1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/rmap.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/page-isolation.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include "internal.h" 37 38 int hugepages_treat_as_movable; 39 40 int hugetlb_max_hstate __read_mostly; 41 unsigned int default_hstate_idx; 42 struct hstate hstates[HUGE_MAX_HSTATE]; 43 /* 44 * Minimum page order among possible hugepage sizes, set to a proper value 45 * at boot time. 46 */ 47 static unsigned int minimum_order __read_mostly = UINT_MAX; 48 49 __initdata LIST_HEAD(huge_boot_pages); 50 51 /* for command line parsing */ 52 static struct hstate * __initdata parsed_hstate; 53 static unsigned long __initdata default_hstate_max_huge_pages; 54 static unsigned long __initdata default_hstate_size; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 if (spool->min_hpages != -1) { /* minimum size accounting */ 149 if (delta > spool->rsv_hpages) { 150 /* 151 * Asking for more reserves than those already taken on 152 * behalf of subpool. Return difference. 153 */ 154 ret = delta - spool->rsv_hpages; 155 spool->rsv_hpages = 0; 156 } else { 157 ret = 0; /* reserves already accounted for */ 158 spool->rsv_hpages -= delta; 159 } 160 } 161 162 unlock_ret: 163 spin_unlock(&spool->lock); 164 return ret; 165 } 166 167 /* 168 * Subpool accounting for freeing and unreserving pages. 169 * Return the number of global page reservations that must be dropped. 170 * The return value may only be different than the passed value (delta) 171 * in the case where a subpool minimum size must be maintained. 172 */ 173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 174 long delta) 175 { 176 long ret = delta; 177 178 if (!spool) 179 return delta; 180 181 spin_lock(&spool->lock); 182 183 if (spool->max_hpages != -1) /* maximum size accounting */ 184 spool->used_hpages -= delta; 185 186 if (spool->min_hpages != -1) { /* minimum size accounting */ 187 if (spool->rsv_hpages + delta <= spool->min_hpages) 188 ret = 0; 189 else 190 ret = spool->rsv_hpages + delta - spool->min_hpages; 191 192 spool->rsv_hpages += delta; 193 if (spool->rsv_hpages > spool->min_hpages) 194 spool->rsv_hpages = spool->min_hpages; 195 } 196 197 /* 198 * If hugetlbfs_put_super couldn't free spool due to an outstanding 199 * quota reference, free it now. 200 */ 201 unlock_or_release_subpool(spool); 202 203 return ret; 204 } 205 206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 207 { 208 return HUGETLBFS_SB(inode->i_sb)->spool; 209 } 210 211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 212 { 213 return subpool_inode(file_inode(vma->vm_file)); 214 } 215 216 /* 217 * Region tracking -- allows tracking of reservations and instantiated pages 218 * across the pages in a mapping. 219 * 220 * The region data structures are embedded into a resv_map and protected 221 * by a resv_map's lock. The set of regions within the resv_map represent 222 * reservations for huge pages, or huge pages that have already been 223 * instantiated within the map. The from and to elements are huge page 224 * indicies into the associated mapping. from indicates the starting index 225 * of the region. to represents the first index past the end of the region. 226 * 227 * For example, a file region structure with from == 0 and to == 4 represents 228 * four huge pages in a mapping. It is important to note that the to element 229 * represents the first element past the end of the region. This is used in 230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 231 * 232 * Interval notation of the form [from, to) will be used to indicate that 233 * the endpoint from is inclusive and to is exclusive. 234 */ 235 struct file_region { 236 struct list_head link; 237 long from; 238 long to; 239 }; 240 241 /* 242 * Add the huge page range represented by [f, t) to the reserve 243 * map. In the normal case, existing regions will be expanded 244 * to accommodate the specified range. Sufficient regions should 245 * exist for expansion due to the previous call to region_chg 246 * with the same range. However, it is possible that region_del 247 * could have been called after region_chg and modifed the map 248 * in such a way that no region exists to be expanded. In this 249 * case, pull a region descriptor from the cache associated with 250 * the map and use that for the new range. 251 * 252 * Return the number of new huge pages added to the map. This 253 * number is greater than or equal to zero. 254 */ 255 static long region_add(struct resv_map *resv, long f, long t) 256 { 257 struct list_head *head = &resv->regions; 258 struct file_region *rg, *nrg, *trg; 259 long add = 0; 260 261 spin_lock(&resv->lock); 262 /* Locate the region we are either in or before. */ 263 list_for_each_entry(rg, head, link) 264 if (f <= rg->to) 265 break; 266 267 /* 268 * If no region exists which can be expanded to include the 269 * specified range, the list must have been modified by an 270 * interleving call to region_del(). Pull a region descriptor 271 * from the cache and use it for this range. 272 */ 273 if (&rg->link == head || t < rg->from) { 274 VM_BUG_ON(resv->region_cache_count <= 0); 275 276 resv->region_cache_count--; 277 nrg = list_first_entry(&resv->region_cache, struct file_region, 278 link); 279 list_del(&nrg->link); 280 281 nrg->from = f; 282 nrg->to = t; 283 list_add(&nrg->link, rg->link.prev); 284 285 add += t - f; 286 goto out_locked; 287 } 288 289 /* Round our left edge to the current segment if it encloses us. */ 290 if (f > rg->from) 291 f = rg->from; 292 293 /* Check for and consume any regions we now overlap with. */ 294 nrg = rg; 295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 296 if (&rg->link == head) 297 break; 298 if (rg->from > t) 299 break; 300 301 /* If this area reaches higher then extend our area to 302 * include it completely. If this is not the first area 303 * which we intend to reuse, free it. */ 304 if (rg->to > t) 305 t = rg->to; 306 if (rg != nrg) { 307 /* Decrement return value by the deleted range. 308 * Another range will span this area so that by 309 * end of routine add will be >= zero 310 */ 311 add -= (rg->to - rg->from); 312 list_del(&rg->link); 313 kfree(rg); 314 } 315 } 316 317 add += (nrg->from - f); /* Added to beginning of region */ 318 nrg->from = f; 319 add += t - nrg->to; /* Added to end of region */ 320 nrg->to = t; 321 322 out_locked: 323 resv->adds_in_progress--; 324 spin_unlock(&resv->lock); 325 VM_BUG_ON(add < 0); 326 return add; 327 } 328 329 /* 330 * Examine the existing reserve map and determine how many 331 * huge pages in the specified range [f, t) are NOT currently 332 * represented. This routine is called before a subsequent 333 * call to region_add that will actually modify the reserve 334 * map to add the specified range [f, t). region_chg does 335 * not change the number of huge pages represented by the 336 * map. However, if the existing regions in the map can not 337 * be expanded to represent the new range, a new file_region 338 * structure is added to the map as a placeholder. This is 339 * so that the subsequent region_add call will have all the 340 * regions it needs and will not fail. 341 * 342 * Upon entry, region_chg will also examine the cache of region descriptors 343 * associated with the map. If there are not enough descriptors cached, one 344 * will be allocated for the in progress add operation. 345 * 346 * Returns the number of huge pages that need to be added to the existing 347 * reservation map for the range [f, t). This number is greater or equal to 348 * zero. -ENOMEM is returned if a new file_region structure or cache entry 349 * is needed and can not be allocated. 350 */ 351 static long region_chg(struct resv_map *resv, long f, long t) 352 { 353 struct list_head *head = &resv->regions; 354 struct file_region *rg, *nrg = NULL; 355 long chg = 0; 356 357 retry: 358 spin_lock(&resv->lock); 359 retry_locked: 360 resv->adds_in_progress++; 361 362 /* 363 * Check for sufficient descriptors in the cache to accommodate 364 * the number of in progress add operations. 365 */ 366 if (resv->adds_in_progress > resv->region_cache_count) { 367 struct file_region *trg; 368 369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 370 /* Must drop lock to allocate a new descriptor. */ 371 resv->adds_in_progress--; 372 spin_unlock(&resv->lock); 373 374 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 375 if (!trg) 376 return -ENOMEM; 377 378 spin_lock(&resv->lock); 379 list_add(&trg->link, &resv->region_cache); 380 resv->region_cache_count++; 381 goto retry_locked; 382 } 383 384 /* Locate the region we are before or in. */ 385 list_for_each_entry(rg, head, link) 386 if (f <= rg->to) 387 break; 388 389 /* If we are below the current region then a new region is required. 390 * Subtle, allocate a new region at the position but make it zero 391 * size such that we can guarantee to record the reservation. */ 392 if (&rg->link == head || t < rg->from) { 393 if (!nrg) { 394 resv->adds_in_progress--; 395 spin_unlock(&resv->lock); 396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 397 if (!nrg) 398 return -ENOMEM; 399 400 nrg->from = f; 401 nrg->to = f; 402 INIT_LIST_HEAD(&nrg->link); 403 goto retry; 404 } 405 406 list_add(&nrg->link, rg->link.prev); 407 chg = t - f; 408 goto out_nrg; 409 } 410 411 /* Round our left edge to the current segment if it encloses us. */ 412 if (f > rg->from) 413 f = rg->from; 414 chg = t - f; 415 416 /* Check for and consume any regions we now overlap with. */ 417 list_for_each_entry(rg, rg->link.prev, link) { 418 if (&rg->link == head) 419 break; 420 if (rg->from > t) 421 goto out; 422 423 /* We overlap with this area, if it extends further than 424 * us then we must extend ourselves. Account for its 425 * existing reservation. */ 426 if (rg->to > t) { 427 chg += rg->to - t; 428 t = rg->to; 429 } 430 chg -= rg->to - rg->from; 431 } 432 433 out: 434 spin_unlock(&resv->lock); 435 /* We already know we raced and no longer need the new region */ 436 kfree(nrg); 437 return chg; 438 out_nrg: 439 spin_unlock(&resv->lock); 440 return chg; 441 } 442 443 /* 444 * Abort the in progress add operation. The adds_in_progress field 445 * of the resv_map keeps track of the operations in progress between 446 * calls to region_chg and region_add. Operations are sometimes 447 * aborted after the call to region_chg. In such cases, region_abort 448 * is called to decrement the adds_in_progress counter. 449 * 450 * NOTE: The range arguments [f, t) are not needed or used in this 451 * routine. They are kept to make reading the calling code easier as 452 * arguments will match the associated region_chg call. 453 */ 454 static void region_abort(struct resv_map *resv, long f, long t) 455 { 456 spin_lock(&resv->lock); 457 VM_BUG_ON(!resv->region_cache_count); 458 resv->adds_in_progress--; 459 spin_unlock(&resv->lock); 460 } 461 462 /* 463 * Delete the specified range [f, t) from the reserve map. If the 464 * t parameter is LONG_MAX, this indicates that ALL regions after f 465 * should be deleted. Locate the regions which intersect [f, t) 466 * and either trim, delete or split the existing regions. 467 * 468 * Returns the number of huge pages deleted from the reserve map. 469 * In the normal case, the return value is zero or more. In the 470 * case where a region must be split, a new region descriptor must 471 * be allocated. If the allocation fails, -ENOMEM will be returned. 472 * NOTE: If the parameter t == LONG_MAX, then we will never split 473 * a region and possibly return -ENOMEM. Callers specifying 474 * t == LONG_MAX do not need to check for -ENOMEM error. 475 */ 476 static long region_del(struct resv_map *resv, long f, long t) 477 { 478 struct list_head *head = &resv->regions; 479 struct file_region *rg, *trg; 480 struct file_region *nrg = NULL; 481 long del = 0; 482 483 retry: 484 spin_lock(&resv->lock); 485 list_for_each_entry_safe(rg, trg, head, link) { 486 if (rg->to <= f) 487 continue; 488 if (rg->from >= t) 489 break; 490 491 if (f > rg->from && t < rg->to) { /* Must split region */ 492 /* 493 * Check for an entry in the cache before dropping 494 * lock and attempting allocation. 495 */ 496 if (!nrg && 497 resv->region_cache_count > resv->adds_in_progress) { 498 nrg = list_first_entry(&resv->region_cache, 499 struct file_region, 500 link); 501 list_del(&nrg->link); 502 resv->region_cache_count--; 503 } 504 505 if (!nrg) { 506 spin_unlock(&resv->lock); 507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 508 if (!nrg) 509 return -ENOMEM; 510 goto retry; 511 } 512 513 del += t - f; 514 515 /* New entry for end of split region */ 516 nrg->from = t; 517 nrg->to = rg->to; 518 INIT_LIST_HEAD(&nrg->link); 519 520 /* Original entry is trimmed */ 521 rg->to = f; 522 523 list_add(&nrg->link, &rg->link); 524 nrg = NULL; 525 break; 526 } 527 528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 529 del += rg->to - rg->from; 530 list_del(&rg->link); 531 kfree(rg); 532 continue; 533 } 534 535 if (f <= rg->from) { /* Trim beginning of region */ 536 del += t - rg->from; 537 rg->from = t; 538 } else { /* Trim end of region */ 539 del += rg->to - f; 540 rg->to = f; 541 } 542 } 543 544 spin_unlock(&resv->lock); 545 kfree(nrg); 546 return del; 547 } 548 549 /* 550 * A rare out of memory error was encountered which prevented removal of 551 * the reserve map region for a page. The huge page itself was free'ed 552 * and removed from the page cache. This routine will adjust the subpool 553 * usage count, and the global reserve count if needed. By incrementing 554 * these counts, the reserve map entry which could not be deleted will 555 * appear as a "reserved" entry instead of simply dangling with incorrect 556 * counts. 557 */ 558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 559 { 560 struct hugepage_subpool *spool = subpool_inode(inode); 561 long rsv_adjust; 562 563 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 564 if (restore_reserve && rsv_adjust) { 565 struct hstate *h = hstate_inode(inode); 566 567 hugetlb_acct_memory(h, 1); 568 } 569 } 570 571 /* 572 * Count and return the number of huge pages in the reserve map 573 * that intersect with the range [f, t). 574 */ 575 static long region_count(struct resv_map *resv, long f, long t) 576 { 577 struct list_head *head = &resv->regions; 578 struct file_region *rg; 579 long chg = 0; 580 581 spin_lock(&resv->lock); 582 /* Locate each segment we overlap with, and count that overlap. */ 583 list_for_each_entry(rg, head, link) { 584 long seg_from; 585 long seg_to; 586 587 if (rg->to <= f) 588 continue; 589 if (rg->from >= t) 590 break; 591 592 seg_from = max(rg->from, f); 593 seg_to = min(rg->to, t); 594 595 chg += seg_to - seg_from; 596 } 597 spin_unlock(&resv->lock); 598 599 return chg; 600 } 601 602 /* 603 * Convert the address within this vma to the page offset within 604 * the mapping, in pagecache page units; huge pages here. 605 */ 606 static pgoff_t vma_hugecache_offset(struct hstate *h, 607 struct vm_area_struct *vma, unsigned long address) 608 { 609 return ((address - vma->vm_start) >> huge_page_shift(h)) + 610 (vma->vm_pgoff >> huge_page_order(h)); 611 } 612 613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 614 unsigned long address) 615 { 616 return vma_hugecache_offset(hstate_vma(vma), vma, address); 617 } 618 619 /* 620 * Return the size of the pages allocated when backing a VMA. In the majority 621 * cases this will be same size as used by the page table entries. 622 */ 623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 624 { 625 struct hstate *hstate; 626 627 if (!is_vm_hugetlb_page(vma)) 628 return PAGE_SIZE; 629 630 hstate = hstate_vma(vma); 631 632 return 1UL << huge_page_shift(hstate); 633 } 634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 635 636 /* 637 * Return the page size being used by the MMU to back a VMA. In the majority 638 * of cases, the page size used by the kernel matches the MMU size. On 639 * architectures where it differs, an architecture-specific version of this 640 * function is required. 