv_map.
316 		 */
317 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 	} else {
319 		nrg->reservation_counter = NULL;
320 		nrg->css = NULL;
321 	}
322 #endif
323 }
324 
325 static void put_uncharge_info(struct file_region *rg)
326 {
327 #ifdef CONFIG_CGROUP_HUGETLB
328 	if (rg->css)
329 		css_put(rg->css);
330 #endif
331 }
332 
333 static bool has_same_uncharge_info(struct file_region *rg,
334 				   struct file_region *org)
335 {
336 #ifdef CONFIG_CGROUP_HUGETLB
337 	return rg->reservation_counter == org->reservation_counter &&
338 	       rg->css == org->css;
339 
340 #else
341 	return true;
342 #endif
343 }
344 
345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 {
347 	struct file_region *nrg = NULL, *prg = NULL;
348 
349 	prg = list_prev_entry(rg, link);
350 	if (&prg->link != &resv->regions && prg->to == rg->from &&
351 	    has_same_uncharge_info(prg, rg)) {
352 		prg->to = rg->to;
353 
354 		list_del(&rg->link);
355 		put_uncharge_info(rg);
356 		kfree(rg);
357 
358 		rg = prg;
359 	}
360 
361 	nrg = list_next_entry(rg, link);
362 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
363 	    has_same_uncharge_info(nrg, rg)) {
364 		nrg->from = rg->from;
365 
366 		list_del(&rg->link);
367 		put_uncharge_info(rg);
368 		kfree(rg);
369 	}
370 }
371 
372 static inline long
373 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
374 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
375 		     long *regions_needed)
376 {
377 	struct file_region *nrg;
378 
379 	if (!regions_needed) {
380 		nrg = get_file_region_entry_from_cache(map, from, to);
381 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382 		list_add(&nrg->link, rg);
383 		coalesce_file_region(map, nrg);
384 	} else
385 		*regions_needed += 1;
386 
387 	return to - from;
388 }
389 
390 /*
391  * Must be called with resv->lock held.
392  *
393  * Calling this with regions_needed != NULL will count the number of pages
394  * to be added but will not modify the linked list. And regions_needed will
395  * indicate the number of file_regions needed in the cache to carry out to add
396  * the regions for this range.
397  */
398 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399 				     struct hugetlb_cgroup *h_cg,
400 				     struct hstate *h, long *regions_needed)
401 {
402 	long add = 0;
403 	struct list_head *head = &resv->regions;
404 	long last_accounted_offset = f;
405 	struct file_region *iter, *trg = NULL;
406 	struct list_head *rg = NULL;
407 
408 	if (regions_needed)
409 		*regions_needed = 0;
410 
411 	/* In this loop, we essentially handle an entry for the range
412 	 * [last_accounted_offset, iter->from), at every iteration, with some
413 	 * bounds checking.
414 	 */
415 	list_for_each_entry_safe(iter, trg, head, link) {
416 		/* Skip irrelevant regions that start before our range. */
417 		if (iter->from < f) {
418 			/* If this region ends after the last accounted offset,
419 			 * then we need to update last_accounted_offset.
420 			 */
421 			if (iter->to > last_accounted_offset)
422 				last_accounted_offset = iter->to;
423 			continue;
424 		}
425 
426 		/* When we find a region that starts beyond our range, we've
427 		 * finished.
428 		 */
429 		if (iter->from >= t) {
430 			rg = iter->link.prev;
431 			break;
432 		}
433 
434 		/* Add an entry for last_accounted_offset -> iter->from, and
435 		 * update last_accounted_offset.
436 		 */
437 		if (iter->from > last_accounted_offset)
438 			add += hugetlb_resv_map_add(resv, iter->link.prev,
439 						    last_accounted_offset,
440 						    iter->from, h, h_cg,
441 						    regions_needed);
442 
443 		last_accounted_offset = iter->to;
444 	}
445 
446 	/* Handle the case where our range extends beyond
447 	 * last_accounted_offset.
448 	 */
449 	if (!rg)
450 		rg = head->prev;
451 	if (last_accounted_offset < t)
452 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
453 					    t, h, h_cg, regions_needed);
454 
455 	return add;
456 }
457 
458 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
459  */
460 static int allocate_file_region_entries(struct resv_map *resv,
461 					int regions_needed)
462 	__must_hold(&resv->lock)
463 {
464 	struct list_head allocated_regions;
465 	int to_allocate = 0, i = 0;
466 	struct file_region *trg = NULL, *rg = NULL;
467 
468 	VM_BUG_ON(regions_needed < 0);
469 
470 	INIT_LIST_HEAD(&allocated_regions);
471 
472 	/*
473 	 * Check for sufficient descriptors in the cache to accommodate
474 	 * the number of in progress add operations plus regions_needed.
475 	 *
476 	 * This is a while loop because when we drop the lock, some other call
477 	 * to region_add or region_del may have consumed some region_entries,
478 	 * so we keep looping here until we finally have enough entries for
479 	 * (adds_in_progress + regions_needed).
480 	 */
481 	while (resv->region_cache_count <
482 	       (resv->adds_in_progress + regions_needed)) {
483 		to_allocate = resv->adds_in_progress + regions_needed -
484 			      resv->region_cache_count;
485 
486 		/* At this point, we should have enough entries in the cache
487 		 * for all the existing adds_in_progress. We should only be
488 		 * needing to allocate for regions_needed.
489 		 */
490 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
491 
492 		spin_unlock(&resv->lock);
493 		for (i = 0; i < to_allocate; i++) {
494 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
495 			if (!trg)
496 				goto out_of_memory;
497 			list_add(&trg->link, &allocated_regions);
498 		}
499 
500 		spin_lock(&resv->lock);
501 
502 		list_splice(&allocated_regions, &resv->region_cache);
503 		resv->region_cache_count += to_allocate;
504 	}
505 
506 	return 0;
507 
508 out_of_memory:
509 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
510 		list_del(&rg->link);
511 		kfree(rg);
512 	}
513 	return -ENOMEM;
514 }
515 
516 /*
517  * Add the huge page range represented by [f, t) to the reserve
518  * map.  Regions will be taken from the cache to fill in this range.
519  * Sufficient regions should exist in the cache due to the previous
520  * call to region_chg with the same range, but in some cases the cache will not
521  * have sufficient entries due to races with other code doing region_add or
522  * region_del.  The extra needed entries will be allocated.
523  *
524  * regions_needed is the out value provided by a previous call to region_chg.
525  *
526  * Return the number of new huge pages added to the map.  This number is greater
527  * than or equal to zero.  If file_region entries needed to be allocated for
528  * this operation and we were not able to allocate, it returns -ENOMEM.
529  * region_add of regions of length 1 never allocate file_regions and cannot
530  * fail; region_chg will always allocate at least 1 entry and a region_add for
531  * 1 page will only require at most 1 entry.
532  */
533 static long region_add(struct resv_map *resv, long f, long t,
534 		       long in_regions_needed, struct hstate *h,
535 		       struct hugetlb_cgroup *h_cg)
536 {
537 	long add = 0, actual_regions_needed = 0;
538 
539 	spin_lock(&resv->lock);
540 retry:
541 
542 	/* Count how many regions are actually needed to execute this add. */
543 	add_reservation_in_range(resv, f, t, NULL, NULL,
544 				 &actual_regions_needed);
545 
546 	/*
547 	 * Check for sufficient descriptors in the cache to accommodate
548 	 * this add operation. Note that actual_regions_needed may be greater
549 	 * than in_regions_needed, as the resv_map may have been modified since
550 	 * the region_chg call. In this case, we need to make sure that we
551 	 * allocate extra entries, such that we have enough for all the
552 	 * existing adds_in_progress, plus the excess needed for this
553 	 * operation.
554 	 */
555 	if (actual_regions_needed > in_regions_needed &&
556 	    resv->region_cache_count <
557 		    resv->adds_in_progress +
558 			    (actual_regions_needed - in_regions_needed)) {
559 		/* region_add operation of range 1 should never need to
560 		 * allocate file_region entries.
561 		 */
562 		VM_BUG_ON(t - f <= 1);
563 
564 		if (allocate_file_region_entries(
565 			    resv, actual_regions_needed - in_regions_needed)) {
566 			return -ENOMEM;
567 		}
568 
569 		goto retry;
570 	}
571 
572 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
573 
574 	resv->adds_in_progress -= in_regions_needed;
575 
576 	spin_unlock(&resv->lock);
577 	return add;
578 }
579 
580 /*
581  * Examine the existing reserve map and determine how many
582  * huge pages in the specified range [f, t) are NOT currently
583  * represented.  This routine is called before a subsequent
584  * call to region_add that will actually modify the reserve
585  * map to add the specified range [f, t).  region_chg does
586  * not change the number of huge pages represented by the
587  * map.  A number of new file_region structures is added to the cache as a
588  * placeholder, for the subsequent region_add call to use. At least 1
589  * file_region structure is added.
590  *
591  * out_regions_needed is the number of regions added to the
592  * resv->adds_in_progress.  This value needs to be provided to a follow up call
593  * to region_add or region_abort for proper accounting.
594  *
595  * Returns the number of huge pages that need to be added to the existing
596  * reservation map for the range [f, t).  This number is greater or equal to
597  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
598  * is needed and can not be allocated.
599  */
600 static long region_chg(struct resv_map *resv, long f, long t,
601 		       long *out_regions_needed)
602 {
603 	long chg = 0;
604 
605 	spin_lock(&resv->lock);
606 
607 	/* Count how many hugepages in this range are NOT represented. */
608 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
609 				       out_regions_needed);
610 
611 	if (*out_regions_needed == 0)
612 		*out_regions_needed = 1;
613 
614 	if (allocate_file_region_entries(resv, *out_regions_needed))
615 		return -ENOMEM;
616 
617 	resv->adds_in_progress += *out_regions_needed;
618 
619 	spin_unlock(&resv->lock);
620 	return chg;
621 }
622 
623 /*
624  * Abort the in progress add operation.  The adds_in_progress field
625  * of the resv_map keeps track of the operations in progress between
626  * calls to region_chg and region_add.  Operations are sometimes
627  * aborted after the call to region_chg.  In such cases, region_abort
628  * is called to decrement the adds_in_progress counter. regions_needed
629  * is the value returned by the region_chg call, it is used to decrement
630  * the adds_in_progress counter.
631  *
632  * NOTE: The range arguments [f, t) are not needed or used in this
633  * routine.  They are kept to make reading the calling code easier as
634  * arguments will match the associated region_chg call.
635  */
636 static void region_abort(struct resv_map *resv, long f, long t,
637 			 long regions_needed)
638 {
639 	spin_lock(&resv->lock);
640 	VM_BUG_ON(!resv->region_cache_count);
641 	resv->adds_in_progress -= regions_needed;
642 	spin_unlock(&resv->lock);
643 }
644 
645 /*
646  * Delete the specified range [f, t) from the reserve map.  If the
647  * t parameter is LONG_MAX, this indicates that ALL regions after f
648  * should be deleted.  Locate the regions which intersect [f, t)
649  * and either trim, delete or split the existing regions.
650  *
651  * Returns the number of huge pages deleted from the reserve map.
652  * In the normal case, the return value is zero or more.  In the
653  * case where a region must be split, a new region descriptor must
654  * be allocated.  If the allocation fails, -ENOMEM will be returned.
655  * NOTE: If the parameter t == LONG_MAX, then we will never split
656  * a region and possibly return -ENOMEM.  Callers specifying
657  * t == LONG_MAX do not need to check for -ENOMEM error.
658  */
659 static long region_del(struct resv_map *resv, long f, long t)
660 {
661 	struct list_head *head = &resv->regions;
662 	struct file_region *rg, *trg;
663 	struct file_region *nrg = NULL;
664 	long del = 0;
665 
666 retry:
667 	spin_lock(&resv->lock);
668 	list_for_each_entry_safe(rg, trg, head, link) {
669 		/*
670 		 * Skip regions before the range to be deleted.  file_region
671 		 * ranges are normally of the form [from, to).  However, there
672 		 * may be a "placeholder" entry in the map which is of the form
673 		 * (from, to) with from == to.  Check for placeholder entries
674 		 * at the beginning of the range to be deleted.
675 		 */
676 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
677 			continue;
678 
679 		if (rg->from >= t)
680 			break;
681 
682 		if (f > rg->from && t < rg->to) { /* Must split region */
683 			/*
684 			 * Check for an entry in the cache before dropping
685 			 * lock and attempting allocation.
686 			 */
687 			if (!nrg &&
688 			    resv->region_cache_count > resv->adds_in_progress) {
689 				nrg = list_first_entry(&resv->region_cache,
690 							struct file_region,
691 							link);
692 				list_del(&nrg->link);
693 				resv->region_cache_count--;
694 			}
695 
696 			if (!nrg) {
697 				spin_unlock(&resv->lock);
698 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
699 				if (!nrg)
700 					return -ENOMEM;
701 				goto retry;
702 			}
703 
704 			del += t - f;
705 			hugetlb_cgroup_uncharge_file_region(
706 				resv, rg, t - f, false);
707 
708 			/* New entry for end of split region */
709 			nrg->from = t;
710 			nrg->to = rg->to;
711 
712 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
713 
714 			INIT_LIST_HEAD(&nrg->link);
715 
716 			/* Original entry is trimmed */
717 			rg->to = f;
718 
719 			list_add(&nrg->link, &rg->link);
720 			nrg = NULL;
721 			break;
722 		}
723 
724 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
725 			del += rg->to - rg->from;
726 			hugetlb_cgroup_uncharge_file_region(resv, rg,
727 							    rg->to - rg->from, true);
728 			list_del(&rg->link);
729 			kfree(rg);
730 			continue;
731 		}
732 
733 		if (f <= rg->from) {	/* Trim beginning of region */
734 			hugetlb_cgroup_uncharge_file_region(resv, rg,
735 							    t - rg->from, false);
736 
737 			del += t - rg->from;
738 			rg->from = t;
739 		} else {		/* Trim end of region */
740 			hugetlb_cgroup_uncharge_file_region(resv, rg,
741 							    rg->to - f, false);
742 
743 			del += rg->to - f;
744 			rg->to = f;
745 		}
746 	}
747 
748 	spin_unlock(&resv->lock);
749 	kfree(nrg);
750 	return del;
751 }
752 
753 /*
754  * A rare out of memory error was encountered which prevented removal of
755  * the reserve map region for a page.  The huge page itself was free'ed
756  * and removed from the page cache.  This routine will adjust the subpool
757  * usage count, and the global reserve count if needed.  By incrementing
758  * these counts, the reserve map entry which could not be deleted will
759  * appear as a "reserved" entry instead of simply dangling with incorrect
760  * counts.
761  */
762 void hugetlb_fix_reserve_counts(struct inode *inode)
763 {
764 	struct hugepage_subpool *spool = subpool_inode(inode);
765 	long rsv_adjust;
766 	bool reserved = false;
767 
768 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
769 	if (rsv_adjust > 0) {
770 		struct hstate *h = hstate_inode(inode);
771 
772 		if (!hugetlb_acct_memory(h, 1))
773 			reserved = true;
774 	} else if (!rsv_adjust) {
775 		reserved = true;
776 	}
777 
778 	if (!reserved)
779 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 }
781 
782 /*
783  * Count and return the number of huge pages in the reserve map
784  * that intersect with the range [f, t).
785  */
786 static long region_count(struct resv_map *resv, long f, long t)
787 {
788 	struct list_head *head = &resv->regions;
789 	struct file_region *rg;
790 	long chg = 0;
791 
792 	spin_lock(&resv->lock);
793 	/* Locate each segment we overlap with, and count that overlap. */
794 	list_for_each_entry(rg, head, link) {
795 		long seg_from;
796 		long seg_to;
797 
798 		if (rg->to <= f)
799 			continue;
800 		if (rg->from >= t)
801 			break;
802 
803 		seg_from = max(rg->from, f);
804 		seg_to = min(rg->to, t);
805 
806 		chg += seg_to - seg_from;
807 	}
808 	spin_unlock(&resv->lock);
809 
810 	return chg;
811 }
812 
813 /*
814  * Convert the address within this vma to the page offset within
815  * the mapping, in pagecache page units; huge pages here.
816  */
817 static pgoff_t vma_hugecache_offset(struct hstate *h,
818 			struct vm_area_struct *vma, unsigned long address)
819 {
820 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
821 			(vma->vm_pgoff >> huge_page_order(h));
822 }
823 
824 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
825 				     unsigned long address)
826 {
827 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
828 }
829 EXPORT_SYMBOL_GPL(linear_hugepage_index);
830 
831 /*
832  * Return the size of the pages allocated when backing a VMA. In the majority
833  * cases this will be same size as used by the page table entries.
834  */
835 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
836 {
837 	if (vma->vm_ops && vma->vm_ops->pagesize)
838 		return vma->vm_ops->pagesize(vma);
839 	return PAGE_SIZE;
840 }
841 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
842 
843 /*
844  * Return the page size being used by the MMU to back a VMA. In the majority
845  * of cases, the page size used by the kernel matches the MMU size. On
846  * architectures where it differs, an architecture-specific 'strong'
847  * version of this symbol is required.
848  */
849 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
850 {
851 	return vma_kernel_pagesize(vma);
852 }
853 
854 /*
855  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
856  * bits of the reservation map pointer, which are always clear due to
857  * alignment.
858  */
859 #define HPAGE_RESV_OWNER    (1UL << 0)
860 #define HPAGE_RESV_UNMAPPED (1UL << 1)
861 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
862 
863 /*
864  * These helpers are used to track how many pages are reserved for
865  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
866  * is guaranteed to have their future faults succeed.
867  *
868  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
869  * the reserve counters are updated with the hugetlb_lock held. It is safe
870  * to reset the VMA at fork() time as it is not in use yet and there is no
871  * chance of the global counters getting corrupted as a result of the values.
872  *
873  * The private mapping reservation is represented in a subtly different
874  * manner to a shared mapping.  A shared mapping has a region map associated
875  * with the underlying file, this region map represents the backing file
876  * pages which have ever had a reservation assigned which this persists even
877  * after the page is instantiated.  A private mapping has a region map
878  * associated with the original mmap which is attached to all VMAs which
879  * reference it, this region map represents those offsets which have consumed
880  * reservation ie. where pages have been instantiated.
881  */
882 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
883 {
884 	return (unsigned long)vma->vm_private_data;
885 }
886 
887 static void set_vma_private_data(struct vm_area_struct *vma,
888 							unsigned long value)
889 {
890 	vma->vm_private_data = (void *)value;
891 }
892 
893 static void
894 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
895 					  struct hugetlb_cgroup *h_cg,
896 					  struct hstate *h)
897 {
898 #ifdef CONFIG_CGROUP_HUGETLB
899 	if (!h_cg || !h) {
900 		resv_map->reservation_counter = NULL;
901 		resv_map->pages_per_hpage = 0;
902 		resv_map->css = NULL;
903 	} else {
904 		resv_map->reservation_counter =
905 			&h_cg->rsvd_hugepage[hstate_index(h)];
906 		resv_map->pages_per_hpage = pages_per_huge_page(h);
907 		resv_map->css = &h_cg->css;
908 	}
909 #endif
910 }
911 
912 struct resv_map *resv_map_alloc(void)
913 {
914 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
915 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
916 
917 	if (!resv_map || !rg) {
918 		kfree(resv_map);
919 		kfree(rg);
920 		return NULL;
921 	}
922 
923 	kref_init(&resv_map->refs);
924 	spin_lock_init(&resv_map->lock);
925 	INIT_LIST_HEAD(&resv_map->regions);
926 
927 	resv_map->adds_in_progress = 0;
928 	/*
929 	 * Initialize these to 0. On shared mappings, 0's here indicate these
930 	 * fields don't do cgroup accounting. On private mappings, these will be
931 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
932 	 * reservations are to be un-charged from here.
933 	 */
934 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
935 
936 	INIT_LIST_HEAD(&resv_map->region_cache);
937 	list_add(&rg->link, &resv_map->region_cache);
938 	resv_map->region_cache_count = 1;
939 
940 	return resv_map;
941 }
942 
943 void resv_map_release(struct kref *ref)
944 {
945 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
946 	struct list_head *head = &resv_map->region_cache;
947 	struct file_region *rg, *trg;
948 
949 	/* Clear out any active regions before we release the map. */
950 	region_del(resv_map, 0, LONG_MAX);
951 
952 	/* ... and any entries left in the cache */
953 	list_for_each_entry_safe(rg, trg, head, link) {
954 		list_del(&rg->link);
955 		kfree(rg);
956 	}
957 
958 	VM_BUG_ON(resv_map->adds_in_progress);
959 
960 	kfree(resv_map);
961 }
962 
963 static inline struct resv_map *inode_resv_map(struct inode *inode)
964 {
965 	/*
966 	 * At inode evict time, i_mapping may not point to the original
967 	 * address space within the inode.  This original address space
968 	 * contains the pointer to the resv_map.  So, always use the
969 	 * address space embedded within the inode.
970 	 * The VERY common case is inode->mapping == &inode->i_data but,
971 	 * this may not be true for device special inodes.
972 	 */
973 	return (struct resv_map *)(&inode->i_data)->private_data;
974 }
975 
976 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
977 {
978 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
979 	if (vma->vm_flags & VM_MAYSHARE) {
980 		struct address_space *mapping = vma->vm_file->f_mapping;
981 		struct inode *inode = mapping->host;
982 
983 		return inode_resv_map(inode);
984 
985 	} else {
986 		return (struct resv_map *)(get_vma_private_data(vma) &
987 							~HPAGE_RESV_MASK);
988 	}
989 }
990 
991 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
992 {
993 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
995 
996 	set_vma_private_data(vma, (get_vma_private_data(vma) &
997 				HPAGE_RESV_MASK) | (unsigned long)map);
998 }
999 
1000 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1001 {
1002 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1004 
1005 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1006 }
1007 
1008 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1009 {
1010 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1011 
1012 	return (get_vma_private_data(vma) & flag) != 0;
1013 }
1014 
1015 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1016 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1017 {
1018 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1019 	if (!(vma->vm_flags & VM_MAYSHARE))
1020 		vma->vm_private_data = (void *)0;
1021 }
1022 
1023 /*
1024  * Reset and decrement one ref on hugepage private reservation.
1025  * Called with mm->mmap_sem writer semaphore held.
1026  * This function should be only used by move_vma() and operate on
1027  * same sized vma. It should never come here with last ref on the
1028  * reservation.
1029  */
1030 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1031 {
1032 	/*
1033 	 * Clear the old hugetlb private page reservation.
1034 	 * It has already been transferred to new_vma.
1035 	 *
1036 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1037 	 * which copies vma into new_vma and unmaps vma. After the copy
1038 	 * operation both new_vma and vma share a reference to the resv_map
1039 	 * struct, and at that point vma is about to be unmapped. We don't
1040 	 * want to return the reservation to the pool at unmap of vma because
1041 	 * the reservation still lives on in new_vma, so simply decrement the
1042 	 * ref here and remove the resv_map reference from this vma.
1043 	 */
1044 	struct resv_map *reservations = vma_resv_map(vma);
1045 
1046 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1047 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1048 		kref_put(&reservations->refs, resv_map_release);
1049 	}
1050 
1051 	reset_vma_resv_huge_pages(vma);
1052 }
1053 
1054 /* Returns true if the VMA has associated reserve pages */
1055 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1056 {
1057 	if (vma->vm_flags & VM_NORESERVE) {
1058 		/*
1059 		 * This address is already reserved by other process(chg == 0),
1060 		 * so, we should decrement reserved count. Without decrementing,
1061 		 * reserve count remains after releasing inode, because this
1062 		 * allocated page will go into page cache and is regarded as
1063 		 * coming from reserved pool in releasing step.  Currently, we
1064 		 * don't have any other solution to deal with this situation
1065 		 * properly, so add work-around here.
1066 		 */
1067 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1068 			return true;
1069 		else
1070 			return false;
1071 	}
1072 
1073 	/* Shared mappings always use reserves */
1074 	if (vma->vm_flags & VM_MAYSHARE) {
1075 		/*
1076 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1077 		 * be a region map for all pages.  The only situation where
1078 		 * there is no region map is if a hole was punched via
1079 		 * fallocate.  In this case, there really are no reserves to
1080 		 * use.  This situation is indicated if chg != 0.
1081 		 */
1082 		if (chg)
1083 			return false;
1084 		else
1085 			return true;
1086 	}
1087 
1088 	/*
1089 	 * Only the process that called mmap() has reserves for
1090 	 * private mappings.
1091 	 */
1092 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1093 		/*
1094 		 * Like the shared case above, a hole punch or truncate
1095 		 * could have been performed on the private mapping.
1096 		 * Examine the value of chg to determine if reserves
1097 		 * actually exist or were previously consumed.
1098 		 * Very Subtle - The value of chg comes from a previous
1099 		 * call to vma_needs_reserves().  The reserve map for
1100 		 * private mappings has different (opposite) semantics
1101 		 * than that of shared mappings.  vma_needs_reserves()
1102 		 * has already taken this difference in semantics into
1103 		 * account.  Therefore, the meaning of chg is the same
1104 		 * as in the shared case above.  Code could easily be
1105 		 * combined, but keeping it separate draws attention to
1106 		 * subtle differences.
