xref: /openbmc/linux/mm/hugetlb.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101 
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 	if (spool->count)
105 		return false;
106 	if (spool->max_hpages != -1)
107 		return spool->used_hpages == 0;
108 	if (spool->min_hpages != -1)
109 		return spool->rsv_hpages == spool->min_hpages;
110 
111 	return true;
112 }
113 
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 						unsigned long irq_flags)
116 {
117 	spin_unlock_irqrestore(&spool->lock, irq_flags);
118 
119 	/* If no pages are used, and no other handles to the subpool
120 	 * remain, give up any reservations based on minimum size and
121 	 * free the subpool */
122 	if (subpool_is_free(spool)) {
123 		if (spool->min_hpages != -1)
124 			hugetlb_acct_memory(spool->hstate,
125 						-spool->min_hpages);
126 		kfree(spool);
127 	}
128 }
129 
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 						long min_hpages)
132 {
133 	struct hugepage_subpool *spool;
134 
135 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 	if (!spool)
137 		return NULL;
138 
139 	spin_lock_init(&spool->lock);
140 	spool->count = 1;
141 	spool->max_hpages = max_hpages;
142 	spool->hstate = h;
143 	spool->min_hpages = min_hpages;
144 
145 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 		kfree(spool);
147 		return NULL;
148 	}
149 	spool->rsv_hpages = min_hpages;
150 
151 	return spool;
152 }
153 
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&spool->lock, flags);
159 	BUG_ON(!spool->count);
160 	spool->count--;
161 	unlock_or_release_subpool(spool, flags);
162 }
163 
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 				      long delta)
174 {
175 	long ret = delta;
176 
177 	if (!spool)
178 		return ret;
179 
180 	spin_lock_irq(&spool->lock);
181 
182 	if (spool->max_hpages != -1) {		/* maximum size accounting */
183 		if ((spool->used_hpages + delta) <= spool->max_hpages)
184 			spool->used_hpages += delta;
185 		else {
186 			ret = -ENOMEM;
187 			goto unlock_ret;
188 		}
189 	}
190 
191 	/* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 		if (delta > spool->rsv_hpages) {
194 			/*
195 			 * Asking for more reserves than those already taken on
196 			 * behalf of subpool.  Return difference.
197 			 */
198 			ret = delta - spool->rsv_hpages;
199 			spool->rsv_hpages = 0;
200 		} else {
201 			ret = 0;	/* reserves already accounted for */
202 			spool->rsv_hpages -= delta;
203 		}
204 	}
205 
206 unlock_ret:
207 	spin_unlock_irq(&spool->lock);
208 	return ret;
209 }
210 
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 				       long delta)
219 {
220 	long ret = delta;
221 	unsigned long flags;
222 
223 	if (!spool)
224 		return delta;
225 
226 	spin_lock_irqsave(&spool->lock, flags);
227 
228 	if (spool->max_hpages != -1)		/* maximum size accounting */
229 		spool->used_hpages -= delta;
230 
231 	 /* minimum size accounting */
232 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 		if (spool->rsv_hpages + delta <= spool->min_hpages)
234 			ret = 0;
235 		else
236 			ret = spool->rsv_hpages + delta - spool->min_hpages;
237 
238 		spool->rsv_hpages += delta;
239 		if (spool->rsv_hpages > spool->min_hpages)
240 			spool->rsv_hpages = spool->min_hpages;
241 	}
242 
243 	/*
244 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 	 * quota reference, free it now.
246 	 */
247 	unlock_or_release_subpool(spool, flags);
248 
249 	return ret;
250 }
251 
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 	return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256 
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 	return subpool_inode(file_inode(vma->vm_file));
260 }
261 
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 	if (__vma_shareable_lock(vma)) {
268 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269 
270 		down_read(&vma_lock->rw_sema);
271 	} else if (__vma_private_lock(vma)) {
272 		struct resv_map *resv_map = vma_resv_map(vma);
273 
274 		down_read(&resv_map->rw_sema);
275 	}
276 }
277 
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 	if (__vma_shareable_lock(vma)) {
281 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282 
283 		up_read(&vma_lock->rw_sema);
284 	} else if (__vma_private_lock(vma)) {
285 		struct resv_map *resv_map = vma_resv_map(vma);
286 
287 		up_read(&resv_map->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		down_write(&vma_lock->rw_sema);
297 	} else if (__vma_private_lock(vma)) {
298 		struct resv_map *resv_map = vma_resv_map(vma);
299 
300 		down_write(&resv_map->rw_sema);
301 	}
302 }
303 
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 	if (__vma_shareable_lock(vma)) {
307 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308 
309 		up_write(&vma_lock->rw_sema);
310 	} else if (__vma_private_lock(vma)) {
311 		struct resv_map *resv_map = vma_resv_map(vma);
312 
313 		up_write(&resv_map->rw_sema);
314 	}
315 }
316 
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319 
320 	if (__vma_shareable_lock(vma)) {
321 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322 
323 		return down_write_trylock(&vma_lock->rw_sema);
324 	} else if (__vma_private_lock(vma)) {
325 		struct resv_map *resv_map = vma_resv_map(vma);
326 
327 		return down_write_trylock(&resv_map->rw_sema);
328 	}
329 
330 	return 1;
331 }
332 
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 	if (__vma_shareable_lock(vma)) {
336 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337 
338 		lockdep_assert_held(&vma_lock->rw_sema);
339 	} else if (__vma_private_lock(vma)) {
340 		struct resv_map *resv_map = vma_resv_map(vma);
341 
342 		lockdep_assert_held(&resv_map->rw_sema);
343 	}
344 }
345 
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 			struct hugetlb_vma_lock, refs);
350 
351 	kfree(vma_lock);
352 }
353 
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 	struct vm_area_struct *vma = vma_lock->vma;
357 
358 	/*
359 	 * vma_lock structure may or not be released as a result of put,
360 	 * it certainly will no longer be attached to vma so clear pointer.
361 	 * Semaphore synchronizes access to vma_lock->vma field.
362 	 */
363 	vma_lock->vma = NULL;
364 	vma->vm_private_data = NULL;
365 	up_write(&vma_lock->rw_sema);
366 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368 
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 	if (__vma_shareable_lock(vma)) {
372 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373 
374 		__hugetlb_vma_unlock_write_put(vma_lock);
375 	} else if (__vma_private_lock(vma)) {
376 		struct resv_map *resv_map = vma_resv_map(vma);
377 
378 		/* no free for anon vmas, but still need to unlock */
379 		up_write(&resv_map->rw_sema);
380 	}
381 }
382 
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 	/*
386 	 * Only present in sharable vmas.
387 	 */
388 	if (!vma || !__vma_shareable_lock(vma))
389 		return;
390 
391 	if (vma->vm_private_data) {
392 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393 
394 		down_write(&vma_lock->rw_sema);
395 		__hugetlb_vma_unlock_write_put(vma_lock);
396 	}
397 }
398 
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 	struct hugetlb_vma_lock *vma_lock;
402 
403 	/* Only establish in (flags) sharable vmas */
404 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 		return;
406 
407 	/* Should never get here with non-NULL vm_private_data */
408 	if (vma->vm_private_data)
409 		return;
410 
411 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 	if (!vma_lock) {
413 		/*
414 		 * If we can not allocate structure, then vma can not
415 		 * participate in pmd sharing.  This is only a possible
416 		 * performance enhancement and memory saving issue.
417 		 * However, the lock is also used to synchronize page
418 		 * faults with truncation.  If the lock is not present,
419 		 * unlikely races could leave pages in a file past i_size
420 		 * until the file is removed.  Warn in the unlikely case of
421 		 * allocation failure.
422 		 */
423 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 		return;
425 	}
426 
427 	kref_init(&vma_lock->refs);
428 	init_rwsem(&vma_lock->rw_sema);
429 	vma_lock->vma = vma;
430 	vma->vm_private_data = vma_lock;
431 }
432 
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 	struct file_region *nrg;
440 
441 	VM_BUG_ON(resv->region_cache_count <= 0);
442 
443 	resv->region_cache_count--;
444 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 	list_del(&nrg->link);
446 
447 	nrg->from = from;
448 	nrg->to = to;
449 
450 	return nrg;
451 }
452 
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 					      struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 	nrg->reservation_counter = rg->reservation_counter;
458 	nrg->css = rg->css;
459 	if (rg->css)
460 		css_get(rg->css);
461 #endif
462 }
463 
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 						struct hstate *h,
467 						struct resv_map *resv,
468 						struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 	if (h_cg) {
472 		nrg->reservation_counter =
473 			&h_cg->rsvd_hugepage[hstate_index(h)];
474 		nrg->css = &h_cg->css;
475 		/*
476 		 * The caller will hold exactly one h_cg->css reference for the
477 		 * whole contiguous reservation region. But this area might be
478 		 * scattered when there are already some file_regions reside in
479 		 * it. As a result, many file_regions may share only one css
480 		 * reference. In order to ensure that one file_region must hold
481 		 * exactly one h_cg->css reference, we should do css_get for
482 		 * each file_region and leave the reference held by caller
483 		 * untouched.
484 		 */
485 		css_get(&h_cg->css);
486 		if (!resv->pages_per_hpage)
487 			resv->pages_per_hpage = pages_per_huge_page(h);
488 		/* pages_per_hpage should be the same for all entries in
489 		 * a resv_map.
