xref: /openbmc/linux/mm/hugetlb.c (revision a80de066)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40 
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48 
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52 
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59 				1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64 	return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68 
69 __initdata LIST_HEAD(huge_boot_pages);
70 
71 /* for command line parsing */
72 static struct hstate * __initdata parsed_hstate;
73 static unsigned long __initdata default_hstate_max_huge_pages;
74 static bool __initdata parsed_valid_hugepagesz = true;
75 static bool __initdata parsed_default_hugepagesz;
76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
77 
78 /*
79  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80  * free_huge_pages, and surplus_huge_pages.
81  */
82 DEFINE_SPINLOCK(hugetlb_lock);
83 
84 /*
85  * Serializes faults on the same logical page.  This is used to
86  * prevent spurious OOMs when the hugepage pool is fully utilized.
87  */
88 static int num_fault_mutexes;
89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
90 
91 /* Forward declaration */
92 static int hugetlb_acct_memory(struct hstate *h, long delta);
93 
94 static inline bool subpool_is_free(struct hugepage_subpool *spool)
95 {
96 	if (spool->count)
97 		return false;
98 	if (spool->max_hpages != -1)
99 		return spool->used_hpages == 0;
100 	if (spool->min_hpages != -1)
101 		return spool->rsv_hpages == spool->min_hpages;
102 
103 	return true;
104 }
105 
106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107 						unsigned long irq_flags)
108 {
109 	spin_unlock_irqrestore(&spool->lock, irq_flags);
110 
111 	/* If no pages are used, and no other handles to the subpool
112 	 * remain, give up any reservations based on minimum size and
113 	 * free the subpool */
114 	if (subpool_is_free(spool)) {
115 		if (spool->min_hpages != -1)
116 			hugetlb_acct_memory(spool->hstate,
117 						-spool->min_hpages);
118 		kfree(spool);
119 	}
120 }
121 
122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123 						long min_hpages)
124 {
125 	struct hugepage_subpool *spool;
126 
127 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
128 	if (!spool)
129 		return NULL;
130 
131 	spin_lock_init(&spool->lock);
132 	spool->count = 1;
133 	spool->max_hpages = max_hpages;
134 	spool->hstate = h;
135 	spool->min_hpages = min_hpages;
136 
137 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138 		kfree(spool);
139 		return NULL;
140 	}
141 	spool->rsv_hpages = min_hpages;
142 
143 	return spool;
144 }
145 
146 void hugepage_put_subpool(struct hugepage_subpool *spool)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&spool->lock, flags);
151 	BUG_ON(!spool->count);
152 	spool->count--;
153 	unlock_or_release_subpool(spool, flags);
154 }
155 
156 /*
157  * Subpool accounting for allocating and reserving pages.
158  * Return -ENOMEM if there are not enough resources to satisfy the
159  * request.  Otherwise, return the number of pages by which the
160  * global pools must be adjusted (upward).  The returned value may
161  * only be different than the passed value (delta) in the case where
162  * a subpool minimum size must be maintained.
163  */
164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
165 				      long delta)
166 {
167 	long ret = delta;
168 
169 	if (!spool)
170 		return ret;
171 
172 	spin_lock_irq(&spool->lock);
173 
174 	if (spool->max_hpages != -1) {		/* maximum size accounting */
175 		if ((spool->used_hpages + delta) <= spool->max_hpages)
176 			spool->used_hpages += delta;
177 		else {
178 			ret = -ENOMEM;
179 			goto unlock_ret;
180 		}
181 	}
182 
183 	/* minimum size accounting */
184 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
185 		if (delta > spool->rsv_hpages) {
186 			/*
187 			 * Asking for more reserves than those already taken on
188 			 * behalf of subpool.  Return difference.
189 			 */
190 			ret = delta - spool->rsv_hpages;
191 			spool->rsv_hpages = 0;
192 		} else {
193 			ret = 0;	/* reserves already accounted for */
194 			spool->rsv_hpages -= delta;
195 		}
196 	}
197 
198 unlock_ret:
199 	spin_unlock_irq(&spool->lock);
200 	return ret;
201 }
202 
203 /*
204  * Subpool accounting for freeing and unreserving pages.
205  * Return the number of global page reservations that must be dropped.
206  * The return value may only be different than the passed value (delta)
207  * in the case where a subpool minimum size must be maintained.
208  */
209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210 				       long delta)
211 {
212 	long ret = delta;
213 	unsigned long flags;
214 
215 	if (!spool)
216 		return delta;
217 
218 	spin_lock_irqsave(&spool->lock, flags);
219 
220 	if (spool->max_hpages != -1)		/* maximum size accounting */
221 		spool->used_hpages -= delta;
222 
223 	 /* minimum size accounting */
224 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
225 		if (spool->rsv_hpages + delta <= spool->min_hpages)
226 			ret = 0;
227 		else
228 			ret = spool->rsv_hpages + delta - spool->min_hpages;
229 
230 		spool->rsv_hpages += delta;
231 		if (spool->rsv_hpages > spool->min_hpages)
232 			spool->rsv_hpages = spool->min_hpages;
233 	}
234 
235 	/*
236 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
237 	 * quota reference, free it now.
238 	 */
239 	unlock_or_release_subpool(spool, flags);
240 
241 	return ret;
242 }
243 
244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245 {
246 	return HUGETLBFS_SB(inode->i_sb)->spool;
247 }
248 
249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250 {
251 	return subpool_inode(file_inode(vma->vm_file));
252 }
253 
254 /* Helper that removes a struct file_region from the resv_map cache and returns
255  * it for use.
256  */
257 static struct file_region *
258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259 {
260 	struct file_region *nrg = NULL;
261 
262 	VM_BUG_ON(resv->region_cache_count <= 0);
263 
264 	resv->region_cache_count--;
265 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
266 	list_del(&nrg->link);
267 
268 	nrg->from = from;
269 	nrg->to = to;
270 
271 	return nrg;
272 }
273 
274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275 					      struct file_region *rg)
276 {
277 #ifdef CONFIG_CGROUP_HUGETLB
278 	nrg->reservation_counter = rg->reservation_counter;
279 	nrg->css = rg->css;
280 	if (rg->css)
281 		css_get(rg->css);
282 #endif
283 }
284 
285 /* Helper that records hugetlb_cgroup uncharge info. */
286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287 						struct hstate *h,
288 						struct resv_map *resv,
289 						struct file_region *nrg)
290 {
291 #ifdef CONFIG_CGROUP_HUGETLB
292 	if (h_cg) {
293 		nrg->reservation_counter =
294 			&h_cg->rsvd_hugepage[hstate_index(h)];
295 		nrg->css = &h_cg->css;
296 		/*
297 		 * The caller will hold exactly one h_cg->css reference for the
298 		 * whole contiguous reservation region. But this area might be
299 		 * scattered when there are already some file_regions reside in
300 		 * it. As a result, many file_regions may share only one css
301 		 * reference. In order to ensure that one file_region must hold
302 		 * exactly one h_cg->css reference, we should do css_get for
303 		 * each file_region and leave the reference held by caller
304 		 * untouched.
305 		 */
306 		css_get(&h_cg->css);
307 		if (!resv->pages_per_hpage)
308 			resv->pages_per_hpage = pages_per_huge_page(h);
309 		/* pages_per_hpage should be the same for all entries in
310 		 * a resv_map.
311 		 */
312 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313 	} else {
314 		nrg->reservation_counter = NULL;
315 		nrg->css = NULL;
316 	}
317 #endif
318 }
319 
320 static void put_uncharge_info(struct file_region *rg)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 	if (rg->css)
324 		css_put(rg->css);
325 #endif
326 }
327 
328 static bool has_same_uncharge_info(struct file_region *rg,
329 				   struct file_region *org)
330 {
331 #ifdef CONFIG_CGROUP_HUGETLB
332 	return rg->reservation_counter == org->reservation_counter &&
333 	       rg->css == org->css;
334 
335 #else
336 	return true;
337 #endif
338 }
339 
340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341 {
342 	struct file_region *nrg = NULL, *prg = NULL;
343 
344 	prg = list_prev_entry(rg, link);
345 	if (&prg->link != &resv->regions && prg->to == rg->from &&
346 	    has_same_uncharge_info(prg, rg)) {
347 		prg->to = rg->to;
348 
349 		list_del(&rg->link);
350 		put_uncharge_info(rg);
351 		kfree(rg);
352 
353 		rg = prg;
354 	}
355 
356 	nrg = list_next_entry(rg, link);
357 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358 	    has_same_uncharge_info(nrg, rg)) {
359 		nrg->from = rg->from;
360 
361 		list_del(&rg->link);
362 		put_uncharge_info(rg);
363 		kfree(rg);
364 	}
365 }
366 
367 static inline long
368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
369 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
370 		     long *regions_needed)
371 {
372 	struct file_region *nrg;
373 
374 	if (!regions_needed) {
375 		nrg = get_file_region_entry_from_cache(map, from, to);
376 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
377 		list_add(&nrg->link, rg);
378 		coalesce_file_region(map, nrg);
379 	} else
380 		*regions_needed += 1;
381 
382 	return to - from;
383 }
384 
385 /*
386  * Must be called with resv->lock held.
387  *
388  * Calling this with regions_needed != NULL will count the number of pages
389  * to be added but will not modify the linked list. And regions_needed will
390  * indicate the number of file_regions needed in the cache to carry out to add
391  * the regions for this range.
392  */
393 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
394 				     struct hugetlb_cgroup *h_cg,
395 				     struct hstate *h, long *regions_needed)
396 {
397 	long add = 0;
398 	struct list_head *head = &resv->regions;
399 	long last_accounted_offset = f;
400 	struct file_region *iter, *trg = NULL;
401 	struct list_head *rg = NULL;
402 
403 	if (regions_needed)
404 		*regions_needed = 0;
405 
406 	/* In this loop, we essentially handle an entry for the range
407 	 * [last_accounted_offset, iter->from), at every iteration, with some
408 	 * bounds checking.
409 	 */
410 	list_for_each_entry_safe(iter, trg, head, link) {
411 		/* Skip irrelevant regions that start before our range. */
412 		if (iter->from < f) {
413 			/* If this region ends after the last accounted offset,
414 			 * then we need to update last_accounted_offset.
415 			 */
416 			if (iter->to > last_accounted_offset)
417 				last_accounted_offset = iter->to;
418 			continue;
419 		}
420 
421 		/* When we find a region that starts beyond our range, we've
422 		 * finished.
423 		 */
424 		if (iter->from >= t) {
425 			rg = iter->link.prev;
426 			break;
427 		}
428 
429 		/* Add an entry for last_accounted_offset -> iter->from, and
430 		 * update last_accounted_offset.
431 		 */
432 		if (iter->from > last_accounted_offset)
433 			add += hugetlb_resv_map_add(resv, iter->link.prev,
434 						    last_accounted_offset,
435 						    iter->from, h, h_cg,
436 						    regions_needed);
437 
438 		last_accounted_offset = iter->to;
439 	}
440 
441 	/* Handle the case where our range extends beyond
442 	 * last_accounted_offset.
443 	 */
444 	if (!rg)
445 		rg = head->prev;
446 	if (last_accounted_offset < t)
447 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448 					    t, h, h_cg, regions_needed);
449 
450 	return add;
451 }
452 
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456 					int regions_needed)
457 	__must_hold(&resv->lock)
458 {
459 	struct list_head allocated_regions;
460 	int to_allocate = 0, i = 0;
461 	struct file_region *trg = NULL, *rg = NULL;
462 
463 	VM_BUG_ON(regions_needed < 0);
464 
465 	INIT_LIST_HEAD(&allocated_regions);
466 
467 	/*
468 	 * Check for sufficient descriptors in the cache to accommodate
469 	 * the number of in progress add operations plus regions_needed.
470 	 *
471 	 * This is a while loop because when we drop the lock, some other call
472 	 * to region_add or region_del may have consumed some region_entries,
473 	 * so we keep looping here until we finally have enough entries for
474 	 * (adds_in_progress + regions_needed).
475 	 */
476 	while (resv->region_cache_count <
477 	       (resv->adds_in_progress + regions_needed)) {
478 		to_allocate = resv->adds_in_progress + regions_needed -
479 			      resv->region_cache_count;
480 
481 		/* At this point, we should have enough entries in the cache
482 		 * for all the existing adds_in_progress. We should only be
483 		 * needing to allocate for regions_needed.
484 		 */
485 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486 
487 		spin_unlock(&resv->lock);
488 		for (i = 0; i < to_allocate; i++) {
489 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490 			if (!trg)
491 				goto out_of_memory;
492 			list_add(&trg->link, &allocated_regions);
493 		}
494 
495 		spin_lock(&resv->lock);
496 
497 		list_splice(&allocated_regions, &resv->region_cache);
498 		resv->region_cache_count += to_allocate;
499 	}
500 
501 	return 0;
502 
503 out_of_memory:
504 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505 		list_del(&rg->link);
506 		kfree(rg);
507 	}
508 	return -ENOMEM;
509 }
510 
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529 		       long in_regions_needed, struct hstate *h,
530 		       struct hugetlb_cgroup *h_cg)
531 {
532 	long add = 0, actual_regions_needed = 0;
533 
534 	spin_lock(&resv->lock);
535 retry:
536 
537 	/* Count how many regions are actually needed to execute this add. */
538 	add_reservation_in_range(resv, f, t, NULL, NULL,
539 				 &actual_regions_needed);
540 
541 	/*
542 	 * Check for sufficient descriptors in the cache to accommodate
543 	 * this add operation. Note that actual_regions_needed may be greater
544 	 * than in_regions_needed, as the resv_map may have been modified since
545 	 * the region_chg call. In this case, we need to make sure that we
546 	 * allocate extra entries, such that we have enough for all the
547 	 * existing adds_in_progress, plus the excess needed for this
548 	 * operation.
549 	 */
550 	if (actual_regions_needed > in_regions_needed &&
551 	    resv->region_cache_count <
552 		    resv->adds_in_progress +
553 			    (actual_regions_needed - in_regions_needed)) {
554 		/* region_add operation of range 1 should never need to
555 		 * allocate file_region entries.
556 		 */
557 		VM_BUG_ON(t - f <= 1);
558 
559 		if (allocate_file_region_entries(
560 			    resv, actual_regions_needed - in_regions_needed)) {
561 			return -ENOMEM;
562 		}
563 
564 		goto retry;
565 	}
566 
567 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568 
569 	resv->adds_in_progress -= in_regions_needed;
570 
571 	spin_unlock(&resv->lock);
572 	return add;
573 }
574 
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596 		       long *out_regions_needed)
597 {
598 	long chg = 0;
599 
600 	spin_lock(&resv->lock);
601 
602 	/* Count how many hugepages in this range are NOT represented. */
603 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604 				       out_regions_needed);
605 
606 	if (*out_regions_needed == 0)
607 		*out_regions_needed = 1;
608 
609 	if (allocate_file_region_entries(resv, *out_regions_needed))
610 		return -ENOMEM;
611 
612 	resv->adds_in_progress += *out_regions_needed;
613 
614 	spin_unlock(&resv->lock);
615 	return chg;
616 }
617 
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632 			 long regions_needed)
633 {
634 	spin_lock(&resv->lock);
635 	VM_BUG_ON(!resv->region_cache_count);
636 	resv->adds_in_progress -= regions_needed;
637 	spin_unlock(&resv->lock);
638 }
639 
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656 	struct list_head *head = &resv->regions;
657 	struct file_region *rg, *trg;
658 	struct file_region *nrg = NULL;
659 	long del = 0;
660 
661 retry:
662 	spin_lock(&resv->lock);
663 	list_for_each_entry_safe(rg, trg, head, link) {
664 		/*
665 		 * Skip regions before the range to be deleted.  file_region
666 		 * ranges are normally of the form [from, to).  However, there
667 		 * may be a "placeholder" entry in the map which is of the form
668 		 * (from, to) with from == to.  Check for placeholder entries
669 		 * at the beginning of the range to be deleted.
670 		 */
671 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672 			continue;
673 
674 		if (rg->from >= t)
675 			break;
676 
677 		if (f > rg->from && t < rg->to) { /* Must split region */
678 			/*
679 			 * Check for an entry in the cache before dropping
680 			 * lock and attempting allocation.
681 			 */
682 			if (!nrg &&
683 			    resv->region_cache_count > resv->adds_in_progress) {
684 				nrg = list_first_entry(&resv->region_cache,
685 							struct file_region,
686 							link);
687 				list_del(&nrg->link);
688 				resv->region_cache_count--;
689 			}
690 
691 			if (!nrg) {
692 				spin_unlock(&resv->lock);
693 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694 				if (!nrg)
695 					return -ENOMEM;
696 				goto retry;
697 			}
698 
699 			del += t - f;
700 			hugetlb_cgroup_uncharge_file_region(
701 				resv, rg, t - f, false);
702 
703 			/* New entry for end of split region */
704 			nrg->from = t;
705 			nrg->to = rg->to;
706 
707 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708 
709 			INIT_LIST_HEAD(&nrg->link);
710 
711 			/* Original entry is trimmed */
712 			rg->to = f;
713 
714 			list_add(&nrg->link, &rg->link);
715 			nrg = NULL;
716 			break;
717 		}
718 
719 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720 			del += rg->to - rg->from;
721 			hugetlb_cgroup_uncharge_file_region(resv, rg,
722 							    rg->to - rg->from, true);
723 			list_del(&rg->link);
724 			kfree(rg);
725 			continue;
726 		}
727 
728 		if (f <= rg->from) {	/* Trim beginning of region */
729 			hugetlb_cgroup_uncharge_file_region(resv, rg,
730 							    t - rg->from, false);
731 
732 			del += t - rg->from;
733 			rg->from = t;
734 		} else {		/* Trim end of region */
735 			hugetlb_cgroup_uncharge_file_region(resv, rg,
736 							    rg->to - f, false);
737 
738 			del += rg->to - f;
739 			rg->to = f;
740 		}
741 	}
742 
743 	spin_unlock(&resv->lock);
744 	kfree(nrg);
745 	return del;
746 }
747 
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759 	struct hugepage_subpool *spool = subpool_inode(inode);
760 	long rsv_adjust;
761 	bool reserved = false;
762 
763 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764 	if (rsv_adjust > 0) {
765 		struct hstate *h = hstate_inode(inode);
766 
767 		if (!hugetlb_acct_memory(h, 1))
768 			reserved = true;
769 	} else if (!rsv_adjust) {
770 		reserved = true;
771 	}
772 
773 	if (!reserved)
774 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776 
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783 	struct list_head *head = &resv->regions;
784 	struct file_region *rg;
785 	long chg = 0;
786 
787 	spin_lock(&resv->lock);
788 	/* Locate each segment we overlap with, and count that overlap. */
789 	list_for_each_entry(rg, head, link) {
790 		long seg_from;
791 		long seg_to;
792 
793 		if (rg->to <= f)
794 			continue;
795 		if (rg->from >= t)
796 			break;
797 
798 		seg_from = max(rg->from, f);
799 		seg_to = min(rg->to, t);
800 
801 		chg += seg_to - seg_from;
802 	}
803 	spin_unlock(&resv->lock);
804 
805 	return chg;
806 }
807 
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813 			struct vm_area_struct *vma, unsigned long address)
814 {
815 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
816 			(vma->vm_pgoff >> huge_page_order(h));
817 }
818 
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820 				     unsigned long address)
821 {
822 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825 
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832 	if (vma->vm_ops && vma->vm_ops->pagesize)
833 		return vma->vm_ops->pagesize(vma);
834 	return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837 
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846 	return vma_kernel_pagesize(vma);
847 }
848 
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857 
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879 	return (unsigned long)vma->vm_private_data;
880 }
881 
882 static void set_vma_private_data(struct vm_area_struct *vma,
883 							unsigned long value)
884 {
885 	vma->vm_private_data = (void *)value;
886 }
887 
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890 					  struct hugetlb_cgroup *h_cg,
891 					  struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894 	if (!h_cg || !h) {
895 		resv_map->reservation_counter = NULL;
896 		resv_map->pages_per_hpage = 0;
897 		resv_map->css = NULL;
898 	} else {
899 		resv_map->reservation_counter =
900 			&h_cg->rsvd_hugepage[hstate_index(h)];
901 		resv_map->pages_per_hpage = pages_per_huge_page(h);
902 		resv_map->css = &h_cg->css;
903 	}
904 #endif
905 }
906 
907 struct resv_map *resv_map_alloc(void)
908 {
909 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911 
912 	if (!resv_map || !rg) {
913 		kfree(resv_map);
914 		kfree(rg);
915 		return NULL;
916 	}
917 
918 	kref_init(&resv_map->refs);
919 	spin_lock_init(&resv_map->lock);
920 	INIT_LIST_HEAD(&resv_map->regions);
921 
922 	resv_map->adds_in_progress = 0;
923 	/*
924 	 * Initialize these to 0. On shared mappings, 0's here indicate these
925 	 * fields don't do cgroup accounting. On private mappings, these will be
926 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
927 	 * reservations are to be un-charged from here.
928 	 */
929 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930 
931 	INIT_LIST_HEAD(&resv_map->region_cache);
932 	list_add(&rg->link, &resv_map->region_cache);
933 	resv_map->region_cache_count = 1;
934 
935 	return resv_map;
936 }
937 
938 void resv_map_release(struct kref *ref)
939 {
940 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941 	struct list_head *head = &resv_map->region_cache;
942 	struct file_region *rg, *trg;
943 
944 	/* Clear out any active regions before we release the map. */
945 	region_del(resv_map, 0, LONG_MAX);
946 
947 	/* ... and any entries left in the cache */
948 	list_for_each_entry_safe(rg, trg, head, link) {
949 		list_del(&rg->link);
950 		kfree(rg);
951 	}
952 
953 	VM_BUG_ON(resv_map->adds_in_progress);
954 
955 	kfree(resv_map);
956 }
957 
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960 	/*
961 	 * At inode evict time, i_mapping may not point to the original
962 	 * address space within the inode.  This original address space
963 	 * contains the pointer to the resv_map.  So, always use the
964 	 * address space embedded within the inode.
965 	 * The VERY common case is inode->mapping == &inode->i_data but,
966 	 * this may not be true for device special inodes.
967 	 */
968 	return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970 
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974 	if (vma->vm_flags & VM_MAYSHARE) {
975 		struct address_space *mapping = vma->vm_file->f_mapping;
976 		struct inode *inode = mapping->host;
977 
978 		return inode_resv_map(inode);
979 
980 	} else {
981 		return (struct resv_map *)(get_vma_private_data(vma) &
982 							~HPAGE_RESV_MASK);
983 	}
984 }
985 
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 
991 	set_vma_private_data(vma, (get_vma_private_data(vma) &
992 				HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994 
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999 
1000 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002 
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006 
1007 	return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009 
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014 	if (!(vma->vm_flags & VM_MAYSHARE))
1015 		vma->vm_private_data = (void *)0;
1016 }
1017 
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027 	/*
1028 	 * Clear the old hugetlb private page reservation.
1029 	 * It has already been transferred to new_vma.
1030 	 *
1031 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1032 	 * which copies vma into new_vma and unmaps vma. After the copy
1033 	 * operation both new_vma and vma share a reference to the resv_map
1034 	 * struct, and at that point vma is about to be unmapped. We don't
1035 	 * want to return the reservation to the pool at unmap of vma because
1036 	 * the reservation still lives on in new_vma, so simply decrement the
1037 	 * ref here and remove the resv_map reference from this vma.
1038 	 */
1039 	struct resv_map *reservations = vma_resv_map(vma);
1040 
1041 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043 		kref_put(&reservations->refs, resv_map_release);
1044 	}
1045 
1046 	reset_vma_resv_huge_pages(vma);
1047 }
1048 
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052 	if (vma->vm_flags & VM_NORESERVE) {
1053 		/*
1054 		 * This address is already reserved by other process(chg == 0),
1055 		 * so, we should decrement reserved count. Without decrementing,
1056 		 * reserve count remains after releasing inode, because this
1057 		 * allocated page will go into page cache and is regarded as
1058 		 * coming from reserved pool in releasing step.  Currently, we
1059 		 * don't have any other solution to deal with this situation
1060 		 * properly, so add work-around here.
1061 		 */
1062 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063 			return true;
1064 		else
1065 			return false;
1066 	}
1067 
1068 	/* Shared mappings always use reserves */
1069 	if (vma->vm_flags & VM_MAYSHARE) {
1070 		/*
1071 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072 		 * be a region map for all pages.  The only situation where
1073 		 * there is no region map is if a hole was punched via
1074 		 * fallocate.  In this case, there really are no reserves to
1075 		 * use.  This situation is indicated if chg != 0.
1076 		 */
1077 		if (chg)
1078 			return false;
1079 		else
1080 			return true;
1081 	}
1082 
1083 	/*
1084 	 * Only the process that called mmap() has reserves for
1085 	 * private mappings.
1086 	 */
1087 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 		/*
1089 		 * Like the shared case above, a hole punch or truncate
1090 		 * could have been performed on the private mapping.
1091 		 * Examine the value of chg to determine if reserves
1092 		 * actually exist or were previously consumed.
1093 		 * Very Subtle - The value of chg comes from a previous
1094 		 * call to vma_needs_reserves().  The reserve map for
1095 		 * private mappings has different (opposite) semantics
1096 		 * than that of shared mappings.  vma_needs_reserves()
1097 		 * has already taken this difference in semantics into
1098 		 * account.  Therefore, the meaning of chg is the same
1099 		 * as in the shared case above.  Code could easily be
1100 		 * combined, but keeping it separate draws attention to
1101 		 * subtle differences.