641 */ 642 #ifndef vma_mmu_pagesize 643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 644 { 645 return vma_kernel_pagesize(vma); 646 } 647 #endif 648 649 /* 650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 651 * bits of the reservation map pointer, which are always clear due to 652 * alignment. 653 */ 654 #define HPAGE_RESV_OWNER (1UL << 0) 655 #define HPAGE_RESV_UNMAPPED (1UL << 1) 656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 657 658 /* 659 * These helpers are used to track how many pages are reserved for 660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 661 * is guaranteed to have their future faults succeed. 662 * 663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 664 * the reserve counters are updated with the hugetlb_lock held. It is safe 665 * to reset the VMA at fork() time as it is not in use yet and there is no 666 * chance of the global counters getting corrupted as a result of the values. 667 * 668 * The private mapping reservation is represented in a subtly different 669 * manner to a shared mapping. A shared mapping has a region map associated 670 * with the underlying file, this region map represents the backing file 671 * pages which have ever had a reservation assigned which this persists even 672 * after the page is instantiated. A private mapping has a region map 673 * associated with the original mmap which is attached to all VMAs which 674 * reference it, this region map represents those offsets which have consumed 675 * reservation ie. where pages have been instantiated. 676 */ 677 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 678 { 679 return (unsigned long)vma->vm_private_data; 680 } 681 682 static void set_vma_private_data(struct vm_area_struct *vma, 683 unsigned long value) 684 { 685 vma->vm_private_data = (void *)value; 686 } 687 688 struct resv_map *resv_map_alloc(void) 689 { 690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 692 693 if (!resv_map || !rg) { 694 kfree(resv_map); 695 kfree(rg); 696 return NULL; 697 } 698 699 kref_init(&resv_map->refs); 700 spin_lock_init(&resv_map->lock); 701 INIT_LIST_HEAD(&resv_map->regions); 702 703 resv_map->adds_in_progress = 0; 704 705 INIT_LIST_HEAD(&resv_map->region_cache); 706 list_add(&rg->link, &resv_map->region_cache); 707 resv_map->region_cache_count = 1; 708 709 return resv_map; 710 } 711 712 void resv_map_release(struct kref *ref) 713 { 714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 715 struct list_head *head = &resv_map->region_cache; 716 struct file_region *rg, *trg; 717 718 /* Clear out any active regions before we release the map. */ 719 region_del(resv_map, 0, LONG_MAX); 720 721 /* ... and any entries left in the cache */ 722 list_for_each_entry_safe(rg, trg, head, link) { 723 list_del(&rg->link); 724 kfree(rg); 725 } 726 727 VM_BUG_ON(resv_map->adds_in_progress); 728 729 kfree(resv_map); 730 } 731 732 static inline struct resv_map *inode_resv_map(struct inode *inode) 733 { 734 return inode->i_mapping->private_data; 735 } 736 737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 738 { 739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 740 if (vma->vm_flags & VM_MAYSHARE) { 741 struct address_space *mapping = vma->vm_file->f_mapping; 742 struct inode *inode = mapping->host; 743 744 return inode_resv_map(inode); 745 746 } else { 747 return (struct resv_map *)(get_vma_private_data(vma) & 748 ~HPAGE_RESV_MASK); 749 } 750 } 751 752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 753 { 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 756 757 set_vma_private_data(vma, (get_vma_private_data(vma) & 758 HPAGE_RESV_MASK) | (unsigned long)map); 759 } 760 761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 762 { 763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 765 766 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 767 } 768 769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 770 { 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 773 return (get_vma_private_data(vma) & flag) != 0; 774 } 775 776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 778 { 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 780 if (!(vma->vm_flags & VM_MAYSHARE)) 781 vma->vm_private_data = (void *)0; 782 } 783 784 /* Returns true if the VMA has associated reserve pages */ 785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 786 { 787 if (vma->vm_flags & VM_NORESERVE) { 788 /* 789 * This address is already reserved by other process(chg == 0), 790 * so, we should decrement reserved count. Without decrementing, 791 * reserve count remains after releasing inode, because this 792 * allocated page will go into page cache and is regarded as 793 * coming from reserved pool in releasing step. Currently, we 794 * don't have any other solution to deal with this situation 795 * properly, so add work-around here. 796 */ 797 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 798 return true; 799 else 800 return false; 801 } 802 803 /* Shared mappings always use reserves */ 804 if (vma->vm_flags & VM_MAYSHARE) { 805 /* 806 * We know VM_NORESERVE is not set. Therefore, there SHOULD 807 * be a region map for all pages. The only situation where 808 * there is no region map is if a hole was punched via 809 * fallocate. In this case, there really are no reverves to 810 * use. This situation is indicated if chg != 0. 811 */ 812 if (chg) 813 return false; 814 else 815 return true; 816 } 817 818 /* 819 * Only the process that called mmap() has reserves for 820 * private mappings. 821 */ 822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 823 return true; 824 825 return false; 826 } 827 828 static void enqueue_huge_page(struct hstate *h, struct page *page) 829 { 830 int nid = page_to_nid(page); 831 list_move(&page->lru, &h->hugepage_freelists[nid]); 832 h->free_huge_pages++; 833 h->free_huge_pages_node[nid]++; 834 } 835 836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 837 { 838 struct page *page; 839 840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 841 if (!is_migrate_isolate_page(page)) 842 break; 843 /* 844 * if 'non-isolated free hugepage' not found on the list, 845 * the allocation fails. 846 */ 847 if (&h->hugepage_freelists[nid] == &page->lru) 848 return NULL; 849 list_move(&page->lru, &h->hugepage_activelist); 850 set_page_refcounted(page); 851 h->free_huge_pages--; 852 h->free_huge_pages_node[nid]--; 853 return page; 854 } 855 856 /* Movability of hugepages depends on migration support. */ 857 static inline gfp_t htlb_alloc_mask(struct hstate *h) 858 { 859 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 860 return GFP_HIGHUSER_MOVABLE; 861 else 862 return GFP_HIGHUSER; 863 } 864 865 static struct page *dequeue_huge_page_vma(struct hstate *h, 866 struct vm_area_struct *vma, 867 unsigned long address, int avoid_reserve, 868 long chg) 869 { 870 struct page *page = NULL; 871 struct mempolicy *mpol; 872 nodemask_t *nodemask; 873 struct zonelist *zonelist; 874 struct zone *zone; 875 struct zoneref *z; 876 unsigned int cpuset_mems_cookie; 877 878 /* 879 * A child process with MAP_PRIVATE mappings created by their parent 880 * have no page reserves. This check ensures that reservations are 881 * not "stolen". The child may still get SIGKILLed 882 */ 883 if (!vma_has_reserves(vma, chg) && 884 h->free_huge_pages - h->resv_huge_pages == 0) 885 goto err; 886 887 /* If reserves cannot be used, ensure enough pages are in the pool */ 888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 889 goto err; 890 891 retry_cpuset: 892 cpuset_mems_cookie = read_mems_allowed_begin(); 893 zonelist = huge_zonelist(vma, address, 894 htlb_alloc_mask(h), &mpol, &nodemask); 895 896 for_each_zone_zonelist_nodemask(zone, z, zonelist, 897 MAX_NR_ZONES - 1, nodemask) { 898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 899 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 900 if (page) { 901 if (avoid_reserve) 902 break; 903 if (!vma_has_reserves(vma, chg)) 904 break; 905 906 SetPagePrivate(page); 907 h->resv_huge_pages--; 908 break; 909 } 910 } 911 } 912 913 mpol_cond_put(mpol); 914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 915 goto retry_cpuset; 916 return page; 917 918 err: 919 return NULL; 920 } 921 922 /* 923 * common helper functions for hstate_next_node_to_{alloc|free}. 924 * We may have allocated or freed a huge page based on a different 925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 926 * be outside of *nodes_allowed. Ensure that we use an allowed 927 * node for alloc or free. 928 */ 929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 930 { 931 nid = next_node(nid, *nodes_allowed); 932 if (nid == MAX_NUMNODES) 933 nid = first_node(*nodes_allowed); 934 VM_BUG_ON(nid >= MAX_NUMNODES); 935 936 return nid; 937 } 938 939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 940 { 941 if (!node_isset(nid, *nodes_allowed)) 942 nid = next_node_allowed(nid, nodes_allowed); 943 return nid; 944 } 945 946 /* 947 * returns the previously saved node ["this node"] from which to 948 * allocate a persistent huge page for the pool and advance the 949 * next node from which to allocate, handling wrap at end of node 950 * mask. 951 */ 952 static int hstate_next_node_to_alloc(struct hstate *h, 953 nodemask_t *nodes_allowed) 954 { 955 int nid; 956 957 VM_BUG_ON(!nodes_allowed); 958 959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 961 962 return nid; 963 } 964 965 /* 966 * helper for free_pool_huge_page() - return the previously saved 967 * node ["this node"] from which to free a huge page. Advance the 968 * next node id whether or not we find a free huge page to free so 969 * that the next attempt to free addresses the next node. 970 */ 971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 972 { 973 int nid; 974 975 VM_BUG_ON(!nodes_allowed); 976 977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 979 980 return nid; 981 } 982 983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 984 for (nr_nodes = nodes_weight(*mask); \ 985 nr_nodes > 0 && \ 986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 987 nr_nodes--) 988 989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 990 for (nr_nodes = nodes_weight(*mask); \ 991 nr_nodes > 0 && \ 992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 993 nr_nodes--) 994 995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64) 996 static void destroy_compound_gigantic_page(struct page *page, 997 unsigned int order) 998 { 999 int i; 1000 int nr_pages = 1 << order; 1001 struct page *p = page + 1; 1002 1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1004 clear_compound_head(p); 1005 set_page_refcounted(p); 1006 } 1007 1008 set_compound_order(page, 0); 1009 __ClearPageHead(page); 1010 } 1011 1012 static void free_gigantic_page(struct page *page, unsigned int order) 1013 { 1014 free_contig_range(page_to_pfn(page), 1 << order); 1015 } 1016 1017 static int __alloc_gigantic_page(unsigned long start_pfn, 1018 unsigned long nr_pages) 1019 { 1020 unsigned long end_pfn = start_pfn + nr_pages; 1021 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1022 } 1023 1024 static bool pfn_range_valid_gigantic(unsigned long start_pfn, 1025 unsigned long nr_pages) 1026 { 1027 unsigned long i, end_pfn = start_pfn + nr_pages; 1028 struct page *page; 1029 1030 for (i = start_pfn; i < end_pfn; i++) { 1031 if (!pfn_valid(i)) 1032 return false; 1033 1034 page = pfn_to_page(i); 1035 1036 if (PageReserved(page)) 1037 return false; 1038 1039 if (page_count(page) > 0) 1040 return false; 1041 1042 if (PageHuge(page)) 1043 return false; 1044 } 1045 1046 return true; 1047 } 1048 1049 static bool zone_spans_last_pfn(const struct zone *zone, 1050 unsigned long start_pfn, unsigned long nr_pages) 1051 { 1052 unsigned long last_pfn = start_pfn + nr_pages - 1; 1053 return zone_spans_pfn(zone, last_pfn); 1054 } 1055 1056 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1057 { 1058 unsigned long nr_pages = 1 << order; 1059 unsigned long ret, pfn, flags; 1060 struct zone *z; 1061 1062 z = NODE_DATA(nid)->node_zones; 1063 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1064 spin_lock_irqsave(&z->lock, flags); 1065 1066 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1067 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1068 if (pfn_range_valid_gigantic(pfn, nr_pages)) { 1069 /* 1070 * We release the zone lock here because 1071 * alloc_contig_range() will also lock the zone 1072 * at some point. If there's an allocation 1073 * spinning on this lock, it may win the race 1074 * and cause alloc_contig_range() to fail... 1075 */ 1076 spin_unlock_irqrestore(&z->lock, flags); 1077 ret = __alloc_gigantic_page(pfn, nr_pages); 1078 if (!ret) 1079 return pfn_to_page(pfn); 1080 spin_lock_irqsave(&z->lock, flags); 1081 } 1082 pfn += nr_pages; 1083 } 1084 1085 spin_unlock_irqrestore(&z->lock, flags); 1086 } 1087 1088 return NULL; 1089 } 1090 1091 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1092 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1093 1094 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1095 { 1096 struct page *page; 1097 1098 page = alloc_gigantic_page(nid, huge_page_order(h)); 1099 if (page) { 1100 prep_compound_gigantic_page(page, huge_page_order(h)); 1101 prep_new_huge_page(h, page, nid); 1102 } 1103 1104 return page; 1105 } 1106 1107 static int alloc_fresh_gigantic_page(struct hstate *h, 1108 nodemask_t *nodes_allowed) 1109 { 1110 struct page *page = NULL; 1111 int nr_nodes, node; 1112 1113 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1114 page = alloc_fresh_gigantic_page_node(h, node); 1115 if (page) 1116 return 1; 1117 } 1118 1119 return 0; 1120 } 1121 1122 static inline bool gigantic_page_supported(void) { return true; } 1123 #else 1124 static inline bool gigantic_page_supported(void) { return false; } 1125 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1126 static inline void destroy_compound_gigantic_page(struct page *page, 1127 unsigned int order) { } 1128 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1129 nodemask_t *nodes_allowed) { return 0; } 1130 #endif 1131 1132 static void update_and_free_page(struct hstate *h, struct page *page) 1133 { 1134 int i; 1135 1136 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1137 return; 1138 1139 h->nr_huge_pages--; 1140 h->nr_huge_pages_node[page_to_nid(page)]--; 1141 for (i = 0; i < pages_per_huge_page(h); i++) { 1142 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1143 1 << PG_referenced | 1 << PG_dirty | 1144 1 << PG_active | 1 << PG_private | 1145 1 << PG_writeback); 1146 } 1147 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1148 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1149 set_page_refcounted(page); 1150 if (hstate_is_gigantic(h)) { 1151 destroy_compound_gigantic_page(page, huge_page_order(h)); 1152 free_gigantic_page(page, huge_page_order(h)); 1153 } else { 1154 __free_pages(page, huge_page_order(h)); 1155 } 1156 } 1157 1158 struct hstate *size_to_hstate(unsigned long size) 1159 { 1160 struct hstate *h; 1161 1162 for_each_hstate(h) { 1163 if (huge_page_size(h) == size) 1164 return h; 1165 } 1166 return NULL; 1167 } 1168 1169 /* 1170 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1171 * to hstate->hugepage_activelist.) 1172 * 1173 * This function can be called for tail pages, but never returns true for them. 1174 */ 1175 bool page_huge_active(struct page *page) 1176 { 1177 VM_BUG_ON_PAGE(!PageHuge(page), page); 1178 return PageHead(page) && PagePrivate(&page[1]); 1179 } 1180 1181 /* never called for tail page */ 1182 static void set_page_huge_active(struct page *page) 1183 { 1184 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1185 SetPagePrivate(&page[1]); 1186 } 1187 1188 static void clear_page_huge_active(struct page *page) 1189 { 1190 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1191 ClearPagePrivate(&page[1]); 1192 } 1193 1194 void free_huge_page(struct page *page) 1195 { 1196 /* 1197 * Can't pass hstate in here because it is called from the 1198 * compound page destructor. 