1 /* 2 * Generic hugetlb support. 3 * (C) William Irwin, April 2004 4 */ 5 #include <linux/gfp.h> 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/seq_file.h> 11 #include <linux/sysctl.h> 12 #include <linux/highmem.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/nodemask.h> 15 #include <linux/pagemap.h> 16 #include <linux/mempolicy.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/bootmem.h> 20 #include <linux/sysfs.h> 21 22 #include <asm/page.h> 23 #include <asm/pgtable.h> 24 #include <asm/io.h> 25 26 #include <linux/hugetlb.h> 27 #include "internal.h" 28 29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 31 unsigned long hugepages_treat_as_movable; 32 33 static int max_hstate; 34 unsigned int default_hstate_idx; 35 struct hstate hstates[HUGE_MAX_HSTATE]; 36 37 __initdata LIST_HEAD(huge_boot_pages); 38 39 /* for command line parsing */ 40 static struct hstate * __initdata parsed_hstate; 41 static unsigned long __initdata default_hstate_max_huge_pages; 42 static unsigned long __initdata default_hstate_size; 43 44 #define for_each_hstate(h) \ 45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) 46 47 /* 48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 49 */ 50 static DEFINE_SPINLOCK(hugetlb_lock); 51 52 /* 53 * Region tracking -- allows tracking of reservations and instantiated pages 54 * across the pages in a mapping. 55 * 56 * The region data structures are protected by a combination of the mmap_sem 57 * and the hugetlb_instantion_mutex. To access or modify a region the caller 58 * must either hold the mmap_sem for write, or the mmap_sem for read and 59 * the hugetlb_instantiation mutex: 60 * 61 * down_write(&mm->mmap_sem); 62 * or 63 * down_read(&mm->mmap_sem); 64 * mutex_lock(&hugetlb_instantiation_mutex); 65 */ 66 struct file_region { 67 struct list_head link; 68 long from; 69 long to; 70 }; 71 72 static long region_add(struct list_head *head, long f, long t) 73 { 74 struct file_region *rg, *nrg, *trg; 75 76 /* Locate the region we are either in or before. */ 77 list_for_each_entry(rg, head, link) 78 if (f <= rg->to) 79 break; 80 81 /* Round our left edge to the current segment if it encloses us. */ 82 if (f > rg->from) 83 f = rg->from; 84 85 /* Check for and consume any regions we now overlap with. */ 86 nrg = rg; 87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 88 if (&rg->link == head) 89 break; 90 if (rg->from > t) 91 break; 92 93 /* If this area reaches higher then extend our area to 94 * include it completely. If this is not the first area 95 * which we intend to reuse, free it. */ 96 if (rg->to > t) 97 t = rg->to; 98 if (rg != nrg) { 99 list_del(&rg->link); 100 kfree(rg); 101 } 102 } 103 nrg->from = f; 104 nrg->to = t; 105 return 0; 106 } 107 108 static long region_chg(struct list_head *head, long f, long t) 109 { 110 struct file_region *rg, *nrg; 111 long chg = 0; 112 113 /* Locate the region we are before or in. */ 114 list_for_each_entry(rg, head, link) 115 if (f <= rg->to) 116 break; 117 118 /* If we are below the current region then a new region is required. 119 * Subtle, allocate a new region at the position but make it zero 120 * size such that we can guarantee to record the reservation. */ 121 if (&rg->link == head || t < rg->from) { 122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 123 if (!nrg) 124 return -ENOMEM; 125 nrg->from = f; 126 nrg->to = f; 127 INIT_LIST_HEAD(&nrg->link); 128 list_add(&nrg->link, rg->link.prev); 129 130 return t - f; 131 } 132 133 /* Round our left edge to the current segment if it encloses us. */ 134 if (f > rg->from) 135 f = rg->from; 136 chg = t - f; 137 138 /* Check for and consume any regions we now overlap with. */ 139 list_for_each_entry(rg, rg->link.prev, link) { 140 if (&rg->link == head) 141 break; 142 if (rg->from > t) 143 return chg; 144 145 /* We overlap with this area, if it extends futher than 146 * us then we must extend ourselves. Account for its 147 * existing reservation. */ 148 if (rg->to > t) { 149 chg += rg->to - t; 150 t = rg->to; 151 } 152 chg -= rg->to - rg->from; 153 } 154 return chg; 155 } 156 157 static long region_truncate(struct list_head *head, long end) 158 { 159 struct file_region *rg, *trg; 160 long chg = 0; 161 162 /* Locate the region we are either in or before. */ 163 list_for_each_entry(rg, head, link) 164 if (end <= rg->to) 165 break; 166 if (&rg->link == head) 167 return 0; 168 169 /* If we are in the middle of a region then adjust it. */ 170 if (end > rg->from) { 171 chg = rg->to - end; 172 rg->to = end; 173 rg = list_entry(rg->link.next, typeof(*rg), link); 174 } 175 176 /* Drop any remaining regions. */ 177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 178 if (&rg->link == head) 179 break; 180 chg += rg->to - rg->from; 181 list_del(&rg->link); 182 kfree(rg); 183 } 184 return chg; 185 } 186 187 static long region_count(struct list_head *head, long f, long t) 188 { 189 struct file_region *rg; 190 long chg = 0; 191 192 /* Locate each segment we overlap with, and count that overlap. */ 193 list_for_each_entry(rg, head, link) { 194 int seg_from; 195 int seg_to; 196 197 if (rg->to <= f) 198 continue; 199 if (rg->from >= t) 200 break; 201 202 seg_from = max(rg->from, f); 203 seg_to = min(rg->to, t); 204 205 chg += seg_to - seg_from; 206 } 207 208 return chg; 209 } 210 211 /* 212 * Convert the address within this vma to the page offset within 213 * the mapping, in pagecache page units; huge pages here. 214 */ 215 static pgoff_t vma_hugecache_offset(struct hstate *h, 216 struct vm_area_struct *vma, unsigned long address) 217 { 218 return ((address - vma->vm_start) >> huge_page_shift(h)) + 219 (vma->vm_pgoff >> huge_page_order(h)); 220 } 221 222 /* 223 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 224 * bits of the reservation map pointer, which are always clear due to 225 * alignment. 226 */ 227 #define HPAGE_RESV_OWNER (1UL << 0) 228 #define HPAGE_RESV_UNMAPPED (1UL << 1) 229 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 230 231 /* 232 * These helpers are used to track how many pages are reserved for 233 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 234 * is guaranteed to have their future faults succeed. 235 * 236 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 237 * the reserve counters are updated with the hugetlb_lock held. It is safe 238 * to reset the VMA at fork() time as it is not in use yet and there is no 239 * chance of the global counters getting corrupted as a result of the values. 240 * 241 * The private mapping reservation is represented in a subtly different 242 * manner to a shared mapping. A shared mapping has a region map associated 243 * with the underlying file, this region map represents the backing file 244 * pages which have ever had a reservation assigned which this persists even 245 * after the page is instantiated. A private mapping has a region map 246 * associated with the original mmap which is attached to all VMAs which 247 * reference it, this region map represents those offsets which have consumed 248 * reservation ie. where pages have been instantiated. 249 */ 250 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 251 { 252 return (unsigned long)vma->vm_private_data; 253 } 254 255 static void set_vma_private_data(struct vm_area_struct *vma, 256 unsigned long value) 257 { 258 vma->vm_private_data = (void *)value; 259 } 260 261 struct resv_map { 262 struct kref refs; 263 struct list_head regions; 264 }; 265 266 static struct resv_map *resv_map_alloc(void) 267 { 268 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 269 if (!resv_map) 270 return NULL; 271 272 kref_init(&resv_map->refs); 273 INIT_LIST_HEAD(&resv_map->regions); 274 275 return resv_map; 276 } 277 278 static void resv_map_release(struct kref *ref) 279 { 280 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 281 282 /* Clear out any active regions before we release the map. */ 283 region_truncate(&resv_map->regions, 0); 284 kfree(resv_map); 285 } 286 287 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 288 { 289 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 290 if (!