1102 		 */
1103 		if (chg)
1104 			return false;
1105 		else
1106 			return true;
1107 	}
1108 
1109 	return false;
1110 }
1111 
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114 	int nid = page_to_nid(page);
1115 
1116 	lockdep_assert_held(&hugetlb_lock);
1117 	VM_BUG_ON_PAGE(page_count(page), page);
1118 
1119 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1120 	h->free_huge_pages++;
1121 	h->free_huge_pages_node[nid]++;
1122 	SetHPageFreed(page);
1123 }
1124 
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127 	struct page *page;
1128 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129 
1130 	lockdep_assert_held(&hugetlb_lock);
1131 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132 		if (pin && !is_longterm_pinnable_page(page))
1133 			continue;
1134 
1135 		if (PageHWPoison(page))
1136 			continue;
1137 
1138 		list_move(&page->lru, &h->hugepage_activelist);
1139 		set_page_refcounted(page);
1140 		ClearHPageFreed(page);
1141 		h->free_huge_pages--;
1142 		h->free_huge_pages_node[nid]--;
1143 		return page;
1144 	}
1145 
1146 	return NULL;
1147 }
1148 
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150 		nodemask_t *nmask)
1151 {
1152 	unsigned int cpuset_mems_cookie;
1153 	struct zonelist *zonelist;
1154 	struct zone *zone;
1155 	struct zoneref *z;
1156 	int node = NUMA_NO_NODE;
1157 
1158 	zonelist = node_zonelist(nid, gfp_mask);
1159 
1160 retry_cpuset:
1161 	cpuset_mems_cookie = read_mems_allowed_begin();
1162 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163 		struct page *page;
1164 
1165 		if (!cpuset_zone_allowed(zone, gfp_mask))
1166 			continue;
1167 		/*
1168 		 * no need to ask again on the same node. Pool is node rather than
1169 		 * zone aware
1170 		 */
1171 		if (zone_to_nid(zone) == node)
1172 			continue;
1173 		node = zone_to_nid(zone);
1174 
1175 		page = dequeue_huge_page_node_exact(h, node);
1176 		if (page)
1177 			return page;
1178 	}
1179 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180 		goto retry_cpuset;
1181 
1182 	return NULL;
1183 }
1184 
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186 				struct vm_area_struct *vma,
1187 				unsigned long address, int avoid_reserve,
1188 				long chg)
1189 {
1190 	struct page *page = NULL;
1191 	struct mempolicy *mpol;
1192 	gfp_t gfp_mask;
1193 	nodemask_t *nodemask;
1194 	int nid;
1195 
1196 	/*
1197 	 * A child process with MAP_PRIVATE mappings created by their parent
1198 	 * have no page reserves. This check ensures that reservations are
1199 	 * not "stolen". The child may still get SIGKILLed
1200 	 */
1201 	if (!vma_has_reserves(vma, chg) &&
1202 			h->free_huge_pages - h->resv_huge_pages == 0)
1203 		goto err;
1204 
1205 	/* If reserves cannot be used, ensure enough pages are in the pool */
1206 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207 		goto err;
1208 
1209 	gfp_mask = htlb_alloc_mask(h);
1210 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211 
1212 	if (mpol_is_preferred_many(mpol)) {
1213 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214 
1215 		/* Fallback to all nodes if page==NULL */
1216 		nodemask = NULL;
1217 	}
1218 
1219 	if (!page)
1220 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221 
1222 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223 		SetHPageRestoreReserve(page);
1224 		h->resv_huge_pages--;
1225 	}
1226 
1227 	mpol_cond_put(mpol);
1228 	return page;
1229 
1230 err:
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243 	nid = next_node_in(nid, *nodes_allowed);
1244 	VM_BUG_ON(nid >= MAX_NUMNODES);
1245 
1246 	return nid;
1247 }
1248 
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251 	if (!node_isset(nid, *nodes_allowed))
1252 		nid = next_node_allowed(nid, nodes_allowed);
1253 	return nid;
1254 }
1255 
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263 					nodemask_t *nodes_allowed)
1264 {
1265 	int nid;
1266 
1267 	VM_BUG_ON(!nodes_allowed);
1268 
1269 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271 
1272 	return nid;
1273 }
1274 
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283 	int nid;
1284 
1285 	VM_BUG_ON(!nodes_allowed);
1286 
1287 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289 
1290 	return nid;
1291 }
1292 
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1294 	for (nr_nodes = nodes_weight(*mask);				\
1295 		nr_nodes > 0 &&						\
1296 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1297 		nr_nodes--)
1298 
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1300 	for (nr_nodes = nodes_weight(*mask);				\
1301 		nr_nodes > 0 &&						\
1302 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1303 		nr_nodes--)
1304 
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307 					unsigned int order, bool demote)
1308 {
1309 	int i;
1310 	int nr_pages = 1 << order;
1311 	struct page *p = page + 1;
1312 
1313 	atomic_set(compound_mapcount_ptr(page), 0);
1314 	atomic_set(compound_pincount_ptr(page), 0);
1315 
1316 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317 		p->mapping = NULL;
1318 		clear_compound_head(p);
1319 		if (!demote)
1320 			set_page_refcounted(p);
1321 	}
1322 
1323 	set_compound_order(page, 0);
1324 #ifdef CONFIG_64BIT
1325 	page[1].compound_nr = 0;
1326 #endif
1327 	__ClearPageHead(page);
1328 }
1329 
1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331 					unsigned int order)
1332 {
1333 	__destroy_compound_gigantic_page(page, order, true);
1334 }
1335 
1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1337 static void destroy_compound_gigantic_page(struct page *page,
1338 					unsigned int order)
1339 {
1340 	__destroy_compound_gigantic_page(page, order, false);
1341 }
1342 
1343 static void free_gigantic_page(struct page *page, unsigned int order)
1344 {
1345 	/*
1346 	 * If the page isn't allocated using the cma allocator,
1347 	 * cma_release() returns false.
1348 	 */
1349 #ifdef CONFIG_CMA
1350 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351 		return;
1352 #endif
1353 
1354 	free_contig_range(page_to_pfn(page), 1 << order);
1355 }
1356 
1357 #ifdef CONFIG_CONTIG_ALLOC
1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359 		int nid, nodemask_t *nodemask)
1360 {
1361 	unsigned long nr_pages = pages_per_huge_page(h);
1362 	if (nid == NUMA_NO_NODE)
1363 		nid = numa_mem_id();
1364 
1365 #ifdef CONFIG_CMA
1366 	{
1367 		struct page *page;
1368 		int node;
1369 
1370 		if (hugetlb_cma[nid]) {
1371 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372 					huge_page_order(h), true);
1373 			if (page)
1374 				return page;
1375 		}
1376 
1377 		if (!(gfp_mask & __GFP_THISNODE)) {
1378 			for_each_node_mask(node, *nodemask) {
1379 				if (node == nid || !hugetlb_cma[node])
1380 					continue;
1381 
1382 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1383 						huge_page_order(h), true);
1384 				if (page)
1385 					return page;
1386 			}
1387 		}
1388 	}
1389 #endif
1390 
1391 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1392 }
1393 
1394 #else /* !CONFIG_CONTIG_ALLOC */
1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396 					int nid, nodemask_t *nodemask)
1397 {
1398 	return NULL;
1399 }
1400 #endif /* CONFIG_CONTIG_ALLOC */
1401 
1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1404 					int nid, nodemask_t *nodemask)
1405 {
1406 	return NULL;
1407 }
1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1409 static inline void destroy_compound_gigantic_page(struct page *page,
1410 						unsigned int order) { }
1411 #endif
1412 
1413 /*
1414  * Remove hugetlb page from lists, and update dtor so that page appears
1415  * as just a compound page.
1416  *
1417  * A reference is held on the page, except in the case of demote.
1418  *
1419  * Must be called with hugetlb lock held.
1420  */
1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422 							bool adjust_surplus,
1423 							bool demote)
1424 {
1425 	int nid = page_to_nid(page);
1426 
1427 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429 
1430 	lockdep_assert_held(&hugetlb_lock);
1431 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432 		return;
1433 
1434 	list_del(&page->lru);
1435 
1436 	if (HPageFreed(page)) {
1437 		h->free_huge_pages--;
1438 		h->free_huge_pages_node[nid]--;
1439 	}
1440 	if (adjust_surplus) {
1441 		h->surplus_huge_pages--;
1442 		h->surplus_huge_pages_node[nid]--;
1443 	}
1444 
1445 	/*
1446 	 * Very subtle
1447 	 *
1448 	 * For non-gigantic pages set the destructor to the normal compound
1449 	 * page dtor.  This is needed in case someone takes an additional
1450 	 * temporary ref to the page, and freeing is delayed until they drop
1451 	 * their reference.
1452 	 *
1453 	 * For gigantic pages set the destructor to the null dtor.  This
1454 	 * destructor will never be called.  Before freeing the gigantic
1455 	 * page destroy_compound_gigantic_page will turn the compound page
1456 	 * into a simple group of pages.  After this the destructor does not
1457 	 * apply.
1458 	 *
1459 	 * This handles the case where more than one ref is held when and
1460 	 * after update_and_free_page is called.
1461 	 *
1462 	 * In the case of demote we do not ref count the page as it will soon
1463 	 * be turned into a page of smaller size.
1464 	 */
1465 	if (!demote)
1466 		set_page_refcounted(page);
1467 	if (hstate_is_gigantic(h))
1468 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469 	else
1470 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1471 
1472 	h->nr_huge_pages--;
1473 	h->nr_huge_pages_node[nid]--;
1474 }
1475 
1476 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477 							bool adjust_surplus)
1478 {
1479 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1480 }
1481 
1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483 							bool adjust_surplus)
1484 {
1485 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1486 }
1487 
1488 static void add_hugetlb_page(struct hstate *h, struct page *page,
1489 			     bool adjust_surplus)
1490 {
1491 	int zeroed;
1492 	int nid = page_to_nid(page);
1493 
1494 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495 
1496 	lockdep_assert_held(&hugetlb_lock);
1497 
1498 	INIT_LIST_HEAD(&page->lru);
1499 	h->nr_huge_pages++;
1500 	h->nr_huge_pages_node[nid]++;
1501 
1502 	if (adjust_surplus) {
1503 		h->surplus_huge_pages++;
1504 		h->surplus_huge_pages_node[nid]++;
1505 	}
1506 
1507 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508 	set_page_private(page, 0);
1509 	SetHPageVmemmapOptimized(page);
1510 
1511 	/*
1512 	 * This page is about to be managed by the hugetlb allocator and
1513 	 * should have no users.  Drop our reference, and check for others
1514 	 * just in case.
1515 	 */
1516 	zeroed = put_page_testzero(page);
1517 	if (!zeroed)
1518 		/*
1519 		 * It is VERY unlikely soneone else has taken a ref on
1520 		 * the page.  In this case, we simply return as the
1521 		 * hugetlb destructor (free_huge_page) will be called
1522 		 * when this other ref is dropped.
1523 		 */
1524 		return;
1525 
1526 	arch_clear_hugepage_flags(page);
1527 	enqueue_huge_page(h, page);
1528 }
1529 
1530 static void __update_and_free_page(struct hstate *h, struct page *page)
1531 {
1532 	int i;
1533 	struct page *subpage = page;
1534 
1535 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1536 		return;
1537 
1538 	/*
1539 	 * If we don't know which subpages are hwpoisoned, we can't free
1540 	 * the hugepage, so it's leaked intentionally.
1541 	 */
1542 	if (HPageRawHwpUnreliable(page))
1543 		return;
1544 
1545 	if (hugetlb_vmemmap_restore(h, page)) {
1546 		spin_lock_irq(&hugetlb_lock);
1547 		/*
1548 		 * If we cannot allocate vmemmap pages, just refuse to free the
1549 		 * page and put the page back on the hugetlb free list and treat
1550 		 * as a surplus page.
1551 		 */
1552 		add_hugetlb_page(h, page, true);
1553 		spin_unlock_irq(&hugetlb_lock);
1554 		return;
1555 	}
1556 
1557 	/*
1558 	 * Move PageHWPoison flag from head page to the raw error pages,
1559 	 * which makes any healthy subpages reusable.
1560 	 */
1561 	if (unlikely(PageHWPoison(page)))
1562 		hugetlb_clear_page_hwpoison(page);
1563 
1564 	for (i = 0; i < pages_per_huge_page(h);
1565 	     i++, subpage = mem_map_next(subpage, page, i)) {
1566 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1567 				1 << PG_referenced | 1 << PG_dirty |
1568 				1 << PG_active | 1 << PG_private |
1569 				1 << PG_writeback);
1570 	}
1571 
1572 	/*
1573 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1574 	 * need to be given back to CMA in free_gigantic_page.
1575 	 */
1576 	if (hstate_is_gigantic(h) ||
1577 	    hugetlb_cma_page(page, huge_page_order(h))) {
1578 		destroy_compound_gigantic_page(page, huge_page_order(h));
1579 		free_gigantic_page(page, huge_page_order(h));
1580 	} else {
1581 		__free_pages(page, huge_page_order(h));
1582 	}
1583 }
1584 
1585 /*
1586  * As update_and_free_page() can be called under any context, so we cannot
1587  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1588  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1589  * the vmemmap pages.
1590  *
1591  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1592  * freed and frees them one-by-one. As the page->mapping pointer is going
1593  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1594  * structure of a lockless linked list of huge pages to be freed.
1595  */
1596 static LLIST_HEAD(hpage_freelist);
1597 
1598 static void free_hpage_workfn(struct work_struct *work)
1599 {
1600 	struct llist_node *node;
1601 
1602 	node = llist_del_all(&hpage_freelist);
1603 
1604 	while (node) {
1605 		struct page *page;
1606 		struct hstate *h;
1607 
1608 		page = container_of((struct address_space **)node,
1609 				     struct page, mapping);
1610 		node = node->next;
1611 		page->mapping = NULL;
1612 		/*
1613 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1614 		 * is going to trigger because a previous call to
1615 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1616 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1617 		 */
1618 		h = size_to_hstate(page_size(page));
1619 
1620 		__update_and_free_page(h, page);
1621 
1622 		cond_resched();
1623 	}
1624 }
1625 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1626 
1627 static inline void flush_free_hpage_work(struct hstate *h)
1628 {
1629 	if (hugetlb_vmemmap_optimizable(h))
1630 		flush_work(&free_hpage_work);
1631 }
1632 
1633 static void update_and_free_page(struct hstate *h, struct page *page,
1634 				 bool atomic)
1635 {
1636 	if (!HPageVmemmapOptimized(page) || !atomic) {
1637 		__update_and_free_page(h, page);
1638 		return;
1639 	}
1640 
1641 	/*
1642 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1643 	 *
1644 	 * Only call schedule_work() if hpage_freelist is previously
1645 	 * empty. Otherwise, schedule_work() had been called but the workfn
1646 	 * hasn't retrieved the list yet.
1647 	 */
1648 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1649 		schedule_work(&free_hpage_work);
1650 }
1651 
1652 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1653 {
1654 	struct page *page, *t_page;
1655 
1656 	list_for_each_entry_safe(page, t_page, list, lru) {
1657 		update_and_free_page(h, page, false);
1658 		cond_resched();
1659 	}
1660 }
1661 
1662 struct hstate *size_to_hstate(unsigned long size)
1663 {
1664 	struct hstate *h;
1665 
1666 	for_each_hstate(h) {
1667 		if (huge_page_size(h) == size)
1668 			return h;
1669 	}
1670 	return NULL;
1671 }
1672 
1673 void free_huge_page(struct page *page)
1674 {
1675 	/*
1676 	 * Can't pass hstate in here because it is called from the
1677 	 * compound page destructor.
1678 	 */
1679 	struct hstate *h = page_hstate(page);
1680 	int nid = page_to_nid(page);
1681 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1682 	bool restore_reserve;
1683 	unsigned long flags;
1684 
1685 	VM_BUG_ON_PAGE(page_count(page), page);
1686 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1687 
1688 	hugetlb_set_page_subpool(page, NULL);
1689 	if (PageAnon(page))
1690 		__ClearPageAnonExclusive(page);
1691 	page->mapping = NULL;
1692 	restore_reserve = HPageRestoreReserve(page);
1693 	ClearHPageRestoreReserve(page);
1694 
1695 	/*
1696 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1697 	 * reservation.  If the page was associated with a subpool, there
1698 	 * would have been a page reserved in the subpool before allocation
1699 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1700 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1701 	 * remove the reserved page from the subpool.
1702 	 */
1703 	if (!restore_reserve) {
1704 		/*
1705 		 * A return code of zero implies that the subpool will be
1706 		 * under its minimum size if the reservation is not restored
1707 		 * after page is free.  Therefore, force restore_reserve
1708 		 * operation.
1709 		 */
1710 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1711 			restore_reserve = true;
1712 	}
1713 
1714 	spin_lock_irqsave(&hugetlb_lock, flags);
1715 	ClearHPageMigratable(page);
1716 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1717 				     pages_per_huge_page(h), page);
1718 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1719 					  pages_per_huge_page(h), page);
1720 	if (restore_reserve)
1721 		h->resv_huge_pages++;
1722 
1723 	if (HPageTemporary(page)) {
1724 		remove_hugetlb_page(h, page, false);
1725 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1726 		update_and_free_page(h, page, true);
1727 	} else if (h->surplus_huge_pages_node[nid]) {
1728 		/* remove the page from active list */
1729 		remove_hugetlb_page(h, page, true);
1730 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1731 		update_and_free_page(h, page, true);
1732 	} else {
1733 		arch_clear_hugepage_flags(page);
1734 		enqueue_huge_page(h, page);
1735 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1736 	}
1737 }
1738 
1739 /*
1740  * Must be called with the hugetlb lock held
1741  */
1742 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1743 {
1744 	lockdep_assert_held(&hugetlb_lock);
1745 	h->nr_huge_pages++;
1746 	h->nr_huge_pages_node[nid]++;
1747 }
1748 
1749 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1750 {
1751 	hugetlb_vmemmap_optimize(h, page);
1752 	INIT_LIST_HEAD(&page->lru);
1753 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1754 	hugetlb_set_page_subpool(page, NULL);
1755 	set_hugetlb_cgroup(page, NULL);
1756 	set_hugetlb_cgroup_rsvd(page, NULL);
1757 }
1758 
1759 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1760 {
1761 	__prep_new_huge_page(h, page);
1762 	spin_lock_irq(&hugetlb_lock);
1763 	__prep_account_new_huge_page(h, nid);
1764 	spin_unlock_irq(&hugetlb_lock);
1765 }
1766 
1767 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1768 								bool demote)
1769 {
1770 	int i, j;
1771 	int nr_pages = 1 << order;
1772 	struct page *p = page + 1;
1773 
1774 	/* we rely on prep_new_huge_page to set the destructor */
1775 	set_compound_order(page, order);
1776 	__ClearPageReserved(page);
1777 	__SetPageHead(page);
1778 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1779 		/*
1780 		 * For gigantic hugepages allocated through bootmem at
1781 		 * boot, it's safer to be consistent with the not-gigantic
1782 		 * hugepages and clear the PG_reserved bit from all tail pages
1783 		 * too.  Otherwise drivers using get_user_pages() to access tail
1784 		 * pages may get the reference counting wrong if they see
1785 		 * PG_reserved set on a tail page (despite the head page not
1786 		 * having PG_reserved set).  Enforcing this consistency between
1787 		 * head and tail pages allows drivers to optimize away a check
1788 		 * on the head page when they need know if put_page() is needed
1789 		 * after get_user_pages().
1790 		 */
1791 		__ClearPageReserved(p);
1792 		/*
1793 		 * Subtle and very unlikely
1794 		 *
1795 		 * Gigantic 'page allocators' such as memblock or cma will
1796 		 * return a set of pages with each page ref counted.  We need
1797 		 * to turn this set of pages into a compound page with tail
1798 		 * page ref counts set to zero.  Code such as speculative page
1799 		 * cache adding could take a ref on a 'to be' tail page.
1800 		 * We need to respect any increased ref count, and only set
1801 		 * the ref count to zero if count is currently 1.  If count
1802 		 * is not 1, we return an error.  An error return indicates
1803 		 * the set of pages can not be converted to a gigantic page.
1804 		 * The caller who allocated the pages should then discard the
1805 		 * pages using the appropriate free interface.
1806 		 *
1807 		 * In the case of demote, the ref count will be zero.
1808 		 */
1809 		if (!demote) {
1810 			if (!page_ref_freeze(p, 1)) {
1811 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1812 				goto out_error;
1813 			}
1814 		} else {
1815 			VM_BUG_ON_PAGE(page_count(p), p);
1816 		}
1817 		set_compound_head(p, page);
1818 	}
1819 	atomic_set(compound_mapcount_ptr(page), -1);
1820 	atomic_set(compound_pincount_ptr(page), 0);
1821 	return true;
1822 
1823 out_error:
1824 	/* undo tail page modifications made above */
1825 	p = page + 1;
1826 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1827 		clear_compound_head(p);
1828 		set_page_refcounted(p);
1829 	}
1830 	/* need to clear PG_reserved on remaining tail pages  */
1831 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1832 		__ClearPageReserved(p);
1833 	set_compound_order(page, 0);
1834 #ifdef CONFIG_64BIT
1835 	page[1].compound_nr = 0;
1836 #endif
1837 	__ClearPageHead(page);
1838 	return false;
1839 }
1840 
1841 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1842 {
1843 	return __prep_compound_gigantic_page(page, order, false);
1844 }
1845 
1846 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1847 							unsigned int order)
1848 {
1849 	return __prep_compound_gigantic_page(page, order, true);
1850 }
1851 
1852 /*
1853  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1854  * transparent huge pages.  See the PageTransHuge() documentation for more
1855  * details.
1856  */
1857 int PageHuge(struct page *page)
1858 {
1859 	if (!PageCompound(page))
1860 		return 0;
1861 
1862 	page = compound_head(page);
1863 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1864 }
1865 EXPORT_SYMBOL_GPL(PageHuge);
1866 
1867 /*
1868  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1869  * normal or transparent huge pages.
1870  */
1871 int PageHeadHuge(struct page *page_head)
1872 {
1873 	if (!PageHead(page_head))
1874 		return 0;
1875 
1876 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1877 }
1878 EXPORT_SYMBOL_GPL(PageHeadHuge);
1879 
1880 /*
1881  * Find and lock address space (mapping) in write mode.
1882  *
1883  * Upon entry, the page is locked which means that page_mapping() is
1884  * stable.  Due to locking order, we can only trylock_write.  If we can
1885  * not get the lock, simply return NULL to caller.
1886  */
1887 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1888 {
1889 	struct address_space *mapping = page_mapping(hpage);
1890 
1891 	if (!mapping)
1892 		return mapping;
1893 
1894 	if (i_mmap_trylock_write(mapping))
1895 		return mapping;
1896 
1897 	return NULL;
1898 }
1899 
1900 pgoff_t hugetlb_basepage_index(struct page *page)
1901 {
1902 	struct page *page_head = compound_head(page);
1903 	pgoff_t index = page_index(page_head);
1904 	unsigned long compound_idx;
1905 
1906 	if (compound_order(page_head) >= MAX_ORDER)
1907 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1908 	else
1909 		compound_idx = page - page_head;
1910 
1911 	return (index << compound_order(page_head)) + compound_idx;
1912 }
1913 
1914 static struct page *alloc_buddy_huge_page(struct hstate *h,
1915 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1916 		nodemask_t *node_alloc_noretry)
1917 {
1918 	int order = huge_page_order(h);
1919 	struct page *page;
1920 	bool alloc_try_hard = true;
1921 
1922 	/*
1923 	 * By default we always try hard to allocate the page with
1924 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1925 	 * a loop (to adjust global huge page counts) and previous allocation
1926 	 * failed, do not continue to try hard on the same node.  Use the
1927 	 * node_alloc_noretry bitmap to manage this state information.
1928 	 */
1929 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1930 		alloc_try_hard = false;
1931 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1932 	if (alloc_try_hard)
1933 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1934 	if (nid == NUMA_NO_NODE)
1935 		nid = numa_mem_id();
1936 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1937 	if (page)
1938 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1939 	else
1940 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1941 
1942 	/*
1943 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1944 	 * indicates an overall state change.  Clear bit so that we resume
1945 	 * normal 'try hard' allocations.
1946 	 */
1947 	if (node_alloc_noretry && page && !alloc_try_hard)
1948 		node_clear(nid, *node_alloc_noretry);
1949 
1950 	/*
1951 	 * If we tried hard to get a page but failed, set bit so that
1952 	 * subsequent attempts will not try as hard until there is an
1953 	 * overall state change.
1954 	 */
1955 	if (node_alloc_noretry && !page && alloc_try_hard)
1956 		node_set(nid, *node_alloc_noretry);
1957 
1958 	return page;
1959 }
1960 
1961 /*
1962  * Common helper to allocate a fresh hugetlb page. All specific allocators
1963  * should use this function to get new hugetlb pages
1964  */
1965 static struct page *alloc_fresh_huge_page(struct hstate *h,
1966 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1967 		nodemask_t *node_alloc_noretry)
1968 {
1969 	struct page *page;
1970 	bool retry = false;
1971 
1972 retry:
1973 	if (hstate_is_gigantic(h))
1974 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1975 	else
1976 		page = alloc_buddy_huge_page(h, gfp_mask,
1977 				nid, nmask, node_alloc_noretry);
1978 	if (!page)
1979 		return NULL;
1980 
1981 	if (hstate_is_gigantic(h)) {
1982 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1983 			/*
1984 			 * Rare failure to convert pages to compound page.
1985 			 * Free pages and try again - ONCE!
1986 			 */
1987 			free_gigantic_page(page, huge_page_order(h));
1988 			if (!retry) {
1989 				retry = true;
1990 				goto retry;
1991 			}
1992 			return NULL;
1993 		}
1994 	}
1995 	prep_new_huge_page(h, page, page_to_nid(page));
1996 
1997 	return page;
1998 }
1999 
2000 /*
2001  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2002  * manner.
2003  */
2004 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2005 				nodemask_t *node_alloc_noretry)
2006 {
2007 	struct page *page;
2008 	int nr_nodes, node;
2009 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2010 
2011 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2012 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2013 						node_alloc_noretry);
2014 		if (page)
2015 			break;
2016 	}
2017 
2018 	if (!page)
2019 		return 0;
2020 
2021 	put_page(page); /* free it into the hugepage allocator */
2022 
2023 	return 1;
2024 }
2025 
2026 /*
2027  * Remove huge page from pool from next node to free.  Attempt to keep
2028  * persistent huge pages more or less balanced over allowed nodes.
2029  * This routine only 'removes' the hugetlb page.  The caller must make
2030  * an additional call to free the page to low level allocators.
2031  * Called with hugetlb_lock locked.
2032  */
2033 static struct page *remove_pool_huge_page(struct hstate *h,
2034 						nodemask_t *nodes_allowed,
2035 						 bool acct_surplus)
2036 {
2037 	int nr_nodes, node;
2038 	struct page *page = NULL;
2039 
2040 	lockdep_assert_held(&hugetlb_lock);
2041 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2042 		/*
2043 		 * If we're returning unused surplus pages, only examine
2044 		 * nodes with surplus pages.
2045 		 */
2046 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2047 		    !list_empty(&h->hugepage_freelists[node])) {
2048 			page = list_entry(h->hugepage_freelists[node].next,
2049 					  struct page, lru);
2050 			remove_hugetlb_page(h, page, acct_surplus);
2051 			break;
2052 		}
2053 	}
2054 
2055 	return page;
2056 }
2057 
2058 /*
2059  * Dissolve a given free hugepage into free buddy pages. This function does
2060  * nothing for in-use hugepages and non-hugepages.
2061  * This function returns values like below:
2062  *
2063  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2064  *           when the system is under memory pressure and the feature of
2065  *           freeing unused vmemmap pages associated with each hugetlb page
2066  *           is enabled.
2067  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2068  *           (allocated or reserved.)
2069  *       0:  successfully dissolved free hugepages or the page is not a
2070  *           hugepage (considered as already dissolved)
2071  */
2072 int dissolve_free_huge_page(struct page *page)
2073 {
2074 	int rc = -EBUSY;
2075 
2076 retry:
2077 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2078 	if (!PageHuge(page))
2079 		return 0;
2080 
2081 	spin_lock_irq(&hugetlb_lock);
2082 	if (!PageHuge(page)) {
2083 		rc = 0;
2084 		goto out;
2085 	}
2086 
2087 	if (!page_count(page)) {
2088 		struct page *head = compound_head(page);
2089 		struct hstate *h = page_hstate(head);
2090 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2091 			goto out;
2092 
2093 		/*
2094 		 * We should make sure that the page is already on the free list
2095 		 * when it is dissolved.
2096 		 */
2097 		if (unlikely(!HPageFreed(head))) {
2098 			spin_unlock_irq(&hugetlb_lock);
2099 			cond_resched();
2100 
2101 			/*
2102 			 * Theoretically, we should return -EBUSY when we
2103 			 * encounter this race. In fact, we have a chance
2104 			 * to successfully dissolve the page if we do a
2105 			 * retry. Because the race window is quite small.
2106 			 * If we seize this opportunity, it is an optimization
2107 			 * for increasing the success rate of dissolving page.
2108 			 */
2109 			goto retry;
2110 		}
2111 
2112 		remove_hugetlb_page(h, head, false);
2113 		h->max_huge_pages--;
2114 		spin_unlock_irq(&hugetlb_lock);
2115 
2116 		/*
2117 		 * Normally update_and_free_page will allocate required vmemmmap
2118 		 * before freeing the page.  update_and_free_page will fail to
2119 		 * free the page if it can not allocate required vmemmap.  We
2120 		 * need to adjust max_huge_pages if the page is not freed.
2121 		 * Attempt to allocate vmemmmap here so that we can take
2122 		 * appropriate action on failure.
