xref: /openbmc/linux/mm/hugetlb.c (revision 9190d4a263264eabf715f5fc1827da45e3fdc247)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41 
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49 
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53 
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_page(struct page *page, unsigned int order)
58 {
59 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
60 				1 << order);
61 }
62 #else
63 static bool hugetlb_cma_page(struct page *page, unsigned int order)
64 {
65 	return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69 
70 __initdata LIST_HEAD(huge_boot_pages);
71 
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78 
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84 
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91 
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100 	if (spool->count)
101 		return false;
102 	if (spool->max_hpages != -1)
103 		return spool->used_hpages == 0;
104 	if (spool->min_hpages != -1)
105 		return spool->rsv_hpages == spool->min_hpages;
106 
107 	return true;
108 }
109 
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 						unsigned long irq_flags)
112 {
113 	spin_unlock_irqrestore(&spool->lock, irq_flags);
114 
115 	/* If no pages are used, and no other handles to the subpool
116 	 * remain, give up any reservations based on minimum size and
117 	 * free the subpool */
118 	if (subpool_is_free(spool)) {
119 		if (spool->min_hpages != -1)
120 			hugetlb_acct_memory(spool->hstate,
121 						-spool->min_hpages);
122 		kfree(spool);
123 	}
124 }
125 
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 						long min_hpages)
128 {
129 	struct hugepage_subpool *spool;
130 
131 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132 	if (!spool)
133 		return NULL;
134 
135 	spin_lock_init(&spool->lock);
136 	spool->count = 1;
137 	spool->max_hpages = max_hpages;
138 	spool->hstate = h;
139 	spool->min_hpages = min_hpages;
140 
141 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 		kfree(spool);
143 		return NULL;
144 	}
145 	spool->rsv_hpages = min_hpages;
146 
147 	return spool;
148 }
149 
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152 	unsigned long flags;
153 
154 	spin_lock_irqsave(&spool->lock, flags);
155 	BUG_ON(!spool->count);
156 	spool->count--;
157 	unlock_or_release_subpool(spool, flags);
158 }
159 
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169 				      long delta)
170 {
171 	long ret = delta;
172 
173 	if (!spool)
174 		return ret;
175 
176 	spin_lock_irq(&spool->lock);
177 
178 	if (spool->max_hpages != -1) {		/* maximum size accounting */
179 		if ((spool->used_hpages + delta) <= spool->max_hpages)
180 			spool->used_hpages += delta;
181 		else {
182 			ret = -ENOMEM;
183 			goto unlock_ret;
184 		}
185 	}
186 
187 	/* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 		if (delta > spool->rsv_hpages) {
190 			/*
191 			 * Asking for more reserves than those already taken on
192 			 * behalf of subpool.  Return difference.
193 			 */
194 			ret = delta - spool->rsv_hpages;
195 			spool->rsv_hpages = 0;
196 		} else {
197 			ret = 0;	/* reserves already accounted for */
198 			spool->rsv_hpages -= delta;
199 		}
200 	}
201 
202 unlock_ret:
203 	spin_unlock_irq(&spool->lock);
204 	return ret;
205 }
206 
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214 				       long delta)
215 {
216 	long ret = delta;
217 	unsigned long flags;
218 
219 	if (!spool)
220 		return delta;
221 
222 	spin_lock_irqsave(&spool->lock, flags);
223 
224 	if (spool->max_hpages != -1)		/* maximum size accounting */
225 		spool->used_hpages -= delta;
226 
227 	 /* minimum size accounting */
228 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 		if (spool->rsv_hpages + delta <= spool->min_hpages)
230 			ret = 0;
231 		else
232 			ret = spool->rsv_hpages + delta - spool->min_hpages;
233 
234 		spool->rsv_hpages += delta;
235 		if (spool->rsv_hpages > spool->min_hpages)
236 			spool->rsv_hpages = spool->min_hpages;
237 	}
238 
239 	/*
240 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 	 * quota reference, free it now.
242 	 */
243 	unlock_or_release_subpool(spool, flags);
244 
245 	return ret;
246 }
247 
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250 	return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252 
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255 	return subpool_inode(file_inode(vma->vm_file));
256 }
257 
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264 	struct file_region *nrg;
265 
266 	VM_BUG_ON(resv->region_cache_count <= 0);
267 
268 	resv->region_cache_count--;
269 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 	list_del(&nrg->link);
271 
272 	nrg->from = from;
273 	nrg->to = to;
274 
275 	return nrg;
276 }
277 
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 					      struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282 	nrg->reservation_counter = rg->reservation_counter;
283 	nrg->css = rg->css;
284 	if (rg->css)
285 		css_get(rg->css);
286 #endif
287 }
288 
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 						struct hstate *h,
292 						struct resv_map *resv,
293 						struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296 	if (h_cg) {
297 		nrg->reservation_counter =
298 			&h_cg->rsvd_hugepage[hstate_index(h)];
299 		nrg->css = &h_cg->css;
300 		/*
301 		 * The caller will hold exactly one h_cg->css reference for the
302 		 * whole contiguous reservation region. But this area might be
303 		 * scattered when there are already some file_regions reside in
304 		 * it. As a result, many file_regions may share only one css
305 		 * reference. In order to ensure that one file_region must hold
306 		 * exactly one h_cg->css reference, we should do css_get for
307 		 * each file_region and leave the reference held by caller
308 		 * untouched.
309 		 */
310 		css_get(&h_cg->css);
311 		if (!resv->pages_per_hpage)
312 			resv->pages_per_hpage = pages_per_huge_page(h);
313 		/* pages_per_hpage should be the same for all entries in
314 		 * a resv_map.
315 		 */
316 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 	} else {
318 		nrg->reservation_counter = NULL;
319 		nrg->css = NULL;
320 	}
321 #endif
322 }
323 
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327 	if (rg->css)
328 		css_put(rg->css);
329 #endif
330 }
331 
332 static bool has_same_uncharge_info(struct file_region *rg,
333 				   struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336 	return rg->reservation_counter == org->reservation_counter &&
337 	       rg->css == org->css;
338 
339 #else
340 	return true;
341 #endif
342 }
343 
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346 	struct file_region *nrg, *prg;
347 
348 	prg = list_prev_entry(rg, link);
349 	if (&prg->link != &resv->regions && prg->to == rg->from &&
350 	    has_same_uncharge_info(prg, rg)) {
351 		prg->to = rg->to;
352 
353 		list_del(&rg->link);
354 		put_uncharge_info(rg);
355 		kfree(rg);
356 
357 		rg = prg;
358 	}
359 
360 	nrg = list_next_entry(rg, link);
361 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 	    has_same_uncharge_info(nrg, rg)) {
363 		nrg->from = rg->from;
364 
365 		list_del(&rg->link);
366 		put_uncharge_info(rg);
367 		kfree(rg);
368 	}
369 }
370 
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 		     long *regions_needed)
375 {
376 	struct file_region *nrg;
377 
378 	if (!regions_needed) {
379 		nrg = get_file_region_entry_from_cache(map, from, to);
380 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 		list_add(&nrg->link, rg);
382 		coalesce_file_region(map, nrg);
383 	} else
384 		*regions_needed += 1;
385 
386 	return to - from;
387 }
388 
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 				     struct hugetlb_cgroup *h_cg,
399 				     struct hstate *h, long *regions_needed)
400 {
401 	long add = 0;
402 	struct list_head *head = &resv->regions;
403 	long last_accounted_offset = f;
404 	struct file_region *iter, *trg = NULL;
405 	struct list_head *rg = NULL;
406 
407 	if (regions_needed)
408 		*regions_needed = 0;
409 
410 	/* In this loop, we essentially handle an entry for the range
411 	 * [last_accounted_offset, iter->from), at every iteration, with some
412 	 * bounds checking.
413 	 */
414 	list_for_each_entry_safe(iter, trg, head, link) {
415 		/* Skip irrelevant regions that start before our range. */
416 		if (iter->from < f) {
417 			/* If this region ends after the last accounted offset,
418 			 * then we need to update last_accounted_offset.
419 			 */
420 			if (iter->to > last_accounted_offset)
421 				last_accounted_offset = iter->to;
422 			continue;
423 		}
424 
425 		/* When we find a region that starts beyond our range, we've
426 		 * finished.
427 		 */
428 		if (iter->from >= t) {
429 			rg = iter->link.prev;
430 			break;
431 		}
432 
433 		/* Add an entry for last_accounted_offset -> iter->from, and
434 		 * update last_accounted_offset.
435 		 */
436 		if (iter->from > last_accounted_offset)
437 			add += hugetlb_resv_map_add(resv, iter->link.prev,
438 						    last_accounted_offset,
439 						    iter->from, h, h_cg,
440 						    regions_needed);
441 
442 		last_accounted_offset = iter->to;
443 	}
444 
445 	/* Handle the case where our range extends beyond
446 	 * last_accounted_offset.
447 	 */
448 	if (!rg)
449 		rg = head->prev;
450 	if (last_accounted_offset < t)
451 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 					    t, h, h_cg, regions_needed);
453 
454 	return add;
455 }
456 
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460 					int regions_needed)
461 	__must_hold(&resv->lock)
462 {
463 	LIST_HEAD(allocated_regions);
464 	int to_allocate = 0, i = 0;
465 	struct file_region *trg = NULL, *rg = NULL;
466 
467 	VM_BUG_ON(regions_needed < 0);
468 
469 	/*
470 	 * Check for sufficient descriptors in the cache to accommodate
471 	 * the number of in progress add operations plus regions_needed.
472 	 *
473 	 * This is a while loop because when we drop the lock, some other call
474 	 * to region_add or region_del may have consumed some region_entries,
475 	 * so we keep looping here until we finally have enough entries for
476 	 * (adds_in_progress + regions_needed).
477 	 */
478 	while (resv->region_cache_count <
479 	       (resv->adds_in_progress + regions_needed)) {
480 		to_allocate = resv->adds_in_progress + regions_needed -
481 			      resv->region_cache_count;
482 
483 		/* At this point, we should have enough entries in the cache
484 		 * for all the existing adds_in_progress. We should only be
485 		 * needing to allocate for regions_needed.
486 		 */
487 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488 
489 		spin_unlock(&resv->lock);
490 		for (i = 0; i < to_allocate; i++) {
491 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492 			if (!trg)
493 				goto out_of_memory;
494 			list_add(&trg->link, &allocated_regions);
495 		}
496 
497 		spin_lock(&resv->lock);
498 
499 		list_splice(&allocated_regions, &resv->region_cache);
500 		resv->region_cache_count += to_allocate;
501 	}
502 
503 	return 0;
504 
505 out_of_memory:
506 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507 		list_del(&rg->link);
508 		kfree(rg);
509 	}
510 	return -ENOMEM;
511 }
512 
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531 		       long in_regions_needed, struct hstate *h,
532 		       struct hugetlb_cgroup *h_cg)
533 {
534 	long add = 0, actual_regions_needed = 0;
535 
536 	spin_lock(&resv->lock);
537 retry:
538 
539 	/* Count how many regions are actually needed to execute this add. */
540 	add_reservation_in_range(resv, f, t, NULL, NULL,
541 				 &actual_regions_needed);
542 
543 	/*
544 	 * Check for sufficient descriptors in the cache to accommodate
545 	 * this add operation. Note that actual_regions_needed may be greater
546 	 * than in_regions_needed, as the resv_map may have been modified since
547 	 * the region_chg call. In this case, we need to make sure that we
548 	 * allocate extra entries, such that we have enough for all the
549 	 * existing adds_in_progress, plus the excess needed for this
550 	 * operation.
551 	 */
552 	if (actual_regions_needed > in_regions_needed &&
553 	    resv->region_cache_count <
554 		    resv->adds_in_progress +
555 			    (actual_regions_needed - in_regions_needed)) {
556 		/* region_add operation of range 1 should never need to
557 		 * allocate file_region entries.
558 		 */
559 		VM_BUG_ON(t - f <= 1);
560 
561 		if (allocate_file_region_entries(
562 			    resv, actual_regions_needed - in_regions_needed)) {
563 			return -ENOMEM;
564 		}
565 
566 		goto retry;
567 	}
568 
569 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570 
571 	resv->adds_in_progress -= in_regions_needed;
572 
573 	spin_unlock(&resv->lock);
574 	return add;
575 }
576 
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598 		       long *out_regions_needed)
599 {
600 	long chg = 0;
601 
602 	spin_lock(&resv->lock);
603 
604 	/* Count how many hugepages in this range are NOT represented. */
605 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606 				       out_regions_needed);
607 
608 	if (*out_regions_needed == 0)
609 		*out_regions_needed = 1;
610 
611 	if (allocate_file_region_entries(resv, *out_regions_needed))
612 		return -ENOMEM;
613 
614 	resv->adds_in_progress += *out_regions_needed;
615 
616 	spin_unlock(&resv->lock);
617 	return chg;
618 }
619 
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634 			 long regions_needed)
635 {
636 	spin_lock(&resv->lock);
637 	VM_BUG_ON(!resv->region_cache_count);
638 	resv->adds_in_progress -= regions_needed;
639 	spin_unlock(&resv->lock);
640 }
641 
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658 	struct list_head *head = &resv->regions;
659 	struct file_region *rg, *trg;
660 	struct file_region *nrg = NULL;
661 	long del = 0;
662 
663 retry:
664 	spin_lock(&resv->lock);
665 	list_for_each_entry_safe(rg, trg, head, link) {
666 		/*
667 		 * Skip regions before the range to be deleted.  file_region
668 		 * ranges are normally of the form [from, to).  However, there
669 		 * may be a "placeholder" entry in the map which is of the form
670 		 * (from, to) with from == to.  Check for placeholder entries
671 		 * at the beginning of the range to be deleted.
672 		 */
673 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674 			continue;
675 
676 		if (rg->from >= t)
677 			break;
678 
679 		if (f > rg->from && t < rg->to) { /* Must split region */
680 			/*
681 			 * Check for an entry in the cache before dropping
682 			 * lock and attempting allocation.
683 			 */
684 			if (!nrg &&
685 			    resv->region_cache_count > resv->adds_in_progress) {
686 				nrg = list_first_entry(&resv->region_cache,
687 							struct file_region,
688 							link);
689 				list_del(&nrg->link);
690 				resv->region_cache_count--;
691 			}
692 
693 			if (!nrg) {
694 				spin_unlock(&resv->lock);
695 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696 				if (!nrg)
697 					return -ENOMEM;
698 				goto retry;
699 			}
700 
701 			del += t - f;
702 			hugetlb_cgroup_uncharge_file_region(
703 				resv, rg, t - f, false);
704 
705 			/* New entry for end of split region */
706 			nrg->from = t;
707 			nrg->to = rg->to;
708 
709 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710 
711 			INIT_LIST_HEAD(&nrg->link);
712 
713 			/* Original entry is trimmed */
714 			rg->to = f;
715 
716 			list_add(&nrg->link, &rg->link);
717 			nrg = NULL;
718 			break;
719 		}
720 
721 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 			del += rg->to - rg->from;
723 			hugetlb_cgroup_uncharge_file_region(resv, rg,
724 							    rg->to - rg->from, true);
725 			list_del(&rg->link);
726 			kfree(rg);
727 			continue;
728 		}
729 
730 		if (f <= rg->from) {	/* Trim beginning of region */
731 			hugetlb_cgroup_uncharge_file_region(resv, rg,
732 							    t - rg->from, false);
733 
734 			del += t - rg->from;
735 			rg->from = t;
736 		} else {		/* Trim end of region */
737 			hugetlb_cgroup_uncharge_file_region(resv, rg,
738 							    rg->to - f, false);
739 
740 			del += rg->to - f;
741 			rg->to = f;
742 		}
743 	}
744 
745 	spin_unlock(&resv->lock);
746 	kfree(nrg);
747 	return del;
748 }
749 
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761 	struct hugepage_subpool *spool = subpool_inode(inode);
762 	long rsv_adjust;
763 	bool reserved = false;
764 
765 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766 	if (rsv_adjust > 0) {
767 		struct hstate *h = hstate_inode(inode);
768 
769 		if (!hugetlb_acct_memory(h, 1))
770 			reserved = true;
771 	} else if (!rsv_adjust) {
772 		reserved = true;
773 	}
774 
775 	if (!reserved)
776 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778 
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785 	struct list_head *head = &resv->regions;
786 	struct file_region *rg;
787 	long chg = 0;
788 
789 	spin_lock(&resv->lock);
790 	/* Locate each segment we overlap with, and count that overlap. */
791 	list_for_each_entry(rg, head, link) {
792 		long seg_from;
793 		long seg_to;
794 
795 		if (rg->to <= f)
796 			continue;
797 		if (rg->from >= t)
798 			break;
799 
800 		seg_from = max(rg->from, f);
801 		seg_to = min(rg->to, t);
802 
803 		chg += seg_to - seg_from;
804 	}
805 	spin_unlock(&resv->lock);
806 
807 	return chg;
808 }
809 
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815 			struct vm_area_struct *vma, unsigned long address)
816 {
817 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 			(vma->vm_pgoff >> huge_page_order(h));
819 }
820 
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 				     unsigned long address)
823 {
824 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827 
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834 	if (vma->vm_ops && vma->vm_ops->pagesize)
835 		return vma->vm_ops->pagesize(vma);
836 	return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839 
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848 	return vma_kernel_pagesize(vma);
849 }
850 
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859 
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881 	return (unsigned long)vma->vm_private_data;
882 }
883 
884 static void set_vma_private_data(struct vm_area_struct *vma,
885 							unsigned long value)
886 {
887 	vma->vm_private_data = (void *)value;
888 }
889 
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 					  struct hugetlb_cgroup *h_cg,
893 					  struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896 	if (!h_cg || !h) {
897 		resv_map->reservation_counter = NULL;
898 		resv_map->pages_per_hpage = 0;
899 		resv_map->css = NULL;
900 	} else {
901 		resv_map->reservation_counter =
902 			&h_cg->rsvd_hugepage[hstate_index(h)];
903 		resv_map->pages_per_hpage = pages_per_huge_page(h);
904 		resv_map->css = &h_cg->css;
905 	}
906 #endif
907 }
908 
909 struct resv_map *resv_map_alloc(void)
910 {
911 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913 
914 	if (!resv_map || !rg) {
915 		kfree(resv_map);
916 		kfree(rg);
917 		return NULL;
918 	}
919 
920 	kref_init(&resv_map->refs);
921 	spin_lock_init(&resv_map->lock);
922 	INIT_LIST_HEAD(&resv_map->regions);
923 
924 	resv_map->adds_in_progress = 0;
925 	/*
926 	 * Initialize these to 0. On shared mappings, 0's here indicate these
927 	 * fields don't do cgroup accounting. On private mappings, these will be
928 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 	 * reservations are to be un-charged from here.
930 	 */
931 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932 
933 	INIT_LIST_HEAD(&resv_map->region_cache);
934 	list_add(&rg->link, &resv_map->region_cache);
935 	resv_map->region_cache_count = 1;
936 
937 	return resv_map;
938 }
939 
940 void resv_map_release(struct kref *ref)
941 {
942 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943 	struct list_head *head = &resv_map->region_cache;
944 	struct file_region *rg, *trg;
945 
946 	/* Clear out any active regions before we release the map. */
947 	region_del(resv_map, 0, LONG_MAX);
948 
949 	/* ... and any entries left in the cache */
950 	list_for_each_entry_safe(rg, trg, head, link) {
951 		list_del(&rg->link);
952 		kfree(rg);
953 	}
954 
955 	VM_BUG_ON(resv_map->adds_in_progress);
956 
957 	kfree(resv_map);
958 }
959 
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962 	/*
963 	 * At inode evict time, i_mapping may not point to the original
964 	 * address space within the inode.  This original address space
965 	 * contains the pointer to the resv_map.  So, always use the
966 	 * address space embedded within the inode.
967 	 * The VERY common case is inode->mapping == &inode->i_data but,
968 	 * this may not be true for device special inodes.
969 	 */
970 	return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972 
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 	if (vma->vm_flags & VM_MAYSHARE) {
977 		struct address_space *mapping = vma->vm_file->f_mapping;
978 		struct inode *inode = mapping->host;
979 
980 		return inode_resv_map(inode);
981 
982 	} else {
983 		return (struct resv_map *)(get_vma_private_data(vma) &
984 							~HPAGE_RESV_MASK);
985 	}
986 }
987 
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992 
993 	set_vma_private_data(vma, (get_vma_private_data(vma) &
994 				HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996 
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001 
1002 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004 
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008 
1009 	return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011 
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015 	/*
1016 	 * Clear vm_private_data
1017 	 * - For shared mappings this is a per-vma semaphore that may be
1018 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1019 	 *   Before clearing, make sure pointer is not associated with vma
1020 	 *   as this will leak the structure.  This is the case when called
1021 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022 	 *   been called to allocate a new structure.
1023 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1024 	 *   not apply to children.  Faults generated by the children are
1025 	 *   not guaranteed to succeed, even if read-only.
1026 	 */
1027 	if (vma->vm_flags & VM_MAYSHARE) {
1028 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029 
1030 		if (vma_lock && vma_lock->vma != vma)
1031 			vma->vm_private_data = NULL;
1032 	} else
1033 		vma->vm_private_data = NULL;
1034 }
1035 
1036 /*
1037  * Reset and decrement one ref on hugepage private reservation.
1038  * Called with mm->mmap_sem writer semaphore held.
1039  * This function should be only used by move_vma() and operate on
1040  * same sized vma. It should never come here with last ref on the
1041  * reservation.
1042  */
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044 {
1045 	/*
1046 	 * Clear the old hugetlb private page reservation.
1047 	 * It has already been transferred to new_vma.
1048 	 *
1049 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1050 	 * which copies vma into new_vma and unmaps vma. After the copy
1051 	 * operation both new_vma and vma share a reference to the resv_map
1052 	 * struct, and at that point vma is about to be unmapped. We don't
1053 	 * want to return the reservation to the pool at unmap of vma because
1054 	 * the reservation still lives on in new_vma, so simply decrement the
1055 	 * ref here and remove the resv_map reference from this vma.
1056 	 */
1057 	struct resv_map *reservations = vma_resv_map(vma);
1058 
1059 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061 		kref_put(&reservations->refs, resv_map_release);
1062 	}
1063 
1064 	hugetlb_dup_vma_private(vma);
1065 }
1066 
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1069 {
1070 	if (vma->vm_flags & VM_NORESERVE) {
1071 		/*
1072 		 * This address is already reserved by other process(chg == 0),
1073 		 * so, we should decrement reserved count. Without decrementing,
1074 		 * reserve count remains after releasing inode, because this
1075 		 * allocated page will go into page cache and is regarded as
1076 		 * coming from reserved pool in releasing step.  Currently, we
1077 		 * don't have any other solution to deal with this situation
1078 		 * properly, so add work-around here.
1079 		 */
1080 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1081 			return true;
1082 		else
1083 			return false;
1084 	}
1085 
1086 	/* Shared mappings always use reserves */
1087 	if (vma->vm_flags & VM_MAYSHARE) {
1088 		/*
1089 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1090 		 * be a region map for all pages.  The only situation where
1091 		 * there is no region map is if a hole was punched via
1092 		 * fallocate.  In this case, there really are no reserves to
1093 		 * use.  This situation is indicated if chg != 0.
1094 		 */
1095 		if (chg)
1096 			return false;
1097 		else
1098 			return true;
1099 	}
1100 
1101 	/*
1102 	 * Only the process that called mmap() has reserves for
1103 	 * private mappings.
1104 	 */
1105 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 		/*
1107 		 * Like the shared case above, a hole punch or truncate
1108 		 * could have been performed on the private mapping.
1109 		 * Examine the value of chg to determine if reserves
1110 		 * actually exist or were previously consumed.
1111 		 * Very Subtle - The value of chg comes from a previous
1112 		 * call to vma_needs_reserves().  The reserve map for
1113 		 * private mappings has different (opposite) semantics
1114 		 * than that of shared mappings.  vma_needs_reserves()
1115 		 * has already taken this difference in semantics into
1116 		 * account.  Therefore, the meaning of chg is the same
1117 		 * as in the shared case above.  Code could easily be
1118 		 * combined, but keeping it separate draws attention to
1119 		 * subtle differences.
1120 		 */
1121 		if (chg)
1122 			return false;
1123 		else
1124 			return true;
1125 	}
1126 
1127 	return false;
1128 }
1129 
1130 static void enqueue_huge_page(struct hstate *h, struct page *page)
1131 {
1132 	int nid = page_to_nid(page);
1133 
1134 	lockdep_assert_held(&hugetlb_lock);
1135 	VM_BUG_ON_PAGE(page_count(page), page);
1136 
1137 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1138 	h->free_huge_pages++;
1139 	h->free_huge_pages_node[nid]++;
1140 	SetHPageFreed(page);
1141 }
1142 
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1144 {
1145 	struct page *page;
1146 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1147 
1148 	lockdep_assert_held(&hugetlb_lock);
1149 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150 		if (pin && !is_longterm_pinnable_page(page))
1151 			continue;
1152 
1153 		if (PageHWPoison(page))
1154 			continue;
1155 
1156 		list_move(&page->lru, &h->hugepage_activelist);
1157 		set_page_refcounted(page);
1158 		ClearHPageFreed(page);
1159 		h->free_huge_pages--;
1160 		h->free_huge_pages_node[nid]--;
1161 		return page;
1162 	}
1163 
1164 	return NULL;
1165 }
1166 
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168 		nodemask_t *nmask)
1169 {
1170 	unsigned int cpuset_mems_cookie;
1171 	struct zonelist *zonelist;
1172 	struct zone *zone;
1173 	struct zoneref *z;
1174 	int node = NUMA_NO_NODE;
1175 
1176 	zonelist = node_zonelist(nid, gfp_mask);
1177 
1178 retry_cpuset:
1179 	cpuset_mems_cookie = read_mems_allowed_begin();
1180 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181 		struct page *page;
1182 
1183 		if (!cpuset_zone_allowed(zone, gfp_mask))
1184 			continue;
1185 		/*
1186 		 * no need to ask again on the same node. Pool is node rather than
1187 		 * zone aware
1188 		 */
1189 		if (zone_to_nid(zone) == node)
1190 			continue;
1191 		node = zone_to_nid(zone);
1192 
1193 		page = dequeue_huge_page_node_exact(h, node);
1194 		if (page)
1195 			return page;
1196 	}
1197 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198 		goto retry_cpuset;
1199 
1200 	return NULL;
1201 }
1202 
1203 static unsigned long available_huge_pages(struct hstate *h)
1204 {
1205 	return h->free_huge_pages - h->resv_huge_pages;
1206 }
1207 
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209 				struct vm_area_struct *vma,
1210 				unsigned long address, int avoid_reserve,
1211 				long chg)
1212 {
1213 	struct page *page = NULL;
1214 	struct mempolicy *mpol;
1215 	gfp_t gfp_mask;
1216 	nodemask_t *nodemask;
1217 	int nid;
1218 
1219 	/*
1220 	 * A child process with MAP_PRIVATE mappings created by their parent
1221 	 * have no page reserves. This check ensures that reservations are
1222 	 * not "stolen". The child may still get SIGKILLed
1223 	 */
1224 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1225 		goto err;
1226 
1227 	/* If reserves cannot be used, ensure enough pages are in the pool */
1228 	if (avoid_reserve && !available_huge_pages(h))
1229 		goto err;
1230 
1231 	gfp_mask = htlb_alloc_mask(h);
1232 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1233 
1234 	if (mpol_is_preferred_many(mpol)) {
1235 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236 
1237 		/* Fallback to all nodes if page==NULL */
1238 		nodemask = NULL;
1239 	}
1240 
1241 	if (!page)
1242 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243 
1244 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245 		SetHPageRestoreReserve(page);
1246 		h->resv_huge_pages--;
1247 	}
1248 
1249 	mpol_cond_put(mpol);
1250 	return page;
1251 
1252 err:
1253 	return NULL;
1254 }
1255 
1256 /*
1257  * common helper functions for hstate_next_node_to_{alloc|free}.
1258  * We may have allocated or freed a huge page based on a different
1259  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260  * be outside of *nodes_allowed.  Ensure that we use an allowed
1261  * node for alloc or free.
1262  */
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265 	nid = next_node_in(nid, *nodes_allowed);
1266 	VM_BUG_ON(nid >= MAX_NUMNODES);
1267 
1268 	return nid;
1269 }
1270 
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272 {
1273 	if (!node_isset(nid, *nodes_allowed))
1274 		nid = next_node_allowed(nid, nodes_allowed);
1275 	return nid;
1276 }
1277 
1278 /*
1279  * returns the previously saved node ["this node"] from which to
1280  * allocate a persistent huge page for the pool and advance the
1281  * next node from which to allocate, handling wrap at end of node
1282  * mask.
