xref: /openbmc/linux/mm/hugetlb.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25 
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28 
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32 
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36 
37 __initdata LIST_HEAD(huge_boot_pages);
38 
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43 
44 #define for_each_hstate(h) \
45 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46 
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51 
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  * 	down_write(&mm->mmap_sem);
62  * or
63  * 	down_read(&mm->mmap_sem);
64  * 	mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67 	struct list_head link;
68 	long from;
69 	long to;
70 };
71 
72 static long region_add(struct list_head *head, long f, long t)
73 {
74 	struct file_region *rg, *nrg, *trg;
75 
76 	/* Locate the region we are either in or before. */
77 	list_for_each_entry(rg, head, link)
78 		if (f <= rg->to)
79 			break;
80 
81 	/* Round our left edge to the current segment if it encloses us. */
82 	if (f > rg->from)
83 		f = rg->from;
84 
85 	/* Check for and consume any regions we now overlap with. */
86 	nrg = rg;
87 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 		if (&rg->link == head)
89 			break;
90 		if (rg->from > t)
91 			break;
92 
93 		/* If this area reaches higher then extend our area to
94 		 * include it completely.  If this is not the first area
95 		 * which we intend to reuse, free it. */
96 		if (rg->to > t)
97 			t = rg->to;
98 		if (rg != nrg) {
99 			list_del(&rg->link);
100 			kfree(rg);
101 		}
102 	}
103 	nrg->from = f;
104 	nrg->to = t;
105 	return 0;
106 }
107 
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110 	struct file_region *rg, *nrg;
111 	long chg = 0;
112 
113 	/* Locate the region we are before or in. */
114 	list_for_each_entry(rg, head, link)
115 		if (f <= rg->to)
116 			break;
117 
118 	/* If we are below the current region then a new region is required.
119 	 * Subtle, allocate a new region at the position but make it zero
120 	 * size such that we can guarantee to record the reservation. */
121 	if (&rg->link == head || t < rg->from) {
122 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 		if (!nrg)
124 			return -ENOMEM;
125 		nrg->from = f;
126 		nrg->to   = f;
127 		INIT_LIST_HEAD(&nrg->link);
128 		list_add(&nrg->link, rg->link.prev);
129 
130 		return t - f;
131 	}
132 
133 	/* Round our left edge to the current segment if it encloses us. */
134 	if (f > rg->from)
135 		f = rg->from;
136 	chg = t - f;
137 
138 	/* Check for and consume any regions we now overlap with. */
139 	list_for_each_entry(rg, rg->link.prev, link) {
140 		if (&rg->link == head)
141 			break;
142 		if (rg->from > t)
143 			return chg;
144 
145 		/* We overlap with this area, if it extends futher than
146 		 * us then we must extend ourselves.  Account for its
147 		 * existing reservation. */
148 		if (rg->to > t) {
149 			chg += rg->to - t;
150 			t = rg->to;
151 		}
152 		chg -= rg->to - rg->from;
153 	}
154 	return chg;
155 }
156 
157 static long region_truncate(struct list_head *head, long end)
158 {
159 	struct file_region *rg, *trg;
160 	long chg = 0;
161 
162 	/* Locate the region we are either in or before. */
163 	list_for_each_entry(rg, head, link)
164 		if (end <= rg->to)
165 			break;
166 	if (&rg->link == head)
167 		return 0;
168 
169 	/* If we are in the middle of a region then adjust it. */
170 	if (end > rg->from) {
171 		chg = rg->to - end;
172 		rg->to = end;
173 		rg = list_entry(rg->link.next, typeof(*rg), link);
174 	}
175 
176 	/* Drop any remaining regions. */
177 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 		if (&rg->link == head)
179 			break;
180 		chg += rg->to - rg->from;
181 		list_del(&rg->link);
182 		kfree(rg);
183 	}
184 	return chg;
185 }
186 
187 static long region_count(struct list_head *head, long f, long t)
188 {
189 	struct file_region *rg;
190 	long chg = 0;
191 
192 	/* Locate each segment we overlap with, and count that overlap. */
193 	list_for_each_entry(rg, head, link) {
194 		int seg_from;
195 		int seg_to;
196 
197 		if (rg->to <= f)
198 			continue;
199 		if (rg->from >= t)
200 			break;
201 
202 		seg_from = max(rg->from, f);
203 		seg_to = min(rg->to, t);
204 
205 		chg += seg_to - seg_from;
206 	}
207 
208 	return chg;
209 }
210 
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 			struct vm_area_struct *vma, unsigned long address)
217 {
218 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 			(vma->vm_pgoff >> huge_page_order(h));
220 }
221 
222 /*
223  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
224  * bits of the reservation map pointer, which are always clear due to
225  * alignment.
226  */
227 #define HPAGE_RESV_OWNER    (1UL << 0)
228 #define HPAGE_RESV_UNMAPPED (1UL << 1)
229 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
230 
231 /*
232  * These helpers are used to track how many pages are reserved for
233  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
234  * is guaranteed to have their future faults succeed.
235  *
236  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
237  * the reserve counters are updated with the hugetlb_lock held. It is safe
238  * to reset the VMA at fork() time as it is not in use yet and there is no
239  * chance of the global counters getting corrupted as a result of the values.
240  *
241  * The private mapping reservation is represented in a subtly different
242  * manner to a shared mapping.  A shared mapping has a region map associated
243  * with the underlying file, this region map represents the backing file
244  * pages which have ever had a reservation assigned which this persists even
245  * after the page is instantiated.  A private mapping has a region map
246  * associated with the original mmap which is attached to all VMAs which
247  * reference it, this region map represents those offsets which have consumed
248  * reservation ie. where pages have been instantiated.
249  */
250 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
251 {
252 	return (unsigned long)vma->vm_private_data;
253 }
254 
255 static void set_vma_private_data(struct vm_area_struct *vma,
256 							unsigned long value)
257 {
258 	vma->vm_private_data = (void *)value;
259 }
260 
261 struct resv_map {
262 	struct kref refs;
263 	struct list_head regions;
264 };
265 
266 static struct resv_map *resv_map_alloc(void)
267 {
268 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
269 	if (!resv_map)
270 		return NULL;
271 
272 	kref_init(&resv_map->refs);
273 	INIT_LIST_HEAD(&resv_map->regions);
274 
275 	return resv_map;
276 }
277 
278 static void resv_map_release(struct kref *ref)
279 {
280 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
281 
282 	/* Clear out any active regions before we release the map. */
283 	region_truncate(&resv_map->regions, 0);
284 	kfree(resv_map);
285 }
286 
287 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
288 {
289 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
290 	if (!(vma->vm_flags & VM_SHARED))
291 		return (struct resv_map *)(get_vma_private_data(vma) &
292 							~HPAGE_RESV_MASK);
293 	return NULL;
294 }
295 
296 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
297 {
298 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
299 	VM_BUG_ON(vma->vm_flags & VM_SHARED);
300 
301 	set_vma_private_data(vma, (get_vma_private_data(vma) &
302 				HPAGE_RESV_MASK) | (unsigned long)map);
303 }
304 
305 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
306 {
307 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
308 	VM_BUG_ON(vma->vm_flags & VM_SHARED);
309 
310 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
311 }
312 
313 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
314 {
315 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
316 
317 	return (get_vma_private_data(vma) & flag) != 0;
318 }
319 
320 /* Decrement the reserved pages in the hugepage pool by one */
321 static void decrement_hugepage_resv_vma(struct hstate *h,
322 			struct vm_area_struct *vma)
323 {
324 	if (vma->vm_flags & VM_NORESERVE)
325 		return;
326 
327 	if (vma->vm_flags & VM_SHARED) {
328 		/* Shared mappings always use reserves */
329 		h->resv_huge_pages--;
330 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
331 		/*
332 		 * Only the process that called mmap() has reserves for
333 		 * private mappings.