2123 		 */
2124 		rc = hugetlb_vmemmap_restore(h, head);
2125 		if (!rc) {
2126 			update_and_free_page(h, head, false);
2127 		} else {
2128 			spin_lock_irq(&hugetlb_lock);
2129 			add_hugetlb_page(h, head, false);
2130 			h->max_huge_pages++;
2131 			spin_unlock_irq(&hugetlb_lock);
2132 		}
2133 
2134 		return rc;
2135 	}
2136 out:
2137 	spin_unlock_irq(&hugetlb_lock);
2138 	return rc;
2139 }
2140 
2141 /*
2142  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2143  * make specified memory blocks removable from the system.
2144  * Note that this will dissolve a free gigantic hugepage completely, if any
2145  * part of it lies within the given range.
2146  * Also note that if dissolve_free_huge_page() returns with an error, all
2147  * free hugepages that were dissolved before that error are lost.
2148  */
2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2150 {
2151 	unsigned long pfn;
2152 	struct page *page;
2153 	int rc = 0;
2154 	unsigned int order;
2155 	struct hstate *h;
2156 
2157 	if (!hugepages_supported())
2158 		return rc;
2159 
2160 	order = huge_page_order(&default_hstate);
2161 	for_each_hstate(h)
2162 		order = min(order, huge_page_order(h));
2163 
2164 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2165 		page = pfn_to_page(pfn);
2166 		rc = dissolve_free_huge_page(page);
2167 		if (rc)
2168 			break;
2169 	}
2170 
2171 	return rc;
2172 }
2173 
2174 /*
2175  * Allocates a fresh surplus page from the page allocator.
2176  */
2177 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2178 		int nid, nodemask_t *nmask, bool zero_ref)
2179 {
2180 	struct page *page = NULL;
2181 	bool retry = false;
2182 
2183 	if (hstate_is_gigantic(h))
2184 		return NULL;
2185 
2186 	spin_lock_irq(&hugetlb_lock);
2187 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2188 		goto out_unlock;
2189 	spin_unlock_irq(&hugetlb_lock);
2190 
2191 retry:
2192 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2193 	if (!page)
2194 		return NULL;
2195 
2196 	spin_lock_irq(&hugetlb_lock);
2197 	/*
2198 	 * We could have raced with the pool size change.
2199 	 * Double check that and simply deallocate the new page
2200 	 * if we would end up overcommiting the surpluses. Abuse
2201 	 * temporary page to workaround the nasty free_huge_page
2202 	 * codeflow
2203 	 */
2204 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2205 		SetHPageTemporary(page);
2206 		spin_unlock_irq(&hugetlb_lock);
2207 		put_page(page);
2208 		return NULL;
2209 	}
2210 
2211 	if (zero_ref) {
2212 		/*
2213 		 * Caller requires a page with zero ref count.
2214 		 * We will drop ref count here.  If someone else is holding
2215 		 * a ref, the page will be freed when they drop it.  Abuse
2216 		 * temporary page flag to accomplish this.
2217 		 */
2218 		SetHPageTemporary(page);
2219 		if (!put_page_testzero(page)) {
2220 			/*
2221 			 * Unexpected inflated ref count on freshly allocated
2222 			 * huge.  Retry once.
2223 			 */
2224 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2225 			spin_unlock_irq(&hugetlb_lock);
2226 			if (retry)
2227 				return NULL;
2228 
2229 			retry = true;
2230 			goto retry;
2231 		}
2232 		ClearHPageTemporary(page);
2233 	}
2234 
2235 	h->surplus_huge_pages++;
2236 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2237 
2238 out_unlock:
2239 	spin_unlock_irq(&hugetlb_lock);
2240 
2241 	return page;
2242 }
2243 
2244 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2245 				     int nid, nodemask_t *nmask)
2246 {
2247 	struct page *page;
2248 
2249 	if (hstate_is_gigantic(h))
2250 		return NULL;
2251 
2252 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2253 	if (!page)
2254 		return NULL;
2255 
2256 	/*
2257 	 * We do not account these pages as surplus because they are only
2258 	 * temporary and will be released properly on the last reference
2259 	 */
2260 	SetHPageTemporary(page);
2261 
2262 	return page;
2263 }
2264 
2265 /*
2266  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2267  */
2268 static
2269 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2270 		struct vm_area_struct *vma, unsigned long addr)
2271 {
2272 	struct page *page = NULL;
2273 	struct mempolicy *mpol;
2274 	gfp_t gfp_mask = htlb_alloc_mask(h);
2275 	int nid;
2276 	nodemask_t *nodemask;
2277 
2278 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2279 	if (mpol_is_preferred_many(mpol)) {
2280 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2281 
2282 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2283 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2284 
2285 		/* Fallback to all nodes if page==NULL */
2286 		nodemask = NULL;
2287 	}
2288 
2289 	if (!page)
2290 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2291 	mpol_cond_put(mpol);
2292 	return page;
2293 }
2294 
2295 /* page migration callback function */
2296 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2297 		nodemask_t *nmask, gfp_t gfp_mask)
2298 {
2299 	spin_lock_irq(&hugetlb_lock);
2300 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2301 		struct page *page;
2302 
2303 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2304 		if (page) {
2305 			spin_unlock_irq(&hugetlb_lock);
2306 			return page;
2307 		}
2308 	}
2309 	spin_unlock_irq(&hugetlb_lock);
2310 
2311 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2312 }
2313 
2314 /* mempolicy aware migration callback */
2315 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2316 		unsigned long address)
2317 {
2318 	struct mempolicy *mpol;
2319 	nodemask_t *nodemask;
2320 	struct page *page;
2321 	gfp_t gfp_mask;
2322 	int node;
2323 
2324 	gfp_mask = htlb_alloc_mask(h);
2325 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2326 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2327 	mpol_cond_put(mpol);
2328 
2329 	return page;
2330 }
2331 
2332 /*
2333  * Increase the hugetlb pool such that it can accommodate a reservation
2334  * of size 'delta'.
2335  */
2336 static int gather_surplus_pages(struct hstate *h, long delta)
2337 	__must_hold(&hugetlb_lock)
2338 {
2339 	struct list_head surplus_list;
2340 	struct page *page, *tmp;
2341 	int ret;
2342 	long i;
2343 	long needed, allocated;
2344 	bool alloc_ok = true;
2345 
2346 	lockdep_assert_held(&hugetlb_lock);
2347 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2348 	if (needed <= 0) {
2349 		h->resv_huge_pages += delta;
2350 		return 0;
2351 	}
2352 
2353 	allocated = 0;
2354 	INIT_LIST_HEAD(&surplus_list);
2355 
2356 	ret = -ENOMEM;
2357 retry:
2358 	spin_unlock_irq(&hugetlb_lock);
2359 	for (i = 0; i < needed; i++) {
2360 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2361 				NUMA_NO_NODE, NULL, true);
2362 		if (!page) {
2363 			alloc_ok = false;
2364 			break;
2365 		}
2366 		list_add(&page->lru, &surplus_list);
2367 		cond_resched();
2368 	}
2369 	allocated += i;
2370 
2371 	/*
2372 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2373 	 * because either resv_huge_pages or free_huge_pages may have changed.
2374 	 */
2375 	spin_lock_irq(&hugetlb_lock);
2376 	needed = (h->resv_huge_pages + delta) -
2377 			(h->free_huge_pages + allocated);
2378 	if (needed > 0) {
2379 		if (alloc_ok)
2380 			goto retry;
2381 		/*
2382 		 * We were not able to allocate enough pages to
2383 		 * satisfy the entire reservation so we free what
2384 		 * we've allocated so far.
2385 		 */
2386 		goto free;
2387 	}
2388 	/*
2389 	 * The surplus_list now contains _at_least_ the number of extra pages
2390 	 * needed to accommodate the reservation.  Add the appropriate number
2391 	 * of pages to the hugetlb pool and free the extras back to the buddy
2392 	 * allocator.  Commit the entire reservation here to prevent another
2393 	 * process from stealing the pages as they are added to the pool but
2394 	 * before they are reserved.
2395 	 */
2396 	needed += allocated;
2397 	h->resv_huge_pages += delta;
2398 	ret = 0;
2399 
2400 	/* Free the needed pages to the hugetlb pool */
2401 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2402 		if ((--needed) < 0)
2403 			break;
2404 		/* Add the page to the hugetlb allocator */
2405 		enqueue_huge_page(h, page);
2406 	}
2407 free:
2408 	spin_unlock_irq(&hugetlb_lock);
2409 
2410 	/*
2411 	 * Free unnecessary surplus pages to the buddy allocator.
2412 	 * Pages have no ref count, call free_huge_page directly.
2413 	 */
2414 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2415 		free_huge_page(page);
2416 	spin_lock_irq(&hugetlb_lock);
2417 
2418 	return ret;
2419 }
2420 
2421 /*
2422  * This routine has two main purposes:
2423  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2424  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2425  *    to the associated reservation map.
2426  * 2) Free any unused surplus pages that may have been allocated to satisfy
2427  *    the reservation.  As many as unused_resv_pages may be freed.
2428  */
2429 static void return_unused_surplus_pages(struct hstate *h,
2430 					unsigned long unused_resv_pages)
2431 {
2432 	unsigned long nr_pages;
2433 	struct page *page;
2434 	LIST_HEAD(page_list);
2435 
2436 	lockdep_assert_held(&hugetlb_lock);
2437 	/* Uncommit the reservation */
2438 	h->resv_huge_pages -= unused_resv_pages;
2439 
2440 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2441 		goto out;
2442 
2443 	/*
2444 	 * Part (or even all) of the reservation could have been backed
2445 	 * by pre-allocated pages. Only free surplus pages.
2446 	 */
2447 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2448 
2449 	/*
2450 	 * We want to release as many surplus pages as possible, spread
2451 	 * evenly across all nodes with memory. Iterate across these nodes
2452 	 * until we can no longer free unreserved surplus pages. This occurs
2453 	 * when the nodes with surplus pages have no free pages.
2454 	 * remove_pool_huge_page() will balance the freed pages across the
2455 	 * on-line nodes with memory and will handle the hstate accounting.
2456 	 */
2457 	while (nr_pages--) {
2458 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2459 		if (!page)
2460 			goto out;
2461 
2462 		list_add(&page->lru, &page_list);
2463 	}
2464 
2465 out:
2466 	spin_unlock_irq(&hugetlb_lock);
2467 	update_and_free_pages_bulk(h, &page_list);
2468 	spin_lock_irq(&hugetlb_lock);
2469 }
2470 
2471 
2472 /*
2473  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2474  * are used by the huge page allocation routines to manage reservations.
2475  *
2476  * vma_needs_reservation is called to determine if the huge page at addr
2477  * within the vma has an associated reservation.  If a reservation is
2478  * needed, the value 1 is returned.  The caller is then responsible for
2479  * managing the global reservation and subpool usage counts.  After
2480  * the huge page has been allocated, vma_commit_reservation is called
2481  * to add the page to the reservation map.  If the page allocation fails,
2482  * the reservation must be ended instead of committed.  vma_end_reservation
2483  * is called in such cases.
2484  *
2485  * In the normal case, vma_commit_reservation returns the same value
2486  * as the preceding vma_needs_reservation call.  The only time this
2487  * is not the case is if a reserve map was changed between calls.  It
2488  * is the responsibility of the caller to notice the difference and
2489  * take appropriate action.
2490  *
2491  * vma_add_reservation is used in error paths where a reservation must
2492  * be restored when a newly allocated huge page must be freed.  It is
2493  * to be called after calling vma_needs_reservation to determine if a
2494  * reservation exists.
2495  *
2496  * vma_del_reservation is used in error paths where an entry in the reserve
2497  * map was created during huge page allocation and must be removed.  It is to
2498  * be called after calling vma_needs_reservation to determine if a reservation
2499  * exists.
2500  */
2501 enum vma_resv_mode {
2502 	VMA_NEEDS_RESV,
2503 	VMA_COMMIT_RESV,
2504 	VMA_END_RESV,
2505 	VMA_ADD_RESV,
2506 	VMA_DEL_RESV,
2507 };
2508 static long __vma_reservation_common(struct hstate *h,
2509 				struct vm_area_struct *vma, unsigned long addr,
2510 				enum vma_resv_mode mode)
2511 {
2512 	struct resv_map *resv;
2513 	pgoff_t idx;
2514 	long ret;
2515 	long dummy_out_regions_needed;
2516 
2517 	resv = vma_resv_map(vma);
2518 	if (!resv)
2519 		return 1;
2520 
2521 	idx = vma_hugecache_offset(h, vma, addr);
2522 	switch (mode) {
2523 	case VMA_NEEDS_RESV:
2524 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2525 		/* We assume that vma_reservation_* routines always operate on
2526 		 * 1 page, and that adding to resv map a 1 page entry can only
2527 		 * ever require 1 region.
2528 		 */
2529 		VM_BUG_ON(dummy_out_regions_needed != 1);
2530 		break;
2531 	case VMA_COMMIT_RESV:
2532 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2533 		/* region_add calls of range 1 should never fail. */
2534 		VM_BUG_ON(ret < 0);
2535 		break;
2536 	case VMA_END_RESV:
2537 		region_abort(resv, idx, idx + 1, 1);
2538 		ret = 0;
2539 		break;
2540 	case VMA_ADD_RESV:
2541 		if (vma->vm_flags & VM_MAYSHARE) {
2542 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2543 			/* region_add calls of range 1 should never fail. */
2544 			VM_BUG_ON(ret < 0);
2545 		} else {
2546 			region_abort(resv, idx, idx + 1, 1);
2547 			ret = region_del(resv, idx, idx + 1);
2548 		}
2549 		break;
2550 	case VMA_DEL_RESV:
2551 		if (vma->vm_flags & VM_MAYSHARE) {
2552 			region_abort(resv, idx, idx + 1, 1);
2553 			ret = region_del(resv, idx, idx + 1);
2554 		} else {
2555 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2556 			/* region_add calls of range 1 should never fail. */
2557 			VM_BUG_ON(ret < 0);
2558 		}
2559 		break;
2560 	default:
2561 		BUG();
2562 	}
2563 
2564 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2565 		return ret;
2566 	/*
2567 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2568 	 *
2569 	 * In most cases, reserves always exist for private mappings.
2570 	 * However, a file associated with mapping could have been
2571 	 * hole punched or truncated after reserves were consumed.
2572 	 * As subsequent fault on such a range will not use reserves.
2573 	 * Subtle - The reserve map for private mappings has the
2574 	 * opposite meaning than that of shared mappings.  If NO
2575 	 * entry is in the reserve map, it means a reservation exists.
2576 	 * If an entry exists in the reserve map, it means the
2577 	 * reservation has already been consumed.  As a result, the
2578 	 * return value of this routine is the opposite of the
2579 	 * value returned from reserve map manipulation routines above.
2580 	 */
2581 	if (ret > 0)
2582 		return 0;
2583 	if (ret == 0)
2584 		return 1;
2585 	return ret;
2586 }
2587 
2588 static long vma_needs_reservation(struct hstate *h,
2589 			struct vm_area_struct *vma, unsigned long addr)
2590 {
2591 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2592 }
2593 
2594 static long vma_commit_reservation(struct hstate *h,
2595 			struct vm_area_struct *vma, unsigned long addr)
2596 {
2597 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2598 }
2599 
2600 static void vma_end_reservation(struct hstate *h,
2601 			struct vm_area_struct *vma, unsigned long addr)
2602 {
2603 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2604 }
2605 
2606 static long vma_add_reservation(struct hstate *h,
2607 			struct vm_area_struct *vma, unsigned long addr)
2608 {
2609 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2610 }
2611 
2612 static long vma_del_reservation(struct hstate *h,
2613 			struct vm_area_struct *vma, unsigned long addr)
2614 {
2615 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2616 }
2617 
2618 /*
2619  * This routine is called to restore reservation information on error paths.
2620  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2621  * the hugetlb mutex should remain held when calling this routine.
2622  *
2623  * It handles two specific cases:
2624  * 1) A reservation was in place and the page consumed the reservation.
2625  *    HPageRestoreReserve is set in the page.
2626  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2627  *    not set.  However, alloc_huge_page always updates the reserve map.
2628  *
2629  * In case 1, free_huge_page later in the error path will increment the
2630  * global reserve count.  But, free_huge_page does not have enough context
2631  * to adjust the reservation map.  This case deals primarily with private
2632  * mappings.  Adjust the reserve map here to be consistent with global
2633  * reserve count adjustments to be made by free_huge_page.  Make sure the
2634  * reserve map indicates there is a reservation present.
2635  *
2636  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2637  */
2638 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2639 			unsigned long address, struct page *page)
2640 {
2641 	long rc = vma_needs_reservation(h, vma, address);
2642 
2643 	if (HPageRestoreReserve(page)) {
2644 		if (unlikely(rc < 0))
2645 			/*
2646 			 * Rare out of memory condition in reserve map
2647 			 * manipulation.  Clear HPageRestoreReserve so that
2648 			 * global reserve count will not be incremented
2649 			 * by free_huge_page.  This will make it appear
2650 			 * as though the reservation for this page was
2651 			 * consumed.  This may prevent the task from
2652 			 * faulting in the page at a later time.  This
2653 			 * is better than inconsistent global huge page
2654 			 * accounting of reserve counts.
2655 			 */
2656 			ClearHPageRestoreReserve(page);
2657 		else if (rc)
2658 			(void)vma_add_reservation(h, vma, address);
2659 		else
2660 			vma_end_reservation(h, vma, address);
2661 	} else {
2662 		if (!rc) {
2663 			/*
2664 			 * This indicates there is an entry in the reserve map
2665 			 * not added by alloc_huge_page.  We know it was added
2666 			 * before the alloc_huge_page call, otherwise
2667 			 * HPageRestoreReserve would be set on the page.
2668 			 * Remove the entry so that a subsequent allocation
2669 			 * does not consume a reservation.
2670 			 */
2671 			rc = vma_del_reservation(h, vma, address);
2672 			if (rc < 0)
2673 				/*
2674 				 * VERY rare out of memory condition.  Since
2675 				 * we can not delete the entry, set
2676 				 * HPageRestoreReserve so that the reserve
2677 				 * count will be incremented when the page
2678 				 * is freed.  This reserve will be consumed
2679 				 * on a subsequent allocation.
2680 				 */
2681 				SetHPageRestoreReserve(page);
2682 		} else if (rc < 0) {
2683 			/*
2684 			 * Rare out of memory condition from
2685 			 * vma_needs_reservation call.  Memory allocation is
2686 			 * only attempted if a new entry is needed.  Therefore,
2687 			 * this implies there is not an entry in the
2688 			 * reserve map.
2689 			 *
2690 			 * For shared mappings, no entry in the map indicates
2691 			 * no reservation.  We are done.
2692 			 */
2693 			if (!(vma->vm_flags & VM_MAYSHARE))
2694 				/*
2695 				 * For private mappings, no entry indicates
2696 				 * a reservation is present.  Since we can
2697 				 * not add an entry, set SetHPageRestoreReserve
2698 				 * on the page so reserve count will be
2699 				 * incremented when freed.  This reserve will
2700 				 * be consumed on a subsequent allocation.
2701 				 */
2702 				SetHPageRestoreReserve(page);
2703 		} else
2704 			/*
2705 			 * No reservation present, do nothing
2706 			 */
2707 			 vma_end_reservation(h, vma, address);
2708 	}
2709 }
2710 
2711 /*
2712  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2713  * @h: struct hstate old page belongs to
2714  * @old_page: Old page to dissolve
2715  * @list: List to isolate the page in case we need to
2716  * Returns 0 on success, otherwise negated error.
2717  */
2718 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2719 					struct list_head *list)
2720 {
2721 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2722 	int nid = page_to_nid(old_page);
2723 	bool alloc_retry = false;
2724 	struct page *new_page;
2725 	int ret = 0;
2726 
2727 	/*
2728 	 * Before dissolving the page, we need to allocate a new one for the
2729 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2730 	 * by doing everything but actually updating counters and adding to
2731 	 * the pool.  This simplifies and let us do most of the processing
2732 	 * under the lock.
2733 	 */
2734 alloc_retry:
2735 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2736 	if (!new_page)
2737 		return -ENOMEM;
2738 	/*
2739 	 * If all goes well, this page will be directly added to the free
2740 	 * list in the pool.  For this the ref count needs to be zero.
2741 	 * Attempt to drop now, and retry once if needed.  It is VERY
2742 	 * unlikely there is another ref on the page.
2743 	 *
2744 	 * If someone else has a reference to the page, it will be freed
2745 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2746 	 * this.  Retry once if there is an inflated ref count.
2747 	 */
2748 	SetHPageTemporary(new_page);
2749 	if (!put_page_testzero(new_page)) {
2750 		if (alloc_retry)
2751 			return -EBUSY;
2752 
2753 		alloc_retry = true;
2754 		goto alloc_retry;
2755 	}
2756 	ClearHPageTemporary(new_page);
2757 
2758 	__prep_new_huge_page(h, new_page);
2759 
2760 retry:
2761 	spin_lock_irq(&hugetlb_lock);
2762 	if (!PageHuge(old_page)) {
2763 		/*
2764 		 * Freed from under us. Drop new_page too.
2765 		 */
2766 		goto free_new;
2767 	} else if (page_count(old_page)) {
2768 		/*
2769 		 * Someone has grabbed the page, try to isolate it here.
2770 		 * Fail with -EBUSY if not possible.
2771 		 */
2772 		spin_unlock_irq(&hugetlb_lock);
2773 		ret = isolate_hugetlb(old_page, list);
2774 		spin_lock_irq(&hugetlb_lock);
2775 		goto free_new;
2776 	} else if (!HPageFreed(old_page)) {
2777 		/*
2778 		 * Page's refcount is 0 but it has not been enqueued in the
2779 		 * freelist yet. Race window is small, so we can succeed here if
2780 		 * we retry.
2781 		 */
2782 		spin_unlock_irq(&hugetlb_lock);
2783 		cond_resched();
2784 		goto retry;
2785 	} else {
2786 		/*
2787 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2788 		 * the freelist and decrease the counters. These will be
2789 		 * incremented again when calling __prep_account_new_huge_page()
2790 		 * and enqueue_huge_page() for new_page. The counters will remain
2791 		 * stable since this happens under the lock.
2792 		 */
2793 		remove_hugetlb_page(h, old_page, false);
2794 
2795 		/*
2796 		 * Ref count on new page is already zero as it was dropped
2797 		 * earlier.  It can be directly added to the pool free list.
2798 		 */
2799 		__prep_account_new_huge_page(h, nid);
2800 		enqueue_huge_page(h, new_page);
2801 
2802 		/*
2803 		 * Pages have been replaced, we can safely free the old one.
2804 		 */
2805 		spin_unlock_irq(&hugetlb_lock);
2806 		update_and_free_page(h, old_page, false);
2807 	}
2808 
2809 	return ret;
2810 
2811 free_new:
2812 	spin_unlock_irq(&hugetlb_lock);
2813 	/* Page has a zero ref count, but needs a ref to be freed */
2814 	set_page_refcounted(new_page);
2815 	update_and_free_page(h, new_page, false);
2816 
2817 	return ret;
2818 }
2819 
2820 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2821 {
2822 	struct hstate *h;
2823 	struct page *head;
2824 	int ret = -EBUSY;
2825 
2826 	/*
2827 	 * The page might have been dissolved from under our feet, so make sure
2828 	 * to carefully check the state under the lock.
2829 	 * Return success when racing as if we dissolved the page ourselves.
2830 	 */
2831 	spin_lock_irq(&hugetlb_lock);
2832 	if (PageHuge(page)) {
2833 		head = compound_head(page);
2834 		h = page_hstate(head);
2835 	} else {
2836 		spin_unlock_irq(&hugetlb_lock);
2837 		return 0;
2838 	}
2839 	spin_unlock_irq(&hugetlb_lock);
2840 
2841 	/*
2842 	 * Fence off gigantic pages as there is a cyclic dependency between
2843 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2844 	 * of bailing out right away without further retrying.
2845 	 */
2846 	if (hstate_is_gigantic(h))
2847 		return -ENOMEM;
2848 
2849 	if (page_count(head) && !isolate_hugetlb(head, list))
2850 		ret = 0;
2851 	else if (!page_count(head))
2852 		ret = alloc_and_dissolve_huge_page(h, head, list);
2853 
2854 	return ret;
2855 }
2856 
2857 struct page *alloc_huge_page(struct vm_area_struct *vma,
2858 				    unsigned long addr, int avoid_reserve)
2859 {
2860 	struct hugepage_subpool *spool = subpool_vma(vma);
2861 	struct hstate *h = hstate_vma(vma);
2862 	struct page *page;
2863 	long map_chg, map_commit;
2864 	long gbl_chg;
2865 	int ret, idx;
2866 	struct hugetlb_cgroup *h_cg;
2867 	bool deferred_reserve;
2868 
2869 	idx = hstate_index(h);
2870 	/*
2871 	 * Examine the region/reserve map to determine if the process
2872 	 * has a reservation for the page to be allocated.  A return
2873 	 * code of zero indicates a reservation exists (no change).
2874 	 */
2875 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2876 	if (map_chg < 0)
2877 		return ERR_PTR(-ENOMEM);
2878 
2879 	/*
2880 	 * Processes that did not create the mapping will have no
2881 	 * reserves as indicated by the region/reserve map. Check
2882 	 * that the allocation will not exceed the subpool limit.
2883 	 * Allocations for MAP_NORESERVE mappings also need to be
2884 	 * checked against any subpool limit.
2885 	 */
2886 	if (map_chg || avoid_reserve) {
2887 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2888 		if (gbl_chg < 0) {
2889 			vma_end_reservation(h, vma, addr);
2890 			return ERR_PTR(-ENOSPC);
2891 		}
2892 
2893 		/*
2894 		 * Even though there was no reservation in the region/reserve
2895 		 * map, there could be reservations associated with the
2896 		 * subpool that can be used.  This would be indicated if the
2897 		 * return value of hugepage_subpool_get_pages() is zero.
2898 		 * However, if avoid_reserve is specified we still avoid even
2899 		 * the subpool reservations.
2900 		 */
2901 		if (avoid_reserve)
2902 			gbl_chg = 1;
2903 	}
2904 
2905 	/* If this allocation is not consuming a reservation, charge it now.
2906 	 */
2907 	deferred_reserve = map_chg || avoid_reserve;
2908 	if (deferred_reserve) {
2909 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2910 			idx, pages_per_huge_page(h), &h_cg);
2911 		if (ret)
2912 			goto out_subpool_put;
2913 	}
2914 
2915 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2916 	if (ret)
2917 		goto out_uncharge_cgroup_reservation;
2918 
2919 	spin_lock_irq(&hugetlb_lock);
2920 	/*
2921 	 * glb_chg is passed to indicate whether or not a page must be taken
2922 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2923 	 * a reservation exists for the allocation.
2924 	 */
2925 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2926 	if (!page) {
2927 		spin_unlock_irq(&hugetlb_lock);
2928 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2929 		if (!page)
2930 			goto out_uncharge_cgroup;
2931 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2932 			SetHPageRestoreReserve(page);
2933 			h->resv_huge_pages--;
2934 		}
2935 		spin_lock_irq(&hugetlb_lock);
2936 		list_add(&page->lru, &h->hugepage_activelist);
2937 		/* Fall through */
2938 	}
2939 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2940 	/* If allocation is not consuming a reservation, also store the
2941 	 * hugetlb_cgroup pointer on the page.
2942 	 */
2943 	if (deferred_reserve) {
2944 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2945 						  h_cg, page);
2946 	}
2947 
2948 	spin_unlock_irq(&hugetlb_lock);
2949 
2950 	hugetlb_set_page_subpool(page, spool);
2951 
2952 	map_commit = vma_commit_reservation(h, vma, addr);
2953 	if (unlikely(map_chg > map_commit)) {
2954 		/*
2955 		 * The page was added to the reservation map between
2956 		 * vma_needs_reservation and vma_commit_reservation.
