xref: /openbmc/linux/mm/hugetlb.c (revision a31edb20)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32 
33 #include <asm/page.h>
34 #include <asm/tlb.h>
35 
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43 
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47 
48 #ifdef CONFIG_CMA
49 static struct cma *hugetlb_cma[MAX_NUMNODES];
50 #endif
51 static unsigned long hugetlb_cma_size __initdata;
52 
53 /*
54  * Minimum page order among possible hugepage sizes, set to a proper value
55  * at boot time.
56  */
57 static unsigned int minimum_order __read_mostly = UINT_MAX;
58 
59 __initdata LIST_HEAD(huge_boot_pages);
60 
61 /* for command line parsing */
62 static struct hstate * __initdata parsed_hstate;
63 static unsigned long __initdata default_hstate_max_huge_pages;
64 static bool __initdata parsed_valid_hugepagesz = true;
65 static bool __initdata parsed_default_hugepagesz;
66 
67 /*
68  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
69  * free_huge_pages, and surplus_huge_pages.
70  */
71 DEFINE_SPINLOCK(hugetlb_lock);
72 
73 /*
74  * Serializes faults on the same logical page.  This is used to
75  * prevent spurious OOMs when the hugepage pool is fully utilized.
76  */
77 static int num_fault_mutexes;
78 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
79 
80 /* Forward declaration */
81 static int hugetlb_acct_memory(struct hstate *h, long delta);
82 
83 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
84 {
85 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
86 
87 	spin_unlock(&spool->lock);
88 
89 	/* If no pages are used, and no other handles to the subpool
90 	 * remain, give up any reservations based on minimum size and
91 	 * free the subpool */
92 	if (free) {
93 		if (spool->min_hpages != -1)
94 			hugetlb_acct_memory(spool->hstate,
95 						-spool->min_hpages);
96 		kfree(spool);
97 	}
98 }
99 
100 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
101 						long min_hpages)
102 {
103 	struct hugepage_subpool *spool;
104 
105 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
106 	if (!spool)
107 		return NULL;
108 
109 	spin_lock_init(&spool->lock);
110 	spool->count = 1;
111 	spool->max_hpages = max_hpages;
112 	spool->hstate = h;
113 	spool->min_hpages = min_hpages;
114 
115 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
116 		kfree(spool);
117 		return NULL;
118 	}
119 	spool->rsv_hpages = min_hpages;
120 
121 	return spool;
122 }
123 
124 void hugepage_put_subpool(struct hugepage_subpool *spool)
125 {
126 	spin_lock(&spool->lock);
127 	BUG_ON(!spool->count);
128 	spool->count--;
129 	unlock_or_release_subpool(spool);
130 }
131 
132 /*
133  * Subpool accounting for allocating and reserving pages.
134  * Return -ENOMEM if there are not enough resources to satisfy the
135  * the request.  Otherwise, return the number of pages by which the
136  * global pools must be adjusted (upward).  The returned value may
137  * only be different than the passed value (delta) in the case where
138  * a subpool minimum size must be maintained.
139  */
140 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
141 				      long delta)
142 {
143 	long ret = delta;
144 
145 	if (!spool)
146 		return ret;
147 
148 	spin_lock(&spool->lock);
149 
150 	if (spool->max_hpages != -1) {		/* maximum size accounting */
151 		if ((spool->used_hpages + delta) <= spool->max_hpages)
152 			spool->used_hpages += delta;
153 		else {
154 			ret = -ENOMEM;
155 			goto unlock_ret;
156 		}
157 	}
158 
159 	/* minimum size accounting */
160 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
161 		if (delta > spool->rsv_hpages) {
162 			/*
163 			 * Asking for more reserves than those already taken on
164 			 * behalf of subpool.  Return difference.
165 			 */
166 			ret = delta - spool->rsv_hpages;
167 			spool->rsv_hpages = 0;
168 		} else {
169 			ret = 0;	/* reserves already accounted for */
170 			spool->rsv_hpages -= delta;
171 		}
172 	}
173 
174 unlock_ret:
175 	spin_unlock(&spool->lock);
176 	return ret;
177 }
178 
179 /*
180  * Subpool accounting for freeing and unreserving pages.
181  * Return the number of global page reservations that must be dropped.
182  * The return value may only be different than the passed value (delta)
183  * in the case where a subpool minimum size must be maintained.
184  */
185 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
186 				       long delta)
187 {
188 	long ret = delta;
189 
190 	if (!spool)
191 		return delta;
192 
193 	spin_lock(&spool->lock);
194 
195 	if (spool->max_hpages != -1)		/* maximum size accounting */
196 		spool->used_hpages -= delta;
197 
198 	 /* minimum size accounting */
199 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
200 		if (spool->rsv_hpages + delta <= spool->min_hpages)
201 			ret = 0;
202 		else
203 			ret = spool->rsv_hpages + delta - spool->min_hpages;
204 
205 		spool->rsv_hpages += delta;
206 		if (spool->rsv_hpages > spool->min_hpages)
207 			spool->rsv_hpages = spool->min_hpages;
208 	}
209 
210 	/*
211 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
212 	 * quota reference, free it now.
213 	 */
214 	unlock_or_release_subpool(spool);
215 
216 	return ret;
217 }
218 
219 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
220 {
221 	return HUGETLBFS_SB(inode->i_sb)->spool;
222 }
223 
224 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
225 {
226 	return subpool_inode(file_inode(vma->vm_file));
227 }
228 
229 /* Helper that removes a struct file_region from the resv_map cache and returns
230  * it for use.
231  */
232 static struct file_region *
233 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
234 {
235 	struct file_region *nrg = NULL;
236 
237 	VM_BUG_ON(resv->region_cache_count <= 0);
238 
239 	resv->region_cache_count--;
240 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
241 	VM_BUG_ON(!nrg);
242 	list_del(&nrg->link);
243 
244 	nrg->from = from;
245 	nrg->to = to;
246 
247 	return nrg;
248 }
249 
250 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
251 					      struct file_region *rg)
252 {
253 #ifdef CONFIG_CGROUP_HUGETLB
254 	nrg->reservation_counter = rg->reservation_counter;
255 	nrg->css = rg->css;
256 	if (rg->css)
257 		css_get(rg->css);
258 #endif
259 }
260 
261 /* Helper that records hugetlb_cgroup uncharge info. */
262 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
263 						struct hstate *h,
264 						struct resv_map *resv,
265 						struct file_region *nrg)
266 {
267 #ifdef CONFIG_CGROUP_HUGETLB
268 	if (h_cg) {
269 		nrg->reservation_counter =
270 			&h_cg->rsvd_hugepage[hstate_index(h)];
271 		nrg->css = &h_cg->css;
272 		if (!resv->pages_per_hpage)
273 			resv->pages_per_hpage = pages_per_huge_page(h);
274 		/* pages_per_hpage should be the same for all entries in
275 		 * a resv_map.
276 		 */
277 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
278 	} else {
279 		nrg->reservation_counter = NULL;
280 		nrg->css = NULL;
281 	}
282 #endif
283 }
284 
285 static bool has_same_uncharge_info(struct file_region *rg,
286 				   struct file_region *org)
287 {
288 #ifdef CONFIG_CGROUP_HUGETLB
289 	return rg && org &&
290 	       rg->reservation_counter == org->reservation_counter &&
291 	       rg->css == org->css;
292 
293 #else
294 	return true;
295 #endif
296 }
297 
298 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
299 {
300 	struct file_region *nrg = NULL, *prg = NULL;
301 
302 	prg = list_prev_entry(rg, link);
303 	if (&prg->link != &resv->regions && prg->to == rg->from &&
304 	    has_same_uncharge_info(prg, rg)) {
305 		prg->to = rg->to;
306 
307 		list_del(&rg->link);
308 		kfree(rg);
309 
310 		coalesce_file_region(resv, prg);
311 		return;
312 	}
313 
314 	nrg = list_next_entry(rg, link);
315 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316 	    has_same_uncharge_info(nrg, rg)) {
317 		nrg->from = rg->from;
318 
319 		list_del(&rg->link);
320 		kfree(rg);
321 
322 		coalesce_file_region(resv, nrg);
323 		return;
324 	}
325 }
326 
327 /* Must be called with resv->lock held. Calling this with count_only == true
328  * will count the number of pages to be added but will not modify the linked
329  * list. If regions_needed != NULL and count_only == true, then regions_needed
330  * will indicate the number of file_regions needed in the cache to carry out to
331  * add the regions for this range.
332  */
333 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
334 				     struct hugetlb_cgroup *h_cg,
335 				     struct hstate *h, long *regions_needed,
336 				     bool count_only)
337 {
338 	long add = 0;
339 	struct list_head *head = &resv->regions;
340 	long last_accounted_offset = f;
341 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
342 
343 	if (regions_needed)
344 		*regions_needed = 0;
345 
346 	/* In this loop, we essentially handle an entry for the range
347 	 * [last_accounted_offset, rg->from), at every iteration, with some
348 	 * bounds checking.
349 	 */
350 	list_for_each_entry_safe(rg, trg, head, link) {
351 		/* Skip irrelevant regions that start before our range. */
352 		if (rg->from < f) {
353 			/* If this region ends after the last accounted offset,
354 			 * then we need to update last_accounted_offset.
355 			 */
356 			if (rg->to > last_accounted_offset)
357 				last_accounted_offset = rg->to;
358 			continue;
359 		}
360 
361 		/* When we find a region that starts beyond our range, we've
362 		 * finished.
363 		 */
364 		if (rg->from > t)
365 			break;
366 
367 		/* Add an entry for last_accounted_offset -> rg->from, and
368 		 * update last_accounted_offset.
369 		 */
370 		if (rg->from > last_accounted_offset) {
371 			add += rg->from - last_accounted_offset;
372 			if (!count_only) {
373 				nrg = get_file_region_entry_from_cache(
374 					resv, last_accounted_offset, rg->from);
375 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
376 								    resv, nrg);
377 				list_add(&nrg->link, rg->link.prev);
378 				coalesce_file_region(resv, nrg);
379 			} else if (regions_needed)
380 				*regions_needed += 1;
381 		}
382 
383 		last_accounted_offset = rg->to;
384 	}
385 
386 	/* Handle the case where our range extends beyond
387 	 * last_accounted_offset.
388 	 */
389 	if (last_accounted_offset < t) {
390 		add += t - last_accounted_offset;
391 		if (!count_only) {
392 			nrg = get_file_region_entry_from_cache(
393 				resv, last_accounted_offset, t);
394 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
395 			list_add(&nrg->link, rg->link.prev);
396 			coalesce_file_region(resv, nrg);
397 		} else if (regions_needed)
398 			*regions_needed += 1;
399 	}
400 
401 	VM_BUG_ON(add < 0);
402 	return add;
403 }
404 
405 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
406  */
407 static int allocate_file_region_entries(struct resv_map *resv,
408 					int regions_needed)
409 	__must_hold(&resv->lock)
410 {
411 	struct list_head allocated_regions;
412 	int to_allocate = 0, i = 0;
413 	struct file_region *trg = NULL, *rg = NULL;
414 
415 	VM_BUG_ON(regions_needed < 0);
416 
417 	INIT_LIST_HEAD(&allocated_regions);
418 
419 	/*
420 	 * Check for sufficient descriptors in the cache to accommodate
421 	 * the number of in progress add operations plus regions_needed.
422 	 *
423 	 * This is a while loop because when we drop the lock, some other call
424 	 * to region_add or region_del may have consumed some region_entries,
425 	 * so we keep looping here until we finally have enough entries for
426 	 * (adds_in_progress + regions_needed).
427 	 */
428 	while (resv->region_cache_count <
429 	       (resv->adds_in_progress + regions_needed)) {
430 		to_allocate = resv->adds_in_progress + regions_needed -
431 			      resv->region_cache_count;
432 
433 		/* At this point, we should have enough entries in the cache
434 		 * for all the existings adds_in_progress. We should only be
435 		 * needing to allocate for regions_needed.
436 		 */
437 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
438 
439 		spin_unlock(&resv->lock);
440 		for (i = 0; i < to_allocate; i++) {
441 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
442 			if (!trg)
443 				goto out_of_memory;
444 			list_add(&trg->link, &allocated_regions);
445 		}
446 
447 		spin_lock(&resv->lock);
448 
449 		list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
450 			list_del(&rg->link);
451 			list_add(&rg->link, &resv->region_cache);
452 			resv->region_cache_count++;
453 		}
454 	}
455 
456 	return 0;
457 
458 out_of_memory:
459 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
460 		list_del(&rg->link);
461 		kfree(rg);
462 	}
463 	return -ENOMEM;
464 }
465 
466 /*
467  * Add the huge page range represented by [f, t) to the reserve
468  * map.  Regions will be taken from the cache to fill in this range.
469  * Sufficient regions should exist in the cache due to the previous
470  * call to region_chg with the same range, but in some cases the cache will not
471  * have sufficient entries due to races with other code doing region_add or
472  * region_del.  The extra needed entries will be allocated.
473  *
474  * regions_needed is the out value provided by a previous call to region_chg.
475  *
476  * Return the number of new huge pages added to the map.  This number is greater
477  * than or equal to zero.  If file_region entries needed to be allocated for
478  * this operation and we were not able to allocate, it returns -ENOMEM.
479  * region_add of regions of length 1 never allocate file_regions and cannot
480  * fail; region_chg will always allocate at least 1 entry and a region_add for
481  * 1 page will only require at most 1 entry.
482  */
483 static long region_add(struct resv_map *resv, long f, long t,
484 		       long in_regions_needed, struct hstate *h,
485 		       struct hugetlb_cgroup *h_cg)
486 {
487 	long add = 0, actual_regions_needed = 0;
488 
489 	spin_lock(&resv->lock);
490 retry:
491 
492 	/* Count how many regions are actually needed to execute this add. */
493 	add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
494 				 true);
495 
496 	/*
497 	 * Check for sufficient descriptors in the cache to accommodate
498 	 * this add operation. Note that actual_regions_needed may be greater
499 	 * than in_regions_needed, as the resv_map may have been modified since
500 	 * the region_chg call. In this case, we need to make sure that we
501 	 * allocate extra entries, such that we have enough for all the
502 	 * existing adds_in_progress, plus the excess needed for this
503 	 * operation.
504 	 */
505 	if (actual_regions_needed > in_regions_needed &&
506 	    resv->region_cache_count <
507 		    resv->adds_in_progress +
508 			    (actual_regions_needed - in_regions_needed)) {
509 		/* region_add operation of range 1 should never need to
510 		 * allocate file_region entries.
511 		 */
512 		VM_BUG_ON(t - f <= 1);
513 
514 		if (allocate_file_region_entries(
515 			    resv, actual_regions_needed - in_regions_needed)) {
516 			return -ENOMEM;
517 		}
518 
519 		goto retry;
520 	}
521 
522 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
523 
524 	resv->adds_in_progress -= in_regions_needed;
525 
526 	spin_unlock(&resv->lock);
527 	VM_BUG_ON(add < 0);
528 	return add;
529 }
530 
531 /*
532  * Examine the existing reserve map and determine how many
533  * huge pages in the specified range [f, t) are NOT currently
534  * represented.  This routine is called before a subsequent
535  * call to region_add that will actually modify the reserve
536  * map to add the specified range [f, t).  region_chg does
537  * not change the number of huge pages represented by the
538  * map.  A number of new file_region structures is added to the cache as a
539  * placeholder, for the subsequent region_add call to use. At least 1
540  * file_region structure is added.
541  *
542  * out_regions_needed is the number of regions added to the
543  * resv->adds_in_progress.  This value needs to be provided to a follow up call
544  * to region_add or region_abort for proper accounting.
545  *
546  * Returns the number of huge pages that need to be added to the existing
547  * reservation map for the range [f, t).  This number is greater or equal to
548  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
549  * is needed and can not be allocated.
550  */
551 static long region_chg(struct resv_map *resv, long f, long t,
552 		       long *out_regions_needed)
553 {
554 	long chg = 0;
555 
556 	spin_lock(&resv->lock);
557 
558 	/* Count how many hugepages in this range are NOT respresented. */
559 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
560 				       out_regions_needed, true);
561 
562 	if (*out_regions_needed == 0)
563 		*out_regions_needed = 1;
564 
565 	if (allocate_file_region_entries(resv, *out_regions_needed))
566 		return -ENOMEM;
567 
568 	resv->adds_in_progress += *out_regions_needed;
569 
570 	spin_unlock(&resv->lock);
571 	return chg;
572 }
573 
574 /*
575  * Abort the in progress add operation.  The adds_in_progress field
576  * of the resv_map keeps track of the operations in progress between
577  * calls to region_chg and region_add.  Operations are sometimes
578  * aborted after the call to region_chg.  In such cases, region_abort
579  * is called to decrement the adds_in_progress counter. regions_needed
580  * is the value returned by the region_chg call, it is used to decrement
581  * the adds_in_progress counter.
582  *
583  * NOTE: The range arguments [f, t) are not needed or used in this
584  * routine.  They are kept to make reading the calling code easier as
585  * arguments will match the associated region_chg call.
586  */
587 static void region_abort(struct resv_map *resv, long f, long t,
588 			 long regions_needed)
589 {
590 	spin_lock(&resv->lock);
591 	VM_BUG_ON(!resv->region_cache_count);
592 	resv->adds_in_progress -= regions_needed;
593 	spin_unlock(&resv->lock);
594 }
595 
596 /*
597  * Delete the specified range [f, t) from the reserve map.  If the
598  * t parameter is LONG_MAX, this indicates that ALL regions after f
599  * should be deleted.  Locate the regions which intersect [f, t)
600  * and either trim, delete or split the existing regions.
601  *
602  * Returns the number of huge pages deleted from the reserve map.
603  * In the normal case, the return value is zero or more.  In the
604  * case where a region must be split, a new region descriptor must
605  * be allocated.  If the allocation fails, -ENOMEM will be returned.
606  * NOTE: If the parameter t == LONG_MAX, then we will never split
607  * a region and possibly return -ENOMEM.  Callers specifying
608  * t == LONG_MAX do not need to check for -ENOMEM error.
609  */
610 static long region_del(struct resv_map *resv, long f, long t)
611 {
612 	struct list_head *head = &resv->regions;
613 	struct file_region *rg, *trg;
614 	struct file_region *nrg = NULL;
615 	long del = 0;
616 
617 retry:
618 	spin_lock(&resv->lock);
619 	list_for_each_entry_safe(rg, trg, head, link) {
620 		/*
621 		 * Skip regions before the range to be deleted.  file_region
622 		 * ranges are normally of the form [from, to).  However, there
623 		 * may be a "placeholder" entry in the map which is of the form
624 		 * (from, to) with from == to.  Check for placeholder entries
625 		 * at the beginning of the range to be deleted.
626 		 */
627 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
628 			continue;
629 
630 		if (rg->from >= t)
631 			break;
632 
633 		if (f > rg->from && t < rg->to) { /* Must split region */
634 			/*
635 			 * Check for an entry in the cache before dropping
636 			 * lock and attempting allocation.
637 			 */
638 			if (!nrg &&
639 			    resv->region_cache_count > resv->adds_in_progress) {
640 				nrg = list_first_entry(&resv->region_cache,
641 							struct file_region,
642 							link);
643 				list_del(&nrg->link);
644 				resv->region_cache_count--;
645 			}
646 
647 			if (!nrg) {
648 				spin_unlock(&resv->lock);
649 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
650 				if (!nrg)
651 					return -ENOMEM;
652 				goto retry;
653 			}
654 
655 			del += t - f;
656 
657 			/* New entry for end of split region */
658 			nrg->from = t;
659 			nrg->to = rg->to;
660 
661 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
662 
663 			INIT_LIST_HEAD(&nrg->link);
664 
665 			/* Original entry is trimmed */
666 			rg->to = f;
667 
668 			hugetlb_cgroup_uncharge_file_region(
669 				resv, rg, nrg->to - nrg->from);
670 
671 			list_add(&nrg->link, &rg->link);
672 			nrg = NULL;
673 			break;
674 		}
675 
676 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
677 			del += rg->to - rg->from;
678 			hugetlb_cgroup_uncharge_file_region(resv, rg,
679 							    rg->to - rg->from);
680 			list_del(&rg->link);
681 			kfree(rg);
682 			continue;
683 		}
684 
685 		if (f <= rg->from) {	/* Trim beginning of region */
686 			del += t - rg->from;
687 			rg->from = t;
688 
689 			hugetlb_cgroup_uncharge_file_region(resv, rg,
690 							    t - rg->from);
691 		} else {		/* Trim end of region */
692 			del += rg->to - f;
693 			rg->to = f;
694 
695 			hugetlb_cgroup_uncharge_file_region(resv, rg,
696 							    rg->to - f);
697 		}
698 	}
699 
700 	spin_unlock(&resv->lock);
701 	kfree(nrg);
702 	return del;
703 }
704 
705 /*
706  * A rare out of memory error was encountered which prevented removal of
707  * the reserve map region for a page.  The huge page itself was free'ed
708  * and removed from the page cache.  This routine will adjust the subpool
709  * usage count, and the global reserve count if needed.  By incrementing
710  * these counts, the reserve map entry which could not be deleted will
711  * appear as a "reserved" entry instead of simply dangling with incorrect
712  * counts.
713  */
714 void hugetlb_fix_reserve_counts(struct inode *inode)
715 {
716 	struct hugepage_subpool *spool = subpool_inode(inode);
717 	long rsv_adjust;
718 
719 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
720 	if (rsv_adjust) {
721 		struct hstate *h = hstate_inode(inode);
722 
723 		hugetlb_acct_memory(h, 1);
724 	}
725 }
726 
727 /*
728  * Count and return the number of huge pages in the reserve map
729  * that intersect with the range [f, t).
730  */
731 static long region_count(struct resv_map *resv, long f, long t)
732 {
733 	struct list_head *head = &resv->regions;
734 	struct file_region *rg;
735 	long chg = 0;
736 
737 	spin_lock(&resv->lock);
738 	/* Locate each segment we overlap with, and count that overlap. */
739 	list_for_each_entry(rg, head, link) {
740 		long seg_from;
741 		long seg_to;
742 
743 		if (rg->to <= f)
744 			continue;
745 		if (rg->from >= t)
746 			break;
747 
748 		seg_from = max(rg->from, f);
749 		seg_to = min(rg->to, t);
750 
751 		chg += seg_to - seg_from;
752 	}
753 	spin_unlock(&resv->lock);
754 
755 	return chg;
756 }
757 
758 /*
759  * Convert the address within this vma to the page offset within
760  * the mapping, in pagecache page units; huge pages here.