1199 */ 1200 struct hstate *h = page_hstate(page); 1201 int nid = page_to_nid(page); 1202 struct hugepage_subpool *spool = 1203 (struct hugepage_subpool *)page_private(page); 1204 bool restore_reserve; 1205 1206 set_page_private(page, 0); 1207 page->mapping = NULL; 1208 BUG_ON(page_count(page)); 1209 BUG_ON(page_mapcount(page)); 1210 restore_reserve = PagePrivate(page); 1211 ClearPagePrivate(page); 1212 1213 /* 1214 * A return code of zero implies that the subpool will be under its 1215 * minimum size if the reservation is not restored after page is free. 1216 * Therefore, force restore_reserve operation. 1217 */ 1218 if (hugepage_subpool_put_pages(spool, 1) == 0) 1219 restore_reserve = true; 1220 1221 spin_lock(&hugetlb_lock); 1222 clear_page_huge_active(page); 1223 hugetlb_cgroup_uncharge_page(hstate_index(h), 1224 pages_per_huge_page(h), page); 1225 if (restore_reserve) 1226 h->resv_huge_pages++; 1227 1228 if (h->surplus_huge_pages_node[nid]) { 1229 /* remove the page from active list */ 1230 list_del(&page->lru); 1231 update_and_free_page(h, page); 1232 h->surplus_huge_pages--; 1233 h->surplus_huge_pages_node[nid]--; 1234 } else { 1235 arch_clear_hugepage_flags(page); 1236 enqueue_huge_page(h, page); 1237 } 1238 spin_unlock(&hugetlb_lock); 1239 } 1240 1241 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1242 { 1243 INIT_LIST_HEAD(&page->lru); 1244 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1245 spin_lock(&hugetlb_lock); 1246 set_hugetlb_cgroup(page, NULL); 1247 h->nr_huge_pages++; 1248 h->nr_huge_pages_node[nid]++; 1249 spin_unlock(&hugetlb_lock); 1250 put_page(page); /* free it into the hugepage allocator */ 1251 } 1252 1253 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1254 { 1255 int i; 1256 int nr_pages = 1 << order; 1257 struct page *p = page + 1; 1258 1259 /* we rely on prep_new_huge_page to set the destructor */ 1260 set_compound_order(page, order); 1261 __SetPageHead(page); 1262 __ClearPageReserved(page); 1263 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1264 /* 1265 * For gigantic hugepages allocated through bootmem at 1266 * boot, it's safer to be consistent with the not-gigantic 1267 * hugepages and clear the PG_reserved bit from all tail pages 1268 * too. Otherwse drivers using get_user_pages() to access tail 1269 * pages may get the reference counting wrong if they see 1270 * PG_reserved set on a tail page (despite the head page not 1271 * having PG_reserved set). Enforcing this consistency between 1272 * head and tail pages allows drivers to optimize away a check 1273 * on the head page when they need know if put_page() is needed 1274 * after get_user_pages(). 1275 */ 1276 __ClearPageReserved(p); 1277 set_page_count(p, 0); 1278 set_compound_head(p, page); 1279 } 1280 } 1281 1282 /* 1283 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1284 * transparent huge pages. See the PageTransHuge() documentation for more 1285 * details. 1286 */ 1287 int PageHuge(struct page *page) 1288 { 1289 if (!PageCompound(page)) 1290 return 0; 1291 1292 page = compound_head(page); 1293 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1294 } 1295 EXPORT_SYMBOL_GPL(PageHuge); 1296 1297 /* 1298 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1299 * normal or transparent huge pages. 1300 */ 1301 int PageHeadHuge(struct page *page_head) 1302 { 1303 if (!PageHead(page_head)) 1304 return 0; 1305 1306 return get_compound_page_dtor(page_head) == free_huge_page; 1307 } 1308 1309 pgoff_t __basepage_index(struct page *page) 1310 { 1311 struct page *page_head = compound_head(page); 1312 pgoff_t index = page_index(page_head); 1313 unsigned long compound_idx; 1314 1315 if (!PageHuge(page_head)) 1316 return page_index(page); 1317 1318 if (compound_order(page_head) >= MAX_ORDER) 1319 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1320 else 1321 compound_idx = page - page_head; 1322 1323 return (index << compound_order(page_head)) + compound_idx; 1324 } 1325 1326 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1327 { 1328 struct page *page; 1329 1330 page = __alloc_pages_node(nid, 1331 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1332 __GFP_REPEAT|__GFP_NOWARN, 1333 huge_page_order(h)); 1334 if (page) { 1335 prep_new_huge_page(h, page, nid); 1336 } 1337 1338 return page; 1339 } 1340 1341 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1342 { 1343 struct page *page; 1344 int nr_nodes, node; 1345 int ret = 0; 1346 1347 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1348 page = alloc_fresh_huge_page_node(h, node); 1349 if (page) { 1350 ret = 1; 1351 break; 1352 } 1353 } 1354 1355 if (ret) 1356 count_vm_event(HTLB_BUDDY_PGALLOC); 1357 else 1358 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1359 1360 return ret; 1361 } 1362 1363 /* 1364 * Free huge page from pool from next node to free. 1365 * Attempt to keep persistent huge pages more or less 1366 * balanced over allowed nodes. 1367 * Called with hugetlb_lock locked. 1368 */ 1369 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1370 bool acct_surplus) 1371 { 1372 int nr_nodes, node; 1373 int ret = 0; 1374 1375 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1376 /* 1377 * If we're returning unused surplus pages, only examine 1378 * nodes with surplus pages. 1379 */ 1380 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1381 !list_empty(&h->hugepage_freelists[node])) { 1382 struct page *page = 1383 list_entry(h->hugepage_freelists[node].next, 1384 struct page, lru); 1385 list_del(&page->lru); 1386 h->free_huge_pages--; 1387 h->free_huge_pages_node[node]--; 1388 if (acct_surplus) { 1389 h->surplus_huge_pages--; 1390 h->surplus_huge_pages_node[node]--; 1391 } 1392 update_and_free_page(h, page); 1393 ret = 1; 1394 break; 1395 } 1396 } 1397 1398 return ret; 1399 } 1400 1401 /* 1402 * Dissolve a given free hugepage into free buddy pages. This function does 1403 * nothing for in-use (including surplus) hugepages. 1404 */ 1405 static void dissolve_free_huge_page(struct page *page) 1406 { 1407 spin_lock(&hugetlb_lock); 1408 if (PageHuge(page) && !page_count(page)) { 1409 struct hstate *h = page_hstate(page); 1410 int nid = page_to_nid(page); 1411 list_del(&page->lru); 1412 h->free_huge_pages--; 1413 h->free_huge_pages_node[nid]--; 1414 update_and_free_page(h, page); 1415 } 1416 spin_unlock(&hugetlb_lock); 1417 } 1418 1419 /* 1420 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1421 * make specified memory blocks removable from the system. 1422 * Note that start_pfn should aligned with (minimum) hugepage size. 1423 */ 1424 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1425 { 1426 unsigned long pfn; 1427 1428 if (!hugepages_supported()) 1429 return; 1430 1431 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1432 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1433 dissolve_free_huge_page(pfn_to_page(pfn)); 1434 } 1435 1436 /* 1437 * There are 3 ways this can get called: 1438 * 1. With vma+addr: we use the VMA's memory policy 1439 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1440 * page from any node, and let the buddy allocator itself figure 1441 * it out. 1442 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1443 * strictly from 'nid' 1444 */ 1445 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1446 struct vm_area_struct *vma, unsigned long addr, int nid) 1447 { 1448 int order = huge_page_order(h); 1449 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1450 unsigned int cpuset_mems_cookie; 1451 1452 /* 1453 * We need a VMA to get a memory policy. If we do not 1454 * have one, we use the 'nid' argument. 1455 * 1456 * The mempolicy stuff below has some non-inlined bits 1457 * and calls ->vm_ops. That makes it hard to optimize at 1458 * compile-time, even when NUMA is off and it does 1459 * nothing. This helps the compiler optimize it out. 1460 */ 1461 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1462 /* 1463 * If a specific node is requested, make sure to 1464 * get memory from there, but only when a node 1465 * is explicitly specified. 1466 */ 1467 if (nid != NUMA_NO_NODE) 1468 gfp |= __GFP_THISNODE; 1469 /* 1470 * Make sure to call something that can handle 1471 * nid=NUMA_NO_NODE 1472 */ 1473 return alloc_pages_node(nid, gfp, order); 1474 } 1475 1476 /* 1477 * OK, so we have a VMA. Fetch the mempolicy and try to 1478 * allocate a huge page with it. We will only reach this 1479 * when CONFIG_NUMA=y. 1480 */ 1481 do { 1482 struct page *page; 1483 struct mempolicy *mpol; 1484 struct zonelist *zl; 1485 nodemask_t *nodemask; 1486 1487 cpuset_mems_cookie = read_mems_allowed_begin(); 1488 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1489 mpol_cond_put(mpol); 1490 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1491 if (page) 1492 return page; 1493 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1494 1495 return NULL; 1496 } 1497 1498 /* 1499 * There are two ways to allocate a huge page: 1500 * 1. When you have a VMA and an address (like a fault) 1501 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1502 * 1503 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1504 * this case which signifies that the allocation should be done with 1505 * respect for the VMA's memory policy. 1506 * 1507 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1508 * implies that memory policies will not be taken in to account. 1509 */ 1510 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1511 struct vm_area_struct *vma, unsigned long addr, int nid) 1512 { 1513 struct page *page; 1514 unsigned int r_nid; 1515 1516 if (hstate_is_gigantic(h)) 1517 return NULL; 1518 1519 /* 1520 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1521 * This makes sure the caller is picking _one_ of the modes with which 1522 * we can call this function, not both. 1523 */ 1524 if (vma || (addr != -1)) { 1525 VM_WARN_ON_ONCE(addr == -1); 1526 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1527 } 1528 /* 1529 * Assume we will successfully allocate the surplus page to 1530 * prevent racing processes from causing the surplus to exceed 1531 * overcommit 1532 * 1533 * This however introduces a different race, where a process B 1534 * tries to grow the static hugepage pool while alloc_pages() is 1535 * called by process A. B will only examine the per-node 1536 * counters in determining if surplus huge pages can be 1537 * converted to normal huge pages in adjust_pool_surplus(). A 1538 * won't be able to increment the per-node counter, until the 1539 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1540 * no more huge pages can be converted from surplus to normal 1541 * state (and doesn't try to convert again). Thus, we have a 1542 * case where a surplus huge page exists, the pool is grown, and 1543 * the surplus huge page still exists after, even though it 1544 * should just have been converted to a normal huge page. This 1545 * does not leak memory, though, as the hugepage will be freed 1546 * once it is out of use. It also does not allow the counters to 1547 * go out of whack in adjust_pool_surplus() as we don't modify 1548 * the node values until we've gotten the hugepage and only the 1549 * per-node value is checked there. 1550 */ 1551 spin_lock(&hugetlb_lock); 1552 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1553 spin_unlock(&hugetlb_lock); 1554 return NULL; 1555 } else { 1556 h->nr_huge_pages++; 1557 h->surplus_huge_pages++; 1558 } 1559 spin_unlock(&hugetlb_lock); 1560 1561 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1562 1563 spin_lock(&hugetlb_lock); 1564 if (page) { 1565 INIT_LIST_HEAD(&page->lru); 1566 r_nid = page_to_nid(page); 1567 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1568 set_hugetlb_cgroup(page, NULL); 1569 /* 1570 * We incremented the global counters already 1571 */ 1572 h->nr_huge_pages_node[r_nid]++; 1573 h->surplus_huge_pages_node[r_nid]++; 1574 __count_vm_event(HTLB_BUDDY_PGALLOC); 1575 } else { 1576 h->nr_huge_pages--; 1577 h->surplus_huge_pages--; 1578 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1579 } 1580 spin_unlock(&hugetlb_lock); 1581 1582 return page; 1583 } 1584 1585 /* 1586 * Allocate a huge page from 'nid'. Note, 'nid' may be 1587 * NUMA_NO_NODE, which means that it may be allocated 1588 * anywhere. 1589 */ 1590 static 1591 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1592 { 1593 unsigned long addr = -1; 1594 1595 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1596 } 1597 1598 /* 1599 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1600 */ 1601 static 1602 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1603 struct vm_area_struct *vma, unsigned long addr) 1604 { 1605 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1606 } 1607 1608 /* 1609 * This allocation function is useful in the context where vma is irrelevant. 1610 * E.g. soft-offlining uses this function because it only cares physical 1611 * address of error page. 1612 */ 1613 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1614 { 1615 struct page *page = NULL; 1616 1617 spin_lock(&hugetlb_lock); 1618 if (h->free_huge_pages - h->resv_huge_pages > 0) 1619 page = dequeue_huge_page_node(h, nid); 1620 spin_unlock(&hugetlb_lock); 1621 1622 if (!page) 1623 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1624 1625 return page; 1626 } 1627 1628 /* 1629 * Increase the hugetlb pool such that it can accommodate a reservation 1630 * of size 'delta'. 1631 */ 1632 static int gather_surplus_pages(struct hstate *h, int delta) 1633 { 1634 struct list_head surplus_list; 1635 struct page *page, *tmp; 1636 int ret, i; 1637 int needed, allocated; 1638 bool alloc_ok = true; 1639 1640 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1641 if (needed <= 0) { 1642 h->resv_huge_pages += delta; 1643 return 0; 1644 } 1645 1646 allocated = 0; 1647 INIT_LIST_HEAD(&surplus_list); 1648 1649 ret = -ENOMEM; 1650 retry: 1651 spin_unlock(&hugetlb_lock); 1652 for (i = 0; i < needed; i++) { 1653 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1654 if (!page) { 1655 alloc_ok = false; 1656 break; 1657 } 1658 list_add(&page->lru, &surplus_list); 1659 } 1660 allocated += i; 1661 1662 /* 1663 * After retaking hugetlb_lock, we need to recalculate 'needed' 1664 * because either resv_huge_pages or free_huge_pages may have changed. 1665 */ 1666 spin_lock(&hugetlb_lock); 1667 needed = (h->resv_huge_pages + delta) - 1668 (h->free_huge_pages + allocated); 1669 if (needed > 0) { 1670 if (alloc_ok) 1671 goto retry; 1672 /* 1673 * We were not able to allocate enough pages to 1674 * satisfy the entire reservation so we free what 1675 * we've allocated so far. 1676 */ 1677 goto free; 1678 } 1679 /* 1680 * The surplus_list now contains _at_least_ the number of extra pages 1681 * needed to accommodate the reservation. Add the appropriate number 1682 * of pages to the hugetlb pool and free the extras back to the buddy 1683 * allocator. Commit the entire reservation here to prevent another 1684 * process from stealing the pages as they are added to the pool but 1685 * before they are reserved. 1686 */ 1687 needed += allocated; 1688 h->resv_huge_pages += delta; 1689 ret = 0; 1690 1691 /* Free the needed pages to the hugetlb pool */ 1692 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1693 if ((--needed) < 0) 1694 break; 1695 /* 1696 * This page is now managed by the hugetlb allocator and has 1697 * no users -- drop the buddy allocator's reference. 1698 */ 1699 put_page_testzero(page); 1700 VM_BUG_ON_PAGE(page_count(page), page); 1701 enqueue_huge_page(h, page); 1702 } 1703 free: 1704 spin_unlock(&hugetlb_lock); 1705 1706 /* Free unnecessary surplus pages to the buddy allocator */ 1707 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1708 put_page(page); 1709 spin_lock(&hugetlb_lock); 1710 1711 return ret; 1712 } 1713 1714 /* 1715 * When releasing a hugetlb pool reservation, any surplus pages that were 1716 * allocated to satisfy the reservation must be explicitly freed if they were 1717 * never used. 1718 * Called with hugetlb_lock held. 1719 */ 1720 static void return_unused_surplus_pages(struct hstate *h, 1721 unsigned long unused_resv_pages) 1722 { 1723 unsigned long nr_pages; 1724 1725 /* Uncommit the reservation */ 1726 h->resv_huge_pages -= unused_resv_pages; 1727 1728 /* Cannot return gigantic pages currently */ 1729 if (hstate_is_gigantic(h)) 1730 return; 1731 1732 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1733 1734 /* 1735 * We want to release as many surplus pages as possible, spread 1736 * evenly across all nodes with memory. Iterate across these nodes 1737 * until we can no longer free unreserved surplus pages. This occurs 1738 * when the nodes with surplus pages have no free pages. 