334 		 */
335 		h->resv_huge_pages--;
336 	}
337 }
338 
339 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
340 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
341 {
342 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
343 	if (!(vma->vm_flags & VM_SHARED))
344 		vma->vm_private_data = (void *)0;
345 }
346 
347 /* Returns true if the VMA has associated reserve pages */
348 static int vma_has_reserves(struct vm_area_struct *vma)
349 {
350 	if (vma->vm_flags & VM_SHARED)
351 		return 1;
352 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
353 		return 1;
354 	return 0;
355 }
356 
357 static void clear_huge_page(struct page *page,
358 			unsigned long addr, unsigned long sz)
359 {
360 	int i;
361 
362 	might_sleep();
363 	for (i = 0; i < sz/PAGE_SIZE; i++) {
364 		cond_resched();
365 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
366 	}
367 }
368 
369 static void copy_huge_page(struct page *dst, struct page *src,
370 			   unsigned long addr, struct vm_area_struct *vma)
371 {
372 	int i;
373 	struct hstate *h = hstate_vma(vma);
374 
375 	might_sleep();
376 	for (i = 0; i < pages_per_huge_page(h); i++) {
377 		cond_resched();
378 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
379 	}
380 }
381 
382 static void enqueue_huge_page(struct hstate *h, struct page *page)
383 {
384 	int nid = page_to_nid(page);
385 	list_add(&page->lru, &h->hugepage_freelists[nid]);
386 	h->free_huge_pages++;
387 	h->free_huge_pages_node[nid]++;
388 }
389 
390 static struct page *dequeue_huge_page(struct hstate *h)
391 {
392 	int nid;
393 	struct page *page = NULL;
394 
395 	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
396 		if (!list_empty(&h->hugepage_freelists[nid])) {
397 			page = list_entry(h->hugepage_freelists[nid].next,
398 					  struct page, lru);
399 			list_del(&page->lru);
400 			h->free_huge_pages--;
401 			h->free_huge_pages_node[nid]--;
402 			break;
403 		}
404 	}
405 	return page;
406 }
407 
408 static struct page *dequeue_huge_page_vma(struct hstate *h,
409 				struct vm_area_struct *vma,
410 				unsigned long address, int avoid_reserve)
411 {
412 	int nid;
413 	struct page *page = NULL;
414 	struct mempolicy *mpol;
415 	nodemask_t *nodemask;
416 	struct zonelist *zonelist = huge_zonelist(vma, address,
417 					htlb_alloc_mask, &mpol, &nodemask);
418 	struct zone *zone;
419 	struct zoneref *z;
420 
421 	/*
422 	 * A child process with MAP_PRIVATE mappings created by their parent
423 	 * have no page reserves. This check ensures that reservations are
424 	 * not "stolen". The child may still get SIGKILLed
425 	 */
426 	if (!vma_has_reserves(vma) &&
427 			h->free_huge_pages - h->resv_huge_pages == 0)
428 		return NULL;
429 
430 	/* If reserves cannot be used, ensure enough pages are in the pool */
431 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
432 		return NULL;
433 
434 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
435 						MAX_NR_ZONES - 1, nodemask) {
436 		nid = zone_to_nid(zone);
437 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
438 		    !list_empty(&h->hugepage_freelists[nid])) {
439 			page = list_entry(h->hugepage_freelists[nid].next,
440 					  struct page, lru);
441 			list_del(&page->lru);
442 			h->free_huge_pages--;
443 			h->free_huge_pages_node[nid]--;
444 
445 			if (!avoid_reserve)
446 				decrement_hugepage_resv_vma(h, vma);
447 
448 			break;
449 		}
450 	}
451 	mpol_cond_put(mpol);
452 	return page;
453 }
454 
455 static void update_and_free_page(struct hstate *h, struct page *page)
456 {
457 	int i;
458 
459 	h->nr_huge_pages--;
460 	h->nr_huge_pages_node[page_to_nid(page)]--;
461 	for (i = 0; i < pages_per_huge_page(h); i++) {
462 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
463 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
464 				1 << PG_private | 1<< PG_writeback);
465 	}
466 	set_compound_page_dtor(page, NULL);
467 	set_page_refcounted(page);
468 	arch_release_hugepage(page);
469 	__free_pages(page, huge_page_order(h));
470 }
471 
472 struct hstate *size_to_hstate(unsigned long size)
473 {
474 	struct hstate *h;
475 
476 	for_each_hstate(h) {
477 		if (huge_page_size(h) == size)
478 			return h;
479 	}
480 	return NULL;
481 }
482 
483 static void free_huge_page(struct page *page)
484 {
485 	/*
486 	 * Can't pass hstate in here because it is called from the
487 	 * compound page destructor.
488 	 */
489 	struct hstate *h = page_hstate(page);
490 	int nid = page_to_nid(page);
491 	struct address_space *mapping;
492 
493 	mapping = (struct address_space *) page_private(page);
494 	set_page_private(page, 0);
495 	BUG_ON(page_count(page));
496 	INIT_LIST_HEAD(&page->lru);
497 
498 	spin_lock(&hugetlb_lock);
499 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
500 		update_and_free_page(h, page);
501 		h->surplus_huge_pages--;
502 		h->surplus_huge_pages_node[nid]--;
503 	} else {
504 		enqueue_huge_page(h, page);
505 	}
506 	spin_unlock(&hugetlb_lock);
507 	if (mapping)
508 		hugetlb_put_quota(mapping, 1);
509 }
510 
511 /*
512  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
513  * balanced by operating on them in a round-robin fashion.
514  * Returns 1 if an adjustment was made.
515  */
516 static int adjust_pool_surplus(struct hstate *h, int delta)
517 {
518 	static int prev_nid;
519 	int nid = prev_nid;
520 	int ret = 0;
521 
522 	VM_BUG_ON(delta != -1 && delta != 1);
523 	do {
524 		nid = next_node(nid, node_online_map);
525 		if (nid == MAX_NUMNODES)
526 			nid = first_node(node_online_map);
527 
528 		/* To shrink on this node, there must be a surplus page */
529 		if (delta < 0 && !h->surplus_huge_pages_node[nid])
530 			continue;
531 		/* Surplus cannot exceed the total number of pages */
532 		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
533 						h->nr_huge_pages_node[nid])
534 			continue;
535 
536 		h->surplus_huge_pages += delta;
537 		h->surplus_huge_pages_node[nid] += delta;
538 		ret = 1;
539 		break;
540 	} while (nid != prev_nid);
541 
542 	prev_nid = nid;
543 	return ret;
544 }
545 
546 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
547 {
548 	set_compound_page_dtor(page, free_huge_page);
549 	spin_lock(&hugetlb_lock);
550 	h->nr_huge_pages++;
551 	h->nr_huge_pages_node[nid]++;
552 	spin_unlock(&hugetlb_lock);
553 	put_page(page); /* free it into the hugepage allocator */
554 }
555 
556 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
557 {
558 	struct page *page;
559 
560 	if (h->order >= MAX_ORDER)
561 		return NULL;
562 
563 	page = alloc_pages_node(nid,
564 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
565 						__GFP_REPEAT|__GFP_NOWARN,
566 		huge_page_order(h));
567 	if (page) {
568 		if (arch_prepare_hugepage(page)) {
569 			__free_pages(page, huge_page_order(h));
570 			return NULL;
571 		}
572 		prep_new_huge_page(h, page, nid);
573 	}
574 
575 	return page;
576 }
577 
578 /*
579  * Use a helper variable to find the next node and then
580  * copy it back to hugetlb_next_nid afterwards:
581  * otherwise there's a window in which a racer might
582  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
583  * But we don't need to use a spin_lock here: it really
584  * doesn't matter if occasionally a racer chooses the
585  * same nid as we do.  Move nid forward in the mask even
586  * if we just successfully allocated a hugepage so that
587  * the next caller gets hugepages on the next node.
588  */
589 static int hstate_next_node(struct hstate *h)
590 {
591 	int next_nid;
592 	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
593 	if (next_nid == MAX_NUMNODES)
594 		next_nid = first_node(node_online_map);
595 	h->hugetlb_next_nid = next_nid;
596 	return next_nid;
597 }
598 
599 static int alloc_fresh_huge_page(struct hstate *h)
600 {
601 	struct page *page;
602 	int start_nid;
603 	int next_nid;
604 	int ret = 0;
605 
606 	start_nid = h->hugetlb_next_nid;
607 
608 	do {
609 		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
610 		if (page)
611 			ret = 1;
612 		next_nid = hstate_next_node(h);
613 	} while (!page && h->hugetlb_next_nid != start_nid);
614 
615 	if (ret)
616 		count_vm_event(HTLB_BUDDY_PGALLOC);
617 	else
618 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
619 
620 	return ret;
621 }
622 
623 static struct page *alloc_buddy_huge_page(struct hstate *h,
624 			struct vm_area_struct *vma, unsigned long address)
625 {
626 	struct page *page;
627 	unsigned int nid;
628 
629 	if (h->order >= MAX_ORDER)
630 		return NULL;
631 
632 	/*
633 	 * Assume we will successfully allocate the surplus page to
634 	 * prevent racing processes from causing the surplus to exceed
635 	 * overcommit
636 	 *
637 	 * This however introduces a different race, where a process B
638 	 * tries to grow the static hugepage pool while alloc_pages() is
639 	 * called by process A. B will only examine the per-node
640 	 * counters in determining if surplus huge pages can be
641 	 * converted to normal huge pages in adjust_pool_surplus(). A
642 	 * won't be able to increment the per-node counter, until the
643 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
644 	 * no more huge pages can be converted from surplus to normal
645 	 * state (and doesn't try to convert again). Thus, we have a
646 	 * case where a surplus huge page exists, the pool is grown, and
647 	 * the surplus huge page still exists after, even though it
648 	 * should just have been converted to a normal huge page. This
649 	 * does not leak memory, though, as the hugepage will be freed
650 	 * once it is out of use. It also does not allow the counters to
651 	 * go out of whack in adjust_pool_surplus() as we don't modify
652 	 * the node values until we've gotten the hugepage and only the
653 	 * per-node value is checked there.
