xref: /openbmc/linux/mm/hugetlb.c (revision 90099433)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28 
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32 
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40 
41 __initdata LIST_HEAD(huge_boot_pages);
42 
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47 
48 #define for_each_hstate(h) \
49 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50 
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55 
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59 
60 	spin_unlock(&spool->lock);
61 
62 	/* If no pages are used, and no other handles to the subpool
63 	 * remain, free the subpool the subpool remain */
64 	if (free)
65 		kfree(spool);
66 }
67 
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 	struct hugepage_subpool *spool;
71 
72 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 	if (!spool)
74 		return NULL;
75 
76 	spin_lock_init(&spool->lock);
77 	spool->count = 1;
78 	spool->max_hpages = nr_blocks;
79 	spool->used_hpages = 0;
80 
81 	return spool;
82 }
83 
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 	spin_lock(&spool->lock);
87 	BUG_ON(!spool->count);
88 	spool->count--;
89 	unlock_or_release_subpool(spool);
90 }
91 
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 				      long delta)
94 {
95 	int ret = 0;
96 
97 	if (!spool)
98 		return 0;
99 
100 	spin_lock(&spool->lock);
101 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 		spool->used_hpages += delta;
103 	} else {
104 		ret = -ENOMEM;
105 	}
106 	spin_unlock(&spool->lock);
107 
108 	return ret;
109 }
110 
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 				       long delta)
113 {
114 	if (!spool)
115 		return;
116 
117 	spin_lock(&spool->lock);
118 	spool->used_hpages -= delta;
119 	/* If hugetlbfs_put_super couldn't free spool due to
120 	* an outstanding quota reference, free it now. */
121 	unlock_or_release_subpool(spool);
122 }
123 
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 	return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128 
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 	return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133 
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *	down_write(&mm->mmap_sem);
144  * or
145  *	down_read(&mm->mmap_sem);
146  *	mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149 	struct list_head link;
150 	long from;
151 	long to;
152 };
153 
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 	struct file_region *rg, *nrg, *trg;
157 
158 	/* Locate the region we are either in or before. */
159 	list_for_each_entry(rg, head, link)
160 		if (f <= rg->to)
161 			break;
162 
163 	/* Round our left edge to the current segment if it encloses us. */
164 	if (f > rg->from)
165 		f = rg->from;
166 
167 	/* Check for and consume any regions we now overlap with. */
168 	nrg = rg;
169 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 		if (&rg->link == head)
171 			break;
172 		if (rg->from > t)
173 			break;
174 
175 		/* If this area reaches higher then extend our area to
176 		 * include it completely.  If this is not the first area
177 		 * which we intend to reuse, free it. */
178 		if (rg->to > t)
179 			t = rg->to;
180 		if (rg != nrg) {
181 			list_del(&rg->link);
182 			kfree(rg);
183 		}
184 	}
185 	nrg->from = f;
186 	nrg->to = t;
187 	return 0;
188 }
189 
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 	struct file_region *rg, *nrg;
193 	long chg = 0;
194 
195 	/* Locate the region we are before or in. */
196 	list_for_each_entry(rg, head, link)
197 		if (f <= rg->to)
198 			break;
199 
200 	/* If we are below the current region then a new region is required.
201 	 * Subtle, allocate a new region at the position but make it zero
202 	 * size such that we can guarantee to record the reservation. */
203 	if (&rg->link == head || t < rg->from) {
204 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 		if (!nrg)
206 			return -ENOMEM;
207 		nrg->from = f;
208 		nrg->to   = f;
209 		INIT_LIST_HEAD(&nrg->link);
210 		list_add(&nrg->link, rg->link.prev);
211 
212 		return t - f;
213 	}
214 
215 	/* Round our left edge to the current segment if it encloses us. */
216 	if (f > rg->from)
217 		f = rg->from;
218 	chg = t - f;
219 
220 	/* Check for and consume any regions we now overlap with. */
221 	list_for_each_entry(rg, rg->link.prev, link) {
222 		if (&rg->link == head)
223 			break;
224 		if (rg->from > t)
225 			return chg;
226 
227 		/* We overlap with this area, if it extends further than
228 		 * us then we must extend ourselves.  Account for its
229 		 * existing reservation. */
230 		if (rg->to > t) {
231 			chg += rg->to - t;
232 			t = rg->to;
233 		}
234 		chg -= rg->to - rg->from;
235 	}
236 	return chg;
237 }
238 
239 static long region_truncate(struct list_head *head, long end)
240 {
241 	struct file_region *rg, *trg;
242 	long chg = 0;
243 
244 	/* Locate the region we are either in or before. */
245 	list_for_each_entry(rg, head, link)
246 		if (end <= rg->to)
247 			break;
248 	if (&rg->link == head)
249 		return 0;
250 
251 	/* If we are in the middle of a region then adjust it. */
252 	if (end > rg->from) {
253 		chg = rg->to - end;
254 		rg->to = end;
255 		rg = list_entry(rg->link.next, typeof(*rg), link);
256 	}
257 
258 	/* Drop any remaining regions. */
259 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 		if (&rg->link == head)
261 			break;
262 		chg += rg->to - rg->from;
263 		list_del(&rg->link);
264 		kfree(rg);
265 	}
266 	return chg;
267 }
268 
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 	struct file_region *rg;
272 	long chg = 0;
273 
274 	/* Locate each segment we overlap with, and count that overlap. */
275 	list_for_each_entry(rg, head, link) {
276 		int seg_from;
277 		int seg_to;
278 
279 		if (rg->to <= f)
280 			continue;
281 		if (rg->from >= t)
282 			break;
283 
284 		seg_from = max(rg->from, f);
285 		seg_to = min(rg->to, t);
286 
287 		chg += seg_to - seg_from;
288 	}
289 
290 	return chg;
291 }
292 
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 			struct vm_area_struct *vma, unsigned long address)
299 {
300 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 			(vma->vm_pgoff >> huge_page_order(h));
302 }
303 
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 				     unsigned long address)
306 {
307 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309 
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 	struct hstate *hstate;
317 
318 	if (!is_vm_hugetlb_page(vma))
319 		return PAGE_SIZE;
320 
321 	hstate = hstate_vma(vma);
322 
323 	return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326 
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 	return vma_kernel_pagesize(vma);
337 }
338 #endif
339 
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348 
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 	return (unsigned long)vma->vm_private_data;
371 }
372 
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 							unsigned long value)
375 {
376 	vma->vm_private_data = (void *)value;
377 }
378 
379 struct resv_map {
380 	struct kref refs;
381 	struct list_head regions;
382 };
383 
384 static struct resv_map *resv_map_alloc(void)
385 {
386 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 	if (!resv_map)
388 		return NULL;
389 
390 	kref_init(&resv_map->refs);
391 	INIT_LIST_HEAD(&resv_map->regions);
392 
393 	return resv_map;
394 }
395 
396 static void resv_map_release(struct kref *ref)
397 {
398 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399 
400 	/* Clear out any active regions before we release the map. */
401 	region_truncate(&resv_map->regions, 0);
402 	kfree(resv_map);
403 }
404 
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 	if (!(vma->vm_flags & VM_MAYSHARE))
409 		return (struct resv_map *)(get_vma_private_data(vma) &
410 							~HPAGE_RESV_MASK);
411 	return NULL;
412 }
413 
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 
419 	set_vma_private_data(vma, (get_vma_private_data(vma) &
420 				HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422 
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 
428 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430 
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 
435 	return (get_vma_private_data(vma) & flag) != 0;
436 }
437 
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 			struct vm_area_struct *vma)
441 {
442 	if (vma->vm_flags & VM_NORESERVE)
443 		return;
444 
445 	if (vma->vm_flags & VM_MAYSHARE) {
446 		/* Shared mappings always use reserves */
447 		h->resv_huge_pages--;
448 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 		/*
450 		 * Only the process that called mmap() has reserves for
451 		 * private mappings.
452 		 */
453 		h->resv_huge_pages--;
454 	}
455 }
456 
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 	if (!(vma->vm_flags & VM_MAYSHARE))
462 		vma->vm_private_data = (void *)0;
463 }
464 
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468 	if (vma->vm_flags & VM_MAYSHARE)
469 		return 1;
470 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 		return 1;
472 	return 0;
473 }
474 
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477 	int i;
478 	struct hstate *h = page_hstate(src);
479 	struct page *dst_base = dst;
480 	struct page *src_base = src;
481 
482 	for (i = 0; i < pages_per_huge_page(h); ) {
483 		cond_resched();
484 		copy_highpage(dst, src);
485 
486 		i++;
487 		dst = mem_map_next(dst, dst_base, i);
488 		src = mem_map_next(src, src_base, i);
489 	}
490 }
491 
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494 	int i;
495 	struct hstate *h = page_hstate(src);
496 
497 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 		copy_gigantic_page(dst, src);
499 		return;
500 	}
501 
502 	might_sleep();
503 	for (i = 0; i < pages_per_huge_page(h); i++) {
504 		cond_resched();
505 		copy_highpage(dst + i, src + i);
506 	}
507 }
508 
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511 	int nid = page_to_nid(page);
512 	list_add(&page->lru, &h->hugepage_freelists[nid]);
513 	h->free_huge_pages++;
514 	h->free_huge_pages_node[nid]++;
515 }
516 
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519 	struct page *page;
520 
521 	if (list_empty(&h->hugepage_freelists[nid]))
522 		return NULL;
523 	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 	list_del(&page->lru);
525 	set_page_refcounted(page);
526 	h->free_huge_pages--;
527 	h->free_huge_pages_node[nid]--;
528 	return page;
529 }
530 
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 				struct vm_area_struct *vma,
533 				unsigned long address, int avoid_reserve)
534 {
535 	struct page *page = NULL;
536 	struct mempolicy *mpol;
537 	nodemask_t *nodemask;
538 	struct zonelist *zonelist;
539 	struct zone *zone;
540 	struct zoneref *z;
541 	unsigned int cpuset_mems_cookie;
542 
543 retry_cpuset:
544 	cpuset_mems_cookie = get_mems_allowed();
545 	zonelist = huge_zonelist(vma, address,
546 					htlb_alloc_mask, &mpol, &nodemask);
547 	/*
548 	 * A child process with MAP_PRIVATE mappings created by their parent
549 	 * have no page reserves. This check ensures that reservations are
550 	 * not "stolen". The child may still get SIGKILLed
551 	 */
552 	if (!vma_has_reserves(vma) &&
553 			h->free_huge_pages - h->resv_huge_pages == 0)
554 		goto err;
555 
556 	/* If reserves cannot be used, ensure enough pages are in the pool */
557 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 		goto err;
559 
560 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 						MAX_NR_ZONES - 1, nodemask) {
562 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 			if (page) {
565 				if (!avoid_reserve)
566 					decrement_hugepage_resv_vma(h, vma);
567 				break;
568 			}
569 		}
570 	}
571 
572 	mpol_cond_put(mpol);
573 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 		goto retry_cpuset;
575 	return page;
576 
577 err:
578 	mpol_cond_put(mpol);
579 	return NULL;
580 }
581 
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584 	int i;
585 
586 	VM_BUG_ON(h->order >= MAX_ORDER);
587 
588 	h->nr_huge_pages--;
589 	h->nr_huge_pages_node[page_to_nid(page)]--;
590 	for (i = 0; i < pages_per_huge_page(h); i++) {
591 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 				1 << PG_referenced | 1 << PG_dirty |
593 				1 << PG_active | 1 << PG_reserved |
594 				1 << PG_private | 1 << PG_writeback);
595 	}
596 	set_compound_page_dtor(page, NULL);
597 	set_page_refcounted(page);
598 	arch_release_hugepage(page);
599 	__free_pages(page, huge_page_order(h));
600 }
601 
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604 	struct hstate *h;
605 
606 	for_each_hstate(h) {
607 		if (huge_page_size(h) == size)
608 			return h;
609 	}
610 	return NULL;
611 }
612 
613 static void free_huge_page(struct page *page)
614 {
615 	/*
616 	 * Can't pass hstate in here because it is called from the
617 	 * compound page destructor.