1739 * free_pool_huge_page() will balance the the freed pages across the 1740 * on-line nodes with memory and will handle the hstate accounting. 1741 */ 1742 while (nr_pages--) { 1743 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1744 break; 1745 cond_resched_lock(&hugetlb_lock); 1746 } 1747 } 1748 1749 1750 /* 1751 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1752 * are used by the huge page allocation routines to manage reservations. 1753 * 1754 * vma_needs_reservation is called to determine if the huge page at addr 1755 * within the vma has an associated reservation. If a reservation is 1756 * needed, the value 1 is returned. The caller is then responsible for 1757 * managing the global reservation and subpool usage counts. After 1758 * the huge page has been allocated, vma_commit_reservation is called 1759 * to add the page to the reservation map. If the page allocation fails, 1760 * the reservation must be ended instead of committed. vma_end_reservation 1761 * is called in such cases. 1762 * 1763 * In the normal case, vma_commit_reservation returns the same value 1764 * as the preceding vma_needs_reservation call. The only time this 1765 * is not the case is if a reserve map was changed between calls. It 1766 * is the responsibility of the caller to notice the difference and 1767 * take appropriate action. 1768 */ 1769 enum vma_resv_mode { 1770 VMA_NEEDS_RESV, 1771 VMA_COMMIT_RESV, 1772 VMA_END_RESV, 1773 }; 1774 static long __vma_reservation_common(struct hstate *h, 1775 struct vm_area_struct *vma, unsigned long addr, 1776 enum vma_resv_mode mode) 1777 { 1778 struct resv_map *resv; 1779 pgoff_t idx; 1780 long ret; 1781 1782 resv = vma_resv_map(vma); 1783 if (!resv) 1784 return 1; 1785 1786 idx = vma_hugecache_offset(h, vma, addr); 1787 switch (mode) { 1788 case VMA_NEEDS_RESV: 1789 ret = region_chg(resv, idx, idx + 1); 1790 break; 1791 case VMA_COMMIT_RESV: 1792 ret = region_add(resv, idx, idx + 1); 1793 break; 1794 case VMA_END_RESV: 1795 region_abort(resv, idx, idx + 1); 1796 ret = 0; 1797 break; 1798 default: 1799 BUG(); 1800 } 1801 1802 if (vma->vm_flags & VM_MAYSHARE) 1803 return ret; 1804 else 1805 return ret < 0 ? ret : 0; 1806 } 1807 1808 static long vma_needs_reservation(struct hstate *h, 1809 struct vm_area_struct *vma, unsigned long addr) 1810 { 1811 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1812 } 1813 1814 static long vma_commit_reservation(struct hstate *h, 1815 struct vm_area_struct *vma, unsigned long addr) 1816 { 1817 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1818 } 1819 1820 static void vma_end_reservation(struct hstate *h, 1821 struct vm_area_struct *vma, unsigned long addr) 1822 { 1823 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1824 } 1825 1826 struct page *alloc_huge_page(struct vm_area_struct *vma, 1827 unsigned long addr, int avoid_reserve) 1828 { 1829 struct hugepage_subpool *spool = subpool_vma(vma); 1830 struct hstate *h = hstate_vma(vma); 1831 struct page *page; 1832 long map_chg, map_commit; 1833 long gbl_chg; 1834 int ret, idx; 1835 struct hugetlb_cgroup *h_cg; 1836 1837 idx = hstate_index(h); 1838 /* 1839 * Examine the region/reserve map to determine if the process 1840 * has a reservation for the page to be allocated. A return 1841 * code of zero indicates a reservation exists (no change). 1842 */ 1843 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1844 if (map_chg < 0) 1845 return ERR_PTR(-ENOMEM); 1846 1847 /* 1848 * Processes that did not create the mapping will have no 1849 * reserves as indicated by the region/reserve map. Check 1850 * that the allocation will not exceed the subpool limit. 1851 * Allocations for MAP_NORESERVE mappings also need to be 1852 * checked against any subpool limit. 1853 */ 1854 if (map_chg || avoid_reserve) { 1855 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1856 if (gbl_chg < 0) { 1857 vma_end_reservation(h, vma, addr); 1858 return ERR_PTR(-ENOSPC); 1859 } 1860 1861 /* 1862 * Even though there was no reservation in the region/reserve 1863 * map, there could be reservations associated with the 1864 * subpool that can be used. This would be indicated if the 1865 * return value of hugepage_subpool_get_pages() is zero. 1866 * However, if avoid_reserve is specified we still avoid even 1867 * the subpool reservations. 1868 */ 1869 if (avoid_reserve) 1870 gbl_chg = 1; 1871 } 1872 1873 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1874 if (ret) 1875 goto out_subpool_put; 1876 1877 spin_lock(&hugetlb_lock); 1878 /* 1879 * glb_chg is passed to indicate whether or not a page must be taken 1880 * from the global free pool (global change). gbl_chg == 0 indicates 1881 * a reservation exists for the allocation. 1882 */ 1883 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1884 if (!page) { 1885 spin_unlock(&hugetlb_lock); 1886 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1887 if (!page) 1888 goto out_uncharge_cgroup; 1889 1890 spin_lock(&hugetlb_lock); 1891 list_move(&page->lru, &h->hugepage_activelist); 1892 /* Fall through */ 1893 } 1894 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1895 spin_unlock(&hugetlb_lock); 1896 1897 set_page_private(page, (unsigned long)spool); 1898 1899 map_commit = vma_commit_reservation(h, vma, addr); 1900 if (unlikely(map_chg > map_commit)) { 1901 /* 1902 * The page was added to the reservation map between 1903 * vma_needs_reservation and vma_commit_reservation. 1904 * This indicates a race with hugetlb_reserve_pages. 1905 * Adjust for the subpool count incremented above AND 1906 * in hugetlb_reserve_pages for the same page. Also, 1907 * the reservation count added in hugetlb_reserve_pages 1908 * no longer applies. 1909 */ 1910 long rsv_adjust; 1911 1912 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1913 hugetlb_acct_memory(h, -rsv_adjust); 1914 } 1915 return page; 1916 1917 out_uncharge_cgroup: 1918 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1919 out_subpool_put: 1920 if (map_chg || avoid_reserve) 1921 hugepage_subpool_put_pages(spool, 1); 1922 vma_end_reservation(h, vma, addr); 1923 return ERR_PTR(-ENOSPC); 1924 } 1925 1926 /* 1927 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1928 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1929 * where no ERR_VALUE is expected to be returned. 1930 */ 1931 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1932 unsigned long addr, int avoid_reserve) 1933 { 1934 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1935 if (IS_ERR(page)) 1936 page = NULL; 1937 return page; 1938 } 1939 1940 int __weak alloc_bootmem_huge_page(struct hstate *h) 1941 { 1942 struct huge_bootmem_page *m; 1943 int nr_nodes, node; 1944 1945 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 1946 void *addr; 1947 1948 addr = memblock_virt_alloc_try_nid_nopanic( 1949 huge_page_size(h), huge_page_size(h), 1950 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 1951 if (addr) { 1952 /* 1953 * Use the beginning of the huge page to store the 1954 * huge_bootmem_page struct (until gather_bootmem 1955 * puts them into the mem_map). 1956 */ 1957 m = addr; 1958 goto found; 1959 } 1960 } 1961 return 0; 1962 1963 found: 1964 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 1965 /* Put them into a private list first because mem_map is not up yet */ 1966 list_add(&m->list, &huge_boot_pages); 1967 m->hstate = h; 1968 return 1; 1969 } 1970 1971 static void __init prep_compound_huge_page(struct page *page, 1972 unsigned int order) 1973 { 1974 if (unlikely(order > (MAX_ORDER - 1))) 1975 prep_compound_gigantic_page(page, order); 1976 else 1977 prep_compound_page(page, order); 1978 } 1979 1980 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1981 static void __init gather_bootmem_prealloc(void) 1982 { 1983 struct huge_bootmem_page *m; 1984 1985 list_for_each_entry(m, &huge_boot_pages, list) { 1986 struct hstate *h = m->hstate; 1987 struct page *page; 1988 1989 #ifdef CONFIG_HIGHMEM 1990 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1991 memblock_free_late(__pa(m), 1992 sizeof(struct huge_bootmem_page)); 1993 #else 1994 page = virt_to_page(m); 1995 #endif 1996 WARN_ON(page_count(page) != 1); 1997 prep_compound_huge_page(page, h->order); 1998 WARN_ON(PageReserved(page)); 1999 prep_new_huge_page(h, page, page_to_nid(page)); 2000 /* 2001 * If we had gigantic hugepages allocated at boot time, we need 2002 * to restore the 'stolen' pages to totalram_pages in order to 2003 * fix confusing memory reports from free(1) and another 2004 * side-effects, like CommitLimit going negative. 2005 */ 2006 if (hstate_is_gigantic(h)) 2007 adjust_managed_page_count(page, 1 << h->order); 2008 } 2009 } 2010 2011 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2012 { 2013 unsigned long i; 2014 2015 for (i = 0; i < h->max_huge_pages; ++i) { 2016 if (hstate_is_gigantic(h)) { 2017 if (!alloc_bootmem_huge_page(h)) 2018 break; 2019 } else if (!alloc_fresh_huge_page(h, 2020 &node_states[N_MEMORY])) 2021 break; 2022 } 2023 h->max_huge_pages = i; 2024 } 2025 2026 static void __init hugetlb_init_hstates(void) 2027 { 2028 struct hstate *h; 2029 2030 for_each_hstate(h) { 2031 if (minimum_order > huge_page_order(h)) 2032 minimum_order = huge_page_order(h); 2033 2034 /* oversize hugepages were init'ed in early boot */ 2035 if (!hstate_is_gigantic(h)) 2036 hugetlb_hstate_alloc_pages(h); 2037 } 2038 VM_BUG_ON(minimum_order == UINT_MAX); 2039 } 2040 2041 static char * __init memfmt(char *buf, unsigned long n) 2042 { 2043 if (n >= (1UL << 30)) 2044 sprintf(buf, "%lu GB", n >> 30); 2045 else if (n >= (1UL << 20)) 2046 sprintf(buf, "%lu MB", n >> 20); 2047 else 2048 sprintf(buf, "%lu KB", n >> 10); 2049 return buf; 2050 } 2051 2052 static void __init report_hugepages(void) 2053 { 2054 struct hstate *h; 2055 2056 for_each_hstate(h) { 2057 char buf[32]; 2058 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2059 memfmt(buf, huge_page_size(h)), 2060 h->free_huge_pages); 2061 } 2062 } 2063 2064 #ifdef CONFIG_HIGHMEM 2065 static void try_to_free_low(struct hstate *h, unsigned long count, 2066 nodemask_t *nodes_allowed) 2067 { 2068 int i; 2069 2070 if (hstate_is_gigantic(h)) 2071 return; 2072 2073 for_each_node_mask(i, *nodes_allowed) { 2074 struct page *page, *next; 2075 struct list_head *freel = &h->hugepage_freelists[i]; 2076 list_for_each_entry_safe(page, next, freel, lru) { 2077 if (count >= h->nr_huge_pages) 2078 return; 2079 if (PageHighMem(page)) 2080 continue; 2081 list_del(&page->lru); 2082 update_and_free_page(h, page); 2083 h->free_huge_pages--; 2084 h->free_huge_pages_node[page_to_nid(page)]--; 2085 } 2086 } 2087 } 2088 #else 2089 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2090 nodemask_t *nodes_allowed) 2091 { 2092 } 2093 #endif 2094 2095 /* 2096 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2097 * balanced by operating on them in a round-robin fashion. 2098 * Returns 1 if an adjustment was made. 2099 */ 2100 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2101 int delta) 2102 { 2103 int nr_nodes, node; 2104 2105 VM_BUG_ON(delta != -1 && delta != 1); 2106 2107 if (delta < 0) { 2108 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2109 if (h->surplus_huge_pages_node[node]) 2110 goto found; 2111 } 2112 } else { 2113 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2114 if (h->surplus_huge_pages_node[node] < 2115 h->nr_huge_pages_node[node]) 2116 goto found; 2117 } 2118 } 2119 return 0; 2120 2121 found: 2122 h->surplus_huge_pages += delta; 2123 h->surplus_huge_pages_node[node] += delta; 2124 return 1; 2125 } 2126 2127 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2128 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2129 nodemask_t *nodes_allowed) 2130 { 2131 unsigned long min_count, ret; 2132 2133 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2134 return h->max_huge_pages; 2135 2136 /* 2137 * Increase the pool size 2138 * First take pages out of surplus state. Then make up the 2139 * remaining difference by allocating fresh huge pages. 2140 * 2141 * We might race with __alloc_buddy_huge_page() here and be unable 2142 * to convert a surplus huge page to a normal huge page. That is 2143 * not critical, though, it just means the overall size of the 2144 * pool might be one hugepage larger than it needs to be, but 2145 * within all the constraints specified by the sysctls. 2146 */ 2147 spin_lock(&hugetlb_lock); 2148 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2149 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2150 break; 2151 } 2152 2153 while (count > persistent_huge_pages(h)) { 2154 /* 2155 * If this allocation races such that we no longer need the 2156 * page, free_huge_page will handle it by freeing the page 2157 * and reducing the surplus. 2158 */ 2159 spin_unlock(&hugetlb_lock); 2160 if (hstate_is_gigantic(h)) 2161 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2162 else 2163 ret = alloc_fresh_huge_page(h, nodes_allowed); 2164 spin_lock(&hugetlb_lock); 2165 if (!ret) 2166 goto out; 2167 2168 /* Bail for signals. Probably ctrl-c from user */ 2169 if (signal_pending(current)) 2170 goto out; 2171 } 2172 2173 /* 2174 * Decrease the pool size 2175 * First return free pages to the buddy allocator (being careful 2176 * to keep enough around to satisfy reservations). Then place 2177 * pages into surplus state as needed so the pool will shrink 2178 * to the desired size as pages become free. 2179 * 2180 * By placing pages into the surplus state independent of the 2181 * overcommit value, we are allowing the surplus pool size to 2182 * exceed overcommit. There are few sane options here. Since 2183 * __alloc_buddy_huge_page() is checking the global counter, 2184 * though, we'll note that we're not allowed to exceed surplus 2185 * and won't grow the pool anywhere else. Not until one of the 2186 * sysctls are changed, or the surplus pages go out of use. 2187 */ 2188 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2189 min_count = max(count, min_count); 2190 try_to_free_low(h, min_count, nodes_allowed); 2191 while (min_count < persistent_huge_pages(h)) { 2192 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2193 break; 2194 cond_resched_lock(&hugetlb_lock); 2195 } 2196 while (count < persistent_huge_pages(h)) { 2197 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2198 break; 2199 } 2200 out: 2201 ret = persistent_huge_pages(h); 2202 spin_unlock(&hugetlb_lock); 2203 return ret; 2204 } 2205 2206 #define HSTATE_ATTR_RO(_name) \ 2207 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2208 2209 #define HSTATE_ATTR(_name) \ 2210 static struct kobj_attribute _name##_attr = \ 2211 __ATTR(_name, 0644, _name##_show, _name##_store) 2212 2213 static struct kobject *hugepages_kobj; 2214 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2215 2216 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2217 2218 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2219 { 2220 int i; 2221 2222 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2223 if (hstate_kobjs[i] == kobj) { 2224 if (nidp) 2225 *nidp = NUMA_NO_NODE; 2226 return &hstates[i]; 2227 } 2228 2229 return kobj_to_node_hstate(kobj, nidp); 2230 } 2231 2232 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2233 struct kobj_attribute *attr, char *buf) 2234 { 2235 struct hstate *h; 2236 unsigned long nr_huge_pages; 2237 int nid; 2238 2239 h = kobj_to_hstate(kobj, &nid); 2240 if (nid == NUMA_NO_NODE) 2241 nr_huge_pages = h->nr_huge_pages; 2242 else 2243 nr_huge_pages = h->nr_huge_pages_node[nid]; 2244 2245 return sprintf(buf, "%lu\n", nr_huge_pages); 2246 } 2247 2248 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2249 struct hstate *h, int nid, 2250 unsigned long count, size_t len) 2251 { 2252 int err; 2253 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2254 2255 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2256 err = -EINVAL; 2257 goto out; 2258 } 2259 2260 if (nid == NUMA_NO_NODE) { 2261 /* 2262 * global hstate attribute 2263 */ 2264 if (!