(vma->vm_flags & VM_SHARED)) 291 return (struct resv_map *)(get_vma_private_data(vma) & 292 ~HPAGE_RESV_MASK); 293 return NULL; 294 } 295 296 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 297 { 298 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 299 VM_BUG_ON(vma->vm_flags & VM_SHARED); 300 301 set_vma_private_data(vma, (get_vma_private_data(vma) & 302 HPAGE_RESV_MASK) | (unsigned long)map); 303 } 304 305 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 306 { 307 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 308 VM_BUG_ON(vma->vm_flags & VM_SHARED); 309 310 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 311 } 312 313 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 314 { 315 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 316 317 return (get_vma_private_data(vma) & flag) != 0; 318 } 319 320 /* Decrement the reserved pages in the hugepage pool by one */ 321 static void decrement_hugepage_resv_vma(struct hstate *h, 322 struct vm_area_struct *vma) 323 { 324 if (vma->vm_flags & VM_NORESERVE) 325 return; 326 327 if (vma->vm_flags & VM_SHARED) { 328 /* Shared mappings always use reserves */ 329 h->resv_huge_pages--; 330 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 331 /* 332 * Only the process that called mmap() has reserves for 333 * private mappings. 334 */ 335 h->resv_huge_pages--; 336 } 337 } 338 339 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 340 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 341 { 342 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 343 if (!(vma->vm_flags & VM_SHARED)) 344 vma->vm_private_data = (void *)0; 345 } 346 347 /* Returns true if the VMA has associated reserve pages */ 348 static int vma_has_reserves(struct vm_area_struct *vma) 349 { 350 if (vma->vm_flags & VM_SHARED) 351 return 1; 352 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 353 return 1; 354 return 0; 355 } 356 357 static void clear_huge_page(struct page *page, 358 unsigned long addr, unsigned long sz) 359 { 360 int i; 361 362 might_sleep(); 363 for (i = 0; i < sz/PAGE_SIZE; i++) { 364 cond_resched(); 365 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 366 } 367 } 368 369 static void copy_huge_page(struct page *dst, struct page *src, 370 unsigned long addr, struct vm_area_struct *vma) 371 { 372 int i; 373 struct hstate *h = hstate_vma(vma); 374 375 might_sleep(); 376 for (i = 0; i < pages_per_huge_page(h); i++) { 377 cond_resched(); 378 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 379 } 380 } 381 382 static void enqueue_huge_page(struct hstate *h, struct page *page) 383 { 384 int nid = page_to_nid(page); 385 list_add(&page->lru, &h->hugepage_freelists[nid]); 386 h->free_huge_pages++; 387 h->free_huge_pages_node[nid]++; 388 } 389 390 static struct page *dequeue_huge_page(struct hstate *h) 391 { 392 int nid; 393 struct page *page = NULL; 394 395 for (nid = 0; nid < MAX_NUMNODES; ++nid) { 396 if (!list_empty(&h->hugepage_freelists[nid])) { 397 page = list_entry(h->hugepage_freelists[nid].next, 398 struct page, lru); 399 list_del(&page->lru); 400 h->free_huge_pages--; 401 h->free_huge_pages_node[nid]--; 402 break; 403 } 404 } 405 return page; 406 } 407 408 static struct page *dequeue_huge_page_vma(struct hstate *h, 409 struct vm_area_struct *vma, 410 unsigned long address, int avoid_reserve) 411 { 412 int nid; 413 struct page *page = NULL; 414 struct mempolicy *mpol; 415 nodemask_t *nodemask; 416 struct zonelist *zonelist = huge_zonelist(vma, address, 417 htlb_alloc_mask, &mpol, &nodemask); 418 struct zone *zone; 419 struct zoneref *z; 420 421 /* 422 * A child process with MAP_PRIVATE mappings created by their parent 423 * have no page reserves. This check ensures that reservations are 424 * not "stolen". The child may still get SIGKILLed 425 */ 426 if (!vma_has_reserves(vma) && 427 h->free_huge_pages - h->resv_huge_pages == 0) 428 return NULL; 429 430 /* If reserves cannot be used, ensure enough pages are in the pool */ 431 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 432 return NULL; 433 434 for_each_zone_zonelist_nodemask(zone, z, zonelist, 435 MAX_NR_ZONES - 1, nodemask) { 436 nid = zone_to_nid(zone); 437 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && 438 !list_empty(&h->hugepage_freelists[nid])) { 439 page = list_entry(h->hugepage_freelists[nid].next, 440 struct page, lru); 441 list_del(&page->lru); 442 h->free_huge_pages--; 443 h->free_huge_pages_node[nid]--; 444 445 if (!avoid_reserve) 446 decrement_hugepage_resv_vma(h, vma); 447 448 break; 449 } 450 } 451 mpol_cond_put(mpol); 452 return page; 453 } 454 455 static void update_and_free_page(struct hstate *h, struct page *page) 456 { 457 int i; 458 459 h->nr_huge_pages--; 460 h->nr_huge_pages_node[page_to_nid(page)]--; 461 for (i = 0; i < pages_per_huge_page(h); i++) { 462 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 463 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 464 1 << PG_private | 1<< PG_writeback); 465 } 466 set_compound_page_dtor(page, NULL); 467 set_page_refcounted(page); 468 arch_release_hugepage(page); 469 __free_pages(page, huge_page_order(h)); 470 } 471 472 struct hstate *size_to_hstate(unsigned long size) 473 { 474 struct hstate *h; 475 476 for_each_hstate(h) { 477 if (huge_page_size(h) == size) 478 return h; 479 } 480 return NULL; 481 } 482 483 static void free_huge_page(struct page *page) 484 { 485 /* 486 * Can't pass hstate in here because it is called from the 487 * compound page destructor. 488 */ 489 struct hstate *h = page_hstate(page); 490 int nid = page_to_nid(page); 491 struct address_space *mapping; 492 493 mapping = (struct address_space *) page_private(page); 494 set_page_private(page, 0); 495 BUG_ON(page_count(page)); 496 INIT_LIST_HEAD(&page->lru); 497 498 spin_lock(&hugetlb_lock); 499 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 500 update_and_free_page(h, page); 501 h->surplus_huge_pages--; 502 h->surplus_huge_pages_node[nid]--; 503 } else { 504 enqueue_huge_page(h, page); 505 } 506 spin_unlock(&hugetlb_lock); 507 if (mapping) 508 hugetlb_put_quota(mapping, 1); 509 } 510 511 /* 512 * Increment or decrement surplus_huge_pages. Keep node-specific counters 513 * balanced by operating on them in a round-robin fashion. 514 * Returns 1 if an adjustment was made. 515 */ 516 static int adjust_pool_surplus(struct hstate *h, int delta) 517 { 518 static int prev_nid; 519 int nid = prev_nid; 520 int ret = 0; 521 522 VM_BUG_ON(delta != -1 && delta != 1); 523 do { 524 nid = next_node(nid, node_online_map); 525 if (nid == MAX_NUMNODES) 526 nid = first_node(node_online_map); 527 528 /* To shrink on this node, there must be a surplus page */ 529 if (delta < 0 && !h->surplus_huge_pages_node[nid]) 530 continue; 531 /* Surplus cannot exceed the total number of pages */ 532 if (delta > 0 && h->surplus_huge_pages_node[nid] >= 533 h->nr_huge_pages_node[nid]) 534 continue; 535 536 h->surplus_huge_pages += delta; 537 h->surplus_huge_pages_node[nid] += delta; 538 ret = 1; 539 break; 540 } while (nid != prev_nid); 541 542 prev_nid = nid; 543 return ret; 544 } 545 546 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 547 { 548 set_compound_page_dtor(page, free_huge_page); 549 spin_lock(&hugetlb_lock); 550 h->nr_huge_pages++; 551 h->nr_huge_pages_node[nid]++; 552 spin_unlock(&hugetlb_lock); 553 put_page(page); /* free it into the hugepage allocator */ 554 } 555 556 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 557 { 558 struct page *page; 559 560 if (h->order >= MAX_ORDER) 561 return NULL; 562 563 page = alloc_pages_node(nid, 564 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 565 __GFP_REPEAT|__GFP_NOWARN, 566 huge_page_order(h)); 567 if (page) { 568 if (arch_prepare_hugepage(page)) { 569 __free_pages(page, huge_page_order(h)); 570 return NULL; 571 } 572 prep_new_huge_page(h, page, nid); 573 } 574 575 return page; 576 } 577 578 /* 579 * Use a helper variable to find the next node and then 580 * copy it back to hugetlb_next_nid afterwards: 581 * otherwise there's a window in which a racer might 582 * pass invalid nid MAX_NUMNODES to alloc_pages_node. 583 * But we don't need to use a spin_lock here: it really 584 * doesn't matter if occasionally a racer chooses the 585 * same nid as we do. Move nid forward in the mask even 586 * if we just successfully allocated a hugepage so that 587 * the next caller gets hugepages on the next node. 588 */ 589 static int hstate_next_node(struct hstate *h) 590 { 591 int next_nid; 592 next_nid = next_node(h->hugetlb_next_nid, node_online_map); 593 if (next_nid == MAX_NUMNODES) 594 next_nid = first_node(node_online_map); 595 h->hugetlb_next_nid = next_nid; 596 return next_nid; 597 } 598 599 static int alloc_fresh_huge_page(struct hstate *h) 600 { 601 struct page *page; 602 int start_nid; 603 int next_nid; 604 int ret = 0; 605 606 start_nid = h->hugetlb_next_nid; 607 608 do { 609 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); 610 if (page) 611 ret = 1; 612 next_nid = hstate_next_node(h); 613 } while (!page && h->hugetlb_next_nid != start_nid); 614 615 if (ret) 616 count_vm_event(HTLB_BUDDY_PGALLOC); 617 else 618 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 619 620 return ret; 621 } 622 623 static struct page *alloc_buddy_huge_page(struct hstate *h, 624 struct vm_area_struct *vma, unsigned long address) 625 { 626 struct page *page; 627 unsigned int nid; 628 629 if (h->order >= MAX_ORDER) 630 return NULL; 631 632 /* 633 * Assume we will successfully allocate the surplus page to 634 * prevent racing processes from causing the surplus to exceed 635 * overcommit 636 * 637 * This however introduces a different race, where a process B 638 * tries to grow the static hugepage pool while alloc_pages() is 639 * called by process A. B will only examine the per-node 640 * counters in determining if surplus huge pages can be 641 * converted to normal huge pages in adjust_pool_surplus(). A 642 * won't be able to increment the per-node counter, until the 643 * lock is dropped by B, but B doesn't drop hugetlb_lock until 644 * no more huge pages can be converted from surplus to normal 645 * state (and doesn't try to convert again). Thus, we have a 646 * case where a surplus huge page exists, the pool is grown, and 647 * the surplus huge page still exists after, even though it 648 * should just have been converted to a normal huge page. This 649 * does not leak memory, though, as the hugepage will be freed 650 * once it is out of use. It also does not allow the counters to 651 * go out of whack in adjust_pool_surplus() as we don't modify 652 * the node values until we've gotten the hugepage and only the 653 * per-node value is checked there. 654 */ 655 spin_lock(&hugetlb_lock); 656 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 657 spin_unlock(&hugetlb_lock); 658 return NULL; 659 } else { 660 h->nr_huge_pages++; 661 h->surplus_huge_pages++; 662 } 663 spin_unlock(&hugetlb_lock); 664 665 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 666 __GFP_REPEAT|__GFP_NOWARN, 667 huge_page_order(h)); 668 669 if (page && arch_prepare_hugepage(page)) { 670 __free_pages(page, huge_page_order(h)); 671 return NULL; 672 } 673 674 spin_lock(&hugetlb_lock); 675 if (page) { 676 /* 677 * This page is now managed by the hugetlb allocator and has 678 * no users -- drop the buddy allocator's reference. 679 */ 680 put_page_testzero(page); 681 VM_BUG_ON(page_count(page)); 682 nid = page_to_nid(page); 683 set_compound_page_dtor(page, free_huge_page); 684 /* 685 * We incremented the global counters already 686 */ 687 h->nr_huge_pages_node[nid]++; 688 h->surplus_huge_pages_node[nid]++; 689 __count_vm_event(HTLB_BUDDY_PGALLOC); 690 } else { 691 h->nr_huge_pages--; 692 h->surplus_huge_pages--; 693 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 694 } 695 spin_unlock(&hugetlb_lock); 696 697 return page; 698 } 699 700 /* 701 * Increase the hugetlb pool such that it can accomodate a reservation 702 * of size 'delta'. 703 */ 704 static int gather_surplus_pages(struct hstate *h, int delta) 705 { 706 struct list_head surplus_list; 707 struct page *page, *tmp; 708 int ret, i; 709 int needed, allocated; 710 711 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 712 if (needed <= 0) { 713 h->resv_huge_pages += delta; 714 return 0; 715 } 716 717 allocated = 0; 718 INIT_LIST_HEAD(&surplus_list); 719 720 ret = -ENOMEM; 721 retry: 722 spin_unlock(&hugetlb_lock); 723 for (i = 0; i < needed; i++) { 724 page = alloc_buddy_huge_page(h, NULL, 0); 725 if (!page) { 726 /* 727 * We were not able to allocate enough pages to 728 * satisfy the entire reservation so we free what 729 * we've allocated so far. 730 */ 731 spin_lock(&hugetlb_lock); 732 needed = 0; 733 goto free; 734 } 735 736 list_add(&page->lru, &surplus_list); 737 } 738 allocated += needed; 739 740 /* 741 * After retaking hugetlb_lock, we need to recalculate 'needed' 742 * because either resv_huge_pages or free_huge_pages may have changed. 743 */ 744 spin_lock(&hugetlb_lock); 745 needed = (h->resv_huge_pages + delta) - 746 (h->free_huge_pages + allocated); 747 if (needed > 0) 748 goto retry; 749 750 /* 751 * The surplus_list now contains _at_least_ the number of extra pages 752 * needed to accomodate the reservation. Add the appropriate number 753 * of pages to the hugetlb pool and free the extras back to the buddy 754 * allocator. Commit the entire reservation here to prevent another 755 * process from stealing the pages as they are added to the pool but 756 * before they are reserved. 757 */ 758 needed += allocated; 759 h->resv_huge_pages += delta; 760 ret = 0; 761 free: 762 /* Free the needed pages to the hugetlb pool */ 763 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 764 if ((--needed) < 0) 765 break; 766 list_del(&page->lru); 767 enqueue_huge_page(h, page); 768 } 769 770 /* Free unnecessary surplus pages to the buddy allocator */ 771 if (!list_empty(&surplus_list)) { 772 spin_unlock(&hugetlb_lock); 773 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 774 list_del(&page->lru); 775 /* 776 * The page has a reference count of zero already, so 777 * call free_huge_page directly instead of using 778 * put_page. This must be done with hugetlb_lock 779 * unlocked which is safe because free_huge_page takes 780 * hugetlb_lock before deciding how to free the page. 781 */ 782 free_huge_page(page); 783 } 784 spin_lock(&hugetlb_lock); 785 } 786 787 return ret; 788 } 789 790 /* 791 * When releasing a hugetlb pool reservation, any surplus pages that were 792 * allocated to satisfy the reservation must be explicitly freed if they were 793 * never used. 794 */ 795 static void return_unused_surplus_pages(struct hstate *h, 796 unsigned long unused_resv_pages) 797 { 798 static int nid = -1; 799 struct page *page; 800 unsigned long nr_pages; 801 802 /* 803 * We want to release as many surplus pages as possible, spread 804 * evenly across all nodes. Iterate across all nodes until we 805 * can no longer free unreserved surplus pages. This occurs when 806 * the nodes with surplus pages have no free pages. 807 */ 808 unsigned long remaining_iterations = num_online_nodes(); 809 810 /* Uncommit the reservation */ 811 h->resv_huge_pages -= unused_resv_pages; 812 813 /* Cannot return gigantic pages currently */ 814 if (h->order >= MAX_ORDER) 815 return; 816 817 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 818 819 while (remaining_iterations-- && nr_pages) { 820 nid = next_node(nid, node_online_map); 821 if (nid == MAX_NUMNODES) 822 nid = first_node(node_online_map); 823 824 if (!h->surplus_huge_pages_node[nid]) 825 continue; 826 827 if (!list_empty(&h->hugepage_freelists[nid])) { 828 page = list_entry(h->hugepage_freelists[nid].next, 829 struct page, lru); 830 list_del(&page->lru); 831 update_and_free_page(h, page); 832 h->free_huge_pages--; 833 h->free_huge_pages_node[nid]--; 834 h->surplus_huge_pages--; 835 h->surplus_huge_pages_node[nid]--; 836 nr_pages--; 837 remaining_iterations = num_online_nodes(); 838 } 839 } 840 } 841 842 /* 843 * Determine if the huge page at addr within the vma has an associated 844 * reservation. Where it does not we will need to logically increase 845 * reservation and actually increase quota before an allocation can occur. 846 * Where any new reservation would be required the reservation change is 847 * prepared, but not committed. Once the page has been quota'd allocated 848 * an instantiated the change should be committed via vma_commit_reservation. 