654 	 */
655 	spin_lock(&hugetlb_lock);
656 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
657 		spin_unlock(&hugetlb_lock);
658 		return NULL;
659 	} else {
660 		h->nr_huge_pages++;
661 		h->surplus_huge_pages++;
662 	}
663 	spin_unlock(&hugetlb_lock);
664 
665 	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
666 					__GFP_REPEAT|__GFP_NOWARN,
667 					huge_page_order(h));
668 
669 	if (page && arch_prepare_hugepage(page)) {
670 		__free_pages(page, huge_page_order(h));
671 		return NULL;
672 	}
673 
674 	spin_lock(&hugetlb_lock);
675 	if (page) {
676 		/*
677 		 * This page is now managed by the hugetlb allocator and has
678 		 * no users -- drop the buddy allocator's reference.
679 		 */
680 		put_page_testzero(page);
681 		VM_BUG_ON(page_count(page));
682 		nid = page_to_nid(page);
683 		set_compound_page_dtor(page, free_huge_page);
684 		/*
685 		 * We incremented the global counters already
686 		 */
687 		h->nr_huge_pages_node[nid]++;
688 		h->surplus_huge_pages_node[nid]++;
689 		__count_vm_event(HTLB_BUDDY_PGALLOC);
690 	} else {
691 		h->nr_huge_pages--;
692 		h->surplus_huge_pages--;
693 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
694 	}
695 	spin_unlock(&hugetlb_lock);
696 
697 	return page;
698 }
699 
700 /*
701  * Increase the hugetlb pool such that it can accomodate a reservation
702  * of size 'delta'.
703  */
704 static int gather_surplus_pages(struct hstate *h, int delta)
705 {
706 	struct list_head surplus_list;
707 	struct page *page, *tmp;
708 	int ret, i;
709 	int needed, allocated;
710 
711 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
712 	if (needed <= 0) {
713 		h->resv_huge_pages += delta;
714 		return 0;
715 	}
716 
717 	allocated = 0;
718 	INIT_LIST_HEAD(&surplus_list);
719 
720 	ret = -ENOMEM;
721 retry:
722 	spin_unlock(&hugetlb_lock);
723 	for (i = 0; i < needed; i++) {
724 		page = alloc_buddy_huge_page(h, NULL, 0);
725 		if (!page) {
726 			/*
727 			 * We were not able to allocate enough pages to
728 			 * satisfy the entire reservation so we free what
729 			 * we've allocated so far.
730 			 */
731 			spin_lock(&hugetlb_lock);
732 			needed = 0;
733 			goto free;
734 		}
735 
736 		list_add(&page->lru, &surplus_list);
737 	}
738 	allocated += needed;
739 
740 	/*
741 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
742 	 * because either resv_huge_pages or free_huge_pages may have changed.
743 	 */
744 	spin_lock(&hugetlb_lock);
745 	needed = (h->resv_huge_pages + delta) -
746 			(h->free_huge_pages + allocated);
747 	if (needed > 0)
748 		goto retry;
749 
750 	/*
751 	 * The surplus_list now contains _at_least_ the number of extra pages
752 	 * needed to accomodate the reservation.  Add the appropriate number
753 	 * of pages to the hugetlb pool and free the extras back to the buddy
754 	 * allocator.  Commit the entire reservation here to prevent another
755 	 * process from stealing the pages as they are added to the pool but
756 	 * before they are reserved.
757 	 */
758 	needed += allocated;
759 	h->resv_huge_pages += delta;
760 	ret = 0;
761 free:
762 	/* Free the needed pages to the hugetlb pool */
763 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
764 		if ((--needed) < 0)
765 			break;
766 		list_del(&page->lru);
767 		enqueue_huge_page(h, page);
768 	}
769 
770 	/* Free unnecessary surplus pages to the buddy allocator */
771 	if (!list_empty(&surplus_list)) {
772 		spin_unlock(&hugetlb_lock);
773 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
774 			list_del(&page->lru);
775 			/*
776 			 * The page has a reference count of zero already, so
777 			 * call free_huge_page directly instead of using
778 			 * put_page.  This must be done with hugetlb_lock
779 			 * unlocked which is safe because free_huge_page takes
780 			 * hugetlb_lock before deciding how to free the page.
781 			 */
782 			free_huge_page(page);
783 		}
784 		spin_lock(&hugetlb_lock);
785 	}
786 
787 	return ret;
788 }
789 
790 /*
791  * When releasing a hugetlb pool reservation, any surplus pages that were
792  * allocated to satisfy the reservation must be explicitly freed if they were
793  * never used.
794  */
795 static void return_unused_surplus_pages(struct hstate *h,
796 					unsigned long unused_resv_pages)
797 {
798 	static int nid = -1;
799 	struct page *page;
800 	unsigned long nr_pages;
801 
802 	/*
803 	 * We want to release as many surplus pages as possible, spread
804 	 * evenly across all nodes. Iterate across all nodes until we
805 	 * can no longer free unreserved surplus pages. This occurs when
806 	 * the nodes with surplus pages have no free pages.
807 	 */
808 	unsigned long remaining_iterations = num_online_nodes();
809 
810 	/* Uncommit the reservation */
811 	h->resv_huge_pages -= unused_resv_pages;
812 
813 	/* Cannot return gigantic pages currently */
814 	if (h->order >= MAX_ORDER)
815 		return;
816 
817 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
818 
819 	while (remaining_iterations-- && nr_pages) {
820 		nid = next_node(nid, node_online_map);
821 		if (nid == MAX_NUMNODES)
822 			nid = first_node(node_online_map);
823 
824 		if (!h->surplus_huge_pages_node[nid])
825 			continue;
826 
827 		if (!list_empty(&h->hugepage_freelists[nid])) {
828 			page = list_entry(h->hugepage_freelists[nid].next,
829 					  struct page, lru);
830 			list_del(&page->lru);
831 			update_and_free_page(h, page);
832 			h->free_huge_pages--;
833 			h->free_huge_pages_node[nid]--;
834 			h->surplus_huge_pages--;
835 			h->surplus_huge_pages_node[nid]--;
836 			nr_pages--;
837 			remaining_iterations = num_online_nodes();
838 		}
839 	}
840 }
841 
842 /*
843  * Determine if the huge page at addr within the vma has an associated
844  * reservation.  Where it does not we will need to logically increase
845  * reservation and actually increase quota before an allocation can occur.
846  * Where any new reservation would be required the reservation change is
847  * prepared, but not committed.  Once the page has been quota'd allocated
848  * an instantiated the change should be committed via vma_commit_reservation.
849  * No action is required on failure.
850  */
851 static int vma_needs_reservation(struct hstate *h,
852 			struct vm_area_struct *vma, unsigned long addr)
853 {
854 	struct address_space *mapping = vma->vm_file->f_mapping;
855 	struct inode *inode = mapping->host;
856 
857 	if (vma->vm_flags & VM_SHARED) {
858 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
859 		return region_chg(&inode->i_mapping->private_list,
860 							idx, idx + 1);
861 
862 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
863 		return 1;
864 
865 	} else  {
866 		int err;
867 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
868 		struct resv_map *reservations = vma_resv_map(vma);
869 
870 		err = region_chg(&reservations->regions, idx, idx + 1);
871 		if (err < 0)
872 			return err;
873 		return 0;
874 	}
875 }
876 static void vma_commit_reservation(struct hstate *h,
877 			struct vm_area_struct *vma, unsigned long addr)
878 {
879 	struct address_space *mapping = vma->vm_file->f_mapping;
880 	struct inode *inode = mapping->host;
881 
882 	if (vma->vm_flags & VM_SHARED) {
883 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
884 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
885 
886 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
887 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
888 		struct resv_map *reservations = vma_resv_map(vma);
889 
890 		/* Mark this page used in the map. */
891 		region_add(&reservations->regions, idx, idx + 1);
892 	}
893 }
894 
895 static struct page *alloc_huge_page(struct vm_area_struct *vma,
896 				    unsigned long addr, int avoid_reserve)
897 {
898 	struct hstate *h = hstate_vma(vma);
899 	struct page *page;
900 	struct address_space *mapping = vma->vm_file->f_mapping;
901 	struct inode *inode = mapping->host;
902 	unsigned int chg;
903 
904 	/*
905 	 * Processes that did not create the mapping will have no reserves and
906 	 * will not have accounted against quota. Check that the quota can be
907 	 * made before satisfying the allocation
908 	 * MAP_NORESERVE mappings may also need pages and quota allocated
909 	 * if no reserve mapping overlaps.