618 	 */
619 	struct hstate *h = page_hstate(page);
620 	int nid = page_to_nid(page);
621 	struct hugepage_subpool *spool =
622 		(struct hugepage_subpool *)page_private(page);
623 
624 	set_page_private(page, 0);
625 	page->mapping = NULL;
626 	BUG_ON(page_count(page));
627 	BUG_ON(page_mapcount(page));
628 	INIT_LIST_HEAD(&page->lru);
629 
630 	spin_lock(&hugetlb_lock);
631 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 		update_and_free_page(h, page);
633 		h->surplus_huge_pages--;
634 		h->surplus_huge_pages_node[nid]--;
635 	} else {
636 		enqueue_huge_page(h, page);
637 	}
638 	spin_unlock(&hugetlb_lock);
639 	hugepage_subpool_put_pages(spool, 1);
640 }
641 
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
643 {
644 	set_compound_page_dtor(page, free_huge_page);
645 	spin_lock(&hugetlb_lock);
646 	h->nr_huge_pages++;
647 	h->nr_huge_pages_node[nid]++;
648 	spin_unlock(&hugetlb_lock);
649 	put_page(page); /* free it into the hugepage allocator */
650 }
651 
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653 {
654 	int i;
655 	int nr_pages = 1 << order;
656 	struct page *p = page + 1;
657 
658 	/* we rely on prep_new_huge_page to set the destructor */
659 	set_compound_order(page, order);
660 	__SetPageHead(page);
661 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 		__SetPageTail(p);
663 		set_page_count(p, 0);
664 		p->first_page = page;
665 	}
666 }
667 
668 int PageHuge(struct page *page)
669 {
670 	compound_page_dtor *dtor;
671 
672 	if (!PageCompound(page))
673 		return 0;
674 
675 	page = compound_head(page);
676 	dtor = get_compound_page_dtor(page);
677 
678 	return dtor == free_huge_page;
679 }
680 EXPORT_SYMBOL_GPL(PageHuge);
681 
682 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
683 {
684 	struct page *page;
685 
686 	if (h->order >= MAX_ORDER)
687 		return NULL;
688 
689 	page = alloc_pages_exact_node(nid,
690 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
691 						__GFP_REPEAT|__GFP_NOWARN,
692 		huge_page_order(h));
693 	if (page) {
694 		if (arch_prepare_hugepage(page)) {
695 			__free_pages(page, huge_page_order(h));
696 			return NULL;
697 		}
698 		prep_new_huge_page(h, page, nid);
699 	}
700 
701 	return page;
702 }
703 
704 /*
705  * common helper functions for hstate_next_node_to_{alloc|free}.
706  * We may have allocated or freed a huge page based on a different
707  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
708  * be outside of *nodes_allowed.  Ensure that we use an allowed
709  * node for alloc or free.
710  */
711 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
712 {
713 	nid = next_node(nid, *nodes_allowed);
714 	if (nid == MAX_NUMNODES)
715 		nid = first_node(*nodes_allowed);
716 	VM_BUG_ON(nid >= MAX_NUMNODES);
717 
718 	return nid;
719 }
720 
721 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
722 {
723 	if (!node_isset(nid, *nodes_allowed))
724 		nid = next_node_allowed(nid, nodes_allowed);
725 	return nid;
726 }
727 
728 /*
729  * returns the previously saved node ["this node"] from which to
730  * allocate a persistent huge page for the pool and advance the
731  * next node from which to allocate, handling wrap at end of node
732  * mask.
733  */
734 static int hstate_next_node_to_alloc(struct hstate *h,
735 					nodemask_t *nodes_allowed)
736 {
737 	int nid;
738 
739 	VM_BUG_ON(!nodes_allowed);
740 
741 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
742 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
743 
744 	return nid;
745 }
746 
747 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
748 {
749 	struct page *page;
750 	int start_nid;
751 	int next_nid;
752 	int ret = 0;
753 
754 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
755 	next_nid = start_nid;
756 
757 	do {
758 		page = alloc_fresh_huge_page_node(h, next_nid);
759 		if (page) {
760 			ret = 1;
761 			break;
762 		}
763 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
764 	} while (next_nid != start_nid);
765 
766 	if (ret)
767 		count_vm_event(HTLB_BUDDY_PGALLOC);
768 	else
769 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
770 
771 	return ret;
772 }
773 
774 /*
775  * helper for free_pool_huge_page() - return the previously saved
776  * node ["this node"] from which to free a huge page.  Advance the
777  * next node id whether or not we find a free huge page to free so
778  * that the next attempt to free addresses the next node.
779  */
780 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
781 {
782 	int nid;
783 
784 	VM_BUG_ON(!nodes_allowed);
785 
786 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
787 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
788 
789 	return nid;
790 }
791 
792 /*
793  * Free huge page from pool from next node to free.
794  * Attempt to keep persistent huge pages more or less
795  * balanced over allowed nodes.
796  * Called with hugetlb_lock locked.
797  */
798 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
799 							 bool acct_surplus)
800 {
801 	int start_nid;
802 	int next_nid;
803 	int ret = 0;
804 
805 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
806 	next_nid = start_nid;
807 
808 	do {
809 		/*
810 		 * If we're returning unused surplus pages, only examine
811 		 * nodes with surplus pages.
812 		 */
813 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
814 		    !list_empty(&h->hugepage_freelists[next_nid])) {
815 			struct page *page =
816 				list_entry(h->hugepage_freelists[next_nid].next,
817 					  struct page, lru);
818 			list_del(&page->lru);
819 			h->free_huge_pages--;
820 			h->free_huge_pages_node[next_nid]--;
821 			if (acct_surplus) {
822 				h->surplus_huge_pages--;
823 				h->surplus_huge_pages_node[next_nid]--;
824 			}
825 			update_and_free_page(h, page);
826 			ret = 1;
827 			break;
828 		}
829 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
830 	} while (next_nid != start_nid);
831 
832 	return ret;
833 }
834 
835 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
836 {
837 	struct page *page;
838 	unsigned int r_nid;
839 
840 	if (h->order >= MAX_ORDER)
841 		return NULL;
842 
843 	/*
844 	 * Assume we will successfully allocate the surplus page to
845 	 * prevent racing processes from causing the surplus to exceed
846 	 * overcommit
847 	 *
848 	 * This however introduces a different race, where a process B
849 	 * tries to grow the static hugepage pool while alloc_pages() is
850 	 * called by process A. B will only examine the per-node
851 	 * counters in determining if surplus huge pages can be
852 	 * converted to normal huge pages in adjust_pool_surplus(). A
853 	 * won't be able to increment the per-node counter, until the
854 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
855 	 * no more huge pages can be converted from surplus to normal
856 	 * state (and doesn't try to convert again). Thus, we have a
857 	 * case where a surplus huge page exists, the pool is grown, and
858 	 * the surplus huge page still exists after, even though it
859 	 * should just have been converted to a normal huge page. This
860 	 * does not leak memory, though, as the hugepage will be freed
861 	 * once it is out of use. It also does not allow the counters to
862 	 * go out of whack in adjust_pool_surplus() as we don't modify
863 	 * the node values until we've gotten the hugepage and only the
864 	 * per-node value is checked there.
865 	 */
866 	spin_lock(&hugetlb_lock);
867 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
868 		spin_unlock(&hugetlb_lock);
869 		return NULL;
870 	} else {
871 		h->nr_huge_pages++;
872 		h->surplus_huge_pages++;
873 	}
874 	spin_unlock(&hugetlb_lock);
875 
876 	if (nid == NUMA_NO_NODE)
877 		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
878 				   __GFP_REPEAT|__GFP_NOWARN,
879 				   huge_page_order(h));
880 	else
881 		page = alloc_pages_exact_node(nid,
882 			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
883 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
884 
885 	if (page && arch_prepare_hugepage(page)) {
886 		__free_pages(page, huge_page_order(h));
887 		page = NULL;
888 	}
889 
890 	spin_lock(&hugetlb_lock);
891 	if (page) {
892 		r_nid = page_to_nid(page);
893 		set_compound_page_dtor(page, free_huge_page);
894 		/*
895 		 * We incremented the global counters already
896 		 */
897 		h->nr_huge_pages_node[r_nid]++;
898 		h->surplus_huge_pages_node[r_nid]++;
899 		__count_vm_event(HTLB_BUDDY_PGALLOC);
900 	} else {
901 		h->nr_huge_pages--;
902 		h->surplus_huge_pages--;
903 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
904 	}
905 	spin_unlock(&hugetlb_lock);
906 
907 	return page;
908 }
909 
910 /*
911  * This allocation function is useful in the context where vma is irrelevant.
912  * E.g. soft-offlining uses this function because it only cares physical
913  * address of error page.
914  */
915 struct page *alloc_huge_page_node(struct hstate *h, int nid)
916 {
917 	struct page *page;
918 
919 	spin_lock(&hugetlb_lock);
920 	page = dequeue_huge_page_node(h, nid);
921 	spin_unlock(&hugetlb_lock);
922 
923 	if (!page)
924 		page = alloc_buddy_huge_page(h, nid);
925 
926 	return page;
927 }
928 
929 /*
930  * Increase the hugetlb pool such that it can accommodate a reservation
931  * of size 'delta'.
932  */
933 static int gather_surplus_pages(struct hstate *h, int delta)
934 {
935 	struct list_head surplus_list;
936 	struct page *page, *tmp;
937 	int ret, i;
938 	int needed, allocated;
939 	bool alloc_ok = true;
940 
941 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
942 	if (needed <= 0) {
943 		h->resv_huge_pages += delta;
944 		return 0;
945 	}
946 
947 	allocated = 0;
948 	INIT_LIST_HEAD(&surplus_list);
949 
950 	ret = -ENOMEM;
951 retry:
952 	spin_unlock(&hugetlb_lock);
953 	for (i = 0; i < needed; i++) {
954 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
955 		if (!page) {
956 			alloc_ok = false;
957 			break;
958 		}
959 		list_add(&page->lru, &surplus_list);
960 	}
961 	allocated += i;
962 
963 	/*
964 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
965 	 * because either resv_huge_pages or free_huge_pages may have changed.
966 	 */
967 	spin_lock(&hugetlb_lock);
968 	needed = (h->resv_huge_pages + delta) -
969 			(h->free_huge_pages + allocated);
970 	if (needed > 0) {
971 		if (alloc_ok)
972 			goto retry;
973 		/*
974 		 * We were not able to allocate enough pages to
975 		 * satisfy the entire reservation so we free what
976 		 * we've allocated so far.
977 		 */
978 		goto free;
979 	}
980 	/*
981 	 * The surplus_list now contains _at_least_ the number of extra pages
982 	 * needed to accommodate the reservation.  Add the appropriate number
983 	 * of pages to the hugetlb pool and free the extras back to the buddy
984 	 * allocator.  Commit the entire reservation here to prevent another
985 	 * process from stealing the pages as they are added to the pool but
986 	 * before they are reserved.