761  */
762 static pgoff_t vma_hugecache_offset(struct hstate *h,
763 			struct vm_area_struct *vma, unsigned long address)
764 {
765 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
766 			(vma->vm_pgoff >> huge_page_order(h));
767 }
768 
769 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
770 				     unsigned long address)
771 {
772 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
773 }
774 EXPORT_SYMBOL_GPL(linear_hugepage_index);
775 
776 /*
777  * Return the size of the pages allocated when backing a VMA. In the majority
778  * cases this will be same size as used by the page table entries.
779  */
780 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
781 {
782 	if (vma->vm_ops && vma->vm_ops->pagesize)
783 		return vma->vm_ops->pagesize(vma);
784 	return PAGE_SIZE;
785 }
786 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
787 
788 /*
789  * Return the page size being used by the MMU to back a VMA. In the majority
790  * of cases, the page size used by the kernel matches the MMU size. On
791  * architectures where it differs, an architecture-specific 'strong'
792  * version of this symbol is required.
793  */
794 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
795 {
796 	return vma_kernel_pagesize(vma);
797 }
798 
799 /*
800  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
801  * bits of the reservation map pointer, which are always clear due to
802  * alignment.
803  */
804 #define HPAGE_RESV_OWNER    (1UL << 0)
805 #define HPAGE_RESV_UNMAPPED (1UL << 1)
806 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
807 
808 /*
809  * These helpers are used to track how many pages are reserved for
810  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
811  * is guaranteed to have their future faults succeed.
812  *
813  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
814  * the reserve counters are updated with the hugetlb_lock held. It is safe
815  * to reset the VMA at fork() time as it is not in use yet and there is no
816  * chance of the global counters getting corrupted as a result of the values.
817  *
818  * The private mapping reservation is represented in a subtly different
819  * manner to a shared mapping.  A shared mapping has a region map associated
820  * with the underlying file, this region map represents the backing file
821  * pages which have ever had a reservation assigned which this persists even
822  * after the page is instantiated.  A private mapping has a region map
823  * associated with the original mmap which is attached to all VMAs which
824  * reference it, this region map represents those offsets which have consumed
825  * reservation ie. where pages have been instantiated.
826  */
827 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
828 {
829 	return (unsigned long)vma->vm_private_data;
830 }
831 
832 static void set_vma_private_data(struct vm_area_struct *vma,
833 							unsigned long value)
834 {
835 	vma->vm_private_data = (void *)value;
836 }
837 
838 static void
839 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
840 					  struct hugetlb_cgroup *h_cg,
841 					  struct hstate *h)
842 {
843 #ifdef CONFIG_CGROUP_HUGETLB
844 	if (!h_cg || !h) {
845 		resv_map->reservation_counter = NULL;
846 		resv_map->pages_per_hpage = 0;
847 		resv_map->css = NULL;
848 	} else {
849 		resv_map->reservation_counter =
850 			&h_cg->rsvd_hugepage[hstate_index(h)];
851 		resv_map->pages_per_hpage = pages_per_huge_page(h);
852 		resv_map->css = &h_cg->css;
853 	}
854 #endif
855 }
856 
857 struct resv_map *resv_map_alloc(void)
858 {
859 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
860 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
861 
862 	if (!resv_map || !rg) {
863 		kfree(resv_map);
864 		kfree(rg);
865 		return NULL;
866 	}
867 
868 	kref_init(&resv_map->refs);
869 	spin_lock_init(&resv_map->lock);
870 	INIT_LIST_HEAD(&resv_map->regions);
871 
872 	resv_map->adds_in_progress = 0;
873 	/*
874 	 * Initialize these to 0. On shared mappings, 0's here indicate these
875 	 * fields don't do cgroup accounting. On private mappings, these will be
876 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
877 	 * reservations are to be un-charged from here.
878 	 */
879 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
880 
881 	INIT_LIST_HEAD(&resv_map->region_cache);
882 	list_add(&rg->link, &resv_map->region_cache);
883 	resv_map->region_cache_count = 1;
884 
885 	return resv_map;
886 }
887 
888 void resv_map_release(struct kref *ref)
889 {
890 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
891 	struct list_head *head = &resv_map->region_cache;
892 	struct file_region *rg, *trg;
893 
894 	/* Clear out any active regions before we release the map. */
895 	region_del(resv_map, 0, LONG_MAX);
896 
897 	/* ... and any entries left in the cache */
898 	list_for_each_entry_safe(rg, trg, head, link) {
899 		list_del(&rg->link);
900 		kfree(rg);
901 	}
902 
903 	VM_BUG_ON(resv_map->adds_in_progress);
904 
905 	kfree(resv_map);
906 }
907 
908 static inline struct resv_map *inode_resv_map(struct inode *inode)
909 {
910 	/*
911 	 * At inode evict time, i_mapping may not point to the original
912 	 * address space within the inode.  This original address space
913 	 * contains the pointer to the resv_map.  So, always use the
914 	 * address space embedded within the inode.
915 	 * The VERY common case is inode->mapping == &inode->i_data but,
916 	 * this may not be true for device special inodes.
917 	 */
918 	return (struct resv_map *)(&inode->i_data)->private_data;
919 }
920 
921 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
922 {
923 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
924 	if (vma->vm_flags & VM_MAYSHARE) {
925 		struct address_space *mapping = vma->vm_file->f_mapping;
926 		struct inode *inode = mapping->host;
927 
928 		return inode_resv_map(inode);
929 
930 	} else {
931 		return (struct resv_map *)(get_vma_private_data(vma) &
932 							~HPAGE_RESV_MASK);
933 	}
934 }
935 
936 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
937 {
938 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
939 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
940 
941 	set_vma_private_data(vma, (get_vma_private_data(vma) &
942 				HPAGE_RESV_MASK) | (unsigned long)map);
943 }
944 
945 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
946 {
947 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
948 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949 
950 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
951 }
952 
953 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
954 {
955 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
956 
957 	return (get_vma_private_data(vma) & flag) != 0;
958 }
959 
960 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
961 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
962 {
963 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
964 	if (!(vma->vm_flags & VM_MAYSHARE))
965 		vma->vm_private_data = (void *)0;
966 }
967 
968 /* Returns true if the VMA has associated reserve pages */
969 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
970 {
971 	if (vma->vm_flags & VM_NORESERVE) {
972 		/*
973 		 * This address is already reserved by other process(chg == 0),
974 		 * so, we should decrement reserved count. Without decrementing,
975 		 * reserve count remains after releasing inode, because this
976 		 * allocated page will go into page cache and is regarded as
977 		 * coming from reserved pool in releasing step.  Currently, we
978 		 * don't have any other solution to deal with this situation
979 		 * properly, so add work-around here.
980 		 */
981 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
982 			return true;
983 		else
984 			return false;
985 	}
986 
987 	/* Shared mappings always use reserves */
988 	if (vma->vm_flags & VM_MAYSHARE) {
989 		/*
990 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
991 		 * be a region map for all pages.  The only situation where
992 		 * there is no region map is if a hole was punched via
993 		 * fallocate.  In this case, there really are no reserves to
994 		 * use.  This situation is indicated if chg != 0.
995 		 */
996 		if (chg)
997 			return false;
998 		else
999 			return true;
1000 	}
1001 
1002 	/*
1003 	 * Only the process that called mmap() has reserves for
1004 	 * private mappings.
1005 	 */
1006 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1007 		/*
1008 		 * Like the shared case above, a hole punch or truncate
1009 		 * could have been performed on the private mapping.
1010 		 * Examine the value of chg to determine if reserves
1011 		 * actually exist or were previously consumed.
1012 		 * Very Subtle - The value of chg comes from a previous
1013 		 * call to vma_needs_reserves().  The reserve map for
1014 		 * private mappings has different (opposite) semantics
1015 		 * than that of shared mappings.  vma_needs_reserves()
1016 		 * has already taken this difference in semantics into
1017 		 * account.  Therefore, the meaning of chg is the same
1018 		 * as in the shared case above.  Code could easily be
1019 		 * combined, but keeping it separate draws attention to
1020 		 * subtle differences.
1021 		 */
1022 		if (chg)
1023 			return false;
1024 		else
1025 			return true;
1026 	}
1027 
1028 	return false;
1029 }
1030 
1031 static void enqueue_huge_page(struct hstate *h, struct page *page)
1032 {
1033 	int nid = page_to_nid(page);
1034 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1035 	h->free_huge_pages++;
1036 	h->free_huge_pages_node[nid]++;
1037 }
1038 
1039 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1040 {
1041 	struct page *page;
1042 
1043 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1044 		if (!PageHWPoison(page))
1045 			break;
1046 	/*
1047 	 * if 'non-isolated free hugepage' not found on the list,
1048 	 * the allocation fails.
1049 	 */
1050 	if (&h->hugepage_freelists[nid] == &page->lru)
1051 		return NULL;
1052 	list_move(&page->lru, &h->hugepage_activelist);
1053 	set_page_refcounted(page);
1054 	h->free_huge_pages--;
1055 	h->free_huge_pages_node[nid]--;
1056 	return page;
1057 }
1058 
1059 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1060 		nodemask_t *nmask)
1061 {
1062 	unsigned int cpuset_mems_cookie;
1063 	struct zonelist *zonelist;
1064 	struct zone *zone;
1065 	struct zoneref *z;
1066 	int node = NUMA_NO_NODE;
1067 
1068 	zonelist = node_zonelist(nid, gfp_mask);
1069 
1070 retry_cpuset:
1071 	cpuset_mems_cookie = read_mems_allowed_begin();
1072 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1073 		struct page *page;
1074 
1075 		if (!cpuset_zone_allowed(zone, gfp_mask))
1076 			continue;
1077 		/*
1078 		 * no need to ask again on the same node. Pool is node rather than
1079 		 * zone aware
1080 		 */
1081 		if (zone_to_nid(zone) == node)
1082 			continue;
1083 		node = zone_to_nid(zone);
1084 
1085 		page = dequeue_huge_page_node_exact(h, node);
1086 		if (page)
1087 			return page;
1088 	}
1089 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1090 		goto retry_cpuset;
1091 
1092 	return NULL;
1093 }
1094 
1095 /* Movability of hugepages depends on migration support. */
1096 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1097 {
1098 	if (hugepage_movable_supported(h))
1099 		return GFP_HIGHUSER_MOVABLE;
1100 	else
1101 		return GFP_HIGHUSER;
1102 }
1103 
1104 static struct page *dequeue_huge_page_vma(struct hstate *h,
1105 				struct vm_area_struct *vma,
1106 				unsigned long address, int avoid_reserve,
1107 				long chg)
1108 {
1109 	struct page *page;
1110 	struct mempolicy *mpol;
1111 	gfp_t gfp_mask;
1112 	nodemask_t *nodemask;
1113 	int nid;
1114 
1115 	/*
1116 	 * A child process with MAP_PRIVATE mappings created by their parent
1117 	 * have no page reserves. This check ensures that reservations are
1118 	 * not "stolen". The child may still get SIGKILLed
1119 	 */
1120 	if (!vma_has_reserves(vma, chg) &&
1121 			h->free_huge_pages - h->resv_huge_pages == 0)
1122 		goto err;
1123 
1124 	/* If reserves cannot be used, ensure enough pages are in the pool */
1125 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1126 		goto err;
1127 
1128 	gfp_mask = htlb_alloc_mask(h);
1129 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1130 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1131 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1132 		SetPagePrivate(page);
1133 		h->resv_huge_pages--;
1134 	}
1135 
1136 	mpol_cond_put(mpol);
1137 	return page;
1138 
1139 err:
1140 	return NULL;
1141 }
1142 
1143 /*
1144  * common helper functions for hstate_next_node_to_{alloc|free}.
1145  * We may have allocated or freed a huge page based on a different
1146  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1147  * be outside of *nodes_allowed.  Ensure that we use an allowed
1148  * node for alloc or free.
1149  */
1150 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1151 {
1152 	nid = next_node_in(nid, *nodes_allowed);
1153 	VM_BUG_ON(nid >= MAX_NUMNODES);
1154 
1155 	return nid;
1156 }
1157 
1158 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1159 {
1160 	if (!node_isset(nid, *nodes_allowed))
1161 		nid = next_node_allowed(nid, nodes_allowed);
1162 	return nid;
1163 }
1164 
1165 /*
1166  * returns the previously saved node ["this node"] from which to
1167  * allocate a persistent huge page for the pool and advance the
1168  * next node from which to allocate, handling wrap at end of node
1169  * mask.
1170  */
1171 static int hstate_next_node_to_alloc(struct hstate *h,
1172 					nodemask_t *nodes_allowed)
1173 {
1174 	int nid;
1175 
1176 	VM_BUG_ON(!nodes_allowed);
1177 
1178 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1179 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1180 
1181 	return nid;
1182 }
1183 
1184 /*
1185  * helper for free_pool_huge_page() - return the previously saved
1186  * node ["this node"] from which to free a huge page.  Advance the
1187  * next node id whether or not we find a free huge page to free so
1188  * that the next attempt to free addresses the next node.
1189  */
1190 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1191 {
1192 	int nid;
1193 
1194 	VM_BUG_ON(!nodes_allowed);
1195 
1196 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1197 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1198 
1199 	return nid;
1200 }
1201 
1202 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1203 	for (nr_nodes = nodes_weight(*mask);				\
1204 		nr_nodes > 0 &&						\
1205 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1206 		nr_nodes--)
1207 
1208 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1209 	for (nr_nodes = nodes_weight(*mask);				\
1210 		nr_nodes > 0 &&						\
1211 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1212 		nr_nodes--)
1213 
1214 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1215 static void destroy_compound_gigantic_page(struct page *page,
1216 					unsigned int order)
1217 {
1218 	int i;
1219 	int nr_pages = 1 << order;
1220 	struct page *p = page + 1;
1221 
1222 	atomic_set(compound_mapcount_ptr(page), 0);
1223 	if (hpage_pincount_available(page))
1224 		atomic_set(compound_pincount_ptr(page), 0);
1225 
1226 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1227 		clear_compound_head(p);
1228 		set_page_refcounted(p);
1229 	}
1230 
1231 	set_compound_order(page, 0);
1232 	__ClearPageHead(page);
1233 }
1234 
1235 static void free_gigantic_page(struct page *page, unsigned int order)
1236 {
1237 	/*
1238 	 * If the page isn't allocated using the cma allocator,
1239 	 * cma_release() returns false.
1240 	 */
1241 #ifdef CONFIG_CMA
1242 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1243 		return;
1244 #endif
1245 
1246 	free_contig_range(page_to_pfn(page), 1 << order);
1247 }
1248 
1249 #ifdef CONFIG_CONTIG_ALLOC
1250 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1251 		int nid, nodemask_t *nodemask)
1252 {
1253 	unsigned long nr_pages = 1UL << huge_page_order(h);
1254 
1255 #ifdef CONFIG_CMA
1256 	{
1257 		struct page *page;
1258 		int node;
1259 
1260 		for_each_node_mask(node, *nodemask) {
1261 			if (!hugetlb_cma[node])
1262 				continue;
1263 
1264 			page = cma_alloc(hugetlb_cma[node], nr_pages,
1265 					 huge_page_order(h), true);
1266 			if (page)
1267 				return page;
1268 		}
1269 	}
1270 #endif
1271 
1272 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1273 }
1274 
1275 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1276 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1277 #else /* !CONFIG_CONTIG_ALLOC */
1278 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1279 					int nid, nodemask_t *nodemask)
1280 {
1281 	return NULL;
1282 }
1283 #endif /* CONFIG_CONTIG_ALLOC */
1284 
1285 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287 					int nid, nodemask_t *nodemask)
1288 {
1289 	return NULL;
1290 }
1291 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1292 static inline void destroy_compound_gigantic_page(struct page *page,
1293 						unsigned int order) { }
1294 #endif
1295 
1296 static void update_and_free_page(struct hstate *h, struct page *page)
1297 {
1298 	int i;
1299 
1300 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1301 		return;
1302 
1303 	h->nr_huge_pages--;
1304 	h->nr_huge_pages_node[page_to_nid(page)]--;
1305 	for (i = 0; i < pages_per_huge_page(h); i++) {
1306 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1307 				1 << PG_referenced | 1 << PG_dirty |
1308 				1 << PG_active | 1 << PG_private |
1309 				1 << PG_writeback);
1310 	}
1311 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1312 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1313 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1314 	set_page_refcounted(page);
1315 	if (hstate_is_gigantic(h)) {
1316 		/*
1317 		 * Temporarily drop the hugetlb_lock, because
1318 		 * we might block in free_gigantic_page().
1319 		 */
1320 		spin_unlock(&hugetlb_lock);
1321 		destroy_compound_gigantic_page(page, huge_page_order(h));
1322 		free_gigantic_page(page, huge_page_order(h));
1323 		spin_lock(&hugetlb_lock);
1324 	} else {
1325 		__free_pages(page, huge_page_order(h));
1326 	}
1327 }
1328 
1329 struct hstate *size_to_hstate(unsigned long size)
1330 {
1331 	struct hstate *h;
1332 
1333 	for_each_hstate(h) {
1334 		if (huge_page_size(h) == size)
1335 			return h;
1336 	}
1337 	return NULL;
1338 }
1339 
1340 /*
1341  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1342  * to hstate->hugepage_activelist.)
1343  *
1344  * This function can be called for tail pages, but never returns true for them.
1345  */
1346 bool page_huge_active(struct page *page)
1347 {
1348 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1349 	return PageHead(page) && PagePrivate(&page[1]);
1350 }
1351 
1352 /* never called for tail page */
1353 static void set_page_huge_active(struct page *page)
1354 {
1355 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1356 	SetPagePrivate(&page[1]);
1357 }
1358 
1359 static void clear_page_huge_active(struct page *page)
1360 {
1361 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1362 	ClearPagePrivate(&page[1]);
1363 }
1364 
1365 /*
1366  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1367  * code
1368  */
1369 static inline bool PageHugeTemporary(struct page *page)
1370 {
1371 	if (!PageHuge(page))
1372 		return false;
1373 
1374 	return (unsigned long)page[2].mapping == -1U;
1375 }
1376 
1377 static inline void SetPageHugeTemporary(struct page *page)
1378 {
1379 	page[2].mapping = (void *)-1U;
1380 }
1381 
1382 static inline void ClearPageHugeTemporary(struct page *page)
1383 {
1384 	page[2].mapping = NULL;
1385 }
1386 
1387 static void __free_huge_page(struct page *page)
1388 {
1389 	/*
1390 	 * Can't pass hstate in here because it is called from the
1391 	 * compound page destructor.
1392 	 */
1393 	struct hstate *h = page_hstate(page);
1394 	int nid = page_to_nid(page);
1395 	struct hugepage_subpool *spool =
1396 		(struct hugepage_subpool *)page_private(page);
1397 	bool restore_reserve;
1398 
1399 	VM_BUG_ON_PAGE(page_count(page), page);
1400 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1401 
1402 	set_page_private(page, 0);
1403 	page->mapping = NULL;
1404 	restore_reserve = PagePrivate(page);
1405 	ClearPagePrivate(page);
1406 
1407 	/*
1408 	 * If PagePrivate() was set on page, page allocation consumed a
1409 	 * reservation.  If the page was associated with a subpool, there
1410 	 * would have been a page reserved in the subpool before allocation
1411 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1412 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1413 	 * remove the reserved page from the subpool.
1414 	 */
1415 	if (!restore_reserve) {
1416 		/*
1417 		 * A return code of zero implies that the subpool will be
1418 		 * under its minimum size if the reservation is not restored
1419 		 * after page is free.  Therefore, force restore_reserve
1420 		 * operation.
1421 		 */
1422 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1423 			restore_reserve = true;
1424 	}
1425 
1426 	spin_lock(&hugetlb_lock);
1427 	clear_page_huge_active(page);
1428 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1429 				     pages_per_huge_page(h), page);
1430 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1431 					  pages_per_huge_page(h), page);
1432 	if (restore_reserve)
1433 		h->resv_huge_pages++;
1434 
1435 	if (PageHugeTemporary(page)) {
1436 		list_del(&page->lru);
1437 		ClearPageHugeTemporary(page);
1438 		update_and_free_page(h, page);
1439 	} else if (h->surplus_huge_pages_node[nid]) {
1440 		/* remove the page from active list */
1441 		list_del(&page->lru);
1442 		update_and_free_page(h, page);
1443 		h->surplus_huge_pages--;
1444 		h->surplus_huge_pages_node[nid]--;
1445 	} else {
1446 		arch_clear_hugepage_flags(page);
1447 		enqueue_huge_page(h, page);
1448 	}
1449 	spin_unlock(&hugetlb_lock);
1450 }
1451 
1452 /*
1453  * As free_huge_page() can be called from a non-task context, we have
1454  * to defer the actual freeing in a workqueue to prevent potential
1455  * hugetlb_lock deadlock.
1456  *
1457  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1458  * be freed and frees them one-by-one. As the page->mapping pointer is
1459  * going to be cleared in __free_huge_page() anyway, it is reused as the
1460  * llist_node structure of a lockless linked list of huge pages to be freed.
1461  */
1462 static LLIST_HEAD(hpage_freelist);
1463 
1464 static void free_hpage_workfn(struct work_struct *work)
1465 {
1466 	struct llist_node *node;
1467 	struct page *page;
1468 
1469 	node = llist_del_all(&hpage_freelist);
1470 
1471 	while (node) {
1472 		page = container_of((struct address_space **)node,
1473 				     struct page, mapping);
1474 		node = node->next;
1475 		__free_huge_page(page);
1476 	}
1477 }
1478 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1479 
1480 void free_huge_page(struct page *page)
1481 {
1482 	/*
1483 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1484 	 */
1485 	if (!in_task()) {
1486 		/*
1487 		 * Only call schedule_work() if hpage_freelist is previously
1488 		 * empty. Otherwise, schedule_work() had been called but the
1489 		 * workfn hasn't retrieved the list yet.