1283  */
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285 					nodemask_t *nodes_allowed)
1286 {
1287 	int nid;
1288 
1289 	VM_BUG_ON(!nodes_allowed);
1290 
1291 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293 
1294 	return nid;
1295 }
1296 
1297 /*
1298  * helper for remove_pool_huge_page() - return the previously saved
1299  * node ["this node"] from which to free a huge page.  Advance the
1300  * next node id whether or not we find a free huge page to free so
1301  * that the next attempt to free addresses the next node.
1302  */
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304 {
1305 	int nid;
1306 
1307 	VM_BUG_ON(!nodes_allowed);
1308 
1309 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311 
1312 	return nid;
1313 }
1314 
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1316 	for (nr_nodes = nodes_weight(*mask);				\
1317 		nr_nodes > 0 &&						\
1318 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1319 		nr_nodes--)
1320 
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1322 	for (nr_nodes = nodes_weight(*mask);				\
1323 		nr_nodes > 0 &&						\
1324 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1325 		nr_nodes--)
1326 
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_page(struct page *page,
1329 					unsigned int order, bool demote)
1330 {
1331 	int i;
1332 	int nr_pages = 1 << order;
1333 	struct page *p;
1334 
1335 	atomic_set(compound_mapcount_ptr(page), 0);
1336 	atomic_set(compound_pincount_ptr(page), 0);
1337 
1338 	for (i = 1; i < nr_pages; i++) {
1339 		p = nth_page(page, i);
1340 		p->mapping = NULL;
1341 		clear_compound_head(p);
1342 		if (!demote)
1343 			set_page_refcounted(p);
1344 	}
1345 
1346 	set_compound_order(page, 0);
1347 #ifdef CONFIG_64BIT
1348 	page[1].compound_nr = 0;
1349 #endif
1350 	__ClearPageHead(page);
1351 }
1352 
1353 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1354 					unsigned int order)
1355 {
1356 	__destroy_compound_gigantic_page(page, order, true);
1357 }
1358 
1359 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1360 static void destroy_compound_gigantic_page(struct page *page,
1361 					unsigned int order)
1362 {
1363 	__destroy_compound_gigantic_page(page, order, false);
1364 }
1365 
1366 static void free_gigantic_page(struct page *page, unsigned int order)
1367 {
1368 	/*
1369 	 * If the page isn't allocated using the cma allocator,
1370 	 * cma_release() returns false.
1371 	 */
1372 #ifdef CONFIG_CMA
1373 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1374 		return;
1375 #endif
1376 
1377 	free_contig_range(page_to_pfn(page), 1 << order);
1378 }
1379 
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1382 		int nid, nodemask_t *nodemask)
1383 {
1384 	unsigned long nr_pages = pages_per_huge_page(h);
1385 	if (nid == NUMA_NO_NODE)
1386 		nid = numa_mem_id();
1387 
1388 #ifdef CONFIG_CMA
1389 	{
1390 		struct page *page;
1391 		int node;
1392 
1393 		if (hugetlb_cma[nid]) {
1394 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395 					huge_page_order(h), true);
1396 			if (page)
1397 				return page;
1398 		}
1399 
1400 		if (!(gfp_mask & __GFP_THISNODE)) {
1401 			for_each_node_mask(node, *nodemask) {
1402 				if (node == nid || !hugetlb_cma[node])
1403 					continue;
1404 
1405 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1406 						huge_page_order(h), true);
1407 				if (page)
1408 					return page;
1409 			}
1410 		}
1411 	}
1412 #endif
1413 
1414 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1415 }
1416 
1417 #else /* !CONFIG_CONTIG_ALLOC */
1418 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1419 					int nid, nodemask_t *nodemask)
1420 {
1421 	return NULL;
1422 }
1423 #endif /* CONFIG_CONTIG_ALLOC */
1424 
1425 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1426 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1427 					int nid, nodemask_t *nodemask)
1428 {
1429 	return NULL;
1430 }
1431 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1432 static inline void destroy_compound_gigantic_page(struct page *page,
1433 						unsigned int order) { }
1434 #endif
1435 
1436 /*
1437  * Remove hugetlb page from lists, and update dtor so that page appears
1438  * as just a compound page.
1439  *
1440  * A reference is held on the page, except in the case of demote.
1441  *
1442  * Must be called with hugetlb lock held.
1443  */
1444 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1445 							bool adjust_surplus,
1446 							bool demote)
1447 {
1448 	int nid = page_to_nid(page);
1449 
1450 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1451 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1452 
1453 	lockdep_assert_held(&hugetlb_lock);
1454 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1455 		return;
1456 
1457 	list_del(&page->lru);
1458 
1459 	if (HPageFreed(page)) {
1460 		h->free_huge_pages--;
1461 		h->free_huge_pages_node[nid]--;
1462 	}
1463 	if (adjust_surplus) {
1464 		h->surplus_huge_pages--;
1465 		h->surplus_huge_pages_node[nid]--;
1466 	}
1467 
1468 	/*
1469 	 * Very subtle
1470 	 *
1471 	 * For non-gigantic pages set the destructor to the normal compound
1472 	 * page dtor.  This is needed in case someone takes an additional
1473 	 * temporary ref to the page, and freeing is delayed until they drop
1474 	 * their reference.
1475 	 *
1476 	 * For gigantic pages set the destructor to the null dtor.  This
1477 	 * destructor will never be called.  Before freeing the gigantic
1478 	 * page destroy_compound_gigantic_page will turn the compound page
1479 	 * into a simple group of pages.  After this the destructor does not
1480 	 * apply.
1481 	 *
1482 	 * This handles the case where more than one ref is held when and
1483 	 * after update_and_free_page is called.
1484 	 *
1485 	 * In the case of demote we do not ref count the page as it will soon
1486 	 * be turned into a page of smaller size.
1487 	 */
1488 	if (!demote)
1489 		set_page_refcounted(page);
1490 	if (hstate_is_gigantic(h))
1491 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1492 	else
1493 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1494 
1495 	h->nr_huge_pages--;
1496 	h->nr_huge_pages_node[nid]--;
1497 }
1498 
1499 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1500 							bool adjust_surplus)
1501 {
1502 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1503 }
1504 
1505 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1506 							bool adjust_surplus)
1507 {
1508 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1509 }
1510 
1511 static void add_hugetlb_page(struct hstate *h, struct page *page,
1512 			     bool adjust_surplus)
1513 {
1514 	int zeroed;
1515 	int nid = page_to_nid(page);
1516 
1517 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1518 
1519 	lockdep_assert_held(&hugetlb_lock);
1520 
1521 	INIT_LIST_HEAD(&page->lru);
1522 	h->nr_huge_pages++;
1523 	h->nr_huge_pages_node[nid]++;
1524 
1525 	if (adjust_surplus) {
1526 		h->surplus_huge_pages++;
1527 		h->surplus_huge_pages_node[nid]++;
1528 	}
1529 
1530 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1531 	set_page_private(page, 0);
1532 	/*
1533 	 * We have to set HPageVmemmapOptimized again as above
1534 	 * set_page_private(page, 0) cleared it.
1535 	 */
1536 	SetHPageVmemmapOptimized(page);
1537 
1538 	/*
1539 	 * This page is about to be managed by the hugetlb allocator and
1540 	 * should have no users.  Drop our reference, and check for others
1541 	 * just in case.
1542 	 */
1543 	zeroed = put_page_testzero(page);
1544 	if (!zeroed)
1545 		/*
1546 		 * It is VERY unlikely soneone else has taken a ref on
1547 		 * the page.  In this case, we simply return as the
1548 		 * hugetlb destructor (free_huge_page) will be called
1549 		 * when this other ref is dropped.
1550 		 */
1551 		return;
1552 
1553 	arch_clear_hugepage_flags(page);
1554 	enqueue_huge_page(h, page);
1555 }
1556 
1557 static void __update_and_free_page(struct hstate *h, struct page *page)
1558 {
1559 	int i;
1560 	struct page *subpage;
1561 
1562 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1563 		return;
1564 
1565 	/*
1566 	 * If we don't know which subpages are hwpoisoned, we can't free
1567 	 * the hugepage, so it's leaked intentionally.
1568 	 */
1569 	if (HPageRawHwpUnreliable(page))
1570 		return;
1571 
1572 	if (hugetlb_vmemmap_restore(h, page)) {
1573 		spin_lock_irq(&hugetlb_lock);
1574 		/*
1575 		 * If we cannot allocate vmemmap pages, just refuse to free the
1576 		 * page and put the page back on the hugetlb free list and treat
1577 		 * as a surplus page.
1578 		 */
1579 		add_hugetlb_page(h, page, true);
1580 		spin_unlock_irq(&hugetlb_lock);
1581 		return;
1582 	}
1583 
1584 	/*
1585 	 * Move PageHWPoison flag from head page to the raw error pages,
1586 	 * which makes any healthy subpages reusable.
1587 	 */
1588 	if (unlikely(PageHWPoison(page)))
1589 		hugetlb_clear_page_hwpoison(page);
1590 
1591 	for (i = 0; i < pages_per_huge_page(h); i++) {
1592 		subpage = nth_page(page, i);
1593 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1594 				1 << PG_referenced | 1 << PG_dirty |
1595 				1 << PG_active | 1 << PG_private |
1596 				1 << PG_writeback);
1597 	}
1598 
1599 	/*
1600 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1601 	 * need to be given back to CMA in free_gigantic_page.
1602 	 */
1603 	if (hstate_is_gigantic(h) ||
1604 	    hugetlb_cma_page(page, huge_page_order(h))) {
1605 		destroy_compound_gigantic_page(page, huge_page_order(h));
1606 		free_gigantic_page(page, huge_page_order(h));
1607 	} else {
1608 		__free_pages(page, huge_page_order(h));
1609 	}
1610 }
1611 
1612 /*
1613  * As update_and_free_page() can be called under any context, so we cannot
1614  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1615  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1616  * the vmemmap pages.
1617  *
1618  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1619  * freed and frees them one-by-one. As the page->mapping pointer is going
1620  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1621  * structure of a lockless linked list of huge pages to be freed.
1622  */
1623 static LLIST_HEAD(hpage_freelist);
1624 
1625 static void free_hpage_workfn(struct work_struct *work)
1626 {
1627 	struct llist_node *node;
1628 
1629 	node = llist_del_all(&hpage_freelist);
1630 
1631 	while (node) {
1632 		struct page *page;
1633 		struct hstate *h;
1634 
1635 		page = container_of((struct address_space **)node,
1636 				     struct page, mapping);
1637 		node = node->next;
1638 		page->mapping = NULL;
1639 		/*
1640 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1641 		 * is going to trigger because a previous call to
1642 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1643 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1644 		 */
1645 		h = size_to_hstate(page_size(page));
1646 
1647 		__update_and_free_page(h, page);
1648 
1649 		cond_resched();
1650 	}
1651 }
1652 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1653 
1654 static inline void flush_free_hpage_work(struct hstate *h)
1655 {
1656 	if (hugetlb_vmemmap_optimizable(h))
1657 		flush_work(&free_hpage_work);
1658 }
1659 
1660 static void update_and_free_page(struct hstate *h, struct page *page,
1661 				 bool atomic)
1662 {
1663 	if (!HPageVmemmapOptimized(page) || !atomic) {
1664 		__update_and_free_page(h, page);
1665 		return;
1666 	}
1667 
1668 	/*
1669 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1670 	 *
1671 	 * Only call schedule_work() if hpage_freelist is previously
1672 	 * empty. Otherwise, schedule_work() had been called but the workfn
1673 	 * hasn't retrieved the list yet.
1674 	 */
1675 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1676 		schedule_work(&free_hpage_work);
1677 }
1678 
1679 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1680 {
1681 	struct page *page, *t_page;
1682 
1683 	list_for_each_entry_safe(page, t_page, list, lru) {
1684 		update_and_free_page(h, page, false);
1685 		cond_resched();
1686 	}
1687 }
1688 
1689 struct hstate *size_to_hstate(unsigned long size)
1690 {
1691 	struct hstate *h;
1692 
1693 	for_each_hstate(h) {
1694 		if (huge_page_size(h) == size)
1695 			return h;
1696 	}
1697 	return NULL;
1698 }
1699 
1700 void free_huge_page(struct page *page)
1701 {
1702 	/*
1703 	 * Can't pass hstate in here because it is called from the
1704 	 * compound page destructor.
1705 	 */
1706 	struct hstate *h = page_hstate(page);
1707 	int nid = page_to_nid(page);
1708 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1709 	bool restore_reserve;
1710 	unsigned long flags;
1711 
1712 	VM_BUG_ON_PAGE(page_count(page), page);
1713 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1714 
1715 	hugetlb_set_page_subpool(page, NULL);
1716 	if (PageAnon(page))
1717 		__ClearPageAnonExclusive(page);
1718 	page->mapping = NULL;
1719 	restore_reserve = HPageRestoreReserve(page);
1720 	ClearHPageRestoreReserve(page);
1721 
1722 	/*
1723 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1724 	 * reservation.  If the page was associated with a subpool, there
1725 	 * would have been a page reserved in the subpool before allocation
1726 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1727 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1728 	 * remove the reserved page from the subpool.
1729 	 */
1730 	if (!restore_reserve) {
1731 		/*
1732 		 * A return code of zero implies that the subpool will be
1733 		 * under its minimum size if the reservation is not restored
1734 		 * after page is free.  Therefore, force restore_reserve
1735 		 * operation.
1736 		 */
1737 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1738 			restore_reserve = true;
1739 	}
1740 
1741 	spin_lock_irqsave(&hugetlb_lock, flags);
1742 	ClearHPageMigratable(page);
1743 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1744 				     pages_per_huge_page(h), page);
1745 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1746 					  pages_per_huge_page(h), page);
1747 	if (restore_reserve)
1748 		h->resv_huge_pages++;
1749 
1750 	if (HPageTemporary(page)) {
1751 		remove_hugetlb_page(h, page, false);
1752 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1753 		update_and_free_page(h, page, true);
1754 	} else if (h->surplus_huge_pages_node[nid]) {
1755 		/* remove the page from active list */
1756 		remove_hugetlb_page(h, page, true);
1757 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1758 		update_and_free_page(h, page, true);
1759 	} else {
1760 		arch_clear_hugepage_flags(page);
1761 		enqueue_huge_page(h, page);
1762 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1763 	}
1764 }
1765 
1766 /*
1767  * Must be called with the hugetlb lock held
1768  */
1769 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1770 {
1771 	lockdep_assert_held(&hugetlb_lock);
1772 	h->nr_huge_pages++;
1773 	h->nr_huge_pages_node[nid]++;
1774 }
1775 
1776 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1777 {
1778 	hugetlb_vmemmap_optimize(h, page);
1779 	INIT_LIST_HEAD(&page->lru);
1780 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1781 	hugetlb_set_page_subpool(page, NULL);
1782 	set_hugetlb_cgroup(page, NULL);
1783 	set_hugetlb_cgroup_rsvd(page, NULL);
1784 }
1785 
1786 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1787 {
1788 	__prep_new_huge_page(h, page);
1789 	spin_lock_irq(&hugetlb_lock);
1790 	__prep_account_new_huge_page(h, nid);
1791 	spin_unlock_irq(&hugetlb_lock);
1792 }
1793 
1794 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1795 								bool demote)
1796 {
1797 	int i, j;
1798 	int nr_pages = 1 << order;
1799 	struct page *p;
1800 
1801 	/* we rely on prep_new_huge_page to set the destructor */
1802 	set_compound_order(page, order);
1803 	__SetPageHead(page);
1804 	for (i = 0; i < nr_pages; i++) {
1805 		p = nth_page(page, i);
1806 
1807 		/*
1808 		 * For gigantic hugepages allocated through bootmem at
1809 		 * boot, it's safer to be consistent with the not-gigantic
1810 		 * hugepages and clear the PG_reserved bit from all tail pages
1811 		 * too.  Otherwise drivers using get_user_pages() to access tail
1812 		 * pages may get the reference counting wrong if they see
1813 		 * PG_reserved set on a tail page (despite the head page not
1814 		 * having PG_reserved set).  Enforcing this consistency between
1815 		 * head and tail pages allows drivers to optimize away a check
1816 		 * on the head page when they need know if put_page() is needed
1817 		 * after get_user_pages().
1818 		 */
1819 		__ClearPageReserved(p);
1820 		/*
1821 		 * Subtle and very unlikely
1822 		 *
1823 		 * Gigantic 'page allocators' such as memblock or cma will
1824 		 * return a set of pages with each page ref counted.  We need
1825 		 * to turn this set of pages into a compound page with tail
1826 		 * page ref counts set to zero.  Code such as speculative page
1827 		 * cache adding could take a ref on a 'to be' tail page.
1828 		 * We need to respect any increased ref count, and only set
1829 		 * the ref count to zero if count is currently 1.  If count
1830 		 * is not 1, we return an error.  An error return indicates
1831 		 * the set of pages can not be converted to a gigantic page.
1832 		 * The caller who allocated the pages should then discard the
1833 		 * pages using the appropriate free interface.
1834 		 *
1835 		 * In the case of demote, the ref count will be zero.
1836 		 */
1837 		if (!demote) {
1838 			if (!page_ref_freeze(p, 1)) {
1839 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1840 				goto out_error;
1841 			}
1842 		} else {
1843 			VM_BUG_ON_PAGE(page_count(p), p);
1844 		}
1845 		if (i != 0)
1846 			set_compound_head(p, page);
1847 	}
1848 	atomic_set(compound_mapcount_ptr(page), -1);
1849 	atomic_set(compound_pincount_ptr(page), 0);
1850 	return true;
1851 
1852 out_error:
1853 	/* undo page modifications made above */
1854 	for (j = 0; j < i; j++) {
1855 		p = nth_page(page, j);
1856 		if (j != 0)
1857 			clear_compound_head(p);
1858 		set_page_refcounted(p);
1859 	}
1860 	/* need to clear PG_reserved on remaining tail pages  */
1861 	for (; j < nr_pages; j++) {
1862 		p = nth_page(page, j);
1863 		__ClearPageReserved(p);
1864 	}
1865 	set_compound_order(page, 0);
1866 #ifdef CONFIG_64BIT
1867 	page[1].compound_nr = 0;
1868 #endif
1869 	__ClearPageHead(page);
1870 	return false;
1871 }
1872 
1873 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1874 {
1875 	return __prep_compound_gigantic_page(page, order, false);
1876 }
1877 
1878 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1879 							unsigned int order)
1880 {
1881 	return __prep_compound_gigantic_page(page, order, true);
1882 }
1883 
1884 /*
1885  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1886  * transparent huge pages.  See the PageTransHuge() documentation for more
1887  * details.
1888  */
1889 int PageHuge(struct page *page)
1890 {
1891 	if (!PageCompound(page))
1892 		return 0;
1893 
1894 	page = compound_head(page);
1895 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1896 }
1897 EXPORT_SYMBOL_GPL(PageHuge);
1898 
1899 /*
1900  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1901  * normal or transparent huge pages.
1902  */
1903 int PageHeadHuge(struct page *page_head)
1904 {
1905 	if (!PageHead(page_head))
1906 		return 0;
1907 
1908 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1909 }
1910 EXPORT_SYMBOL_GPL(PageHeadHuge);
1911 
1912 /*
1913  * Find and lock address space (mapping) in write mode.
1914  *
1915  * Upon entry, the page is locked which means that page_mapping() is
1916  * stable.  Due to locking order, we can only trylock_write.  If we can
1917  * not get the lock, simply return NULL to caller.
1918  */
1919 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1920 {
1921 	struct address_space *mapping = page_mapping(hpage);
1922 
1923 	if (!mapping)
1924 		return mapping;
1925 
1926 	if (i_mmap_trylock_write(mapping))
1927 		return mapping;
1928 
1929 	return NULL;
1930 }
1931 
1932 pgoff_t hugetlb_basepage_index(struct page *page)
1933 {
1934 	struct page *page_head = compound_head(page);
1935 	pgoff_t index = page_index(page_head);
1936 	unsigned long compound_idx;
1937 
1938 	if (compound_order(page_head) >= MAX_ORDER)
1939 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1940 	else
1941 		compound_idx = page - page_head;
1942 
1943 	return (index << compound_order(page_head)) + compound_idx;
1944 }
1945 
1946 static struct page *alloc_buddy_huge_page(struct hstate *h,
1947 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948 		nodemask_t *node_alloc_noretry)
1949 {
1950 	int order = huge_page_order(h);
1951 	struct page *page;
1952 	bool alloc_try_hard = true;
1953 	bool retry = true;
1954 
1955 	/*
1956 	 * By default we always try hard to allocate the page with
1957 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1958 	 * a loop (to adjust global huge page counts) and previous allocation
1959 	 * failed, do not continue to try hard on the same node.  Use the
1960 	 * node_alloc_noretry bitmap to manage this state information.
1961 	 */
1962 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 		alloc_try_hard = false;
1964 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1965 	if (alloc_try_hard)
1966 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1967 	if (nid == NUMA_NO_NODE)
1968 		nid = numa_mem_id();
1969 retry:
1970 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1971 
1972 	/* Freeze head page */
1973 	if (page && !page_ref_freeze(page, 1)) {
1974 		__free_pages(page, order);
1975 		if (retry) {	/* retry once */
1976 			retry = false;
1977 			goto retry;
1978 		}
1979 		/* WOW!  twice in a row. */
1980 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
1981 		page = NULL;
1982 	}
1983 
1984 	if (page)
1985 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1986 	else
1987 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1988 
1989 	/*
1990 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1991 	 * indicates an overall state change.  Clear bit so that we resume
1992 	 * normal 'try hard' allocations.
1993 	 */
1994 	if (node_alloc_noretry && page && !alloc_try_hard)
1995 		node_clear(nid, *node_alloc_noretry);
1996 
1997 	/*
1998 	 * If we tried hard to get a page but failed, set bit so that
1999 	 * subsequent attempts will not try as hard until there is an
2000 	 * overall state change.
2001 	 */
2002 	if (node_alloc_noretry && !page && alloc_try_hard)
2003 		node_set(nid, *node_alloc_noretry);
2004 
2005 	return page;
2006 }
2007 
2008 /*
2009  * Common helper to allocate a fresh hugetlb page. All specific allocators
2010  * should use this function to get new hugetlb pages
2011  *
2012  * Note that returned page is 'frozen':  ref count of head page and all tail
2013  * pages is zero.
2014  */
2015 static struct page *alloc_fresh_huge_page(struct hstate *h,
2016 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2017 		nodemask_t *node_alloc_noretry)
2018 {
2019 	struct page *page;
2020 	bool retry = false;
2021 
2022 retry:
2023 	if (hstate_is_gigantic(h))
2024 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
2025 	else
2026 		page = alloc_buddy_huge_page(h, gfp_mask,
2027 				nid, nmask, node_alloc_noretry);
2028 	if (!page)
2029 		return NULL;
2030 
2031 	if (hstate_is_gigantic(h)) {
2032 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
2033 			/*
2034 			 * Rare failure to convert pages to compound page.
2035 			 * Free pages and try again - ONCE!
2036 			 */
2037 			free_gigantic_page(page, huge_page_order(h));
2038 			if (!retry) {
2039 				retry = true;
2040 				goto retry;
2041 			}
2042 			return NULL;
2043 		}
2044 	}
2045 	prep_new_huge_page(h, page, page_to_nid(page));
2046 
2047 	return page;
2048 }
2049 
2050 /*
2051  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2052  * manner.
2053  */
2054 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2055 				nodemask_t *node_alloc_noretry)
2056 {
2057 	struct page *page;
2058 	int nr_nodes, node;
2059 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2060 
2061 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2062 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2063 						node_alloc_noretry);
2064 		if (page)
2065 			break;
2066 	}
2067 
2068 	if (!page)
2069 		return 0;
2070 
2071 	free_huge_page(page); /* free it into the hugepage allocator */
2072 
2073 	return 1;
2074 }
2075 
2076 /*
2077  * Remove huge page from pool from next node to free.  Attempt to keep
2078  * persistent huge pages more or less balanced over allowed nodes.
2079  * This routine only 'removes' the hugetlb page.  The caller must make
2080  * an additional call to free the page to low level allocators.
2081  * Called with hugetlb_lock locked.
2082  */
2083 static struct page *remove_pool_huge_page(struct hstate *h,
2084 						nodemask_t *nodes_allowed,
2085 						 bool acct_surplus)
2086 {
2087 	int nr_nodes, node;
2088 	struct page *page = NULL;
2089 
2090 	lockdep_assert_held(&hugetlb_lock);
2091 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2092 		/*
2093 		 * If we're returning unused surplus pages, only examine
2094 		 * nodes with surplus pages.
2095 		 */
2096 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2097 		    !list_empty(&h->hugepage_freelists[node])) {
2098 			page = list_entry(h->hugepage_freelists[node].next,
2099 					  struct page, lru);
2100 			remove_hugetlb_page(h, page, acct_surplus);
2101 			break;
2102 		}
2103 	}
2104 
2105 	return page;
2106 }
2107 
2108 /*
2109  * Dissolve a given free hugepage into free buddy pages. This function does
2110  * nothing for in-use hugepages and non-hugepages.
2111  * This function returns values like below:
2112  *
2113  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2114  *           when the system is under memory pressure and the feature of
2115  *           freeing unused vmemmap pages associated with each hugetlb page
2116  *           is enabled.
2117  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2118  *           (allocated or reserved.)
2119  *       0:  successfully dissolved free hugepages or the page is not a
2120  *           hugepage (considered as already dissolved)
2121  */
2122 int dissolve_free_huge_page(struct page *page)
2123 {
2124 	int rc = -EBUSY;
2125 
2126 retry:
2127 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2128 	if (!PageHuge(page))
2129 		return 0;
2130 
2131 	spin_lock_irq(&hugetlb_lock);
2132 	if (!PageHuge(page)) {
2133 		rc = 0;
2134 		goto out;
2135 	}
2136 
2137 	if (!page_count(page)) {
2138 		struct page *head = compound_head(page);
2139 		struct hstate *h = page_hstate(head);
2140 		if (!available_huge_pages(h))
2141 			goto out;
2142 
2143 		/*
2144 		 * We should make sure that the page is already on the free list
2145 		 * when it is dissolved.
2146 		 */
2147 		if (unlikely(!HPageFreed(head))) {
2148 			spin_unlock_irq(&hugetlb_lock);
2149 			cond_resched();
2150 
2151 			/*
2152 			 * Theoretically, we should return -EBUSY when we
2153 			 * encounter this race. In fact, we have a chance
2154 			 * to successfully dissolve the page if we do a
2155 			 * retry. Because the race window is quite small.
2156 			 * If we seize this opportunity, it is an optimization
2157 			 * for increasing the success rate of dissolving page.
2158 			 */
2159 			goto retry;
2160 		}
2161 
2162 		remove_hugetlb_page(h, head, false);
2163 		h->max_huge_pages--;
2164 		spin_unlock_irq(&hugetlb_lock);
2165 
2166 		/*
2167 		 * Normally update_and_free_page will allocate required vmemmmap
2168 		 * before freeing the page.  update_and_free_page will fail to
2169 		 * free the page if it can not allocate required vmemmap.  We
2170 		 * need to adjust max_huge_pages if the page is not freed.
2171 		 * Attempt to allocate vmemmmap here so that we can take
2172 		 * appropriate action on failure.
2173 		 */
2174 		rc = hugetlb_vmemmap_restore(h, head);
2175 		if (!rc) {
2176 			update_and_free_page(h, head, false);
2177 		} else {
2178 			spin_lock_irq(&hugetlb_lock);
2179 			add_hugetlb_page(h, head, false);
2180 			h->max_huge_pages++;
2181 			spin_unlock_irq(&hugetlb_lock);
2182 		}
2183 
2184 		return rc;
2185 	}
2186 out:
2187 	spin_unlock_irq(&hugetlb_lock);
2188 	return rc;
2189 }
2190 
2191 /*
2192  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2193  * make specified memory blocks removable from the system.
2194  * Note that this will dissolve a free gigantic hugepage completely, if any
2195  * part of it lies within the given range.
2196  * Also note that if dissolve_free_huge_page() returns with an error, all
2197  * free hugepages that were dissolved before that error are lost.