490 		 */
491 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 	} else {
493 		nrg->reservation_counter = NULL;
494 		nrg->css = NULL;
495 	}
496 #endif
497 }
498 
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 	if (rg->css)
503 		css_put(rg->css);
504 #endif
505 }
506 
507 static bool has_same_uncharge_info(struct file_region *rg,
508 				   struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 	return rg->reservation_counter == org->reservation_counter &&
512 	       rg->css == org->css;
513 
514 #else
515 	return true;
516 #endif
517 }
518 
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 	struct file_region *nrg, *prg;
522 
523 	prg = list_prev_entry(rg, link);
524 	if (&prg->link != &resv->regions && prg->to == rg->from &&
525 	    has_same_uncharge_info(prg, rg)) {
526 		prg->to = rg->to;
527 
528 		list_del(&rg->link);
529 		put_uncharge_info(rg);
530 		kfree(rg);
531 
532 		rg = prg;
533 	}
534 
535 	nrg = list_next_entry(rg, link);
536 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 	    has_same_uncharge_info(nrg, rg)) {
538 		nrg->from = rg->from;
539 
540 		list_del(&rg->link);
541 		put_uncharge_info(rg);
542 		kfree(rg);
543 	}
544 }
545 
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 		     long *regions_needed)
550 {
551 	struct file_region *nrg;
552 
553 	if (!regions_needed) {
554 		nrg = get_file_region_entry_from_cache(map, from, to);
555 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 		list_add(&nrg->link, rg);
557 		coalesce_file_region(map, nrg);
558 	} else
559 		*regions_needed += 1;
560 
561 	return to - from;
562 }
563 
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 				     struct hugetlb_cgroup *h_cg,
574 				     struct hstate *h, long *regions_needed)
575 {
576 	long add = 0;
577 	struct list_head *head = &resv->regions;
578 	long last_accounted_offset = f;
579 	struct file_region *iter, *trg = NULL;
580 	struct list_head *rg = NULL;
581 
582 	if (regions_needed)
583 		*regions_needed = 0;
584 
585 	/* In this loop, we essentially handle an entry for the range
586 	 * [last_accounted_offset, iter->from), at every iteration, with some
587 	 * bounds checking.
588 	 */
589 	list_for_each_entry_safe(iter, trg, head, link) {
590 		/* Skip irrelevant regions that start before our range. */
591 		if (iter->from < f) {
592 			/* If this region ends after the last accounted offset,
593 			 * then we need to update last_accounted_offset.
594 			 */
595 			if (iter->to > last_accounted_offset)
596 				last_accounted_offset = iter->to;
597 			continue;
598 		}
599 
600 		/* When we find a region that starts beyond our range, we've
601 		 * finished.
602 		 */
603 		if (iter->from >= t) {
604 			rg = iter->link.prev;
605 			break;
606 		}
607 
608 		/* Add an entry for last_accounted_offset -> iter->from, and
609 		 * update last_accounted_offset.
610 		 */
611 		if (iter->from > last_accounted_offset)
612 			add += hugetlb_resv_map_add(resv, iter->link.prev,
613 						    last_accounted_offset,
614 						    iter->from, h, h_cg,
615 						    regions_needed);
616 
617 		last_accounted_offset = iter->to;
618 	}
619 
620 	/* Handle the case where our range extends beyond
621 	 * last_accounted_offset.
622 	 */
623 	if (!rg)
624 		rg = head->prev;
625 	if (last_accounted_offset < t)
626 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 					    t, h, h_cg, regions_needed);
628 
629 	return add;
630 }
631 
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635 					int regions_needed)
636 	__must_hold(&resv->lock)
637 {
638 	LIST_HEAD(allocated_regions);
639 	int to_allocate = 0, i = 0;
640 	struct file_region *trg = NULL, *rg = NULL;
641 
642 	VM_BUG_ON(regions_needed < 0);
643 
644 	/*
645 	 * Check for sufficient descriptors in the cache to accommodate
646 	 * the number of in progress add operations plus regions_needed.
647 	 *
648 	 * This is a while loop because when we drop the lock, some other call
649 	 * to region_add or region_del may have consumed some region_entries,
650 	 * so we keep looping here until we finally have enough entries for
651 	 * (adds_in_progress + regions_needed).
652 	 */
653 	while (resv->region_cache_count <
654 	       (resv->adds_in_progress + regions_needed)) {
655 		to_allocate = resv->adds_in_progress + regions_needed -
656 			      resv->region_cache_count;
657 
658 		/* At this point, we should have enough entries in the cache
659 		 * for all the existing adds_in_progress. We should only be
660 		 * needing to allocate for regions_needed.
661 		 */
662 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663 
664 		spin_unlock(&resv->lock);
665 		for (i = 0; i < to_allocate; i++) {
666 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 			if (!trg)
668 				goto out_of_memory;
669 			list_add(&trg->link, &allocated_regions);
670 		}
671 
672 		spin_lock(&resv->lock);
673 
674 		list_splice(&allocated_regions, &resv->region_cache);
675 		resv->region_cache_count += to_allocate;
676 	}
677 
678 	return 0;
679 
680 out_of_memory:
681 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 		list_del(&rg->link);
683 		kfree(rg);
684 	}
685 	return -ENOMEM;
686 }
687 
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706 		       long in_regions_needed, struct hstate *h,
707 		       struct hugetlb_cgroup *h_cg)
708 {
709 	long add = 0, actual_regions_needed = 0;
710 
711 	spin_lock(&resv->lock);
712 retry:
713 
714 	/* Count how many regions are actually needed to execute this add. */
715 	add_reservation_in_range(resv, f, t, NULL, NULL,
716 				 &actual_regions_needed);
717 
718 	/*
719 	 * Check for sufficient descriptors in the cache to accommodate
720 	 * this add operation. Note that actual_regions_needed may be greater
721 	 * than in_regions_needed, as the resv_map may have been modified since
722 	 * the region_chg call. In this case, we need to make sure that we
723 	 * allocate extra entries, such that we have enough for all the
724 	 * existing adds_in_progress, plus the excess needed for this
725 	 * operation.
726 	 */
727 	if (actual_regions_needed > in_regions_needed &&
728 	    resv->region_cache_count <
729 		    resv->adds_in_progress +
730 			    (actual_regions_needed - in_regions_needed)) {
731 		/* region_add operation of range 1 should never need to
732 		 * allocate file_region entries.
733 		 */
734 		VM_BUG_ON(t - f <= 1);
735 
736 		if (allocate_file_region_entries(
737 			    resv, actual_regions_needed - in_regions_needed)) {
738 			return -ENOMEM;
739 		}
740 
741 		goto retry;
742 	}
743 
744 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745 
746 	resv->adds_in_progress -= in_regions_needed;
747 
748 	spin_unlock(&resv->lock);
749 	return add;
750 }
751 
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773 		       long *out_regions_needed)
774 {
775 	long chg = 0;
776 
777 	spin_lock(&resv->lock);
778 
779 	/* Count how many hugepages in this range are NOT represented. */
780 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 				       out_regions_needed);
782 
783 	if (*out_regions_needed == 0)
784 		*out_regions_needed = 1;
785 
786 	if (allocate_file_region_entries(resv, *out_regions_needed))
787 		return -ENOMEM;
788 
789 	resv->adds_in_progress += *out_regions_needed;
790 
791 	spin_unlock(&resv->lock);
792 	return chg;
793 }
794 
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809 			 long regions_needed)
810 {
811 	spin_lock(&resv->lock);
812 	VM_BUG_ON(!resv->region_cache_count);
813 	resv->adds_in_progress -= regions_needed;
814 	spin_unlock(&resv->lock);
815 }
816 
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 	struct list_head *head = &resv->regions;
834 	struct file_region *rg, *trg;
835 	struct file_region *nrg = NULL;
836 	long del = 0;
837 
838 retry:
839 	spin_lock(&resv->lock);
840 	list_for_each_entry_safe(rg, trg, head, link) {
841 		/*
842 		 * Skip regions before the range to be deleted.  file_region
843 		 * ranges are normally of the form [from, to).  However, there
844 		 * may be a "placeholder" entry in the map which is of the form
845 		 * (from, to) with from == to.  Check for placeholder entries
846 		 * at the beginning of the range to be deleted.
847 		 */
848 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 			continue;
850 
851 		if (rg->from >= t)
852 			break;
853 
854 		if (f > rg->from && t < rg->to) { /* Must split region */
855 			/*
856 			 * Check for an entry in the cache before dropping
857 			 * lock and attempting allocation.