1490 		 */
1491 		if (llist_add((struct llist_node *)&page->mapping,
1492 			      &hpage_freelist))
1493 			schedule_work(&free_hpage_work);
1494 		return;
1495 	}
1496 
1497 	__free_huge_page(page);
1498 }
1499 
1500 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1501 {
1502 	INIT_LIST_HEAD(&page->lru);
1503 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1504 	spin_lock(&hugetlb_lock);
1505 	set_hugetlb_cgroup(page, NULL);
1506 	set_hugetlb_cgroup_rsvd(page, NULL);
1507 	h->nr_huge_pages++;
1508 	h->nr_huge_pages_node[nid]++;
1509 	spin_unlock(&hugetlb_lock);
1510 }
1511 
1512 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1513 {
1514 	int i;
1515 	int nr_pages = 1 << order;
1516 	struct page *p = page + 1;
1517 
1518 	/* we rely on prep_new_huge_page to set the destructor */
1519 	set_compound_order(page, order);
1520 	__ClearPageReserved(page);
1521 	__SetPageHead(page);
1522 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1523 		/*
1524 		 * For gigantic hugepages allocated through bootmem at
1525 		 * boot, it's safer to be consistent with the not-gigantic
1526 		 * hugepages and clear the PG_reserved bit from all tail pages
1527 		 * too.  Otherwise drivers using get_user_pages() to access tail
1528 		 * pages may get the reference counting wrong if they see
1529 		 * PG_reserved set on a tail page (despite the head page not
1530 		 * having PG_reserved set).  Enforcing this consistency between
1531 		 * head and tail pages allows drivers to optimize away a check
1532 		 * on the head page when they need know if put_page() is needed
1533 		 * after get_user_pages().
1534 		 */
1535 		__ClearPageReserved(p);
1536 		set_page_count(p, 0);
1537 		set_compound_head(p, page);
1538 	}
1539 	atomic_set(compound_mapcount_ptr(page), -1);
1540 
1541 	if (hpage_pincount_available(page))
1542 		atomic_set(compound_pincount_ptr(page), 0);
1543 }
1544 
1545 /*
1546  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1547  * transparent huge pages.  See the PageTransHuge() documentation for more
1548  * details.
1549  */
1550 int PageHuge(struct page *page)
1551 {
1552 	if (!PageCompound(page))
1553 		return 0;
1554 
1555 	page = compound_head(page);
1556 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557 }
1558 EXPORT_SYMBOL_GPL(PageHuge);
1559 
1560 /*
1561  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1562  * normal or transparent huge pages.
1563  */
1564 int PageHeadHuge(struct page *page_head)
1565 {
1566 	if (!PageHead(page_head))
1567 		return 0;
1568 
1569 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1570 }
1571 
1572 /*
1573  * Find address_space associated with hugetlbfs page.
1574  * Upon entry page is locked and page 'was' mapped although mapped state
1575  * could change.  If necessary, use anon_vma to find vma and associated
1576  * address space.  The returned mapping may be stale, but it can not be
1577  * invalid as page lock (which is held) is required to destroy mapping.
1578  */
1579 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1580 {
1581 	struct anon_vma *anon_vma;
1582 	pgoff_t pgoff_start, pgoff_end;
1583 	struct anon_vma_chain *avc;
1584 	struct address_space *mapping = page_mapping(hpage);
1585 
1586 	/* Simple file based mapping */
1587 	if (mapping)
1588 		return mapping;
1589 
1590 	/*
1591 	 * Even anonymous hugetlbfs mappings are associated with an
1592 	 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1593 	 * code).  Find a vma associated with the anonymous vma, and
1594 	 * use the file pointer to get address_space.
1595 	 */
1596 	anon_vma = page_lock_anon_vma_read(hpage);
1597 	if (!anon_vma)
1598 		return mapping;  /* NULL */
1599 
1600 	/* Use first found vma */
1601 	pgoff_start = page_to_pgoff(hpage);
1602 	pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1603 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1604 					pgoff_start, pgoff_end) {
1605 		struct vm_area_struct *vma = avc->vma;
1606 
1607 		mapping = vma->vm_file->f_mapping;
1608 		break;
1609 	}
1610 
1611 	anon_vma_unlock_read(anon_vma);
1612 	return mapping;
1613 }
1614 
1615 /*
1616  * Find and lock address space (mapping) in write mode.
1617  *
1618  * Upon entry, the page is locked which allows us to find the mapping
1619  * even in the case of an anon page.  However, locking order dictates
1620  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1621  * specific.  So, we first try to lock the sema while still holding the
1622  * page lock.  If this works, great!  If not, then we need to drop the
1623  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1624  * course, need to revalidate state along the way.
1625  */
1626 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1627 {
1628 	struct address_space *mapping, *mapping2;
1629 
1630 	mapping = _get_hugetlb_page_mapping(hpage);
1631 retry:
1632 	if (!mapping)
1633 		return mapping;
1634 
1635 	/*
1636 	 * If no contention, take lock and return
1637 	 */
1638 	if (i_mmap_trylock_write(mapping))
1639 		return mapping;
1640 
1641 	/*
1642 	 * Must drop page lock and wait on mapping sema.
1643 	 * Note:  Once page lock is dropped, mapping could become invalid.
1644 	 * As a hack, increase map count until we lock page again.
1645 	 */
1646 	atomic_inc(&hpage->_mapcount);
1647 	unlock_page(hpage);
1648 	i_mmap_lock_write(mapping);
1649 	lock_page(hpage);
1650 	atomic_add_negative(-1, &hpage->_mapcount);
1651 
1652 	/* verify page is still mapped */
1653 	if (!page_mapped(hpage)) {
1654 		i_mmap_unlock_write(mapping);
1655 		return NULL;
1656 	}
1657 
1658 	/*
1659 	 * Get address space again and verify it is the same one
1660 	 * we locked.  If not, drop lock and retry.
1661 	 */
1662 	mapping2 = _get_hugetlb_page_mapping(hpage);
1663 	if (mapping2 != mapping) {
1664 		i_mmap_unlock_write(mapping);
1665 		mapping = mapping2;
1666 		goto retry;
1667 	}
1668 
1669 	return mapping;
1670 }
1671 
1672 pgoff_t __basepage_index(struct page *page)
1673 {
1674 	struct page *page_head = compound_head(page);
1675 	pgoff_t index = page_index(page_head);
1676 	unsigned long compound_idx;
1677 
1678 	if (!PageHuge(page_head))
1679 		return page_index(page);
1680 
1681 	if (compound_order(page_head) >= MAX_ORDER)
1682 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1683 	else
1684 		compound_idx = page - page_head;
1685 
1686 	return (index << compound_order(page_head)) + compound_idx;
1687 }
1688 
1689 static struct page *alloc_buddy_huge_page(struct hstate *h,
1690 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1691 		nodemask_t *node_alloc_noretry)
1692 {
1693 	int order = huge_page_order(h);
1694 	struct page *page;
1695 	bool alloc_try_hard = true;
1696 
1697 	/*
1698 	 * By default we always try hard to allocate the page with
1699 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1700 	 * a loop (to adjust global huge page counts) and previous allocation
1701 	 * failed, do not continue to try hard on the same node.  Use the
1702 	 * node_alloc_noretry bitmap to manage this state information.
1703 	 */
1704 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1705 		alloc_try_hard = false;
1706 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1707 	if (alloc_try_hard)
1708 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1709 	if (nid == NUMA_NO_NODE)
1710 		nid = numa_mem_id();
1711 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1712 	if (page)
1713 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1714 	else
1715 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1716 
1717 	/*
1718 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1719 	 * indicates an overall state change.  Clear bit so that we resume
1720 	 * normal 'try hard' allocations.
1721 	 */
1722 	if (node_alloc_noretry && page && !alloc_try_hard)
1723 		node_clear(nid, *node_alloc_noretry);
1724 
1725 	/*
1726 	 * If we tried hard to get a page but failed, set bit so that
1727 	 * subsequent attempts will not try as hard until there is an
1728 	 * overall state change.
1729 	 */
1730 	if (node_alloc_noretry && !page && alloc_try_hard)
1731 		node_set(nid, *node_alloc_noretry);
1732 
1733 	return page;
1734 }
1735 
1736 /*
1737  * Common helper to allocate a fresh hugetlb page. All specific allocators
1738  * should use this function to get new hugetlb pages
1739  */
1740 static struct page *alloc_fresh_huge_page(struct hstate *h,
1741 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1742 		nodemask_t *node_alloc_noretry)
1743 {
1744 	struct page *page;
1745 
1746 	if (hstate_is_gigantic(h))
1747 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1748 	else
1749 		page = alloc_buddy_huge_page(h, gfp_mask,
1750 				nid, nmask, node_alloc_noretry);
1751 	if (!page)
1752 		return NULL;
1753 
1754 	if (hstate_is_gigantic(h))
1755 		prep_compound_gigantic_page(page, huge_page_order(h));
1756 	prep_new_huge_page(h, page, page_to_nid(page));
1757 
1758 	return page;
1759 }
1760 
1761 /*
1762  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1763  * manner.
1764  */
1765 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1766 				nodemask_t *node_alloc_noretry)
1767 {
1768 	struct page *page;
1769 	int nr_nodes, node;
1770 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1771 
1772 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1773 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1774 						node_alloc_noretry);
1775 		if (page)
1776 			break;
1777 	}
1778 
1779 	if (!page)
1780 		return 0;
1781 
1782 	put_page(page); /* free it into the hugepage allocator */
1783 
1784 	return 1;
1785 }
1786 
1787 /*
1788  * Free huge page from pool from next node to free.
1789  * Attempt to keep persistent huge pages more or less
1790  * balanced over allowed nodes.
1791  * Called with hugetlb_lock locked.
1792  */
1793 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1794 							 bool acct_surplus)
1795 {
1796 	int nr_nodes, node;
1797 	int ret = 0;
1798 
1799 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1800 		/*
1801 		 * If we're returning unused surplus pages, only examine
1802 		 * nodes with surplus pages.
1803 		 */
1804 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1805 		    !list_empty(&h->hugepage_freelists[node])) {
1806 			struct page *page =
1807 				list_entry(h->hugepage_freelists[node].next,
1808 					  struct page, lru);
1809 			list_del(&page->lru);
1810 			h->free_huge_pages--;
1811 			h->free_huge_pages_node[node]--;
1812 			if (acct_surplus) {
1813 				h->surplus_huge_pages--;
1814 				h->surplus_huge_pages_node[node]--;
1815 			}
1816 			update_and_free_page(h, page);
1817 			ret = 1;
1818 			break;
1819 		}
1820 	}
1821 
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Dissolve a given free hugepage into free buddy pages. This function does
1827  * nothing for in-use hugepages and non-hugepages.
1828  * This function returns values like below:
1829  *
1830  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1831  *          (allocated or reserved.)
1832  *       0: successfully dissolved free hugepages or the page is not a
1833  *          hugepage (considered as already dissolved)
1834  */
1835 int dissolve_free_huge_page(struct page *page)
1836 {
1837 	int rc = -EBUSY;
1838 
1839 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1840 	if (!PageHuge(page))
1841 		return 0;
1842 
1843 	spin_lock(&hugetlb_lock);
1844 	if (!PageHuge(page)) {
1845 		rc = 0;
1846 		goto out;
1847 	}
1848 
1849 	if (!page_count(page)) {
1850 		struct page *head = compound_head(page);
1851 		struct hstate *h = page_hstate(head);
1852 		int nid = page_to_nid(head);
1853 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1854 			goto out;
1855 		/*
1856 		 * Move PageHWPoison flag from head page to the raw error page,
1857 		 * which makes any subpages rather than the error page reusable.
1858 		 */
1859 		if (PageHWPoison(head) && page != head) {
1860 			SetPageHWPoison(page);
1861 			ClearPageHWPoison(head);
1862 		}
1863 		list_del(&head->lru);
1864 		h->free_huge_pages--;
1865 		h->free_huge_pages_node[nid]--;
1866 		h->max_huge_pages--;
1867 		update_and_free_page(h, head);
1868 		rc = 0;
1869 	}
1870 out:
1871 	spin_unlock(&hugetlb_lock);
1872 	return rc;
1873 }
1874 
1875 /*
1876  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1877  * make specified memory blocks removable from the system.
1878  * Note that this will dissolve a free gigantic hugepage completely, if any
1879  * part of it lies within the given range.
1880  * Also note that if dissolve_free_huge_page() returns with an error, all
1881  * free hugepages that were dissolved before that error are lost.
1882  */
1883 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1884 {
1885 	unsigned long pfn;
1886 	struct page *page;
1887 	int rc = 0;
1888 
1889 	if (!hugepages_supported())
1890 		return rc;
1891 
1892 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1893 		page = pfn_to_page(pfn);
1894 		rc = dissolve_free_huge_page(page);
1895 		if (rc)
1896 			break;
1897 	}
1898 
1899 	return rc;
1900 }
1901 
1902 /*
1903  * Allocates a fresh surplus page from the page allocator.
1904  */
1905 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1906 		int nid, nodemask_t *nmask)
1907 {
1908 	struct page *page = NULL;
1909 
1910 	if (hstate_is_gigantic(h))
1911 		return NULL;
1912 
1913 	spin_lock(&hugetlb_lock);
1914 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1915 		goto out_unlock;
1916 	spin_unlock(&hugetlb_lock);
1917 
1918 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1919 	if (!page)
1920 		return NULL;
1921 
1922 	spin_lock(&hugetlb_lock);
1923 	/*
1924 	 * We could have raced with the pool size change.
1925 	 * Double check that and simply deallocate the new page
1926 	 * if we would end up overcommiting the surpluses. Abuse
1927 	 * temporary page to workaround the nasty free_huge_page
1928 	 * codeflow
1929 	 */
1930 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1931 		SetPageHugeTemporary(page);
1932 		spin_unlock(&hugetlb_lock);
1933 		put_page(page);
1934 		return NULL;
1935 	} else {
1936 		h->surplus_huge_pages++;
1937 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1938 	}
1939 
1940 out_unlock:
1941 	spin_unlock(&hugetlb_lock);
1942 
1943 	return page;
1944 }
1945 
1946 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1947 				     int nid, nodemask_t *nmask)
1948 {
1949 	struct page *page;
1950 
1951 	if (hstate_is_gigantic(h))
1952 		return NULL;
1953 
1954 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1955 	if (!page)
1956 		return NULL;
1957 
1958 	/*
1959 	 * We do not account these pages as surplus because they are only
1960 	 * temporary and will be released properly on the last reference
1961 	 */
1962 	SetPageHugeTemporary(page);
1963 
1964 	return page;
1965 }
1966 
1967 /*
1968  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1969  */
1970 static
1971 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1972 		struct vm_area_struct *vma, unsigned long addr)
1973 {
1974 	struct page *page;
1975 	struct mempolicy *mpol;
1976 	gfp_t gfp_mask = htlb_alloc_mask(h);
1977 	int nid;
1978 	nodemask_t *nodemask;
1979 
1980 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1981 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1982 	mpol_cond_put(mpol);
1983 
1984 	return page;
1985 }
1986 
1987 /* page migration callback function */
1988 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1989 {
1990 	gfp_t gfp_mask = htlb_alloc_mask(h);
1991 	struct page *page = NULL;
1992 
1993 	if (nid != NUMA_NO_NODE)
1994 		gfp_mask |= __GFP_THISNODE;
1995 
1996 	spin_lock(&hugetlb_lock);
1997 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1998 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1999 	spin_unlock(&hugetlb_lock);
2000 
2001 	if (!page)
2002 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
2003 
2004 	return page;
2005 }
2006 
2007 /* page migration callback function */
2008 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2009 		nodemask_t *nmask)
2010 {
2011 	gfp_t gfp_mask = htlb_alloc_mask(h);
2012 
2013 	spin_lock(&hugetlb_lock);
2014 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2015 		struct page *page;
2016 
2017 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2018 		if (page) {
2019 			spin_unlock(&hugetlb_lock);
2020 			return page;
2021 		}
2022 	}
2023 	spin_unlock(&hugetlb_lock);
2024 
2025 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2026 }
2027 
2028 /* mempolicy aware migration callback */
2029 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2030 		unsigned long address)
2031 {
2032 	struct mempolicy *mpol;
2033 	nodemask_t *nodemask;
2034 	struct page *page;
2035 	gfp_t gfp_mask;
2036 	int node;
2037 
2038 	gfp_mask = htlb_alloc_mask(h);
2039 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2040 	page = alloc_huge_page_nodemask(h, node, nodemask);
2041 	mpol_cond_put(mpol);
2042 
2043 	return page;
2044 }
2045 
2046 /*
2047  * Increase the hugetlb pool such that it can accommodate a reservation
2048  * of size 'delta'.
2049  */
2050 static int gather_surplus_pages(struct hstate *h, int delta)
2051 	__must_hold(&hugetlb_lock)
2052 {
2053 	struct list_head surplus_list;
2054 	struct page *page, *tmp;
2055 	int ret, i;
2056 	int needed, allocated;
2057 	bool alloc_ok = true;
2058 
2059 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2060 	if (needed <= 0) {
2061 		h->resv_huge_pages += delta;
2062 		return 0;
2063 	}
2064 
2065 	allocated = 0;
2066 	INIT_LIST_HEAD(&surplus_list);
2067 
2068 	ret = -ENOMEM;
2069 retry:
2070 	spin_unlock(&hugetlb_lock);
2071 	for (i = 0; i < needed; i++) {
2072 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2073 				NUMA_NO_NODE, NULL);
2074 		if (!page) {
2075 			alloc_ok = false;
2076 			break;
2077 		}
2078 		list_add(&page->lru, &surplus_list);
2079 		cond_resched();
2080 	}
2081 	allocated += i;
2082 
2083 	/*
2084 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2085 	 * because either resv_huge_pages or free_huge_pages may have changed.
2086 	 */
2087 	spin_lock(&hugetlb_lock);
2088 	needed = (h->resv_huge_pages + delta) -
2089 			(h->free_huge_pages + allocated);
2090 	if (needed > 0) {
2091 		if (alloc_ok)
2092 			goto retry;
2093 		/*
2094 		 * We were not able to allocate enough pages to
2095 		 * satisfy the entire reservation so we free what
2096 		 * we've allocated so far.
2097 		 */
2098 		goto free;
2099 	}
2100 	/*
2101 	 * The surplus_list now contains _at_least_ the number of extra pages
2102 	 * needed to accommodate the reservation.  Add the appropriate number
2103 	 * of pages to the hugetlb pool and free the extras back to the buddy
2104 	 * allocator.  Commit the entire reservation here to prevent another
2105 	 * process from stealing the pages as they are added to the pool but
2106 	 * before they are reserved.
2107 	 */
2108 	needed += allocated;
2109 	h->resv_huge_pages += delta;
2110 	ret = 0;
2111 
2112 	/* Free the needed pages to the hugetlb pool */
2113 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2114 		if ((--needed) < 0)
2115 			break;
2116 		/*
2117 		 * This page is now managed by the hugetlb allocator and has
2118 		 * no users -- drop the buddy allocator's reference.
2119 		 */
2120 		put_page_testzero(page);
2121 		VM_BUG_ON_PAGE(page_count(page), page);
2122 		enqueue_huge_page(h, page);
2123 	}
2124 free:
2125 	spin_unlock(&hugetlb_lock);
2126 
2127 	/* Free unnecessary surplus pages to the buddy allocator */
2128 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2129 		put_page(page);
2130 	spin_lock(&hugetlb_lock);
2131 
2132 	return ret;
2133 }
2134 
2135 /*
2136  * This routine has two main purposes:
2137  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2138  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2139  *    to the associated reservation map.
2140  * 2) Free any unused surplus pages that may have been allocated to satisfy
2141  *    the reservation.  As many as unused_resv_pages may be freed.
2142  *
2143  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2144  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2145  * we must make sure nobody else can claim pages we are in the process of
2146  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2147  * number of huge pages we plan to free when dropping the lock.
2148  */
2149 static void return_unused_surplus_pages(struct hstate *h,
2150 					unsigned long unused_resv_pages)
2151 {
2152 	unsigned long nr_pages;
2153 
2154 	/* Cannot return gigantic pages currently */
2155 	if (hstate_is_gigantic(h))
2156 		goto out;
2157 
2158 	/*
2159 	 * Part (or even all) of the reservation could have been backed
2160 	 * by pre-allocated pages. Only free surplus pages.
2161 	 */
2162 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2163 
2164 	/*
2165 	 * We want to release as many surplus pages as possible, spread
2166 	 * evenly across all nodes with memory. Iterate across these nodes
2167 	 * until we can no longer free unreserved surplus pages. This occurs
2168 	 * when the nodes with surplus pages have no free pages.
2169 	 * free_pool_huge_page() will balance the the freed pages across the
2170 	 * on-line nodes with memory and will handle the hstate accounting.
2171 	 *
2172 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2173 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2174 	 * to cover subsequent pages we may free.
2175 	 */
2176 	while (nr_pages--) {
2177 		h->resv_huge_pages--;
2178 		unused_resv_pages--;
2179 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2180 			goto out;
2181 		cond_resched_lock(&hugetlb_lock);
2182 	}
2183 
2184 out:
2185 	/* Fully uncommit the reservation */
2186 	h->resv_huge_pages -= unused_resv_pages;
2187 }
2188 
2189 
2190 /*
2191  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2192  * are used by the huge page allocation routines to manage reservations.
2193  *
2194  * vma_needs_reservation is called to determine if the huge page at addr
2195  * within the vma has an associated reservation.  If a reservation is
2196  * needed, the value 1 is returned.  The caller is then responsible for
2197  * managing the global reservation and subpool usage counts.  After
2198  * the huge page has been allocated, vma_commit_reservation is called
2199  * to add the page to the reservation map.  If the page allocation fails,
2200  * the reservation must be ended instead of committed.  vma_end_reservation
2201  * is called in such cases.
2202  *
2203  * In the normal case, vma_commit_reservation returns the same value
2204  * as the preceding vma_needs_reservation call.  The only time this
2205  * is not the case is if a reserve map was changed between calls.  It
2206  * is the responsibility of the caller to notice the difference and
2207  * take appropriate action.
2208  *
2209  * vma_add_reservation is used in error paths where a reservation must
2210  * be restored when a newly allocated huge page must be freed.  It is
2211  * to be called after calling vma_needs_reservation to determine if a
2212  * reservation exists.