987 	 */
988 	needed += allocated;
989 	h->resv_huge_pages += delta;
990 	ret = 0;
991 
992 	/* Free the needed pages to the hugetlb pool */
993 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
994 		if ((--needed) < 0)
995 			break;
996 		list_del(&page->lru);
997 		/*
998 		 * This page is now managed by the hugetlb allocator and has
999 		 * no users -- drop the buddy allocator's reference.
1000 		 */
1001 		put_page_testzero(page);
1002 		VM_BUG_ON(page_count(page));
1003 		enqueue_huge_page(h, page);
1004 	}
1005 free:
1006 	spin_unlock(&hugetlb_lock);
1007 
1008 	/* Free unnecessary surplus pages to the buddy allocator */
1009 	if (!list_empty(&surplus_list)) {
1010 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1011 			list_del(&page->lru);
1012 			put_page(page);
1013 		}
1014 	}
1015 	spin_lock(&hugetlb_lock);
1016 
1017 	return ret;
1018 }
1019 
1020 /*
1021  * When releasing a hugetlb pool reservation, any surplus pages that were
1022  * allocated to satisfy the reservation must be explicitly freed if they were
1023  * never used.
1024  * Called with hugetlb_lock held.
1025  */
1026 static void return_unused_surplus_pages(struct hstate *h,
1027 					unsigned long unused_resv_pages)
1028 {
1029 	unsigned long nr_pages;
1030 
1031 	/* Uncommit the reservation */
1032 	h->resv_huge_pages -= unused_resv_pages;
1033 
1034 	/* Cannot return gigantic pages currently */
1035 	if (h->order >= MAX_ORDER)
1036 		return;
1037 
1038 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1039 
1040 	/*
1041 	 * We want to release as many surplus pages as possible, spread
1042 	 * evenly across all nodes with memory. Iterate across these nodes
1043 	 * until we can no longer free unreserved surplus pages. This occurs
1044 	 * when the nodes with surplus pages have no free pages.
1045 	 * free_pool_huge_page() will balance the the freed pages across the
1046 	 * on-line nodes with memory and will handle the hstate accounting.
1047 	 */
1048 	while (nr_pages--) {
1049 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1050 			break;
1051 	}
1052 }
1053 
1054 /*
1055  * Determine if the huge page at addr within the vma has an associated
1056  * reservation.  Where it does not we will need to logically increase
1057  * reservation and actually increase subpool usage before an allocation
1058  * can occur.  Where any new reservation would be required the
1059  * reservation change is prepared, but not committed.  Once the page
1060  * has been allocated from the subpool and instantiated the change should
1061  * be committed via vma_commit_reservation.  No action is required on
1062  * failure.
1063  */
1064 static long vma_needs_reservation(struct hstate *h,
1065 			struct vm_area_struct *vma, unsigned long addr)
1066 {
1067 	struct address_space *mapping = vma->vm_file->f_mapping;
1068 	struct inode *inode = mapping->host;
1069 
1070 	if (vma->vm_flags & VM_MAYSHARE) {
1071 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1072 		return region_chg(&inode->i_mapping->private_list,
1073 							idx, idx + 1);
1074 
1075 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1076 		return 1;
1077 
1078 	} else  {
1079 		long err;
1080 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1081 		struct resv_map *reservations = vma_resv_map(vma);
1082 
1083 		err = region_chg(&reservations->regions, idx, idx + 1);
1084 		if (err < 0)
1085 			return err;
1086 		return 0;
1087 	}
1088 }
1089 static void vma_commit_reservation(struct hstate *h,
1090 			struct vm_area_struct *vma, unsigned long addr)
1091 {
1092 	struct address_space *mapping = vma->vm_file->f_mapping;
1093 	struct inode *inode = mapping->host;
1094 
1095 	if (vma->vm_flags & VM_MAYSHARE) {
1096 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1097 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1098 
1099 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1100 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1101 		struct resv_map *reservations = vma_resv_map(vma);
1102 
1103 		/* Mark this page used in the map. */
1104 		region_add(&reservations->regions, idx, idx + 1);
1105 	}
1106 }
1107 
1108 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1109 				    unsigned long addr, int avoid_reserve)
1110 {
1111 	struct hugepage_subpool *spool = subpool_vma(vma);
1112 	struct hstate *h = hstate_vma(vma);
1113 	struct page *page;
1114 	long chg;
1115 
1116 	/*
1117 	 * Processes that did not create the mapping will have no
1118 	 * reserves and will not have accounted against subpool
1119 	 * limit. Check that the subpool limit can be made before
1120 	 * satisfying the allocation MAP_NORESERVE mappings may also
1121 	 * need pages and subpool limit allocated allocated if no reserve
1122 	 * mapping overlaps.
1123 	 */
1124 	chg = vma_needs_reservation(h, vma, addr);
1125 	if (chg < 0)
1126 		return ERR_PTR(-VM_FAULT_OOM);
1127 	if (chg)
1128 		if (hugepage_subpool_get_pages(spool, chg))
1129 			return ERR_PTR(-VM_FAULT_SIGBUS);
1130 
1131 	spin_lock(&hugetlb_lock);
1132 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1133 	spin_unlock(&hugetlb_lock);
1134 
1135 	if (!page) {
1136 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1137 		if (!page) {
1138 			hugepage_subpool_put_pages(spool, chg);
1139 			return ERR_PTR(-VM_FAULT_SIGBUS);
1140 		}
1141 	}
1142 
1143 	set_page_private(page, (unsigned long)spool);
1144 
1145 	vma_commit_reservation(h, vma, addr);
1146 
1147 	return page;
1148 }
1149 
1150 int __weak alloc_bootmem_huge_page(struct hstate *h)
1151 {
1152 	struct huge_bootmem_page *m;
1153 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1154 
1155 	while (nr_nodes) {
1156 		void *addr;
1157 
1158 		addr = __alloc_bootmem_node_nopanic(
1159 				NODE_DATA(hstate_next_node_to_alloc(h,
1160 						&node_states[N_HIGH_MEMORY])),
1161 				huge_page_size(h), huge_page_size(h), 0);
1162 
1163 		if (addr) {
1164 			/*
1165 			 * Use the beginning of the huge page to store the
1166 			 * huge_bootmem_page struct (until gather_bootmem
1167 			 * puts them into the mem_map).
1168 			 */
1169 			m = addr;
1170 			goto found;
1171 		}
1172 		nr_nodes--;
1173 	}
1174 	return 0;
1175 
1176 found:
1177 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1178 	/* Put them into a private list first because mem_map is not up yet */
1179 	list_add(&m->list, &huge_boot_pages);
1180 	m->hstate = h;
1181 	return 1;
1182 }
1183 
1184 static void prep_compound_huge_page(struct page *page, int order)
1185 {
1186 	if (unlikely(order > (MAX_ORDER - 1)))
1187 		prep_compound_gigantic_page(page, order);
1188 	else
1189 		prep_compound_page(page, order);
1190 }
1191 
1192 /* Put bootmem huge pages into the standard lists after mem_map is up */
1193 static void __init gather_bootmem_prealloc(void)
1194 {
1195 	struct huge_bootmem_page *m;
1196 
1197 	list_for_each_entry(m, &huge_boot_pages, list) {
1198 		struct hstate *h = m->hstate;
1199 		struct page *page;
1200 
1201 #ifdef CONFIG_HIGHMEM
1202 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1203 		free_bootmem_late((unsigned long)m,
1204 				  sizeof(struct huge_bootmem_page));
1205 #else
1206 		page = virt_to_page(m);
1207 #endif
1208 		__ClearPageReserved(page);
1209 		WARN_ON(page_count(page) != 1);
1210 		prep_compound_huge_page(page, h->order);
1211 		prep_new_huge_page(h, page, page_to_nid(page));
1212 		/*
1213 		 * If we had gigantic hugepages allocated at boot time, we need
1214 		 * to restore the 'stolen' pages to totalram_pages in order to
1215 		 * fix confusing memory reports from free(1) and another
1216 		 * side-effects, like CommitLimit going negative.
1217 		 */
1218 		if (h->order > (MAX_ORDER - 1))
1219 			totalram_pages += 1 << h->order;
1220 	}
1221 }
1222 
1223 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1224 {
1225 	unsigned long i;
1226 
1227 	for (i = 0; i < h->max_huge_pages; ++i) {
1228 		if (h->order >= MAX_ORDER) {
1229 			if (!alloc_bootmem_huge_page(h))
1230 				break;
1231 		} else if (!alloc_fresh_huge_page(h,
1232 					 &node_states[N_HIGH_MEMORY]))
1233 			break;
1234 	}
1235 	h->max_huge_pages = i;
1236 }
1237 
1238 static void __init hugetlb_init_hstates(void)
1239 {
1240 	struct hstate *h;
1241 
1242 	for_each_hstate(h) {
1243 		/* oversize hugepages were init'ed in early boot */
1244 		if (h->order < MAX_ORDER)
1245 			hugetlb_hstate_alloc_pages(h);
1246 	}
1247 }
1248 
1249 static char * __init memfmt(char *buf, unsigned long n)
1250 {
1251 	if (n >= (1UL << 30))
1252 		sprintf(buf, "%lu GB", n >> 30);
1253 	else if (n >= (1UL << 20))
1254 		sprintf(buf, "%lu MB", n >> 20);
1255 	else
1256 		sprintf(buf, "%lu KB", n >> 10);
1257 	return buf;
1258 }
1259 
1260 static void __init report_hugepages(void)
1261 {
1262 	struct hstate *h;
1263 
1264 	for_each_hstate(h) {
1265 		char buf[32];
1266 		printk(KERN_INFO "HugeTLB registered %s page size, "
1267 				 "pre-allocated %ld pages\n",
1268 			memfmt(buf, huge_page_size(h)),
1269 			h->free_huge_pages);
1270 	}
1271 }
1272 
1273 #ifdef CONFIG_HIGHMEM
1274 static void try_to_free_low(struct hstate *h, unsigned long count,
1275 						nodemask_t *nodes_allowed)
1276 {
1277 	int i;
1278 
1279 	if (h->order >= MAX_ORDER)
1280 		return;
1281 
1282 	for_each_node_mask(i, *nodes_allowed) {
1283 		struct page *page, *next;
1284 		struct list_head *freel = &h->hugepage_freelists[i];
1285 		list_for_each_entry_safe(page, next, freel, lru) {
1286 			if (count >= h->nr_huge_pages)
1287 				return;
1288 			if (PageHighMem(page))
1289 				continue;
1290 			list_del(&page->lru);
1291 			update_and_free_page(h, page);
1292 			h->free_huge_pages--;
1293 			h->free_huge_pages_node[page_to_nid(page)]--;
1294 		}
1295 	}
1296 }
1297 #else
1298 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1299 						nodemask_t *nodes_allowed)
1300 {
1301 }
1302 #endif
1303 
1304 /*
1305  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1306  * balanced by operating on them in a round-robin fashion.
1307  * Returns 1 if an adjustment was made.