2198  */
2199 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2200 {
2201 	unsigned long pfn;
2202 	struct page *page;
2203 	int rc = 0;
2204 	unsigned int order;
2205 	struct hstate *h;
2206 
2207 	if (!hugepages_supported())
2208 		return rc;
2209 
2210 	order = huge_page_order(&default_hstate);
2211 	for_each_hstate(h)
2212 		order = min(order, huge_page_order(h));
2213 
2214 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2215 		page = pfn_to_page(pfn);
2216 		rc = dissolve_free_huge_page(page);
2217 		if (rc)
2218 			break;
2219 	}
2220 
2221 	return rc;
2222 }
2223 
2224 /*
2225  * Allocates a fresh surplus page from the page allocator.
2226  */
2227 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2228 						int nid, nodemask_t *nmask)
2229 {
2230 	struct page *page = NULL;
2231 
2232 	if (hstate_is_gigantic(h))
2233 		return NULL;
2234 
2235 	spin_lock_irq(&hugetlb_lock);
2236 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2237 		goto out_unlock;
2238 	spin_unlock_irq(&hugetlb_lock);
2239 
2240 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2241 	if (!page)
2242 		return NULL;
2243 
2244 	spin_lock_irq(&hugetlb_lock);
2245 	/*
2246 	 * We could have raced with the pool size change.
2247 	 * Double check that and simply deallocate the new page
2248 	 * if we would end up overcommiting the surpluses. Abuse
2249 	 * temporary page to workaround the nasty free_huge_page
2250 	 * codeflow
2251 	 */
2252 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2253 		SetHPageTemporary(page);
2254 		spin_unlock_irq(&hugetlb_lock);
2255 		free_huge_page(page);
2256 		return NULL;
2257 	}
2258 
2259 	h->surplus_huge_pages++;
2260 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2261 
2262 out_unlock:
2263 	spin_unlock_irq(&hugetlb_lock);
2264 
2265 	return page;
2266 }
2267 
2268 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2269 				     int nid, nodemask_t *nmask)
2270 {
2271 	struct page *page;
2272 
2273 	if (hstate_is_gigantic(h))
2274 		return NULL;
2275 
2276 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2277 	if (!page)
2278 		return NULL;
2279 
2280 	/* fresh huge pages are frozen */
2281 	set_page_refcounted(page);
2282 
2283 	/*
2284 	 * We do not account these pages as surplus because they are only
2285 	 * temporary and will be released properly on the last reference
2286 	 */
2287 	SetHPageTemporary(page);
2288 
2289 	return page;
2290 }
2291 
2292 /*
2293  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2294  */
2295 static
2296 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2297 		struct vm_area_struct *vma, unsigned long addr)
2298 {
2299 	struct page *page = NULL;
2300 	struct mempolicy *mpol;
2301 	gfp_t gfp_mask = htlb_alloc_mask(h);
2302 	int nid;
2303 	nodemask_t *nodemask;
2304 
2305 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2306 	if (mpol_is_preferred_many(mpol)) {
2307 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2308 
2309 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2310 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2311 
2312 		/* Fallback to all nodes if page==NULL */
2313 		nodemask = NULL;
2314 	}
2315 
2316 	if (!page)
2317 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2318 	mpol_cond_put(mpol);
2319 	return page;
2320 }
2321 
2322 /* page migration callback function */
2323 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2324 		nodemask_t *nmask, gfp_t gfp_mask)
2325 {
2326 	spin_lock_irq(&hugetlb_lock);
2327 	if (available_huge_pages(h)) {
2328 		struct page *page;
2329 
2330 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2331 		if (page) {
2332 			spin_unlock_irq(&hugetlb_lock);
2333 			return page;
2334 		}
2335 	}
2336 	spin_unlock_irq(&hugetlb_lock);
2337 
2338 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2339 }
2340 
2341 /* mempolicy aware migration callback */
2342 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2343 		unsigned long address)
2344 {
2345 	struct mempolicy *mpol;
2346 	nodemask_t *nodemask;
2347 	struct page *page;
2348 	gfp_t gfp_mask;
2349 	int node;
2350 
2351 	gfp_mask = htlb_alloc_mask(h);
2352 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2353 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2354 	mpol_cond_put(mpol);
2355 
2356 	return page;
2357 }
2358 
2359 /*
2360  * Increase the hugetlb pool such that it can accommodate a reservation
2361  * of size 'delta'.
2362  */
2363 static int gather_surplus_pages(struct hstate *h, long delta)
2364 	__must_hold(&hugetlb_lock)
2365 {
2366 	LIST_HEAD(surplus_list);
2367 	struct page *page, *tmp;
2368 	int ret;
2369 	long i;
2370 	long needed, allocated;
2371 	bool alloc_ok = true;
2372 
2373 	lockdep_assert_held(&hugetlb_lock);
2374 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2375 	if (needed <= 0) {
2376 		h->resv_huge_pages += delta;
2377 		return 0;
2378 	}
2379 
2380 	allocated = 0;
2381 
2382 	ret = -ENOMEM;
2383 retry:
2384 	spin_unlock_irq(&hugetlb_lock);
2385 	for (i = 0; i < needed; i++) {
2386 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2387 				NUMA_NO_NODE, NULL);
2388 		if (!page) {
2389 			alloc_ok = false;
2390 			break;
2391 		}
2392 		list_add(&page->lru, &surplus_list);
2393 		cond_resched();
2394 	}
2395 	allocated += i;
2396 
2397 	/*
2398 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2399 	 * because either resv_huge_pages or free_huge_pages may have changed.
2400 	 */
2401 	spin_lock_irq(&hugetlb_lock);
2402 	needed = (h->resv_huge_pages + delta) -
2403 			(h->free_huge_pages + allocated);
2404 	if (needed > 0) {
2405 		if (alloc_ok)
2406 			goto retry;
2407 		/*
2408 		 * We were not able to allocate enough pages to
2409 		 * satisfy the entire reservation so we free what
2410 		 * we've allocated so far.
2411 		 */
2412 		goto free;
2413 	}
2414 	/*
2415 	 * The surplus_list now contains _at_least_ the number of extra pages
2416 	 * needed to accommodate the reservation.  Add the appropriate number
2417 	 * of pages to the hugetlb pool and free the extras back to the buddy
2418 	 * allocator.  Commit the entire reservation here to prevent another
2419 	 * process from stealing the pages as they are added to the pool but
2420 	 * before they are reserved.
2421 	 */
2422 	needed += allocated;
2423 	h->resv_huge_pages += delta;
2424 	ret = 0;
2425 
2426 	/* Free the needed pages to the hugetlb pool */
2427 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2428 		if ((--needed) < 0)
2429 			break;
2430 		/* Add the page to the hugetlb allocator */
2431 		enqueue_huge_page(h, page);
2432 	}
2433 free:
2434 	spin_unlock_irq(&hugetlb_lock);
2435 
2436 	/*
2437 	 * Free unnecessary surplus pages to the buddy allocator.
2438 	 * Pages have no ref count, call free_huge_page directly.
2439 	 */
2440 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2441 		free_huge_page(page);
2442 	spin_lock_irq(&hugetlb_lock);
2443 
2444 	return ret;
2445 }
2446 
2447 /*
2448  * This routine has two main purposes:
2449  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2450  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2451  *    to the associated reservation map.
2452  * 2) Free any unused surplus pages that may have been allocated to satisfy
2453  *    the reservation.  As many as unused_resv_pages may be freed.
2454  */
2455 static void return_unused_surplus_pages(struct hstate *h,
2456 					unsigned long unused_resv_pages)
2457 {
2458 	unsigned long nr_pages;
2459 	struct page *page;
2460 	LIST_HEAD(page_list);
2461 
2462 	lockdep_assert_held(&hugetlb_lock);
2463 	/* Uncommit the reservation */
2464 	h->resv_huge_pages -= unused_resv_pages;
2465 
2466 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2467 		goto out;
2468 
2469 	/*
2470 	 * Part (or even all) of the reservation could have been backed
2471 	 * by pre-allocated pages. Only free surplus pages.
2472 	 */
2473 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2474 
2475 	/*
2476 	 * We want to release as many surplus pages as possible, spread
2477 	 * evenly across all nodes with memory. Iterate across these nodes
2478 	 * until we can no longer free unreserved surplus pages. This occurs
2479 	 * when the nodes with surplus pages have no free pages.
2480 	 * remove_pool_huge_page() will balance the freed pages across the
2481 	 * on-line nodes with memory and will handle the hstate accounting.
2482 	 */
2483 	while (nr_pages--) {
2484 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2485 		if (!page)
2486 			goto out;
2487 
2488 		list_add(&page->lru, &page_list);
2489 	}
2490 
2491 out:
2492 	spin_unlock_irq(&hugetlb_lock);
2493 	update_and_free_pages_bulk(h, &page_list);
2494 	spin_lock_irq(&hugetlb_lock);
2495 }
2496 
2497 
2498 /*
2499  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2500  * are used by the huge page allocation routines to manage reservations.
2501  *
2502  * vma_needs_reservation is called to determine if the huge page at addr
2503  * within the vma has an associated reservation.  If a reservation is
2504  * needed, the value 1 is returned.  The caller is then responsible for
2505  * managing the global reservation and subpool usage counts.  After
2506  * the huge page has been allocated, vma_commit_reservation is called
2507  * to add the page to the reservation map.  If the page allocation fails,
2508  * the reservation must be ended instead of committed.  vma_end_reservation
2509  * is called in such cases.
2510  *
2511  * In the normal case, vma_commit_reservation returns the same value
2512  * as the preceding vma_needs_reservation call.  The only time this
2513  * is not the case is if a reserve map was changed between calls.  It
2514  * is the responsibility of the caller to notice the difference and
2515  * take appropriate action.
2516  *
2517  * vma_add_reservation is used in error paths where a reservation must
2518  * be restored when a newly allocated huge page must be freed.  It is
2519  * to be called after calling vma_needs_reservation to determine if a
2520  * reservation exists.
2521  *
2522  * vma_del_reservation is used in error paths where an entry in the reserve
2523  * map was created during huge page allocation and must be removed.  It is to
2524  * be called after calling vma_needs_reservation to determine if a reservation
2525  * exists.
2526  */
2527 enum vma_resv_mode {
2528 	VMA_NEEDS_RESV,
2529 	VMA_COMMIT_RESV,
2530 	VMA_END_RESV,
2531 	VMA_ADD_RESV,
2532 	VMA_DEL_RESV,
2533 };
2534 static long __vma_reservation_common(struct hstate *h,
2535 				struct vm_area_struct *vma, unsigned long addr,
2536 				enum vma_resv_mode mode)
2537 {
2538 	struct resv_map *resv;
2539 	pgoff_t idx;
2540 	long ret;
2541 	long dummy_out_regions_needed;
2542 
2543 	resv = vma_resv_map(vma);
2544 	if (!resv)
2545 		return 1;
2546 
2547 	idx = vma_hugecache_offset(h, vma, addr);
2548 	switch (mode) {
2549 	case VMA_NEEDS_RESV:
2550 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2551 		/* We assume that vma_reservation_* routines always operate on
2552 		 * 1 page, and that adding to resv map a 1 page entry can only
2553 		 * ever require 1 region.
2554 		 */
2555 		VM_BUG_ON(dummy_out_regions_needed != 1);
2556 		break;
2557 	case VMA_COMMIT_RESV:
2558 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2559 		/* region_add calls of range 1 should never fail. */
2560 		VM_BUG_ON(ret < 0);
2561 		break;
2562 	case VMA_END_RESV:
2563 		region_abort(resv, idx, idx + 1, 1);
2564 		ret = 0;
2565 		break;
2566 	case VMA_ADD_RESV:
2567 		if (vma->vm_flags & VM_MAYSHARE) {
2568 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2569 			/* region_add calls of range 1 should never fail. */
2570 			VM_BUG_ON(ret < 0);
2571 		} else {
2572 			region_abort(resv, idx, idx + 1, 1);
2573 			ret = region_del(resv, idx, idx + 1);
2574 		}
2575 		break;
2576 	case VMA_DEL_RESV:
2577 		if (vma->vm_flags & VM_MAYSHARE) {
2578 			region_abort(resv, idx, idx + 1, 1);
2579 			ret = region_del(resv, idx, idx + 1);
2580 		} else {
2581 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2582 			/* region_add calls of range 1 should never fail. */
2583 			VM_BUG_ON(ret < 0);
2584 		}
2585 		break;
2586 	default:
2587 		BUG();
2588 	}
2589 
2590 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2591 		return ret;
2592 	/*
2593 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2594 	 *
2595 	 * In most cases, reserves always exist for private mappings.
2596 	 * However, a file associated with mapping could have been
2597 	 * hole punched or truncated after reserves were consumed.
2598 	 * As subsequent fault on such a range will not use reserves.
2599 	 * Subtle - The reserve map for private mappings has the
2600 	 * opposite meaning than that of shared mappings.  If NO
2601 	 * entry is in the reserve map, it means a reservation exists.
2602 	 * If an entry exists in the reserve map, it means the
2603 	 * reservation has already been consumed.  As a result, the
2604 	 * return value of this routine is the opposite of the
2605 	 * value returned from reserve map manipulation routines above.
2606 	 */
2607 	if (ret > 0)
2608 		return 0;
2609 	if (ret == 0)
2610 		return 1;
2611 	return ret;
2612 }
2613 
2614 static long vma_needs_reservation(struct hstate *h,
2615 			struct vm_area_struct *vma, unsigned long addr)
2616 {
2617 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2618 }
2619 
2620 static long vma_commit_reservation(struct hstate *h,
2621 			struct vm_area_struct *vma, unsigned long addr)
2622 {
2623 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2624 }
2625 
2626 static void vma_end_reservation(struct hstate *h,
2627 			struct vm_area_struct *vma, unsigned long addr)
2628 {
2629 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2630 }
2631 
2632 static long vma_add_reservation(struct hstate *h,
2633 			struct vm_area_struct *vma, unsigned long addr)
2634 {
2635 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2636 }
2637 
2638 static long vma_del_reservation(struct hstate *h,
2639 			struct vm_area_struct *vma, unsigned long addr)
2640 {
2641 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2642 }
2643 
2644 /*
2645  * This routine is called to restore reservation information on error paths.
2646  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2647  * the hugetlb mutex should remain held when calling this routine.
2648  *
2649  * It handles two specific cases:
2650  * 1) A reservation was in place and the page consumed the reservation.
2651  *    HPageRestoreReserve is set in the page.
2652  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2653  *    not set.  However, alloc_huge_page always updates the reserve map.
2654  *
2655  * In case 1, free_huge_page later in the error path will increment the
2656  * global reserve count.  But, free_huge_page does not have enough context
2657  * to adjust the reservation map.  This case deals primarily with private
2658  * mappings.  Adjust the reserve map here to be consistent with global
2659  * reserve count adjustments to be made by free_huge_page.  Make sure the
2660  * reserve map indicates there is a reservation present.
2661  *
2662  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2663  */
2664 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2665 			unsigned long address, struct page *page)
2666 {
2667 	long rc = vma_needs_reservation(h, vma, address);
2668 
2669 	if (HPageRestoreReserve(page)) {
2670 		if (unlikely(rc < 0))
2671 			/*
2672 			 * Rare out of memory condition in reserve map
2673 			 * manipulation.  Clear HPageRestoreReserve so that
2674 			 * global reserve count will not be incremented
2675 			 * by free_huge_page.  This will make it appear
2676 			 * as though the reservation for this page was
2677 			 * consumed.  This may prevent the task from
2678 			 * faulting in the page at a later time.  This
2679 			 * is better than inconsistent global huge page
2680 			 * accounting of reserve counts.
2681 			 */
2682 			ClearHPageRestoreReserve(page);
2683 		else if (rc)
2684 			(void)vma_add_reservation(h, vma, address);
2685 		else
2686 			vma_end_reservation(h, vma, address);
2687 	} else {
2688 		if (!rc) {
2689 			/*
2690 			 * This indicates there is an entry in the reserve map
2691 			 * not added by alloc_huge_page.  We know it was added
2692 			 * before the alloc_huge_page call, otherwise
2693 			 * HPageRestoreReserve would be set on the page.
2694 			 * Remove the entry so that a subsequent allocation
2695 			 * does not consume a reservation.
2696 			 */
2697 			rc = vma_del_reservation(h, vma, address);
2698 			if (rc < 0)
2699 				/*
2700 				 * VERY rare out of memory condition.  Since
2701 				 * we can not delete the entry, set
2702 				 * HPageRestoreReserve so that the reserve
2703 				 * count will be incremented when the page
2704 				 * is freed.  This reserve will be consumed
2705 				 * on a subsequent allocation.
2706 				 */
2707 				SetHPageRestoreReserve(page);
2708 		} else if (rc < 0) {
2709 			/*
2710 			 * Rare out of memory condition from
2711 			 * vma_needs_reservation call.  Memory allocation is
2712 			 * only attempted if a new entry is needed.  Therefore,
2713 			 * this implies there is not an entry in the
2714 			 * reserve map.
2715 			 *
2716 			 * For shared mappings, no entry in the map indicates
2717 			 * no reservation.  We are done.
2718 			 */
2719 			if (!(vma->vm_flags & VM_MAYSHARE))
2720 				/*
2721 				 * For private mappings, no entry indicates
2722 				 * a reservation is present.  Since we can
2723 				 * not add an entry, set SetHPageRestoreReserve
2724 				 * on the page so reserve count will be
2725 				 * incremented when freed.  This reserve will
2726 				 * be consumed on a subsequent allocation.
2727 				 */
2728 				SetHPageRestoreReserve(page);
2729 		} else
2730 			/*
2731 			 * No reservation present, do nothing
2732 			 */
2733 			 vma_end_reservation(h, vma, address);
2734 	}
2735 }
2736 
2737 /*
2738  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2739  * @h: struct hstate old page belongs to
2740  * @old_page: Old page to dissolve
2741  * @list: List to isolate the page in case we need to
2742  * Returns 0 on success, otherwise negated error.
2743  */
2744 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2745 					struct list_head *list)
2746 {
2747 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2748 	int nid = page_to_nid(old_page);
2749 	struct page *new_page;
2750 	int ret = 0;
2751 
2752 	/*
2753 	 * Before dissolving the page, we need to allocate a new one for the
2754 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2755 	 * by doing everything but actually updating counters and adding to
2756 	 * the pool.  This simplifies and let us do most of the processing
2757 	 * under the lock.
2758 	 */
2759 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2760 	if (!new_page)
2761 		return -ENOMEM;
2762 	__prep_new_huge_page(h, new_page);
2763 
2764 retry:
2765 	spin_lock_irq(&hugetlb_lock);
2766 	if (!PageHuge(old_page)) {
2767 		/*
2768 		 * Freed from under us. Drop new_page too.
2769 		 */
2770 		goto free_new;
2771 	} else if (page_count(old_page)) {
2772 		/*
2773 		 * Someone has grabbed the page, try to isolate it here.
2774 		 * Fail with -EBUSY if not possible.
2775 		 */
2776 		spin_unlock_irq(&hugetlb_lock);
2777 		ret = isolate_hugetlb(old_page, list);
2778 		spin_lock_irq(&hugetlb_lock);
2779 		goto free_new;
2780 	} else if (!HPageFreed(old_page)) {
2781 		/*
2782 		 * Page's refcount is 0 but it has not been enqueued in the
2783 		 * freelist yet. Race window is small, so we can succeed here if
2784 		 * we retry.
2785 		 */
2786 		spin_unlock_irq(&hugetlb_lock);
2787 		cond_resched();
2788 		goto retry;
2789 	} else {
2790 		/*
2791 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2792 		 * the freelist and decrease the counters. These will be
2793 		 * incremented again when calling __prep_account_new_huge_page()
2794 		 * and enqueue_huge_page() for new_page. The counters will remain
2795 		 * stable since this happens under the lock.
2796 		 */
2797 		remove_hugetlb_page(h, old_page, false);
2798 
2799 		/*
2800 		 * Ref count on new page is already zero as it was dropped
2801 		 * earlier.  It can be directly added to the pool free list.
2802 		 */
2803 		__prep_account_new_huge_page(h, nid);
2804 		enqueue_huge_page(h, new_page);
2805 
2806 		/*
2807 		 * Pages have been replaced, we can safely free the old one.
2808 		 */
2809 		spin_unlock_irq(&hugetlb_lock);
2810 		update_and_free_page(h, old_page, false);
2811 	}
2812 
2813 	return ret;
2814 
2815 free_new:
2816 	spin_unlock_irq(&hugetlb_lock);
2817 	/* Page has a zero ref count, but needs a ref to be freed */
2818 	set_page_refcounted(new_page);
2819 	update_and_free_page(h, new_page, false);
2820 
2821 	return ret;
2822 }
2823 
2824 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2825 {
2826 	struct hstate *h;
2827 	struct page *head;
2828 	int ret = -EBUSY;
2829 
2830 	/*
2831 	 * The page might have been dissolved from under our feet, so make sure
2832 	 * to carefully check the state under the lock.
2833 	 * Return success when racing as if we dissolved the page ourselves.
2834 	 */
2835 	spin_lock_irq(&hugetlb_lock);
2836 	if (PageHuge(page)) {
2837 		head = compound_head(page);
2838 		h = page_hstate(head);
2839 	} else {
2840 		spin_unlock_irq(&hugetlb_lock);
2841 		return 0;
2842 	}
2843 	spin_unlock_irq(&hugetlb_lock);
2844 
2845 	/*
2846 	 * Fence off gigantic pages as there is a cyclic dependency between
2847 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2848 	 * of bailing out right away without further retrying.
2849 	 */
2850 	if (hstate_is_gigantic(h))
2851 		return -ENOMEM;
2852 
2853 	if (page_count(head) && !isolate_hugetlb(head, list))
2854 		ret = 0;
2855 	else if (!page_count(head))
2856 		ret = alloc_and_dissolve_huge_page(h, head, list);
2857 
2858 	return ret;
2859 }
2860 
2861 struct page *alloc_huge_page(struct vm_area_struct *vma,
2862 				    unsigned long addr, int avoid_reserve)
2863 {
2864 	struct hugepage_subpool *spool = subpool_vma(vma);
2865 	struct hstate *h = hstate_vma(vma);
2866 	struct page *page;
2867 	long map_chg, map_commit;
2868 	long gbl_chg;
2869 	int ret, idx;
2870 	struct hugetlb_cgroup *h_cg;
2871 	bool deferred_reserve;
2872 
2873 	idx = hstate_index(h);
2874 	/*
2875 	 * Examine the region/reserve map to determine if the process
2876 	 * has a reservation for the page to be allocated.  A return
2877 	 * code of zero indicates a reservation exists (no change).
2878 	 */
2879 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2880 	if (map_chg < 0)
2881 		return ERR_PTR(-ENOMEM);
2882 
2883 	/*
2884 	 * Processes that did not create the mapping will have no
2885 	 * reserves as indicated by the region/reserve map. Check
2886 	 * that the allocation will not exceed the subpool limit.
2887 	 * Allocations for MAP_NORESERVE mappings also need to be
2888 	 * checked against any subpool limit.
2889 	 */
2890 	if (map_chg || avoid_reserve) {
2891 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2892 		if (gbl_chg < 0) {
2893 			vma_end_reservation(h, vma, addr);
2894 			return ERR_PTR(-ENOSPC);
2895 		}
2896 
2897 		/*
2898 		 * Even though there was no reservation in the region/reserve
2899 		 * map, there could be reservations associated with the
2900 		 * subpool that can be used.  This would be indicated if the
2901 		 * return value of hugepage_subpool_get_pages() is zero.
2902 		 * However, if avoid_reserve is specified we still avoid even
2903 		 * the subpool reservations.
2904 		 */
2905 		if (avoid_reserve)
2906 			gbl_chg = 1;
2907 	}
2908 
2909 	/* If this allocation is not consuming a reservation, charge it now.
2910 	 */
2911 	deferred_reserve = map_chg || avoid_reserve;
2912 	if (deferred_reserve) {
2913 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2914 			idx, pages_per_huge_page(h), &h_cg);
2915 		if (ret)
2916 			goto out_subpool_put;
2917 	}
2918 
2919 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2920 	if (ret)
2921 		goto out_uncharge_cgroup_reservation;
2922 
2923 	spin_lock_irq(&hugetlb_lock);
2924 	/*
2925 	 * glb_chg is passed to indicate whether or not a page must be taken
2926 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2927 	 * a reservation exists for the allocation.
2928 	 */
2929 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2930 	if (!page) {
2931 		spin_unlock_irq(&hugetlb_lock);
2932 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2933 		if (!page)
2934 			goto out_uncharge_cgroup;
2935 		spin_lock_irq(&hugetlb_lock);
2936 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2937 			SetHPageRestoreReserve(page);
2938 			h->resv_huge_pages--;
2939 		}
2940 		list_add(&page->lru, &h->hugepage_activelist);
2941 		set_page_refcounted(page);
2942 		/* Fall through */
2943 	}
2944 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2945 	/* If allocation is not consuming a reservation, also store the
2946 	 * hugetlb_cgroup pointer on the page.
2947 	 */
2948 	if (deferred_reserve) {
2949 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2950 						  h_cg, page);
2951 	}
2952 
2953 	spin_unlock_irq(&hugetlb_lock);
2954 
2955 	hugetlb_set_page_subpool(page, spool);
2956 
2957 	map_commit = vma_commit_reservation(h, vma, addr);
2958 	if (unlikely(map_chg > map_commit)) {
2959 		/*
2960 		 * The page was added to the reservation map between
2961 		 * vma_needs_reservation and vma_commit_reservation.
2962 		 * This indicates a race with hugetlb_reserve_pages.
2963 		 * Adjust for the subpool count incremented above AND
2964 		 * in hugetlb_reserve_pages for the same page.  Also,
2965 		 * the reservation count added in hugetlb_reserve_pages
2966 		 * no longer applies.
2967 		 */
2968 		long rsv_adjust;
2969 
2970 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2971 		hugetlb_acct_memory(h, -rsv_adjust);
2972 		if (deferred_reserve)
2973 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2974 					pages_per_huge_page(h), page);
2975 	}
2976 	return page;
2977 
2978 out_uncharge_cgroup:
2979 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2980 out_uncharge_cgroup_reservation:
2981 	if (deferred_reserve)
2982 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2983 						    h_cg);
2984 out_subpool_put:
2985 	if (map_chg || avoid_reserve)
2986 		hugepage_subpool_put_pages(spool, 1);
2987 	vma_end_reservation(h, vma, addr);
2988 	return ERR_PTR(-ENOSPC);
2989 }
2990 
2991 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2992 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2993 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2994 {
2995 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2996 	int nr_nodes, node;
2997 
2998 	/* do node specific alloc */
2999 	if (nid != NUMA_NO_NODE) {
3000 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3001 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3002 		if (!m)
3003 			return 0;
3004 		goto found;
3005 	}
3006 	/* allocate from next node when distributing huge pages */
3007 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3008 		m = memblock_alloc_try_nid_raw(
3009 				huge_page_size(h), huge_page_size(h),
3010 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3011 		/*
3012 		 * Use the beginning of the huge page to store the
3013 		 * huge_bootmem_page struct (until gather_bootmem
3014 		 * puts them into the mem_map).
3015 		 */
3016 		if (!m)
3017 			return 0;
3018 		goto found;
3019 	}
3020 
3021 found:
3022 	/* Put them into a private list first because mem_map is not up yet */
3023 	INIT_LIST_HEAD(&m->list);
3024 	list_add(&m->list, &huge_boot_pages);
3025 	m->hstate = h;
3026 	return 1;
3027 }
3028 
3029 /*
3030  * Put bootmem huge pages into the standard lists after mem_map is up.
3031  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3032  */
3033 static void __init gather_bootmem_prealloc(void)
3034 {
3035 	struct huge_bootmem_page *m;
3036 
3037 	list_for_each_entry(m, &huge_boot_pages, list) {
3038 		struct page *page = virt_to_page(m);
3039 		struct hstate *h = m->hstate;
3040 
3041 		VM_BUG_ON(!hstate_is_gigantic(h));
3042 		WARN_ON(page_count(page) != 1);
3043 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3044 			WARN_ON(PageReserved(page));
3045 			prep_new_huge_page(h, page, page_to_nid(page));
3046 			free_huge_page(page); /* add to the hugepage allocator */
3047 		} else {
3048 			/* VERY unlikely inflated ref count on a tail page */
3049 			free_gigantic_page(page, huge_page_order(h));
3050 		}
3051 
3052 		/*
3053 		 * We need to restore the 'stolen' pages to totalram_pages
3054 		 * in order to fix confusing memory reports from free(1) and
3055 		 * other side-effects, like CommitLimit going negative.