1107 		 */
1108 		if (chg)
1109 			return false;
1110 		else
1111 			return true;
1112 	}
1113 
1114 	return false;
1115 }
1116 
1117 static void enqueue_huge_page(struct hstate *h, struct page *page)
1118 {
1119 	int nid = page_to_nid(page);
1120 
1121 	lockdep_assert_held(&hugetlb_lock);
1122 	VM_BUG_ON_PAGE(page_count(page), page);
1123 
1124 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1125 	h->free_huge_pages++;
1126 	h->free_huge_pages_node[nid]++;
1127 	SetHPageFreed(page);
1128 }
1129 
1130 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1131 {
1132 	struct page *page;
1133 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1134 
1135 	lockdep_assert_held(&hugetlb_lock);
1136 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1137 		if (pin && !is_pinnable_page(page))
1138 			continue;
1139 
1140 		if (PageHWPoison(page))
1141 			continue;
1142 
1143 		list_move(&page->lru, &h->hugepage_activelist);
1144 		set_page_refcounted(page);
1145 		ClearHPageFreed(page);
1146 		h->free_huge_pages--;
1147 		h->free_huge_pages_node[nid]--;
1148 		return page;
1149 	}
1150 
1151 	return NULL;
1152 }
1153 
1154 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1155 		nodemask_t *nmask)
1156 {
1157 	unsigned int cpuset_mems_cookie;
1158 	struct zonelist *zonelist;
1159 	struct zone *zone;
1160 	struct zoneref *z;
1161 	int node = NUMA_NO_NODE;
1162 
1163 	zonelist = node_zonelist(nid, gfp_mask);
1164 
1165 retry_cpuset:
1166 	cpuset_mems_cookie = read_mems_allowed_begin();
1167 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1168 		struct page *page;
1169 
1170 		if (!cpuset_zone_allowed(zone, gfp_mask))
1171 			continue;
1172 		/*
1173 		 * no need to ask again on the same node. Pool is node rather than
1174 		 * zone aware
1175 		 */
1176 		if (zone_to_nid(zone) == node)
1177 			continue;
1178 		node = zone_to_nid(zone);
1179 
1180 		page = dequeue_huge_page_node_exact(h, node);
1181 		if (page)
1182 			return page;
1183 	}
1184 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1185 		goto retry_cpuset;
1186 
1187 	return NULL;
1188 }
1189 
1190 static struct page *dequeue_huge_page_vma(struct hstate *h,
1191 				struct vm_area_struct *vma,
1192 				unsigned long address, int avoid_reserve,
1193 				long chg)
1194 {
1195 	struct page *page = NULL;
1196 	struct mempolicy *mpol;
1197 	gfp_t gfp_mask;
1198 	nodemask_t *nodemask;
1199 	int nid;
1200 
1201 	/*
1202 	 * A child process with MAP_PRIVATE mappings created by their parent
1203 	 * have no page reserves. This check ensures that reservations are
1204 	 * not "stolen". The child may still get SIGKILLed
1205 	 */
1206 	if (!vma_has_reserves(vma, chg) &&
1207 			h->free_huge_pages - h->resv_huge_pages == 0)
1208 		goto err;
1209 
1210 	/* If reserves cannot be used, ensure enough pages are in the pool */
1211 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1212 		goto err;
1213 
1214 	gfp_mask = htlb_alloc_mask(h);
1215 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1216 
1217 	if (mpol_is_preferred_many(mpol)) {
1218 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1219 
1220 		/* Fallback to all nodes if page==NULL */
1221 		nodemask = NULL;
1222 	}
1223 
1224 	if (!page)
1225 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1226 
1227 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1228 		SetHPageRestoreReserve(page);
1229 		h->resv_huge_pages--;
1230 	}
1231 
1232 	mpol_cond_put(mpol);
1233 	return page;
1234 
1235 err:
1236 	return NULL;
1237 }
1238 
1239 /*
1240  * common helper functions for hstate_next_node_to_{alloc|free}.
1241  * We may have allocated or freed a huge page based on a different
1242  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1243  * be outside of *nodes_allowed.  Ensure that we use an allowed
1244  * node for alloc or free.
1245  */
1246 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1247 {
1248 	nid = next_node_in(nid, *nodes_allowed);
1249 	VM_BUG_ON(nid >= MAX_NUMNODES);
1250 
1251 	return nid;
1252 }
1253 
1254 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1255 {
1256 	if (!node_isset(nid, *nodes_allowed))
1257 		nid = next_node_allowed(nid, nodes_allowed);
1258 	return nid;
1259 }
1260 
1261 /*
1262  * returns the previously saved node ["this node"] from which to
1263  * allocate a persistent huge page for the pool and advance the
1264  * next node from which to allocate, handling wrap at end of node
1265  * mask.
1266  */
1267 static int hstate_next_node_to_alloc(struct hstate *h,
1268 					nodemask_t *nodes_allowed)
1269 {
1270 	int nid;
1271 
1272 	VM_BUG_ON(!nodes_allowed);
1273 
1274 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1275 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1276 
1277 	return nid;
1278 }
1279 
1280 /*
1281  * helper for remove_pool_huge_page() - return the previously saved
1282  * node ["this node"] from which to free a huge page.  Advance the
1283  * next node id whether or not we find a free huge page to free so
1284  * that the next attempt to free addresses the next node.
1285  */
1286 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1287 {
1288 	int nid;
1289 
1290 	VM_BUG_ON(!nodes_allowed);
1291 
1292 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1293 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1294 
1295 	return nid;
1296 }
1297 
1298 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1299 	for (nr_nodes = nodes_weight(*mask);				\
1300 		nr_nodes > 0 &&						\
1301 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1302 		nr_nodes--)
1303 
1304 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1305 	for (nr_nodes = nodes_weight(*mask);				\
1306 		nr_nodes > 0 &&						\
1307 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1308 		nr_nodes--)
1309 
1310 /* used to demote non-gigantic_huge pages as well */
1311 static void __destroy_compound_gigantic_page(struct page *page,
1312 					unsigned int order, bool demote)
1313 {
1314 	int i;
1315 	int nr_pages = 1 << order;
1316 	struct page *p = page + 1;
1317 
1318 	atomic_set(compound_mapcount_ptr(page), 0);
1319 	atomic_set(compound_pincount_ptr(page), 0);
1320 
1321 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1322 		p->mapping = NULL;
1323 		clear_compound_head(p);
1324 		if (!demote)
1325 			set_page_refcounted(p);
1326 	}
1327 
1328 	set_compound_order(page, 0);
1329 #ifdef CONFIG_64BIT
1330 	page[1].compound_nr = 0;
1331 #endif
1332 	__ClearPageHead(page);
1333 }
1334 
1335 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1336 					unsigned int order)
1337 {
1338 	__destroy_compound_gigantic_page(page, order, true);
1339 }
1340 
1341 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1342 static void destroy_compound_gigantic_page(struct page *page,
1343 					unsigned int order)
1344 {
1345 	__destroy_compound_gigantic_page(page, order, false);
1346 }
1347 
1348 static void free_gigantic_page(struct page *page, unsigned int order)
1349 {
1350 	/*
1351 	 * If the page isn't allocated using the cma allocator,
1352 	 * cma_release() returns false.
1353 	 */
1354 #ifdef CONFIG_CMA
1355 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1356 		return;
1357 #endif
1358 
1359 	free_contig_range(page_to_pfn(page), 1 << order);
1360 }
1361 
1362 #ifdef CONFIG_CONTIG_ALLOC
1363 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1364 		int nid, nodemask_t *nodemask)
1365 {
1366 	unsigned long nr_pages = pages_per_huge_page(h);
1367 	if (nid == NUMA_NO_NODE)
1368 		nid = numa_mem_id();
1369 
1370 #ifdef CONFIG_CMA
1371 	{
1372 		struct page *page;
1373 		int node;
1374 
1375 		if (hugetlb_cma[nid]) {
1376 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1377 					huge_page_order(h), true);
1378 			if (page)
1379 				return page;
1380 		}
1381 
1382 		if (!(gfp_mask & __GFP_THISNODE)) {
1383 			for_each_node_mask(node, *nodemask) {
1384 				if (node == nid || !hugetlb_cma[node])
1385 					continue;
1386 
1387 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1388 						huge_page_order(h), true);
1389 				if (page)
1390 					return page;
1391 			}
1392 		}
1393 	}
1394 #endif
1395 
1396 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1397 }
1398 
1399 #else /* !CONFIG_CONTIG_ALLOC */
1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401 					int nid, nodemask_t *nodemask)
1402 {
1403 	return NULL;
1404 }
1405 #endif /* CONFIG_CONTIG_ALLOC */
1406 
1407 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1408 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1409 					int nid, nodemask_t *nodemask)
1410 {
1411 	return NULL;
1412 }
1413 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1414 static inline void destroy_compound_gigantic_page(struct page *page,
1415 						unsigned int order) { }
1416 #endif
1417 
1418 /*
1419  * Remove hugetlb page from lists, and update dtor so that page appears
1420  * as just a compound page.
1421  *
1422  * A reference is held on the page, except in the case of demote.
1423  *
1424  * Must be called with hugetlb lock held.
1425  */
1426 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1427 							bool adjust_surplus,
1428 							bool demote)
1429 {
1430 	int nid = page_to_nid(page);
1431 
1432 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1433 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1434 
1435 	lockdep_assert_held(&hugetlb_lock);
1436 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1437 		return;
1438 
1439 	list_del(&page->lru);
1440 
1441 	if (HPageFreed(page)) {
1442 		h->free_huge_pages--;
1443 		h->free_huge_pages_node[nid]--;
1444 	}
1445 	if (adjust_surplus) {
1446 		h->surplus_huge_pages--;
1447 		h->surplus_huge_pages_node[nid]--;
1448 	}
1449 
1450 	/*
1451 	 * Very subtle
1452 	 *
1453 	 * For non-gigantic pages set the destructor to the normal compound
1454 	 * page dtor.  This is needed in case someone takes an additional
1455 	 * temporary ref to the page, and freeing is delayed until they drop
1456 	 * their reference.
1457 	 *
1458 	 * For gigantic pages set the destructor to the null dtor.  This
1459 	 * destructor will never be called.  Before freeing the gigantic
1460 	 * page destroy_compound_gigantic_page will turn the compound page
1461 	 * into a simple group of pages.  After this the destructor does not
1462 	 * apply.
1463 	 *
1464 	 * This handles the case where more than one ref is held when and
1465 	 * after update_and_free_page is called.
1466 	 *
1467 	 * In the case of demote we do not ref count the page as it will soon
1468 	 * be turned into a page of smaller size.
1469 	 */
1470 	if (!demote)
1471 		set_page_refcounted(page);
1472 	if (hstate_is_gigantic(h))
1473 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1474 	else
1475 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1476 
1477 	h->nr_huge_pages--;
1478 	h->nr_huge_pages_node[nid]--;
1479 }
1480 
1481 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1482 							bool adjust_surplus)
1483 {
1484 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1485 }
1486 
1487 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1488 							bool adjust_surplus)
1489 {
1490 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1491 }
1492 
1493 static void add_hugetlb_page(struct hstate *h, struct page *page,
1494 			     bool adjust_surplus)
1495 {
1496 	int zeroed;
1497 	int nid = page_to_nid(page);
1498 
1499 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1500 
1501 	lockdep_assert_held(&hugetlb_lock);
1502 
1503 	INIT_LIST_HEAD(&page->lru);
1504 	h->nr_huge_pages++;
1505 	h->nr_huge_pages_node[nid]++;
1506 
1507 	if (adjust_surplus) {
1508 		h->surplus_huge_pages++;
1509 		h->surplus_huge_pages_node[nid]++;
1510 	}
1511 
1512 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1513 	set_page_private(page, 0);
1514 	SetHPageVmemmapOptimized(page);
1515 
1516 	/*
1517 	 * This page is about to be managed by the hugetlb allocator and
1518 	 * should have no users.  Drop our reference, and check for others
1519 	 * just in case.
1520 	 */
1521 	zeroed = put_page_testzero(page);
1522 	if (!zeroed)
1523 		/*
1524 		 * It is VERY unlikely soneone else has taken a ref on
1525 		 * the page.  In this case, we simply return as the
1526 		 * hugetlb destructor (free_huge_page) will be called
1527 		 * when this other ref is dropped.
1528 		 */
1529 		return;
1530 
1531 	arch_clear_hugepage_flags(page);
1532 	enqueue_huge_page(h, page);
1533 }
1534 
1535 static void __update_and_free_page(struct hstate *h, struct page *page)
1536 {
1537 	int i;
1538 	struct page *subpage = page;
1539 
1540 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1541 		return;
1542 
1543 	if (hugetlb_vmemmap_alloc(h, page)) {
1544 		spin_lock_irq(&hugetlb_lock);
1545 		/*
1546 		 * If we cannot allocate vmemmap pages, just refuse to free the
1547 		 * page and put the page back on the hugetlb free list and treat
1548 		 * as a surplus page.
1549 		 */
1550 		add_hugetlb_page(h, page, true);
1551 		spin_unlock_irq(&hugetlb_lock);
1552 		return;
1553 	}
1554 
1555 	for (i = 0; i < pages_per_huge_page(h);
1556 	     i++, subpage = mem_map_next(subpage, page, i)) {
1557 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1558 				1 << PG_referenced | 1 << PG_dirty |
1559 				1 << PG_active | 1 << PG_private |
1560 				1 << PG_writeback);
1561 	}
1562 
1563 	/*
1564 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1565 	 * need to be given back to CMA in free_gigantic_page.
1566 	 */
1567 	if (hstate_is_gigantic(h) ||
1568 	    hugetlb_cma_page(page, huge_page_order(h))) {
1569 		destroy_compound_gigantic_page(page, huge_page_order(h));
1570 		free_gigantic_page(page, huge_page_order(h));
1571 	} else {
1572 		__free_pages(page, huge_page_order(h));
1573 	}
1574 }
1575 
1576 /*
1577  * As update_and_free_page() can be called under any context, so we cannot
1578  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1579  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1580  * the vmemmap pages.
1581  *
1582  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1583  * freed and frees them one-by-one. As the page->mapping pointer is going
1584  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1585  * structure of a lockless linked list of huge pages to be freed.
1586  */
1587 static LLIST_HEAD(hpage_freelist);
1588 
1589 static void free_hpage_workfn(struct work_struct *work)
1590 {
1591 	struct llist_node *node;
1592 
1593 	node = llist_del_all(&hpage_freelist);
1594 
1595 	while (node) {
1596 		struct page *page;
1597 		struct hstate *h;
1598 
1599 		page = container_of((struct address_space **)node,
1600 				     struct page, mapping);
1601 		node = node->next;
1602 		page->mapping = NULL;
1603 		/*
1604 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1605 		 * is going to trigger because a previous call to
1606 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1607 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1608 		 */
1609 		h = size_to_hstate(page_size(page));
1610 
1611 		__update_and_free_page(h, page);
1612 
1613 		cond_resched();
1614 	}
1615 }
1616 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1617 
1618 static inline void flush_free_hpage_work(struct hstate *h)
1619 {
1620 	if (hugetlb_optimize_vmemmap_pages(h))
1621 		flush_work(&free_hpage_work);
1622 }
1623 
1624 static void update_and_free_page(struct hstate *h, struct page *page,
1625 				 bool atomic)
1626 {
1627 	if (!HPageVmemmapOptimized(page) || !atomic) {
1628 		__update_and_free_page(h, page);
1629 		return;
1630 	}
1631 
1632 	/*
1633 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1634 	 *
1635 	 * Only call schedule_work() if hpage_freelist is previously
1636 	 * empty. Otherwise, schedule_work() had been called but the workfn
1637 	 * hasn't retrieved the list yet.
1638 	 */
1639 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1640 		schedule_work(&free_hpage_work);
1641 }
1642 
1643 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1644 {
1645 	struct page *page, *t_page;
1646 
1647 	list_for_each_entry_safe(page, t_page, list, lru) {
1648 		update_and_free_page(h, page, false);
1649 		cond_resched();
1650 	}
1651 }
1652 
1653 struct hstate *size_to_hstate(unsigned long size)
1654 {
1655 	struct hstate *h;
1656 
1657 	for_each_hstate(h) {
1658 		if (huge_page_size(h) == size)
1659 			return h;
1660 	}
1661 	return NULL;
1662 }
1663 
1664 void free_huge_page(struct page *page)
1665 {
1666 	/*
1667 	 * Can't pass hstate in here because it is called from the
1668 	 * compound page destructor.
1669 	 */
1670 	struct hstate *h = page_hstate(page);
1671 	int nid = page_to_nid(page);
1672 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1673 	bool restore_reserve;
1674 	unsigned long flags;
1675 
1676 	VM_BUG_ON_PAGE(page_count(page), page);
1677 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1678 
1679 	hugetlb_set_page_subpool(page, NULL);
1680 	if (PageAnon(page))
1681 		__ClearPageAnonExclusive(page);
1682 	page->mapping = NULL;
1683 	restore_reserve = HPageRestoreReserve(page);
1684 	ClearHPageRestoreReserve(page);
1685 
1686 	/*
1687 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1688 	 * reservation.  If the page was associated with a subpool, there
1689 	 * would have been a page reserved in the subpool before allocation
1690 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1691 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1692 	 * remove the reserved page from the subpool.
1693 	 */
1694 	if (!restore_reserve) {
1695 		/*
1696 		 * A return code of zero implies that the subpool will be
1697 		 * under its minimum size if the reservation is not restored
1698 		 * after page is free.  Therefore, force restore_reserve
1699 		 * operation.
1700 		 */
1701 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1702 			restore_reserve = true;
1703 	}
1704 
1705 	spin_lock_irqsave(&hugetlb_lock, flags);
1706 	ClearHPageMigratable(page);
1707 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1708 				     pages_per_huge_page(h), page);
1709 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1710 					  pages_per_huge_page(h), page);
1711 	if (restore_reserve)
1712 		h->resv_huge_pages++;
1713 
1714 	if (HPageTemporary(page)) {
1715 		remove_hugetlb_page(h, page, false);
1716 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1717 		update_and_free_page(h, page, true);
1718 	} else if (h->surplus_huge_pages_node[nid]) {
1719 		/* remove the page from active list */
1720 		remove_hugetlb_page(h, page, true);
1721 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1722 		update_and_free_page(h, page, true);
1723 	} else {
1724 		arch_clear_hugepage_flags(page);
1725 		enqueue_huge_page(h, page);
1726 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1727 	}
1728 }
1729 
1730 /*
1731  * Must be called with the hugetlb lock held
1732  */
1733 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1734 {
1735 	lockdep_assert_held(&hugetlb_lock);
1736 	h->nr_huge_pages++;
1737 	h->nr_huge_pages_node[nid]++;
1738 }
1739 
1740 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1741 {
1742 	hugetlb_vmemmap_free(h, page);
1743 	INIT_LIST_HEAD(&page->lru);
1744 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1745 	hugetlb_set_page_subpool(page, NULL);
1746 	set_hugetlb_cgroup(page, NULL);
1747 	set_hugetlb_cgroup_rsvd(page, NULL);
1748 }
1749 
1750 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1751 {
1752 	__prep_new_huge_page(h, page);
1753 	spin_lock_irq(&hugetlb_lock);
1754 	__prep_account_new_huge_page(h, nid);
1755 	spin_unlock_irq(&hugetlb_lock);
1756 }
1757 
1758 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1759 								bool demote)
1760 {
1761 	int i, j;
1762 	int nr_pages = 1 << order;
1763 	struct page *p = page + 1;
1764 
1765 	/* we rely on prep_new_huge_page to set the destructor */
1766 	set_compound_order(page, order);
1767 	__ClearPageReserved(page);
1768 	__SetPageHead(page);
1769 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1770 		/*
1771 		 * For gigantic hugepages allocated through bootmem at
1772 		 * boot, it's safer to be consistent with the not-gigantic
1773 		 * hugepages and clear the PG_reserved bit from all tail pages
1774 		 * too.  Otherwise drivers using get_user_pages() to access tail
1775 		 * pages may get the reference counting wrong if they see
1776 		 * PG_reserved set on a tail page (despite the head page not
1777 		 * having PG_reserved set).  Enforcing this consistency between
1778 		 * head and tail pages allows drivers to optimize away a check
1779 		 * on the head page when they need know if put_page() is needed
1780 		 * after get_user_pages().
1781 		 */
1782 		__ClearPageReserved(p);
1783 		/*
1784 		 * Subtle and very unlikely
1785 		 *
1786 		 * Gigantic 'page allocators' such as memblock or cma will
1787 		 * return a set of pages with each page ref counted.  We need
1788 		 * to turn this set of pages into a compound page with tail
1789 		 * page ref counts set to zero.  Code such as speculative page
1790 		 * cache adding could take a ref on a 'to be' tail page.
1791 		 * We need to respect any increased ref count, and only set
1792 		 * the ref count to zero if count is currently 1.  If count
1793 		 * is not 1, we return an error.  An error return indicates
1794 		 * the set of pages can not be converted to a gigantic page.
1795 		 * The caller who allocated the pages should then discard the
1796 		 * pages using the appropriate free interface.
1797 		 *
1798 		 * In the case of demote, the ref count will be zero.
1799 		 */
1800 		if (!demote) {
1801 			if (!page_ref_freeze(p, 1)) {
1802 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1803 				goto out_error;
1804 			}
1805 		} else {
1806 			VM_BUG_ON_PAGE(page_count(p), p);
1807 		}
1808 		set_compound_head(p, page);
1809 	}
1810 	atomic_set(compound_mapcount_ptr(page), -1);
1811 	atomic_set(compound_pincount_ptr(page), 0);
1812 	return true;
1813 
1814 out_error:
1815 	/* undo tail page modifications made above */
1816 	p = page + 1;
1817 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1818 		clear_compound_head(p);
1819 		set_page_refcounted(p);
1820 	}
1821 	/* need to clear PG_reserved on remaining tail pages  */
1822 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1823 		__ClearPageReserved(p);
1824 	set_compound_order(page, 0);
1825 #ifdef CONFIG_64BIT
1826 	page[1].compound_nr = 0;
1827 #endif
1828 	__ClearPageHead(page);
1829 	return false;
1830 }
1831 
1832 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1833 {
1834 	return __prep_compound_gigantic_page(page, order, false);
1835 }
1836 
1837 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1838 							unsigned int order)
1839 {
1840 	return __prep_compound_gigantic_page(page, order, true);
1841 }
1842 
1843 /*
1844  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1845  * transparent huge pages.  See the PageTransHuge() documentation for more
1846  * details.
1847  */
1848 int PageHuge(struct page *page)
1849 {
1850 	if (!PageCompound(page))
1851 		return 0;
1852 
1853 	page = compound_head(page);
1854 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1855 }
1856 EXPORT_SYMBOL_GPL(PageHuge);
1857 
1858 /*
1859  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1860  * normal or transparent huge pages.
1861  */
1862 int PageHeadHuge(struct page *page_head)
1863 {
1864 	if (!PageHead(page_head))
1865 		return 0;
1866 
1867 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1868 }
1869 EXPORT_SYMBOL_GPL(PageHeadHuge);
1870 
1871 /*
1872  * Find and lock address space (mapping) in write mode.
1873  *
1874  * Upon entry, the page is locked which means that page_mapping() is
1875  * stable.  Due to locking order, we can only trylock_write.  If we can
1876  * not get the lock, simply return NULL to caller.
1877  */
1878 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1879 {
1880 	struct address_space *mapping = page_mapping(hpage);
1881 
1882 	if (!mapping)
1883 		return mapping;
1884 
1885 	if (i_mmap_trylock_write(mapping))
1886 		return mapping;
1887 
1888 	return NULL;
1889 }
1890 
1891 pgoff_t hugetlb_basepage_index(struct page *page)
1892 {
1893 	struct page *page_head = compound_head(page);
1894 	pgoff_t index = page_index(page_head);
1895 	unsigned long compound_idx;
1896 
1897 	if (compound_order(page_head) >= MAX_ORDER)
1898 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1899 	else
1900 		compound_idx = page - page_head;
1901 
1902 	return (index << compound_order(page_head)) + compound_idx;
1903 }
1904 
1905 static struct page *alloc_buddy_huge_page(struct hstate *h,
1906 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1907 		nodemask_t *node_alloc_noretry)
1908 {
1909 	int order = huge_page_order(h);
1910 	struct page *page;
1911 	bool alloc_try_hard = true;
1912 
1913 	/*
1914 	 * By default we always try hard to allocate the page with
1915 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1916 	 * a loop (to adjust global huge page counts) and previous allocation
1917 	 * failed, do not continue to try hard on the same node.  Use the
1918 	 * node_alloc_noretry bitmap to manage this state information.
1919 	 */
1920 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1921 		alloc_try_hard = false;
1922 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1923 	if (alloc_try_hard)
1924 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1925 	if (nid == NUMA_NO_NODE)
1926 		nid = numa_mem_id();
1927 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1928 	if (page)
1929 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1930 	else
1931 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1932 
1933 	/*
1934 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1935 	 * indicates an overall state change.  Clear bit so that we resume
1936 	 * normal 'try hard' allocations.
1937 	 */
1938 	if (node_alloc_noretry && page && !alloc_try_hard)
1939 		node_clear(nid, *node_alloc_noretry);
1940 
1941 	/*
1942 	 * If we tried hard to get a page but failed, set bit so that
1943 	 * subsequent attempts will not try as hard until there is an
1944 	 * overall state change.
1945 	 */
1946 	if (node_alloc_noretry && !page && alloc_try_hard)
1947 		node_set(nid, *node_alloc_noretry);
1948 
1949 	return page;
1950 }
1951 
1952 /*
1953  * Common helper to allocate a fresh hugetlb page. All specific allocators
1954  * should use this function to get new hugetlb pages
1955  */
1956 static struct page *alloc_fresh_huge_page(struct hstate *h,
1957 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1958 		nodemask_t *node_alloc_noretry)
1959 {
1960 	struct page *page;
1961 	bool retry = false;
1962 
1963 retry:
1964 	if (hstate_is_gigantic(h))
1965 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1966 	else
1967 		page = alloc_buddy_huge_page(h, gfp_mask,
1968 				nid, nmask, node_alloc_noretry);
1969 	if (!page)
1970 		return NULL;
1971 
1972 	if (hstate_is_gigantic(h)) {
1973 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1974 			/*
1975 			 * Rare failure to convert pages to compound page.
1976 			 * Free pages and try again - ONCE!
1977 			 */
1978 			free_gigantic_page(page, huge_page_order(h));
1979 			if (!retry) {
1980 				retry = true;
1981 				goto retry;
1982 			}
1983 			return NULL;
1984 		}
1985 	}
1986 	prep_new_huge_page(h, page, page_to_nid(page));
1987 
1988 	return page;
1989 }
1990 
1991 /*
1992  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1993  * manner.
1994  */
1995 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1996 				nodemask_t *node_alloc_noretry)
1997 {
1998 	struct page *page;
1999 	int nr_nodes, node;
2000 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2001 
2002 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2003 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2004 						node_alloc_noretry);
2005 		if (page)
2006 			break;
2007 	}
2008 
2009 	if (!page)
2010 		return 0;
2011 
2012 	put_page(page); /* free it into the hugepage allocator */
2013 
2014 	return 1;
2015 }
2016 
2017 /*
2018  * Remove huge page from pool from next node to free.  Attempt to keep
2019  * persistent huge pages more or less balanced over allowed nodes.
2020  * This routine only 'removes' the hugetlb page.  The caller must make
2021  * an additional call to free the page to low level allocators.
2022  * Called with hugetlb_lock locked.
2023  */
2024 static struct page *remove_pool_huge_page(struct hstate *h,
2025 						nodemask_t *nodes_allowed,
2026 						 bool acct_surplus)
2027 {
2028 	int nr_nodes, node;
2029 	struct page *page = NULL;
2030 
2031 	lockdep_assert_held(&hugetlb_lock);
2032 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2033 		/*
2034 		 * If we're returning unused surplus pages, only examine
2035 		 * nodes with surplus pages.
2036 		 */
2037 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2038 		    !list_empty(&h->hugepage_freelists[node])) {
2039 			page = list_entry(h->hugepage_freelists[node].next,
2040 					  struct page, lru);
2041 			remove_hugetlb_page(h, page, acct_surplus);
2042 			break;
2043 		}
2044 	}
2045 
2046 	return page;
2047 }
2048 
2049 /*
2050  * Dissolve a given free hugepage into free buddy pages. This function does
2051  * nothing for in-use hugepages and non-hugepages.