2213  */
2214 enum vma_resv_mode {
2215 	VMA_NEEDS_RESV,
2216 	VMA_COMMIT_RESV,
2217 	VMA_END_RESV,
2218 	VMA_ADD_RESV,
2219 };
2220 static long __vma_reservation_common(struct hstate *h,
2221 				struct vm_area_struct *vma, unsigned long addr,
2222 				enum vma_resv_mode mode)
2223 {
2224 	struct resv_map *resv;
2225 	pgoff_t idx;
2226 	long ret;
2227 	long dummy_out_regions_needed;
2228 
2229 	resv = vma_resv_map(vma);
2230 	if (!resv)
2231 		return 1;
2232 
2233 	idx = vma_hugecache_offset(h, vma, addr);
2234 	switch (mode) {
2235 	case VMA_NEEDS_RESV:
2236 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2237 		/* We assume that vma_reservation_* routines always operate on
2238 		 * 1 page, and that adding to resv map a 1 page entry can only
2239 		 * ever require 1 region.
2240 		 */
2241 		VM_BUG_ON(dummy_out_regions_needed != 1);
2242 		break;
2243 	case VMA_COMMIT_RESV:
2244 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2245 		/* region_add calls of range 1 should never fail. */
2246 		VM_BUG_ON(ret < 0);
2247 		break;
2248 	case VMA_END_RESV:
2249 		region_abort(resv, idx, idx + 1, 1);
2250 		ret = 0;
2251 		break;
2252 	case VMA_ADD_RESV:
2253 		if (vma->vm_flags & VM_MAYSHARE) {
2254 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2255 			/* region_add calls of range 1 should never fail. */
2256 			VM_BUG_ON(ret < 0);
2257 		} else {
2258 			region_abort(resv, idx, idx + 1, 1);
2259 			ret = region_del(resv, idx, idx + 1);
2260 		}
2261 		break;
2262 	default:
2263 		BUG();
2264 	}
2265 
2266 	if (vma->vm_flags & VM_MAYSHARE)
2267 		return ret;
2268 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2269 		/*
2270 		 * In most cases, reserves always exist for private mappings.
2271 		 * However, a file associated with mapping could have been
2272 		 * hole punched or truncated after reserves were consumed.
2273 		 * As subsequent fault on such a range will not use reserves.
2274 		 * Subtle - The reserve map for private mappings has the
2275 		 * opposite meaning than that of shared mappings.  If NO
2276 		 * entry is in the reserve map, it means a reservation exists.
2277 		 * If an entry exists in the reserve map, it means the
2278 		 * reservation has already been consumed.  As a result, the
2279 		 * return value of this routine is the opposite of the
2280 		 * value returned from reserve map manipulation routines above.
2281 		 */
2282 		if (ret)
2283 			return 0;
2284 		else
2285 			return 1;
2286 	}
2287 	else
2288 		return ret < 0 ? ret : 0;
2289 }
2290 
2291 static long vma_needs_reservation(struct hstate *h,
2292 			struct vm_area_struct *vma, unsigned long addr)
2293 {
2294 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2295 }
2296 
2297 static long vma_commit_reservation(struct hstate *h,
2298 			struct vm_area_struct *vma, unsigned long addr)
2299 {
2300 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2301 }
2302 
2303 static void vma_end_reservation(struct hstate *h,
2304 			struct vm_area_struct *vma, unsigned long addr)
2305 {
2306 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2307 }
2308 
2309 static long vma_add_reservation(struct hstate *h,
2310 			struct vm_area_struct *vma, unsigned long addr)
2311 {
2312 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2313 }
2314 
2315 /*
2316  * This routine is called to restore a reservation on error paths.  In the
2317  * specific error paths, a huge page was allocated (via alloc_huge_page)
2318  * and is about to be freed.  If a reservation for the page existed,
2319  * alloc_huge_page would have consumed the reservation and set PagePrivate
2320  * in the newly allocated page.  When the page is freed via free_huge_page,
2321  * the global reservation count will be incremented if PagePrivate is set.
2322  * However, free_huge_page can not adjust the reserve map.  Adjust the
2323  * reserve map here to be consistent with global reserve count adjustments
2324  * to be made by free_huge_page.
2325  */
2326 static void restore_reserve_on_error(struct hstate *h,
2327 			struct vm_area_struct *vma, unsigned long address,
2328 			struct page *page)
2329 {
2330 	if (unlikely(PagePrivate(page))) {
2331 		long rc = vma_needs_reservation(h, vma, address);
2332 
2333 		if (unlikely(rc < 0)) {
2334 			/*
2335 			 * Rare out of memory condition in reserve map
2336 			 * manipulation.  Clear PagePrivate so that
2337 			 * global reserve count will not be incremented
2338 			 * by free_huge_page.  This will make it appear
2339 			 * as though the reservation for this page was
2340 			 * consumed.  This may prevent the task from
2341 			 * faulting in the page at a later time.  This
2342 			 * is better than inconsistent global huge page
2343 			 * accounting of reserve counts.
2344 			 */
2345 			ClearPagePrivate(page);
2346 		} else if (rc) {
2347 			rc = vma_add_reservation(h, vma, address);
2348 			if (unlikely(rc < 0))
2349 				/*
2350 				 * See above comment about rare out of
2351 				 * memory condition.
2352 				 */
2353 				ClearPagePrivate(page);
2354 		} else
2355 			vma_end_reservation(h, vma, address);
2356 	}
2357 }
2358 
2359 struct page *alloc_huge_page(struct vm_area_struct *vma,
2360 				    unsigned long addr, int avoid_reserve)
2361 {
2362 	struct hugepage_subpool *spool = subpool_vma(vma);
2363 	struct hstate *h = hstate_vma(vma);
2364 	struct page *page;
2365 	long map_chg, map_commit;
2366 	long gbl_chg;
2367 	int ret, idx;
2368 	struct hugetlb_cgroup *h_cg;
2369 	bool deferred_reserve;
2370 
2371 	idx = hstate_index(h);
2372 	/*
2373 	 * Examine the region/reserve map to determine if the process
2374 	 * has a reservation for the page to be allocated.  A return
2375 	 * code of zero indicates a reservation exists (no change).
2376 	 */
2377 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2378 	if (map_chg < 0)
2379 		return ERR_PTR(-ENOMEM);
2380 
2381 	/*
2382 	 * Processes that did not create the mapping will have no
2383 	 * reserves as indicated by the region/reserve map. Check
2384 	 * that the allocation will not exceed the subpool limit.
2385 	 * Allocations for MAP_NORESERVE mappings also need to be
2386 	 * checked against any subpool limit.
2387 	 */
2388 	if (map_chg || avoid_reserve) {
2389 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2390 		if (gbl_chg < 0) {
2391 			vma_end_reservation(h, vma, addr);
2392 			return ERR_PTR(-ENOSPC);
2393 		}
2394 
2395 		/*
2396 		 * Even though there was no reservation in the region/reserve
2397 		 * map, there could be reservations associated with the
2398 		 * subpool that can be used.  This would be indicated if the
2399 		 * return value of hugepage_subpool_get_pages() is zero.
2400 		 * However, if avoid_reserve is specified we still avoid even
2401 		 * the subpool reservations.
2402 		 */
2403 		if (avoid_reserve)
2404 			gbl_chg = 1;
2405 	}
2406 
2407 	/* If this allocation is not consuming a reservation, charge it now.
2408 	 */
2409 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2410 	if (deferred_reserve) {
2411 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2412 			idx, pages_per_huge_page(h), &h_cg);
2413 		if (ret)
2414 			goto out_subpool_put;
2415 	}
2416 
2417 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2418 	if (ret)
2419 		goto out_uncharge_cgroup_reservation;
2420 
2421 	spin_lock(&hugetlb_lock);
2422 	/*
2423 	 * glb_chg is passed to indicate whether or not a page must be taken
2424 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2425 	 * a reservation exists for the allocation.
2426 	 */
2427 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2428 	if (!page) {
2429 		spin_unlock(&hugetlb_lock);
2430 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2431 		if (!page)
2432 			goto out_uncharge_cgroup;
2433 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2434 			SetPagePrivate(page);
2435 			h->resv_huge_pages--;
2436 		}
2437 		spin_lock(&hugetlb_lock);
2438 		list_move(&page->lru, &h->hugepage_activelist);
2439 		/* Fall through */
2440 	}
2441 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2442 	/* If allocation is not consuming a reservation, also store the
2443 	 * hugetlb_cgroup pointer on the page.
2444 	 */
2445 	if (deferred_reserve) {
2446 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2447 						  h_cg, page);
2448 	}
2449 
2450 	spin_unlock(&hugetlb_lock);
2451 
2452 	set_page_private(page, (unsigned long)spool);
2453 
2454 	map_commit = vma_commit_reservation(h, vma, addr);
2455 	if (unlikely(map_chg > map_commit)) {
2456 		/*
2457 		 * The page was added to the reservation map between
2458 		 * vma_needs_reservation and vma_commit_reservation.
2459 		 * This indicates a race with hugetlb_reserve_pages.
2460 		 * Adjust for the subpool count incremented above AND
2461 		 * in hugetlb_reserve_pages for the same page.  Also,
2462 		 * the reservation count added in hugetlb_reserve_pages
2463 		 * no longer applies.
2464 		 */
2465 		long rsv_adjust;
2466 
2467 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2468 		hugetlb_acct_memory(h, -rsv_adjust);
2469 	}
2470 	return page;
2471 
2472 out_uncharge_cgroup:
2473 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2474 out_uncharge_cgroup_reservation:
2475 	if (deferred_reserve)
2476 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2477 						    h_cg);
2478 out_subpool_put:
2479 	if (map_chg || avoid_reserve)
2480 		hugepage_subpool_put_pages(spool, 1);
2481 	vma_end_reservation(h, vma, addr);
2482 	return ERR_PTR(-ENOSPC);
2483 }
2484 
2485 int alloc_bootmem_huge_page(struct hstate *h)
2486 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2487 int __alloc_bootmem_huge_page(struct hstate *h)
2488 {
2489 	struct huge_bootmem_page *m;
2490 	int nr_nodes, node;
2491 
2492 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2493 		void *addr;
2494 
2495 		addr = memblock_alloc_try_nid_raw(
2496 				huge_page_size(h), huge_page_size(h),
2497 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2498 		if (addr) {
2499 			/*
2500 			 * Use the beginning of the huge page to store the
2501 			 * huge_bootmem_page struct (until gather_bootmem
2502 			 * puts them into the mem_map).
2503 			 */
2504 			m = addr;
2505 			goto found;
2506 		}
2507 	}
2508 	return 0;
2509 
2510 found:
2511 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2512 	/* Put them into a private list first because mem_map is not up yet */
2513 	INIT_LIST_HEAD(&m->list);
2514 	list_add(&m->list, &huge_boot_pages);
2515 	m->hstate = h;
2516 	return 1;
2517 }
2518 
2519 static void __init prep_compound_huge_page(struct page *page,
2520 		unsigned int order)
2521 {
2522 	if (unlikely(order > (MAX_ORDER - 1)))
2523 		prep_compound_gigantic_page(page, order);
2524 	else
2525 		prep_compound_page(page, order);
2526 }
2527 
2528 /* Put bootmem huge pages into the standard lists after mem_map is up */
2529 static void __init gather_bootmem_prealloc(void)
2530 {
2531 	struct huge_bootmem_page *m;
2532 
2533 	list_for_each_entry(m, &huge_boot_pages, list) {
2534 		struct page *page = virt_to_page(m);
2535 		struct hstate *h = m->hstate;
2536 
2537 		WARN_ON(page_count(page) != 1);
2538 		prep_compound_huge_page(page, h->order);
2539 		WARN_ON(PageReserved(page));
2540 		prep_new_huge_page(h, page, page_to_nid(page));
2541 		put_page(page); /* free it into the hugepage allocator */
2542 
2543 		/*
2544 		 * If we had gigantic hugepages allocated at boot time, we need
2545 		 * to restore the 'stolen' pages to totalram_pages in order to
2546 		 * fix confusing memory reports from free(1) and another
2547 		 * side-effects, like CommitLimit going negative.
2548 		 */
2549 		if (hstate_is_gigantic(h))
2550 			adjust_managed_page_count(page, 1 << h->order);
2551 		cond_resched();
2552 	}
2553 }
2554 
2555 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2556 {
2557 	unsigned long i;
2558 	nodemask_t *node_alloc_noretry;
2559 
2560 	if (!hstate_is_gigantic(h)) {
2561 		/*
2562 		 * Bit mask controlling how hard we retry per-node allocations.
2563 		 * Ignore errors as lower level routines can deal with
2564 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2565 		 * time, we are likely in bigger trouble.
2566 		 */
2567 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2568 						GFP_KERNEL);
2569 	} else {
2570 		/* allocations done at boot time */
2571 		node_alloc_noretry = NULL;
2572 	}
2573 
2574 	/* bit mask controlling how hard we retry per-node allocations */
2575 	if (node_alloc_noretry)
2576 		nodes_clear(*node_alloc_noretry);
2577 
2578 	for (i = 0; i < h->max_huge_pages; ++i) {
2579 		if (hstate_is_gigantic(h)) {
2580 			if (hugetlb_cma_size) {
2581 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2582 				break;
2583 			}
2584 			if (!alloc_bootmem_huge_page(h))
2585 				break;
2586 		} else if (!alloc_pool_huge_page(h,
2587 					 &node_states[N_MEMORY],
2588 					 node_alloc_noretry))
2589 			break;
2590 		cond_resched();
2591 	}
2592 	if (i < h->max_huge_pages) {
2593 		char buf[32];
2594 
2595 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2596 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2597 			h->max_huge_pages, buf, i);
2598 		h->max_huge_pages = i;
2599 	}
2600 
2601 	kfree(node_alloc_noretry);
2602 }
2603 
2604 static void __init hugetlb_init_hstates(void)
2605 {
2606 	struct hstate *h;
2607 
2608 	for_each_hstate(h) {
2609 		if (minimum_order > huge_page_order(h))
2610 			minimum_order = huge_page_order(h);
2611 
2612 		/* oversize hugepages were init'ed in early boot */
2613 		if (!hstate_is_gigantic(h))
2614 			hugetlb_hstate_alloc_pages(h);
2615 	}
2616 	VM_BUG_ON(minimum_order == UINT_MAX);
2617 }
2618 
2619 static void __init report_hugepages(void)
2620 {
2621 	struct hstate *h;
2622 
2623 	for_each_hstate(h) {
2624 		char buf[32];
2625 
2626 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2627 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2628 			buf, h->free_huge_pages);
2629 	}
2630 }
2631 
2632 #ifdef CONFIG_HIGHMEM
2633 static void try_to_free_low(struct hstate *h, unsigned long count,
2634 						nodemask_t *nodes_allowed)
2635 {
2636 	int i;
2637 
2638 	if (hstate_is_gigantic(h))
2639 		return;
2640 
2641 	for_each_node_mask(i, *nodes_allowed) {
2642 		struct page *page, *next;
2643 		struct list_head *freel = &h->hugepage_freelists[i];
2644 		list_for_each_entry_safe(page, next, freel, lru) {
2645 			if (count >= h->nr_huge_pages)
2646 				return;
2647 			if (PageHighMem(page))
2648 				continue;
2649 			list_del(&page->lru);
2650 			update_and_free_page(h, page);
2651 			h->free_huge_pages--;
2652 			h->free_huge_pages_node[page_to_nid(page)]--;
2653 		}
2654 	}
2655 }
2656 #else
2657 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2658 						nodemask_t *nodes_allowed)
2659 {
2660 }
2661 #endif
2662 
2663 /*
2664  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2665  * balanced by operating on them in a round-robin fashion.
2666  * Returns 1 if an adjustment was made.
2667  */
2668 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2669 				int delta)
2670 {
2671 	int nr_nodes, node;
2672 
2673 	VM_BUG_ON(delta != -1 && delta != 1);
2674 
2675 	if (delta < 0) {
2676 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2677 			if (h->surplus_huge_pages_node[node])
2678 				goto found;
2679 		}
2680 	} else {
2681 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2682 			if (h->surplus_huge_pages_node[node] <
2683 					h->nr_huge_pages_node[node])
2684 				goto found;
2685 		}
2686 	}
2687 	return 0;
2688 
2689 found:
2690 	h->surplus_huge_pages += delta;
2691 	h->surplus_huge_pages_node[node] += delta;
2692 	return 1;
2693 }
2694 
2695 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2696 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2697 			      nodemask_t *nodes_allowed)
2698 {
2699 	unsigned long min_count, ret;
2700 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2701 
2702 	/*
2703 	 * Bit mask controlling how hard we retry per-node allocations.
2704 	 * If we can not allocate the bit mask, do not attempt to allocate
2705 	 * the requested huge pages.
2706 	 */
2707 	if (node_alloc_noretry)
2708 		nodes_clear(*node_alloc_noretry);
2709 	else
2710 		return -ENOMEM;
2711 
2712 	spin_lock(&hugetlb_lock);
2713 
2714 	/*
2715 	 * Check for a node specific request.
2716 	 * Changing node specific huge page count may require a corresponding
2717 	 * change to the global count.  In any case, the passed node mask
2718 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2719 	 */
2720 	if (nid != NUMA_NO_NODE) {
2721 		unsigned long old_count = count;
2722 
2723 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2724 		/*
2725 		 * User may have specified a large count value which caused the
2726 		 * above calculation to overflow.  In this case, they wanted
2727 		 * to allocate as many huge pages as possible.  Set count to
2728 		 * largest possible value to align with their intention.
2729 		 */
2730 		if (count < old_count)
2731 			count = ULONG_MAX;
2732 	}
2733 
2734 	/*
2735 	 * Gigantic pages runtime allocation depend on the capability for large
2736 	 * page range allocation.
2737 	 * If the system does not provide this feature, return an error when
2738 	 * the user tries to allocate gigantic pages but let the user free the
2739 	 * boottime allocated gigantic pages.
2740 	 */
2741 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2742 		if (count > persistent_huge_pages(h)) {
2743 			spin_unlock(&hugetlb_lock);
2744 			NODEMASK_FREE(node_alloc_noretry);
2745 			return -EINVAL;
2746 		}
2747 		/* Fall through to decrease pool */
2748 	}
2749 
2750 	/*
2751 	 * Increase the pool size
2752 	 * First take pages out of surplus state.  Then make up the
2753 	 * remaining difference by allocating fresh huge pages.
2754 	 *
2755 	 * We might race with alloc_surplus_huge_page() here and be unable
2756 	 * to convert a surplus huge page to a normal huge page. That is
2757 	 * not critical, though, it just means the overall size of the
2758 	 * pool might be one hugepage larger than it needs to be, but
2759 	 * within all the constraints specified by the sysctls.
2760 	 */
2761 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2762 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2763 			break;
2764 	}
2765 
2766 	while (count > persistent_huge_pages(h)) {
2767 		/*
2768 		 * If this allocation races such that we no longer need the
2769 		 * page, free_huge_page will handle it by freeing the page
2770 		 * and reducing the surplus.
2771 		 */
2772 		spin_unlock(&hugetlb_lock);
2773 
2774 		/* yield cpu to avoid soft lockup */
2775 		cond_resched();
2776 
2777 		ret = alloc_pool_huge_page(h, nodes_allowed,
2778 						node_alloc_noretry);
2779 		spin_lock(&hugetlb_lock);
2780 		if (!ret)
2781 			goto out;
2782 
2783 		/* Bail for signals. Probably ctrl-c from user */
2784 		if (signal_pending(current))
2785 			goto out;
2786 	}
2787 
2788 	/*
2789 	 * Decrease the pool size
2790 	 * First return free pages to the buddy allocator (being careful
2791 	 * to keep enough around to satisfy reservations).  Then place
2792 	 * pages into surplus state as needed so the pool will shrink
2793 	 * to the desired size as pages become free.
2794 	 *
2795 	 * By placing pages into the surplus state independent of the
2796 	 * overcommit value, we are allowing the surplus pool size to
2797 	 * exceed overcommit. There are few sane options here. Since
2798 	 * alloc_surplus_huge_page() is checking the global counter,
2799 	 * though, we'll note that we're not allowed to exceed surplus
2800 	 * and won't grow the pool anywhere else. Not until one of the
2801 	 * sysctls are changed, or the surplus pages go out of use.
2802 	 */
2803 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2804 	min_count = max(count, min_count);
2805 	try_to_free_low(h, min_count, nodes_allowed);
2806 	while (min_count < persistent_huge_pages(h)) {
2807 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2808 			break;
2809 		cond_resched_lock(&hugetlb_lock);
2810 	}
2811 	while (count < persistent_huge_pages(h)) {
2812 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2813 			break;
2814 	}
2815 out:
2816 	h->max_huge_pages = persistent_huge_pages(h);
2817 	spin_unlock(&hugetlb_lock);
2818 
2819 	NODEMASK_FREE(node_alloc_noretry);
2820 
2821 	return 0;
2822 }
2823 
2824 #define HSTATE_ATTR_RO(_name) \
2825 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2826 
2827 #define HSTATE_ATTR(_name) \
2828 	static struct kobj_attribute _name##_attr = \
2829 		__ATTR(_name, 0644, _name##_show, _name##_store)
2830 
2831 static struct kobject *hugepages_kobj;
2832 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2833 
2834 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2835 
2836 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2837 {
2838 	int i;
2839 
2840 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2841 		if (hstate_kobjs[i] == kobj) {
2842 			if (nidp)
2843 				*nidp = NUMA_NO_NODE;
2844 			return &hstates[i];
2845 		}
2846 
2847 	return kobj_to_node_hstate(kobj, nidp);
2848 }
2849 
2850 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2851 					struct kobj_attribute *attr, char *buf)
2852 {
2853 	struct hstate *h;
2854 	unsigned long nr_huge_pages;
2855 	int nid;
2856 
2857 	h = kobj_to_hstate(kobj, &nid);
2858 	if (nid == NUMA_NO_NODE)
2859 		nr_huge_pages = h->nr_huge_pages;
2860 	else
2861 		nr_huge_pages = h->nr_huge_pages_node[nid];
2862 
2863 	return sprintf(buf, "%lu\n", nr_huge_pages);
2864 }
2865 
2866 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2867 					   struct hstate *h, int nid,
2868 					   unsigned long count, size_t len)
2869 {
2870 	int err;
2871 	nodemask_t nodes_allowed, *n_mask;
2872 
2873 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2874 		return -EINVAL;
2875 
2876 	if (nid == NUMA_NO_NODE) {
2877 		/*
2878 		 * global hstate attribute
2879 		 */
2880 		if (!(obey_mempolicy &&
2881 				init_nodemask_of_mempolicy(&nodes_allowed)))
2882 			n_mask = &node_states[N_MEMORY];
2883 		else
2884 			n_mask = &nodes_allowed;
2885 	} else {
2886 		/*
2887 		 * Node specific request.  count adjustment happens in
2888 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2889 		 */
2890 		init_nodemask_of_node(&nodes_allowed, nid);
2891 		n_mask = &nodes_allowed;
2892 	}
2893 
2894 	err = set_max_huge_pages(h, count, nid, n_mask);
2895 
2896 	return err ? err : len;
2897 }
2898 
2899 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2900 					 struct kobject *kobj, const char *buf,
2901 					 size_t len)
2902 {
2903 	struct hstate *h;
2904 	unsigned long count;
2905 	int nid;
2906 	int err;
2907 
2908 	err = kstrtoul(buf, 10, &count);
2909 	if (err)
2910 		return err;
2911 
2912 	h = kobj_to_hstate(kobj, &nid);
2913 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2914 }
2915 
2916 static ssize_t nr_hugepages_show(struct kobject *kobj,
2917 				       struct kobj_attribute *attr, char *buf)
2918 {
2919 	return nr_hugepages_show_common(kobj, attr, buf);
2920 }
2921 
2922 static ssize_t nr_hugepages_store(struct kobject *kobj,
2923 	       struct kobj_attribute *attr, const char *buf, size_t len)
2924 {
2925 	return nr_hugepages_store_common(false, kobj, buf, len);
2926 }
2927 HSTATE_ATTR(nr_hugepages);
2928 
2929 #ifdef CONFIG_NUMA
2930 
2931 /*
2932  * hstate attribute for optionally mempolicy-based constraint on persistent
2933  * huge page alloc/free.
