1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 98 unsigned long start, unsigned long end); 99 100 static inline bool subpool_is_free(struct hugepage_subpool *spool) 101 { 102 if (spool->count) 103 return false; 104 if (spool->max_hpages != -1) 105 return spool->used_hpages == 0; 106 if (spool->min_hpages != -1) 107 return spool->rsv_hpages == spool->min_hpages; 108 109 return true; 110 } 111 112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 113 unsigned long irq_flags) 114 { 115 spin_unlock_irqrestore(&spool->lock, irq_flags); 116 117 /* If no pages are used, and no other handles to the subpool 118 * remain, give up any reservations based on minimum size and 119 * free the subpool */ 120 if (subpool_is_free(spool)) { 121 if (spool->min_hpages != -1) 122 hugetlb_acct_memory(spool->hstate, 123 -spool->min_hpages); 124 kfree(spool); 125 } 126 } 127 128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 129 long min_hpages) 130 { 131 struct hugepage_subpool *spool; 132 133 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 134 if (!spool) 135 return NULL; 136 137 spin_lock_init(&spool->lock); 138 spool->count = 1; 139 spool->max_hpages = max_hpages; 140 spool->hstate = h; 141 spool->min_hpages = min_hpages; 142 143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 144 kfree(spool); 145 return NULL; 146 } 147 spool->rsv_hpages = min_hpages; 148 149 return spool; 150 } 151 152 void hugepage_put_subpool(struct hugepage_subpool *spool) 153 { 154 unsigned long flags; 155 156 spin_lock_irqsave(&spool->lock, flags); 157 BUG_ON(!spool->count); 158 spool->count--; 159 unlock_or_release_subpool(spool, flags); 160 } 161 162 /* 163 * Subpool accounting for allocating and reserving pages. 164 * Return -ENOMEM if there are not enough resources to satisfy the 165 * request. Otherwise, return the number of pages by which the 166 * global pools must be adjusted (upward). The returned value may 167 * only be different than the passed value (delta) in the case where 168 * a subpool minimum size must be maintained. 169 */ 170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 171 long delta) 172 { 173 long ret = delta; 174 175 if (!spool) 176 return ret; 177 178 spin_lock_irq(&spool->lock); 179 180 if (spool->max_hpages != -1) { /* maximum size accounting */ 181 if ((spool->used_hpages + delta) <= spool->max_hpages) 182 spool->used_hpages += delta; 183 else { 184 ret = -ENOMEM; 185 goto unlock_ret; 186 } 187 } 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->rsv_hpages) { 191 if (delta > spool->rsv_hpages) { 192 /* 193 * Asking for more reserves than those already taken on 194 * behalf of subpool. Return difference. 195 */ 196 ret = delta - spool->rsv_hpages; 197 spool->rsv_hpages = 0; 198 } else { 199 ret = 0; /* reserves already accounted for */ 200 spool->rsv_hpages -= delta; 201 } 202 } 203 204 unlock_ret: 205 spin_unlock_irq(&spool->lock); 206 return ret; 207 } 208 209 /* 210 * Subpool accounting for freeing and unreserving pages. 211 * Return the number of global page reservations that must be dropped. 212 * The return value may only be different than the passed value (delta) 213 * in the case where a subpool minimum size must be maintained. 214 */ 215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 216 long delta) 217 { 218 long ret = delta; 219 unsigned long flags; 220 221 if (!spool) 222 return delta; 223 224 spin_lock_irqsave(&spool->lock, flags); 225 226 if (spool->max_hpages != -1) /* maximum size accounting */ 227 spool->used_hpages -= delta; 228 229 /* minimum size accounting */ 230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 231 if (spool->rsv_hpages + delta <= spool->min_hpages) 232 ret = 0; 233 else 234 ret = spool->rsv_hpages + delta - spool->min_hpages; 235 236 spool->rsv_hpages += delta; 237 if (spool->rsv_hpages > spool->min_hpages) 238 spool->rsv_hpages = spool->min_hpages; 239 } 240 241 /* 242 * If hugetlbfs_put_super couldn't free spool due to an outstanding 243 * quota reference, free it now. 244 */ 245 unlock_or_release_subpool(spool, flags); 246 247 return ret; 248 } 249 250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 251 { 252 return HUGETLBFS_SB(inode->i_sb)->spool; 253 } 254 255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 256 { 257 return subpool_inode(file_inode(vma->vm_file)); 258 } 259 260 /* 261 * hugetlb vma_lock helper routines 262 */ 263 static bool __vma_shareable_lock(struct vm_area_struct *vma) 264 { 265 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) && 266 vma->vm_private_data; 267 } 268 269 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 270 { 271 if (__vma_shareable_lock(vma)) { 272 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 273 274 down_read(&vma_lock->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } 285 } 286 287 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 288 { 289 if (__vma_shareable_lock(vma)) { 290 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 291 292 down_write(&vma_lock->rw_sema); 293 } 294 } 295 296 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 297 { 298 if (__vma_shareable_lock(vma)) { 299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 300 301 up_write(&vma_lock->rw_sema); 302 } 303 } 304 305 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 306 { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 if (!__vma_shareable_lock(vma)) 310 return 1; 311 312 return down_write_trylock(&vma_lock->rw_sema); 313 } 314 315 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 316 { 317 if (__vma_shareable_lock(vma)) { 318 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 319 320 lockdep_assert_held(&vma_lock->rw_sema); 321 } 322 } 323 324 void hugetlb_vma_lock_release(struct kref *kref) 325 { 326 struct hugetlb_vma_lock *vma_lock = container_of(kref, 327 struct hugetlb_vma_lock, refs); 328 329 kfree(vma_lock); 330 } 331 332 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 333 { 334 struct vm_area_struct *vma = vma_lock->vma; 335 336 /* 337 * vma_lock structure may or not be released as a result of put, 338 * it certainly will no longer be attached to vma so clear pointer. 339 * Semaphore synchronizes access to vma_lock->vma field. 340 */ 341 vma_lock->vma = NULL; 342 vma->vm_private_data = NULL; 343 up_write(&vma_lock->rw_sema); 344 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 345 } 346 347 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 348 { 349 if (__vma_shareable_lock(vma)) { 350 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 351 352 __hugetlb_vma_unlock_write_put(vma_lock); 353 } 354 } 355 356 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 357 { 358 /* 359 * Only present in sharable vmas. 360 */ 361 if (!vma || !__vma_shareable_lock(vma)) 362 return; 363 364 if (vma->vm_private_data) { 365 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 366 367 down_write(&vma_lock->rw_sema); 368 __hugetlb_vma_unlock_write_put(vma_lock); 369 } 370 } 371 372 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 373 { 374 struct hugetlb_vma_lock *vma_lock; 375 376 /* Only establish in (flags) sharable vmas */ 377 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 378 return; 379 380 /* Should never get here with non-NULL vm_private_data */ 381 if (vma->vm_private_data) 382 return; 383 384 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 385 if (!vma_lock) { 386 /* 387 * If we can not allocate structure, then vma can not 388 * participate in pmd sharing. This is only a possible 389 * performance enhancement and memory saving issue. 390 * However, the lock is also used to synchronize page 391 * faults with truncation. If the lock is not present, 392 * unlikely races could leave pages in a file past i_size 393 * until the file is removed. Warn in the unlikely case of 394 * allocation failure. 395 */ 396 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 397 return; 398 } 399 400 kref_init(&vma_lock->refs); 401 init_rwsem(&vma_lock->rw_sema); 402 vma_lock->vma = vma; 403 vma->vm_private_data = vma_lock; 404 } 405 406 /* Helper that removes a struct file_region from the resv_map cache and returns 407 * it for use. 408 */ 409 static struct file_region * 410 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 411 { 412 struct file_region *nrg; 413 414 VM_BUG_ON(resv->region_cache_count <= 0); 415 416 resv->region_cache_count--; 417 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 418 list_del(&nrg->link); 419 420 nrg->from = from; 421 nrg->to = to; 422 423 return nrg; 424 } 425 426 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 427 struct file_region *rg) 428 { 429 #ifdef CONFIG_CGROUP_HUGETLB 430 nrg->reservation_counter = rg->reservation_counter; 431 nrg->css = rg->css; 432 if (rg->css) 433 css_get(rg->css); 434 #endif 435 } 436 437 /* Helper that records hugetlb_cgroup uncharge info. */ 438 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 439 struct hstate *h, 440 struct resv_map *resv, 441 struct file_region *nrg) 442 { 443 #ifdef CONFIG_CGROUP_HUGETLB 444 if (h_cg) { 445 nrg->reservation_counter = 446 &h_cg->rsvd_hugepage[hstate_index(h)]; 447 nrg->css = &h_cg->css; 448 /* 449 * The caller will hold exactly one h_cg->css reference for the 450 * whole contiguous reservation region. But this area might be 451 * scattered when there are already some file_regions reside in 452 * it. As a result, many file_regions may share only one css 453 * reference. In order to ensure that one file_region must hold 454 * exactly one h_cg->css reference, we should do css_get for 455 * each file_region and leave the reference held by caller 456 * untouched. 457 */ 458 css_get(&h_cg->css); 459 if (!resv->pages_per_hpage) 460 resv->pages_per_hpage = pages_per_huge_page(h); 461 /* pages_per_hpage should be the same for all entries in 462 * a resv_map. 463 */ 464 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 465 } else { 466 nrg->reservation_counter = NULL; 467 nrg->css = NULL; 468 } 469 #endif 470 } 471 472 static void put_uncharge_info(struct file_region *rg) 473 { 474 #ifdef CONFIG_CGROUP_HUGETLB 475 if (rg->css) 476 css_put(rg->css); 477 #endif 478 } 479 480 static bool has_same_uncharge_info(struct file_region *rg, 481 struct file_region *org) 482 { 483 #ifdef CONFIG_CGROUP_HUGETLB 484 return rg->reservation_counter == org->reservation_counter && 485 rg->css == org->css; 486 487 #else 488 return true; 489 #endif 490 } 491 492 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 493 { 494 struct file_region *nrg, *prg; 495 496 prg = list_prev_entry(rg, link); 497 if (&prg->link != &resv->regions && prg->to == rg->from && 498 has_same_uncharge_info(prg, rg)) { 499 prg->to = rg->to; 500 501 list_del(&rg->link); 502 put_uncharge_info(rg); 503 kfree(rg); 504 505 rg = prg; 506 } 507 508 nrg = list_next_entry(rg, link); 509 if (&nrg->link != &resv->regions && nrg->from == rg->to && 510 has_same_uncharge_info(nrg, rg)) { 511 nrg->from = rg->from; 512 513 list_del(&rg->link); 514 put_uncharge_info(rg); 515 kfree(rg); 516 } 517 } 518 519 static inline long 520 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 521 long to, struct hstate *h, struct hugetlb_cgroup *cg, 522 long *regions_needed) 523 { 524 struct file_region *nrg; 525 526 if (!regions_needed) { 527 nrg = get_file_region_entry_from_cache(map, from, to); 528 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 529 list_add(&nrg->link, rg); 530 coalesce_file_region(map, nrg); 531 } else 532 *regions_needed += 1; 533 534 return to - from; 535 } 536 537 /* 538 * Must be called with resv->lock held. 539 * 540 * Calling this with regions_needed != NULL will count the number of pages 541 * to be added but will not modify the linked list. And regions_needed will 542 * indicate the number of file_regions needed in the cache to carry out to add 543 * the regions for this range. 544 */ 545 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 546 struct hugetlb_cgroup *h_cg, 547 struct hstate *h, long *regions_needed) 548 { 549 long add = 0; 550 struct list_head *head = &resv->regions; 551 long last_accounted_offset = f; 552 struct file_region *iter, *trg = NULL; 553 struct list_head *rg = NULL; 554 555 if (regions_needed) 556 *regions_needed = 0; 557 558 /* In this loop, we essentially handle an entry for the range 559 * [last_accounted_offset, iter->from), at every iteration, with some 560 * bounds checking. 561 */ 562 list_for_each_entry_safe(iter, trg, head, link) { 563 /* Skip irrelevant regions that start before our range. */ 564 if (iter->from < f) { 565 /* If this region ends after the last accounted offset, 566 * then we need to update last_accounted_offset. 567 */ 568 if (iter->to > last_accounted_offset) 569 last_accounted_offset = iter->to; 570 continue; 571 } 572 573 /* When we find a region that starts beyond our range, we've 574 * finished. 575 */ 576 if (iter->from >= t) { 577 rg = iter->link.prev; 578 break; 579 } 580 581 /* Add an entry for last_accounted_offset -> iter->from, and 582 * update last_accounted_offset. 583 */ 584 if (iter->from > last_accounted_offset) 585 add += hugetlb_resv_map_add(resv, iter->link.prev, 586 last_accounted_offset, 587 iter->from, h, h_cg, 588 regions_needed); 589 590 last_accounted_offset = iter->to; 591 } 592 593 /* Handle the case where our range extends beyond 594 * last_accounted_offset. 595 */ 596 if (!rg) 597 rg = head->prev; 598 if (last_accounted_offset < t) 599 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 600 t, h, h_cg, regions_needed); 601 602 return add; 603 } 604 605 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 606 */ 607 static int allocate_file_region_entries(struct resv_map *resv, 608 int regions_needed) 609 __must_hold(&resv->lock) 610 { 611 LIST_HEAD(allocated_regions); 612 int to_allocate = 0, i = 0; 613 struct file_region *trg = NULL, *rg = NULL; 614 615 VM_BUG_ON(regions_needed < 0); 616 617 /* 618 * Check for sufficient descriptors in the cache to accommodate 619 * the number of in progress add operations plus regions_needed. 620 * 621 * This is a while loop because when we drop the lock, some other call 622 * to region_add or region_del may have consumed some region_entries, 623 * so we keep looping here until we finally have enough entries for 624 * (adds_in_progress + regions_needed). 625 */ 626 while (resv->region_cache_count < 627 (resv->adds_in_progress + regions_needed)) { 628 to_allocate = resv->adds_in_progress + regions_needed - 629 resv->region_cache_count; 630 631 /* At this point, we should have enough entries in the cache 632 * for all the existing adds_in_progress. We should only be 633 * needing to allocate for regions_needed. 634 */ 635 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 636 637 spin_unlock(&resv->lock); 638 for (i = 0; i < to_allocate; i++) { 639 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 640 if (!trg) 641 goto out_of_memory; 642 list_add(&trg->link, &allocated_regions); 643 } 644 645 spin_lock(&resv->lock); 646 647 list_splice(&allocated_regions, &resv->region_cache); 648 resv->region_cache_count += to_allocate; 649 } 650 651 return 0; 652 653 out_of_memory: 654 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 655 list_del(&rg->link); 656 kfree(rg); 657 } 658 return -ENOMEM; 659 } 660 661 /* 662 * Add the huge page range represented by [f, t) to the reserve 663 * map. Regions will be taken from the cache to fill in this range. 664 * Sufficient regions should exist in the cache due to the previous 665 * call to region_chg with the same range, but in some cases the cache will not 666 * have sufficient entries due to races with other code doing region_add or 667 * region_del. The extra needed entries will be allocated. 668 * 669 * regions_needed is the out value provided by a previous call to region_chg. 670 * 671 * Return the number of new huge pages added to the map. This number is greater 672 * than or equal to zero. If file_region entries needed to be allocated for 673 * this operation and we were not able to allocate, it returns -ENOMEM. 674 * region_add of regions of length 1 never allocate file_regions and cannot 675 * fail; region_chg will always allocate at least 1 entry and a region_add for 676 * 1 page will only require at most 1 entry. 677 */ 678 static long region_add(struct resv_map *resv, long f, long t, 679 long in_regions_needed, struct hstate *h, 680 struct hugetlb_cgroup *h_cg) 681 { 682 long add = 0, actual_regions_needed = 0; 683 684 spin_lock(&resv->lock); 685 retry: 686 687 /* Count how many regions are actually needed to execute this add. */ 688 add_reservation_in_range(resv, f, t, NULL, NULL, 689 &actual_regions_needed); 690 691 /* 692 * Check for sufficient descriptors in the cache to accommodate 693 * this add operation. Note that actual_regions_needed may be greater 694 * than in_regions_needed, as the resv_map may have been modified since 695 * the region_chg call. In this case, we need to make sure that we 696 * allocate extra entries, such that we have enough for all the 697 * existing adds_in_progress, plus the excess needed for this 698 * operation. 699 */ 700 if (actual_regions_needed > in_regions_needed && 701 resv->region_cache_count < 702 resv->adds_in_progress + 703 (actual_regions_needed - in_regions_needed)) { 704 /* region_add operation of range 1 should never need to 705 * allocate file_region entries. 706 */ 707 VM_BUG_ON(t - f <= 1); 708 709 if (allocate_file_region_entries( 710 resv, actual_regions_needed - in_regions_needed)) { 711 return -ENOMEM; 712 } 713 714 goto retry; 715 } 716 717 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 718 719 resv->adds_in_progress -= in_regions_needed; 720 721 spin_unlock(&resv->lock); 722 return add; 723 } 724 725 /* 726 * Examine the existing reserve map and determine how many 727 * huge pages in the specified range [f, t) are NOT currently 728 * represented. This routine is called before a subsequent 729 * call to region_add that will actually modify the reserve 730 * map to add the specified range [f, t). region_chg does 731 * not change the number of huge pages represented by the 732 * map. A number of new file_region structures is added to the cache as a 733 * placeholder, for the subsequent region_add call to use. At least 1 734 * file_region structure is added. 735 * 736 * out_regions_needed is the number of regions added to the 737 * resv->adds_in_progress. This value needs to be provided to a follow up call 738 * to region_add or region_abort for proper accounting. 739 * 740 * Returns the number of huge pages that need to be added to the existing 741 * reservation map for the range [f, t). This number is greater or equal to 742 * zero. -ENOMEM is returned if a new file_region structure or cache entry 743 * is needed and can not be allocated. 744 */ 745 static long region_chg(struct resv_map *resv, long f, long t, 746 long *out_regions_needed) 747 { 748 long chg = 0; 749 750 spin_lock(&resv->lock); 751 752 /* Count how many hugepages in this range are NOT represented. */ 753 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 754 out_regions_needed); 755 756 if (*out_regions_needed == 0) 757 *out_regions_needed = 1; 758 759 if (allocate_file_region_entries(resv, *out_regions_needed)) 760 return -ENOMEM; 761 762 resv->adds_in_progress += *out_regions_needed; 763 764 spin_unlock(&resv->lock); 765 return chg; 766 } 767 768 /* 769 * Abort the in progress add operation. The adds_in_progress field 770 * of the resv_map keeps track of the operations in progress between 771 * calls to region_chg and region_add. Operations are sometimes 772 * aborted after the call to region_chg. In such cases, region_abort 773 * is called to decrement the adds_in_progress counter. regions_needed 774 * is the value returned by the region_chg call, it is used to decrement 775 * the adds_in_progress counter. 776 * 777 * NOTE: The range arguments [f, t) are not needed or used in this 778 * routine. They are kept to make reading the calling code easier as 779 * arguments will match the associated region_chg call. 780 */ 781 static void region_abort(struct resv_map *resv, long f, long t, 782 long regions_needed) 783 { 784 spin_lock(&resv->lock); 785 VM_BUG_ON(!resv->region_cache_count); 786 resv->adds_in_progress -= regions_needed; 787 spin_unlock(&resv->lock); 788 } 789 790 /* 791 * Delete the specified range [f, t) from the reserve map. If the 792 * t parameter is LONG_MAX, this indicates that ALL regions after f 793 * should be deleted. Locate the regions which intersect [f, t) 794 * and either trim, delete or split the existing regions. 795 * 796 * Returns the number of huge pages deleted from the reserve map. 797 * In the normal case, the return value is zero or more. In the 798 * case where a region must be split, a new region descriptor must 799 * be allocated. If the allocation fails, -ENOMEM will be returned. 800 * NOTE: If the parameter t == LONG_MAX, then we will never split 801 * a region and possibly return -ENOMEM. Callers specifying 802 * t == LONG_MAX do not need to check for -ENOMEM error. 803 */ 804 static long region_del(struct resv_map *resv, long f, long t) 805 { 806 struct list_head *head = &resv->regions; 807 struct file_region *rg, *trg; 808 struct file_region *nrg = NULL; 809 long del = 0; 810 811 retry: 812 spin_lock(&resv->lock); 813 list_for_each_entry_safe(rg, trg, head, link) { 814 /* 815 * Skip regions before the range to be deleted. file_region 816 * ranges are normally of the form [from, to). However, there 817 * may be a "placeholder" entry in the map which is of the form 818 * (from, to) with from == to. Check for placeholder entries 819 * at the beginning of the range to be deleted. 820 */ 821 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 822 continue; 823 824 if (rg->from >= t) 825 break; 826 827 if (f > rg->from && t < rg->to) { /* Must split region */ 828 /* 829 * Check for an entry in the cache before dropping 830 * lock and attempting allocation. 831 */ 832 if (!nrg && 833 resv->region_cache_count > resv->adds_in_progress) { 834 nrg = list_first_entry(&resv->region_cache, 835 struct file_region, 836 link); 837 list_del(&nrg->link); 838 resv->region_cache_count--; 839 } 840 841 if (!nrg) { 842 spin_unlock(&resv->lock); 843 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 844 if (!nrg) 845 return -ENOMEM; 846 goto retry; 847 } 848 849 del += t - f; 850 hugetlb_cgroup_uncharge_file_region( 851 resv, rg, t - f, false); 852 853 /* New entry for end of split region */ 854 nrg->from = t; 855 nrg->to = rg->to; 856 857 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 858 859 INIT_LIST_HEAD(&nrg->link); 860 861 /* Original entry is trimmed */ 862 rg->to = f; 863 864 list_add(&nrg->link, &rg->link); 865 nrg = NULL; 866 break; 867 } 868 869 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 870 del += rg->to - rg->from; 871 hugetlb_cgroup_uncharge_file_region(resv, rg, 872 rg->to - rg->from, true); 873 list_del(&rg->link); 874 kfree(rg); 875 continue; 876 } 877 878 if (f <= rg->from) { /* Trim beginning of region */ 879 hugetlb_cgroup_uncharge_file_region(resv, rg, 880 t - rg->from, false); 881 882 del += t - rg->from; 883 rg->from = t; 884 } else { /* Trim end of region */ 885 hugetlb_cgroup_uncharge_file_region(resv, rg, 886 rg->to - f, false); 887 888 del += rg->to - f; 889 rg->to = f; 890 } 891 } 892 893 spin_unlock(&resv->lock); 894 kfree(nrg); 895 return del; 896 } 897 898 /* 899 * A rare out of memory error was encountered which prevented removal of 900 * the reserve map region for a page. The huge page itself was free'ed 901 * and removed from the page cache. This routine will adjust the subpool 902 * usage count, and the global reserve count if needed. By incrementing 903 * these counts, the reserve map entry which could not be deleted will 904 * appear as a "reserved" entry instead of simply dangling with incorrect 905 * counts. 906 */ 907 void hugetlb_fix_reserve_counts(struct inode *inode) 908 { 909 struct hugepage_subpool *spool = subpool_inode(inode); 910 long rsv_adjust; 911 bool reserved = false; 912 913 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 914 if (rsv_adjust > 0) { 915 struct hstate *h = hstate_inode(inode); 916 917 if (!hugetlb_acct_memory(h, 1)) 918 reserved = true; 919 } else if (!rsv_adjust) { 920 reserved = true; 921 } 922 923 if (!reserved) 924 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 925 } 926 927 /* 928 * Count and return the number of huge pages in the reserve map 929 * that intersect with the range [f, t). 930 */ 931 static long region_count(struct resv_map *resv, long f, long t) 932 { 933 struct list_head *head = &resv->regions; 934 struct file_region *rg; 935 long chg = 0; 936 937 spin_lock(&resv->lock); 938 /* Locate each segment we overlap with, and count that overlap. */ 939 list_for_each_entry(rg, head, link) { 940 long seg_from; 941 long seg_to; 942 943 if (rg->to <= f) 944 continue; 945 if (rg->from >= t) 946 break; 947 948 seg_from = max(rg->from, f); 949 seg_to = min(rg->to, t); 950 951 chg += seg_to - seg_from; 952 } 953 spin_unlock(&resv->lock); 954 955 return chg; 956 } 957 958 /* 959 * Convert the address within this vma to the page offset within 960 * the mapping, in pagecache page units; huge pages here. 961 */ 962 static pgoff_t vma_hugecache_offset(struct hstate *h, 963 struct vm_area_struct *vma, unsigned long address) 964 { 965 return ((address - vma->vm_start) >> huge_page_shift(h)) + 966 (vma->vm_pgoff >> huge_page_order(h)); 967 } 968 969 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 970 unsigned long address) 971 { 972 return vma_hugecache_offset(hstate_vma(vma), vma, address); 973 } 974 EXPORT_SYMBOL_GPL(linear_hugepage_index); 975 976 /* 977 * Return the size of the pages allocated when backing a VMA. In the majority 978 * cases this will be same size as used by the page table entries. 979 */ 980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 981 { 982 if (vma->vm_ops && vma->vm_ops->pagesize) 983 return vma->vm_ops->pagesize(vma); 984 return PAGE_SIZE; 985 } 986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 987 988 /* 989 * Return the page size being used by the MMU to back a VMA. In the majority 990 * of cases, the page size used by the kernel matches the MMU size. On 991 * architectures where it differs, an architecture-specific 'strong' 992 * version of this symbol is required. 993 */ 994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 995 { 996 return vma_kernel_pagesize(vma); 997 } 998 999 /* 1000 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1001 * bits of the reservation map pointer, which are always clear due to 1002 * alignment. 1003 */ 1004 #define HPAGE_RESV_OWNER (1UL << 0) 1005 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1007 1008 /* 1009 * These helpers are used to track how many pages are reserved for 1010 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1011 * is guaranteed to have their future faults succeed. 1012 * 1013 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1014 * the reserve counters are updated with the hugetlb_lock held. It is safe 1015 * to reset the VMA at fork() time as it is not in use yet and there is no 1016 * chance of the global counters getting corrupted as a result of the values. 1017 * 1018 * The private mapping reservation is represented in a subtly different 1019 * manner to a shared mapping. A shared mapping has a region map associated 1020 * with the underlying file, this region map represents the backing file 1021 * pages which have ever had a reservation assigned which this persists even 1022 * after the page is instantiated. A private mapping has a region map 1023 * associated with the original mmap which is attached to all VMAs which 1024 * reference it, this region map represents those offsets which have consumed 1025 * reservation ie. where pages have been instantiated. 