910 	 */
911 	chg = vma_needs_reservation(h, vma, addr);
912 	if (chg < 0)
913 		return ERR_PTR(chg);
914 	if (chg)
915 		if (hugetlb_get_quota(inode->i_mapping, chg))
916 			return ERR_PTR(-ENOSPC);
917 
918 	spin_lock(&hugetlb_lock);
919 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
920 	spin_unlock(&hugetlb_lock);
921 
922 	if (!page) {
923 		page = alloc_buddy_huge_page(h, vma, addr);
924 		if (!page) {
925 			hugetlb_put_quota(inode->i_mapping, chg);
926 			return ERR_PTR(-VM_FAULT_OOM);
927 		}
928 	}
929 
930 	set_page_refcounted(page);
931 	set_page_private(page, (unsigned long) mapping);
932 
933 	vma_commit_reservation(h, vma, addr);
934 
935 	return page;
936 }
937 
938 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
939 {
940 	struct huge_bootmem_page *m;
941 	int nr_nodes = nodes_weight(node_online_map);
942 
943 	while (nr_nodes) {
944 		void *addr;
945 
946 		addr = __alloc_bootmem_node_nopanic(
947 				NODE_DATA(h->hugetlb_next_nid),
948 				huge_page_size(h), huge_page_size(h), 0);
949 
950 		if (addr) {
951 			/*
952 			 * Use the beginning of the huge page to store the
953 			 * huge_bootmem_page struct (until gather_bootmem
954 			 * puts them into the mem_map).
955 			 */
956 			m = addr;
957 			if (m)
958 				goto found;
959 		}
960 		hstate_next_node(h);
961 		nr_nodes--;
962 	}
963 	return 0;
964 
965 found:
966 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
967 	/* Put them into a private list first because mem_map is not up yet */
968 	list_add(&m->list, &huge_boot_pages);
969 	m->hstate = h;
970 	return 1;
971 }
972 
973 /* Put bootmem huge pages into the standard lists after mem_map is up */
974 static void __init gather_bootmem_prealloc(void)
975 {
976 	struct huge_bootmem_page *m;
977 
978 	list_for_each_entry(m, &huge_boot_pages, list) {
979 		struct page *page = virt_to_page(m);
980 		struct hstate *h = m->hstate;
981 		__ClearPageReserved(page);
982 		WARN_ON(page_count(page) != 1);
983 		prep_compound_page(page, h->order);
984 		prep_new_huge_page(h, page, page_to_nid(page));
985 	}
986 }
987 
988 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
989 {
990 	unsigned long i;
991 
992 	for (i = 0; i < h->max_huge_pages; ++i) {
993 		if (h->order >= MAX_ORDER) {
994 			if (!alloc_bootmem_huge_page(h))
995 				break;
996 		} else if (!alloc_fresh_huge_page(h))
997 			break;
998 	}
999 	h->max_huge_pages = i;
1000 }
1001 
1002 static void __init hugetlb_init_hstates(void)
1003 {
1004 	struct hstate *h;
1005 
1006 	for_each_hstate(h) {
1007 		/* oversize hugepages were init'ed in early boot */
1008 		if (h->order < MAX_ORDER)
1009 			hugetlb_hstate_alloc_pages(h);
1010 	}
1011 }
1012 
1013 static char * __init memfmt(char *buf, unsigned long n)
1014 {
1015 	if (n >= (1UL << 30))
1016 		sprintf(buf, "%lu GB", n >> 30);
1017 	else if (n >= (1UL << 20))
1018 		sprintf(buf, "%lu MB", n >> 20);
1019 	else
1020 		sprintf(buf, "%lu KB", n >> 10);
1021 	return buf;
1022 }
1023 
1024 static void __init report_hugepages(void)
1025 {
1026 	struct hstate *h;
1027 
1028 	for_each_hstate(h) {
1029 		char buf[32];
1030 		printk(KERN_INFO "HugeTLB registered %s page size, "
1031 				 "pre-allocated %ld pages\n",
1032 			memfmt(buf, huge_page_size(h)),
1033 			h->free_huge_pages);
1034 	}
1035 }
1036 
1037 #ifdef CONFIG_HIGHMEM
1038 static void try_to_free_low(struct hstate *h, unsigned long count)
1039 {
1040 	int i;
1041 
1042 	if (h->order >= MAX_ORDER)
1043 		return;
1044 
1045 	for (i = 0; i < MAX_NUMNODES; ++i) {
1046 		struct page *page, *next;
1047 		struct list_head *freel = &h->hugepage_freelists[i];
1048 		list_for_each_entry_safe(page, next, freel, lru) {
1049 			if (count >= h->nr_huge_pages)
1050 				return;
1051 			if (PageHighMem(page))
1052 				continue;
1053 			list_del(&page->lru);
1054 			update_and_free_page(h, page);
1055 			h->free_huge_pages--;
1056 			h->free_huge_pages_node[page_to_nid(page)]--;
1057 		}
1058 	}
1059 }
1060 #else
1061 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1062 {
1063 }
1064 #endif
1065 
1066 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1067 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1068 {
1069 	unsigned long min_count, ret;
1070 
1071 	if (h->order >= MAX_ORDER)
1072 		return h->max_huge_pages;
1073 
1074 	/*
1075 	 * Increase the pool size
1076 	 * First take pages out of surplus state.  Then make up the
1077 	 * remaining difference by allocating fresh huge pages.
1078 	 *
1079 	 * We might race with alloc_buddy_huge_page() here and be unable
1080 	 * to convert a surplus huge page to a normal huge page. That is
1081 	 * not critical, though, it just means the overall size of the
1082 	 * pool might be one hugepage larger than it needs to be, but
1083 	 * within all the constraints specified by the sysctls.
1084 	 */
1085 	spin_lock(&hugetlb_lock);
1086 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1087 		if (!adjust_pool_surplus(h, -1))
1088 			break;
1089 	}
1090 
1091 	while (count > persistent_huge_pages(h)) {
1092 		/*
1093 		 * If this allocation races such that we no longer need the
1094 		 * page, free_huge_page will handle it by freeing the page
1095 		 * and reducing the surplus.
1096 		 */
1097 		spin_unlock(&hugetlb_lock);
1098 		ret = alloc_fresh_huge_page(h);
1099 		spin_lock(&hugetlb_lock);
1100 		if (!ret)
1101 			goto out;
1102 
1103 	}
1104 
1105 	/*
1106 	 * Decrease the pool size
1107 	 * First return free pages to the buddy allocator (being careful
1108 	 * to keep enough around to satisfy reservations).  Then place
1109 	 * pages into surplus state as needed so the pool will shrink
1110 	 * to the desired size as pages become free.
1111 	 *
1112 	 * By placing pages into the surplus state independent of the
1113 	 * overcommit value, we are allowing the surplus pool size to
1114 	 * exceed overcommit. There are few sane options here. Since
1115 	 * alloc_buddy_huge_page() is checking the global counter,
1116 	 * though, we'll note that we're not allowed to exceed surplus
1117 	 * and won't grow the pool anywhere else. Not until one of the
1118 	 * sysctls are changed, or the surplus pages go out of use.