3056 		 */
3057 		adjust_managed_page_count(page, pages_per_huge_page(h));
3058 		cond_resched();
3059 	}
3060 }
3061 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3062 {
3063 	unsigned long i;
3064 	char buf[32];
3065 
3066 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3067 		if (hstate_is_gigantic(h)) {
3068 			if (!alloc_bootmem_huge_page(h, nid))
3069 				break;
3070 		} else {
3071 			struct page *page;
3072 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3073 
3074 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3075 					&node_states[N_MEMORY], NULL);
3076 			if (!page)
3077 				break;
3078 			free_huge_page(page); /* free it into the hugepage allocator */
3079 		}
3080 		cond_resched();
3081 	}
3082 	if (i == h->max_huge_pages_node[nid])
3083 		return;
3084 
3085 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3086 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3087 		h->max_huge_pages_node[nid], buf, nid, i);
3088 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3089 	h->max_huge_pages_node[nid] = i;
3090 }
3091 
3092 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3093 {
3094 	unsigned long i;
3095 	nodemask_t *node_alloc_noretry;
3096 	bool node_specific_alloc = false;
3097 
3098 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3099 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3100 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3101 		return;
3102 	}
3103 
3104 	/* do node specific alloc */
3105 	for_each_online_node(i) {
3106 		if (h->max_huge_pages_node[i] > 0) {
3107 			hugetlb_hstate_alloc_pages_onenode(h, i);
3108 			node_specific_alloc = true;
3109 		}
3110 	}
3111 
3112 	if (node_specific_alloc)
3113 		return;
3114 
3115 	/* below will do all node balanced alloc */
3116 	if (!hstate_is_gigantic(h)) {
3117 		/*
3118 		 * Bit mask controlling how hard we retry per-node allocations.
3119 		 * Ignore errors as lower level routines can deal with
3120 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3121 		 * time, we are likely in bigger trouble.
3122 		 */
3123 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3124 						GFP_KERNEL);
3125 	} else {
3126 		/* allocations done at boot time */
3127 		node_alloc_noretry = NULL;
3128 	}
3129 
3130 	/* bit mask controlling how hard we retry per-node allocations */
3131 	if (node_alloc_noretry)
3132 		nodes_clear(*node_alloc_noretry);
3133 
3134 	for (i = 0; i < h->max_huge_pages; ++i) {
3135 		if (hstate_is_gigantic(h)) {
3136 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3137 				break;
3138 		} else if (!alloc_pool_huge_page(h,
3139 					 &node_states[N_MEMORY],
3140 					 node_alloc_noretry))
3141 			break;
3142 		cond_resched();
3143 	}
3144 	if (i < h->max_huge_pages) {
3145 		char buf[32];
3146 
3147 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3148 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3149 			h->max_huge_pages, buf, i);
3150 		h->max_huge_pages = i;
3151 	}
3152 	kfree(node_alloc_noretry);
3153 }
3154 
3155 static void __init hugetlb_init_hstates(void)
3156 {
3157 	struct hstate *h, *h2;
3158 
3159 	for_each_hstate(h) {
3160 		/* oversize hugepages were init'ed in early boot */
3161 		if (!hstate_is_gigantic(h))
3162 			hugetlb_hstate_alloc_pages(h);
3163 
3164 		/*
3165 		 * Set demote order for each hstate.  Note that
3166 		 * h->demote_order is initially 0.
3167 		 * - We can not demote gigantic pages if runtime freeing
3168 		 *   is not supported, so skip this.
3169 		 * - If CMA allocation is possible, we can not demote
3170 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3171 		 */
3172 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3173 			continue;
3174 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3175 			continue;
3176 		for_each_hstate(h2) {
3177 			if (h2 == h)
3178 				continue;
3179 			if (h2->order < h->order &&
3180 			    h2->order > h->demote_order)
3181 				h->demote_order = h2->order;
3182 		}
3183 	}
3184 }
3185 
3186 static void __init report_hugepages(void)
3187 {
3188 	struct hstate *h;
3189 
3190 	for_each_hstate(h) {
3191 		char buf[32];
3192 
3193 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3194 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3195 			buf, h->free_huge_pages);
3196 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3197 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3198 	}
3199 }
3200 
3201 #ifdef CONFIG_HIGHMEM
3202 static void try_to_free_low(struct hstate *h, unsigned long count,
3203 						nodemask_t *nodes_allowed)
3204 {
3205 	int i;
3206 	LIST_HEAD(page_list);
3207 
3208 	lockdep_assert_held(&hugetlb_lock);
3209 	if (hstate_is_gigantic(h))
3210 		return;
3211 
3212 	/*
3213 	 * Collect pages to be freed on a list, and free after dropping lock
3214 	 */
3215 	for_each_node_mask(i, *nodes_allowed) {
3216 		struct page *page, *next;
3217 		struct list_head *freel = &h->hugepage_freelists[i];
3218 		list_for_each_entry_safe(page, next, freel, lru) {
3219 			if (count >= h->nr_huge_pages)
3220 				goto out;
3221 			if (PageHighMem(page))
3222 				continue;
3223 			remove_hugetlb_page(h, page, false);
3224 			list_add(&page->lru, &page_list);
3225 		}
3226 	}
3227 
3228 out:
3229 	spin_unlock_irq(&hugetlb_lock);
3230 	update_and_free_pages_bulk(h, &page_list);
3231 	spin_lock_irq(&hugetlb_lock);
3232 }
3233 #else
3234 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3235 						nodemask_t *nodes_allowed)
3236 {
3237 }
3238 #endif
3239 
3240 /*
3241  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3242  * balanced by operating on them in a round-robin fashion.
3243  * Returns 1 if an adjustment was made.
3244  */
3245 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3246 				int delta)
3247 {
3248 	int nr_nodes, node;
3249 
3250 	lockdep_assert_held(&hugetlb_lock);
3251 	VM_BUG_ON(delta != -1 && delta != 1);
3252 
3253 	if (delta < 0) {
3254 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3255 			if (h->surplus_huge_pages_node[node])
3256 				goto found;
3257 		}
3258 	} else {
3259 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3260 			if (h->surplus_huge_pages_node[node] <
3261 					h->nr_huge_pages_node[node])
3262 				goto found;
3263 		}
3264 	}
3265 	return 0;
3266 
3267 found:
3268 	h->surplus_huge_pages += delta;
3269 	h->surplus_huge_pages_node[node] += delta;
3270 	return 1;
3271 }
3272 
3273 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3274 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3275 			      nodemask_t *nodes_allowed)
3276 {
3277 	unsigned long min_count, ret;
3278 	struct page *page;
3279 	LIST_HEAD(page_list);
3280 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3281 
3282 	/*
3283 	 * Bit mask controlling how hard we retry per-node allocations.
3284 	 * If we can not allocate the bit mask, do not attempt to allocate
3285 	 * the requested huge pages.
3286 	 */
3287 	if (node_alloc_noretry)
3288 		nodes_clear(*node_alloc_noretry);
3289 	else
3290 		return -ENOMEM;
3291 
3292 	/*
3293 	 * resize_lock mutex prevents concurrent adjustments to number of
3294 	 * pages in hstate via the proc/sysfs interfaces.
3295 	 */
3296 	mutex_lock(&h->resize_lock);
3297 	flush_free_hpage_work(h);
3298 	spin_lock_irq(&hugetlb_lock);
3299 
3300 	/*
3301 	 * Check for a node specific request.
3302 	 * Changing node specific huge page count may require a corresponding
3303 	 * change to the global count.  In any case, the passed node mask
3304 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3305 	 */
3306 	if (nid != NUMA_NO_NODE) {
3307 		unsigned long old_count = count;
3308 
3309 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3310 		/*
3311 		 * User may have specified a large count value which caused the
3312 		 * above calculation to overflow.  In this case, they wanted
3313 		 * to allocate as many huge pages as possible.  Set count to
3314 		 * largest possible value to align with their intention.
3315 		 */
3316 		if (count < old_count)
3317 			count = ULONG_MAX;
3318 	}
3319 
3320 	/*
3321 	 * Gigantic pages runtime allocation depend on the capability for large
3322 	 * page range allocation.
3323 	 * If the system does not provide this feature, return an error when
3324 	 * the user tries to allocate gigantic pages but let the user free the
3325 	 * boottime allocated gigantic pages.
3326 	 */
3327 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3328 		if (count > persistent_huge_pages(h)) {
3329 			spin_unlock_irq(&hugetlb_lock);
3330 			mutex_unlock(&h->resize_lock);
3331 			NODEMASK_FREE(node_alloc_noretry);
3332 			return -EINVAL;
3333 		}
3334 		/* Fall through to decrease pool */
3335 	}
3336 
3337 	/*
3338 	 * Increase the pool size
3339 	 * First take pages out of surplus state.  Then make up the
3340 	 * remaining difference by allocating fresh huge pages.
3341 	 *
3342 	 * We might race with alloc_surplus_huge_page() here and be unable
3343 	 * to convert a surplus huge page to a normal huge page. That is
3344 	 * not critical, though, it just means the overall size of the
3345 	 * pool might be one hugepage larger than it needs to be, but
3346 	 * within all the constraints specified by the sysctls.
3347 	 */
3348 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3349 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3350 			break;
3351 	}
3352 
3353 	while (count > persistent_huge_pages(h)) {
3354 		/*
3355 		 * If this allocation races such that we no longer need the
3356 		 * page, free_huge_page will handle it by freeing the page
3357 		 * and reducing the surplus.
3358 		 */
3359 		spin_unlock_irq(&hugetlb_lock);
3360 
3361 		/* yield cpu to avoid soft lockup */
3362 		cond_resched();
3363 
3364 		ret = alloc_pool_huge_page(h, nodes_allowed,
3365 						node_alloc_noretry);
3366 		spin_lock_irq(&hugetlb_lock);
3367 		if (!ret)
3368 			goto out;
3369 
3370 		/* Bail for signals. Probably ctrl-c from user */
3371 		if (signal_pending(current))
3372 			goto out;
3373 	}
3374 
3375 	/*
3376 	 * Decrease the pool size
3377 	 * First return free pages to the buddy allocator (being careful
3378 	 * to keep enough around to satisfy reservations).  Then place
3379 	 * pages into surplus state as needed so the pool will shrink
3380 	 * to the desired size as pages become free.
3381 	 *
3382 	 * By placing pages into the surplus state independent of the
3383 	 * overcommit value, we are allowing the surplus pool size to
3384 	 * exceed overcommit. There are few sane options here. Since
3385 	 * alloc_surplus_huge_page() is checking the global counter,
3386 	 * though, we'll note that we're not allowed to exceed surplus
3387 	 * and won't grow the pool anywhere else. Not until one of the
3388 	 * sysctls are changed, or the surplus pages go out of use.
3389 	 */
3390 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3391 	min_count = max(count, min_count);
3392 	try_to_free_low(h, min_count, nodes_allowed);
3393 
3394 	/*
3395 	 * Collect pages to be removed on list without dropping lock
3396 	 */
3397 	while (min_count < persistent_huge_pages(h)) {
3398 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3399 		if (!page)
3400 			break;
3401 
3402 		list_add(&page->lru, &page_list);
3403 	}
3404 	/* free the pages after dropping lock */
3405 	spin_unlock_irq(&hugetlb_lock);
3406 	update_and_free_pages_bulk(h, &page_list);
3407 	flush_free_hpage_work(h);
3408 	spin_lock_irq(&hugetlb_lock);
3409 
3410 	while (count < persistent_huge_pages(h)) {
3411 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3412 			break;
3413 	}
3414 out:
3415 	h->max_huge_pages = persistent_huge_pages(h);
3416 	spin_unlock_irq(&hugetlb_lock);
3417 	mutex_unlock(&h->resize_lock);
3418 
3419 	NODEMASK_FREE(node_alloc_noretry);
3420 
3421 	return 0;
3422 }
3423 
3424 static int demote_free_huge_page(struct hstate *h, struct page *page)
3425 {
3426 	int i, nid = page_to_nid(page);
3427 	struct hstate *target_hstate;
3428 	struct page *subpage;
3429 	int rc = 0;
3430 
3431 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3432 
3433 	remove_hugetlb_page_for_demote(h, page, false);
3434 	spin_unlock_irq(&hugetlb_lock);
3435 
3436 	rc = hugetlb_vmemmap_restore(h, page);
3437 	if (rc) {
3438 		/* Allocation of vmemmmap failed, we can not demote page */
3439 		spin_lock_irq(&hugetlb_lock);
3440 		set_page_refcounted(page);
3441 		add_hugetlb_page(h, page, false);
3442 		return rc;
3443 	}
3444 
3445 	/*
3446 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3447 	 * sizes as it will not ref count pages.
3448 	 */
3449 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3450 
3451 	/*
3452 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3453 	 * Without the mutex, pages added to target hstate could be marked
3454 	 * as surplus.
3455 	 *
3456 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3457 	 * use the convention of always taking larger size hstate mutex first.
3458 	 */
3459 	mutex_lock(&target_hstate->resize_lock);
3460 	for (i = 0; i < pages_per_huge_page(h);
3461 				i += pages_per_huge_page(target_hstate)) {
3462 		subpage = nth_page(page, i);
3463 		if (hstate_is_gigantic(target_hstate))
3464 			prep_compound_gigantic_page_for_demote(subpage,
3465 							target_hstate->order);
3466 		else
3467 			prep_compound_page(subpage, target_hstate->order);
3468 		set_page_private(subpage, 0);
3469 		prep_new_huge_page(target_hstate, subpage, nid);
3470 		free_huge_page(subpage);
3471 	}
3472 	mutex_unlock(&target_hstate->resize_lock);
3473 
3474 	spin_lock_irq(&hugetlb_lock);
3475 
3476 	/*
3477 	 * Not absolutely necessary, but for consistency update max_huge_pages
3478 	 * based on pool changes for the demoted page.
3479 	 */
3480 	h->max_huge_pages--;
3481 	target_hstate->max_huge_pages +=
3482 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3483 
3484 	return rc;
3485 }
3486 
3487 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3488 	__must_hold(&hugetlb_lock)
3489 {
3490 	int nr_nodes, node;
3491 	struct page *page;
3492 
3493 	lockdep_assert_held(&hugetlb_lock);
3494 
3495 	/* We should never get here if no demote order */
3496 	if (!h->demote_order) {
3497 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3498 		return -EINVAL;		/* internal error */
3499 	}
3500 
3501 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3502 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3503 			if (PageHWPoison(page))
3504 				continue;
3505 
3506 			return demote_free_huge_page(h, page);
3507 		}
3508 	}
3509 
3510 	/*
3511 	 * Only way to get here is if all pages on free lists are poisoned.
3512 	 * Return -EBUSY so that caller will not retry.
3513 	 */
3514 	return -EBUSY;
3515 }
3516 
3517 #define HSTATE_ATTR_RO(_name) \
3518 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3519 
3520 #define HSTATE_ATTR_WO(_name) \
3521 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3522 
3523 #define HSTATE_ATTR(_name) \
3524 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3525 
3526 static struct kobject *hugepages_kobj;
3527 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3528 
3529 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3530 
3531 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3532 {
3533 	int i;
3534 
3535 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3536 		if (hstate_kobjs[i] == kobj) {
3537 			if (nidp)
3538 				*nidp = NUMA_NO_NODE;
3539 			return &hstates[i];
3540 		}
3541 
3542 	return kobj_to_node_hstate(kobj, nidp);
3543 }
3544 
3545 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3546 					struct kobj_attribute *attr, char *buf)
3547 {
3548 	struct hstate *h;
3549 	unsigned long nr_huge_pages;
3550 	int nid;
3551 
3552 	h = kobj_to_hstate(kobj, &nid);
3553 	if (nid == NUMA_NO_NODE)
3554 		nr_huge_pages = h->nr_huge_pages;
3555 	else
3556 		nr_huge_pages = h->nr_huge_pages_node[nid];
3557 
3558 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3559 }
3560 
3561 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3562 					   struct hstate *h, int nid,
3563 					   unsigned long count, size_t len)
3564 {
3565 	int err;
3566 	nodemask_t nodes_allowed, *n_mask;
3567 
3568 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3569 		return -EINVAL;
3570 
3571 	if (nid == NUMA_NO_NODE) {
3572 		/*
3573 		 * global hstate attribute
3574 		 */
3575 		if (!(obey_mempolicy &&
3576 				init_nodemask_of_mempolicy(&nodes_allowed)))
3577 			n_mask = &node_states[N_MEMORY];
3578 		else
3579 			n_mask = &nodes_allowed;
3580 	} else {
3581 		/*
3582 		 * Node specific request.  count adjustment happens in
3583 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3584 		 */
3585 		init_nodemask_of_node(&nodes_allowed, nid);
3586 		n_mask = &nodes_allowed;
3587 	}
3588 
3589 	err = set_max_huge_pages(h, count, nid, n_mask);
3590 
3591 	return err ? err : len;
3592 }
3593 
3594 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3595 					 struct kobject *kobj, const char *buf,
3596 					 size_t len)
3597 {
3598 	struct hstate *h;
3599 	unsigned long count;
3600 	int nid;
3601 	int err;
3602 
3603 	err = kstrtoul(buf, 10, &count);
3604 	if (err)
3605 		return err;
3606 
3607 	h = kobj_to_hstate(kobj, &nid);
3608 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3609 }
3610 
3611 static ssize_t nr_hugepages_show(struct kobject *kobj,
3612 				       struct kobj_attribute *attr, char *buf)
3613 {
3614 	return nr_hugepages_show_common(kobj, attr, buf);
3615 }
3616 
3617 static ssize_t nr_hugepages_store(struct kobject *kobj,
3618 	       struct kobj_attribute *attr, const char *buf, size_t len)
3619 {
3620 	return nr_hugepages_store_common(false, kobj, buf, len);
3621 }
3622 HSTATE_ATTR(nr_hugepages);
3623 
3624 #ifdef CONFIG_NUMA
3625 
3626 /*
3627  * hstate attribute for optionally mempolicy-based constraint on persistent
3628  * huge page alloc/free.
3629  */
3630 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3631 					   struct kobj_attribute *attr,
3632 					   char *buf)
3633 {
3634 	return nr_hugepages_show_common(kobj, attr, buf);
3635 }
3636 
3637 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3638 	       struct kobj_attribute *attr, const char *buf, size_t len)
3639 {
3640 	return nr_hugepages_store_common(true, kobj, buf, len);
3641 }
3642 HSTATE_ATTR(nr_hugepages_mempolicy);
3643 #endif
3644 
3645 
3646 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3647 					struct kobj_attribute *attr, char *buf)
3648 {
3649 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3650 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3651 }
3652 
3653 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3654 		struct kobj_attribute *attr, const char *buf, size_t count)
3655 {
3656 	int err;
3657 	unsigned long input;
3658 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3659 
3660 	if (hstate_is_gigantic(h))
3661 		return -EINVAL;
3662 
3663 	err = kstrtoul(buf, 10, &input);
3664 	if (err)
3665 		return err;
3666 
3667 	spin_lock_irq(&hugetlb_lock);
3668 	h->nr_overcommit_huge_pages = input;
3669 	spin_unlock_irq(&hugetlb_lock);
3670 
3671 	return count;
3672 }
3673 HSTATE_ATTR(nr_overcommit_hugepages);
3674 
3675 static ssize_t free_hugepages_show(struct kobject *kobj,
3676 					struct kobj_attribute *attr, char *buf)
3677 {
3678 	struct hstate *h;
3679 	unsigned long free_huge_pages;
3680 	int nid;
3681 
3682 	h = kobj_to_hstate(kobj, &nid);
3683 	if (nid == NUMA_NO_NODE)
3684 		free_huge_pages = h->free_huge_pages;
3685 	else
3686 		free_huge_pages = h->free_huge_pages_node[nid];
3687 
3688 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3689 }
3690 HSTATE_ATTR_RO(free_hugepages);
3691 
3692 static ssize_t resv_hugepages_show(struct kobject *kobj,
3693 					struct kobj_attribute *attr, char *buf)
3694 {
3695 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3696 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3697 }
3698 HSTATE_ATTR_RO(resv_hugepages);
3699 
3700 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3701 					struct kobj_attribute *attr, char *buf)
3702 {
3703 	struct hstate *h;
3704 	unsigned long surplus_huge_pages;
3705 	int nid;
3706 
3707 	h = kobj_to_hstate(kobj, &nid);
3708 	if (nid == NUMA_NO_NODE)
3709 		surplus_huge_pages = h->surplus_huge_pages;
3710 	else
3711 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3712 
3713 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3714 }
3715 HSTATE_ATTR_RO(surplus_hugepages);
3716 
3717 static ssize_t demote_store(struct kobject *kobj,
3718 	       struct kobj_attribute *attr, const char *buf, size_t len)
3719 {
3720 	unsigned long nr_demote;
3721 	unsigned long nr_available;
3722 	nodemask_t nodes_allowed, *n_mask;
3723 	struct hstate *h;
3724 	int err;
3725 	int nid;
3726 
3727 	err = kstrtoul(buf, 10, &nr_demote);
3728 	if (err)
3729 		return err;
3730 	h = kobj_to_hstate(kobj, &nid);
3731 
3732 	if (nid != NUMA_NO_NODE) {
3733 		init_nodemask_of_node(&nodes_allowed, nid);
3734 		n_mask = &nodes_allowed;
3735 	} else {
3736 		n_mask = &node_states[N_MEMORY];
3737 	}
3738 
3739 	/* Synchronize with other sysfs operations modifying huge pages */
3740 	mutex_lock(&h->resize_lock);
3741 	spin_lock_irq(&hugetlb_lock);
3742 
3743 	while (nr_demote) {
3744 		/*
3745 		 * Check for available pages to demote each time thorough the
3746 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3747 		 */
3748 		if (nid != NUMA_NO_NODE)
3749 			nr_available = h->free_huge_pages_node[nid];
3750 		else
3751 			nr_available = h->free_huge_pages;
3752 		nr_available -= h->resv_huge_pages;
3753 		if (!nr_available)
3754 			break;
3755 
3756 		err = demote_pool_huge_page(h, n_mask);
3757 		if (err)
3758 			break;
3759 
3760 		nr_demote--;
3761 	}
3762 
3763 	spin_unlock_irq(&hugetlb_lock);
3764 	mutex_unlock(&h->resize_lock);
3765 
3766 	if (err)
3767 		return err;
3768 	return len;
3769 }
3770 HSTATE_ATTR_WO(demote);
3771 
3772 static ssize_t demote_size_show(struct kobject *kobj,
3773 					struct kobj_attribute *attr, char *buf)
3774 {
3775 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3776 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3777 
3778 	return sysfs_emit(buf, "%lukB\n", demote_size);
3779 }
3780 
3781 static ssize_t demote_size_store(struct kobject *kobj,
3782 					struct kobj_attribute *attr,
3783 					const char *buf, size_t count)
3784 {
3785 	struct hstate *h, *demote_hstate;
3786 	unsigned long demote_size;
3787 	unsigned int demote_order;
3788 
3789 	demote_size = (unsigned long)memparse(buf, NULL);
3790 
3791 	demote_hstate = size_to_hstate(demote_size);
3792 	if (!demote_hstate)
3793 		return -EINVAL;
3794 	demote_order = demote_hstate->order;
3795 	if (demote_order < HUGETLB_PAGE_ORDER)
3796 		return -EINVAL;
3797 
3798 	/* demote order must be smaller than hstate order */
3799 	h = kobj_to_hstate(kobj, NULL);
3800 	if (demote_order >= h->order)
3801 		return -EINVAL;
3802 
3803 	/* resize_lock synchronizes access to demote size and writes */
3804 	mutex_lock(&h->resize_lock);
3805 	h->demote_order = demote_order;
3806 	mutex_unlock(&h->resize_lock);
3807 
3808 	return count;
3809 }
3810 HSTATE_ATTR(demote_size);
3811 
3812 static struct attribute *hstate_attrs[] = {
3813 	&nr_hugepages_attr.attr,
3814 	&nr_overcommit_hugepages_attr.attr,
3815 	&free_hugepages_attr.attr,
3816 	&resv_hugepages_attr.attr,
3817 	&surplus_hugepages_attr.attr,
3818 #ifdef CONFIG_NUMA
3819 	&nr_hugepages_mempolicy_attr.attr,
3820 #endif
3821 	NULL,
3822 };
3823 
3824 static const struct attribute_group hstate_attr_group = {
3825 	.attrs = hstate_attrs,
3826 };
3827 
3828 static struct attribute *hstate_demote_attrs[] = {
3829 	&demote_size_attr.attr,
3830 	&demote_attr.attr,
3831 	NULL,
3832 };
3833 
3834 static const struct attribute_group hstate_demote_attr_group = {
3835 	.attrs = hstate_demote_attrs,
3836 };
3837 
3838 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3839 				    struct kobject **hstate_kobjs,
3840 				    const struct attribute_group *hstate_attr_group)
3841 {
3842 	int retval;
3843 	int hi = hstate_index(h);
3844 
3845 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3846 	if (!hstate_kobjs[hi])
3847 		return -ENOMEM;
3848 
3849 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3850 	if (retval) {
3851 		kobject_put(hstate_kobjs[hi]);
3852 		hstate_kobjs[hi] = NULL;
3853 		return retval;
3854 	}
3855 
3856 	if (h->demote_order) {
3857 		retval = sysfs_create_group(hstate_kobjs[hi],
3858 					    &hstate_demote_attr_group);
3859 		if (retval) {
3860 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3861 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3862 			kobject_put(hstate_kobjs[hi]);
3863 			hstate_kobjs[hi] = NULL;
3864 			return retval;
3865 		}
3866 	}
3867 
3868 	return 0;
3869 }
3870 
3871 #ifdef CONFIG_NUMA
3872 static bool hugetlb_sysfs_initialized __ro_after_init;
3873 
3874 /*
3875  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3876  * with node devices in node_devices[] using a parallel array.  The array
3877  * index of a node device or _hstate == node id.
3878  * This is here to avoid any static dependency of the node device driver, in
3879  * the base kernel, on the hugetlb module.
3880  */
3881 struct node_hstate {
3882 	struct kobject		*hugepages_kobj;
3883 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3884 };
3885 static struct node_hstate node_hstates[MAX_NUMNODES];
3886 
3887 /*
3888  * A subset of global hstate attributes for node devices
3889  */
3890 static struct attribute *per_node_hstate_attrs[] = {
3891 	&nr_hugepages_attr.attr,
3892 	&free_hugepages_attr.attr,
3893 	&surplus_hugepages_attr.attr,
3894 	NULL,
3895 };
3896 
3897 static const struct attribute_group per_node_hstate_attr_group = {
3898 	.attrs = per_node_hstate_attrs,
3899 };
3900 
3901 /*
3902  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3903  * Returns node id via non-NULL nidp.
3904  */
3905 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3906 {
3907 	int nid;
3908 
3909 	for (nid = 0; nid < nr_node_ids; nid++) {
3910 		struct node_hstate *nhs = &node_hstates[nid];
3911 		int i;
3912 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3913 			if (nhs->hstate_kobjs[i] == kobj) {
3914 				if (nidp)
3915 					*nidp = nid;
3916 				return &hstates[i];
3917 			}
3918 	}
3919 
3920 	BUG();
3921 	return NULL;
3922 }
3923 
3924 /*
3925  * Unregister hstate attributes from a single node device.
3926  * No-op if no hstate attributes attached.
3927  */
3928 void hugetlb_unregister_node(struct node *node)
3929 {
3930 	struct hstate *h;
3931 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3932 
3933 	if (!nhs->hugepages_kobj)
3934 		return;		/* no hstate attributes */
3935 
3936 	for_each_hstate(h) {
3937 		int idx = hstate_index(h);
3938 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3939 
3940 		if (!hstate_kobj)
3941 			continue;
3942 		if (h->demote_order)
3943 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3944 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3945 		kobject_put(hstate_kobj);
3946 		nhs->hstate_kobjs[idx] = NULL;
3947 	}
3948 
3949 	kobject_put(nhs->hugepages_kobj);
3950 	nhs->hugepages_kobj = NULL;
3951 }
3952 
3953 
3954 /*
3955  * Register hstate attributes for a single node device.
3956  * No-op if attributes already registered.