2957 		 * This indicates a race with hugetlb_reserve_pages.
2958 		 * Adjust for the subpool count incremented above AND
2959 		 * in hugetlb_reserve_pages for the same page.  Also,
2960 		 * the reservation count added in hugetlb_reserve_pages
2961 		 * no longer applies.
2962 		 */
2963 		long rsv_adjust;
2964 
2965 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2966 		hugetlb_acct_memory(h, -rsv_adjust);
2967 		if (deferred_reserve)
2968 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2969 					pages_per_huge_page(h), page);
2970 	}
2971 	return page;
2972 
2973 out_uncharge_cgroup:
2974 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2975 out_uncharge_cgroup_reservation:
2976 	if (deferred_reserve)
2977 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2978 						    h_cg);
2979 out_subpool_put:
2980 	if (map_chg || avoid_reserve)
2981 		hugepage_subpool_put_pages(spool, 1);
2982 	vma_end_reservation(h, vma, addr);
2983 	return ERR_PTR(-ENOSPC);
2984 }
2985 
2986 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2987 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2988 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2989 {
2990 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2991 	int nr_nodes, node;
2992 
2993 	/* do node specific alloc */
2994 	if (nid != NUMA_NO_NODE) {
2995 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2996 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2997 		if (!m)
2998 			return 0;
2999 		goto found;
3000 	}
3001 	/* allocate from next node when distributing huge pages */
3002 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3003 		m = memblock_alloc_try_nid_raw(
3004 				huge_page_size(h), huge_page_size(h),
3005 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3006 		/*
3007 		 * Use the beginning of the huge page to store the
3008 		 * huge_bootmem_page struct (until gather_bootmem
3009 		 * puts them into the mem_map).
3010 		 */
3011 		if (!m)
3012 			return 0;
3013 		goto found;
3014 	}
3015 
3016 found:
3017 	/* Put them into a private list first because mem_map is not up yet */
3018 	INIT_LIST_HEAD(&m->list);
3019 	list_add(&m->list, &huge_boot_pages);
3020 	m->hstate = h;
3021 	return 1;
3022 }
3023 
3024 /*
3025  * Put bootmem huge pages into the standard lists after mem_map is up.
3026  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3027  */
3028 static void __init gather_bootmem_prealloc(void)
3029 {
3030 	struct huge_bootmem_page *m;
3031 
3032 	list_for_each_entry(m, &huge_boot_pages, list) {
3033 		struct page *page = virt_to_page(m);
3034 		struct hstate *h = m->hstate;
3035 
3036 		VM_BUG_ON(!hstate_is_gigantic(h));
3037 		WARN_ON(page_count(page) != 1);
3038 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3039 			WARN_ON(PageReserved(page));
3040 			prep_new_huge_page(h, page, page_to_nid(page));
3041 			put_page(page); /* add to the hugepage allocator */
3042 		} else {
3043 			/* VERY unlikely inflated ref count on a tail page */
3044 			free_gigantic_page(page, huge_page_order(h));
3045 		}
3046 
3047 		/*
3048 		 * We need to restore the 'stolen' pages to totalram_pages
3049 		 * in order to fix confusing memory reports from free(1) and
3050 		 * other side-effects, like CommitLimit going negative.
3051 		 */
3052 		adjust_managed_page_count(page, pages_per_huge_page(h));
3053 		cond_resched();
3054 	}
3055 }
3056 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3057 {
3058 	unsigned long i;
3059 	char buf[32];
3060 
3061 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3062 		if (hstate_is_gigantic(h)) {
3063 			if (!alloc_bootmem_huge_page(h, nid))
3064 				break;
3065 		} else {
3066 			struct page *page;
3067 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3068 
3069 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3070 					&node_states[N_MEMORY], NULL);
3071 			if (!page)
3072 				break;
3073 			put_page(page); /* free it into the hugepage allocator */
3074 		}
3075 		cond_resched();
3076 	}
3077 	if (i == h->max_huge_pages_node[nid])
3078 		return;
3079 
3080 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3081 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3082 		h->max_huge_pages_node[nid], buf, nid, i);
3083 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3084 	h->max_huge_pages_node[nid] = i;
3085 }
3086 
3087 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3088 {
3089 	unsigned long i;
3090 	nodemask_t *node_alloc_noretry;
3091 	bool node_specific_alloc = false;
3092 
3093 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3094 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3095 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3096 		return;
3097 	}
3098 
3099 	/* do node specific alloc */
3100 	for_each_online_node(i) {
3101 		if (h->max_huge_pages_node[i] > 0) {
3102 			hugetlb_hstate_alloc_pages_onenode(h, i);
3103 			node_specific_alloc = true;
3104 		}
3105 	}
3106 
3107 	if (node_specific_alloc)
3108 		return;
3109 
3110 	/* below will do all node balanced alloc */
3111 	if (!hstate_is_gigantic(h)) {
3112 		/*
3113 		 * Bit mask controlling how hard we retry per-node allocations.
3114 		 * Ignore errors as lower level routines can deal with
3115 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3116 		 * time, we are likely in bigger trouble.
3117 		 */
3118 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3119 						GFP_KERNEL);
3120 	} else {
3121 		/* allocations done at boot time */
3122 		node_alloc_noretry = NULL;
3123 	}
3124 
3125 	/* bit mask controlling how hard we retry per-node allocations */
3126 	if (node_alloc_noretry)
3127 		nodes_clear(*node_alloc_noretry);
3128 
3129 	for (i = 0; i < h->max_huge_pages; ++i) {
3130 		if (hstate_is_gigantic(h)) {
3131 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3132 				break;
3133 		} else if (!alloc_pool_huge_page(h,
3134 					 &node_states[N_MEMORY],
3135 					 node_alloc_noretry))
3136 			break;
3137 		cond_resched();
3138 	}
3139 	if (i < h->max_huge_pages) {
3140 		char buf[32];
3141 
3142 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3143 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3144 			h->max_huge_pages, buf, i);
3145 		h->max_huge_pages = i;
3146 	}
3147 	kfree(node_alloc_noretry);
3148 }
3149 
3150 static void __init hugetlb_init_hstates(void)
3151 {
3152 	struct hstate *h, *h2;
3153 
3154 	for_each_hstate(h) {
3155 		/* oversize hugepages were init'ed in early boot */
3156 		if (!hstate_is_gigantic(h))
3157 			hugetlb_hstate_alloc_pages(h);
3158 
3159 		/*
3160 		 * Set demote order for each hstate.  Note that
3161 		 * h->demote_order is initially 0.
3162 		 * - We can not demote gigantic pages if runtime freeing
3163 		 *   is not supported, so skip this.
3164 		 * - If CMA allocation is possible, we can not demote
3165 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3166 		 */
3167 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3168 			continue;
3169 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3170 			continue;
3171 		for_each_hstate(h2) {
3172 			if (h2 == h)
3173 				continue;
3174 			if (h2->order < h->order &&
3175 			    h2->order > h->demote_order)
3176 				h->demote_order = h2->order;
3177 		}
3178 	}
3179 }
3180 
3181 static void __init report_hugepages(void)
3182 {
3183 	struct hstate *h;
3184 
3185 	for_each_hstate(h) {
3186 		char buf[32];
3187 
3188 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3190 			buf, h->free_huge_pages);
3191 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3192 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3193 	}
3194 }
3195 
3196 #ifdef CONFIG_HIGHMEM
3197 static void try_to_free_low(struct hstate *h, unsigned long count,
3198 						nodemask_t *nodes_allowed)
3199 {
3200 	int i;
3201 	LIST_HEAD(page_list);
3202 
3203 	lockdep_assert_held(&hugetlb_lock);
3204 	if (hstate_is_gigantic(h))
3205 		return;
3206 
3207 	/*
3208 	 * Collect pages to be freed on a list, and free after dropping lock
3209 	 */
3210 	for_each_node_mask(i, *nodes_allowed) {
3211 		struct page *page, *next;
3212 		struct list_head *freel = &h->hugepage_freelists[i];
3213 		list_for_each_entry_safe(page, next, freel, lru) {
3214 			if (count >= h->nr_huge_pages)
3215 				goto out;
3216 			if (PageHighMem(page))
3217 				continue;
3218 			remove_hugetlb_page(h, page, false);
3219 			list_add(&page->lru, &page_list);
3220 		}
3221 	}
3222 
3223 out:
3224 	spin_unlock_irq(&hugetlb_lock);
3225 	update_and_free_pages_bulk(h, &page_list);
3226 	spin_lock_irq(&hugetlb_lock);
3227 }
3228 #else
3229 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3230 						nodemask_t *nodes_allowed)
3231 {
3232 }
3233 #endif
3234 
3235 /*
3236  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3237  * balanced by operating on them in a round-robin fashion.
3238  * Returns 1 if an adjustment was made.
3239  */
3240 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3241 				int delta)
3242 {
3243 	int nr_nodes, node;
3244 
3245 	lockdep_assert_held(&hugetlb_lock);
3246 	VM_BUG_ON(delta != -1 && delta != 1);
3247 
3248 	if (delta < 0) {
3249 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3250 			if (h->surplus_huge_pages_node[node])
3251 				goto found;
3252 		}
3253 	} else {
3254 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3255 			if (h->surplus_huge_pages_node[node] <
3256 					h->nr_huge_pages_node[node])
3257 				goto found;
3258 		}
3259 	}
3260 	return 0;
3261 
3262 found:
3263 	h->surplus_huge_pages += delta;
3264 	h->surplus_huge_pages_node[node] += delta;
3265 	return 1;
3266 }
3267 
3268 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3269 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3270 			      nodemask_t *nodes_allowed)
3271 {
3272 	unsigned long min_count, ret;
3273 	struct page *page;
3274 	LIST_HEAD(page_list);
3275 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3276 
3277 	/*
3278 	 * Bit mask controlling how hard we retry per-node allocations.
3279 	 * If we can not allocate the bit mask, do not attempt to allocate
3280 	 * the requested huge pages.
3281 	 */
3282 	if (node_alloc_noretry)
3283 		nodes_clear(*node_alloc_noretry);
3284 	else
3285 		return -ENOMEM;
3286 
3287 	/*
3288 	 * resize_lock mutex prevents concurrent adjustments to number of
3289 	 * pages in hstate via the proc/sysfs interfaces.
3290 	 */
3291 	mutex_lock(&h->resize_lock);
3292 	flush_free_hpage_work(h);
3293 	spin_lock_irq(&hugetlb_lock);
3294 
3295 	/*
3296 	 * Check for a node specific request.
3297 	 * Changing node specific huge page count may require a corresponding
3298 	 * change to the global count.  In any case, the passed node mask
3299 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3300 	 */
3301 	if (nid != NUMA_NO_NODE) {
3302 		unsigned long old_count = count;
3303 
3304 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3305 		/*
3306 		 * User may have specified a large count value which caused the
3307 		 * above calculation to overflow.  In this case, they wanted
3308 		 * to allocate as many huge pages as possible.  Set count to
3309 		 * largest possible value to align with their intention.
3310 		 */
3311 		if (count < old_count)
3312 			count = ULONG_MAX;
3313 	}
3314 
3315 	/*
3316 	 * Gigantic pages runtime allocation depend on the capability for large
3317 	 * page range allocation.
3318 	 * If the system does not provide this feature, return an error when
3319 	 * the user tries to allocate gigantic pages but let the user free the
3320 	 * boottime allocated gigantic pages.
3321 	 */
3322 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3323 		if (count > persistent_huge_pages(h)) {
3324 			spin_unlock_irq(&hugetlb_lock);
3325 			mutex_unlock(&h->resize_lock);
3326 			NODEMASK_FREE(node_alloc_noretry);
3327 			return -EINVAL;
3328 		}
3329 		/* Fall through to decrease pool */
3330 	}
3331 
3332 	/*
3333 	 * Increase the pool size
3334 	 * First take pages out of surplus state.  Then make up the
3335 	 * remaining difference by allocating fresh huge pages.
3336 	 *
3337 	 * We might race with alloc_surplus_huge_page() here and be unable
3338 	 * to convert a surplus huge page to a normal huge page. That is
3339 	 * not critical, though, it just means the overall size of the
3340 	 * pool might be one hugepage larger than it needs to be, but
3341 	 * within all the constraints specified by the sysctls.
3342 	 */
3343 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3344 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3345 			break;
3346 	}
3347 
3348 	while (count > persistent_huge_pages(h)) {
3349 		/*
3350 		 * If this allocation races such that we no longer need the
3351 		 * page, free_huge_page will handle it by freeing the page
3352 		 * and reducing the surplus.
3353 		 */
3354 		spin_unlock_irq(&hugetlb_lock);
3355 
3356 		/* yield cpu to avoid soft lockup */
3357 		cond_resched();
3358 
3359 		ret = alloc_pool_huge_page(h, nodes_allowed,
3360 						node_alloc_noretry);
3361 		spin_lock_irq(&hugetlb_lock);
3362 		if (!ret)
3363 			goto out;
3364 
3365 		/* Bail for signals. Probably ctrl-c from user */
3366 		if (signal_pending(current))
3367 			goto out;
3368 	}
3369 
3370 	/*
3371 	 * Decrease the pool size
3372 	 * First return free pages to the buddy allocator (being careful
3373 	 * to keep enough around to satisfy reservations).  Then place
3374 	 * pages into surplus state as needed so the pool will shrink
3375 	 * to the desired size as pages become free.
3376 	 *
3377 	 * By placing pages into the surplus state independent of the
3378 	 * overcommit value, we are allowing the surplus pool size to
3379 	 * exceed overcommit. There are few sane options here. Since
3380 	 * alloc_surplus_huge_page() is checking the global counter,
3381 	 * though, we'll note that we're not allowed to exceed surplus
3382 	 * and won't grow the pool anywhere else. Not until one of the
3383 	 * sysctls are changed, or the surplus pages go out of use.
3384 	 */
3385 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3386 	min_count = max(count, min_count);
3387 	try_to_free_low(h, min_count, nodes_allowed);
3388 
3389 	/*
3390 	 * Collect pages to be removed on list without dropping lock
3391 	 */
3392 	while (min_count < persistent_huge_pages(h)) {
3393 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3394 		if (!page)
3395 			break;
3396 
3397 		list_add(&page->lru, &page_list);
3398 	}
3399 	/* free the pages after dropping lock */
3400 	spin_unlock_irq(&hugetlb_lock);
3401 	update_and_free_pages_bulk(h, &page_list);
3402 	flush_free_hpage_work(h);
3403 	spin_lock_irq(&hugetlb_lock);
3404 
3405 	while (count < persistent_huge_pages(h)) {
3406 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3407 			break;
3408 	}
3409 out:
3410 	h->max_huge_pages = persistent_huge_pages(h);
3411 	spin_unlock_irq(&hugetlb_lock);
3412 	mutex_unlock(&h->resize_lock);
3413 
3414 	NODEMASK_FREE(node_alloc_noretry);
3415 
3416 	return 0;
3417 }
3418 
3419 static int demote_free_huge_page(struct hstate *h, struct page *page)
3420 {
3421 	int i, nid = page_to_nid(page);
3422 	struct hstate *target_hstate;
3423 	struct page *subpage;
3424 	int rc = 0;
3425 
3426 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3427 
3428 	remove_hugetlb_page_for_demote(h, page, false);
3429 	spin_unlock_irq(&hugetlb_lock);
3430 
3431 	rc = hugetlb_vmemmap_restore(h, page);
3432 	if (rc) {
3433 		/* Allocation of vmemmmap failed, we can not demote page */
3434 		spin_lock_irq(&hugetlb_lock);
3435 		set_page_refcounted(page);
3436 		add_hugetlb_page(h, page, false);
3437 		return rc;
3438 	}
3439 
3440 	/*
3441 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3442 	 * sizes as it will not ref count pages.
3443 	 */
3444 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3445 
3446 	/*
3447 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3448 	 * Without the mutex, pages added to target hstate could be marked
3449 	 * as surplus.
3450 	 *
3451 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3452 	 * use the convention of always taking larger size hstate mutex first.
3453 	 */
3454 	mutex_lock(&target_hstate->resize_lock);
3455 	for (i = 0; i < pages_per_huge_page(h);
3456 				i += pages_per_huge_page(target_hstate)) {
3457 		subpage = nth_page(page, i);
3458 		if (hstate_is_gigantic(target_hstate))
3459 			prep_compound_gigantic_page_for_demote(subpage,
3460 							target_hstate->order);
3461 		else
3462 			prep_compound_page(subpage, target_hstate->order);
3463 		set_page_private(subpage, 0);
3464 		set_page_refcounted(subpage);
3465 		prep_new_huge_page(target_hstate, subpage, nid);
3466 		put_page(subpage);
3467 	}
3468 	mutex_unlock(&target_hstate->resize_lock);
3469 
3470 	spin_lock_irq(&hugetlb_lock);
3471 
3472 	/*
3473 	 * Not absolutely necessary, but for consistency update max_huge_pages
3474 	 * based on pool changes for the demoted page.
3475 	 */
3476 	h->max_huge_pages--;
3477 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3478 
3479 	return rc;
3480 }
3481 
3482 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3483 	__must_hold(&hugetlb_lock)
3484 {
3485 	int nr_nodes, node;
3486 	struct page *page;
3487 
3488 	lockdep_assert_held(&hugetlb_lock);
3489 
3490 	/* We should never get here if no demote order */
3491 	if (!h->demote_order) {
3492 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3493 		return -EINVAL;		/* internal error */
3494 	}
3495 
3496 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3497 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3498 			if (PageHWPoison(page))
3499 				continue;
3500 
3501 			return demote_free_huge_page(h, page);
3502 		}
3503 	}
3504 
3505 	/*
3506 	 * Only way to get here is if all pages on free lists are poisoned.
3507 	 * Return -EBUSY so that caller will not retry.
3508 	 */
3509 	return -EBUSY;
3510 }
3511 
3512 #define HSTATE_ATTR_RO(_name) \
3513 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3514 
3515 #define HSTATE_ATTR_WO(_name) \
3516 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3517 
3518 #define HSTATE_ATTR(_name) \
3519 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3520 
3521 static struct kobject *hugepages_kobj;
3522 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3523 
3524 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3525 
3526 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3527 {
3528 	int i;
3529 
3530 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3531 		if (hstate_kobjs[i] == kobj) {
3532 			if (nidp)
3533 				*nidp = NUMA_NO_NODE;
3534 			return &hstates[i];
3535 		}
3536 
3537 	return kobj_to_node_hstate(kobj, nidp);
3538 }
3539 
3540 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3541 					struct kobj_attribute *attr, char *buf)
3542 {
3543 	struct hstate *h;
3544 	unsigned long nr_huge_pages;
3545 	int nid;
3546 
3547 	h = kobj_to_hstate(kobj, &nid);
3548 	if (nid == NUMA_NO_NODE)
3549 		nr_huge_pages = h->nr_huge_pages;
3550 	else
3551 		nr_huge_pages = h->nr_huge_pages_node[nid];
3552 
3553 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3554 }
3555 
3556 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3557 					   struct hstate *h, int nid,
3558 					   unsigned long count, size_t len)
3559 {
3560 	int err;
3561 	nodemask_t nodes_allowed, *n_mask;
3562 
3563 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3564 		return -EINVAL;
3565 
3566 	if (nid == NUMA_NO_NODE) {
3567 		/*
3568 		 * global hstate attribute
3569 		 */
3570 		if (!(obey_mempolicy &&
3571 				init_nodemask_of_mempolicy(&nodes_allowed)))
3572 			n_mask = &node_states[N_MEMORY];
3573 		else
3574 			n_mask = &nodes_allowed;
3575 	} else {
3576 		/*
3577 		 * Node specific request.  count adjustment happens in
3578 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3579 		 */
3580 		init_nodemask_of_node(&nodes_allowed, nid);
3581 		n_mask = &nodes_allowed;
3582 	}
3583 
3584 	err = set_max_huge_pages(h, count, nid, n_mask);
3585 
3586 	return err ? err : len;
3587 }
3588 
3589 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3590 					 struct kobject *kobj, const char *buf,
3591 					 size_t len)
3592 {
3593 	struct hstate *h;
3594 	unsigned long count;
3595 	int nid;
3596 	int err;
3597 
3598 	err = kstrtoul(buf, 10, &count);
3599 	if (err)
3600 		return err;
3601 
3602 	h = kobj_to_hstate(kobj, &nid);
3603 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3604 }
3605 
3606 static ssize_t nr_hugepages_show(struct kobject *kobj,
3607 				       struct kobj_attribute *attr, char *buf)
3608 {
3609 	return nr_hugepages_show_common(kobj, attr, buf);
3610 }
3611 
3612 static ssize_t nr_hugepages_store(struct kobject *kobj,
3613 	       struct kobj_attribute *attr, const char *buf, size_t len)
3614 {
3615 	return nr_hugepages_store_common(false, kobj, buf, len);
3616 }
3617 HSTATE_ATTR(nr_hugepages);
3618 
3619 #ifdef CONFIG_NUMA
3620 
3621 /*
3622  * hstate attribute for optionally mempolicy-based constraint on persistent
3623  * huge page alloc/free.
3624  */
3625 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3626 					   struct kobj_attribute *attr,
3627 					   char *buf)
3628 {
3629 	return nr_hugepages_show_common(kobj, attr, buf);
3630 }
3631 
3632 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3633 	       struct kobj_attribute *attr, const char *buf, size_t len)
3634 {
3635 	return nr_hugepages_store_common(true, kobj, buf, len);
3636 }
3637 HSTATE_ATTR(nr_hugepages_mempolicy);
3638 #endif
3639 
3640 
3641 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3642 					struct kobj_attribute *attr, char *buf)
3643 {
3644 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3645 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3646 }
3647 
3648 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3649 		struct kobj_attribute *attr, const char *buf, size_t count)
3650 {
3651 	int err;
3652 	unsigned long input;
3653 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3654 
3655 	if (hstate_is_gigantic(h))
3656 		return -EINVAL;
3657 
3658 	err = kstrtoul(buf, 10, &input);
3659 	if (err)
3660 		return err;
3661 
3662 	spin_lock_irq(&hugetlb_lock);
3663 	h->nr_overcommit_huge_pages = input;
3664 	spin_unlock_irq(&hugetlb_lock);
3665 
3666 	return count;
3667 }
3668 HSTATE_ATTR(nr_overcommit_hugepages);
3669 
3670 static ssize_t free_hugepages_show(struct kobject *kobj,
3671 					struct kobj_attribute *attr, char *buf)
3672 {
3673 	struct hstate *h;
3674 	unsigned long free_huge_pages;
3675 	int nid;
3676 
3677 	h = kobj_to_hstate(kobj, &nid);
3678 	if (nid == NUMA_NO_NODE)
3679 		free_huge_pages = h->free_huge_pages;
3680 	else
3681 		free_huge_pages = h->free_huge_pages_node[nid];
3682 
3683 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3684 }
3685 HSTATE_ATTR_RO(free_hugepages);
3686 
3687 static ssize_t resv_hugepages_show(struct kobject *kobj,
3688 					struct kobj_attribute *attr, char *buf)
3689 {
3690 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3691 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3692 }
3693 HSTATE_ATTR_RO(resv_hugepages);
3694 
3695 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3696 					struct kobj_attribute *attr, char *buf)
3697 {
3698 	struct hstate *h;
3699 	unsigned long surplus_huge_pages;
3700 	int nid;
3701 
3702 	h = kobj_to_hstate(kobj, &nid);
3703 	if (nid == NUMA_NO_NODE)
3704 		surplus_huge_pages = h->surplus_huge_pages;
3705 	else
3706 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3707 
3708 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3709 }
3710 HSTATE_ATTR_RO(surplus_hugepages);
3711 
3712 static ssize_t demote_store(struct kobject *kobj,
3713 	       struct kobj_attribute *attr, const char *buf, size_t len)
3714 {
3715 	unsigned long nr_demote;
3716 	unsigned long nr_available;
3717 	nodemask_t nodes_allowed, *n_mask;
3718 	struct hstate *h;
3719 	int err = 0;
3720 	int nid;
3721 
3722 	err = kstrtoul(buf, 10, &nr_demote);
3723 	if (err)
3724 		return err;
3725 	h = kobj_to_hstate(kobj, &nid);
3726 
3727 	if (nid != NUMA_NO_NODE) {
3728 		init_nodemask_of_node(&nodes_allowed, nid);
3729 		n_mask = &nodes_allowed;
3730 	} else {
3731 		n_mask = &node_states[N_MEMORY];
3732 	}
3733 
3734 	/* Synchronize with other sysfs operations modifying huge pages */
3735 	mutex_lock(&h->resize_lock);
3736 	spin_lock_irq(&hugetlb_lock);
3737 
3738 	while (nr_demote) {
3739 		/*
3740 		 * Check for available pages to demote each time thorough the
3741 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3742 		 */
3743 		if (nid != NUMA_NO_NODE)
3744 			nr_available = h->free_huge_pages_node[nid];
3745 		else
3746 			nr_available = h->free_huge_pages;
3747 		nr_available -= h->resv_huge_pages;
3748 		if (!nr_available)
3749 			break;
3750 
3751 		err = demote_pool_huge_page(h, n_mask);
3752 		if (err)
3753 			break;
3754 
3755 		nr_demote--;
3756 	}
3757 
3758 	spin_unlock_irq(&hugetlb_lock);
3759 	mutex_unlock(&h->resize_lock);
3760 
3761 	if (err)
3762 		return err;
3763 	return len;
3764 }
3765 HSTATE_ATTR_WO(demote);
3766 
3767 static ssize_t demote_size_show(struct kobject *kobj,
3768 					struct kobj_attribute *attr, char *buf)
3769 {
3770 	int nid;
3771 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3772 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3773 
3774 	return sysfs_emit(buf, "%lukB\n", demote_size);
3775 }
3776 
3777 static ssize_t demote_size_store(struct kobject *kobj,
3778 					struct kobj_attribute *attr,
3779 					const char *buf, size_t count)
3780 {
3781 	struct hstate *h, *demote_hstate;
3782 	unsigned long demote_size;
3783 	unsigned int demote_order;
3784 	int nid;
3785 
3786 	demote_size = (unsigned long)memparse(buf, NULL);
3787 
3788 	demote_hstate = size_to_hstate(demote_size);
3789 	if (!demote_hstate)
3790 		return -EINVAL;
3791 	demote_order = demote_hstate->order;
3792 	if (demote_order < HUGETLB_PAGE_ORDER)
3793 		return -EINVAL;
3794 
3795 	/* demote order must be smaller than hstate order */
3796 	h = kobj_to_hstate(kobj, &nid);
3797 	if (demote_order >= h->order)
3798 		return -EINVAL;
3799 
3800 	/* resize_lock synchronizes access to demote size and writes */
3801 	mutex_lock(&h->resize_lock);
3802 	h->demote_order = demote_order;
3803 	mutex_unlock(&h->resize_lock);
3804 
3805 	return count;
3806 }
3807 HSTATE_ATTR(demote_size);
3808 
3809 static struct attribute *hstate_attrs[] = {
3810 	&nr_hugepages_attr.attr,
3811 	&nr_overcommit_hugepages_attr.attr,
3812 	&free_hugepages_attr.attr,
3813 	&resv_hugepages_attr.attr,
3814 	&surplus_hugepages_attr.attr,
3815 #ifdef CONFIG_NUMA
3816 	&nr_hugepages_mempolicy_attr.attr,
3817 #endif
3818 	NULL,
3819 };
3820 
3821 static const struct attribute_group hstate_attr_group = {
3822 	.attrs = hstate_attrs,
3823 };
3824 
3825 static struct attribute *hstate_demote_attrs[] = {
3826 	&demote_size_attr.attr,
3827 	&demote_attr.attr,
3828 	NULL,
3829 };
3830 
3831 static const struct attribute_group hstate_demote_attr_group = {
3832 	.attrs = hstate_demote_attrs,
3833 };
3834 
3835 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3836 				    struct kobject **hstate_kobjs,
3837 				    const struct attribute_group *hstate_attr_group)
3838 {
3839 	int retval;
3840 	int hi = hstate_index(h);
3841 
3842 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3843 	if (!hstate_kobjs[hi])
3844 		return -ENOMEM;
3845 
3846 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3847 	if (retval) {
3848 		kobject_put(hstate_kobjs[hi]);
3849 		hstate_kobjs[hi] = NULL;
3850 	}
3851 
3852 	if (h->demote_order) {
3853 		if (sysfs_create_group(hstate_kobjs[hi],
3854 					&hstate_demote_attr_group))
3855 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3856 	}
3857 
3858 	return retval;
3859 }
3860 
3861 static void __init hugetlb_sysfs_init(void)
3862 {
3863 	struct hstate *h;
3864 	int err;
3865 
3866 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3867 	if (!hugepages_kobj)
3868 		return;
3869 
3870 	for_each_hstate(h) {
3871 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3872 					 hstate_kobjs, &hstate_attr_group);
3873 		if (err)
3874 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3875 	}
3876 }
3877 
3878 #ifdef CONFIG_NUMA
3879 
3880 /*
3881  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3882  * with node devices in node_devices[] using a parallel array.  The array
3883  * index of a node device or _hstate == node id.