1026 */ 1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1028 { 1029 return (unsigned long)vma->vm_private_data; 1030 } 1031 1032 static void set_vma_private_data(struct vm_area_struct *vma, 1033 unsigned long value) 1034 { 1035 vma->vm_private_data = (void *)value; 1036 } 1037 1038 static void 1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1040 struct hugetlb_cgroup *h_cg, 1041 struct hstate *h) 1042 { 1043 #ifdef CONFIG_CGROUP_HUGETLB 1044 if (!h_cg || !h) { 1045 resv_map->reservation_counter = NULL; 1046 resv_map->pages_per_hpage = 0; 1047 resv_map->css = NULL; 1048 } else { 1049 resv_map->reservation_counter = 1050 &h_cg->rsvd_hugepage[hstate_index(h)]; 1051 resv_map->pages_per_hpage = pages_per_huge_page(h); 1052 resv_map->css = &h_cg->css; 1053 } 1054 #endif 1055 } 1056 1057 struct resv_map *resv_map_alloc(void) 1058 { 1059 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1060 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1061 1062 if (!resv_map || !rg) { 1063 kfree(resv_map); 1064 kfree(rg); 1065 return NULL; 1066 } 1067 1068 kref_init(&resv_map->refs); 1069 spin_lock_init(&resv_map->lock); 1070 INIT_LIST_HEAD(&resv_map->regions); 1071 1072 resv_map->adds_in_progress = 0; 1073 /* 1074 * Initialize these to 0. On shared mappings, 0's here indicate these 1075 * fields don't do cgroup accounting. On private mappings, these will be 1076 * re-initialized to the proper values, to indicate that hugetlb cgroup 1077 * reservations are to be un-charged from here. 1078 */ 1079 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1080 1081 INIT_LIST_HEAD(&resv_map->region_cache); 1082 list_add(&rg->link, &resv_map->region_cache); 1083 resv_map->region_cache_count = 1; 1084 1085 return resv_map; 1086 } 1087 1088 void resv_map_release(struct kref *ref) 1089 { 1090 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1091 struct list_head *head = &resv_map->region_cache; 1092 struct file_region *rg, *trg; 1093 1094 /* Clear out any active regions before we release the map. */ 1095 region_del(resv_map, 0, LONG_MAX); 1096 1097 /* ... and any entries left in the cache */ 1098 list_for_each_entry_safe(rg, trg, head, link) { 1099 list_del(&rg->link); 1100 kfree(rg); 1101 } 1102 1103 VM_BUG_ON(resv_map->adds_in_progress); 1104 1105 kfree(resv_map); 1106 } 1107 1108 static inline struct resv_map *inode_resv_map(struct inode *inode) 1109 { 1110 /* 1111 * At inode evict time, i_mapping may not point to the original 1112 * address space within the inode. This original address space 1113 * contains the pointer to the resv_map. So, always use the 1114 * address space embedded within the inode. 1115 * The VERY common case is inode->mapping == &inode->i_data but, 1116 * this may not be true for device special inodes. 1117 */ 1118 return (struct resv_map *)(&inode->i_data)->private_data; 1119 } 1120 1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1122 { 1123 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1124 if (vma->vm_flags & VM_MAYSHARE) { 1125 struct address_space *mapping = vma->vm_file->f_mapping; 1126 struct inode *inode = mapping->host; 1127 1128 return inode_resv_map(inode); 1129 1130 } else { 1131 return (struct resv_map *)(get_vma_private_data(vma) & 1132 ~HPAGE_RESV_MASK); 1133 } 1134 } 1135 1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1137 { 1138 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1139 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1140 1141 set_vma_private_data(vma, (get_vma_private_data(vma) & 1142 HPAGE_RESV_MASK) | (unsigned long)map); 1143 } 1144 1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1146 { 1147 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1148 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1149 1150 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1151 } 1152 1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1154 { 1155 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1156 1157 return (get_vma_private_data(vma) & flag) != 0; 1158 } 1159 1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1161 { 1162 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1163 /* 1164 * Clear vm_private_data 1165 * - For shared mappings this is a per-vma semaphore that may be 1166 * allocated in a subsequent call to hugetlb_vm_op_open. 1167 * Before clearing, make sure pointer is not associated with vma 1168 * as this will leak the structure. This is the case when called 1169 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1170 * been called to allocate a new structure. 1171 * - For MAP_PRIVATE mappings, this is the reserve map which does 1172 * not apply to children. Faults generated by the children are 1173 * not guaranteed to succeed, even if read-only. 1174 */ 1175 if (vma->vm_flags & VM_MAYSHARE) { 1176 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1177 1178 if (vma_lock && vma_lock->vma != vma) 1179 vma->vm_private_data = NULL; 1180 } else 1181 vma->vm_private_data = NULL; 1182 } 1183 1184 /* 1185 * Reset and decrement one ref on hugepage private reservation. 1186 * Called with mm->mmap_lock writer semaphore held. 1187 * This function should be only used by move_vma() and operate on 1188 * same sized vma. It should never come here with last ref on the 1189 * reservation. 1190 */ 1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1192 { 1193 /* 1194 * Clear the old hugetlb private page reservation. 1195 * It has already been transferred to new_vma. 1196 * 1197 * During a mremap() operation of a hugetlb vma we call move_vma() 1198 * which copies vma into new_vma and unmaps vma. After the copy 1199 * operation both new_vma and vma share a reference to the resv_map 1200 * struct, and at that point vma is about to be unmapped. We don't 1201 * want to return the reservation to the pool at unmap of vma because 1202 * the reservation still lives on in new_vma, so simply decrement the 1203 * ref here and remove the resv_map reference from this vma. 1204 */ 1205 struct resv_map *reservations = vma_resv_map(vma); 1206 1207 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1208 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1209 kref_put(&reservations->refs, resv_map_release); 1210 } 1211 1212 hugetlb_dup_vma_private(vma); 1213 } 1214 1215 /* Returns true if the VMA has associated reserve pages */ 1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1217 { 1218 if (vma->vm_flags & VM_NORESERVE) { 1219 /* 1220 * This address is already reserved by other process(chg == 0), 1221 * so, we should decrement reserved count. Without decrementing, 1222 * reserve count remains after releasing inode, because this 1223 * allocated page will go into page cache and is regarded as 1224 * coming from reserved pool in releasing step. Currently, we 1225 * don't have any other solution to deal with this situation 1226 * properly, so add work-around here. 1227 */ 1228 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1229 return true; 1230 else 1231 return false; 1232 } 1233 1234 /* Shared mappings always use reserves */ 1235 if (vma->vm_flags & VM_MAYSHARE) { 1236 /* 1237 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1238 * be a region map for all pages. The only situation where 1239 * there is no region map is if a hole was punched via 1240 * fallocate. In this case, there really are no reserves to 1241 * use. This situation is indicated if chg != 0. 1242 */ 1243 if (chg) 1244 return false; 1245 else 1246 return true; 1247 } 1248 1249 /* 1250 * Only the process that called mmap() has reserves for 1251 * private mappings. 1252 */ 1253 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1254 /* 1255 * Like the shared case above, a hole punch or truncate 1256 * could have been performed on the private mapping. 1257 * Examine the value of chg to determine if reserves 1258 * actually exist or were previously consumed. 1259 * Very Subtle - The value of chg comes from a previous 1260 * call to vma_needs_reserves(). The reserve map for 1261 * private mappings has different (opposite) semantics 1262 * than that of shared mappings. vma_needs_reserves() 1263 * has already taken this difference in semantics into 1264 * account. Therefore, the meaning of chg is the same 1265 * as in the shared case above. Code could easily be 1266 * combined, but keeping it separate draws attention to 1267 * subtle differences. 1268 */ 1269 if (chg) 1270 return false; 1271 else 1272 return true; 1273 } 1274 1275 return false; 1276 } 1277 1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1279 { 1280 int nid = folio_nid(folio); 1281 1282 lockdep_assert_held(&hugetlb_lock); 1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1284 1285 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1286 h->free_huge_pages++; 1287 h->free_huge_pages_node[nid]++; 1288 folio_set_hugetlb_freed(folio); 1289 } 1290 1291 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1292 { 1293 struct page *page; 1294 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1295 1296 lockdep_assert_held(&hugetlb_lock); 1297 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1298 if (pin && !is_longterm_pinnable_page(page)) 1299 continue; 1300 1301 if (PageHWPoison(page)) 1302 continue; 1303 1304 list_move(&page->lru, &h->hugepage_activelist); 1305 set_page_refcounted(page); 1306 ClearHPageFreed(page); 1307 h->free_huge_pages--; 1308 h->free_huge_pages_node[nid]--; 1309 return page; 1310 } 1311 1312 return NULL; 1313 } 1314 1315 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1316 nodemask_t *nmask) 1317 { 1318 unsigned int cpuset_mems_cookie; 1319 struct zonelist *zonelist; 1320 struct zone *zone; 1321 struct zoneref *z; 1322 int node = NUMA_NO_NODE; 1323 1324 zonelist = node_zonelist(nid, gfp_mask); 1325 1326 retry_cpuset: 1327 cpuset_mems_cookie = read_mems_allowed_begin(); 1328 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1329 struct page *page; 1330 1331 if (!cpuset_zone_allowed(zone, gfp_mask)) 1332 continue; 1333 /* 1334 * no need to ask again on the same node. Pool is node rather than 1335 * zone aware 1336 */ 1337 if (zone_to_nid(zone) == node) 1338 continue; 1339 node = zone_to_nid(zone); 1340 1341 page = dequeue_huge_page_node_exact(h, node); 1342 if (page) 1343 return page; 1344 } 1345 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1346 goto retry_cpuset; 1347 1348 return NULL; 1349 } 1350 1351 static unsigned long available_huge_pages(struct hstate *h) 1352 { 1353 return h->free_huge_pages - h->resv_huge_pages; 1354 } 1355 1356 static struct page *dequeue_huge_page_vma(struct hstate *h, 1357 struct vm_area_struct *vma, 1358 unsigned long address, int avoid_reserve, 1359 long chg) 1360 { 1361 struct page *page = NULL; 1362 struct mempolicy *mpol; 1363 gfp_t gfp_mask; 1364 nodemask_t *nodemask; 1365 int nid; 1366 1367 /* 1368 * A child process with MAP_PRIVATE mappings created by their parent 1369 * have no page reserves. This check ensures that reservations are 1370 * not "stolen". The child may still get SIGKILLed 1371 */ 1372 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1373 goto err; 1374 1375 /* If reserves cannot be used, ensure enough pages are in the pool */ 1376 if (avoid_reserve && !available_huge_pages(h)) 1377 goto err; 1378 1379 gfp_mask = htlb_alloc_mask(h); 1380 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1381 1382 if (mpol_is_preferred_many(mpol)) { 1383 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1384 1385 /* Fallback to all nodes if page==NULL */ 1386 nodemask = NULL; 1387 } 1388 1389 if (!page) 1390 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1391 1392 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1393 SetHPageRestoreReserve(page); 1394 h->resv_huge_pages--; 1395 } 1396 1397 mpol_cond_put(mpol); 1398 return page; 1399 1400 err: 1401 return NULL; 1402 } 1403 1404 /* 1405 * common helper functions for hstate_next_node_to_{alloc|free}. 1406 * We may have allocated or freed a huge page based on a different 1407 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1408 * be outside of *nodes_allowed. Ensure that we use an allowed 1409 * node for alloc or free. 1410 */ 1411 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1412 { 1413 nid = next_node_in(nid, *nodes_allowed); 1414 VM_BUG_ON(nid >= MAX_NUMNODES); 1415 1416 return nid; 1417 } 1418 1419 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1420 { 1421 if (!node_isset(nid, *nodes_allowed)) 1422 nid = next_node_allowed(nid, nodes_allowed); 1423 return nid; 1424 } 1425 1426 /* 1427 * returns the previously saved node ["this node"] from which to 1428 * allocate a persistent huge page for the pool and advance the 1429 * next node from which to allocate, handling wrap at end of node 1430 * mask. 1431 */ 1432 static int hstate_next_node_to_alloc(struct hstate *h, 1433 nodemask_t *nodes_allowed) 1434 { 1435 int nid; 1436 1437 VM_BUG_ON(!nodes_allowed); 1438 1439 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1440 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1441 1442 return nid; 1443 } 1444 1445 /* 1446 * helper for remove_pool_huge_page() - return the previously saved 1447 * node ["this node"] from which to free a huge page. Advance the 1448 * next node id whether or not we find a free huge page to free so 1449 * that the next attempt to free addresses the next node. 1450 */ 1451 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1452 { 1453 int nid; 1454 1455 VM_BUG_ON(!nodes_allowed); 1456 1457 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1458 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1459 1460 return nid; 1461 } 1462 1463 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1464 for (nr_nodes = nodes_weight(*mask); \ 1465 nr_nodes > 0 && \ 1466 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1467 nr_nodes--) 1468 1469 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1470 for (nr_nodes = nodes_weight(*mask); \ 1471 nr_nodes > 0 && \ 1472 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1473 nr_nodes--) 1474 1475 /* used to demote non-gigantic_huge pages as well */ 1476 static void __destroy_compound_gigantic_folio(struct folio *folio, 1477 unsigned int order, bool demote) 1478 { 1479 int i; 1480 int nr_pages = 1 << order; 1481 struct page *p; 1482 1483 atomic_set(folio_mapcount_ptr(folio), 0); 1484 atomic_set(folio_subpages_mapcount_ptr(folio), 0); 1485 atomic_set(folio_pincount_ptr(folio), 0); 1486 1487 for (i = 1; i < nr_pages; i++) { 1488 p = folio_page(folio, i); 1489 p->mapping = NULL; 1490 clear_compound_head(p); 1491 if (!demote) 1492 set_page_refcounted(p); 1493 } 1494 1495 folio_set_compound_order(folio, 0); 1496 __folio_clear_head(folio); 1497 } 1498 1499 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1500 unsigned int order) 1501 { 1502 __destroy_compound_gigantic_folio(folio, order, true); 1503 } 1504 1505 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1506 static void destroy_compound_gigantic_folio(struct folio *folio, 1507 unsigned int order) 1508 { 1509 __destroy_compound_gigantic_folio(folio, order, false); 1510 } 1511 1512 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1513 { 1514 /* 1515 * If the page isn't allocated using the cma allocator, 1516 * cma_release() returns false. 1517 */ 1518 #ifdef CONFIG_CMA 1519 int nid = folio_nid(folio); 1520 1521 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1522 return; 1523 #endif 1524 1525 free_contig_range(folio_pfn(folio), 1 << order); 1526 } 1527 1528 #ifdef CONFIG_CONTIG_ALLOC 1529 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1530 int nid, nodemask_t *nodemask) 1531 { 1532 struct page *page; 1533 unsigned long nr_pages = pages_per_huge_page(h); 1534 if (nid == NUMA_NO_NODE) 1535 nid = numa_mem_id(); 1536 1537 #ifdef CONFIG_CMA 1538 { 1539 int node; 1540 1541 if (hugetlb_cma[nid]) { 1542 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1543 huge_page_order(h), true); 1544 if (page) 1545 return page_folio(page); 1546 } 1547 1548 if (!(gfp_mask & __GFP_THISNODE)) { 1549 for_each_node_mask(node, *nodemask) { 1550 if (node == nid || !hugetlb_cma[node]) 1551 continue; 1552 1553 page = cma_alloc(hugetlb_cma[node], nr_pages, 1554 huge_page_order(h), true); 1555 if (page) 1556 return page_folio(page); 1557 } 1558 } 1559 } 1560 #endif 1561 1562 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1563 return page ? page_folio(page) : NULL; 1564 } 1565 1566 #else /* !CONFIG_CONTIG_ALLOC */ 1567 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1568 int nid, nodemask_t *nodemask) 1569 { 1570 return NULL; 1571 } 1572 #endif /* CONFIG_CONTIG_ALLOC */ 1573 1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1575 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1576 int nid, nodemask_t *nodemask) 1577 { 1578 return NULL; 1579 } 1580 static inline void free_gigantic_folio(struct folio *folio, 1581 unsigned int order) { } 1582 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1583 unsigned int order) { } 1584 #endif 1585 1586 /* 1587 * Remove hugetlb folio from lists, and update dtor so that the folio appears 1588 * as just a compound page. 1589 * 1590 * A reference is held on the folio, except in the case of demote. 1591 * 1592 * Must be called with hugetlb lock held. 1593 */ 1594 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1595 bool adjust_surplus, 1596 bool demote) 1597 { 1598 int nid = folio_nid(folio); 1599 1600 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1601 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1602 1603 lockdep_assert_held(&hugetlb_lock); 1604 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1605 return; 1606 1607 list_del(&folio->lru); 1608 1609 if (folio_test_hugetlb_freed(folio)) { 1610 h->free_huge_pages--; 1611 h->free_huge_pages_node[nid]--; 1612 } 1613 if (adjust_surplus) { 1614 h->surplus_huge_pages--; 1615 h->surplus_huge_pages_node[nid]--; 1616 } 1617 1618 /* 1619 * Very subtle 1620 * 1621 * For non-gigantic pages set the destructor to the normal compound 1622 * page dtor. This is needed in case someone takes an additional 1623 * temporary ref to the page, and freeing is delayed until they drop 1624 * their reference. 1625 * 1626 * For gigantic pages set the destructor to the null dtor. This 1627 * destructor will never be called. Before freeing the gigantic 1628 * page destroy_compound_gigantic_folio will turn the folio into a 1629 * simple group of pages. After this the destructor does not 1630 * apply. 1631 * 1632 * This handles the case where more than one ref is held when and 1633 * after update_and_free_hugetlb_folio is called. 1634 * 1635 * In the case of demote we do not ref count the page as it will soon 1636 * be turned into a page of smaller size. 1637 */ 1638 if (!demote) 1639 folio_ref_unfreeze(folio, 1); 1640 if (hstate_is_gigantic(h)) 1641 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); 1642 else 1643 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 1644 1645 h->nr_huge_pages--; 1646 h->nr_huge_pages_node[nid]--; 1647 } 1648 1649 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1650 bool adjust_surplus) 1651 { 1652 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1653 } 1654 1655 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1656 bool adjust_surplus) 1657 { 1658 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1659 } 1660 1661 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1662 bool adjust_surplus) 1663 { 1664 int zeroed; 1665 int nid = folio_nid(folio); 1666 1667 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1668 1669 lockdep_assert_held(&hugetlb_lock); 1670 1671 INIT_LIST_HEAD(&folio->lru); 1672 h->nr_huge_pages++; 1673 h->nr_huge_pages_node[nid]++; 1674 1675 if (adjust_surplus) { 1676 h->surplus_huge_pages++; 1677 h->surplus_huge_pages_node[nid]++; 1678 } 1679 1680 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1681 folio_change_private(folio, NULL); 1682 /* 1683 * We have to set hugetlb_vmemmap_optimized again as above 1684 * folio_change_private(folio, NULL) cleared it. 1685 */ 1686 folio_set_hugetlb_vmemmap_optimized(folio); 1687 1688 /* 1689 * This folio is about to be managed by the hugetlb allocator and 1690 * should have no users. Drop our reference, and check for others 1691 * just in case. 1692 */ 1693 zeroed = folio_put_testzero(folio); 1694 if (unlikely(!zeroed)) 1695 /* 1696 * It is VERY unlikely soneone else has taken a ref on 1697 * the page. In this case, we simply return as the 1698 * hugetlb destructor (free_huge_page) will be called 1699 * when this other ref is dropped. 1700 */ 1701 return; 1702 1703 arch_clear_hugepage_flags(&folio->page); 1704 enqueue_hugetlb_folio(h, folio); 1705 } 1706 1707 static void __update_and_free_page(struct hstate *h, struct page *page) 1708 { 1709 int i; 1710 struct folio *folio = page_folio(page); 1711 struct page *subpage; 1712 1713 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1714 return; 1715 1716 /* 1717 * If we don't know which subpages are hwpoisoned, we can't free 1718 * the hugepage, so it's leaked intentionally. 1719 */ 1720 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1721 return; 1722 1723 if (hugetlb_vmemmap_restore(h, page)) { 1724 spin_lock_irq(&hugetlb_lock); 1725 /* 1726 * If we cannot allocate vmemmap pages, just refuse to free the 1727 * page and put the page back on the hugetlb free list and treat 1728 * as a surplus page. 1729 */ 1730 add_hugetlb_folio(h, folio, true); 1731 spin_unlock_irq(&hugetlb_lock); 1732 return; 1733 } 1734 1735 /* 1736 * Move PageHWPoison flag from head page to the raw error pages, 1737 * which makes any healthy subpages reusable. 1738 */ 1739 if (unlikely(folio_test_hwpoison(folio))) 1740 hugetlb_clear_page_hwpoison(&folio->page); 1741 1742 for (i = 0; i < pages_per_huge_page(h); i++) { 1743 subpage = folio_page(folio, i); 1744 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1745 1 << PG_referenced | 1 << PG_dirty | 1746 1 << PG_active | 1 << PG_private | 1747 1 << PG_writeback); 1748 } 1749 1750 /* 1751 * Non-gigantic pages demoted from CMA allocated gigantic pages 1752 * need to be given back to CMA in free_gigantic_folio. 1753 */ 1754 if (hstate_is_gigantic(h) || 1755 hugetlb_cma_folio(folio, huge_page_order(h))) { 1756 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1757 free_gigantic_folio(folio, huge_page_order(h)); 1758 } else { 1759 __free_pages(page, huge_page_order(h)); 1760 } 1761 } 1762 1763 /* 1764 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1765 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1766 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1767 * the vmemmap pages. 1768 * 1769 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1770 * freed and frees them one-by-one. As the page->mapping pointer is going 1771 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1772 * structure of a lockless linked list of huge pages to be freed. 1773 */ 1774 static LLIST_HEAD(hpage_freelist); 1775 1776 static void free_hpage_workfn(struct work_struct *work) 1777 { 1778 struct llist_node *node; 1779 1780 node = llist_del_all(&hpage_freelist); 1781 1782 while (node) { 1783 struct page *page; 1784 struct hstate *h; 1785 1786 page = container_of((struct address_space **)node, 1787 struct page, mapping); 1788 node = node->next; 1789 page->mapping = NULL; 1790 /* 1791 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1792 * is going to trigger because a previous call to 1793 * remove_hugetlb_folio() will call folio_set_compound_dtor 1794 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() 1795 * directly. 1796 */ 1797 h = size_to_hstate(page_size(page)); 1798 1799 __update_and_free_page(h, page); 1800 1801 cond_resched(); 1802 } 1803 } 1804 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1805 1806 static inline void flush_free_hpage_work(struct hstate *h) 1807 { 1808 if (hugetlb_vmemmap_optimizable(h)) 1809 flush_work(&free_hpage_work); 1810 } 1811 1812 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1813 bool atomic) 1814 { 1815 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1816 __update_and_free_page(h, &folio->page); 1817 return; 1818 } 1819 1820 /* 1821 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1822 * 1823 * Only call schedule_work() if hpage_freelist is previously 1824 * empty. Otherwise, schedule_work() had been called but the workfn 1825 * hasn't retrieved the list yet. 1826 */ 1827 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1828 schedule_work(&free_hpage_work); 1829 } 1830 1831 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1832 { 1833 struct page *page, *t_page; 1834 struct folio *folio; 1835 1836 list_for_each_entry_safe(page, t_page, list, lru) { 1837 folio = page_folio(page); 1838 update_and_free_hugetlb_folio(h, folio, false); 1839 cond_resched(); 1840 } 1841 } 1842 1843 struct hstate *size_to_hstate(unsigned long size) 1844 { 1845 struct hstate *h; 1846 1847 for_each_hstate(h) { 1848 if (huge_page_size(h) == size) 1849 return h; 1850 } 1851 return NULL; 1852 } 1853 1854 void free_huge_page(struct page *page) 1855 { 1856 /* 1857 * Can't pass hstate in here because it is called from the 1858 * compound page destructor. 1859 */ 1860 struct folio *folio = page_folio(page); 1861 struct hstate *h = folio_hstate(folio); 1862 int nid = folio_nid(folio); 1863 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1864 bool restore_reserve; 1865 unsigned long flags; 1866 1867 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1868 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1869 1870 hugetlb_set_folio_subpool(folio, NULL); 1871 if (folio_test_anon(folio)) 1872 __ClearPageAnonExclusive(&folio->page); 1873 folio->mapping = NULL; 1874 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1875 folio_clear_hugetlb_restore_reserve(folio); 1876 1877 /* 1878 * If HPageRestoreReserve was set on page, page allocation consumed a 1879 * reservation. If the page was associated with a subpool, there 1880 * would have been a page reserved in the subpool before allocation 1881 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1882 * reservation, do not call hugepage_subpool_put_pages() as this will 1883 * remove the reserved page from the subpool. 1884 */ 1885 if (!restore_reserve) { 1886 /* 1887 * A return code of zero implies that the subpool will be 1888 * under its minimum size if the reservation is not restored 1889 * after page is free. Therefore, force restore_reserve 1890 * operation. 1891 */ 1892 if (hugepage_subpool_put_pages(spool, 1) == 0) 1893 restore_reserve = true; 1894 } 1895 1896 spin_lock_irqsave(&hugetlb_lock, flags); 1897 folio_clear_hugetlb_migratable(folio); 1898 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1899 pages_per_huge_page(h), folio); 1900 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1901 pages_per_huge_page(h), folio); 1902 if (restore_reserve) 1903 h->resv_huge_pages++; 1904 1905 if (folio_test_hugetlb_temporary(folio)) { 1906 remove_hugetlb_folio(h, folio, false); 1907 spin_unlock_irqrestore(&hugetlb_lock, flags); 1908 update_and_free_hugetlb_folio(h, folio, true); 1909 } else if (h->surplus_huge_pages_node[nid]) { 1910 /* remove the page from active list */ 1911 remove_hugetlb_folio(h, folio, true); 1912 spin_unlock_irqrestore(&hugetlb_lock, flags); 1913 update_and_free_hugetlb_folio(h, folio, true); 1914 } else { 1915 arch_clear_hugepage_flags(page); 1916 enqueue_hugetlb_folio(h, folio); 1917 spin_unlock_irqrestore(&hugetlb_lock, flags); 1918 } 1919 } 1920 1921 /* 1922 * Must be called with the hugetlb lock held 1923 */ 1924 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1925 { 1926 lockdep_assert_held(&hugetlb_lock); 1927 h->nr_huge_pages++; 1928 h->nr_huge_pages_node[nid]++; 1929 } 1930 1931 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1932 { 1933 hugetlb_vmemmap_optimize(h, &folio->page); 1934 INIT_LIST_HEAD(&folio->lru); 1935 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1936 hugetlb_set_folio_subpool(folio, NULL); 1937 set_hugetlb_cgroup(folio, NULL); 1938 set_hugetlb_cgroup_rsvd(folio, NULL); 1939 } 1940 1941 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1942 { 1943 __prep_new_hugetlb_folio(h, folio); 1944 spin_lock_irq(&hugetlb_lock); 1945 __prep_account_new_huge_page(h, nid); 1946 spin_unlock_irq(&hugetlb_lock); 1947 } 1948 1949 static bool __prep_compound_gigantic_folio(struct folio *folio, 1950 unsigned int order, bool demote) 1951 { 1952 int i, j; 1953 int nr_pages = 1 << order; 1954 struct page *p; 1955 1956 __folio_clear_reserved(folio); 1957 __folio_set_head(folio); 1958 /* we rely on prep_new_hugetlb_folio to set the destructor */ 1959 folio_set_compound_order(folio, order); 1960 for (i = 0; i < nr_pages; i++) { 1961 p = folio_page(folio, i); 1962 1963 /* 1964 * For gigantic hugepages allocated through bootmem at 1965 * boot, it's safer to be consistent with the not-gigantic 1966 * hugepages and clear the PG_reserved bit from all tail pages 1967 * too. Otherwise drivers using get_user_pages() to access tail 1968 * pages may get the reference counting wrong if they see 1969 * PG_reserved set on a tail page (despite the head page not 1970 * having PG_reserved set). Enforcing this consistency between 1971 * head and tail pages allows drivers to optimize away a check 1972 * on the head page when they need know if put_page() is needed 1973 * after get_user_pages(). 