3957  */
3958 void hugetlb_register_node(struct node *node)
3959 {
3960 	struct hstate *h;
3961 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3962 	int err;
3963 
3964 	if (!hugetlb_sysfs_initialized)
3965 		return;
3966 
3967 	if (nhs->hugepages_kobj)
3968 		return;		/* already allocated */
3969 
3970 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3971 							&node->dev.kobj);
3972 	if (!nhs->hugepages_kobj)
3973 		return;
3974 
3975 	for_each_hstate(h) {
3976 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3977 						nhs->hstate_kobjs,
3978 						&per_node_hstate_attr_group);
3979 		if (err) {
3980 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3981 				h->name, node->dev.id);
3982 			hugetlb_unregister_node(node);
3983 			break;
3984 		}
3985 	}
3986 }
3987 
3988 /*
3989  * hugetlb init time:  register hstate attributes for all registered node
3990  * devices of nodes that have memory.  All on-line nodes should have
3991  * registered their associated device by this time.
3992  */
3993 static void __init hugetlb_register_all_nodes(void)
3994 {
3995 	int nid;
3996 
3997 	for_each_online_node(nid)
3998 		hugetlb_register_node(node_devices[nid]);
3999 }
4000 #else	/* !CONFIG_NUMA */
4001 
4002 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4003 {
4004 	BUG();
4005 	if (nidp)
4006 		*nidp = -1;
4007 	return NULL;
4008 }
4009 
4010 static void hugetlb_register_all_nodes(void) { }
4011 
4012 #endif
4013 
4014 #ifdef CONFIG_CMA
4015 static void __init hugetlb_cma_check(void);
4016 #else
4017 static inline __init void hugetlb_cma_check(void)
4018 {
4019 }
4020 #endif
4021 
4022 static void __init hugetlb_sysfs_init(void)
4023 {
4024 	struct hstate *h;
4025 	int err;
4026 
4027 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4028 	if (!hugepages_kobj)
4029 		return;
4030 
4031 	for_each_hstate(h) {
4032 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4033 					 hstate_kobjs, &hstate_attr_group);
4034 		if (err)
4035 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4036 	}
4037 
4038 #ifdef CONFIG_NUMA
4039 	hugetlb_sysfs_initialized = true;
4040 #endif
4041 	hugetlb_register_all_nodes();
4042 }
4043 
4044 static int __init hugetlb_init(void)
4045 {
4046 	int i;
4047 
4048 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4049 			__NR_HPAGEFLAGS);
4050 
4051 	if (!hugepages_supported()) {
4052 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4053 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4054 		return 0;
4055 	}
4056 
4057 	/*
4058 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4059 	 * architectures depend on setup being done here.
4060 	 */
4061 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4062 	if (!parsed_default_hugepagesz) {
4063 		/*
4064 		 * If we did not parse a default huge page size, set
4065 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4066 		 * number of huge pages for this default size was implicitly
4067 		 * specified, set that here as well.
4068 		 * Note that the implicit setting will overwrite an explicit
4069 		 * setting.  A warning will be printed in this case.
4070 		 */
4071 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4072 		if (default_hstate_max_huge_pages) {
4073 			if (default_hstate.max_huge_pages) {
4074 				char buf[32];
4075 
4076 				string_get_size(huge_page_size(&default_hstate),
4077 					1, STRING_UNITS_2, buf, 32);
4078 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4079 					default_hstate.max_huge_pages, buf);
4080 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4081 					default_hstate_max_huge_pages);
4082 			}
4083 			default_hstate.max_huge_pages =
4084 				default_hstate_max_huge_pages;
4085 
4086 			for_each_online_node(i)
4087 				default_hstate.max_huge_pages_node[i] =
4088 					default_hugepages_in_node[i];
4089 		}
4090 	}
4091 
4092 	hugetlb_cma_check();
4093 	hugetlb_init_hstates();
4094 	gather_bootmem_prealloc();
4095 	report_hugepages();
4096 
4097 	hugetlb_sysfs_init();
4098 	hugetlb_cgroup_file_init();
4099 
4100 #ifdef CONFIG_SMP
4101 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4102 #else
4103 	num_fault_mutexes = 1;
4104 #endif
4105 	hugetlb_fault_mutex_table =
4106 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4107 			      GFP_KERNEL);
4108 	BUG_ON(!hugetlb_fault_mutex_table);
4109 
4110 	for (i = 0; i < num_fault_mutexes; i++)
4111 		mutex_init(&hugetlb_fault_mutex_table[i]);
4112 	return 0;
4113 }
4114 subsys_initcall(hugetlb_init);
4115 
4116 /* Overwritten by architectures with more huge page sizes */
4117 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4118 {
4119 	return size == HPAGE_SIZE;
4120 }
4121 
4122 void __init hugetlb_add_hstate(unsigned int order)
4123 {
4124 	struct hstate *h;
4125 	unsigned long i;
4126 
4127 	if (size_to_hstate(PAGE_SIZE << order)) {
4128 		return;
4129 	}
4130 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4131 	BUG_ON(order == 0);
4132 	h = &hstates[hugetlb_max_hstate++];
4133 	mutex_init(&h->resize_lock);
4134 	h->order = order;
4135 	h->mask = ~(huge_page_size(h) - 1);
4136 	for (i = 0; i < MAX_NUMNODES; ++i)
4137 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4138 	INIT_LIST_HEAD(&h->hugepage_activelist);
4139 	h->next_nid_to_alloc = first_memory_node;
4140 	h->next_nid_to_free = first_memory_node;
4141 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4142 					huge_page_size(h)/SZ_1K);
4143 
4144 	parsed_hstate = h;
4145 }
4146 
4147 bool __init __weak hugetlb_node_alloc_supported(void)
4148 {
4149 	return true;
4150 }
4151 
4152 static void __init hugepages_clear_pages_in_node(void)
4153 {
4154 	if (!hugetlb_max_hstate) {
4155 		default_hstate_max_huge_pages = 0;
4156 		memset(default_hugepages_in_node, 0,
4157 			sizeof(default_hugepages_in_node));
4158 	} else {
4159 		parsed_hstate->max_huge_pages = 0;
4160 		memset(parsed_hstate->max_huge_pages_node, 0,
4161 			sizeof(parsed_hstate->max_huge_pages_node));
4162 	}
4163 }
4164 
4165 /*
4166  * hugepages command line processing
4167  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4168  * specification.  If not, ignore the hugepages value.  hugepages can also
4169  * be the first huge page command line  option in which case it implicitly
4170  * specifies the number of huge pages for the default size.
4171  */
4172 static int __init hugepages_setup(char *s)
4173 {
4174 	unsigned long *mhp;
4175 	static unsigned long *last_mhp;
4176 	int node = NUMA_NO_NODE;
4177 	int count;
4178 	unsigned long tmp;
4179 	char *p = s;
4180 
4181 	if (!parsed_valid_hugepagesz) {
4182 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4183 		parsed_valid_hugepagesz = true;
4184 		return 1;
4185 	}
4186 
4187 	/*
4188 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4189 	 * yet, so this hugepages= parameter goes to the "default hstate".
4190 	 * Otherwise, it goes with the previously parsed hugepagesz or
4191 	 * default_hugepagesz.
4192 	 */
4193 	else if (!hugetlb_max_hstate)
4194 		mhp = &default_hstate_max_huge_pages;
4195 	else
4196 		mhp = &parsed_hstate->max_huge_pages;
4197 
4198 	if (mhp == last_mhp) {
4199 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4200 		return 1;
4201 	}
4202 
4203 	while (*p) {
4204 		count = 0;
4205 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4206 			goto invalid;
4207 		/* Parameter is node format */
4208 		if (p[count] == ':') {
4209 			if (!hugetlb_node_alloc_supported()) {
4210 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4211 				return 1;
4212 			}
4213 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4214 				goto invalid;
4215 			node = array_index_nospec(tmp, MAX_NUMNODES);
4216 			p += count + 1;
4217 			/* Parse hugepages */
4218 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4219 				goto invalid;
4220 			if (!hugetlb_max_hstate)
4221 				default_hugepages_in_node[node] = tmp;
4222 			else
4223 				parsed_hstate->max_huge_pages_node[node] = tmp;
4224 			*mhp += tmp;
4225 			/* Go to parse next node*/
4226 			if (p[count] == ',')
4227 				p += count + 1;
4228 			else
4229 				break;
4230 		} else {
4231 			if (p != s)
4232 				goto invalid;
4233 			*mhp = tmp;
4234 			break;
4235 		}
4236 	}
4237 
4238 	/*
4239 	 * Global state is always initialized later in hugetlb_init.
4240 	 * But we need to allocate gigantic hstates here early to still
4241 	 * use the bootmem allocator.
4242 	 */
4243 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4244 		hugetlb_hstate_alloc_pages(parsed_hstate);
4245 
4246 	last_mhp = mhp;
4247 
4248 	return 1;
4249 
4250 invalid:
4251 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4252 	hugepages_clear_pages_in_node();
4253 	return 1;
4254 }
4255 __setup("hugepages=", hugepages_setup);
4256 
4257 /*
4258  * hugepagesz command line processing
4259  * A specific huge page size can only be specified once with hugepagesz.
4260  * hugepagesz is followed by hugepages on the command line.  The global
4261  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4262  * hugepagesz argument was valid.
4263  */
4264 static int __init hugepagesz_setup(char *s)
4265 {
4266 	unsigned long size;
4267 	struct hstate *h;
4268 
4269 	parsed_valid_hugepagesz = false;
4270 	size = (unsigned long)memparse(s, NULL);
4271 
4272 	if (!arch_hugetlb_valid_size(size)) {
4273 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4274 		return 1;
4275 	}
4276 
4277 	h = size_to_hstate(size);
4278 	if (h) {
4279 		/*
4280 		 * hstate for this size already exists.  This is normally
4281 		 * an error, but is allowed if the existing hstate is the
4282 		 * default hstate.  More specifically, it is only allowed if
4283 		 * the number of huge pages for the default hstate was not
4284 		 * previously specified.
4285 		 */
4286 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4287 		    default_hstate.max_huge_pages) {
4288 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4289 			return 1;
4290 		}
4291 
4292 		/*
4293 		 * No need to call hugetlb_add_hstate() as hstate already
4294 		 * exists.  But, do set parsed_hstate so that a following
4295 		 * hugepages= parameter will be applied to this hstate.
4296 		 */
4297 		parsed_hstate = h;
4298 		parsed_valid_hugepagesz = true;
4299 		return 1;
4300 	}
4301 
4302 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4303 	parsed_valid_hugepagesz = true;
4304 	return 1;
4305 }
4306 __setup("hugepagesz=", hugepagesz_setup);
4307 
4308 /*
4309  * default_hugepagesz command line input
4310  * Only one instance of default_hugepagesz allowed on command line.
4311  */
4312 static int __init default_hugepagesz_setup(char *s)
4313 {
4314 	unsigned long size;
4315 	int i;
4316 
4317 	parsed_valid_hugepagesz = false;
4318 	if (parsed_default_hugepagesz) {
4319 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4320 		return 1;
4321 	}
4322 
4323 	size = (unsigned long)memparse(s, NULL);
4324 
4325 	if (!arch_hugetlb_valid_size(size)) {
4326 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4327 		return 1;
4328 	}
4329 
4330 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4331 	parsed_valid_hugepagesz = true;
4332 	parsed_default_hugepagesz = true;
4333 	default_hstate_idx = hstate_index(size_to_hstate(size));
4334 
4335 	/*
4336 	 * The number of default huge pages (for this size) could have been
4337 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4338 	 * then default_hstate_max_huge_pages is set.  If the default huge
4339 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4340 	 * allocated here from bootmem allocator.
4341 	 */
4342 	if (default_hstate_max_huge_pages) {
4343 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4344 		for_each_online_node(i)
4345 			default_hstate.max_huge_pages_node[i] =
4346 				default_hugepages_in_node[i];
4347 		if (hstate_is_gigantic(&default_hstate))
4348 			hugetlb_hstate_alloc_pages(&default_hstate);
4349 		default_hstate_max_huge_pages = 0;
4350 	}
4351 
4352 	return 1;
4353 }
4354 __setup("default_hugepagesz=", default_hugepagesz_setup);
4355 
4356 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4357 {
4358 #ifdef CONFIG_NUMA
4359 	struct mempolicy *mpol = get_task_policy(current);
4360 
4361 	/*
4362 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4363 	 * (from policy_nodemask) specifically for hugetlb case
4364 	 */
4365 	if (mpol->mode == MPOL_BIND &&
4366 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4367 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4368 		return &mpol->nodes;
4369 #endif
4370 	return NULL;
4371 }
4372 
4373 static unsigned int allowed_mems_nr(struct hstate *h)
4374 {
4375 	int node;
4376 	unsigned int nr = 0;
4377 	nodemask_t *mbind_nodemask;
4378 	unsigned int *array = h->free_huge_pages_node;
4379 	gfp_t gfp_mask = htlb_alloc_mask(h);
4380 
4381 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4382 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4383 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4384 			nr += array[node];
4385 	}
4386 
4387 	return nr;
4388 }
4389 
4390 #ifdef CONFIG_SYSCTL
4391 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4392 					  void *buffer, size_t *length,
4393 					  loff_t *ppos, unsigned long *out)
4394 {
4395 	struct ctl_table dup_table;
4396 
4397 	/*
4398 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4399 	 * can duplicate the @table and alter the duplicate of it.
4400 	 */
4401 	dup_table = *table;
4402 	dup_table.data = out;
4403 
4404 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4405 }
4406 
4407 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4408 			 struct ctl_table *table, int write,
4409 			 void *buffer, size_t *length, loff_t *ppos)
4410 {
4411 	struct hstate *h = &default_hstate;
4412 	unsigned long tmp = h->max_huge_pages;
4413 	int ret;
4414 
4415 	if (!hugepages_supported())
4416 		return -EOPNOTSUPP;
4417 
4418 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4419 					     &tmp);
4420 	if (ret)
4421 		goto out;
4422 
4423 	if (write)
4424 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4425 						  NUMA_NO_NODE, tmp, *length);
4426 out:
4427 	return ret;
4428 }
4429 
4430 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4431 			  void *buffer, size_t *length, loff_t *ppos)
4432 {
4433 
4434 	return hugetlb_sysctl_handler_common(false, table, write,
4435 							buffer, length, ppos);
4436 }
4437 
4438 #ifdef CONFIG_NUMA
4439 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4440 			  void *buffer, size_t *length, loff_t *ppos)
4441 {
4442 	return hugetlb_sysctl_handler_common(true, table, write,
4443 							buffer, length, ppos);
4444 }
4445 #endif /* CONFIG_NUMA */
4446 
4447 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4448 		void *buffer, size_t *length, loff_t *ppos)
4449 {
4450 	struct hstate *h = &default_hstate;
4451 	unsigned long tmp;
4452 	int ret;
4453 
4454 	if (!hugepages_supported())
4455 		return -EOPNOTSUPP;
4456 
4457 	tmp = h->nr_overcommit_huge_pages;
4458 
4459 	if (write && hstate_is_gigantic(h))
4460 		return -EINVAL;
4461 
4462 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4463 					     &tmp);
4464 	if (ret)
4465 		goto out;
4466 
4467 	if (write) {
4468 		spin_lock_irq(&hugetlb_lock);
4469 		h->nr_overcommit_huge_pages = tmp;
4470 		spin_unlock_irq(&hugetlb_lock);
4471 	}
4472 out:
4473 	return ret;
4474 }
4475 
4476 #endif /* CONFIG_SYSCTL */
4477 
4478 void hugetlb_report_meminfo(struct seq_file *m)
4479 {
4480 	struct hstate *h;
4481 	unsigned long total = 0;
4482 
4483 	if (!hugepages_supported())
4484 		return;
4485 
4486 	for_each_hstate(h) {
4487 		unsigned long count = h->nr_huge_pages;
4488 
4489 		total += huge_page_size(h) * count;
4490 
4491 		if (h == &default_hstate)
4492 			seq_printf(m,
4493 				   "HugePages_Total:   %5lu\n"
4494 				   "HugePages_Free:    %5lu\n"
4495 				   "HugePages_Rsvd:    %5lu\n"
4496 				   "HugePages_Surp:    %5lu\n"
4497 				   "Hugepagesize:   %8lu kB\n",
4498 				   count,
4499 				   h->free_huge_pages,
4500 				   h->resv_huge_pages,
4501 				   h->surplus_huge_pages,
4502 				   huge_page_size(h) / SZ_1K);
4503 	}
4504 
4505 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4506 }
4507 
4508 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4509 {
4510 	struct hstate *h = &default_hstate;
4511 
4512 	if (!hugepages_supported())
4513 		return 0;
4514 
4515 	return sysfs_emit_at(buf, len,
4516 			     "Node %d HugePages_Total: %5u\n"
4517 			     "Node %d HugePages_Free:  %5u\n"
4518 			     "Node %d HugePages_Surp:  %5u\n",
4519 			     nid, h->nr_huge_pages_node[nid],
4520 			     nid, h->free_huge_pages_node[nid],
4521 			     nid, h->surplus_huge_pages_node[nid]);
4522 }
4523 
4524 void hugetlb_show_meminfo_node(int nid)
4525 {
4526 	struct hstate *h;
4527 
4528 	if (!hugepages_supported())
4529 		return;
4530 
4531 	for_each_hstate(h)
4532 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4533 			nid,
4534 			h->nr_huge_pages_node[nid],
4535 			h->free_huge_pages_node[nid],
4536 			h->surplus_huge_pages_node[nid],
4537 			huge_page_size(h) / SZ_1K);
4538 }
4539 
4540 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4541 {
4542 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4543 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4544 }
4545 
4546 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4547 unsigned long hugetlb_total_pages(void)
4548 {
4549 	struct hstate *h;
4550 	unsigned long nr_total_pages = 0;
4551 
4552 	for_each_hstate(h)
4553 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4554 	return nr_total_pages;
4555 }
4556 
4557 static int hugetlb_acct_memory(struct hstate *h, long delta)
4558 {
4559 	int ret = -ENOMEM;
4560 
4561 	if (!delta)
4562 		return 0;
4563 
4564 	spin_lock_irq(&hugetlb_lock);
4565 	/*
4566 	 * When cpuset is configured, it breaks the strict hugetlb page
4567 	 * reservation as the accounting is done on a global variable. Such
4568 	 * reservation is completely rubbish in the presence of cpuset because
4569 	 * the reservation is not checked against page availability for the
4570 	 * current cpuset. Application can still potentially OOM'ed by kernel
4571 	 * with lack of free htlb page in cpuset that the task is in.
4572 	 * Attempt to enforce strict accounting with cpuset is almost
4573 	 * impossible (or too ugly) because cpuset is too fluid that
4574 	 * task or memory node can be dynamically moved between cpusets.
4575 	 *
4576 	 * The change of semantics for shared hugetlb mapping with cpuset is
4577 	 * undesirable. However, in order to preserve some of the semantics,
4578 	 * we fall back to check against current free page availability as
4579 	 * a best attempt and hopefully to minimize the impact of changing
4580 	 * semantics that cpuset has.
4581 	 *
4582 	 * Apart from cpuset, we also have memory policy mechanism that
4583 	 * also determines from which node the kernel will allocate memory
4584 	 * in a NUMA system. So similar to cpuset, we also should consider
4585 	 * the memory policy of the current task. Similar to the description
4586 	 * above.
4587 	 */
4588 	if (delta > 0) {
4589 		if (gather_surplus_pages(h, delta) < 0)
4590 			goto out;
4591 
4592 		if (delta > allowed_mems_nr(h)) {
4593 			return_unused_surplus_pages(h, delta);
4594 			goto out;
4595 		}
4596 	}
4597 
4598 	ret = 0;
4599 	if (delta < 0)
4600 		return_unused_surplus_pages(h, (unsigned long) -delta);
4601 
4602 out:
4603 	spin_unlock_irq(&hugetlb_lock);
4604 	return ret;
4605 }
4606 
4607 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4608 {
4609 	struct resv_map *resv = vma_resv_map(vma);
4610 
4611 	/*
4612 	 * HPAGE_RESV_OWNER indicates a private mapping.
4613 	 * This new VMA should share its siblings reservation map if present.
4614 	 * The VMA will only ever have a valid reservation map pointer where
4615 	 * it is being copied for another still existing VMA.  As that VMA
4616 	 * has a reference to the reservation map it cannot disappear until
4617 	 * after this open call completes.  It is therefore safe to take a
4618 	 * new reference here without additional locking.
4619 	 */
4620 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4621 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4622 		kref_get(&resv->refs);
4623 	}
4624 
4625 	/*
4626 	 * vma_lock structure for sharable mappings is vma specific.
4627 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4628 	 * new structure.  Before clearing, make sure vma_lock is not
4629 	 * for this vma.
4630 	 */
4631 	if (vma->vm_flags & VM_MAYSHARE) {
4632 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4633 
4634 		if (vma_lock) {
4635 			if (vma_lock->vma != vma) {
4636 				vma->vm_private_data = NULL;
4637 				hugetlb_vma_lock_alloc(vma);
4638 			} else
4639 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4640 		} else
4641 			hugetlb_vma_lock_alloc(vma);
4642 	}
4643 }
4644 
4645 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4646 {
4647 	struct hstate *h = hstate_vma(vma);
4648 	struct resv_map *resv;
4649 	struct hugepage_subpool *spool = subpool_vma(vma);
4650 	unsigned long reserve, start, end;
4651 	long gbl_reserve;
4652 
4653 	hugetlb_vma_lock_free(vma);
4654 
4655 	resv = vma_resv_map(vma);
4656 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4657 		return;
4658 
4659 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4660 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4661 
4662 	reserve = (end - start) - region_count(resv, start, end);
4663 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4664 	if (reserve) {
4665 		/*
4666 		 * Decrement reserve counts.  The global reserve count may be
4667 		 * adjusted if the subpool has a minimum size.
4668 		 */
4669 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4670 		hugetlb_acct_memory(h, -gbl_reserve);
4671 	}
4672 
4673 	kref_put(&resv->refs, resv_map_release);
4674 }
4675 
4676 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4677 {
4678 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4679 		return -EINVAL;
4680 	return 0;
4681 }
4682 
4683 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4684 {
4685 	return huge_page_size(hstate_vma(vma));
4686 }
4687 
4688 /*
4689  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4690  * handle_mm_fault() to try to instantiate regular-sized pages in the
4691  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4692  * this far.
4693  */
4694 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4695 {
4696 	BUG();
4697 	return 0;
4698 }
4699 
4700 /*
4701  * When a new function is introduced to vm_operations_struct and added
4702  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4703  * This is because under System V memory model, mappings created via
4704  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4705  * their original vm_ops are overwritten with shm_vm_ops.
4706  */
4707 const struct vm_operations_struct hugetlb_vm_ops = {
4708 	.fault = hugetlb_vm_op_fault,
4709 	.open = hugetlb_vm_op_open,
4710 	.close = hugetlb_vm_op_close,
4711 	.may_split = hugetlb_vm_op_split,
4712 	.pagesize = hugetlb_vm_op_pagesize,
4713 };
4714 
4715 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4716 				int writable)
4717 {
4718 	pte_t entry;
4719 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4720 
4721 	if (writable) {
4722 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4723 					 vma->vm_page_prot)));
4724 	} else {
4725 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4726 					   vma->vm_page_prot));
4727 	}
4728 	entry = pte_mkyoung(entry);
4729 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4730 
4731 	return entry;
4732 }
4733 
4734 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4735 				   unsigned long address, pte_t *ptep)
4736 {
4737 	pte_t entry;
4738 
4739 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4740 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4741 		update_mmu_cache(vma, address, ptep);
4742 }
4743 
4744 bool is_hugetlb_entry_migration(pte_t pte)
4745 {
4746 	swp_entry_t swp;
4747 
4748 	if (huge_pte_none(pte) || pte_present(pte))
4749 		return false;
4750 	swp = pte_to_swp_entry(pte);
4751 	if (is_migration_entry(swp))
4752 		return true;
4753 	else
4754 		return false;
4755 }
4756 
4757 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4758 {
4759 	swp_entry_t swp;
4760 
4761 	if (huge_pte_none(pte) || pte_present(pte))
4762 		return false;
4763 	swp = pte_to_swp_entry(pte);
4764 	if (is_hwpoison_entry(swp))
4765 		return true;
4766 	else
4767 		return false;
4768 }
4769 
4770 static void
4771 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4772 		     struct page *new_page)
4773 {
4774 	__SetPageUptodate(new_page);
4775 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4776 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4777 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4778 	ClearHPageRestoreReserve(new_page);
4779 	SetHPageMigratable(new_page);
4780 }
4781 
4782 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4783 			    struct vm_area_struct *dst_vma,
4784 			    struct vm_area_struct *src_vma)
4785 {
4786 	pte_t *src_pte, *dst_pte, entry;
4787 	struct page *ptepage;
4788 	unsigned long addr;
4789 	bool cow = is_cow_mapping(src_vma->vm_flags);
4790 	struct hstate *h = hstate_vma(src_vma);
4791 	unsigned long sz = huge_page_size(h);
4792 	unsigned long npages = pages_per_huge_page(h);
4793 	struct mmu_notifier_range range;
4794 	unsigned long last_addr_mask;
4795 	int ret = 0;
4796 
4797 	if (cow) {
4798 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4799 					src_vma->vm_start,
4800 					src_vma->vm_end);
4801 		mmu_notifier_invalidate_range_start(&range);
4802 		mmap_assert_write_locked(src);
4803 		raw_write_seqcount_begin(&src->write_protect_seq);
4804 	} else {
4805 		/*
4806 		 * For shared mappings the vma lock must be held before
4807 		 * calling huge_pte_offset in the src vma. Otherwise, the
4808 		 * returned ptep could go away if part of a shared pmd and
4809 		 * another thread calls huge_pmd_unshare.
4810 		 */
4811 		hugetlb_vma_lock_read(src_vma);
4812 	}
4813 
4814 	last_addr_mask = hugetlb_mask_last_page(h);
4815 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4816 		spinlock_t *src_ptl, *dst_ptl;
4817 		src_pte = huge_pte_offset(src, addr, sz);
4818 		if (!src_pte) {
4819 			addr |= last_addr_mask;
4820 			continue;
4821 		}
4822 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4823 		if (!dst_pte) {
4824 			ret = -ENOMEM;
4825 			break;
4826 		}
4827 
4828 		/*
4829 		 * If the pagetables are shared don't copy or take references.
4830 		 *
4831 		 * dst_pte == src_pte is the common case of src/dest sharing.
4832 		 * However, src could have 'unshared' and dst shares with
4833 		 * another vma. So page_count of ptep page is checked instead
4834 		 * to reliably determine whether pte is shared.
4835 		 */
4836 		if (page_count(virt_to_page(dst_pte)) > 1) {
4837 			addr |= last_addr_mask;
4838 			continue;
4839 		}
4840 
4841 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4842 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4843 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4844 		entry = huge_ptep_get(src_pte);
4845 again:
4846 		if (huge_pte_none(entry)) {
4847 			/*
4848 			 * Skip if src entry none.
4849 			 */
4850 			;
4851 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4852 			bool uffd_wp = huge_pte_uffd_wp(entry);
4853 
4854 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4855 				entry = huge_pte_clear_uffd_wp(entry);
4856 			set_huge_pte_at(dst, addr, dst_pte, entry);
4857 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4858 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4859 			bool uffd_wp = huge_pte_uffd_wp(entry);
4860 
4861 			if (!is_readable_migration_entry(swp_entry) && cow) {
4862 				/*
4863 				 * COW mappings require pages in both
4864 				 * parent and child to be set to read.
4865 				 */
4866 				swp_entry = make_readable_migration_entry(
4867 							swp_offset(swp_entry));
4868 				entry = swp_entry_to_pte(swp_entry);
4869 				if (userfaultfd_wp(src_vma) && uffd_wp)
4870 					entry = huge_pte_mkuffd_wp(entry);
4871 				set_huge_pte_at(src, addr, src_pte, entry);
4872 			}
4873 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4874 				entry = huge_pte_clear_uffd_wp(entry);
4875 			set_huge_pte_at(dst, addr, dst_pte, entry);
4876 		} else if (unlikely(is_pte_marker(entry))) {
4877 			/*
4878 			 * We copy the pte marker only if the dst vma has
4879 			 * uffd-wp enabled.
4880 			 */
4881 			if (userfaultfd_wp(dst_vma))
4882 				set_huge_pte_at(dst, addr, dst_pte, entry);
4883 		} else {
4884 			entry = huge_ptep_get(src_pte);
4885 			ptepage = pte_page(entry);
4886 			get_page(ptepage);
4887 
4888 			/*
4889 			 * Failing to duplicate the anon rmap is a rare case
4890 			 * where we see pinned hugetlb pages while they're
4891 			 * prone to COW. We need to do the COW earlier during
4892 			 * fork.