(obey_mempolicy && 2265 init_nodemask_of_mempolicy(nodes_allowed))) { 2266 NODEMASK_FREE(nodes_allowed); 2267 nodes_allowed = &node_states[N_MEMORY]; 2268 } 2269 } else if (nodes_allowed) { 2270 /* 2271 * per node hstate attribute: adjust count to global, 2272 * but restrict alloc/free to the specified node. 2273 */ 2274 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2275 init_nodemask_of_node(nodes_allowed, nid); 2276 } else 2277 nodes_allowed = &node_states[N_MEMORY]; 2278 2279 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2280 2281 if (nodes_allowed != &node_states[N_MEMORY]) 2282 NODEMASK_FREE(nodes_allowed); 2283 2284 return len; 2285 out: 2286 NODEMASK_FREE(nodes_allowed); 2287 return err; 2288 } 2289 2290 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2291 struct kobject *kobj, const char *buf, 2292 size_t len) 2293 { 2294 struct hstate *h; 2295 unsigned long count; 2296 int nid; 2297 int err; 2298 2299 err = kstrtoul(buf, 10, &count); 2300 if (err) 2301 return err; 2302 2303 h = kobj_to_hstate(kobj, &nid); 2304 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2305 } 2306 2307 static ssize_t nr_hugepages_show(struct kobject *kobj, 2308 struct kobj_attribute *attr, char *buf) 2309 { 2310 return nr_hugepages_show_common(kobj, attr, buf); 2311 } 2312 2313 static ssize_t nr_hugepages_store(struct kobject *kobj, 2314 struct kobj_attribute *attr, const char *buf, size_t len) 2315 { 2316 return nr_hugepages_store_common(false, kobj, buf, len); 2317 } 2318 HSTATE_ATTR(nr_hugepages); 2319 2320 #ifdef CONFIG_NUMA 2321 2322 /* 2323 * hstate attribute for optionally mempolicy-based constraint on persistent 2324 * huge page alloc/free. 2325 */ 2326 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2327 struct kobj_attribute *attr, char *buf) 2328 { 2329 return nr_hugepages_show_common(kobj, attr, buf); 2330 } 2331 2332 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2333 struct kobj_attribute *attr, const char *buf, size_t len) 2334 { 2335 return nr_hugepages_store_common(true, kobj, buf, len); 2336 } 2337 HSTATE_ATTR(nr_hugepages_mempolicy); 2338 #endif 2339 2340 2341 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2342 struct kobj_attribute *attr, char *buf) 2343 { 2344 struct hstate *h = kobj_to_hstate(kobj, NULL); 2345 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2346 } 2347 2348 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2349 struct kobj_attribute *attr, const char *buf, size_t count) 2350 { 2351 int err; 2352 unsigned long input; 2353 struct hstate *h = kobj_to_hstate(kobj, NULL); 2354 2355 if (hstate_is_gigantic(h)) 2356 return -EINVAL; 2357 2358 err = kstrtoul(buf, 10, &input); 2359 if (err) 2360 return err; 2361 2362 spin_lock(&hugetlb_lock); 2363 h->nr_overcommit_huge_pages = input; 2364 spin_unlock(&hugetlb_lock); 2365 2366 return count; 2367 } 2368 HSTATE_ATTR(nr_overcommit_hugepages); 2369 2370 static ssize_t free_hugepages_show(struct kobject *kobj, 2371 struct kobj_attribute *attr, char *buf) 2372 { 2373 struct hstate *h; 2374 unsigned long free_huge_pages; 2375 int nid; 2376 2377 h = kobj_to_hstate(kobj, &nid); 2378 if (nid == NUMA_NO_NODE) 2379 free_huge_pages = h->free_huge_pages; 2380 else 2381 free_huge_pages = h->free_huge_pages_node[nid]; 2382 2383 return sprintf(buf, "%lu\n", free_huge_pages); 2384 } 2385 HSTATE_ATTR_RO(free_hugepages); 2386 2387 static ssize_t resv_hugepages_show(struct kobject *kobj, 2388 struct kobj_attribute *attr, char *buf) 2389 { 2390 struct hstate *h = kobj_to_hstate(kobj, NULL); 2391 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2392 } 2393 HSTATE_ATTR_RO(resv_hugepages); 2394 2395 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2396 struct kobj_attribute *attr, char *buf) 2397 { 2398 struct hstate *h; 2399 unsigned long surplus_huge_pages; 2400 int nid; 2401 2402 h = kobj_to_hstate(kobj, &nid); 2403 if (nid == NUMA_NO_NODE) 2404 surplus_huge_pages = h->surplus_huge_pages; 2405 else 2406 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2407 2408 return sprintf(buf, "%lu\n", surplus_huge_pages); 2409 } 2410 HSTATE_ATTR_RO(surplus_hugepages); 2411 2412 static struct attribute *hstate_attrs[] = { 2413 &nr_hugepages_attr.attr, 2414 &nr_overcommit_hugepages_attr.attr, 2415 &free_hugepages_attr.attr, 2416 &resv_hugepages_attr.attr, 2417 &surplus_hugepages_attr.attr, 2418 #ifdef CONFIG_NUMA 2419 &nr_hugepages_mempolicy_attr.attr, 2420 #endif 2421 NULL, 2422 }; 2423 2424 static struct attribute_group hstate_attr_group = { 2425 .attrs = hstate_attrs, 2426 }; 2427 2428 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2429 struct kobject **hstate_kobjs, 2430 struct attribute_group *hstate_attr_group) 2431 { 2432 int retval; 2433 int hi = hstate_index(h); 2434 2435 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2436 if (!hstate_kobjs[hi]) 2437 return -ENOMEM; 2438 2439 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2440 if (retval) 2441 kobject_put(hstate_kobjs[hi]); 2442 2443 return retval; 2444 } 2445 2446 static void __init hugetlb_sysfs_init(void) 2447 { 2448 struct hstate *h; 2449 int err; 2450 2451 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2452 if (!hugepages_kobj) 2453 return; 2454 2455 for_each_hstate(h) { 2456 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2457 hstate_kobjs, &hstate_attr_group); 2458 if (err) 2459 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2460 } 2461 } 2462 2463 #ifdef CONFIG_NUMA 2464 2465 /* 2466 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2467 * with node devices in node_devices[] using a parallel array. The array 2468 * index of a node device or _hstate == node id. 2469 * This is here to avoid any static dependency of the node device driver, in 2470 * the base kernel, on the hugetlb module. 2471 */ 2472 struct node_hstate { 2473 struct kobject *hugepages_kobj; 2474 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2475 }; 2476 static struct node_hstate node_hstates[MAX_NUMNODES]; 2477 2478 /* 2479 * A subset of global hstate attributes for node devices 2480 */ 2481 static struct attribute *per_node_hstate_attrs[] = { 2482 &nr_hugepages_attr.attr, 2483 &free_hugepages_attr.attr, 2484 &surplus_hugepages_attr.attr, 2485 NULL, 2486 }; 2487 2488 static struct attribute_group per_node_hstate_attr_group = { 2489 .attrs = per_node_hstate_attrs, 2490 }; 2491 2492 /* 2493 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2494 * Returns node id via non-NULL nidp. 2495 */ 2496 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2497 { 2498 int nid; 2499 2500 for (nid = 0; nid < nr_node_ids; nid++) { 2501 struct node_hstate *nhs = &node_hstates[nid]; 2502 int i; 2503 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2504 if (nhs->hstate_kobjs[i] == kobj) { 2505 if (nidp) 2506 *nidp = nid; 2507 return &hstates[i]; 2508 } 2509 } 2510 2511 BUG(); 2512 return NULL; 2513 } 2514 2515 /* 2516 * Unregister hstate attributes from a single node device. 2517 * No-op if no hstate attributes attached. 2518 */ 2519 static void hugetlb_unregister_node(struct node *node) 2520 { 2521 struct hstate *h; 2522 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2523 2524 if (!nhs->hugepages_kobj) 2525 return; /* no hstate attributes */ 2526 2527 for_each_hstate(h) { 2528 int idx = hstate_index(h); 2529 if (nhs->hstate_kobjs[idx]) { 2530 kobject_put(nhs->hstate_kobjs[idx]); 2531 nhs->hstate_kobjs[idx] = NULL; 2532 } 2533 } 2534 2535 kobject_put(nhs->hugepages_kobj); 2536 nhs->hugepages_kobj = NULL; 2537 } 2538 2539 /* 2540 * hugetlb module exit: unregister hstate attributes from node devices 2541 * that have them. 2542 */ 2543 static void hugetlb_unregister_all_nodes(void) 2544 { 2545 int nid; 2546 2547 /* 2548 * disable node device registrations. 2549 */ 2550 register_hugetlbfs_with_node(NULL, NULL); 2551 2552 /* 2553 * remove hstate attributes from any nodes that have them. 2554 */ 2555 for (nid = 0; nid < nr_node_ids; nid++) 2556 hugetlb_unregister_node(node_devices[nid]); 2557 } 2558 2559 /* 2560 * Register hstate attributes for a single node device. 2561 * No-op if attributes already registered. 2562 */ 2563 static void hugetlb_register_node(struct node *node) 2564 { 2565 struct hstate *h; 2566 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2567 int err; 2568 2569 if (nhs->hugepages_kobj) 2570 return; /* already allocated */ 2571 2572 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2573 &node->dev.kobj); 2574 if (!nhs->hugepages_kobj) 2575 return; 2576 2577 for_each_hstate(h) { 2578 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2579 nhs->hstate_kobjs, 2580 &per_node_hstate_attr_group); 2581 if (err) { 2582 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2583 h->name, node->dev.id); 2584 hugetlb_unregister_node(node); 2585 break; 2586 } 2587 } 2588 } 2589 2590 /* 2591 * hugetlb init time: register hstate attributes for all registered node 2592 * devices of nodes that have memory. All on-line nodes should have 2593 * registered their associated device by this time. 2594 */ 2595 static void __init hugetlb_register_all_nodes(void) 2596 { 2597 int nid; 2598 2599 for_each_node_state(nid, N_MEMORY) { 2600 struct node *node = node_devices[nid]; 2601 if (node->dev.id == nid) 2602 hugetlb_register_node(node); 2603 } 2604 2605 /* 2606 * Let the node device driver know we're here so it can 2607 * [un]register hstate attributes on node hotplug. 2608 */ 2609 register_hugetlbfs_with_node(hugetlb_register_node, 2610 hugetlb_unregister_node); 2611 } 2612 #else /* !CONFIG_NUMA */ 2613 2614 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2615 { 2616 BUG(); 2617 if (nidp) 2618 *nidp = -1; 2619 return NULL; 2620 } 2621 2622 static void hugetlb_unregister_all_nodes(void) { } 2623 2624 static void hugetlb_register_all_nodes(void) { } 2625 2626 #endif 2627 2628 static void __exit hugetlb_exit(void) 2629 { 2630 struct hstate *h; 2631 2632 hugetlb_unregister_all_nodes(); 2633 2634 for_each_hstate(h) { 2635 kobject_put(hstate_kobjs[hstate_index(h)]); 2636 } 2637 2638 kobject_put(hugepages_kobj); 2639 kfree(hugetlb_fault_mutex_table); 2640 } 2641 module_exit(hugetlb_exit); 2642 2643 static int __init hugetlb_init(void) 2644 { 2645 int i; 2646 2647 if (!hugepages_supported()) 2648 return 0; 2649 2650 if (!size_to_hstate(default_hstate_size)) { 2651 default_hstate_size = HPAGE_SIZE; 2652 if (!size_to_hstate(default_hstate_size)) 2653 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2654 } 2655 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2656 if (default_hstate_max_huge_pages) 2657 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2658 2659 hugetlb_init_hstates(); 2660 gather_bootmem_prealloc(); 2661 report_hugepages(); 2662 2663 hugetlb_sysfs_init(); 2664 hugetlb_register_all_nodes(); 2665 hugetlb_cgroup_file_init(); 2666 2667 #ifdef CONFIG_SMP 2668 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2669 #else 2670 num_fault_mutexes = 1; 2671 #endif 2672 hugetlb_fault_mutex_table = 2673 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2674 BUG_ON(!hugetlb_fault_mutex_table); 2675 2676 for (i = 0; i < num_fault_mutexes; i++) 2677 mutex_init(&hugetlb_fault_mutex_table[i]); 2678 return 0; 2679 } 2680 module_init(hugetlb_init); 2681 2682 /* Should be called on processing a hugepagesz=... option */ 2683 void __init hugetlb_add_hstate(unsigned int order) 2684 { 2685 struct hstate *h; 2686 unsigned long i; 2687 2688 if (size_to_hstate(PAGE_SIZE << order)) { 2689 pr_warning("hugepagesz= specified twice, ignoring\n"); 2690 return; 2691 } 2692 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2693 BUG_ON(order == 0); 2694 h = &hstates[hugetlb_max_hstate++]; 2695 h->order = order; 2696 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2697 h->nr_huge_pages = 0; 2698 h->free_huge_pages = 0; 2699 for (i = 0; i < MAX_NUMNODES; ++i) 2700 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2701 INIT_LIST_HEAD(&h->hugepage_activelist); 2702 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2703 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2704 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2705 huge_page_size(h)/1024); 2706 2707 parsed_hstate = h; 2708 } 2709 2710 static int __init hugetlb_nrpages_setup(char *s) 2711 { 2712 unsigned long *mhp; 2713 static unsigned long *last_mhp; 2714 2715 /* 2716 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2717 * so this hugepages= parameter goes to the "default hstate". 2718 */ 2719 if (!hugetlb_max_hstate) 2720 mhp = &default_hstate_max_huge_pages; 2721 else 2722 mhp = &parsed_hstate->max_huge_pages; 2723 2724 if (mhp == last_mhp) { 2725 pr_warning("hugepages= specified twice without " 2726 "interleaving hugepagesz=, ignoring\n"); 2727 return 1; 2728 } 2729 2730 if (sscanf(s, "%lu", mhp) <= 0) 2731 *mhp = 0; 2732 2733 /* 2734 * Global state is always initialized later in hugetlb_init. 2735 * But we need to allocate >= MAX_ORDER hstates here early to still 2736 * use the bootmem allocator. 2737 */ 2738 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2739 hugetlb_hstate_alloc_pages(parsed_hstate); 2740 2741 last_mhp = mhp; 2742 2743 return 1; 2744 } 2745 __setup("hugepages=", hugetlb_nrpages_setup); 2746 2747 static int __init hugetlb_default_setup(char *s) 2748 { 2749 default_hstate_size = memparse(s, &s); 2750 return 1; 2751 } 2752 __setup("default_hugepagesz=", hugetlb_default_setup); 2753 2754 static unsigned int cpuset_mems_nr(unsigned int *array) 2755 { 2756 int node; 2757 unsigned int nr = 0; 2758 2759 for_each_node_mask(node, cpuset_current_mems_allowed) 2760 nr += array[node]; 2761 2762 return nr; 2763 } 2764 2765 #ifdef CONFIG_SYSCTL 2766 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2767 struct ctl_table *table, int write, 2768 void __user *buffer, size_t *length, loff_t *ppos) 2769 { 2770 struct hstate *h = &default_hstate; 2771 unsigned long tmp = h->max_huge_pages; 2772 int ret; 2773 2774 if (!hugepages_supported()) 2775 return -ENOTSUPP; 2776 2777 table->data = &tmp; 2778 table->maxlen = sizeof(unsigned long); 2779 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2780 if (ret) 2781 goto out; 2782 2783 if (write) 2784 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2785 NUMA_NO_NODE, tmp, *length); 2786 out: 2787 return ret; 2788 } 2789 2790 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2791 void __user *buffer, size_t *length, loff_t *ppos) 2792 { 2793 2794 return hugetlb_sysctl_handler_common(false, table, write, 2795 buffer, length, ppos); 2796 } 2797 2798 #ifdef CONFIG_NUMA 2799 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2800 void __user *buffer, size_t *length, loff_t *ppos) 2801 { 2802 return hugetlb_sysctl_handler_common(true, table, write, 2803 buffer, length, ppos); 2804 } 2805 #endif /* CONFIG_NUMA */ 2806 2807 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2808 void __user *buffer, 2809 size_t *length, loff_t *ppos) 2810 { 2811 struct hstate *h = &default_hstate; 2812 unsigned long tmp; 2813 int ret; 2814 2815 if (!hugepages_supported()) 2816 return -ENOTSUPP; 2817 2818 tmp = h->nr_overcommit_huge_pages; 2819 2820 if (write && hstate_is_gigantic(h)) 2821 return -EINVAL; 2822 2823 table->data = &tmp; 2824 table->maxlen = sizeof(unsigned long); 2825 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2826 if (ret) 2827 goto out; 2828 2829 if (write) { 2830 spin_lock(&hugetlb_lock); 2831 h->nr_overcommit_huge_pages = tmp; 2832 spin_unlock(&hugetlb_lock); 2833 } 2834 out: 2835 return ret; 2836 } 2837 2838 #endif /* CONFIG_SYSCTL */ 2839 