1308  */
1309 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1310 				int delta)
1311 {
1312 	int start_nid, next_nid;
1313 	int ret = 0;
1314 
1315 	VM_BUG_ON(delta != -1 && delta != 1);
1316 
1317 	if (delta < 0)
1318 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1319 	else
1320 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1321 	next_nid = start_nid;
1322 
1323 	do {
1324 		int nid = next_nid;
1325 		if (delta < 0)  {
1326 			/*
1327 			 * To shrink on this node, there must be a surplus page
1328 			 */
1329 			if (!h->surplus_huge_pages_node[nid]) {
1330 				next_nid = hstate_next_node_to_alloc(h,
1331 								nodes_allowed);
1332 				continue;
1333 			}
1334 		}
1335 		if (delta > 0) {
1336 			/*
1337 			 * Surplus cannot exceed the total number of pages
1338 			 */
1339 			if (h->surplus_huge_pages_node[nid] >=
1340 						h->nr_huge_pages_node[nid]) {
1341 				next_nid = hstate_next_node_to_free(h,
1342 								nodes_allowed);
1343 				continue;
1344 			}
1345 		}
1346 
1347 		h->surplus_huge_pages += delta;
1348 		h->surplus_huge_pages_node[nid] += delta;
1349 		ret = 1;
1350 		break;
1351 	} while (next_nid != start_nid);
1352 
1353 	return ret;
1354 }
1355 
1356 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1357 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1358 						nodemask_t *nodes_allowed)
1359 {
1360 	unsigned long min_count, ret;
1361 
1362 	if (h->order >= MAX_ORDER)
1363 		return h->max_huge_pages;
1364 
1365 	/*
1366 	 * Increase the pool size
1367 	 * First take pages out of surplus state.  Then make up the
1368 	 * remaining difference by allocating fresh huge pages.
1369 	 *
1370 	 * We might race with alloc_buddy_huge_page() here and be unable
1371 	 * to convert a surplus huge page to a normal huge page. That is
1372 	 * not critical, though, it just means the overall size of the
1373 	 * pool might be one hugepage larger than it needs to be, but
1374 	 * within all the constraints specified by the sysctls.
1375 	 */
1376 	spin_lock(&hugetlb_lock);
1377 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1378 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1379 			break;
1380 	}
1381 
1382 	while (count > persistent_huge_pages(h)) {
1383 		/*
1384 		 * If this allocation races such that we no longer need the
1385 		 * page, free_huge_page will handle it by freeing the page
1386 		 * and reducing the surplus.
1387 		 */
1388 		spin_unlock(&hugetlb_lock);
1389 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1390 		spin_lock(&hugetlb_lock);
1391 		if (!ret)
1392 			goto out;
1393 
1394 		/* Bail for signals. Probably ctrl-c from user */
1395 		if (signal_pending(current))
1396 			goto out;
1397 	}
1398 
1399 	/*
1400 	 * Decrease the pool size
1401 	 * First return free pages to the buddy allocator (being careful
1402 	 * to keep enough around to satisfy reservations).  Then place
1403 	 * pages into surplus state as needed so the pool will shrink
1404 	 * to the desired size as pages become free.
1405 	 *
1406 	 * By placing pages into the surplus state independent of the
1407 	 * overcommit value, we are allowing the surplus pool size to
1408 	 * exceed overcommit. There are few sane options here. Since
1409 	 * alloc_buddy_huge_page() is checking the global counter,
1410 	 * though, we'll note that we're not allowed to exceed surplus
1411 	 * and won't grow the pool anywhere else. Not until one of the
1412 	 * sysctls are changed, or the surplus pages go out of use.
1413 	 */
1414 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1415 	min_count = max(count, min_count);
1416 	try_to_free_low(h, min_count, nodes_allowed);
1417 	while (min_count < persistent_huge_pages(h)) {
1418 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1419 			break;
1420 	}
1421 	while (count < persistent_huge_pages(h)) {
1422 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1423 			break;
1424 	}
1425 out:
1426 	ret = persistent_huge_pages(h);
1427 	spin_unlock(&hugetlb_lock);
1428 	return ret;
1429 }
1430 
1431 #define HSTATE_ATTR_RO(_name) \
1432 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1433 
1434 #define HSTATE_ATTR(_name) \
1435 	static struct kobj_attribute _name##_attr = \
1436 		__ATTR(_name, 0644, _name##_show, _name##_store)
1437 
1438 static struct kobject *hugepages_kobj;
1439 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1440 
1441 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1442 
1443 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1444 {
1445 	int i;
1446 
1447 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1448 		if (hstate_kobjs[i] == kobj) {
1449 			if (nidp)
1450 				*nidp = NUMA_NO_NODE;
1451 			return &hstates[i];
1452 		}
1453 
1454 	return kobj_to_node_hstate(kobj, nidp);
1455 }
1456 
1457 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1458 					struct kobj_attribute *attr, char *buf)
1459 {
1460 	struct hstate *h;
1461 	unsigned long nr_huge_pages;
1462 	int nid;
1463 
1464 	h = kobj_to_hstate(kobj, &nid);
1465 	if (nid == NUMA_NO_NODE)
1466 		nr_huge_pages = h->nr_huge_pages;
1467 	else
1468 		nr_huge_pages = h->nr_huge_pages_node[nid];
1469 
1470 	return sprintf(buf, "%lu\n", nr_huge_pages);
1471 }
1472 
1473 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1474 			struct kobject *kobj, struct kobj_attribute *attr,
1475 			const char *buf, size_t len)
1476 {
1477 	int err;
1478 	int nid;
1479 	unsigned long count;
1480 	struct hstate *h;
1481 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1482 
1483 	err = strict_strtoul(buf, 10, &count);
1484 	if (err)
1485 		goto out;
1486 
1487 	h = kobj_to_hstate(kobj, &nid);
1488 	if (h->order >= MAX_ORDER) {
1489 		err = -EINVAL;
1490 		goto out;
1491 	}
1492 
1493 	if (nid == NUMA_NO_NODE) {
1494 		/*
1495 		 * global hstate attribute
1496 		 */
1497 		if (!(obey_mempolicy &&
1498 				init_nodemask_of_mempolicy(nodes_allowed))) {
1499 			NODEMASK_FREE(nodes_allowed);
1500 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1501 		}
1502 	} else if (nodes_allowed) {
1503 		/*
1504 		 * per node hstate attribute: adjust count to global,
1505 		 * but restrict alloc/free to the specified node.
1506 		 */
1507 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1508 		init_nodemask_of_node(nodes_allowed, nid);
1509 	} else
1510 		nodes_allowed = &node_states[N_HIGH_MEMORY];
1511 
1512 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1513 
1514 	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1515 		NODEMASK_FREE(nodes_allowed);
1516 
1517 	return len;
1518 out:
1519 	NODEMASK_FREE(nodes_allowed);
1520 	return err;
1521 }
1522 
1523 static ssize_t nr_hugepages_show(struct kobject *kobj,
1524 				       struct kobj_attribute *attr, char *buf)
1525 {
1526 	return nr_hugepages_show_common(kobj, attr, buf);
1527 }
1528 
1529 static ssize_t nr_hugepages_store(struct kobject *kobj,
1530 	       struct kobj_attribute *attr, const char *buf, size_t len)
1531 {
1532 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1533 }
1534 HSTATE_ATTR(nr_hugepages);
1535 
1536 #ifdef CONFIG_NUMA
1537 
1538 /*
1539  * hstate attribute for optionally mempolicy-based constraint on persistent
1540  * huge page alloc/free.
1541  */
1542 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1543 				       struct kobj_attribute *attr, char *buf)
1544 {
1545 	return nr_hugepages_show_common(kobj, attr, buf);
1546 }
1547 
1548 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1549 	       struct kobj_attribute *attr, const char *buf, size_t len)
1550 {
1551 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1552 }
1553 HSTATE_ATTR(nr_hugepages_mempolicy);
1554 #endif
1555 
1556 
1557 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1558 					struct kobj_attribute *attr, char *buf)
1559 {
1560 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1561 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1562 }
1563 
1564 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1565 		struct kobj_attribute *attr, const char *buf, size_t count)
1566 {
1567 	int err;
1568 	unsigned long input;
1569 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1570 
1571 	if (h->order >= MAX_ORDER)
1572 		return -EINVAL;
1573 
1574 	err = strict_strtoul(buf, 10, &input);
1575 	if (err)
1576 		return err;
1577 
1578 	spin_lock(&hugetlb_lock);
1579 	h->nr_overcommit_huge_pages = input;
1580 	spin_unlock(&hugetlb_lock);
1581 
1582 	return count;
1583 }
1584 HSTATE_ATTR(nr_overcommit_hugepages);
1585 
1586 static ssize_t free_hugepages_show(struct kobject *kobj,
1587 					struct kobj_attribute *attr, char *buf)
1588 {
1589 	struct hstate *h;
1590 	unsigned long free_huge_pages;
1591 	int nid;
1592 
1593 	h = kobj_to_hstate(kobj, &nid);
1594 	if (nid == NUMA_NO_NODE)
1595 		free_huge_pages = h->free_huge_pages;
1596 	else
1597 		free_huge_pages = h->free_huge_pages_node[nid];
1598 
1599 	return sprintf(buf, "%lu\n", free_huge_pages);
1600 }
1601 HSTATE_ATTR_RO(free_hugepages);
1602 
1603 static ssize_t resv_hugepages_show(struct kobject *kobj,
1604 					struct kobj_attribute *attr, char *buf)
1605 {
1606 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1607 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1608 }
1609 HSTATE_ATTR_RO(resv_hugepages);
1610 
1611 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1612 					struct kobj_attribute *attr, char *buf)
1613 {
1614 	struct hstate *h;
1615 	unsigned long surplus_huge_pages;
1616 	int nid;
1617 
1618 	h = kobj_to_hstate(kobj, &nid);
1619 	if (nid == NUMA_NO_NODE)
1620 		surplus_huge_pages = h->surplus_huge_pages;
1621 	else
1622 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1623 
1624 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1625 }
1626 HSTATE_ATTR_RO(surplus_hugepages);
1627 
1628 static struct attribute *hstate_attrs[] = {
1629 	&nr_hugepages_attr.attr,
1630 	&nr_overcommit_hugepages_attr.attr,
1631 	&free_hugepages_attr.attr,
1632 	&resv_hugepages_attr.attr,
1633 	&surplus_hugepages_attr.attr,
1634 #ifdef CONFIG_NUMA
1635 	&nr_hugepages_mempolicy_attr.attr,
1636 #endif
1637 	NULL,
1638 };
1639 
1640 static struct attribute_group hstate_attr_group = {
1641 	.attrs = hstate_attrs,
1642 };
1643 
1644 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1645 				    struct kobject **hstate_kobjs,
1646 				    struct attribute_group *hstate_attr_group)
1647 {
1648 	int retval;
1649 	int hi = h - hstates;
1650 
1651 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1652 	if (!hstate_kobjs[hi])
1653 		return -ENOMEM;
1654 
1655 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1656 	if (retval)
1657 		kobject_put(hstate_kobjs[hi]);
1658 
1659 	return retval;
1660 }
1661 
1662 static void __init hugetlb_sysfs_init(void)
1663 {
1664 	struct hstate *h;
1665 	int err;
1666 
1667 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1668 	if (!hugepages_kobj)
1669 		return;
1670 
1671 	for_each_hstate(h) {
1672 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1673 					 hstate_kobjs, &hstate_attr_group);
1674 		if (err)
1675 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1676 								h->name);
1677 	}
1678 }
1679 
1680 #ifdef CONFIG_NUMA
1681 
1682 /*
1683  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1684  * with node devices in node_devices[] using a parallel array.  The array
1685  * index of a node device or _hstate == node id.