4893 			 *
4894 			 * When pre-allocating the page or copying data, we
4895 			 * need to be without the pgtable locks since we could
4896 			 * sleep during the process.
4897 			 */
4898 			if (!PageAnon(ptepage)) {
4899 				page_dup_file_rmap(ptepage, true);
4900 			} else if (page_try_dup_anon_rmap(ptepage, true,
4901 							  src_vma)) {
4902 				pte_t src_pte_old = entry;
4903 				struct page *new;
4904 
4905 				spin_unlock(src_ptl);
4906 				spin_unlock(dst_ptl);
4907 				/* Do not use reserve as it's private owned */
4908 				new = alloc_huge_page(dst_vma, addr, 1);
4909 				if (IS_ERR(new)) {
4910 					put_page(ptepage);
4911 					ret = PTR_ERR(new);
4912 					break;
4913 				}
4914 				copy_user_huge_page(new, ptepage, addr, dst_vma,
4915 						    npages);
4916 				put_page(ptepage);
4917 
4918 				/* Install the new huge page if src pte stable */
4919 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4920 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4921 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4922 				entry = huge_ptep_get(src_pte);
4923 				if (!pte_same(src_pte_old, entry)) {
4924 					restore_reserve_on_error(h, dst_vma, addr,
4925 								new);
4926 					put_page(new);
4927 					/* huge_ptep of dst_pte won't change as in child */
4928 					goto again;
4929 				}
4930 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4931 				spin_unlock(src_ptl);
4932 				spin_unlock(dst_ptl);
4933 				continue;
4934 			}
4935 
4936 			if (cow) {
4937 				/*
4938 				 * No need to notify as we are downgrading page
4939 				 * table protection not changing it to point
4940 				 * to a new page.
4941 				 *
4942 				 * See Documentation/mm/mmu_notifier.rst
4943 				 */
4944 				huge_ptep_set_wrprotect(src, addr, src_pte);
4945 				entry = huge_pte_wrprotect(entry);
4946 			}
4947 
4948 			set_huge_pte_at(dst, addr, dst_pte, entry);
4949 			hugetlb_count_add(npages, dst);
4950 		}
4951 		spin_unlock(src_ptl);
4952 		spin_unlock(dst_ptl);
4953 	}
4954 
4955 	if (cow) {
4956 		raw_write_seqcount_end(&src->write_protect_seq);
4957 		mmu_notifier_invalidate_range_end(&range);
4958 	} else {
4959 		hugetlb_vma_unlock_read(src_vma);
4960 	}
4961 
4962 	return ret;
4963 }
4964 
4965 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4966 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4967 {
4968 	struct hstate *h = hstate_vma(vma);
4969 	struct mm_struct *mm = vma->vm_mm;
4970 	spinlock_t *src_ptl, *dst_ptl;
4971 	pte_t pte;
4972 
4973 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4974 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4975 
4976 	/*
4977 	 * We don't have to worry about the ordering of src and dst ptlocks
4978 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4979 	 */
4980 	if (src_ptl != dst_ptl)
4981 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4982 
4983 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4984 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4985 
4986 	if (src_ptl != dst_ptl)
4987 		spin_unlock(src_ptl);
4988 	spin_unlock(dst_ptl);
4989 }
4990 
4991 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4992 			     struct vm_area_struct *new_vma,
4993 			     unsigned long old_addr, unsigned long new_addr,
4994 			     unsigned long len)
4995 {
4996 	struct hstate *h = hstate_vma(vma);
4997 	struct address_space *mapping = vma->vm_file->f_mapping;
4998 	unsigned long sz = huge_page_size(h);
4999 	struct mm_struct *mm = vma->vm_mm;
5000 	unsigned long old_end = old_addr + len;
5001 	unsigned long last_addr_mask;
5002 	pte_t *src_pte, *dst_pte;
5003 	struct mmu_notifier_range range;
5004 	bool shared_pmd = false;
5005 
5006 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5007 				old_end);
5008 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5009 	/*
5010 	 * In case of shared PMDs, we should cover the maximum possible
5011 	 * range.
5012 	 */
5013 	flush_cache_range(vma, range.start, range.end);
5014 
5015 	mmu_notifier_invalidate_range_start(&range);
5016 	last_addr_mask = hugetlb_mask_last_page(h);
5017 	/* Prevent race with file truncation */
5018 	hugetlb_vma_lock_write(vma);
5019 	i_mmap_lock_write(mapping);
5020 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5021 		src_pte = huge_pte_offset(mm, old_addr, sz);
5022 		if (!src_pte) {
5023 			old_addr |= last_addr_mask;
5024 			new_addr |= last_addr_mask;
5025 			continue;
5026 		}
5027 		if (huge_pte_none(huge_ptep_get(src_pte)))
5028 			continue;
5029 
5030 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5031 			shared_pmd = true;
5032 			old_addr |= last_addr_mask;
5033 			new_addr |= last_addr_mask;
5034 			continue;
5035 		}
5036 
5037 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5038 		if (!dst_pte)
5039 			break;
5040 
5041 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5042 	}
5043 
5044 	if (shared_pmd)
5045 		flush_tlb_range(vma, range.start, range.end);
5046 	else
5047 		flush_tlb_range(vma, old_end - len, old_end);
5048 	mmu_notifier_invalidate_range_end(&range);
5049 	i_mmap_unlock_write(mapping);
5050 	hugetlb_vma_unlock_write(vma);
5051 
5052 	return len + old_addr - old_end;
5053 }
5054 
5055 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5056 				   unsigned long start, unsigned long end,
5057 				   struct page *ref_page, zap_flags_t zap_flags)
5058 {
5059 	struct mm_struct *mm = vma->vm_mm;
5060 	unsigned long address;
5061 	pte_t *ptep;
5062 	pte_t pte;
5063 	spinlock_t *ptl;
5064 	struct page *page;
5065 	struct hstate *h = hstate_vma(vma);
5066 	unsigned long sz = huge_page_size(h);
5067 	struct mmu_notifier_range range;
5068 	unsigned long last_addr_mask;
5069 	bool force_flush = false;
5070 
5071 	WARN_ON(!is_vm_hugetlb_page(vma));
5072 	BUG_ON(start & ~huge_page_mask(h));
5073 	BUG_ON(end & ~huge_page_mask(h));
5074 
5075 	/*
5076 	 * This is a hugetlb vma, all the pte entries should point
5077 	 * to huge page.
5078 	 */
5079 	tlb_change_page_size(tlb, sz);
5080 	tlb_start_vma(tlb, vma);
5081 
5082 	/*
5083 	 * If sharing possible, alert mmu notifiers of worst case.
5084 	 */
5085 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5086 				end);
5087 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5088 	mmu_notifier_invalidate_range_start(&range);
5089 	last_addr_mask = hugetlb_mask_last_page(h);
5090 	address = start;
5091 	for (; address < end; address += sz) {
5092 		ptep = huge_pte_offset(mm, address, sz);
5093 		if (!ptep) {
5094 			address |= last_addr_mask;
5095 			continue;
5096 		}
5097 
5098 		ptl = huge_pte_lock(h, mm, ptep);
5099 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5100 			spin_unlock(ptl);
5101 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5102 			force_flush = true;
5103 			address |= last_addr_mask;
5104 			continue;
5105 		}
5106 
5107 		pte = huge_ptep_get(ptep);
5108 		if (huge_pte_none(pte)) {
5109 			spin_unlock(ptl);
5110 			continue;
5111 		}
5112 
5113 		/*
5114 		 * Migrating hugepage or HWPoisoned hugepage is already
5115 		 * unmapped and its refcount is dropped, so just clear pte here.
5116 		 */
5117 		if (unlikely(!pte_present(pte))) {
5118 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5119 			/*
5120 			 * If the pte was wr-protected by uffd-wp in any of the
5121 			 * swap forms, meanwhile the caller does not want to
5122 			 * drop the uffd-wp bit in this zap, then replace the
5123 			 * pte with a marker.
5124 			 */
5125 			if (pte_swp_uffd_wp_any(pte) &&
5126 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5127 				set_huge_pte_at(mm, address, ptep,
5128 						make_pte_marker(PTE_MARKER_UFFD_WP));
5129 			else
5130 #endif
5131 				huge_pte_clear(mm, address, ptep, sz);
5132 			spin_unlock(ptl);
5133 			continue;
5134 		}
5135 
5136 		page = pte_page(pte);
5137 		/*
5138 		 * If a reference page is supplied, it is because a specific
5139 		 * page is being unmapped, not a range. Ensure the page we
5140 		 * are about to unmap is the actual page of interest.
5141 		 */
5142 		if (ref_page) {
5143 			if (page != ref_page) {
5144 				spin_unlock(ptl);
5145 				continue;
5146 			}
5147 			/*
5148 			 * Mark the VMA as having unmapped its page so that
5149 			 * future faults in this VMA will fail rather than
5150 			 * looking like data was lost
5151 			 */
5152 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5153 		}
5154 
5155 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5156 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5157 		if (huge_pte_dirty(pte))
5158 			set_page_dirty(page);
5159 #ifdef CONFIG_PTE_MARKER_UFFD_WP
5160 		/* Leave a uffd-wp pte marker if needed */
5161 		if (huge_pte_uffd_wp(pte) &&
5162 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5163 			set_huge_pte_at(mm, address, ptep,
5164 					make_pte_marker(PTE_MARKER_UFFD_WP));
5165 #endif
5166 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5167 		page_remove_rmap(page, vma, true);
5168 
5169 		spin_unlock(ptl);
5170 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5171 		/*
5172 		 * Bail out after unmapping reference page if supplied
5173 		 */
5174 		if (ref_page)
5175 			break;
5176 	}
5177 	mmu_notifier_invalidate_range_end(&range);
5178 	tlb_end_vma(tlb, vma);
5179 
5180 	/*
5181 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5182 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5183 	 * guaranteed that the last refernece would not be dropped. But we must
5184 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5185 	 * dropped and the last reference to the shared PMDs page might be
5186 	 * dropped as well.
5187 	 *
5188 	 * In theory we could defer the freeing of the PMD pages as well, but
5189 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5190 	 * detect sharing, so we cannot defer the release of the page either.
5191 	 * Instead, do flush now.
5192 	 */
5193 	if (force_flush)
5194 		tlb_flush_mmu_tlbonly(tlb);
5195 }
5196 
5197 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5198 			  struct vm_area_struct *vma, unsigned long start,
5199 			  unsigned long end, struct page *ref_page,
5200 			  zap_flags_t zap_flags)
5201 {
5202 	hugetlb_vma_lock_write(vma);
5203 	i_mmap_lock_write(vma->vm_file->f_mapping);
5204 
5205 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5206 
5207 	/*
5208 	 * Unlock and free the vma lock before releasing i_mmap_rwsem.  When
5209 	 * the vma_lock is freed, this makes the vma ineligible for pmd
5210 	 * sharing.  And, i_mmap_rwsem is required to set up pmd sharing.
5211 	 * This is important as page tables for this unmapped range will
5212 	 * be asynchrously deleted.  If the page tables are shared, there
5213 	 * will be issues when accessed by someone else.
5214 	 */
5215 	__hugetlb_vma_unlock_write_free(vma);
5216 
5217 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5218 }
5219 
5220 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5221 			  unsigned long end, struct page *ref_page,
5222 			  zap_flags_t zap_flags)
5223 {
5224 	struct mmu_gather tlb;
5225 
5226 	tlb_gather_mmu(&tlb, vma->vm_mm);
5227 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5228 	tlb_finish_mmu(&tlb);
5229 }
5230 
5231 /*
5232  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5233  * mapping it owns the reserve page for. The intention is to unmap the page
5234  * from other VMAs and let the children be SIGKILLed if they are faulting the
5235  * same region.
5236  */
5237 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5238 			      struct page *page, unsigned long address)
5239 {
5240 	struct hstate *h = hstate_vma(vma);
5241 	struct vm_area_struct *iter_vma;
5242 	struct address_space *mapping;
5243 	pgoff_t pgoff;
5244 
5245 	/*
5246 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5247 	 * from page cache lookup which is in HPAGE_SIZE units.
5248 	 */
5249 	address = address & huge_page_mask(h);
5250 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5251 			vma->vm_pgoff;
5252 	mapping = vma->vm_file->f_mapping;
5253 
5254 	/*
5255 	 * Take the mapping lock for the duration of the table walk. As
5256 	 * this mapping should be shared between all the VMAs,
5257 	 * __unmap_hugepage_range() is called as the lock is already held
5258 	 */
5259 	i_mmap_lock_write(mapping);
5260 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5261 		/* Do not unmap the current VMA */
5262 		if (iter_vma == vma)
5263 			continue;
5264 
5265 		/*
5266 		 * Shared VMAs have their own reserves and do not affect
5267 		 * MAP_PRIVATE accounting but it is possible that a shared
5268 		 * VMA is using the same page so check and skip such VMAs.
5269 		 */
5270 		if (iter_vma->vm_flags & VM_MAYSHARE)
5271 			continue;
5272 
5273 		/*
5274 		 * Unmap the page from other VMAs without their own reserves.
5275 		 * They get marked to be SIGKILLed if they fault in these
5276 		 * areas. This is because a future no-page fault on this VMA
5277 		 * could insert a zeroed page instead of the data existing
5278 		 * from the time of fork. This would look like data corruption
5279 		 */
5280 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5281 			unmap_hugepage_range(iter_vma, address,
5282 					     address + huge_page_size(h), page, 0);
5283 	}
5284 	i_mmap_unlock_write(mapping);
5285 }
5286 
5287 /*
5288  * hugetlb_wp() should be called with page lock of the original hugepage held.
5289  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5290  * cannot race with other handlers or page migration.
5291  * Keep the pte_same checks anyway to make transition from the mutex easier.
5292  */
5293 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5294 		       unsigned long address, pte_t *ptep, unsigned int flags,
5295 		       struct page *pagecache_page, spinlock_t *ptl)
5296 {
5297 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5298 	pte_t pte;
5299 	struct hstate *h = hstate_vma(vma);
5300 	struct page *old_page, *new_page;
5301 	int outside_reserve = 0;
5302 	vm_fault_t ret = 0;
5303 	unsigned long haddr = address & huge_page_mask(h);
5304 	struct mmu_notifier_range range;
5305 
5306 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5307 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5308 
5309 	/*
5310 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5311 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5312 	 */
5313 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5314 		return VM_FAULT_SIGSEGV;
5315 
5316 	/* Let's take out MAP_SHARED mappings first. */
5317 	if (vma->vm_flags & VM_MAYSHARE) {
5318 		if (unlikely(unshare))
5319 			return 0;
5320 		set_huge_ptep_writable(vma, haddr, ptep);
5321 		return 0;
5322 	}
5323 
5324 	pte = huge_ptep_get(ptep);
5325 	old_page = pte_page(pte);
5326 
5327 	delayacct_wpcopy_start();
5328 
5329 retry_avoidcopy:
5330 	/*
5331 	 * If no-one else is actually using this page, we're the exclusive
5332 	 * owner and can reuse this page.
5333 	 */
5334 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5335 		if (!PageAnonExclusive(old_page))
5336 			page_move_anon_rmap(old_page, vma);
5337 		if (likely(!unshare))
5338 			set_huge_ptep_writable(vma, haddr, ptep);
5339 
5340 		delayacct_wpcopy_end();
5341 		return 0;
5342 	}
5343 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5344 		       old_page);
5345 
5346 	/*
5347 	 * If the process that created a MAP_PRIVATE mapping is about to
5348 	 * perform a COW due to a shared page count, attempt to satisfy
5349 	 * the allocation without using the existing reserves. The pagecache
5350 	 * page is used to determine if the reserve at this address was
5351 	 * consumed or not. If reserves were used, a partial faulted mapping
5352 	 * at the time of fork() could consume its reserves on COW instead
5353 	 * of the full address range.
5354 	 */
5355 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5356 			old_page != pagecache_page)
5357 		outside_reserve = 1;
5358 
5359 	get_page(old_page);
5360 
5361 	/*
5362 	 * Drop page table lock as buddy allocator may be called. It will
5363 	 * be acquired again before returning to the caller, as expected.
5364 	 */
5365 	spin_unlock(ptl);
5366 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5367 
5368 	if (IS_ERR(new_page)) {
5369 		/*
5370 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5371 		 * it is due to references held by a child and an insufficient
5372 		 * huge page pool. To guarantee the original mappers
5373 		 * reliability, unmap the page from child processes. The child
5374 		 * may get SIGKILLed if it later faults.
5375 		 */
5376 		if (outside_reserve) {
5377 			struct address_space *mapping = vma->vm_file->f_mapping;
5378 			pgoff_t idx;
5379 			u32 hash;
5380 
5381 			put_page(old_page);
5382 			/*
5383 			 * Drop hugetlb_fault_mutex and vma_lock before
5384 			 * unmapping.  unmapping needs to hold vma_lock
5385 			 * in write mode.  Dropping vma_lock in read mode
5386 			 * here is OK as COW mappings do not interact with
5387 			 * PMD sharing.
5388 			 *
5389 			 * Reacquire both after unmap operation.
5390 			 */
5391 			idx = vma_hugecache_offset(h, vma, haddr);
5392 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5393 			hugetlb_vma_unlock_read(vma);
5394 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5395 
5396 			unmap_ref_private(mm, vma, old_page, haddr);
5397 
5398 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5399 			hugetlb_vma_lock_read(vma);
5400 			spin_lock(ptl);
5401 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5402 			if (likely(ptep &&
5403 				   pte_same(huge_ptep_get(ptep), pte)))
5404 				goto retry_avoidcopy;
5405 			/*
5406 			 * race occurs while re-acquiring page table
5407 			 * lock, and our job is done.
5408 			 */
5409 			delayacct_wpcopy_end();
5410 			return 0;
5411 		}
5412 
5413 		ret = vmf_error(PTR_ERR(new_page));
5414 		goto out_release_old;
5415 	}
5416 
5417 	/*
5418 	 * When the original hugepage is shared one, it does not have
5419 	 * anon_vma prepared.
5420 	 */
5421 	if (unlikely(anon_vma_prepare(vma))) {
5422 		ret = VM_FAULT_OOM;
5423 		goto out_release_all;
5424 	}
5425 
5426 	copy_user_huge_page(new_page, old_page, address, vma,
5427 			    pages_per_huge_page(h));
5428 	__SetPageUptodate(new_page);
5429 
5430 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5431 				haddr + huge_page_size(h));
5432 	mmu_notifier_invalidate_range_start(&range);
5433 
5434 	/*
5435 	 * Retake the page table lock to check for racing updates
5436 	 * before the page tables are altered
5437 	 */
5438 	spin_lock(ptl);
5439 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5440 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5441 		ClearHPageRestoreReserve(new_page);
5442 
5443 		/* Break COW or unshare */
5444 		huge_ptep_clear_flush(vma, haddr, ptep);
5445 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5446 		page_remove_rmap(old_page, vma, true);
5447 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5448 		set_huge_pte_at(mm, haddr, ptep,
5449 				make_huge_pte(vma, new_page, !unshare));
5450 		SetHPageMigratable(new_page);
5451 		/* Make the old page be freed below */
5452 		new_page = old_page;
5453 	}
5454 	spin_unlock(ptl);
5455 	mmu_notifier_invalidate_range_end(&range);
5456 out_release_all:
5457 	/*
5458 	 * No restore in case of successful pagetable update (Break COW or
5459 	 * unshare)
5460 	 */
5461 	if (new_page != old_page)
5462 		restore_reserve_on_error(h, vma, haddr, new_page);
5463 	put_page(new_page);
5464 out_release_old:
5465 	put_page(old_page);
5466 
5467 	spin_lock(ptl); /* Caller expects lock to be held */
5468 
5469 	delayacct_wpcopy_end();
5470 	return ret;
5471 }
5472 
5473 /*
5474  * Return whether there is a pagecache page to back given address within VMA.
5475  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5476  */
5477 static bool hugetlbfs_pagecache_present(struct hstate *h,
5478 			struct vm_area_struct *vma, unsigned long address)
5479 {
5480 	struct address_space *mapping;
5481 	pgoff_t idx;
5482 	struct page *page;
5483 
5484 	mapping = vma->vm_file->f_mapping;
5485 	idx = vma_hugecache_offset(h, vma, address);
5486 
5487 	page = find_get_page(mapping, idx);
5488 	if (page)
5489 		put_page(page);
5490 	return page != NULL;
5491 }
5492 
5493 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5494 			   pgoff_t idx)
5495 {
5496 	struct folio *folio = page_folio(page);
5497 	struct inode *inode = mapping->host;
5498 	struct hstate *h = hstate_inode(inode);
5499 	int err;
5500 
5501 	__folio_set_locked(folio);
5502 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5503 
5504 	if (unlikely(err)) {
5505 		__folio_clear_locked(folio);
5506 		return err;
5507 	}
5508 	ClearHPageRestoreReserve(page);
5509 
5510 	/*
5511 	 * mark folio dirty so that it will not be removed from cache/file
5512 	 * by non-hugetlbfs specific code paths.
5513 	 */
5514 	folio_mark_dirty(folio);
5515 
5516 	spin_lock(&inode->i_lock);
5517 	inode->i_blocks += blocks_per_huge_page(h);
5518 	spin_unlock(&inode->i_lock);
5519 	return 0;
5520 }
5521 
5522 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5523 						  struct address_space *mapping,
5524 						  pgoff_t idx,
5525 						  unsigned int flags,
5526 						  unsigned long haddr,
5527 						  unsigned long addr,
5528 						  unsigned long reason)
5529 {
5530 	u32 hash;
5531 	struct vm_fault vmf = {
5532 		.vma = vma,
5533 		.address = haddr,
5534 		.real_address = addr,
5535 		.flags = flags,
5536 
5537 		/*
5538 		 * Hard to debug if it ends up being
5539 		 * used by a callee that assumes
5540 		 * something about the other
5541 		 * uninitialized fields... same as in
5542 		 * memory.c
5543 		 */
5544 	};
5545 
5546 	/*
5547 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5548 	 * userfault. Also mmap_lock could be dropped due to handling
5549 	 * userfault, any vma operation should be careful from here.
5550 	 */
5551 	hugetlb_vma_unlock_read(vma);
5552 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5553 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5554 	return handle_userfault(&vmf, reason);
5555 }
5556 
5557 /*
5558  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5559  * false if pte changed or is changing.
5560  */
5561 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5562 			       pte_t *ptep, pte_t old_pte)
5563 {
5564 	spinlock_t *ptl;
5565 	bool same;
5566 
5567 	ptl = huge_pte_lock(h, mm, ptep);
5568 	same = pte_same(huge_ptep_get(ptep), old_pte);
5569 	spin_unlock(ptl);
5570 
5571 	return same;
5572 }
5573 
5574 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5575 			struct vm_area_struct *vma,
5576 			struct address_space *mapping, pgoff_t idx,
5577 			unsigned long address, pte_t *ptep,
5578 			pte_t old_pte, unsigned int flags)
5579 {
5580 	struct hstate *h = hstate_vma(vma);
5581 	vm_fault_t ret = VM_FAULT_SIGBUS;
5582 	int anon_rmap = 0;
5583 	unsigned long size;
5584 	struct page *page;
5585 	pte_t new_pte;
5586 	spinlock_t *ptl;
5587 	unsigned long haddr = address & huge_page_mask(h);
5588 	bool new_page, new_pagecache_page = false;
5589 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5590 
5591 	/*
5592 	 * Currently, we are forced to kill the process in the event the
5593 	 * original mapper has unmapped pages from the child due to a failed
5594 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5595 	 * be obvious.
5596 	 */
5597 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5598 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5599 			   current->pid);
5600 		goto out;
5601 	}
5602 
5603 	/*
5604 	 * Use page lock to guard against racing truncation
5605 	 * before we get page_table_lock.
5606 	 */
5607 	new_page = false;
5608 	page = find_lock_page(mapping, idx);
5609 	if (!page) {
5610 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5611 		if (idx >= size)
5612 			goto out;
5613 		/* Check for page in userfault range */
5614 		if (userfaultfd_missing(vma)) {
5615 			/*
5616 			 * Since hugetlb_no_page() was examining pte
5617 			 * without pgtable lock, we need to re-test under
5618 			 * lock because the pte may not be stable and could
5619 			 * have changed from under us.  Try to detect
5620 			 * either changed or during-changing ptes and retry
5621 			 * properly when needed.
5622 			 *
5623 			 * Note that userfaultfd is actually fine with
5624 			 * false positives (e.g. caused by pte changed),
5625 			 * but not wrong logical events (e.g. caused by
5626 			 * reading a pte during changing).  The latter can
5627 			 * confuse the userspace, so the strictness is very
5628 			 * much preferred.  E.g., MISSING event should
5629 			 * never happen on the page after UFFDIO_COPY has
5630 			 * correctly installed the page and returned.
5631 			 */
5632 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5633 				ret = 0;
5634 				goto out;
5635 			}
5636 
5637 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5638 							haddr, address,
5639 							VM_UFFD_MISSING);
5640 		}
5641 
5642 		page = alloc_huge_page(vma, haddr, 0);
5643 		if (IS_ERR(page)) {
5644 			/*
5645 			 * Returning error will result in faulting task being
5646 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5647 			 * tasks from racing to fault in the same page which
5648 			 * could result in false unable to allocate errors.
5649 			 * Page migration does not take the fault mutex, but
5650 			 * does a clear then write of pte's under page table
5651 			 * lock.  Page fault code could race with migration,
5652 			 * notice the clear pte and try to allocate a page
5653 			 * here.  Before returning error, get ptl and make
5654 			 * sure there really is no pte entry.
5655 			 */
5656 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5657 				ret = vmf_error(PTR_ERR(page));
5658 			else
5659 				ret = 0;
5660 			goto out;
5661 		}
5662 		clear_huge_page(page, address, pages_per_huge_page(h));
5663 		__SetPageUptodate(page);
5664 		new_page = true;
5665 
5666 		if (vma->vm_flags & VM_MAYSHARE) {
5667 			int err = hugetlb_add_to_page_cache(page, mapping, idx);
5668 			if (err) {
5669 				/*
5670 				 * err can't be -EEXIST which implies someone
5671 				 * else consumed the reservation since hugetlb
5672 				 * fault mutex is held when add a hugetlb page
5673 				 * to the page cache. So it's safe to call
5674 				 * restore_reserve_on_error() here.
5675 				 */
5676 				restore_reserve_on_error(h, vma, haddr, page);
5677 				put_page(page);
5678 				goto out;
5679 			}
5680 			new_pagecache_page = true;
5681 		} else {
5682 			lock_page(page);
5683 			if (unlikely(anon_vma_prepare(vma))) {
5684 				ret = VM_FAULT_OOM;
5685 				goto backout_unlocked;
5686 			}
5687 			anon_rmap = 1;
5688 		}
5689 	} else {
5690 		/*
5691 		 * If memory error occurs between mmap() and fault, some process
5692 		 * don't have hwpoisoned swap entry for errored virtual address.
5693 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5694 		 */
5695 		if (unlikely(PageHWPoison(page))) {
5696 			ret = VM_FAULT_HWPOISON_LARGE |
5697 				VM_FAULT_SET_HINDEX(hstate_index(h));
5698 			goto backout_unlocked;
5699 		}
5700 
5701 		/* Check for page in userfault range. */
5702 		if (userfaultfd_minor(vma)) {
5703 			unlock_page(page);
5704 			put_page(page);
5705 			/* See comment in userfaultfd_missing() block above */
5706 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5707 				ret = 0;
5708 				goto out;
5709 			}
5710 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5711 							haddr, address,
5712 							VM_UFFD_MINOR);
5713 		}
5714 	}
5715 
5716 	/*
5717 	 * If we are going to COW a private mapping later, we examine the
5718 	 * pending reservations for this page now. This will ensure that
5719 	 * any allocations necessary to record that reservation occur outside
5720 	 * the spinlock.
5721 	 */
5722 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5723 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5724 			ret = VM_FAULT_OOM;
5725 			goto backout_unlocked;
5726 		}
5727 		/* Just decrements count, does not deallocate */
5728 		vma_end_reservation(h, vma, haddr);
5729 	}
5730 
5731 	ptl = huge_pte_lock(h, mm, ptep);
5732 	ret = 0;
5733 	/* If pte changed from under us, retry */
5734 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5735 		goto backout;
5736 
5737 	if (anon_rmap) {
5738 		ClearHPageRestoreReserve(page);
5739 		hugepage_add_new_anon_rmap(page, vma, haddr);
5740 	} else
5741 		page_dup_file_rmap(page, true);
5742 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5743 				&& (vma->vm_flags & VM_SHARED)));
5744 	/*
5745 	 * If this pte was previously wr-protected, keep it wr-protected even
5746 	 * if populated.