1119 	 */
1120 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1121 	min_count = max(count, min_count);
1122 	try_to_free_low(h, min_count);
1123 	while (min_count < persistent_huge_pages(h)) {
1124 		struct page *page = dequeue_huge_page(h);
1125 		if (!page)
1126 			break;
1127 		update_and_free_page(h, page);
1128 	}
1129 	while (count < persistent_huge_pages(h)) {
1130 		if (!adjust_pool_surplus(h, 1))
1131 			break;
1132 	}
1133 out:
1134 	ret = persistent_huge_pages(h);
1135 	spin_unlock(&hugetlb_lock);
1136 	return ret;
1137 }
1138 
1139 #define HSTATE_ATTR_RO(_name) \
1140 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1141 
1142 #define HSTATE_ATTR(_name) \
1143 	static struct kobj_attribute _name##_attr = \
1144 		__ATTR(_name, 0644, _name##_show, _name##_store)
1145 
1146 static struct kobject *hugepages_kobj;
1147 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1148 
1149 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1150 {
1151 	int i;
1152 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1153 		if (hstate_kobjs[i] == kobj)
1154 			return &hstates[i];
1155 	BUG();
1156 	return NULL;
1157 }
1158 
1159 static ssize_t nr_hugepages_show(struct kobject *kobj,
1160 					struct kobj_attribute *attr, char *buf)
1161 {
1162 	struct hstate *h = kobj_to_hstate(kobj);
1163 	return sprintf(buf, "%lu\n", h->nr_huge_pages);
1164 }
1165 static ssize_t nr_hugepages_store(struct kobject *kobj,
1166 		struct kobj_attribute *attr, const char *buf, size_t count)
1167 {
1168 	int err;
1169 	unsigned long input;
1170 	struct hstate *h = kobj_to_hstate(kobj);
1171 
1172 	err = strict_strtoul(buf, 10, &input);
1173 	if (err)
1174 		return 0;
1175 
1176 	h->max_huge_pages = set_max_huge_pages(h, input);
1177 
1178 	return count;
1179 }
1180 HSTATE_ATTR(nr_hugepages);
1181 
1182 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1183 					struct kobj_attribute *attr, char *buf)
1184 {
1185 	struct hstate *h = kobj_to_hstate(kobj);
1186 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1187 }
1188 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1189 		struct kobj_attribute *attr, const char *buf, size_t count)
1190 {
1191 	int err;
1192 	unsigned long input;
1193 	struct hstate *h = kobj_to_hstate(kobj);
1194 
1195 	err = strict_strtoul(buf, 10, &input);
1196 	if (err)
1197 		return 0;
1198 
1199 	spin_lock(&hugetlb_lock);
1200 	h->nr_overcommit_huge_pages = input;
1201 	spin_unlock(&hugetlb_lock);
1202 
1203 	return count;
1204 }
1205 HSTATE_ATTR(nr_overcommit_hugepages);
1206 
1207 static ssize_t free_hugepages_show(struct kobject *kobj,
1208 					struct kobj_attribute *attr, char *buf)
1209 {
1210 	struct hstate *h = kobj_to_hstate(kobj);
1211 	return sprintf(buf, "%lu\n", h->free_huge_pages);
1212 }
1213 HSTATE_ATTR_RO(free_hugepages);
1214 
1215 static ssize_t resv_hugepages_show(struct kobject *kobj,
1216 					struct kobj_attribute *attr, char *buf)
1217 {
1218 	struct hstate *h = kobj_to_hstate(kobj);
1219 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1220 }
1221 HSTATE_ATTR_RO(resv_hugepages);
1222 
1223 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1224 					struct kobj_attribute *attr, char *buf)
1225 {
1226 	struct hstate *h = kobj_to_hstate(kobj);
1227 	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1228 }
1229 HSTATE_ATTR_RO(surplus_hugepages);
1230 
1231 static struct attribute *hstate_attrs[] = {
1232 	&nr_hugepages_attr.attr,
1233 	&nr_overcommit_hugepages_attr.attr,
1234 	&free_hugepages_attr.attr,
1235 	&resv_hugepages_attr.attr,
1236 	&surplus_hugepages_attr.attr,
1237 	NULL,
1238 };
1239 
1240 static struct attribute_group hstate_attr_group = {
1241 	.attrs = hstate_attrs,
1242 };
1243 
1244 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1245 {
1246 	int retval;
1247 
1248 	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1249 							hugepages_kobj);
1250 	if (!hstate_kobjs[h - hstates])
1251 		return -ENOMEM;
1252 
1253 	retval = sysfs_create_group(hstate_kobjs[h - hstates],
1254 							&hstate_attr_group);
1255 	if (retval)
1256 		kobject_put(hstate_kobjs[h - hstates]);
1257 
1258 	return retval;
1259 }
1260 
1261 static void __init hugetlb_sysfs_init(void)
1262 {
1263 	struct hstate *h;
1264 	int err;
1265 
1266 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1267 	if (!hugepages_kobj)
1268 		return;
1269 
1270 	for_each_hstate(h) {
1271 		err = hugetlb_sysfs_add_hstate(h);
1272 		if (err)
1273 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1274 								h->name);
1275 	}
1276 }
1277 
1278 static void __exit hugetlb_exit(void)
1279 {
1280 	struct hstate *h;
1281 
1282 	for_each_hstate(h) {
1283 		kobject_put(hstate_kobjs[h - hstates]);
1284 	}
1285 
1286 	kobject_put(hugepages_kobj);
1287 }
1288 module_exit(hugetlb_exit);
1289 
1290 static int __init hugetlb_init(void)
1291 {
1292 	/* Some platform decide whether they support huge pages at boot
1293 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1294 	 * there is no such support
1295 	 */
1296 	if (HPAGE_SHIFT == 0)
1297 		return 0;
1298 
1299 	if (!size_to_hstate(default_hstate_size)) {
1300 		default_hstate_size = HPAGE_SIZE;
1301 		if (!size_to_hstate(default_hstate_size))
1302 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1303 	}
1304 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1305 	if (default_hstate_max_huge_pages)
1306 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1307 
1308 	hugetlb_init_hstates();
1309 
1310 	gather_bootmem_prealloc();
1311 
1312 	report_hugepages();
1313 
1314 	hugetlb_sysfs_init();
1315 
1316 	return 0;
1317 }
1318 module_init(hugetlb_init);
1319 
1320 /* Should be called on processing a hugepagesz=... option */
1321 void __init hugetlb_add_hstate(unsigned order)
1322 {
1323 	struct hstate *h;
1324 	unsigned long i;
1325 
1326 	if (size_to_hstate(PAGE_SIZE << order)) {
1327 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1328 		return;
1329 	}
1330 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1331 	BUG_ON(order == 0);
1332 	h = &hstates[max_hstate++];
1333 	h->order = order;
1334 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1335 	h->nr_huge_pages = 0;
1336 	h->free_huge_pages = 0;
1337 	for (i = 0; i < MAX_NUMNODES; ++i)
1338 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1339 	h->hugetlb_next_nid = first_node(node_online_map);
1340 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1341 					huge_page_size(h)/1024);
1342 
1343 	parsed_hstate = h;
1344 }
1345 
1346 static int __init hugetlb_nrpages_setup(char *s)
1347 {
1348 	unsigned long *mhp;
1349 	static unsigned long *last_mhp;
1350 
1351 	/*
1352 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1353 	 * so this hugepages= parameter goes to the "default hstate".
1354 	 */
1355 	if (!max_hstate)
1356 		mhp = &default_hstate_max_huge_pages;
1357 	else
1358 		mhp = &parsed_hstate->max_huge_pages;
1359 
1360 	if (mhp == last_mhp) {
1361 		printk(KERN_WARNING "hugepages= specified twice without "
1362 			"interleaving hugepagesz=, ignoring\n");
1363 		return 1;
1364 	}
1365 
1366 	if (sscanf(s, "%lu", mhp) <= 0)
1367 		*mhp = 0;
1368 
1369 	/*
1370 	 * Global state is always initialized later in hugetlb_init.
1371 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1372 	 * use the bootmem allocator.
1373 	 */
1374 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1375 		hugetlb_hstate_alloc_pages(parsed_hstate);
1376 
1377 	last_mhp = mhp;
1378 
1379 	return 1;
1380 }
1381 __setup("hugepages=", hugetlb_nrpages_setup);
1382 
1383 static int __init hugetlb_default_setup(char *s)
1384 {
1385 	default_hstate_size = memparse(s, &s);
1386 	return 1;
1387 }
1388 __setup("default_hugepagesz=", hugetlb_default_setup);
1389 
1390 static unsigned int cpuset_mems_nr(unsigned int *array)
1391 {
1392 	int node;
1393 	unsigned int nr = 0;
1394 
1395 	for_each_node_mask(node, cpuset_current_mems_allowed)
1396 		nr += array[node];
1397 
1398 	return nr;
1399 }
1400 
1401 #ifdef CONFIG_SYSCTL
1402 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1403 			   struct file *file, void __user *buffer,
1404 			   size_t *length, loff_t *ppos)
1405 {
1406 	struct hstate *h = &default_hstate;
1407 	unsigned long tmp;
1408 
1409 	if (!write)
1410 		tmp = h->max_huge_pages;
1411 
1412 	table->data = &tmp;
1413 	table->maxlen = sizeof(unsigned long);
1414 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1415 
1416 	if (write)
1417 		h->max_huge_pages = set_max_huge_pages(h, tmp);
1418 
1419 	return 0;
1420 }
1421 
1422 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1423 			struct file *file, void __user *buffer,
1424 			size_t *length, loff_t *ppos)
1425 {
1426 	proc_dointvec(table, write, file, buffer, length, ppos);
1427 	if (hugepages_treat_as_movable)
1428 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1429 	else
1430 		htlb_alloc_mask = GFP_HIGHUSER;
1431 	return 0;
1432 }
1433 
1434 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1435 			struct file *file, void __user *buffer,
1436 			size_t *length, loff_t *ppos)
1437 {
1438 	struct hstate *h = &default_hstate;
1439 	unsigned long tmp;
1440 
1441 	if (!write)
1442 		tmp = h->nr_overcommit_huge_pages;
1443 
1444 	table->data = &tmp;
1445 	table->maxlen = sizeof(unsigned long);
1446 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1447 
1448 	if (write) {
1449 		spin_lock(&hugetlb_lock);
1450 		h->nr_overcommit_huge_pages = tmp;
1451 		spin_unlock(&hugetlb_lock);
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 #endif /* CONFIG_SYSCTL */
1458 
1459 void hugetlb_report_meminfo(struct seq_file *m)
1460 {
1461 	struct hstate *h = &default_hstate;
1462 	seq_printf(m,
1463 			"HugePages_Total:   %5lu\n"
1464 			"HugePages_Free:    %5lu\n"
1465 			"HugePages_Rsvd:    %5lu\n"
1466 			"HugePages_Surp:    %5lu\n"
1467 			"Hugepagesize:   %8lu kB\n",
1468 			h->nr_huge_pages,
1469 			h->free_huge_pages,
1470 			h->resv_huge_pages,
1471 			h->surplus_huge_pages,
1472 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1473 }
1474 
1475 int hugetlb_report_node_meminfo(int nid, char *buf)
1476 {
1477 	struct hstate *h = &default_hstate;
1478 	return sprintf(buf,
1479 		"Node %d HugePages_Total: %5u\n"
1480 		"Node %d HugePages_Free:  %5u\n"
1481 		"Node %d HugePages_Surp:  %5u\n",
1482 		nid, h->nr_huge_pages_node[nid],
1483 		nid, h->free_huge_pages_node[nid],
1484 		nid, h->surplus_huge_pages_node[nid]);
1485 }
1486 
1487 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1488 unsigned long hugetlb_total_pages(void)
1489 {
1490 	struct hstate *h = &default_hstate;
1491 	return h->nr_huge_pages * pages_per_huge_page(h);
1492 }
1493 
1494 static int hugetlb_acct_memory(struct hstate *h, long delta)
1495 {
1496 	int ret = -ENOMEM;
1497 
1498 	spin_lock(&hugetlb_lock);
1499 	/*
1500 	 * When cpuset is configured, it breaks the strict hugetlb page
1501 	 * reservation as the accounting is done on a global variable. Such
1502 	 * reservation is completely rubbish in the presence of cpuset because
1503 	 * the reservation is not checked against page availability for the
1504 	 * current cpuset. Application can still potentially OOM'ed by kernel
1505 	 * with lack of free htlb page in cpuset that the task is in.