849 * No action is required on failure. 850 */ 851 static int vma_needs_reservation(struct hstate *h, 852 struct vm_area_struct *vma, unsigned long addr) 853 { 854 struct address_space *mapping = vma->vm_file->f_mapping; 855 struct inode *inode = mapping->host; 856 857 if (vma->vm_flags & VM_SHARED) { 858 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 859 return region_chg(&inode->i_mapping->private_list, 860 idx, idx + 1); 861 862 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 863 return 1; 864 865 } else { 866 int err; 867 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 868 struct resv_map *reservations = vma_resv_map(vma); 869 870 err = region_chg(&reservations->regions, idx, idx + 1); 871 if (err < 0) 872 return err; 873 return 0; 874 } 875 } 876 static void vma_commit_reservation(struct hstate *h, 877 struct vm_area_struct *vma, unsigned long addr) 878 { 879 struct address_space *mapping = vma->vm_file->f_mapping; 880 struct inode *inode = mapping->host; 881 882 if (vma->vm_flags & VM_SHARED) { 883 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 884 region_add(&inode->i_mapping->private_list, idx, idx + 1); 885 886 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 887 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 888 struct resv_map *reservations = vma_resv_map(vma); 889 890 /* Mark this page used in the map. */ 891 region_add(&reservations->regions, idx, idx + 1); 892 } 893 } 894 895 static struct page *alloc_huge_page(struct vm_area_struct *vma, 896 unsigned long addr, int avoid_reserve) 897 { 898 struct hstate *h = hstate_vma(vma); 899 struct page *page; 900 struct address_space *mapping = vma->vm_file->f_mapping; 901 struct inode *inode = mapping->host; 902 unsigned int chg; 903 904 /* 905 * Processes that did not create the mapping will have no reserves and 906 * will not have accounted against quota. Check that the quota can be 907 * made before satisfying the allocation 908 * MAP_NORESERVE mappings may also need pages and quota allocated 909 * if no reserve mapping overlaps. 910 */ 911 chg = vma_needs_reservation(h, vma, addr); 912 if (chg < 0) 913 return ERR_PTR(chg); 914 if (chg) 915 if (hugetlb_get_quota(inode->i_mapping, chg)) 916 return ERR_PTR(-ENOSPC); 917 918 spin_lock(&hugetlb_lock); 919 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 920 spin_unlock(&hugetlb_lock); 921 922 if (!page) { 923 page = alloc_buddy_huge_page(h, vma, addr); 924 if (!page) { 925 hugetlb_put_quota(inode->i_mapping, chg); 926 return ERR_PTR(-VM_FAULT_OOM); 927 } 928 } 929 930 set_page_refcounted(page); 931 set_page_private(page, (unsigned long) mapping); 932 933 vma_commit_reservation(h, vma, addr); 934 935 return page; 936 } 937 938 __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) 939 { 940 struct huge_bootmem_page *m; 941 int nr_nodes = nodes_weight(node_online_map); 942 943 while (nr_nodes) { 944 void *addr; 945 946 addr = __alloc_bootmem_node_nopanic( 947 NODE_DATA(h->hugetlb_next_nid), 948 huge_page_size(h), huge_page_size(h), 0); 949 950 if (addr) { 951 /* 952 * Use the beginning of the huge page to store the 953 * huge_bootmem_page struct (until gather_bootmem 954 * puts them into the mem_map). 955 */ 956 m = addr; 957 if (m) 958 goto found; 959 } 960 hstate_next_node(h); 961 nr_nodes--; 962 } 963 return 0; 964 965 found: 966 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 967 /* Put them into a private list first because mem_map is not up yet */ 968 list_add(&m->list, &huge_boot_pages); 969 m->hstate = h; 970 return 1; 971 } 972 973 /* Put bootmem huge pages into the standard lists after mem_map is up */ 974 static void __init gather_bootmem_prealloc(void) 975 { 976 struct huge_bootmem_page *m; 977 978 list_for_each_entry(m, &huge_boot_pages, list) { 979 struct page *page = virt_to_page(m); 980 struct hstate *h = m->hstate; 981 __ClearPageReserved(page); 982 WARN_ON(page_count(page) != 1); 983 prep_compound_page(page, h->order); 984 prep_new_huge_page(h, page, page_to_nid(page)); 985 } 986 } 987 988 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 989 { 990 unsigned long i; 991 992 for (i = 0; i < h->max_huge_pages; ++i) { 993 if (h->order >= MAX_ORDER) { 994 if (!alloc_bootmem_huge_page(h)) 995 break; 996 } else if (!alloc_fresh_huge_page(h)) 997 break; 998 } 999 h->max_huge_pages = i; 1000 } 1001 1002 static void __init hugetlb_init_hstates(void) 1003 { 1004 struct hstate *h; 1005 1006 for_each_hstate(h) { 1007 /* oversize hugepages were init'ed in early boot */ 1008 if (h->order < MAX_ORDER) 1009 hugetlb_hstate_alloc_pages(h); 1010 } 1011 } 1012 1013 static char * __init memfmt(char *buf, unsigned long n) 1014 { 1015 if (n >= (1UL << 30)) 1016 sprintf(buf, "%lu GB", n >> 30); 1017 else if (n >= (1UL << 20)) 1018 sprintf(buf, "%lu MB", n >> 20); 1019 else 1020 sprintf(buf, "%lu KB", n >> 10); 1021 return buf; 1022 } 1023 1024 static void __init report_hugepages(void) 1025 { 1026 struct hstate *h; 1027 1028 for_each_hstate(h) { 1029 char buf[32]; 1030 printk(KERN_INFO "HugeTLB registered %s page size, " 1031 "pre-allocated %ld pages\n", 1032 memfmt(buf, huge_page_size(h)), 1033 h->free_huge_pages); 1034 } 1035 } 1036 1037 #ifdef CONFIG_HIGHMEM 1038 static void try_to_free_low(struct hstate *h, unsigned long count) 1039 { 1040 int i; 1041 1042 if (h->order >= MAX_ORDER) 1043 return; 1044 1045 for (i = 0; i < MAX_NUMNODES; ++i) { 1046 struct page *page, *next; 1047 struct list_head *freel = &h->hugepage_freelists[i]; 1048 list_for_each_entry_safe(page, next, freel, lru) { 1049 if (count >= h->nr_huge_pages) 1050 return; 1051 if (PageHighMem(page)) 1052 continue; 1053 list_del(&page->lru); 1054 update_and_free_page(h, page); 1055 h->free_huge_pages--; 1056 h->free_huge_pages_node[page_to_nid(page)]--; 1057 } 1058 } 1059 } 1060 #else 1061 static inline void try_to_free_low(struct hstate *h, unsigned long count) 1062 { 1063 } 1064 #endif 1065 1066 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1067 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) 1068 { 1069 unsigned long min_count, ret; 1070 1071 if (h->order >= MAX_ORDER) 1072 return h->max_huge_pages; 1073 1074 /* 1075 * Increase the pool size 1076 * First take pages out of surplus state. Then make up the 1077 * remaining difference by allocating fresh huge pages. 1078 * 1079 * We might race with alloc_buddy_huge_page() here and be unable 1080 * to convert a surplus huge page to a normal huge page. That is 1081 * not critical, though, it just means the overall size of the 1082 * pool might be one hugepage larger than it needs to be, but 1083 * within all the constraints specified by the sysctls. 1084 */ 1085 spin_lock(&hugetlb_lock); 1086 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1087 if (!adjust_pool_surplus(h, -1)) 1088 break; 1089 } 1090 1091 while (count > persistent_huge_pages(h)) { 1092 /* 1093 * If this allocation races such that we no longer need the 1094 * page, free_huge_page will handle it by freeing the page 1095 * and reducing the surplus. 