5747 	 */
5748 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5749 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5750 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5751 
5752 	hugetlb_count_add(pages_per_huge_page(h), mm);
5753 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5754 		/* Optimization, do the COW without a second fault */
5755 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5756 	}
5757 
5758 	spin_unlock(ptl);
5759 
5760 	/*
5761 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5762 	 * found in the pagecache may not have HPageMigratableset if they have
5763 	 * been isolated for migration.
5764 	 */
5765 	if (new_page)
5766 		SetHPageMigratable(page);
5767 
5768 	unlock_page(page);
5769 out:
5770 	hugetlb_vma_unlock_read(vma);
5771 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5772 	return ret;
5773 
5774 backout:
5775 	spin_unlock(ptl);
5776 backout_unlocked:
5777 	if (new_page && !new_pagecache_page)
5778 		restore_reserve_on_error(h, vma, haddr, page);
5779 
5780 	unlock_page(page);
5781 	put_page(page);
5782 	goto out;
5783 }
5784 
5785 #ifdef CONFIG_SMP
5786 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5787 {
5788 	unsigned long key[2];
5789 	u32 hash;
5790 
5791 	key[0] = (unsigned long) mapping;
5792 	key[1] = idx;
5793 
5794 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5795 
5796 	return hash & (num_fault_mutexes - 1);
5797 }
5798 #else
5799 /*
5800  * For uniprocessor systems we always use a single mutex, so just
5801  * return 0 and avoid the hashing overhead.
5802  */
5803 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5804 {
5805 	return 0;
5806 }
5807 #endif
5808 
5809 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5810 			unsigned long address, unsigned int flags)
5811 {
5812 	pte_t *ptep, entry;
5813 	spinlock_t *ptl;
5814 	vm_fault_t ret;
5815 	u32 hash;
5816 	pgoff_t idx;
5817 	struct page *page = NULL;
5818 	struct page *pagecache_page = NULL;
5819 	struct hstate *h = hstate_vma(vma);
5820 	struct address_space *mapping;
5821 	int need_wait_lock = 0;
5822 	unsigned long haddr = address & huge_page_mask(h);
5823 
5824 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5825 	if (ptep) {
5826 		/*
5827 		 * Since we hold no locks, ptep could be stale.  That is
5828 		 * OK as we are only making decisions based on content and
5829 		 * not actually modifying content here.
5830 		 */
5831 		entry = huge_ptep_get(ptep);
5832 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5833 			migration_entry_wait_huge(vma, ptep);
5834 			return 0;
5835 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5836 			return VM_FAULT_HWPOISON_LARGE |
5837 				VM_FAULT_SET_HINDEX(hstate_index(h));
5838 	}
5839 
5840 	/*
5841 	 * Serialize hugepage allocation and instantiation, so that we don't
5842 	 * get spurious allocation failures if two CPUs race to instantiate
5843 	 * the same page in the page cache.
5844 	 */
5845 	mapping = vma->vm_file->f_mapping;
5846 	idx = vma_hugecache_offset(h, vma, haddr);
5847 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5848 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5849 
5850 	/*
5851 	 * Acquire vma lock before calling huge_pte_alloc and hold
5852 	 * until finished with ptep.  This prevents huge_pmd_unshare from
5853 	 * being called elsewhere and making the ptep no longer valid.
5854 	 *
5855 	 * ptep could have already be assigned via huge_pte_offset.  That
5856 	 * is OK, as huge_pte_alloc will return the same value unless
5857 	 * something has changed.
5858 	 */
5859 	hugetlb_vma_lock_read(vma);
5860 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5861 	if (!ptep) {
5862 		hugetlb_vma_unlock_read(vma);
5863 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5864 		return VM_FAULT_OOM;
5865 	}
5866 
5867 	entry = huge_ptep_get(ptep);
5868 	/* PTE markers should be handled the same way as none pte */
5869 	if (huge_pte_none_mostly(entry))
5870 		/*
5871 		 * hugetlb_no_page will drop vma lock and hugetlb fault
5872 		 * mutex internally, which make us return immediately.
5873 		 */
5874 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5875 				      entry, flags);
5876 
5877 	ret = 0;
5878 
5879 	/*
5880 	 * entry could be a migration/hwpoison entry at this point, so this
5881 	 * check prevents the kernel from going below assuming that we have
5882 	 * an active hugepage in pagecache. This goto expects the 2nd page
5883 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5884 	 * properly handle it.
5885 	 */
5886 	if (!pte_present(entry))
5887 		goto out_mutex;
5888 
5889 	/*
5890 	 * If we are going to COW/unshare the mapping later, we examine the
5891 	 * pending reservations for this page now. This will ensure that any
5892 	 * allocations necessary to record that reservation occur outside the
5893 	 * spinlock. Also lookup the pagecache page now as it is used to
5894 	 * determine if a reservation has been consumed.
5895 	 */
5896 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5897 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5898 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5899 			ret = VM_FAULT_OOM;
5900 			goto out_mutex;
5901 		}
5902 		/* Just decrements count, does not deallocate */
5903 		vma_end_reservation(h, vma, haddr);
5904 
5905 		pagecache_page = find_lock_page(mapping, idx);
5906 	}
5907 
5908 	ptl = huge_pte_lock(h, mm, ptep);
5909 
5910 	/* Check for a racing update before calling hugetlb_wp() */
5911 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5912 		goto out_ptl;
5913 
5914 	/* Handle userfault-wp first, before trying to lock more pages */
5915 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5916 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5917 		struct vm_fault vmf = {
5918 			.vma = vma,
5919 			.address = haddr,
5920 			.real_address = address,
5921 			.flags = flags,
5922 		};
5923 
5924 		spin_unlock(ptl);
5925 		if (pagecache_page) {
5926 			unlock_page(pagecache_page);
5927 			put_page(pagecache_page);
5928 		}
5929 		hugetlb_vma_unlock_read(vma);
5930 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5931 		return handle_userfault(&vmf, VM_UFFD_WP);
5932 	}
5933 
5934 	/*
5935 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5936 	 * pagecache_page, so here we need take the former one
5937 	 * when page != pagecache_page or !pagecache_page.
5938 	 */
5939 	page = pte_page(entry);
5940 	if (page != pagecache_page)
5941 		if (!trylock_page(page)) {
5942 			need_wait_lock = 1;
5943 			goto out_ptl;
5944 		}
5945 
5946 	get_page(page);
5947 
5948 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5949 		if (!huge_pte_write(entry)) {
5950 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5951 					 pagecache_page, ptl);
5952 			goto out_put_page;
5953 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5954 			entry = huge_pte_mkdirty(entry);
5955 		}
5956 	}
5957 	entry = pte_mkyoung(entry);
5958 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5959 						flags & FAULT_FLAG_WRITE))
5960 		update_mmu_cache(vma, haddr, ptep);
5961 out_put_page:
5962 	if (page != pagecache_page)
5963 		unlock_page(page);
5964 	put_page(page);
5965 out_ptl:
5966 	spin_unlock(ptl);
5967 
5968 	if (pagecache_page) {
5969 		unlock_page(pagecache_page);
5970 		put_page(pagecache_page);
5971 	}
5972 out_mutex:
5973 	hugetlb_vma_unlock_read(vma);
5974 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5975 	/*
5976 	 * Generally it's safe to hold refcount during waiting page lock. But
5977 	 * here we just wait to defer the next page fault to avoid busy loop and
5978 	 * the page is not used after unlocked before returning from the current
5979 	 * page fault. So we are safe from accessing freed page, even if we wait
5980 	 * here without taking refcount.
5981 	 */
5982 	if (need_wait_lock)
5983 		wait_on_page_locked(page);
5984 	return ret;
5985 }
5986 
5987 #ifdef CONFIG_USERFAULTFD
5988 /*
5989  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5990  * modifications for huge pages.
5991  */
5992 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5993 			    pte_t *dst_pte,
5994 			    struct vm_area_struct *dst_vma,
5995 			    unsigned long dst_addr,
5996 			    unsigned long src_addr,
5997 			    enum mcopy_atomic_mode mode,
5998 			    struct page **pagep,
5999 			    bool wp_copy)
6000 {
6001 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6002 	struct hstate *h = hstate_vma(dst_vma);
6003 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6004 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6005 	unsigned long size;
6006 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6007 	pte_t _dst_pte;
6008 	spinlock_t *ptl;
6009 	int ret = -ENOMEM;
6010 	struct page *page;
6011 	int writable;
6012 	bool page_in_pagecache = false;
6013 
6014 	if (is_continue) {
6015 		ret = -EFAULT;
6016 		page = find_lock_page(mapping, idx);
6017 		if (!page)
6018 			goto out;
6019 		page_in_pagecache = true;
6020 	} else if (!*pagep) {
6021 		/* If a page already exists, then it's UFFDIO_COPY for
6022 		 * a non-missing case. Return -EEXIST.
6023 		 */
6024 		if (vm_shared &&
6025 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6026 			ret = -EEXIST;
6027 			goto out;
6028 		}
6029 
6030 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6031 		if (IS_ERR(page)) {
6032 			ret = -ENOMEM;
6033 			goto out;
6034 		}
6035 
6036 		ret = copy_huge_page_from_user(page,
6037 						(const void __user *) src_addr,
6038 						pages_per_huge_page(h), false);
6039 
6040 		/* fallback to copy_from_user outside mmap_lock */
6041 		if (unlikely(ret)) {
6042 			ret = -ENOENT;
6043 			/* Free the allocated page which may have
6044 			 * consumed a reservation.
6045 			 */
6046 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
6047 			put_page(page);
6048 
6049 			/* Allocate a temporary page to hold the copied
6050 			 * contents.
6051 			 */
6052 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6053 			if (!page) {
6054 				ret = -ENOMEM;
6055 				goto out;
6056 			}
6057 			*pagep = page;
6058 			/* Set the outparam pagep and return to the caller to
6059 			 * copy the contents outside the lock. Don't free the
6060 			 * page.
6061 			 */
6062 			goto out;
6063 		}
6064 	} else {
6065 		if (vm_shared &&
6066 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6067 			put_page(*pagep);
6068 			ret = -EEXIST;
6069 			*pagep = NULL;
6070 			goto out;
6071 		}
6072 
6073 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6074 		if (IS_ERR(page)) {
6075 			put_page(*pagep);
6076 			ret = -ENOMEM;
6077 			*pagep = NULL;
6078 			goto out;
6079 		}
6080 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6081 				    pages_per_huge_page(h));
6082 		put_page(*pagep);
6083 		*pagep = NULL;
6084 	}
6085 
6086 	/*
6087 	 * The memory barrier inside __SetPageUptodate makes sure that
6088 	 * preceding stores to the page contents become visible before
6089 	 * the set_pte_at() write.
6090 	 */
6091 	__SetPageUptodate(page);
6092 
6093 	/* Add shared, newly allocated pages to the page cache. */
6094 	if (vm_shared && !is_continue) {
6095 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6096 		ret = -EFAULT;
6097 		if (idx >= size)
6098 			goto out_release_nounlock;
6099 
6100 		/*
6101 		 * Serialization between remove_inode_hugepages() and
6102 		 * hugetlb_add_to_page_cache() below happens through the
6103 		 * hugetlb_fault_mutex_table that here must be hold by
6104 		 * the caller.
6105 		 */
6106 		ret = hugetlb_add_to_page_cache(page, mapping, idx);
6107 		if (ret)
6108 			goto out_release_nounlock;
6109 		page_in_pagecache = true;
6110 	}
6111 
6112 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6113 
6114 	ret = -EIO;
6115 	if (PageHWPoison(page))
6116 		goto out_release_unlock;
6117 
6118 	/*
6119 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6120 	 * registered, we firstly wr-protect a none pte which has no page cache
6121 	 * page backing it, then access the page.
6122 	 */
6123 	ret = -EEXIST;
6124 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6125 		goto out_release_unlock;
6126 
6127 	if (page_in_pagecache) {
6128 		page_dup_file_rmap(page, true);
6129 	} else {
6130 		ClearHPageRestoreReserve(page);
6131 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6132 	}
6133 
6134 	/*
6135 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6136 	 * with wp flag set, don't set pte write bit.
6137 	 */
6138 	if (wp_copy || (is_continue && !vm_shared))
6139 		writable = 0;
6140 	else
6141 		writable = dst_vma->vm_flags & VM_WRITE;
6142 
6143 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6144 	/*
6145 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6146 	 * extremely important for hugetlbfs for now since swapping is not
6147 	 * supported, but we should still be clear in that this page cannot be
6148 	 * thrown away at will, even if write bit not set.
6149 	 */
6150 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6151 	_dst_pte = pte_mkyoung(_dst_pte);
6152 
6153 	if (wp_copy)
6154 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6155 
6156 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6157 
6158 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6159 
6160 	/* No need to invalidate - it was non-present before */
6161 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6162 
6163 	spin_unlock(ptl);
6164 	if (!is_continue)
6165 		SetHPageMigratable(page);
6166 	if (vm_shared || is_continue)
6167 		unlock_page(page);
6168 	ret = 0;
6169 out:
6170 	return ret;
6171 out_release_unlock:
6172 	spin_unlock(ptl);
6173 	if (vm_shared || is_continue)
6174 		unlock_page(page);
6175 out_release_nounlock:
6176 	if (!page_in_pagecache)
6177 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6178 	put_page(page);
6179 	goto out;
6180 }
6181 #endif /* CONFIG_USERFAULTFD */
6182 
6183 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6184 				 int refs, struct page **pages,
6185 				 struct vm_area_struct **vmas)
6186 {
6187 	int nr;
6188 
6189 	for (nr = 0; nr < refs; nr++) {
6190 		if (likely(pages))
6191 			pages[nr] = nth_page(page, nr);
6192 		if (vmas)
6193 			vmas[nr] = vma;
6194 	}
6195 }
6196 
6197 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6198 					       bool *unshare)
6199 {
6200 	pte_t pteval = huge_ptep_get(pte);
6201 
6202 	*unshare = false;
6203 	if (is_swap_pte(pteval))
6204 		return true;
6205 	if (huge_pte_write(pteval))
6206 		return false;
6207 	if (flags & FOLL_WRITE)
6208 		return true;
6209 	if (gup_must_unshare(flags, pte_page(pteval))) {
6210 		*unshare = true;
6211 		return true;
6212 	}
6213 	return false;
6214 }
6215 
6216 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6217 			 struct page **pages, struct vm_area_struct **vmas,
6218 			 unsigned long *position, unsigned long *nr_pages,
6219 			 long i, unsigned int flags, int *locked)
6220 {
6221 	unsigned long pfn_offset;
6222 	unsigned long vaddr = *position;
6223 	unsigned long remainder = *nr_pages;
6224 	struct hstate *h = hstate_vma(vma);
6225 	int err = -EFAULT, refs;
6226 
6227 	while (vaddr < vma->vm_end && remainder) {
6228 		pte_t *pte;
6229 		spinlock_t *ptl = NULL;
6230 		bool unshare = false;
6231 		int absent;
6232 		struct page *page;
6233 
6234 		/*
6235 		 * If we have a pending SIGKILL, don't keep faulting pages and
6236 		 * potentially allocating memory.
6237 		 */
6238 		if (fatal_signal_pending(current)) {
6239 			remainder = 0;
6240 			break;
6241 		}
6242 
6243 		/*
6244 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6245 		 * each hugepage.  We have to make sure we get the
6246 		 * first, for the page indexing below to work.
6247 		 *
6248 		 * Note that page table lock is not held when pte is null.
6249 		 */
6250 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6251 				      huge_page_size(h));
6252 		if (pte)
6253 			ptl = huge_pte_lock(h, mm, pte);
6254 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6255 
6256 		/*
6257 		 * When coredumping, it suits get_dump_page if we just return
6258 		 * an error where there's an empty slot with no huge pagecache
6259 		 * to back it.  This way, we avoid allocating a hugepage, and
6260 		 * the sparse dumpfile avoids allocating disk blocks, but its
6261 		 * huge holes still show up with zeroes where they need to be.
6262 		 */
6263 		if (absent && (flags & FOLL_DUMP) &&
6264 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6265 			if (pte)
6266 				spin_unlock(ptl);
6267 			remainder = 0;
6268 			break;
6269 		}
6270 
6271 		/*
6272 		 * We need call hugetlb_fault for both hugepages under migration
6273 		 * (in which case hugetlb_fault waits for the migration,) and
6274 		 * hwpoisoned hugepages (in which case we need to prevent the
6275 		 * caller from accessing to them.) In order to do this, we use
6276 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6277 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6278 		 * both cases, and because we can't follow correct pages
6279 		 * directly from any kind of swap entries.
6280 		 */
6281 		if (absent ||
6282 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6283 			vm_fault_t ret;
6284 			unsigned int fault_flags = 0;
6285 
6286 			if (pte)
6287 				spin_unlock(ptl);
6288 			if (flags & FOLL_WRITE)
6289 				fault_flags |= FAULT_FLAG_WRITE;
6290 			else if (unshare)
6291 				fault_flags |= FAULT_FLAG_UNSHARE;
6292 			if (locked)
6293 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6294 					FAULT_FLAG_KILLABLE;
6295 			if (flags & FOLL_NOWAIT)
6296 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6297 					FAULT_FLAG_RETRY_NOWAIT;
6298 			if (flags & FOLL_TRIED) {
6299 				/*
6300 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6301 				 * FAULT_FLAG_TRIED can co-exist
6302 				 */
6303 				fault_flags |= FAULT_FLAG_TRIED;
6304 			}
6305 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6306 			if (ret & VM_FAULT_ERROR) {
6307 				err = vm_fault_to_errno(ret, flags);
6308 				remainder = 0;
6309 				break;
6310 			}
6311 			if (ret & VM_FAULT_RETRY) {
6312 				if (locked &&
6313 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6314 					*locked = 0;
6315 				*nr_pages = 0;
6316 				/*
6317 				 * VM_FAULT_RETRY must not return an
6318 				 * error, it will return zero
6319 				 * instead.
6320 				 *
6321 				 * No need to update "position" as the
6322 				 * caller will not check it after
6323 				 * *nr_pages is set to 0.
6324 				 */
6325 				return i;
6326 			}
6327 			continue;
6328 		}
6329 
6330 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6331 		page = pte_page(huge_ptep_get(pte));
6332 
6333 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6334 			       !PageAnonExclusive(page), page);
6335 
6336 		/*
6337 		 * If subpage information not requested, update counters
6338 		 * and skip the same_page loop below.
6339 		 */
6340 		if (!pages && !vmas && !pfn_offset &&
6341 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6342 		    (remainder >= pages_per_huge_page(h))) {
6343 			vaddr += huge_page_size(h);
6344 			remainder -= pages_per_huge_page(h);
6345 			i += pages_per_huge_page(h);
6346 			spin_unlock(ptl);
6347 			continue;
6348 		}
6349 
6350 		/* vaddr may not be aligned to PAGE_SIZE */
6351 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6352 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6353 
6354 		if (pages || vmas)
6355 			record_subpages_vmas(nth_page(page, pfn_offset),
6356 					     vma, refs,
6357 					     likely(pages) ? pages + i : NULL,
6358 					     vmas ? vmas + i : NULL);
6359 
6360 		if (pages) {
6361 			/*
6362 			 * try_grab_folio() should always succeed here,
6363 			 * because: a) we hold the ptl lock, and b) we've just
6364 			 * checked that the huge page is present in the page
6365 			 * tables. If the huge page is present, then the tail
6366 			 * pages must also be present. The ptl prevents the
6367 			 * head page and tail pages from being rearranged in
6368 			 * any way. So this page must be available at this
6369 			 * point, unless the page refcount overflowed:
6370 			 */
6371 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6372 							 flags))) {
6373 				spin_unlock(ptl);
6374 				remainder = 0;
6375 				err = -ENOMEM;
6376 				break;
6377 			}
6378 		}
6379 
6380 		vaddr += (refs << PAGE_SHIFT);
6381 		remainder -= refs;
6382 		i += refs;
6383 
6384 		spin_unlock(ptl);
6385 	}
6386 	*nr_pages = remainder;
6387 	/*
6388 	 * setting position is actually required only if remainder is
6389 	 * not zero but it's faster not to add a "if (remainder)"
6390 	 * branch.
6391 	 */
6392 	*position = vaddr;
6393 
6394 	return i ? i : err;
6395 }
6396 
6397 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6398 		unsigned long address, unsigned long end,
6399 		pgprot_t newprot, unsigned long cp_flags)
6400 {
6401 	struct mm_struct *mm = vma->vm_mm;
6402 	unsigned long start = address;
6403 	pte_t *ptep;
6404 	pte_t pte;
6405 	struct hstate *h = hstate_vma(vma);
6406 	unsigned long pages = 0, psize = huge_page_size(h);
6407 	bool shared_pmd = false;
6408 	struct mmu_notifier_range range;
6409 	unsigned long last_addr_mask;
6410 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6411 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6412 
6413 	/*
6414 	 * In the case of shared PMDs, the area to flush could be beyond
6415 	 * start/end.  Set range.start/range.end to cover the maximum possible
6416 	 * range if PMD sharing is possible.
6417 	 */
6418 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6419 				0, vma, mm, start, end);
6420 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6421 
6422 	BUG_ON(address >= end);
6423 	flush_cache_range(vma, range.start, range.end);
6424 
6425 	mmu_notifier_invalidate_range_start(&range);
6426 	hugetlb_vma_lock_write(vma);
6427 	i_mmap_lock_write(vma->vm_file->f_mapping);
6428 	last_addr_mask = hugetlb_mask_last_page(h);
6429 	for (; address < end; address += psize) {
6430 		spinlock_t *ptl;
6431 		ptep = huge_pte_offset(mm, address, psize);
6432 		if (!ptep) {
6433 			address |= last_addr_mask;
6434 			continue;
6435 		}
6436 		ptl = huge_pte_lock(h, mm, ptep);
6437 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6438 			/*
6439 			 * When uffd-wp is enabled on the vma, unshare
6440 			 * shouldn't happen at all.  Warn about it if it
6441 			 * happened due to some reason.
6442 			 */
6443 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6444 			pages++;
6445 			spin_unlock(ptl);
6446 			shared_pmd = true;
6447 			address |= last_addr_mask;
6448 			continue;
6449 		}
6450 		pte = huge_ptep_get(ptep);
6451 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6452 			spin_unlock(ptl);
6453 			continue;
6454 		}
6455 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6456 			swp_entry_t entry = pte_to_swp_entry(pte);
6457 			struct page *page = pfn_swap_entry_to_page(entry);
6458 
6459 			if (!is_readable_migration_entry(entry)) {
6460 				pte_t newpte;
6461 
6462 				if (PageAnon(page))
6463 					entry = make_readable_exclusive_migration_entry(
6464 								swp_offset(entry));
6465 				else
6466 					entry = make_readable_migration_entry(
6467 								swp_offset(entry));
6468 				newpte = swp_entry_to_pte(entry);
6469 				if (uffd_wp)
6470 					newpte = pte_swp_mkuffd_wp(newpte);
6471 				else if (uffd_wp_resolve)
6472 					newpte = pte_swp_clear_uffd_wp(newpte);
6473 				set_huge_pte_at(mm, address, ptep, newpte);
6474 				pages++;
6475 			}
6476 			spin_unlock(ptl);
6477 			continue;
6478 		}
6479 		if (unlikely(pte_marker_uffd_wp(pte))) {
6480 			/*
6481 			 * This is changing a non-present pte into a none pte,
6482 			 * no need for huge_ptep_modify_prot_start/commit().
6483 			 */
6484 			if (uffd_wp_resolve)
6485 				huge_pte_clear(mm, address, ptep, psize);
6486 		}
6487 		if (!huge_pte_none(pte)) {
6488 			pte_t old_pte;
6489 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6490 
6491 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6492 			pte = huge_pte_modify(old_pte, newprot);
6493 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6494 			if (uffd_wp)
6495 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6496 			else if (uffd_wp_resolve)
6497 				pte = huge_pte_clear_uffd_wp(pte);
6498 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6499 			pages++;
6500 		} else {
6501 			/* None pte */
6502 			if (unlikely(uffd_wp))
6503 				/* Safe to modify directly (none->non-present). */
6504 				set_huge_pte_at(mm, address, ptep,
6505 						make_pte_marker(PTE_MARKER_UFFD_WP));
6506 		}
6507 		spin_unlock(ptl);
6508 	}
6509 	/*
6510 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6511 	 * may have cleared our pud entry and done put_page on the page table:
6512 	 * once we release i_mmap_rwsem, another task can do the final put_page
6513 	 * and that page table be reused and filled with junk.  If we actually
6514 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6515 	 */
6516 	if (shared_pmd)
6517 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6518 	else
6519 		flush_hugetlb_tlb_range(vma, start, end);
6520 	/*
6521 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6522 	 * page table protection not changing it to point to a new page.
6523 	 *
6524 	 * See Documentation/mm/mmu_notifier.rst
6525 	 */
6526 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6527 	hugetlb_vma_unlock_write(vma);
6528 	mmu_notifier_invalidate_range_end(&range);
6529 
6530 	return pages << h->order;
6531 }
6532 
6533 /* Return true if reservation was successful, false otherwise.  */
6534 bool hugetlb_reserve_pages(struct inode *inode,
6535 					long from, long to,
6536 					struct vm_area_struct *vma,
6537 					vm_flags_t vm_flags)
6538 {
6539 	long chg, add = -1;
6540 	struct hstate *h = hstate_inode(inode);
6541 	struct hugepage_subpool *spool = subpool_inode(inode);
6542 	struct resv_map *resv_map;
6543 	struct hugetlb_cgroup *h_cg = NULL;
6544 	long gbl_reserve, regions_needed = 0;
6545 
6546 	/* This should never happen */
6547 	if (from > to) {
6548 		VM_WARN(1, "%s called with a negative range\n", __func__);
6549 		return false;
6550 	}
6551 
6552 	/*
6553 	 * vma specific semaphore used for pmd sharing synchronization
6554 	 */
6555 	hugetlb_vma_lock_alloc(vma);
6556 
6557 	/*
6558 	 * Only apply hugepage reservation if asked. At fault time, an
6559 	 * attempt will be made for VM_NORESERVE to allocate a page
6560 	 * without using reserves
6561 	 */
6562 	if (vm_flags & VM_NORESERVE)
6563 		return true;
6564 
6565 	/*
6566 	 * Shared mappings base their reservation on the number of pages that
6567 	 * are already allocated on behalf of the file. Private mappings need
6568 	 * to reserve the full area even if read-only as mprotect() may be
6569 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6570 	 */
6571 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6572 		/*
6573 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6574 		 * called for inodes for which resv_maps were created (see
6575 		 * hugetlbfs_get_inode).
6576 		 */
6577 		resv_map = inode_resv_map(inode);
6578 
6579 		chg = region_chg(resv_map, from, to, &regions_needed);
6580 	} else {
6581 		/* Private mapping. */
6582 		resv_map = resv_map_alloc();
6583 		if (!resv_map)
6584 			goto out_err;
6585 
6586 		chg = to - from;
6587 
6588 		set_vma_resv_map(vma, resv_map);
6589 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6590 	}
6591 
6592 	if (chg < 0)
6593 		goto out_err;
6594 
6595 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6596 				chg * pages_per_huge_page(h), &h_cg) < 0)
6597 		goto out_err;
6598 
6599 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6600 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6601 		 * of the resv_map.
6602 		 */
6603 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6604 	}
6605 
6606 	/*
6607 	 * There must be enough pages in the subpool for the mapping. If
6608 	 * the subpool has a minimum size, there may be some global
6609 	 * reservations already in place (gbl_reserve).
6610 	 */
6611 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6612 	if (gbl_reserve < 0)
6613 		goto out_uncharge_cgroup;
6614 
6615 	/*
6616 	 * Check enough hugepages are available for the reservation.
6617 	 * Hand the pages back to the subpool if there are not
6618 	 */
6619 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6620 		goto out_put_pages;
6621 
6622 	/*
6623 	 * Account for the reservations made. Shared mappings record regions
6624 	 * that have reservations as they are shared by multiple VMAs.