2052  * This function returns values like below:
2053  *
2054  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2055  *           when the system is under memory pressure and the feature of
2056  *           freeing unused vmemmap pages associated with each hugetlb page
2057  *           is enabled.
2058  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2059  *           (allocated or reserved.)
2060  *       0:  successfully dissolved free hugepages or the page is not a
2061  *           hugepage (considered as already dissolved)
2062  */
2063 int dissolve_free_huge_page(struct page *page)
2064 {
2065 	int rc = -EBUSY;
2066 
2067 retry:
2068 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2069 	if (!PageHuge(page))
2070 		return 0;
2071 
2072 	spin_lock_irq(&hugetlb_lock);
2073 	if (!PageHuge(page)) {
2074 		rc = 0;
2075 		goto out;
2076 	}
2077 
2078 	if (!page_count(page)) {
2079 		struct page *head = compound_head(page);
2080 		struct hstate *h = page_hstate(head);
2081 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2082 			goto out;
2083 
2084 		/*
2085 		 * We should make sure that the page is already on the free list
2086 		 * when it is dissolved.
2087 		 */
2088 		if (unlikely(!HPageFreed(head))) {
2089 			spin_unlock_irq(&hugetlb_lock);
2090 			cond_resched();
2091 
2092 			/*
2093 			 * Theoretically, we should return -EBUSY when we
2094 			 * encounter this race. In fact, we have a chance
2095 			 * to successfully dissolve the page if we do a
2096 			 * retry. Because the race window is quite small.
2097 			 * If we seize this opportunity, it is an optimization
2098 			 * for increasing the success rate of dissolving page.
2099 			 */
2100 			goto retry;
2101 		}
2102 
2103 		remove_hugetlb_page(h, head, false);
2104 		h->max_huge_pages--;
2105 		spin_unlock_irq(&hugetlb_lock);
2106 
2107 		/*
2108 		 * Normally update_and_free_page will allocate required vmemmmap
2109 		 * before freeing the page.  update_and_free_page will fail to
2110 		 * free the page if it can not allocate required vmemmap.  We
2111 		 * need to adjust max_huge_pages if the page is not freed.
2112 		 * Attempt to allocate vmemmmap here so that we can take
2113 		 * appropriate action on failure.
2114 		 */
2115 		rc = hugetlb_vmemmap_alloc(h, head);
2116 		if (!rc) {
2117 			/*
2118 			 * Move PageHWPoison flag from head page to the raw
2119 			 * error page, which makes any subpages rather than
2120 			 * the error page reusable.
2121 			 */
2122 			if (PageHWPoison(head) && page != head) {
2123 				SetPageHWPoison(page);
2124 				ClearPageHWPoison(head);
2125 			}
2126 			update_and_free_page(h, head, false);
2127 		} else {
2128 			spin_lock_irq(&hugetlb_lock);
2129 			add_hugetlb_page(h, head, false);
2130 			h->max_huge_pages++;
2131 			spin_unlock_irq(&hugetlb_lock);
2132 		}
2133 
2134 		return rc;
2135 	}
2136 out:
2137 	spin_unlock_irq(&hugetlb_lock);
2138 	return rc;
2139 }
2140 
2141 /*
2142  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2143  * make specified memory blocks removable from the system.
2144  * Note that this will dissolve a free gigantic hugepage completely, if any
2145  * part of it lies within the given range.
2146  * Also note that if dissolve_free_huge_page() returns with an error, all
2147  * free hugepages that were dissolved before that error are lost.
2148  */
2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2150 {
2151 	unsigned long pfn;
2152 	struct page *page;
2153 	int rc = 0;
2154 
2155 	if (!hugepages_supported())
2156 		return rc;
2157 
2158 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2159 		page = pfn_to_page(pfn);
2160 		rc = dissolve_free_huge_page(page);
2161 		if (rc)
2162 			break;
2163 	}
2164 
2165 	return rc;
2166 }
2167 
2168 /*
2169  * Allocates a fresh surplus page from the page allocator.
2170  */
2171 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2172 		int nid, nodemask_t *nmask, bool zero_ref)
2173 {
2174 	struct page *page = NULL;
2175 	bool retry = false;
2176 
2177 	if (hstate_is_gigantic(h))
2178 		return NULL;
2179 
2180 	spin_lock_irq(&hugetlb_lock);
2181 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2182 		goto out_unlock;
2183 	spin_unlock_irq(&hugetlb_lock);
2184 
2185 retry:
2186 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2187 	if (!page)
2188 		return NULL;
2189 
2190 	spin_lock_irq(&hugetlb_lock);
2191 	/*
2192 	 * We could have raced with the pool size change.
2193 	 * Double check that and simply deallocate the new page
2194 	 * if we would end up overcommiting the surpluses. Abuse
2195 	 * temporary page to workaround the nasty free_huge_page
2196 	 * codeflow
2197 	 */
2198 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2199 		SetHPageTemporary(page);
2200 		spin_unlock_irq(&hugetlb_lock);
2201 		put_page(page);
2202 		return NULL;
2203 	}
2204 
2205 	if (zero_ref) {
2206 		/*
2207 		 * Caller requires a page with zero ref count.
2208 		 * We will drop ref count here.  If someone else is holding
2209 		 * a ref, the page will be freed when they drop it.  Abuse
2210 		 * temporary page flag to accomplish this.
2211 		 */
2212 		SetHPageTemporary(page);
2213 		if (!put_page_testzero(page)) {
2214 			/*
2215 			 * Unexpected inflated ref count on freshly allocated
2216 			 * huge.  Retry once.
2217 			 */
2218 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2219 			spin_unlock_irq(&hugetlb_lock);
2220 			if (retry)
2221 				return NULL;
2222 
2223 			retry = true;
2224 			goto retry;
2225 		}
2226 		ClearHPageTemporary(page);
2227 	}
2228 
2229 	h->surplus_huge_pages++;
2230 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2231 
2232 out_unlock:
2233 	spin_unlock_irq(&hugetlb_lock);
2234 
2235 	return page;
2236 }
2237 
2238 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2239 				     int nid, nodemask_t *nmask)
2240 {
2241 	struct page *page;
2242 
2243 	if (hstate_is_gigantic(h))
2244 		return NULL;
2245 
2246 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2247 	if (!page)
2248 		return NULL;
2249 
2250 	/*
2251 	 * We do not account these pages as surplus because they are only
2252 	 * temporary and will be released properly on the last reference
2253 	 */
2254 	SetHPageTemporary(page);
2255 
2256 	return page;
2257 }
2258 
2259 /*
2260  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2261  */
2262 static
2263 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2264 		struct vm_area_struct *vma, unsigned long addr)
2265 {
2266 	struct page *page = NULL;
2267 	struct mempolicy *mpol;
2268 	gfp_t gfp_mask = htlb_alloc_mask(h);
2269 	int nid;
2270 	nodemask_t *nodemask;
2271 
2272 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2273 	if (mpol_is_preferred_many(mpol)) {
2274 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2275 
2276 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2277 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2278 
2279 		/* Fallback to all nodes if page==NULL */
2280 		nodemask = NULL;
2281 	}
2282 
2283 	if (!page)
2284 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2285 	mpol_cond_put(mpol);
2286 	return page;
2287 }
2288 
2289 /* page migration callback function */
2290 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2291 		nodemask_t *nmask, gfp_t gfp_mask)
2292 {
2293 	spin_lock_irq(&hugetlb_lock);
2294 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2295 		struct page *page;
2296 
2297 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2298 		if (page) {
2299 			spin_unlock_irq(&hugetlb_lock);
2300 			return page;
2301 		}
2302 	}
2303 	spin_unlock_irq(&hugetlb_lock);
2304 
2305 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2306 }
2307 
2308 /* mempolicy aware migration callback */
2309 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2310 		unsigned long address)
2311 {
2312 	struct mempolicy *mpol;
2313 	nodemask_t *nodemask;
2314 	struct page *page;
2315 	gfp_t gfp_mask;
2316 	int node;
2317 
2318 	gfp_mask = htlb_alloc_mask(h);
2319 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2320 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2321 	mpol_cond_put(mpol);
2322 
2323 	return page;
2324 }
2325 
2326 /*
2327  * Increase the hugetlb pool such that it can accommodate a reservation
2328  * of size 'delta'.
2329  */
2330 static int gather_surplus_pages(struct hstate *h, long delta)
2331 	__must_hold(&hugetlb_lock)
2332 {
2333 	struct list_head surplus_list;
2334 	struct page *page, *tmp;
2335 	int ret;
2336 	long i;
2337 	long needed, allocated;
2338 	bool alloc_ok = true;
2339 
2340 	lockdep_assert_held(&hugetlb_lock);
2341 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2342 	if (needed <= 0) {
2343 		h->resv_huge_pages += delta;
2344 		return 0;
2345 	}
2346 
2347 	allocated = 0;
2348 	INIT_LIST_HEAD(&surplus_list);
2349 
2350 	ret = -ENOMEM;
2351 retry:
2352 	spin_unlock_irq(&hugetlb_lock);
2353 	for (i = 0; i < needed; i++) {
2354 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2355 				NUMA_NO_NODE, NULL, true);
2356 		if (!page) {
2357 			alloc_ok = false;
2358 			break;
2359 		}
2360 		list_add(&page->lru, &surplus_list);
2361 		cond_resched();
2362 	}
2363 	allocated += i;
2364 
2365 	/*
2366 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2367 	 * because either resv_huge_pages or free_huge_pages may have changed.
2368 	 */
2369 	spin_lock_irq(&hugetlb_lock);
2370 	needed = (h->resv_huge_pages + delta) -
2371 			(h->free_huge_pages + allocated);
2372 	if (needed > 0) {
2373 		if (alloc_ok)
2374 			goto retry;
2375 		/*
2376 		 * We were not able to allocate enough pages to
2377 		 * satisfy the entire reservation so we free what
2378 		 * we've allocated so far.
2379 		 */
2380 		goto free;
2381 	}
2382 	/*
2383 	 * The surplus_list now contains _at_least_ the number of extra pages
2384 	 * needed to accommodate the reservation.  Add the appropriate number
2385 	 * of pages to the hugetlb pool and free the extras back to the buddy
2386 	 * allocator.  Commit the entire reservation here to prevent another
2387 	 * process from stealing the pages as they are added to the pool but
2388 	 * before they are reserved.
2389 	 */
2390 	needed += allocated;
2391 	h->resv_huge_pages += delta;
2392 	ret = 0;
2393 
2394 	/* Free the needed pages to the hugetlb pool */
2395 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2396 		if ((--needed) < 0)
2397 			break;
2398 		/* Add the page to the hugetlb allocator */
2399 		enqueue_huge_page(h, page);
2400 	}
2401 free:
2402 	spin_unlock_irq(&hugetlb_lock);
2403 
2404 	/*
2405 	 * Free unnecessary surplus pages to the buddy allocator.
2406 	 * Pages have no ref count, call free_huge_page directly.
2407 	 */
2408 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2409 		free_huge_page(page);
2410 	spin_lock_irq(&hugetlb_lock);
2411 
2412 	return ret;
2413 }
2414 
2415 /*
2416  * This routine has two main purposes:
2417  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2418  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2419  *    to the associated reservation map.
2420  * 2) Free any unused surplus pages that may have been allocated to satisfy
2421  *    the reservation.  As many as unused_resv_pages may be freed.
2422  */
2423 static void return_unused_surplus_pages(struct hstate *h,
2424 					unsigned long unused_resv_pages)
2425 {
2426 	unsigned long nr_pages;
2427 	struct page *page;
2428 	LIST_HEAD(page_list);
2429 
2430 	lockdep_assert_held(&hugetlb_lock);
2431 	/* Uncommit the reservation */
2432 	h->resv_huge_pages -= unused_resv_pages;
2433 
2434 	/* Cannot return gigantic pages currently */
2435 	if (hstate_is_gigantic(h))
2436 		goto out;
2437 
2438 	/*
2439 	 * Part (or even all) of the reservation could have been backed
2440 	 * by pre-allocated pages. Only free surplus pages.
2441 	 */
2442 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2443 
2444 	/*
2445 	 * We want to release as many surplus pages as possible, spread
2446 	 * evenly across all nodes with memory. Iterate across these nodes
2447 	 * until we can no longer free unreserved surplus pages. This occurs
2448 	 * when the nodes with surplus pages have no free pages.
2449 	 * remove_pool_huge_page() will balance the freed pages across the
2450 	 * on-line nodes with memory and will handle the hstate accounting.
2451 	 */
2452 	while (nr_pages--) {
2453 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2454 		if (!page)
2455 			goto out;
2456 
2457 		list_add(&page->lru, &page_list);
2458 	}
2459 
2460 out:
2461 	spin_unlock_irq(&hugetlb_lock);
2462 	update_and_free_pages_bulk(h, &page_list);
2463 	spin_lock_irq(&hugetlb_lock);
2464 }
2465 
2466 
2467 /*
2468  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2469  * are used by the huge page allocation routines to manage reservations.
2470  *
2471  * vma_needs_reservation is called to determine if the huge page at addr
2472  * within the vma has an associated reservation.  If a reservation is
2473  * needed, the value 1 is returned.  The caller is then responsible for
2474  * managing the global reservation and subpool usage counts.  After
2475  * the huge page has been allocated, vma_commit_reservation is called
2476  * to add the page to the reservation map.  If the page allocation fails,
2477  * the reservation must be ended instead of committed.  vma_end_reservation
2478  * is called in such cases.
2479  *
2480  * In the normal case, vma_commit_reservation returns the same value
2481  * as the preceding vma_needs_reservation call.  The only time this
2482  * is not the case is if a reserve map was changed between calls.  It
2483  * is the responsibility of the caller to notice the difference and
2484  * take appropriate action.
2485  *
2486  * vma_add_reservation is used in error paths where a reservation must
2487  * be restored when a newly allocated huge page must be freed.  It is
2488  * to be called after calling vma_needs_reservation to determine if a
2489  * reservation exists.
2490  *
2491  * vma_del_reservation is used in error paths where an entry in the reserve
2492  * map was created during huge page allocation and must be removed.  It is to
2493  * be called after calling vma_needs_reservation to determine if a reservation
2494  * exists.
2495  */
2496 enum vma_resv_mode {
2497 	VMA_NEEDS_RESV,
2498 	VMA_COMMIT_RESV,
2499 	VMA_END_RESV,
2500 	VMA_ADD_RESV,
2501 	VMA_DEL_RESV,
2502 };
2503 static long __vma_reservation_common(struct hstate *h,
2504 				struct vm_area_struct *vma, unsigned long addr,
2505 				enum vma_resv_mode mode)
2506 {
2507 	struct resv_map *resv;
2508 	pgoff_t idx;
2509 	long ret;
2510 	long dummy_out_regions_needed;
2511 
2512 	resv = vma_resv_map(vma);
2513 	if (!resv)
2514 		return 1;
2515 
2516 	idx = vma_hugecache_offset(h, vma, addr);
2517 	switch (mode) {
2518 	case VMA_NEEDS_RESV:
2519 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2520 		/* We assume that vma_reservation_* routines always operate on
2521 		 * 1 page, and that adding to resv map a 1 page entry can only
2522 		 * ever require 1 region.
2523 		 */
2524 		VM_BUG_ON(dummy_out_regions_needed != 1);
2525 		break;
2526 	case VMA_COMMIT_RESV:
2527 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2528 		/* region_add calls of range 1 should never fail. */
2529 		VM_BUG_ON(ret < 0);
2530 		break;
2531 	case VMA_END_RESV:
2532 		region_abort(resv, idx, idx + 1, 1);
2533 		ret = 0;
2534 		break;
2535 	case VMA_ADD_RESV:
2536 		if (vma->vm_flags & VM_MAYSHARE) {
2537 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538 			/* region_add calls of range 1 should never fail. */
2539 			VM_BUG_ON(ret < 0);
2540 		} else {
2541 			region_abort(resv, idx, idx + 1, 1);
2542 			ret = region_del(resv, idx, idx + 1);
2543 		}
2544 		break;
2545 	case VMA_DEL_RESV:
2546 		if (vma->vm_flags & VM_MAYSHARE) {
2547 			region_abort(resv, idx, idx + 1, 1);
2548 			ret = region_del(resv, idx, idx + 1);
2549 		} else {
2550 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2551 			/* region_add calls of range 1 should never fail. */
2552 			VM_BUG_ON(ret < 0);
2553 		}
2554 		break;
2555 	default:
2556 		BUG();
2557 	}
2558 
2559 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2560 		return ret;
2561 	/*
2562 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2563 	 *
2564 	 * In most cases, reserves always exist for private mappings.
2565 	 * However, a file associated with mapping could have been
2566 	 * hole punched or truncated after reserves were consumed.
2567 	 * As subsequent fault on such a range will not use reserves.
2568 	 * Subtle - The reserve map for private mappings has the
2569 	 * opposite meaning than that of shared mappings.  If NO
2570 	 * entry is in the reserve map, it means a reservation exists.
2571 	 * If an entry exists in the reserve map, it means the
2572 	 * reservation has already been consumed.  As a result, the
2573 	 * return value of this routine is the opposite of the
2574 	 * value returned from reserve map manipulation routines above.
2575 	 */
2576 	if (ret > 0)
2577 		return 0;
2578 	if (ret == 0)
2579 		return 1;
2580 	return ret;
2581 }
2582 
2583 static long vma_needs_reservation(struct hstate *h,
2584 			struct vm_area_struct *vma, unsigned long addr)
2585 {
2586 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2587 }
2588 
2589 static long vma_commit_reservation(struct hstate *h,
2590 			struct vm_area_struct *vma, unsigned long addr)
2591 {
2592 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2593 }
2594 
2595 static void vma_end_reservation(struct hstate *h,
2596 			struct vm_area_struct *vma, unsigned long addr)
2597 {
2598 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2599 }
2600 
2601 static long vma_add_reservation(struct hstate *h,
2602 			struct vm_area_struct *vma, unsigned long addr)
2603 {
2604 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2605 }
2606 
2607 static long vma_del_reservation(struct hstate *h,
2608 			struct vm_area_struct *vma, unsigned long addr)
2609 {
2610 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2611 }
2612 
2613 /*
2614  * This routine is called to restore reservation information on error paths.
2615  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2616  * the hugetlb mutex should remain held when calling this routine.
2617  *
2618  * It handles two specific cases:
2619  * 1) A reservation was in place and the page consumed the reservation.
2620  *    HPageRestoreReserve is set in the page.
2621  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2622  *    not set.  However, alloc_huge_page always updates the reserve map.
2623  *
2624  * In case 1, free_huge_page later in the error path will increment the
2625  * global reserve count.  But, free_huge_page does not have enough context
2626  * to adjust the reservation map.  This case deals primarily with private
2627  * mappings.  Adjust the reserve map here to be consistent with global
2628  * reserve count adjustments to be made by free_huge_page.  Make sure the
2629  * reserve map indicates there is a reservation present.
2630  *
2631  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2632  */
2633 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2634 			unsigned long address, struct page *page)
2635 {
2636 	long rc = vma_needs_reservation(h, vma, address);
2637 
2638 	if (HPageRestoreReserve(page)) {
2639 		if (unlikely(rc < 0))
2640 			/*
2641 			 * Rare out of memory condition in reserve map
2642 			 * manipulation.  Clear HPageRestoreReserve so that
2643 			 * global reserve count will not be incremented
2644 			 * by free_huge_page.  This will make it appear
2645 			 * as though the reservation for this page was
2646 			 * consumed.  This may prevent the task from
2647 			 * faulting in the page at a later time.  This
2648 			 * is better than inconsistent global huge page
2649 			 * accounting of reserve counts.
2650 			 */
2651 			ClearHPageRestoreReserve(page);
2652 		else if (rc)
2653 			(void)vma_add_reservation(h, vma, address);
2654 		else
2655 			vma_end_reservation(h, vma, address);
2656 	} else {
2657 		if (!rc) {
2658 			/*
2659 			 * This indicates there is an entry in the reserve map
2660 			 * not added by alloc_huge_page.  We know it was added
2661 			 * before the alloc_huge_page call, otherwise
2662 			 * HPageRestoreReserve would be set on the page.
2663 			 * Remove the entry so that a subsequent allocation
2664 			 * does not consume a reservation.
2665 			 */
2666 			rc = vma_del_reservation(h, vma, address);
2667 			if (rc < 0)
2668 				/*
2669 				 * VERY rare out of memory condition.  Since
2670 				 * we can not delete the entry, set
2671 				 * HPageRestoreReserve so that the reserve
2672 				 * count will be incremented when the page
2673 				 * is freed.  This reserve will be consumed
2674 				 * on a subsequent allocation.
2675 				 */
2676 				SetHPageRestoreReserve(page);
2677 		} else if (rc < 0) {
2678 			/*
2679 			 * Rare out of memory condition from
2680 			 * vma_needs_reservation call.  Memory allocation is
2681 			 * only attempted if a new entry is needed.  Therefore,
2682 			 * this implies there is not an entry in the
2683 			 * reserve map.
2684 			 *
2685 			 * For shared mappings, no entry in the map indicates
2686 			 * no reservation.  We are done.
2687 			 */
2688 			if (!(vma->vm_flags & VM_MAYSHARE))
2689 				/*
2690 				 * For private mappings, no entry indicates
2691 				 * a reservation is present.  Since we can
2692 				 * not add an entry, set SetHPageRestoreReserve
2693 				 * on the page so reserve count will be
2694 				 * incremented when freed.  This reserve will
2695 				 * be consumed on a subsequent allocation.
2696 				 */
2697 				SetHPageRestoreReserve(page);
2698 		} else
2699 			/*
2700 			 * No reservation present, do nothing
2701 			 */
2702 			 vma_end_reservation(h, vma, address);
2703 	}
2704 }
2705 
2706 /*
2707  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2708  * @h: struct hstate old page belongs to
2709  * @old_page: Old page to dissolve
2710  * @list: List to isolate the page in case we need to
2711  * Returns 0 on success, otherwise negated error.
2712  */
2713 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2714 					struct list_head *list)
2715 {
2716 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2717 	int nid = page_to_nid(old_page);
2718 	bool alloc_retry = false;
2719 	struct page *new_page;
2720 	int ret = 0;
2721 
2722 	/*
2723 	 * Before dissolving the page, we need to allocate a new one for the
2724 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2725 	 * by doing everything but actually updating counters and adding to
2726 	 * the pool.  This simplifies and let us do most of the processing
2727 	 * under the lock.
2728 	 */
2729 alloc_retry:
2730 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2731 	if (!new_page)
2732 		return -ENOMEM;
2733 	/*
2734 	 * If all goes well, this page will be directly added to the free
2735 	 * list in the pool.  For this the ref count needs to be zero.
2736 	 * Attempt to drop now, and retry once if needed.  It is VERY
2737 	 * unlikely there is another ref on the page.
2738 	 *
2739 	 * If someone else has a reference to the page, it will be freed
2740 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2741 	 * this.  Retry once if there is an inflated ref count.
2742 	 */
2743 	SetHPageTemporary(new_page);
2744 	if (!put_page_testzero(new_page)) {
2745 		if (alloc_retry)
2746 			return -EBUSY;
2747 
2748 		alloc_retry = true;
2749 		goto alloc_retry;
2750 	}
2751 	ClearHPageTemporary(new_page);
2752 
2753 	__prep_new_huge_page(h, new_page);
2754 
2755 retry:
2756 	spin_lock_irq(&hugetlb_lock);
2757 	if (!PageHuge(old_page)) {
2758 		/*
2759 		 * Freed from under us. Drop new_page too.
2760 		 */
2761 		goto free_new;
2762 	} else if (page_count(old_page)) {
2763 		/*
2764 		 * Someone has grabbed the page, try to isolate it here.
2765 		 * Fail with -EBUSY if not possible.
2766 		 */
2767 		spin_unlock_irq(&hugetlb_lock);
2768 		if (!isolate_huge_page(old_page, list))
2769 			ret = -EBUSY;
2770 		spin_lock_irq(&hugetlb_lock);
2771 		goto free_new;
2772 	} else if (!HPageFreed(old_page)) {
2773 		/*
2774 		 * Page's refcount is 0 but it has not been enqueued in the
2775 		 * freelist yet. Race window is small, so we can succeed here if
2776 		 * we retry.
2777 		 */
2778 		spin_unlock_irq(&hugetlb_lock);
2779 		cond_resched();
2780 		goto retry;
2781 	} else {
2782 		/*
2783 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2784 		 * the freelist and decrease the counters. These will be
2785 		 * incremented again when calling __prep_account_new_huge_page()
2786 		 * and enqueue_huge_page() for new_page. The counters will remain
2787 		 * stable since this happens under the lock.
2788 		 */
2789 		remove_hugetlb_page(h, old_page, false);
2790 
2791 		/*
2792 		 * Ref count on new page is already zero as it was dropped
2793 		 * earlier.  It can be directly added to the pool free list.
2794 		 */
2795 		__prep_account_new_huge_page(h, nid);
2796 		enqueue_huge_page(h, new_page);
2797 
2798 		/*
2799 		 * Pages have been replaced, we can safely free the old one.
2800 		 */
2801 		spin_unlock_irq(&hugetlb_lock);
2802 		update_and_free_page(h, old_page, false);
2803 	}
2804 
2805 	return ret;
2806 
2807 free_new:
2808 	spin_unlock_irq(&hugetlb_lock);
2809 	/* Page has a zero ref count, but needs a ref to be freed */
2810 	set_page_refcounted(new_page);
2811 	update_and_free_page(h, new_page, false);
2812 
2813 	return ret;
2814 }
2815 
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818 	struct hstate *h;
2819 	struct page *head;
2820 	int ret = -EBUSY;
2821 
2822 	/*
2823 	 * The page might have been dissolved from under our feet, so make sure
2824 	 * to carefully check the state under the lock.
2825 	 * Return success when racing as if we dissolved the page ourselves.
2826 	 */
2827 	spin_lock_irq(&hugetlb_lock);
2828 	if (PageHuge(page)) {
2829 		head = compound_head(page);
2830 		h = page_hstate(head);
2831 	} else {
2832 		spin_unlock_irq(&hugetlb_lock);
2833 		return 0;
2834 	}
2835 	spin_unlock_irq(&hugetlb_lock);
2836 
2837 	/*
2838 	 * Fence off gigantic pages as there is a cyclic dependency between
2839 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840 	 * of bailing out right away without further retrying.