1686  * This is here to avoid any static dependency of the node device driver, in
1687  * the base kernel, on the hugetlb module.
1688  */
1689 struct node_hstate {
1690 	struct kobject		*hugepages_kobj;
1691 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1692 };
1693 struct node_hstate node_hstates[MAX_NUMNODES];
1694 
1695 /*
1696  * A subset of global hstate attributes for node devices
1697  */
1698 static struct attribute *per_node_hstate_attrs[] = {
1699 	&nr_hugepages_attr.attr,
1700 	&free_hugepages_attr.attr,
1701 	&surplus_hugepages_attr.attr,
1702 	NULL,
1703 };
1704 
1705 static struct attribute_group per_node_hstate_attr_group = {
1706 	.attrs = per_node_hstate_attrs,
1707 };
1708 
1709 /*
1710  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1711  * Returns node id via non-NULL nidp.
1712  */
1713 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1714 {
1715 	int nid;
1716 
1717 	for (nid = 0; nid < nr_node_ids; nid++) {
1718 		struct node_hstate *nhs = &node_hstates[nid];
1719 		int i;
1720 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1721 			if (nhs->hstate_kobjs[i] == kobj) {
1722 				if (nidp)
1723 					*nidp = nid;
1724 				return &hstates[i];
1725 			}
1726 	}
1727 
1728 	BUG();
1729 	return NULL;
1730 }
1731 
1732 /*
1733  * Unregister hstate attributes from a single node device.
1734  * No-op if no hstate attributes attached.
1735  */
1736 void hugetlb_unregister_node(struct node *node)
1737 {
1738 	struct hstate *h;
1739 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1740 
1741 	if (!nhs->hugepages_kobj)
1742 		return;		/* no hstate attributes */
1743 
1744 	for_each_hstate(h)
1745 		if (nhs->hstate_kobjs[h - hstates]) {
1746 			kobject_put(nhs->hstate_kobjs[h - hstates]);
1747 			nhs->hstate_kobjs[h - hstates] = NULL;
1748 		}
1749 
1750 	kobject_put(nhs->hugepages_kobj);
1751 	nhs->hugepages_kobj = NULL;
1752 }
1753 
1754 /*
1755  * hugetlb module exit:  unregister hstate attributes from node devices
1756  * that have them.
1757  */
1758 static void hugetlb_unregister_all_nodes(void)
1759 {
1760 	int nid;
1761 
1762 	/*
1763 	 * disable node device registrations.
1764 	 */
1765 	register_hugetlbfs_with_node(NULL, NULL);
1766 
1767 	/*
1768 	 * remove hstate attributes from any nodes that have them.
1769 	 */
1770 	for (nid = 0; nid < nr_node_ids; nid++)
1771 		hugetlb_unregister_node(&node_devices[nid]);
1772 }
1773 
1774 /*
1775  * Register hstate attributes for a single node device.
1776  * No-op if attributes already registered.
1777  */
1778 void hugetlb_register_node(struct node *node)
1779 {
1780 	struct hstate *h;
1781 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1782 	int err;
1783 
1784 	if (nhs->hugepages_kobj)
1785 		return;		/* already allocated */
1786 
1787 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1788 							&node->dev.kobj);
1789 	if (!nhs->hugepages_kobj)
1790 		return;
1791 
1792 	for_each_hstate(h) {
1793 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1794 						nhs->hstate_kobjs,
1795 						&per_node_hstate_attr_group);
1796 		if (err) {
1797 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1798 					" for node %d\n",
1799 						h->name, node->dev.id);
1800 			hugetlb_unregister_node(node);
1801 			break;
1802 		}
1803 	}
1804 }
1805 
1806 /*
1807  * hugetlb init time:  register hstate attributes for all registered node
1808  * devices of nodes that have memory.  All on-line nodes should have
1809  * registered their associated device by this time.
1810  */
1811 static void hugetlb_register_all_nodes(void)
1812 {
1813 	int nid;
1814 
1815 	for_each_node_state(nid, N_HIGH_MEMORY) {
1816 		struct node *node = &node_devices[nid];
1817 		if (node->dev.id == nid)
1818 			hugetlb_register_node(node);
1819 	}
1820 
1821 	/*
1822 	 * Let the node device driver know we're here so it can
1823 	 * [un]register hstate attributes on node hotplug.
1824 	 */
1825 	register_hugetlbfs_with_node(hugetlb_register_node,
1826 				     hugetlb_unregister_node);
1827 }
1828 #else	/* !CONFIG_NUMA */
1829 
1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831 {
1832 	BUG();
1833 	if (nidp)
1834 		*nidp = -1;
1835 	return NULL;
1836 }
1837 
1838 static void hugetlb_unregister_all_nodes(void) { }
1839 
1840 static void hugetlb_register_all_nodes(void) { }
1841 
1842 #endif
1843 
1844 static void __exit hugetlb_exit(void)
1845 {
1846 	struct hstate *h;
1847 
1848 	hugetlb_unregister_all_nodes();
1849 
1850 	for_each_hstate(h) {
1851 		kobject_put(hstate_kobjs[h - hstates]);
1852 	}
1853 
1854 	kobject_put(hugepages_kobj);
1855 }
1856 module_exit(hugetlb_exit);
1857 
1858 static int __init hugetlb_init(void)
1859 {
1860 	/* Some platform decide whether they support huge pages at boot
1861 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1862 	 * there is no such support
1863 	 */
1864 	if (HPAGE_SHIFT == 0)
1865 		return 0;
1866 
1867 	if (!size_to_hstate(default_hstate_size)) {
1868 		default_hstate_size = HPAGE_SIZE;
1869 		if (!size_to_hstate(default_hstate_size))
1870 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1871 	}
1872 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1873 	if (default_hstate_max_huge_pages)
1874 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1875 
1876 	hugetlb_init_hstates();
1877 
1878 	gather_bootmem_prealloc();
1879 
1880 	report_hugepages();
1881 
1882 	hugetlb_sysfs_init();
1883 
1884 	hugetlb_register_all_nodes();
1885 
1886 	return 0;
1887 }
1888 module_init(hugetlb_init);
1889 
1890 /* Should be called on processing a hugepagesz=... option */
1891 void __init hugetlb_add_hstate(unsigned order)
1892 {
1893 	struct hstate *h;
1894 	unsigned long i;
1895 
1896 	if (size_to_hstate(PAGE_SIZE << order)) {
1897 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1898 		return;
1899 	}
1900 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1901 	BUG_ON(order == 0);
1902 	h = &hstates[max_hstate++];
1903 	h->order = order;
1904 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1905 	h->nr_huge_pages = 0;
1906 	h->free_huge_pages = 0;
1907 	for (i = 0; i < MAX_NUMNODES; ++i)
1908 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1909 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1910 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1911 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1912 					huge_page_size(h)/1024);
1913 
1914 	parsed_hstate = h;
1915 }
1916 
1917 static int __init hugetlb_nrpages_setup(char *s)
1918 {
1919 	unsigned long *mhp;
1920 	static unsigned long *last_mhp;
1921 
1922 	/*
1923 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1924 	 * so this hugepages= parameter goes to the "default hstate".
1925 	 */
1926 	if (!max_hstate)
1927 		mhp = &default_hstate_max_huge_pages;
1928 	else
1929 		mhp = &parsed_hstate->max_huge_pages;
1930 
1931 	if (mhp == last_mhp) {
1932 		printk(KERN_WARNING "hugepages= specified twice without "
1933 			"interleaving hugepagesz=, ignoring\n");
1934 		return 1;
1935 	}
1936 
1937 	if (sscanf(s, "%lu", mhp) <= 0)
1938 		*mhp = 0;
1939 
1940 	/*
1941 	 * Global state is always initialized later in hugetlb_init.
1942 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1943 	 * use the bootmem allocator.
1944 	 */
1945 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1946 		hugetlb_hstate_alloc_pages(parsed_hstate);
1947 
1948 	last_mhp = mhp;
1949 
1950 	return 1;
1951 }
1952 __setup("hugepages=", hugetlb_nrpages_setup);
1953 
1954 static int __init hugetlb_default_setup(char *s)
1955 {
1956 	default_hstate_size = memparse(s, &s);
1957 	return 1;
1958 }
1959 __setup("default_hugepagesz=", hugetlb_default_setup);
1960 
1961 static unsigned int cpuset_mems_nr(unsigned int *array)
1962 {
1963 	int node;
1964 	unsigned int nr = 0;
1965 
1966 	for_each_node_mask(node, cpuset_current_mems_allowed)
1967 		nr += array[node];
1968 
1969 	return nr;
1970 }
1971 
1972 #ifdef CONFIG_SYSCTL
1973 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1974 			 struct ctl_table *table, int write,
1975 			 void __user *buffer, size_t *length, loff_t *ppos)
1976 {
1977 	struct hstate *h = &default_hstate;
1978 	unsigned long tmp;
1979 	int ret;
1980 
1981 	tmp = h->max_huge_pages;
1982 
1983 	if (write && h->order >= MAX_ORDER)
1984 		return -EINVAL;
1985 
1986 	table->data = &tmp;
1987 	table->maxlen = sizeof(unsigned long);
1988 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1989 	if (ret)
1990 		goto out;
1991 
1992 	if (write) {
1993 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1994 						GFP_KERNEL | __GFP_NORETRY);
1995 		if (!(obey_mempolicy &&
1996 			       init_nodemask_of_mempolicy(nodes_allowed))) {
1997 			NODEMASK_FREE(nodes_allowed);
1998 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1999 		}
2000 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2001 
2002 		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2003 			NODEMASK_FREE(nodes_allowed);
2004 	}
2005 out:
2006 	return ret;
2007 }
2008 
2009 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2010 			  void __user *buffer, size_t *length, loff_t *ppos)
2011 {
2012 
2013 	return hugetlb_sysctl_handler_common(false, table, write,
2014 							buffer, length, ppos);
2015 }
2016 
2017 #ifdef CONFIG_NUMA
2018 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2019 			  void __user *buffer, size_t *length, loff_t *ppos)
2020 {
2021 	return hugetlb_sysctl_handler_common(true, table, write,
2022 							buffer, length, ppos);
2023 }
2024 #endif /* CONFIG_NUMA */
2025 
2026 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2027 			void __user *buffer,
2028 			size_t *length, loff_t *ppos)
2029 {
2030 	proc_dointvec(table, write, buffer, length, ppos);
2031 	if (hugepages_treat_as_movable)
2032 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2033 	else
2034 		htlb_alloc_mask = GFP_HIGHUSER;
2035 	return 0;
2036 }
2037 
2038 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2039 			void __user *buffer,
2040 			size_t *length, loff_t *ppos)
2041 {
2042 	struct hstate *h = &default_hstate;
2043 	unsigned long tmp;
2044 	int ret;
2045 
2046 	tmp = h->nr_overcommit_huge_pages;
2047 
2048 	if (write && h->order >= MAX_ORDER)
2049 		return -EINVAL;
2050 
2051 	table->data = &tmp;
2052 	table->maxlen = sizeof(unsigned long);
2053 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2054 	if (ret)
2055 		goto out;
2056 
2057 	if (write) {
2058 		spin_lock(&hugetlb_lock);
2059 		h->nr_overcommit_huge_pages = tmp;
2060 		spin_unlock(&hugetlb_lock);
2061 	}
2062 out:
2063 	return ret;
2064 }
2065 
2066 #endif /* CONFIG_SYSCTL */
2067 
2068 void hugetlb_report_meminfo(struct seq_file *m)
2069 {
2070 	struct hstate *h = &default_hstate;
2071 	seq_printf(m,
2072 			"HugePages_Total:   %5lu\n"
2073 			"HugePages_Free:    %5lu\n"
2074 			"HugePages_Rsvd:    %5lu\n"
2075 			"HugePages_Surp:    %5lu\n"
2076 			"Hugepagesize:   %8lu kB\n",
2077 			h->nr_huge_pages,
2078 			h->free_huge_pages,
2079 			h->resv_huge_pages,
2080 			h->surplus_huge_pages,
2081 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2082 }
2083 
2084 int hugetlb_report_node_meminfo(int nid, char *buf)
2085 {
2086 	struct hstate *h = &default_hstate;
2087 	return sprintf(buf,
2088 		"Node %d HugePages_Total: %5u\n"
2089 		"Node %d HugePages_Free:  %5u\n"
2090 		"Node %d HugePages_Surp:  %5u\n",
2091 		nid, h->nr_huge_pages_node[nid],
2092 		nid, h->free_huge_pages_node[nid],
2093 		nid, h->surplus_huge_pages_node[nid]);
2094 }
2095 
2096 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2097 unsigned long hugetlb_total_pages(void)
2098 {
2099 	struct hstate *h = &default_hstate;
2100 	return h->nr_huge_pages * pages_per_huge_page(h);
2101 }
2102 
2103 static int hugetlb_acct_memory(struct hstate *h, long delta)
2104 {
2105 	int ret = -ENOMEM;
2106 
2107 	spin_lock(&hugetlb_lock);
2108 	/*
2109 	 * When cpuset is configured, it breaks the strict hugetlb page
2110 	 * reservation as the accounting is done on a global variable. Such
2111 	 * reservation is completely rubbish in the presence of cpuset because
2112 	 * the reservation is not checked against page availability for the
2113 	 * current cpuset. Application can still potentially OOM'ed by kernel
2114 	 * with lack of free htlb page in cpuset that the task is in.