3884  * This is here to avoid any static dependency of the node device driver, in
3885  * the base kernel, on the hugetlb module.
3886  */
3887 struct node_hstate {
3888 	struct kobject		*hugepages_kobj;
3889 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3890 };
3891 static struct node_hstate node_hstates[MAX_NUMNODES];
3892 
3893 /*
3894  * A subset of global hstate attributes for node devices
3895  */
3896 static struct attribute *per_node_hstate_attrs[] = {
3897 	&nr_hugepages_attr.attr,
3898 	&free_hugepages_attr.attr,
3899 	&surplus_hugepages_attr.attr,
3900 	NULL,
3901 };
3902 
3903 static const struct attribute_group per_node_hstate_attr_group = {
3904 	.attrs = per_node_hstate_attrs,
3905 };
3906 
3907 /*
3908  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3909  * Returns node id via non-NULL nidp.
3910  */
3911 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3912 {
3913 	int nid;
3914 
3915 	for (nid = 0; nid < nr_node_ids; nid++) {
3916 		struct node_hstate *nhs = &node_hstates[nid];
3917 		int i;
3918 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3919 			if (nhs->hstate_kobjs[i] == kobj) {
3920 				if (nidp)
3921 					*nidp = nid;
3922 				return &hstates[i];
3923 			}
3924 	}
3925 
3926 	BUG();
3927 	return NULL;
3928 }
3929 
3930 /*
3931  * Unregister hstate attributes from a single node device.
3932  * No-op if no hstate attributes attached.
3933  */
3934 static void hugetlb_unregister_node(struct node *node)
3935 {
3936 	struct hstate *h;
3937 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3938 
3939 	if (!nhs->hugepages_kobj)
3940 		return;		/* no hstate attributes */
3941 
3942 	for_each_hstate(h) {
3943 		int idx = hstate_index(h);
3944 		if (nhs->hstate_kobjs[idx]) {
3945 			kobject_put(nhs->hstate_kobjs[idx]);
3946 			nhs->hstate_kobjs[idx] = NULL;
3947 		}
3948 	}
3949 
3950 	kobject_put(nhs->hugepages_kobj);
3951 	nhs->hugepages_kobj = NULL;
3952 }
3953 
3954 
3955 /*
3956  * Register hstate attributes for a single node device.
3957  * No-op if attributes already registered.
3958  */
3959 static void hugetlb_register_node(struct node *node)
3960 {
3961 	struct hstate *h;
3962 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3963 	int err;
3964 
3965 	if (nhs->hugepages_kobj)
3966 		return;		/* already allocated */
3967 
3968 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3969 							&node->dev.kobj);
3970 	if (!nhs->hugepages_kobj)
3971 		return;
3972 
3973 	for_each_hstate(h) {
3974 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3975 						nhs->hstate_kobjs,
3976 						&per_node_hstate_attr_group);
3977 		if (err) {
3978 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3979 				h->name, node->dev.id);
3980 			hugetlb_unregister_node(node);
3981 			break;
3982 		}
3983 	}
3984 }
3985 
3986 /*
3987  * hugetlb init time:  register hstate attributes for all registered node
3988  * devices of nodes that have memory.  All on-line nodes should have
3989  * registered their associated device by this time.
3990  */
3991 static void __init hugetlb_register_all_nodes(void)
3992 {
3993 	int nid;
3994 
3995 	for_each_node_state(nid, N_MEMORY) {
3996 		struct node *node = node_devices[nid];
3997 		if (node->dev.id == nid)
3998 			hugetlb_register_node(node);
3999 	}
4000 
4001 	/*
4002 	 * Let the node device driver know we're here so it can
4003 	 * [un]register hstate attributes on node hotplug.
4004 	 */
4005 	register_hugetlbfs_with_node(hugetlb_register_node,
4006 				     hugetlb_unregister_node);
4007 }
4008 #else	/* !CONFIG_NUMA */
4009 
4010 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4011 {
4012 	BUG();
4013 	if (nidp)
4014 		*nidp = -1;
4015 	return NULL;
4016 }
4017 
4018 static void hugetlb_register_all_nodes(void) { }
4019 
4020 #endif
4021 
4022 static int __init hugetlb_init(void)
4023 {
4024 	int i;
4025 
4026 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4027 			__NR_HPAGEFLAGS);
4028 
4029 	if (!hugepages_supported()) {
4030 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4031 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4032 		return 0;
4033 	}
4034 
4035 	/*
4036 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4037 	 * architectures depend on setup being done here.
4038 	 */
4039 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4040 	if (!parsed_default_hugepagesz) {
4041 		/*
4042 		 * If we did not parse a default huge page size, set
4043 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4044 		 * number of huge pages for this default size was implicitly
4045 		 * specified, set that here as well.
4046 		 * Note that the implicit setting will overwrite an explicit
4047 		 * setting.  A warning will be printed in this case.
4048 		 */
4049 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4050 		if (default_hstate_max_huge_pages) {
4051 			if (default_hstate.max_huge_pages) {
4052 				char buf[32];
4053 
4054 				string_get_size(huge_page_size(&default_hstate),
4055 					1, STRING_UNITS_2, buf, 32);
4056 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4057 					default_hstate.max_huge_pages, buf);
4058 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4059 					default_hstate_max_huge_pages);
4060 			}
4061 			default_hstate.max_huge_pages =
4062 				default_hstate_max_huge_pages;
4063 
4064 			for_each_online_node(i)
4065 				default_hstate.max_huge_pages_node[i] =
4066 					default_hugepages_in_node[i];
4067 		}
4068 	}
4069 
4070 	hugetlb_cma_check();
4071 	hugetlb_init_hstates();
4072 	gather_bootmem_prealloc();
4073 	report_hugepages();
4074 
4075 	hugetlb_sysfs_init();
4076 	hugetlb_register_all_nodes();
4077 	hugetlb_cgroup_file_init();
4078 
4079 #ifdef CONFIG_SMP
4080 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4081 #else
4082 	num_fault_mutexes = 1;
4083 #endif
4084 	hugetlb_fault_mutex_table =
4085 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4086 			      GFP_KERNEL);
4087 	BUG_ON(!hugetlb_fault_mutex_table);
4088 
4089 	for (i = 0; i < num_fault_mutexes; i++)
4090 		mutex_init(&hugetlb_fault_mutex_table[i]);
4091 	return 0;
4092 }
4093 subsys_initcall(hugetlb_init);
4094 
4095 /* Overwritten by architectures with more huge page sizes */
4096 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4097 {
4098 	return size == HPAGE_SIZE;
4099 }
4100 
4101 void __init hugetlb_add_hstate(unsigned int order)
4102 {
4103 	struct hstate *h;
4104 	unsigned long i;
4105 
4106 	if (size_to_hstate(PAGE_SIZE << order)) {
4107 		return;
4108 	}
4109 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4110 	BUG_ON(order == 0);
4111 	h = &hstates[hugetlb_max_hstate++];
4112 	mutex_init(&h->resize_lock);
4113 	h->order = order;
4114 	h->mask = ~(huge_page_size(h) - 1);
4115 	for (i = 0; i < MAX_NUMNODES; ++i)
4116 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4117 	INIT_LIST_HEAD(&h->hugepage_activelist);
4118 	h->next_nid_to_alloc = first_memory_node;
4119 	h->next_nid_to_free = first_memory_node;
4120 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4121 					huge_page_size(h)/1024);
4122 
4123 	parsed_hstate = h;
4124 }
4125 
4126 bool __init __weak hugetlb_node_alloc_supported(void)
4127 {
4128 	return true;
4129 }
4130 
4131 static void __init hugepages_clear_pages_in_node(void)
4132 {
4133 	if (!hugetlb_max_hstate) {
4134 		default_hstate_max_huge_pages = 0;
4135 		memset(default_hugepages_in_node, 0,
4136 			MAX_NUMNODES * sizeof(unsigned int));
4137 	} else {
4138 		parsed_hstate->max_huge_pages = 0;
4139 		memset(parsed_hstate->max_huge_pages_node, 0,
4140 			MAX_NUMNODES * sizeof(unsigned int));
4141 	}
4142 }
4143 
4144 /*
4145  * hugepages command line processing
4146  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4147  * specification.  If not, ignore the hugepages value.  hugepages can also
4148  * be the first huge page command line  option in which case it implicitly
4149  * specifies the number of huge pages for the default size.
4150  */
4151 static int __init hugepages_setup(char *s)
4152 {
4153 	unsigned long *mhp;
4154 	static unsigned long *last_mhp;
4155 	int node = NUMA_NO_NODE;
4156 	int count;
4157 	unsigned long tmp;
4158 	char *p = s;
4159 
4160 	if (!parsed_valid_hugepagesz) {
4161 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4162 		parsed_valid_hugepagesz = true;
4163 		return 1;
4164 	}
4165 
4166 	/*
4167 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4168 	 * yet, so this hugepages= parameter goes to the "default hstate".
4169 	 * Otherwise, it goes with the previously parsed hugepagesz or
4170 	 * default_hugepagesz.
4171 	 */
4172 	else if (!hugetlb_max_hstate)
4173 		mhp = &default_hstate_max_huge_pages;
4174 	else
4175 		mhp = &parsed_hstate->max_huge_pages;
4176 
4177 	if (mhp == last_mhp) {
4178 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4179 		return 1;
4180 	}
4181 
4182 	while (*p) {
4183 		count = 0;
4184 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4185 			goto invalid;
4186 		/* Parameter is node format */
4187 		if (p[count] == ':') {
4188 			if (!hugetlb_node_alloc_supported()) {
4189 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4190 				return 1;
4191 			}
4192 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4193 				goto invalid;
4194 			node = array_index_nospec(tmp, MAX_NUMNODES);
4195 			p += count + 1;
4196 			/* Parse hugepages */
4197 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4198 				goto invalid;
4199 			if (!hugetlb_max_hstate)
4200 				default_hugepages_in_node[node] = tmp;
4201 			else
4202 				parsed_hstate->max_huge_pages_node[node] = tmp;
4203 			*mhp += tmp;
4204 			/* Go to parse next node*/
4205 			if (p[count] == ',')
4206 				p += count + 1;
4207 			else
4208 				break;
4209 		} else {
4210 			if (p != s)
4211 				goto invalid;
4212 			*mhp = tmp;
4213 			break;
4214 		}
4215 	}
4216 
4217 	/*
4218 	 * Global state is always initialized later in hugetlb_init.
4219 	 * But we need to allocate gigantic hstates here early to still
4220 	 * use the bootmem allocator.
4221 	 */
4222 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4223 		hugetlb_hstate_alloc_pages(parsed_hstate);
4224 
4225 	last_mhp = mhp;
4226 
4227 	return 1;
4228 
4229 invalid:
4230 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4231 	hugepages_clear_pages_in_node();
4232 	return 1;
4233 }
4234 __setup("hugepages=", hugepages_setup);
4235 
4236 /*
4237  * hugepagesz command line processing
4238  * A specific huge page size can only be specified once with hugepagesz.
4239  * hugepagesz is followed by hugepages on the command line.  The global
4240  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4241  * hugepagesz argument was valid.
4242  */
4243 static int __init hugepagesz_setup(char *s)
4244 {
4245 	unsigned long size;
4246 	struct hstate *h;
4247 
4248 	parsed_valid_hugepagesz = false;
4249 	size = (unsigned long)memparse(s, NULL);
4250 
4251 	if (!arch_hugetlb_valid_size(size)) {
4252 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4253 		return 1;
4254 	}
4255 
4256 	h = size_to_hstate(size);
4257 	if (h) {
4258 		/*
4259 		 * hstate for this size already exists.  This is normally
4260 		 * an error, but is allowed if the existing hstate is the
4261 		 * default hstate.  More specifically, it is only allowed if
4262 		 * the number of huge pages for the default hstate was not
4263 		 * previously specified.
4264 		 */
4265 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4266 		    default_hstate.max_huge_pages) {
4267 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4268 			return 1;
4269 		}
4270 
4271 		/*
4272 		 * No need to call hugetlb_add_hstate() as hstate already
4273 		 * exists.  But, do set parsed_hstate so that a following
4274 		 * hugepages= parameter will be applied to this hstate.
4275 		 */
4276 		parsed_hstate = h;
4277 		parsed_valid_hugepagesz = true;
4278 		return 1;
4279 	}
4280 
4281 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4282 	parsed_valid_hugepagesz = true;
4283 	return 1;
4284 }
4285 __setup("hugepagesz=", hugepagesz_setup);
4286 
4287 /*
4288  * default_hugepagesz command line input
4289  * Only one instance of default_hugepagesz allowed on command line.
4290  */
4291 static int __init default_hugepagesz_setup(char *s)
4292 {
4293 	unsigned long size;
4294 	int i;
4295 
4296 	parsed_valid_hugepagesz = false;
4297 	if (parsed_default_hugepagesz) {
4298 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4299 		return 1;
4300 	}
4301 
4302 	size = (unsigned long)memparse(s, NULL);
4303 
4304 	if (!arch_hugetlb_valid_size(size)) {
4305 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4306 		return 1;
4307 	}
4308 
4309 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4310 	parsed_valid_hugepagesz = true;
4311 	parsed_default_hugepagesz = true;
4312 	default_hstate_idx = hstate_index(size_to_hstate(size));
4313 
4314 	/*
4315 	 * The number of default huge pages (for this size) could have been
4316 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4317 	 * then default_hstate_max_huge_pages is set.  If the default huge
4318 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4319 	 * allocated here from bootmem allocator.
4320 	 */
4321 	if (default_hstate_max_huge_pages) {
4322 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4323 		for_each_online_node(i)
4324 			default_hstate.max_huge_pages_node[i] =
4325 				default_hugepages_in_node[i];
4326 		if (hstate_is_gigantic(&default_hstate))
4327 			hugetlb_hstate_alloc_pages(&default_hstate);
4328 		default_hstate_max_huge_pages = 0;
4329 	}
4330 
4331 	return 1;
4332 }
4333 __setup("default_hugepagesz=", default_hugepagesz_setup);
4334 
4335 static unsigned int allowed_mems_nr(struct hstate *h)
4336 {
4337 	int node;
4338 	unsigned int nr = 0;
4339 	nodemask_t *mpol_allowed;
4340 	unsigned int *array = h->free_huge_pages_node;
4341 	gfp_t gfp_mask = htlb_alloc_mask(h);
4342 
4343 	mpol_allowed = policy_nodemask_current(gfp_mask);
4344 
4345 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4346 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4347 			nr += array[node];
4348 	}
4349 
4350 	return nr;
4351 }
4352 
4353 #ifdef CONFIG_SYSCTL
4354 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4355 					  void *buffer, size_t *length,
4356 					  loff_t *ppos, unsigned long *out)
4357 {
4358 	struct ctl_table dup_table;
4359 
4360 	/*
4361 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4362 	 * can duplicate the @table and alter the duplicate of it.
4363 	 */
4364 	dup_table = *table;
4365 	dup_table.data = out;
4366 
4367 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4368 }
4369 
4370 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4371 			 struct ctl_table *table, int write,
4372 			 void *buffer, size_t *length, loff_t *ppos)
4373 {
4374 	struct hstate *h = &default_hstate;
4375 	unsigned long tmp = h->max_huge_pages;
4376 	int ret;
4377 
4378 	if (!hugepages_supported())
4379 		return -EOPNOTSUPP;
4380 
4381 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4382 					     &tmp);
4383 	if (ret)
4384 		goto out;
4385 
4386 	if (write)
4387 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4388 						  NUMA_NO_NODE, tmp, *length);
4389 out:
4390 	return ret;
4391 }
4392 
4393 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4394 			  void *buffer, size_t *length, loff_t *ppos)
4395 {
4396 
4397 	return hugetlb_sysctl_handler_common(false, table, write,
4398 							buffer, length, ppos);
4399 }
4400 
4401 #ifdef CONFIG_NUMA
4402 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4403 			  void *buffer, size_t *length, loff_t *ppos)
4404 {
4405 	return hugetlb_sysctl_handler_common(true, table, write,
4406 							buffer, length, ppos);
4407 }
4408 #endif /* CONFIG_NUMA */
4409 
4410 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4411 		void *buffer, size_t *length, loff_t *ppos)
4412 {
4413 	struct hstate *h = &default_hstate;
4414 	unsigned long tmp;
4415 	int ret;
4416 
4417 	if (!hugepages_supported())
4418 		return -EOPNOTSUPP;
4419 
4420 	tmp = h->nr_overcommit_huge_pages;
4421 
4422 	if (write && hstate_is_gigantic(h))
4423 		return -EINVAL;
4424 
4425 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4426 					     &tmp);
4427 	if (ret)
4428 		goto out;
4429 
4430 	if (write) {
4431 		spin_lock_irq(&hugetlb_lock);
4432 		h->nr_overcommit_huge_pages = tmp;
4433 		spin_unlock_irq(&hugetlb_lock);
4434 	}
4435 out:
4436 	return ret;
4437 }
4438 
4439 #endif /* CONFIG_SYSCTL */
4440 
4441 void hugetlb_report_meminfo(struct seq_file *m)
4442 {
4443 	struct hstate *h;
4444 	unsigned long total = 0;
4445 
4446 	if (!hugepages_supported())
4447 		return;
4448 
4449 	for_each_hstate(h) {
4450 		unsigned long count = h->nr_huge_pages;
4451 
4452 		total += huge_page_size(h) * count;
4453 
4454 		if (h == &default_hstate)
4455 			seq_printf(m,
4456 				   "HugePages_Total:   %5lu\n"
4457 				   "HugePages_Free:    %5lu\n"
4458 				   "HugePages_Rsvd:    %5lu\n"
4459 				   "HugePages_Surp:    %5lu\n"
4460 				   "Hugepagesize:   %8lu kB\n",
4461 				   count,
4462 				   h->free_huge_pages,
4463 				   h->resv_huge_pages,
4464 				   h->surplus_huge_pages,
4465 				   huge_page_size(h) / SZ_1K);
4466 	}
4467 
4468 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4469 }
4470 
4471 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4472 {
4473 	struct hstate *h = &default_hstate;
4474 
4475 	if (!hugepages_supported())
4476 		return 0;
4477 
4478 	return sysfs_emit_at(buf, len,
4479 			     "Node %d HugePages_Total: %5u\n"
4480 			     "Node %d HugePages_Free:  %5u\n"
4481 			     "Node %d HugePages_Surp:  %5u\n",
4482 			     nid, h->nr_huge_pages_node[nid],
4483 			     nid, h->free_huge_pages_node[nid],
4484 			     nid, h->surplus_huge_pages_node[nid]);
4485 }
4486 
4487 void hugetlb_show_meminfo_node(int nid)
4488 {
4489 	struct hstate *h;
4490 
4491 	if (!hugepages_supported())
4492 		return;
4493 
4494 	for_each_hstate(h)
4495 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4496 			nid,
4497 			h->nr_huge_pages_node[nid],
4498 			h->free_huge_pages_node[nid],
4499 			h->surplus_huge_pages_node[nid],
4500 			huge_page_size(h) / SZ_1K);
4501 }
4502 
4503 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4504 {
4505 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4506 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4507 }
4508 
4509 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4510 unsigned long hugetlb_total_pages(void)
4511 {
4512 	struct hstate *h;
4513 	unsigned long nr_total_pages = 0;
4514 
4515 	for_each_hstate(h)
4516 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4517 	return nr_total_pages;
4518 }
4519 
4520 static int hugetlb_acct_memory(struct hstate *h, long delta)
4521 {
4522 	int ret = -ENOMEM;
4523 
4524 	if (!delta)
4525 		return 0;
4526 
4527 	spin_lock_irq(&hugetlb_lock);
4528 	/*
4529 	 * When cpuset is configured, it breaks the strict hugetlb page
4530 	 * reservation as the accounting is done on a global variable. Such
4531 	 * reservation is completely rubbish in the presence of cpuset because
4532 	 * the reservation is not checked against page availability for the
4533 	 * current cpuset. Application can still potentially OOM'ed by kernel
4534 	 * with lack of free htlb page in cpuset that the task is in.
4535 	 * Attempt to enforce strict accounting with cpuset is almost
4536 	 * impossible (or too ugly) because cpuset is too fluid that
4537 	 * task or memory node can be dynamically moved between cpusets.
4538 	 *
4539 	 * The change of semantics for shared hugetlb mapping with cpuset is
4540 	 * undesirable. However, in order to preserve some of the semantics,
4541 	 * we fall back to check against current free page availability as
4542 	 * a best attempt and hopefully to minimize the impact of changing
4543 	 * semantics that cpuset has.
4544 	 *
4545 	 * Apart from cpuset, we also have memory policy mechanism that
4546 	 * also determines from which node the kernel will allocate memory
4547 	 * in a NUMA system. So similar to cpuset, we also should consider
4548 	 * the memory policy of the current task. Similar to the description
4549 	 * above.
4550 	 */
4551 	if (delta > 0) {
4552 		if (gather_surplus_pages(h, delta) < 0)
4553 			goto out;
4554 
4555 		if (delta > allowed_mems_nr(h)) {
4556 			return_unused_surplus_pages(h, delta);
4557 			goto out;
4558 		}
4559 	}
4560 
4561 	ret = 0;
4562 	if (delta < 0)
4563 		return_unused_surplus_pages(h, (unsigned long) -delta);
4564 
4565 out:
4566 	spin_unlock_irq(&hugetlb_lock);
4567 	return ret;
4568 }
4569 
4570 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4571 {
4572 	struct resv_map *resv = vma_resv_map(vma);
4573 
4574 	/*
4575 	 * This new VMA should share its siblings reservation map if present.
4576 	 * The VMA will only ever have a valid reservation map pointer where
4577 	 * it is being copied for another still existing VMA.  As that VMA
4578 	 * has a reference to the reservation map it cannot disappear until
4579 	 * after this open call completes.  It is therefore safe to take a
4580 	 * new reference here without additional locking.
4581 	 */
4582 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4583 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4584 		kref_get(&resv->refs);
4585 	}
4586 }
4587 
4588 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4589 {
4590 	struct hstate *h = hstate_vma(vma);
4591 	struct resv_map *resv = vma_resv_map(vma);
4592 	struct hugepage_subpool *spool = subpool_vma(vma);
4593 	unsigned long reserve, start, end;
4594 	long gbl_reserve;
4595 
4596 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4597 		return;
4598 
4599 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4600 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4601 
4602 	reserve = (end - start) - region_count(resv, start, end);
4603 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4604 	if (reserve) {
4605 		/*
4606 		 * Decrement reserve counts.  The global reserve count may be
4607 		 * adjusted if the subpool has a minimum size.
4608 		 */
4609 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4610 		hugetlb_acct_memory(h, -gbl_reserve);
4611 	}
4612 
4613 	kref_put(&resv->refs, resv_map_release);
4614 }
4615 
4616 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4617 {
4618 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4619 		return -EINVAL;
4620 	return 0;
4621 }
4622 
4623 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4624 {
4625 	return huge_page_size(hstate_vma(vma));
4626 }
4627 
4628 /*
4629  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4630  * handle_mm_fault() to try to instantiate regular-sized pages in the
4631  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4632  * this far.
4633  */
4634 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4635 {
4636 	BUG();
4637 	return 0;
4638 }
4639 
4640 /*
4641  * When a new function is introduced to vm_operations_struct and added
4642  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4643  * This is because under System V memory model, mappings created via
4644  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4645  * their original vm_ops are overwritten with shm_vm_ops.
4646  */
4647 const struct vm_operations_struct hugetlb_vm_ops = {
4648 	.fault = hugetlb_vm_op_fault,
4649 	.open = hugetlb_vm_op_open,
4650 	.close = hugetlb_vm_op_close,
4651 	.may_split = hugetlb_vm_op_split,
4652 	.pagesize = hugetlb_vm_op_pagesize,
4653 };
4654 
4655 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4656 				int writable)
4657 {
4658 	pte_t entry;
4659 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4660 
4661 	if (writable) {
4662 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4663 					 vma->vm_page_prot)));
4664 	} else {
4665 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4666 					   vma->vm_page_prot));
4667 	}
4668 	entry = pte_mkyoung(entry);
4669 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4670 
4671 	return entry;
4672 }
4673 
4674 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4675 				   unsigned long address, pte_t *ptep)
4676 {
4677 	pte_t entry;
4678 
4679 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4680 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4681 		update_mmu_cache(vma, address, ptep);
4682 }
4683 
4684 bool is_hugetlb_entry_migration(pte_t pte)
4685 {
4686 	swp_entry_t swp;
4687 
4688 	if (huge_pte_none(pte) || pte_present(pte))
4689 		return false;
4690 	swp = pte_to_swp_entry(pte);
4691 	if (is_migration_entry(swp))
4692 		return true;
4693 	else
4694 		return false;
4695 }
4696 
4697 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4698 {
4699 	swp_entry_t swp;
4700 
4701 	if (huge_pte_none(pte) || pte_present(pte))
4702 		return false;
4703 	swp = pte_to_swp_entry(pte);
4704 	if (is_hwpoison_entry(swp))
4705 		return true;
4706 	else
4707 		return false;
4708 }
4709 
4710 static void
4711 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4712 		     struct page *new_page)
4713 {
4714 	__SetPageUptodate(new_page);
4715 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4716 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4717 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4718 	ClearHPageRestoreReserve(new_page);
4719 	SetHPageMigratable(new_page);
4720 }
4721 
4722 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4723 			    struct vm_area_struct *dst_vma,
4724 			    struct vm_area_struct *src_vma)
4725 {
4726 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4727 	struct page *ptepage;
4728 	unsigned long addr;
4729 	bool cow = is_cow_mapping(src_vma->vm_flags);
4730 	struct hstate *h = hstate_vma(src_vma);
4731 	unsigned long sz = huge_page_size(h);
4732 	unsigned long npages = pages_per_huge_page(h);
4733 	struct address_space *mapping = src_vma->vm_file->f_mapping;
4734 	struct mmu_notifier_range range;
4735 	unsigned long last_addr_mask;
4736 	int ret = 0;
4737 
4738 	if (cow) {
4739 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4740 					src_vma->vm_start,
4741 					src_vma->vm_end);
4742 		mmu_notifier_invalidate_range_start(&range);
4743 		mmap_assert_write_locked(src);
4744 		raw_write_seqcount_begin(&src->write_protect_seq);
4745 	} else {
4746 		/*
4747 		 * For shared mappings i_mmap_rwsem must be held to call
4748 		 * huge_pte_alloc, otherwise the returned ptep could go
4749 		 * away if part of a shared pmd and another thread calls
4750 		 * huge_pmd_unshare.