1096 */ 1097 spin_unlock(&hugetlb_lock); 1098 ret = alloc_fresh_huge_page(h); 1099 spin_lock(&hugetlb_lock); 1100 if (!ret) 1101 goto out; 1102 1103 } 1104 1105 /* 1106 * Decrease the pool size 1107 * First return free pages to the buddy allocator (being careful 1108 * to keep enough around to satisfy reservations). Then place 1109 * pages into surplus state as needed so the pool will shrink 1110 * to the desired size as pages become free. 1111 * 1112 * By placing pages into the surplus state independent of the 1113 * overcommit value, we are allowing the surplus pool size to 1114 * exceed overcommit. There are few sane options here. Since 1115 * alloc_buddy_huge_page() is checking the global counter, 1116 * though, we'll note that we're not allowed to exceed surplus 1117 * and won't grow the pool anywhere else. Not until one of the 1118 * sysctls are changed, or the surplus pages go out of use. 1119 */ 1120 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1121 min_count = max(count, min_count); 1122 try_to_free_low(h, min_count); 1123 while (min_count < persistent_huge_pages(h)) { 1124 struct page *page = dequeue_huge_page(h); 1125 if (!page) 1126 break; 1127 update_and_free_page(h, page); 1128 } 1129 while (count < persistent_huge_pages(h)) { 1130 if (!adjust_pool_surplus(h, 1)) 1131 break; 1132 } 1133 out: 1134 ret = persistent_huge_pages(h); 1135 spin_unlock(&hugetlb_lock); 1136 return ret; 1137 } 1138 1139 #define HSTATE_ATTR_RO(_name) \ 1140 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1141 1142 #define HSTATE_ATTR(_name) \ 1143 static struct kobj_attribute _name##_attr = \ 1144 __ATTR(_name, 0644, _name##_show, _name##_store) 1145 1146 static struct kobject *hugepages_kobj; 1147 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1148 1149 static struct hstate *kobj_to_hstate(struct kobject *kobj) 1150 { 1151 int i; 1152 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1153 if (hstate_kobjs[i] == kobj) 1154 return &hstates[i]; 1155 BUG(); 1156 return NULL; 1157 } 1158 1159 static ssize_t nr_hugepages_show(struct kobject *kobj, 1160 struct kobj_attribute *attr, char *buf) 1161 { 1162 struct hstate *h = kobj_to_hstate(kobj); 1163 return sprintf(buf, "%lu\n", h->nr_huge_pages); 1164 } 1165 static ssize_t nr_hugepages_store(struct kobject *kobj, 1166 struct kobj_attribute *attr, const char *buf, size_t count) 1167 { 1168 int err; 1169 unsigned long input; 1170 struct hstate *h = kobj_to_hstate(kobj); 1171 1172 err = strict_strtoul(buf, 10, &input); 1173 if (err) 1174 return 0; 1175 1176 h->max_huge_pages = set_max_huge_pages(h, input); 1177 1178 return count; 1179 } 1180 HSTATE_ATTR(nr_hugepages); 1181 1182 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1183 struct kobj_attribute *attr, char *buf) 1184 { 1185 struct hstate *h = kobj_to_hstate(kobj); 1186 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1187 } 1188 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1189 struct kobj_attribute *attr, const char *buf, size_t count) 1190 { 1191 int err; 1192 unsigned long input; 1193 struct hstate *h = kobj_to_hstate(kobj); 1194 1195 err = strict_strtoul(buf, 10, &input); 1196 if (err) 1197 return 0; 1198 1199 spin_lock(&hugetlb_lock); 1200 h->nr_overcommit_huge_pages = input; 1201 spin_unlock(&hugetlb_lock); 1202 1203 return count; 1204 } 1205 HSTATE_ATTR(nr_overcommit_hugepages); 1206 1207 static ssize_t free_hugepages_show(struct kobject *kobj, 1208 struct kobj_attribute *attr, char *buf) 1209 { 1210 struct hstate *h = kobj_to_hstate(kobj); 1211 return sprintf(buf, "%lu\n", h->free_huge_pages); 1212 } 1213 HSTATE_ATTR_RO(free_hugepages); 1214 1215 static ssize_t resv_hugepages_show(struct kobject *kobj, 1216 struct kobj_attribute *attr, char *buf) 1217 { 1218 struct hstate *h = kobj_to_hstate(kobj); 1219 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1220 } 1221 HSTATE_ATTR_RO(resv_hugepages); 1222 1223 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1224 struct kobj_attribute *attr, char *buf) 1225 { 1226 struct hstate *h = kobj_to_hstate(kobj); 1227 return sprintf(buf, "%lu\n", h->surplus_huge_pages); 1228 } 1229 HSTATE_ATTR_RO(surplus_hugepages); 1230 1231 static struct attribute *hstate_attrs[] = { 1232 &nr_hugepages_attr.attr, 1233 &nr_overcommit_hugepages_attr.attr, 1234 &free_hugepages_attr.attr, 1235 &resv_hugepages_attr.attr, 1236 &surplus_hugepages_attr.attr, 1237 NULL, 1238 }; 1239 1240 static struct attribute_group hstate_attr_group = { 1241 .attrs = hstate_attrs, 1242 }; 1243 1244 static int __init hugetlb_sysfs_add_hstate(struct hstate *h) 1245 { 1246 int retval; 1247 1248 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, 1249 hugepages_kobj); 1250 if (!hstate_kobjs[h - hstates]) 1251 return -ENOMEM; 1252 1253 retval = sysfs_create_group(hstate_kobjs[h - hstates], 1254 &hstate_attr_group); 1255 if (retval) 1256 kobject_put(hstate_kobjs[h - hstates]); 1257 1258 return retval; 1259 } 1260 1261 static void __init hugetlb_sysfs_init(void) 1262 { 1263 struct hstate *h; 1264 int err; 1265 1266 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1267 if (!hugepages_kobj) 1268 return; 1269 1270 for_each_hstate(h) { 1271 err = hugetlb_sysfs_add_hstate(h); 1272 if (err) 1273 printk(KERN_ERR "Hugetlb: Unable to add hstate %s", 1274 h->name); 1275 } 1276 } 1277 1278 static void __exit hugetlb_exit(void) 1279 { 1280 struct hstate *h; 1281 1282 for_each_hstate(h) { 1283 kobject_put(hstate_kobjs[h - hstates]); 1284 } 1285 1286 kobject_put(hugepages_kobj); 1287 } 1288 module_exit(hugetlb_exit); 1289 1290 static int __init hugetlb_init(void) 1291 { 1292 /* Some platform decide whether they support huge pages at boot 1293 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1294 * there is no such support 1295 */ 1296 if (HPAGE_SHIFT == 0) 1297 return 0; 1298 1299 if (!size_to_hstate(default_hstate_size)) { 1300 default_hstate_size = HPAGE_SIZE; 1301 if (!size_to_hstate(default_hstate_size)) 1302 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1303 } 1304 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; 1305 if (default_hstate_max_huge_pages) 1306 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1307 1308 hugetlb_init_hstates(); 1309 1310 gather_bootmem_prealloc(); 1311 1312 report_hugepages(); 1313 1314 hugetlb_sysfs_init(); 1315 1316 return 0; 1317 } 1318 module_init(hugetlb_init); 1319 1320 /* Should be called on processing a hugepagesz=... option */ 1321 void __init hugetlb_add_hstate(unsigned order) 1322 { 1323 struct hstate *h; 1324 unsigned long i; 1325 1326 if (size_to_hstate(PAGE_SIZE << order)) { 1327 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); 1328 return; 1329 } 1330 BUG_ON(max_hstate >= HUGE_MAX_HSTATE); 1331 BUG_ON(order == 0); 1332 h = &hstates[max_hstate++]; 1333 h->order = order; 1334 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1335 h->nr_huge_pages = 0; 1336 h->free_huge_pages = 0; 1337 for (i = 0; i < MAX_NUMNODES; ++i) 1338 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1339 h->hugetlb_next_nid = first_node(node_online_map); 1340 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1341 huge_page_size(h)/1024); 1342 1343 parsed_hstate = h; 1344 } 1345 1346 static int __init hugetlb_nrpages_setup(char *s) 1347 { 1348 unsigned long *mhp; 1349 static unsigned long *last_mhp; 1350 1351 /* 1352 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, 1353 * so this hugepages= parameter goes to the "default hstate". 1354 */ 1355 if (!max_hstate) 1356 mhp = &default_hstate_max_huge_pages; 1357 else 1358 mhp = &parsed_hstate->max_huge_pages; 1359 1360 if (mhp == last_mhp) { 1361 printk(KERN_WARNING "hugepages= specified twice without " 1362 "interleaving hugepagesz=, ignoring\n"); 1363 return 1; 1364 } 1365 1366 if (sscanf(s, "%lu", mhp) <= 0) 1367 *mhp = 0; 1368 1369 /* 1370 * Global state is always initialized later in hugetlb_init. 1371 * But we need to allocate >= MAX_ORDER hstates here early to still 1372 * use the bootmem allocator. 1373 */ 1374 if (max_hstate && parsed_hstate->order >= MAX_ORDER) 1375 hugetlb_hstate_alloc_pages(parsed_hstate); 1376 1377 last_mhp = mhp; 1378 1379 return 1; 1380 } 1381 __setup("hugepages=", hugetlb_nrpages_setup); 1382 1383 static int __init hugetlb_default_setup(char *s) 1384 { 1385 default_hstate_size = memparse(s, &s); 1386 return 1; 1387 } 1388 __setup("default_hugepagesz=", hugetlb_default_setup); 1389 1390 static unsigned int cpuset_mems_nr(unsigned int *array) 1391 { 1392 int node; 1393 unsigned int nr = 0; 1394 1395 for_each_node_mask(node, cpuset_current_mems_allowed) 1396 nr += array[node]; 1397 1398 return nr; 1399 } 1400 1401 #ifdef CONFIG_SYSCTL 1402 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 1403 struct file *file, void __user *buffer, 1404 size_t *length, loff_t *ppos) 1405 { 1406 struct hstate *h = &default_hstate; 1407 unsigned long tmp; 1408 1409 if (!write) 1410 tmp = h->max_huge_pages; 1411 1412 table->data = &tmp; 1413 table->maxlen = sizeof(unsigned long); 1414 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1415 1416 if (write) 1417 h->max_huge_pages = set_max_huge_pages(h, tmp); 1418 1419 return 0; 1420 } 1421 1422 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 1423 struct file *file, void __user *buffer, 1424 size_t *length, loff_t *ppos) 1425 { 1426 proc_dointvec(table, write, file, buffer, length, ppos); 1427 if (hugepages_treat_as_movable) 1428 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 1429 else 1430 htlb_alloc_mask = GFP_HIGHUSER; 1431 return 0; 1432 } 1433 1434 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 1435 struct file *file, void __user *buffer, 1436 size_t *length, loff_t *ppos) 1437 { 1438 struct hstate *h = &default_hstate; 1439 unsigned long tmp; 1440 1441 if (!write) 1442 tmp = h->nr_overcommit_huge_pages; 1443 1444 table->data = &tmp; 1445 table->maxlen = sizeof(unsigned long); 1446 proc_doulongvec_minmax(table, write, file, buffer, length, ppos); 1447 1448 if (write) { 1449 spin_lock(&hugetlb_lock); 1450 h->nr_overcommit_huge_pages = tmp; 1451 spin_unlock(&hugetlb_lock); 1452 } 1453 1454 return 0; 1455 } 1456 1457 #endif /* CONFIG_SYSCTL */ 1458 1459 void hugetlb_report_meminfo(struct seq_file *m) 1460 { 1461 struct hstate *h = &default_hstate; 1462 seq_printf(m, 1463 "HugePages_Total: %5lu\n" 1464 "HugePages_Free: %5lu\n" 1465 "HugePages_Rsvd: %5lu\n" 1466 "HugePages_Surp: %5lu\n" 1467 "Hugepagesize: %8lu kB\n", 1468 h->nr_huge_pages, 1469 h->free_huge_pages, 1470 h->resv_huge_pages, 1471 h->surplus_huge_pages, 1472 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 1473 } 1474 1475 int hugetlb_report_node_meminfo(int nid, char *buf) 1476 { 1477 struct hstate *h = &default_hstate; 1478 return sprintf(buf, 1479 "Node %d HugePages_Total: %5u\n" 1480 "Node %d HugePages_Free: %5u\n" 1481 "Node %d HugePages_Surp: %5u\n", 1482 nid, h->nr_huge_pages_node[nid], 1483 nid, h->free_huge_pages_node[nid], 1484 nid, h->surplus_huge_pages_node[nid]); 1485 } 1486 1487 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 1488 unsigned long hugetlb_total_pages(void) 1489 { 1490 struct hstate *h = &default_hstate; 1491 return h->nr_huge_pages * pages_per_huge_page(h); 1492 } 1493 1494 static int hugetlb_acct_memory(struct hstate *h, long delta) 1495 { 1496 int ret = -ENOMEM; 1497 1498 spin_lock(&hugetlb_lock); 1499 /* 1500 * When cpuset is configured, it breaks the strict hugetlb page 1501 * reservation as the accounting is done on a global variable. Such 1502 * reservation is completely rubbish in the presence of cpuset because 1503 * the reservation is not checked against page availability for the 1504 * current cpuset. Application can still potentially OOM'ed by kernel 1505 * with lack of free htlb page in cpuset that the task is in. 1506 * Attempt to enforce strict accounting with cpuset is almost 1507 * impossible (or too ugly) because cpuset is too fluid that 1508 * task or memory node can be dynamically moved between cpusets. 1509 * 1510 * The change of semantics for shared hugetlb mapping with cpuset is 1511 * undesirable. However, in order to preserve some of the semantics, 1512 * we fall back to check against current free page availability as 1513 * a best attempt and hopefully to minimize the impact of changing 1514 * semantics that cpuset has. 1515 */ 1516 if (delta > 0) { 1517 if (gather_surplus_pages(h, delta) < 0) 1518 goto out; 1519 1520 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 1521 return_unused_surplus_pages(h, delta); 1522 goto out; 1523 } 1524 } 1525 1526 ret = 0; 1527 if (delta < 0) 1528 return_unused_surplus_pages(h, (unsigned long) -delta); 1529 1530 out: 1531 spin_unlock(&hugetlb_lock); 1532 return ret; 1533 } 1534 1535 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 1536 { 1537 struct resv_map *reservations = vma_resv_map(vma); 1538 1539 /* 1540 * This new VMA should share its siblings reservation map if present. 1541 * The VMA will only ever have a valid reservation map pointer where 1542 * it is being copied for another still existing VMA. As that VMA 1543 * has a reference to the reservation map it cannot dissappear until 1544 * after this open call completes. It is therefore safe to take a 1545 * new reference here without additional locking. 1546 */ 1547 if (reservations) 1548 kref_get(&reservations->refs); 1549 } 1550 1551 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 1552 { 1553 struct hstate *h = hstate_vma(vma); 1554 struct resv_map *reservations = vma_resv_map(vma); 1555 unsigned long reserve; 1556 unsigned long start; 1557 unsigned long end; 1558 1559 if (reservations) { 1560 start = vma_hugecache_offset(h, vma, vma->vm_start); 1561 end = vma_hugecache_offset(h, vma, vma->vm_end); 1562 1563 reserve = (end - start) - 1564 region_count(&reservations->regions, start, end); 1565 1566 kref_put(&reservations->refs, resv_map_release); 1567 1568 if (reserve) { 1569 hugetlb_acct_memory(h, -reserve); 1570 hugetlb_put_quota(vma->vm_file->f_mapping, reserve); 1571 } 1572 } 1573 } 1574 1575 /* 1576 * We cannot handle pagefaults against hugetlb pages at all. They cause 1577 * handle_mm_fault() to try to instantiate regular-sized pages in the 1578 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 1579 * this far. 1580 */ 1581 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1582 { 1583 BUG(); 1584 return 0; 1585 } 1586 1587 struct vm_operations_struct hugetlb_vm_ops = { 1588 .fault = hugetlb_vm_op_fault, 1589 .open = hugetlb_vm_op_open, 1590 .close = hugetlb_vm_op_close, 1591 }; 1592 1593 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 1594 int writable) 1595 { 1596 pte_t entry; 1597 1598 if (writable) { 1599 entry = 1600 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); 1601 } else { 1602 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); 1603 } 1604 entry = pte_mkyoung(entry); 1605 entry = pte_mkhuge(entry); 1606 1607 return entry; 1608 } 1609 1610 static void set_huge_ptep_writable(struct vm_area_struct *vma, 1611 unsigned long address, pte_t *ptep) 1612 { 1613 pte_t entry; 1614 1615 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); 1616 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { 1617 update_mmu_cache(vma, address, entry); 1618 } 1619 } 1620 1621 1622 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 1623 struct vm_area_struct *vma) 1624 { 1625 pte_t *src_pte, *dst_pte, entry; 1626 struct page *ptepage; 1627 unsigned long addr; 1628 int cow; 1629 struct hstate *h = hstate_vma(vma); 1630 unsigned long sz = huge_page_size(h); 1631 1632 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1633 1634 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 1635 src_pte = huge_pte_offset(src, addr); 1636 if (!src_pte) 1637 continue; 1638 dst_pte = huge_pte_alloc(dst, addr, sz); 1639 if (!dst_pte) 1640 goto nomem; 1641 1642 /* If the pagetables are shared don't copy or take references */ 1643 if (dst_pte == src_pte) 1644 continue; 1645 1646 spin_lock(&dst->page_table_lock); 1647 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 1648 if (!huge_pte_none(huge_ptep_get(src_pte))) { 1649 if (cow) 1650 huge_ptep_set_wrprotect(src, addr, src_pte); 1651 entry = huge_ptep_get(src_pte); 1652 ptepage = pte_page(entry); 1653 get_page(ptepage); 1654 set_huge_pte_at(dst, addr, dst_pte, entry); 1655 } 1656 spin_unlock(&src->page_table_lock); 1657 spin_unlock(&dst->page_table_lock); 1658 } 1659 return 0; 1660 1661 nomem: 1662 return -ENOMEM; 1663 } 1664 1665 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1666 unsigned long end, struct page *ref_page) 1667 { 1668 struct mm_struct *mm = vma->vm_mm; 1669 unsigned long address; 1670 pte_t *ptep; 1671 pte_t pte; 1672 struct page *page; 1673 struct page *tmp; 1674 struct hstate *h = hstate_vma(vma); 1675 unsigned long sz = huge_page_size(h); 1676 1677 /* 1678 * A page gathering list, protected by per file i_mmap_lock. The 1679 * lock is used to avoid list corruption from multiple unmapping 1680 * of the same page since we are using page->lru. 1681 */ 1682 LIST_HEAD(page_list); 1683 1684 WARN_ON(!is_vm_hugetlb_page(vma)); 1685 BUG_ON(start & ~huge_page_mask(h)); 1686 BUG_ON(end & ~huge_page_mask(h)); 1687 1688 mmu_notifier_invalidate_range_start(mm, start, end); 1689 spin_lock(&mm->page_table_lock); 1690 for (address = start; address < end; address += sz) { 1691 ptep = huge_pte_offset(mm, address); 1692 if (!ptep) 1693 continue; 1694 1695 if (huge_pmd_unshare(mm, &address, ptep)) 1696 continue; 1697 1698 /* 1699 * If a reference page is supplied, it is because a specific 1700 * page is being unmapped, not a range. Ensure the page we 1701 * are about to unmap is the actual page of interest. 