858 			 */
859 			if (!nrg &&
860 			    resv->region_cache_count > resv->adds_in_progress) {
861 				nrg = list_first_entry(&resv->region_cache,
862 							struct file_region,
863 							link);
864 				list_del(&nrg->link);
865 				resv->region_cache_count--;
866 			}
867 
868 			if (!nrg) {
869 				spin_unlock(&resv->lock);
870 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 				if (!nrg)
872 					return -ENOMEM;
873 				goto retry;
874 			}
875 
876 			del += t - f;
877 			hugetlb_cgroup_uncharge_file_region(
878 				resv, rg, t - f, false);
879 
880 			/* New entry for end of split region */
881 			nrg->from = t;
882 			nrg->to = rg->to;
883 
884 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885 
886 			INIT_LIST_HEAD(&nrg->link);
887 
888 			/* Original entry is trimmed */
889 			rg->to = f;
890 
891 			list_add(&nrg->link, &rg->link);
892 			nrg = NULL;
893 			break;
894 		}
895 
896 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 			del += rg->to - rg->from;
898 			hugetlb_cgroup_uncharge_file_region(resv, rg,
899 							    rg->to - rg->from, true);
900 			list_del(&rg->link);
901 			kfree(rg);
902 			continue;
903 		}
904 
905 		if (f <= rg->from) {	/* Trim beginning of region */
906 			hugetlb_cgroup_uncharge_file_region(resv, rg,
907 							    t - rg->from, false);
908 
909 			del += t - rg->from;
910 			rg->from = t;
911 		} else {		/* Trim end of region */
912 			hugetlb_cgroup_uncharge_file_region(resv, rg,
913 							    rg->to - f, false);
914 
915 			del += rg->to - f;
916 			rg->to = f;
917 		}
918 	}
919 
920 	spin_unlock(&resv->lock);
921 	kfree(nrg);
922 	return del;
923 }
924 
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 	struct hugepage_subpool *spool = subpool_inode(inode);
937 	long rsv_adjust;
938 	bool reserved = false;
939 
940 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 	if (rsv_adjust > 0) {
942 		struct hstate *h = hstate_inode(inode);
943 
944 		if (!hugetlb_acct_memory(h, 1))
945 			reserved = true;
946 	} else if (!rsv_adjust) {
947 		reserved = true;
948 	}
949 
950 	if (!reserved)
951 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953 
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 	struct list_head *head = &resv->regions;
961 	struct file_region *rg;
962 	long chg = 0;
963 
964 	spin_lock(&resv->lock);
965 	/* Locate each segment we overlap with, and count that overlap. */
966 	list_for_each_entry(rg, head, link) {
967 		long seg_from;
968 		long seg_to;
969 
970 		if (rg->to <= f)
971 			continue;
972 		if (rg->from >= t)
973 			break;
974 
975 		seg_from = max(rg->from, f);
976 		seg_to = min(rg->to, t);
977 
978 		chg += seg_to - seg_from;
979 	}
980 	spin_unlock(&resv->lock);
981 
982 	return chg;
983 }
984 
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, in pagecache page units; huge pages here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 			struct vm_area_struct *vma, unsigned long address)
991 {
992 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 			(vma->vm_pgoff >> huge_page_order(h));
994 }
995 
996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 				     unsigned long address)
998 {
999 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002 
1003 /**
1004  * vma_kernel_pagesize - Page size granularity for this VMA.
1005  * @vma: The user mapping.
1006  *
1007  * Folios in this VMA will be aligned to, and at least the size of the
1008  * number of bytes returned by this function.
1009  *
1010  * Return: The default size of the folios allocated when backing a VMA.
1011  */
1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014 	if (vma->vm_ops && vma->vm_ops->pagesize)
1015 		return vma->vm_ops->pagesize(vma);
1016 	return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019 
1020 /*
1021  * Return the page size being used by the MMU to back a VMA. In the majority
1022  * of cases, the page size used by the kernel matches the MMU size. On
1023  * architectures where it differs, an architecture-specific 'strong'
1024  * version of this symbol is required.
1025  */
1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028 	return vma_kernel_pagesize(vma);
1029 }
1030 
1031 /*
1032  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1033  * bits of the reservation map pointer, which are always clear due to
1034  * alignment.
1035  */
1036 #define HPAGE_RESV_OWNER    (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039 
1040 /*
1041  * These helpers are used to track how many pages are reserved for
1042  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043  * is guaranteed to have their future faults succeed.
1044  *
1045  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046  * the reserve counters are updated with the hugetlb_lock held. It is safe
1047  * to reset the VMA at fork() time as it is not in use yet and there is no
1048  * chance of the global counters getting corrupted as a result of the values.
1049  *
1050  * The private mapping reservation is represented in a subtly different
1051  * manner to a shared mapping.  A shared mapping has a region map associated
1052  * with the underlying file, this region map represents the backing file
1053  * pages which have ever had a reservation assigned which this persists even
1054  * after the page is instantiated.  A private mapping has a region map
1055  * associated with the original mmap which is attached to all VMAs which
1056  * reference it, this region map represents those offsets which have consumed
1057  * reservation ie. where pages have been instantiated.
1058  */
1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061 	return (unsigned long)vma->vm_private_data;
1062 }
1063 
1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 							unsigned long value)
1066 {
1067 	vma->vm_private_data = (void *)value;
1068 }
1069 
1070 static void
1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 					  struct hugetlb_cgroup *h_cg,
1073 					  struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076 	if (!h_cg || !h) {
1077 		resv_map->reservation_counter = NULL;
1078 		resv_map->pages_per_hpage = 0;
1079 		resv_map->css = NULL;
1080 	} else {
1081 		resv_map->reservation_counter =
1082 			&h_cg->rsvd_hugepage[hstate_index(h)];
1083 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 		resv_map->css = &h_cg->css;
1085 	}
1086 #endif
1087 }
1088 
1089 struct resv_map *resv_map_alloc(void)
1090 {
1091 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093 
1094 	if (!resv_map || !rg) {
1095 		kfree(resv_map);
1096 		kfree(rg);
1097 		return NULL;
1098 	}
1099 
1100 	kref_init(&resv_map->refs);
1101 	spin_lock_init(&resv_map->lock);
1102 	INIT_LIST_HEAD(&resv_map->regions);
1103 	init_rwsem(&resv_map->rw_sema);
1104 
1105 	resv_map->adds_in_progress = 0;
1106 	/*
1107 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 	 * fields don't do cgroup accounting. On private mappings, these will be
1109 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 	 * reservations are to be un-charged from here.
1111 	 */
1112 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113 
1114 	INIT_LIST_HEAD(&resv_map->region_cache);
1115 	list_add(&rg->link, &resv_map->region_cache);
1116 	resv_map->region_cache_count = 1;
1117 
1118 	return resv_map;
1119 }
1120 
1121 void resv_map_release(struct kref *ref)
1122 {
1123 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 	struct list_head *head = &resv_map->region_cache;
1125 	struct file_region *rg, *trg;
1126 
1127 	/* Clear out any active regions before we release the map. */
1128 	region_del(resv_map, 0, LONG_MAX);
1129 
1130 	/* ... and any entries left in the cache */
1131 	list_for_each_entry_safe(rg, trg, head, link) {
1132 		list_del(&rg->link);
1133 		kfree(rg);
1134 	}
1135 
1136 	VM_BUG_ON(resv_map->adds_in_progress);
1137 
1138 	kfree(resv_map);
1139 }
1140 
1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143 	/*
1144 	 * At inode evict time, i_mapping may not point to the original
1145 	 * address space within the inode.  This original address space
1146 	 * contains the pointer to the resv_map.  So, always use the
1147 	 * address space embedded within the inode.
1148 	 * The VERY common case is inode->mapping == &inode->i_data but,
1149 	 * this may not be true for device special inodes.
1150 	 */
1151 	return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153 
1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 	if (vma->vm_flags & VM_MAYSHARE) {
1158 		struct address_space *mapping = vma->vm_file->f_mapping;
1159 		struct inode *inode = mapping->host;
1160 
1161 		return inode_resv_map(inode);
1162 
1163 	} else {
1164 		return (struct resv_map *)(get_vma_private_data(vma) &
1165 							~HPAGE_RESV_MASK);
1166 	}
1167 }
1168 
1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173 
1174 	set_vma_private_data(vma, (unsigned long)map);
1175 }
1176 
1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181 
1182 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184 
1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188 
1189 	return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191 
1192 bool __vma_private_lock(struct vm_area_struct *vma)
1193 {
1194 	return !(vma->vm_flags & VM_MAYSHARE) &&
1195 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1197 }
1198 
1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1200 {
1201 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1202 	/*
1203 	 * Clear vm_private_data
1204 	 * - For shared mappings this is a per-vma semaphore that may be
1205 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1206 	 *   Before clearing, make sure pointer is not associated with vma
1207 	 *   as this will leak the structure.  This is the case when called
1208 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209 	 *   been called to allocate a new structure.
1210 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1211 	 *   not apply to children.  Faults generated by the children are
1212 	 *   not guaranteed to succeed, even if read-only.
1213 	 */
1214 	if (vma->vm_flags & VM_MAYSHARE) {
1215 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1216 
1217 		if (vma_lock && vma_lock->vma != vma)
1218 			vma->vm_private_data = NULL;
1219 	} else
1220 		vma->vm_private_data = NULL;
1221 }
1222 
1223 /*
1224  * Reset and decrement one ref on hugepage private reservation.
1225  * Called with mm->mmap_lock writer semaphore held.
1226  * This function should be only used by move_vma() and operate on
1227  * same sized vma. It should never come here with last ref on the
1228  * reservation.
1229  */
1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1231 {
1232 	/*
1233 	 * Clear the old hugetlb private page reservation.
1234 	 * It has already been transferred to new_vma.
1235 	 *
1236 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1237 	 * which copies vma into new_vma and unmaps vma. After the copy
1238 	 * operation both new_vma and vma share a reference to the resv_map
1239 	 * struct, and at that point vma is about to be unmapped. We don't
1240 	 * want to return the reservation to the pool at unmap of vma because
1241 	 * the reservation still lives on in new_vma, so simply decrement the
1242 	 * ref here and remove the resv_map reference from this vma.
1243 	 */
1244 	struct resv_map *reservations = vma_resv_map(vma);
1245 
1246 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248 		kref_put(&reservations->refs, resv_map_release);
1249 	}
1250 
1251 	hugetlb_dup_vma_private(vma);
1252 }
1253 
1254 /* Returns true if the VMA has associated reserve pages */
1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1256 {
1257 	if (vma->vm_flags & VM_NORESERVE) {
1258 		/*
1259 		 * This address is already reserved by other process(chg == 0),
1260 		 * so, we should decrement reserved count. Without decrementing,
1261 		 * reserve count remains after releasing inode, because this
1262 		 * allocated page will go into page cache and is regarded as
1263 		 * coming from reserved pool in releasing step.  Currently, we
1264 		 * don't have any other solution to deal with this situation
1265 		 * properly, so add work-around here.