2115 	 * Attempt to enforce strict accounting with cpuset is almost
2116 	 * impossible (or too ugly) because cpuset is too fluid that
2117 	 * task or memory node can be dynamically moved between cpusets.
2118 	 *
2119 	 * The change of semantics for shared hugetlb mapping with cpuset is
2120 	 * undesirable. However, in order to preserve some of the semantics,
2121 	 * we fall back to check against current free page availability as
2122 	 * a best attempt and hopefully to minimize the impact of changing
2123 	 * semantics that cpuset has.
2124 	 */
2125 	if (delta > 0) {
2126 		if (gather_surplus_pages(h, delta) < 0)
2127 			goto out;
2128 
2129 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2130 			return_unused_surplus_pages(h, delta);
2131 			goto out;
2132 		}
2133 	}
2134 
2135 	ret = 0;
2136 	if (delta < 0)
2137 		return_unused_surplus_pages(h, (unsigned long) -delta);
2138 
2139 out:
2140 	spin_unlock(&hugetlb_lock);
2141 	return ret;
2142 }
2143 
2144 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2145 {
2146 	struct resv_map *reservations = vma_resv_map(vma);
2147 
2148 	/*
2149 	 * This new VMA should share its siblings reservation map if present.
2150 	 * The VMA will only ever have a valid reservation map pointer where
2151 	 * it is being copied for another still existing VMA.  As that VMA
2152 	 * has a reference to the reservation map it cannot disappear until
2153 	 * after this open call completes.  It is therefore safe to take a
2154 	 * new reference here without additional locking.
2155 	 */
2156 	if (reservations)
2157 		kref_get(&reservations->refs);
2158 }
2159 
2160 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2161 {
2162 	struct hstate *h = hstate_vma(vma);
2163 	struct resv_map *reservations = vma_resv_map(vma);
2164 	struct hugepage_subpool *spool = subpool_vma(vma);
2165 	unsigned long reserve;
2166 	unsigned long start;
2167 	unsigned long end;
2168 
2169 	if (reservations) {
2170 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2171 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2172 
2173 		reserve = (end - start) -
2174 			region_count(&reservations->regions, start, end);
2175 
2176 		kref_put(&reservations->refs, resv_map_release);
2177 
2178 		if (reserve) {
2179 			hugetlb_acct_memory(h, -reserve);
2180 			hugepage_subpool_put_pages(spool, reserve);
2181 		}
2182 	}
2183 }
2184 
2185 /*
2186  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2187  * handle_mm_fault() to try to instantiate regular-sized pages in the
2188  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2189  * this far.
2190  */
2191 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2192 {
2193 	BUG();
2194 	return 0;
2195 }
2196 
2197 const struct vm_operations_struct hugetlb_vm_ops = {
2198 	.fault = hugetlb_vm_op_fault,
2199 	.open = hugetlb_vm_op_open,
2200 	.close = hugetlb_vm_op_close,
2201 };
2202 
2203 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2204 				int writable)
2205 {
2206 	pte_t entry;
2207 
2208 	if (writable) {
2209 		entry =
2210 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2211 	} else {
2212 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2213 	}
2214 	entry = pte_mkyoung(entry);
2215 	entry = pte_mkhuge(entry);
2216 
2217 	return entry;
2218 }
2219 
2220 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2221 				   unsigned long address, pte_t *ptep)
2222 {
2223 	pte_t entry;
2224 
2225 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2226 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2227 		update_mmu_cache(vma, address, ptep);
2228 }
2229 
2230 
2231 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2232 			    struct vm_area_struct *vma)
2233 {
2234 	pte_t *src_pte, *dst_pte, entry;
2235 	struct page *ptepage;
2236 	unsigned long addr;
2237 	int cow;
2238 	struct hstate *h = hstate_vma(vma);
2239 	unsigned long sz = huge_page_size(h);
2240 
2241 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2242 
2243 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2244 		src_pte = huge_pte_offset(src, addr);
2245 		if (!src_pte)
2246 			continue;
2247 		dst_pte = huge_pte_alloc(dst, addr, sz);
2248 		if (!dst_pte)
2249 			goto nomem;
2250 
2251 		/* If the pagetables are shared don't copy or take references */
2252 		if (dst_pte == src_pte)
2253 			continue;
2254 
2255 		spin_lock(&dst->page_table_lock);
2256 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2257 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2258 			if (cow)
2259 				huge_ptep_set_wrprotect(src, addr, src_pte);
2260 			entry = huge_ptep_get(src_pte);
2261 			ptepage = pte_page(entry);
2262 			get_page(ptepage);
2263 			page_dup_rmap(ptepage);
2264 			set_huge_pte_at(dst, addr, dst_pte, entry);
2265 		}
2266 		spin_unlock(&src->page_table_lock);
2267 		spin_unlock(&dst->page_table_lock);
2268 	}
2269 	return 0;
2270 
2271 nomem:
2272 	return -ENOMEM;
2273 }
2274 
2275 static int is_hugetlb_entry_migration(pte_t pte)
2276 {
2277 	swp_entry_t swp;
2278 
2279 	if (huge_pte_none(pte) || pte_present(pte))
2280 		return 0;
2281 	swp = pte_to_swp_entry(pte);
2282 	if (non_swap_entry(swp) && is_migration_entry(swp))
2283 		return 1;
2284 	else
2285 		return 0;
2286 }
2287 
2288 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2289 {
2290 	swp_entry_t swp;
2291 
2292 	if (huge_pte_none(pte) || pte_present(pte))
2293 		return 0;
2294 	swp = pte_to_swp_entry(pte);
2295 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2296 		return 1;
2297 	else
2298 		return 0;
2299 }
2300 
2301 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2302 			    unsigned long end, struct page *ref_page)
2303 {
2304 	struct mm_struct *mm = vma->vm_mm;
2305 	unsigned long address;
2306 	pte_t *ptep;
2307 	pte_t pte;
2308 	struct page *page;
2309 	struct page *tmp;
2310 	struct hstate *h = hstate_vma(vma);
2311 	unsigned long sz = huge_page_size(h);
2312 
2313 	/*
2314 	 * A page gathering list, protected by per file i_mmap_mutex. The
2315 	 * lock is used to avoid list corruption from multiple unmapping
2316 	 * of the same page since we are using page->lru.
2317 	 */
2318 	LIST_HEAD(page_list);
2319 
2320 	WARN_ON(!is_vm_hugetlb_page(vma));
2321 	BUG_ON(start & ~huge_page_mask(h));
2322 	BUG_ON(end & ~huge_page_mask(h));
2323 
2324 	mmu_notifier_invalidate_range_start(mm, start, end);
2325 	spin_lock(&mm->page_table_lock);
2326 	for (address = start; address < end; address += sz) {
2327 		ptep = huge_pte_offset(mm, address);
2328 		if (!ptep)
2329 			continue;
2330 
2331 		if (huge_pmd_unshare(mm, &address, ptep))
2332 			continue;
2333 
2334 		pte = huge_ptep_get(ptep);
2335 		if (huge_pte_none(pte))
2336 			continue;
2337 
2338 		/*
2339 		 * HWPoisoned hugepage is already unmapped and dropped reference
2340 		 */
2341 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2342 			continue;
2343 
2344 		page = pte_page(pte);
2345 		/*
2346 		 * If a reference page is supplied, it is because a specific
2347 		 * page is being unmapped, not a range. Ensure the page we
2348 		 * are about to unmap is the actual page of interest.
2349 		 */
2350 		if (ref_page) {
2351 			if (page != ref_page)
2352 				continue;
2353 
2354 			/*
2355 			 * Mark the VMA as having unmapped its page so that
2356 			 * future faults in this VMA will fail rather than
2357 			 * looking like data was lost
2358 			 */
2359 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2360 		}
2361 
2362 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2363 		if (pte_dirty(pte))
2364 			set_page_dirty(page);
2365 		list_add(&page->lru, &page_list);
2366 
2367 		/* Bail out after unmapping reference page if supplied */
2368 		if (ref_page)
2369 			break;
2370 	}
2371 	flush_tlb_range(vma, start, end);
2372 	spin_unlock(&mm->page_table_lock);
2373 	mmu_notifier_invalidate_range_end(mm, start, end);
2374 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2375 		page_remove_rmap(page);
2376 		list_del(&page->lru);
2377 		put_page(page);
2378 	}
2379 }
2380 
2381 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2382 			  unsigned long end, struct page *ref_page)
2383 {
2384 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2385 	__unmap_hugepage_range(vma, start, end, ref_page);
2386 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2387 }
2388 
2389 /*
2390  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2391  * mappping it owns the reserve page for. The intention is to unmap the page
2392  * from other VMAs and let the children be SIGKILLed if they are faulting the
2393  * same region.
2394  */
2395 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2396 				struct page *page, unsigned long address)
2397 {
2398 	struct hstate *h = hstate_vma(vma);
2399 	struct vm_area_struct *iter_vma;
2400 	struct address_space *mapping;
2401 	struct prio_tree_iter iter;
2402 	pgoff_t pgoff;
2403 
2404 	/*
2405 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2406 	 * from page cache lookup which is in HPAGE_SIZE units.