2841 	 */
2842 	if (hstate_is_gigantic(h))
2843 		return -ENOMEM;
2844 
2845 	if (page_count(head) && isolate_huge_page(head, list))
2846 		ret = 0;
2847 	else if (!page_count(head))
2848 		ret = alloc_and_dissolve_huge_page(h, head, list);
2849 
2850 	return ret;
2851 }
2852 
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854 				    unsigned long addr, int avoid_reserve)
2855 {
2856 	struct hugepage_subpool *spool = subpool_vma(vma);
2857 	struct hstate *h = hstate_vma(vma);
2858 	struct page *page;
2859 	long map_chg, map_commit;
2860 	long gbl_chg;
2861 	int ret, idx;
2862 	struct hugetlb_cgroup *h_cg;
2863 	bool deferred_reserve;
2864 
2865 	idx = hstate_index(h);
2866 	/*
2867 	 * Examine the region/reserve map to determine if the process
2868 	 * has a reservation for the page to be allocated.  A return
2869 	 * code of zero indicates a reservation exists (no change).
2870 	 */
2871 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872 	if (map_chg < 0)
2873 		return ERR_PTR(-ENOMEM);
2874 
2875 	/*
2876 	 * Processes that did not create the mapping will have no
2877 	 * reserves as indicated by the region/reserve map. Check
2878 	 * that the allocation will not exceed the subpool limit.
2879 	 * Allocations for MAP_NORESERVE mappings also need to be
2880 	 * checked against any subpool limit.
2881 	 */
2882 	if (map_chg || avoid_reserve) {
2883 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884 		if (gbl_chg < 0) {
2885 			vma_end_reservation(h, vma, addr);
2886 			return ERR_PTR(-ENOSPC);
2887 		}
2888 
2889 		/*
2890 		 * Even though there was no reservation in the region/reserve
2891 		 * map, there could be reservations associated with the
2892 		 * subpool that can be used.  This would be indicated if the
2893 		 * return value of hugepage_subpool_get_pages() is zero.
2894 		 * However, if avoid_reserve is specified we still avoid even
2895 		 * the subpool reservations.
2896 		 */
2897 		if (avoid_reserve)
2898 			gbl_chg = 1;
2899 	}
2900 
2901 	/* If this allocation is not consuming a reservation, charge it now.
2902 	 */
2903 	deferred_reserve = map_chg || avoid_reserve;
2904 	if (deferred_reserve) {
2905 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906 			idx, pages_per_huge_page(h), &h_cg);
2907 		if (ret)
2908 			goto out_subpool_put;
2909 	}
2910 
2911 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912 	if (ret)
2913 		goto out_uncharge_cgroup_reservation;
2914 
2915 	spin_lock_irq(&hugetlb_lock);
2916 	/*
2917 	 * glb_chg is passed to indicate whether or not a page must be taken
2918 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2919 	 * a reservation exists for the allocation.
2920 	 */
2921 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922 	if (!page) {
2923 		spin_unlock_irq(&hugetlb_lock);
2924 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925 		if (!page)
2926 			goto out_uncharge_cgroup;
2927 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928 			SetHPageRestoreReserve(page);
2929 			h->resv_huge_pages--;
2930 		}
2931 		spin_lock_irq(&hugetlb_lock);
2932 		list_add(&page->lru, &h->hugepage_activelist);
2933 		/* Fall through */
2934 	}
2935 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2936 	/* If allocation is not consuming a reservation, also store the
2937 	 * hugetlb_cgroup pointer on the page.
2938 	 */
2939 	if (deferred_reserve) {
2940 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2941 						  h_cg, page);
2942 	}
2943 
2944 	spin_unlock_irq(&hugetlb_lock);
2945 
2946 	hugetlb_set_page_subpool(page, spool);
2947 
2948 	map_commit = vma_commit_reservation(h, vma, addr);
2949 	if (unlikely(map_chg > map_commit)) {
2950 		/*
2951 		 * The page was added to the reservation map between
2952 		 * vma_needs_reservation and vma_commit_reservation.
2953 		 * This indicates a race with hugetlb_reserve_pages.
2954 		 * Adjust for the subpool count incremented above AND
2955 		 * in hugetlb_reserve_pages for the same page.  Also,
2956 		 * the reservation count added in hugetlb_reserve_pages
2957 		 * no longer applies.
2958 		 */
2959 		long rsv_adjust;
2960 
2961 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962 		hugetlb_acct_memory(h, -rsv_adjust);
2963 		if (deferred_reserve)
2964 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965 					pages_per_huge_page(h), page);
2966 	}
2967 	return page;
2968 
2969 out_uncharge_cgroup:
2970 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2971 out_uncharge_cgroup_reservation:
2972 	if (deferred_reserve)
2973 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2974 						    h_cg);
2975 out_subpool_put:
2976 	if (map_chg || avoid_reserve)
2977 		hugepage_subpool_put_pages(spool, 1);
2978 	vma_end_reservation(h, vma, addr);
2979 	return ERR_PTR(-ENOSPC);
2980 }
2981 
2982 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2983 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2984 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2985 {
2986 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2987 	int nr_nodes, node;
2988 
2989 	/* do node specific alloc */
2990 	if (nid != NUMA_NO_NODE) {
2991 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993 		if (!m)
2994 			return 0;
2995 		goto found;
2996 	}
2997 	/* allocate from next node when distributing huge pages */
2998 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999 		m = memblock_alloc_try_nid_raw(
3000 				huge_page_size(h), huge_page_size(h),
3001 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3002 		/*
3003 		 * Use the beginning of the huge page to store the
3004 		 * huge_bootmem_page struct (until gather_bootmem
3005 		 * puts them into the mem_map).
3006 		 */
3007 		if (!m)
3008 			return 0;
3009 		goto found;
3010 	}
3011 
3012 found:
3013 	/* Put them into a private list first because mem_map is not up yet */
3014 	INIT_LIST_HEAD(&m->list);
3015 	list_add(&m->list, &huge_boot_pages);
3016 	m->hstate = h;
3017 	return 1;
3018 }
3019 
3020 /*
3021  * Put bootmem huge pages into the standard lists after mem_map is up.
3022  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023  */
3024 static void __init gather_bootmem_prealloc(void)
3025 {
3026 	struct huge_bootmem_page *m;
3027 
3028 	list_for_each_entry(m, &huge_boot_pages, list) {
3029 		struct page *page = virt_to_page(m);
3030 		struct hstate *h = m->hstate;
3031 
3032 		VM_BUG_ON(!hstate_is_gigantic(h));
3033 		WARN_ON(page_count(page) != 1);
3034 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035 			WARN_ON(PageReserved(page));
3036 			prep_new_huge_page(h, page, page_to_nid(page));
3037 			put_page(page); /* add to the hugepage allocator */
3038 		} else {
3039 			/* VERY unlikely inflated ref count on a tail page */
3040 			free_gigantic_page(page, huge_page_order(h));
3041 		}
3042 
3043 		/*
3044 		 * We need to restore the 'stolen' pages to totalram_pages
3045 		 * in order to fix confusing memory reports from free(1) and
3046 		 * other side-effects, like CommitLimit going negative.
3047 		 */
3048 		adjust_managed_page_count(page, pages_per_huge_page(h));
3049 		cond_resched();
3050 	}
3051 }
3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053 {
3054 	unsigned long i;
3055 	char buf[32];
3056 
3057 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058 		if (hstate_is_gigantic(h)) {
3059 			if (!alloc_bootmem_huge_page(h, nid))
3060 				break;
3061 		} else {
3062 			struct page *page;
3063 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064 
3065 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066 					&node_states[N_MEMORY], NULL);
3067 			if (!page)
3068 				break;
3069 			put_page(page); /* free it into the hugepage allocator */
3070 		}
3071 		cond_resched();
3072 	}
3073 	if (i == h->max_huge_pages_node[nid])
3074 		return;
3075 
3076 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3078 		h->max_huge_pages_node[nid], buf, nid, i);
3079 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080 	h->max_huge_pages_node[nid] = i;
3081 }
3082 
3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3084 {
3085 	unsigned long i;
3086 	nodemask_t *node_alloc_noretry;
3087 	bool node_specific_alloc = false;
3088 
3089 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092 		return;
3093 	}
3094 
3095 	/* do node specific alloc */
3096 	for_each_online_node(i) {
3097 		if (h->max_huge_pages_node[i] > 0) {
3098 			hugetlb_hstate_alloc_pages_onenode(h, i);
3099 			node_specific_alloc = true;
3100 		}
3101 	}
3102 
3103 	if (node_specific_alloc)
3104 		return;
3105 
3106 	/* below will do all node balanced alloc */
3107 	if (!hstate_is_gigantic(h)) {
3108 		/*
3109 		 * Bit mask controlling how hard we retry per-node allocations.
3110 		 * Ignore errors as lower level routines can deal with
3111 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3112 		 * time, we are likely in bigger trouble.
3113 		 */
3114 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115 						GFP_KERNEL);
3116 	} else {
3117 		/* allocations done at boot time */
3118 		node_alloc_noretry = NULL;
3119 	}
3120 
3121 	/* bit mask controlling how hard we retry per-node allocations */
3122 	if (node_alloc_noretry)
3123 		nodes_clear(*node_alloc_noretry);
3124 
3125 	for (i = 0; i < h->max_huge_pages; ++i) {
3126 		if (hstate_is_gigantic(h)) {
3127 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3128 				break;
3129 		} else if (!alloc_pool_huge_page(h,
3130 					 &node_states[N_MEMORY],
3131 					 node_alloc_noretry))
3132 			break;
3133 		cond_resched();
3134 	}
3135 	if (i < h->max_huge_pages) {
3136 		char buf[32];
3137 
3138 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3140 			h->max_huge_pages, buf, i);
3141 		h->max_huge_pages = i;
3142 	}
3143 	kfree(node_alloc_noretry);
3144 }
3145 
3146 static void __init hugetlb_init_hstates(void)
3147 {
3148 	struct hstate *h, *h2;
3149 
3150 	for_each_hstate(h) {
3151 		if (minimum_order > huge_page_order(h))
3152 			minimum_order = huge_page_order(h);
3153 
3154 		/* oversize hugepages were init'ed in early boot */
3155 		if (!hstate_is_gigantic(h))
3156 			hugetlb_hstate_alloc_pages(h);
3157 
3158 		/*
3159 		 * Set demote order for each hstate.  Note that
3160 		 * h->demote_order is initially 0.
3161 		 * - We can not demote gigantic pages if runtime freeing
3162 		 *   is not supported, so skip this.
3163 		 * - If CMA allocation is possible, we can not demote
3164 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3165 		 */
3166 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3167 			continue;
3168 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3169 			continue;
3170 		for_each_hstate(h2) {
3171 			if (h2 == h)
3172 				continue;
3173 			if (h2->order < h->order &&
3174 			    h2->order > h->demote_order)
3175 				h->demote_order = h2->order;
3176 		}
3177 	}
3178 	VM_BUG_ON(minimum_order == UINT_MAX);
3179 }
3180 
3181 static void __init report_hugepages(void)
3182 {
3183 	struct hstate *h;
3184 
3185 	for_each_hstate(h) {
3186 		char buf[32];
3187 
3188 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3190 			buf, h->free_huge_pages);
3191 	}
3192 }
3193 
3194 #ifdef CONFIG_HIGHMEM
3195 static void try_to_free_low(struct hstate *h, unsigned long count,
3196 						nodemask_t *nodes_allowed)
3197 {
3198 	int i;
3199 	LIST_HEAD(page_list);
3200 
3201 	lockdep_assert_held(&hugetlb_lock);
3202 	if (hstate_is_gigantic(h))
3203 		return;
3204 
3205 	/*
3206 	 * Collect pages to be freed on a list, and free after dropping lock
3207 	 */
3208 	for_each_node_mask(i, *nodes_allowed) {
3209 		struct page *page, *next;
3210 		struct list_head *freel = &h->hugepage_freelists[i];
3211 		list_for_each_entry_safe(page, next, freel, lru) {
3212 			if (count >= h->nr_huge_pages)
3213 				goto out;
3214 			if (PageHighMem(page))
3215 				continue;
3216 			remove_hugetlb_page(h, page, false);
3217 			list_add(&page->lru, &page_list);
3218 		}
3219 	}
3220 
3221 out:
3222 	spin_unlock_irq(&hugetlb_lock);
3223 	update_and_free_pages_bulk(h, &page_list);
3224 	spin_lock_irq(&hugetlb_lock);
3225 }
3226 #else
3227 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3228 						nodemask_t *nodes_allowed)
3229 {
3230 }
3231 #endif
3232 
3233 /*
3234  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3235  * balanced by operating on them in a round-robin fashion.
3236  * Returns 1 if an adjustment was made.
3237  */
3238 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3239 				int delta)
3240 {
3241 	int nr_nodes, node;
3242 
3243 	lockdep_assert_held(&hugetlb_lock);
3244 	VM_BUG_ON(delta != -1 && delta != 1);
3245 
3246 	if (delta < 0) {
3247 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3248 			if (h->surplus_huge_pages_node[node])
3249 				goto found;
3250 		}
3251 	} else {
3252 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3253 			if (h->surplus_huge_pages_node[node] <
3254 					h->nr_huge_pages_node[node])
3255 				goto found;
3256 		}
3257 	}
3258 	return 0;
3259 
3260 found:
3261 	h->surplus_huge_pages += delta;
3262 	h->surplus_huge_pages_node[node] += delta;
3263 	return 1;
3264 }
3265 
3266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3267 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3268 			      nodemask_t *nodes_allowed)
3269 {
3270 	unsigned long min_count, ret;
3271 	struct page *page;
3272 	LIST_HEAD(page_list);
3273 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3274 
3275 	/*
3276 	 * Bit mask controlling how hard we retry per-node allocations.
3277 	 * If we can not allocate the bit mask, do not attempt to allocate
3278 	 * the requested huge pages.
3279 	 */
3280 	if (node_alloc_noretry)
3281 		nodes_clear(*node_alloc_noretry);
3282 	else
3283 		return -ENOMEM;
3284 
3285 	/*
3286 	 * resize_lock mutex prevents concurrent adjustments to number of
3287 	 * pages in hstate via the proc/sysfs interfaces.
3288 	 */
3289 	mutex_lock(&h->resize_lock);
3290 	flush_free_hpage_work(h);
3291 	spin_lock_irq(&hugetlb_lock);
3292 
3293 	/*
3294 	 * Check for a node specific request.
3295 	 * Changing node specific huge page count may require a corresponding
3296 	 * change to the global count.  In any case, the passed node mask
3297 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3298 	 */
3299 	if (nid != NUMA_NO_NODE) {
3300 		unsigned long old_count = count;
3301 
3302 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3303 		/*
3304 		 * User may have specified a large count value which caused the
3305 		 * above calculation to overflow.  In this case, they wanted
3306 		 * to allocate as many huge pages as possible.  Set count to
3307 		 * largest possible value to align with their intention.
3308 		 */
3309 		if (count < old_count)
3310 			count = ULONG_MAX;
3311 	}
3312 
3313 	/*
3314 	 * Gigantic pages runtime allocation depend on the capability for large
3315 	 * page range allocation.
3316 	 * If the system does not provide this feature, return an error when
3317 	 * the user tries to allocate gigantic pages but let the user free the
3318 	 * boottime allocated gigantic pages.
3319 	 */
3320 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3321 		if (count > persistent_huge_pages(h)) {
3322 			spin_unlock_irq(&hugetlb_lock);
3323 			mutex_unlock(&h->resize_lock);
3324 			NODEMASK_FREE(node_alloc_noretry);
3325 			return -EINVAL;
3326 		}
3327 		/* Fall through to decrease pool */
3328 	}
3329 
3330 	/*
3331 	 * Increase the pool size
3332 	 * First take pages out of surplus state.  Then make up the
3333 	 * remaining difference by allocating fresh huge pages.
3334 	 *
3335 	 * We might race with alloc_surplus_huge_page() here and be unable
3336 	 * to convert a surplus huge page to a normal huge page. That is
3337 	 * not critical, though, it just means the overall size of the
3338 	 * pool might be one hugepage larger than it needs to be, but
3339 	 * within all the constraints specified by the sysctls.
3340 	 */
3341 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3342 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3343 			break;
3344 	}
3345 
3346 	while (count > persistent_huge_pages(h)) {
3347 		/*
3348 		 * If this allocation races such that we no longer need the
3349 		 * page, free_huge_page will handle it by freeing the page
3350 		 * and reducing the surplus.
3351 		 */
3352 		spin_unlock_irq(&hugetlb_lock);
3353 
3354 		/* yield cpu to avoid soft lockup */
3355 		cond_resched();
3356 
3357 		ret = alloc_pool_huge_page(h, nodes_allowed,
3358 						node_alloc_noretry);
3359 		spin_lock_irq(&hugetlb_lock);
3360 		if (!ret)
3361 			goto out;
3362 
3363 		/* Bail for signals. Probably ctrl-c from user */
3364 		if (signal_pending(current))
3365 			goto out;
3366 	}
3367 
3368 	/*
3369 	 * Decrease the pool size
3370 	 * First return free pages to the buddy allocator (being careful
3371 	 * to keep enough around to satisfy reservations).  Then place
3372 	 * pages into surplus state as needed so the pool will shrink
3373 	 * to the desired size as pages become free.
3374 	 *
3375 	 * By placing pages into the surplus state independent of the
3376 	 * overcommit value, we are allowing the surplus pool size to
3377 	 * exceed overcommit. There are few sane options here. Since
3378 	 * alloc_surplus_huge_page() is checking the global counter,
3379 	 * though, we'll note that we're not allowed to exceed surplus
3380 	 * and won't grow the pool anywhere else. Not until one of the
3381 	 * sysctls are changed, or the surplus pages go out of use.
3382 	 */
3383 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3384 	min_count = max(count, min_count);
3385 	try_to_free_low(h, min_count, nodes_allowed);
3386 
3387 	/*
3388 	 * Collect pages to be removed on list without dropping lock
3389 	 */
3390 	while (min_count < persistent_huge_pages(h)) {
3391 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3392 		if (!page)
3393 			break;
3394 
3395 		list_add(&page->lru, &page_list);
3396 	}
3397 	/* free the pages after dropping lock */
3398 	spin_unlock_irq(&hugetlb_lock);
3399 	update_and_free_pages_bulk(h, &page_list);
3400 	flush_free_hpage_work(h);
3401 	spin_lock_irq(&hugetlb_lock);
3402 
3403 	while (count < persistent_huge_pages(h)) {
3404 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3405 			break;
3406 	}
3407 out:
3408 	h->max_huge_pages = persistent_huge_pages(h);
3409 	spin_unlock_irq(&hugetlb_lock);
3410 	mutex_unlock(&h->resize_lock);
3411 
3412 	NODEMASK_FREE(node_alloc_noretry);
3413 
3414 	return 0;
3415 }
3416 
3417 static int demote_free_huge_page(struct hstate *h, struct page *page)
3418 {
3419 	int i, nid = page_to_nid(page);
3420 	struct hstate *target_hstate;
3421 	int rc = 0;
3422 
3423 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424 
3425 	remove_hugetlb_page_for_demote(h, page, false);
3426 	spin_unlock_irq(&hugetlb_lock);
3427 
3428 	rc = hugetlb_vmemmap_alloc(h, page);
3429 	if (rc) {
3430 		/* Allocation of vmemmmap failed, we can not demote page */
3431 		spin_lock_irq(&hugetlb_lock);
3432 		set_page_refcounted(page);
3433 		add_hugetlb_page(h, page, false);
3434 		return rc;
3435 	}
3436 
3437 	/*
3438 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439 	 * sizes as it will not ref count pages.
3440 	 */
3441 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442 
3443 	/*
3444 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445 	 * Without the mutex, pages added to target hstate could be marked
3446 	 * as surplus.
3447 	 *
3448 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3449 	 * use the convention of always taking larger size hstate mutex first.
3450 	 */
3451 	mutex_lock(&target_hstate->resize_lock);
3452 	for (i = 0; i < pages_per_huge_page(h);
3453 				i += pages_per_huge_page(target_hstate)) {
3454 		if (hstate_is_gigantic(target_hstate))
3455 			prep_compound_gigantic_page_for_demote(page + i,
3456 							target_hstate->order);
3457 		else
3458 			prep_compound_page(page + i, target_hstate->order);
3459 		set_page_private(page + i, 0);
3460 		set_page_refcounted(page + i);
3461 		prep_new_huge_page(target_hstate, page + i, nid);
3462 		put_page(page + i);
3463 	}
3464 	mutex_unlock(&target_hstate->resize_lock);
3465 
3466 	spin_lock_irq(&hugetlb_lock);
3467 
3468 	/*
3469 	 * Not absolutely necessary, but for consistency update max_huge_pages
3470 	 * based on pool changes for the demoted page.
3471 	 */
3472 	h->max_huge_pages--;
3473 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3474 
3475 	return rc;
3476 }
3477 
3478 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3479 	__must_hold(&hugetlb_lock)
3480 {
3481 	int nr_nodes, node;
3482 	struct page *page;
3483 
3484 	lockdep_assert_held(&hugetlb_lock);
3485 
3486 	/* We should never get here if no demote order */
3487 	if (!h->demote_order) {
3488 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3489 		return -EINVAL;		/* internal error */
3490 	}
3491 
3492 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3493 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3494 			if (PageHWPoison(page))
3495 				continue;
3496 
3497 			return demote_free_huge_page(h, page);
3498 		}
3499 	}
3500 
3501 	/*
3502 	 * Only way to get here is if all pages on free lists are poisoned.
3503 	 * Return -EBUSY so that caller will not retry.
3504 	 */
3505 	return -EBUSY;
3506 }
3507 
3508 #define HSTATE_ATTR_RO(_name) \
3509 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3510 
3511 #define HSTATE_ATTR_WO(_name) \
3512 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3513 
3514 #define HSTATE_ATTR(_name) \
3515 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3516 
3517 static struct kobject *hugepages_kobj;
3518 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3519 
3520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3521 
3522 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3523 {
3524 	int i;
3525 
3526 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3527 		if (hstate_kobjs[i] == kobj) {
3528 			if (nidp)
3529 				*nidp = NUMA_NO_NODE;
3530 			return &hstates[i];
3531 		}
3532 
3533 	return kobj_to_node_hstate(kobj, nidp);
3534 }
3535 
3536 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3537 					struct kobj_attribute *attr, char *buf)
3538 {
3539 	struct hstate *h;
3540 	unsigned long nr_huge_pages;
3541 	int nid;
3542 
3543 	h = kobj_to_hstate(kobj, &nid);
3544 	if (nid == NUMA_NO_NODE)
3545 		nr_huge_pages = h->nr_huge_pages;
3546 	else
3547 		nr_huge_pages = h->nr_huge_pages_node[nid];
3548 
3549 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3550 }
3551 
3552 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3553 					   struct hstate *h, int nid,
3554 					   unsigned long count, size_t len)
3555 {
3556 	int err;
3557 	nodemask_t nodes_allowed, *n_mask;
3558 
3559 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3560 		return -EINVAL;
3561 
3562 	if (nid == NUMA_NO_NODE) {
3563 		/*
3564 		 * global hstate attribute
3565 		 */
3566 		if (!(obey_mempolicy &&
3567 				init_nodemask_of_mempolicy(&nodes_allowed)))
3568 			n_mask = &node_states[N_MEMORY];
3569 		else
3570 			n_mask = &nodes_allowed;
3571 	} else {
3572 		/*
3573 		 * Node specific request.  count adjustment happens in
3574 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3575 		 */
3576 		init_nodemask_of_node(&nodes_allowed, nid);
3577 		n_mask = &nodes_allowed;
3578 	}
3579 
3580 	err = set_max_huge_pages(h, count, nid, n_mask);
3581 
3582 	return err ? err : len;
3583 }
3584 
3585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3586 					 struct kobject *kobj, const char *buf,
3587 					 size_t len)
3588 {
3589 	struct hstate *h;
3590 	unsigned long count;
3591 	int nid;
3592 	int err;
3593 
3594 	err = kstrtoul(buf, 10, &count);
3595 	if (err)
3596 		return err;
3597 
3598 	h = kobj_to_hstate(kobj, &nid);
3599 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3600 }
3601 
3602 static ssize_t nr_hugepages_show(struct kobject *kobj,
3603 				       struct kobj_attribute *attr, char *buf)
3604 {
3605 	return nr_hugepages_show_common(kobj, attr, buf);
3606 }
3607 
3608 static ssize_t nr_hugepages_store(struct kobject *kobj,
3609 	       struct kobj_attribute *attr, const char *buf, size_t len)
3610 {
3611 	return nr_hugepages_store_common(false, kobj, buf, len);
3612 }
3613 HSTATE_ATTR(nr_hugepages);
3614 
3615 #ifdef CONFIG_NUMA
3616 
3617 /*
3618  * hstate attribute for optionally mempolicy-based constraint on persistent
3619  * huge page alloc/free.