1506 	 * Attempt to enforce strict accounting with cpuset is almost
1507 	 * impossible (or too ugly) because cpuset is too fluid that
1508 	 * task or memory node can be dynamically moved between cpusets.
1509 	 *
1510 	 * The change of semantics for shared hugetlb mapping with cpuset is
1511 	 * undesirable. However, in order to preserve some of the semantics,
1512 	 * we fall back to check against current free page availability as
1513 	 * a best attempt and hopefully to minimize the impact of changing
1514 	 * semantics that cpuset has.
1515 	 */
1516 	if (delta > 0) {
1517 		if (gather_surplus_pages(h, delta) < 0)
1518 			goto out;
1519 
1520 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1521 			return_unused_surplus_pages(h, delta);
1522 			goto out;
1523 		}
1524 	}
1525 
1526 	ret = 0;
1527 	if (delta < 0)
1528 		return_unused_surplus_pages(h, (unsigned long) -delta);
1529 
1530 out:
1531 	spin_unlock(&hugetlb_lock);
1532 	return ret;
1533 }
1534 
1535 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1536 {
1537 	struct resv_map *reservations = vma_resv_map(vma);
1538 
1539 	/*
1540 	 * This new VMA should share its siblings reservation map if present.
1541 	 * The VMA will only ever have a valid reservation map pointer where
1542 	 * it is being copied for another still existing VMA.  As that VMA
1543 	 * has a reference to the reservation map it cannot dissappear until
1544 	 * after this open call completes.  It is therefore safe to take a
1545 	 * new reference here without additional locking.
1546 	 */
1547 	if (reservations)
1548 		kref_get(&reservations->refs);
1549 }
1550 
1551 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1552 {
1553 	struct hstate *h = hstate_vma(vma);
1554 	struct resv_map *reservations = vma_resv_map(vma);
1555 	unsigned long reserve;
1556 	unsigned long start;
1557 	unsigned long end;
1558 
1559 	if (reservations) {
1560 		start = vma_hugecache_offset(h, vma, vma->vm_start);
1561 		end = vma_hugecache_offset(h, vma, vma->vm_end);
1562 
1563 		reserve = (end - start) -
1564 			region_count(&reservations->regions, start, end);
1565 
1566 		kref_put(&reservations->refs, resv_map_release);
1567 
1568 		if (reserve) {
1569 			hugetlb_acct_memory(h, -reserve);
1570 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1571 		}
1572 	}
1573 }
1574 
1575 /*
1576  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1577  * handle_mm_fault() to try to instantiate regular-sized pages in the
1578  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1579  * this far.
1580  */
1581 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1582 {
1583 	BUG();
1584 	return 0;
1585 }
1586 
1587 struct vm_operations_struct hugetlb_vm_ops = {
1588 	.fault = hugetlb_vm_op_fault,
1589 	.open = hugetlb_vm_op_open,
1590 	.close = hugetlb_vm_op_close,
1591 };
1592 
1593 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1594 				int writable)
1595 {
1596 	pte_t entry;
1597 
1598 	if (writable) {
1599 		entry =
1600 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1601 	} else {
1602 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1603 	}
1604 	entry = pte_mkyoung(entry);
1605 	entry = pte_mkhuge(entry);
1606 
1607 	return entry;
1608 }
1609 
1610 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1611 				   unsigned long address, pte_t *ptep)
1612 {
1613 	pte_t entry;
1614 
1615 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1616 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1617 		update_mmu_cache(vma, address, entry);
1618 	}
1619 }
1620 
1621 
1622 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1623 			    struct vm_area_struct *vma)
1624 {
1625 	pte_t *src_pte, *dst_pte, entry;
1626 	struct page *ptepage;
1627 	unsigned long addr;
1628 	int cow;
1629 	struct hstate *h = hstate_vma(vma);
1630 	unsigned long sz = huge_page_size(h);
1631 
1632 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1633 
1634 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1635 		src_pte = huge_pte_offset(src, addr);
1636 		if (!src_pte)
1637 			continue;
1638 		dst_pte = huge_pte_alloc(dst, addr, sz);
1639 		if (!dst_pte)
1640 			goto nomem;
1641 
1642 		/* If the pagetables are shared don't copy or take references */
1643 		if (dst_pte == src_pte)
1644 			continue;
1645 
1646 		spin_lock(&dst->page_table_lock);
1647 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1648 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1649 			if (cow)
1650 				huge_ptep_set_wrprotect(src, addr, src_pte);
1651 			entry = huge_ptep_get(src_pte);
1652 			ptepage = pte_page(entry);
1653 			get_page(ptepage);
1654 			set_huge_pte_at(dst, addr, dst_pte, entry);
1655 		}
1656 		spin_unlock(&src->page_table_lock);
1657 		spin_unlock(&dst->page_table_lock);
1658 	}
1659 	return 0;
1660 
1661 nomem:
1662 	return -ENOMEM;
1663 }
1664 
1665 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1666 			    unsigned long end, struct page *ref_page)
1667 {
1668 	struct mm_struct *mm = vma->vm_mm;
1669 	unsigned long address;
1670 	pte_t *ptep;
1671 	pte_t pte;
1672 	struct page *page;
1673 	struct page *tmp;
1674 	struct hstate *h = hstate_vma(vma);
1675 	unsigned long sz = huge_page_size(h);
1676 
1677 	/*
1678 	 * A page gathering list, protected by per file i_mmap_lock. The
1679 	 * lock is used to avoid list corruption from multiple unmapping
1680 	 * of the same page since we are using page->lru.
1681 	 */
1682 	LIST_HEAD(page_list);
1683 
1684 	WARN_ON(!is_vm_hugetlb_page(vma));
1685 	BUG_ON(start & ~huge_page_mask(h));
1686 	BUG_ON(end & ~huge_page_mask(h));
1687 
1688 	mmu_notifier_invalidate_range_start(mm, start, end);
1689 	spin_lock(&mm->page_table_lock);
1690 	for (address = start; address < end; address += sz) {
1691 		ptep = huge_pte_offset(mm, address);
1692 		if (!ptep)
1693 			continue;
1694 
1695 		if (huge_pmd_unshare(mm, &address, ptep))
1696 			continue;
1697 
1698 		/*
1699 		 * If a reference page is supplied, it is because a specific
1700 		 * page is being unmapped, not a range. Ensure the page we
1701 		 * are about to unmap is the actual page of interest.