2840 void hugetlb_report_meminfo(struct seq_file *m) 2841 { 2842 struct hstate *h = &default_hstate; 2843 if (!hugepages_supported()) 2844 return; 2845 seq_printf(m, 2846 "HugePages_Total: %5lu\n" 2847 "HugePages_Free: %5lu\n" 2848 "HugePages_Rsvd: %5lu\n" 2849 "HugePages_Surp: %5lu\n" 2850 "Hugepagesize: %8lu kB\n", 2851 h->nr_huge_pages, 2852 h->free_huge_pages, 2853 h->resv_huge_pages, 2854 h->surplus_huge_pages, 2855 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2856 } 2857 2858 int hugetlb_report_node_meminfo(int nid, char *buf) 2859 { 2860 struct hstate *h = &default_hstate; 2861 if (!hugepages_supported()) 2862 return 0; 2863 return sprintf(buf, 2864 "Node %d HugePages_Total: %5u\n" 2865 "Node %d HugePages_Free: %5u\n" 2866 "Node %d HugePages_Surp: %5u\n", 2867 nid, h->nr_huge_pages_node[nid], 2868 nid, h->free_huge_pages_node[nid], 2869 nid, h->surplus_huge_pages_node[nid]); 2870 } 2871 2872 void hugetlb_show_meminfo(void) 2873 { 2874 struct hstate *h; 2875 int nid; 2876 2877 if (!hugepages_supported()) 2878 return; 2879 2880 for_each_node_state(nid, N_MEMORY) 2881 for_each_hstate(h) 2882 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2883 nid, 2884 h->nr_huge_pages_node[nid], 2885 h->free_huge_pages_node[nid], 2886 h->surplus_huge_pages_node[nid], 2887 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2888 } 2889 2890 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2891 { 2892 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2893 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2894 } 2895 2896 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2897 unsigned long hugetlb_total_pages(void) 2898 { 2899 struct hstate *h; 2900 unsigned long nr_total_pages = 0; 2901 2902 for_each_hstate(h) 2903 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2904 return nr_total_pages; 2905 } 2906 2907 static int hugetlb_acct_memory(struct hstate *h, long delta) 2908 { 2909 int ret = -ENOMEM; 2910 2911 spin_lock(&hugetlb_lock); 2912 /* 2913 * When cpuset is configured, it breaks the strict hugetlb page 2914 * reservation as the accounting is done on a global variable. Such 2915 * reservation is completely rubbish in the presence of cpuset because 2916 * the reservation is not checked against page availability for the 2917 * current cpuset. Application can still potentially OOM'ed by kernel 2918 * with lack of free htlb page in cpuset that the task is in. 2919 * Attempt to enforce strict accounting with cpuset is almost 2920 * impossible (or too ugly) because cpuset is too fluid that 2921 * task or memory node can be dynamically moved between cpusets. 2922 * 2923 * The change of semantics for shared hugetlb mapping with cpuset is 2924 * undesirable. However, in order to preserve some of the semantics, 2925 * we fall back to check against current free page availability as 2926 * a best attempt and hopefully to minimize the impact of changing 2927 * semantics that cpuset has. 2928 */ 2929 if (delta > 0) { 2930 if (gather_surplus_pages(h, delta) < 0) 2931 goto out; 2932 2933 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2934 return_unused_surplus_pages(h, delta); 2935 goto out; 2936 } 2937 } 2938 2939 ret = 0; 2940 if (delta < 0) 2941 return_unused_surplus_pages(h, (unsigned long) -delta); 2942 2943 out: 2944 spin_unlock(&hugetlb_lock); 2945 return ret; 2946 } 2947 2948 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2949 { 2950 struct resv_map *resv = vma_resv_map(vma); 2951 2952 /* 2953 * This new VMA should share its siblings reservation map if present. 2954 * The VMA will only ever have a valid reservation map pointer where 2955 * it is being copied for another still existing VMA. As that VMA 2956 * has a reference to the reservation map it cannot disappear until 2957 * after this open call completes. It is therefore safe to take a 2958 * new reference here without additional locking. 2959 */ 2960 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2961 kref_get(&resv->refs); 2962 } 2963 2964 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2965 { 2966 struct hstate *h = hstate_vma(vma); 2967 struct resv_map *resv = vma_resv_map(vma); 2968 struct hugepage_subpool *spool = subpool_vma(vma); 2969 unsigned long reserve, start, end; 2970 long gbl_reserve; 2971 2972 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2973 return; 2974 2975 start = vma_hugecache_offset(h, vma, vma->vm_start); 2976 end = vma_hugecache_offset(h, vma, vma->vm_end); 2977 2978 reserve = (end - start) - region_count(resv, start, end); 2979 2980 kref_put(&resv->refs, resv_map_release); 2981 2982 if (reserve) { 2983 /* 2984 * Decrement reserve counts. The global reserve count may be 2985 * adjusted if the subpool has a minimum size. 2986 */ 2987 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 2988 hugetlb_acct_memory(h, -gbl_reserve); 2989 } 2990 } 2991 2992 /* 2993 * We cannot handle pagefaults against hugetlb pages at all. They cause 2994 * handle_mm_fault() to try to instantiate regular-sized pages in the 2995 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2996 * this far. 2997 */ 2998 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2999 { 3000 BUG(); 3001 return 0; 3002 } 3003 3004 const struct vm_operations_struct hugetlb_vm_ops = { 3005 .fault = hugetlb_vm_op_fault, 3006 .open = hugetlb_vm_op_open, 3007 .close = hugetlb_vm_op_close, 3008 }; 3009 3010 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3011 int writable) 3012 { 3013 pte_t entry; 3014 3015 if (writable) { 3016 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3017 vma->vm_page_prot))); 3018 } else { 3019 entry = huge_pte_wrprotect(mk_huge_pte(page, 3020 vma->vm_page_prot)); 3021 } 3022 entry = pte_mkyoung(entry); 3023 entry = pte_mkhuge(entry); 3024 entry = arch_make_huge_pte(entry, vma, page, writable); 3025 3026 return entry; 3027 } 3028 3029 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3030 unsigned long address, pte_t *ptep) 3031 { 3032 pte_t entry; 3033 3034 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3035 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3036 update_mmu_cache(vma, address, ptep); 3037 } 3038 3039 static int is_hugetlb_entry_migration(pte_t pte) 3040 { 3041 swp_entry_t swp; 3042 3043 if (huge_pte_none(pte) || pte_present(pte)) 3044 return 0; 3045 swp = pte_to_swp_entry(pte); 3046 if (non_swap_entry(swp) && is_migration_entry(swp)) 3047 return 1; 3048 else 3049 return 0; 3050 } 3051 3052 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3053 { 3054 swp_entry_t swp; 3055 3056 if (huge_pte_none(pte) || pte_present(pte)) 3057 return 0; 3058 swp = pte_to_swp_entry(pte); 3059 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3060 return 1; 3061 else 3062 return 0; 3063 } 3064 3065 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3066 struct vm_area_struct *vma) 3067 { 3068 pte_t *src_pte, *dst_pte, entry; 3069 struct page *ptepage; 3070 unsigned long addr; 3071 int cow; 3072 struct hstate *h = hstate_vma(vma); 3073 unsigned long sz = huge_page_size(h); 3074 unsigned long mmun_start; /* For mmu_notifiers */ 3075 unsigned long mmun_end; /* For mmu_notifiers */ 3076 int ret = 0; 3077 3078 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3079 3080 mmun_start = vma->vm_start; 3081 mmun_end = vma->vm_end; 3082 if (cow) 3083 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3084 3085 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3086 spinlock_t *src_ptl, *dst_ptl; 3087 src_pte = huge_pte_offset(src, addr); 3088 if (!src_pte) 3089 continue; 3090 dst_pte = huge_pte_alloc(dst, addr, sz); 3091 if (!dst_pte) { 3092 ret = -ENOMEM; 3093 break; 3094 } 3095 3096 /* If the pagetables are shared don't copy or take references */ 3097 if (dst_pte == src_pte) 3098 continue; 3099 3100 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3101 src_ptl = huge_pte_lockptr(h, src, src_pte); 3102 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3103 entry = huge_ptep_get(src_pte); 3104 if (huge_pte_none(entry)) { /* skip none entry */ 3105 ; 3106 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3107 is_hugetlb_entry_hwpoisoned(entry))) { 3108 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3109 3110 if (is_write_migration_entry(swp_entry) && cow) { 3111 /* 3112 * COW mappings require pages in both 3113 * parent and child to be set to read. 3114 */ 3115 make_migration_entry_read(&swp_entry); 3116 entry = swp_entry_to_pte(swp_entry); 3117 set_huge_pte_at(src, addr, src_pte, entry); 3118 } 3119 set_huge_pte_at(dst, addr, dst_pte, entry); 3120 } else { 3121 if (cow) { 3122 huge_ptep_set_wrprotect(src, addr, src_pte); 3123 mmu_notifier_invalidate_range(src, mmun_start, 3124 mmun_end); 3125 } 3126 entry = huge_ptep_get(src_pte); 3127 ptepage = pte_page(entry); 3128 get_page(ptepage); 3129 page_dup_rmap(ptepage); 3130 set_huge_pte_at(dst, addr, dst_pte, entry); 3131 hugetlb_count_add(pages_per_huge_page(h), dst); 3132 } 3133 spin_unlock(src_ptl); 3134 spin_unlock(dst_ptl); 3135 } 3136 3137 if (cow) 3138 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3139 3140 return ret; 3141 } 3142 3143 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3144 unsigned long start, unsigned long end, 3145 struct page *ref_page) 3146 { 3147 int force_flush = 0; 3148 struct mm_struct *mm = vma->vm_mm; 3149 unsigned long address; 3150 pte_t *ptep; 3151 pte_t pte; 3152 spinlock_t *ptl; 3153 struct page *page; 3154 struct hstate *h = hstate_vma(vma); 3155 unsigned long sz = huge_page_size(h); 3156 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3157 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3158 3159 WARN_ON(!is_vm_hugetlb_page(vma)); 3160 BUG_ON(start & ~huge_page_mask(h)); 3161 BUG_ON(end & ~huge_page_mask(h)); 3162 3163 tlb_start_vma(tlb, vma); 3164 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3165 address = start; 3166 again: 3167 for (; address < end; address += sz) { 3168 ptep = huge_pte_offset(mm, address); 3169 if (!ptep) 3170 continue; 3171 3172 ptl = huge_pte_lock(h, mm, ptep); 3173 if (huge_pmd_unshare(mm, &address, ptep)) 3174 goto unlock; 3175 3176 pte = huge_ptep_get(ptep); 3177 if (huge_pte_none(pte)) 3178 goto unlock; 3179 3180 /* 3181 * Migrating hugepage or HWPoisoned hugepage is already 3182 * unmapped and its refcount is dropped, so just clear pte here. 3183 */ 3184 if (unlikely(!pte_present(pte))) { 3185 huge_pte_clear(mm, address, ptep); 3186 goto unlock; 3187 } 3188 3189 page = pte_page(pte); 3190 /* 3191 * If a reference page is supplied, it is because a specific 3192 * page is being unmapped, not a range. Ensure the page we 3193 * are about to unmap is the actual page of interest. 3194 */ 3195 if (ref_page) { 3196 if (page != ref_page) 3197 goto unlock; 3198 3199 /* 3200 * Mark the VMA as having unmapped its page so that 3201 * future faults in this VMA will fail rather than 3202 * looking like data was lost 3203 */ 3204 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3205 } 3206 3207 pte = huge_ptep_get_and_clear(mm, address, ptep); 3208 tlb_remove_tlb_entry(tlb, ptep, address); 3209 if (huge_pte_dirty(pte)) 3210 set_page_dirty(page); 3211 3212 hugetlb_count_sub(pages_per_huge_page(h), mm); 3213 page_remove_rmap(page); 3214 force_flush = !__tlb_remove_page(tlb, page); 3215 if (force_flush) { 3216 address += sz; 3217 spin_unlock(ptl); 3218 break; 3219 } 3220 /* Bail out after unmapping reference page if supplied */ 3221 if (ref_page) { 3222 spin_unlock(ptl); 3223 break; 3224 } 3225 unlock: 3226 spin_unlock(ptl); 3227 } 3228 /* 3229 * mmu_gather ran out of room to batch pages, we break out of 3230 * the PTE lock to avoid doing the potential expensive TLB invalidate 3231 * and page-free while holding it. 3232 */ 3233 if (force_flush) { 3234 force_flush = 0; 3235 tlb_flush_mmu(tlb); 3236 if (address < end && !ref_page) 3237 goto again; 3238 } 3239 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3240 tlb_end_vma(tlb, vma); 3241 } 3242 3243 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3244 struct vm_area_struct *vma, unsigned long start, 3245 unsigned long end, struct page *ref_page) 3246 { 3247 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3248 3249 /* 3250 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3251 * test will fail on a vma being torn down, and not grab a page table 3252 * on its way out. We're lucky that the flag has such an appropriate 3253 * name, and can in fact be safely cleared here. We could clear it 3254 * before the __unmap_hugepage_range above, but all that's necessary 3255 * is to clear it before releasing the i_mmap_rwsem. This works 3256 * because in the context this is called, the VMA is about to be 3257 * destroyed and the i_mmap_rwsem is held. 3258 */ 3259 vma->vm_flags &= ~VM_MAYSHARE; 3260 } 3261 3262 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3263 unsigned long end, struct page *ref_page) 3264 { 3265 struct mm_struct *mm; 3266 struct mmu_gather tlb; 3267 3268 mm = vma->vm_mm; 3269 3270 tlb_gather_mmu(&tlb, mm, start, end); 3271 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3272 tlb_finish_mmu(&tlb, start, end); 3273 } 3274 3275 /* 3276 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3277 * mappping it owns the reserve page for. The intention is to unmap the page 3278 * from other VMAs and let the children be SIGKILLed if they are faulting the 3279 * same region. 3280 */ 3281 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3282 struct page *page, unsigned long address) 3283 { 3284 struct hstate *h = hstate_vma(vma); 3285 struct vm_area_struct *iter_vma; 3286 struct address_space *mapping; 3287 pgoff_t pgoff; 3288 3289 /* 3290 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3291 * from page cache lookup which is in HPAGE_SIZE units. 3292 */ 3293 address = address & huge_page_mask(h); 3294 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3295 vma->vm_pgoff; 3296 mapping = file_inode(vma->vm_file)->i_mapping; 3297 3298 /* 3299 * Take the mapping lock for the duration of the table walk. As 3300 * this mapping should be shared between all the VMAs, 3301 * __unmap_hugepage_range() is called as the lock is already held 3302 */ 3303 i_mmap_lock_write(mapping); 3304 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3305 /* Do not unmap the current VMA */ 3306 if (iter_vma == vma) 3307 continue; 3308 3309 /* 3310 * Shared VMAs have their own reserves and do not affect 3311 * MAP_PRIVATE accounting but it is possible that a shared 3312 * VMA is using the same page so check and skip such VMAs. 3313 */ 3314 if (iter_vma->vm_flags & VM_MAYSHARE) 3315 continue; 3316 3317 /* 3318 * Unmap the page from other VMAs without their own reserves. 3319 * They get marked to be SIGKILLed if they fault in these 3320 * areas. This is because a future no-page fault on this VMA 3321 * could insert a zeroed page instead of the data existing 3322 * from the time of fork. This would look like data corruption 3323 */ 3324 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3325 unmap_hugepage_range(iter_vma, address, 3326 address + huge_page_size(h), page); 3327 } 3328 i_mmap_unlock_write(mapping); 3329 } 3330 3331 /* 3332 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3333 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3334 * cannot race with other handlers or page migration. 3335 * Keep the pte_same checks anyway to make transition from the mutex easier. 3336 */ 3337 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3338 unsigned long address, pte_t *ptep, pte_t pte, 3339 struct page *pagecache_page, spinlock_t *ptl) 3340 { 3341 struct hstate *h = hstate_vma(vma); 3342 struct page *old_page, *new_page; 3343 int ret = 0, outside_reserve = 0; 3344 unsigned long mmun_start; /* For mmu_notifiers */ 3345 unsigned long mmun_end; /* For mmu_notifiers */ 3346 3347 old_page = pte_page(pte); 3348 3349 retry_avoidcopy: 3350 /* If no-one else is actually using this page, avoid the copy 3351 * and just make the page writable */ 3352 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3353 page_move_anon_rmap(old_page, vma, address); 3354 set_huge_ptep_writable(vma, address, ptep); 3355 return 0; 3356 } 3357 3358 /* 3359 * If the process that created a MAP_PRIVATE mapping is about to 3360 * perform a COW due to a shared page count, attempt to satisfy 3361 * the allocation without using the existing reserves. The pagecache 3362 * page is used to determine if the reserve at this address was 3363 * consumed or not. If reserves were used, a partial faulted mapping 3364 * at the time of fork() could consume its reserves on COW instead 3365 * of the full address range. 