1974 */ 1975 if (i != 0) /* head page cleared above */ 1976 __ClearPageReserved(p); 1977 /* 1978 * Subtle and very unlikely 1979 * 1980 * Gigantic 'page allocators' such as memblock or cma will 1981 * return a set of pages with each page ref counted. We need 1982 * to turn this set of pages into a compound page with tail 1983 * page ref counts set to zero. Code such as speculative page 1984 * cache adding could take a ref on a 'to be' tail page. 1985 * We need to respect any increased ref count, and only set 1986 * the ref count to zero if count is currently 1. If count 1987 * is not 1, we return an error. An error return indicates 1988 * the set of pages can not be converted to a gigantic page. 1989 * The caller who allocated the pages should then discard the 1990 * pages using the appropriate free interface. 1991 * 1992 * In the case of demote, the ref count will be zero. 1993 */ 1994 if (!demote) { 1995 if (!page_ref_freeze(p, 1)) { 1996 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1997 goto out_error; 1998 } 1999 } else { 2000 VM_BUG_ON_PAGE(page_count(p), p); 2001 } 2002 if (i != 0) 2003 set_compound_head(p, &folio->page); 2004 } 2005 atomic_set(folio_mapcount_ptr(folio), -1); 2006 atomic_set(folio_subpages_mapcount_ptr(folio), 0); 2007 atomic_set(folio_pincount_ptr(folio), 0); 2008 return true; 2009 2010 out_error: 2011 /* undo page modifications made above */ 2012 for (j = 0; j < i; j++) { 2013 p = folio_page(folio, j); 2014 if (j != 0) 2015 clear_compound_head(p); 2016 set_page_refcounted(p); 2017 } 2018 /* need to clear PG_reserved on remaining tail pages */ 2019 for (; j < nr_pages; j++) { 2020 p = folio_page(folio, j); 2021 __ClearPageReserved(p); 2022 } 2023 folio_set_compound_order(folio, 0); 2024 __folio_clear_head(folio); 2025 return false; 2026 } 2027 2028 static bool prep_compound_gigantic_folio(struct folio *folio, 2029 unsigned int order) 2030 { 2031 return __prep_compound_gigantic_folio(folio, order, false); 2032 } 2033 2034 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2035 unsigned int order) 2036 { 2037 return __prep_compound_gigantic_folio(folio, order, true); 2038 } 2039 2040 /* 2041 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2042 * transparent huge pages. See the PageTransHuge() documentation for more 2043 * details. 2044 */ 2045 int PageHuge(struct page *page) 2046 { 2047 if (!PageCompound(page)) 2048 return 0; 2049 2050 page = compound_head(page); 2051 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 2052 } 2053 EXPORT_SYMBOL_GPL(PageHuge); 2054 2055 /* 2056 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 2057 * normal or transparent huge pages. 2058 */ 2059 int PageHeadHuge(struct page *page_head) 2060 { 2061 if (!PageHead(page_head)) 2062 return 0; 2063 2064 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 2065 } 2066 EXPORT_SYMBOL_GPL(PageHeadHuge); 2067 2068 /* 2069 * Find and lock address space (mapping) in write mode. 2070 * 2071 * Upon entry, the page is locked which means that page_mapping() is 2072 * stable. Due to locking order, we can only trylock_write. If we can 2073 * not get the lock, simply return NULL to caller. 2074 */ 2075 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2076 { 2077 struct address_space *mapping = page_mapping(hpage); 2078 2079 if (!mapping) 2080 return mapping; 2081 2082 if (i_mmap_trylock_write(mapping)) 2083 return mapping; 2084 2085 return NULL; 2086 } 2087 2088 pgoff_t hugetlb_basepage_index(struct page *page) 2089 { 2090 struct page *page_head = compound_head(page); 2091 pgoff_t index = page_index(page_head); 2092 unsigned long compound_idx; 2093 2094 if (compound_order(page_head) >= MAX_ORDER) 2095 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2096 else 2097 compound_idx = page - page_head; 2098 2099 return (index << compound_order(page_head)) + compound_idx; 2100 } 2101 2102 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2103 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2104 nodemask_t *node_alloc_noretry) 2105 { 2106 int order = huge_page_order(h); 2107 struct page *page; 2108 bool alloc_try_hard = true; 2109 bool retry = true; 2110 2111 /* 2112 * By default we always try hard to allocate the page with 2113 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2114 * a loop (to adjust global huge page counts) and previous allocation 2115 * failed, do not continue to try hard on the same node. Use the 2116 * node_alloc_noretry bitmap to manage this state information. 2117 */ 2118 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2119 alloc_try_hard = false; 2120 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2121 if (alloc_try_hard) 2122 gfp_mask |= __GFP_RETRY_MAYFAIL; 2123 if (nid == NUMA_NO_NODE) 2124 nid = numa_mem_id(); 2125 retry: 2126 page = __alloc_pages(gfp_mask, order, nid, nmask); 2127 2128 /* Freeze head page */ 2129 if (page && !page_ref_freeze(page, 1)) { 2130 __free_pages(page, order); 2131 if (retry) { /* retry once */ 2132 retry = false; 2133 goto retry; 2134 } 2135 /* WOW! twice in a row. */ 2136 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2137 page = NULL; 2138 } 2139 2140 /* 2141 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2142 * indicates an overall state change. Clear bit so that we resume 2143 * normal 'try hard' allocations. 2144 */ 2145 if (node_alloc_noretry && page && !alloc_try_hard) 2146 node_clear(nid, *node_alloc_noretry); 2147 2148 /* 2149 * If we tried hard to get a page but failed, set bit so that 2150 * subsequent attempts will not try as hard until there is an 2151 * overall state change. 2152 */ 2153 if (node_alloc_noretry && !page && alloc_try_hard) 2154 node_set(nid, *node_alloc_noretry); 2155 2156 if (!page) { 2157 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2158 return NULL; 2159 } 2160 2161 __count_vm_event(HTLB_BUDDY_PGALLOC); 2162 return page_folio(page); 2163 } 2164 2165 /* 2166 * Common helper to allocate a fresh hugetlb page. All specific allocators 2167 * should use this function to get new hugetlb pages 2168 * 2169 * Note that returned page is 'frozen': ref count of head page and all tail 2170 * pages is zero. 2171 */ 2172 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2173 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2174 nodemask_t *node_alloc_noretry) 2175 { 2176 struct folio *folio; 2177 bool retry = false; 2178 2179 retry: 2180 if (hstate_is_gigantic(h)) 2181 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2182 else 2183 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2184 nid, nmask, node_alloc_noretry); 2185 if (!folio) 2186 return NULL; 2187 if (hstate_is_gigantic(h)) { 2188 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2189 /* 2190 * Rare failure to convert pages to compound page. 2191 * Free pages and try again - ONCE! 2192 */ 2193 free_gigantic_folio(folio, huge_page_order(h)); 2194 if (!retry) { 2195 retry = true; 2196 goto retry; 2197 } 2198 return NULL; 2199 } 2200 } 2201 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2202 2203 return folio; 2204 } 2205 2206 /* 2207 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2208 * manner. 2209 */ 2210 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2211 nodemask_t *node_alloc_noretry) 2212 { 2213 struct folio *folio; 2214 int nr_nodes, node; 2215 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2216 2217 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2218 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2219 nodes_allowed, node_alloc_noretry); 2220 if (folio) { 2221 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 2222 return 1; 2223 } 2224 } 2225 2226 return 0; 2227 } 2228 2229 /* 2230 * Remove huge page from pool from next node to free. Attempt to keep 2231 * persistent huge pages more or less balanced over allowed nodes. 2232 * This routine only 'removes' the hugetlb page. The caller must make 2233 * an additional call to free the page to low level allocators. 2234 * Called with hugetlb_lock locked. 2235 */ 2236 static struct page *remove_pool_huge_page(struct hstate *h, 2237 nodemask_t *nodes_allowed, 2238 bool acct_surplus) 2239 { 2240 int nr_nodes, node; 2241 struct page *page = NULL; 2242 struct folio *folio; 2243 2244 lockdep_assert_held(&hugetlb_lock); 2245 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2246 /* 2247 * If we're returning unused surplus pages, only examine 2248 * nodes with surplus pages. 2249 */ 2250 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2251 !list_empty(&h->hugepage_freelists[node])) { 2252 page = list_entry(h->hugepage_freelists[node].next, 2253 struct page, lru); 2254 folio = page_folio(page); 2255 remove_hugetlb_folio(h, folio, acct_surplus); 2256 break; 2257 } 2258 } 2259 2260 return page; 2261 } 2262 2263 /* 2264 * Dissolve a given free hugepage into free buddy pages. This function does 2265 * nothing for in-use hugepages and non-hugepages. 2266 * This function returns values like below: 2267 * 2268 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2269 * when the system is under memory pressure and the feature of 2270 * freeing unused vmemmap pages associated with each hugetlb page 2271 * is enabled. 2272 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2273 * (allocated or reserved.) 2274 * 0: successfully dissolved free hugepages or the page is not a 2275 * hugepage (considered as already dissolved) 2276 */ 2277 int dissolve_free_huge_page(struct page *page) 2278 { 2279 int rc = -EBUSY; 2280 struct folio *folio = page_folio(page); 2281 2282 retry: 2283 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2284 if (!folio_test_hugetlb(folio)) 2285 return 0; 2286 2287 spin_lock_irq(&hugetlb_lock); 2288 if (!folio_test_hugetlb(folio)) { 2289 rc = 0; 2290 goto out; 2291 } 2292 2293 if (!folio_ref_count(folio)) { 2294 struct hstate *h = folio_hstate(folio); 2295 if (!available_huge_pages(h)) 2296 goto out; 2297 2298 /* 2299 * We should make sure that the page is already on the free list 2300 * when it is dissolved. 2301 */ 2302 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2303 spin_unlock_irq(&hugetlb_lock); 2304 cond_resched(); 2305 2306 /* 2307 * Theoretically, we should return -EBUSY when we 2308 * encounter this race. In fact, we have a chance 2309 * to successfully dissolve the page if we do a 2310 * retry. Because the race window is quite small. 2311 * If we seize this opportunity, it is an optimization 2312 * for increasing the success rate of dissolving page. 2313 */ 2314 goto retry; 2315 } 2316 2317 remove_hugetlb_folio(h, folio, false); 2318 h->max_huge_pages--; 2319 spin_unlock_irq(&hugetlb_lock); 2320 2321 /* 2322 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2323 * before freeing the page. update_and_free_hugtlb_folio will fail to 2324 * free the page if it can not allocate required vmemmap. We 2325 * need to adjust max_huge_pages if the page is not freed. 2326 * Attempt to allocate vmemmmap here so that we can take 2327 * appropriate action on failure. 2328 */ 2329 rc = hugetlb_vmemmap_restore(h, &folio->page); 2330 if (!rc) { 2331 update_and_free_hugetlb_folio(h, folio, false); 2332 } else { 2333 spin_lock_irq(&hugetlb_lock); 2334 add_hugetlb_folio(h, folio, false); 2335 h->max_huge_pages++; 2336 spin_unlock_irq(&hugetlb_lock); 2337 } 2338 2339 return rc; 2340 } 2341 out: 2342 spin_unlock_irq(&hugetlb_lock); 2343 return rc; 2344 } 2345 2346 /* 2347 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2348 * make specified memory blocks removable from the system. 2349 * Note that this will dissolve a free gigantic hugepage completely, if any 2350 * part of it lies within the given range. 2351 * Also note that if dissolve_free_huge_page() returns with an error, all 2352 * free hugepages that were dissolved before that error are lost. 2353 */ 2354 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2355 { 2356 unsigned long pfn; 2357 struct page *page; 2358 int rc = 0; 2359 unsigned int order; 2360 struct hstate *h; 2361 2362 if (!hugepages_supported()) 2363 return rc; 2364 2365 order = huge_page_order(&default_hstate); 2366 for_each_hstate(h) 2367 order = min(order, huge_page_order(h)); 2368 2369 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2370 page = pfn_to_page(pfn); 2371 rc = dissolve_free_huge_page(page); 2372 if (rc) 2373 break; 2374 } 2375 2376 return rc; 2377 } 2378 2379 /* 2380 * Allocates a fresh surplus page from the page allocator. 2381 */ 2382 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2383 int nid, nodemask_t *nmask) 2384 { 2385 struct folio *folio = NULL; 2386 2387 if (hstate_is_gigantic(h)) 2388 return NULL; 2389 2390 spin_lock_irq(&hugetlb_lock); 2391 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2392 goto out_unlock; 2393 spin_unlock_irq(&hugetlb_lock); 2394 2395 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2396 if (!folio) 2397 return NULL; 2398 2399 spin_lock_irq(&hugetlb_lock); 2400 /* 2401 * We could have raced with the pool size change. 2402 * Double check that and simply deallocate the new page 2403 * if we would end up overcommiting the surpluses. Abuse 2404 * temporary page to workaround the nasty free_huge_page 2405 * codeflow 2406 */ 2407 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2408 folio_set_hugetlb_temporary(folio); 2409 spin_unlock_irq(&hugetlb_lock); 2410 free_huge_page(&folio->page); 2411 return NULL; 2412 } 2413 2414 h->surplus_huge_pages++; 2415 h->surplus_huge_pages_node[folio_nid(folio)]++; 2416 2417 out_unlock: 2418 spin_unlock_irq(&hugetlb_lock); 2419 2420 return &folio->page; 2421 } 2422 2423 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2424 int nid, nodemask_t *nmask) 2425 { 2426 struct folio *folio; 2427 2428 if (hstate_is_gigantic(h)) 2429 return NULL; 2430 2431 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2432 if (!folio) 2433 return NULL; 2434 2435 /* fresh huge pages are frozen */ 2436 folio_ref_unfreeze(folio, 1); 2437 /* 2438 * We do not account these pages as surplus because they are only 2439 * temporary and will be released properly on the last reference 2440 */ 2441 folio_set_hugetlb_temporary(folio); 2442 2443 return &folio->page; 2444 } 2445 2446 /* 2447 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2448 */ 2449 static 2450 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2451 struct vm_area_struct *vma, unsigned long addr) 2452 { 2453 struct page *page = NULL; 2454 struct mempolicy *mpol; 2455 gfp_t gfp_mask = htlb_alloc_mask(h); 2456 int nid; 2457 nodemask_t *nodemask; 2458 2459 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2460 if (mpol_is_preferred_many(mpol)) { 2461 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2462 2463 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2464 page = alloc_surplus_huge_page(h, gfp, nid, nodemask); 2465 2466 /* Fallback to all nodes if page==NULL */ 2467 nodemask = NULL; 2468 } 2469 2470 if (!page) 2471 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 2472 mpol_cond_put(mpol); 2473 return page; 2474 } 2475 2476 /* page migration callback function */ 2477 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2478 nodemask_t *nmask, gfp_t gfp_mask) 2479 { 2480 spin_lock_irq(&hugetlb_lock); 2481 if (available_huge_pages(h)) { 2482 struct page *page; 2483 2484 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2485 if (page) { 2486 spin_unlock_irq(&hugetlb_lock); 2487 return page; 2488 } 2489 } 2490 spin_unlock_irq(&hugetlb_lock); 2491 2492 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2493 } 2494 2495 /* mempolicy aware migration callback */ 2496 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2497 unsigned long address) 2498 { 2499 struct mempolicy *mpol; 2500 nodemask_t *nodemask; 2501 struct page *page; 2502 gfp_t gfp_mask; 2503 int node; 2504 2505 gfp_mask = htlb_alloc_mask(h); 2506 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2507 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2508 mpol_cond_put(mpol); 2509 2510 return page; 2511 } 2512 2513 /* 2514 * Increase the hugetlb pool such that it can accommodate a reservation 2515 * of size 'delta'. 2516 */ 2517 static int gather_surplus_pages(struct hstate *h, long delta) 2518 __must_hold(&hugetlb_lock) 2519 { 2520 LIST_HEAD(surplus_list); 2521 struct page *page, *tmp; 2522 int ret; 2523 long i; 2524 long needed, allocated; 2525 bool alloc_ok = true; 2526 2527 lockdep_assert_held(&hugetlb_lock); 2528 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2529 if (needed <= 0) { 2530 h->resv_huge_pages += delta; 2531 return 0; 2532 } 2533 2534 allocated = 0; 2535 2536 ret = -ENOMEM; 2537 retry: 2538 spin_unlock_irq(&hugetlb_lock); 2539 for (i = 0; i < needed; i++) { 2540 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2541 NUMA_NO_NODE, NULL); 2542 if (!page) { 2543 alloc_ok = false; 2544 break; 2545 } 2546 list_add(&page->lru, &surplus_list); 2547 cond_resched(); 2548 } 2549 allocated += i; 2550 2551 /* 2552 * After retaking hugetlb_lock, we need to recalculate 'needed' 2553 * because either resv_huge_pages or free_huge_pages may have changed. 2554 */ 2555 spin_lock_irq(&hugetlb_lock); 2556 needed = (h->resv_huge_pages + delta) - 2557 (h->free_huge_pages + allocated); 2558 if (needed > 0) { 2559 if (alloc_ok) 2560 goto retry; 2561 /* 2562 * We were not able to allocate enough pages to 2563 * satisfy the entire reservation so we free what 2564 * we've allocated so far. 2565 */ 2566 goto free; 2567 } 2568 /* 2569 * The surplus_list now contains _at_least_ the number of extra pages 2570 * needed to accommodate the reservation. Add the appropriate number 2571 * of pages to the hugetlb pool and free the extras back to the buddy 2572 * allocator. Commit the entire reservation here to prevent another 2573 * process from stealing the pages as they are added to the pool but 2574 * before they are reserved. 2575 */ 2576 needed += allocated; 2577 h->resv_huge_pages += delta; 2578 ret = 0; 2579 2580 /* Free the needed pages to the hugetlb pool */ 2581 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2582 if ((--needed) < 0) 2583 break; 2584 /* Add the page to the hugetlb allocator */ 2585 enqueue_hugetlb_folio(h, page_folio(page)); 2586 } 2587 free: 2588 spin_unlock_irq(&hugetlb_lock); 2589 2590 /* 2591 * Free unnecessary surplus pages to the buddy allocator. 2592 * Pages have no ref count, call free_huge_page directly. 2593 */ 2594 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2595 free_huge_page(page); 2596 spin_lock_irq(&hugetlb_lock); 2597 2598 return ret; 2599 } 2600 2601 /* 2602 * This routine has two main purposes: 2603 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2604 * in unused_resv_pages. This corresponds to the prior adjustments made 2605 * to the associated reservation map. 2606 * 2) Free any unused surplus pages that may have been allocated to satisfy 2607 * the reservation. As many as unused_resv_pages may be freed. 2608 */ 2609 static void return_unused_surplus_pages(struct hstate *h, 2610 unsigned long unused_resv_pages) 2611 { 2612 unsigned long nr_pages; 2613 struct page *page; 2614 LIST_HEAD(page_list); 2615 2616 lockdep_assert_held(&hugetlb_lock); 2617 /* Uncommit the reservation */ 2618 h->resv_huge_pages -= unused_resv_pages; 2619 2620 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2621 goto out; 2622 2623 /* 2624 * Part (or even all) of the reservation could have been backed 2625 * by pre-allocated pages. Only free surplus pages. 2626 */ 2627 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2628 2629 /* 2630 * We want to release as many surplus pages as possible, spread 2631 * evenly across all nodes with memory. Iterate across these nodes 2632 * until we can no longer free unreserved surplus pages. This occurs 2633 * when the nodes with surplus pages have no free pages. 2634 * remove_pool_huge_page() will balance the freed pages across the 2635 * on-line nodes with memory and will handle the hstate accounting. 2636 */ 2637 while (nr_pages--) { 2638 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2639 if (!page) 2640 goto out; 2641 2642 list_add(&page->lru, &page_list); 2643 } 2644 2645 out: 2646 spin_unlock_irq(&hugetlb_lock); 2647 update_and_free_pages_bulk(h, &page_list); 2648 spin_lock_irq(&hugetlb_lock); 2649 } 2650 2651 2652 /* 2653 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2654 * are used by the huge page allocation routines to manage reservations. 2655 * 2656 * vma_needs_reservation is called to determine if the huge page at addr 2657 * within the vma has an associated reservation. If a reservation is 2658 * needed, the value 1 is returned. The caller is then responsible for 2659 * managing the global reservation and subpool usage counts. After 2660 * the huge page has been allocated, vma_commit_reservation is called 2661 * to add the page to the reservation map. If the page allocation fails, 2662 * the reservation must be ended instead of committed. vma_end_reservation 2663 * is called in such cases. 2664 * 2665 * In the normal case, vma_commit_reservation returns the same value 2666 * as the preceding vma_needs_reservation call. The only time this 2667 * is not the case is if a reserve map was changed between calls. It 2668 * is the responsibility of the caller to notice the difference and 2669 * take appropriate action. 2670 * 2671 * vma_add_reservation is used in error paths where a reservation must 2672 * be restored when a newly allocated huge page must be freed. It is 2673 * to be called after calling vma_needs_reservation to determine if a 2674 * reservation exists. 2675 * 2676 * vma_del_reservation is used in error paths where an entry in the reserve 2677 * map was created during huge page allocation and must be removed. It is to 2678 * be called after calling vma_needs_reservation to determine if a reservation 2679 * exists. 2680 */ 2681 enum vma_resv_mode { 2682 VMA_NEEDS_RESV, 2683 VMA_COMMIT_RESV, 2684 VMA_END_RESV, 2685 VMA_ADD_RESV, 2686 VMA_DEL_RESV, 2687 }; 2688 static long __vma_reservation_common(struct hstate *h, 2689 struct vm_area_struct *vma, unsigned long addr, 2690 enum vma_resv_mode mode) 2691 { 2692 struct resv_map *resv; 2693 pgoff_t idx; 2694 long ret; 2695 long dummy_out_regions_needed; 2696 2697 resv = vma_resv_map(vma); 2698 if (!resv) 2699 return 1; 2700 2701 idx = vma_hugecache_offset(h, vma, addr); 2702 switch (mode) { 2703 case VMA_NEEDS_RESV: 2704 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2705 /* We assume that vma_reservation_* routines always operate on 2706 * 1 page, and that adding to resv map a 1 page entry can only 2707 * ever require 1 region. 2708 */ 2709 VM_BUG_ON(dummy_out_regions_needed != 1); 2710 break; 2711 case VMA_COMMIT_RESV: 2712 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2713 /* region_add calls of range 1 should never fail. */ 2714 VM_BUG_ON(ret < 0); 2715 break; 2716 case VMA_END_RESV: 2717 region_abort(resv, idx, idx + 1, 1); 2718 ret = 0; 2719 break; 2720 case VMA_ADD_RESV: 2721 if (vma->vm_flags & VM_MAYSHARE) { 2722 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2723 /* region_add calls of range 1 should never fail. */ 2724 VM_BUG_ON(ret < 0); 2725 } else { 2726 region_abort(resv, idx, idx + 1, 1); 2727 ret = region_del(resv, idx, idx + 1); 2728 } 2729 break; 2730 case VMA_DEL_RESV: 2731 if (vma->vm_flags & VM_MAYSHARE) { 2732 region_abort(resv, idx, idx + 1, 1); 2733 ret = region_del(resv, idx, idx + 1); 2734 } else { 2735 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2736 /* region_add calls of range 1 should never fail. */ 2737 VM_BUG_ON(ret < 0); 2738 } 2739 break; 2740 default: 2741 BUG(); 2742 } 2743 2744 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2745 return ret; 2746 /* 2747 * We know private mapping must have HPAGE_RESV_OWNER set. 2748 * 2749 * In most cases, reserves always exist for private mappings. 2750 * However, a file associated with mapping could have been 2751 * hole punched or truncated after reserves were consumed. 2752 * As subsequent fault on such a range will not use reserves. 2753 * Subtle - The reserve map for private mappings has the 2754 * opposite meaning than that of shared mappings. If NO 2755 * entry is in the reserve map, it means a reservation exists. 2756 * If an entry exists in the reserve map, it means the 2757 * reservation has already been consumed. As a result, the 2758 * return value of this routine is the opposite of the 2759 * value returned from reserve map manipulation routines above. 2760 */ 2761 if (ret > 0) 2762 return 0; 2763 if (ret == 0) 2764 return 1; 2765 return ret; 2766 } 2767 2768 static long vma_needs_reservation(struct hstate *h, 2769 struct vm_area_struct *vma, unsigned long addr) 2770 { 2771 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2772 } 2773 2774 static long vma_commit_reservation(struct hstate *h, 2775 struct vm_area_struct *vma, unsigned long addr) 2776 { 2777 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2778 } 2779 2780 static void vma_end_reservation(struct hstate *h, 2781 struct vm_area_struct *vma, unsigned long addr) 2782 { 2783 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2784 } 2785 2786 static long vma_add_reservation(struct hstate *h, 2787 struct vm_area_struct *vma, unsigned long addr) 2788 { 2789 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2790 } 2791 2792 static long vma_del_reservation(struct hstate *h, 2793 struct vm_area_struct *vma, unsigned long addr) 2794 { 2795 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2796 } 2797 2798 /* 2799 * This routine is called to restore reservation information on error paths. 2800 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2801 * the hugetlb mutex should remain held when calling this routine. 2802 * 2803 * It handles two specific cases: 2804 * 1) A reservation was in place and the page consumed the reservation. 2805 * HPageRestoreReserve is set in the page. 2806 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2807 * not set. However, alloc_huge_page always updates the reserve map. 2808 * 2809 * In case 1, free_huge_page later in the error path will increment the 2810 * global reserve count. But, free_huge_page does not have enough context 2811 * to adjust the reservation map. This case deals primarily with private 2812 * mappings. Adjust the reserve map here to be consistent with global 2813 * reserve count adjustments to be made by free_huge_page. Make sure the 2814 * reserve map indicates there is a reservation present. 2815 * 2816 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2817 */ 2818 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2819 unsigned long address, struct page *page) 2820 { 2821 long rc = vma_needs_reservation(h, vma, address); 2822 2823 if (HPageRestoreReserve(page)) { 2824 if (unlikely(rc < 0)) 2825 /* 2826 * Rare out of memory condition in reserve map 2827 * manipulation. Clear HPageRestoreReserve so that 2828 * global reserve count will not be incremented 2829 * by free_huge_page. This will make it appear 2830 * as though the reservation for this page was 2831 * consumed. This may prevent the task from 2832 * faulting in the page at a later time. This 2833 * is better than inconsistent global huge page 2834 * accounting of reserve counts. 2835 */ 2836 ClearHPageRestoreReserve(page); 2837 else if (rc) 2838 (void)vma_add_reservation(h, vma, address); 2839 else 2840 vma_end_reservation(h, vma, address); 2841 } else { 2842 if (!rc) { 2843 /* 2844 * This indicates there is an entry in the reserve map 2845 * not added by alloc_huge_page. We know it was added 2846 * before the alloc_huge_page call, otherwise 2847 * HPageRestoreReserve would be set on the page. 2848 * Remove the entry so that a subsequent allocation 2849 * does not consume a reservation. 2850 */ 2851 rc = vma_del_reservation(h, vma, address); 2852 if (rc < 0) 2853 /* 2854 * VERY rare out of memory condition. Since 2855 * we can not delete the entry, set 2856 * HPageRestoreReserve so that the reserve 2857 * count will be incremented when the page 2858 * is freed. This reserve will be consumed 2859 * on a subsequent allocation. 