1266 		 */
1267 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1268 			return true;
1269 		else
1270 			return false;
1271 	}
1272 
1273 	/* Shared mappings always use reserves */
1274 	if (vma->vm_flags & VM_MAYSHARE) {
1275 		/*
1276 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1277 		 * be a region map for all pages.  The only situation where
1278 		 * there is no region map is if a hole was punched via
1279 		 * fallocate.  In this case, there really are no reserves to
1280 		 * use.  This situation is indicated if chg != 0.
1281 		 */
1282 		if (chg)
1283 			return false;
1284 		else
1285 			return true;
1286 	}
1287 
1288 	/*
1289 	 * Only the process that called mmap() has reserves for
1290 	 * private mappings.
1291 	 */
1292 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1293 		/*
1294 		 * Like the shared case above, a hole punch or truncate
1295 		 * could have been performed on the private mapping.
1296 		 * Examine the value of chg to determine if reserves
1297 		 * actually exist or were previously consumed.
1298 		 * Very Subtle - The value of chg comes from a previous
1299 		 * call to vma_needs_reserves().  The reserve map for
1300 		 * private mappings has different (opposite) semantics
1301 		 * than that of shared mappings.  vma_needs_reserves()
1302 		 * has already taken this difference in semantics into
1303 		 * account.  Therefore, the meaning of chg is the same
1304 		 * as in the shared case above.  Code could easily be
1305 		 * combined, but keeping it separate draws attention to
1306 		 * subtle differences.
1307 		 */
1308 		if (chg)
1309 			return false;
1310 		else
1311 			return true;
1312 	}
1313 
1314 	return false;
1315 }
1316 
1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1318 {
1319 	int nid = folio_nid(folio);
1320 
1321 	lockdep_assert_held(&hugetlb_lock);
1322 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1323 
1324 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325 	h->free_huge_pages++;
1326 	h->free_huge_pages_node[nid]++;
1327 	folio_set_hugetlb_freed(folio);
1328 }
1329 
1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1331 								int nid)
1332 {
1333 	struct folio *folio;
1334 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1335 
1336 	lockdep_assert_held(&hugetlb_lock);
1337 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338 		if (pin && !folio_is_longterm_pinnable(folio))
1339 			continue;
1340 
1341 		if (folio_test_hwpoison(folio))
1342 			continue;
1343 
1344 		list_move(&folio->lru, &h->hugepage_activelist);
1345 		folio_ref_unfreeze(folio, 1);
1346 		folio_clear_hugetlb_freed(folio);
1347 		h->free_huge_pages--;
1348 		h->free_huge_pages_node[nid]--;
1349 		return folio;
1350 	}
1351 
1352 	return NULL;
1353 }
1354 
1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356 							int nid, nodemask_t *nmask)
1357 {
1358 	unsigned int cpuset_mems_cookie;
1359 	struct zonelist *zonelist;
1360 	struct zone *zone;
1361 	struct zoneref *z;
1362 	int node = NUMA_NO_NODE;
1363 
1364 	zonelist = node_zonelist(nid, gfp_mask);
1365 
1366 retry_cpuset:
1367 	cpuset_mems_cookie = read_mems_allowed_begin();
1368 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369 		struct folio *folio;
1370 
1371 		if (!cpuset_zone_allowed(zone, gfp_mask))
1372 			continue;
1373 		/*
1374 		 * no need to ask again on the same node. Pool is node rather than
1375 		 * zone aware
1376 		 */
1377 		if (zone_to_nid(zone) == node)
1378 			continue;
1379 		node = zone_to_nid(zone);
1380 
1381 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1382 		if (folio)
1383 			return folio;
1384 	}
1385 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1386 		goto retry_cpuset;
1387 
1388 	return NULL;
1389 }
1390 
1391 static unsigned long available_huge_pages(struct hstate *h)
1392 {
1393 	return h->free_huge_pages - h->resv_huge_pages;
1394 }
1395 
1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397 				struct vm_area_struct *vma,
1398 				unsigned long address, int avoid_reserve,
1399 				long chg)
1400 {
1401 	struct folio *folio = NULL;
1402 	struct mempolicy *mpol;
1403 	gfp_t gfp_mask;
1404 	nodemask_t *nodemask;
1405 	int nid;
1406 
1407 	/*
1408 	 * A child process with MAP_PRIVATE mappings created by their parent
1409 	 * have no page reserves. This check ensures that reservations are
1410 	 * not "stolen". The child may still get SIGKILLed
1411 	 */
1412 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413 		goto err;
1414 
1415 	/* If reserves cannot be used, ensure enough pages are in the pool */
1416 	if (avoid_reserve && !available_huge_pages(h))
1417 		goto err;
1418 
1419 	gfp_mask = htlb_alloc_mask(h);
1420 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1421 
1422 	if (mpol_is_preferred_many(mpol)) {
1423 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424 							nid, nodemask);
1425 
1426 		/* Fallback to all nodes if page==NULL */
1427 		nodemask = NULL;
1428 	}
1429 
1430 	if (!folio)
1431 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432 							nid, nodemask);
1433 
1434 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435 		folio_set_hugetlb_restore_reserve(folio);
1436 		h->resv_huge_pages--;
1437 	}
1438 
1439 	mpol_cond_put(mpol);
1440 	return folio;
1441 
1442 err:
1443 	return NULL;
1444 }
1445 
1446 /*
1447  * common helper functions for hstate_next_node_to_{alloc|free}.
1448  * We may have allocated or freed a huge page based on a different
1449  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450  * be outside of *nodes_allowed.  Ensure that we use an allowed
1451  * node for alloc or free.
1452  */
1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1454 {
1455 	nid = next_node_in(nid, *nodes_allowed);
1456 	VM_BUG_ON(nid >= MAX_NUMNODES);
1457 
1458 	return nid;
1459 }
1460 
1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1462 {
1463 	if (!node_isset(nid, *nodes_allowed))
1464 		nid = next_node_allowed(nid, nodes_allowed);
1465 	return nid;
1466 }
1467 
1468 /*
1469  * returns the previously saved node ["this node"] from which to
1470  * allocate a persistent huge page for the pool and advance the
1471  * next node from which to allocate, handling wrap at end of node
1472  * mask.
1473  */
1474 static int hstate_next_node_to_alloc(struct hstate *h,
1475 					nodemask_t *nodes_allowed)
1476 {
1477 	int nid;
1478 
1479 	VM_BUG_ON(!nodes_allowed);
1480 
1481 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1483 
1484 	return nid;
1485 }
1486 
1487 /*
1488  * helper for remove_pool_huge_page() - return the previously saved
1489  * node ["this node"] from which to free a huge page.  Advance the
1490  * next node id whether or not we find a free huge page to free so
1491  * that the next attempt to free addresses the next node.
1492  */
1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1494 {
1495 	int nid;
1496 
1497 	VM_BUG_ON(!nodes_allowed);
1498 
1499 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1501 
1502 	return nid;
1503 }
1504 
1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1506 	for (nr_nodes = nodes_weight(*mask);				\
1507 		nr_nodes > 0 &&						\
1508 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1509 		nr_nodes--)
1510 
1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1512 	for (nr_nodes = nodes_weight(*mask);				\
1513 		nr_nodes > 0 &&						\
1514 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1515 		nr_nodes--)
1516 
1517 /* used to demote non-gigantic_huge pages as well */
1518 static void __destroy_compound_gigantic_folio(struct folio *folio,
1519 					unsigned int order, bool demote)
1520 {
1521 	int i;
1522 	int nr_pages = 1 << order;
1523 	struct page *p;
1524 
1525 	atomic_set(&folio->_entire_mapcount, 0);
1526 	atomic_set(&folio->_nr_pages_mapped, 0);
1527 	atomic_set(&folio->_pincount, 0);
1528 
1529 	for (i = 1; i < nr_pages; i++) {
1530 		p = folio_page(folio, i);
1531 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1532 		p->mapping = NULL;
1533 		clear_compound_head(p);
1534 		if (!demote)
1535 			set_page_refcounted(p);
1536 	}
1537 
1538 	__folio_clear_head(folio);
1539 }
1540 
1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542 					unsigned int order)
1543 {
1544 	__destroy_compound_gigantic_folio(folio, order, true);
1545 }
1546 
1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1548 static void destroy_compound_gigantic_folio(struct folio *folio,
1549 					unsigned int order)
1550 {
1551 	__destroy_compound_gigantic_folio(folio, order, false);
1552 }
1553 
1554 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555 {
1556 	/*
1557 	 * If the page isn't allocated using the cma allocator,
1558 	 * cma_release() returns false.