3366 */ 3367 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3368 old_page != pagecache_page) 3369 outside_reserve = 1; 3370 3371 page_cache_get(old_page); 3372 3373 /* 3374 * Drop page table lock as buddy allocator may be called. It will 3375 * be acquired again before returning to the caller, as expected. 3376 */ 3377 spin_unlock(ptl); 3378 new_page = alloc_huge_page(vma, address, outside_reserve); 3379 3380 if (IS_ERR(new_page)) { 3381 /* 3382 * If a process owning a MAP_PRIVATE mapping fails to COW, 3383 * it is due to references held by a child and an insufficient 3384 * huge page pool. To guarantee the original mappers 3385 * reliability, unmap the page from child processes. The child 3386 * may get SIGKILLed if it later faults. 3387 */ 3388 if (outside_reserve) { 3389 page_cache_release(old_page); 3390 BUG_ON(huge_pte_none(pte)); 3391 unmap_ref_private(mm, vma, old_page, address); 3392 BUG_ON(huge_pte_none(pte)); 3393 spin_lock(ptl); 3394 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3395 if (likely(ptep && 3396 pte_same(huge_ptep_get(ptep), pte))) 3397 goto retry_avoidcopy; 3398 /* 3399 * race occurs while re-acquiring page table 3400 * lock, and our job is done. 3401 */ 3402 return 0; 3403 } 3404 3405 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3406 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3407 goto out_release_old; 3408 } 3409 3410 /* 3411 * When the original hugepage is shared one, it does not have 3412 * anon_vma prepared. 3413 */ 3414 if (unlikely(anon_vma_prepare(vma))) { 3415 ret = VM_FAULT_OOM; 3416 goto out_release_all; 3417 } 3418 3419 copy_user_huge_page(new_page, old_page, address, vma, 3420 pages_per_huge_page(h)); 3421 __SetPageUptodate(new_page); 3422 set_page_huge_active(new_page); 3423 3424 mmun_start = address & huge_page_mask(h); 3425 mmun_end = mmun_start + huge_page_size(h); 3426 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3427 3428 /* 3429 * Retake the page table lock to check for racing updates 3430 * before the page tables are altered 3431 */ 3432 spin_lock(ptl); 3433 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3434 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3435 ClearPagePrivate(new_page); 3436 3437 /* Break COW */ 3438 huge_ptep_clear_flush(vma, address, ptep); 3439 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3440 set_huge_pte_at(mm, address, ptep, 3441 make_huge_pte(vma, new_page, 1)); 3442 page_remove_rmap(old_page); 3443 hugepage_add_new_anon_rmap(new_page, vma, address); 3444 /* Make the old page be freed below */ 3445 new_page = old_page; 3446 } 3447 spin_unlock(ptl); 3448 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3449 out_release_all: 3450 page_cache_release(new_page); 3451 out_release_old: 3452 page_cache_release(old_page); 3453 3454 spin_lock(ptl); /* Caller expects lock to be held */ 3455 return ret; 3456 } 3457 3458 /* Return the pagecache page at a given address within a VMA */ 3459 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3460 struct vm_area_struct *vma, unsigned long address) 3461 { 3462 struct address_space *mapping; 3463 pgoff_t idx; 3464 3465 mapping = vma->vm_file->f_mapping; 3466 idx = vma_hugecache_offset(h, vma, address); 3467 3468 return find_lock_page(mapping, idx); 3469 } 3470 3471 /* 3472 * Return whether there is a pagecache page to back given address within VMA. 3473 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3474 */ 3475 static bool hugetlbfs_pagecache_present(struct hstate *h, 3476 struct vm_area_struct *vma, unsigned long address) 3477 { 3478 struct address_space *mapping; 3479 pgoff_t idx; 3480 struct page *page; 3481 3482 mapping = vma->vm_file->f_mapping; 3483 idx = vma_hugecache_offset(h, vma, address); 3484 3485 page = find_get_page(mapping, idx); 3486 if (page) 3487 put_page(page); 3488 return page != NULL; 3489 } 3490 3491 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3492 pgoff_t idx) 3493 { 3494 struct inode *inode = mapping->host; 3495 struct hstate *h = hstate_inode(inode); 3496 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3497 3498 if (err) 3499 return err; 3500 ClearPagePrivate(page); 3501 3502 spin_lock(&inode->i_lock); 3503 inode->i_blocks += blocks_per_huge_page(h); 3504 spin_unlock(&inode->i_lock); 3505 return 0; 3506 } 3507 3508 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3509 struct address_space *mapping, pgoff_t idx, 3510 unsigned long address, pte_t *ptep, unsigned int flags) 3511 { 3512 struct hstate *h = hstate_vma(vma); 3513 int ret = VM_FAULT_SIGBUS; 3514 int anon_rmap = 0; 3515 unsigned long size; 3516 struct page *page; 3517 pte_t new_pte; 3518 spinlock_t *ptl; 3519 3520 /* 3521 * Currently, we are forced to kill the process in the event the 3522 * original mapper has unmapped pages from the child due to a failed 3523 * COW. Warn that such a situation has occurred as it may not be obvious 3524 */ 3525 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3526 pr_warning("PID %d killed due to inadequate hugepage pool\n", 3527 current->pid); 3528 return ret; 3529 } 3530 3531 /* 3532 * Use page lock to guard against racing truncation 3533 * before we get page_table_lock. 3534 */ 3535 retry: 3536 page = find_lock_page(mapping, idx); 3537 if (!page) { 3538 size = i_size_read(mapping->host) >> huge_page_shift(h); 3539 if (idx >= size) 3540 goto out; 3541 page = alloc_huge_page(vma, address, 0); 3542 if (IS_ERR(page)) { 3543 ret = PTR_ERR(page); 3544 if (ret == -ENOMEM) 3545 ret = VM_FAULT_OOM; 3546 else 3547 ret = VM_FAULT_SIGBUS; 3548 goto out; 3549 } 3550 clear_huge_page(page, address, pages_per_huge_page(h)); 3551 __SetPageUptodate(page); 3552 set_page_huge_active(page); 3553 3554 if (vma->vm_flags & VM_MAYSHARE) { 3555 int err = huge_add_to_page_cache(page, mapping, idx); 3556 if (err) { 3557 put_page(page); 3558 if (err == -EEXIST) 3559 goto retry; 3560 goto out; 3561 } 3562 } else { 3563 lock_page(page); 3564 if (unlikely(anon_vma_prepare(vma))) { 3565 ret = VM_FAULT_OOM; 3566 goto backout_unlocked; 3567 } 3568 anon_rmap = 1; 3569 } 3570 } else { 3571 /* 3572 * If memory error occurs between mmap() and fault, some process 3573 * don't have hwpoisoned swap entry for errored virtual address. 3574 * So we need to block hugepage fault by PG_hwpoison bit check. 3575 */ 3576 if (unlikely(PageHWPoison(page))) { 3577 ret = VM_FAULT_HWPOISON | 3578 VM_FAULT_SET_HINDEX(hstate_index(h)); 3579 goto backout_unlocked; 3580 } 3581 } 3582 3583 /* 3584 * If we are going to COW a private mapping later, we examine the 3585 * pending reservations for this page now. This will ensure that 3586 * any allocations necessary to record that reservation occur outside 3587 * the spinlock. 3588 */ 3589 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3590 if (vma_needs_reservation(h, vma, address) < 0) { 3591 ret = VM_FAULT_OOM; 3592 goto backout_unlocked; 3593 } 3594 /* Just decrements count, does not deallocate */ 3595 vma_end_reservation(h, vma, address); 3596 } 3597 3598 ptl = huge_pte_lockptr(h, mm, ptep); 3599 spin_lock(ptl); 3600 size = i_size_read(mapping->host) >> huge_page_shift(h); 3601 if (idx >= size) 3602 goto backout; 3603 3604 ret = 0; 3605 if (!huge_pte_none(huge_ptep_get(ptep))) 3606 goto backout; 3607 3608 if (anon_rmap) { 3609 ClearPagePrivate(page); 3610 hugepage_add_new_anon_rmap(page, vma, address); 3611 } else 3612 page_dup_rmap(page); 3613 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3614 && (vma->vm_flags & VM_SHARED))); 3615 set_huge_pte_at(mm, address, ptep, new_pte); 3616 3617 hugetlb_count_add(pages_per_huge_page(h), mm); 3618 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3619 /* Optimization, do the COW without a second fault */ 3620 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3621 } 3622 3623 spin_unlock(ptl); 3624 unlock_page(page); 3625 out: 3626 return ret; 3627 3628 backout: 3629 spin_unlock(ptl); 3630 backout_unlocked: 3631 unlock_page(page); 3632 put_page(page); 3633 goto out; 3634 } 3635 3636 #ifdef CONFIG_SMP 3637 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3638 struct vm_area_struct *vma, 3639 struct address_space *mapping, 3640 pgoff_t idx, unsigned long address) 3641 { 3642 unsigned long key[2]; 3643 u32 hash; 3644 3645 if (vma->vm_flags & VM_SHARED) { 3646 key[0] = (unsigned long) mapping; 3647 key[1] = idx; 3648 } else { 3649 key[0] = (unsigned long) mm; 3650 key[1] = address >> huge_page_shift(h); 3651 } 3652 3653 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3654 3655 return hash & (num_fault_mutexes - 1); 3656 } 3657 #else 3658 /* 3659 * For uniprocesor systems we always use a single mutex, so just 3660 * return 0 and avoid the hashing overhead. 3661 */ 3662 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3663 struct vm_area_struct *vma, 3664 struct address_space *mapping, 3665 pgoff_t idx, unsigned long address) 3666 { 3667 return 0; 3668 } 3669 #endif 3670 3671 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3672 unsigned long address, unsigned int flags) 3673 { 3674 pte_t *ptep, entry; 3675 spinlock_t *ptl; 3676 int ret; 3677 u32 hash; 3678 pgoff_t idx; 3679 struct page *page = NULL; 3680 struct page *pagecache_page = NULL; 3681 struct hstate *h = hstate_vma(vma); 3682 struct address_space *mapping; 3683 int need_wait_lock = 0; 3684 3685 address &= huge_page_mask(h); 3686 3687 ptep = huge_pte_offset(mm, address); 3688 if (ptep) { 3689 entry = huge_ptep_get(ptep); 3690 if (unlikely(is_hugetlb_entry_migration(entry))) { 3691 migration_entry_wait_huge(vma, mm, ptep); 3692 return 0; 3693 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3694 return VM_FAULT_HWPOISON_LARGE | 3695 VM_FAULT_SET_HINDEX(hstate_index(h)); 3696 } 3697 3698 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3699 if (!ptep) 3700 return VM_FAULT_OOM; 3701 3702 mapping = vma->vm_file->f_mapping; 3703 idx = vma_hugecache_offset(h, vma, address); 3704 3705 /* 3706 * Serialize hugepage allocation and instantiation, so that we don't 3707 * get spurious allocation failures if two CPUs race to instantiate 3708 * the same page in the page cache. 3709 */ 3710 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3711 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3712 3713 entry = huge_ptep_get(ptep); 3714 if (huge_pte_none(entry)) { 3715 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3716 goto out_mutex; 3717 } 3718 3719 ret = 0; 3720 3721 /* 3722 * entry could be a migration/hwpoison entry at this point, so this 3723 * check prevents the kernel from going below assuming that we have 3724 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3725 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3726 * handle it. 3727 */ 3728 if (!pte_present(entry)) 3729 goto out_mutex; 3730 3731 /* 3732 * If we are going to COW the mapping later, we examine the pending 3733 * reservations for this page now. This will ensure that any 3734 * allocations necessary to record that reservation occur outside the 3735 * spinlock. For private mappings, we also lookup the pagecache 3736 * page now as it is used to determine if a reservation has been 3737 * consumed. 3738 */ 3739 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3740 if (vma_needs_reservation(h, vma, address) < 0) { 3741 ret = VM_FAULT_OOM; 3742 goto out_mutex; 3743 } 3744 /* Just decrements count, does not deallocate */ 3745 vma_end_reservation(h, vma, address); 3746 3747 if (!(vma->vm_flags & VM_MAYSHARE)) 3748 pagecache_page = hugetlbfs_pagecache_page(h, 3749 vma, address); 3750 } 3751 3752 ptl = huge_pte_lock(h, mm, ptep); 3753 3754 /* Check for a racing update before calling hugetlb_cow */ 3755 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3756 goto out_ptl; 3757 3758 /* 3759 * hugetlb_cow() requires page locks of pte_page(entry) and 3760 * pagecache_page, so here we need take the former one 3761 * when page != pagecache_page or !pagecache_page. 3762 */ 3763 page = pte_page(entry); 3764 if (page != pagecache_page) 3765 if (!trylock_page(page)) { 3766 need_wait_lock = 1; 3767 goto out_ptl; 3768 } 3769 3770 get_page(page); 3771 3772 if (flags & FAULT_FLAG_WRITE) { 3773 if (!huge_pte_write(entry)) { 3774 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3775 pagecache_page, ptl); 3776 goto out_put_page; 3777 } 3778 entry = huge_pte_mkdirty(entry); 3779 } 3780 entry = pte_mkyoung(entry); 3781 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3782 flags & FAULT_FLAG_WRITE)) 3783 update_mmu_cache(vma, address, ptep); 3784 out_put_page: 3785 if (page != pagecache_page) 3786 unlock_page(page); 3787 put_page(page); 3788 out_ptl: 3789 spin_unlock(ptl); 3790 3791 if (pagecache_page) { 3792 unlock_page(pagecache_page); 3793 put_page(pagecache_page); 3794 } 3795 out_mutex: 3796 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3797 /* 3798 * Generally it's safe to hold refcount during waiting page lock. But 3799 * here we just wait to defer the next page fault to avoid busy loop and 3800 * the page is not used after unlocked before returning from the current 3801 * page fault. So we are safe from accessing freed page, even if we wait 3802 * here without taking refcount. 3803 */ 3804 if (need_wait_lock) 3805 wait_on_page_locked(page); 3806 return ret; 3807 } 3808 3809 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3810 struct page **pages, struct vm_area_struct **vmas, 3811 unsigned long *position, unsigned long *nr_pages, 3812 long i, unsigned int flags) 3813 { 3814 unsigned long pfn_offset; 3815 unsigned long vaddr = *position; 3816 unsigned long remainder = *nr_pages; 3817 struct hstate *h = hstate_vma(vma); 3818 3819 while (vaddr < vma->vm_end && remainder) { 3820 pte_t *pte; 3821 spinlock_t *ptl = NULL; 3822 int absent; 3823 struct page *page; 3824 3825 /* 3826 * If we have a pending SIGKILL, don't keep faulting pages and 3827 * potentially allocating memory. 3828 */ 3829 if (unlikely(fatal_signal_pending(current))) { 3830 remainder = 0; 3831 break; 3832 } 3833 3834 /* 3835 * Some archs (sparc64, sh*) have multiple pte_ts to 3836 * each hugepage. We have to make sure we get the 3837 * first, for the page indexing below to work. 3838 * 3839 * Note that page table lock is not held when pte is null. 3840 */ 3841 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3842 if (pte) 3843 ptl = huge_pte_lock(h, mm, pte); 3844 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3845 3846 /* 3847 * When coredumping, it suits get_dump_page if we just return 3848 * an error where there's an empty slot with no huge pagecache 3849 * to back it. This way, we avoid allocating a hugepage, and 3850 * the sparse dumpfile avoids allocating disk blocks, but its 3851 * huge holes still show up with zeroes where they need to be. 3852 */ 3853 if (absent && (flags & FOLL_DUMP) && 3854 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3855 if (pte) 3856 spin_unlock(ptl); 3857 remainder = 0; 3858 break; 3859 } 3860 3861 /* 3862 * We need call hugetlb_fault for both hugepages under migration 3863 * (in which case hugetlb_fault waits for the migration,) and 3864 * hwpoisoned hugepages (in which case we need to prevent the 3865 * caller from accessing to them.) In order to do this, we use 3866 * here is_swap_pte instead of is_hugetlb_entry_migration and 3867 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3868 * both cases, and because we can't follow correct pages 3869 * directly from any kind of swap entries. 