3620  */
3621 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3622 					   struct kobj_attribute *attr,
3623 					   char *buf)
3624 {
3625 	return nr_hugepages_show_common(kobj, attr, buf);
3626 }
3627 
3628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3629 	       struct kobj_attribute *attr, const char *buf, size_t len)
3630 {
3631 	return nr_hugepages_store_common(true, kobj, buf, len);
3632 }
3633 HSTATE_ATTR(nr_hugepages_mempolicy);
3634 #endif
3635 
3636 
3637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3638 					struct kobj_attribute *attr, char *buf)
3639 {
3640 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3641 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3642 }
3643 
3644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3645 		struct kobj_attribute *attr, const char *buf, size_t count)
3646 {
3647 	int err;
3648 	unsigned long input;
3649 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3650 
3651 	if (hstate_is_gigantic(h))
3652 		return -EINVAL;
3653 
3654 	err = kstrtoul(buf, 10, &input);
3655 	if (err)
3656 		return err;
3657 
3658 	spin_lock_irq(&hugetlb_lock);
3659 	h->nr_overcommit_huge_pages = input;
3660 	spin_unlock_irq(&hugetlb_lock);
3661 
3662 	return count;
3663 }
3664 HSTATE_ATTR(nr_overcommit_hugepages);
3665 
3666 static ssize_t free_hugepages_show(struct kobject *kobj,
3667 					struct kobj_attribute *attr, char *buf)
3668 {
3669 	struct hstate *h;
3670 	unsigned long free_huge_pages;
3671 	int nid;
3672 
3673 	h = kobj_to_hstate(kobj, &nid);
3674 	if (nid == NUMA_NO_NODE)
3675 		free_huge_pages = h->free_huge_pages;
3676 	else
3677 		free_huge_pages = h->free_huge_pages_node[nid];
3678 
3679 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3680 }
3681 HSTATE_ATTR_RO(free_hugepages);
3682 
3683 static ssize_t resv_hugepages_show(struct kobject *kobj,
3684 					struct kobj_attribute *attr, char *buf)
3685 {
3686 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3687 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3688 }
3689 HSTATE_ATTR_RO(resv_hugepages);
3690 
3691 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3692 					struct kobj_attribute *attr, char *buf)
3693 {
3694 	struct hstate *h;
3695 	unsigned long surplus_huge_pages;
3696 	int nid;
3697 
3698 	h = kobj_to_hstate(kobj, &nid);
3699 	if (nid == NUMA_NO_NODE)
3700 		surplus_huge_pages = h->surplus_huge_pages;
3701 	else
3702 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3703 
3704 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3705 }
3706 HSTATE_ATTR_RO(surplus_hugepages);
3707 
3708 static ssize_t demote_store(struct kobject *kobj,
3709 	       struct kobj_attribute *attr, const char *buf, size_t len)
3710 {
3711 	unsigned long nr_demote;
3712 	unsigned long nr_available;
3713 	nodemask_t nodes_allowed, *n_mask;
3714 	struct hstate *h;
3715 	int err = 0;
3716 	int nid;
3717 
3718 	err = kstrtoul(buf, 10, &nr_demote);
3719 	if (err)
3720 		return err;
3721 	h = kobj_to_hstate(kobj, &nid);
3722 
3723 	if (nid != NUMA_NO_NODE) {
3724 		init_nodemask_of_node(&nodes_allowed, nid);
3725 		n_mask = &nodes_allowed;
3726 	} else {
3727 		n_mask = &node_states[N_MEMORY];
3728 	}
3729 
3730 	/* Synchronize with other sysfs operations modifying huge pages */
3731 	mutex_lock(&h->resize_lock);
3732 	spin_lock_irq(&hugetlb_lock);
3733 
3734 	while (nr_demote) {
3735 		/*
3736 		 * Check for available pages to demote each time thorough the
3737 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3738 		 */
3739 		if (nid != NUMA_NO_NODE)
3740 			nr_available = h->free_huge_pages_node[nid];
3741 		else
3742 			nr_available = h->free_huge_pages;
3743 		nr_available -= h->resv_huge_pages;
3744 		if (!nr_available)
3745 			break;
3746 
3747 		err = demote_pool_huge_page(h, n_mask);
3748 		if (err)
3749 			break;
3750 
3751 		nr_demote--;
3752 	}
3753 
3754 	spin_unlock_irq(&hugetlb_lock);
3755 	mutex_unlock(&h->resize_lock);
3756 
3757 	if (err)
3758 		return err;
3759 	return len;
3760 }
3761 HSTATE_ATTR_WO(demote);
3762 
3763 static ssize_t demote_size_show(struct kobject *kobj,
3764 					struct kobj_attribute *attr, char *buf)
3765 {
3766 	int nid;
3767 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3768 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769 
3770 	return sysfs_emit(buf, "%lukB\n", demote_size);
3771 }
3772 
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774 					struct kobj_attribute *attr,
3775 					const char *buf, size_t count)
3776 {
3777 	struct hstate *h, *demote_hstate;
3778 	unsigned long demote_size;
3779 	unsigned int demote_order;
3780 	int nid;
3781 
3782 	demote_size = (unsigned long)memparse(buf, NULL);
3783 
3784 	demote_hstate = size_to_hstate(demote_size);
3785 	if (!demote_hstate)
3786 		return -EINVAL;
3787 	demote_order = demote_hstate->order;
3788 	if (demote_order < HUGETLB_PAGE_ORDER)
3789 		return -EINVAL;
3790 
3791 	/* demote order must be smaller than hstate order */
3792 	h = kobj_to_hstate(kobj, &nid);
3793 	if (demote_order >= h->order)
3794 		return -EINVAL;
3795 
3796 	/* resize_lock synchronizes access to demote size and writes */
3797 	mutex_lock(&h->resize_lock);
3798 	h->demote_order = demote_order;
3799 	mutex_unlock(&h->resize_lock);
3800 
3801 	return count;
3802 }
3803 HSTATE_ATTR(demote_size);
3804 
3805 static struct attribute *hstate_attrs[] = {
3806 	&nr_hugepages_attr.attr,
3807 	&nr_overcommit_hugepages_attr.attr,
3808 	&free_hugepages_attr.attr,
3809 	&resv_hugepages_attr.attr,
3810 	&surplus_hugepages_attr.attr,
3811 #ifdef CONFIG_NUMA
3812 	&nr_hugepages_mempolicy_attr.attr,
3813 #endif
3814 	NULL,
3815 };
3816 
3817 static const struct attribute_group hstate_attr_group = {
3818 	.attrs = hstate_attrs,
3819 };
3820 
3821 static struct attribute *hstate_demote_attrs[] = {
3822 	&demote_size_attr.attr,
3823 	&demote_attr.attr,
3824 	NULL,
3825 };
3826 
3827 static const struct attribute_group hstate_demote_attr_group = {
3828 	.attrs = hstate_demote_attrs,
3829 };
3830 
3831 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3832 				    struct kobject **hstate_kobjs,
3833 				    const struct attribute_group *hstate_attr_group)
3834 {
3835 	int retval;
3836 	int hi = hstate_index(h);
3837 
3838 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3839 	if (!hstate_kobjs[hi])
3840 		return -ENOMEM;
3841 
3842 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3843 	if (retval) {
3844 		kobject_put(hstate_kobjs[hi]);
3845 		hstate_kobjs[hi] = NULL;
3846 	}
3847 
3848 	if (h->demote_order) {
3849 		if (sysfs_create_group(hstate_kobjs[hi],
3850 					&hstate_demote_attr_group))
3851 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3852 	}
3853 
3854 	return retval;
3855 }
3856 
3857 static void __init hugetlb_sysfs_init(void)
3858 {
3859 	struct hstate *h;
3860 	int err;
3861 
3862 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3863 	if (!hugepages_kobj)
3864 		return;
3865 
3866 	for_each_hstate(h) {
3867 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3868 					 hstate_kobjs, &hstate_attr_group);
3869 		if (err)
3870 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3871 	}
3872 }
3873 
3874 #ifdef CONFIG_NUMA
3875 
3876 /*
3877  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878  * with node devices in node_devices[] using a parallel array.  The array
3879  * index of a node device or _hstate == node id.
3880  * This is here to avoid any static dependency of the node device driver, in
3881  * the base kernel, on the hugetlb module.
3882  */
3883 struct node_hstate {
3884 	struct kobject		*hugepages_kobj;
3885 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3886 };
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3888 
3889 /*
3890  * A subset of global hstate attributes for node devices
3891  */
3892 static struct attribute *per_node_hstate_attrs[] = {
3893 	&nr_hugepages_attr.attr,
3894 	&free_hugepages_attr.attr,
3895 	&surplus_hugepages_attr.attr,
3896 	NULL,
3897 };
3898 
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900 	.attrs = per_node_hstate_attrs,
3901 };
3902 
3903 /*
3904  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905  * Returns node id via non-NULL nidp.
3906  */
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908 {
3909 	int nid;
3910 
3911 	for (nid = 0; nid < nr_node_ids; nid++) {
3912 		struct node_hstate *nhs = &node_hstates[nid];
3913 		int i;
3914 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915 			if (nhs->hstate_kobjs[i] == kobj) {
3916 				if (nidp)
3917 					*nidp = nid;
3918 				return &hstates[i];
3919 			}
3920 	}
3921 
3922 	BUG();
3923 	return NULL;
3924 }
3925 
3926 /*
3927  * Unregister hstate attributes from a single node device.
3928  * No-op if no hstate attributes attached.
3929  */
3930 static void hugetlb_unregister_node(struct node *node)
3931 {
3932 	struct hstate *h;
3933 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3934 
3935 	if (!nhs->hugepages_kobj)
3936 		return;		/* no hstate attributes */
3937 
3938 	for_each_hstate(h) {
3939 		int idx = hstate_index(h);
3940 		if (nhs->hstate_kobjs[idx]) {
3941 			kobject_put(nhs->hstate_kobjs[idx]);
3942 			nhs->hstate_kobjs[idx] = NULL;
3943 		}
3944 	}
3945 
3946 	kobject_put(nhs->hugepages_kobj);
3947 	nhs->hugepages_kobj = NULL;
3948 }
3949 
3950 
3951 /*
3952  * Register hstate attributes for a single node device.
3953  * No-op if attributes already registered.
3954  */
3955 static void hugetlb_register_node(struct node *node)
3956 {
3957 	struct hstate *h;
3958 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3959 	int err;
3960 
3961 	if (nhs->hugepages_kobj)
3962 		return;		/* already allocated */
3963 
3964 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3965 							&node->dev.kobj);
3966 	if (!nhs->hugepages_kobj)
3967 		return;
3968 
3969 	for_each_hstate(h) {
3970 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3971 						nhs->hstate_kobjs,
3972 						&per_node_hstate_attr_group);
3973 		if (err) {
3974 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3975 				h->name, node->dev.id);
3976 			hugetlb_unregister_node(node);
3977 			break;
3978 		}
3979 	}
3980 }
3981 
3982 /*
3983  * hugetlb init time:  register hstate attributes for all registered node
3984  * devices of nodes that have memory.  All on-line nodes should have
3985  * registered their associated device by this time.
3986  */
3987 static void __init hugetlb_register_all_nodes(void)
3988 {
3989 	int nid;
3990 
3991 	for_each_node_state(nid, N_MEMORY) {
3992 		struct node *node = node_devices[nid];
3993 		if (node->dev.id == nid)
3994 			hugetlb_register_node(node);
3995 	}
3996 
3997 	/*
3998 	 * Let the node device driver know we're here so it can
3999 	 * [un]register hstate attributes on node hotplug.
4000 	 */
4001 	register_hugetlbfs_with_node(hugetlb_register_node,
4002 				     hugetlb_unregister_node);
4003 }
4004 #else	/* !CONFIG_NUMA */
4005 
4006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4007 {
4008 	BUG();
4009 	if (nidp)
4010 		*nidp = -1;
4011 	return NULL;
4012 }
4013 
4014 static void hugetlb_register_all_nodes(void) { }
4015 
4016 #endif
4017 
4018 static int __init hugetlb_init(void)
4019 {
4020 	int i;
4021 
4022 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4023 			__NR_HPAGEFLAGS);
4024 
4025 	if (!hugepages_supported()) {
4026 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4027 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4028 		return 0;
4029 	}
4030 
4031 	/*
4032 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4033 	 * architectures depend on setup being done here.
4034 	 */
4035 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4036 	if (!parsed_default_hugepagesz) {
4037 		/*
4038 		 * If we did not parse a default huge page size, set
4039 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4040 		 * number of huge pages for this default size was implicitly
4041 		 * specified, set that here as well.
4042 		 * Note that the implicit setting will overwrite an explicit
4043 		 * setting.  A warning will be printed in this case.
4044 		 */
4045 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4046 		if (default_hstate_max_huge_pages) {
4047 			if (default_hstate.max_huge_pages) {
4048 				char buf[32];
4049 
4050 				string_get_size(huge_page_size(&default_hstate),
4051 					1, STRING_UNITS_2, buf, 32);
4052 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4053 					default_hstate.max_huge_pages, buf);
4054 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4055 					default_hstate_max_huge_pages);
4056 			}
4057 			default_hstate.max_huge_pages =
4058 				default_hstate_max_huge_pages;
4059 
4060 			for_each_online_node(i)
4061 				default_hstate.max_huge_pages_node[i] =
4062 					default_hugepages_in_node[i];
4063 		}
4064 	}
4065 
4066 	hugetlb_cma_check();
4067 	hugetlb_init_hstates();
4068 	gather_bootmem_prealloc();
4069 	report_hugepages();
4070 
4071 	hugetlb_sysfs_init();
4072 	hugetlb_register_all_nodes();
4073 	hugetlb_cgroup_file_init();
4074 
4075 #ifdef CONFIG_SMP
4076 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4077 #else
4078 	num_fault_mutexes = 1;
4079 #endif
4080 	hugetlb_fault_mutex_table =
4081 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4082 			      GFP_KERNEL);
4083 	BUG_ON(!hugetlb_fault_mutex_table);
4084 
4085 	for (i = 0; i < num_fault_mutexes; i++)
4086 		mutex_init(&hugetlb_fault_mutex_table[i]);
4087 	return 0;
4088 }
4089 subsys_initcall(hugetlb_init);
4090 
4091 /* Overwritten by architectures with more huge page sizes */
4092 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4093 {
4094 	return size == HPAGE_SIZE;
4095 }
4096 
4097 void __init hugetlb_add_hstate(unsigned int order)
4098 {
4099 	struct hstate *h;
4100 	unsigned long i;
4101 
4102 	if (size_to_hstate(PAGE_SIZE << order)) {
4103 		return;
4104 	}
4105 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4106 	BUG_ON(order == 0);
4107 	h = &hstates[hugetlb_max_hstate++];
4108 	mutex_init(&h->resize_lock);
4109 	h->order = order;
4110 	h->mask = ~(huge_page_size(h) - 1);
4111 	for (i = 0; i < MAX_NUMNODES; ++i)
4112 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4113 	INIT_LIST_HEAD(&h->hugepage_activelist);
4114 	h->next_nid_to_alloc = first_memory_node;
4115 	h->next_nid_to_free = first_memory_node;
4116 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4117 					huge_page_size(h)/1024);
4118 	hugetlb_vmemmap_init(h);
4119 
4120 	parsed_hstate = h;
4121 }
4122 
4123 bool __init __weak hugetlb_node_alloc_supported(void)
4124 {
4125 	return true;
4126 }
4127 
4128 static void __init hugepages_clear_pages_in_node(void)
4129 {
4130 	if (!hugetlb_max_hstate) {
4131 		default_hstate_max_huge_pages = 0;
4132 		memset(default_hugepages_in_node, 0,
4133 			MAX_NUMNODES * sizeof(unsigned int));
4134 	} else {
4135 		parsed_hstate->max_huge_pages = 0;
4136 		memset(parsed_hstate->max_huge_pages_node, 0,
4137 			MAX_NUMNODES * sizeof(unsigned int));
4138 	}
4139 }
4140 
4141 /*
4142  * hugepages command line processing
4143  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4144  * specification.  If not, ignore the hugepages value.  hugepages can also
4145  * be the first huge page command line  option in which case it implicitly
4146  * specifies the number of huge pages for the default size.
4147  */
4148 static int __init hugepages_setup(char *s)
4149 {
4150 	unsigned long *mhp;
4151 	static unsigned long *last_mhp;
4152 	int node = NUMA_NO_NODE;
4153 	int count;
4154 	unsigned long tmp;
4155 	char *p = s;
4156 
4157 	if (!parsed_valid_hugepagesz) {
4158 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4159 		parsed_valid_hugepagesz = true;
4160 		return 1;
4161 	}
4162 
4163 	/*
4164 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4165 	 * yet, so this hugepages= parameter goes to the "default hstate".
4166 	 * Otherwise, it goes with the previously parsed hugepagesz or
4167 	 * default_hugepagesz.
4168 	 */
4169 	else if (!hugetlb_max_hstate)
4170 		mhp = &default_hstate_max_huge_pages;
4171 	else
4172 		mhp = &parsed_hstate->max_huge_pages;
4173 
4174 	if (mhp == last_mhp) {
4175 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4176 		return 1;
4177 	}
4178 
4179 	while (*p) {
4180 		count = 0;
4181 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4182 			goto invalid;
4183 		/* Parameter is node format */
4184 		if (p[count] == ':') {
4185 			if (!hugetlb_node_alloc_supported()) {
4186 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4187 				return 1;
4188 			}
4189 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4190 				goto invalid;
4191 			node = array_index_nospec(tmp, MAX_NUMNODES);
4192 			p += count + 1;
4193 			/* Parse hugepages */
4194 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4195 				goto invalid;
4196 			if (!hugetlb_max_hstate)
4197 				default_hugepages_in_node[node] = tmp;
4198 			else
4199 				parsed_hstate->max_huge_pages_node[node] = tmp;
4200 			*mhp += tmp;
4201 			/* Go to parse next node*/
4202 			if (p[count] == ',')
4203 				p += count + 1;
4204 			else
4205 				break;
4206 		} else {
4207 			if (p != s)
4208 				goto invalid;
4209 			*mhp = tmp;
4210 			break;
4211 		}
4212 	}
4213 
4214 	/*
4215 	 * Global state is always initialized later in hugetlb_init.
4216 	 * But we need to allocate gigantic hstates here early to still
4217 	 * use the bootmem allocator.
4218 	 */
4219 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4220 		hugetlb_hstate_alloc_pages(parsed_hstate);
4221 
4222 	last_mhp = mhp;
4223 
4224 	return 1;
4225 
4226 invalid:
4227 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4228 	hugepages_clear_pages_in_node();
4229 	return 1;
4230 }
4231 __setup("hugepages=", hugepages_setup);
4232 
4233 /*
4234  * hugepagesz command line processing
4235  * A specific huge page size can only be specified once with hugepagesz.
4236  * hugepagesz is followed by hugepages on the command line.  The global
4237  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4238  * hugepagesz argument was valid.
4239  */
4240 static int __init hugepagesz_setup(char *s)
4241 {
4242 	unsigned long size;
4243 	struct hstate *h;
4244 
4245 	parsed_valid_hugepagesz = false;
4246 	size = (unsigned long)memparse(s, NULL);
4247 
4248 	if (!arch_hugetlb_valid_size(size)) {
4249 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4250 		return 1;
4251 	}
4252 
4253 	h = size_to_hstate(size);
4254 	if (h) {
4255 		/*
4256 		 * hstate for this size already exists.  This is normally
4257 		 * an error, but is allowed if the existing hstate is the
4258 		 * default hstate.  More specifically, it is only allowed if
4259 		 * the number of huge pages for the default hstate was not
4260 		 * previously specified.
4261 		 */
4262 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4263 		    default_hstate.max_huge_pages) {
4264 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4265 			return 1;
4266 		}
4267 
4268 		/*
4269 		 * No need to call hugetlb_add_hstate() as hstate already
4270 		 * exists.  But, do set parsed_hstate so that a following
4271 		 * hugepages= parameter will be applied to this hstate.
4272 		 */
4273 		parsed_hstate = h;
4274 		parsed_valid_hugepagesz = true;
4275 		return 1;
4276 	}
4277 
4278 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279 	parsed_valid_hugepagesz = true;
4280 	return 1;
4281 }
4282 __setup("hugepagesz=", hugepagesz_setup);
4283 
4284 /*
4285  * default_hugepagesz command line input
4286  * Only one instance of default_hugepagesz allowed on command line.
4287  */
4288 static int __init default_hugepagesz_setup(char *s)
4289 {
4290 	unsigned long size;
4291 	int i;
4292 
4293 	parsed_valid_hugepagesz = false;
4294 	if (parsed_default_hugepagesz) {
4295 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4296 		return 1;
4297 	}
4298 
4299 	size = (unsigned long)memparse(s, NULL);
4300 
4301 	if (!arch_hugetlb_valid_size(size)) {
4302 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4303 		return 1;
4304 	}
4305 
4306 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4307 	parsed_valid_hugepagesz = true;
4308 	parsed_default_hugepagesz = true;
4309 	default_hstate_idx = hstate_index(size_to_hstate(size));
4310 
4311 	/*
4312 	 * The number of default huge pages (for this size) could have been
4313 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4314 	 * then default_hstate_max_huge_pages is set.  If the default huge
4315 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4316 	 * allocated here from bootmem allocator.
4317 	 */
4318 	if (default_hstate_max_huge_pages) {
4319 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4320 		for_each_online_node(i)
4321 			default_hstate.max_huge_pages_node[i] =
4322 				default_hugepages_in_node[i];
4323 		if (hstate_is_gigantic(&default_hstate))
4324 			hugetlb_hstate_alloc_pages(&default_hstate);
4325 		default_hstate_max_huge_pages = 0;
4326 	}
4327 
4328 	return 1;
4329 }
4330 __setup("default_hugepagesz=", default_hugepagesz_setup);
4331 
4332 static unsigned int allowed_mems_nr(struct hstate *h)
4333 {
4334 	int node;
4335 	unsigned int nr = 0;
4336 	nodemask_t *mpol_allowed;
4337 	unsigned int *array = h->free_huge_pages_node;
4338 	gfp_t gfp_mask = htlb_alloc_mask(h);
4339 
4340 	mpol_allowed = policy_nodemask_current(gfp_mask);
4341 
4342 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4343 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4344 			nr += array[node];
4345 	}
4346 
4347 	return nr;
4348 }
4349 
4350 #ifdef CONFIG_SYSCTL
4351 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4352 					  void *buffer, size_t *length,
4353 					  loff_t *ppos, unsigned long *out)
4354 {
4355 	struct ctl_table dup_table;
4356 
4357 	/*
4358 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4359 	 * can duplicate the @table and alter the duplicate of it.
4360 	 */
4361 	dup_table = *table;
4362 	dup_table.data = out;
4363 
4364 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4365 }
4366 
4367 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4368 			 struct ctl_table *table, int write,
4369 			 void *buffer, size_t *length, loff_t *ppos)
4370 {
4371 	struct hstate *h = &default_hstate;
4372 	unsigned long tmp = h->max_huge_pages;
4373 	int ret;
4374 
4375 	if (!hugepages_supported())
4376 		return -EOPNOTSUPP;
4377 
4378 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4379 					     &tmp);
4380 	if (ret)
4381 		goto out;
4382 
4383 	if (write)
4384 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4385 						  NUMA_NO_NODE, tmp, *length);
4386 out:
4387 	return ret;
4388 }
4389 
4390 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4391 			  void *buffer, size_t *length, loff_t *ppos)
4392 {
4393 
4394 	return hugetlb_sysctl_handler_common(false, table, write,
4395 							buffer, length, ppos);
4396 }
4397 
4398 #ifdef CONFIG_NUMA
4399 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4400 			  void *buffer, size_t *length, loff_t *ppos)
4401 {
4402 	return hugetlb_sysctl_handler_common(true, table, write,
4403 							buffer, length, ppos);
4404 }
4405 #endif /* CONFIG_NUMA */
4406 
4407 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4408 		void *buffer, size_t *length, loff_t *ppos)
4409 {
4410 	struct hstate *h = &default_hstate;
4411 	unsigned long tmp;
4412 	int ret;
4413 
4414 	if (!hugepages_supported())
4415 		return -EOPNOTSUPP;
4416 
4417 	tmp = h->nr_overcommit_huge_pages;
4418 
4419 	if (write && hstate_is_gigantic(h))
4420 		return -EINVAL;
4421 
4422 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4423 					     &tmp);
4424 	if (ret)
4425 		goto out;
4426 
4427 	if (write) {
4428 		spin_lock_irq(&hugetlb_lock);
4429 		h->nr_overcommit_huge_pages = tmp;
4430 		spin_unlock_irq(&hugetlb_lock);
4431 	}
4432 out:
4433 	return ret;
4434 }
4435 
4436 #endif /* CONFIG_SYSCTL */
4437 
4438 void hugetlb_report_meminfo(struct seq_file *m)
4439 {
4440 	struct hstate *h;
4441 	unsigned long total = 0;
4442 
4443 	if (!hugepages_supported())
4444 		return;
4445 
4446 	for_each_hstate(h) {
4447 		unsigned long count = h->nr_huge_pages;
4448 
4449 		total += huge_page_size(h) * count;
4450 
4451 		if (h == &default_hstate)
4452 			seq_printf(m,
4453 				   "HugePages_Total:   %5lu\n"
4454 				   "HugePages_Free:    %5lu\n"
4455 				   "HugePages_Rsvd:    %5lu\n"
4456 				   "HugePages_Surp:    %5lu\n"
4457 				   "Hugepagesize:   %8lu kB\n",
4458 				   count,
4459 				   h->free_huge_pages,
4460 				   h->resv_huge_pages,
4461 				   h->surplus_huge_pages,
4462 				   huge_page_size(h) / SZ_1K);
4463 	}
4464 
4465 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4466 }
4467 
4468 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4469 {
4470 	struct hstate *h = &default_hstate;
4471 
4472 	if (!hugepages_supported())
4473 		return 0;
4474 
4475 	return sysfs_emit_at(buf, len,
4476 			     "Node %d HugePages_Total: %5u\n"
4477 			     "Node %d HugePages_Free:  %5u\n"
4478 			     "Node %d HugePages_Surp:  %5u\n",
4479 			     nid, h->nr_huge_pages_node[nid],
4480 			     nid, h->free_huge_pages_node[nid],
4481 			     nid, h->surplus_huge_pages_node[nid]);
4482 }
4483 
4484 void hugetlb_show_meminfo(void)
4485 {
4486 	struct hstate *h;
4487 	int nid;
4488 
4489 	if (!hugepages_supported())
4490 		return;
4491 
4492 	for_each_node_state(nid, N_MEMORY)
4493 		for_each_hstate(h)
4494 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4495 				nid,
4496 				h->nr_huge_pages_node[nid],
4497 				h->free_huge_pages_node[nid],
4498 				h->surplus_huge_pages_node[nid],
4499 				huge_page_size(h) / SZ_1K);
4500 }
4501 
4502 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4503 {
4504 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4505 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4506 }
4507 
4508 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4509 unsigned long hugetlb_total_pages(void)
4510 {
4511 	struct hstate *h;
4512 	unsigned long nr_total_pages = 0;
4513 
4514 	for_each_hstate(h)
4515 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4516 	return nr_total_pages;
4517 }
4518 
4519 static int hugetlb_acct_memory(struct hstate *h, long delta)
4520 {
4521 	int ret = -ENOMEM;
4522 
4523 	if (!delta)
4524 		return 0;
4525 
4526 	spin_lock_irq(&hugetlb_lock);
4527 	/*
4528 	 * When cpuset is configured, it breaks the strict hugetlb page
4529 	 * reservation as the accounting is done on a global variable. Such
4530 	 * reservation is completely rubbish in the presence of cpuset because
4531 	 * the reservation is not checked against page availability for the
4532 	 * current cpuset. Application can still potentially OOM'ed by kernel
4533 	 * with lack of free htlb page in cpuset that the task is in.
4534 	 * Attempt to enforce strict accounting with cpuset is almost
4535 	 * impossible (or too ugly) because cpuset is too fluid that
4536 	 * task or memory node can be dynamically moved between cpusets.
4537 	 *
4538 	 * The change of semantics for shared hugetlb mapping with cpuset is
4539 	 * undesirable. However, in order to preserve some of the semantics,
4540 	 * we fall back to check against current free page availability as
4541 	 * a best attempt and hopefully to minimize the impact of changing
4542 	 * semantics that cpuset has.
4543 	 *
4544 	 * Apart from cpuset, we also have memory policy mechanism that
4545 	 * also determines from which node the kernel will allocate memory
4546 	 * in a NUMA system. So similar to cpuset, we also should consider
4547 	 * the memory policy of the current task. Similar to the description
4548 	 * above.
4549 	 */
4550 	if (delta > 0) {
4551 		if (gather_surplus_pages(h, delta) < 0)
4552 			goto out;
4553 
4554 		if (delta > allowed_mems_nr(h)) {
4555 			return_unused_surplus_pages(h, delta);
4556 			goto out;
4557 		}
4558 	}
4559 
4560 	ret = 0;
4561 	if (delta < 0)
4562 		return_unused_surplus_pages(h, (unsigned long) -delta);
4563 
4564 out:
4565 	spin_unlock_irq(&hugetlb_lock);
4566 	return ret;
4567 }
4568 
4569 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4570 {
4571 	struct resv_map *resv = vma_resv_map(vma);
4572 
4573 	/*
4574 	 * This new VMA should share its siblings reservation map if present.