1559 	 */
1560 #ifdef CONFIG_CMA
1561 	int nid = folio_nid(folio);
1562 
1563 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1564 		return;
1565 #endif
1566 
1567 	free_contig_range(folio_pfn(folio), 1 << order);
1568 }
1569 
1570 #ifdef CONFIG_CONTIG_ALLOC
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 		int nid, nodemask_t *nodemask)
1573 {
1574 	struct page *page;
1575 	unsigned long nr_pages = pages_per_huge_page(h);
1576 	if (nid == NUMA_NO_NODE)
1577 		nid = numa_mem_id();
1578 
1579 #ifdef CONFIG_CMA
1580 	{
1581 		int node;
1582 
1583 		if (hugetlb_cma[nid]) {
1584 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585 					huge_page_order(h), true);
1586 			if (page)
1587 				return page_folio(page);
1588 		}
1589 
1590 		if (!(gfp_mask & __GFP_THISNODE)) {
1591 			for_each_node_mask(node, *nodemask) {
1592 				if (node == nid || !hugetlb_cma[node])
1593 					continue;
1594 
1595 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1596 						huge_page_order(h), true);
1597 				if (page)
1598 					return page_folio(page);
1599 			}
1600 		}
1601 	}
1602 #endif
1603 
1604 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605 	return page ? page_folio(page) : NULL;
1606 }
1607 
1608 #else /* !CONFIG_CONTIG_ALLOC */
1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610 					int nid, nodemask_t *nodemask)
1611 {
1612 	return NULL;
1613 }
1614 #endif /* CONFIG_CONTIG_ALLOC */
1615 
1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618 					int nid, nodemask_t *nodemask)
1619 {
1620 	return NULL;
1621 }
1622 static inline void free_gigantic_folio(struct folio *folio,
1623 						unsigned int order) { }
1624 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625 						unsigned int order) { }
1626 #endif
1627 
1628 static inline void __clear_hugetlb_destructor(struct hstate *h,
1629 						struct folio *folio)
1630 {
1631 	lockdep_assert_held(&hugetlb_lock);
1632 
1633 	__folio_clear_hugetlb(folio);
1634 }
1635 
1636 /*
1637  * Remove hugetlb folio from lists.
1638  * If vmemmap exists for the folio, update dtor so that the folio appears
1639  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1640  * to update dtor.
1641  *
1642  * A reference is held on the folio, except in the case of demote.
1643  *
1644  * Must be called with hugetlb lock held.
1645  */
1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 							bool adjust_surplus,
1648 							bool demote)
1649 {
1650 	int nid = folio_nid(folio);
1651 
1652 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1654 
1655 	lockdep_assert_held(&hugetlb_lock);
1656 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 		return;
1658 
1659 	list_del(&folio->lru);
1660 
1661 	if (folio_test_hugetlb_freed(folio)) {
1662 		h->free_huge_pages--;
1663 		h->free_huge_pages_node[nid]--;
1664 	}
1665 	if (adjust_surplus) {
1666 		h->surplus_huge_pages--;
1667 		h->surplus_huge_pages_node[nid]--;
1668 	}
1669 
1670 	/*
1671 	 * We can only clear the hugetlb destructor after allocating vmemmap
1672 	 * pages.  Otherwise, someone (memory error handling) may try to write
1673 	 * to tail struct pages.
1674 	 */
1675 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676 		__clear_hugetlb_destructor(h, folio);
1677 
1678 	 /*
1679 	  * In the case of demote we do not ref count the page as it will soon
1680 	  * be turned into a page of smaller size.
1681 	 */
1682 	if (!demote)
1683 		folio_ref_unfreeze(folio, 1);
1684 
1685 	h->nr_huge_pages--;
1686 	h->nr_huge_pages_node[nid]--;
1687 }
1688 
1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 							bool adjust_surplus)
1691 {
1692 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1693 }
1694 
1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696 							bool adjust_surplus)
1697 {
1698 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1699 }
1700 
1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702 			     bool adjust_surplus)
1703 {
1704 	int zeroed;
1705 	int nid = folio_nid(folio);
1706 
1707 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1708 
1709 	lockdep_assert_held(&hugetlb_lock);
1710 
1711 	INIT_LIST_HEAD(&folio->lru);
1712 	h->nr_huge_pages++;
1713 	h->nr_huge_pages_node[nid]++;
1714 
1715 	if (adjust_surplus) {
1716 		h->surplus_huge_pages++;
1717 		h->surplus_huge_pages_node[nid]++;
1718 	}
1719 
1720 	__folio_set_hugetlb(folio);
1721 	folio_change_private(folio, NULL);
1722 	/*
1723 	 * We have to set hugetlb_vmemmap_optimized again as above
1724 	 * folio_change_private(folio, NULL) cleared it.
1725 	 */
1726 	folio_set_hugetlb_vmemmap_optimized(folio);
1727 
1728 	/*
1729 	 * This folio is about to be managed by the hugetlb allocator and
1730 	 * should have no users.  Drop our reference, and check for others
1731 	 * just in case.
1732 	 */
1733 	zeroed = folio_put_testzero(folio);
1734 	if (unlikely(!zeroed))
1735 		/*
1736 		 * It is VERY unlikely soneone else has taken a ref
1737 		 * on the folio.  In this case, we simply return as
1738 		 * free_huge_folio() will be called when this other ref
1739 		 * is dropped.
1740 		 */
1741 		return;
1742 
1743 	arch_clear_hugepage_flags(&folio->page);
1744 	enqueue_hugetlb_folio(h, folio);
1745 }
1746 
1747 static void __update_and_free_hugetlb_folio(struct hstate *h,
1748 						struct folio *folio)
1749 {
1750 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1751 		return;
1752 
1753 	/*
1754 	 * If we don't know which subpages are hwpoisoned, we can't free
1755 	 * the hugepage, so it's leaked intentionally.
1756 	 */
1757 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1758 		return;
1759 
1760 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1761 		spin_lock_irq(&hugetlb_lock);
1762 		/*
1763 		 * If we cannot allocate vmemmap pages, just refuse to free the
1764 		 * page and put the page back on the hugetlb free list and treat
1765 		 * as a surplus page.
1766 		 */
1767 		add_hugetlb_folio(h, folio, true);
1768 		spin_unlock_irq(&hugetlb_lock);
1769 		return;
1770 	}
1771 
1772 	/*
1773 	 * If vmemmap pages were allocated above, then we need to clear the
1774 	 * hugetlb destructor under the hugetlb lock.
1775 	 */
1776 	if (folio_test_hugetlb(folio)) {
1777 		spin_lock_irq(&hugetlb_lock);
1778 		__clear_hugetlb_destructor(h, folio);
1779 		spin_unlock_irq(&hugetlb_lock);
1780 	}
1781 
1782 	/*
1783 	 * Move PageHWPoison flag from head page to the raw error pages,
1784 	 * which makes any healthy subpages reusable.
1785 	 */
1786 	if (unlikely(folio_test_hwpoison(folio)))
1787 		folio_clear_hugetlb_hwpoison(folio);
1788 
1789 	/*
1790 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1791 	 * need to be given back to CMA in free_gigantic_folio.
1792 	 */
1793 	if (hstate_is_gigantic(h) ||
1794 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1795 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1796 		free_gigantic_folio(folio, huge_page_order(h));
1797 	} else {
1798 		INIT_LIST_HEAD(&folio->_deferred_list);
1799 		__free_pages(&folio->page, huge_page_order(h));
1800 	}
1801 }
1802 
1803 /*
1804  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807  * the vmemmap pages.
1808  *
1809  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810  * freed and frees them one-by-one. As the page->mapping pointer is going
1811  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812  * structure of a lockless linked list of huge pages to be freed.
1813  */
1814 static LLIST_HEAD(hpage_freelist);
1815 
1816 static void free_hpage_workfn(struct work_struct *work)
1817 {
1818 	struct llist_node *node;
1819 
1820 	node = llist_del_all(&hpage_freelist);
1821 
1822 	while (node) {
1823 		struct page *page;
1824 		struct hstate *h;
1825 
1826 		page = container_of((struct address_space **)node,
1827 				     struct page, mapping);
1828 		node = node->next;
1829 		page->mapping = NULL;
1830 		/*
1831 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832 		 * folio_hstate() is going to trigger because a previous call to
1833 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834 		 * not use folio_hstate() directly.
1835 		 */
1836 		h = size_to_hstate(page_size(page));
1837 
1838 		__update_and_free_hugetlb_folio(h, page_folio(page));
1839 
1840 		cond_resched();
1841 	}
1842 }
1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844 
1845 static inline void flush_free_hpage_work(struct hstate *h)
1846 {
1847 	if (hugetlb_vmemmap_optimizable(h))
1848 		flush_work(&free_hpage_work);
1849 }
1850 
1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852 				 bool atomic)
1853 {
1854 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855 		__update_and_free_hugetlb_folio(h, folio);
1856 		return;
1857 	}
1858 
1859 	/*
1860 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861 	 *
1862 	 * Only call schedule_work() if hpage_freelist is previously
1863 	 * empty. Otherwise, schedule_work() had been called but the workfn
1864 	 * hasn't retrieved the list yet.
1865 	 */
1866 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867 		schedule_work(&free_hpage_work);
1868 }
1869 
1870 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1871 {
1872 	struct page *page, *t_page;
1873 	struct folio *folio;
1874 
1875 	list_for_each_entry_safe(page, t_page, list, lru) {
1876 		folio = page_folio(page);
1877 		update_and_free_hugetlb_folio(h, folio, false);
1878 		cond_resched();
1879 	}
1880 }
1881 
1882 struct hstate *size_to_hstate(unsigned long size)
1883 {
1884 	struct hstate *h;
1885 
1886 	for_each_hstate(h) {
1887 		if (huge_page_size(h) == size)
1888 			return h;
1889 	}
1890 	return NULL;
1891 }
1892 
1893 void free_huge_folio(struct folio *folio)
1894 {
1895 	/*
1896 	 * Can't pass hstate in here because it is called from the
1897 	 * compound page destructor.