2860 */ 2861 SetHPageRestoreReserve(page); 2862 } else if (rc < 0) { 2863 /* 2864 * Rare out of memory condition from 2865 * vma_needs_reservation call. Memory allocation is 2866 * only attempted if a new entry is needed. Therefore, 2867 * this implies there is not an entry in the 2868 * reserve map. 2869 * 2870 * For shared mappings, no entry in the map indicates 2871 * no reservation. We are done. 2872 */ 2873 if (!(vma->vm_flags & VM_MAYSHARE)) 2874 /* 2875 * For private mappings, no entry indicates 2876 * a reservation is present. Since we can 2877 * not add an entry, set SetHPageRestoreReserve 2878 * on the page so reserve count will be 2879 * incremented when freed. This reserve will 2880 * be consumed on a subsequent allocation. 2881 */ 2882 SetHPageRestoreReserve(page); 2883 } else 2884 /* 2885 * No reservation present, do nothing 2886 */ 2887 vma_end_reservation(h, vma, address); 2888 } 2889 } 2890 2891 /* 2892 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2893 * the old one 2894 * @h: struct hstate old page belongs to 2895 * @old_folio: Old folio to dissolve 2896 * @list: List to isolate the page in case we need to 2897 * Returns 0 on success, otherwise negated error. 2898 */ 2899 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2900 struct folio *old_folio, struct list_head *list) 2901 { 2902 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2903 int nid = folio_nid(old_folio); 2904 struct folio *new_folio; 2905 int ret = 0; 2906 2907 /* 2908 * Before dissolving the folio, we need to allocate a new one for the 2909 * pool to remain stable. Here, we allocate the folio and 'prep' it 2910 * by doing everything but actually updating counters and adding to 2911 * the pool. This simplifies and let us do most of the processing 2912 * under the lock. 2913 */ 2914 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2915 if (!new_folio) 2916 return -ENOMEM; 2917 __prep_new_hugetlb_folio(h, new_folio); 2918 2919 retry: 2920 spin_lock_irq(&hugetlb_lock); 2921 if (!folio_test_hugetlb(old_folio)) { 2922 /* 2923 * Freed from under us. Drop new_folio too. 2924 */ 2925 goto free_new; 2926 } else if (folio_ref_count(old_folio)) { 2927 /* 2928 * Someone has grabbed the folio, try to isolate it here. 2929 * Fail with -EBUSY if not possible. 2930 */ 2931 spin_unlock_irq(&hugetlb_lock); 2932 ret = isolate_hugetlb(&old_folio->page, list); 2933 spin_lock_irq(&hugetlb_lock); 2934 goto free_new; 2935 } else if (!folio_test_hugetlb_freed(old_folio)) { 2936 /* 2937 * Folio's refcount is 0 but it has not been enqueued in the 2938 * freelist yet. Race window is small, so we can succeed here if 2939 * we retry. 2940 */ 2941 spin_unlock_irq(&hugetlb_lock); 2942 cond_resched(); 2943 goto retry; 2944 } else { 2945 /* 2946 * Ok, old_folio is still a genuine free hugepage. Remove it from 2947 * the freelist and decrease the counters. These will be 2948 * incremented again when calling __prep_account_new_huge_page() 2949 * and enqueue_hugetlb_folio() for new_folio. The counters will 2950 * remain stable since this happens under the lock. 2951 */ 2952 remove_hugetlb_folio(h, old_folio, false); 2953 2954 /* 2955 * Ref count on new_folio is already zero as it was dropped 2956 * earlier. It can be directly added to the pool free list. 2957 */ 2958 __prep_account_new_huge_page(h, nid); 2959 enqueue_hugetlb_folio(h, new_folio); 2960 2961 /* 2962 * Folio has been replaced, we can safely free the old one. 2963 */ 2964 spin_unlock_irq(&hugetlb_lock); 2965 update_and_free_hugetlb_folio(h, old_folio, false); 2966 } 2967 2968 return ret; 2969 2970 free_new: 2971 spin_unlock_irq(&hugetlb_lock); 2972 /* Folio has a zero ref count, but needs a ref to be freed */ 2973 folio_ref_unfreeze(new_folio, 1); 2974 update_and_free_hugetlb_folio(h, new_folio, false); 2975 2976 return ret; 2977 } 2978 2979 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2980 { 2981 struct hstate *h; 2982 struct folio *folio = page_folio(page); 2983 int ret = -EBUSY; 2984 2985 /* 2986 * The page might have been dissolved from under our feet, so make sure 2987 * to carefully check the state under the lock. 2988 * Return success when racing as if we dissolved the page ourselves. 2989 */ 2990 spin_lock_irq(&hugetlb_lock); 2991 if (folio_test_hugetlb(folio)) { 2992 h = folio_hstate(folio); 2993 } else { 2994 spin_unlock_irq(&hugetlb_lock); 2995 return 0; 2996 } 2997 spin_unlock_irq(&hugetlb_lock); 2998 2999 /* 3000 * Fence off gigantic pages as there is a cyclic dependency between 3001 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3002 * of bailing out right away without further retrying. 3003 */ 3004 if (hstate_is_gigantic(h)) 3005 return -ENOMEM; 3006 3007 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list)) 3008 ret = 0; 3009 else if (!folio_ref_count(folio)) 3010 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3011 3012 return ret; 3013 } 3014 3015 struct page *alloc_huge_page(struct vm_area_struct *vma, 3016 unsigned long addr, int avoid_reserve) 3017 { 3018 struct hugepage_subpool *spool = subpool_vma(vma); 3019 struct hstate *h = hstate_vma(vma); 3020 struct page *page; 3021 struct folio *folio; 3022 long map_chg, map_commit; 3023 long gbl_chg; 3024 int ret, idx; 3025 struct hugetlb_cgroup *h_cg; 3026 bool deferred_reserve; 3027 3028 idx = hstate_index(h); 3029 /* 3030 * Examine the region/reserve map to determine if the process 3031 * has a reservation for the page to be allocated. A return 3032 * code of zero indicates a reservation exists (no change). 3033 */ 3034 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3035 if (map_chg < 0) 3036 return ERR_PTR(-ENOMEM); 3037 3038 /* 3039 * Processes that did not create the mapping will have no 3040 * reserves as indicated by the region/reserve map. Check 3041 * that the allocation will not exceed the subpool limit. 3042 * Allocations for MAP_NORESERVE mappings also need to be 3043 * checked against any subpool limit. 3044 */ 3045 if (map_chg || avoid_reserve) { 3046 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3047 if (gbl_chg < 0) { 3048 vma_end_reservation(h, vma, addr); 3049 return ERR_PTR(-ENOSPC); 3050 } 3051 3052 /* 3053 * Even though there was no reservation in the region/reserve 3054 * map, there could be reservations associated with the 3055 * subpool that can be used. This would be indicated if the 3056 * return value of hugepage_subpool_get_pages() is zero. 3057 * However, if avoid_reserve is specified we still avoid even 3058 * the subpool reservations. 3059 */ 3060 if (avoid_reserve) 3061 gbl_chg = 1; 3062 } 3063 3064 /* If this allocation is not consuming a reservation, charge it now. 3065 */ 3066 deferred_reserve = map_chg || avoid_reserve; 3067 if (deferred_reserve) { 3068 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3069 idx, pages_per_huge_page(h), &h_cg); 3070 if (ret) 3071 goto out_subpool_put; 3072 } 3073 3074 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3075 if (ret) 3076 goto out_uncharge_cgroup_reservation; 3077 3078 spin_lock_irq(&hugetlb_lock); 3079 /* 3080 * glb_chg is passed to indicate whether or not a page must be taken 3081 * from the global free pool (global change). gbl_chg == 0 indicates 3082 * a reservation exists for the allocation. 3083 */ 3084 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 3085 if (!page) { 3086 spin_unlock_irq(&hugetlb_lock); 3087 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 3088 if (!page) 3089 goto out_uncharge_cgroup; 3090 spin_lock_irq(&hugetlb_lock); 3091 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3092 SetHPageRestoreReserve(page); 3093 h->resv_huge_pages--; 3094 } 3095 list_add(&page->lru, &h->hugepage_activelist); 3096 set_page_refcounted(page); 3097 /* Fall through */ 3098 } 3099 folio = page_folio(page); 3100 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 3101 /* If allocation is not consuming a reservation, also store the 3102 * hugetlb_cgroup pointer on the page. 3103 */ 3104 if (deferred_reserve) { 3105 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3106 h_cg, page); 3107 } 3108 3109 spin_unlock_irq(&hugetlb_lock); 3110 3111 hugetlb_set_page_subpool(page, spool); 3112 3113 map_commit = vma_commit_reservation(h, vma, addr); 3114 if (unlikely(map_chg > map_commit)) { 3115 /* 3116 * The page was added to the reservation map between 3117 * vma_needs_reservation and vma_commit_reservation. 3118 * This indicates a race with hugetlb_reserve_pages. 3119 * Adjust for the subpool count incremented above AND 3120 * in hugetlb_reserve_pages for the same page. Also, 3121 * the reservation count added in hugetlb_reserve_pages 3122 * no longer applies. 3123 */ 3124 long rsv_adjust; 3125 3126 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3127 hugetlb_acct_memory(h, -rsv_adjust); 3128 if (deferred_reserve) 3129 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3130 pages_per_huge_page(h), folio); 3131 } 3132 return page; 3133 3134 out_uncharge_cgroup: 3135 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3136 out_uncharge_cgroup_reservation: 3137 if (deferred_reserve) 3138 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3139 h_cg); 3140 out_subpool_put: 3141 if (map_chg || avoid_reserve) 3142 hugepage_subpool_put_pages(spool, 1); 3143 vma_end_reservation(h, vma, addr); 3144 return ERR_PTR(-ENOSPC); 3145 } 3146 3147 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3148 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3149 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3150 { 3151 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3152 int nr_nodes, node; 3153 3154 /* do node specific alloc */ 3155 if (nid != NUMA_NO_NODE) { 3156 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3157 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3158 if (!m) 3159 return 0; 3160 goto found; 3161 } 3162 /* allocate from next node when distributing huge pages */ 3163 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3164 m = memblock_alloc_try_nid_raw( 3165 huge_page_size(h), huge_page_size(h), 3166 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3167 /* 3168 * Use the beginning of the huge page to store the 3169 * huge_bootmem_page struct (until gather_bootmem 3170 * puts them into the mem_map). 3171 */ 3172 if (!m) 3173 return 0; 3174 goto found; 3175 } 3176 3177 found: 3178 /* Put them into a private list first because mem_map is not up yet */ 3179 INIT_LIST_HEAD(&m->list); 3180 list_add(&m->list, &huge_boot_pages); 3181 m->hstate = h; 3182 return 1; 3183 } 3184 3185 /* 3186 * Put bootmem huge pages into the standard lists after mem_map is up. 3187 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3188 */ 3189 static void __init gather_bootmem_prealloc(void) 3190 { 3191 struct huge_bootmem_page *m; 3192 3193 list_for_each_entry(m, &huge_boot_pages, list) { 3194 struct page *page = virt_to_page(m); 3195 struct folio *folio = page_folio(page); 3196 struct hstate *h = m->hstate; 3197 3198 VM_BUG_ON(!hstate_is_gigantic(h)); 3199 WARN_ON(folio_ref_count(folio) != 1); 3200 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3201 WARN_ON(folio_test_reserved(folio)); 3202 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3203 free_huge_page(page); /* add to the hugepage allocator */ 3204 } else { 3205 /* VERY unlikely inflated ref count on a tail page */ 3206 free_gigantic_folio(folio, huge_page_order(h)); 3207 } 3208 3209 /* 3210 * We need to restore the 'stolen' pages to totalram_pages 3211 * in order to fix confusing memory reports from free(1) and 3212 * other side-effects, like CommitLimit going negative. 3213 */ 3214 adjust_managed_page_count(page, pages_per_huge_page(h)); 3215 cond_resched(); 3216 } 3217 } 3218 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3219 { 3220 unsigned long i; 3221 char buf[32]; 3222 3223 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3224 if (hstate_is_gigantic(h)) { 3225 if (!alloc_bootmem_huge_page(h, nid)) 3226 break; 3227 } else { 3228 struct folio *folio; 3229 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3230 3231 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3232 &node_states[N_MEMORY], NULL); 3233 if (!folio) 3234 break; 3235 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 3236 } 3237 cond_resched(); 3238 } 3239 if (i == h->max_huge_pages_node[nid]) 3240 return; 3241 3242 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3243 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3244 h->max_huge_pages_node[nid], buf, nid, i); 3245 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3246 h->max_huge_pages_node[nid] = i; 3247 } 3248 3249 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3250 { 3251 unsigned long i; 3252 nodemask_t *node_alloc_noretry; 3253 bool node_specific_alloc = false; 3254 3255 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3256 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3257 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3258 return; 3259 } 3260 3261 /* do node specific alloc */ 3262 for_each_online_node(i) { 3263 if (h->max_huge_pages_node[i] > 0) { 3264 hugetlb_hstate_alloc_pages_onenode(h, i); 3265 node_specific_alloc = true; 3266 } 3267 } 3268 3269 if (node_specific_alloc) 3270 return; 3271 3272 /* below will do all node balanced alloc */ 3273 if (!hstate_is_gigantic(h)) { 3274 /* 3275 * Bit mask controlling how hard we retry per-node allocations. 3276 * Ignore errors as lower level routines can deal with 3277 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3278 * time, we are likely in bigger trouble. 3279 */ 3280 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3281 GFP_KERNEL); 3282 } else { 3283 /* allocations done at boot time */ 3284 node_alloc_noretry = NULL; 3285 } 3286 3287 /* bit mask controlling how hard we retry per-node allocations */ 3288 if (node_alloc_noretry) 3289 nodes_clear(*node_alloc_noretry); 3290 3291 for (i = 0; i < h->max_huge_pages; ++i) { 3292 if (hstate_is_gigantic(h)) { 3293 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3294 break; 3295 } else if (!alloc_pool_huge_page(h, 3296 &node_states[N_MEMORY], 3297 node_alloc_noretry)) 3298 break; 3299 cond_resched(); 3300 } 3301 if (i < h->max_huge_pages) { 3302 char buf[32]; 3303 3304 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3305 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3306 h->max_huge_pages, buf, i); 3307 h->max_huge_pages = i; 3308 } 3309 kfree(node_alloc_noretry); 3310 } 3311 3312 static void __init hugetlb_init_hstates(void) 3313 { 3314 struct hstate *h, *h2; 3315 3316 for_each_hstate(h) { 3317 /* oversize hugepages were init'ed in early boot */ 3318 if (!hstate_is_gigantic(h)) 3319 hugetlb_hstate_alloc_pages(h); 3320 3321 /* 3322 * Set demote order for each hstate. Note that 3323 * h->demote_order is initially 0. 3324 * - We can not demote gigantic pages if runtime freeing 3325 * is not supported, so skip this. 3326 * - If CMA allocation is possible, we can not demote 3327 * HUGETLB_PAGE_ORDER or smaller size pages. 3328 */ 3329 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3330 continue; 3331 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3332 continue; 3333 for_each_hstate(h2) { 3334 if (h2 == h) 3335 continue; 3336 if (h2->order < h->order && 3337 h2->order > h->demote_order) 3338 h->demote_order = h2->order; 3339 } 3340 } 3341 } 3342 3343 static void __init report_hugepages(void) 3344 { 3345 struct hstate *h; 3346 3347 for_each_hstate(h) { 3348 char buf[32]; 3349 3350 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3351 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3352 buf, h->free_huge_pages); 3353 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3354 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3355 } 3356 } 3357 3358 #ifdef CONFIG_HIGHMEM 3359 static void try_to_free_low(struct hstate *h, unsigned long count, 3360 nodemask_t *nodes_allowed) 3361 { 3362 int i; 3363 LIST_HEAD(page_list); 3364 3365 lockdep_assert_held(&hugetlb_lock); 3366 if (hstate_is_gigantic(h)) 3367 return; 3368 3369 /* 3370 * Collect pages to be freed on a list, and free after dropping lock 3371 */ 3372 for_each_node_mask(i, *nodes_allowed) { 3373 struct page *page, *next; 3374 struct list_head *freel = &h->hugepage_freelists[i]; 3375 list_for_each_entry_safe(page, next, freel, lru) { 3376 if (count >= h->nr_huge_pages) 3377 goto out; 3378 if (PageHighMem(page)) 3379 continue; 3380 remove_hugetlb_folio(h, page_folio(page), false); 3381 list_add(&page->lru, &page_list); 3382 } 3383 } 3384 3385 out: 3386 spin_unlock_irq(&hugetlb_lock); 3387 update_and_free_pages_bulk(h, &page_list); 3388 spin_lock_irq(&hugetlb_lock); 3389 } 3390 #else 3391 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3392 nodemask_t *nodes_allowed) 3393 { 3394 } 3395 #endif 3396 3397 /* 3398 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3399 * balanced by operating on them in a round-robin fashion. 3400 * Returns 1 if an adjustment was made. 3401 */ 3402 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3403 int delta) 3404 { 3405 int nr_nodes, node; 3406 3407 lockdep_assert_held(&hugetlb_lock); 3408 VM_BUG_ON(delta != -1 && delta != 1); 3409 3410 if (delta < 0) { 3411 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3412 if (h->surplus_huge_pages_node[node]) 3413 goto found; 3414 } 3415 } else { 3416 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3417 if (h->surplus_huge_pages_node[node] < 3418 h->nr_huge_pages_node[node]) 3419 goto found; 3420 } 3421 } 3422 return 0; 3423 3424 found: 3425 h->surplus_huge_pages += delta; 3426 h->surplus_huge_pages_node[node] += delta; 3427 return 1; 3428 } 3429 3430 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3431 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3432 nodemask_t *nodes_allowed) 3433 { 3434 unsigned long min_count, ret; 3435 struct page *page; 3436 LIST_HEAD(page_list); 3437 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3438 3439 /* 3440 * Bit mask controlling how hard we retry per-node allocations. 3441 * If we can not allocate the bit mask, do not attempt to allocate 3442 * the requested huge pages. 3443 */ 3444 if (node_alloc_noretry) 3445 nodes_clear(*node_alloc_noretry); 3446 else 3447 return -ENOMEM; 3448 3449 /* 3450 * resize_lock mutex prevents concurrent adjustments to number of 3451 * pages in hstate via the proc/sysfs interfaces. 3452 */ 3453 mutex_lock(&h->resize_lock); 3454 flush_free_hpage_work(h); 3455 spin_lock_irq(&hugetlb_lock); 3456 3457 /* 3458 * Check for a node specific request. 3459 * Changing node specific huge page count may require a corresponding 3460 * change to the global count. In any case, the passed node mask 3461 * (nodes_allowed) will restrict alloc/free to the specified node. 3462 */ 3463 if (nid != NUMA_NO_NODE) { 3464 unsigned long old_count = count; 3465 3466 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3467 /* 3468 * User may have specified a large count value which caused the 3469 * above calculation to overflow. In this case, they wanted 3470 * to allocate as many huge pages as possible. Set count to 3471 * largest possible value to align with their intention. 3472 */ 3473 if (count < old_count) 3474 count = ULONG_MAX; 3475 } 3476 3477 /* 3478 * Gigantic pages runtime allocation depend on the capability for large 3479 * page range allocation. 3480 * If the system does not provide this feature, return an error when 3481 * the user tries to allocate gigantic pages but let the user free the 3482 * boottime allocated gigantic pages. 3483 */ 3484 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3485 if (count > persistent_huge_pages(h)) { 3486 spin_unlock_irq(&hugetlb_lock); 3487 mutex_unlock(&h->resize_lock); 3488 NODEMASK_FREE(node_alloc_noretry); 3489 return -EINVAL; 3490 } 3491 /* Fall through to decrease pool */ 3492 } 3493 3494 /* 3495 * Increase the pool size 3496 * First take pages out of surplus state. Then make up the 3497 * remaining difference by allocating fresh huge pages. 3498 * 3499 * We might race with alloc_surplus_huge_page() here and be unable 3500 * to convert a surplus huge page to a normal huge page. That is 3501 * not critical, though, it just means the overall size of the 3502 * pool might be one hugepage larger than it needs to be, but 3503 * within all the constraints specified by the sysctls. 3504 */ 3505 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3506 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3507 break; 3508 } 3509 3510 while (count > persistent_huge_pages(h)) { 3511 /* 3512 * If this allocation races such that we no longer need the 3513 * page, free_huge_page will handle it by freeing the page 3514 * and reducing the surplus. 3515 */ 3516 spin_unlock_irq(&hugetlb_lock); 3517 3518 /* yield cpu to avoid soft lockup */ 3519 cond_resched(); 3520 3521 ret = alloc_pool_huge_page(h, nodes_allowed, 3522 node_alloc_noretry); 3523 spin_lock_irq(&hugetlb_lock); 3524 if (!ret) 3525 goto out; 3526 3527 /* Bail for signals. Probably ctrl-c from user */ 3528 if (signal_pending(current)) 3529 goto out; 3530 } 3531 3532 /* 3533 * Decrease the pool size 3534 * First return free pages to the buddy allocator (being careful 3535 * to keep enough around to satisfy reservations). Then place 3536 * pages into surplus state as needed so the pool will shrink 3537 * to the desired size as pages become free. 3538 * 3539 * By placing pages into the surplus state independent of the 3540 * overcommit value, we are allowing the surplus pool size to 3541 * exceed overcommit. There are few sane options here. Since 3542 * alloc_surplus_huge_page() is checking the global counter, 3543 * though, we'll note that we're not allowed to exceed surplus 3544 * and won't grow the pool anywhere else. Not until one of the 3545 * sysctls are changed, or the surplus pages go out of use. 3546 */ 3547 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3548 min_count = max(count, min_count); 3549 try_to_free_low(h, min_count, nodes_allowed); 3550 3551 /* 3552 * Collect pages to be removed on list without dropping lock 3553 */ 3554 while (min_count < persistent_huge_pages(h)) { 3555 page = remove_pool_huge_page(h, nodes_allowed, 0); 3556 if (!page) 3557 break; 3558 3559 list_add(&page->lru, &page_list); 3560 } 3561 /* free the pages after dropping lock */ 3562 spin_unlock_irq(&hugetlb_lock); 3563 update_and_free_pages_bulk(h, &page_list); 3564 flush_free_hpage_work(h); 3565 spin_lock_irq(&hugetlb_lock); 3566 3567 while (count < persistent_huge_pages(h)) { 3568 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3569 break; 3570 } 3571 out: 3572 h->max_huge_pages = persistent_huge_pages(h); 3573 spin_unlock_irq(&hugetlb_lock); 3574 mutex_unlock(&h->resize_lock); 3575 3576 NODEMASK_FREE(node_alloc_noretry); 3577 3578 return 0; 3579 } 3580 3581 static int demote_free_huge_page(struct hstate *h, struct page *page) 3582 { 3583 int i, nid = page_to_nid(page); 3584 struct hstate *target_hstate; 3585 struct folio *folio = page_folio(page); 3586 struct page *subpage; 3587 int rc = 0; 3588 3589 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3590 3591 remove_hugetlb_folio_for_demote(h, folio, false); 3592 spin_unlock_irq(&hugetlb_lock); 3593 3594 rc = hugetlb_vmemmap_restore(h, page); 3595 if (rc) { 3596 /* Allocation of vmemmmap failed, we can not demote page */ 3597 spin_lock_irq(&hugetlb_lock); 3598 set_page_refcounted(page); 3599 add_hugetlb_folio(h, page_folio(page), false); 3600 return rc; 3601 } 3602 3603 /* 3604 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3605 * sizes as it will not ref count pages. 3606 */ 3607 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3608 3609 /* 3610 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3611 * Without the mutex, pages added to target hstate could be marked 3612 * as surplus. 3613 * 3614 * Note that we already hold h->resize_lock. To prevent deadlock, 3615 * use the convention of always taking larger size hstate mutex first. 3616 */ 3617 mutex_lock(&target_hstate->resize_lock); 3618 for (i = 0; i < pages_per_huge_page(h); 3619 i += pages_per_huge_page(target_hstate)) { 3620 subpage = nth_page(page, i); 3621 folio = page_folio(subpage); 3622 if (hstate_is_gigantic(target_hstate)) 3623 prep_compound_gigantic_folio_for_demote(folio, 3624 target_hstate->order); 3625 else 3626 prep_compound_page(subpage, target_hstate->order); 3627 set_page_private(subpage, 0); 3628 prep_new_hugetlb_folio(target_hstate, folio, nid); 3629 free_huge_page(subpage); 3630 } 3631 mutex_unlock(&target_hstate->resize_lock); 3632 3633 spin_lock_irq(&hugetlb_lock); 3634 3635 /* 3636 * Not absolutely necessary, but for consistency update max_huge_pages 3637 * based on pool changes for the demoted page. 3638 */ 3639 h->max_huge_pages--; 3640 target_hstate->max_huge_pages += 3641 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3642 3643 return rc; 3644 } 3645 3646 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3647 __must_hold(&hugetlb_lock) 3648 { 3649 int nr_nodes, node; 3650 struct page *page; 3651 3652 lockdep_assert_held(&hugetlb_lock); 3653 3654 /* We should never get here if no demote order */ 3655 if (!h->demote_order) { 3656 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3657 return -EINVAL; /* internal error */ 3658 } 3659 3660 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3661 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3662 if (PageHWPoison(page)) 3663 continue; 3664 3665 return demote_free_huge_page(h, page); 3666 } 3667 } 3668 3669 /* 3670 * Only way to get here is if all pages on free lists are poisoned. 3671 * Return -EBUSY so that caller will not retry. 3672 */ 3673 return -EBUSY; 3674 } 3675 3676 #define HSTATE_ATTR_RO(_name) \ 3677 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3678 3679 #define HSTATE_ATTR_WO(_name) \ 3680 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3681 3682 #define HSTATE_ATTR(_name) \ 3683 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3684 3685 static struct kobject *hugepages_kobj; 3686 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3687 3688 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3689 3690 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3691 { 3692 int i; 3693 3694 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3695 if (hstate_kobjs[i] == kobj) { 3696 if (nidp) 3697 *nidp = NUMA_NO_NODE; 3698 return &hstates[i]; 3699 } 3700 3701 return kobj_to_node_hstate(kobj, nidp); 3702 } 3703 3704 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3705 struct kobj_attribute *attr, char *buf) 3706 { 3707 struct hstate *h; 3708 unsigned long nr_huge_pages; 3709 int nid; 3710 3711 h = kobj_to_hstate(kobj, &nid); 3712 if (nid == NUMA_NO_NODE) 3713 nr_huge_pages = h->nr_huge_pages; 3714 else 3715 nr_huge_pages = h->nr_huge_pages_node[nid]; 3716 3717 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3718 } 3719 3720 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3721 struct hstate *h, int nid, 3722 unsigned long count, size_t len) 3723 { 3724 int err; 3725 nodemask_t nodes_allowed, *n_mask; 3726 3727 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3728 return -EINVAL; 3729 3730 if (nid == NUMA_NO_NODE) { 3731 /* 3732 * global hstate attribute 3733 */ 3734 if (!