2934  */
2935 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2936 				       struct kobj_attribute *attr, char *buf)
2937 {
2938 	return nr_hugepages_show_common(kobj, attr, buf);
2939 }
2940 
2941 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2942 	       struct kobj_attribute *attr, const char *buf, size_t len)
2943 {
2944 	return nr_hugepages_store_common(true, kobj, buf, len);
2945 }
2946 HSTATE_ATTR(nr_hugepages_mempolicy);
2947 #endif
2948 
2949 
2950 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2951 					struct kobj_attribute *attr, char *buf)
2952 {
2953 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2954 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2955 }
2956 
2957 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2958 		struct kobj_attribute *attr, const char *buf, size_t count)
2959 {
2960 	int err;
2961 	unsigned long input;
2962 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2963 
2964 	if (hstate_is_gigantic(h))
2965 		return -EINVAL;
2966 
2967 	err = kstrtoul(buf, 10, &input);
2968 	if (err)
2969 		return err;
2970 
2971 	spin_lock(&hugetlb_lock);
2972 	h->nr_overcommit_huge_pages = input;
2973 	spin_unlock(&hugetlb_lock);
2974 
2975 	return count;
2976 }
2977 HSTATE_ATTR(nr_overcommit_hugepages);
2978 
2979 static ssize_t free_hugepages_show(struct kobject *kobj,
2980 					struct kobj_attribute *attr, char *buf)
2981 {
2982 	struct hstate *h;
2983 	unsigned long free_huge_pages;
2984 	int nid;
2985 
2986 	h = kobj_to_hstate(kobj, &nid);
2987 	if (nid == NUMA_NO_NODE)
2988 		free_huge_pages = h->free_huge_pages;
2989 	else
2990 		free_huge_pages = h->free_huge_pages_node[nid];
2991 
2992 	return sprintf(buf, "%lu\n", free_huge_pages);
2993 }
2994 HSTATE_ATTR_RO(free_hugepages);
2995 
2996 static ssize_t resv_hugepages_show(struct kobject *kobj,
2997 					struct kobj_attribute *attr, char *buf)
2998 {
2999 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3000 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
3001 }
3002 HSTATE_ATTR_RO(resv_hugepages);
3003 
3004 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3005 					struct kobj_attribute *attr, char *buf)
3006 {
3007 	struct hstate *h;
3008 	unsigned long surplus_huge_pages;
3009 	int nid;
3010 
3011 	h = kobj_to_hstate(kobj, &nid);
3012 	if (nid == NUMA_NO_NODE)
3013 		surplus_huge_pages = h->surplus_huge_pages;
3014 	else
3015 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3016 
3017 	return sprintf(buf, "%lu\n", surplus_huge_pages);
3018 }
3019 HSTATE_ATTR_RO(surplus_hugepages);
3020 
3021 static struct attribute *hstate_attrs[] = {
3022 	&nr_hugepages_attr.attr,
3023 	&nr_overcommit_hugepages_attr.attr,
3024 	&free_hugepages_attr.attr,
3025 	&resv_hugepages_attr.attr,
3026 	&surplus_hugepages_attr.attr,
3027 #ifdef CONFIG_NUMA
3028 	&nr_hugepages_mempolicy_attr.attr,
3029 #endif
3030 	NULL,
3031 };
3032 
3033 static const struct attribute_group hstate_attr_group = {
3034 	.attrs = hstate_attrs,
3035 };
3036 
3037 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3038 				    struct kobject **hstate_kobjs,
3039 				    const struct attribute_group *hstate_attr_group)
3040 {
3041 	int retval;
3042 	int hi = hstate_index(h);
3043 
3044 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3045 	if (!hstate_kobjs[hi])
3046 		return -ENOMEM;
3047 
3048 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3049 	if (retval)
3050 		kobject_put(hstate_kobjs[hi]);
3051 
3052 	return retval;
3053 }
3054 
3055 static void __init hugetlb_sysfs_init(void)
3056 {
3057 	struct hstate *h;
3058 	int err;
3059 
3060 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3061 	if (!hugepages_kobj)
3062 		return;
3063 
3064 	for_each_hstate(h) {
3065 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3066 					 hstate_kobjs, &hstate_attr_group);
3067 		if (err)
3068 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3069 	}
3070 }
3071 
3072 #ifdef CONFIG_NUMA
3073 
3074 /*
3075  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3076  * with node devices in node_devices[] using a parallel array.  The array
3077  * index of a node device or _hstate == node id.
3078  * This is here to avoid any static dependency of the node device driver, in
3079  * the base kernel, on the hugetlb module.
3080  */
3081 struct node_hstate {
3082 	struct kobject		*hugepages_kobj;
3083 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3084 };
3085 static struct node_hstate node_hstates[MAX_NUMNODES];
3086 
3087 /*
3088  * A subset of global hstate attributes for node devices
3089  */
3090 static struct attribute *per_node_hstate_attrs[] = {
3091 	&nr_hugepages_attr.attr,
3092 	&free_hugepages_attr.attr,
3093 	&surplus_hugepages_attr.attr,
3094 	NULL,
3095 };
3096 
3097 static const struct attribute_group per_node_hstate_attr_group = {
3098 	.attrs = per_node_hstate_attrs,
3099 };
3100 
3101 /*
3102  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3103  * Returns node id via non-NULL nidp.
3104  */
3105 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3106 {
3107 	int nid;
3108 
3109 	for (nid = 0; nid < nr_node_ids; nid++) {
3110 		struct node_hstate *nhs = &node_hstates[nid];
3111 		int i;
3112 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3113 			if (nhs->hstate_kobjs[i] == kobj) {
3114 				if (nidp)
3115 					*nidp = nid;
3116 				return &hstates[i];
3117 			}
3118 	}
3119 
3120 	BUG();
3121 	return NULL;
3122 }
3123 
3124 /*
3125  * Unregister hstate attributes from a single node device.
3126  * No-op if no hstate attributes attached.
3127  */
3128 static void hugetlb_unregister_node(struct node *node)
3129 {
3130 	struct hstate *h;
3131 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3132 
3133 	if (!nhs->hugepages_kobj)
3134 		return;		/* no hstate attributes */
3135 
3136 	for_each_hstate(h) {
3137 		int idx = hstate_index(h);
3138 		if (nhs->hstate_kobjs[idx]) {
3139 			kobject_put(nhs->hstate_kobjs[idx]);
3140 			nhs->hstate_kobjs[idx] = NULL;
3141 		}
3142 	}
3143 
3144 	kobject_put(nhs->hugepages_kobj);
3145 	nhs->hugepages_kobj = NULL;
3146 }
3147 
3148 
3149 /*
3150  * Register hstate attributes for a single node device.
3151  * No-op if attributes already registered.
3152  */
3153 static void hugetlb_register_node(struct node *node)
3154 {
3155 	struct hstate *h;
3156 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3157 	int err;
3158 
3159 	if (nhs->hugepages_kobj)
3160 		return;		/* already allocated */
3161 
3162 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3163 							&node->dev.kobj);
3164 	if (!nhs->hugepages_kobj)
3165 		return;
3166 
3167 	for_each_hstate(h) {
3168 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3169 						nhs->hstate_kobjs,
3170 						&per_node_hstate_attr_group);
3171 		if (err) {
3172 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3173 				h->name, node->dev.id);
3174 			hugetlb_unregister_node(node);
3175 			break;
3176 		}
3177 	}
3178 }
3179 
3180 /*
3181  * hugetlb init time:  register hstate attributes for all registered node
3182  * devices of nodes that have memory.  All on-line nodes should have
3183  * registered their associated device by this time.
3184  */
3185 static void __init hugetlb_register_all_nodes(void)
3186 {
3187 	int nid;
3188 
3189 	for_each_node_state(nid, N_MEMORY) {
3190 		struct node *node = node_devices[nid];
3191 		if (node->dev.id == nid)
3192 			hugetlb_register_node(node);
3193 	}
3194 
3195 	/*
3196 	 * Let the node device driver know we're here so it can
3197 	 * [un]register hstate attributes on node hotplug.
3198 	 */
3199 	register_hugetlbfs_with_node(hugetlb_register_node,
3200 				     hugetlb_unregister_node);
3201 }
3202 #else	/* !CONFIG_NUMA */
3203 
3204 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3205 {
3206 	BUG();
3207 	if (nidp)
3208 		*nidp = -1;
3209 	return NULL;
3210 }
3211 
3212 static void hugetlb_register_all_nodes(void) { }
3213 
3214 #endif
3215 
3216 static int __init hugetlb_init(void)
3217 {
3218 	int i;
3219 
3220 	if (!hugepages_supported()) {
3221 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3222 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3223 		return 0;
3224 	}
3225 
3226 	/*
3227 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3228 	 * architectures depend on setup being done here.
3229 	 */
3230 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3231 	if (!parsed_default_hugepagesz) {
3232 		/*
3233 		 * If we did not parse a default huge page size, set
3234 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3235 		 * number of huge pages for this default size was implicitly
3236 		 * specified, set that here as well.
3237 		 * Note that the implicit setting will overwrite an explicit
3238 		 * setting.  A warning will be printed in this case.
3239 		 */
3240 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3241 		if (default_hstate_max_huge_pages) {
3242 			if (default_hstate.max_huge_pages) {
3243 				char buf[32];
3244 
3245 				string_get_size(huge_page_size(&default_hstate),
3246 					1, STRING_UNITS_2, buf, 32);
3247 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3248 					default_hstate.max_huge_pages, buf);
3249 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3250 					default_hstate_max_huge_pages);
3251 			}
3252 			default_hstate.max_huge_pages =
3253 				default_hstate_max_huge_pages;
3254 		}
3255 	}
3256 
3257 	hugetlb_cma_check();
3258 	hugetlb_init_hstates();
3259 	gather_bootmem_prealloc();
3260 	report_hugepages();
3261 
3262 	hugetlb_sysfs_init();
3263 	hugetlb_register_all_nodes();
3264 	hugetlb_cgroup_file_init();
3265 
3266 #ifdef CONFIG_SMP
3267 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3268 #else
3269 	num_fault_mutexes = 1;
3270 #endif
3271 	hugetlb_fault_mutex_table =
3272 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3273 			      GFP_KERNEL);
3274 	BUG_ON(!hugetlb_fault_mutex_table);
3275 
3276 	for (i = 0; i < num_fault_mutexes; i++)
3277 		mutex_init(&hugetlb_fault_mutex_table[i]);
3278 	return 0;
3279 }
3280 subsys_initcall(hugetlb_init);
3281 
3282 /* Overwritten by architectures with more huge page sizes */
3283 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3284 {
3285 	return size == HPAGE_SIZE;
3286 }
3287 
3288 void __init hugetlb_add_hstate(unsigned int order)
3289 {
3290 	struct hstate *h;
3291 	unsigned long i;
3292 
3293 	if (size_to_hstate(PAGE_SIZE << order)) {
3294 		return;
3295 	}
3296 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3297 	BUG_ON(order == 0);
3298 	h = &hstates[hugetlb_max_hstate++];
3299 	h->order = order;
3300 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3301 	h->nr_huge_pages = 0;
3302 	h->free_huge_pages = 0;
3303 	for (i = 0; i < MAX_NUMNODES; ++i)
3304 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3305 	INIT_LIST_HEAD(&h->hugepage_activelist);
3306 	h->next_nid_to_alloc = first_memory_node;
3307 	h->next_nid_to_free = first_memory_node;
3308 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3309 					huge_page_size(h)/1024);
3310 
3311 	parsed_hstate = h;
3312 }
3313 
3314 /*
3315  * hugepages command line processing
3316  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3317  * specification.  If not, ignore the hugepages value.  hugepages can also
3318  * be the first huge page command line  option in which case it implicitly
3319  * specifies the number of huge pages for the default size.
3320  */
3321 static int __init hugepages_setup(char *s)
3322 {
3323 	unsigned long *mhp;
3324 	static unsigned long *last_mhp;
3325 
3326 	if (!parsed_valid_hugepagesz) {
3327 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3328 		parsed_valid_hugepagesz = true;
3329 		return 0;
3330 	}
3331 
3332 	/*
3333 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3334 	 * yet, so this hugepages= parameter goes to the "default hstate".
3335 	 * Otherwise, it goes with the previously parsed hugepagesz or
3336 	 * default_hugepagesz.
3337 	 */
3338 	else if (!hugetlb_max_hstate)
3339 		mhp = &default_hstate_max_huge_pages;
3340 	else
3341 		mhp = &parsed_hstate->max_huge_pages;
3342 
3343 	if (mhp == last_mhp) {
3344 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3345 		return 0;
3346 	}
3347 
3348 	if (sscanf(s, "%lu", mhp) <= 0)
3349 		*mhp = 0;
3350 
3351 	/*
3352 	 * Global state is always initialized later in hugetlb_init.
3353 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3354 	 * use the bootmem allocator.
3355 	 */
3356 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3357 		hugetlb_hstate_alloc_pages(parsed_hstate);
3358 
3359 	last_mhp = mhp;
3360 
3361 	return 1;
3362 }
3363 __setup("hugepages=", hugepages_setup);
3364 
3365 /*
3366  * hugepagesz command line processing
3367  * A specific huge page size can only be specified once with hugepagesz.
3368  * hugepagesz is followed by hugepages on the command line.  The global
3369  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3370  * hugepagesz argument was valid.
3371  */
3372 static int __init hugepagesz_setup(char *s)
3373 {
3374 	unsigned long size;
3375 	struct hstate *h;
3376 
3377 	parsed_valid_hugepagesz = false;
3378 	size = (unsigned long)memparse(s, NULL);
3379 
3380 	if (!arch_hugetlb_valid_size(size)) {
3381 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3382 		return 0;
3383 	}
3384 
3385 	h = size_to_hstate(size);
3386 	if (h) {
3387 		/*
3388 		 * hstate for this size already exists.  This is normally
3389 		 * an error, but is allowed if the existing hstate is the
3390 		 * default hstate.  More specifically, it is only allowed if
3391 		 * the number of huge pages for the default hstate was not
3392 		 * previously specified.
3393 		 */
3394 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3395 		    default_hstate.max_huge_pages) {
3396 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3397 			return 0;
3398 		}
3399 
3400 		/*
3401 		 * No need to call hugetlb_add_hstate() as hstate already
3402 		 * exists.  But, do set parsed_hstate so that a following
3403 		 * hugepages= parameter will be applied to this hstate.
3404 		 */
3405 		parsed_hstate = h;
3406 		parsed_valid_hugepagesz = true;
3407 		return 1;
3408 	}
3409 
3410 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3411 	parsed_valid_hugepagesz = true;
3412 	return 1;
3413 }
3414 __setup("hugepagesz=", hugepagesz_setup);
3415 
3416 /*
3417  * default_hugepagesz command line input
3418  * Only one instance of default_hugepagesz allowed on command line.
3419  */
3420 static int __init default_hugepagesz_setup(char *s)
3421 {
3422 	unsigned long size;
3423 
3424 	parsed_valid_hugepagesz = false;
3425 	if (parsed_default_hugepagesz) {
3426 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3427 		return 0;
3428 	}
3429 
3430 	size = (unsigned long)memparse(s, NULL);
3431 
3432 	if (!arch_hugetlb_valid_size(size)) {
3433 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3434 		return 0;
3435 	}
3436 
3437 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3438 	parsed_valid_hugepagesz = true;
3439 	parsed_default_hugepagesz = true;
3440 	default_hstate_idx = hstate_index(size_to_hstate(size));
3441 
3442 	/*
3443 	 * The number of default huge pages (for this size) could have been
3444 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3445 	 * then default_hstate_max_huge_pages is set.  If the default huge
3446 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3447 	 * allocated here from bootmem allocator.
3448 	 */
3449 	if (default_hstate_max_huge_pages) {
3450 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3451 		if (hstate_is_gigantic(&default_hstate))
3452 			hugetlb_hstate_alloc_pages(&default_hstate);
3453 		default_hstate_max_huge_pages = 0;
3454 	}
3455 
3456 	return 1;
3457 }
3458 __setup("default_hugepagesz=", default_hugepagesz_setup);
3459 
3460 static unsigned int cpuset_mems_nr(unsigned int *array)
3461 {
3462 	int node;
3463 	unsigned int nr = 0;
3464 
3465 	for_each_node_mask(node, cpuset_current_mems_allowed)
3466 		nr += array[node];
3467 
3468 	return nr;
3469 }
3470 
3471 #ifdef CONFIG_SYSCTL
3472 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3473 			 struct ctl_table *table, int write,
3474 			 void *buffer, size_t *length, loff_t *ppos)
3475 {
3476 	struct hstate *h = &default_hstate;
3477 	unsigned long tmp = h->max_huge_pages;
3478 	int ret;
3479 
3480 	if (!hugepages_supported())
3481 		return -EOPNOTSUPP;
3482 
3483 	table->data = &tmp;
3484 	table->maxlen = sizeof(unsigned long);
3485 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3486 	if (ret)
3487 		goto out;
3488 
3489 	if (write)
3490 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3491 						  NUMA_NO_NODE, tmp, *length);
3492 out:
3493 	return ret;
3494 }
3495 
3496 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3497 			  void *buffer, size_t *length, loff_t *ppos)
3498 {
3499 
3500 	return hugetlb_sysctl_handler_common(false, table, write,
3501 							buffer, length, ppos);
3502 }
3503 
3504 #ifdef CONFIG_NUMA
3505 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3506 			  void *buffer, size_t *length, loff_t *ppos)
3507 {
3508 	return hugetlb_sysctl_handler_common(true, table, write,
3509 							buffer, length, ppos);
3510 }
3511 #endif /* CONFIG_NUMA */
3512 
3513 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3514 		void *buffer, size_t *length, loff_t *ppos)
3515 {
3516 	struct hstate *h = &default_hstate;
3517 	unsigned long tmp;
3518 	int ret;
3519 
3520 	if (!hugepages_supported())
3521 		return -EOPNOTSUPP;
3522 
3523 	tmp = h->nr_overcommit_huge_pages;
3524 
3525 	if (write && hstate_is_gigantic(h))
3526 		return -EINVAL;
3527 
3528 	table->data = &tmp;
3529 	table->maxlen = sizeof(unsigned long);
3530 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3531 	if (ret)
3532 		goto out;
3533 
3534 	if (write) {
3535 		spin_lock(&hugetlb_lock);
3536 		h->nr_overcommit_huge_pages = tmp;
3537 		spin_unlock(&hugetlb_lock);
3538 	}
3539 out:
3540 	return ret;
3541 }
3542 
3543 #endif /* CONFIG_SYSCTL */
3544 
3545 void hugetlb_report_meminfo(struct seq_file *m)
3546 {
3547 	struct hstate *h;
3548 	unsigned long total = 0;
3549 
3550 	if (!hugepages_supported())
3551 		return;
3552 
3553 	for_each_hstate(h) {
3554 		unsigned long count = h->nr_huge_pages;
3555 
3556 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3557 
3558 		if (h == &default_hstate)
3559 			seq_printf(m,
3560 				   "HugePages_Total:   %5lu\n"
3561 				   "HugePages_Free:    %5lu\n"
3562 				   "HugePages_Rsvd:    %5lu\n"
3563 				   "HugePages_Surp:    %5lu\n"
3564 				   "Hugepagesize:   %8lu kB\n",
3565 				   count,
3566 				   h->free_huge_pages,
3567 				   h->resv_huge_pages,
3568 				   h->surplus_huge_pages,
3569 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3570 	}
3571 
3572 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3573 }
3574 
3575 int hugetlb_report_node_meminfo(int nid, char *buf)
3576 {
3577 	struct hstate *h = &default_hstate;
3578 	if (!hugepages_supported())
3579 		return 0;
3580 	return sprintf(buf,
3581 		"Node %d HugePages_Total: %5u\n"
3582 		"Node %d HugePages_Free:  %5u\n"
3583 		"Node %d HugePages_Surp:  %5u\n",
3584 		nid, h->nr_huge_pages_node[nid],
3585 		nid, h->free_huge_pages_node[nid],
3586 		nid, h->surplus_huge_pages_node[nid]);
3587 }
3588 
3589 void hugetlb_show_meminfo(void)
3590 {
3591 	struct hstate *h;
3592 	int nid;
3593 
3594 	if (!hugepages_supported())
3595 		return;
3596 
3597 	for_each_node_state(nid, N_MEMORY)
3598 		for_each_hstate(h)
3599 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3600 				nid,
3601 				h->nr_huge_pages_node[nid],
3602 				h->free_huge_pages_node[nid],
3603 				h->surplus_huge_pages_node[nid],
3604 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3605 }
3606 
3607 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3608 {
3609 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3610 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3611 }
3612 
3613 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3614 unsigned long hugetlb_total_pages(void)
3615 {
3616 	struct hstate *h;
3617 	unsigned long nr_total_pages = 0;
3618 
3619 	for_each_hstate(h)
3620 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3621 	return nr_total_pages;
3622 }
3623 
3624 static int hugetlb_acct_memory(struct hstate *h, long delta)
3625 {
3626 	int ret = -ENOMEM;
3627 
3628 	spin_lock(&hugetlb_lock);
3629 	/*
3630 	 * When cpuset is configured, it breaks the strict hugetlb page
3631 	 * reservation as the accounting is done on a global variable. Such
3632 	 * reservation is completely rubbish in the presence of cpuset because
3633 	 * the reservation is not checked against page availability for the
3634 	 * current cpuset. Application can still potentially OOM'ed by kernel
3635 	 * with lack of free htlb page in cpuset that the task is in.