1898 	 */
1899 	struct hstate *h = folio_hstate(folio);
1900 	int nid = folio_nid(folio);
1901 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1902 	bool restore_reserve;
1903 	unsigned long flags;
1904 
1905 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1906 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1907 
1908 	hugetlb_set_folio_subpool(folio, NULL);
1909 	if (folio_test_anon(folio))
1910 		__ClearPageAnonExclusive(&folio->page);
1911 	folio->mapping = NULL;
1912 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1913 	folio_clear_hugetlb_restore_reserve(folio);
1914 
1915 	/*
1916 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1917 	 * reservation.  If the page was associated with a subpool, there
1918 	 * would have been a page reserved in the subpool before allocation
1919 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1920 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1921 	 * remove the reserved page from the subpool.
1922 	 */
1923 	if (!restore_reserve) {
1924 		/*
1925 		 * A return code of zero implies that the subpool will be
1926 		 * under its minimum size if the reservation is not restored
1927 		 * after page is free.  Therefore, force restore_reserve
1928 		 * operation.
1929 		 */
1930 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1931 			restore_reserve = true;
1932 	}
1933 
1934 	spin_lock_irqsave(&hugetlb_lock, flags);
1935 	folio_clear_hugetlb_migratable(folio);
1936 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1937 				     pages_per_huge_page(h), folio);
1938 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1939 					  pages_per_huge_page(h), folio);
1940 	if (restore_reserve)
1941 		h->resv_huge_pages++;
1942 
1943 	if (folio_test_hugetlb_temporary(folio)) {
1944 		remove_hugetlb_folio(h, folio, false);
1945 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1946 		update_and_free_hugetlb_folio(h, folio, true);
1947 	} else if (h->surplus_huge_pages_node[nid]) {
1948 		/* remove the page from active list */
1949 		remove_hugetlb_folio(h, folio, true);
1950 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1951 		update_and_free_hugetlb_folio(h, folio, true);
1952 	} else {
1953 		arch_clear_hugepage_flags(&folio->page);
1954 		enqueue_hugetlb_folio(h, folio);
1955 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1956 	}
1957 }
1958 
1959 /*
1960  * Must be called with the hugetlb lock held
1961  */
1962 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1963 {
1964 	lockdep_assert_held(&hugetlb_lock);
1965 	h->nr_huge_pages++;
1966 	h->nr_huge_pages_node[nid]++;
1967 }
1968 
1969 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1970 {
1971 	hugetlb_vmemmap_optimize(h, &folio->page);
1972 	INIT_LIST_HEAD(&folio->lru);
1973 	__folio_set_hugetlb(folio);
1974 	hugetlb_set_folio_subpool(folio, NULL);
1975 	set_hugetlb_cgroup(folio, NULL);
1976 	set_hugetlb_cgroup_rsvd(folio, NULL);
1977 }
1978 
1979 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1980 {
1981 	__prep_new_hugetlb_folio(h, folio);
1982 	spin_lock_irq(&hugetlb_lock);
1983 	__prep_account_new_huge_page(h, nid);
1984 	spin_unlock_irq(&hugetlb_lock);
1985 }
1986 
1987 static bool __prep_compound_gigantic_folio(struct folio *folio,
1988 					unsigned int order, bool demote)
1989 {
1990 	int i, j;
1991 	int nr_pages = 1 << order;
1992 	struct page *p;
1993 
1994 	__folio_clear_reserved(folio);
1995 	for (i = 0; i < nr_pages; i++) {
1996 		p = folio_page(folio, i);
1997 
1998 		/*
1999 		 * For gigantic hugepages allocated through bootmem at
2000 		 * boot, it's safer to be consistent with the not-gigantic
2001 		 * hugepages and clear the PG_reserved bit from all tail pages
2002 		 * too.  Otherwise drivers using get_user_pages() to access tail
2003 		 * pages may get the reference counting wrong if they see
2004 		 * PG_reserved set on a tail page (despite the head page not
2005 		 * having PG_reserved set).  Enforcing this consistency between
2006 		 * head and tail pages allows drivers to optimize away a check
2007 		 * on the head page when they need know if put_page() is needed
2008 		 * after get_user_pages().
2009 		 */
2010 		if (i != 0)	/* head page cleared above */
2011 			__ClearPageReserved(p);
2012 		/*
2013 		 * Subtle and very unlikely
2014 		 *
2015 		 * Gigantic 'page allocators' such as memblock or cma will
2016 		 * return a set of pages with each page ref counted.  We need
2017 		 * to turn this set of pages into a compound page with tail
2018 		 * page ref counts set to zero.  Code such as speculative page
2019 		 * cache adding could take a ref on a 'to be' tail page.
2020 		 * We need to respect any increased ref count, and only set
2021 		 * the ref count to zero if count is currently 1.  If count
2022 		 * is not 1, we return an error.  An error return indicates
2023 		 * the set of pages can not be converted to a gigantic page.
2024 		 * The caller who allocated the pages should then discard the
2025 		 * pages using the appropriate free interface.
2026 		 *
2027 		 * In the case of demote, the ref count will be zero.
2028 		 */
2029 		if (!demote) {
2030 			if (!page_ref_freeze(p, 1)) {
2031 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2032 				goto out_error;
2033 			}
2034 		} else {
2035 			VM_BUG_ON_PAGE(page_count(p), p);
2036 		}
2037 		if (i != 0)
2038 			set_compound_head(p, &folio->page);
2039 	}
2040 	__folio_set_head(folio);
2041 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2042 	folio_set_order(folio, order);
2043 	atomic_set(&folio->_entire_mapcount, -1);
2044 	atomic_set(&folio->_nr_pages_mapped, 0);
2045 	atomic_set(&folio->_pincount, 0);
2046 	return true;
2047 
2048 out_error:
2049 	/* undo page modifications made above */
2050 	for (j = 0; j < i; j++) {
2051 		p = folio_page(folio, j);
2052 		if (j != 0)
2053 			clear_compound_head(p);
2054 		set_page_refcounted(p);
2055 	}
2056 	/* need to clear PG_reserved on remaining tail pages  */
2057 	for (; j < nr_pages; j++) {
2058 		p = folio_page(folio, j);
2059 		__ClearPageReserved(p);
2060 	}
2061 	return false;
2062 }
2063 
2064 static bool prep_compound_gigantic_folio(struct folio *folio,
2065 							unsigned int order)
2066 {
2067 	return __prep_compound_gigantic_folio(folio, order, false);
2068 }
2069 
2070 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2071 							unsigned int order)
2072 {
2073 	return __prep_compound_gigantic_folio(folio, order, true);
2074 }
2075 
2076 /*
2077  * Find and lock address space (mapping) in write mode.
2078  *
2079  * Upon entry, the page is locked which means that page_mapping() is
2080  * stable.  Due to locking order, we can only trylock_write.  If we can
2081  * not get the lock, simply return NULL to caller.
2082  */
2083 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2084 {
2085 	struct address_space *mapping = page_mapping(hpage);
2086 
2087 	if (!mapping)
2088 		return mapping;
2089 
2090 	if (i_mmap_trylock_write(mapping))
2091 		return mapping;
2092 
2093 	return NULL;
2094 }
2095 
2096 pgoff_t hugetlb_basepage_index(struct page *page)
2097 {
2098 	struct page *page_head = compound_head(page);
2099 	pgoff_t index = page_index(page_head);
2100 	unsigned long compound_idx;
2101 
2102 	if (compound_order(page_head) > MAX_ORDER)
2103 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2104 	else
2105 		compound_idx = page - page_head;
2106 
2107 	return (index << compound_order(page_head)) + compound_idx;
2108 }
2109 
2110 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2111 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2112 		nodemask_t *node_alloc_noretry)
2113 {
2114 	int order = huge_page_order(h);
2115 	struct page *page;
2116 	bool alloc_try_hard = true;
2117 	bool retry = true;
2118 
2119 	/*
2120 	 * By default we always try hard to allocate the page with
2121 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2122 	 * a loop (to adjust global huge page counts) and previous allocation
2123 	 * failed, do not continue to try hard on the same node.  Use the
2124 	 * node_alloc_noretry bitmap to manage this state information.
2125 	 */
2126 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2127 		alloc_try_hard = false;
2128 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2129 	if (alloc_try_hard)
2130 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2131 	if (nid == NUMA_NO_NODE)
2132 		nid = numa_mem_id();
2133 retry:
2134 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2135 
2136 	/* Freeze head page */
2137 	if (page && !page_ref_freeze(page, 1)) {
2138 		__free_pages(page, order);
2139 		if (retry) {	/* retry once */
2140 			retry = false;
2141 			goto retry;
2142 		}
2143 		/* WOW!  twice in a row. */
2144 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2145 		page = NULL;
2146 	}
2147 
2148 	/*
2149 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2150 	 * indicates an overall state change.  Clear bit so that we resume
2151 	 * normal 'try hard' allocations.
2152 	 */
2153 	if (node_alloc_noretry && page && !alloc_try_hard)
2154 		node_clear(nid, *node_alloc_noretry);
2155 
2156 	/*
2157 	 * If we tried hard to get a page but failed, set bit so that
2158 	 * subsequent attempts will not try as hard until there is an
2159 	 * overall state change.
2160 	 */
2161 	if (node_alloc_noretry && !page && alloc_try_hard)
2162 		node_set(nid, *node_alloc_noretry);
2163 
2164 	if (!page) {
2165 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2166 		return NULL;
2167 	}
2168 
2169 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2170 	return page_folio(page);
2171 }
2172 
2173 /*
2174  * Common helper to allocate a fresh hugetlb page. All specific allocators
2175  * should use this function to get new hugetlb pages
2176  *
2177  * Note that returned page is 'frozen':  ref count of head page and all tail
2178  * pages is zero.