(obey_mempolicy && 3735 init_nodemask_of_mempolicy(&nodes_allowed))) 3736 n_mask = &node_states[N_MEMORY]; 3737 else 3738 n_mask = &nodes_allowed; 3739 } else { 3740 /* 3741 * Node specific request. count adjustment happens in 3742 * set_max_huge_pages() after acquiring hugetlb_lock. 3743 */ 3744 init_nodemask_of_node(&nodes_allowed, nid); 3745 n_mask = &nodes_allowed; 3746 } 3747 3748 err = set_max_huge_pages(h, count, nid, n_mask); 3749 3750 return err ? err : len; 3751 } 3752 3753 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3754 struct kobject *kobj, const char *buf, 3755 size_t len) 3756 { 3757 struct hstate *h; 3758 unsigned long count; 3759 int nid; 3760 int err; 3761 3762 err = kstrtoul(buf, 10, &count); 3763 if (err) 3764 return err; 3765 3766 h = kobj_to_hstate(kobj, &nid); 3767 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3768 } 3769 3770 static ssize_t nr_hugepages_show(struct kobject *kobj, 3771 struct kobj_attribute *attr, char *buf) 3772 { 3773 return nr_hugepages_show_common(kobj, attr, buf); 3774 } 3775 3776 static ssize_t nr_hugepages_store(struct kobject *kobj, 3777 struct kobj_attribute *attr, const char *buf, size_t len) 3778 { 3779 return nr_hugepages_store_common(false, kobj, buf, len); 3780 } 3781 HSTATE_ATTR(nr_hugepages); 3782 3783 #ifdef CONFIG_NUMA 3784 3785 /* 3786 * hstate attribute for optionally mempolicy-based constraint on persistent 3787 * huge page alloc/free. 3788 */ 3789 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3790 struct kobj_attribute *attr, 3791 char *buf) 3792 { 3793 return nr_hugepages_show_common(kobj, attr, buf); 3794 } 3795 3796 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3797 struct kobj_attribute *attr, const char *buf, size_t len) 3798 { 3799 return nr_hugepages_store_common(true, kobj, buf, len); 3800 } 3801 HSTATE_ATTR(nr_hugepages_mempolicy); 3802 #endif 3803 3804 3805 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3806 struct kobj_attribute *attr, char *buf) 3807 { 3808 struct hstate *h = kobj_to_hstate(kobj, NULL); 3809 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3810 } 3811 3812 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3813 struct kobj_attribute *attr, const char *buf, size_t count) 3814 { 3815 int err; 3816 unsigned long input; 3817 struct hstate *h = kobj_to_hstate(kobj, NULL); 3818 3819 if (hstate_is_gigantic(h)) 3820 return -EINVAL; 3821 3822 err = kstrtoul(buf, 10, &input); 3823 if (err) 3824 return err; 3825 3826 spin_lock_irq(&hugetlb_lock); 3827 h->nr_overcommit_huge_pages = input; 3828 spin_unlock_irq(&hugetlb_lock); 3829 3830 return count; 3831 } 3832 HSTATE_ATTR(nr_overcommit_hugepages); 3833 3834 static ssize_t free_hugepages_show(struct kobject *kobj, 3835 struct kobj_attribute *attr, char *buf) 3836 { 3837 struct hstate *h; 3838 unsigned long free_huge_pages; 3839 int nid; 3840 3841 h = kobj_to_hstate(kobj, &nid); 3842 if (nid == NUMA_NO_NODE) 3843 free_huge_pages = h->free_huge_pages; 3844 else 3845 free_huge_pages = h->free_huge_pages_node[nid]; 3846 3847 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3848 } 3849 HSTATE_ATTR_RO(free_hugepages); 3850 3851 static ssize_t resv_hugepages_show(struct kobject *kobj, 3852 struct kobj_attribute *attr, char *buf) 3853 { 3854 struct hstate *h = kobj_to_hstate(kobj, NULL); 3855 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3856 } 3857 HSTATE_ATTR_RO(resv_hugepages); 3858 3859 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3860 struct kobj_attribute *attr, char *buf) 3861 { 3862 struct hstate *h; 3863 unsigned long surplus_huge_pages; 3864 int nid; 3865 3866 h = kobj_to_hstate(kobj, &nid); 3867 if (nid == NUMA_NO_NODE) 3868 surplus_huge_pages = h->surplus_huge_pages; 3869 else 3870 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3871 3872 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3873 } 3874 HSTATE_ATTR_RO(surplus_hugepages); 3875 3876 static ssize_t demote_store(struct kobject *kobj, 3877 struct kobj_attribute *attr, const char *buf, size_t len) 3878 { 3879 unsigned long nr_demote; 3880 unsigned long nr_available; 3881 nodemask_t nodes_allowed, *n_mask; 3882 struct hstate *h; 3883 int err; 3884 int nid; 3885 3886 err = kstrtoul(buf, 10, &nr_demote); 3887 if (err) 3888 return err; 3889 h = kobj_to_hstate(kobj, &nid); 3890 3891 if (nid != NUMA_NO_NODE) { 3892 init_nodemask_of_node(&nodes_allowed, nid); 3893 n_mask = &nodes_allowed; 3894 } else { 3895 n_mask = &node_states[N_MEMORY]; 3896 } 3897 3898 /* Synchronize with other sysfs operations modifying huge pages */ 3899 mutex_lock(&h->resize_lock); 3900 spin_lock_irq(&hugetlb_lock); 3901 3902 while (nr_demote) { 3903 /* 3904 * Check for available pages to demote each time thorough the 3905 * loop as demote_pool_huge_page will drop hugetlb_lock. 3906 */ 3907 if (nid != NUMA_NO_NODE) 3908 nr_available = h->free_huge_pages_node[nid]; 3909 else 3910 nr_available = h->free_huge_pages; 3911 nr_available -= h->resv_huge_pages; 3912 if (!nr_available) 3913 break; 3914 3915 err = demote_pool_huge_page(h, n_mask); 3916 if (err) 3917 break; 3918 3919 nr_demote--; 3920 } 3921 3922 spin_unlock_irq(&hugetlb_lock); 3923 mutex_unlock(&h->resize_lock); 3924 3925 if (err) 3926 return err; 3927 return len; 3928 } 3929 HSTATE_ATTR_WO(demote); 3930 3931 static ssize_t demote_size_show(struct kobject *kobj, 3932 struct kobj_attribute *attr, char *buf) 3933 { 3934 struct hstate *h = kobj_to_hstate(kobj, NULL); 3935 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3936 3937 return sysfs_emit(buf, "%lukB\n", demote_size); 3938 } 3939 3940 static ssize_t demote_size_store(struct kobject *kobj, 3941 struct kobj_attribute *attr, 3942 const char *buf, size_t count) 3943 { 3944 struct hstate *h, *demote_hstate; 3945 unsigned long demote_size; 3946 unsigned int demote_order; 3947 3948 demote_size = (unsigned long)memparse(buf, NULL); 3949 3950 demote_hstate = size_to_hstate(demote_size); 3951 if (!demote_hstate) 3952 return -EINVAL; 3953 demote_order = demote_hstate->order; 3954 if (demote_order < HUGETLB_PAGE_ORDER) 3955 return -EINVAL; 3956 3957 /* demote order must be smaller than hstate order */ 3958 h = kobj_to_hstate(kobj, NULL); 3959 if (demote_order >= h->order) 3960 return -EINVAL; 3961 3962 /* resize_lock synchronizes access to demote size and writes */ 3963 mutex_lock(&h->resize_lock); 3964 h->demote_order = demote_order; 3965 mutex_unlock(&h->resize_lock); 3966 3967 return count; 3968 } 3969 HSTATE_ATTR(demote_size); 3970 3971 static struct attribute *hstate_attrs[] = { 3972 &nr_hugepages_attr.attr, 3973 &nr_overcommit_hugepages_attr.attr, 3974 &free_hugepages_attr.attr, 3975 &resv_hugepages_attr.attr, 3976 &surplus_hugepages_attr.attr, 3977 #ifdef CONFIG_NUMA 3978 &nr_hugepages_mempolicy_attr.attr, 3979 #endif 3980 NULL, 3981 }; 3982 3983 static const struct attribute_group hstate_attr_group = { 3984 .attrs = hstate_attrs, 3985 }; 3986 3987 static struct attribute *hstate_demote_attrs[] = { 3988 &demote_size_attr.attr, 3989 &demote_attr.attr, 3990 NULL, 3991 }; 3992 3993 static const struct attribute_group hstate_demote_attr_group = { 3994 .attrs = hstate_demote_attrs, 3995 }; 3996 3997 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3998 struct kobject **hstate_kobjs, 3999 const struct attribute_group *hstate_attr_group) 4000 { 4001 int retval; 4002 int hi = hstate_index(h); 4003 4004 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4005 if (!hstate_kobjs[hi]) 4006 return -ENOMEM; 4007 4008 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4009 if (retval) { 4010 kobject_put(hstate_kobjs[hi]); 4011 hstate_kobjs[hi] = NULL; 4012 return retval; 4013 } 4014 4015 if (h->demote_order) { 4016 retval = sysfs_create_group(hstate_kobjs[hi], 4017 &hstate_demote_attr_group); 4018 if (retval) { 4019 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4020 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4021 kobject_put(hstate_kobjs[hi]); 4022 hstate_kobjs[hi] = NULL; 4023 return retval; 4024 } 4025 } 4026 4027 return 0; 4028 } 4029 4030 #ifdef CONFIG_NUMA 4031 static bool hugetlb_sysfs_initialized __ro_after_init; 4032 4033 /* 4034 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4035 * with node devices in node_devices[] using a parallel array. The array 4036 * index of a node device or _hstate == node id. 4037 * This is here to avoid any static dependency of the node device driver, in 4038 * the base kernel, on the hugetlb module. 4039 */ 4040 struct node_hstate { 4041 struct kobject *hugepages_kobj; 4042 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4043 }; 4044 static struct node_hstate node_hstates[MAX_NUMNODES]; 4045 4046 /* 4047 * A subset of global hstate attributes for node devices 4048 */ 4049 static struct attribute *per_node_hstate_attrs[] = { 4050 &nr_hugepages_attr.attr, 4051 &free_hugepages_attr.attr, 4052 &surplus_hugepages_attr.attr, 4053 NULL, 4054 }; 4055 4056 static const struct attribute_group per_node_hstate_attr_group = { 4057 .attrs = per_node_hstate_attrs, 4058 }; 4059 4060 /* 4061 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4062 * Returns node id via non-NULL nidp. 4063 */ 4064 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4065 { 4066 int nid; 4067 4068 for (nid = 0; nid < nr_node_ids; nid++) { 4069 struct node_hstate *nhs = &node_hstates[nid]; 4070 int i; 4071 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4072 if (nhs->hstate_kobjs[i] == kobj) { 4073 if (nidp) 4074 *nidp = nid; 4075 return &hstates[i]; 4076 } 4077 } 4078 4079 BUG(); 4080 return NULL; 4081 } 4082 4083 /* 4084 * Unregister hstate attributes from a single node device. 4085 * No-op if no hstate attributes attached. 4086 */ 4087 void hugetlb_unregister_node(struct node *node) 4088 { 4089 struct hstate *h; 4090 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4091 4092 if (!nhs->hugepages_kobj) 4093 return; /* no hstate attributes */ 4094 4095 for_each_hstate(h) { 4096 int idx = hstate_index(h); 4097 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4098 4099 if (!hstate_kobj) 4100 continue; 4101 if (h->demote_order) 4102 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4103 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4104 kobject_put(hstate_kobj); 4105 nhs->hstate_kobjs[idx] = NULL; 4106 } 4107 4108 kobject_put(nhs->hugepages_kobj); 4109 nhs->hugepages_kobj = NULL; 4110 } 4111 4112 4113 /* 4114 * Register hstate attributes for a single node device. 4115 * No-op if attributes already registered. 4116 */ 4117 void hugetlb_register_node(struct node *node) 4118 { 4119 struct hstate *h; 4120 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4121 int err; 4122 4123 if (!hugetlb_sysfs_initialized) 4124 return; 4125 4126 if (nhs->hugepages_kobj) 4127 return; /* already allocated */ 4128 4129 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4130 &node->dev.kobj); 4131 if (!nhs->hugepages_kobj) 4132 return; 4133 4134 for_each_hstate(h) { 4135 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4136 nhs->hstate_kobjs, 4137 &per_node_hstate_attr_group); 4138 if (err) { 4139 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4140 h->name, node->dev.id); 4141 hugetlb_unregister_node(node); 4142 break; 4143 } 4144 } 4145 } 4146 4147 /* 4148 * hugetlb init time: register hstate attributes for all registered node 4149 * devices of nodes that have memory. All on-line nodes should have 4150 * registered their associated device by this time. 4151 */ 4152 static void __init hugetlb_register_all_nodes(void) 4153 { 4154 int nid; 4155 4156 for_each_online_node(nid) 4157 hugetlb_register_node(node_devices[nid]); 4158 } 4159 #else /* !CONFIG_NUMA */ 4160 4161 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4162 { 4163 BUG(); 4164 if (nidp) 4165 *nidp = -1; 4166 return NULL; 4167 } 4168 4169 static void hugetlb_register_all_nodes(void) { } 4170 4171 #endif 4172 4173 #ifdef CONFIG_CMA 4174 static void __init hugetlb_cma_check(void); 4175 #else 4176 static inline __init void hugetlb_cma_check(void) 4177 { 4178 } 4179 #endif 4180 4181 static void __init hugetlb_sysfs_init(void) 4182 { 4183 struct hstate *h; 4184 int err; 4185 4186 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4187 if (!hugepages_kobj) 4188 return; 4189 4190 for_each_hstate(h) { 4191 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4192 hstate_kobjs, &hstate_attr_group); 4193 if (err) 4194 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4195 } 4196 4197 #ifdef CONFIG_NUMA 4198 hugetlb_sysfs_initialized = true; 4199 #endif 4200 hugetlb_register_all_nodes(); 4201 } 4202 4203 static int __init hugetlb_init(void) 4204 { 4205 int i; 4206 4207 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4208 __NR_HPAGEFLAGS); 4209 4210 if (!hugepages_supported()) { 4211 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4212 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4213 return 0; 4214 } 4215 4216 /* 4217 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4218 * architectures depend on setup being done here. 4219 */ 4220 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4221 if (!parsed_default_hugepagesz) { 4222 /* 4223 * If we did not parse a default huge page size, set 4224 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4225 * number of huge pages for this default size was implicitly 4226 * specified, set that here as well. 4227 * Note that the implicit setting will overwrite an explicit 4228 * setting. A warning will be printed in this case. 4229 */ 4230 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4231 if (default_hstate_max_huge_pages) { 4232 if (default_hstate.max_huge_pages) { 4233 char buf[32]; 4234 4235 string_get_size(huge_page_size(&default_hstate), 4236 1, STRING_UNITS_2, buf, 32); 4237 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4238 default_hstate.max_huge_pages, buf); 4239 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4240 default_hstate_max_huge_pages); 4241 } 4242 default_hstate.max_huge_pages = 4243 default_hstate_max_huge_pages; 4244 4245 for_each_online_node(i) 4246 default_hstate.max_huge_pages_node[i] = 4247 default_hugepages_in_node[i]; 4248 } 4249 } 4250 4251 hugetlb_cma_check(); 4252 hugetlb_init_hstates(); 4253 gather_bootmem_prealloc(); 4254 report_hugepages(); 4255 4256 hugetlb_sysfs_init(); 4257 hugetlb_cgroup_file_init(); 4258 4259 #ifdef CONFIG_SMP 4260 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4261 #else 4262 num_fault_mutexes = 1; 4263 #endif 4264 hugetlb_fault_mutex_table = 4265 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4266 GFP_KERNEL); 4267 BUG_ON(!hugetlb_fault_mutex_table); 4268 4269 for (i = 0; i < num_fault_mutexes; i++) 4270 mutex_init(&hugetlb_fault_mutex_table[i]); 4271 return 0; 4272 } 4273 subsys_initcall(hugetlb_init); 4274 4275 /* Overwritten by architectures with more huge page sizes */ 4276 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4277 { 4278 return size == HPAGE_SIZE; 4279 } 4280 4281 void __init hugetlb_add_hstate(unsigned int order) 4282 { 4283 struct hstate *h; 4284 unsigned long i; 4285 4286 if (size_to_hstate(PAGE_SIZE << order)) { 4287 return; 4288 } 4289 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4290 BUG_ON(order == 0); 4291 h = &hstates[hugetlb_max_hstate++]; 4292 mutex_init(&h->resize_lock); 4293 h->order = order; 4294 h->mask = ~(huge_page_size(h) - 1); 4295 for (i = 0; i < MAX_NUMNODES; ++i) 4296 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4297 INIT_LIST_HEAD(&h->hugepage_activelist); 4298 h->next_nid_to_alloc = first_memory_node; 4299 h->next_nid_to_free = first_memory_node; 4300 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4301 huge_page_size(h)/SZ_1K); 4302 4303 parsed_hstate = h; 4304 } 4305 4306 bool __init __weak hugetlb_node_alloc_supported(void) 4307 { 4308 return true; 4309 } 4310 4311 static void __init hugepages_clear_pages_in_node(void) 4312 { 4313 if (!hugetlb_max_hstate) { 4314 default_hstate_max_huge_pages = 0; 4315 memset(default_hugepages_in_node, 0, 4316 sizeof(default_hugepages_in_node)); 4317 } else { 4318 parsed_hstate->max_huge_pages = 0; 4319 memset(parsed_hstate->max_huge_pages_node, 0, 4320 sizeof(parsed_hstate->max_huge_pages_node)); 4321 } 4322 } 4323 4324 /* 4325 * hugepages command line processing 4326 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4327 * specification. If not, ignore the hugepages value. hugepages can also 4328 * be the first huge page command line option in which case it implicitly 4329 * specifies the number of huge pages for the default size. 4330 */ 4331 static int __init hugepages_setup(char *s) 4332 { 4333 unsigned long *mhp; 4334 static unsigned long *last_mhp; 4335 int node = NUMA_NO_NODE; 4336 int count; 4337 unsigned long tmp; 4338 char *p = s; 4339 4340 if (!parsed_valid_hugepagesz) { 4341 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4342 parsed_valid_hugepagesz = true; 4343 return 1; 4344 } 4345 4346 /* 4347 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4348 * yet, so this hugepages= parameter goes to the "default hstate". 4349 * Otherwise, it goes with the previously parsed hugepagesz or 4350 * default_hugepagesz. 4351 */ 4352 else if (!hugetlb_max_hstate) 4353 mhp = &default_hstate_max_huge_pages; 4354 else 4355 mhp = &parsed_hstate->max_huge_pages; 4356 4357 if (mhp == last_mhp) { 4358 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4359 return 1; 4360 } 4361 4362 while (*p) { 4363 count = 0; 4364 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4365 goto invalid; 4366 /* Parameter is node format */ 4367 if (p[count] == ':') { 4368 if (!hugetlb_node_alloc_supported()) { 4369 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4370 return 1; 4371 } 4372 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4373 goto invalid; 4374 node = array_index_nospec(tmp, MAX_NUMNODES); 4375 p += count + 1; 4376 /* Parse hugepages */ 4377 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4378 goto invalid; 4379 if (!hugetlb_max_hstate) 4380 default_hugepages_in_node[node] = tmp; 4381 else 4382 parsed_hstate->max_huge_pages_node[node] = tmp; 4383 *mhp += tmp; 4384 /* Go to parse next node*/ 4385 if (p[count] == ',') 4386 p += count + 1; 4387 else 4388 break; 4389 } else { 4390 if (p != s) 4391 goto invalid; 4392 *mhp = tmp; 4393 break; 4394 } 4395 } 4396 4397 /* 4398 * Global state is always initialized later in hugetlb_init. 4399 * But we need to allocate gigantic hstates here early to still 4400 * use the bootmem allocator. 4401 */ 4402 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4403 hugetlb_hstate_alloc_pages(parsed_hstate); 4404 4405 last_mhp = mhp; 4406 4407 return 1; 4408 4409 invalid: 4410 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4411 hugepages_clear_pages_in_node(); 4412 return 1; 4413 } 4414 __setup("hugepages=", hugepages_setup); 4415 4416 /* 4417 * hugepagesz command line processing 4418 * A specific huge page size can only be specified once with hugepagesz. 4419 * hugepagesz is followed by hugepages on the command line. The global 4420 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4421 * hugepagesz argument was valid. 4422 */ 4423 static int __init hugepagesz_setup(char *s) 4424 { 4425 unsigned long size; 4426 struct hstate *h; 4427 4428 parsed_valid_hugepagesz = false; 4429 size = (unsigned long)memparse(s, NULL); 4430 4431 if (!arch_hugetlb_valid_size(size)) { 4432 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4433 return 1; 4434 } 4435 4436 h = size_to_hstate(size); 4437 if (h) { 4438 /* 4439 * hstate for this size already exists. This is normally 4440 * an error, but is allowed if the existing hstate is the 4441 * default hstate. More specifically, it is only allowed if 4442 * the number of huge pages for the default hstate was not 4443 * previously specified. 4444 */ 4445 if (!parsed_default_hugepagesz || h != &default_hstate || 4446 default_hstate.max_huge_pages) { 4447 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4448 return 1; 4449 } 4450 4451 /* 4452 * No need to call hugetlb_add_hstate() as hstate already 4453 * exists. But, do set parsed_hstate so that a following 4454 * hugepages= parameter will be applied to this hstate. 4455 */ 4456 parsed_hstate = h; 4457 parsed_valid_hugepagesz = true; 4458 return 1; 4459 } 4460 4461 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4462 parsed_valid_hugepagesz = true; 4463 return 1; 4464 } 4465 __setup("hugepagesz=", hugepagesz_setup); 4466 4467 /* 4468 * default_hugepagesz command line input 4469 * Only one instance of default_hugepagesz allowed on command line. 4470 */ 4471 static int __init default_hugepagesz_setup(char *s) 4472 { 4473 unsigned long size; 4474 int i; 4475 4476 parsed_valid_hugepagesz = false; 4477 if (parsed_default_hugepagesz) { 4478 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4479 return 1; 4480 } 4481 4482 size = (unsigned long)memparse(s, NULL); 4483 4484 if (!arch_hugetlb_valid_size(size)) { 4485 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4486 return 1; 4487 } 4488 4489 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4490 parsed_valid_hugepagesz = true; 4491 parsed_default_hugepagesz = true; 4492 default_hstate_idx = hstate_index(size_to_hstate(size)); 4493 4494 /* 4495 * The number of default huge pages (for this size) could have been 4496 * specified as the first hugetlb parameter: hugepages=X. If so, 4497 * then default_hstate_max_huge_pages is set. If the default huge 4498 * page size is gigantic (>= MAX_ORDER), then the pages must be 4499 * allocated here from bootmem allocator. 4500 */ 4501 if (default_hstate_max_huge_pages) { 4502 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4503 for_each_online_node(i) 4504 default_hstate.max_huge_pages_node[i] = 4505 default_hugepages_in_node[i]; 4506 if (hstate_is_gigantic(&default_hstate)) 4507 hugetlb_hstate_alloc_pages(&default_hstate); 4508 default_hstate_max_huge_pages = 0; 4509 } 4510 4511 return 1; 4512 } 4513 __setup("default_hugepagesz=", default_hugepagesz_setup); 4514 4515 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4516 { 4517 #ifdef CONFIG_NUMA 4518 struct mempolicy *mpol = get_task_policy(current); 4519 4520 /* 4521 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4522 * (from policy_nodemask) specifically for hugetlb case 4523 */ 4524 if (mpol->mode == MPOL_BIND && 4525 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4526 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4527 return &mpol->nodes; 4528 #endif 4529 return NULL; 4530 } 4531 4532 static unsigned int allowed_mems_nr(struct hstate *h) 4533 { 4534 int node; 4535 unsigned int nr = 0; 4536 nodemask_t *mbind_nodemask; 4537 unsigned int *array = h->free_huge_pages_node; 4538 gfp_t gfp_mask = htlb_alloc_mask(h); 4539 4540 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4541 for_each_node_mask(node, cpuset_current_mems_allowed) { 4542 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4543 nr += array[node]; 4544 } 4545 4546 return nr; 4547 } 4548 4549 #ifdef CONFIG_SYSCTL 4550 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4551 void *buffer, size_t *length, 4552 loff_t *ppos, unsigned long *out) 4553 { 4554 struct ctl_table dup_table; 4555 4556 /* 4557 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4558 * can duplicate the @table and alter the duplicate of it. 4559 */ 4560 dup_table = *table; 4561 dup_table.data = out; 4562 4563 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4564 } 4565 4566 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4567 struct ctl_table *table, int write, 4568 void *buffer, size_t *length, loff_t *ppos) 4569 { 4570 struct hstate *h = &default_hstate; 4571 unsigned long tmp = h->max_huge_pages; 4572 int ret; 4573 4574 if (!hugepages_supported()) 4575 return -EOPNOTSUPP; 4576 4577 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4578 &tmp); 4579 if (ret) 4580 goto out; 4581 4582 if (write) 4583 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4584 NUMA_NO_NODE, tmp, *length); 4585 out: 4586 return ret; 4587 } 4588 4589 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4590 void *buffer, size_t *length, loff_t *ppos) 4591 { 4592 4593 return hugetlb_sysctl_handler_common(false, table, write, 4594 buffer, length, ppos); 4595 } 4596 4597 #ifdef CONFIG_NUMA 4598 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4599 void *buffer, size_t *length, loff_t *ppos) 4600 { 4601 return hugetlb_sysctl_handler_common(true, table, write, 4602 buffer, length, ppos); 4603 } 4604 #endif /* CONFIG_NUMA */ 4605 4606 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4607 void *buffer, size_t *length, loff_t *ppos) 4608 { 4609 struct hstate *h = &default_hstate; 4610 unsigned long tmp; 4611 int ret; 4612 4613 if (!hugepages_supported()) 4614 return -EOPNOTSUPP; 4615 4616 tmp = h->nr_overcommit_huge_pages; 4617 4618 if (write && hstate_is_gigantic(h)) 4619 return -EINVAL; 4620 4621 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4622 &tmp); 4623 if (ret) 4624 goto out; 4625 4626 if (write) { 4627 spin_lock_irq(&hugetlb_lock); 4628 h->nr_overcommit_huge_pages = tmp; 4629 spin_unlock_irq(&hugetlb_lock); 4630 } 4631 out: 4632 return ret; 4633 } 4634 4635 #endif /* CONFIG_SYSCTL */ 4636 4637 void hugetlb_report_meminfo(struct seq_file *m) 4638 { 4639 struct hstate *h; 4640 unsigned long total = 0; 4641 4642 if (!hugepages_supported()) 4643 return; 4644 4645 for_each_hstate(h) { 4646 unsigned long count = h->nr_huge_pages; 4647 4648 total += huge_page_size(h) * count; 4649 4650 if (h == &default_hstate) 4651 seq_printf(m, 4652 "HugePages_Total: %5lu\n" 4653 "HugePages_Free: %5lu\n" 4654 "HugePages_Rsvd: %5lu\n" 4655 "HugePages_Surp: %5lu\n" 4656 "Hugepagesize: %8lu kB\n", 4657 count, 4658 h->free_huge_pages, 4659 h->resv_huge_pages, 4660 h->surplus_huge_pages, 4661 huge_page_size(h) / SZ_1K); 4662 } 4663 4664 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4665 } 4666 4667 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4668 { 4669 struct hstate *h = &default_hstate; 4670 4671 if (!hugepages_supported()) 4672 return 0; 4673 4674 return sysfs_emit_at(buf, len, 4675 "Node %d HugePages_Total: %5u\n" 4676 "Node %d HugePages_Free: %5u\n" 4677 "Node %d HugePages_Surp: %5u\n", 4678 nid, h->nr_huge_pages_node[nid], 4679 nid, h->free_huge_pages_node[nid], 4680 nid, h->surplus_huge_pages_node[nid]); 4681 } 4682 4683 void hugetlb_show_meminfo_node(int nid) 4684 { 4685 struct hstate *h; 4686 4687 if (!hugepages_supported()) 4688 return; 4689 4690 for_each_hstate(h) 4691 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4692 nid, 4693 h->nr_huge_pages_node[nid], 4694 h->free_huge_pages_node[nid], 4695 h->surplus_huge_pages_node[nid], 4696 huge_page_size(h) / SZ_1K); 4697 } 4698 4699 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4700 { 4701 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4702 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4703 } 4704 4705 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4706 unsigned long hugetlb_total_pages(void) 4707 { 4708 struct hstate *h; 4709 unsigned long nr_total_pages = 0; 4710 4711 for_each_hstate(h) 4712 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4713 return nr_total_pages; 4714 } 4715 4716 static int hugetlb_acct_memory(struct hstate *h, long delta) 4717 { 4718 int ret = -ENOMEM; 4719 4720 if (!delta) 4721 return 0; 4722 4723 spin_lock_irq(&hugetlb_lock); 4724 /* 4725 * When cpuset is configured, it breaks the strict hugetlb page 4726 * reservation as the accounting is done on a global variable. Such 4727 * reservation is completely rubbish in the presence of cpuset because 4728 * the reservation is not checked against page availability for the 4729 * current cpuset. Application can still potentially OOM'ed by kernel 4730 * with lack of free htlb page in cpuset that the task is in. 4731 * Attempt to enforce strict accounting with cpuset is almost 4732 * impossible (or too ugly) because cpuset is too fluid that 4733 * task or memory node can be dynamically moved between cpusets. 4734 * 4735 * The change of semantics for shared hugetlb mapping with cpuset is 4736 * undesirable. However, in order to preserve some of the semantics, 4737 * we fall back to check against current free page availability as 4738 * a best attempt and hopefully to minimize the impact of changing 4739 * semantics that cpuset has. 4740 * 4741 * Apart from cpuset, we also have memory policy mechanism that 4742 * also determines from which node the kernel will allocate memory 4743 * in a NUMA system. So similar to cpuset, we also should consider 4744 * the memory policy of the current task. Similar to the description 4745 * above. 4746 */ 4747 if (delta > 0) { 4748 if (gather_surplus_pages(h, delta) < 0) 4749 goto out; 4750 4751 if (delta > allowed_mems_nr(h)) { 4752 return_unused_surplus_pages(h, delta); 4753 goto out; 4754 } 4755 } 4756 4757 ret = 0; 4758 if (delta < 0) 4759 return_unused_surplus_pages(h, (unsigned long) -delta); 4760 4761 out: 4762 spin_unlock_irq(&hugetlb_lock); 4763 return ret; 4764 } 4765 4766 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4767 { 4768 struct resv_map *resv = vma_resv_map(vma); 4769 4770 /* 4771 * HPAGE_RESV_OWNER indicates a private mapping. 4772 * This new VMA should share its siblings reservation map if present. 4773 * The VMA will only ever have a valid reservation map pointer where 4774 * it is being copied for another still existing VMA. As that VMA 4775 * has a reference to the reservation map it cannot disappear until 4776 * after this open call completes. It is therefore safe to take a 4777 * new reference here without additional locking. 4778 */ 4779 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4780 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4781 kref_get(&resv->refs); 4782 } 4783 4784 /* 4785 * vma_lock structure for sharable mappings is vma specific. 