3636 	 * Attempt to enforce strict accounting with cpuset is almost
3637 	 * impossible (or too ugly) because cpuset is too fluid that
3638 	 * task or memory node can be dynamically moved between cpusets.
3639 	 *
3640 	 * The change of semantics for shared hugetlb mapping with cpuset is
3641 	 * undesirable. However, in order to preserve some of the semantics,
3642 	 * we fall back to check against current free page availability as
3643 	 * a best attempt and hopefully to minimize the impact of changing
3644 	 * semantics that cpuset has.
3645 	 */
3646 	if (delta > 0) {
3647 		if (gather_surplus_pages(h, delta) < 0)
3648 			goto out;
3649 
3650 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3651 			return_unused_surplus_pages(h, delta);
3652 			goto out;
3653 		}
3654 	}
3655 
3656 	ret = 0;
3657 	if (delta < 0)
3658 		return_unused_surplus_pages(h, (unsigned long) -delta);
3659 
3660 out:
3661 	spin_unlock(&hugetlb_lock);
3662 	return ret;
3663 }
3664 
3665 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3666 {
3667 	struct resv_map *resv = vma_resv_map(vma);
3668 
3669 	/*
3670 	 * This new VMA should share its siblings reservation map if present.
3671 	 * The VMA will only ever have a valid reservation map pointer where
3672 	 * it is being copied for another still existing VMA.  As that VMA
3673 	 * has a reference to the reservation map it cannot disappear until
3674 	 * after this open call completes.  It is therefore safe to take a
3675 	 * new reference here without additional locking.
3676 	 */
3677 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3678 		kref_get(&resv->refs);
3679 }
3680 
3681 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3682 {
3683 	struct hstate *h = hstate_vma(vma);
3684 	struct resv_map *resv = vma_resv_map(vma);
3685 	struct hugepage_subpool *spool = subpool_vma(vma);
3686 	unsigned long reserve, start, end;
3687 	long gbl_reserve;
3688 
3689 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3690 		return;
3691 
3692 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3693 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3694 
3695 	reserve = (end - start) - region_count(resv, start, end);
3696 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3697 	if (reserve) {
3698 		/*
3699 		 * Decrement reserve counts.  The global reserve count may be
3700 		 * adjusted if the subpool has a minimum size.
3701 		 */
3702 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3703 		hugetlb_acct_memory(h, -gbl_reserve);
3704 	}
3705 
3706 	kref_put(&resv->refs, resv_map_release);
3707 }
3708 
3709 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3710 {
3711 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3712 		return -EINVAL;
3713 	return 0;
3714 }
3715 
3716 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3717 {
3718 	struct hstate *hstate = hstate_vma(vma);
3719 
3720 	return 1UL << huge_page_shift(hstate);
3721 }
3722 
3723 /*
3724  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3725  * handle_mm_fault() to try to instantiate regular-sized pages in the
3726  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3727  * this far.
3728  */
3729 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3730 {
3731 	BUG();
3732 	return 0;
3733 }
3734 
3735 /*
3736  * When a new function is introduced to vm_operations_struct and added
3737  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3738  * This is because under System V memory model, mappings created via
3739  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3740  * their original vm_ops are overwritten with shm_vm_ops.
3741  */
3742 const struct vm_operations_struct hugetlb_vm_ops = {
3743 	.fault = hugetlb_vm_op_fault,
3744 	.open = hugetlb_vm_op_open,
3745 	.close = hugetlb_vm_op_close,
3746 	.split = hugetlb_vm_op_split,
3747 	.pagesize = hugetlb_vm_op_pagesize,
3748 };
3749 
3750 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3751 				int writable)
3752 {
3753 	pte_t entry;
3754 
3755 	if (writable) {
3756 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3757 					 vma->vm_page_prot)));
3758 	} else {
3759 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3760 					   vma->vm_page_prot));
3761 	}
3762 	entry = pte_mkyoung(entry);
3763 	entry = pte_mkhuge(entry);
3764 	entry = arch_make_huge_pte(entry, vma, page, writable);
3765 
3766 	return entry;
3767 }
3768 
3769 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3770 				   unsigned long address, pte_t *ptep)
3771 {
3772 	pte_t entry;
3773 
3774 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3775 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3776 		update_mmu_cache(vma, address, ptep);
3777 }
3778 
3779 bool is_hugetlb_entry_migration(pte_t pte)
3780 {
3781 	swp_entry_t swp;
3782 
3783 	if (huge_pte_none(pte) || pte_present(pte))
3784 		return false;
3785 	swp = pte_to_swp_entry(pte);
3786 	if (non_swap_entry(swp) && is_migration_entry(swp))
3787 		return true;
3788 	else
3789 		return false;
3790 }
3791 
3792 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3793 {
3794 	swp_entry_t swp;
3795 
3796 	if (huge_pte_none(pte) || pte_present(pte))
3797 		return 0;
3798 	swp = pte_to_swp_entry(pte);
3799 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3800 		return 1;
3801 	else
3802 		return 0;
3803 }
3804 
3805 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3806 			    struct vm_area_struct *vma)
3807 {
3808 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3809 	struct page *ptepage;
3810 	unsigned long addr;
3811 	int cow;
3812 	struct hstate *h = hstate_vma(vma);
3813 	unsigned long sz = huge_page_size(h);
3814 	struct address_space *mapping = vma->vm_file->f_mapping;
3815 	struct mmu_notifier_range range;
3816 	int ret = 0;
3817 
3818 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3819 
3820 	if (cow) {
3821 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3822 					vma->vm_start,
3823 					vma->vm_end);
3824 		mmu_notifier_invalidate_range_start(&range);
3825 	} else {
3826 		/*
3827 		 * For shared mappings i_mmap_rwsem must be held to call
3828 		 * huge_pte_alloc, otherwise the returned ptep could go
3829 		 * away if part of a shared pmd and another thread calls
3830 		 * huge_pmd_unshare.
3831 		 */
3832 		i_mmap_lock_read(mapping);
3833 	}
3834 
3835 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3836 		spinlock_t *src_ptl, *dst_ptl;
3837 		src_pte = huge_pte_offset(src, addr, sz);
3838 		if (!src_pte)
3839 			continue;
3840 		dst_pte = huge_pte_alloc(dst, addr, sz);
3841 		if (!dst_pte) {
3842 			ret = -ENOMEM;
3843 			break;
3844 		}
3845 
3846 		/*
3847 		 * If the pagetables are shared don't copy or take references.
3848 		 * dst_pte == src_pte is the common case of src/dest sharing.
3849 		 *
3850 		 * However, src could have 'unshared' and dst shares with
3851 		 * another vma.  If dst_pte !none, this implies sharing.
3852 		 * Check here before taking page table lock, and once again
3853 		 * after taking the lock below.
3854 		 */
3855 		dst_entry = huge_ptep_get(dst_pte);
3856 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3857 			continue;
3858 
3859 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3860 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3861 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3862 		entry = huge_ptep_get(src_pte);
3863 		dst_entry = huge_ptep_get(dst_pte);
3864 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3865 			/*
3866 			 * Skip if src entry none.  Also, skip in the
3867 			 * unlikely case dst entry !none as this implies
3868 			 * sharing with another vma.
3869 			 */
3870 			;
3871 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3872 				    is_hugetlb_entry_hwpoisoned(entry))) {
3873 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3874 
3875 			if (is_write_migration_entry(swp_entry) && cow) {
3876 				/*
3877 				 * COW mappings require pages in both
3878 				 * parent and child to be set to read.
3879 				 */
3880 				make_migration_entry_read(&swp_entry);
3881 				entry = swp_entry_to_pte(swp_entry);
3882 				set_huge_swap_pte_at(src, addr, src_pte,
3883 						     entry, sz);
3884 			}
3885 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3886 		} else {
3887 			if (cow) {
3888 				/*
3889 				 * No need to notify as we are downgrading page
3890 				 * table protection not changing it to point
3891 				 * to a new page.
3892 				 *
3893 				 * See Documentation/vm/mmu_notifier.rst
3894 				 */
3895 				huge_ptep_set_wrprotect(src, addr, src_pte);
3896 			}
3897 			entry = huge_ptep_get(src_pte);
3898 			ptepage = pte_page(entry);
3899 			get_page(ptepage);
3900 			page_dup_rmap(ptepage, true);
3901 			set_huge_pte_at(dst, addr, dst_pte, entry);
3902 			hugetlb_count_add(pages_per_huge_page(h), dst);
3903 		}
3904 		spin_unlock(src_ptl);
3905 		spin_unlock(dst_ptl);
3906 	}
3907 
3908 	if (cow)
3909 		mmu_notifier_invalidate_range_end(&range);
3910 	else
3911 		i_mmap_unlock_read(mapping);
3912 
3913 	return ret;
3914 }
3915 
3916 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3917 			    unsigned long start, unsigned long end,
3918 			    struct page *ref_page)
3919 {
3920 	struct mm_struct *mm = vma->vm_mm;
3921 	unsigned long address;
3922 	pte_t *ptep;
3923 	pte_t pte;
3924 	spinlock_t *ptl;
3925 	struct page *page;
3926 	struct hstate *h = hstate_vma(vma);
3927 	unsigned long sz = huge_page_size(h);
3928 	struct mmu_notifier_range range;
3929 
3930 	WARN_ON(!is_vm_hugetlb_page(vma));
3931 	BUG_ON(start & ~huge_page_mask(h));
3932 	BUG_ON(end & ~huge_page_mask(h));
3933 
3934 	/*
3935 	 * This is a hugetlb vma, all the pte entries should point
3936 	 * to huge page.
3937 	 */
3938 	tlb_change_page_size(tlb, sz);
3939 	tlb_start_vma(tlb, vma);
3940 
3941 	/*
3942 	 * If sharing possible, alert mmu notifiers of worst case.
3943 	 */
3944 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3945 				end);
3946 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3947 	mmu_notifier_invalidate_range_start(&range);
3948 	address = start;
3949 	for (; address < end; address += sz) {
3950 		ptep = huge_pte_offset(mm, address, sz);
3951 		if (!ptep)
3952 			continue;
3953 
3954 		ptl = huge_pte_lock(h, mm, ptep);
3955 		if (huge_pmd_unshare(mm, &address, ptep)) {
3956 			spin_unlock(ptl);
3957 			/*
3958 			 * We just unmapped a page of PMDs by clearing a PUD.
3959 			 * The caller's TLB flush range should cover this area.
3960 			 */
3961 			continue;
3962 		}
3963 
3964 		pte = huge_ptep_get(ptep);
3965 		if (huge_pte_none(pte)) {
3966 			spin_unlock(ptl);
3967 			continue;
3968 		}
3969 
3970 		/*
3971 		 * Migrating hugepage or HWPoisoned hugepage is already
3972 		 * unmapped and its refcount is dropped, so just clear pte here.
3973 		 */
3974 		if (unlikely(!pte_present(pte))) {
3975 			huge_pte_clear(mm, address, ptep, sz);
3976 			spin_unlock(ptl);
3977 			continue;
3978 		}
3979 
3980 		page = pte_page(pte);
3981 		/*
3982 		 * If a reference page is supplied, it is because a specific
3983 		 * page is being unmapped, not a range. Ensure the page we
3984 		 * are about to unmap is the actual page of interest.
3985 		 */
3986 		if (ref_page) {
3987 			if (page != ref_page) {
3988 				spin_unlock(ptl);
3989 				continue;
3990 			}
3991 			/*
3992 			 * Mark the VMA as having unmapped its page so that
3993 			 * future faults in this VMA will fail rather than
3994 			 * looking like data was lost
3995 			 */
3996 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3997 		}
3998 
3999 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4000 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4001 		if (huge_pte_dirty(pte))
4002 			set_page_dirty(page);
4003 
4004 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4005 		page_remove_rmap(page, true);
4006 
4007 		spin_unlock(ptl);
4008 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4009 		/*
4010 		 * Bail out after unmapping reference page if supplied
4011 		 */
4012 		if (ref_page)
4013 			break;
4014 	}
4015 	mmu_notifier_invalidate_range_end(&range);
4016 	tlb_end_vma(tlb, vma);
4017 }
4018 
4019 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4020 			  struct vm_area_struct *vma, unsigned long start,
4021 			  unsigned long end, struct page *ref_page)
4022 {
4023 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4024 
4025 	/*
4026 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4027 	 * test will fail on a vma being torn down, and not grab a page table
4028 	 * on its way out.  We're lucky that the flag has such an appropriate
4029 	 * name, and can in fact be safely cleared here. We could clear it
4030 	 * before the __unmap_hugepage_range above, but all that's necessary
4031 	 * is to clear it before releasing the i_mmap_rwsem. This works
4032 	 * because in the context this is called, the VMA is about to be
4033 	 * destroyed and the i_mmap_rwsem is held.
4034 	 */
4035 	vma->vm_flags &= ~VM_MAYSHARE;
4036 }
4037 
4038 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4039 			  unsigned long end, struct page *ref_page)
4040 {
4041 	struct mm_struct *mm;
4042 	struct mmu_gather tlb;
4043 	unsigned long tlb_start = start;
4044 	unsigned long tlb_end = end;
4045 
4046 	/*
4047 	 * If shared PMDs were possibly used within this vma range, adjust
4048 	 * start/end for worst case tlb flushing.
4049 	 * Note that we can not be sure if PMDs are shared until we try to
4050 	 * unmap pages.  However, we want to make sure TLB flushing covers
4051 	 * the largest possible range.
4052 	 */
4053 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4054 
4055 	mm = vma->vm_mm;
4056 
4057 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4058 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4059 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4060 }
4061 
4062 /*
4063  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4064  * mappping it owns the reserve page for. The intention is to unmap the page
4065  * from other VMAs and let the children be SIGKILLed if they are faulting the
4066  * same region.
4067  */
4068 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4069 			      struct page *page, unsigned long address)
4070 {
4071 	struct hstate *h = hstate_vma(vma);
4072 	struct vm_area_struct *iter_vma;
4073 	struct address_space *mapping;
4074 	pgoff_t pgoff;
4075 
4076 	/*
4077 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4078 	 * from page cache lookup which is in HPAGE_SIZE units.
4079 	 */
4080 	address = address & huge_page_mask(h);
4081 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4082 			vma->vm_pgoff;
4083 	mapping = vma->vm_file->f_mapping;
4084 
4085 	/*
4086 	 * Take the mapping lock for the duration of the table walk. As
4087 	 * this mapping should be shared between all the VMAs,
4088 	 * __unmap_hugepage_range() is called as the lock is already held
4089 	 */
4090 	i_mmap_lock_write(mapping);
4091 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4092 		/* Do not unmap the current VMA */
4093 		if (iter_vma == vma)
4094 			continue;
4095 
4096 		/*
4097 		 * Shared VMAs have their own reserves and do not affect
4098 		 * MAP_PRIVATE accounting but it is possible that a shared
4099 		 * VMA is using the same page so check and skip such VMAs.
4100 		 */
4101 		if (iter_vma->vm_flags & VM_MAYSHARE)
4102 			continue;
4103 
4104 		/*
4105 		 * Unmap the page from other VMAs without their own reserves.
4106 		 * They get marked to be SIGKILLed if they fault in these
4107 		 * areas. This is because a future no-page fault on this VMA
4108 		 * could insert a zeroed page instead of the data existing
4109 		 * from the time of fork. This would look like data corruption
4110 		 */
4111 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4112 			unmap_hugepage_range(iter_vma, address,
4113 					     address + huge_page_size(h), page);
4114 	}
4115 	i_mmap_unlock_write(mapping);
4116 }
4117 
4118 /*
4119  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4120  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4121  * cannot race with other handlers or page migration.
4122  * Keep the pte_same checks anyway to make transition from the mutex easier.
4123  */
4124 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4125 		       unsigned long address, pte_t *ptep,
4126 		       struct page *pagecache_page, spinlock_t *ptl)
4127 {
4128 	pte_t pte;
4129 	struct hstate *h = hstate_vma(vma);
4130 	struct page *old_page, *new_page;
4131 	int outside_reserve = 0;
4132 	vm_fault_t ret = 0;
4133 	unsigned long haddr = address & huge_page_mask(h);
4134 	struct mmu_notifier_range range;
4135 
4136 	pte = huge_ptep_get(ptep);
4137 	old_page = pte_page(pte);
4138 
4139 retry_avoidcopy:
4140 	/* If no-one else is actually using this page, avoid the copy
4141 	 * and just make the page writable */
4142 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4143 		page_move_anon_rmap(old_page, vma);
4144 		set_huge_ptep_writable(vma, haddr, ptep);
4145 		return 0;
4146 	}
4147 
4148 	/*
4149 	 * If the process that created a MAP_PRIVATE mapping is about to
4150 	 * perform a COW due to a shared page count, attempt to satisfy
4151 	 * the allocation without using the existing reserves. The pagecache
4152 	 * page is used to determine if the reserve at this address was
4153 	 * consumed or not. If reserves were used, a partial faulted mapping
4154 	 * at the time of fork() could consume its reserves on COW instead
4155 	 * of the full address range.
4156 	 */
4157 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4158 			old_page != pagecache_page)
4159 		outside_reserve = 1;
4160 
4161 	get_page(old_page);
4162 
4163 	/*
4164 	 * Drop page table lock as buddy allocator may be called. It will
4165 	 * be acquired again before returning to the caller, as expected.
4166 	 */
4167 	spin_unlock(ptl);
4168 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4169 
4170 	if (IS_ERR(new_page)) {
4171 		/*
4172 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4173 		 * it is due to references held by a child and an insufficient
4174 		 * huge page pool. To guarantee the original mappers
4175 		 * reliability, unmap the page from child processes. The child
4176 		 * may get SIGKILLed if it later faults.
4177 		 */
4178 		if (outside_reserve) {
4179 			put_page(old_page);
4180 			BUG_ON(huge_pte_none(pte));
4181 			unmap_ref_private(mm, vma, old_page, haddr);
4182 			BUG_ON(huge_pte_none(pte));
4183 			spin_lock(ptl);
4184 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4185 			if (likely(ptep &&
4186 				   pte_same(huge_ptep_get(ptep), pte)))
4187 				goto retry_avoidcopy;
4188 			/*
4189 			 * race occurs while re-acquiring page table
4190 			 * lock, and our job is done.
4191 			 */
4192 			return 0;
4193 		}
4194 
4195 		ret = vmf_error(PTR_ERR(new_page));
4196 		goto out_release_old;
4197 	}
4198 
4199 	/*
4200 	 * When the original hugepage is shared one, it does not have
4201 	 * anon_vma prepared.
4202 	 */
4203 	if (unlikely(anon_vma_prepare(vma))) {
4204 		ret = VM_FAULT_OOM;
4205 		goto out_release_all;
4206 	}
4207 
4208 	copy_user_huge_page(new_page, old_page, address, vma,
4209 			    pages_per_huge_page(h));
4210 	__SetPageUptodate(new_page);
4211 
4212 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4213 				haddr + huge_page_size(h));
4214 	mmu_notifier_invalidate_range_start(&range);
4215 
4216 	/*
4217 	 * Retake the page table lock to check for racing updates
4218 	 * before the page tables are altered
4219 	 */
4220 	spin_lock(ptl);
4221 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4222 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4223 		ClearPagePrivate(new_page);
4224 
4225 		/* Break COW */
4226 		huge_ptep_clear_flush(vma, haddr, ptep);
4227 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4228 		set_huge_pte_at(mm, haddr, ptep,
4229 				make_huge_pte(vma, new_page, 1));
4230 		page_remove_rmap(old_page, true);
4231 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4232 		set_page_huge_active(new_page);
4233 		/* Make the old page be freed below */
4234 		new_page = old_page;
4235 	}
4236 	spin_unlock(ptl);
4237 	mmu_notifier_invalidate_range_end(&range);
4238 out_release_all:
4239 	restore_reserve_on_error(h, vma, haddr, new_page);
4240 	put_page(new_page);
4241 out_release_old:
4242 	put_page(old_page);
4243 
4244 	spin_lock(ptl); /* Caller expects lock to be held */
4245 	return ret;
4246 }
4247 
4248 /* Return the pagecache page at a given address within a VMA */
4249 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4250 			struct vm_area_struct *vma, unsigned long address)
4251 {
4252 	struct address_space *mapping;
4253 	pgoff_t idx;
4254 
4255 	mapping = vma->vm_file->f_mapping;
4256 	idx = vma_hugecache_offset(h, vma, address);
4257 
4258 	return find_lock_page(mapping, idx);
4259 }
4260 
4261 /*
4262  * Return whether there is a pagecache page to back given address within VMA.
4263  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4264  */
4265 static bool hugetlbfs_pagecache_present(struct hstate *h,
4266 			struct vm_area_struct *vma, unsigned long address)
4267 {
4268 	struct address_space *mapping;
4269 	pgoff_t idx;
4270 	struct page *page;
4271 
4272 	mapping = vma->vm_file->f_mapping;
4273 	idx = vma_hugecache_offset(h, vma, address);
4274 
4275 	page = find_get_page(mapping, idx);
4276 	if (page)
4277 		put_page(page);
4278 	return page != NULL;
4279 }
4280 
4281 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4282 			   pgoff_t idx)
4283 {
4284 	struct inode *inode = mapping->host;
4285 	struct hstate *h = hstate_inode(inode);
4286 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4287 
4288 	if (err)
4289 		return err;
4290 	ClearPagePrivate(page);
4291 
4292 	/*
4293 	 * set page dirty so that it will not be removed from cache/file
4294 	 * by non-hugetlbfs specific code paths.