4575 	 * The VMA will only ever have a valid reservation map pointer where
4576 	 * it is being copied for another still existing VMA.  As that VMA
4577 	 * has a reference to the reservation map it cannot disappear until
4578 	 * after this open call completes.  It is therefore safe to take a
4579 	 * new reference here without additional locking.
4580 	 */
4581 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4582 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4583 		kref_get(&resv->refs);
4584 	}
4585 }
4586 
4587 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4588 {
4589 	struct hstate *h = hstate_vma(vma);
4590 	struct resv_map *resv = vma_resv_map(vma);
4591 	struct hugepage_subpool *spool = subpool_vma(vma);
4592 	unsigned long reserve, start, end;
4593 	long gbl_reserve;
4594 
4595 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4596 		return;
4597 
4598 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4599 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4600 
4601 	reserve = (end - start) - region_count(resv, start, end);
4602 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4603 	if (reserve) {
4604 		/*
4605 		 * Decrement reserve counts.  The global reserve count may be
4606 		 * adjusted if the subpool has a minimum size.
4607 		 */
4608 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4609 		hugetlb_acct_memory(h, -gbl_reserve);
4610 	}
4611 
4612 	kref_put(&resv->refs, resv_map_release);
4613 }
4614 
4615 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4616 {
4617 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4618 		return -EINVAL;
4619 	return 0;
4620 }
4621 
4622 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4623 {
4624 	return huge_page_size(hstate_vma(vma));
4625 }
4626 
4627 /*
4628  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4629  * handle_mm_fault() to try to instantiate regular-sized pages in the
4630  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4631  * this far.
4632  */
4633 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4634 {
4635 	BUG();
4636 	return 0;
4637 }
4638 
4639 /*
4640  * When a new function is introduced to vm_operations_struct and added
4641  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4642  * This is because under System V memory model, mappings created via
4643  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4644  * their original vm_ops are overwritten with shm_vm_ops.
4645  */
4646 const struct vm_operations_struct hugetlb_vm_ops = {
4647 	.fault = hugetlb_vm_op_fault,
4648 	.open = hugetlb_vm_op_open,
4649 	.close = hugetlb_vm_op_close,
4650 	.may_split = hugetlb_vm_op_split,
4651 	.pagesize = hugetlb_vm_op_pagesize,
4652 };
4653 
4654 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4655 				int writable)
4656 {
4657 	pte_t entry;
4658 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4659 
4660 	if (writable) {
4661 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4662 					 vma->vm_page_prot)));
4663 	} else {
4664 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4665 					   vma->vm_page_prot));
4666 	}
4667 	entry = pte_mkyoung(entry);
4668 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4669 
4670 	return entry;
4671 }
4672 
4673 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4674 				   unsigned long address, pte_t *ptep)
4675 {
4676 	pte_t entry;
4677 
4678 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4679 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4680 		update_mmu_cache(vma, address, ptep);
4681 }
4682 
4683 bool is_hugetlb_entry_migration(pte_t pte)
4684 {
4685 	swp_entry_t swp;
4686 
4687 	if (huge_pte_none(pte) || pte_present(pte))
4688 		return false;
4689 	swp = pte_to_swp_entry(pte);
4690 	if (is_migration_entry(swp))
4691 		return true;
4692 	else
4693 		return false;
4694 }
4695 
4696 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4697 {
4698 	swp_entry_t swp;
4699 
4700 	if (huge_pte_none(pte) || pte_present(pte))
4701 		return false;
4702 	swp = pte_to_swp_entry(pte);
4703 	if (is_hwpoison_entry(swp))
4704 		return true;
4705 	else
4706 		return false;
4707 }
4708 
4709 static void
4710 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4711 		     struct page *new_page)
4712 {
4713 	__SetPageUptodate(new_page);
4714 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4715 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4716 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4717 	ClearHPageRestoreReserve(new_page);
4718 	SetHPageMigratable(new_page);
4719 }
4720 
4721 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4722 			    struct vm_area_struct *vma)
4723 {
4724 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4725 	struct page *ptepage;
4726 	unsigned long addr;
4727 	bool cow = is_cow_mapping(vma->vm_flags);
4728 	struct hstate *h = hstate_vma(vma);
4729 	unsigned long sz = huge_page_size(h);
4730 	unsigned long npages = pages_per_huge_page(h);
4731 	struct address_space *mapping = vma->vm_file->f_mapping;
4732 	struct mmu_notifier_range range;
4733 	int ret = 0;
4734 
4735 	if (cow) {
4736 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4737 					vma->vm_start,
4738 					vma->vm_end);
4739 		mmu_notifier_invalidate_range_start(&range);
4740 		mmap_assert_write_locked(src);
4741 		raw_write_seqcount_begin(&src->write_protect_seq);
4742 	} else {
4743 		/*
4744 		 * For shared mappings i_mmap_rwsem must be held to call
4745 		 * huge_pte_alloc, otherwise the returned ptep could go
4746 		 * away if part of a shared pmd and another thread calls
4747 		 * huge_pmd_unshare.
4748 		 */
4749 		i_mmap_lock_read(mapping);
4750 	}
4751 
4752 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4753 		spinlock_t *src_ptl, *dst_ptl;
4754 		src_pte = huge_pte_offset(src, addr, sz);
4755 		if (!src_pte)
4756 			continue;
4757 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4758 		if (!dst_pte) {
4759 			ret = -ENOMEM;
4760 			break;
4761 		}
4762 
4763 		/*
4764 		 * If the pagetables are shared don't copy or take references.
4765 		 * dst_pte == src_pte is the common case of src/dest sharing.
4766 		 *
4767 		 * However, src could have 'unshared' and dst shares with
4768 		 * another vma.  If dst_pte !none, this implies sharing.
4769 		 * Check here before taking page table lock, and once again
4770 		 * after taking the lock below.
4771 		 */
4772 		dst_entry = huge_ptep_get(dst_pte);
4773 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4774 			continue;
4775 
4776 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4777 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4778 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4779 		entry = huge_ptep_get(src_pte);
4780 		dst_entry = huge_ptep_get(dst_pte);
4781 again:
4782 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4783 			/*
4784 			 * Skip if src entry none.  Also, skip in the
4785 			 * unlikely case dst entry !none as this implies
4786 			 * sharing with another vma.
4787 			 */
4788 			;
4789 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4790 				    is_hugetlb_entry_hwpoisoned(entry))) {
4791 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4792 
4793 			if (!is_readable_migration_entry(swp_entry) && cow) {
4794 				/*
4795 				 * COW mappings require pages in both
4796 				 * parent and child to be set to read.
4797 				 */
4798 				swp_entry = make_readable_migration_entry(
4799 							swp_offset(swp_entry));
4800 				entry = swp_entry_to_pte(swp_entry);
4801 				set_huge_swap_pte_at(src, addr, src_pte,
4802 						     entry, sz);
4803 			}
4804 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4805 		} else {
4806 			entry = huge_ptep_get(src_pte);
4807 			ptepage = pte_page(entry);
4808 			get_page(ptepage);
4809 
4810 			/*
4811 			 * Failing to duplicate the anon rmap is a rare case
4812 			 * where we see pinned hugetlb pages while they're
4813 			 * prone to COW. We need to do the COW earlier during
4814 			 * fork.
4815 			 *
4816 			 * When pre-allocating the page or copying data, we
4817 			 * need to be without the pgtable locks since we could
4818 			 * sleep during the process.
4819 			 */
4820 			if (!PageAnon(ptepage)) {
4821 				page_dup_file_rmap(ptepage, true);
4822 			} else if (page_try_dup_anon_rmap(ptepage, true, vma)) {
4823 				pte_t src_pte_old = entry;
4824 				struct page *new;
4825 
4826 				spin_unlock(src_ptl);
4827 				spin_unlock(dst_ptl);
4828 				/* Do not use reserve as it's private owned */
4829 				new = alloc_huge_page(vma, addr, 1);
4830 				if (IS_ERR(new)) {
4831 					put_page(ptepage);
4832 					ret = PTR_ERR(new);
4833 					break;
4834 				}
4835 				copy_user_huge_page(new, ptepage, addr, vma,
4836 						    npages);
4837 				put_page(ptepage);
4838 
4839 				/* Install the new huge page if src pte stable */
4840 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4841 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4842 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4843 				entry = huge_ptep_get(src_pte);
4844 				if (!pte_same(src_pte_old, entry)) {
4845 					restore_reserve_on_error(h, vma, addr,
4846 								new);
4847 					put_page(new);
4848 					/* dst_entry won't change as in child */
4849 					goto again;
4850 				}
4851 				hugetlb_install_page(vma, dst_pte, addr, new);
4852 				spin_unlock(src_ptl);
4853 				spin_unlock(dst_ptl);
4854 				continue;
4855 			}
4856 
4857 			if (cow) {
4858 				/*
4859 				 * No need to notify as we are downgrading page
4860 				 * table protection not changing it to point
4861 				 * to a new page.
4862 				 *
4863 				 * See Documentation/vm/mmu_notifier.rst
4864 				 */
4865 				huge_ptep_set_wrprotect(src, addr, src_pte);
4866 				entry = huge_pte_wrprotect(entry);
4867 			}
4868 
4869 			set_huge_pte_at(dst, addr, dst_pte, entry);
4870 			hugetlb_count_add(npages, dst);
4871 		}
4872 		spin_unlock(src_ptl);
4873 		spin_unlock(dst_ptl);
4874 	}
4875 
4876 	if (cow) {
4877 		raw_write_seqcount_end(&src->write_protect_seq);
4878 		mmu_notifier_invalidate_range_end(&range);
4879 	} else {
4880 		i_mmap_unlock_read(mapping);
4881 	}
4882 
4883 	return ret;
4884 }
4885 
4886 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4887 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4888 {
4889 	struct hstate *h = hstate_vma(vma);
4890 	struct mm_struct *mm = vma->vm_mm;
4891 	spinlock_t *src_ptl, *dst_ptl;
4892 	pte_t pte;
4893 
4894 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4895 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4896 
4897 	/*
4898 	 * We don't have to worry about the ordering of src and dst ptlocks
4899 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4900 	 */
4901 	if (src_ptl != dst_ptl)
4902 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4903 
4904 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4905 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4906 
4907 	if (src_ptl != dst_ptl)
4908 		spin_unlock(src_ptl);
4909 	spin_unlock(dst_ptl);
4910 }
4911 
4912 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4913 			     struct vm_area_struct *new_vma,
4914 			     unsigned long old_addr, unsigned long new_addr,
4915 			     unsigned long len)
4916 {
4917 	struct hstate *h = hstate_vma(vma);
4918 	struct address_space *mapping = vma->vm_file->f_mapping;
4919 	unsigned long sz = huge_page_size(h);
4920 	struct mm_struct *mm = vma->vm_mm;
4921 	unsigned long old_end = old_addr + len;
4922 	unsigned long old_addr_copy;
4923 	pte_t *src_pte, *dst_pte;
4924 	struct mmu_notifier_range range;
4925 	bool shared_pmd = false;
4926 
4927 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4928 				old_end);
4929 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4930 	/*
4931 	 * In case of shared PMDs, we should cover the maximum possible
4932 	 * range.
4933 	 */
4934 	flush_cache_range(vma, range.start, range.end);
4935 
4936 	mmu_notifier_invalidate_range_start(&range);
4937 	/* Prevent race with file truncation */
4938 	i_mmap_lock_write(mapping);
4939 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4940 		src_pte = huge_pte_offset(mm, old_addr, sz);
4941 		if (!src_pte)
4942 			continue;
4943 		if (huge_pte_none(huge_ptep_get(src_pte)))
4944 			continue;
4945 
4946 		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
4947 		 * arg may be modified. Pass a copy instead to preserve the
4948 		 * value in old_addr.
4949 		 */
4950 		old_addr_copy = old_addr;
4951 
4952 		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4953 			shared_pmd = true;
4954 			continue;
4955 		}
4956 
4957 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4958 		if (!dst_pte)
4959 			break;
4960 
4961 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4962 	}
4963 
4964 	if (shared_pmd)
4965 		flush_tlb_range(vma, range.start, range.end);
4966 	else
4967 		flush_tlb_range(vma, old_end - len, old_end);
4968 	mmu_notifier_invalidate_range_end(&range);
4969 	i_mmap_unlock_write(mapping);
4970 
4971 	return len + old_addr - old_end;
4972 }
4973 
4974 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4975 				   unsigned long start, unsigned long end,
4976 				   struct page *ref_page)
4977 {
4978 	struct mm_struct *mm = vma->vm_mm;
4979 	unsigned long address;
4980 	pte_t *ptep;
4981 	pte_t pte;
4982 	spinlock_t *ptl;
4983 	struct page *page;
4984 	struct hstate *h = hstate_vma(vma);
4985 	unsigned long sz = huge_page_size(h);
4986 	struct mmu_notifier_range range;
4987 	bool force_flush = false;
4988 
4989 	WARN_ON(!is_vm_hugetlb_page(vma));
4990 	BUG_ON(start & ~huge_page_mask(h));
4991 	BUG_ON(end & ~huge_page_mask(h));
4992 
4993 	/*
4994 	 * This is a hugetlb vma, all the pte entries should point
4995 	 * to huge page.
4996 	 */
4997 	tlb_change_page_size(tlb, sz);
4998 	tlb_start_vma(tlb, vma);
4999 
5000 	/*
5001 	 * If sharing possible, alert mmu notifiers of worst case.
5002 	 */
5003 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5004 				end);
5005 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5006 	mmu_notifier_invalidate_range_start(&range);
5007 	address = start;
5008 	for (; address < end; address += sz) {
5009 		ptep = huge_pte_offset(mm, address, sz);
5010 		if (!ptep)
5011 			continue;
5012 
5013 		ptl = huge_pte_lock(h, mm, ptep);
5014 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5015 			spin_unlock(ptl);
5016 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5017 			force_flush = true;
5018 			continue;
5019 		}
5020 
5021 		pte = huge_ptep_get(ptep);
5022 		if (huge_pte_none(pte)) {
5023 			spin_unlock(ptl);
5024 			continue;
5025 		}
5026 
5027 		/*
5028 		 * Migrating hugepage or HWPoisoned hugepage is already
5029 		 * unmapped and its refcount is dropped, so just clear pte here.
5030 		 */
5031 		if (unlikely(!pte_present(pte))) {
5032 			huge_pte_clear(mm, address, ptep, sz);
5033 			spin_unlock(ptl);
5034 			continue;
5035 		}
5036 
5037 		page = pte_page(pte);
5038 		/*
5039 		 * If a reference page is supplied, it is because a specific
5040 		 * page is being unmapped, not a range. Ensure the page we
5041 		 * are about to unmap is the actual page of interest.
5042 		 */
5043 		if (ref_page) {
5044 			if (page != ref_page) {
5045 				spin_unlock(ptl);
5046 				continue;
5047 			}
5048 			/*
5049 			 * Mark the VMA as having unmapped its page so that
5050 			 * future faults in this VMA will fail rather than
5051 			 * looking like data was lost
5052 			 */
5053 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5054 		}
5055 
5056 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5057 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5058 		if (huge_pte_dirty(pte))
5059 			set_page_dirty(page);
5060 
5061 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5062 		page_remove_rmap(page, vma, true);
5063 
5064 		spin_unlock(ptl);
5065 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5066 		/*
5067 		 * Bail out after unmapping reference page if supplied
5068 		 */
5069 		if (ref_page)
5070 			break;
5071 	}
5072 	mmu_notifier_invalidate_range_end(&range);
5073 	tlb_end_vma(tlb, vma);
5074 
5075 	/*
5076 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5077 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5078 	 * guaranteed that the last refernece would not be dropped. But we must
5079 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5080 	 * dropped and the last reference to the shared PMDs page might be
5081 	 * dropped as well.
5082 	 *
5083 	 * In theory we could defer the freeing of the PMD pages as well, but
5084 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5085 	 * detect sharing, so we cannot defer the release of the page either.
5086 	 * Instead, do flush now.
5087 	 */
5088 	if (force_flush)
5089 		tlb_flush_mmu_tlbonly(tlb);
5090 }
5091 
5092 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5093 			  struct vm_area_struct *vma, unsigned long start,
5094 			  unsigned long end, struct page *ref_page)
5095 {
5096 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
5097 
5098 	/*
5099 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5100 	 * test will fail on a vma being torn down, and not grab a page table
5101 	 * on its way out.  We're lucky that the flag has such an appropriate
5102 	 * name, and can in fact be safely cleared here. We could clear it
5103 	 * before the __unmap_hugepage_range above, but all that's necessary
5104 	 * is to clear it before releasing the i_mmap_rwsem. This works
5105 	 * because in the context this is called, the VMA is about to be
5106 	 * destroyed and the i_mmap_rwsem is held.
5107 	 */
5108 	vma->vm_flags &= ~VM_MAYSHARE;
5109 }
5110 
5111 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5112 			  unsigned long end, struct page *ref_page)
5113 {
5114 	struct mmu_gather tlb;
5115 
5116 	tlb_gather_mmu(&tlb, vma->vm_mm);
5117 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5118 	tlb_finish_mmu(&tlb);
5119 }
5120 
5121 /*
5122  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5123  * mapping it owns the reserve page for. The intention is to unmap the page
5124  * from other VMAs and let the children be SIGKILLed if they are faulting the
5125  * same region.
5126  */
5127 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5128 			      struct page *page, unsigned long address)
5129 {
5130 	struct hstate *h = hstate_vma(vma);
5131 	struct vm_area_struct *iter_vma;
5132 	struct address_space *mapping;
5133 	pgoff_t pgoff;
5134 
5135 	/*
5136 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5137 	 * from page cache lookup which is in HPAGE_SIZE units.
5138 	 */
5139 	address = address & huge_page_mask(h);
5140 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5141 			vma->vm_pgoff;
5142 	mapping = vma->vm_file->f_mapping;
5143 
5144 	/*
5145 	 * Take the mapping lock for the duration of the table walk. As
5146 	 * this mapping should be shared between all the VMAs,
5147 	 * __unmap_hugepage_range() is called as the lock is already held
5148 	 */
5149 	i_mmap_lock_write(mapping);
5150 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5151 		/* Do not unmap the current VMA */
5152 		if (iter_vma == vma)
5153 			continue;
5154 
5155 		/*
5156 		 * Shared VMAs have their own reserves and do not affect
5157 		 * MAP_PRIVATE accounting but it is possible that a shared
5158 		 * VMA is using the same page so check and skip such VMAs.
5159 		 */
5160 		if (iter_vma->vm_flags & VM_MAYSHARE)
5161 			continue;
5162 
5163 		/*
5164 		 * Unmap the page from other VMAs without their own reserves.
5165 		 * They get marked to be SIGKILLed if they fault in these
5166 		 * areas. This is because a future no-page fault on this VMA
5167 		 * could insert a zeroed page instead of the data existing
5168 		 * from the time of fork. This would look like data corruption
5169 		 */
5170 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5171 			unmap_hugepage_range(iter_vma, address,
5172 					     address + huge_page_size(h), page);
5173 	}
5174 	i_mmap_unlock_write(mapping);
5175 }
5176 
5177 /*
5178  * hugetlb_wp() should be called with page lock of the original hugepage held.
5179  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5180  * cannot race with other handlers or page migration.
5181  * Keep the pte_same checks anyway to make transition from the mutex easier.
5182  */
5183 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5184 		       unsigned long address, pte_t *ptep, unsigned int flags,
5185 		       struct page *pagecache_page, spinlock_t *ptl)
5186 {
5187 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5188 	pte_t pte;
5189 	struct hstate *h = hstate_vma(vma);
5190 	struct page *old_page, *new_page;
5191 	int outside_reserve = 0;
5192 	vm_fault_t ret = 0;
5193 	unsigned long haddr = address & huge_page_mask(h);
5194 	struct mmu_notifier_range range;
5195 
5196 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5197 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5198 
5199 	pte = huge_ptep_get(ptep);
5200 	old_page = pte_page(pte);
5201 
5202 retry_avoidcopy:
5203 	/*
5204 	 * If no-one else is actually using this page, we're the exclusive
5205 	 * owner and can reuse this page.
5206 	 */
5207 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5208 		if (!PageAnonExclusive(old_page))
5209 			page_move_anon_rmap(old_page, vma);
5210 		if (likely(!unshare))
5211 			set_huge_ptep_writable(vma, haddr, ptep);
5212 		return 0;
5213 	}
5214 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5215 		       old_page);
5216 
5217 	/*
5218 	 * If the process that created a MAP_PRIVATE mapping is about to
5219 	 * perform a COW due to a shared page count, attempt to satisfy
5220 	 * the allocation without using the existing reserves. The pagecache
5221 	 * page is used to determine if the reserve at this address was
5222 	 * consumed or not. If reserves were used, a partial faulted mapping
5223 	 * at the time of fork() could consume its reserves on COW instead
5224 	 * of the full address range.
5225 	 */
5226 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5227 			old_page != pagecache_page)
5228 		outside_reserve = 1;
5229 
5230 	get_page(old_page);
5231 
5232 	/*
5233 	 * Drop page table lock as buddy allocator may be called. It will
5234 	 * be acquired again before returning to the caller, as expected.
5235 	 */
5236 	spin_unlock(ptl);
5237 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5238 
5239 	if (IS_ERR(new_page)) {
5240 		/*
5241 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5242 		 * it is due to references held by a child and an insufficient
5243 		 * huge page pool. To guarantee the original mappers
5244 		 * reliability, unmap the page from child processes. The child
5245 		 * may get SIGKILLed if it later faults.
5246 		 */
5247 		if (outside_reserve) {
5248 			struct address_space *mapping = vma->vm_file->f_mapping;
5249 			pgoff_t idx;
5250 			u32 hash;
5251 
5252 			put_page(old_page);
5253 			BUG_ON(huge_pte_none(pte));
5254 			/*
5255 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5256 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5257 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5258 			 * here is OK as COW mappings do not interact with
5259 			 * PMD sharing.
5260 			 *
5261 			 * Reacquire both after unmap operation.
5262 			 */
5263 			idx = vma_hugecache_offset(h, vma, haddr);
5264 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5265 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5266 			i_mmap_unlock_read(mapping);
5267 
5268 			unmap_ref_private(mm, vma, old_page, haddr);
5269 
5270 			i_mmap_lock_read(mapping);
5271 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5272 			spin_lock(ptl);
5273 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5274 			if (likely(ptep &&
5275 				   pte_same(huge_ptep_get(ptep), pte)))
5276 				goto retry_avoidcopy;
5277 			/*
5278 			 * race occurs while re-acquiring page table
5279 			 * lock, and our job is done.
5280 			 */
5281 			return 0;
5282 		}
5283 
5284 		ret = vmf_error(PTR_ERR(new_page));
5285 		goto out_release_old;
5286 	}
5287 
5288 	/*
5289 	 * When the original hugepage is shared one, it does not have
5290 	 * anon_vma prepared.
5291 	 */
5292 	if (unlikely(anon_vma_prepare(vma))) {
5293 		ret = VM_FAULT_OOM;
5294 		goto out_release_all;
5295 	}
5296 
5297 	copy_user_huge_page(new_page, old_page, address, vma,
5298 			    pages_per_huge_page(h));
5299 	__SetPageUptodate(new_page);
5300 
5301 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5302 				haddr + huge_page_size(h));
5303 	mmu_notifier_invalidate_range_start(&range);
5304 
5305 	/*
5306 	 * Retake the page table lock to check for racing updates
5307 	 * before the page tables are altered
5308 	 */
5309 	spin_lock(ptl);
5310 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5311 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5312 		ClearHPageRestoreReserve(new_page);
5313 
5314 		/* Break COW or unshare */
5315 		huge_ptep_clear_flush(vma, haddr, ptep);
5316 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5317 		page_remove_rmap(old_page, vma, true);
5318 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5319 		set_huge_pte_at(mm, haddr, ptep,
5320 				make_huge_pte(vma, new_page, !unshare));
5321 		SetHPageMigratable(new_page);
5322 		/* Make the old page be freed below */
5323 		new_page = old_page;
5324 	}
5325 	spin_unlock(ptl);
5326 	mmu_notifier_invalidate_range_end(&range);
5327 out_release_all:
5328 	/*
5329 	 * No restore in case of successful pagetable update (Break COW or
5330 	 * unshare)
5331 	 */
5332 	if (new_page != old_page)
5333 		restore_reserve_on_error(h, vma, haddr, new_page);
5334 	put_page(new_page);
5335 out_release_old:
5336 	put_page(old_page);
5337 
5338 	spin_lock(ptl); /* Caller expects lock to be held */
5339 	return ret;
5340 }
5341 
5342 /* Return the pagecache page at a given address within a VMA */
5343 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5344 			struct vm_area_struct *vma, unsigned long address)
5345 {
5346 	struct address_space *mapping;
5347 	pgoff_t idx;
5348 
5349 	mapping = vma->vm_file->f_mapping;
5350 	idx = vma_hugecache_offset(h, vma, address);
5351 
5352 	return find_lock_page(mapping, idx);
5353 }
5354 
5355 /*
5356  * Return whether there is a pagecache page to back given address within VMA.
5357  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5358  */
5359 static bool hugetlbfs_pagecache_present(struct hstate *h,
5360 			struct vm_area_struct *vma, unsigned long address)
5361 {
5362 	struct address_space *mapping;
5363 	pgoff_t idx;
5364 	struct page *page;
5365 
5366 	mapping = vma->vm_file->f_mapping;
5367 	idx = vma_hugecache_offset(h, vma, address);
5368 
5369 	page = find_get_page(mapping, idx);
5370 	if (page)
5371 		put_page(page);
5372 	return page != NULL;
5373 }
5374 
5375 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5376 			   pgoff_t idx)
5377 {
5378 	struct inode *inode = mapping->host;
5379 	struct hstate *h = hstate_inode(inode);
5380 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5381 
5382 	if (err)
5383 		return err;
5384 	ClearHPageRestoreReserve(page);
5385 
5386 	/*
5387 	 * set page dirty so that it will not be removed from cache/file
5388 	 * by non-hugetlbfs specific code paths.
5389 	 */
5390 	set_page_dirty(page);
5391 
5392 	spin_lock(&inode->i_lock);
5393 	inode->i_blocks += blocks_per_huge_page(h);
5394 	spin_unlock(&inode->i_lock);
5395 	return 0;
5396 }
5397 
5398 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5399 						  struct address_space *mapping,
5400 						  pgoff_t idx,
5401 						  unsigned int flags,
5402 						  unsigned long haddr,
5403 						  unsigned long addr,
5404 						  unsigned long reason)
5405 {
5406 	vm_fault_t ret;
5407 	u32 hash;
5408 	struct vm_fault vmf = {
5409 		.vma = vma,
5410 		.address = haddr,
5411 		.real_address = addr,
5412 		.flags = flags,
5413 
5414 		/*
5415 		 * Hard to debug if it ends up being
5416 		 * used by a callee that assumes
5417 		 * something about the other
5418 		 * uninitialized fields... same as in
5419 		 * memory.c
5420 		 */
5421 	};
5422 
5423 	/*
5424 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5425 	 * dropped before handling userfault.  Reacquire
5426 	 * after handling fault to make calling code simpler.