4786 * Clear old pointer (if copied via vm_area_dup) and allocate 4787 * new structure. Before clearing, make sure vma_lock is not 4788 * for this vma. 4789 */ 4790 if (vma->vm_flags & VM_MAYSHARE) { 4791 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4792 4793 if (vma_lock) { 4794 if (vma_lock->vma != vma) { 4795 vma->vm_private_data = NULL; 4796 hugetlb_vma_lock_alloc(vma); 4797 } else 4798 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4799 } else 4800 hugetlb_vma_lock_alloc(vma); 4801 } 4802 } 4803 4804 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4805 { 4806 struct hstate *h = hstate_vma(vma); 4807 struct resv_map *resv; 4808 struct hugepage_subpool *spool = subpool_vma(vma); 4809 unsigned long reserve, start, end; 4810 long gbl_reserve; 4811 4812 hugetlb_vma_lock_free(vma); 4813 4814 resv = vma_resv_map(vma); 4815 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4816 return; 4817 4818 start = vma_hugecache_offset(h, vma, vma->vm_start); 4819 end = vma_hugecache_offset(h, vma, vma->vm_end); 4820 4821 reserve = (end - start) - region_count(resv, start, end); 4822 hugetlb_cgroup_uncharge_counter(resv, start, end); 4823 if (reserve) { 4824 /* 4825 * Decrement reserve counts. The global reserve count may be 4826 * adjusted if the subpool has a minimum size. 4827 */ 4828 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4829 hugetlb_acct_memory(h, -gbl_reserve); 4830 } 4831 4832 kref_put(&resv->refs, resv_map_release); 4833 } 4834 4835 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4836 { 4837 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4838 return -EINVAL; 4839 4840 /* 4841 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4842 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4843 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4844 */ 4845 if (addr & ~PUD_MASK) { 4846 /* 4847 * hugetlb_vm_op_split is called right before we attempt to 4848 * split the VMA. We will need to unshare PMDs in the old and 4849 * new VMAs, so let's unshare before we split. 4850 */ 4851 unsigned long floor = addr & PUD_MASK; 4852 unsigned long ceil = floor + PUD_SIZE; 4853 4854 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4855 hugetlb_unshare_pmds(vma, floor, ceil); 4856 } 4857 4858 return 0; 4859 } 4860 4861 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4862 { 4863 return huge_page_size(hstate_vma(vma)); 4864 } 4865 4866 /* 4867 * We cannot handle pagefaults against hugetlb pages at all. They cause 4868 * handle_mm_fault() to try to instantiate regular-sized pages in the 4869 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4870 * this far. 4871 */ 4872 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4873 { 4874 BUG(); 4875 return 0; 4876 } 4877 4878 /* 4879 * When a new function is introduced to vm_operations_struct and added 4880 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4881 * This is because under System V memory model, mappings created via 4882 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4883 * their original vm_ops are overwritten with shm_vm_ops. 4884 */ 4885 const struct vm_operations_struct hugetlb_vm_ops = { 4886 .fault = hugetlb_vm_op_fault, 4887 .open = hugetlb_vm_op_open, 4888 .close = hugetlb_vm_op_close, 4889 .may_split = hugetlb_vm_op_split, 4890 .pagesize = hugetlb_vm_op_pagesize, 4891 }; 4892 4893 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4894 int writable) 4895 { 4896 pte_t entry; 4897 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4898 4899 if (writable) { 4900 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4901 vma->vm_page_prot))); 4902 } else { 4903 entry = huge_pte_wrprotect(mk_huge_pte(page, 4904 vma->vm_page_prot)); 4905 } 4906 entry = pte_mkyoung(entry); 4907 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4908 4909 return entry; 4910 } 4911 4912 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4913 unsigned long address, pte_t *ptep) 4914 { 4915 pte_t entry; 4916 4917 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4918 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4919 update_mmu_cache(vma, address, ptep); 4920 } 4921 4922 bool is_hugetlb_entry_migration(pte_t pte) 4923 { 4924 swp_entry_t swp; 4925 4926 if (huge_pte_none(pte) || pte_present(pte)) 4927 return false; 4928 swp = pte_to_swp_entry(pte); 4929 if (is_migration_entry(swp)) 4930 return true; 4931 else 4932 return false; 4933 } 4934 4935 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4936 { 4937 swp_entry_t swp; 4938 4939 if (huge_pte_none(pte) || pte_present(pte)) 4940 return false; 4941 swp = pte_to_swp_entry(pte); 4942 if (is_hwpoison_entry(swp)) 4943 return true; 4944 else 4945 return false; 4946 } 4947 4948 static void 4949 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4950 struct page *new_page) 4951 { 4952 __SetPageUptodate(new_page); 4953 hugepage_add_new_anon_rmap(new_page, vma, addr); 4954 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4955 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4956 SetHPageMigratable(new_page); 4957 } 4958 4959 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4960 struct vm_area_struct *dst_vma, 4961 struct vm_area_struct *src_vma) 4962 { 4963 pte_t *src_pte, *dst_pte, entry; 4964 struct page *ptepage; 4965 unsigned long addr; 4966 bool cow = is_cow_mapping(src_vma->vm_flags); 4967 struct hstate *h = hstate_vma(src_vma); 4968 unsigned long sz = huge_page_size(h); 4969 unsigned long npages = pages_per_huge_page(h); 4970 struct mmu_notifier_range range; 4971 unsigned long last_addr_mask; 4972 int ret = 0; 4973 4974 if (cow) { 4975 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4976 src_vma->vm_start, 4977 src_vma->vm_end); 4978 mmu_notifier_invalidate_range_start(&range); 4979 mmap_assert_write_locked(src); 4980 raw_write_seqcount_begin(&src->write_protect_seq); 4981 } else { 4982 /* 4983 * For shared mappings the vma lock must be held before 4984 * calling huge_pte_offset in the src vma. Otherwise, the 4985 * returned ptep could go away if part of a shared pmd and 4986 * another thread calls huge_pmd_unshare. 4987 */ 4988 hugetlb_vma_lock_read(src_vma); 4989 } 4990 4991 last_addr_mask = hugetlb_mask_last_page(h); 4992 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4993 spinlock_t *src_ptl, *dst_ptl; 4994 src_pte = huge_pte_offset(src, addr, sz); 4995 if (!src_pte) { 4996 addr |= last_addr_mask; 4997 continue; 4998 } 4999 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5000 if (!dst_pte) { 5001 ret = -ENOMEM; 5002 break; 5003 } 5004 5005 /* 5006 * If the pagetables are shared don't copy or take references. 5007 * 5008 * dst_pte == src_pte is the common case of src/dest sharing. 5009 * However, src could have 'unshared' and dst shares with 5010 * another vma. So page_count of ptep page is checked instead 5011 * to reliably determine whether pte is shared. 5012 */ 5013 if (page_count(virt_to_page(dst_pte)) > 1) { 5014 addr |= last_addr_mask; 5015 continue; 5016 } 5017 5018 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5019 src_ptl = huge_pte_lockptr(h, src, src_pte); 5020 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5021 entry = huge_ptep_get(src_pte); 5022 again: 5023 if (huge_pte_none(entry)) { 5024 /* 5025 * Skip if src entry none. 5026 */ 5027 ; 5028 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5029 bool uffd_wp = huge_pte_uffd_wp(entry); 5030 5031 if (!userfaultfd_wp(dst_vma) && uffd_wp) 5032 entry = huge_pte_clear_uffd_wp(entry); 5033 set_huge_pte_at(dst, addr, dst_pte, entry); 5034 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5035 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5036 bool uffd_wp = huge_pte_uffd_wp(entry); 5037 5038 if (!is_readable_migration_entry(swp_entry) && cow) { 5039 /* 5040 * COW mappings require pages in both 5041 * parent and child to be set to read. 5042 */ 5043 swp_entry = make_readable_migration_entry( 5044 swp_offset(swp_entry)); 5045 entry = swp_entry_to_pte(swp_entry); 5046 if (userfaultfd_wp(src_vma) && uffd_wp) 5047 entry = huge_pte_mkuffd_wp(entry); 5048 set_huge_pte_at(src, addr, src_pte, entry); 5049 } 5050 if (!userfaultfd_wp(dst_vma) && uffd_wp) 5051 entry = huge_pte_clear_uffd_wp(entry); 5052 set_huge_pte_at(dst, addr, dst_pte, entry); 5053 } else if (unlikely(is_pte_marker(entry))) { 5054 /* No swap on hugetlb */ 5055 WARN_ON_ONCE( 5056 is_swapin_error_entry(pte_to_swp_entry(entry))); 5057 /* 5058 * We copy the pte marker only if the dst vma has 5059 * uffd-wp enabled. 5060 */ 5061 if (userfaultfd_wp(dst_vma)) 5062 set_huge_pte_at(dst, addr, dst_pte, entry); 5063 } else { 5064 entry = huge_ptep_get(src_pte); 5065 ptepage = pte_page(entry); 5066 get_page(ptepage); 5067 5068 /* 5069 * Failing to duplicate the anon rmap is a rare case 5070 * where we see pinned hugetlb pages while they're 5071 * prone to COW. We need to do the COW earlier during 5072 * fork. 5073 * 5074 * When pre-allocating the page or copying data, we 5075 * need to be without the pgtable locks since we could 5076 * sleep during the process. 5077 */ 5078 if (!PageAnon(ptepage)) { 5079 page_dup_file_rmap(ptepage, true); 5080 } else if (page_try_dup_anon_rmap(ptepage, true, 5081 src_vma)) { 5082 pte_t src_pte_old = entry; 5083 struct page *new; 5084 5085 spin_unlock(src_ptl); 5086 spin_unlock(dst_ptl); 5087 /* Do not use reserve as it's private owned */ 5088 new = alloc_huge_page(dst_vma, addr, 1); 5089 if (IS_ERR(new)) { 5090 put_page(ptepage); 5091 ret = PTR_ERR(new); 5092 break; 5093 } 5094 copy_user_huge_page(new, ptepage, addr, dst_vma, 5095 npages); 5096 put_page(ptepage); 5097 5098 /* Install the new huge page if src pte stable */ 5099 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5100 src_ptl = huge_pte_lockptr(h, src, src_pte); 5101 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5102 entry = huge_ptep_get(src_pte); 5103 if (!pte_same(src_pte_old, entry)) { 5104 restore_reserve_on_error(h, dst_vma, addr, 5105 new); 5106 put_page(new); 5107 /* huge_ptep of dst_pte won't change as in child */ 5108 goto again; 5109 } 5110 hugetlb_install_page(dst_vma, dst_pte, addr, new); 5111 spin_unlock(src_ptl); 5112 spin_unlock(dst_ptl); 5113 continue; 5114 } 5115 5116 if (cow) { 5117 /* 5118 * No need to notify as we are downgrading page 5119 * table protection not changing it to point 5120 * to a new page. 5121 * 5122 * See Documentation/mm/mmu_notifier.rst 5123 */ 5124 huge_ptep_set_wrprotect(src, addr, src_pte); 5125 entry = huge_pte_wrprotect(entry); 5126 } 5127 5128 set_huge_pte_at(dst, addr, dst_pte, entry); 5129 hugetlb_count_add(npages, dst); 5130 } 5131 spin_unlock(src_ptl); 5132 spin_unlock(dst_ptl); 5133 } 5134 5135 if (cow) { 5136 raw_write_seqcount_end(&src->write_protect_seq); 5137 mmu_notifier_invalidate_range_end(&range); 5138 } else { 5139 hugetlb_vma_unlock_read(src_vma); 5140 } 5141 5142 return ret; 5143 } 5144 5145 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5146 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 5147 { 5148 struct hstate *h = hstate_vma(vma); 5149 struct mm_struct *mm = vma->vm_mm; 5150 spinlock_t *src_ptl, *dst_ptl; 5151 pte_t pte; 5152 5153 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5154 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5155 5156 /* 5157 * We don't have to worry about the ordering of src and dst ptlocks 5158 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5159 */ 5160 if (src_ptl != dst_ptl) 5161 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5162 5163 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5164 set_huge_pte_at(mm, new_addr, dst_pte, pte); 5165 5166 if (src_ptl != dst_ptl) 5167 spin_unlock(src_ptl); 5168 spin_unlock(dst_ptl); 5169 } 5170 5171 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5172 struct vm_area_struct *new_vma, 5173 unsigned long old_addr, unsigned long new_addr, 5174 unsigned long len) 5175 { 5176 struct hstate *h = hstate_vma(vma); 5177 struct address_space *mapping = vma->vm_file->f_mapping; 5178 unsigned long sz = huge_page_size(h); 5179 struct mm_struct *mm = vma->vm_mm; 5180 unsigned long old_end = old_addr + len; 5181 unsigned long last_addr_mask; 5182 pte_t *src_pte, *dst_pte; 5183 struct mmu_notifier_range range; 5184 bool shared_pmd = false; 5185 5186 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 5187 old_end); 5188 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5189 /* 5190 * In case of shared PMDs, we should cover the maximum possible 5191 * range. 5192 */ 5193 flush_cache_range(vma, range.start, range.end); 5194 5195 mmu_notifier_invalidate_range_start(&range); 5196 last_addr_mask = hugetlb_mask_last_page(h); 5197 /* Prevent race with file truncation */ 5198 hugetlb_vma_lock_write(vma); 5199 i_mmap_lock_write(mapping); 5200 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5201 src_pte = huge_pte_offset(mm, old_addr, sz); 5202 if (!src_pte) { 5203 old_addr |= last_addr_mask; 5204 new_addr |= last_addr_mask; 5205 continue; 5206 } 5207 if (huge_pte_none(huge_ptep_get(src_pte))) 5208 continue; 5209 5210 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5211 shared_pmd = true; 5212 old_addr |= last_addr_mask; 5213 new_addr |= last_addr_mask; 5214 continue; 5215 } 5216 5217 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5218 if (!dst_pte) 5219 break; 5220 5221 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5222 } 5223 5224 if (shared_pmd) 5225 flush_tlb_range(vma, range.start, range.end); 5226 else 5227 flush_tlb_range(vma, old_end - len, old_end); 5228 mmu_notifier_invalidate_range_end(&range); 5229 i_mmap_unlock_write(mapping); 5230 hugetlb_vma_unlock_write(vma); 5231 5232 return len + old_addr - old_end; 5233 } 5234 5235 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5236 unsigned long start, unsigned long end, 5237 struct page *ref_page, zap_flags_t zap_flags) 5238 { 5239 struct mm_struct *mm = vma->vm_mm; 5240 unsigned long address; 5241 pte_t *ptep; 5242 pte_t pte; 5243 spinlock_t *ptl; 5244 struct page *page; 5245 struct hstate *h = hstate_vma(vma); 5246 unsigned long sz = huge_page_size(h); 5247 unsigned long last_addr_mask; 5248 bool force_flush = false; 5249 5250 WARN_ON(!is_vm_hugetlb_page(vma)); 5251 BUG_ON(start & ~huge_page_mask(h)); 5252 BUG_ON(end & ~huge_page_mask(h)); 5253 5254 /* 5255 * This is a hugetlb vma, all the pte entries should point 5256 * to huge page. 5257 */ 5258 tlb_change_page_size(tlb, sz); 5259 tlb_start_vma(tlb, vma); 5260 5261 last_addr_mask = hugetlb_mask_last_page(h); 5262 address = start; 5263 for (; address < end; address += sz) { 5264 ptep = huge_pte_offset(mm, address, sz); 5265 if (!ptep) { 5266 address |= last_addr_mask; 5267 continue; 5268 } 5269 5270 ptl = huge_pte_lock(h, mm, ptep); 5271 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5272 spin_unlock(ptl); 5273 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5274 force_flush = true; 5275 address |= last_addr_mask; 5276 continue; 5277 } 5278 5279 pte = huge_ptep_get(ptep); 5280 if (huge_pte_none(pte)) { 5281 spin_unlock(ptl); 5282 continue; 5283 } 5284 5285 /* 5286 * Migrating hugepage or HWPoisoned hugepage is already 5287 * unmapped and its refcount is dropped, so just clear pte here. 5288 */ 5289 if (unlikely(!pte_present(pte))) { 5290 /* 5291 * If the pte was wr-protected by uffd-wp in any of the 5292 * swap forms, meanwhile the caller does not want to 5293 * drop the uffd-wp bit in this zap, then replace the 5294 * pte with a marker. 5295 */ 5296 if (pte_swp_uffd_wp_any(pte) && 5297 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5298 set_huge_pte_at(mm, address, ptep, 5299 make_pte_marker(PTE_MARKER_UFFD_WP)); 5300 else 5301 huge_pte_clear(mm, address, ptep, sz); 5302 spin_unlock(ptl); 5303 continue; 5304 } 5305 5306 page = pte_page(pte); 5307 /* 5308 * If a reference page is supplied, it is because a specific 5309 * page is being unmapped, not a range. Ensure the page we 5310 * are about to unmap is the actual page of interest. 5311 */ 5312 if (ref_page) { 5313 if (page != ref_page) { 5314 spin_unlock(ptl); 5315 continue; 5316 } 5317 /* 5318 * Mark the VMA as having unmapped its page so that 5319 * future faults in this VMA will fail rather than 5320 * looking like data was lost 5321 */ 5322 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5323 } 5324 5325 pte = huge_ptep_get_and_clear(mm, address, ptep); 5326 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5327 if (huge_pte_dirty(pte)) 5328 set_page_dirty(page); 5329 /* Leave a uffd-wp pte marker if needed */ 5330 if (huge_pte_uffd_wp(pte) && 5331 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5332 set_huge_pte_at(mm, address, ptep, 5333 make_pte_marker(PTE_MARKER_UFFD_WP)); 5334 hugetlb_count_sub(pages_per_huge_page(h), mm); 5335 page_remove_rmap(page, vma, true); 5336 5337 spin_unlock(ptl); 5338 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5339 /* 5340 * Bail out after unmapping reference page if supplied 5341 */ 5342 if (ref_page) 5343 break; 5344 } 5345 tlb_end_vma(tlb, vma); 5346 5347 /* 5348 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5349 * could defer the flush until now, since by holding i_mmap_rwsem we 5350 * guaranteed that the last refernece would not be dropped. But we must 5351 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5352 * dropped and the last reference to the shared PMDs page might be 5353 * dropped as well. 5354 * 5355 * In theory we could defer the freeing of the PMD pages as well, but 5356 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5357 * detect sharing, so we cannot defer the release of the page either. 5358 * Instead, do flush now. 5359 */ 5360 if (force_flush) 5361 tlb_flush_mmu_tlbonly(tlb); 5362 } 5363 5364 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5365 struct vm_area_struct *vma, unsigned long start, 5366 unsigned long end, struct page *ref_page, 5367 zap_flags_t zap_flags) 5368 { 5369 hugetlb_vma_lock_write(vma); 5370 i_mmap_lock_write(vma->vm_file->f_mapping); 5371 5372 /* mmu notification performed in caller */ 5373 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5374 5375 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5376 /* 5377 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5378 * When the vma_lock is freed, this makes the vma ineligible 5379 * for pmd sharing. And, i_mmap_rwsem is required to set up 5380 * pmd sharing. This is important as page tables for this 5381 * unmapped range will be asynchrously deleted. If the page 5382 * tables are shared, there will be issues when accessed by 5383 * someone else. 5384 */ 5385 __hugetlb_vma_unlock_write_free(vma); 5386 i_mmap_unlock_write(vma->vm_file->f_mapping); 5387 } else { 5388 i_mmap_unlock_write(vma->vm_file->f_mapping); 5389 hugetlb_vma_unlock_write(vma); 5390 } 5391 } 5392 5393 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5394 unsigned long end, struct page *ref_page, 5395 zap_flags_t zap_flags) 5396 { 5397 struct mmu_notifier_range range; 5398 struct mmu_gather tlb; 5399 5400 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 5401 start, end); 5402 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5403 mmu_notifier_invalidate_range_start(&range); 5404 tlb_gather_mmu(&tlb, vma->vm_mm); 5405 5406 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5407 5408 mmu_notifier_invalidate_range_end(&range); 5409 tlb_finish_mmu(&tlb); 5410 } 5411 5412 /* 5413 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5414 * mapping it owns the reserve page for. The intention is to unmap the page 5415 * from other VMAs and let the children be SIGKILLed if they are faulting the 5416 * same region. 5417 */ 5418 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5419 struct page *page, unsigned long address) 5420 { 5421 struct hstate *h = hstate_vma(vma); 5422 struct vm_area_struct *iter_vma; 5423 struct address_space *mapping; 5424 pgoff_t pgoff; 5425 5426 /* 5427 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5428 * from page cache lookup which is in HPAGE_SIZE units. 5429 */ 5430 address = address & huge_page_mask(h); 5431 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5432 vma->vm_pgoff; 5433 mapping = vma->vm_file->f_mapping; 5434 5435 /* 5436 * Take the mapping lock for the duration of the table walk. As 5437 * this mapping should be shared between all the VMAs, 5438 * __unmap_hugepage_range() is called as the lock is already held 5439 */ 5440 i_mmap_lock_write(mapping); 5441 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5442 /* Do not unmap the current VMA */ 5443 if (iter_vma == vma) 5444 continue; 5445 5446 /* 5447 * Shared VMAs have their own reserves and do not affect 5448 * MAP_PRIVATE accounting but it is possible that a shared 5449 * VMA is using the same page so check and skip such VMAs. 5450 */ 5451 if (iter_vma->vm_flags & VM_MAYSHARE) 5452 continue; 5453 5454 /* 5455 * Unmap the page from other VMAs without their own reserves. 5456 * They get marked to be SIGKILLed if they fault in these 5457 * areas. This is because a future no-page fault on this VMA 5458 * could insert a zeroed page instead of the data existing 5459 * from the time of fork. This would look like data corruption 5460 */ 5461 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5462 unmap_hugepage_range(iter_vma, address, 5463 address + huge_page_size(h), page, 0); 5464 } 5465 i_mmap_unlock_write(mapping); 5466 } 5467 5468 /* 5469 * hugetlb_wp() should be called with page lock of the original hugepage held. 5470 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5471 * cannot race with other handlers or page migration. 5472 * Keep the pte_same checks anyway to make transition from the mutex easier. 5473 */ 5474 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5475 unsigned long address, pte_t *ptep, unsigned int flags, 5476 struct page *pagecache_page, spinlock_t *ptl) 5477 { 5478 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5479 pte_t pte; 5480 struct hstate *h = hstate_vma(vma); 5481 struct page *old_page, *new_page; 5482 int outside_reserve = 0; 5483 vm_fault_t ret = 0; 5484 unsigned long haddr = address & huge_page_mask(h); 5485 struct mmu_notifier_range range; 5486 5487 /* 5488 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5489 * PTE mapped R/O such as maybe_mkwrite() would do. 5490 */ 5491 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5492 return VM_FAULT_SIGSEGV; 5493 5494 /* Let's take out MAP_SHARED mappings first. */ 5495 if (vma->vm_flags & VM_MAYSHARE) { 5496 set_huge_ptep_writable(vma, haddr, ptep); 5497 return 0; 5498 } 5499 5500 pte = huge_ptep_get(ptep); 5501 old_page = pte_page(pte); 5502 5503 delayacct_wpcopy_start(); 5504 5505 retry_avoidcopy: 5506 /* 5507 * If no-one else is actually using this page, we're the exclusive 5508 * owner and can reuse this page. 5509 */ 5510 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5511 if (!PageAnonExclusive(old_page)) 5512 page_move_anon_rmap(old_page, vma); 5513 if (likely(!unshare)) 5514 set_huge_ptep_writable(vma, haddr, ptep); 5515 5516 delayacct_wpcopy_end(); 5517 return 0; 5518 } 5519 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5520 old_page); 5521 5522 /* 5523 * If the process that created a MAP_PRIVATE mapping is about to 5524 * perform a COW due to a shared page count, attempt to satisfy 5525 * the allocation without using the existing reserves. The pagecache 5526 * page is used to determine if the reserve at this address was 5527 * consumed or not. If reserves were used, a partial faulted mapping 5528 * at the time of fork() could consume its reserves on COW instead 5529 * of the full address range. 5530 */ 5531 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5532 old_page != pagecache_page) 5533 outside_reserve = 1; 5534 5535 get_page(old_page); 5536 5537 /* 5538 * Drop page table lock as buddy allocator may be called. It will 5539 * be acquired again before returning to the caller, as expected. 5540 */ 5541 spin_unlock(ptl); 5542 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5543 5544 if (IS_ERR(new_page)) { 5545 /* 5546 * If a process owning a MAP_PRIVATE mapping fails to COW, 5547 * it is due to references held by a child and an insufficient 5548 * huge page pool. To guarantee the original mappers 5549 * reliability, unmap the page from child processes. The child 5550 * may get SIGKILLed if it later faults. 5551 */ 5552 if (outside_reserve) { 5553 struct address_space *mapping = vma->vm_file->f_mapping; 5554 pgoff_t idx; 5555 u32 hash; 5556 5557 put_page(old_page); 5558 /* 5559 * Drop hugetlb_fault_mutex and vma_lock before 5560 * unmapping. unmapping needs to hold vma_lock 5561 * in write mode. Dropping vma_lock in read mode 5562 * here is OK as COW mappings do not interact with 5563 * PMD sharing. 5564 * 5565 * Reacquire both after unmap operation. 5566 */ 5567 idx = vma_hugecache_offset(h, vma, haddr); 5568 hash = hugetlb_fault_mutex_hash(mapping, idx); 5569 hugetlb_vma_unlock_read(vma); 5570 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5571 5572 unmap_ref_private(mm, vma, old_page, haddr); 5573 5574 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5575 hugetlb_vma_lock_read(vma); 5576 spin_lock(ptl); 5577 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5578 if (likely(ptep && 5579 pte_same(huge_ptep_get(ptep), pte))) 5580 goto retry_avoidcopy; 5581 /* 5582 * race occurs while re-acquiring page table 5583 * lock, and our job is done. 5584 */ 5585 delayacct_wpcopy_end(); 5586 return 0; 5587 } 5588 5589 ret = vmf_error(PTR_ERR(new_page)); 5590 goto out_release_old; 5591 } 5592 5593 /* 5594 * When the original hugepage is shared one, it does not have 5595 * anon_vma prepared. 5596 */ 5597 if (unlikely(anon_vma_prepare(vma))) { 5598 ret = VM_FAULT_OOM; 5599 goto out_release_all; 5600 } 5601 5602 copy_user_huge_page(new_page, old_page, address, vma, 5603 pages_per_huge_page(h)); 5604 __SetPageUptodate(new_page); 5605 5606 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5607 haddr + huge_page_size(h)); 5608 mmu_notifier_invalidate_range_start(&range); 5609 5610 /* 5611 * Retake the page table lock to check for racing updates 5612 * before the page tables are altered 5613 */ 5614 spin_lock(ptl); 5615 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5616 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5617 /* Break COW or unshare */ 5618 huge_ptep_clear_flush(vma, haddr, ptep); 5619 mmu_notifier_invalidate_range(mm, range.start, range.end); 5620 page_remove_rmap(old_page, vma, true); 5621 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5622 set_huge_pte_at(mm, haddr, ptep, 5623 make_huge_pte(vma, new_page, !unshare)); 5624 SetHPageMigratable(new_page); 5625 /* Make the old page be freed below */ 5626 new_page = old_page; 5627 } 5628 spin_unlock(ptl); 5629 mmu_notifier_invalidate_range_end(&range); 5630 out_release_all: 5631 /* 5632 * No restore in case of successful pagetable update (Break COW or 5633 * unshare) 5634 */ 5635 if (new_page != old_page) 5636 restore_reserve_on_error(h, vma, haddr, new_page); 5637 put_page(new_page); 5638 out_release_old: 5639 put_page(old_page); 5640 5641 spin_lock(ptl); /* Caller expects lock to be held */ 5642 5643 delayacct_wpcopy_end(); 5644 return ret; 5645 } 5646 5647 /* 5648 * Return whether there is a pagecache page to back given address within VMA. 5649 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5650 */ 5651 static bool hugetlbfs_pagecache_present(struct hstate *h, 5652 struct vm_area_struct *vma, unsigned long address) 5653 { 5654 struct address_space *mapping; 5655 pgoff_t idx; 5656 struct page *page; 5657 5658 mapping = vma->vm_file->f_mapping; 5659 idx = vma_hugecache_offset(h, vma, address); 5660 5661 page = find_get_page(mapping, idx); 5662 if (page) 5663 put_page(page); 5664 return page != NULL; 5665 } 5666 5667 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, 5668 pgoff_t idx) 5669 { 5670 struct folio *folio = page_folio(page); 5671 struct inode *inode = mapping->host; 5672 struct hstate *h = hstate_inode(inode); 5673 int err; 5674 5675 __folio_set_locked(folio); 5676 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5677 5678 if (unlikely(err)) { 5679 __folio_clear_locked(folio); 5680 return err; 5681 } 5682 ClearHPageRestoreReserve(page); 5683 5684 /* 5685 * mark folio dirty so that it will not be removed from cache/file 5686 * by non-hugetlbfs specific code paths. 