2179  */
2180 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2181 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2182 		nodemask_t *node_alloc_noretry)
2183 {
2184 	struct folio *folio;
2185 	bool retry = false;
2186 
2187 retry:
2188 	if (hstate_is_gigantic(h))
2189 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2190 	else
2191 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2192 				nid, nmask, node_alloc_noretry);
2193 	if (!folio)
2194 		return NULL;
2195 	if (hstate_is_gigantic(h)) {
2196 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2197 			/*
2198 			 * Rare failure to convert pages to compound page.
2199 			 * Free pages and try again - ONCE!
2200 			 */
2201 			free_gigantic_folio(folio, huge_page_order(h));
2202 			if (!retry) {
2203 				retry = true;
2204 				goto retry;
2205 			}
2206 			return NULL;
2207 		}
2208 	}
2209 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2210 
2211 	return folio;
2212 }
2213 
2214 /*
2215  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2216  * manner.
2217  */
2218 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2219 				nodemask_t *node_alloc_noretry)
2220 {
2221 	struct folio *folio;
2222 	int nr_nodes, node;
2223 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2224 
2225 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2226 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2227 					nodes_allowed, node_alloc_noretry);
2228 		if (folio) {
2229 			free_huge_folio(folio); /* free it into the hugepage allocator */
2230 			return 1;
2231 		}
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 /*
2238  * Remove huge page from pool from next node to free.  Attempt to keep
2239  * persistent huge pages more or less balanced over allowed nodes.
2240  * This routine only 'removes' the hugetlb page.  The caller must make
2241  * an additional call to free the page to low level allocators.
2242  * Called with hugetlb_lock locked.
2243  */
2244 static struct page *remove_pool_huge_page(struct hstate *h,
2245 						nodemask_t *nodes_allowed,
2246 						 bool acct_surplus)
2247 {
2248 	int nr_nodes, node;
2249 	struct page *page = NULL;
2250 	struct folio *folio;
2251 
2252 	lockdep_assert_held(&hugetlb_lock);
2253 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2254 		/*
2255 		 * If we're returning unused surplus pages, only examine
2256 		 * nodes with surplus pages.
2257 		 */
2258 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2259 		    !list_empty(&h->hugepage_freelists[node])) {
2260 			page = list_entry(h->hugepage_freelists[node].next,
2261 					  struct page, lru);
2262 			folio = page_folio(page);
2263 			remove_hugetlb_folio(h, folio, acct_surplus);
2264 			break;
2265 		}
2266 	}
2267 
2268 	return page;
2269 }
2270 
2271 /*
2272  * Dissolve a given free hugepage into free buddy pages. This function does
2273  * nothing for in-use hugepages and non-hugepages.
2274  * This function returns values like below:
2275  *
2276  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2277  *           when the system is under memory pressure and the feature of
2278  *           freeing unused vmemmap pages associated with each hugetlb page
2279  *           is enabled.
2280  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2281  *           (allocated or reserved.)
2282  *       0:  successfully dissolved free hugepages or the page is not a
2283  *           hugepage (considered as already dissolved)
2284  */
2285 int dissolve_free_huge_page(struct page *page)
2286 {
2287 	int rc = -EBUSY;
2288 	struct folio *folio = page_folio(page);
2289 
2290 retry:
2291 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2292 	if (!folio_test_hugetlb(folio))
2293 		return 0;
2294 
2295 	spin_lock_irq(&hugetlb_lock);
2296 	if (!folio_test_hugetlb(folio)) {
2297 		rc = 0;
2298 		goto out;
2299 	}
2300 
2301 	if (!folio_ref_count(folio)) {
2302 		struct hstate *h = folio_hstate(folio);
2303 		if (!available_huge_pages(h))
2304 			goto out;
2305 
2306 		/*
2307 		 * We should make sure that the page is already on the free list
2308 		 * when it is dissolved.
2309 		 */
2310 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2311 			spin_unlock_irq(&hugetlb_lock);
2312 			cond_resched();
2313 
2314 			/*
2315 			 * Theoretically, we should return -EBUSY when we
2316 			 * encounter this race. In fact, we have a chance
2317 			 * to successfully dissolve the page if we do a
2318 			 * retry. Because the race window is quite small.
2319 			 * If we seize this opportunity, it is an optimization
2320 			 * for increasing the success rate of dissolving page.
2321 			 */
2322 			goto retry;
2323 		}
2324 
2325 		remove_hugetlb_folio(h, folio, false);
2326 		h->max_huge_pages--;
2327 		spin_unlock_irq(&hugetlb_lock);
2328 
2329 		/*
2330 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2331 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2332 		 * free the page if it can not allocate required vmemmap.  We
2333 		 * need to adjust max_huge_pages if the page is not freed.
2334 		 * Attempt to allocate vmemmmap here so that we can take
2335 		 * appropriate action on failure.
2336 		 */
2337 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2338 		if (!rc) {
2339 			update_and_free_hugetlb_folio(h, folio, false);
2340 		} else {
2341 			spin_lock_irq(&hugetlb_lock);
2342 			add_hugetlb_folio(h, folio, false);
2343 			h->max_huge_pages++;
2344 			spin_unlock_irq(&hugetlb_lock);
2345 		}
2346 
2347 		return rc;
2348 	}
2349 out:
2350 	spin_unlock_irq(&hugetlb_lock);
2351 	return rc;
2352 }
2353 
2354 /*
2355  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2356  * make specified memory blocks removable from the system.
2357  * Note that this will dissolve a free gigantic hugepage completely, if any
2358  * part of it lies within the given range.
2359  * Also note that if dissolve_free_huge_page() returns with an error, all
2360  * free hugepages that were dissolved before that error are lost.
2361  */
2362 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2363 {
2364 	unsigned long pfn;
2365 	struct page *page;
2366 	int rc = 0;
2367 	unsigned int order;
2368 	struct hstate *h;
2369 
2370 	if (!hugepages_supported())
2371 		return rc;
2372 
2373 	order = huge_page_order(&default_hstate);
2374 	for_each_hstate(h)
2375 		order = min(order, huge_page_order(h));
2376 
2377 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2378 		page = pfn_to_page(pfn);
2379 		rc = dissolve_free_huge_page(page);
2380 		if (rc)
2381 			break;
2382 	}
2383 
2384 	return rc;
2385 }
2386 
2387 /*
2388  * Allocates a fresh surplus page from the page allocator.
2389  */
2390 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2391 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2392 {
2393 	struct folio *folio = NULL;
2394 
2395 	if (hstate_is_gigantic(h))
2396 		return NULL;
2397 
2398 	spin_lock_irq(&hugetlb_lock);
2399 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2400 		goto out_unlock;
2401 	spin_unlock_irq(&hugetlb_lock);
2402 
2403 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2404 	if (!folio)
2405 		return NULL;
2406 
2407 	spin_lock_irq(&hugetlb_lock);
2408 	/*
2409 	 * We could have raced with the pool size change.
2410 	 * Double check that and simply deallocate the new page
2411 	 * if we would end up overcommiting the surpluses. Abuse
2412 	 * temporary page to workaround the nasty free_huge_folio
2413 	 * codeflow
2414 	 */
2415 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2416 		folio_set_hugetlb_temporary(folio);
2417 		spin_unlock_irq(&hugetlb_lock);
2418 		free_huge_folio(folio);
2419 		return NULL;
2420 	}
2421 
2422 	h->surplus_huge_pages++;
2423 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2424 
2425 out_unlock:
2426 	spin_unlock_irq(&hugetlb_lock);
2427 
2428 	return folio;
2429 }
2430 
2431 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2432 				     int nid, nodemask_t *nmask)
2433 {
2434 	struct folio *folio;
2435 
2436 	if (hstate_is_gigantic(h))
2437 		return NULL;
2438 
2439 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2440 	if (!folio)
2441 		return NULL;
2442 
2443 	/* fresh huge pages are frozen */
2444 	folio_ref_unfreeze(folio, 1);
2445 	/*
2446 	 * We do not account these pages as surplus because they are only
2447 	 * temporary and will be released properly on the last reference
2448 	 */
2449 	folio_set_hugetlb_temporary(folio);
2450 
2451 	return folio;
2452 }
2453 
2454 /*
2455  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2456  */
2457 static
2458 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2459 		struct vm_area_struct *vma, unsigned long addr)
2460 {
2461 	struct folio *folio = NULL;
2462 	struct mempolicy *mpol;
2463 	gfp_t gfp_mask = htlb_alloc_mask(h);
2464 	int nid;
2465 	nodemask_t *nodemask;
2466 
2467 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2468 	if (mpol_is_preferred_many(mpol)) {
2469 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2470 
2471 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2472 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2473 
2474 		/* Fallback to all nodes if page==NULL */
2475 		nodemask = NULL;
2476 	}
2477 
2478 	if (!folio)
2479 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2480 	mpol_cond_put(mpol);
2481 	return folio;
2482 }
2483 
2484 /* folio migration callback function */
2485 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2486 		nodemask_t *nmask, gfp_t gfp_mask)
2487 {
2488 	spin_lock_irq(&hugetlb_lock);
2489 	if (available_huge_pages(h)) {
2490 		struct folio *folio;
2491 
2492 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2493 						preferred_nid, nmask);
2494 		if (folio) {
2495 			spin_unlock_irq(&hugetlb_lock);
2496 			return folio;
2497 		}
2498 	}
2499 	spin_unlock_irq(&hugetlb_lock);
2500 
2501 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2502 }
2503 
2504 /* mempolicy aware migration callback */
2505 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2506 		unsigned long address)
2507 {
2508 	struct mempolicy *mpol;
2509 	nodemask_t *nodemask;
2510 	struct folio *folio;
2511 	gfp_t gfp_mask;
2512 	int node;
2513 
2514 	gfp_mask = htlb_alloc_mask(h);
2515 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2516 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2517 	mpol_cond_put(mpol);
2518 
2519 	return folio;
2520 }
2521 
2522 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2523 {
2524 #ifdef CONFIG_NUMA
2525 	struct mempolicy *mpol = get_task_policy(current);
2526 
2527 	/*
2528 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2529 	 * (from policy_nodemask) specifically for hugetlb case
2530 	 */
2531 	if (mpol->mode == MPOL_BIND &&
2532 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2533 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2534 		return &mpol->nodes;
2535 #endif
2536 	return NULL;
2537 }
2538 
2539 /*
2540  * Increase the hugetlb pool such that it can accommodate a reservation
2541  * of size 'delta'.