4751 		 */
4752 		i_mmap_lock_read(mapping);
4753 	}
4754 
4755 	last_addr_mask = hugetlb_mask_last_page(h);
4756 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4757 		spinlock_t *src_ptl, *dst_ptl;
4758 		src_pte = huge_pte_offset(src, addr, sz);
4759 		if (!src_pte) {
4760 			addr |= last_addr_mask;
4761 			continue;
4762 		}
4763 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4764 		if (!dst_pte) {
4765 			ret = -ENOMEM;
4766 			break;
4767 		}
4768 
4769 		/*
4770 		 * If the pagetables are shared don't copy or take references.
4771 		 * dst_pte == src_pte is the common case of src/dest sharing.
4772 		 *
4773 		 * However, src could have 'unshared' and dst shares with
4774 		 * another vma.  If dst_pte !none, this implies sharing.
4775 		 * Check here before taking page table lock, and once again
4776 		 * after taking the lock below.
4777 		 */
4778 		dst_entry = huge_ptep_get(dst_pte);
4779 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) {
4780 			addr |= last_addr_mask;
4781 			continue;
4782 		}
4783 
4784 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4785 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4786 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4787 		entry = huge_ptep_get(src_pte);
4788 		dst_entry = huge_ptep_get(dst_pte);
4789 again:
4790 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4791 			/*
4792 			 * Skip if src entry none.  Also, skip in the
4793 			 * unlikely case dst entry !none as this implies
4794 			 * sharing with another vma.
4795 			 */
4796 			;
4797 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4798 			bool uffd_wp = huge_pte_uffd_wp(entry);
4799 
4800 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4801 				entry = huge_pte_clear_uffd_wp(entry);
4802 			set_huge_pte_at(dst, addr, dst_pte, entry);
4803 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4804 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4805 			bool uffd_wp = huge_pte_uffd_wp(entry);
4806 
4807 			if (!is_readable_migration_entry(swp_entry) && cow) {
4808 				/*
4809 				 * COW mappings require pages in both
4810 				 * parent and child to be set to read.
4811 				 */
4812 				swp_entry = make_readable_migration_entry(
4813 							swp_offset(swp_entry));
4814 				entry = swp_entry_to_pte(swp_entry);
4815 				if (userfaultfd_wp(src_vma) && uffd_wp)
4816 					entry = huge_pte_mkuffd_wp(entry);
4817 				set_huge_pte_at(src, addr, src_pte, entry);
4818 			}
4819 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4820 				entry = huge_pte_clear_uffd_wp(entry);
4821 			set_huge_pte_at(dst, addr, dst_pte, entry);
4822 		} else if (unlikely(is_pte_marker(entry))) {
4823 			/*
4824 			 * We copy the pte marker only if the dst vma has
4825 			 * uffd-wp enabled.
4826 			 */
4827 			if (userfaultfd_wp(dst_vma))
4828 				set_huge_pte_at(dst, addr, dst_pte, entry);
4829 		} else {
4830 			entry = huge_ptep_get(src_pte);
4831 			ptepage = pte_page(entry);
4832 			get_page(ptepage);
4833 
4834 			/*
4835 			 * Failing to duplicate the anon rmap is a rare case
4836 			 * where we see pinned hugetlb pages while they're
4837 			 * prone to COW. We need to do the COW earlier during
4838 			 * fork.
4839 			 *
4840 			 * When pre-allocating the page or copying data, we
4841 			 * need to be without the pgtable locks since we could
4842 			 * sleep during the process.
4843 			 */
4844 			if (!PageAnon(ptepage)) {
4845 				page_dup_file_rmap(ptepage, true);
4846 			} else if (page_try_dup_anon_rmap(ptepage, true,
4847 							  src_vma)) {
4848 				pte_t src_pte_old = entry;
4849 				struct page *new;
4850 
4851 				spin_unlock(src_ptl);
4852 				spin_unlock(dst_ptl);
4853 				/* Do not use reserve as it's private owned */
4854 				new = alloc_huge_page(dst_vma, addr, 1);
4855 				if (IS_ERR(new)) {
4856 					put_page(ptepage);
4857 					ret = PTR_ERR(new);
4858 					break;
4859 				}
4860 				copy_user_huge_page(new, ptepage, addr, dst_vma,
4861 						    npages);
4862 				put_page(ptepage);
4863 
4864 				/* Install the new huge page if src pte stable */
4865 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4866 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4867 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4868 				entry = huge_ptep_get(src_pte);
4869 				if (!pte_same(src_pte_old, entry)) {
4870 					restore_reserve_on_error(h, dst_vma, addr,
4871 								new);
4872 					put_page(new);
4873 					/* dst_entry won't change as in child */
4874 					goto again;
4875 				}
4876 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4877 				spin_unlock(src_ptl);
4878 				spin_unlock(dst_ptl);
4879 				continue;
4880 			}
4881 
4882 			if (cow) {
4883 				/*
4884 				 * No need to notify as we are downgrading page
4885 				 * table protection not changing it to point
4886 				 * to a new page.
4887 				 *
4888 				 * See Documentation/mm/mmu_notifier.rst
4889 				 */
4890 				huge_ptep_set_wrprotect(src, addr, src_pte);
4891 				entry = huge_pte_wrprotect(entry);
4892 			}
4893 
4894 			set_huge_pte_at(dst, addr, dst_pte, entry);
4895 			hugetlb_count_add(npages, dst);
4896 		}
4897 		spin_unlock(src_ptl);
4898 		spin_unlock(dst_ptl);
4899 	}
4900 
4901 	if (cow) {
4902 		raw_write_seqcount_end(&src->write_protect_seq);
4903 		mmu_notifier_invalidate_range_end(&range);
4904 	} else {
4905 		i_mmap_unlock_read(mapping);
4906 	}
4907 
4908 	return ret;
4909 }
4910 
4911 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4912 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4913 {
4914 	struct hstate *h = hstate_vma(vma);
4915 	struct mm_struct *mm = vma->vm_mm;
4916 	spinlock_t *src_ptl, *dst_ptl;
4917 	pte_t pte;
4918 
4919 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4920 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4921 
4922 	/*
4923 	 * We don't have to worry about the ordering of src and dst ptlocks
4924 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4925 	 */
4926 	if (src_ptl != dst_ptl)
4927 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4928 
4929 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4930 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4931 
4932 	if (src_ptl != dst_ptl)
4933 		spin_unlock(src_ptl);
4934 	spin_unlock(dst_ptl);
4935 }
4936 
4937 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4938 			     struct vm_area_struct *new_vma,
4939 			     unsigned long old_addr, unsigned long new_addr,
4940 			     unsigned long len)
4941 {
4942 	struct hstate *h = hstate_vma(vma);
4943 	struct address_space *mapping = vma->vm_file->f_mapping;
4944 	unsigned long sz = huge_page_size(h);
4945 	struct mm_struct *mm = vma->vm_mm;
4946 	unsigned long old_end = old_addr + len;
4947 	unsigned long last_addr_mask;
4948 	pte_t *src_pte, *dst_pte;
4949 	struct mmu_notifier_range range;
4950 	bool shared_pmd = false;
4951 
4952 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4953 				old_end);
4954 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4955 	/*
4956 	 * In case of shared PMDs, we should cover the maximum possible
4957 	 * range.
4958 	 */
4959 	flush_cache_range(vma, range.start, range.end);
4960 
4961 	mmu_notifier_invalidate_range_start(&range);
4962 	last_addr_mask = hugetlb_mask_last_page(h);
4963 	/* Prevent race with file truncation */
4964 	i_mmap_lock_write(mapping);
4965 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4966 		src_pte = huge_pte_offset(mm, old_addr, sz);
4967 		if (!src_pte) {
4968 			old_addr |= last_addr_mask;
4969 			new_addr |= last_addr_mask;
4970 			continue;
4971 		}
4972 		if (huge_pte_none(huge_ptep_get(src_pte)))
4973 			continue;
4974 
4975 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
4976 			shared_pmd = true;
4977 			old_addr |= last_addr_mask;
4978 			new_addr |= last_addr_mask;
4979 			continue;
4980 		}
4981 
4982 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4983 		if (!dst_pte)
4984 			break;
4985 
4986 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4987 	}
4988 
4989 	if (shared_pmd)
4990 		flush_tlb_range(vma, range.start, range.end);
4991 	else
4992 		flush_tlb_range(vma, old_end - len, old_end);
4993 	mmu_notifier_invalidate_range_end(&range);
4994 	i_mmap_unlock_write(mapping);
4995 
4996 	return len + old_addr - old_end;
4997 }
4998 
4999 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5000 				   unsigned long start, unsigned long end,
5001 				   struct page *ref_page, zap_flags_t zap_flags)
5002 {
5003 	struct mm_struct *mm = vma->vm_mm;
5004 	unsigned long address;
5005 	pte_t *ptep;
5006 	pte_t pte;
5007 	spinlock_t *ptl;
5008 	struct page *page;
5009 	struct hstate *h = hstate_vma(vma);
5010 	unsigned long sz = huge_page_size(h);
5011 	struct mmu_notifier_range range;
5012 	unsigned long last_addr_mask;
5013 	bool force_flush = false;
5014 
5015 	WARN_ON(!is_vm_hugetlb_page(vma));
5016 	BUG_ON(start & ~huge_page_mask(h));
5017 	BUG_ON(end & ~huge_page_mask(h));
5018 
5019 	/*
5020 	 * This is a hugetlb vma, all the pte entries should point
5021 	 * to huge page.
5022 	 */
5023 	tlb_change_page_size(tlb, sz);
5024 	tlb_start_vma(tlb, vma);
5025 
5026 	/*
5027 	 * If sharing possible, alert mmu notifiers of worst case.
5028 	 */
5029 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5030 				end);
5031 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5032 	mmu_notifier_invalidate_range_start(&range);
5033 	last_addr_mask = hugetlb_mask_last_page(h);
5034 	address = start;
5035 	for (; address < end; address += sz) {
5036 		ptep = huge_pte_offset(mm, address, sz);
5037 		if (!ptep) {
5038 			address |= last_addr_mask;
5039 			continue;
5040 		}
5041 
5042 		ptl = huge_pte_lock(h, mm, ptep);
5043 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5044 			spin_unlock(ptl);
5045 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5046 			force_flush = true;
5047 			address |= last_addr_mask;
5048 			continue;
5049 		}
5050 
5051 		pte = huge_ptep_get(ptep);
5052 		if (huge_pte_none(pte)) {
5053 			spin_unlock(ptl);
5054 			continue;
5055 		}
5056 
5057 		/*
5058 		 * Migrating hugepage or HWPoisoned hugepage is already
5059 		 * unmapped and its refcount is dropped, so just clear pte here.
5060 		 */
5061 		if (unlikely(!pte_present(pte))) {
5062 			/*
5063 			 * If the pte was wr-protected by uffd-wp in any of the
5064 			 * swap forms, meanwhile the caller does not want to
5065 			 * drop the uffd-wp bit in this zap, then replace the
5066 			 * pte with a marker.
5067 			 */
5068 			if (pte_swp_uffd_wp_any(pte) &&
5069 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5070 				set_huge_pte_at(mm, address, ptep,
5071 						make_pte_marker(PTE_MARKER_UFFD_WP));
5072 			else
5073 				huge_pte_clear(mm, address, ptep, sz);
5074 			spin_unlock(ptl);
5075 			continue;
5076 		}
5077 
5078 		page = pte_page(pte);
5079 		/*
5080 		 * If a reference page is supplied, it is because a specific
5081 		 * page is being unmapped, not a range. Ensure the page we
5082 		 * are about to unmap is the actual page of interest.
5083 		 */
5084 		if (ref_page) {
5085 			if (page != ref_page) {
5086 				spin_unlock(ptl);
5087 				continue;
5088 			}
5089 			/*
5090 			 * Mark the VMA as having unmapped its page so that
5091 			 * future faults in this VMA will fail rather than
5092 			 * looking like data was lost
5093 			 */
5094 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5095 		}
5096 
5097 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5098 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5099 		if (huge_pte_dirty(pte))
5100 			set_page_dirty(page);
5101 		/* Leave a uffd-wp pte marker if needed */
5102 		if (huge_pte_uffd_wp(pte) &&
5103 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5104 			set_huge_pte_at(mm, address, ptep,
5105 					make_pte_marker(PTE_MARKER_UFFD_WP));
5106 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5107 		page_remove_rmap(page, vma, true);
5108 
5109 		spin_unlock(ptl);
5110 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5111 		/*
5112 		 * Bail out after unmapping reference page if supplied
5113 		 */
5114 		if (ref_page)
5115 			break;
5116 	}
5117 	mmu_notifier_invalidate_range_end(&range);
5118 	tlb_end_vma(tlb, vma);
5119 
5120 	/*
5121 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5122 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5123 	 * guaranteed that the last refernece would not be dropped. But we must
5124 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5125 	 * dropped and the last reference to the shared PMDs page might be
5126 	 * dropped as well.
5127 	 *
5128 	 * In theory we could defer the freeing of the PMD pages as well, but
5129 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5130 	 * detect sharing, so we cannot defer the release of the page either.
5131 	 * Instead, do flush now.
5132 	 */
5133 	if (force_flush)
5134 		tlb_flush_mmu_tlbonly(tlb);
5135 }
5136 
5137 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5138 			  struct vm_area_struct *vma, unsigned long start,
5139 			  unsigned long end, struct page *ref_page,
5140 			  zap_flags_t zap_flags)
5141 {
5142 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5143 
5144 	/*
5145 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5146 	 * test will fail on a vma being torn down, and not grab a page table
5147 	 * on its way out.  We're lucky that the flag has such an appropriate
5148 	 * name, and can in fact be safely cleared here. We could clear it
5149 	 * before the __unmap_hugepage_range above, but all that's necessary
5150 	 * is to clear it before releasing the i_mmap_rwsem. This works
5151 	 * because in the context this is called, the VMA is about to be
5152 	 * destroyed and the i_mmap_rwsem is held.
5153 	 */
5154 	vma->vm_flags &= ~VM_MAYSHARE;
5155 }
5156 
5157 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5158 			  unsigned long end, struct page *ref_page,
5159 			  zap_flags_t zap_flags)
5160 {
5161 	struct mmu_gather tlb;
5162 
5163 	tlb_gather_mmu(&tlb, vma->vm_mm);
5164 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5165 	tlb_finish_mmu(&tlb);
5166 }
5167 
5168 /*
5169  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5170  * mapping it owns the reserve page for. The intention is to unmap the page
5171  * from other VMAs and let the children be SIGKILLed if they are faulting the
5172  * same region.
5173  */
5174 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5175 			      struct page *page, unsigned long address)
5176 {
5177 	struct hstate *h = hstate_vma(vma);
5178 	struct vm_area_struct *iter_vma;
5179 	struct address_space *mapping;
5180 	pgoff_t pgoff;
5181 
5182 	/*
5183 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5184 	 * from page cache lookup which is in HPAGE_SIZE units.
5185 	 */
5186 	address = address & huge_page_mask(h);
5187 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5188 			vma->vm_pgoff;
5189 	mapping = vma->vm_file->f_mapping;
5190 
5191 	/*
5192 	 * Take the mapping lock for the duration of the table walk. As
5193 	 * this mapping should be shared between all the VMAs,
5194 	 * __unmap_hugepage_range() is called as the lock is already held
5195 	 */
5196 	i_mmap_lock_write(mapping);
5197 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5198 		/* Do not unmap the current VMA */
5199 		if (iter_vma == vma)
5200 			continue;
5201 
5202 		/*
5203 		 * Shared VMAs have their own reserves and do not affect
5204 		 * MAP_PRIVATE accounting but it is possible that a shared
5205 		 * VMA is using the same page so check and skip such VMAs.
5206 		 */
5207 		if (iter_vma->vm_flags & VM_MAYSHARE)
5208 			continue;
5209 
5210 		/*
5211 		 * Unmap the page from other VMAs without their own reserves.
5212 		 * They get marked to be SIGKILLed if they fault in these
5213 		 * areas. This is because a future no-page fault on this VMA
5214 		 * could insert a zeroed page instead of the data existing
5215 		 * from the time of fork. This would look like data corruption
5216 		 */
5217 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5218 			unmap_hugepage_range(iter_vma, address,
5219 					     address + huge_page_size(h), page, 0);
5220 	}
5221 	i_mmap_unlock_write(mapping);
5222 }
5223 
5224 /*
5225  * hugetlb_wp() should be called with page lock of the original hugepage held.
5226  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5227  * cannot race with other handlers or page migration.
5228  * Keep the pte_same checks anyway to make transition from the mutex easier.
5229  */
5230 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5231 		       unsigned long address, pte_t *ptep, unsigned int flags,
5232 		       struct page *pagecache_page, spinlock_t *ptl)
5233 {
5234 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5235 	pte_t pte;
5236 	struct hstate *h = hstate_vma(vma);
5237 	struct page *old_page, *new_page;
5238 	int outside_reserve = 0;
5239 	vm_fault_t ret = 0;
5240 	unsigned long haddr = address & huge_page_mask(h);
5241 	struct mmu_notifier_range range;
5242 
5243 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5244 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5245 
5246 	/*
5247 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5248 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5249 	 */
5250 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5251 		return VM_FAULT_SIGSEGV;
5252 
5253 	/* Let's take out MAP_SHARED mappings first. */
5254 	if (vma->vm_flags & VM_MAYSHARE) {
5255 		if (unlikely(unshare))
5256 			return 0;
5257 		set_huge_ptep_writable(vma, haddr, ptep);
5258 		return 0;
5259 	}
5260 
5261 	pte = huge_ptep_get(ptep);
5262 	old_page = pte_page(pte);
5263 
5264 	delayacct_wpcopy_start();
5265 
5266 retry_avoidcopy:
5267 	/*
5268 	 * If no-one else is actually using this page, we're the exclusive
5269 	 * owner and can reuse this page.
5270 	 */
5271 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5272 		if (!PageAnonExclusive(old_page))
5273 			page_move_anon_rmap(old_page, vma);
5274 		if (likely(!unshare))
5275 			set_huge_ptep_writable(vma, haddr, ptep);
5276 
5277 		delayacct_wpcopy_end();
5278 		return 0;
5279 	}
5280 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5281 		       old_page);
5282 
5283 	/*
5284 	 * If the process that created a MAP_PRIVATE mapping is about to
5285 	 * perform a COW due to a shared page count, attempt to satisfy
5286 	 * the allocation without using the existing reserves. The pagecache
5287 	 * page is used to determine if the reserve at this address was
5288 	 * consumed or not. If reserves were used, a partial faulted mapping
5289 	 * at the time of fork() could consume its reserves on COW instead
5290 	 * of the full address range.
5291 	 */
5292 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5293 			old_page != pagecache_page)
5294 		outside_reserve = 1;
5295 
5296 	get_page(old_page);
5297 
5298 	/*
5299 	 * Drop page table lock as buddy allocator may be called. It will
5300 	 * be acquired again before returning to the caller, as expected.
5301 	 */
5302 	spin_unlock(ptl);
5303 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5304 
5305 	if (IS_ERR(new_page)) {
5306 		/*
5307 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5308 		 * it is due to references held by a child and an insufficient
5309 		 * huge page pool. To guarantee the original mappers
5310 		 * reliability, unmap the page from child processes. The child
5311 		 * may get SIGKILLed if it later faults.
5312 		 */
5313 		if (outside_reserve) {
5314 			struct address_space *mapping = vma->vm_file->f_mapping;
5315 			pgoff_t idx;
5316 			u32 hash;
5317 
5318 			put_page(old_page);
5319 			BUG_ON(huge_pte_none(pte));
5320 			/*
5321 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5322 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5323 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5324 			 * here is OK as COW mappings do not interact with
5325 			 * PMD sharing.
5326 			 *
5327 			 * Reacquire both after unmap operation.
5328 			 */
5329 			idx = vma_hugecache_offset(h, vma, haddr);
5330 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5331 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5332 			i_mmap_unlock_read(mapping);
5333 
5334 			unmap_ref_private(mm, vma, old_page, haddr);
5335 
5336 			i_mmap_lock_read(mapping);
5337 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5338 			spin_lock(ptl);
5339 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5340 			if (likely(ptep &&
5341 				   pte_same(huge_ptep_get(ptep), pte)))
5342 				goto retry_avoidcopy;
5343 			/*
5344 			 * race occurs while re-acquiring page table
5345 			 * lock, and our job is done.
5346 			 */
5347 			delayacct_wpcopy_end();
5348 			return 0;
5349 		}
5350 
5351 		ret = vmf_error(PTR_ERR(new_page));
5352 		goto out_release_old;
5353 	}
5354 
5355 	/*
5356 	 * When the original hugepage is shared one, it does not have
5357 	 * anon_vma prepared.
5358 	 */
5359 	if (unlikely(anon_vma_prepare(vma))) {
5360 		ret = VM_FAULT_OOM;
5361 		goto out_release_all;
5362 	}
5363 
5364 	copy_user_huge_page(new_page, old_page, address, vma,
5365 			    pages_per_huge_page(h));
5366 	__SetPageUptodate(new_page);
5367 
5368 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5369 				haddr + huge_page_size(h));
5370 	mmu_notifier_invalidate_range_start(&range);
5371 
5372 	/*
5373 	 * Retake the page table lock to check for racing updates
5374 	 * before the page tables are altered
5375 	 */
5376 	spin_lock(ptl);
5377 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5378 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5379 		ClearHPageRestoreReserve(new_page);
5380 
5381 		/* Break COW or unshare */
5382 		huge_ptep_clear_flush(vma, haddr, ptep);
5383 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5384 		page_remove_rmap(old_page, vma, true);
5385 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5386 		set_huge_pte_at(mm, haddr, ptep,
5387 				make_huge_pte(vma, new_page, !unshare));
5388 		SetHPageMigratable(new_page);
5389 		/* Make the old page be freed below */
5390 		new_page = old_page;
5391 	}
5392 	spin_unlock(ptl);
5393 	mmu_notifier_invalidate_range_end(&range);
5394 out_release_all:
5395 	/*
5396 	 * No restore in case of successful pagetable update (Break COW or
5397 	 * unshare)
5398 	 */
5399 	if (new_page != old_page)
5400 		restore_reserve_on_error(h, vma, haddr, new_page);
5401 	put_page(new_page);
5402 out_release_old:
5403 	put_page(old_page);
5404 
5405 	spin_lock(ptl); /* Caller expects lock to be held */
5406 
5407 	delayacct_wpcopy_end();
5408 	return ret;
5409 }
5410 
5411 /* Return the pagecache page at a given address within a VMA */
5412 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5413 			struct vm_area_struct *vma, unsigned long address)
5414 {
5415 	struct address_space *mapping;
5416 	pgoff_t idx;
5417 
5418 	mapping = vma->vm_file->f_mapping;
5419 	idx = vma_hugecache_offset(h, vma, address);
5420 
5421 	return find_lock_page(mapping, idx);
5422 }
5423 
5424 /*
5425  * Return whether there is a pagecache page to back given address within VMA.
5426  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5427  */
5428 static bool hugetlbfs_pagecache_present(struct hstate *h,
5429 			struct vm_area_struct *vma, unsigned long address)
5430 {
5431 	struct address_space *mapping;
5432 	pgoff_t idx;
5433 	struct page *page;
5434 
5435 	mapping = vma->vm_file->f_mapping;
5436 	idx = vma_hugecache_offset(h, vma, address);
5437 
5438 	page = find_get_page(mapping, idx);
5439 	if (page)
5440 		put_page(page);
5441 	return page != NULL;
5442 }
5443 
5444 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5445 			   pgoff_t idx)
5446 {
5447 	struct folio *folio = page_folio(page);
5448 	struct inode *inode = mapping->host;
5449 	struct hstate *h = hstate_inode(inode);
5450 	int err;
5451 
5452 	__folio_set_locked(folio);
5453 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5454 
5455 	if (unlikely(err)) {
5456 		__folio_clear_locked(folio);
5457 		return err;
5458 	}
5459 	ClearHPageRestoreReserve(page);
5460 
5461 	/*
5462 	 * mark folio dirty so that it will not be removed from cache/file
5463 	 * by non-hugetlbfs specific code paths.
5464 	 */
5465 	folio_mark_dirty(folio);
5466 
5467 	spin_lock(&inode->i_lock);
5468 	inode->i_blocks += blocks_per_huge_page(h);
5469 	spin_unlock(&inode->i_lock);
5470 	return 0;
5471 }
5472 
5473 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5474 						  struct address_space *mapping,
5475 						  pgoff_t idx,
5476 						  unsigned int flags,
5477 						  unsigned long haddr,
5478 						  unsigned long addr,
5479 						  unsigned long reason)
5480 {
5481 	vm_fault_t ret;
5482 	u32 hash;
5483 	struct vm_fault vmf = {
5484 		.vma = vma,
5485 		.address = haddr,
5486 		.real_address = addr,
5487 		.flags = flags,
5488 
5489 		/*
5490 		 * Hard to debug if it ends up being
5491 		 * used by a callee that assumes
5492 		 * something about the other
5493 		 * uninitialized fields... same as in
5494 		 * memory.c
5495 		 */
5496 	};
5497 
5498 	/*
5499 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5500 	 * dropped before handling userfault.  Reacquire
5501 	 * after handling fault to make calling code simpler.
5502 	 */
5503 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5504 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5505 	i_mmap_unlock_read(mapping);
5506 	ret = handle_userfault(&vmf, reason);
5507 	i_mmap_lock_read(mapping);
5508 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5509 
5510 	return ret;
5511 }
5512 
5513 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5514 			struct vm_area_struct *vma,
5515 			struct address_space *mapping, pgoff_t idx,
5516 			unsigned long address, pte_t *ptep,
5517 			pte_t old_pte, unsigned int flags)
5518 {
5519 	struct hstate *h = hstate_vma(vma);
5520 	vm_fault_t ret = VM_FAULT_SIGBUS;
5521 	int anon_rmap = 0;
5522 	unsigned long size;
5523 	struct page *page;
5524 	pte_t new_pte;
5525 	spinlock_t *ptl;
5526 	unsigned long haddr = address & huge_page_mask(h);
5527 	bool new_page, new_pagecache_page = false;
5528 
5529 	/*
5530 	 * Currently, we are forced to kill the process in the event the
5531 	 * original mapper has unmapped pages from the child due to a failed
5532 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5533 	 * be obvious.
5534 	 */
5535 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5536 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5537 			   current->pid);
5538 		return ret;
5539 	}
5540 
5541 	/*
5542 	 * We can not race with truncation due to holding i_mmap_rwsem.
5543 	 * i_size is modified when holding i_mmap_rwsem, so check here
5544 	 * once for faults beyond end of file.
5545 	 */
5546 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5547 	if (idx >= size)
5548 		goto out;
5549 
5550 retry:
5551 	new_page = false;
5552 	page = find_lock_page(mapping, idx);
5553 	if (!page) {
5554 		/* Check for page in userfault range */
5555 		if (userfaultfd_missing(vma)) {
5556 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5557 						       flags, haddr, address,
5558 						       VM_UFFD_MISSING);
5559 			goto out;
5560 		}
5561 
5562 		page = alloc_huge_page(vma, haddr, 0);
5563 		if (IS_ERR(page)) {
5564 			/*
5565 			 * Returning error will result in faulting task being
5566 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5567 			 * tasks from racing to fault in the same page which
5568 			 * could result in false unable to allocate errors.