5687 */ 5688 folio_mark_dirty(folio); 5689 5690 spin_lock(&inode->i_lock); 5691 inode->i_blocks += blocks_per_huge_page(h); 5692 spin_unlock(&inode->i_lock); 5693 return 0; 5694 } 5695 5696 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5697 struct address_space *mapping, 5698 pgoff_t idx, 5699 unsigned int flags, 5700 unsigned long haddr, 5701 unsigned long addr, 5702 unsigned long reason) 5703 { 5704 u32 hash; 5705 struct vm_fault vmf = { 5706 .vma = vma, 5707 .address = haddr, 5708 .real_address = addr, 5709 .flags = flags, 5710 5711 /* 5712 * Hard to debug if it ends up being 5713 * used by a callee that assumes 5714 * something about the other 5715 * uninitialized fields... same as in 5716 * memory.c 5717 */ 5718 }; 5719 5720 /* 5721 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5722 * userfault. Also mmap_lock could be dropped due to handling 5723 * userfault, any vma operation should be careful from here. 5724 */ 5725 hugetlb_vma_unlock_read(vma); 5726 hash = hugetlb_fault_mutex_hash(mapping, idx); 5727 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5728 return handle_userfault(&vmf, reason); 5729 } 5730 5731 /* 5732 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5733 * false if pte changed or is changing. 5734 */ 5735 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5736 pte_t *ptep, pte_t old_pte) 5737 { 5738 spinlock_t *ptl; 5739 bool same; 5740 5741 ptl = huge_pte_lock(h, mm, ptep); 5742 same = pte_same(huge_ptep_get(ptep), old_pte); 5743 spin_unlock(ptl); 5744 5745 return same; 5746 } 5747 5748 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5749 struct vm_area_struct *vma, 5750 struct address_space *mapping, pgoff_t idx, 5751 unsigned long address, pte_t *ptep, 5752 pte_t old_pte, unsigned int flags) 5753 { 5754 struct hstate *h = hstate_vma(vma); 5755 vm_fault_t ret = VM_FAULT_SIGBUS; 5756 int anon_rmap = 0; 5757 unsigned long size; 5758 struct page *page; 5759 pte_t new_pte; 5760 spinlock_t *ptl; 5761 unsigned long haddr = address & huge_page_mask(h); 5762 bool new_page, new_pagecache_page = false; 5763 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5764 5765 /* 5766 * Currently, we are forced to kill the process in the event the 5767 * original mapper has unmapped pages from the child due to a failed 5768 * COW/unsharing. Warn that such a situation has occurred as it may not 5769 * be obvious. 5770 */ 5771 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5772 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5773 current->pid); 5774 goto out; 5775 } 5776 5777 /* 5778 * Use page lock to guard against racing truncation 5779 * before we get page_table_lock. 5780 */ 5781 new_page = false; 5782 page = find_lock_page(mapping, idx); 5783 if (!page) { 5784 size = i_size_read(mapping->host) >> huge_page_shift(h); 5785 if (idx >= size) 5786 goto out; 5787 /* Check for page in userfault range */ 5788 if (userfaultfd_missing(vma)) { 5789 /* 5790 * Since hugetlb_no_page() was examining pte 5791 * without pgtable lock, we need to re-test under 5792 * lock because the pte may not be stable and could 5793 * have changed from under us. Try to detect 5794 * either changed or during-changing ptes and retry 5795 * properly when needed. 5796 * 5797 * Note that userfaultfd is actually fine with 5798 * false positives (e.g. caused by pte changed), 5799 * but not wrong logical events (e.g. caused by 5800 * reading a pte during changing). The latter can 5801 * confuse the userspace, so the strictness is very 5802 * much preferred. E.g., MISSING event should 5803 * never happen on the page after UFFDIO_COPY has 5804 * correctly installed the page and returned. 5805 */ 5806 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5807 ret = 0; 5808 goto out; 5809 } 5810 5811 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5812 haddr, address, 5813 VM_UFFD_MISSING); 5814 } 5815 5816 page = alloc_huge_page(vma, haddr, 0); 5817 if (IS_ERR(page)) { 5818 /* 5819 * Returning error will result in faulting task being 5820 * sent SIGBUS. The hugetlb fault mutex prevents two 5821 * tasks from racing to fault in the same page which 5822 * could result in false unable to allocate errors. 5823 * Page migration does not take the fault mutex, but 5824 * does a clear then write of pte's under page table 5825 * lock. Page fault code could race with migration, 5826 * notice the clear pte and try to allocate a page 5827 * here. Before returning error, get ptl and make 5828 * sure there really is no pte entry. 5829 */ 5830 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5831 ret = vmf_error(PTR_ERR(page)); 5832 else 5833 ret = 0; 5834 goto out; 5835 } 5836 clear_huge_page(page, address, pages_per_huge_page(h)); 5837 __SetPageUptodate(page); 5838 new_page = true; 5839 5840 if (vma->vm_flags & VM_MAYSHARE) { 5841 int err = hugetlb_add_to_page_cache(page, mapping, idx); 5842 if (err) { 5843 /* 5844 * err can't be -EEXIST which implies someone 5845 * else consumed the reservation since hugetlb 5846 * fault mutex is held when add a hugetlb page 5847 * to the page cache. So it's safe to call 5848 * restore_reserve_on_error() here. 5849 */ 5850 restore_reserve_on_error(h, vma, haddr, page); 5851 put_page(page); 5852 goto out; 5853 } 5854 new_pagecache_page = true; 5855 } else { 5856 lock_page(page); 5857 if (unlikely(anon_vma_prepare(vma))) { 5858 ret = VM_FAULT_OOM; 5859 goto backout_unlocked; 5860 } 5861 anon_rmap = 1; 5862 } 5863 } else { 5864 /* 5865 * If memory error occurs between mmap() and fault, some process 5866 * don't have hwpoisoned swap entry for errored virtual address. 5867 * So we need to block hugepage fault by PG_hwpoison bit check. 5868 */ 5869 if (unlikely(PageHWPoison(page))) { 5870 ret = VM_FAULT_HWPOISON_LARGE | 5871 VM_FAULT_SET_HINDEX(hstate_index(h)); 5872 goto backout_unlocked; 5873 } 5874 5875 /* Check for page in userfault range. */ 5876 if (userfaultfd_minor(vma)) { 5877 unlock_page(page); 5878 put_page(page); 5879 /* See comment in userfaultfd_missing() block above */ 5880 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5881 ret = 0; 5882 goto out; 5883 } 5884 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5885 haddr, address, 5886 VM_UFFD_MINOR); 5887 } 5888 } 5889 5890 /* 5891 * If we are going to COW a private mapping later, we examine the 5892 * pending reservations for this page now. This will ensure that 5893 * any allocations necessary to record that reservation occur outside 5894 * the spinlock. 5895 */ 5896 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5897 if (vma_needs_reservation(h, vma, haddr) < 0) { 5898 ret = VM_FAULT_OOM; 5899 goto backout_unlocked; 5900 } 5901 /* Just decrements count, does not deallocate */ 5902 vma_end_reservation(h, vma, haddr); 5903 } 5904 5905 ptl = huge_pte_lock(h, mm, ptep); 5906 ret = 0; 5907 /* If pte changed from under us, retry */ 5908 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5909 goto backout; 5910 5911 if (anon_rmap) 5912 hugepage_add_new_anon_rmap(page, vma, haddr); 5913 else 5914 page_dup_file_rmap(page, true); 5915 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5916 && (vma->vm_flags & VM_SHARED))); 5917 /* 5918 * If this pte was previously wr-protected, keep it wr-protected even 5919 * if populated. 5920 */ 5921 if (unlikely(pte_marker_uffd_wp(old_pte))) 5922 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5923 set_huge_pte_at(mm, haddr, ptep, new_pte); 5924 5925 hugetlb_count_add(pages_per_huge_page(h), mm); 5926 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5927 /* Optimization, do the COW without a second fault */ 5928 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5929 } 5930 5931 spin_unlock(ptl); 5932 5933 /* 5934 * Only set HPageMigratable in newly allocated pages. Existing pages 5935 * found in the pagecache may not have HPageMigratableset if they have 5936 * been isolated for migration. 5937 */ 5938 if (new_page) 5939 SetHPageMigratable(page); 5940 5941 unlock_page(page); 5942 out: 5943 hugetlb_vma_unlock_read(vma); 5944 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5945 return ret; 5946 5947 backout: 5948 spin_unlock(ptl); 5949 backout_unlocked: 5950 if (new_page && !new_pagecache_page) 5951 restore_reserve_on_error(h, vma, haddr, page); 5952 5953 unlock_page(page); 5954 put_page(page); 5955 goto out; 5956 } 5957 5958 #ifdef CONFIG_SMP 5959 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5960 { 5961 unsigned long key[2]; 5962 u32 hash; 5963 5964 key[0] = (unsigned long) mapping; 5965 key[1] = idx; 5966 5967 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5968 5969 return hash & (num_fault_mutexes - 1); 5970 } 5971 #else 5972 /* 5973 * For uniprocessor systems we always use a single mutex, so just 5974 * return 0 and avoid the hashing overhead. 5975 */ 5976 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5977 { 5978 return 0; 5979 } 5980 #endif 5981 5982 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5983 unsigned long address, unsigned int flags) 5984 { 5985 pte_t *ptep, entry; 5986 spinlock_t *ptl; 5987 vm_fault_t ret; 5988 u32 hash; 5989 pgoff_t idx; 5990 struct page *page = NULL; 5991 struct page *pagecache_page = NULL; 5992 struct hstate *h = hstate_vma(vma); 5993 struct address_space *mapping; 5994 int need_wait_lock = 0; 5995 unsigned long haddr = address & huge_page_mask(h); 5996 5997 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5998 if (ptep) { 5999 /* 6000 * Since we hold no locks, ptep could be stale. That is 6001 * OK as we are only making decisions based on content and 6002 * not actually modifying content here. 6003 */ 6004 entry = huge_ptep_get(ptep); 6005 if (unlikely(is_hugetlb_entry_migration(entry))) { 6006 migration_entry_wait_huge(vma, ptep); 6007 return 0; 6008 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6009 return VM_FAULT_HWPOISON_LARGE | 6010 VM_FAULT_SET_HINDEX(hstate_index(h)); 6011 } 6012 6013 /* 6014 * Serialize hugepage allocation and instantiation, so that we don't 6015 * get spurious allocation failures if two CPUs race to instantiate 6016 * the same page in the page cache. 6017 */ 6018 mapping = vma->vm_file->f_mapping; 6019 idx = vma_hugecache_offset(h, vma, haddr); 6020 hash = hugetlb_fault_mutex_hash(mapping, idx); 6021 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6022 6023 /* 6024 * Acquire vma lock before calling huge_pte_alloc and hold 6025 * until finished with ptep. This prevents huge_pmd_unshare from 6026 * being called elsewhere and making the ptep no longer valid. 6027 * 6028 * ptep could have already be assigned via huge_pte_offset. That 6029 * is OK, as huge_pte_alloc will return the same value unless 6030 * something has changed. 6031 */ 6032 hugetlb_vma_lock_read(vma); 6033 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6034 if (!ptep) { 6035 hugetlb_vma_unlock_read(vma); 6036 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6037 return VM_FAULT_OOM; 6038 } 6039 6040 entry = huge_ptep_get(ptep); 6041 /* PTE markers should be handled the same way as none pte */ 6042 if (huge_pte_none_mostly(entry)) 6043 /* 6044 * hugetlb_no_page will drop vma lock and hugetlb fault 6045 * mutex internally, which make us return immediately. 6046 */ 6047 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6048 entry, flags); 6049 6050 ret = 0; 6051 6052 /* 6053 * entry could be a migration/hwpoison entry at this point, so this 6054 * check prevents the kernel from going below assuming that we have 6055 * an active hugepage in pagecache. This goto expects the 2nd page 6056 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6057 * properly handle it. 6058 */ 6059 if (!pte_present(entry)) 6060 goto out_mutex; 6061 6062 /* 6063 * If we are going to COW/unshare the mapping later, we examine the 6064 * pending reservations for this page now. This will ensure that any 6065 * allocations necessary to record that reservation occur outside the 6066 * spinlock. Also lookup the pagecache page now as it is used to 6067 * determine if a reservation has been consumed. 6068 */ 6069 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6070 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6071 if (vma_needs_reservation(h, vma, haddr) < 0) { 6072 ret = VM_FAULT_OOM; 6073 goto out_mutex; 6074 } 6075 /* Just decrements count, does not deallocate */ 6076 vma_end_reservation(h, vma, haddr); 6077 6078 pagecache_page = find_lock_page(mapping, idx); 6079 } 6080 6081 ptl = huge_pte_lock(h, mm, ptep); 6082 6083 /* Check for a racing update before calling hugetlb_wp() */ 6084 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6085 goto out_ptl; 6086 6087 /* Handle userfault-wp first, before trying to lock more pages */ 6088 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6089 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6090 struct vm_fault vmf = { 6091 .vma = vma, 6092 .address = haddr, 6093 .real_address = address, 6094 .flags = flags, 6095 }; 6096 6097 spin_unlock(ptl); 6098 if (pagecache_page) { 6099 unlock_page(pagecache_page); 6100 put_page(pagecache_page); 6101 } 6102 hugetlb_vma_unlock_read(vma); 6103 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6104 return handle_userfault(&vmf, VM_UFFD_WP); 6105 } 6106 6107 /* 6108 * hugetlb_wp() requires page locks of pte_page(entry) and 6109 * pagecache_page, so here we need take the former one 6110 * when page != pagecache_page or !pagecache_page. 6111 */ 6112 page = pte_page(entry); 6113 if (page != pagecache_page) 6114 if (!trylock_page(page)) { 6115 need_wait_lock = 1; 6116 goto out_ptl; 6117 } 6118 6119 get_page(page); 6120 6121 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6122 if (!huge_pte_write(entry)) { 6123 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6124 pagecache_page, ptl); 6125 goto out_put_page; 6126 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6127 entry = huge_pte_mkdirty(entry); 6128 } 6129 } 6130 entry = pte_mkyoung(entry); 6131 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6132 flags & FAULT_FLAG_WRITE)) 6133 update_mmu_cache(vma, haddr, ptep); 6134 out_put_page: 6135 if (page != pagecache_page) 6136 unlock_page(page); 6137 put_page(page); 6138 out_ptl: 6139 spin_unlock(ptl); 6140 6141 if (pagecache_page) { 6142 unlock_page(pagecache_page); 6143 put_page(pagecache_page); 6144 } 6145 out_mutex: 6146 hugetlb_vma_unlock_read(vma); 6147 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6148 /* 6149 * Generally it's safe to hold refcount during waiting page lock. But 6150 * here we just wait to defer the next page fault to avoid busy loop and 6151 * the page is not used after unlocked before returning from the current 6152 * page fault. So we are safe from accessing freed page, even if we wait 6153 * here without taking refcount. 6154 */ 6155 if (need_wait_lock) 6156 wait_on_page_locked(page); 6157 return ret; 6158 } 6159 6160 #ifdef CONFIG_USERFAULTFD 6161 /* 6162 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 6163 * modifications for huge pages. 6164 */ 6165 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 6166 pte_t *dst_pte, 6167 struct vm_area_struct *dst_vma, 6168 unsigned long dst_addr, 6169 unsigned long src_addr, 6170 enum mcopy_atomic_mode mode, 6171 struct page **pagep, 6172 bool wp_copy) 6173 { 6174 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 6175 struct hstate *h = hstate_vma(dst_vma); 6176 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6177 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6178 unsigned long size; 6179 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6180 pte_t _dst_pte; 6181 spinlock_t *ptl; 6182 int ret = -ENOMEM; 6183 struct page *page; 6184 int writable; 6185 bool page_in_pagecache = false; 6186 6187 if (is_continue) { 6188 ret = -EFAULT; 6189 page = find_lock_page(mapping, idx); 6190 if (!page) 6191 goto out; 6192 page_in_pagecache = true; 6193 } else if (!*pagep) { 6194 /* If a page already exists, then it's UFFDIO_COPY for 6195 * a non-missing case. Return -EEXIST. 6196 */ 6197 if (vm_shared && 6198 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6199 ret = -EEXIST; 6200 goto out; 6201 } 6202 6203 page = alloc_huge_page(dst_vma, dst_addr, 0); 6204 if (IS_ERR(page)) { 6205 ret = -ENOMEM; 6206 goto out; 6207 } 6208 6209 ret = copy_huge_page_from_user(page, 6210 (const void __user *) src_addr, 6211 pages_per_huge_page(h), false); 6212 6213 /* fallback to copy_from_user outside mmap_lock */ 6214 if (unlikely(ret)) { 6215 ret = -ENOENT; 6216 /* Free the allocated page which may have 6217 * consumed a reservation. 6218 */ 6219 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6220 put_page(page); 6221 6222 /* Allocate a temporary page to hold the copied 6223 * contents. 6224 */ 6225 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 6226 if (!page) { 6227 ret = -ENOMEM; 6228 goto out; 6229 } 6230 *pagep = page; 6231 /* Set the outparam pagep and return to the caller to 6232 * copy the contents outside the lock. Don't free the 6233 * page. 6234 */ 6235 goto out; 6236 } 6237 } else { 6238 if (vm_shared && 6239 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6240 put_page(*pagep); 6241 ret = -EEXIST; 6242 *pagep = NULL; 6243 goto out; 6244 } 6245 6246 page = alloc_huge_page(dst_vma, dst_addr, 0); 6247 if (IS_ERR(page)) { 6248 put_page(*pagep); 6249 ret = -ENOMEM; 6250 *pagep = NULL; 6251 goto out; 6252 } 6253 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 6254 pages_per_huge_page(h)); 6255 put_page(*pagep); 6256 *pagep = NULL; 6257 } 6258 6259 /* 6260 * The memory barrier inside __SetPageUptodate makes sure that 6261 * preceding stores to the page contents become visible before 6262 * the set_pte_at() write. 6263 */ 6264 __SetPageUptodate(page); 6265 6266 /* Add shared, newly allocated pages to the page cache. */ 6267 if (vm_shared && !is_continue) { 6268 size = i_size_read(mapping->host) >> huge_page_shift(h); 6269 ret = -EFAULT; 6270 if (idx >= size) 6271 goto out_release_nounlock; 6272 6273 /* 6274 * Serialization between remove_inode_hugepages() and 6275 * hugetlb_add_to_page_cache() below happens through the 6276 * hugetlb_fault_mutex_table that here must be hold by 6277 * the caller. 6278 */ 6279 ret = hugetlb_add_to_page_cache(page, mapping, idx); 6280 if (ret) 6281 goto out_release_nounlock; 6282 page_in_pagecache = true; 6283 } 6284 6285 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6286 6287 ret = -EIO; 6288 if (PageHWPoison(page)) 6289 goto out_release_unlock; 6290 6291 /* 6292 * We allow to overwrite a pte marker: consider when both MISSING|WP 6293 * registered, we firstly wr-protect a none pte which has no page cache 6294 * page backing it, then access the page. 6295 */ 6296 ret = -EEXIST; 6297 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6298 goto out_release_unlock; 6299 6300 if (page_in_pagecache) 6301 page_dup_file_rmap(page, true); 6302 else 6303 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6304 6305 /* 6306 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6307 * with wp flag set, don't set pte write bit. 6308 */ 6309 if (wp_copy || (is_continue && !vm_shared)) 6310 writable = 0; 6311 else 6312 writable = dst_vma->vm_flags & VM_WRITE; 6313 6314 _dst_pte = make_huge_pte(dst_vma, page, writable); 6315 /* 6316 * Always mark UFFDIO_COPY page dirty; note that this may not be 6317 * extremely important for hugetlbfs for now since swapping is not 6318 * supported, but we should still be clear in that this page cannot be 6319 * thrown away at will, even if write bit not set. 6320 */ 6321 _dst_pte = huge_pte_mkdirty(_dst_pte); 6322 _dst_pte = pte_mkyoung(_dst_pte); 6323 6324 if (wp_copy) 6325 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6326 6327 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6328 6329 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6330 6331 /* No need to invalidate - it was non-present before */ 6332 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6333 6334 spin_unlock(ptl); 6335 if (!is_continue) 6336 SetHPageMigratable(page); 6337 if (vm_shared || is_continue) 6338 unlock_page(page); 6339 ret = 0; 6340 out: 6341 return ret; 6342 out_release_unlock: 6343 spin_unlock(ptl); 6344 if (vm_shared || is_continue) 6345 unlock_page(page); 6346 out_release_nounlock: 6347 if (!page_in_pagecache) 6348 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6349 put_page(page); 6350 goto out; 6351 } 6352 #endif /* CONFIG_USERFAULTFD */ 6353 6354 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6355 int refs, struct page **pages, 6356 struct vm_area_struct **vmas) 6357 { 6358 int nr; 6359 6360 for (nr = 0; nr < refs; nr++) { 6361 if (likely(pages)) 6362 pages[nr] = nth_page(page, nr); 6363 if (vmas) 6364 vmas[nr] = vma; 6365 } 6366 } 6367 6368 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, 6369 unsigned int flags, pte_t *pte, 6370 bool *unshare) 6371 { 6372 pte_t pteval = huge_ptep_get(pte); 6373 6374 *unshare = false; 6375 if (is_swap_pte(pteval)) 6376 return true; 6377 if (huge_pte_write(pteval)) 6378 return false; 6379 if (flags & FOLL_WRITE) 6380 return true; 6381 if (gup_must_unshare(vma, flags, pte_page(pteval))) { 6382 *unshare = true; 6383 return true; 6384 } 6385 return false; 6386 } 6387 6388 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6389 unsigned long address, unsigned int flags) 6390 { 6391 struct hstate *h = hstate_vma(vma); 6392 struct mm_struct *mm = vma->vm_mm; 6393 unsigned long haddr = address & huge_page_mask(h); 6394 struct page *page = NULL; 6395 spinlock_t *ptl; 6396 pte_t *pte, entry; 6397 6398 /* 6399 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6400 * follow_hugetlb_page(). 6401 */ 6402 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6403 return NULL; 6404 6405 retry: 6406 pte = huge_pte_offset(mm, haddr, huge_page_size(h)); 6407 if (!pte) 6408 return NULL; 6409 6410 ptl = huge_pte_lock(h, mm, pte); 6411 entry = huge_ptep_get(pte); 6412 if (pte_present(entry)) { 6413 page = pte_page(entry) + 6414 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6415 /* 6416 * Note that page may be a sub-page, and with vmemmap 6417 * optimizations the page struct may be read only. 6418 * try_grab_page() will increase the ref count on the 6419 * head page, so this will be OK. 6420 * 6421 * try_grab_page() should always be able to get the page here, 6422 * because we hold the ptl lock and have verified pte_present(). 6423 */ 6424 if (try_grab_page(page, flags)) { 6425 page = NULL; 6426 goto out; 6427 } 6428 } else { 6429 if (is_hugetlb_entry_migration(entry)) { 6430 spin_unlock(ptl); 6431 __migration_entry_wait_huge(pte, ptl); 6432 goto retry; 6433 } 6434 /* 6435 * hwpoisoned entry is treated as no_page_table in 6436 * follow_page_mask(). 6437 */ 6438 } 6439 out: 6440 spin_unlock(ptl); 6441 return page; 6442 } 6443 6444 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6445 struct page **pages, struct vm_area_struct **vmas, 6446 unsigned long *position, unsigned long *nr_pages, 6447 long i, unsigned int flags, int *locked) 6448 { 6449 unsigned long pfn_offset; 6450 unsigned long vaddr = *position; 6451 unsigned long remainder = *nr_pages; 6452 struct hstate *h = hstate_vma(vma); 6453 int err = -EFAULT, refs; 6454 6455 while (vaddr < vma->vm_end && remainder) { 6456 pte_t *pte; 6457 spinlock_t *ptl = NULL; 6458 bool unshare = false; 6459 int absent; 6460 struct page *page; 6461 6462 /* 6463 * If we have a pending SIGKILL, don't keep faulting pages and 6464 * potentially allocating memory. 6465 */ 6466 if (fatal_signal_pending(current)) { 6467 remainder = 0; 6468 break; 6469 } 6470 6471 /* 6472 * Some archs (sparc64, sh*) have multiple pte_ts to 6473 * each hugepage. We have to make sure we get the 6474 * first, for the page indexing below to work. 6475 * 6476 * Note that page table lock is not held when pte is null. 6477 */ 6478 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6479 huge_page_size(h)); 6480 if (pte) 6481 ptl = huge_pte_lock(h, mm, pte); 6482 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6483 6484 /* 6485 * When coredumping, it suits get_dump_page if we just return 6486 * an error where there's an empty slot with no huge pagecache 6487 * to back it. This way, we avoid allocating a hugepage, and 6488 * the sparse dumpfile avoids allocating disk blocks, but its 6489 * huge holes still show up with zeroes where they need to be. 6490 */ 6491 if (absent && (flags & FOLL_DUMP) && 6492 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6493 if (pte) 6494 spin_unlock(ptl); 6495 remainder = 0; 6496 break; 6497 } 6498 6499 /* 6500 * We need call hugetlb_fault for both hugepages under migration 6501 * (in which case hugetlb_fault waits for the migration,) and 6502 * hwpoisoned hugepages (in which case we need to prevent the 6503 * caller from accessing to them.) In order to do this, we use 6504 * here is_swap_pte instead of is_hugetlb_entry_migration and 6505 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6506 * both cases, and because we can't follow correct pages 6507 * directly from any kind of swap entries. 6508 */ 6509 if (absent || 6510 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { 6511 vm_fault_t ret; 6512 unsigned int fault_flags = 0; 6513 6514 if (pte) 6515 spin_unlock(ptl); 6516 if (flags & FOLL_WRITE) 6517 fault_flags |= FAULT_FLAG_WRITE; 6518 else if (unshare) 6519 fault_flags |= FAULT_FLAG_UNSHARE; 6520 if (locked) { 6521 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6522 FAULT_FLAG_KILLABLE; 6523 if (flags & FOLL_INTERRUPTIBLE) 6524 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 6525 } 6526 if (flags & FOLL_NOWAIT) 6527 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6528 FAULT_FLAG_RETRY_NOWAIT; 6529 if (flags & FOLL_TRIED) { 6530 /* 6531 * Note: FAULT_FLAG_ALLOW_RETRY and 6532 * FAULT_FLAG_TRIED can co-exist 6533 */ 6534 fault_flags |= FAULT_FLAG_TRIED; 6535 } 6536 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6537 if (ret & VM_FAULT_ERROR) { 6538 err = vm_fault_to_errno(ret, flags); 6539 remainder = 0; 6540 break; 6541 } 6542 if (ret & VM_FAULT_RETRY) { 6543 if (locked && 6544 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6545 *locked = 0; 6546 *nr_pages = 0; 6547 /* 6548 * VM_FAULT_RETRY must not return an 6549 * error, it will return zero 6550 * instead. 6551 * 6552 * No need to update "position" as the 6553 * caller will not check it after 6554 * *nr_pages is set to 0. 6555 */ 6556 return i; 6557 } 6558 continue; 6559 } 6560 6561 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6562 page = pte_page(huge_ptep_get(pte)); 6563 6564 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6565 !PageAnonExclusive(page), page); 6566 6567 /* 6568 * If subpage information not requested, update counters 6569 * and skip the same_page loop below. 6570 */ 6571 if (!pages && !vmas && !pfn_offset && 6572 (vaddr + huge_page_size(h) < vma->vm_end) && 6573 (remainder >= pages_per_huge_page(h))) { 6574 vaddr += huge_page_size(h); 6575 remainder -= pages_per_huge_page(h); 6576 i += pages_per_huge_page(h); 6577 spin_unlock(ptl); 6578 continue; 6579 } 6580 6581 /* vaddr may not be aligned to PAGE_SIZE */ 6582 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6583 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6584 6585 if (pages || vmas) 6586 record_subpages_vmas(nth_page(page, pfn_offset), 6587 vma, refs, 6588 likely(pages) ? pages + i : NULL, 6589 vmas ? vmas + i : NULL); 6590 6591 if (pages) { 6592 /* 6593 * try_grab_folio() should always succeed here, 6594 * because: a) we hold the ptl lock, and b) we've just 6595 * checked that the huge page is present in the page 6596 * tables. If the huge page is present, then the tail 6597 * pages must also be present. The ptl prevents the 6598 * head page and tail pages from being rearranged in 6599 * any way. As this is hugetlb, the pages will never 6600 * be p2pdma or not longterm pinable. So this page 6601 * must be available at this point, unless the page 6602 * refcount overflowed: 6603 */ 6604 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6605 flags))) { 6606 spin_unlock(ptl); 6607 remainder = 0; 6608 err = -ENOMEM; 6609 break; 6610 } 6611 } 6612 6613 vaddr += (refs << PAGE_SHIFT); 6614 remainder -= refs; 6615 i += refs; 6616 6617 spin_unlock(ptl); 6618 } 6619 *nr_pages = remainder; 6620 /* 6621 * setting position is actually required only if remainder is 6622 * not zero but it's faster not to add a "if (remainder)" 6623 * branch. 