1702 		 */
1703 		if (ref_page) {
1704 			pte = huge_ptep_get(ptep);
1705 			if (huge_pte_none(pte))
1706 				continue;
1707 			page = pte_page(pte);
1708 			if (page != ref_page)
1709 				continue;
1710 
1711 			/*
1712 			 * Mark the VMA as having unmapped its page so that
1713 			 * future faults in this VMA will fail rather than
1714 			 * looking like data was lost
1715 			 */
1716 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1717 		}
1718 
1719 		pte = huge_ptep_get_and_clear(mm, address, ptep);
1720 		if (huge_pte_none(pte))
1721 			continue;
1722 
1723 		page = pte_page(pte);
1724 		if (pte_dirty(pte))
1725 			set_page_dirty(page);
1726 		list_add(&page->lru, &page_list);
1727 	}
1728 	spin_unlock(&mm->page_table_lock);
1729 	flush_tlb_range(vma, start, end);
1730 	mmu_notifier_invalidate_range_end(mm, start, end);
1731 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
1732 		list_del(&page->lru);
1733 		put_page(page);
1734 	}
1735 }
1736 
1737 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1738 			  unsigned long end, struct page *ref_page)
1739 {
1740 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1741 	__unmap_hugepage_range(vma, start, end, ref_page);
1742 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1743 }
1744 
1745 /*
1746  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1747  * mappping it owns the reserve page for. The intention is to unmap the page
1748  * from other VMAs and let the children be SIGKILLed if they are faulting the
1749  * same region.
1750  */
1751 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1752 				struct page *page, unsigned long address)
1753 {
1754 	struct vm_area_struct *iter_vma;
1755 	struct address_space *mapping;
1756 	struct prio_tree_iter iter;
1757 	pgoff_t pgoff;
1758 
1759 	/*
1760 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1761 	 * from page cache lookup which is in HPAGE_SIZE units.
1762 	 */
1763 	address = address & huge_page_mask(hstate_vma(vma));
1764 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1765 		+ (vma->vm_pgoff >> PAGE_SHIFT);
1766 	mapping = (struct address_space *)page_private(page);
1767 
1768 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1769 		/* Do not unmap the current VMA */
1770 		if (iter_vma == vma)
1771 			continue;
1772 
1773 		/*
1774 		 * Unmap the page from other VMAs without their own reserves.
1775 		 * They get marked to be SIGKILLed if they fault in these
1776 		 * areas. This is because a future no-page fault on this VMA
1777 		 * could insert a zeroed page instead of the data existing
1778 		 * from the time of fork. This would look like data corruption
1779 		 */
1780 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1781 			unmap_hugepage_range(iter_vma,
1782 				address, address + HPAGE_SIZE,
1783 				page);
1784 	}
1785 
1786 	return 1;
1787 }
1788 
1789 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1790 			unsigned long address, pte_t *ptep, pte_t pte,
1791 			struct page *pagecache_page)
1792 {
1793 	struct hstate *h = hstate_vma(vma);
1794 	struct page *old_page, *new_page;
1795 	int avoidcopy;
1796 	int outside_reserve = 0;
1797 
1798 	old_page = pte_page(pte);
1799 
1800 retry_avoidcopy:
1801 	/* If no-one else is actually using this page, avoid the copy
1802 	 * and just make the page writable */
1803 	avoidcopy = (page_count(old_page) == 1);
1804 	if (avoidcopy) {
1805 		set_huge_ptep_writable(vma, address, ptep);
1806 		return 0;
1807 	}
1808 
1809 	/*
1810 	 * If the process that created a MAP_PRIVATE mapping is about to
1811 	 * perform a COW due to a shared page count, attempt to satisfy
1812 	 * the allocation without using the existing reserves. The pagecache
1813 	 * page is used to determine if the reserve at this address was
1814 	 * consumed or not. If reserves were used, a partial faulted mapping
1815 	 * at the time of fork() could consume its reserves on COW instead
1816 	 * of the full address range.
1817 	 */
1818 	if (!(vma->vm_flags & VM_SHARED) &&
1819 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1820 			old_page != pagecache_page)
1821 		outside_reserve = 1;
1822 
1823 	page_cache_get(old_page);
1824 	new_page = alloc_huge_page(vma, address, outside_reserve);
1825 
1826 	if (IS_ERR(new_page)) {
1827 		page_cache_release(old_page);
1828 
1829 		/*
1830 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
1831 		 * it is due to references held by a child and an insufficient
1832 		 * huge page pool. To guarantee the original mappers
1833 		 * reliability, unmap the page from child processes. The child
1834 		 * may get SIGKILLed if it later faults.
1835 		 */
1836 		if (outside_reserve) {
1837 			BUG_ON(huge_pte_none(pte));
1838 			if (unmap_ref_private(mm, vma, old_page, address)) {
1839 				BUG_ON(page_count(old_page) != 1);
1840 				BUG_ON(huge_pte_none(pte));
1841 				goto retry_avoidcopy;
1842 			}
1843 			WARN_ON_ONCE(1);
1844 		}
1845 
1846 		return -PTR_ERR(new_page);
1847 	}
1848 
1849 	spin_unlock(&mm->page_table_lock);
1850 	copy_huge_page(new_page, old_page, address, vma);
1851 	__SetPageUptodate(new_page);
1852 	spin_lock(&mm->page_table_lock);
1853 
1854 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1855 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1856 		/* Break COW */
1857 		huge_ptep_clear_flush(vma, address, ptep);
1858 		set_huge_pte_at(mm, address, ptep,
1859 				make_huge_pte(vma, new_page, 1));
1860 		/* Make the old page be freed below */
1861 		new_page = old_page;
1862 	}
1863 	page_cache_release(new_page);
1864 	page_cache_release(old_page);
1865 	return 0;
1866 }
1867 
1868 /* Return the pagecache page at a given address within a VMA */
1869 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1870 			struct vm_area_struct *vma, unsigned long address)
1871 {
1872 	struct address_space *mapping;
1873 	pgoff_t idx;
1874 
1875 	mapping = vma->vm_file->f_mapping;
1876 	idx = vma_hugecache_offset(h, vma, address);
1877 
1878 	return find_lock_page(mapping, idx);
1879 }
1880 
1881 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1882 			unsigned long address, pte_t *ptep, int write_access)
1883 {
1884 	struct hstate *h = hstate_vma(vma);
1885 	int ret = VM_FAULT_SIGBUS;
1886 	pgoff_t idx;
1887 	unsigned long size;
1888 	struct page *page;
1889 	struct address_space *mapping;
1890 	pte_t new_pte;
1891 
1892 	/*
1893 	 * Currently, we are forced to kill the process in the event the
1894 	 * original mapper has unmapped pages from the child due to a failed
1895 	 * COW. Warn that such a situation has occured as it may not be obvious
1896 	 */
1897 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1898 		printk(KERN_WARNING
1899 			"PID %d killed due to inadequate hugepage pool\n",
1900 			current->pid);
1901 		return ret;
1902 	}
1903 
1904 	mapping = vma->vm_file->f_mapping;
1905 	idx = vma_hugecache_offset(h, vma, address);
1906 
1907 	/*
1908 	 * Use page lock to guard against racing truncation
1909 	 * before we get page_table_lock.
1910 	 */
1911 retry:
1912 	page = find_lock_page(mapping, idx);
1913 	if (!page) {
1914 		size = i_size_read(mapping->host) >> huge_page_shift(h);
1915 		if (idx >= size)
1916 			goto out;
1917 		page = alloc_huge_page(vma, address, 0);
1918 		if (IS_ERR(page)) {
1919 			ret = -PTR_ERR(page);
1920 			goto out;
1921 		}
1922 		clear_huge_page(page, address, huge_page_size(h));
1923 		__SetPageUptodate(page);
1924 
1925 		if (vma->vm_flags & VM_SHARED) {
1926 			int err;
1927 			struct inode *inode = mapping->host;
1928 
1929 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1930 			if (err) {
1931 				put_page(page);
1932 				if (err == -EEXIST)
1933 					goto retry;
1934 				goto out;
1935 			}
1936 
1937 			spin_lock(&inode->i_lock);
1938 			inode->i_blocks += blocks_per_huge_page(h);
1939 			spin_unlock(&inode->i_lock);
1940 		} else
1941 			lock_page(page);
1942 	}
1943 
1944 	/*
1945 	 * If we are going to COW a private mapping later, we examine the
1946 	 * pending reservations for this page now. This will ensure that
1947 	 * any allocations necessary to record that reservation occur outside
1948 	 * the spinlock.
1949 	 */
1950 	if (write_access && !(vma->vm_flags & VM_SHARED))
1951 		if (vma_needs_reservation(h, vma, address) < 0) {
1952 			ret = VM_FAULT_OOM;
1953 			goto backout_unlocked;
1954 		}
1955 
1956 	spin_lock(&mm->page_table_lock);
1957 	size = i_size_read(mapping->host) >> huge_page_shift(h);
1958 	if (idx >= size)
1959 		goto backout;
1960 
1961 	ret = 0;
1962 	if (!huge_pte_none(huge_ptep_get(ptep)))
1963 		goto backout;
1964 
1965 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1966 				&& (vma->vm_flags & VM_SHARED)));
1967 	set_huge_pte_at(mm, address, ptep, new_pte);
1968 
1969 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1970 		/* Optimization, do the COW without a second fault */
1971 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1972 	}
1973 
1974 	spin_unlock(&mm->page_table_lock);
1975 	unlock_page(page);
1976 out:
1977 	return ret;
1978 
1979 backout:
1980 	spin_unlock(&mm->page_table_lock);
1981 backout_unlocked:
1982 	unlock_page(page);
1983 	put_page(page);
1984 	goto out;
1985 }
1986 
1987 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1988 			unsigned long address, int write_access)
1989 {
1990 	pte_t *ptep;
1991 	pte_t entry;
1992 	int ret;
1993 	struct page *pagecache_page = NULL;
1994 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1995 	struct hstate *h = hstate_vma(vma);
1996 
1997 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1998 	if (!ptep)
1999 		return VM_FAULT_OOM;
2000 
2001 	/*
2002 	 * Serialize hugepage allocation and instantiation, so that we don't
2003 	 * get spurious allocation failures if two CPUs race to instantiate
2004 	 * the same page in the page cache.