5569 			 * Page migration does not take the fault mutex, but
5570 			 * does a clear then write of pte's under page table
5571 			 * lock.  Page fault code could race with migration,
5572 			 * notice the clear pte and try to allocate a page
5573 			 * here.  Before returning error, get ptl and make
5574 			 * sure there really is no pte entry.
5575 			 */
5576 			ptl = huge_pte_lock(h, mm, ptep);
5577 			ret = 0;
5578 			if (huge_pte_none(huge_ptep_get(ptep)))
5579 				ret = vmf_error(PTR_ERR(page));
5580 			spin_unlock(ptl);
5581 			goto out;
5582 		}
5583 		clear_huge_page(page, address, pages_per_huge_page(h));
5584 		__SetPageUptodate(page);
5585 		new_page = true;
5586 
5587 		if (vma->vm_flags & VM_MAYSHARE) {
5588 			int err = huge_add_to_page_cache(page, mapping, idx);
5589 			if (err) {
5590 				put_page(page);
5591 				if (err == -EEXIST)
5592 					goto retry;
5593 				goto out;
5594 			}
5595 			new_pagecache_page = true;
5596 		} else {
5597 			lock_page(page);
5598 			if (unlikely(anon_vma_prepare(vma))) {
5599 				ret = VM_FAULT_OOM;
5600 				goto backout_unlocked;
5601 			}
5602 			anon_rmap = 1;
5603 		}
5604 	} else {
5605 		/*
5606 		 * If memory error occurs between mmap() and fault, some process
5607 		 * don't have hwpoisoned swap entry for errored virtual address.
5608 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5609 		 */
5610 		if (unlikely(PageHWPoison(page))) {
5611 			ret = VM_FAULT_HWPOISON_LARGE |
5612 				VM_FAULT_SET_HINDEX(hstate_index(h));
5613 			goto backout_unlocked;
5614 		}
5615 
5616 		/* Check for page in userfault range. */
5617 		if (userfaultfd_minor(vma)) {
5618 			unlock_page(page);
5619 			put_page(page);
5620 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5621 						       flags, haddr, address,
5622 						       VM_UFFD_MINOR);
5623 			goto out;
5624 		}
5625 	}
5626 
5627 	/*
5628 	 * If we are going to COW a private mapping later, we examine the
5629 	 * pending reservations for this page now. This will ensure that
5630 	 * any allocations necessary to record that reservation occur outside
5631 	 * the spinlock.
5632 	 */
5633 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5634 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5635 			ret = VM_FAULT_OOM;
5636 			goto backout_unlocked;
5637 		}
5638 		/* Just decrements count, does not deallocate */
5639 		vma_end_reservation(h, vma, haddr);
5640 	}
5641 
5642 	ptl = huge_pte_lock(h, mm, ptep);
5643 	ret = 0;
5644 	/* If pte changed from under us, retry */
5645 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5646 		goto backout;
5647 
5648 	if (anon_rmap) {
5649 		ClearHPageRestoreReserve(page);
5650 		hugepage_add_new_anon_rmap(page, vma, haddr);
5651 	} else
5652 		page_dup_file_rmap(page, true);
5653 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5654 				&& (vma->vm_flags & VM_SHARED)));
5655 	/*
5656 	 * If this pte was previously wr-protected, keep it wr-protected even
5657 	 * if populated.
5658 	 */
5659 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5660 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5661 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5662 
5663 	hugetlb_count_add(pages_per_huge_page(h), mm);
5664 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5665 		/* Optimization, do the COW without a second fault */
5666 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5667 	}
5668 
5669 	spin_unlock(ptl);
5670 
5671 	/*
5672 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5673 	 * found in the pagecache may not have HPageMigratableset if they have
5674 	 * been isolated for migration.
5675 	 */
5676 	if (new_page)
5677 		SetHPageMigratable(page);
5678 
5679 	unlock_page(page);
5680 out:
5681 	return ret;
5682 
5683 backout:
5684 	spin_unlock(ptl);
5685 backout_unlocked:
5686 	unlock_page(page);
5687 	/* restore reserve for newly allocated pages not in page cache */
5688 	if (new_page && !new_pagecache_page)
5689 		restore_reserve_on_error(h, vma, haddr, page);
5690 	put_page(page);
5691 	goto out;
5692 }
5693 
5694 #ifdef CONFIG_SMP
5695 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5696 {
5697 	unsigned long key[2];
5698 	u32 hash;
5699 
5700 	key[0] = (unsigned long) mapping;
5701 	key[1] = idx;
5702 
5703 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5704 
5705 	return hash & (num_fault_mutexes - 1);
5706 }
5707 #else
5708 /*
5709  * For uniprocessor systems we always use a single mutex, so just
5710  * return 0 and avoid the hashing overhead.
5711  */
5712 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5713 {
5714 	return 0;
5715 }
5716 #endif
5717 
5718 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5719 			unsigned long address, unsigned int flags)
5720 {
5721 	pte_t *ptep, entry;
5722 	spinlock_t *ptl;
5723 	vm_fault_t ret;
5724 	u32 hash;
5725 	pgoff_t idx;
5726 	struct page *page = NULL;
5727 	struct page *pagecache_page = NULL;
5728 	struct hstate *h = hstate_vma(vma);
5729 	struct address_space *mapping;
5730 	int need_wait_lock = 0;
5731 	unsigned long haddr = address & huge_page_mask(h);
5732 
5733 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5734 	if (ptep) {
5735 		/*
5736 		 * Since we hold no locks, ptep could be stale.  That is
5737 		 * OK as we are only making decisions based on content and
5738 		 * not actually modifying content here.
5739 		 */
5740 		entry = huge_ptep_get(ptep);
5741 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5742 			migration_entry_wait_huge(vma, ptep);
5743 			return 0;
5744 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5745 			return VM_FAULT_HWPOISON_LARGE |
5746 				VM_FAULT_SET_HINDEX(hstate_index(h));
5747 	}
5748 
5749 	/*
5750 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5751 	 * until finished with ptep.  This serves two purposes:
5752 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5753 	 *    and making the ptep no longer valid.
5754 	 * 2) It synchronizes us with i_size modifications during truncation.
5755 	 *
5756 	 * ptep could have already be assigned via huge_pte_offset.  That
5757 	 * is OK, as huge_pte_alloc will return the same value unless
5758 	 * something has changed.
5759 	 */
5760 	mapping = vma->vm_file->f_mapping;
5761 	i_mmap_lock_read(mapping);
5762 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5763 	if (!ptep) {
5764 		i_mmap_unlock_read(mapping);
5765 		return VM_FAULT_OOM;
5766 	}
5767 
5768 	/*
5769 	 * Serialize hugepage allocation and instantiation, so that we don't
5770 	 * get spurious allocation failures if two CPUs race to instantiate
5771 	 * the same page in the page cache.
5772 	 */
5773 	idx = vma_hugecache_offset(h, vma, haddr);
5774 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5775 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5776 
5777 	entry = huge_ptep_get(ptep);
5778 	/* PTE markers should be handled the same way as none pte */
5779 	if (huge_pte_none_mostly(entry)) {
5780 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5781 				      entry, flags);
5782 		goto out_mutex;
5783 	}
5784 
5785 	ret = 0;
5786 
5787 	/*
5788 	 * entry could be a migration/hwpoison entry at this point, so this
5789 	 * check prevents the kernel from going below assuming that we have
5790 	 * an active hugepage in pagecache. This goto expects the 2nd page
5791 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5792 	 * properly handle it.
5793 	 */
5794 	if (!pte_present(entry))
5795 		goto out_mutex;
5796 
5797 	/*
5798 	 * If we are going to COW/unshare the mapping later, we examine the
5799 	 * pending reservations for this page now. This will ensure that any
5800 	 * allocations necessary to record that reservation occur outside the
5801 	 * spinlock. Also lookup the pagecache page now as it is used to
5802 	 * determine if a reservation has been consumed.
5803 	 */
5804 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5805 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5806 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5807 			ret = VM_FAULT_OOM;
5808 			goto out_mutex;
5809 		}
5810 		/* Just decrements count, does not deallocate */
5811 		vma_end_reservation(h, vma, haddr);
5812 
5813 		pagecache_page = hugetlbfs_pagecache_page(h, vma, haddr);
5814 	}
5815 
5816 	ptl = huge_pte_lock(h, mm, ptep);
5817 
5818 	/* Check for a racing update before calling hugetlb_wp() */
5819 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5820 		goto out_ptl;
5821 
5822 	/* Handle userfault-wp first, before trying to lock more pages */
5823 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5824 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5825 		struct vm_fault vmf = {
5826 			.vma = vma,
5827 			.address = haddr,
5828 			.real_address = address,
5829 			.flags = flags,
5830 		};
5831 
5832 		spin_unlock(ptl);
5833 		if (pagecache_page) {
5834 			unlock_page(pagecache_page);
5835 			put_page(pagecache_page);
5836 		}
5837 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5838 		i_mmap_unlock_read(mapping);
5839 		return handle_userfault(&vmf, VM_UFFD_WP);
5840 	}
5841 
5842 	/*
5843 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5844 	 * pagecache_page, so here we need take the former one
5845 	 * when page != pagecache_page or !pagecache_page.
5846 	 */
5847 	page = pte_page(entry);
5848 	if (page != pagecache_page)
5849 		if (!trylock_page(page)) {
5850 			need_wait_lock = 1;
5851 			goto out_ptl;
5852 		}
5853 
5854 	get_page(page);
5855 
5856 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5857 		if (!huge_pte_write(entry)) {
5858 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5859 					 pagecache_page, ptl);
5860 			goto out_put_page;
5861 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5862 			entry = huge_pte_mkdirty(entry);
5863 		}
5864 	}
5865 	entry = pte_mkyoung(entry);
5866 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5867 						flags & FAULT_FLAG_WRITE))
5868 		update_mmu_cache(vma, haddr, ptep);
5869 out_put_page:
5870 	if (page != pagecache_page)
5871 		unlock_page(page);
5872 	put_page(page);
5873 out_ptl:
5874 	spin_unlock(ptl);
5875 
5876 	if (pagecache_page) {
5877 		unlock_page(pagecache_page);
5878 		put_page(pagecache_page);
5879 	}
5880 out_mutex:
5881 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5882 	i_mmap_unlock_read(mapping);
5883 	/*
5884 	 * Generally it's safe to hold refcount during waiting page lock. But
5885 	 * here we just wait to defer the next page fault to avoid busy loop and
5886 	 * the page is not used after unlocked before returning from the current
5887 	 * page fault. So we are safe from accessing freed page, even if we wait
5888 	 * here without taking refcount.
5889 	 */
5890 	if (need_wait_lock)
5891 		wait_on_page_locked(page);
5892 	return ret;
5893 }
5894 
5895 #ifdef CONFIG_USERFAULTFD
5896 /*
5897  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5898  * modifications for huge pages.
5899  */
5900 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5901 			    pte_t *dst_pte,
5902 			    struct vm_area_struct *dst_vma,
5903 			    unsigned long dst_addr,
5904 			    unsigned long src_addr,
5905 			    enum mcopy_atomic_mode mode,
5906 			    struct page **pagep,
5907 			    bool wp_copy)
5908 {
5909 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5910 	struct hstate *h = hstate_vma(dst_vma);
5911 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5912 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5913 	unsigned long size;
5914 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5915 	pte_t _dst_pte;
5916 	spinlock_t *ptl;
5917 	int ret = -ENOMEM;
5918 	struct page *page;
5919 	int writable;
5920 	bool page_in_pagecache = false;
5921 
5922 	if (is_continue) {
5923 		ret = -EFAULT;
5924 		page = find_lock_page(mapping, idx);
5925 		if (!page)
5926 			goto out;
5927 		page_in_pagecache = true;
5928 	} else if (!*pagep) {
5929 		/* If a page already exists, then it's UFFDIO_COPY for
5930 		 * a non-missing case. Return -EEXIST.
5931 		 */
5932 		if (vm_shared &&
5933 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5934 			ret = -EEXIST;
5935 			goto out;
5936 		}
5937 
5938 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5939 		if (IS_ERR(page)) {
5940 			ret = -ENOMEM;
5941 			goto out;
5942 		}
5943 
5944 		ret = copy_huge_page_from_user(page,
5945 						(const void __user *) src_addr,
5946 						pages_per_huge_page(h), false);
5947 
5948 		/* fallback to copy_from_user outside mmap_lock */
5949 		if (unlikely(ret)) {
5950 			ret = -ENOENT;
5951 			/* Free the allocated page which may have
5952 			 * consumed a reservation.
5953 			 */
5954 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5955 			put_page(page);
5956 
5957 			/* Allocate a temporary page to hold the copied
5958 			 * contents.
5959 			 */
5960 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5961 			if (!page) {
5962 				ret = -ENOMEM;
5963 				goto out;
5964 			}
5965 			*pagep = page;
5966 			/* Set the outparam pagep and return to the caller to
5967 			 * copy the contents outside the lock. Don't free the
5968 			 * page.
5969 			 */
5970 			goto out;
5971 		}
5972 	} else {
5973 		if (vm_shared &&
5974 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5975 			put_page(*pagep);
5976 			ret = -EEXIST;
5977 			*pagep = NULL;
5978 			goto out;
5979 		}
5980 
5981 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5982 		if (IS_ERR(page)) {
5983 			put_page(*pagep);
5984 			ret = -ENOMEM;
5985 			*pagep = NULL;
5986 			goto out;
5987 		}
5988 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5989 				    pages_per_huge_page(h));
5990 		put_page(*pagep);
5991 		*pagep = NULL;
5992 	}
5993 
5994 	/*
5995 	 * The memory barrier inside __SetPageUptodate makes sure that
5996 	 * preceding stores to the page contents become visible before
5997 	 * the set_pte_at() write.
5998 	 */
5999 	__SetPageUptodate(page);
6000 
6001 	/* Add shared, newly allocated pages to the page cache. */
6002 	if (vm_shared && !is_continue) {
6003 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6004 		ret = -EFAULT;
6005 		if (idx >= size)
6006 			goto out_release_nounlock;
6007 
6008 		/*
6009 		 * Serialization between remove_inode_hugepages() and
6010 		 * huge_add_to_page_cache() below happens through the
6011 		 * hugetlb_fault_mutex_table that here must be hold by
6012 		 * the caller.
6013 		 */
6014 		ret = huge_add_to_page_cache(page, mapping, idx);
6015 		if (ret)
6016 			goto out_release_nounlock;
6017 		page_in_pagecache = true;
6018 	}
6019 
6020 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
6021 	spin_lock(ptl);
6022 
6023 	/*
6024 	 * Recheck the i_size after holding PT lock to make sure not
6025 	 * to leave any page mapped (as page_mapped()) beyond the end
6026 	 * of the i_size (remove_inode_hugepages() is strict about
6027 	 * enforcing that). If we bail out here, we'll also leave a
6028 	 * page in the radix tree in the vm_shared case beyond the end
6029 	 * of the i_size, but remove_inode_hugepages() will take care
6030 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
6031 	 */
6032 	size = i_size_read(mapping->host) >> huge_page_shift(h);
6033 	ret = -EFAULT;
6034 	if (idx >= size)
6035 		goto out_release_unlock;
6036 
6037 	ret = -EEXIST;
6038 	/*
6039 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6040 	 * registered, we firstly wr-protect a none pte which has no page cache
6041 	 * page backing it, then access the page.
6042 	 */
6043 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6044 		goto out_release_unlock;
6045 
6046 	if (page_in_pagecache) {
6047 		page_dup_file_rmap(page, true);
6048 	} else {
6049 		ClearHPageRestoreReserve(page);
6050 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6051 	}
6052 
6053 	/*
6054 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6055 	 * with wp flag set, don't set pte write bit.
6056 	 */
6057 	if (wp_copy || (is_continue && !vm_shared))
6058 		writable = 0;
6059 	else
6060 		writable = dst_vma->vm_flags & VM_WRITE;
6061 
6062 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6063 	/*
6064 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6065 	 * extremely important for hugetlbfs for now since swapping is not
6066 	 * supported, but we should still be clear in that this page cannot be
6067 	 * thrown away at will, even if write bit not set.
6068 	 */
6069 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6070 	_dst_pte = pte_mkyoung(_dst_pte);
6071 
6072 	if (wp_copy)
6073 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6074 
6075 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6076 
6077 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6078 
6079 	/* No need to invalidate - it was non-present before */
6080 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6081 
6082 	spin_unlock(ptl);
6083 	if (!is_continue)
6084 		SetHPageMigratable(page);
6085 	if (vm_shared || is_continue)
6086 		unlock_page(page);
6087 	ret = 0;
6088 out:
6089 	return ret;
6090 out_release_unlock:
6091 	spin_unlock(ptl);
6092 	if (vm_shared || is_continue)
6093 		unlock_page(page);
6094 out_release_nounlock:
6095 	if (!page_in_pagecache)
6096 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6097 	put_page(page);
6098 	goto out;
6099 }
6100 #endif /* CONFIG_USERFAULTFD */
6101 
6102 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6103 				 int refs, struct page **pages,
6104 				 struct vm_area_struct **vmas)
6105 {
6106 	int nr;
6107 
6108 	for (nr = 0; nr < refs; nr++) {
6109 		if (likely(pages))
6110 			pages[nr] = mem_map_offset(page, nr);
6111 		if (vmas)
6112 			vmas[nr] = vma;
6113 	}
6114 }
6115 
6116 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6117 					       bool *unshare)
6118 {
6119 	pte_t pteval = huge_ptep_get(pte);
6120 
6121 	*unshare = false;
6122 	if (is_swap_pte(pteval))
6123 		return true;
6124 	if (huge_pte_write(pteval))
6125 		return false;
6126 	if (flags & FOLL_WRITE)
6127 		return true;
6128 	if (gup_must_unshare(flags, pte_page(pteval))) {
6129 		*unshare = true;
6130 		return true;
6131 	}
6132 	return false;
6133 }
6134 
6135 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6136 			 struct page **pages, struct vm_area_struct **vmas,
6137 			 unsigned long *position, unsigned long *nr_pages,
6138 			 long i, unsigned int flags, int *locked)
6139 {
6140 	unsigned long pfn_offset;
6141 	unsigned long vaddr = *position;
6142 	unsigned long remainder = *nr_pages;
6143 	struct hstate *h = hstate_vma(vma);
6144 	int err = -EFAULT, refs;
6145 
6146 	while (vaddr < vma->vm_end && remainder) {
6147 		pte_t *pte;
6148 		spinlock_t *ptl = NULL;
6149 		bool unshare = false;
6150 		int absent;
6151 		struct page *page;
6152 
6153 		/*
6154 		 * If we have a pending SIGKILL, don't keep faulting pages and
6155 		 * potentially allocating memory.
6156 		 */
6157 		if (fatal_signal_pending(current)) {
6158 			remainder = 0;
6159 			break;
6160 		}
6161 
6162 		/*
6163 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6164 		 * each hugepage.  We have to make sure we get the
6165 		 * first, for the page indexing below to work.
6166 		 *
6167 		 * Note that page table lock is not held when pte is null.
6168 		 */
6169 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6170 				      huge_page_size(h));
6171 		if (pte)
6172 			ptl = huge_pte_lock(h, mm, pte);
6173 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6174 
6175 		/*
6176 		 * When coredumping, it suits get_dump_page if we just return
6177 		 * an error where there's an empty slot with no huge pagecache
6178 		 * to back it.  This way, we avoid allocating a hugepage, and
6179 		 * the sparse dumpfile avoids allocating disk blocks, but its
6180 		 * huge holes still show up with zeroes where they need to be.
6181 		 */
6182 		if (absent && (flags & FOLL_DUMP) &&
6183 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6184 			if (pte)
6185 				spin_unlock(ptl);
6186 			remainder = 0;
6187 			break;
6188 		}
6189 
6190 		/*
6191 		 * We need call hugetlb_fault for both hugepages under migration
6192 		 * (in which case hugetlb_fault waits for the migration,) and
6193 		 * hwpoisoned hugepages (in which case we need to prevent the
6194 		 * caller from accessing to them.) In order to do this, we use
6195 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6196 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6197 		 * both cases, and because we can't follow correct pages
6198 		 * directly from any kind of swap entries.
6199 		 */
6200 		if (absent ||
6201 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6202 			vm_fault_t ret;
6203 			unsigned int fault_flags = 0;
6204 
6205 			if (pte)
6206 				spin_unlock(ptl);
6207 			if (flags & FOLL_WRITE)
6208 				fault_flags |= FAULT_FLAG_WRITE;
6209 			else if (unshare)
6210 				fault_flags |= FAULT_FLAG_UNSHARE;
6211 			if (locked)
6212 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6213 					FAULT_FLAG_KILLABLE;
6214 			if (flags & FOLL_NOWAIT)
6215 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6216 					FAULT_FLAG_RETRY_NOWAIT;
6217 			if (flags & FOLL_TRIED) {
6218 				/*
6219 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6220 				 * FAULT_FLAG_TRIED can co-exist
6221 				 */
6222 				fault_flags |= FAULT_FLAG_TRIED;
6223 			}
6224 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6225 			if (ret & VM_FAULT_ERROR) {
6226 				err = vm_fault_to_errno(ret, flags);
6227 				remainder = 0;
6228 				break;
6229 			}
6230 			if (ret & VM_FAULT_RETRY) {
6231 				if (locked &&
6232 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6233 					*locked = 0;
6234 				*nr_pages = 0;
6235 				/*
6236 				 * VM_FAULT_RETRY must not return an
6237 				 * error, it will return zero
6238 				 * instead.
6239 				 *
6240 				 * No need to update "position" as the
6241 				 * caller will not check it after
6242 				 * *nr_pages is set to 0.
6243 				 */
6244 				return i;
6245 			}
6246 			continue;
6247 		}
6248 
6249 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6250 		page = pte_page(huge_ptep_get(pte));
6251 
6252 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6253 			       !PageAnonExclusive(page), page);
6254 
6255 		/*
6256 		 * If subpage information not requested, update counters
6257 		 * and skip the same_page loop below.
6258 		 */
6259 		if (!pages && !vmas && !pfn_offset &&
6260 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6261 		    (remainder >= pages_per_huge_page(h))) {
6262 			vaddr += huge_page_size(h);
6263 			remainder -= pages_per_huge_page(h);
6264 			i += pages_per_huge_page(h);
6265 			spin_unlock(ptl);
6266 			continue;
6267 		}
6268 
6269 		/* vaddr may not be aligned to PAGE_SIZE */
6270 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6271 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6272 
6273 		if (pages || vmas)
6274 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6275 					     vma, refs,
6276 					     likely(pages) ? pages + i : NULL,
6277 					     vmas ? vmas + i : NULL);
6278 
6279 		if (pages) {
6280 			/*
6281 			 * try_grab_folio() should always succeed here,
6282 			 * because: a) we hold the ptl lock, and b) we've just
6283 			 * checked that the huge page is present in the page
6284 			 * tables. If the huge page is present, then the tail
6285 			 * pages must also be present. The ptl prevents the
6286 			 * head page and tail pages from being rearranged in
6287 			 * any way. So this page must be available at this
6288 			 * point, unless the page refcount overflowed:
6289 			 */
6290 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6291 							 flags))) {
6292 				spin_unlock(ptl);
6293 				remainder = 0;
6294 				err = -ENOMEM;
6295 				break;
6296 			}
6297 		}
6298 
6299 		vaddr += (refs << PAGE_SHIFT);
6300 		remainder -= refs;
6301 		i += refs;
6302 
6303 		spin_unlock(ptl);
6304 	}
6305 	*nr_pages = remainder;
6306 	/*
6307 	 * setting position is actually required only if remainder is
6308 	 * not zero but it's faster not to add a "if (remainder)"
6309 	 * branch.
6310 	 */
6311 	*position = vaddr;
6312 
6313 	return i ? i : err;
6314 }
6315 
6316 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6317 		unsigned long address, unsigned long end,
6318 		pgprot_t newprot, unsigned long cp_flags)
6319 {
6320 	struct mm_struct *mm = vma->vm_mm;
6321 	unsigned long start = address;
6322 	pte_t *ptep;
6323 	pte_t pte;
6324 	struct hstate *h = hstate_vma(vma);
6325 	unsigned long pages = 0, psize = huge_page_size(h);
6326 	bool shared_pmd = false;
6327 	struct mmu_notifier_range range;
6328 	unsigned long last_addr_mask;
6329 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6330 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6331 
6332 	/*
6333 	 * In the case of shared PMDs, the area to flush could be beyond
6334 	 * start/end.  Set range.start/range.end to cover the maximum possible
6335 	 * range if PMD sharing is possible.
6336 	 */
6337 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6338 				0, vma, mm, start, end);
6339 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6340 
6341 	BUG_ON(address >= end);
6342 	flush_cache_range(vma, range.start, range.end);
6343 
6344 	mmu_notifier_invalidate_range_start(&range);
6345 	last_addr_mask = hugetlb_mask_last_page(h);
6346 	i_mmap_lock_write(vma->vm_file->f_mapping);
6347 	for (; address < end; address += psize) {
6348 		spinlock_t *ptl;
6349 		ptep = huge_pte_offset(mm, address, psize);
6350 		if (!ptep) {
6351 			address |= last_addr_mask;
6352 			continue;
6353 		}
6354 		ptl = huge_pte_lock(h, mm, ptep);
6355 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6356 			/*
6357 			 * When uffd-wp is enabled on the vma, unshare
6358 			 * shouldn't happen at all.  Warn about it if it
6359 			 * happened due to some reason.
6360 			 */
6361 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6362 			pages++;
6363 			spin_unlock(ptl);
6364 			shared_pmd = true;
6365 			address |= last_addr_mask;
6366 			continue;
6367 		}
6368 		pte = huge_ptep_get(ptep);
6369 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6370 			spin_unlock(ptl);
6371 			continue;
6372 		}
6373 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6374 			swp_entry_t entry = pte_to_swp_entry(pte);
6375 			struct page *page = pfn_swap_entry_to_page(entry);
6376 
6377 			if (!is_readable_migration_entry(entry)) {
6378 				pte_t newpte;
6379 
6380 				if (PageAnon(page))
6381 					entry = make_readable_exclusive_migration_entry(
6382 								swp_offset(entry));
6383 				else
6384 					entry = make_readable_migration_entry(
6385 								swp_offset(entry));
6386 				newpte = swp_entry_to_pte(entry);
6387 				if (uffd_wp)
6388 					newpte = pte_swp_mkuffd_wp(newpte);
6389 				else if (uffd_wp_resolve)
6390 					newpte = pte_swp_clear_uffd_wp(newpte);
6391 				set_huge_pte_at(mm, address, ptep, newpte);
6392 				pages++;
6393 			}
6394 			spin_unlock(ptl);
6395 			continue;
6396 		}
6397 		if (unlikely(pte_marker_uffd_wp(pte))) {
6398 			/*
6399 			 * This is changing a non-present pte into a none pte,
6400 			 * no need for huge_ptep_modify_prot_start/commit().
6401 			 */
6402 			if (uffd_wp_resolve)
6403 				huge_pte_clear(mm, address, ptep, psize);
6404 		}
6405 		if (!huge_pte_none(pte)) {
6406 			pte_t old_pte;
6407 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6408 
6409 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6410 			pte = huge_pte_modify(old_pte, newprot);
6411 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6412 			if (uffd_wp)
6413 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6414 			else if (uffd_wp_resolve)
6415 				pte = huge_pte_clear_uffd_wp(pte);
6416 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6417 			pages++;
6418 		} else {
6419 			/* None pte */
6420 			if (unlikely(uffd_wp))
6421 				/* Safe to modify directly (none->non-present). */
6422 				set_huge_pte_at(mm, address, ptep,
6423 						make_pte_marker(PTE_MARKER_UFFD_WP));
6424 		}
6425 		spin_unlock(ptl);
6426 	}
6427 	/*
6428 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6429 	 * may have cleared our pud entry and done put_page on the page table:
6430 	 * once we release i_mmap_rwsem, another task can do the final put_page
6431 	 * and that page table be reused and filled with junk.  If we actually
6432 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6433 	 */
6434 	if (shared_pmd)
6435 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6436 	else
6437 		flush_hugetlb_tlb_range(vma, start, end);
6438 	/*
6439 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6440 	 * page table protection not changing it to point to a new page.