5427 	 */
5428 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5429 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5430 	i_mmap_unlock_read(mapping);
5431 	ret = handle_userfault(&vmf, reason);
5432 	i_mmap_lock_read(mapping);
5433 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5434 
5435 	return ret;
5436 }
5437 
5438 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5439 			struct vm_area_struct *vma,
5440 			struct address_space *mapping, pgoff_t idx,
5441 			unsigned long address, pte_t *ptep, unsigned int flags)
5442 {
5443 	struct hstate *h = hstate_vma(vma);
5444 	vm_fault_t ret = VM_FAULT_SIGBUS;
5445 	int anon_rmap = 0;
5446 	unsigned long size;
5447 	struct page *page;
5448 	pte_t new_pte;
5449 	spinlock_t *ptl;
5450 	unsigned long haddr = address & huge_page_mask(h);
5451 	bool new_page, new_pagecache_page = false;
5452 
5453 	/*
5454 	 * Currently, we are forced to kill the process in the event the
5455 	 * original mapper has unmapped pages from the child due to a failed
5456 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5457 	 * be obvious.
5458 	 */
5459 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5460 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5461 			   current->pid);
5462 		return ret;
5463 	}
5464 
5465 	/*
5466 	 * We can not race with truncation due to holding i_mmap_rwsem.
5467 	 * i_size is modified when holding i_mmap_rwsem, so check here
5468 	 * once for faults beyond end of file.
5469 	 */
5470 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5471 	if (idx >= size)
5472 		goto out;
5473 
5474 retry:
5475 	new_page = false;
5476 	page = find_lock_page(mapping, idx);
5477 	if (!page) {
5478 		/* Check for page in userfault range */
5479 		if (userfaultfd_missing(vma)) {
5480 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5481 						       flags, haddr, address,
5482 						       VM_UFFD_MISSING);
5483 			goto out;
5484 		}
5485 
5486 		page = alloc_huge_page(vma, haddr, 0);
5487 		if (IS_ERR(page)) {
5488 			/*
5489 			 * Returning error will result in faulting task being
5490 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5491 			 * tasks from racing to fault in the same page which
5492 			 * could result in false unable to allocate errors.
5493 			 * Page migration does not take the fault mutex, but
5494 			 * does a clear then write of pte's under page table
5495 			 * lock.  Page fault code could race with migration,
5496 			 * notice the clear pte and try to allocate a page
5497 			 * here.  Before returning error, get ptl and make
5498 			 * sure there really is no pte entry.
5499 			 */
5500 			ptl = huge_pte_lock(h, mm, ptep);
5501 			ret = 0;
5502 			if (huge_pte_none(huge_ptep_get(ptep)))
5503 				ret = vmf_error(PTR_ERR(page));
5504 			spin_unlock(ptl);
5505 			goto out;
5506 		}
5507 		clear_huge_page(page, address, pages_per_huge_page(h));
5508 		__SetPageUptodate(page);
5509 		new_page = true;
5510 
5511 		if (vma->vm_flags & VM_MAYSHARE) {
5512 			int err = huge_add_to_page_cache(page, mapping, idx);
5513 			if (err) {
5514 				put_page(page);
5515 				if (err == -EEXIST)
5516 					goto retry;
5517 				goto out;
5518 			}
5519 			new_pagecache_page = true;
5520 		} else {
5521 			lock_page(page);
5522 			if (unlikely(anon_vma_prepare(vma))) {
5523 				ret = VM_FAULT_OOM;
5524 				goto backout_unlocked;
5525 			}
5526 			anon_rmap = 1;
5527 		}
5528 	} else {
5529 		/*
5530 		 * If memory error occurs between mmap() and fault, some process
5531 		 * don't have hwpoisoned swap entry for errored virtual address.
5532 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5533 		 */
5534 		if (unlikely(PageHWPoison(page))) {
5535 			ret = VM_FAULT_HWPOISON_LARGE |
5536 				VM_FAULT_SET_HINDEX(hstate_index(h));
5537 			goto backout_unlocked;
5538 		}
5539 
5540 		/* Check for page in userfault range. */
5541 		if (userfaultfd_minor(vma)) {
5542 			unlock_page(page);
5543 			put_page(page);
5544 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5545 						       flags, haddr, address,
5546 						       VM_UFFD_MINOR);
5547 			goto out;
5548 		}
5549 	}
5550 
5551 	/*
5552 	 * If we are going to COW a private mapping later, we examine the
5553 	 * pending reservations for this page now. This will ensure that
5554 	 * any allocations necessary to record that reservation occur outside
5555 	 * the spinlock.
5556 	 */
5557 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5558 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5559 			ret = VM_FAULT_OOM;
5560 			goto backout_unlocked;
5561 		}
5562 		/* Just decrements count, does not deallocate */
5563 		vma_end_reservation(h, vma, haddr);
5564 	}
5565 
5566 	ptl = huge_pte_lock(h, mm, ptep);
5567 	ret = 0;
5568 	if (!huge_pte_none(huge_ptep_get(ptep)))
5569 		goto backout;
5570 
5571 	if (anon_rmap) {
5572 		ClearHPageRestoreReserve(page);
5573 		hugepage_add_new_anon_rmap(page, vma, haddr);
5574 	} else
5575 		page_dup_file_rmap(page, true);
5576 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5577 				&& (vma->vm_flags & VM_SHARED)));
5578 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5579 
5580 	hugetlb_count_add(pages_per_huge_page(h), mm);
5581 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5582 		/* Optimization, do the COW without a second fault */
5583 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5584 	}
5585 
5586 	spin_unlock(ptl);
5587 
5588 	/*
5589 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5590 	 * found in the pagecache may not have HPageMigratableset if they have
5591 	 * been isolated for migration.
5592 	 */
5593 	if (new_page)
5594 		SetHPageMigratable(page);
5595 
5596 	unlock_page(page);
5597 out:
5598 	return ret;
5599 
5600 backout:
5601 	spin_unlock(ptl);
5602 backout_unlocked:
5603 	unlock_page(page);
5604 	/* restore reserve for newly allocated pages not in page cache */
5605 	if (new_page && !new_pagecache_page)
5606 		restore_reserve_on_error(h, vma, haddr, page);
5607 	put_page(page);
5608 	goto out;
5609 }
5610 
5611 #ifdef CONFIG_SMP
5612 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5613 {
5614 	unsigned long key[2];
5615 	u32 hash;
5616 
5617 	key[0] = (unsigned long) mapping;
5618 	key[1] = idx;
5619 
5620 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5621 
5622 	return hash & (num_fault_mutexes - 1);
5623 }
5624 #else
5625 /*
5626  * For uniprocessor systems we always use a single mutex, so just
5627  * return 0 and avoid the hashing overhead.
5628  */
5629 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5630 {
5631 	return 0;
5632 }
5633 #endif
5634 
5635 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5636 			unsigned long address, unsigned int flags)
5637 {
5638 	pte_t *ptep, entry;
5639 	spinlock_t *ptl;
5640 	vm_fault_t ret;
5641 	u32 hash;
5642 	pgoff_t idx;
5643 	struct page *page = NULL;
5644 	struct page *pagecache_page = NULL;
5645 	struct hstate *h = hstate_vma(vma);
5646 	struct address_space *mapping;
5647 	int need_wait_lock = 0;
5648 	unsigned long haddr = address & huge_page_mask(h);
5649 
5650 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5651 	if (ptep) {
5652 		/*
5653 		 * Since we hold no locks, ptep could be stale.  That is
5654 		 * OK as we are only making decisions based on content and
5655 		 * not actually modifying content here.
5656 		 */
5657 		entry = huge_ptep_get(ptep);
5658 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5659 			migration_entry_wait_huge(vma, mm, ptep);
5660 			return 0;
5661 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5662 			return VM_FAULT_HWPOISON_LARGE |
5663 				VM_FAULT_SET_HINDEX(hstate_index(h));
5664 	}
5665 
5666 	/*
5667 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5668 	 * until finished with ptep.  This serves two purposes:
5669 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5670 	 *    and making the ptep no longer valid.
5671 	 * 2) It synchronizes us with i_size modifications during truncation.
5672 	 *
5673 	 * ptep could have already be assigned via huge_pte_offset.  That
5674 	 * is OK, as huge_pte_alloc will return the same value unless
5675 	 * something has changed.
5676 	 */
5677 	mapping = vma->vm_file->f_mapping;
5678 	i_mmap_lock_read(mapping);
5679 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5680 	if (!ptep) {
5681 		i_mmap_unlock_read(mapping);
5682 		return VM_FAULT_OOM;
5683 	}
5684 
5685 	/*
5686 	 * Serialize hugepage allocation and instantiation, so that we don't
5687 	 * get spurious allocation failures if two CPUs race to instantiate
5688 	 * the same page in the page cache.
5689 	 */
5690 	idx = vma_hugecache_offset(h, vma, haddr);
5691 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5692 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5693 
5694 	entry = huge_ptep_get(ptep);
5695 	if (huge_pte_none(entry)) {
5696 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5697 		goto out_mutex;
5698 	}
5699 
5700 	ret = 0;
5701 
5702 	/*
5703 	 * entry could be a migration/hwpoison entry at this point, so this
5704 	 * check prevents the kernel from going below assuming that we have
5705 	 * an active hugepage in pagecache. This goto expects the 2nd page
5706 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5707 	 * properly handle it.
5708 	 */
5709 	if (!pte_present(entry))
5710 		goto out_mutex;
5711 
5712 	/*
5713 	 * If we are going to COW/unshare the mapping later, we examine the
5714 	 * pending reservations for this page now. This will ensure that any
5715 	 * allocations necessary to record that reservation occur outside the
5716 	 * spinlock. For private mappings, we also lookup the pagecache
5717 	 * page now as it is used to determine if a reservation has been
5718 	 * consumed.
5719 	 */
5720 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5721 	    !huge_pte_write(entry)) {
5722 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5723 			ret = VM_FAULT_OOM;
5724 			goto out_mutex;
5725 		}
5726 		/* Just decrements count, does not deallocate */
5727 		vma_end_reservation(h, vma, haddr);
5728 
5729 		if (!(vma->vm_flags & VM_MAYSHARE))
5730 			pagecache_page = hugetlbfs_pagecache_page(h,
5731 								vma, haddr);
5732 	}
5733 
5734 	ptl = huge_pte_lock(h, mm, ptep);
5735 
5736 	/* Check for a racing update before calling hugetlb_wp() */
5737 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5738 		goto out_ptl;
5739 
5740 	/*
5741 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5742 	 * pagecache_page, so here we need take the former one
5743 	 * when page != pagecache_page or !pagecache_page.
5744 	 */
5745 	page = pte_page(entry);
5746 	if (page != pagecache_page)
5747 		if (!trylock_page(page)) {
5748 			need_wait_lock = 1;
5749 			goto out_ptl;
5750 		}
5751 
5752 	get_page(page);
5753 
5754 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5755 		if (!huge_pte_write(entry)) {
5756 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5757 					 pagecache_page, ptl);
5758 			goto out_put_page;
5759 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5760 			entry = huge_pte_mkdirty(entry);
5761 		}
5762 	}
5763 	entry = pte_mkyoung(entry);
5764 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5765 						flags & FAULT_FLAG_WRITE))
5766 		update_mmu_cache(vma, haddr, ptep);
5767 out_put_page:
5768 	if (page != pagecache_page)
5769 		unlock_page(page);
5770 	put_page(page);
5771 out_ptl:
5772 	spin_unlock(ptl);
5773 
5774 	if (pagecache_page) {
5775 		unlock_page(pagecache_page);
5776 		put_page(pagecache_page);
5777 	}
5778 out_mutex:
5779 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5780 	i_mmap_unlock_read(mapping);
5781 	/*
5782 	 * Generally it's safe to hold refcount during waiting page lock. But
5783 	 * here we just wait to defer the next page fault to avoid busy loop and
5784 	 * the page is not used after unlocked before returning from the current
5785 	 * page fault. So we are safe from accessing freed page, even if we wait
5786 	 * here without taking refcount.
5787 	 */
5788 	if (need_wait_lock)
5789 		wait_on_page_locked(page);
5790 	return ret;
5791 }
5792 
5793 #ifdef CONFIG_USERFAULTFD
5794 /*
5795  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5796  * modifications for huge pages.
5797  */
5798 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5799 			    pte_t *dst_pte,
5800 			    struct vm_area_struct *dst_vma,
5801 			    unsigned long dst_addr,
5802 			    unsigned long src_addr,
5803 			    enum mcopy_atomic_mode mode,
5804 			    struct page **pagep)
5805 {
5806 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5807 	struct hstate *h = hstate_vma(dst_vma);
5808 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5809 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5810 	unsigned long size;
5811 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5812 	pte_t _dst_pte;
5813 	spinlock_t *ptl;
5814 	int ret = -ENOMEM;
5815 	struct page *page;
5816 	int writable;
5817 	bool page_in_pagecache = false;
5818 
5819 	if (is_continue) {
5820 		ret = -EFAULT;
5821 		page = find_lock_page(mapping, idx);
5822 		if (!page)
5823 			goto out;
5824 		page_in_pagecache = true;
5825 	} else if (!*pagep) {
5826 		/* If a page already exists, then it's UFFDIO_COPY for
5827 		 * a non-missing case. Return -EEXIST.
5828 		 */
5829 		if (vm_shared &&
5830 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5831 			ret = -EEXIST;
5832 			goto out;
5833 		}
5834 
5835 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5836 		if (IS_ERR(page)) {
5837 			ret = -ENOMEM;
5838 			goto out;
5839 		}
5840 
5841 		ret = copy_huge_page_from_user(page,
5842 						(const void __user *) src_addr,
5843 						pages_per_huge_page(h), false);
5844 
5845 		/* fallback to copy_from_user outside mmap_lock */
5846 		if (unlikely(ret)) {
5847 			ret = -ENOENT;
5848 			/* Free the allocated page which may have
5849 			 * consumed a reservation.
5850 			 */
5851 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5852 			put_page(page);
5853 
5854 			/* Allocate a temporary page to hold the copied
5855 			 * contents.
5856 			 */
5857 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5858 			if (!page) {
5859 				ret = -ENOMEM;
5860 				goto out;
5861 			}
5862 			*pagep = page;
5863 			/* Set the outparam pagep and return to the caller to
5864 			 * copy the contents outside the lock. Don't free the
5865 			 * page.
5866 			 */
5867 			goto out;
5868 		}
5869 	} else {
5870 		if (vm_shared &&
5871 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5872 			put_page(*pagep);
5873 			ret = -EEXIST;
5874 			*pagep = NULL;
5875 			goto out;
5876 		}
5877 
5878 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5879 		if (IS_ERR(page)) {
5880 			ret = -ENOMEM;
5881 			*pagep = NULL;
5882 			goto out;
5883 		}
5884 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5885 				    pages_per_huge_page(h));
5886 		put_page(*pagep);
5887 		*pagep = NULL;
5888 	}
5889 
5890 	/*
5891 	 * The memory barrier inside __SetPageUptodate makes sure that
5892 	 * preceding stores to the page contents become visible before
5893 	 * the set_pte_at() write.
5894 	 */
5895 	__SetPageUptodate(page);
5896 
5897 	/* Add shared, newly allocated pages to the page cache. */
5898 	if (vm_shared && !is_continue) {
5899 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5900 		ret = -EFAULT;
5901 		if (idx >= size)
5902 			goto out_release_nounlock;
5903 
5904 		/*
5905 		 * Serialization between remove_inode_hugepages() and
5906 		 * huge_add_to_page_cache() below happens through the
5907 		 * hugetlb_fault_mutex_table that here must be hold by
5908 		 * the caller.
5909 		 */
5910 		ret = huge_add_to_page_cache(page, mapping, idx);
5911 		if (ret)
5912 			goto out_release_nounlock;
5913 		page_in_pagecache = true;
5914 	}
5915 
5916 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5917 	spin_lock(ptl);
5918 
5919 	/*
5920 	 * Recheck the i_size after holding PT lock to make sure not
5921 	 * to leave any page mapped (as page_mapped()) beyond the end
5922 	 * of the i_size (remove_inode_hugepages() is strict about
5923 	 * enforcing that). If we bail out here, we'll also leave a
5924 	 * page in the radix tree in the vm_shared case beyond the end
5925 	 * of the i_size, but remove_inode_hugepages() will take care
5926 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5927 	 */
5928 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5929 	ret = -EFAULT;
5930 	if (idx >= size)
5931 		goto out_release_unlock;
5932 
5933 	ret = -EEXIST;
5934 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5935 		goto out_release_unlock;
5936 
5937 	if (vm_shared) {
5938 		page_dup_file_rmap(page, true);
5939 	} else {
5940 		ClearHPageRestoreReserve(page);
5941 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5942 	}
5943 
5944 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5945 	if (is_continue && !vm_shared)
5946 		writable = 0;
5947 	else
5948 		writable = dst_vma->vm_flags & VM_WRITE;
5949 
5950 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5951 	if (writable)
5952 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5953 	_dst_pte = pte_mkyoung(_dst_pte);
5954 
5955 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5956 
5957 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5958 					dst_vma->vm_flags & VM_WRITE);
5959 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5960 
5961 	/* No need to invalidate - it was non-present before */
5962 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5963 
5964 	spin_unlock(ptl);
5965 	if (!is_continue)
5966 		SetHPageMigratable(page);
5967 	if (vm_shared || is_continue)
5968 		unlock_page(page);
5969 	ret = 0;
5970 out:
5971 	return ret;
5972 out_release_unlock:
5973 	spin_unlock(ptl);
5974 	if (vm_shared || is_continue)
5975 		unlock_page(page);
5976 out_release_nounlock:
5977 	if (!page_in_pagecache)
5978 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5979 	put_page(page);
5980 	goto out;
5981 }
5982 #endif /* CONFIG_USERFAULTFD */
5983 
5984 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5985 				 int refs, struct page **pages,
5986 				 struct vm_area_struct **vmas)
5987 {
5988 	int nr;
5989 
5990 	for (nr = 0; nr < refs; nr++) {
5991 		if (likely(pages))
5992 			pages[nr] = mem_map_offset(page, nr);
5993 		if (vmas)
5994 			vmas[nr] = vma;
5995 	}
5996 }
5997 
5998 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
5999 					       bool *unshare)
6000 {
6001 	pte_t pteval = huge_ptep_get(pte);
6002 
6003 	*unshare = false;
6004 	if (is_swap_pte(pteval))
6005 		return true;
6006 	if (huge_pte_write(pteval))
6007 		return false;
6008 	if (flags & FOLL_WRITE)
6009 		return true;
6010 	if (gup_must_unshare(flags, pte_page(pteval))) {
6011 		*unshare = true;
6012 		return true;
6013 	}
6014 	return false;
6015 }
6016 
6017 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6018 			 struct page **pages, struct vm_area_struct **vmas,
6019 			 unsigned long *position, unsigned long *nr_pages,
6020 			 long i, unsigned int flags, int *locked)
6021 {
6022 	unsigned long pfn_offset;
6023 	unsigned long vaddr = *position;
6024 	unsigned long remainder = *nr_pages;
6025 	struct hstate *h = hstate_vma(vma);
6026 	int err = -EFAULT, refs;
6027 
6028 	while (vaddr < vma->vm_end && remainder) {
6029 		pte_t *pte;
6030 		spinlock_t *ptl = NULL;
6031 		bool unshare = false;
6032 		int absent;
6033 		struct page *page;
6034 
6035 		/*
6036 		 * If we have a pending SIGKILL, don't keep faulting pages and
6037 		 * potentially allocating memory.
6038 		 */
6039 		if (fatal_signal_pending(current)) {
6040 			remainder = 0;
6041 			break;
6042 		}
6043 
6044 		/*
6045 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6046 		 * each hugepage.  We have to make sure we get the
6047 		 * first, for the page indexing below to work.
6048 		 *
6049 		 * Note that page table lock is not held when pte is null.
6050 		 */
6051 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6052 				      huge_page_size(h));
6053 		if (pte)
6054 			ptl = huge_pte_lock(h, mm, pte);
6055 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6056 
6057 		/*
6058 		 * When coredumping, it suits get_dump_page if we just return
6059 		 * an error where there's an empty slot with no huge pagecache
6060 		 * to back it.  This way, we avoid allocating a hugepage, and
6061 		 * the sparse dumpfile avoids allocating disk blocks, but its
6062 		 * huge holes still show up with zeroes where they need to be.
6063 		 */
6064 		if (absent && (flags & FOLL_DUMP) &&
6065 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6066 			if (pte)
6067 				spin_unlock(ptl);
6068 			remainder = 0;
6069 			break;
6070 		}
6071 
6072 		/*
6073 		 * We need call hugetlb_fault for both hugepages under migration
6074 		 * (in which case hugetlb_fault waits for the migration,) and
6075 		 * hwpoisoned hugepages (in which case we need to prevent the
6076 		 * caller from accessing to them.) In order to do this, we use
6077 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6078 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6079 		 * both cases, and because we can't follow correct pages
6080 		 * directly from any kind of swap entries.
6081 		 */
6082 		if (absent ||
6083 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6084 			vm_fault_t ret;
6085 			unsigned int fault_flags = 0;
6086 
6087 			if (pte)
6088 				spin_unlock(ptl);
6089 			if (flags & FOLL_WRITE)
6090 				fault_flags |= FAULT_FLAG_WRITE;
6091 			else if (unshare)
6092 				fault_flags |= FAULT_FLAG_UNSHARE;
6093 			if (locked)
6094 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6095 					FAULT_FLAG_KILLABLE;
6096 			if (flags & FOLL_NOWAIT)
6097 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6098 					FAULT_FLAG_RETRY_NOWAIT;
6099 			if (flags & FOLL_TRIED) {
6100 				/*
6101 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6102 				 * FAULT_FLAG_TRIED can co-exist
6103 				 */
6104 				fault_flags |= FAULT_FLAG_TRIED;
6105 			}
6106 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6107 			if (ret & VM_FAULT_ERROR) {
6108 				err = vm_fault_to_errno(ret, flags);
6109 				remainder = 0;
6110 				break;
6111 			}
6112 			if (ret & VM_FAULT_RETRY) {
6113 				if (locked &&
6114 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6115 					*locked = 0;
6116 				*nr_pages = 0;
6117 				/*
6118 				 * VM_FAULT_RETRY must not return an
6119 				 * error, it will return zero
6120 				 * instead.
6121 				 *
6122 				 * No need to update "position" as the
6123 				 * caller will not check it after
6124 				 * *nr_pages is set to 0.
6125 				 */
6126 				return i;
6127 			}
6128 			continue;
6129 		}
6130 
6131 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6132 		page = pte_page(huge_ptep_get(pte));
6133 
6134 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6135 			       !PageAnonExclusive(page), page);
6136 
6137 		/*
6138 		 * If subpage information not requested, update counters
6139 		 * and skip the same_page loop below.
6140 		 */
6141 		if (!pages && !vmas && !pfn_offset &&
6142 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6143 		    (remainder >= pages_per_huge_page(h))) {
6144 			vaddr += huge_page_size(h);
6145 			remainder -= pages_per_huge_page(h);
6146 			i += pages_per_huge_page(h);
6147 			spin_unlock(ptl);
6148 			continue;
6149 		}
6150 
6151 		/* vaddr may not be aligned to PAGE_SIZE */
6152 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6153 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6154 
6155 		if (pages || vmas)
6156 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6157 					     vma, refs,
6158 					     likely(pages) ? pages + i : NULL,
6159 					     vmas ? vmas + i : NULL);
6160 
6161 		if (pages) {
6162 			/*
6163 			 * try_grab_folio() should always succeed here,
6164 			 * because: a) we hold the ptl lock, and b) we've just
6165 			 * checked that the huge page is present in the page
6166 			 * tables. If the huge page is present, then the tail
6167 			 * pages must also be present. The ptl prevents the
6168 			 * head page and tail pages from being rearranged in
6169 			 * any way. So this page must be available at this
6170 			 * point, unless the page refcount overflowed:
6171 			 */
6172 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6173 							 flags))) {
6174 				spin_unlock(ptl);
6175 				remainder = 0;
6176 				err = -ENOMEM;
6177 				break;
6178 			}
6179 		}
6180 
6181 		vaddr += (refs << PAGE_SHIFT);
6182 		remainder -= refs;
6183 		i += refs;
6184 
6185 		spin_unlock(ptl);
6186 	}
6187 	*nr_pages = remainder;
6188 	/*
6189 	 * setting position is actually required only if remainder is
6190 	 * not zero but it's faster not to add a "if (remainder)"
6191 	 * branch.
6192 	 */
6193 	*position = vaddr;
6194 
6195 	return i ? i : err;
6196 }
6197 
6198 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6199 		unsigned long address, unsigned long end, pgprot_t newprot)
6200 {
6201 	struct mm_struct *mm = vma->vm_mm;
6202 	unsigned long start = address;
6203 	pte_t *ptep;
6204 	pte_t pte;
6205 	struct hstate *h = hstate_vma(vma);
6206 	unsigned long pages = 0;
6207 	bool shared_pmd = false;
6208 	struct mmu_notifier_range range;
6209 
6210 	/*
6211 	 * In the case of shared PMDs, the area to flush could be beyond
6212 	 * start/end.  Set range.start/range.end to cover the maximum possible
6213 	 * range if PMD sharing is possible.