1702 */ 1703 if (ref_page) { 1704 pte = huge_ptep_get(ptep); 1705 if (huge_pte_none(pte)) 1706 continue; 1707 page = pte_page(pte); 1708 if (page != ref_page) 1709 continue; 1710 1711 /* 1712 * Mark the VMA as having unmapped its page so that 1713 * future faults in this VMA will fail rather than 1714 * looking like data was lost 1715 */ 1716 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 1717 } 1718 1719 pte = huge_ptep_get_and_clear(mm, address, ptep); 1720 if (huge_pte_none(pte)) 1721 continue; 1722 1723 page = pte_page(pte); 1724 if (pte_dirty(pte)) 1725 set_page_dirty(page); 1726 list_add(&page->lru, &page_list); 1727 } 1728 spin_unlock(&mm->page_table_lock); 1729 flush_tlb_range(vma, start, end); 1730 mmu_notifier_invalidate_range_end(mm, start, end); 1731 list_for_each_entry_safe(page, tmp, &page_list, lru) { 1732 list_del(&page->lru); 1733 put_page(page); 1734 } 1735 } 1736 1737 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 1738 unsigned long end, struct page *ref_page) 1739 { 1740 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 1741 __unmap_hugepage_range(vma, start, end, ref_page); 1742 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 1743 } 1744 1745 /* 1746 * This is called when the original mapper is failing to COW a MAP_PRIVATE 1747 * mappping it owns the reserve page for. The intention is to unmap the page 1748 * from other VMAs and let the children be SIGKILLed if they are faulting the 1749 * same region. 1750 */ 1751 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 1752 struct page *page, unsigned long address) 1753 { 1754 struct vm_area_struct *iter_vma; 1755 struct address_space *mapping; 1756 struct prio_tree_iter iter; 1757 pgoff_t pgoff; 1758 1759 /* 1760 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 1761 * from page cache lookup which is in HPAGE_SIZE units. 1762 */ 1763 address = address & huge_page_mask(hstate_vma(vma)); 1764 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) 1765 + (vma->vm_pgoff >> PAGE_SHIFT); 1766 mapping = (struct address_space *)page_private(page); 1767 1768 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1769 /* Do not unmap the current VMA */ 1770 if (iter_vma == vma) 1771 continue; 1772 1773 /* 1774 * Unmap the page from other VMAs without their own reserves. 1775 * They get marked to be SIGKILLed if they fault in these 1776 * areas. This is because a future no-page fault on this VMA 1777 * could insert a zeroed page instead of the data existing 1778 * from the time of fork. This would look like data corruption 1779 */ 1780 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 1781 unmap_hugepage_range(iter_vma, 1782 address, address + HPAGE_SIZE, 1783 page); 1784 } 1785 1786 return 1; 1787 } 1788 1789 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 1790 unsigned long address, pte_t *ptep, pte_t pte, 1791 struct page *pagecache_page) 1792 { 1793 struct hstate *h = hstate_vma(vma); 1794 struct page *old_page, *new_page; 1795 int avoidcopy; 1796 int outside_reserve = 0; 1797 1798 old_page = pte_page(pte); 1799 1800 retry_avoidcopy: 1801 /* If no-one else is actually using this page, avoid the copy 1802 * and just make the page writable */ 1803 avoidcopy = (page_count(old_page) == 1); 1804 if (avoidcopy) { 1805 set_huge_ptep_writable(vma, address, ptep); 1806 return 0; 1807 } 1808 1809 /* 1810 * If the process that created a MAP_PRIVATE mapping is about to 1811 * perform a COW due to a shared page count, attempt to satisfy 1812 * the allocation without using the existing reserves. The pagecache 1813 * page is used to determine if the reserve at this address was 1814 * consumed or not. If reserves were used, a partial faulted mapping 1815 * at the time of fork() could consume its reserves on COW instead 1816 * of the full address range. 1817 */ 1818 if (!(vma->vm_flags & VM_SHARED) && 1819 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 1820 old_page != pagecache_page) 1821 outside_reserve = 1; 1822 1823 page_cache_get(old_page); 1824 new_page = alloc_huge_page(vma, address, outside_reserve); 1825 1826 if (IS_ERR(new_page)) { 1827 page_cache_release(old_page); 1828 1829 /* 1830 * If a process owning a MAP_PRIVATE mapping fails to COW, 1831 * it is due to references held by a child and an insufficient 1832 * huge page pool. To guarantee the original mappers 1833 * reliability, unmap the page from child processes. The child 1834 * may get SIGKILLed if it later faults. 1835 */ 1836 if (outside_reserve) { 1837 BUG_ON(huge_pte_none(pte)); 1838 if (unmap_ref_private(mm, vma, old_page, address)) { 1839 BUG_ON(page_count(old_page) != 1); 1840 BUG_ON(huge_pte_none(pte)); 1841 goto retry_avoidcopy; 1842 } 1843 WARN_ON_ONCE(1); 1844 } 1845 1846 return -PTR_ERR(new_page); 1847 } 1848 1849 spin_unlock(&mm->page_table_lock); 1850 copy_huge_page(new_page, old_page, address, vma); 1851 __SetPageUptodate(new_page); 1852 spin_lock(&mm->page_table_lock); 1853 1854 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 1855 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 1856 /* Break COW */ 1857 huge_ptep_clear_flush(vma, address, ptep); 1858 set_huge_pte_at(mm, address, ptep, 1859 make_huge_pte(vma, new_page, 1)); 1860 /* Make the old page be freed below */ 1861 new_page = old_page; 1862 } 1863 page_cache_release(new_page); 1864 page_cache_release(old_page); 1865 return 0; 1866 } 1867 1868 /* Return the pagecache page at a given address within a VMA */ 1869 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 1870 struct vm_area_struct *vma, unsigned long address) 1871 { 1872 struct address_space *mapping; 1873 pgoff_t idx; 1874 1875 mapping = vma->vm_file->f_mapping; 1876 idx = vma_hugecache_offset(h, vma, address); 1877 1878 return find_lock_page(mapping, idx); 1879 } 1880 1881 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 1882 unsigned long address, pte_t *ptep, int write_access) 1883 { 1884 struct hstate *h = hstate_vma(vma); 1885 int ret = VM_FAULT_SIGBUS; 1886 pgoff_t idx; 1887 unsigned long size; 1888 struct page *page; 1889 struct address_space *mapping; 1890 pte_t new_pte; 1891 1892 /* 1893 * Currently, we are forced to kill the process in the event the 1894 * original mapper has unmapped pages from the child due to a failed 1895 * COW. Warn that such a situation has occured as it may not be obvious 1896 */ 1897 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 1898 printk(KERN_WARNING 1899 "PID %d killed due to inadequate hugepage pool\n", 1900 current->pid); 1901 return ret; 1902 } 1903 1904 mapping = vma->vm_file->f_mapping; 1905 idx = vma_hugecache_offset(h, vma, address); 1906 1907 /* 1908 * Use page lock to guard against racing truncation 1909 * before we get page_table_lock. 1910 */ 1911 retry: 1912 page = find_lock_page(mapping, idx); 1913 if (!page) { 1914 size = i_size_read(mapping->host) >> huge_page_shift(h); 1915 if (idx >= size) 1916 goto out; 1917 page = alloc_huge_page(vma, address, 0); 1918 if (IS_ERR(page)) { 1919 ret = -PTR_ERR(page); 1920 goto out; 1921 } 1922 clear_huge_page(page, address, huge_page_size(h)); 1923 __SetPageUptodate(page); 1924 1925 if (vma->vm_flags & VM_SHARED) { 1926 int err; 1927 struct inode *inode = mapping->host; 1928 1929 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 1930 if (err) { 1931 put_page(page); 1932 if (err == -EEXIST) 1933 goto retry; 1934 goto out; 1935 } 1936 1937 spin_lock(&inode->i_lock); 1938 inode->i_blocks += blocks_per_huge_page(h); 1939 spin_unlock(&inode->i_lock); 1940 } else 1941 lock_page(page); 1942 } 1943 1944 /* 1945 * If we are going to COW a private mapping later, we examine the 1946 * pending reservations for this page now. This will ensure that 1947 * any allocations necessary to record that reservation occur outside 1948 * the spinlock. 1949 */ 1950 if (write_access && !