2407 	 */
2408 	address = address & huge_page_mask(h);
2409 	pgoff = vma_hugecache_offset(h, vma, address);
2410 	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2411 
2412 	/*
2413 	 * Take the mapping lock for the duration of the table walk. As
2414 	 * this mapping should be shared between all the VMAs,
2415 	 * __unmap_hugepage_range() is called as the lock is already held
2416 	 */
2417 	mutex_lock(&mapping->i_mmap_mutex);
2418 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2419 		/* Do not unmap the current VMA */
2420 		if (iter_vma == vma)
2421 			continue;
2422 
2423 		/*
2424 		 * Unmap the page from other VMAs without their own reserves.
2425 		 * They get marked to be SIGKILLed if they fault in these
2426 		 * areas. This is because a future no-page fault on this VMA
2427 		 * could insert a zeroed page instead of the data existing
2428 		 * from the time of fork. This would look like data corruption
2429 		 */
2430 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2431 			__unmap_hugepage_range(iter_vma,
2432 				address, address + huge_page_size(h),
2433 				page);
2434 	}
2435 	mutex_unlock(&mapping->i_mmap_mutex);
2436 
2437 	return 1;
2438 }
2439 
2440 /*
2441  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2442  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2443  * cannot race with other handlers or page migration.
2444  * Keep the pte_same checks anyway to make transition from the mutex easier.
2445  */
2446 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2447 			unsigned long address, pte_t *ptep, pte_t pte,
2448 			struct page *pagecache_page)
2449 {
2450 	struct hstate *h = hstate_vma(vma);
2451 	struct page *old_page, *new_page;
2452 	int avoidcopy;
2453 	int outside_reserve = 0;
2454 
2455 	old_page = pte_page(pte);
2456 
2457 retry_avoidcopy:
2458 	/* If no-one else is actually using this page, avoid the copy
2459 	 * and just make the page writable */
2460 	avoidcopy = (page_mapcount(old_page) == 1);
2461 	if (avoidcopy) {
2462 		if (PageAnon(old_page))
2463 			page_move_anon_rmap(old_page, vma, address);
2464 		set_huge_ptep_writable(vma, address, ptep);
2465 		return 0;
2466 	}
2467 
2468 	/*
2469 	 * If the process that created a MAP_PRIVATE mapping is about to
2470 	 * perform a COW due to a shared page count, attempt to satisfy
2471 	 * the allocation without using the existing reserves. The pagecache
2472 	 * page is used to determine if the reserve at this address was
2473 	 * consumed or not. If reserves were used, a partial faulted mapping
2474 	 * at the time of fork() could consume its reserves on COW instead
2475 	 * of the full address range.
2476 	 */
2477 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2478 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2479 			old_page != pagecache_page)
2480 		outside_reserve = 1;
2481 
2482 	page_cache_get(old_page);
2483 
2484 	/* Drop page_table_lock as buddy allocator may be called */
2485 	spin_unlock(&mm->page_table_lock);
2486 	new_page = alloc_huge_page(vma, address, outside_reserve);
2487 
2488 	if (IS_ERR(new_page)) {
2489 		page_cache_release(old_page);
2490 
2491 		/*
2492 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2493 		 * it is due to references held by a child and an insufficient
2494 		 * huge page pool. To guarantee the original mappers
2495 		 * reliability, unmap the page from child processes. The child
2496 		 * may get SIGKILLed if it later faults.
2497 		 */
2498 		if (outside_reserve) {
2499 			BUG_ON(huge_pte_none(pte));
2500 			if (unmap_ref_private(mm, vma, old_page, address)) {
2501 				BUG_ON(page_count(old_page) != 1);
2502 				BUG_ON(huge_pte_none(pte));
2503 				spin_lock(&mm->page_table_lock);
2504 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2505 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2506 					goto retry_avoidcopy;
2507 				/*
2508 				 * race occurs while re-acquiring page_table_lock, and
2509 				 * our job is done.
2510 				 */
2511 				return 0;
2512 			}
2513 			WARN_ON_ONCE(1);
2514 		}
2515 
2516 		/* Caller expects lock to be held */
2517 		spin_lock(&mm->page_table_lock);
2518 		return -PTR_ERR(new_page);
2519 	}
2520 
2521 	/*
2522 	 * When the original hugepage is shared one, it does not have
2523 	 * anon_vma prepared.
2524 	 */
2525 	if (unlikely(anon_vma_prepare(vma))) {
2526 		page_cache_release(new_page);
2527 		page_cache_release(old_page);
2528 		/* Caller expects lock to be held */
2529 		spin_lock(&mm->page_table_lock);
2530 		return VM_FAULT_OOM;
2531 	}
2532 
2533 	copy_user_huge_page(new_page, old_page, address, vma,
2534 			    pages_per_huge_page(h));
2535 	__SetPageUptodate(new_page);
2536 
2537 	/*
2538 	 * Retake the page_table_lock to check for racing updates
2539 	 * before the page tables are altered
2540 	 */
2541 	spin_lock(&mm->page_table_lock);
2542 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2543 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2544 		/* Break COW */
2545 		mmu_notifier_invalidate_range_start(mm,
2546 			address & huge_page_mask(h),
2547 			(address & huge_page_mask(h)) + huge_page_size(h));
2548 		huge_ptep_clear_flush(vma, address, ptep);
2549 		set_huge_pte_at(mm, address, ptep,
2550 				make_huge_pte(vma, new_page, 1));
2551 		page_remove_rmap(old_page);
2552 		hugepage_add_new_anon_rmap(new_page, vma, address);
2553 		/* Make the old page be freed below */
2554 		new_page = old_page;
2555 		mmu_notifier_invalidate_range_end(mm,
2556 			address & huge_page_mask(h),
2557 			(address & huge_page_mask(h)) + huge_page_size(h));
2558 	}
2559 	page_cache_release(new_page);
2560 	page_cache_release(old_page);
2561 	return 0;
2562 }
2563 
2564 /* Return the pagecache page at a given address within a VMA */
2565 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2566 			struct vm_area_struct *vma, unsigned long address)
2567 {
2568 	struct address_space *mapping;
2569 	pgoff_t idx;
2570 
2571 	mapping = vma->vm_file->f_mapping;
2572 	idx = vma_hugecache_offset(h, vma, address);
2573 
2574 	return find_lock_page(mapping, idx);
2575 }
2576 
2577 /*
2578  * Return whether there is a pagecache page to back given address within VMA.
2579  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2580  */
2581 static bool hugetlbfs_pagecache_present(struct hstate *h,
2582 			struct vm_area_struct *vma, unsigned long address)
2583 {
2584 	struct address_space *mapping;
2585 	pgoff_t idx;
2586 	struct page *page;
2587 
2588 	mapping = vma->vm_file->f_mapping;
2589 	idx = vma_hugecache_offset(h, vma, address);
2590 
2591 	page = find_get_page(mapping, idx);
2592 	if (page)
2593 		put_page(page);
2594 	return page != NULL;
2595 }
2596 
2597 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2598 			unsigned long address, pte_t *ptep, unsigned int flags)
2599 {
2600 	struct hstate *h = hstate_vma(vma);
2601 	int ret = VM_FAULT_SIGBUS;
2602 	int anon_rmap = 0;
2603 	pgoff_t idx;
2604 	unsigned long size;
2605 	struct page *page;
2606 	struct address_space *mapping;
2607 	pte_t new_pte;
2608 
2609 	/*
2610 	 * Currently, we are forced to kill the process in the event the
2611 	 * original mapper has unmapped pages from the child due to a failed
2612 	 * COW. Warn that such a situation has occurred as it may not be obvious
2613 	 */
2614 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2615 		printk(KERN_WARNING
2616 			"PID %d killed due to inadequate hugepage pool\n",
2617 			current->pid);
2618 		return ret;
2619 	}
2620 
2621 	mapping = vma->vm_file->f_mapping;
2622 	idx = vma_hugecache_offset(h, vma, address);
2623 
2624 	/*
2625 	 * Use page lock to guard against racing truncation
2626 	 * before we get page_table_lock.
2627 	 */
2628 retry:
2629 	page = find_lock_page(mapping, idx);
2630 	if (!page) {
2631 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2632 		if (idx >= size)
2633 			goto out;
2634 		page = alloc_huge_page(vma, address, 0);
2635 		if (IS_ERR(page)) {
2636 			ret = -PTR_ERR(page);
2637 			goto out;
2638 		}
2639 		clear_huge_page(page, address, pages_per_huge_page(h));
2640 		__SetPageUptodate(page);
2641 
2642 		if (vma->vm_flags & VM_MAYSHARE) {
2643 			int err;
2644 			struct inode *inode = mapping->host;
2645 
2646 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2647 			if (err) {
2648 				put_page(page);
2649 				if (err == -EEXIST)
2650 					goto retry;
2651 				goto out;
2652 			}
2653 
2654 			spin_lock(&inode->i_lock);
2655 			inode->i_blocks += blocks_per_huge_page(h);
2656 			spin_unlock(&inode->i_lock);
2657 		} else {
2658 			lock_page(page);
2659 			if (unlikely(anon_vma_prepare(vma))) {
2660 				ret = VM_FAULT_OOM;
2661 				goto backout_unlocked;
2662 			}
2663 			anon_rmap = 1;
2664 		}
2665 	} else {
2666 		/*
2667 		 * If memory error occurs between mmap() and fault, some process
2668 		 * don't have hwpoisoned swap entry for errored virtual address.
2669 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2670 		 */
2671 		if (unlikely(PageHWPoison(page))) {
2672 			ret = VM_FAULT_HWPOISON |
2673 			      VM_FAULT_SET_HINDEX(h - hstates);
2674 			goto backout_unlocked;
2675 		}
2676 	}
2677 
2678 	/*
2679 	 * If we are going to COW a private mapping later, we examine the
2680 	 * pending reservations for this page now. This will ensure that
2681 	 * any allocations necessary to record that reservation occur outside
2682 	 * the spinlock.
2683 	 */
2684 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2685 		if (vma_needs_reservation(h, vma, address) < 0) {
2686 			ret = VM_FAULT_OOM;
2687 			goto backout_unlocked;
2688 		}
2689 
2690 	spin_lock(&mm->page_table_lock);
2691 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2692 	if (idx >= size)
2693 		goto backout;
2694 
2695 	ret = 0;
2696 	if (!huge_pte_none(huge_ptep_get(ptep)))
2697 		goto backout;
2698 
2699 	if (anon_rmap)
2700 		hugepage_add_new_anon_rmap(page, vma, address);
2701 	else
2702 		page_dup_rmap(page);
2703 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2704 				&& (vma->vm_flags & VM_SHARED)));
2705 	set_huge_pte_at(mm, address, ptep, new_pte);
2706 
2707 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2708 		/* Optimization, do the COW without a second fault */
2709 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2710 	}
2711 
2712 	spin_unlock(&mm->page_table_lock);
2713 	unlock_page(page);
2714 out:
2715 	return ret;
2716 
2717 backout:
2718 	spin_unlock(&mm->page_table_lock);
2719 backout_unlocked:
2720 	unlock_page(page);
2721 	put_page(page);
2722 	goto out;
2723 }
2724 
2725 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2726 			unsigned long address, unsigned int flags)
2727 {
2728 	pte_t *ptep;
2729 	pte_t entry;
2730 	int ret;
2731 	struct page *page = NULL;
2732 	struct page *pagecache_page = NULL;
2733 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2734 	struct hstate *h = hstate_vma(vma);
2735 
2736 	address &= huge_page_mask(h);
2737 
2738 	ptep = huge_pte_offset(mm, address);
2739 	if (ptep) {
2740 		entry = huge_ptep_get(ptep);
2741 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2742 			migration_entry_wait(mm, (pmd_t *)ptep, address);
2743 			return 0;
2744 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2745 			return VM_FAULT_HWPOISON_LARGE |
2746 			       VM_FAULT_SET_HINDEX(h - hstates);
2747 	}
2748 
2749 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2750 	if (!ptep)
2751 		return VM_FAULT_OOM;
2752 
2753 	/*
2754 	 * Serialize hugepage allocation and instantiation, so that we don't
2755 	 * get spurious allocation failures if two CPUs race to instantiate
2756 	 * the same page in the page cache.