6214 	 */
6215 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6216 				0, vma, mm, start, end);
6217 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6218 
6219 	BUG_ON(address >= end);
6220 	flush_cache_range(vma, range.start, range.end);
6221 
6222 	mmu_notifier_invalidate_range_start(&range);
6223 	i_mmap_lock_write(vma->vm_file->f_mapping);
6224 	for (; address < end; address += huge_page_size(h)) {
6225 		spinlock_t *ptl;
6226 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6227 		if (!ptep)
6228 			continue;
6229 		ptl = huge_pte_lock(h, mm, ptep);
6230 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6231 			pages++;
6232 			spin_unlock(ptl);
6233 			shared_pmd = true;
6234 			continue;
6235 		}
6236 		pte = huge_ptep_get(ptep);
6237 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6238 			spin_unlock(ptl);
6239 			continue;
6240 		}
6241 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6242 			swp_entry_t entry = pte_to_swp_entry(pte);
6243 			struct page *page = pfn_swap_entry_to_page(entry);
6244 
6245 			if (!is_readable_migration_entry(entry)) {
6246 				pte_t newpte;
6247 
6248 				if (PageAnon(page))
6249 					entry = make_readable_exclusive_migration_entry(
6250 								swp_offset(entry));
6251 				else
6252 					entry = make_readable_migration_entry(
6253 								swp_offset(entry));
6254 				newpte = swp_entry_to_pte(entry);
6255 				set_huge_swap_pte_at(mm, address, ptep,
6256 						     newpte, huge_page_size(h));
6257 				pages++;
6258 			}
6259 			spin_unlock(ptl);
6260 			continue;
6261 		}
6262 		if (!huge_pte_none(pte)) {
6263 			pte_t old_pte;
6264 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6265 
6266 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6267 			pte = huge_pte_modify(old_pte, newprot);
6268 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6269 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6270 			pages++;
6271 		}
6272 		spin_unlock(ptl);
6273 	}
6274 	/*
6275 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6276 	 * may have cleared our pud entry and done put_page on the page table:
6277 	 * once we release i_mmap_rwsem, another task can do the final put_page
6278 	 * and that page table be reused and filled with junk.  If we actually
6279 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6280 	 */
6281 	if (shared_pmd)
6282 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6283 	else
6284 		flush_hugetlb_tlb_range(vma, start, end);
6285 	/*
6286 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6287 	 * page table protection not changing it to point to a new page.
6288 	 *
6289 	 * See Documentation/vm/mmu_notifier.rst
6290 	 */
6291 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6292 	mmu_notifier_invalidate_range_end(&range);
6293 
6294 	return pages << h->order;
6295 }
6296 
6297 /* Return true if reservation was successful, false otherwise.  */
6298 bool hugetlb_reserve_pages(struct inode *inode,
6299 					long from, long to,
6300 					struct vm_area_struct *vma,
6301 					vm_flags_t vm_flags)
6302 {
6303 	long chg, add = -1;
6304 	struct hstate *h = hstate_inode(inode);
6305 	struct hugepage_subpool *spool = subpool_inode(inode);
6306 	struct resv_map *resv_map;
6307 	struct hugetlb_cgroup *h_cg = NULL;
6308 	long gbl_reserve, regions_needed = 0;
6309 
6310 	/* This should never happen */
6311 	if (from > to) {
6312 		VM_WARN(1, "%s called with a negative range\n", __func__);
6313 		return false;
6314 	}
6315 
6316 	/*
6317 	 * Only apply hugepage reservation if asked. At fault time, an
6318 	 * attempt will be made for VM_NORESERVE to allocate a page
6319 	 * without using reserves
6320 	 */
6321 	if (vm_flags & VM_NORESERVE)
6322 		return true;
6323 
6324 	/*
6325 	 * Shared mappings base their reservation on the number of pages that
6326 	 * are already allocated on behalf of the file. Private mappings need
6327 	 * to reserve the full area even if read-only as mprotect() may be
6328 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6329 	 */
6330 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6331 		/*
6332 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6333 		 * called for inodes for which resv_maps were created (see
6334 		 * hugetlbfs_get_inode).
6335 		 */
6336 		resv_map = inode_resv_map(inode);
6337 
6338 		chg = region_chg(resv_map, from, to, &regions_needed);
6339 
6340 	} else {
6341 		/* Private mapping. */
6342 		resv_map = resv_map_alloc();
6343 		if (!resv_map)
6344 			return false;
6345 
6346 		chg = to - from;
6347 
6348 		set_vma_resv_map(vma, resv_map);
6349 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6350 	}
6351 
6352 	if (chg < 0)
6353 		goto out_err;
6354 
6355 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6356 				chg * pages_per_huge_page(h), &h_cg) < 0)
6357 		goto out_err;
6358 
6359 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6360 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6361 		 * of the resv_map.
6362 		 */
6363 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6364 	}
6365 
6366 	/*
6367 	 * There must be enough pages in the subpool for the mapping. If
6368 	 * the subpool has a minimum size, there may be some global
6369 	 * reservations already in place (gbl_reserve).
6370 	 */
6371 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6372 	if (gbl_reserve < 0)
6373 		goto out_uncharge_cgroup;
6374 
6375 	/*
6376 	 * Check enough hugepages are available for the reservation.
6377 	 * Hand the pages back to the subpool if there are not
6378 	 */
6379 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6380 		goto out_put_pages;
6381 
6382 	/*
6383 	 * Account for the reservations made. Shared mappings record regions
6384 	 * that have reservations as they are shared by multiple VMAs.
6385 	 * When the last VMA disappears, the region map says how much
6386 	 * the reservation was and the page cache tells how much of
6387 	 * the reservation was consumed. Private mappings are per-VMA and
6388 	 * only the consumed reservations are tracked. When the VMA
6389 	 * disappears, the original reservation is the VMA size and the
6390 	 * consumed reservations are stored in the map. Hence, nothing
6391 	 * else has to be done for private mappings here
6392 	 */
6393 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6394 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6395 
6396 		if (unlikely(add < 0)) {
6397 			hugetlb_acct_memory(h, -gbl_reserve);
6398 			goto out_put_pages;
6399 		} else if (unlikely(chg > add)) {
6400 			/*
6401 			 * pages in this range were added to the reserve
6402 			 * map between region_chg and region_add.  This
6403 			 * indicates a race with alloc_huge_page.  Adjust
6404 			 * the subpool and reserve counts modified above
6405 			 * based on the difference.
6406 			 */
6407 			long rsv_adjust;
6408 
6409 			/*
6410 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6411 			 * reference to h_cg->css. See comment below for detail.
6412 			 */
6413 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6414 				hstate_index(h),
6415 				(chg - add) * pages_per_huge_page(h), h_cg);
6416 
6417 			rsv_adjust = hugepage_subpool_put_pages(spool,
6418 								chg - add);
6419 			hugetlb_acct_memory(h, -rsv_adjust);
6420 		} else if (h_cg) {
6421 			/*
6422 			 * The file_regions will hold their own reference to
6423 			 * h_cg->css. So we should release the reference held
6424 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6425 			 * done.
6426 			 */
6427 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6428 		}
6429 	}
6430 	return true;
6431 
6432 out_put_pages:
6433 	/* put back original number of pages, chg */
6434 	(void)hugepage_subpool_put_pages(spool, chg);
6435 out_uncharge_cgroup:
6436 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6437 					    chg * pages_per_huge_page(h), h_cg);
6438 out_err:
6439 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6440 		/* Only call region_abort if the region_chg succeeded but the
6441 		 * region_add failed or didn't run.
6442 		 */
6443 		if (chg >= 0 && add < 0)
6444 			region_abort(resv_map, from, to, regions_needed);
6445 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6446 		kref_put(&resv_map->refs, resv_map_release);
6447 	return false;
6448 }
6449 
6450 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6451 								long freed)
6452 {
6453 	struct hstate *h = hstate_inode(inode);
6454 	struct resv_map *resv_map = inode_resv_map(inode);
6455 	long chg = 0;
6456 	struct hugepage_subpool *spool = subpool_inode(inode);
6457 	long gbl_reserve;
6458 
6459 	/*
6460 	 * Since this routine can be called in the evict inode path for all
6461 	 * hugetlbfs inodes, resv_map could be NULL.
6462 	 */
6463 	if (resv_map) {
6464 		chg = region_del(resv_map, start, end);
6465 		/*
6466 		 * region_del() can fail in the rare case where a region
6467 		 * must be split and another region descriptor can not be
6468 		 * allocated.  If end == LONG_MAX, it will not fail.
6469 		 */
6470 		if (chg < 0)
6471 			return chg;
6472 	}
6473 
6474 	spin_lock(&inode->i_lock);
6475 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6476 	spin_unlock(&inode->i_lock);
6477 
6478 	/*
6479 	 * If the subpool has a minimum size, the number of global
6480 	 * reservations to be released may be adjusted.
6481 	 *
6482 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6483 	 * won't go negative.
6484 	 */
6485 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6486 	hugetlb_acct_memory(h, -gbl_reserve);
6487 
6488 	return 0;
6489 }
6490 
6491 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6492 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6493 				struct vm_area_struct *vma,
6494 				unsigned long addr, pgoff_t idx)
6495 {
6496 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6497 				svma->vm_start;
6498 	unsigned long sbase = saddr & PUD_MASK;
6499 	unsigned long s_end = sbase + PUD_SIZE;
6500 
6501 	/* Allow segments to share if only one is marked locked */
6502 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6503 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6504 
6505 	/*
6506 	 * match the virtual addresses, permission and the alignment of the
6507 	 * page table page.
6508 	 */
6509 	if (pmd_index(addr) != pmd_index(saddr) ||
6510 	    vm_flags != svm_flags ||
6511 	    !range_in_vma(svma, sbase, s_end))
6512 		return 0;
6513 
6514 	return saddr;
6515 }
6516 
6517 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6518 {
6519 	unsigned long base = addr & PUD_MASK;
6520 	unsigned long end = base + PUD_SIZE;
6521 
6522 	/*
6523 	 * check on proper vm_flags and page table alignment
6524 	 */
6525 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6526 		return true;
6527 	return false;
6528 }
6529 
6530 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6531 {
6532 #ifdef CONFIG_USERFAULTFD
6533 	if (uffd_disable_huge_pmd_share(vma))
6534 		return false;
6535 #endif
6536 	return vma_shareable(vma, addr);
6537 }
6538 
6539 /*
6540  * Determine if start,end range within vma could be mapped by shared pmd.
6541  * If yes, adjust start and end to cover range associated with possible
6542  * shared pmd mappings.
6543  */
6544 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6545 				unsigned long *start, unsigned long *end)
6546 {
6547 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6548 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6549 
6550 	/*
6551 	 * vma needs to span at least one aligned PUD size, and the range
6552 	 * must be at least partially within in.
6553 	 */
6554 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6555 		(*end <= v_start) || (*start >= v_end))
6556 		return;
6557 
6558 	/* Extend the range to be PUD aligned for a worst case scenario */
6559 	if (*start > v_start)
6560 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6561 
6562 	if (*end < v_end)
6563 		*end = ALIGN(*end, PUD_SIZE);
6564 }
6565 
6566 /*
6567  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6568  * and returns the corresponding pte. While this is not necessary for the
6569  * !shared pmd case because we can allocate the pmd later as well, it makes the
6570  * code much cleaner.
6571  *
6572  * This routine must be called with i_mmap_rwsem held in at least read mode if
6573  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6574  * table entries associated with the address space.  This is important as we
6575  * are setting up sharing based on existing page table entries (mappings).
6576  */
6577 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6578 		      unsigned long addr, pud_t *pud)
6579 {
6580 	struct address_space *mapping = vma->vm_file->f_mapping;
6581 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6582 			vma->vm_pgoff;
6583 	struct vm_area_struct *svma;
6584 	unsigned long saddr;
6585 	pte_t *spte = NULL;
6586 	pte_t *pte;
6587 	spinlock_t *ptl;
6588 
6589 	i_mmap_assert_locked(mapping);
6590 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6591 		if (svma == vma)
6592 			continue;
6593 
6594 		saddr = page_table_shareable(svma, vma, addr, idx);
6595 		if (saddr) {
6596 			spte = huge_pte_offset(svma->vm_mm, saddr,
6597 					       vma_mmu_pagesize(svma));
6598 			if (spte) {
6599 				get_page(virt_to_page(spte));
6600 				break;
6601 			}
6602 		}
6603 	}
6604 
6605 	if (!spte)
6606 		goto out;
6607 
6608 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6609 	if (pud_none(*pud)) {
6610 		pud_populate(mm, pud,
6611 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6612 		mm_inc_nr_pmds(mm);
6613 	} else {
6614 		put_page(virt_to_page(spte));
6615 	}
6616 	spin_unlock(ptl);
6617 out:
6618 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6619 	return pte;
6620 }
6621 
6622 /*
6623  * unmap huge page backed by shared pte.
6624  *
6625  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6626  * indicated by page_count > 1, unmap is achieved by clearing pud and
6627  * decrementing the ref count. If count == 1, the pte page is not shared.
6628  *
6629  * Called with page table lock held and i_mmap_rwsem held in write mode.
6630  *
6631  * returns: 1 successfully unmapped a shared pte page
6632  *	    0 the underlying pte page is not shared, or it is the last user
6633  */
6634 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6635 					unsigned long *addr, pte_t *ptep)
6636 {
6637 	pgd_t *pgd = pgd_offset(mm, *addr);
6638 	p4d_t *p4d = p4d_offset(pgd, *addr);
6639 	pud_t *pud = pud_offset(p4d, *addr);
6640 
6641 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6642 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6643 	if (page_count(virt_to_page(ptep)) == 1)
6644 		return 0;
6645 
6646 	pud_clear(pud);
6647 	put_page(virt_to_page(ptep));
6648 	mm_dec_nr_pmds(mm);
6649 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6650 	return 1;
6651 }
6652 
6653 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6654 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6655 		      unsigned long addr, pud_t *pud)
6656 {
6657 	return NULL;
6658 }
6659 
6660 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6661 				unsigned long *addr, pte_t *ptep)
6662 {
6663 	return 0;
6664 }
6665 
6666 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6667 				unsigned long *start, unsigned long *end)
6668 {
6669 }
6670 
6671 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6672 {
6673 	return false;
6674 }
6675 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6676 
6677 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6678 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6679 			unsigned long addr, unsigned long sz)
6680 {
6681 	pgd_t *pgd;
6682 	p4d_t *p4d;
6683 	pud_t *pud;
6684 	pte_t *pte = NULL;
6685 
6686 	pgd = pgd_offset(mm, addr);
6687 	p4d = p4d_alloc(mm, pgd, addr);
6688 	if (!p4d)
6689 		return NULL;
6690 	pud = pud_alloc(mm, p4d, addr);
6691 	if (pud) {
6692 		if (sz == PUD_SIZE) {
6693 			pte = (pte_t *)pud;
6694 		} else {
6695 			BUG_ON(sz != PMD_SIZE);
6696 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6697 				pte = huge_pmd_share(mm, vma, addr, pud);
6698 			else
6699 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6700 		}
6701 	}
6702 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6703 
6704 	return pte;
6705 }
6706 
6707 /*
6708  * huge_pte_offset() - Walk the page table to resolve the hugepage
6709  * entry at address @addr
6710  *
6711  * Return: Pointer to page table entry (PUD or PMD) for
6712  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6713  * size @sz doesn't match the hugepage size at this level of the page
6714  * table.
6715  */
6716 pte_t *huge_pte_offset(struct mm_struct *mm,
6717 		       unsigned long addr, unsigned long sz)
6718 {
6719 	pgd_t *pgd;
6720 	p4d_t *p4d;
6721 	pud_t *pud;
6722 	pmd_t *pmd;
6723 
6724 	pgd = pgd_offset(mm, addr);
6725 	if (!pgd_present(*pgd))
6726 		return NULL;
6727 	p4d = p4d_offset(pgd, addr);
6728 	if (!p4d_present(*p4d))
6729 		return NULL;
6730 
6731 	pud = pud_offset(p4d, addr);
6732 	if (sz == PUD_SIZE)
6733 		/* must be pud huge, non-present or none */
6734 		return (pte_t *)pud;
6735 	if (!pud_present(*pud))
6736 		return NULL;
6737 	/* must have a valid entry and size to go further */
6738 
6739 	pmd = pmd_offset(pud, addr);
6740 	/* must be pmd huge, non-present or none */
6741 	return (pte_t *)pmd;
6742 }
6743 
6744 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6745 
6746 /*
6747  * These functions are overwritable if your architecture needs its own
6748  * behavior.
6749  */
6750 struct page * __weak
6751 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6752 			      int write)
6753 {
6754 	return ERR_PTR(-EINVAL);
6755 }
6756 
6757 struct page * __weak
6758 follow_huge_pd(struct vm_area_struct *vma,
6759 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6760 {
6761 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6762 	return NULL;
6763 }
6764 
6765 struct page * __weak
6766 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6767 		pmd_t *pmd, int flags)
6768 {
6769 	struct page *page = NULL;
6770 	spinlock_t *ptl;
6771 	pte_t pte;
6772 
6773 	/*
6774 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6775 	 * follow_hugetlb_page().
6776 	 */
6777 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6778 		return NULL;
6779 
6780 retry:
6781 	ptl = pmd_lockptr(mm, pmd);
6782 	spin_lock(ptl);
6783 	/*
6784 	 * make sure that the address range covered by this pmd is not
6785 	 * unmapped from other threads.
6786 	 */
6787 	if (!pmd_huge(*pmd))
6788 		goto out;
6789 	pte = huge_ptep_get((pte_t *)pmd);
6790 	if (pte_present(pte)) {
6791 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6792 		/*
6793 		 * try_grab_page() should always succeed here, because: a) we
6794 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6795 		 * huge pmd (head) page is present in the page tables. The ptl
6796 		 * prevents the head page and tail pages from being rearranged
6797 		 * in any way. So this page must be available at this point,
6798 		 * unless the page refcount overflowed:
6799 		 */
6800 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6801 			page = NULL;
6802 			goto out;
6803 		}
6804 	} else {
6805 		if (is_hugetlb_entry_migration(pte)) {
6806 			spin_unlock(ptl);
6807 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6808 			goto retry;
6809 		}
6810 		/*
6811 		 * hwpoisoned entry is treated as no_page_table in
6812 		 * follow_page_mask().
6813 		 */
6814 	}
6815 out:
6816 	spin_unlock(ptl);
6817 	return page;
6818 }
6819 
6820 struct page * __weak
6821 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6822 		pud_t *pud, int flags)
6823 {
6824 	if (flags & (FOLL_GET | FOLL_PIN))
6825 		return NULL;
6826 
6827 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6828 }
6829 
6830 struct page * __weak
6831 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6832 {
6833 	if (flags & (FOLL_GET | FOLL_PIN))
6834 		return NULL;
6835 
6836 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6837 }
6838 
6839 bool isolate_huge_page(struct page *page, struct list_head *list)
6840 {
6841 	bool ret = true;
6842 
6843 	spin_lock_irq(&hugetlb_lock);
6844 	if (!PageHeadHuge(page) ||
6845 	    !HPageMigratable(page) ||
6846 	    !get_page_unless_zero(page)) {
6847 		ret = false;
6848 		goto unlock;
6849 	}
6850 	ClearHPageMigratable(page);
6851 	list_move_tail(&page->lru, list);
6852 unlock:
6853 	spin_unlock_irq(&hugetlb_lock);
6854 	return ret;
6855 }
6856 
6857 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6858 {
6859 	int ret = 0;
6860 
6861 	*hugetlb = false;
6862 	spin_lock_irq(&hugetlb_lock);
6863 	if (PageHeadHuge(page)) {
6864 		*hugetlb = true;
6865 		if (HPageFreed(page))
6866 			ret = 0;
6867 		else if (HPageMigratable(page))
6868 			ret = get_page_unless_zero(page);
6869 		else
6870 			ret = -EBUSY;
6871 	}
6872 	spin_unlock_irq(&hugetlb_lock);
6873 	return ret;
6874 }
6875 
6876 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6877 {
6878 	int ret;
6879 
6880 	spin_lock_irq(&hugetlb_lock);
6881 	ret = __get_huge_page_for_hwpoison(pfn, flags);
6882 	spin_unlock_irq(&hugetlb_lock);
6883 	return ret;
6884 }
6885 
6886 void putback_active_hugepage(struct page *page)
6887 {
6888 	spin_lock_irq(&hugetlb_lock);
6889 	SetHPageMigratable(page);
6890 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6891 	spin_unlock_irq(&hugetlb_lock);
6892 	put_page(page);
6893 }
6894 
6895 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6896 {
6897 	struct hstate *h = page_hstate(oldpage);
6898 
6899 	hugetlb_cgroup_migrate(oldpage, newpage);
6900 	set_page_owner_migrate_reason(newpage, reason);
6901 
6902 	/*
6903 	 * transfer temporary state of the new huge page. This is
6904 	 * reverse to other transitions because the newpage is going to
6905 	 * be final while the old one will be freed so it takes over
6906 	 * the temporary status.
6907 	 *
6908 	 * Also note that we have to transfer the per-node surplus state
6909 	 * here as well otherwise the global surplus count will not match
6910 	 * the per-node's.
6911 	 */
6912 	if (HPageTemporary(newpage)) {
6913 		int old_nid = page_to_nid(oldpage);
6914 		int new_nid = page_to_nid(newpage);
6915 
6916 		SetHPageTemporary(oldpage);
6917 		ClearHPageTemporary(newpage);
6918 
6919 		/*
6920 		 * There is no need to transfer the per-node surplus state
6921 		 * when we do not cross the node.
6922 		 */
6923 		if (new_nid == old_nid)
6924 			return;
6925 		spin_lock_irq(&hugetlb_lock);
6926 		if (h->surplus_huge_pages_node[old_nid]) {
6927 			h->surplus_huge_pages_node[old_nid]--;
6928 			h->surplus_huge_pages_node[new_nid]++;
6929 		}
6930 		spin_unlock_irq(&hugetlb_lock);
6931 	}
6932 }
6933 
6934 /*
6935  * This function will unconditionally remove all the shared pmd pgtable entries
6936  * within the specific vma for a hugetlbfs memory range.
6937  */
6938 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6939 {
6940 	struct hstate *h = hstate_vma(vma);
6941 	unsigned long sz = huge_page_size(h);
6942 	struct mm_struct *mm = vma->vm_mm;
6943 	struct mmu_notifier_range range;
6944 	unsigned long address, start, end;
6945 	spinlock_t *ptl;
6946 	pte_t *ptep;
6947 
6948 	if (!(vma->vm_flags & VM_MAYSHARE))
6949 		return;
6950 
6951 	start = ALIGN(vma->vm_start, PUD_SIZE);
6952 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6953 
6954 	if (start >= end)
6955 		return;
6956 
6957 	flush_cache_range(vma, start, end);
6958 	/*
6959 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6960 	 * we have already done the PUD_SIZE alignment.
6961 	 */
6962 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6963 				start, end);
6964 	mmu_notifier_invalidate_range_start(&range);
6965 	i_mmap_lock_write(vma->vm_file->f_mapping);
6966 	for (address = start; address < end; address += PUD_SIZE) {
6967 		unsigned long tmp = address;
6968 
6969 		ptep = huge_pte_offset(mm, address, sz);
6970 		if (!ptep)
6971 			continue;
6972 		ptl = huge_pte_lock(h, mm, ptep);
6973 		/* We don't want 'address' to be changed */
6974 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6975 		spin_unlock(ptl);
6976 	}
6977 	flush_hugetlb_tlb_range(vma, start, end);
6978 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6979 	/*
6980 	 * No need to call mmu_notifier_invalidate_range(), see
6981 	 * Documentation/vm/mmu_notifier.rst.
6982 	 */
6983 	mmu_notifier_invalidate_range_end(&range);
6984 }
6985 
6986 #ifdef CONFIG_CMA
6987 static bool cma_reserve_called __initdata;
6988 
6989 static int __init cmdline_parse_hugetlb_cma(char *p)
6990 {
6991 	int nid, count = 0;
6992 	unsigned long tmp;
6993 	char *s = p;
6994 
6995 	while (*s) {
6996 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6997 			break;
6998 
6999 		if (s[count] == ':') {
7000 			if (tmp >= MAX_NUMNODES)
7001 				break;
7002 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7003 
7004 			s += count + 1;
7005 			tmp = memparse(s, &s);
7006 			hugetlb_cma_size_in_node[nid] = tmp;
7007 			hugetlb_cma_size += tmp;
7008 
7009 			/*
7010 			 * Skip the separator if have one, otherwise
7011 			 * break the parsing.
7012 			 */
7013 			if (*s == ',')
7014 				s++;
7015 			else
7016 				break;
7017 		} else {
7018 			hugetlb_cma_size = memparse(p, &p);
7019 			break;
7020 		}
7021 	}
7022 
7023 	return 0;
7024 }
7025 
7026 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7027 
7028 void __init hugetlb_cma_reserve(int order)
7029 {
7030 	unsigned long size, reserved, per_node;
7031 	bool node_specific_cma_alloc = false;
7032 	int nid;
7033 
7034 	cma_reserve_called = true;
7035 
7036 	if (!hugetlb_cma_size)
7037 		return;
7038 
7039 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7040 		if (hugetlb_cma_size_in_node[nid] == 0)
7041 			continue;
7042 
7043 		if (!node_online(nid)) {
7044 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7045 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7046 			hugetlb_cma_size_in_node[nid] = 0;
7047 			continue;
7048 		}
7049 
7050 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7051 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7052 				nid, (PAGE_SIZE << order) / SZ_1M);
7053 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7054 			hugetlb_cma_size_in_node[nid] = 0;
7055 		} else {
7056 			node_specific_cma_alloc = true;
7057 		}
7058 	}
7059 
7060 	/* Validate the CMA size again in case some invalid nodes specified. */
7061 	if (!hugetlb_cma_size)
7062 		return;
7063 
7064 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7065 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7066 			(PAGE_SIZE << order) / SZ_1M);
7067 		hugetlb_cma_size = 0;
7068 		return;
7069 	}
7070 
7071 	if (!node_specific_cma_alloc) {
7072 		/*
7073 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7074 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7075 		 */
7076 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7077 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7078 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7079 	}
7080 
7081 	reserved = 0;
7082 	for_each_online_node(nid) {
7083 		int res;
7084 		char name[CMA_MAX_NAME];
7085 
7086 		if (node_specific_cma_alloc) {
7087 			if (hugetlb_cma_size_in_node[nid] == 0)
7088 				continue;
7089 
7090 			size = hugetlb_cma_size_in_node[nid];
7091 		} else {
7092 			size = min(per_node, hugetlb_cma_size - reserved);
7093 		}
7094 
7095 		size = round_up(size, PAGE_SIZE << order);
7096 
7097 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7098 		/*
7099 		 * Note that 'order per bit' is based on smallest size that
7100 		 * may be returned to CMA allocator in the case of
7101 		 * huge page demotion.
7102 		 */
7103 		res = cma_declare_contiguous_nid(0, size, 0,
7104 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7105 						 0, false, name,
7106 						 &hugetlb_cma[nid], nid);
7107 		if (res) {
7108 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7109 				res, nid);
7110 			continue;
7111 		}
7112 
7113 		reserved += size;
7114 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7115 			size / SZ_1M, nid);
7116 
7117 		if (reserved >= hugetlb_cma_size)
7118 			break;
7119 	}
7120 
7121 	if (!reserved)
7122 		/*
7123 		 * hugetlb_cma_size is used to determine if allocations from
7124 		 * cma are possible.  Set to zero if no cma regions are set up.
7125 		 */
7126 		hugetlb_cma_size = 0;
7127 }
7128 
7129 void __init hugetlb_cma_check(void)
7130 {
7131 	if (!hugetlb_cma_size || cma_reserve_called)
7132 		return;
7133 
7134 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7135 }
7136 
7137 #endif /* CONFIG_CMA */
7138