2005 	 */
2006 	mutex_lock(&hugetlb_instantiation_mutex);
2007 	entry = huge_ptep_get(ptep);
2008 	if (huge_pte_none(entry)) {
2009 		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2010 		goto out_mutex;
2011 	}
2012 
2013 	ret = 0;
2014 
2015 	/*
2016 	 * If we are going to COW the mapping later, we examine the pending
2017 	 * reservations for this page now. This will ensure that any
2018 	 * allocations necessary to record that reservation occur outside the
2019 	 * spinlock. For private mappings, we also lookup the pagecache
2020 	 * page now as it is used to determine if a reservation has been
2021 	 * consumed.
2022 	 */
2023 	if (write_access && !pte_write(entry)) {
2024 		if (vma_needs_reservation(h, vma, address) < 0) {
2025 			ret = VM_FAULT_OOM;
2026 			goto out_mutex;
2027 		}
2028 
2029 		if (!(vma->vm_flags & VM_SHARED))
2030 			pagecache_page = hugetlbfs_pagecache_page(h,
2031 								vma, address);
2032 	}
2033 
2034 	spin_lock(&mm->page_table_lock);
2035 	/* Check for a racing update before calling hugetlb_cow */
2036 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2037 		goto out_page_table_lock;
2038 
2039 
2040 	if (write_access) {
2041 		if (!pte_write(entry)) {
2042 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2043 							pagecache_page);
2044 			goto out_page_table_lock;
2045 		}
2046 		entry = pte_mkdirty(entry);
2047 	}
2048 	entry = pte_mkyoung(entry);
2049 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
2050 		update_mmu_cache(vma, address, entry);
2051 
2052 out_page_table_lock:
2053 	spin_unlock(&mm->page_table_lock);
2054 
2055 	if (pagecache_page) {
2056 		unlock_page(pagecache_page);
2057 		put_page(pagecache_page);
2058 	}
2059 
2060 out_mutex:
2061 	mutex_unlock(&hugetlb_instantiation_mutex);
2062 
2063 	return ret;
2064 }
2065 
2066 /* Can be overriden by architectures */
2067 __attribute__((weak)) struct page *
2068 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2069 	       pud_t *pud, int write)
2070 {
2071 	BUG();
2072 	return NULL;
2073 }
2074 
2075 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2076 {
2077 	if (!ptep || write || shared)
2078 		return 0;
2079 	else
2080 		return huge_pte_none(huge_ptep_get(ptep));
2081 }
2082 
2083 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2084 			struct page **pages, struct vm_area_struct **vmas,
2085 			unsigned long *position, int *length, int i,
2086 			int write)
2087 {
2088 	unsigned long pfn_offset;
2089 	unsigned long vaddr = *position;
2090 	int remainder = *length;
2091 	struct hstate *h = hstate_vma(vma);
2092 	int zeropage_ok = 0;
2093 	int shared = vma->vm_flags & VM_SHARED;
2094 
2095 	spin_lock(&mm->page_table_lock);
2096 	while (vaddr < vma->vm_end && remainder) {
2097 		pte_t *pte;
2098 		struct page *page;
2099 
2100 		/*
2101 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2102 		 * each hugepage.  We have to make * sure we get the
2103 		 * first, for the page indexing below to work.
2104 		 */
2105 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2106 		if (huge_zeropage_ok(pte, write, shared))
2107 			zeropage_ok = 1;
2108 
2109 		if (!pte ||
2110 		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2111 		    (write && !pte_write(huge_ptep_get(pte)))) {
2112 			int ret;
2113 
2114 			spin_unlock(&mm->page_table_lock);
2115 			ret = hugetlb_fault(mm, vma, vaddr, write);
2116 			spin_lock(&mm->page_table_lock);
2117 			if (!(ret & VM_FAULT_ERROR))
2118 				continue;
2119 
2120 			remainder = 0;
2121 			if (!i)
2122 				i = -EFAULT;
2123 			break;
2124 		}
2125 
2126 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2127 		page = pte_page(huge_ptep_get(pte));
2128 same_page:
2129 		if (pages) {
2130 			if (zeropage_ok)
2131 				pages[i] = ZERO_PAGE(0);
2132 			else
2133 				pages[i] = page + pfn_offset;
2134 			get_page(pages[i]);
2135 		}
2136 
2137 		if (vmas)
2138 			vmas[i] = vma;
2139 
2140 		vaddr += PAGE_SIZE;
2141 		++pfn_offset;
2142 		--remainder;
2143 		++i;
2144 		if (vaddr < vma->vm_end && remainder &&
2145 				pfn_offset < pages_per_huge_page(h)) {
2146 			/*
2147 			 * We use pfn_offset to avoid touching the pageframes
2148 			 * of this compound page.
2149 			 */
2150 			goto same_page;
2151 		}
2152 	}
2153 	spin_unlock(&mm->page_table_lock);
2154 	*length = remainder;
2155 	*position = vaddr;
2156 
2157 	return i;
2158 }
2159 
2160 void hugetlb_change_protection(struct vm_area_struct *vma,
2161 		unsigned long address, unsigned long end, pgprot_t newprot)
2162 {
2163 	struct mm_struct *mm = vma->vm_mm;
2164 	unsigned long start = address;
2165 	pte_t *ptep;
2166 	pte_t pte;
2167 	struct hstate *h = hstate_vma(vma);
2168 
2169 	BUG_ON(address >= end);
2170 	flush_cache_range(vma, address, end);
2171 
2172 	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2173 	spin_lock(&mm->page_table_lock);
2174 	for (; address < end; address += huge_page_size(h)) {
2175 		ptep = huge_pte_offset(mm, address);
2176 		if (!ptep)
2177 			continue;
2178 		if (huge_pmd_unshare(mm, &address, ptep))
2179 			continue;
2180 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2181 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2182 			pte = pte_mkhuge(pte_modify(pte, newprot));
2183 			set_huge_pte_at(mm, address, ptep, pte);
2184 		}
2185 	}
2186 	spin_unlock(&mm->page_table_lock);
2187 	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2188 
2189 	flush_tlb_range(vma, start, end);
2190 }
2191 
2192 int hugetlb_reserve_pages(struct inode *inode,
2193 					long from, long to,
2194 					struct vm_area_struct *vma)
2195 {
2196 	long ret, chg;
2197 	struct hstate *h = hstate_inode(inode);
2198 
2199 	if (vma && vma->vm_flags & VM_NORESERVE)
2200 		return 0;
2201 
2202 	/*
2203 	 * Shared mappings base their reservation on the number of pages that
2204 	 * are already allocated on behalf of the file. Private mappings need
2205 	 * to reserve the full area even if read-only as mprotect() may be
2206 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2207 	 */
2208 	if (!vma || vma->vm_flags & VM_SHARED)
2209 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2210 	else {
2211 		struct resv_map *resv_map = resv_map_alloc();
2212 		if (!resv_map)
2213 			return -ENOMEM;
2214 
2215 		chg = to - from;
2216 
2217 		set_vma_resv_map(vma, resv_map);
2218 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2219 	}
2220 
2221 	if (chg < 0)
2222 		return chg;
2223 
2224 	if (hugetlb_get_quota(inode->i_mapping, chg))
2225 		return -ENOSPC;
2226 	ret = hugetlb_acct_memory(h, chg);
2227 	if (ret < 0) {
2228 		hugetlb_put_quota(inode->i_mapping, chg);
2229 		return ret;
2230 	}
2231 	if (!vma || vma->vm_flags & VM_SHARED)
2232 		region_add(&inode->i_mapping->private_list, from, to);
2233 	return 0;
2234 }
2235 
2236 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2237 {
2238 	struct hstate *h = hstate_inode(inode);
2239 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2240 
2241 	spin_lock(&inode->i_lock);
2242 	inode->i_blocks -= blocks_per_huge_page(h);
2243 	spin_unlock(&inode->i_lock);
2244 
2245 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2246 	hugetlb_acct_memory(h, -(chg - freed));
2247 }
2248