6441 	 *
6442 	 * See Documentation/mm/mmu_notifier.rst
6443 	 */
6444 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6445 	mmu_notifier_invalidate_range_end(&range);
6446 
6447 	return pages << h->order;
6448 }
6449 
6450 /* Return true if reservation was successful, false otherwise.  */
6451 bool hugetlb_reserve_pages(struct inode *inode,
6452 					long from, long to,
6453 					struct vm_area_struct *vma,
6454 					vm_flags_t vm_flags)
6455 {
6456 	long chg, add = -1;
6457 	struct hstate *h = hstate_inode(inode);
6458 	struct hugepage_subpool *spool = subpool_inode(inode);
6459 	struct resv_map *resv_map;
6460 	struct hugetlb_cgroup *h_cg = NULL;
6461 	long gbl_reserve, regions_needed = 0;
6462 
6463 	/* This should never happen */
6464 	if (from > to) {
6465 		VM_WARN(1, "%s called with a negative range\n", __func__);
6466 		return false;
6467 	}
6468 
6469 	/*
6470 	 * Only apply hugepage reservation if asked. At fault time, an
6471 	 * attempt will be made for VM_NORESERVE to allocate a page
6472 	 * without using reserves
6473 	 */
6474 	if (vm_flags & VM_NORESERVE)
6475 		return true;
6476 
6477 	/*
6478 	 * Shared mappings base their reservation on the number of pages that
6479 	 * are already allocated on behalf of the file. Private mappings need
6480 	 * to reserve the full area even if read-only as mprotect() may be
6481 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6482 	 */
6483 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6484 		/*
6485 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6486 		 * called for inodes for which resv_maps were created (see
6487 		 * hugetlbfs_get_inode).
6488 		 */
6489 		resv_map = inode_resv_map(inode);
6490 
6491 		chg = region_chg(resv_map, from, to, &regions_needed);
6492 
6493 	} else {
6494 		/* Private mapping. */
6495 		resv_map = resv_map_alloc();
6496 		if (!resv_map)
6497 			return false;
6498 
6499 		chg = to - from;
6500 
6501 		set_vma_resv_map(vma, resv_map);
6502 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6503 	}
6504 
6505 	if (chg < 0)
6506 		goto out_err;
6507 
6508 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6509 				chg * pages_per_huge_page(h), &h_cg) < 0)
6510 		goto out_err;
6511 
6512 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6513 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6514 		 * of the resv_map.
6515 		 */
6516 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6517 	}
6518 
6519 	/*
6520 	 * There must be enough pages in the subpool for the mapping. If
6521 	 * the subpool has a minimum size, there may be some global
6522 	 * reservations already in place (gbl_reserve).
6523 	 */
6524 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6525 	if (gbl_reserve < 0)
6526 		goto out_uncharge_cgroup;
6527 
6528 	/*
6529 	 * Check enough hugepages are available for the reservation.
6530 	 * Hand the pages back to the subpool if there are not
6531 	 */
6532 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6533 		goto out_put_pages;
6534 
6535 	/*
6536 	 * Account for the reservations made. Shared mappings record regions
6537 	 * that have reservations as they are shared by multiple VMAs.
6538 	 * When the last VMA disappears, the region map says how much
6539 	 * the reservation was and the page cache tells how much of
6540 	 * the reservation was consumed. Private mappings are per-VMA and
6541 	 * only the consumed reservations are tracked. When the VMA
6542 	 * disappears, the original reservation is the VMA size and the
6543 	 * consumed reservations are stored in the map. Hence, nothing
6544 	 * else has to be done for private mappings here
6545 	 */
6546 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6547 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6548 
6549 		if (unlikely(add < 0)) {
6550 			hugetlb_acct_memory(h, -gbl_reserve);
6551 			goto out_put_pages;
6552 		} else if (unlikely(chg > add)) {
6553 			/*
6554 			 * pages in this range were added to the reserve
6555 			 * map between region_chg and region_add.  This
6556 			 * indicates a race with alloc_huge_page.  Adjust
6557 			 * the subpool and reserve counts modified above
6558 			 * based on the difference.
6559 			 */
6560 			long rsv_adjust;
6561 
6562 			/*
6563 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6564 			 * reference to h_cg->css. See comment below for detail.
6565 			 */
6566 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6567 				hstate_index(h),
6568 				(chg - add) * pages_per_huge_page(h), h_cg);
6569 
6570 			rsv_adjust = hugepage_subpool_put_pages(spool,
6571 								chg - add);
6572 			hugetlb_acct_memory(h, -rsv_adjust);
6573 		} else if (h_cg) {
6574 			/*
6575 			 * The file_regions will hold their own reference to
6576 			 * h_cg->css. So we should release the reference held
6577 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6578 			 * done.
6579 			 */
6580 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6581 		}
6582 	}
6583 	return true;
6584 
6585 out_put_pages:
6586 	/* put back original number of pages, chg */
6587 	(void)hugepage_subpool_put_pages(spool, chg);
6588 out_uncharge_cgroup:
6589 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6590 					    chg * pages_per_huge_page(h), h_cg);
6591 out_err:
6592 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6593 		/* Only call region_abort if the region_chg succeeded but the
6594 		 * region_add failed or didn't run.
6595 		 */
6596 		if (chg >= 0 && add < 0)
6597 			region_abort(resv_map, from, to, regions_needed);
6598 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6599 		kref_put(&resv_map->refs, resv_map_release);
6600 	return false;
6601 }
6602 
6603 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6604 								long freed)
6605 {
6606 	struct hstate *h = hstate_inode(inode);
6607 	struct resv_map *resv_map = inode_resv_map(inode);
6608 	long chg = 0;
6609 	struct hugepage_subpool *spool = subpool_inode(inode);
6610 	long gbl_reserve;
6611 
6612 	/*
6613 	 * Since this routine can be called in the evict inode path for all
6614 	 * hugetlbfs inodes, resv_map could be NULL.
6615 	 */
6616 	if (resv_map) {
6617 		chg = region_del(resv_map, start, end);
6618 		/*
6619 		 * region_del() can fail in the rare case where a region
6620 		 * must be split and another region descriptor can not be
6621 		 * allocated.  If end == LONG_MAX, it will not fail.
6622 		 */
6623 		if (chg < 0)
6624 			return chg;
6625 	}
6626 
6627 	spin_lock(&inode->i_lock);
6628 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6629 	spin_unlock(&inode->i_lock);
6630 
6631 	/*
6632 	 * If the subpool has a minimum size, the number of global
6633 	 * reservations to be released may be adjusted.
6634 	 *
6635 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6636 	 * won't go negative.
6637 	 */
6638 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6639 	hugetlb_acct_memory(h, -gbl_reserve);
6640 
6641 	return 0;
6642 }
6643 
6644 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6645 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6646 				struct vm_area_struct *vma,
6647 				unsigned long addr, pgoff_t idx)
6648 {
6649 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6650 				svma->vm_start;
6651 	unsigned long sbase = saddr & PUD_MASK;
6652 	unsigned long s_end = sbase + PUD_SIZE;
6653 
6654 	/* Allow segments to share if only one is marked locked */
6655 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6656 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6657 
6658 	/*
6659 	 * match the virtual addresses, permission and the alignment of the
6660 	 * page table page.
6661 	 */
6662 	if (pmd_index(addr) != pmd_index(saddr) ||
6663 	    vm_flags != svm_flags ||
6664 	    !range_in_vma(svma, sbase, s_end))
6665 		return 0;
6666 
6667 	return saddr;
6668 }
6669 
6670 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6671 {
6672 	unsigned long base = addr & PUD_MASK;
6673 	unsigned long end = base + PUD_SIZE;
6674 
6675 	/*
6676 	 * check on proper vm_flags and page table alignment
6677 	 */
6678 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6679 		return true;
6680 	return false;
6681 }
6682 
6683 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6684 {
6685 #ifdef CONFIG_USERFAULTFD
6686 	if (uffd_disable_huge_pmd_share(vma))
6687 		return false;
6688 #endif
6689 	return vma_shareable(vma, addr);
6690 }
6691 
6692 /*
6693  * Determine if start,end range within vma could be mapped by shared pmd.
6694  * If yes, adjust start and end to cover range associated with possible
6695  * shared pmd mappings.
6696  */
6697 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6698 				unsigned long *start, unsigned long *end)
6699 {
6700 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6701 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6702 
6703 	/*
6704 	 * vma needs to span at least one aligned PUD size, and the range
6705 	 * must be at least partially within in.
6706 	 */
6707 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6708 		(*end <= v_start) || (*start >= v_end))
6709 		return;
6710 
6711 	/* Extend the range to be PUD aligned for a worst case scenario */
6712 	if (*start > v_start)
6713 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6714 
6715 	if (*end < v_end)
6716 		*end = ALIGN(*end, PUD_SIZE);
6717 }
6718 
6719 /*
6720  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6721  * and returns the corresponding pte. While this is not necessary for the
6722  * !shared pmd case because we can allocate the pmd later as well, it makes the
6723  * code much cleaner.
6724  *
6725  * This routine must be called with i_mmap_rwsem held in at least read mode if
6726  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6727  * table entries associated with the address space.  This is important as we
6728  * are setting up sharing based on existing page table entries (mappings).
6729  */
6730 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6731 		      unsigned long addr, pud_t *pud)
6732 {
6733 	struct address_space *mapping = vma->vm_file->f_mapping;
6734 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6735 			vma->vm_pgoff;
6736 	struct vm_area_struct *svma;
6737 	unsigned long saddr;
6738 	pte_t *spte = NULL;
6739 	pte_t *pte;
6740 	spinlock_t *ptl;
6741 
6742 	i_mmap_assert_locked(mapping);
6743 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6744 		if (svma == vma)
6745 			continue;
6746 
6747 		saddr = page_table_shareable(svma, vma, addr, idx);
6748 		if (saddr) {
6749 			spte = huge_pte_offset(svma->vm_mm, saddr,
6750 					       vma_mmu_pagesize(svma));
6751 			if (spte) {
6752 				get_page(virt_to_page(spte));
6753 				break;
6754 			}
6755 		}
6756 	}
6757 
6758 	if (!spte)
6759 		goto out;
6760 
6761 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6762 	if (pud_none(*pud)) {
6763 		pud_populate(mm, pud,
6764 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6765 		mm_inc_nr_pmds(mm);
6766 	} else {
6767 		put_page(virt_to_page(spte));
6768 	}
6769 	spin_unlock(ptl);
6770 out:
6771 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6772 	return pte;
6773 }
6774 
6775 /*
6776  * unmap huge page backed by shared pte.
6777  *
6778  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6779  * indicated by page_count > 1, unmap is achieved by clearing pud and
6780  * decrementing the ref count. If count == 1, the pte page is not shared.
6781  *
6782  * Called with page table lock held and i_mmap_rwsem held in write mode.
6783  *
6784  * returns: 1 successfully unmapped a shared pte page
6785  *	    0 the underlying pte page is not shared, or it is the last user
6786  */
6787 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6788 					unsigned long addr, pte_t *ptep)
6789 {
6790 	pgd_t *pgd = pgd_offset(mm, addr);
6791 	p4d_t *p4d = p4d_offset(pgd, addr);
6792 	pud_t *pud = pud_offset(p4d, addr);
6793 
6794 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6795 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6796 	if (page_count(virt_to_page(ptep)) == 1)
6797 		return 0;
6798 
6799 	pud_clear(pud);
6800 	put_page(virt_to_page(ptep));
6801 	mm_dec_nr_pmds(mm);
6802 	return 1;
6803 }
6804 
6805 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6806 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6807 		      unsigned long addr, pud_t *pud)
6808 {
6809 	return NULL;
6810 }
6811 
6812 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6813 				unsigned long addr, pte_t *ptep)
6814 {
6815 	return 0;
6816 }
6817 
6818 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6819 				unsigned long *start, unsigned long *end)
6820 {
6821 }
6822 
6823 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6824 {
6825 	return false;
6826 }
6827 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6828 
6829 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6830 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6831 			unsigned long addr, unsigned long sz)
6832 {
6833 	pgd_t *pgd;
6834 	p4d_t *p4d;
6835 	pud_t *pud;
6836 	pte_t *pte = NULL;
6837 
6838 	pgd = pgd_offset(mm, addr);
6839 	p4d = p4d_alloc(mm, pgd, addr);
6840 	if (!p4d)
6841 		return NULL;
6842 	pud = pud_alloc(mm, p4d, addr);
6843 	if (pud) {
6844 		if (sz == PUD_SIZE) {
6845 			pte = (pte_t *)pud;
6846 		} else {
6847 			BUG_ON(sz != PMD_SIZE);
6848 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6849 				pte = huge_pmd_share(mm, vma, addr, pud);
6850 			else
6851 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6852 		}
6853 	}
6854 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6855 
6856 	return pte;
6857 }
6858 
6859 /*
6860  * huge_pte_offset() - Walk the page table to resolve the hugepage
6861  * entry at address @addr
6862  *
6863  * Return: Pointer to page table entry (PUD or PMD) for
6864  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6865  * size @sz doesn't match the hugepage size at this level of the page
6866  * table.
6867  */
6868 pte_t *huge_pte_offset(struct mm_struct *mm,
6869 		       unsigned long addr, unsigned long sz)
6870 {
6871 	pgd_t *pgd;
6872 	p4d_t *p4d;
6873 	pud_t *pud;
6874 	pmd_t *pmd;
6875 
6876 	pgd = pgd_offset(mm, addr);
6877 	if (!pgd_present(*pgd))
6878 		return NULL;
6879 	p4d = p4d_offset(pgd, addr);
6880 	if (!p4d_present(*p4d))
6881 		return NULL;
6882 
6883 	pud = pud_offset(p4d, addr);
6884 	if (sz == PUD_SIZE)
6885 		/* must be pud huge, non-present or none */
6886 		return (pte_t *)pud;
6887 	if (!pud_present(*pud))
6888 		return NULL;
6889 	/* must have a valid entry and size to go further */
6890 
6891 	pmd = pmd_offset(pud, addr);
6892 	/* must be pmd huge, non-present or none */
6893 	return (pte_t *)pmd;
6894 }
6895 
6896 /*
6897  * Return a mask that can be used to update an address to the last huge
6898  * page in a page table page mapping size.  Used to skip non-present
6899  * page table entries when linearly scanning address ranges.  Architectures
6900  * with unique huge page to page table relationships can define their own
6901  * version of this routine.
6902  */
6903 unsigned long hugetlb_mask_last_page(struct hstate *h)
6904 {
6905 	unsigned long hp_size = huge_page_size(h);
6906 
6907 	if (hp_size == PUD_SIZE)
6908 		return P4D_SIZE - PUD_SIZE;
6909 	else if (hp_size == PMD_SIZE)
6910 		return PUD_SIZE - PMD_SIZE;
6911 	else
6912 		return 0UL;
6913 }
6914 
6915 #else
6916 
6917 /* See description above.  Architectures can provide their own version. */
6918 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
6919 {
6920 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6921 	if (huge_page_size(h) == PMD_SIZE)
6922 		return PUD_SIZE - PMD_SIZE;
6923 #endif
6924 	return 0UL;
6925 }
6926 
6927 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6928 
6929 /*
6930  * These functions are overwritable if your architecture needs its own
6931  * behavior.
6932  */
6933 struct page * __weak
6934 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6935 			      int write)
6936 {
6937 	return ERR_PTR(-EINVAL);
6938 }
6939 
6940 struct page * __weak
6941 follow_huge_pd(struct vm_area_struct *vma,
6942 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6943 {
6944 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6945 	return NULL;
6946 }
6947 
6948 struct page * __weak
6949 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6950 		pmd_t *pmd, int flags)
6951 {
6952 	struct page *page = NULL;
6953 	spinlock_t *ptl;
6954 	pte_t pte;
6955 
6956 	/*
6957 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6958 	 * follow_hugetlb_page().
6959 	 */
6960 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6961 		return NULL;
6962 
6963 retry:
6964 	ptl = pmd_lockptr(mm, pmd);
6965 	spin_lock(ptl);
6966 	/*
6967 	 * make sure that the address range covered by this pmd is not
6968 	 * unmapped from other threads.
6969 	 */
6970 	if (!pmd_huge(*pmd))
6971 		goto out;
6972 	pte = huge_ptep_get((pte_t *)pmd);
6973 	if (pte_present(pte)) {
6974 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6975 		/*
6976 		 * try_grab_page() should always succeed here, because: a) we
6977 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6978 		 * huge pmd (head) page is present in the page tables. The ptl
6979 		 * prevents the head page and tail pages from being rearranged
6980 		 * in any way. So this page must be available at this point,
6981 		 * unless the page refcount overflowed:
6982 		 */
6983 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6984 			page = NULL;
6985 			goto out;
6986 		}
6987 	} else {
6988 		if (is_hugetlb_entry_migration(pte)) {
6989 			spin_unlock(ptl);
6990 			__migration_entry_wait_huge((pte_t *)pmd, ptl);
6991 			goto retry;
6992 		}
6993 		/*
6994 		 * hwpoisoned entry is treated as no_page_table in
6995 		 * follow_page_mask().
6996 		 */
6997 	}
6998 out:
6999 	spin_unlock(ptl);
7000 	return page;
7001 }
7002 
7003 struct page * __weak
7004 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7005 		pud_t *pud, int flags)
7006 {
7007 	struct page *page = NULL;
7008 	spinlock_t *ptl;
7009 	pte_t pte;
7010 
7011 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7012 		return NULL;
7013 
7014 retry:
7015 	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7016 	if (!pud_huge(*pud))
7017 		goto out;
7018 	pte = huge_ptep_get((pte_t *)pud);
7019 	if (pte_present(pte)) {
7020 		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7021 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7022 			page = NULL;
7023 			goto out;
7024 		}
7025 	} else {
7026 		if (is_hugetlb_entry_migration(pte)) {
7027 			spin_unlock(ptl);
7028 			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7029 			goto retry;
7030 		}
7031 		/*
7032 		 * hwpoisoned entry is treated as no_page_table in
7033 		 * follow_page_mask().
7034 		 */
7035 	}
7036 out:
7037 	spin_unlock(ptl);
7038 	return page;
7039 }
7040 
7041 struct page * __weak
7042 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7043 {
7044 	if (flags & (FOLL_GET | FOLL_PIN))
7045 		return NULL;
7046 
7047 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7048 }
7049 
7050 int isolate_hugetlb(struct page *page, struct list_head *list)
7051 {
7052 	int ret = 0;
7053 
7054 	spin_lock_irq(&hugetlb_lock);
7055 	if (!PageHeadHuge(page) ||
7056 	    !HPageMigratable(page) ||
7057 	    !get_page_unless_zero(page)) {
7058 		ret = -EBUSY;
7059 		goto unlock;
7060 	}
7061 	ClearHPageMigratable(page);
7062 	list_move_tail(&page->lru, list);
7063 unlock:
7064 	spin_unlock_irq(&hugetlb_lock);
7065 	return ret;
7066 }
7067 
7068 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7069 {
7070 	int ret = 0;
7071 
7072 	*hugetlb = false;
7073 	spin_lock_irq(&hugetlb_lock);
7074 	if (PageHeadHuge(page)) {
7075 		*hugetlb = true;
7076 		if (HPageFreed(page))
7077 			ret = 0;
7078 		else if (HPageMigratable(page))
7079 			ret = get_page_unless_zero(page);
7080 		else
7081 			ret = -EBUSY;
7082 	}
7083 	spin_unlock_irq(&hugetlb_lock);
7084 	return ret;
7085 }
7086 
7087 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7088 {
7089 	int ret;
7090 
7091 	spin_lock_irq(&hugetlb_lock);
7092 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7093 	spin_unlock_irq(&hugetlb_lock);
7094 	return ret;
7095 }
7096 
7097 void putback_active_hugepage(struct page *page)
7098 {
7099 	spin_lock_irq(&hugetlb_lock);
7100 	SetHPageMigratable(page);
7101 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7102 	spin_unlock_irq(&hugetlb_lock);
7103 	put_page(page);
7104 }
7105 
7106 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7107 {
7108 	struct hstate *h = page_hstate(oldpage);
7109 
7110 	hugetlb_cgroup_migrate(oldpage, newpage);
7111 	set_page_owner_migrate_reason(newpage, reason);
7112 
7113 	/*
7114 	 * transfer temporary state of the new huge page. This is
7115 	 * reverse to other transitions because the newpage is going to
7116 	 * be final while the old one will be freed so it takes over
7117 	 * the temporary status.
7118 	 *
7119 	 * Also note that we have to transfer the per-node surplus state
7120 	 * here as well otherwise the global surplus count will not match
7121 	 * the per-node's.
7122 	 */
7123 	if (HPageTemporary(newpage)) {
7124 		int old_nid = page_to_nid(oldpage);
7125 		int new_nid = page_to_nid(newpage);
7126 
7127 		SetHPageTemporary(oldpage);
7128 		ClearHPageTemporary(newpage);
7129 
7130 		/*
7131 		 * There is no need to transfer the per-node surplus state
7132 		 * when we do not cross the node.
7133 		 */
7134 		if (new_nid == old_nid)
7135 			return;
7136 		spin_lock_irq(&hugetlb_lock);
7137 		if (h->surplus_huge_pages_node[old_nid]) {
7138 			h->surplus_huge_pages_node[old_nid]--;
7139 			h->surplus_huge_pages_node[new_nid]++;
7140 		}
7141 		spin_unlock_irq(&hugetlb_lock);
7142 	}
7143 }
7144 
7145 /*
7146  * This function will unconditionally remove all the shared pmd pgtable entries
7147  * within the specific vma for a hugetlbfs memory range.
7148  */
7149 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7150 {
7151 	struct hstate *h = hstate_vma(vma);
7152 	unsigned long sz = huge_page_size(h);
7153 	struct mm_struct *mm = vma->vm_mm;
7154 	struct mmu_notifier_range range;
7155 	unsigned long address, start, end;
7156 	spinlock_t *ptl;
7157 	pte_t *ptep;
7158 
7159 	if (!(vma->vm_flags & VM_MAYSHARE))
7160 		return;
7161 
7162 	start = ALIGN(vma->vm_start, PUD_SIZE);
7163 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7164 
7165 	if (start >= end)
7166 		return;
7167 
7168 	flush_cache_range(vma, start, end);
7169 	/*
7170 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7171 	 * we have already done the PUD_SIZE alignment.
7172 	 */
7173 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7174 				start, end);
7175 	mmu_notifier_invalidate_range_start(&range);
7176 	i_mmap_lock_write(vma->vm_file->f_mapping);
7177 	for (address = start; address < end; address += PUD_SIZE) {
7178 		ptep = huge_pte_offset(mm, address, sz);
7179 		if (!ptep)
7180 			continue;
7181 		ptl = huge_pte_lock(h, mm, ptep);
7182 		huge_pmd_unshare(mm, vma, address, ptep);
7183 		spin_unlock(ptl);
7184 	}
7185 	flush_hugetlb_tlb_range(vma, start, end);
7186 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7187 	/*
7188 	 * No need to call mmu_notifier_invalidate_range(), see
7189 	 * Documentation/mm/mmu_notifier.rst.
7190 	 */
7191 	mmu_notifier_invalidate_range_end(&range);
7192 }
7193 
7194 #ifdef CONFIG_CMA
7195 static bool cma_reserve_called __initdata;
7196 
7197 static int __init cmdline_parse_hugetlb_cma(char *p)
7198 {
7199 	int nid, count = 0;
7200 	unsigned long tmp;
7201 	char *s = p;
7202 
7203 	while (*s) {
7204 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7205 			break;
7206 
7207 		if (s[count] == ':') {
7208 			if (tmp >= MAX_NUMNODES)
7209 				break;
7210 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7211 
7212 			s += count + 1;
7213 			tmp = memparse(s, &s);
7214 			hugetlb_cma_size_in_node[nid] = tmp;
7215 			hugetlb_cma_size += tmp;
7216 
7217 			/*
7218 			 * Skip the separator if have one, otherwise
7219 			 * break the parsing.
7220 			 */
7221 			if (*s == ',')
7222 				s++;
7223 			else
7224 				break;
7225 		} else {
7226 			hugetlb_cma_size = memparse(p, &p);
7227 			break;
7228 		}
7229 	}
7230 
7231 	return 0;
7232 }
7233 
7234 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7235 
7236 void __init hugetlb_cma_reserve(int order)
7237 {
7238 	unsigned long size, reserved, per_node;
7239 	bool node_specific_cma_alloc = false;
7240 	int nid;
7241 
7242 	cma_reserve_called = true;
7243 
7244 	if (!hugetlb_cma_size)
7245 		return;
7246 
7247 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7248 		if (hugetlb_cma_size_in_node[nid] == 0)
7249 			continue;
7250 
7251 		if (!node_online(nid)) {
7252 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7253 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7254 			hugetlb_cma_size_in_node[nid] = 0;
7255 			continue;
7256 		}
7257 
7258 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7259 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7260 				nid, (PAGE_SIZE << order) / SZ_1M);
7261 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7262 			hugetlb_cma_size_in_node[nid] = 0;
7263 		} else {
7264 			node_specific_cma_alloc = true;
7265 		}
7266 	}
7267 
7268 	/* Validate the CMA size again in case some invalid nodes specified. */
7269 	if (!hugetlb_cma_size)
7270 		return;
7271 
7272 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7273 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7274 			(PAGE_SIZE << order) / SZ_1M);
7275 		hugetlb_cma_size = 0;
7276 		return;
7277 	}
7278 
7279 	if (!node_specific_cma_alloc) {
7280 		/*
7281 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7282 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7283 		 */
7284 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7285 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7286 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7287 	}
7288 
7289 	reserved = 0;
7290 	for_each_online_node(nid) {
7291 		int res;
7292 		char name[CMA_MAX_NAME];
7293 
7294 		if (node_specific_cma_alloc) {
7295 			if (hugetlb_cma_size_in_node[nid] == 0)
7296 				continue;
7297 
7298 			size = hugetlb_cma_size_in_node[nid];
7299 		} else {
7300 			size = min(per_node, hugetlb_cma_size - reserved);
7301 		}
7302 
7303 		size = round_up(size, PAGE_SIZE << order);
7304 
7305 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7306 		/*
7307 		 * Note that 'order per bit' is based on smallest size that
7308 		 * may be returned to CMA allocator in the case of
7309 		 * huge page demotion.
7310 		 */
7311 		res = cma_declare_contiguous_nid(0, size, 0,
7312 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7313 						 0, false, name,
7314 						 &hugetlb_cma[nid], nid);
7315 		if (res) {
7316 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7317 				res, nid);
7318 			continue;
7319 		}
7320 
7321 		reserved += size;
7322 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7323 			size / SZ_1M, nid);
7324 
7325 		if (reserved >= hugetlb_cma_size)
7326 			break;
7327 	}
7328 
7329 	if (!reserved)
7330 		/*
7331 		 * hugetlb_cma_size is used to determine if allocations from
7332 		 * cma are possible.  Set to zero if no cma regions are set up.
7333 		 */
7334 		hugetlb_cma_size = 0;
7335 }
7336 
7337 void __init hugetlb_cma_check(void)
7338 {
7339 	if (!hugetlb_cma_size || cma_reserve_called)
7340 		return;
7341 
7342 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7343 }
7344 
7345 #endif /* CONFIG_CMA */
7346