2757 	 */
2758 	mutex_lock(&hugetlb_instantiation_mutex);
2759 	entry = huge_ptep_get(ptep);
2760 	if (huge_pte_none(entry)) {
2761 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2762 		goto out_mutex;
2763 	}
2764 
2765 	ret = 0;
2766 
2767 	/*
2768 	 * If we are going to COW the mapping later, we examine the pending
2769 	 * reservations for this page now. This will ensure that any
2770 	 * allocations necessary to record that reservation occur outside the
2771 	 * spinlock. For private mappings, we also lookup the pagecache
2772 	 * page now as it is used to determine if a reservation has been
2773 	 * consumed.
2774 	 */
2775 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2776 		if (vma_needs_reservation(h, vma, address) < 0) {
2777 			ret = VM_FAULT_OOM;
2778 			goto out_mutex;
2779 		}
2780 
2781 		if (!(vma->vm_flags & VM_MAYSHARE))
2782 			pagecache_page = hugetlbfs_pagecache_page(h,
2783 								vma, address);
2784 	}
2785 
2786 	/*
2787 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2788 	 * pagecache_page, so here we need take the former one
2789 	 * when page != pagecache_page or !pagecache_page.
2790 	 * Note that locking order is always pagecache_page -> page,
2791 	 * so no worry about deadlock.
2792 	 */
2793 	page = pte_page(entry);
2794 	get_page(page);
2795 	if (page != pagecache_page)
2796 		lock_page(page);
2797 
2798 	spin_lock(&mm->page_table_lock);
2799 	/* Check for a racing update before calling hugetlb_cow */
2800 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2801 		goto out_page_table_lock;
2802 
2803 
2804 	if (flags & FAULT_FLAG_WRITE) {
2805 		if (!pte_write(entry)) {
2806 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2807 							pagecache_page);
2808 			goto out_page_table_lock;
2809 		}
2810 		entry = pte_mkdirty(entry);
2811 	}
2812 	entry = pte_mkyoung(entry);
2813 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2814 						flags & FAULT_FLAG_WRITE))
2815 		update_mmu_cache(vma, address, ptep);
2816 
2817 out_page_table_lock:
2818 	spin_unlock(&mm->page_table_lock);
2819 
2820 	if (pagecache_page) {
2821 		unlock_page(pagecache_page);
2822 		put_page(pagecache_page);
2823 	}
2824 	if (page != pagecache_page)
2825 		unlock_page(page);
2826 	put_page(page);
2827 
2828 out_mutex:
2829 	mutex_unlock(&hugetlb_instantiation_mutex);
2830 
2831 	return ret;
2832 }
2833 
2834 /* Can be overriden by architectures */
2835 __attribute__((weak)) struct page *
2836 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2837 	       pud_t *pud, int write)
2838 {
2839 	BUG();
2840 	return NULL;
2841 }
2842 
2843 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2844 			struct page **pages, struct vm_area_struct **vmas,
2845 			unsigned long *position, int *length, int i,
2846 			unsigned int flags)
2847 {
2848 	unsigned long pfn_offset;
2849 	unsigned long vaddr = *position;
2850 	int remainder = *length;
2851 	struct hstate *h = hstate_vma(vma);
2852 
2853 	spin_lock(&mm->page_table_lock);
2854 	while (vaddr < vma->vm_end && remainder) {
2855 		pte_t *pte;
2856 		int absent;
2857 		struct page *page;
2858 
2859 		/*
2860 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2861 		 * each hugepage.  We have to make sure we get the
2862 		 * first, for the page indexing below to work.
2863 		 */
2864 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2865 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2866 
2867 		/*
2868 		 * When coredumping, it suits get_dump_page if we just return
2869 		 * an error where there's an empty slot with no huge pagecache
2870 		 * to back it.  This way, we avoid allocating a hugepage, and
2871 		 * the sparse dumpfile avoids allocating disk blocks, but its
2872 		 * huge holes still show up with zeroes where they need to be.
2873 		 */
2874 		if (absent && (flags & FOLL_DUMP) &&
2875 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2876 			remainder = 0;
2877 			break;
2878 		}
2879 
2880 		if (absent ||
2881 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2882 			int ret;
2883 
2884 			spin_unlock(&mm->page_table_lock);
2885 			ret = hugetlb_fault(mm, vma, vaddr,
2886 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2887 			spin_lock(&mm->page_table_lock);
2888 			if (!(ret & VM_FAULT_ERROR))
2889 				continue;
2890 
2891 			remainder = 0;
2892 			break;
2893 		}
2894 
2895 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2896 		page = pte_page(huge_ptep_get(pte));
2897 same_page:
2898 		if (pages) {
2899 			pages[i] = mem_map_offset(page, pfn_offset);
2900 			get_page(pages[i]);
2901 		}
2902 
2903 		if (vmas)
2904 			vmas[i] = vma;
2905 
2906 		vaddr += PAGE_SIZE;
2907 		++pfn_offset;
2908 		--remainder;
2909 		++i;
2910 		if (vaddr < vma->vm_end && remainder &&
2911 				pfn_offset < pages_per_huge_page(h)) {
2912 			/*
2913 			 * We use pfn_offset to avoid touching the pageframes
2914 			 * of this compound page.
2915 			 */
2916 			goto same_page;
2917 		}
2918 	}
2919 	spin_unlock(&mm->page_table_lock);
2920 	*length = remainder;
2921 	*position = vaddr;
2922 
2923 	return i ? i : -EFAULT;
2924 }
2925 
2926 void hugetlb_change_protection(struct vm_area_struct *vma,
2927 		unsigned long address, unsigned long end, pgprot_t newprot)
2928 {
2929 	struct mm_struct *mm = vma->vm_mm;
2930 	unsigned long start = address;
2931 	pte_t *ptep;
2932 	pte_t pte;
2933 	struct hstate *h = hstate_vma(vma);
2934 
2935 	BUG_ON(address >= end);
2936 	flush_cache_range(vma, address, end);
2937 
2938 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2939 	spin_lock(&mm->page_table_lock);
2940 	for (; address < end; address += huge_page_size(h)) {
2941 		ptep = huge_pte_offset(mm, address);
2942 		if (!ptep)
2943 			continue;
2944 		if (huge_pmd_unshare(mm, &address, ptep))
2945 			continue;
2946 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2947 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2948 			pte = pte_mkhuge(pte_modify(pte, newprot));
2949 			set_huge_pte_at(mm, address, ptep, pte);
2950 		}
2951 	}
2952 	spin_unlock(&mm->page_table_lock);
2953 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2954 
2955 	flush_tlb_range(vma, start, end);
2956 }
2957 
2958 int hugetlb_reserve_pages(struct inode *inode,
2959 					long from, long to,
2960 					struct vm_area_struct *vma,
2961 					vm_flags_t vm_flags)
2962 {
2963 	long ret, chg;
2964 	struct hstate *h = hstate_inode(inode);
2965 	struct hugepage_subpool *spool = subpool_inode(inode);
2966 
2967 	/*
2968 	 * Only apply hugepage reservation if asked. At fault time, an
2969 	 * attempt will be made for VM_NORESERVE to allocate a page
2970 	 * without using reserves
2971 	 */
2972 	if (vm_flags & VM_NORESERVE)
2973 		return 0;
2974 
2975 	/*
2976 	 * Shared mappings base their reservation on the number of pages that
2977 	 * are already allocated on behalf of the file. Private mappings need
2978 	 * to reserve the full area even if read-only as mprotect() may be
2979 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2980 	 */
2981 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2982 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2983 	else {
2984 		struct resv_map *resv_map = resv_map_alloc();
2985 		if (!resv_map)
2986 			return -ENOMEM;
2987 
2988 		chg = to - from;
2989 
2990 		set_vma_resv_map(vma, resv_map);
2991 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2992 	}
2993 
2994 	if (chg < 0)
2995 		return chg;
2996 
2997 	/* There must be enough pages in the subpool for the mapping */
2998 	if (hugepage_subpool_get_pages(spool, chg))
2999 		return -ENOSPC;
3000 
3001 	/*
3002 	 * Check enough hugepages are available for the reservation.
3003 	 * Hand the pages back to the subpool if there are not
3004 	 */
3005 	ret = hugetlb_acct_memory(h, chg);
3006 	if (ret < 0) {
3007 		hugepage_subpool_put_pages(spool, chg);
3008 		return ret;
3009 	}
3010 
3011 	/*
3012 	 * Account for the reservations made. Shared mappings record regions
3013 	 * that have reservations as they are shared by multiple VMAs.
3014 	 * When the last VMA disappears, the region map says how much
3015 	 * the reservation was and the page cache tells how much of
3016 	 * the reservation was consumed. Private mappings are per-VMA and
3017 	 * only the consumed reservations are tracked. When the VMA
3018 	 * disappears, the original reservation is the VMA size and the
3019 	 * consumed reservations are stored in the map. Hence, nothing
3020 	 * else has to be done for private mappings here
3021 	 */
3022 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3023 		region_add(&inode->i_mapping->private_list, from, to);
3024 	return 0;
3025 }
3026 
3027 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3028 {
3029 	struct hstate *h = hstate_inode(inode);
3030 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3031 	struct hugepage_subpool *spool = subpool_inode(inode);
3032 
3033 	spin_lock(&inode->i_lock);
3034 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3035 	spin_unlock(&inode->i_lock);
3036 
3037 	hugepage_subpool_put_pages(spool, (chg - freed));
3038 	hugetlb_acct_memory(h, -(chg - freed));
3039 }
3040 
3041 #ifdef CONFIG_MEMORY_FAILURE
3042 
3043 /* Should be called in hugetlb_lock */
3044 static int is_hugepage_on_freelist(struct page *hpage)
3045 {
3046 	struct page *page;
3047 	struct page *tmp;
3048 	struct hstate *h = page_hstate(hpage);
3049 	int nid = page_to_nid(hpage);
3050 
3051 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3052 		if (page == hpage)
3053 			return 1;
3054 	return 0;
3055 }
3056 
3057 /*
3058  * This function is called from memory failure code.
3059  * Assume the caller holds page lock of the head page.
3060  */
3061 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3062 {
3063 	struct hstate *h = page_hstate(hpage);
3064 	int nid = page_to_nid(hpage);
3065 	int ret = -EBUSY;
3066 
3067 	spin_lock(&hugetlb_lock);
3068 	if (is_hugepage_on_freelist(hpage)) {
3069 		list_del(&hpage->lru);
3070 		set_page_refcounted(hpage);
3071 		h->free_huge_pages--;
3072 		h->free_huge_pages_node[nid]--;
3073 		ret = 0;
3074 	}
3075 	spin_unlock(&hugetlb_lock);
3076 	return ret;
3077 }
3078 #endif
3079