6625 	 * When the last VMA disappears, the region map says how much
6626 	 * the reservation was and the page cache tells how much of
6627 	 * the reservation was consumed. Private mappings are per-VMA and
6628 	 * only the consumed reservations are tracked. When the VMA
6629 	 * disappears, the original reservation is the VMA size and the
6630 	 * consumed reservations are stored in the map. Hence, nothing
6631 	 * else has to be done for private mappings here
6632 	 */
6633 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6634 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6635 
6636 		if (unlikely(add < 0)) {
6637 			hugetlb_acct_memory(h, -gbl_reserve);
6638 			goto out_put_pages;
6639 		} else if (unlikely(chg > add)) {
6640 			/*
6641 			 * pages in this range were added to the reserve
6642 			 * map between region_chg and region_add.  This
6643 			 * indicates a race with alloc_huge_page.  Adjust
6644 			 * the subpool and reserve counts modified above
6645 			 * based on the difference.
6646 			 */
6647 			long rsv_adjust;
6648 
6649 			/*
6650 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6651 			 * reference to h_cg->css. See comment below for detail.
6652 			 */
6653 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6654 				hstate_index(h),
6655 				(chg - add) * pages_per_huge_page(h), h_cg);
6656 
6657 			rsv_adjust = hugepage_subpool_put_pages(spool,
6658 								chg - add);
6659 			hugetlb_acct_memory(h, -rsv_adjust);
6660 		} else if (h_cg) {
6661 			/*
6662 			 * The file_regions will hold their own reference to
6663 			 * h_cg->css. So we should release the reference held
6664 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6665 			 * done.
6666 			 */
6667 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6668 		}
6669 	}
6670 	return true;
6671 
6672 out_put_pages:
6673 	/* put back original number of pages, chg */
6674 	(void)hugepage_subpool_put_pages(spool, chg);
6675 out_uncharge_cgroup:
6676 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6677 					    chg * pages_per_huge_page(h), h_cg);
6678 out_err:
6679 	hugetlb_vma_lock_free(vma);
6680 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6681 		/* Only call region_abort if the region_chg succeeded but the
6682 		 * region_add failed or didn't run.
6683 		 */
6684 		if (chg >= 0 && add < 0)
6685 			region_abort(resv_map, from, to, regions_needed);
6686 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6687 		kref_put(&resv_map->refs, resv_map_release);
6688 	return false;
6689 }
6690 
6691 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6692 								long freed)
6693 {
6694 	struct hstate *h = hstate_inode(inode);
6695 	struct resv_map *resv_map = inode_resv_map(inode);
6696 	long chg = 0;
6697 	struct hugepage_subpool *spool = subpool_inode(inode);
6698 	long gbl_reserve;
6699 
6700 	/*
6701 	 * Since this routine can be called in the evict inode path for all
6702 	 * hugetlbfs inodes, resv_map could be NULL.
6703 	 */
6704 	if (resv_map) {
6705 		chg = region_del(resv_map, start, end);
6706 		/*
6707 		 * region_del() can fail in the rare case where a region
6708 		 * must be split and another region descriptor can not be
6709 		 * allocated.  If end == LONG_MAX, it will not fail.
6710 		 */
6711 		if (chg < 0)
6712 			return chg;
6713 	}
6714 
6715 	spin_lock(&inode->i_lock);
6716 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6717 	spin_unlock(&inode->i_lock);
6718 
6719 	/*
6720 	 * If the subpool has a minimum size, the number of global
6721 	 * reservations to be released may be adjusted.
6722 	 *
6723 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6724 	 * won't go negative.
6725 	 */
6726 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6727 	hugetlb_acct_memory(h, -gbl_reserve);
6728 
6729 	return 0;
6730 }
6731 
6732 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6733 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6734 				struct vm_area_struct *vma,
6735 				unsigned long addr, pgoff_t idx)
6736 {
6737 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6738 				svma->vm_start;
6739 	unsigned long sbase = saddr & PUD_MASK;
6740 	unsigned long s_end = sbase + PUD_SIZE;
6741 
6742 	/* Allow segments to share if only one is marked locked */
6743 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6744 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6745 
6746 	/*
6747 	 * match the virtual addresses, permission and the alignment of the
6748 	 * page table page.
6749 	 *
6750 	 * Also, vma_lock (vm_private_data) is required for sharing.
6751 	 */
6752 	if (pmd_index(addr) != pmd_index(saddr) ||
6753 	    vm_flags != svm_flags ||
6754 	    !range_in_vma(svma, sbase, s_end) ||
6755 	    !svma->vm_private_data)
6756 		return 0;
6757 
6758 	return saddr;
6759 }
6760 
6761 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6762 {
6763 	unsigned long start = addr & PUD_MASK;
6764 	unsigned long end = start + PUD_SIZE;
6765 
6766 #ifdef CONFIG_USERFAULTFD
6767 	if (uffd_disable_huge_pmd_share(vma))
6768 		return false;
6769 #endif
6770 	/*
6771 	 * check on proper vm_flags and page table alignment
6772 	 */
6773 	if (!(vma->vm_flags & VM_MAYSHARE))
6774 		return false;
6775 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6776 		return false;
6777 	if (!range_in_vma(vma, start, end))
6778 		return false;
6779 	return true;
6780 }
6781 
6782 /*
6783  * Determine if start,end range within vma could be mapped by shared pmd.
6784  * If yes, adjust start and end to cover range associated with possible
6785  * shared pmd mappings.
6786  */
6787 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6788 				unsigned long *start, unsigned long *end)
6789 {
6790 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6791 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6792 
6793 	/*
6794 	 * vma needs to span at least one aligned PUD size, and the range
6795 	 * must be at least partially within in.
6796 	 */
6797 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6798 		(*end <= v_start) || (*start >= v_end))
6799 		return;
6800 
6801 	/* Extend the range to be PUD aligned for a worst case scenario */
6802 	if (*start > v_start)
6803 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6804 
6805 	if (*end < v_end)
6806 		*end = ALIGN(*end, PUD_SIZE);
6807 }
6808 
6809 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6810 {
6811 	return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6812 		vma->vm_private_data;
6813 }
6814 
6815 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6816 {
6817 	if (__vma_shareable_flags_pmd(vma)) {
6818 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6819 
6820 		down_read(&vma_lock->rw_sema);
6821 	}
6822 }
6823 
6824 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6825 {
6826 	if (__vma_shareable_flags_pmd(vma)) {
6827 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6828 
6829 		up_read(&vma_lock->rw_sema);
6830 	}
6831 }
6832 
6833 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6834 {
6835 	if (__vma_shareable_flags_pmd(vma)) {
6836 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6837 
6838 		down_write(&vma_lock->rw_sema);
6839 	}
6840 }
6841 
6842 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6843 {
6844 	if (__vma_shareable_flags_pmd(vma)) {
6845 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6846 
6847 		up_write(&vma_lock->rw_sema);
6848 	}
6849 }
6850 
6851 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6852 {
6853 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6854 
6855 	if (!__vma_shareable_flags_pmd(vma))
6856 		return 1;
6857 
6858 	return down_write_trylock(&vma_lock->rw_sema);
6859 }
6860 
6861 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6862 {
6863 	if (__vma_shareable_flags_pmd(vma)) {
6864 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6865 
6866 		lockdep_assert_held(&vma_lock->rw_sema);
6867 	}
6868 }
6869 
6870 void hugetlb_vma_lock_release(struct kref *kref)
6871 {
6872 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
6873 			struct hugetlb_vma_lock, refs);
6874 
6875 	kfree(vma_lock);
6876 }
6877 
6878 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6879 {
6880 	struct vm_area_struct *vma = vma_lock->vma;
6881 
6882 	/*
6883 	 * vma_lock structure may or not be released as a result of put,
6884 	 * it certainly will no longer be attached to vma so clear pointer.
6885 	 * Semaphore synchronizes access to vma_lock->vma field.
6886 	 */
6887 	vma_lock->vma = NULL;
6888 	vma->vm_private_data = NULL;
6889 	up_write(&vma_lock->rw_sema);
6890 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6891 }
6892 
6893 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6894 {
6895 	if (__vma_shareable_flags_pmd(vma)) {
6896 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6897 
6898 		__hugetlb_vma_unlock_write_put(vma_lock);
6899 	}
6900 }
6901 
6902 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6903 {
6904 	/*
6905 	 * Only present in sharable vmas.
6906 	 */
6907 	if (!vma || !__vma_shareable_flags_pmd(vma))
6908 		return;
6909 
6910 	if (vma->vm_private_data) {
6911 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6912 
6913 		down_write(&vma_lock->rw_sema);
6914 		__hugetlb_vma_unlock_write_put(vma_lock);
6915 	}
6916 }
6917 
6918 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6919 {
6920 	struct hugetlb_vma_lock *vma_lock;
6921 
6922 	/* Only establish in (flags) sharable vmas */
6923 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6924 		return;
6925 
6926 	/* Should never get here with non-NULL vm_private_data */
6927 	if (vma->vm_private_data)
6928 		return;
6929 
6930 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6931 	if (!vma_lock) {
6932 		/*
6933 		 * If we can not allocate structure, then vma can not
6934 		 * participate in pmd sharing.  This is only a possible
6935 		 * performance enhancement and memory saving issue.
6936 		 * However, the lock is also used to synchronize page
6937 		 * faults with truncation.  If the lock is not present,
6938 		 * unlikely races could leave pages in a file past i_size
6939 		 * until the file is removed.  Warn in the unlikely case of
6940 		 * allocation failure.
6941 		 */
6942 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
6943 		return;
6944 	}
6945 
6946 	kref_init(&vma_lock->refs);
6947 	init_rwsem(&vma_lock->rw_sema);
6948 	vma_lock->vma = vma;
6949 	vma->vm_private_data = vma_lock;
6950 }
6951 
6952 /*
6953  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6954  * and returns the corresponding pte. While this is not necessary for the
6955  * !shared pmd case because we can allocate the pmd later as well, it makes the
6956  * code much cleaner. pmd allocation is essential for the shared case because
6957  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6958  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6959  * bad pmd for sharing.
6960  */
6961 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6962 		      unsigned long addr, pud_t *pud)
6963 {
6964 	struct address_space *mapping = vma->vm_file->f_mapping;
6965 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6966 			vma->vm_pgoff;
6967 	struct vm_area_struct *svma;
6968 	unsigned long saddr;
6969 	pte_t *spte = NULL;
6970 	pte_t *pte;
6971 	spinlock_t *ptl;
6972 
6973 	i_mmap_lock_read(mapping);
6974 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6975 		if (svma == vma)
6976 			continue;
6977 
6978 		saddr = page_table_shareable(svma, vma, addr, idx);
6979 		if (saddr) {
6980 			spte = huge_pte_offset(svma->vm_mm, saddr,
6981 					       vma_mmu_pagesize(svma));
6982 			if (spte) {
6983 				get_page(virt_to_page(spte));
6984 				break;
6985 			}
6986 		}
6987 	}
6988 
6989 	if (!spte)
6990 		goto out;
6991 
6992 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6993 	if (pud_none(*pud)) {
6994 		pud_populate(mm, pud,
6995 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6996 		mm_inc_nr_pmds(mm);
6997 	} else {
6998 		put_page(virt_to_page(spte));
6999 	}
7000 	spin_unlock(ptl);
7001 out:
7002 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7003 	i_mmap_unlock_read(mapping);
7004 	return pte;
7005 }
7006 
7007 /*
7008  * unmap huge page backed by shared pte.
7009  *
7010  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7011  * indicated by page_count > 1, unmap is achieved by clearing pud and
7012  * decrementing the ref count. If count == 1, the pte page is not shared.
7013  *
7014  * Called with page table lock held.
7015  *
7016  * returns: 1 successfully unmapped a shared pte page
7017  *	    0 the underlying pte page is not shared, or it is the last user
7018  */
7019 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7020 					unsigned long addr, pte_t *ptep)
7021 {
7022 	pgd_t *pgd = pgd_offset(mm, addr);
7023 	p4d_t *p4d = p4d_offset(pgd, addr);
7024 	pud_t *pud = pud_offset(p4d, addr);
7025 
7026 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7027 	hugetlb_vma_assert_locked(vma);
7028 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7029 	if (page_count(virt_to_page(ptep)) == 1)
7030 		return 0;
7031 
7032 	pud_clear(pud);
7033 	put_page(virt_to_page(ptep));
7034 	mm_dec_nr_pmds(mm);
7035 	return 1;
7036 }
7037 
7038 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7039 
7040 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7041 {
7042 }
7043 
7044 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7045 {
7046 }
7047 
7048 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7049 {
7050 }
7051 
7052 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7053 {
7054 }
7055 
7056 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7057 {
7058 	return 1;
7059 }
7060 
7061 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7062 {
7063 }
7064 
7065 void hugetlb_vma_lock_release(struct kref *kref)
7066 {
7067 }
7068 
7069 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7070 {
7071 }
7072 
7073 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7074 {
7075 }
7076 
7077 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7078 {
7079 }
7080 
7081 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7082 		      unsigned long addr, pud_t *pud)
7083 {
7084 	return NULL;
7085 }
7086 
7087 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7088 				unsigned long addr, pte_t *ptep)
7089 {
7090 	return 0;
7091 }
7092 
7093 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7094 				unsigned long *start, unsigned long *end)
7095 {
7096 }
7097 
7098 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7099 {
7100 	return false;
7101 }
7102 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7103 
7104 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7105 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7106 			unsigned long addr, unsigned long sz)
7107 {
7108 	pgd_t *pgd;
7109 	p4d_t *p4d;
7110 	pud_t *pud;
7111 	pte_t *pte = NULL;
7112 
7113 	pgd = pgd_offset(mm, addr);
7114 	p4d = p4d_alloc(mm, pgd, addr);
7115 	if (!p4d)
7116 		return NULL;
7117 	pud = pud_alloc(mm, p4d, addr);
7118 	if (pud) {
7119 		if (sz == PUD_SIZE) {
7120 			pte = (pte_t *)pud;
7121 		} else {
7122 			BUG_ON(sz != PMD_SIZE);
7123 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7124 				pte = huge_pmd_share(mm, vma, addr, pud);
7125 			else
7126 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7127 		}
7128 	}
7129 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7130 
7131 	return pte;
7132 }
7133 
7134 /*
7135  * huge_pte_offset() - Walk the page table to resolve the hugepage
7136  * entry at address @addr
7137  *
7138  * Return: Pointer to page table entry (PUD or PMD) for
7139  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7140  * size @sz doesn't match the hugepage size at this level of the page
7141  * table.
7142  */
7143 pte_t *huge_pte_offset(struct mm_struct *mm,
7144 		       unsigned long addr, unsigned long sz)
7145 {
7146 	pgd_t *pgd;
7147 	p4d_t *p4d;
7148 	pud_t *pud;
7149 	pmd_t *pmd;
7150 
7151 	pgd = pgd_offset(mm, addr);
7152 	if (!pgd_present(*pgd))
7153 		return NULL;
7154 	p4d = p4d_offset(pgd, addr);
7155 	if (!p4d_present(*p4d))
7156 		return NULL;
7157 
7158 	pud = pud_offset(p4d, addr);
7159 	if (sz == PUD_SIZE)
7160 		/* must be pud huge, non-present or none */
7161 		return (pte_t *)pud;
7162 	if (!pud_present(*pud))
7163 		return NULL;
7164 	/* must have a valid entry and size to go further */
7165 
7166 	pmd = pmd_offset(pud, addr);
7167 	/* must be pmd huge, non-present or none */
7168 	return (pte_t *)pmd;
7169 }
7170 
7171 /*
7172  * Return a mask that can be used to update an address to the last huge
7173  * page in a page table page mapping size.  Used to skip non-present
7174  * page table entries when linearly scanning address ranges.  Architectures
7175  * with unique huge page to page table relationships can define their own
7176  * version of this routine.
7177  */
7178 unsigned long hugetlb_mask_last_page(struct hstate *h)
7179 {
7180 	unsigned long hp_size = huge_page_size(h);
7181 
7182 	if (hp_size == PUD_SIZE)
7183 		return P4D_SIZE - PUD_SIZE;
7184 	else if (hp_size == PMD_SIZE)
7185 		return PUD_SIZE - PMD_SIZE;
7186 	else
7187 		return 0UL;
7188 }
7189 
7190 #else
7191 
7192 /* See description above.  Architectures can provide their own version. */
7193 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7194 {
7195 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7196 	if (huge_page_size(h) == PMD_SIZE)
7197 		return PUD_SIZE - PMD_SIZE;
7198 #endif
7199 	return 0UL;
7200 }
7201 
7202 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7203 
7204 /*
7205  * These functions are overwritable if your architecture needs its own
7206  * behavior.
7207  */
7208 struct page * __weak
7209 follow_huge_addr(struct mm_struct *mm, unsigned long address,
7210 			      int write)
7211 {
7212 	return ERR_PTR(-EINVAL);
7213 }
7214 
7215 struct page * __weak
7216 follow_huge_pd(struct vm_area_struct *vma,
7217 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
7218 {
7219 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
7220 	return NULL;
7221 }
7222 
7223 struct page * __weak
7224 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
7225 {
7226 	struct hstate *h = hstate_vma(vma);
7227 	struct mm_struct *mm = vma->vm_mm;
7228 	struct page *page = NULL;
7229 	spinlock_t *ptl;
7230 	pte_t *ptep, pte;
7231 
7232 	/*
7233 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
7234 	 * follow_hugetlb_page().
7235 	 */
7236 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7237 		return NULL;
7238 
7239 retry:
7240 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
7241 	if (!ptep)
7242 		return NULL;
7243 
7244 	ptl = huge_pte_lock(h, mm, ptep);
7245 	pte = huge_ptep_get(ptep);
7246 	if (pte_present(pte)) {
7247 		page = pte_page(pte) +
7248 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
7249 		/*
7250 		 * try_grab_page() should always succeed here, because: a) we
7251 		 * hold the pmd (ptl) lock, and b) we've just checked that the
7252 		 * huge pmd (head) page is present in the page tables. The ptl
7253 		 * prevents the head page and tail pages from being rearranged
7254 		 * in any way. So this page must be available at this point,
7255 		 * unless the page refcount overflowed:
7256 		 */
7257 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7258 			page = NULL;
7259 			goto out;
7260 		}
7261 	} else {
7262 		if (is_hugetlb_entry_migration(pte)) {
7263 			spin_unlock(ptl);
7264 			__migration_entry_wait_huge(ptep, ptl);
7265 			goto retry;
7266 		}
7267 		/*
7268 		 * hwpoisoned entry is treated as no_page_table in
7269 		 * follow_page_mask().
7270 		 */
7271 	}
7272 out:
7273 	spin_unlock(ptl);
7274 	return page;
7275 }
7276 
7277 struct page * __weak
7278 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7279 		pud_t *pud, int flags)
7280 {
7281 	struct page *page = NULL;
7282 	spinlock_t *ptl;
7283 	pte_t pte;
7284 
7285 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7286 		return NULL;
7287 
7288 retry:
7289 	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7290 	if (!pud_huge(*pud))
7291 		goto out;
7292 	pte = huge_ptep_get((pte_t *)pud);
7293 	if (pte_present(pte)) {
7294 		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7295 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7296 			page = NULL;
7297 			goto out;
7298 		}
7299 	} else {
7300 		if (is_hugetlb_entry_migration(pte)) {
7301 			spin_unlock(ptl);
7302 			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7303 			goto retry;
7304 		}
7305 		/*
7306 		 * hwpoisoned entry is treated as no_page_table in
7307 		 * follow_page_mask().
7308 		 */
7309 	}
7310 out:
7311 	spin_unlock(ptl);
7312 	return page;
7313 }
7314 
7315 struct page * __weak
7316 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7317 {
7318 	if (flags & (FOLL_GET | FOLL_PIN))
7319 		return NULL;
7320 
7321 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7322 }
7323 
7324 int isolate_hugetlb(struct page *page, struct list_head *list)
7325 {
7326 	int ret = 0;
7327 
7328 	spin_lock_irq(&hugetlb_lock);
7329 	if (!PageHeadHuge(page) ||
7330 	    !HPageMigratable(page) ||
7331 	    !get_page_unless_zero(page)) {
7332 		ret = -EBUSY;
7333 		goto unlock;
7334 	}
7335 	ClearHPageMigratable(page);
7336 	list_move_tail(&page->lru, list);
7337 unlock:
7338 	spin_unlock_irq(&hugetlb_lock);
7339 	return ret;
7340 }
7341 
7342 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7343 {
7344 	int ret = 0;
7345 
7346 	*hugetlb = false;
7347 	spin_lock_irq(&hugetlb_lock);
7348 	if (PageHeadHuge(page)) {
7349 		*hugetlb = true;
7350 		if (HPageFreed(page))
7351 			ret = 0;
7352 		else if (HPageMigratable(page))
7353 			ret = get_page_unless_zero(page);
7354 		else
7355 			ret = -EBUSY;
7356 	}
7357 	spin_unlock_irq(&hugetlb_lock);
7358 	return ret;
7359 }
7360 
7361 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7362 {
7363 	int ret;
7364 
7365 	spin_lock_irq(&hugetlb_lock);
7366 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7367 	spin_unlock_irq(&hugetlb_lock);
7368 	return ret;
7369 }
7370 
7371 void putback_active_hugepage(struct page *page)
7372 {
7373 	spin_lock_irq(&hugetlb_lock);
7374 	SetHPageMigratable(page);
7375 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7376 	spin_unlock_irq(&hugetlb_lock);
7377 	put_page(page);
7378 }
7379 
7380 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7381 {
7382 	struct hstate *h = page_hstate(oldpage);
7383 
7384 	hugetlb_cgroup_migrate(oldpage, newpage);
7385 	set_page_owner_migrate_reason(newpage, reason);
7386 
7387 	/*
7388 	 * transfer temporary state of the new huge page. This is
7389 	 * reverse to other transitions because the newpage is going to
7390 	 * be final while the old one will be freed so it takes over
7391 	 * the temporary status.
7392 	 *
7393 	 * Also note that we have to transfer the per-node surplus state
7394 	 * here as well otherwise the global surplus count will not match
7395 	 * the per-node's.
7396 	 */
7397 	if (HPageTemporary(newpage)) {
7398 		int old_nid = page_to_nid(oldpage);
7399 		int new_nid = page_to_nid(newpage);
7400 
7401 		SetHPageTemporary(oldpage);
7402 		ClearHPageTemporary(newpage);
7403 
7404 		/*
7405 		 * There is no need to transfer the per-node surplus state
7406 		 * when we do not cross the node.
7407 		 */
7408 		if (new_nid == old_nid)
7409 			return;
7410 		spin_lock_irq(&hugetlb_lock);
7411 		if (h->surplus_huge_pages_node[old_nid]) {
7412 			h->surplus_huge_pages_node[old_nid]--;
7413 			h->surplus_huge_pages_node[new_nid]++;
7414 		}
7415 		spin_unlock_irq(&hugetlb_lock);
7416 	}
7417 }
7418 
7419 /*
7420  * This function will unconditionally remove all the shared pmd pgtable entries
7421  * within the specific vma for a hugetlbfs memory range.
7422  */
7423 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7424 {
7425 	struct hstate *h = hstate_vma(vma);
7426 	unsigned long sz = huge_page_size(h);
7427 	struct mm_struct *mm = vma->vm_mm;
7428 	struct mmu_notifier_range range;
7429 	unsigned long address, start, end;
7430 	spinlock_t *ptl;
7431 	pte_t *ptep;
7432 
7433 	if (!(vma->vm_flags & VM_MAYSHARE))
7434 		return;
7435 
7436 	start = ALIGN(vma->vm_start, PUD_SIZE);
7437 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7438 
7439 	if (start >= end)
7440 		return;
7441 
7442 	flush_cache_range(vma, start, end);
7443 	/*
7444 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7445 	 * we have already done the PUD_SIZE alignment.
7446 	 */
7447 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7448 				start, end);
7449 	mmu_notifier_invalidate_range_start(&range);
7450 	hugetlb_vma_lock_write(vma);
7451 	i_mmap_lock_write(vma->vm_file->f_mapping);
7452 	for (address = start; address < end; address += PUD_SIZE) {
7453 		ptep = huge_pte_offset(mm, address, sz);
7454 		if (!ptep)
7455 			continue;
7456 		ptl = huge_pte_lock(h, mm, ptep);
7457 		huge_pmd_unshare(mm, vma, address, ptep);
7458 		spin_unlock(ptl);
7459 	}
7460 	flush_hugetlb_tlb_range(vma, start, end);
7461 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7462 	hugetlb_vma_unlock_write(vma);
7463 	/*
7464 	 * No need to call mmu_notifier_invalidate_range(), see
7465 	 * Documentation/mm/mmu_notifier.rst.
7466 	 */
7467 	mmu_notifier_invalidate_range_end(&range);
7468 }
7469 
7470 #ifdef CONFIG_CMA
7471 static bool cma_reserve_called __initdata;
7472 
7473 static int __init cmdline_parse_hugetlb_cma(char *p)
7474 {
7475 	int nid, count = 0;
7476 	unsigned long tmp;
7477 	char *s = p;
7478 
7479 	while (*s) {
7480 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7481 			break;
7482 
7483 		if (s[count] == ':') {
7484 			if (tmp >= MAX_NUMNODES)
7485 				break;
7486 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7487 
7488 			s += count + 1;
7489 			tmp = memparse(s, &s);
7490 			hugetlb_cma_size_in_node[nid] = tmp;
7491 			hugetlb_cma_size += tmp;
7492 
7493 			/*
7494 			 * Skip the separator if have one, otherwise
7495 			 * break the parsing.
7496 			 */
7497 			if (*s == ',')
7498 				s++;
7499 			else
7500 				break;
7501 		} else {
7502 			hugetlb_cma_size = memparse(p, &p);
7503 			break;
7504 		}
7505 	}
7506 
7507 	return 0;
7508 }
7509 
7510 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7511 
7512 void __init hugetlb_cma_reserve(int order)
7513 {
7514 	unsigned long size, reserved, per_node;
7515 	bool node_specific_cma_alloc = false;
7516 	int nid;
7517 
7518 	cma_reserve_called = true;
7519 
7520 	if (!hugetlb_cma_size)
7521 		return;
7522 
7523 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7524 		if (hugetlb_cma_size_in_node[nid] == 0)
7525 			continue;
7526 
7527 		if (!node_online(nid)) {
7528 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7529 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7530 			hugetlb_cma_size_in_node[nid] = 0;
7531 			continue;
7532 		}
7533 
7534 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7535 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7536 				nid, (PAGE_SIZE << order) / SZ_1M);
7537 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7538 			hugetlb_cma_size_in_node[nid] = 0;
7539 		} else {
7540 			node_specific_cma_alloc = true;
7541 		}
7542 	}
7543 
7544 	/* Validate the CMA size again in case some invalid nodes specified. */
7545 	if (!hugetlb_cma_size)
7546 		return;
7547 
7548 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7549 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7550 			(PAGE_SIZE << order) / SZ_1M);
7551 		hugetlb_cma_size = 0;
7552 		return;
7553 	}
7554 
7555 	if (!node_specific_cma_alloc) {
7556 		/*
7557 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7558 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7559 		 */
7560 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7561 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7562 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7563 	}
7564 
7565 	reserved = 0;
7566 	for_each_online_node(nid) {
7567 		int res;
7568 		char name[CMA_MAX_NAME];
7569 
7570 		if (node_specific_cma_alloc) {
7571 			if (hugetlb_cma_size_in_node[nid] == 0)
7572 				continue;
7573 
7574 			size = hugetlb_cma_size_in_node[nid];
7575 		} else {
7576 			size = min(per_node, hugetlb_cma_size - reserved);
7577 		}
7578 
7579 		size = round_up(size, PAGE_SIZE << order);
7580 
7581 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7582 		/*
7583 		 * Note that 'order per bit' is based on smallest size that
7584 		 * may be returned to CMA allocator in the case of
7585 		 * huge page demotion.
7586 		 */
7587 		res = cma_declare_contiguous_nid(0, size, 0,
7588 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7589 						 0, false, name,
7590 						 &hugetlb_cma[nid], nid);
7591 		if (res) {
7592 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7593 				res, nid);
7594 			continue;
7595 		}
7596 
7597 		reserved += size;
7598 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7599 			size / SZ_1M, nid);
7600 
7601 		if (reserved >= hugetlb_cma_size)
7602 			break;
7603 	}
7604 
7605 	if (!reserved)
7606 		/*
7607 		 * hugetlb_cma_size is used to determine if allocations from
7608 		 * cma are possible.  Set to zero if no cma regions are set up.
7609 		 */
7610 		hugetlb_cma_size = 0;
7611 }
7612 
7613 static void __init hugetlb_cma_check(void)
7614 {
7615 	if (!hugetlb_cma_size || cma_reserve_called)
7616 		return;
7617 
7618 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7619 }
7620 
7621 #endif /* CONFIG_CMA */
7622