4295 	 */
4296 	set_page_dirty(page);
4297 
4298 	spin_lock(&inode->i_lock);
4299 	inode->i_blocks += blocks_per_huge_page(h);
4300 	spin_unlock(&inode->i_lock);
4301 	return 0;
4302 }
4303 
4304 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4305 			struct vm_area_struct *vma,
4306 			struct address_space *mapping, pgoff_t idx,
4307 			unsigned long address, pte_t *ptep, unsigned int flags)
4308 {
4309 	struct hstate *h = hstate_vma(vma);
4310 	vm_fault_t ret = VM_FAULT_SIGBUS;
4311 	int anon_rmap = 0;
4312 	unsigned long size;
4313 	struct page *page;
4314 	pte_t new_pte;
4315 	spinlock_t *ptl;
4316 	unsigned long haddr = address & huge_page_mask(h);
4317 	bool new_page = false;
4318 
4319 	/*
4320 	 * Currently, we are forced to kill the process in the event the
4321 	 * original mapper has unmapped pages from the child due to a failed
4322 	 * COW. Warn that such a situation has occurred as it may not be obvious
4323 	 */
4324 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4325 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4326 			   current->pid);
4327 		return ret;
4328 	}
4329 
4330 	/*
4331 	 * We can not race with truncation due to holding i_mmap_rwsem.
4332 	 * i_size is modified when holding i_mmap_rwsem, so check here
4333 	 * once for faults beyond end of file.
4334 	 */
4335 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4336 	if (idx >= size)
4337 		goto out;
4338 
4339 retry:
4340 	page = find_lock_page(mapping, idx);
4341 	if (!page) {
4342 		/*
4343 		 * Check for page in userfault range
4344 		 */
4345 		if (userfaultfd_missing(vma)) {
4346 			u32 hash;
4347 			struct vm_fault vmf = {
4348 				.vma = vma,
4349 				.address = haddr,
4350 				.flags = flags,
4351 				/*
4352 				 * Hard to debug if it ends up being
4353 				 * used by a callee that assumes
4354 				 * something about the other
4355 				 * uninitialized fields... same as in
4356 				 * memory.c
4357 				 */
4358 			};
4359 
4360 			/*
4361 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4362 			 * dropped before handling userfault.  Reacquire
4363 			 * after handling fault to make calling code simpler.
4364 			 */
4365 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4366 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4367 			i_mmap_unlock_read(mapping);
4368 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4369 			i_mmap_lock_read(mapping);
4370 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4371 			goto out;
4372 		}
4373 
4374 		page = alloc_huge_page(vma, haddr, 0);
4375 		if (IS_ERR(page)) {
4376 			/*
4377 			 * Returning error will result in faulting task being
4378 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4379 			 * tasks from racing to fault in the same page which
4380 			 * could result in false unable to allocate errors.
4381 			 * Page migration does not take the fault mutex, but
4382 			 * does a clear then write of pte's under page table
4383 			 * lock.  Page fault code could race with migration,
4384 			 * notice the clear pte and try to allocate a page
4385 			 * here.  Before returning error, get ptl and make
4386 			 * sure there really is no pte entry.
4387 			 */
4388 			ptl = huge_pte_lock(h, mm, ptep);
4389 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4390 				ret = 0;
4391 				spin_unlock(ptl);
4392 				goto out;
4393 			}
4394 			spin_unlock(ptl);
4395 			ret = vmf_error(PTR_ERR(page));
4396 			goto out;
4397 		}
4398 		clear_huge_page(page, address, pages_per_huge_page(h));
4399 		__SetPageUptodate(page);
4400 		new_page = true;
4401 
4402 		if (vma->vm_flags & VM_MAYSHARE) {
4403 			int err = huge_add_to_page_cache(page, mapping, idx);
4404 			if (err) {
4405 				put_page(page);
4406 				if (err == -EEXIST)
4407 					goto retry;
4408 				goto out;
4409 			}
4410 		} else {
4411 			lock_page(page);
4412 			if (unlikely(anon_vma_prepare(vma))) {
4413 				ret = VM_FAULT_OOM;
4414 				goto backout_unlocked;
4415 			}
4416 			anon_rmap = 1;
4417 		}
4418 	} else {
4419 		/*
4420 		 * If memory error occurs between mmap() and fault, some process
4421 		 * don't have hwpoisoned swap entry for errored virtual address.
4422 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4423 		 */
4424 		if (unlikely(PageHWPoison(page))) {
4425 			ret = VM_FAULT_HWPOISON |
4426 				VM_FAULT_SET_HINDEX(hstate_index(h));
4427 			goto backout_unlocked;
4428 		}
4429 	}
4430 
4431 	/*
4432 	 * If we are going to COW a private mapping later, we examine the
4433 	 * pending reservations for this page now. This will ensure that
4434 	 * any allocations necessary to record that reservation occur outside
4435 	 * the spinlock.
4436 	 */
4437 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4438 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4439 			ret = VM_FAULT_OOM;
4440 			goto backout_unlocked;
4441 		}
4442 		/* Just decrements count, does not deallocate */
4443 		vma_end_reservation(h, vma, haddr);
4444 	}
4445 
4446 	ptl = huge_pte_lock(h, mm, ptep);
4447 	ret = 0;
4448 	if (!huge_pte_none(huge_ptep_get(ptep)))
4449 		goto backout;
4450 
4451 	if (anon_rmap) {
4452 		ClearPagePrivate(page);
4453 		hugepage_add_new_anon_rmap(page, vma, haddr);
4454 	} else
4455 		page_dup_rmap(page, true);
4456 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4457 				&& (vma->vm_flags & VM_SHARED)));
4458 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4459 
4460 	hugetlb_count_add(pages_per_huge_page(h), mm);
4461 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4462 		/* Optimization, do the COW without a second fault */
4463 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4464 	}
4465 
4466 	spin_unlock(ptl);
4467 
4468 	/*
4469 	 * Only make newly allocated pages active.  Existing pages found
4470 	 * in the pagecache could be !page_huge_active() if they have been
4471 	 * isolated for migration.
4472 	 */
4473 	if (new_page)
4474 		set_page_huge_active(page);
4475 
4476 	unlock_page(page);
4477 out:
4478 	return ret;
4479 
4480 backout:
4481 	spin_unlock(ptl);
4482 backout_unlocked:
4483 	unlock_page(page);
4484 	restore_reserve_on_error(h, vma, haddr, page);
4485 	put_page(page);
4486 	goto out;
4487 }
4488 
4489 #ifdef CONFIG_SMP
4490 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4491 {
4492 	unsigned long key[2];
4493 	u32 hash;
4494 
4495 	key[0] = (unsigned long) mapping;
4496 	key[1] = idx;
4497 
4498 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4499 
4500 	return hash & (num_fault_mutexes - 1);
4501 }
4502 #else
4503 /*
4504  * For uniprocesor systems we always use a single mutex, so just
4505  * return 0 and avoid the hashing overhead.
4506  */
4507 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4508 {
4509 	return 0;
4510 }
4511 #endif
4512 
4513 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4514 			unsigned long address, unsigned int flags)
4515 {
4516 	pte_t *ptep, entry;
4517 	spinlock_t *ptl;
4518 	vm_fault_t ret;
4519 	u32 hash;
4520 	pgoff_t idx;
4521 	struct page *page = NULL;
4522 	struct page *pagecache_page = NULL;
4523 	struct hstate *h = hstate_vma(vma);
4524 	struct address_space *mapping;
4525 	int need_wait_lock = 0;
4526 	unsigned long haddr = address & huge_page_mask(h);
4527 
4528 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4529 	if (ptep) {
4530 		/*
4531 		 * Since we hold no locks, ptep could be stale.  That is
4532 		 * OK as we are only making decisions based on content and
4533 		 * not actually modifying content here.
4534 		 */
4535 		entry = huge_ptep_get(ptep);
4536 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4537 			migration_entry_wait_huge(vma, mm, ptep);
4538 			return 0;
4539 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4540 			return VM_FAULT_HWPOISON_LARGE |
4541 				VM_FAULT_SET_HINDEX(hstate_index(h));
4542 	} else {
4543 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4544 		if (!ptep)
4545 			return VM_FAULT_OOM;
4546 	}
4547 
4548 	/*
4549 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4550 	 * until finished with ptep.  This serves two purposes:
4551 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4552 	 *    and making the ptep no longer valid.
4553 	 * 2) It synchronizes us with i_size modifications during truncation.
4554 	 *
4555 	 * ptep could have already be assigned via huge_pte_offset.  That
4556 	 * is OK, as huge_pte_alloc will return the same value unless
4557 	 * something has changed.
4558 	 */
4559 	mapping = vma->vm_file->f_mapping;
4560 	i_mmap_lock_read(mapping);
4561 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4562 	if (!ptep) {
4563 		i_mmap_unlock_read(mapping);
4564 		return VM_FAULT_OOM;
4565 	}
4566 
4567 	/*
4568 	 * Serialize hugepage allocation and instantiation, so that we don't
4569 	 * get spurious allocation failures if two CPUs race to instantiate
4570 	 * the same page in the page cache.
4571 	 */
4572 	idx = vma_hugecache_offset(h, vma, haddr);
4573 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4574 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4575 
4576 	entry = huge_ptep_get(ptep);
4577 	if (huge_pte_none(entry)) {
4578 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4579 		goto out_mutex;
4580 	}
4581 
4582 	ret = 0;
4583 
4584 	/*
4585 	 * entry could be a migration/hwpoison entry at this point, so this
4586 	 * check prevents the kernel from going below assuming that we have
4587 	 * an active hugepage in pagecache. This goto expects the 2nd page
4588 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4589 	 * properly handle it.
4590 	 */
4591 	if (!pte_present(entry))
4592 		goto out_mutex;
4593 
4594 	/*
4595 	 * If we are going to COW the mapping later, we examine the pending
4596 	 * reservations for this page now. This will ensure that any
4597 	 * allocations necessary to record that reservation occur outside the
4598 	 * spinlock. For private mappings, we also lookup the pagecache
4599 	 * page now as it is used to determine if a reservation has been
4600 	 * consumed.
4601 	 */
4602 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4603 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4604 			ret = VM_FAULT_OOM;
4605 			goto out_mutex;
4606 		}
4607 		/* Just decrements count, does not deallocate */
4608 		vma_end_reservation(h, vma, haddr);
4609 
4610 		if (!(vma->vm_flags & VM_MAYSHARE))
4611 			pagecache_page = hugetlbfs_pagecache_page(h,
4612 								vma, haddr);
4613 	}
4614 
4615 	ptl = huge_pte_lock(h, mm, ptep);
4616 
4617 	/* Check for a racing update before calling hugetlb_cow */
4618 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4619 		goto out_ptl;
4620 
4621 	/*
4622 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4623 	 * pagecache_page, so here we need take the former one
4624 	 * when page != pagecache_page or !pagecache_page.
4625 	 */
4626 	page = pte_page(entry);
4627 	if (page != pagecache_page)
4628 		if (!trylock_page(page)) {
4629 			need_wait_lock = 1;
4630 			goto out_ptl;
4631 		}
4632 
4633 	get_page(page);
4634 
4635 	if (flags & FAULT_FLAG_WRITE) {
4636 		if (!huge_pte_write(entry)) {
4637 			ret = hugetlb_cow(mm, vma, address, ptep,
4638 					  pagecache_page, ptl);
4639 			goto out_put_page;
4640 		}
4641 		entry = huge_pte_mkdirty(entry);
4642 	}
4643 	entry = pte_mkyoung(entry);
4644 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4645 						flags & FAULT_FLAG_WRITE))
4646 		update_mmu_cache(vma, haddr, ptep);
4647 out_put_page:
4648 	if (page != pagecache_page)
4649 		unlock_page(page);
4650 	put_page(page);
4651 out_ptl:
4652 	spin_unlock(ptl);
4653 
4654 	if (pagecache_page) {
4655 		unlock_page(pagecache_page);
4656 		put_page(pagecache_page);
4657 	}
4658 out_mutex:
4659 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4660 	i_mmap_unlock_read(mapping);
4661 	/*
4662 	 * Generally it's safe to hold refcount during waiting page lock. But
4663 	 * here we just wait to defer the next page fault to avoid busy loop and
4664 	 * the page is not used after unlocked before returning from the current
4665 	 * page fault. So we are safe from accessing freed page, even if we wait
4666 	 * here without taking refcount.
4667 	 */
4668 	if (need_wait_lock)
4669 		wait_on_page_locked(page);
4670 	return ret;
4671 }
4672 
4673 /*
4674  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4675  * modifications for huge pages.
4676  */
4677 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4678 			    pte_t *dst_pte,
4679 			    struct vm_area_struct *dst_vma,
4680 			    unsigned long dst_addr,
4681 			    unsigned long src_addr,
4682 			    struct page **pagep)
4683 {
4684 	struct address_space *mapping;
4685 	pgoff_t idx;
4686 	unsigned long size;
4687 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4688 	struct hstate *h = hstate_vma(dst_vma);
4689 	pte_t _dst_pte;
4690 	spinlock_t *ptl;
4691 	int ret;
4692 	struct page *page;
4693 
4694 	if (!*pagep) {
4695 		ret = -ENOMEM;
4696 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4697 		if (IS_ERR(page))
4698 			goto out;
4699 
4700 		ret = copy_huge_page_from_user(page,
4701 						(const void __user *) src_addr,
4702 						pages_per_huge_page(h), false);
4703 
4704 		/* fallback to copy_from_user outside mmap_lock */
4705 		if (unlikely(ret)) {
4706 			ret = -ENOENT;
4707 			*pagep = page;
4708 			/* don't free the page */
4709 			goto out;
4710 		}
4711 	} else {
4712 		page = *pagep;
4713 		*pagep = NULL;
4714 	}
4715 
4716 	/*
4717 	 * The memory barrier inside __SetPageUptodate makes sure that
4718 	 * preceding stores to the page contents become visible before
4719 	 * the set_pte_at() write.
4720 	 */
4721 	__SetPageUptodate(page);
4722 
4723 	mapping = dst_vma->vm_file->f_mapping;
4724 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4725 
4726 	/*
4727 	 * If shared, add to page cache
4728 	 */
4729 	if (vm_shared) {
4730 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4731 		ret = -EFAULT;
4732 		if (idx >= size)
4733 			goto out_release_nounlock;
4734 
4735 		/*
4736 		 * Serialization between remove_inode_hugepages() and
4737 		 * huge_add_to_page_cache() below happens through the
4738 		 * hugetlb_fault_mutex_table that here must be hold by
4739 		 * the caller.
4740 		 */
4741 		ret = huge_add_to_page_cache(page, mapping, idx);
4742 		if (ret)
4743 			goto out_release_nounlock;
4744 	}
4745 
4746 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4747 	spin_lock(ptl);
4748 
4749 	/*
4750 	 * Recheck the i_size after holding PT lock to make sure not
4751 	 * to leave any page mapped (as page_mapped()) beyond the end
4752 	 * of the i_size (remove_inode_hugepages() is strict about
4753 	 * enforcing that). If we bail out here, we'll also leave a
4754 	 * page in the radix tree in the vm_shared case beyond the end
4755 	 * of the i_size, but remove_inode_hugepages() will take care
4756 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4757 	 */
4758 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4759 	ret = -EFAULT;
4760 	if (idx >= size)
4761 		goto out_release_unlock;
4762 
4763 	ret = -EEXIST;
4764 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4765 		goto out_release_unlock;
4766 
4767 	if (vm_shared) {
4768 		page_dup_rmap(page, true);
4769 	} else {
4770 		ClearPagePrivate(page);
4771 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4772 	}
4773 
4774 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4775 	if (dst_vma->vm_flags & VM_WRITE)
4776 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4777 	_dst_pte = pte_mkyoung(_dst_pte);
4778 
4779 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4780 
4781 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4782 					dst_vma->vm_flags & VM_WRITE);
4783 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4784 
4785 	/* No need to invalidate - it was non-present before */
4786 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4787 
4788 	spin_unlock(ptl);
4789 	set_page_huge_active(page);
4790 	if (vm_shared)
4791 		unlock_page(page);
4792 	ret = 0;
4793 out:
4794 	return ret;
4795 out_release_unlock:
4796 	spin_unlock(ptl);
4797 	if (vm_shared)
4798 		unlock_page(page);
4799 out_release_nounlock:
4800 	put_page(page);
4801 	goto out;
4802 }
4803 
4804 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4805 			 struct page **pages, struct vm_area_struct **vmas,
4806 			 unsigned long *position, unsigned long *nr_pages,
4807 			 long i, unsigned int flags, int *locked)
4808 {
4809 	unsigned long pfn_offset;
4810 	unsigned long vaddr = *position;
4811 	unsigned long remainder = *nr_pages;
4812 	struct hstate *h = hstate_vma(vma);
4813 	int err = -EFAULT;
4814 
4815 	while (vaddr < vma->vm_end && remainder) {
4816 		pte_t *pte;
4817 		spinlock_t *ptl = NULL;
4818 		int absent;
4819 		struct page *page;
4820 
4821 		/*
4822 		 * If we have a pending SIGKILL, don't keep faulting pages and
4823 		 * potentially allocating memory.
4824 		 */
4825 		if (fatal_signal_pending(current)) {
4826 			remainder = 0;
4827 			break;
4828 		}
4829 
4830 		/*
4831 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4832 		 * each hugepage.  We have to make sure we get the
4833 		 * first, for the page indexing below to work.
4834 		 *
4835 		 * Note that page table lock is not held when pte is null.
4836 		 */
4837 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4838 				      huge_page_size(h));
4839 		if (pte)
4840 			ptl = huge_pte_lock(h, mm, pte);
4841 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4842 
4843 		/*
4844 		 * When coredumping, it suits get_dump_page if we just return
4845 		 * an error where there's an empty slot with no huge pagecache
4846 		 * to back it.  This way, we avoid allocating a hugepage, and
4847 		 * the sparse dumpfile avoids allocating disk blocks, but its
4848 		 * huge holes still show up with zeroes where they need to be.
4849 		 */
4850 		if (absent && (flags & FOLL_DUMP) &&
4851 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4852 			if (pte)
4853 				spin_unlock(ptl);
4854 			remainder = 0;
4855 			break;
4856 		}
4857 
4858 		/*
4859 		 * We need call hugetlb_fault for both hugepages under migration
4860 		 * (in which case hugetlb_fault waits for the migration,) and
4861 		 * hwpoisoned hugepages (in which case we need to prevent the
4862 		 * caller from accessing to them.) In order to do this, we use
4863 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4864 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4865 		 * both cases, and because we can't follow correct pages
4866 		 * directly from any kind of swap entries.
4867 		 */
4868 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4869 		    ((flags & FOLL_WRITE) &&
4870 		      !huge_pte_write(huge_ptep_get(pte)))) {
4871 			vm_fault_t ret;
4872 			unsigned int fault_flags = 0;
4873 
4874 			if (pte)
4875 				spin_unlock(ptl);
4876 			if (flags & FOLL_WRITE)
4877 				fault_flags |= FAULT_FLAG_WRITE;
4878 			if (locked)
4879 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4880 					FAULT_FLAG_KILLABLE;
4881 			if (flags & FOLL_NOWAIT)
4882 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4883 					FAULT_FLAG_RETRY_NOWAIT;
4884 			if (flags & FOLL_TRIED) {
4885 				/*
4886 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4887 				 * FAULT_FLAG_TRIED can co-exist
4888 				 */
4889 				fault_flags |= FAULT_FLAG_TRIED;
4890 			}
4891 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4892 			if (ret & VM_FAULT_ERROR) {
4893 				err = vm_fault_to_errno(ret, flags);
4894 				remainder = 0;
4895 				break;
4896 			}
4897 			if (ret & VM_FAULT_RETRY) {
4898 				if (locked &&
4899 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4900 					*locked = 0;
4901 				*nr_pages = 0;
4902 				/*
4903 				 * VM_FAULT_RETRY must not return an
4904 				 * error, it will return zero
4905 				 * instead.
4906 				 *
4907 				 * No need to update "position" as the
4908 				 * caller will not check it after
4909 				 * *nr_pages is set to 0.
4910 				 */
4911 				return i;
4912 			}
4913 			continue;
4914 		}
4915 
4916 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4917 		page = pte_page(huge_ptep_get(pte));
4918 
4919 		/*
4920 		 * If subpage information not requested, update counters
4921 		 * and skip the same_page loop below.
4922 		 */
4923 		if (!pages && !vmas && !pfn_offset &&
4924 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4925 		    (remainder >= pages_per_huge_page(h))) {
4926 			vaddr += huge_page_size(h);
4927 			remainder -= pages_per_huge_page(h);
4928 			i += pages_per_huge_page(h);
4929 			spin_unlock(ptl);
4930 			continue;
4931 		}
4932 
4933 same_page:
4934 		if (pages) {
4935 			pages[i] = mem_map_offset(page, pfn_offset);
4936 			/*
4937 			 * try_grab_page() should always succeed here, because:
4938 			 * a) we hold the ptl lock, and b) we've just checked
4939 			 * that the huge page is present in the page tables. If
4940 			 * the huge page is present, then the tail pages must
4941 			 * also be present. The ptl prevents the head page and
4942 			 * tail pages from being rearranged in any way. So this
4943 			 * page must be available at this point, unless the page
4944 			 * refcount overflowed:
4945 			 */
4946 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4947 				spin_unlock(ptl);
4948 				remainder = 0;
4949 				err = -ENOMEM;
4950 				break;
4951 			}
4952 		}
4953 
4954 		if (vmas)
4955 			vmas[i] = vma;
4956 
4957 		vaddr += PAGE_SIZE;
4958 		++pfn_offset;
4959 		--remainder;
4960 		++i;
4961 		if (vaddr < vma->vm_end && remainder &&
4962 				pfn_offset < pages_per_huge_page(h)) {
4963 			/*
4964 			 * We use pfn_offset to avoid touching the pageframes
4965 			 * of this compound page.
4966 			 */
4967 			goto same_page;
4968 		}
4969 		spin_unlock(ptl);
4970 	}
4971 	*nr_pages = remainder;
4972 	/*
4973 	 * setting position is actually required only if remainder is
4974 	 * not zero but it's faster not to add a "if (remainder)"
4975 	 * branch.
4976 	 */
4977 	*position = vaddr;
4978 
4979 	return i ? i : err;
4980 }
4981 
4982 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4983 /*
4984  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4985  * implement this.
4986  */
4987 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4988 #endif
4989 
4990 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4991 		unsigned long address, unsigned long end, pgprot_t newprot)
4992 {
4993 	struct mm_struct *mm = vma->vm_mm;
4994 	unsigned long start = address;
4995 	pte_t *ptep;
4996 	pte_t pte;
4997 	struct hstate *h = hstate_vma(vma);
4998 	unsigned long pages = 0;
4999 	bool shared_pmd = false;
5000 	struct mmu_notifier_range range;
5001 
5002 	/*
5003 	 * In the case of shared PMDs, the area to flush could be beyond
5004 	 * start/end.  Set range.start/range.end to cover the maximum possible
5005 	 * range if PMD sharing is possible.