(vma->vm_flags & VM_SHARED)) 1951 if (vma_needs_reservation(h, vma, address) < 0) { 1952 ret = VM_FAULT_OOM; 1953 goto backout_unlocked; 1954 } 1955 1956 spin_lock(&mm->page_table_lock); 1957 size = i_size_read(mapping->host) >> huge_page_shift(h); 1958 if (idx >= size) 1959 goto backout; 1960 1961 ret = 0; 1962 if (!huge_pte_none(huge_ptep_get(ptep))) 1963 goto backout; 1964 1965 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 1966 && (vma->vm_flags & VM_SHARED))); 1967 set_huge_pte_at(mm, address, ptep, new_pte); 1968 1969 if (write_access && !(vma->vm_flags & VM_SHARED)) { 1970 /* Optimization, do the COW without a second fault */ 1971 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 1972 } 1973 1974 spin_unlock(&mm->page_table_lock); 1975 unlock_page(page); 1976 out: 1977 return ret; 1978 1979 backout: 1980 spin_unlock(&mm->page_table_lock); 1981 backout_unlocked: 1982 unlock_page(page); 1983 put_page(page); 1984 goto out; 1985 } 1986 1987 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1988 unsigned long address, int write_access) 1989 { 1990 pte_t *ptep; 1991 pte_t entry; 1992 int ret; 1993 struct page *pagecache_page = NULL; 1994 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 1995 struct hstate *h = hstate_vma(vma); 1996 1997 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 1998 if (!ptep) 1999 return VM_FAULT_OOM; 2000 2001 /* 2002 * Serialize hugepage allocation and instantiation, so that we don't 2003 * get spurious allocation failures if two CPUs race to instantiate 2004 * the same page in the page cache. 2005 */ 2006 mutex_lock(&hugetlb_instantiation_mutex); 2007 entry = huge_ptep_get(ptep); 2008 if (huge_pte_none(entry)) { 2009 ret = hugetlb_no_page(mm, vma, address, ptep, write_access); 2010 goto out_mutex; 2011 } 2012 2013 ret = 0; 2014 2015 /* 2016 * If we are going to COW the mapping later, we examine the pending 2017 * reservations for this page now. This will ensure that any 2018 * allocations necessary to record that reservation occur outside the 2019 * spinlock. For private mappings, we also lookup the pagecache 2020 * page now as it is used to determine if a reservation has been 2021 * consumed. 2022 */ 2023 if (write_access && !pte_write(entry)) { 2024 if (vma_needs_reservation(h, vma, address) < 0) { 2025 ret = VM_FAULT_OOM; 2026 goto out_mutex; 2027 } 2028 2029 if (!(vma->vm_flags & VM_SHARED)) 2030 pagecache_page = hugetlbfs_pagecache_page(h, 2031 vma, address); 2032 } 2033 2034 spin_lock(&mm->page_table_lock); 2035 /* Check for a racing update before calling hugetlb_cow */ 2036 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2037 goto out_page_table_lock; 2038 2039 2040 if (write_access) { 2041 if (!pte_write(entry)) { 2042 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2043 pagecache_page); 2044 goto out_page_table_lock; 2045 } 2046 entry = pte_mkdirty(entry); 2047 } 2048 entry = pte_mkyoung(entry); 2049 if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access)) 2050 update_mmu_cache(vma, address, entry); 2051 2052 out_page_table_lock: 2053 spin_unlock(&mm->page_table_lock); 2054 2055 if (pagecache_page) { 2056 unlock_page(pagecache_page); 2057 put_page(pagecache_page); 2058 } 2059 2060 out_mutex: 2061 mutex_unlock(&hugetlb_instantiation_mutex); 2062 2063 return ret; 2064 } 2065 2066 /* Can be overriden by architectures */ 2067 __attribute__((weak)) struct page * 2068 follow_huge_pud(struct mm_struct *mm, unsigned long address, 2069 pud_t *pud, int write) 2070 { 2071 BUG(); 2072 return NULL; 2073 } 2074 2075 static int huge_zeropage_ok(pte_t *ptep, int write, int shared) 2076 { 2077 if (!ptep || write || shared) 2078 return 0; 2079 else 2080 return huge_pte_none(huge_ptep_get(ptep)); 2081 } 2082 2083 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2084 struct page **pages, struct vm_area_struct **vmas, 2085 unsigned long *position, int *length, int i, 2086 int write) 2087 { 2088 unsigned long pfn_offset; 2089 unsigned long vaddr = *position; 2090 int remainder = *length; 2091 struct hstate *h = hstate_vma(vma); 2092 int zeropage_ok = 0; 2093 int shared = vma->vm_flags & VM_SHARED; 2094 2095 spin_lock(&mm->page_table_lock); 2096 while (vaddr < vma->vm_end && remainder) { 2097 pte_t *pte; 2098 struct page *page; 2099 2100 /* 2101 * Some archs (sparc64, sh*) have multiple pte_ts to 2102 * each hugepage. We have to make * sure we get the 2103 * first, for the page indexing below to work. 2104 */ 2105 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2106 if (huge_zeropage_ok(pte, write, shared)) 2107 zeropage_ok = 1; 2108 2109 if (!pte || 2110 (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) || 2111 (write && !pte_write(huge_ptep_get(pte)))) { 2112 int ret; 2113 2114 spin_unlock(&mm->page_table_lock); 2115 ret = hugetlb_fault(mm, vma, vaddr, write); 2116 spin_lock(&mm->page_table_lock); 2117 if (!(ret & VM_FAULT_ERROR)) 2118 continue; 2119 2120 remainder = 0; 2121 if (!i) 2122 i = -EFAULT; 2123 break; 2124 } 2125 2126 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 2127 page = pte_page(huge_ptep_get(pte)); 2128 same_page: 2129 if (pages) { 2130 if (zeropage_ok) 2131 pages[i] = ZERO_PAGE(0); 2132 else 2133 pages[i] = page + pfn_offset; 2134 get_page(pages[i]); 2135 } 2136 2137 if (vmas) 2138 vmas[i] = vma; 2139 2140 vaddr += PAGE_SIZE; 2141 ++pfn_offset; 2142 --remainder; 2143 ++i; 2144 if (vaddr < vma->vm_end && remainder && 2145 pfn_offset < pages_per_huge_page(h)) { 2146 /* 2147 * We use pfn_offset to avoid touching the pageframes 2148 * of this compound page. 2149 */ 2150 goto same_page; 2151 } 2152 } 2153 spin_unlock(&mm->page_table_lock); 2154 *length = remainder; 2155 *position = vaddr; 2156 2157 return i; 2158 } 2159 2160 void hugetlb_change_protection(struct vm_area_struct *vma, 2161 unsigned long address, unsigned long end, pgprot_t newprot) 2162 { 2163 struct mm_struct *mm = vma->vm_mm; 2164 unsigned long start = address; 2165 pte_t *ptep; 2166 pte_t pte; 2167 struct hstate *h = hstate_vma(vma); 2168 2169 BUG_ON(address >= end); 2170 flush_cache_range(vma, address, end); 2171 2172 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); 2173 spin_lock(&mm->page_table_lock); 2174 for (; address < end; address += huge_page_size(h)) { 2175 ptep = huge_pte_offset(mm, address); 2176 if (!ptep) 2177 continue; 2178 if (huge_pmd_unshare(mm, &address, ptep)) 2179 continue; 2180 if (!huge_pte_none(huge_ptep_get(ptep))) { 2181 pte = huge_ptep_get_and_clear(mm, address, ptep); 2182 pte = pte_mkhuge(pte_modify(pte, newprot)); 2183 set_huge_pte_at(mm, address, ptep, pte); 2184 } 2185 } 2186 spin_unlock(&mm->page_table_lock); 2187 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); 2188 2189 flush_tlb_range(vma, start, end); 2190 } 2191 2192 int hugetlb_reserve_pages(struct inode *inode, 2193 long from, long to, 2194 struct vm_area_struct *vma) 2195 { 2196 long ret, chg; 2197 struct hstate *h = hstate_inode(inode); 2198 2199 if (vma && vma->vm_flags & VM_NORESERVE) 2200 return 0; 2201 2202 /* 2203 * Shared mappings base their reservation on the number of pages that 2204 * are already allocated on behalf of the file. Private mappings need 2205 * to reserve the full area even if read-only as mprotect() may be 2206 * called to make the mapping read-write. Assume !vma is a shm mapping 2207 */ 2208 if (!vma || vma->vm_flags & VM_SHARED) 2209 chg = region_chg(&inode->i_mapping->private_list, from, to); 2210 else { 2211 struct resv_map *resv_map = resv_map_alloc(); 2212 if (!resv_map) 2213 return -ENOMEM; 2214 2215 chg = to - from; 2216 2217 set_vma_resv_map(vma, resv_map); 2218 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 2219 } 2220 2221 if (chg < 0) 2222 return chg; 2223 2224 if (hugetlb_get_quota(inode->i_mapping, chg)) 2225 return -ENOSPC; 2226 ret = hugetlb_acct_memory(h, chg); 2227 if (ret < 0) { 2228 hugetlb_put_quota(inode->i_mapping, chg); 2229 return ret; 2230 } 2231 if (!vma || vma->vm_flags & VM_SHARED) 2232 region_add(&inode->i_mapping->private_list, from, to); 2233 return 0; 2234 } 2235 2236 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 2237 { 2238 struct hstate *h = hstate_inode(inode); 2239 long chg = region_truncate(&inode->i_mapping->private_list, offset); 2240 2241 spin_lock(&inode->i_lock); 2242 inode->i_blocks -= blocks_per_huge_page(h); 2243 spin_unlock(&inode->i_lock); 2244 2245 hugetlb_put_quota(inode->i_mapping, (chg - freed)); 2246 hugetlb_acct_memory(h, -(chg - freed)); 2247 } 2248