3870 */ 3871 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3872 ((flags & FOLL_WRITE) && 3873 !huge_pte_write(huge_ptep_get(pte)))) { 3874 int ret; 3875 3876 if (pte) 3877 spin_unlock(ptl); 3878 ret = hugetlb_fault(mm, vma, vaddr, 3879 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3880 if (!(ret & VM_FAULT_ERROR)) 3881 continue; 3882 3883 remainder = 0; 3884 break; 3885 } 3886 3887 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3888 page = pte_page(huge_ptep_get(pte)); 3889 same_page: 3890 if (pages) { 3891 pages[i] = mem_map_offset(page, pfn_offset); 3892 get_page_foll(pages[i]); 3893 } 3894 3895 if (vmas) 3896 vmas[i] = vma; 3897 3898 vaddr += PAGE_SIZE; 3899 ++pfn_offset; 3900 --remainder; 3901 ++i; 3902 if (vaddr < vma->vm_end && remainder && 3903 pfn_offset < pages_per_huge_page(h)) { 3904 /* 3905 * We use pfn_offset to avoid touching the pageframes 3906 * of this compound page. 3907 */ 3908 goto same_page; 3909 } 3910 spin_unlock(ptl); 3911 } 3912 *nr_pages = remainder; 3913 *position = vaddr; 3914 3915 return i ? i : -EFAULT; 3916 } 3917 3918 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3919 unsigned long address, unsigned long end, pgprot_t newprot) 3920 { 3921 struct mm_struct *mm = vma->vm_mm; 3922 unsigned long start = address; 3923 pte_t *ptep; 3924 pte_t pte; 3925 struct hstate *h = hstate_vma(vma); 3926 unsigned long pages = 0; 3927 3928 BUG_ON(address >= end); 3929 flush_cache_range(vma, address, end); 3930 3931 mmu_notifier_invalidate_range_start(mm, start, end); 3932 i_mmap_lock_write(vma->vm_file->f_mapping); 3933 for (; address < end; address += huge_page_size(h)) { 3934 spinlock_t *ptl; 3935 ptep = huge_pte_offset(mm, address); 3936 if (!ptep) 3937 continue; 3938 ptl = huge_pte_lock(h, mm, ptep); 3939 if (huge_pmd_unshare(mm, &address, ptep)) { 3940 pages++; 3941 spin_unlock(ptl); 3942 continue; 3943 } 3944 pte = huge_ptep_get(ptep); 3945 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3946 spin_unlock(ptl); 3947 continue; 3948 } 3949 if (unlikely(is_hugetlb_entry_migration(pte))) { 3950 swp_entry_t entry = pte_to_swp_entry(pte); 3951 3952 if (is_write_migration_entry(entry)) { 3953 pte_t newpte; 3954 3955 make_migration_entry_read(&entry); 3956 newpte = swp_entry_to_pte(entry); 3957 set_huge_pte_at(mm, address, ptep, newpte); 3958 pages++; 3959 } 3960 spin_unlock(ptl); 3961 continue; 3962 } 3963 if (!huge_pte_none(pte)) { 3964 pte = huge_ptep_get_and_clear(mm, address, ptep); 3965 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3966 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3967 set_huge_pte_at(mm, address, ptep, pte); 3968 pages++; 3969 } 3970 spin_unlock(ptl); 3971 } 3972 /* 3973 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 3974 * may have cleared our pud entry and done put_page on the page table: 3975 * once we release i_mmap_rwsem, another task can do the final put_page 3976 * and that page table be reused and filled with junk. 3977 */ 3978 flush_tlb_range(vma, start, end); 3979 mmu_notifier_invalidate_range(mm, start, end); 3980 i_mmap_unlock_write(vma->vm_file->f_mapping); 3981 mmu_notifier_invalidate_range_end(mm, start, end); 3982 3983 return pages << h->order; 3984 } 3985 3986 int hugetlb_reserve_pages(struct inode *inode, 3987 long from, long to, 3988 struct vm_area_struct *vma, 3989 vm_flags_t vm_flags) 3990 { 3991 long ret, chg; 3992 struct hstate *h = hstate_inode(inode); 3993 struct hugepage_subpool *spool = subpool_inode(inode); 3994 struct resv_map *resv_map; 3995 long gbl_reserve; 3996 3997 /* 3998 * Only apply hugepage reservation if asked. At fault time, an 3999 * attempt will be made for VM_NORESERVE to allocate a page 4000 * without using reserves 4001 */ 4002 if (vm_flags & VM_NORESERVE) 4003 return 0; 4004 4005 /* 4006 * Shared mappings base their reservation on the number of pages that 4007 * are already allocated on behalf of the file. Private mappings need 4008 * to reserve the full area even if read-only as mprotect() may be 4009 * called to make the mapping read-write. Assume !vma is a shm mapping 4010 */ 4011 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4012 resv_map = inode_resv_map(inode); 4013 4014 chg = region_chg(resv_map, from, to); 4015 4016 } else { 4017 resv_map = resv_map_alloc(); 4018 if (!resv_map) 4019 return -ENOMEM; 4020 4021 chg = to - from; 4022 4023 set_vma_resv_map(vma, resv_map); 4024 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4025 } 4026 4027 if (chg < 0) { 4028 ret = chg; 4029 goto out_err; 4030 } 4031 4032 /* 4033 * There must be enough pages in the subpool for the mapping. If 4034 * the subpool has a minimum size, there may be some global 4035 * reservations already in place (gbl_reserve). 4036 */ 4037 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4038 if (gbl_reserve < 0) { 4039 ret = -ENOSPC; 4040 goto out_err; 4041 } 4042 4043 /* 4044 * Check enough hugepages are available for the reservation. 4045 * Hand the pages back to the subpool if there are not 4046 */ 4047 ret = hugetlb_acct_memory(h, gbl_reserve); 4048 if (ret < 0) { 4049 /* put back original number of pages, chg */ 4050 (void)hugepage_subpool_put_pages(spool, chg); 4051 goto out_err; 4052 } 4053 4054 /* 4055 * Account for the reservations made. Shared mappings record regions 4056 * that have reservations as they are shared by multiple VMAs. 4057 * When the last VMA disappears, the region map says how much 4058 * the reservation was and the page cache tells how much of 4059 * the reservation was consumed. Private mappings are per-VMA and 4060 * only the consumed reservations are tracked. When the VMA 4061 * disappears, the original reservation is the VMA size and the 4062 * consumed reservations are stored in the map. Hence, nothing 4063 * else has to be done for private mappings here 4064 */ 4065 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4066 long add = region_add(resv_map, from, to); 4067 4068 if (unlikely(chg > add)) { 4069 /* 4070 * pages in this range were added to the reserve 4071 * map between region_chg and region_add. This 4072 * indicates a race with alloc_huge_page. Adjust 4073 * the subpool and reserve counts modified above 4074 * based on the difference. 4075 */ 4076 long rsv_adjust; 4077 4078 rsv_adjust = hugepage_subpool_put_pages(spool, 4079 chg - add); 4080 hugetlb_acct_memory(h, -rsv_adjust); 4081 } 4082 } 4083 return 0; 4084 out_err: 4085 if (!vma || vma->vm_flags & VM_MAYSHARE) 4086 region_abort(resv_map, from, to); 4087 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4088 kref_put(&resv_map->refs, resv_map_release); 4089 return ret; 4090 } 4091 4092 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4093 long freed) 4094 { 4095 struct hstate *h = hstate_inode(inode); 4096 struct resv_map *resv_map = inode_resv_map(inode); 4097 long chg = 0; 4098 struct hugepage_subpool *spool = subpool_inode(inode); 4099 long gbl_reserve; 4100 4101 if (resv_map) { 4102 chg = region_del(resv_map, start, end); 4103 /* 4104 * region_del() can fail in the rare case where a region 4105 * must be split and another region descriptor can not be 4106 * allocated. If end == LONG_MAX, it will not fail. 4107 */ 4108 if (chg < 0) 4109 return chg; 4110 } 4111 4112 spin_lock(&inode->i_lock); 4113 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4114 spin_unlock(&inode->i_lock); 4115 4116 /* 4117 * If the subpool has a minimum size, the number of global 4118 * reservations to be released may be adjusted. 4119 */ 4120 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4121 hugetlb_acct_memory(h, -gbl_reserve); 4122 4123 return 0; 4124 } 4125 4126 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4127 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4128 struct vm_area_struct *vma, 4129 unsigned long addr, pgoff_t idx) 4130 { 4131 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4132 svma->vm_start; 4133 unsigned long sbase = saddr & PUD_MASK; 4134 unsigned long s_end = sbase + PUD_SIZE; 4135 4136 /* Allow segments to share if only one is marked locked */ 4137 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4138 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4139 4140 /* 4141 * match the virtual addresses, permission and the alignment of the 4142 * page table page. 4143 */ 4144 if (pmd_index(addr) != pmd_index(saddr) || 4145 vm_flags != svm_flags || 4146 sbase < svma->vm_start || svma->vm_end < s_end) 4147 return 0; 4148 4149 return saddr; 4150 } 4151 4152 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4153 { 4154 unsigned long base = addr & PUD_MASK; 4155 unsigned long end = base + PUD_SIZE; 4156 4157 /* 4158 * check on proper vm_flags and page table alignment 4159 */ 4160 if (vma->vm_flags & VM_MAYSHARE && 4161 vma->vm_start <= base && end <= vma->vm_end) 4162 return true; 4163 return false; 4164 } 4165 4166 /* 4167 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4168 * and returns the corresponding pte. While this is not necessary for the 4169 * !shared pmd case because we can allocate the pmd later as well, it makes the 4170 * code much cleaner. pmd allocation is essential for the shared case because 4171 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4172 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4173 * bad pmd for sharing. 4174 */ 4175 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4176 { 4177 struct vm_area_struct *vma = find_vma(mm, addr); 4178 struct address_space *mapping = vma->vm_file->f_mapping; 4179 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4180 vma->vm_pgoff; 4181 struct vm_area_struct *svma; 4182 unsigned long saddr; 4183 pte_t *spte = NULL; 4184 pte_t *pte; 4185 spinlock_t *ptl; 4186 4187 if (!vma_shareable(vma, addr)) 4188 return (pte_t *)pmd_alloc(mm, pud, addr); 4189 4190 i_mmap_lock_write(mapping); 4191 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4192 if (svma == vma) 4193 continue; 4194 4195 saddr = page_table_shareable(svma, vma, addr, idx); 4196 if (saddr) { 4197 spte = huge_pte_offset(svma->vm_mm, saddr); 4198 if (spte) { 4199 mm_inc_nr_pmds(mm); 4200 get_page(virt_to_page(spte)); 4201 break; 4202 } 4203 } 4204 } 4205 4206 if (!spte) 4207 goto out; 4208 4209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4210 spin_lock(ptl); 4211 if (pud_none(*pud)) { 4212 pud_populate(mm, pud, 4213 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4214 } else { 4215 put_page(virt_to_page(spte)); 4216 mm_inc_nr_pmds(mm); 4217 } 4218 spin_unlock(ptl); 4219 out: 4220 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4221 i_mmap_unlock_write(mapping); 4222 return pte; 4223 } 4224 4225 /* 4226 * unmap huge page backed by shared pte. 4227 * 4228 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4229 * indicated by page_count > 1, unmap is achieved by clearing pud and 4230 * decrementing the ref count. If count == 1, the pte page is not shared. 4231 * 4232 * called with page table lock held. 4233 * 4234 * returns: 1 successfully unmapped a shared pte page 4235 * 0 the underlying pte page is not shared, or it is the last user 4236 */ 4237 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4238 { 4239 pgd_t *pgd = pgd_offset(mm, *addr); 4240 pud_t *pud = pud_offset(pgd, *addr); 4241 4242 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4243 if (page_count(virt_to_page(ptep)) == 1) 4244 return 0; 4245 4246 pud_clear(pud); 4247 put_page(virt_to_page(ptep)); 4248 mm_dec_nr_pmds(mm); 4249 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4250 return 1; 4251 } 4252 #define want_pmd_share() (1) 4253 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4254 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4255 { 4256 return NULL; 4257 } 4258 4259 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4260 { 4261 return 0; 4262 } 4263 #define want_pmd_share() (0) 4264 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4265 4266 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4267 pte_t *huge_pte_alloc(struct mm_struct *mm, 4268 unsigned long addr, unsigned long sz) 4269 { 4270 pgd_t *pgd; 4271 pud_t *pud; 4272 pte_t *pte = NULL; 4273 4274 pgd = pgd_offset(mm, addr); 4275 pud = pud_alloc(mm, pgd, addr); 4276 if (pud) { 4277 if (sz == PUD_SIZE) { 4278 pte = (pte_t *)pud; 4279 } else { 4280 BUG_ON(sz != PMD_SIZE); 4281 if (want_pmd_share() && pud_none(*pud)) 4282 pte = huge_pmd_share(mm, addr, pud); 4283 else 4284 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4285 } 4286 } 4287 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4288 4289 return pte; 4290 } 4291 4292 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4293 { 4294 pgd_t *pgd; 4295 pud_t *pud; 4296 pmd_t *pmd = NULL; 4297 4298 pgd = pgd_offset(mm, addr); 4299 if (pgd_present(*pgd)) { 4300 pud = pud_offset(pgd, addr); 4301 if (pud_present(*pud)) { 4302 if (pud_huge(*pud)) 4303 return (pte_t *)pud; 4304 pmd = pmd_offset(pud, addr); 4305 } 4306 } 4307 return (pte_t *) pmd; 4308 } 4309 4310 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4311 4312 /* 4313 * These functions are overwritable if your architecture needs its own 4314 * behavior. 4315 */ 4316 struct page * __weak 4317 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4318 int write) 4319 { 4320 return ERR_PTR(-EINVAL); 4321 } 4322 4323 struct page * __weak 4324 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4325 pmd_t *pmd, int flags) 4326 { 4327 struct page *page = NULL; 4328 spinlock_t *ptl; 4329 retry: 4330 ptl = pmd_lockptr(mm, pmd); 4331 spin_lock(ptl); 4332 /* 4333 * make sure that the address range covered by this pmd is not 4334 * unmapped from other threads. 4335 */ 4336 if (!pmd_huge(*pmd)) 4337 goto out; 4338 if (pmd_present(*pmd)) { 4339 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4340 if (flags & FOLL_GET) 4341 get_page(page); 4342 } else { 4343 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4344 spin_unlock(ptl); 4345 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4346 goto retry; 4347 } 4348 /* 4349 * hwpoisoned entry is treated as no_page_table in 4350 * follow_page_mask(). 4351 */ 4352 } 4353 out: 4354 spin_unlock(ptl); 4355 return page; 4356 } 4357 4358 struct page * __weak 4359 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4360 pud_t *pud, int flags) 4361 { 4362 if (flags & FOLL_GET) 4363 return NULL; 4364 4365 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4366 } 4367 4368 #ifdef CONFIG_MEMORY_FAILURE 4369 4370 /* 4371 * This function is called from memory failure code. 4372 * Assume the caller holds page lock of the head page. 4373 */ 4374 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4375 { 4376 struct hstate *h = page_hstate(hpage); 4377 int nid = page_to_nid(hpage); 4378 int ret = -EBUSY; 4379 4380 spin_lock(&hugetlb_lock); 4381 /* 4382 * Just checking !page_huge_active is not enough, because that could be 4383 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4384 */ 4385 if (!page_huge_active(hpage) && !page_count(hpage)) { 4386 /* 4387 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4388 * but dangling hpage->lru can trigger list-debug warnings 4389 * (this happens when we call unpoison_memory() on it), 4390 * so let it point to itself with list_del_init(). 4391 */ 4392 list_del_init(&hpage->lru); 4393 set_page_refcounted(hpage); 4394 h->free_huge_pages--; 4395 h->free_huge_pages_node[nid]--; 4396 ret = 0; 4397 } 4398 spin_unlock(&hugetlb_lock); 4399 return ret; 4400 } 4401 #endif 4402 4403 bool isolate_huge_page(struct page *page, struct list_head *list) 4404 { 4405 bool ret = true; 4406 4407 VM_BUG_ON_PAGE(!PageHead(page), page); 4408 spin_lock(&hugetlb_lock); 4409 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4410 ret = false; 4411 goto unlock; 4412 } 4413 clear_page_huge_active(page); 4414 list_move_tail(&page->lru, list); 4415 unlock: 4416 spin_unlock(&hugetlb_lock); 4417 return ret; 4418 } 4419 4420 void putback_active_hugepage(struct page *page) 4421 { 4422 VM_BUG_ON_PAGE(!PageHead(page), page); 4423 spin_lock(&hugetlb_lock); 4424 set_page_huge_active(page); 4425 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4426 spin_unlock(&hugetlb_lock); 4427 put_page(page); 4428 } 4429