5006 	 */
5007 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5008 				0, vma, mm, start, end);
5009 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5010 
5011 	BUG_ON(address >= end);
5012 	flush_cache_range(vma, range.start, range.end);
5013 
5014 	mmu_notifier_invalidate_range_start(&range);
5015 	i_mmap_lock_write(vma->vm_file->f_mapping);
5016 	for (; address < end; address += huge_page_size(h)) {
5017 		spinlock_t *ptl;
5018 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5019 		if (!ptep)
5020 			continue;
5021 		ptl = huge_pte_lock(h, mm, ptep);
5022 		if (huge_pmd_unshare(mm, &address, ptep)) {
5023 			pages++;
5024 			spin_unlock(ptl);
5025 			shared_pmd = true;
5026 			continue;
5027 		}
5028 		pte = huge_ptep_get(ptep);
5029 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5030 			spin_unlock(ptl);
5031 			continue;
5032 		}
5033 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5034 			swp_entry_t entry = pte_to_swp_entry(pte);
5035 
5036 			if (is_write_migration_entry(entry)) {
5037 				pte_t newpte;
5038 
5039 				make_migration_entry_read(&entry);
5040 				newpte = swp_entry_to_pte(entry);
5041 				set_huge_swap_pte_at(mm, address, ptep,
5042 						     newpte, huge_page_size(h));
5043 				pages++;
5044 			}
5045 			spin_unlock(ptl);
5046 			continue;
5047 		}
5048 		if (!huge_pte_none(pte)) {
5049 			pte_t old_pte;
5050 
5051 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5052 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5053 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5054 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5055 			pages++;
5056 		}
5057 		spin_unlock(ptl);
5058 	}
5059 	/*
5060 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5061 	 * may have cleared our pud entry and done put_page on the page table:
5062 	 * once we release i_mmap_rwsem, another task can do the final put_page
5063 	 * and that page table be reused and filled with junk.  If we actually
5064 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5065 	 */
5066 	if (shared_pmd)
5067 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5068 	else
5069 		flush_hugetlb_tlb_range(vma, start, end);
5070 	/*
5071 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5072 	 * page table protection not changing it to point to a new page.
5073 	 *
5074 	 * See Documentation/vm/mmu_notifier.rst
5075 	 */
5076 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5077 	mmu_notifier_invalidate_range_end(&range);
5078 
5079 	return pages << h->order;
5080 }
5081 
5082 int hugetlb_reserve_pages(struct inode *inode,
5083 					long from, long to,
5084 					struct vm_area_struct *vma,
5085 					vm_flags_t vm_flags)
5086 {
5087 	long ret, chg, add = -1;
5088 	struct hstate *h = hstate_inode(inode);
5089 	struct hugepage_subpool *spool = subpool_inode(inode);
5090 	struct resv_map *resv_map;
5091 	struct hugetlb_cgroup *h_cg = NULL;
5092 	long gbl_reserve, regions_needed = 0;
5093 
5094 	/* This should never happen */
5095 	if (from > to) {
5096 		VM_WARN(1, "%s called with a negative range\n", __func__);
5097 		return -EINVAL;
5098 	}
5099 
5100 	/*
5101 	 * Only apply hugepage reservation if asked. At fault time, an
5102 	 * attempt will be made for VM_NORESERVE to allocate a page
5103 	 * without using reserves
5104 	 */
5105 	if (vm_flags & VM_NORESERVE)
5106 		return 0;
5107 
5108 	/*
5109 	 * Shared mappings base their reservation on the number of pages that
5110 	 * are already allocated on behalf of the file. Private mappings need
5111 	 * to reserve the full area even if read-only as mprotect() may be
5112 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5113 	 */
5114 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5115 		/*
5116 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5117 		 * called for inodes for which resv_maps were created (see
5118 		 * hugetlbfs_get_inode).
5119 		 */
5120 		resv_map = inode_resv_map(inode);
5121 
5122 		chg = region_chg(resv_map, from, to, &regions_needed);
5123 
5124 	} else {
5125 		/* Private mapping. */
5126 		resv_map = resv_map_alloc();
5127 		if (!resv_map)
5128 			return -ENOMEM;
5129 
5130 		chg = to - from;
5131 
5132 		set_vma_resv_map(vma, resv_map);
5133 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5134 	}
5135 
5136 	if (chg < 0) {
5137 		ret = chg;
5138 		goto out_err;
5139 	}
5140 
5141 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5142 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5143 
5144 	if (ret < 0) {
5145 		ret = -ENOMEM;
5146 		goto out_err;
5147 	}
5148 
5149 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5150 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5151 		 * of the resv_map.
5152 		 */
5153 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5154 	}
5155 
5156 	/*
5157 	 * There must be enough pages in the subpool for the mapping. If
5158 	 * the subpool has a minimum size, there may be some global
5159 	 * reservations already in place (gbl_reserve).
5160 	 */
5161 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5162 	if (gbl_reserve < 0) {
5163 		ret = -ENOSPC;
5164 		goto out_uncharge_cgroup;
5165 	}
5166 
5167 	/*
5168 	 * Check enough hugepages are available for the reservation.
5169 	 * Hand the pages back to the subpool if there are not
5170 	 */
5171 	ret = hugetlb_acct_memory(h, gbl_reserve);
5172 	if (ret < 0) {
5173 		goto out_put_pages;
5174 	}
5175 
5176 	/*
5177 	 * Account for the reservations made. Shared mappings record regions
5178 	 * that have reservations as they are shared by multiple VMAs.
5179 	 * When the last VMA disappears, the region map says how much
5180 	 * the reservation was and the page cache tells how much of
5181 	 * the reservation was consumed. Private mappings are per-VMA and
5182 	 * only the consumed reservations are tracked. When the VMA
5183 	 * disappears, the original reservation is the VMA size and the
5184 	 * consumed reservations are stored in the map. Hence, nothing
5185 	 * else has to be done for private mappings here
5186 	 */
5187 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5188 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5189 
5190 		if (unlikely(add < 0)) {
5191 			hugetlb_acct_memory(h, -gbl_reserve);
5192 			goto out_put_pages;
5193 		} else if (unlikely(chg > add)) {
5194 			/*
5195 			 * pages in this range were added to the reserve
5196 			 * map between region_chg and region_add.  This
5197 			 * indicates a race with alloc_huge_page.  Adjust
5198 			 * the subpool and reserve counts modified above
5199 			 * based on the difference.
5200 			 */
5201 			long rsv_adjust;
5202 
5203 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5204 				hstate_index(h),
5205 				(chg - add) * pages_per_huge_page(h), h_cg);
5206 
5207 			rsv_adjust = hugepage_subpool_put_pages(spool,
5208 								chg - add);
5209 			hugetlb_acct_memory(h, -rsv_adjust);
5210 		}
5211 	}
5212 	return 0;
5213 out_put_pages:
5214 	/* put back original number of pages, chg */
5215 	(void)hugepage_subpool_put_pages(spool, chg);
5216 out_uncharge_cgroup:
5217 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5218 					    chg * pages_per_huge_page(h), h_cg);
5219 out_err:
5220 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5221 		/* Only call region_abort if the region_chg succeeded but the
5222 		 * region_add failed or didn't run.
5223 		 */
5224 		if (chg >= 0 && add < 0)
5225 			region_abort(resv_map, from, to, regions_needed);
5226 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5227 		kref_put(&resv_map->refs, resv_map_release);
5228 	return ret;
5229 }
5230 
5231 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5232 								long freed)
5233 {
5234 	struct hstate *h = hstate_inode(inode);
5235 	struct resv_map *resv_map = inode_resv_map(inode);
5236 	long chg = 0;
5237 	struct hugepage_subpool *spool = subpool_inode(inode);
5238 	long gbl_reserve;
5239 
5240 	/*
5241 	 * Since this routine can be called in the evict inode path for all
5242 	 * hugetlbfs inodes, resv_map could be NULL.
5243 	 */
5244 	if (resv_map) {
5245 		chg = region_del(resv_map, start, end);
5246 		/*
5247 		 * region_del() can fail in the rare case where a region
5248 		 * must be split and another region descriptor can not be
5249 		 * allocated.  If end == LONG_MAX, it will not fail.
5250 		 */
5251 		if (chg < 0)
5252 			return chg;
5253 	}
5254 
5255 	spin_lock(&inode->i_lock);
5256 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5257 	spin_unlock(&inode->i_lock);
5258 
5259 	/*
5260 	 * If the subpool has a minimum size, the number of global
5261 	 * reservations to be released may be adjusted.
5262 	 */
5263 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5264 	hugetlb_acct_memory(h, -gbl_reserve);
5265 
5266 	return 0;
5267 }
5268 
5269 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5270 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5271 				struct vm_area_struct *vma,
5272 				unsigned long addr, pgoff_t idx)
5273 {
5274 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5275 				svma->vm_start;
5276 	unsigned long sbase = saddr & PUD_MASK;
5277 	unsigned long s_end = sbase + PUD_SIZE;
5278 
5279 	/* Allow segments to share if only one is marked locked */
5280 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5281 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5282 
5283 	/*
5284 	 * match the virtual addresses, permission and the alignment of the
5285 	 * page table page.
5286 	 */
5287 	if (pmd_index(addr) != pmd_index(saddr) ||
5288 	    vm_flags != svm_flags ||
5289 	    sbase < svma->vm_start || svma->vm_end < s_end)
5290 		return 0;
5291 
5292 	return saddr;
5293 }
5294 
5295 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5296 {
5297 	unsigned long base = addr & PUD_MASK;
5298 	unsigned long end = base + PUD_SIZE;
5299 
5300 	/*
5301 	 * check on proper vm_flags and page table alignment
5302 	 */
5303 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5304 		return true;
5305 	return false;
5306 }
5307 
5308 /*
5309  * Determine if start,end range within vma could be mapped by shared pmd.
5310  * If yes, adjust start and end to cover range associated with possible
5311  * shared pmd mappings.
5312  */
5313 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5314 				unsigned long *start, unsigned long *end)
5315 {
5316 	unsigned long check_addr;
5317 
5318 	if (!(vma->vm_flags & VM_MAYSHARE))
5319 		return;
5320 
5321 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5322 		unsigned long a_start = check_addr & PUD_MASK;
5323 		unsigned long a_end = a_start + PUD_SIZE;
5324 
5325 		/*
5326 		 * If sharing is possible, adjust start/end if necessary.
5327 		 */
5328 		if (range_in_vma(vma, a_start, a_end)) {
5329 			if (a_start < *start)
5330 				*start = a_start;
5331 			if (a_end > *end)
5332 				*end = a_end;
5333 		}
5334 	}
5335 }
5336 
5337 /*
5338  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5339  * and returns the corresponding pte. While this is not necessary for the
5340  * !shared pmd case because we can allocate the pmd later as well, it makes the
5341  * code much cleaner.
5342  *
5343  * This routine must be called with i_mmap_rwsem held in at least read mode.
5344  * For hugetlbfs, this prevents removal of any page table entries associated
5345  * with the address space.  This is important as we are setting up sharing
5346  * based on existing page table entries (mappings).
5347  */
5348 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5349 {
5350 	struct vm_area_struct *vma = find_vma(mm, addr);
5351 	struct address_space *mapping = vma->vm_file->f_mapping;
5352 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5353 			vma->vm_pgoff;
5354 	struct vm_area_struct *svma;
5355 	unsigned long saddr;
5356 	pte_t *spte = NULL;
5357 	pte_t *pte;
5358 	spinlock_t *ptl;
5359 
5360 	if (!vma_shareable(vma, addr))
5361 		return (pte_t *)pmd_alloc(mm, pud, addr);
5362 
5363 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5364 		if (svma == vma)
5365 			continue;
5366 
5367 		saddr = page_table_shareable(svma, vma, addr, idx);
5368 		if (saddr) {
5369 			spte = huge_pte_offset(svma->vm_mm, saddr,
5370 					       vma_mmu_pagesize(svma));
5371 			if (spte) {
5372 				get_page(virt_to_page(spte));
5373 				break;
5374 			}
5375 		}
5376 	}
5377 
5378 	if (!spte)
5379 		goto out;
5380 
5381 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5382 	if (pud_none(*pud)) {
5383 		pud_populate(mm, pud,
5384 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5385 		mm_inc_nr_pmds(mm);
5386 	} else {
5387 		put_page(virt_to_page(spte));
5388 	}
5389 	spin_unlock(ptl);
5390 out:
5391 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5392 	return pte;
5393 }
5394 
5395 /*
5396  * unmap huge page backed by shared pte.
5397  *
5398  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5399  * indicated by page_count > 1, unmap is achieved by clearing pud and
5400  * decrementing the ref count. If count == 1, the pte page is not shared.
5401  *
5402  * Called with page table lock held and i_mmap_rwsem held in write mode.
5403  *
5404  * returns: 1 successfully unmapped a shared pte page
5405  *	    0 the underlying pte page is not shared, or it is the last user
5406  */
5407 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5408 {
5409 	pgd_t *pgd = pgd_offset(mm, *addr);
5410 	p4d_t *p4d = p4d_offset(pgd, *addr);
5411 	pud_t *pud = pud_offset(p4d, *addr);
5412 
5413 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5414 	if (page_count(virt_to_page(ptep)) == 1)
5415 		return 0;
5416 
5417 	pud_clear(pud);
5418 	put_page(virt_to_page(ptep));
5419 	mm_dec_nr_pmds(mm);
5420 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5421 	return 1;
5422 }
5423 #define want_pmd_share()	(1)
5424 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5425 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5426 {
5427 	return NULL;
5428 }
5429 
5430 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5431 {
5432 	return 0;
5433 }
5434 
5435 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5436 				unsigned long *start, unsigned long *end)
5437 {
5438 }
5439 #define want_pmd_share()	(0)
5440 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5441 
5442 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5443 pte_t *huge_pte_alloc(struct mm_struct *mm,
5444 			unsigned long addr, unsigned long sz)
5445 {
5446 	pgd_t *pgd;
5447 	p4d_t *p4d;
5448 	pud_t *pud;
5449 	pte_t *pte = NULL;
5450 
5451 	pgd = pgd_offset(mm, addr);
5452 	p4d = p4d_alloc(mm, pgd, addr);
5453 	if (!p4d)
5454 		return NULL;
5455 	pud = pud_alloc(mm, p4d, addr);
5456 	if (pud) {
5457 		if (sz == PUD_SIZE) {
5458 			pte = (pte_t *)pud;
5459 		} else {
5460 			BUG_ON(sz != PMD_SIZE);
5461 			if (want_pmd_share() && pud_none(*pud))
5462 				pte = huge_pmd_share(mm, addr, pud);
5463 			else
5464 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5465 		}
5466 	}
5467 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5468 
5469 	return pte;
5470 }
5471 
5472 /*
5473  * huge_pte_offset() - Walk the page table to resolve the hugepage
5474  * entry at address @addr
5475  *
5476  * Return: Pointer to page table entry (PUD or PMD) for
5477  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5478  * size @sz doesn't match the hugepage size at this level of the page
5479  * table.
5480  */
5481 pte_t *huge_pte_offset(struct mm_struct *mm,
5482 		       unsigned long addr, unsigned long sz)
5483 {
5484 	pgd_t *pgd;
5485 	p4d_t *p4d;
5486 	pud_t *pud;
5487 	pmd_t *pmd;
5488 
5489 	pgd = pgd_offset(mm, addr);
5490 	if (!pgd_present(*pgd))
5491 		return NULL;
5492 	p4d = p4d_offset(pgd, addr);
5493 	if (!p4d_present(*p4d))
5494 		return NULL;
5495 
5496 	pud = pud_offset(p4d, addr);
5497 	if (sz == PUD_SIZE)
5498 		/* must be pud huge, non-present or none */
5499 		return (pte_t *)pud;
5500 	if (!pud_present(*pud))
5501 		return NULL;
5502 	/* must have a valid entry and size to go further */
5503 
5504 	pmd = pmd_offset(pud, addr);
5505 	/* must be pmd huge, non-present or none */
5506 	return (pte_t *)pmd;
5507 }
5508 
5509 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5510 
5511 /*
5512  * These functions are overwritable if your architecture needs its own
5513  * behavior.
5514  */
5515 struct page * __weak
5516 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5517 			      int write)
5518 {
5519 	return ERR_PTR(-EINVAL);
5520 }
5521 
5522 struct page * __weak
5523 follow_huge_pd(struct vm_area_struct *vma,
5524 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5525 {
5526 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5527 	return NULL;
5528 }
5529 
5530 struct page * __weak
5531 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5532 		pmd_t *pmd, int flags)
5533 {
5534 	struct page *page = NULL;
5535 	spinlock_t *ptl;
5536 	pte_t pte;
5537 
5538 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5539 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5540 			 (FOLL_PIN | FOLL_GET)))
5541 		return NULL;
5542 
5543 retry:
5544 	ptl = pmd_lockptr(mm, pmd);
5545 	spin_lock(ptl);
5546 	/*
5547 	 * make sure that the address range covered by this pmd is not
5548 	 * unmapped from other threads.
5549 	 */
5550 	if (!pmd_huge(*pmd))
5551 		goto out;
5552 	pte = huge_ptep_get((pte_t *)pmd);
5553 	if (pte_present(pte)) {
5554 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5555 		/*
5556 		 * try_grab_page() should always succeed here, because: a) we
5557 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5558 		 * huge pmd (head) page is present in the page tables. The ptl
5559 		 * prevents the head page and tail pages from being rearranged
5560 		 * in any way. So this page must be available at this point,
5561 		 * unless the page refcount overflowed:
5562 		 */
5563 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5564 			page = NULL;
5565 			goto out;
5566 		}
5567 	} else {
5568 		if (is_hugetlb_entry_migration(pte)) {
5569 			spin_unlock(ptl);
5570 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5571 			goto retry;
5572 		}
5573 		/*
5574 		 * hwpoisoned entry is treated as no_page_table in
5575 		 * follow_page_mask().
5576 		 */
5577 	}
5578 out:
5579 	spin_unlock(ptl);
5580 	return page;
5581 }
5582 
5583 struct page * __weak
5584 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5585 		pud_t *pud, int flags)
5586 {
5587 	if (flags & (FOLL_GET | FOLL_PIN))
5588 		return NULL;
5589 
5590 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5591 }
5592 
5593 struct page * __weak
5594 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5595 {
5596 	if (flags & (FOLL_GET | FOLL_PIN))
5597 		return NULL;
5598 
5599 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5600 }
5601 
5602 bool isolate_huge_page(struct page *page, struct list_head *list)
5603 {
5604 	bool ret = true;
5605 
5606 	VM_BUG_ON_PAGE(!PageHead(page), page);
5607 	spin_lock(&hugetlb_lock);
5608 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5609 		ret = false;
5610 		goto unlock;
5611 	}
5612 	clear_page_huge_active(page);
5613 	list_move_tail(&page->lru, list);
5614 unlock:
5615 	spin_unlock(&hugetlb_lock);
5616 	return ret;
5617 }
5618 
5619 void putback_active_hugepage(struct page *page)
5620 {
5621 	VM_BUG_ON_PAGE(!PageHead(page), page);
5622 	spin_lock(&hugetlb_lock);
5623 	set_page_huge_active(page);
5624 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5625 	spin_unlock(&hugetlb_lock);
5626 	put_page(page);
5627 }
5628 
5629 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5630 {
5631 	struct hstate *h = page_hstate(oldpage);
5632 
5633 	hugetlb_cgroup_migrate(oldpage, newpage);
5634 	set_page_owner_migrate_reason(newpage, reason);
5635 
5636 	/*
5637 	 * transfer temporary state of the new huge page. This is
5638 	 * reverse to other transitions because the newpage is going to
5639 	 * be final while the old one will be freed so it takes over
5640 	 * the temporary status.
5641 	 *
5642 	 * Also note that we have to transfer the per-node surplus state
5643 	 * here as well otherwise the global surplus count will not match
5644 	 * the per-node's.
5645 	 */
5646 	if (PageHugeTemporary(newpage)) {
5647 		int old_nid = page_to_nid(oldpage);
5648 		int new_nid = page_to_nid(newpage);
5649 
5650 		SetPageHugeTemporary(oldpage);
5651 		ClearPageHugeTemporary(newpage);
5652 
5653 		spin_lock(&hugetlb_lock);
5654 		if (h->surplus_huge_pages_node[old_nid]) {
5655 			h->surplus_huge_pages_node[old_nid]--;
5656 			h->surplus_huge_pages_node[new_nid]++;
5657 		}
5658 		spin_unlock(&hugetlb_lock);
5659 	}
5660 }
5661 
5662 #ifdef CONFIG_CMA
5663 static bool cma_reserve_called __initdata;
5664 
5665 static int __init cmdline_parse_hugetlb_cma(char *p)
5666 {
5667 	hugetlb_cma_size = memparse(p, &p);
5668 	return 0;
5669 }
5670 
5671 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5672 
5673 void __init hugetlb_cma_reserve(int order)
5674 {
5675 	unsigned long size, reserved, per_node;
5676 	int nid;
5677 
5678 	cma_reserve_called = true;
5679 
5680 	if (!hugetlb_cma_size)
5681 		return;
5682 
5683 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5684 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5685 			(PAGE_SIZE << order) / SZ_1M);
5686 		return;
5687 	}
5688 
5689 	/*
5690 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5691 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5692 	 */
5693 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5694 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5695 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5696 
5697 	reserved = 0;
5698 	for_each_node_state(nid, N_ONLINE) {
5699 		int res;
5700 
5701 		size = min(per_node, hugetlb_cma_size - reserved);
5702 		size = round_up(size, PAGE_SIZE << order);
5703 
5704 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5705 						 0, false, "hugetlb",
5706 						 &hugetlb_cma[nid], nid);
5707 		if (res) {
5708 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5709 				res, nid);
5710 			continue;
5711 		}
5712 
5713 		reserved += size;
5714 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5715 			size / SZ_1M, nid);
5716 
5717 		if (reserved >= hugetlb_cma_size)
5718 			break;
5719 	}
5720 }
5721 
5722 void __init hugetlb_cma_check(void)
5723 {
5724 	if (!hugetlb_cma_size || cma_reserve_called)
5725 		return;
5726 
5727 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5728 }
5729 
5730 #endif /* CONFIG_CMA */
5731