6624 */ 6625 *position = vaddr; 6626 6627 return i ? i : err; 6628 } 6629 6630 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6631 unsigned long address, unsigned long end, 6632 pgprot_t newprot, unsigned long cp_flags) 6633 { 6634 struct mm_struct *mm = vma->vm_mm; 6635 unsigned long start = address; 6636 pte_t *ptep; 6637 pte_t pte; 6638 struct hstate *h = hstate_vma(vma); 6639 unsigned long pages = 0, psize = huge_page_size(h); 6640 bool shared_pmd = false; 6641 struct mmu_notifier_range range; 6642 unsigned long last_addr_mask; 6643 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6644 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6645 6646 /* 6647 * In the case of shared PMDs, the area to flush could be beyond 6648 * start/end. Set range.start/range.end to cover the maximum possible 6649 * range if PMD sharing is possible. 6650 */ 6651 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6652 0, vma, mm, start, end); 6653 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6654 6655 BUG_ON(address >= end); 6656 flush_cache_range(vma, range.start, range.end); 6657 6658 mmu_notifier_invalidate_range_start(&range); 6659 hugetlb_vma_lock_write(vma); 6660 i_mmap_lock_write(vma->vm_file->f_mapping); 6661 last_addr_mask = hugetlb_mask_last_page(h); 6662 for (; address < end; address += psize) { 6663 spinlock_t *ptl; 6664 ptep = huge_pte_offset(mm, address, psize); 6665 if (!ptep) { 6666 if (!uffd_wp) { 6667 address |= last_addr_mask; 6668 continue; 6669 } 6670 /* 6671 * Userfaultfd wr-protect requires pgtable 6672 * pre-allocations to install pte markers. 6673 */ 6674 ptep = huge_pte_alloc(mm, vma, address, psize); 6675 if (!ptep) 6676 break; 6677 } 6678 ptl = huge_pte_lock(h, mm, ptep); 6679 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6680 /* 6681 * When uffd-wp is enabled on the vma, unshare 6682 * shouldn't happen at all. Warn about it if it 6683 * happened due to some reason. 6684 */ 6685 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6686 pages++; 6687 spin_unlock(ptl); 6688 shared_pmd = true; 6689 address |= last_addr_mask; 6690 continue; 6691 } 6692 pte = huge_ptep_get(ptep); 6693 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6694 /* Nothing to do. */ 6695 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6696 swp_entry_t entry = pte_to_swp_entry(pte); 6697 struct page *page = pfn_swap_entry_to_page(entry); 6698 pte_t newpte = pte; 6699 6700 if (is_writable_migration_entry(entry)) { 6701 if (PageAnon(page)) 6702 entry = make_readable_exclusive_migration_entry( 6703 swp_offset(entry)); 6704 else 6705 entry = make_readable_migration_entry( 6706 swp_offset(entry)); 6707 newpte = swp_entry_to_pte(entry); 6708 pages++; 6709 } 6710 6711 if (uffd_wp) 6712 newpte = pte_swp_mkuffd_wp(newpte); 6713 else if (uffd_wp_resolve) 6714 newpte = pte_swp_clear_uffd_wp(newpte); 6715 if (!pte_same(pte, newpte)) 6716 set_huge_pte_at(mm, address, ptep, newpte); 6717 } else if (unlikely(is_pte_marker(pte))) { 6718 /* No other markers apply for now. */ 6719 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6720 if (uffd_wp_resolve) 6721 /* Safe to modify directly (non-present->none). */ 6722 huge_pte_clear(mm, address, ptep, psize); 6723 } else if (!huge_pte_none(pte)) { 6724 pte_t old_pte; 6725 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6726 6727 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6728 pte = huge_pte_modify(old_pte, newprot); 6729 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6730 if (uffd_wp) 6731 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6732 else if (uffd_wp_resolve) 6733 pte = huge_pte_clear_uffd_wp(pte); 6734 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6735 pages++; 6736 } else { 6737 /* None pte */ 6738 if (unlikely(uffd_wp)) 6739 /* Safe to modify directly (none->non-present). */ 6740 set_huge_pte_at(mm, address, ptep, 6741 make_pte_marker(PTE_MARKER_UFFD_WP)); 6742 } 6743 spin_unlock(ptl); 6744 } 6745 /* 6746 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6747 * may have cleared our pud entry and done put_page on the page table: 6748 * once we release i_mmap_rwsem, another task can do the final put_page 6749 * and that page table be reused and filled with junk. If we actually 6750 * did unshare a page of pmds, flush the range corresponding to the pud. 6751 */ 6752 if (shared_pmd) 6753 flush_hugetlb_tlb_range(vma, range.start, range.end); 6754 else 6755 flush_hugetlb_tlb_range(vma, start, end); 6756 /* 6757 * No need to call mmu_notifier_invalidate_range() we are downgrading 6758 * page table protection not changing it to point to a new page. 6759 * 6760 * See Documentation/mm/mmu_notifier.rst 6761 */ 6762 i_mmap_unlock_write(vma->vm_file->f_mapping); 6763 hugetlb_vma_unlock_write(vma); 6764 mmu_notifier_invalidate_range_end(&range); 6765 6766 return pages << h->order; 6767 } 6768 6769 /* Return true if reservation was successful, false otherwise. */ 6770 bool hugetlb_reserve_pages(struct inode *inode, 6771 long from, long to, 6772 struct vm_area_struct *vma, 6773 vm_flags_t vm_flags) 6774 { 6775 long chg, add = -1; 6776 struct hstate *h = hstate_inode(inode); 6777 struct hugepage_subpool *spool = subpool_inode(inode); 6778 struct resv_map *resv_map; 6779 struct hugetlb_cgroup *h_cg = NULL; 6780 long gbl_reserve, regions_needed = 0; 6781 6782 /* This should never happen */ 6783 if (from > to) { 6784 VM_WARN(1, "%s called with a negative range\n", __func__); 6785 return false; 6786 } 6787 6788 /* 6789 * vma specific semaphore used for pmd sharing and fault/truncation 6790 * synchronization 6791 */ 6792 hugetlb_vma_lock_alloc(vma); 6793 6794 /* 6795 * Only apply hugepage reservation if asked. At fault time, an 6796 * attempt will be made for VM_NORESERVE to allocate a page 6797 * without using reserves 6798 */ 6799 if (vm_flags & VM_NORESERVE) 6800 return true; 6801 6802 /* 6803 * Shared mappings base their reservation on the number of pages that 6804 * are already allocated on behalf of the file. Private mappings need 6805 * to reserve the full area even if read-only as mprotect() may be 6806 * called to make the mapping read-write. Assume !vma is a shm mapping 6807 */ 6808 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6809 /* 6810 * resv_map can not be NULL as hugetlb_reserve_pages is only 6811 * called for inodes for which resv_maps were created (see 6812 * hugetlbfs_get_inode). 6813 */ 6814 resv_map = inode_resv_map(inode); 6815 6816 chg = region_chg(resv_map, from, to, ®ions_needed); 6817 } else { 6818 /* Private mapping. */ 6819 resv_map = resv_map_alloc(); 6820 if (!resv_map) 6821 goto out_err; 6822 6823 chg = to - from; 6824 6825 set_vma_resv_map(vma, resv_map); 6826 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6827 } 6828 6829 if (chg < 0) 6830 goto out_err; 6831 6832 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6833 chg * pages_per_huge_page(h), &h_cg) < 0) 6834 goto out_err; 6835 6836 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6837 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6838 * of the resv_map. 6839 */ 6840 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6841 } 6842 6843 /* 6844 * There must be enough pages in the subpool for the mapping. If 6845 * the subpool has a minimum size, there may be some global 6846 * reservations already in place (gbl_reserve). 6847 */ 6848 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6849 if (gbl_reserve < 0) 6850 goto out_uncharge_cgroup; 6851 6852 /* 6853 * Check enough hugepages are available for the reservation. 6854 * Hand the pages back to the subpool if there are not 6855 */ 6856 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6857 goto out_put_pages; 6858 6859 /* 6860 * Account for the reservations made. Shared mappings record regions 6861 * that have reservations as they are shared by multiple VMAs. 6862 * When the last VMA disappears, the region map says how much 6863 * the reservation was and the page cache tells how much of 6864 * the reservation was consumed. Private mappings are per-VMA and 6865 * only the consumed reservations are tracked. When the VMA 6866 * disappears, the original reservation is the VMA size and the 6867 * consumed reservations are stored in the map. Hence, nothing 6868 * else has to be done for private mappings here 6869 */ 6870 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6871 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6872 6873 if (unlikely(add < 0)) { 6874 hugetlb_acct_memory(h, -gbl_reserve); 6875 goto out_put_pages; 6876 } else if (unlikely(chg > add)) { 6877 /* 6878 * pages in this range were added to the reserve 6879 * map between region_chg and region_add. This 6880 * indicates a race with alloc_huge_page. Adjust 6881 * the subpool and reserve counts modified above 6882 * based on the difference. 6883 */ 6884 long rsv_adjust; 6885 6886 /* 6887 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6888 * reference to h_cg->css. See comment below for detail. 6889 */ 6890 hugetlb_cgroup_uncharge_cgroup_rsvd( 6891 hstate_index(h), 6892 (chg - add) * pages_per_huge_page(h), h_cg); 6893 6894 rsv_adjust = hugepage_subpool_put_pages(spool, 6895 chg - add); 6896 hugetlb_acct_memory(h, -rsv_adjust); 6897 } else if (h_cg) { 6898 /* 6899 * The file_regions will hold their own reference to 6900 * h_cg->css. So we should release the reference held 6901 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6902 * done. 6903 */ 6904 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6905 } 6906 } 6907 return true; 6908 6909 out_put_pages: 6910 /* put back original number of pages, chg */ 6911 (void)hugepage_subpool_put_pages(spool, chg); 6912 out_uncharge_cgroup: 6913 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6914 chg * pages_per_huge_page(h), h_cg); 6915 out_err: 6916 hugetlb_vma_lock_free(vma); 6917 if (!vma || vma->vm_flags & VM_MAYSHARE) 6918 /* Only call region_abort if the region_chg succeeded but the 6919 * region_add failed or didn't run. 6920 */ 6921 if (chg >= 0 && add < 0) 6922 region_abort(resv_map, from, to, regions_needed); 6923 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6924 kref_put(&resv_map->refs, resv_map_release); 6925 return false; 6926 } 6927 6928 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6929 long freed) 6930 { 6931 struct hstate *h = hstate_inode(inode); 6932 struct resv_map *resv_map = inode_resv_map(inode); 6933 long chg = 0; 6934 struct hugepage_subpool *spool = subpool_inode(inode); 6935 long gbl_reserve; 6936 6937 /* 6938 * Since this routine can be called in the evict inode path for all 6939 * hugetlbfs inodes, resv_map could be NULL. 6940 */ 6941 if (resv_map) { 6942 chg = region_del(resv_map, start, end); 6943 /* 6944 * region_del() can fail in the rare case where a region 6945 * must be split and another region descriptor can not be 6946 * allocated. If end == LONG_MAX, it will not fail. 6947 */ 6948 if (chg < 0) 6949 return chg; 6950 } 6951 6952 spin_lock(&inode->i_lock); 6953 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6954 spin_unlock(&inode->i_lock); 6955 6956 /* 6957 * If the subpool has a minimum size, the number of global 6958 * reservations to be released may be adjusted. 6959 * 6960 * Note that !resv_map implies freed == 0. So (chg - freed) 6961 * won't go negative. 6962 */ 6963 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6964 hugetlb_acct_memory(h, -gbl_reserve); 6965 6966 return 0; 6967 } 6968 6969 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6970 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6971 struct vm_area_struct *vma, 6972 unsigned long addr, pgoff_t idx) 6973 { 6974 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6975 svma->vm_start; 6976 unsigned long sbase = saddr & PUD_MASK; 6977 unsigned long s_end = sbase + PUD_SIZE; 6978 6979 /* Allow segments to share if only one is marked locked */ 6980 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6981 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6982 6983 /* 6984 * match the virtual addresses, permission and the alignment of the 6985 * page table page. 6986 * 6987 * Also, vma_lock (vm_private_data) is required for sharing. 6988 */ 6989 if (pmd_index(addr) != pmd_index(saddr) || 6990 vm_flags != svm_flags || 6991 !range_in_vma(svma, sbase, s_end) || 6992 !svma->vm_private_data) 6993 return 0; 6994 6995 return saddr; 6996 } 6997 6998 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6999 { 7000 unsigned long start = addr & PUD_MASK; 7001 unsigned long end = start + PUD_SIZE; 7002 7003 #ifdef CONFIG_USERFAULTFD 7004 if (uffd_disable_huge_pmd_share(vma)) 7005 return false; 7006 #endif 7007 /* 7008 * check on proper vm_flags and page table alignment 7009 */ 7010 if (!(vma->vm_flags & VM_MAYSHARE)) 7011 return false; 7012 if (!vma->vm_private_data) /* vma lock required for sharing */ 7013 return false; 7014 if (!range_in_vma(vma, start, end)) 7015 return false; 7016 return true; 7017 } 7018 7019 /* 7020 * Determine if start,end range within vma could be mapped by shared pmd. 7021 * If yes, adjust start and end to cover range associated with possible 7022 * shared pmd mappings. 7023 */ 7024 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7025 unsigned long *start, unsigned long *end) 7026 { 7027 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 7028 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7029 7030 /* 7031 * vma needs to span at least one aligned PUD size, and the range 7032 * must be at least partially within in. 7033 */ 7034 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 7035 (*end <= v_start) || (*start >= v_end)) 7036 return; 7037 7038 /* Extend the range to be PUD aligned for a worst case scenario */ 7039 if (*start > v_start) 7040 *start = ALIGN_DOWN(*start, PUD_SIZE); 7041 7042 if (*end < v_end) 7043 *end = ALIGN(*end, PUD_SIZE); 7044 } 7045 7046 /* 7047 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7048 * and returns the corresponding pte. While this is not necessary for the 7049 * !shared pmd case because we can allocate the pmd later as well, it makes the 7050 * code much cleaner. pmd allocation is essential for the shared case because 7051 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7052 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7053 * bad pmd for sharing. 7054 */ 7055 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7056 unsigned long addr, pud_t *pud) 7057 { 7058 struct address_space *mapping = vma->vm_file->f_mapping; 7059 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7060 vma->vm_pgoff; 7061 struct vm_area_struct *svma; 7062 unsigned long saddr; 7063 pte_t *spte = NULL; 7064 pte_t *pte; 7065 spinlock_t *ptl; 7066 7067 i_mmap_lock_read(mapping); 7068 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7069 if (svma == vma) 7070 continue; 7071 7072 saddr = page_table_shareable(svma, vma, addr, idx); 7073 if (saddr) { 7074 spte = huge_pte_offset(svma->vm_mm, saddr, 7075 vma_mmu_pagesize(svma)); 7076 if (spte) { 7077 get_page(virt_to_page(spte)); 7078 break; 7079 } 7080 } 7081 } 7082 7083 if (!spte) 7084 goto out; 7085 7086 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 7087 if (pud_none(*pud)) { 7088 pud_populate(mm, pud, 7089 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7090 mm_inc_nr_pmds(mm); 7091 } else { 7092 put_page(virt_to_page(spte)); 7093 } 7094 spin_unlock(ptl); 7095 out: 7096 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7097 i_mmap_unlock_read(mapping); 7098 return pte; 7099 } 7100 7101 /* 7102 * unmap huge page backed by shared pte. 7103 * 7104 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7105 * indicated by page_count > 1, unmap is achieved by clearing pud and 7106 * decrementing the ref count. If count == 1, the pte page is not shared. 7107 * 7108 * Called with page table lock held. 7109 * 7110 * returns: 1 successfully unmapped a shared pte page 7111 * 0 the underlying pte page is not shared, or it is the last user 7112 */ 7113 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7114 unsigned long addr, pte_t *ptep) 7115 { 7116 pgd_t *pgd = pgd_offset(mm, addr); 7117 p4d_t *p4d = p4d_offset(pgd, addr); 7118 pud_t *pud = pud_offset(p4d, addr); 7119 7120 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7121 hugetlb_vma_assert_locked(vma); 7122 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7123 if (page_count(virt_to_page(ptep)) == 1) 7124 return 0; 7125 7126 pud_clear(pud); 7127 put_page(virt_to_page(ptep)); 7128 mm_dec_nr_pmds(mm); 7129 return 1; 7130 } 7131 7132 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7133 7134 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7135 unsigned long addr, pud_t *pud) 7136 { 7137 return NULL; 7138 } 7139 7140 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7141 unsigned long addr, pte_t *ptep) 7142 { 7143 return 0; 7144 } 7145 7146 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7147 unsigned long *start, unsigned long *end) 7148 { 7149 } 7150 7151 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7152 { 7153 return false; 7154 } 7155 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7156 7157 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7158 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7159 unsigned long addr, unsigned long sz) 7160 { 7161 pgd_t *pgd; 7162 p4d_t *p4d; 7163 pud_t *pud; 7164 pte_t *pte = NULL; 7165 7166 pgd = pgd_offset(mm, addr); 7167 p4d = p4d_alloc(mm, pgd, addr); 7168 if (!p4d) 7169 return NULL; 7170 pud = pud_alloc(mm, p4d, addr); 7171 if (pud) { 7172 if (sz == PUD_SIZE) { 7173 pte = (pte_t *)pud; 7174 } else { 7175 BUG_ON(sz != PMD_SIZE); 7176 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7177 pte = huge_pmd_share(mm, vma, addr, pud); 7178 else 7179 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7180 } 7181 } 7182 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7183 7184 return pte; 7185 } 7186 7187 /* 7188 * huge_pte_offset() - Walk the page table to resolve the hugepage 7189 * entry at address @addr 7190 * 7191 * Return: Pointer to page table entry (PUD or PMD) for 7192 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7193 * size @sz doesn't match the hugepage size at this level of the page 7194 * table. 7195 */ 7196 pte_t *huge_pte_offset(struct mm_struct *mm, 7197 unsigned long addr, unsigned long sz) 7198 { 7199 pgd_t *pgd; 7200 p4d_t *p4d; 7201 pud_t *pud; 7202 pmd_t *pmd; 7203 7204 pgd = pgd_offset(mm, addr); 7205 if (!pgd_present(*pgd)) 7206 return NULL; 7207 p4d = p4d_offset(pgd, addr); 7208 if (!p4d_present(*p4d)) 7209 return NULL; 7210 7211 pud = pud_offset(p4d, addr); 7212 if (sz == PUD_SIZE) 7213 /* must be pud huge, non-present or none */ 7214 return (pte_t *)pud; 7215 if (!pud_present(*pud)) 7216 return NULL; 7217 /* must have a valid entry and size to go further */ 7218 7219 pmd = pmd_offset(pud, addr); 7220 /* must be pmd huge, non-present or none */ 7221 return (pte_t *)pmd; 7222 } 7223 7224 /* 7225 * Return a mask that can be used to update an address to the last huge 7226 * page in a page table page mapping size. Used to skip non-present 7227 * page table entries when linearly scanning address ranges. Architectures 7228 * with unique huge page to page table relationships can define their own 7229 * version of this routine. 7230 */ 7231 unsigned long hugetlb_mask_last_page(struct hstate *h) 7232 { 7233 unsigned long hp_size = huge_page_size(h); 7234 7235 if (hp_size == PUD_SIZE) 7236 return P4D_SIZE - PUD_SIZE; 7237 else if (hp_size == PMD_SIZE) 7238 return PUD_SIZE - PMD_SIZE; 7239 else 7240 return 0UL; 7241 } 7242 7243 #else 7244 7245 /* See description above. Architectures can provide their own version. */ 7246 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7247 { 7248 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7249 if (huge_page_size(h) == PMD_SIZE) 7250 return PUD_SIZE - PMD_SIZE; 7251 #endif 7252 return 0UL; 7253 } 7254 7255 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7256 7257 /* 7258 * These functions are overwritable if your architecture needs its own 7259 * behavior. 7260 */ 7261 int isolate_hugetlb(struct page *page, struct list_head *list) 7262 { 7263 int ret = 0; 7264 7265 spin_lock_irq(&hugetlb_lock); 7266 if (!PageHeadHuge(page) || 7267 !HPageMigratable(page) || 7268 !get_page_unless_zero(page)) { 7269 ret = -EBUSY; 7270 goto unlock; 7271 } 7272 ClearHPageMigratable(page); 7273 list_move_tail(&page->lru, list); 7274 unlock: 7275 spin_unlock_irq(&hugetlb_lock); 7276 return ret; 7277 } 7278 7279 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison) 7280 { 7281 int ret = 0; 7282 7283 *hugetlb = false; 7284 spin_lock_irq(&hugetlb_lock); 7285 if (PageHeadHuge(page)) { 7286 *hugetlb = true; 7287 if (HPageFreed(page)) 7288 ret = 0; 7289 else if (HPageMigratable(page) || unpoison) 7290 ret = get_page_unless_zero(page); 7291 else 7292 ret = -EBUSY; 7293 } 7294 spin_unlock_irq(&hugetlb_lock); 7295 return ret; 7296 } 7297 7298 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7299 bool *migratable_cleared) 7300 { 7301 int ret; 7302 7303 spin_lock_irq(&hugetlb_lock); 7304 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7305 spin_unlock_irq(&hugetlb_lock); 7306 return ret; 7307 } 7308 7309 void putback_active_hugepage(struct page *page) 7310 { 7311 spin_lock_irq(&hugetlb_lock); 7312 SetHPageMigratable(page); 7313 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7314 spin_unlock_irq(&hugetlb_lock); 7315 put_page(page); 7316 } 7317 7318 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7319 { 7320 struct hstate *h = folio_hstate(old_folio); 7321 7322 hugetlb_cgroup_migrate(old_folio, new_folio); 7323 set_page_owner_migrate_reason(&new_folio->page, reason); 7324 7325 /* 7326 * transfer temporary state of the new hugetlb folio. This is 7327 * reverse to other transitions because the newpage is going to 7328 * be final while the old one will be freed so it takes over 7329 * the temporary status. 7330 * 7331 * Also note that we have to transfer the per-node surplus state 7332 * here as well otherwise the global surplus count will not match 7333 * the per-node's. 7334 */ 7335 if (folio_test_hugetlb_temporary(new_folio)) { 7336 int old_nid = folio_nid(old_folio); 7337 int new_nid = folio_nid(new_folio); 7338 7339 folio_set_hugetlb_temporary(old_folio); 7340 folio_clear_hugetlb_temporary(new_folio); 7341 7342 7343 /* 7344 * There is no need to transfer the per-node surplus state 7345 * when we do not cross the node. 7346 */ 7347 if (new_nid == old_nid) 7348 return; 7349 spin_lock_irq(&hugetlb_lock); 7350 if (h->surplus_huge_pages_node[old_nid]) { 7351 h->surplus_huge_pages_node[old_nid]--; 7352 h->surplus_huge_pages_node[new_nid]++; 7353 } 7354 spin_unlock_irq(&hugetlb_lock); 7355 } 7356 } 7357 7358 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7359 unsigned long start, 7360 unsigned long end) 7361 { 7362 struct hstate *h = hstate_vma(vma); 7363 unsigned long sz = huge_page_size(h); 7364 struct mm_struct *mm = vma->vm_mm; 7365 struct mmu_notifier_range range; 7366 unsigned long address; 7367 spinlock_t *ptl; 7368 pte_t *ptep; 7369 7370 if (!(vma->vm_flags & VM_MAYSHARE)) 7371 return; 7372 7373 if (start >= end) 7374 return; 7375 7376 flush_cache_range(vma, start, end); 7377 /* 7378 * No need to call adjust_range_if_pmd_sharing_possible(), because 7379 * we have already done the PUD_SIZE alignment. 7380 */ 7381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7382 start, end); 7383 mmu_notifier_invalidate_range_start(&range); 7384 hugetlb_vma_lock_write(vma); 7385 i_mmap_lock_write(vma->vm_file->f_mapping); 7386 for (address = start; address < end; address += PUD_SIZE) { 7387 ptep = huge_pte_offset(mm, address, sz); 7388 if (!ptep) 7389 continue; 7390 ptl = huge_pte_lock(h, mm, ptep); 7391 huge_pmd_unshare(mm, vma, address, ptep); 7392 spin_unlock(ptl); 7393 } 7394 flush_hugetlb_tlb_range(vma, start, end); 7395 i_mmap_unlock_write(vma->vm_file->f_mapping); 7396 hugetlb_vma_unlock_write(vma); 7397 /* 7398 * No need to call mmu_notifier_invalidate_range(), see 7399 * Documentation/mm/mmu_notifier.rst. 7400 */ 7401 mmu_notifier_invalidate_range_end(&range); 7402 } 7403 7404 /* 7405 * This function will unconditionally remove all the shared pmd pgtable entries 7406 * within the specific vma for a hugetlbfs memory range. 7407 */ 7408 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7409 { 7410 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7411 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7412 } 7413 7414 #ifdef CONFIG_CMA 7415 static bool cma_reserve_called __initdata; 7416 7417 static int __init cmdline_parse_hugetlb_cma(char *p) 7418 { 7419 int nid, count = 0; 7420 unsigned long tmp; 7421 char *s = p; 7422 7423 while (*s) { 7424 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7425 break; 7426 7427 if (s[count] == ':') { 7428 if (tmp >= MAX_NUMNODES) 7429 break; 7430 nid = array_index_nospec(tmp, MAX_NUMNODES); 7431 7432 s += count + 1; 7433 tmp = memparse(s, &s); 7434 hugetlb_cma_size_in_node[nid] = tmp; 7435 hugetlb_cma_size += tmp; 7436 7437 /* 7438 * Skip the separator if have one, otherwise 7439 * break the parsing. 7440 */ 7441 if (*s == ',') 7442 s++; 7443 else 7444 break; 7445 } else { 7446 hugetlb_cma_size = memparse(p, &p); 7447 break; 7448 } 7449 } 7450 7451 return 0; 7452 } 7453 7454 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7455 7456 void __init hugetlb_cma_reserve(int order) 7457 { 7458 unsigned long size, reserved, per_node; 7459 bool node_specific_cma_alloc = false; 7460 int nid; 7461 7462 cma_reserve_called = true; 7463 7464 if (!hugetlb_cma_size) 7465 return; 7466 7467 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7468 if (hugetlb_cma_size_in_node[nid] == 0) 7469 continue; 7470 7471 if (!node_online(nid)) { 7472 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7473 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7474 hugetlb_cma_size_in_node[nid] = 0; 7475 continue; 7476 } 7477 7478 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7479 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7480 nid, (PAGE_SIZE << order) / SZ_1M); 7481 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7482 hugetlb_cma_size_in_node[nid] = 0; 7483 } else { 7484 node_specific_cma_alloc = true; 7485 } 7486 } 7487 7488 /* Validate the CMA size again in case some invalid nodes specified. */ 7489 if (!hugetlb_cma_size) 7490 return; 7491 7492 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7493 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7494 (PAGE_SIZE << order) / SZ_1M); 7495 hugetlb_cma_size = 0; 7496 return; 7497 } 7498 7499 if (!node_specific_cma_alloc) { 7500 /* 7501 * If 3 GB area is requested on a machine with 4 numa nodes, 7502 * let's allocate 1 GB on first three nodes and ignore the last one. 7503 */ 7504 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7505 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7506 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7507 } 7508 7509 reserved = 0; 7510 for_each_online_node(nid) { 7511 int res; 7512 char name[CMA_MAX_NAME]; 7513 7514 if (node_specific_cma_alloc) { 7515 if (hugetlb_cma_size_in_node[nid] == 0) 7516 continue; 7517 7518 size = hugetlb_cma_size_in_node[nid]; 7519 } else { 7520 size = min(per_node, hugetlb_cma_size - reserved); 7521 } 7522 7523 size = round_up(size, PAGE_SIZE << order); 7524 7525 snprintf(name, sizeof(name), "hugetlb%d", nid); 7526 /* 7527 * Note that 'order per bit' is based on smallest size that 7528 * may be returned to CMA allocator in the case of 7529 * huge page demotion. 7530 */ 7531 res = cma_declare_contiguous_nid(0, size, 0, 7532 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7533 0, false, name, 7534 &hugetlb_cma[nid], nid); 7535 if (res) { 7536 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7537 res, nid); 7538 continue; 7539 } 7540 7541 reserved += size; 7542 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7543 size / SZ_1M, nid); 7544 7545 if (reserved >= hugetlb_cma_size) 7546 break; 7547 } 7548 7549 if (!reserved) 7550 /* 7551 * hugetlb_cma_size is used to determine if allocations from 7552 * cma are possible. Set to zero if no cma regions are set up. 7553 */ 7554 hugetlb_cma_size = 0; 7555 } 7556 7557 static void __init hugetlb_cma_check(void) 7558 { 7559 if (!hugetlb_cma_size || cma_reserve_called) 7560 return; 7561 7562 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7563 } 7564 7565 #endif /* CONFIG_CMA */ 7566