2542  */
2543 static int gather_surplus_pages(struct hstate *h, long delta)
2544 	__must_hold(&hugetlb_lock)
2545 {
2546 	LIST_HEAD(surplus_list);
2547 	struct folio *folio, *tmp;
2548 	int ret;
2549 	long i;
2550 	long needed, allocated;
2551 	bool alloc_ok = true;
2552 	int node;
2553 	nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2554 
2555 	lockdep_assert_held(&hugetlb_lock);
2556 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2557 	if (needed <= 0) {
2558 		h->resv_huge_pages += delta;
2559 		return 0;
2560 	}
2561 
2562 	allocated = 0;
2563 
2564 	ret = -ENOMEM;
2565 retry:
2566 	spin_unlock_irq(&hugetlb_lock);
2567 	for (i = 0; i < needed; i++) {
2568 		folio = NULL;
2569 		for_each_node_mask(node, cpuset_current_mems_allowed) {
2570 			if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2571 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2572 						node, NULL);
2573 				if (folio)
2574 					break;
2575 			}
2576 		}
2577 		if (!folio) {
2578 			alloc_ok = false;
2579 			break;
2580 		}
2581 		list_add(&folio->lru, &surplus_list);
2582 		cond_resched();
2583 	}
2584 	allocated += i;
2585 
2586 	/*
2587 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2588 	 * because either resv_huge_pages or free_huge_pages may have changed.
2589 	 */
2590 	spin_lock_irq(&hugetlb_lock);
2591 	needed = (h->resv_huge_pages + delta) -
2592 			(h->free_huge_pages + allocated);
2593 	if (needed > 0) {
2594 		if (alloc_ok)
2595 			goto retry;
2596 		/*
2597 		 * We were not able to allocate enough pages to
2598 		 * satisfy the entire reservation so we free what
2599 		 * we've allocated so far.
2600 		 */
2601 		goto free;
2602 	}
2603 	/*
2604 	 * The surplus_list now contains _at_least_ the number of extra pages
2605 	 * needed to accommodate the reservation.  Add the appropriate number
2606 	 * of pages to the hugetlb pool and free the extras back to the buddy
2607 	 * allocator.  Commit the entire reservation here to prevent another
2608 	 * process from stealing the pages as they are added to the pool but
2609 	 * before they are reserved.
2610 	 */
2611 	needed += allocated;
2612 	h->resv_huge_pages += delta;
2613 	ret = 0;
2614 
2615 	/* Free the needed pages to the hugetlb pool */
2616 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2617 		if ((--needed) < 0)
2618 			break;
2619 		/* Add the page to the hugetlb allocator */
2620 		enqueue_hugetlb_folio(h, folio);
2621 	}
2622 free:
2623 	spin_unlock_irq(&hugetlb_lock);
2624 
2625 	/*
2626 	 * Free unnecessary surplus pages to the buddy allocator.
2627 	 * Pages have no ref count, call free_huge_folio directly.
2628 	 */
2629 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2630 		free_huge_folio(folio);
2631 	spin_lock_irq(&hugetlb_lock);
2632 
2633 	return ret;
2634 }
2635 
2636 /*
2637  * This routine has two main purposes:
2638  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2639  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2640  *    to the associated reservation map.
2641  * 2) Free any unused surplus pages that may have been allocated to satisfy
2642  *    the reservation.  As many as unused_resv_pages may be freed.
2643  */
2644 static void return_unused_surplus_pages(struct hstate *h,
2645 					unsigned long unused_resv_pages)
2646 {
2647 	unsigned long nr_pages;
2648 	struct page *page;
2649 	LIST_HEAD(page_list);
2650 
2651 	lockdep_assert_held(&hugetlb_lock);
2652 	/* Uncommit the reservation */
2653 	h->resv_huge_pages -= unused_resv_pages;
2654 
2655 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2656 		goto out;
2657 
2658 	/*
2659 	 * Part (or even all) of the reservation could have been backed
2660 	 * by pre-allocated pages. Only free surplus pages.
2661 	 */
2662 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2663 
2664 	/*
2665 	 * We want to release as many surplus pages as possible, spread
2666 	 * evenly across all nodes with memory. Iterate across these nodes
2667 	 * until we can no longer free unreserved surplus pages. This occurs
2668 	 * when the nodes with surplus pages have no free pages.
2669 	 * remove_pool_huge_page() will balance the freed pages across the
2670 	 * on-line nodes with memory and will handle the hstate accounting.
2671 	 */
2672 	while (nr_pages--) {
2673 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2674 		if (!page)
2675 			goto out;
2676 
2677 		list_add(&page->lru, &page_list);
2678 	}
2679 
2680 out:
2681 	spin_unlock_irq(&hugetlb_lock);
2682 	update_and_free_pages_bulk(h, &page_list);
2683 	spin_lock_irq(&hugetlb_lock);
2684 }
2685 
2686 
2687 /*
2688  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2689  * are used by the huge page allocation routines to manage reservations.
2690  *
2691  * vma_needs_reservation is called to determine if the huge page at addr
2692  * within the vma has an associated reservation.  If a reservation is
2693  * needed, the value 1 is returned.  The caller is then responsible for
2694  * managing the global reservation and subpool usage counts.  After
2695  * the huge page has been allocated, vma_commit_reservation is called
2696  * to add the page to the reservation map.  If the page allocation fails,
2697  * the reservation must be ended instead of committed.  vma_end_reservation
2698  * is called in such cases.
2699  *
2700  * In the normal case, vma_commit_reservation returns the same value
2701  * as the preceding vma_needs_reservation call.  The only time this
2702  * is not the case is if a reserve map was changed between calls.  It
2703  * is the responsibility of the caller to notice the difference and
2704  * take appropriate action.
2705  *
2706  * vma_add_reservation is used in error paths where a reservation must
2707  * be restored when a newly allocated huge page must be freed.  It is
2708  * to be called after calling vma_needs_reservation to determine if a
2709  * reservation exists.
2710  *
2711  * vma_del_reservation is used in error paths where an entry in the reserve
2712  * map was created during huge page allocation and must be removed.  It is to
2713  * be called after calling vma_needs_reservation to determine if a reservation
2714  * exists.
2715  */
2716 enum vma_resv_mode {
2717 	VMA_NEEDS_RESV,
2718 	VMA_COMMIT_RESV,
2719 	VMA_END_RESV,
2720 	VMA_ADD_RESV,
2721 	VMA_DEL_RESV,
2722 };
2723 static long __vma_reservation_common(struct hstate *h,
2724 				struct vm_area_struct *vma, unsigned long addr,
2725 				enum vma_resv_mode mode)
2726 {
2727 	struct resv_map *resv;
2728 	pgoff_t idx;
2729 	long ret;
2730 	long dummy_out_regions_needed;
2731 
2732 	resv = vma_resv_map(vma);
2733 	if (!resv)
2734 		return 1;
2735 
2736 	idx = vma_hugecache_offset(h, vma, addr);
2737 	switch (mode) {
2738 	case VMA_NEEDS_RESV:
2739 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2740 		/* We assume that vma_reservation_* routines always operate on
2741 		 * 1 page, and that adding to resv map a 1 page entry can only
2742 		 * ever require 1 region.
2743 		 */
2744 		VM_BUG_ON(dummy_out_regions_needed != 1);
2745 		break;
2746 	case VMA_COMMIT_RESV:
2747 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2748 		/* region_add calls of range 1 should never fail. */
2749 		VM_BUG_ON(ret < 0);
2750 		break;
2751 	case VMA_END_RESV:
2752 		region_abort(resv, idx, idx + 1, 1);
2753 		ret = 0;
2754 		break;
2755 	case VMA_ADD_RESV:
2756 		if (vma->vm_flags & VM_MAYSHARE) {
2757 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2758 			/* region_add calls of range 1 should never fail. */
2759 			VM_BUG_ON(ret < 0);
2760 		} else {
2761 			region_abort(resv, idx, idx + 1, 1);
2762 			ret = region_del(resv, idx, idx + 1);
2763 		}
2764 		break;
2765 	case VMA_DEL_RESV:
2766 		if (vma->vm_flags & VM_MAYSHARE) {
2767 			region_abort(resv, idx, idx + 1, 1);
2768 			ret = region_del(resv, idx, idx + 1);
2769 		} else {
2770 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2771 			/* region_add calls of range 1 should never fail. */
2772 			VM_BUG_ON(ret < 0);
2773 		}
2774 		break;
2775 	default:
2776 		BUG();
2777 	}
2778 
2779 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2780 		return ret;
2781 	/*
2782 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2783 	 *
2784 	 * In most cases, reserves always exist for private mappings.
2785 	 * However, a file associated with mapping could have been
2786 	 * hole punched or truncated after reserves were consumed.
2787 	 * As subsequent fault on such a range will not use reserves.
2788 	 * Subtle - The reserve map for private mappings has the
2789 	 * opposite meaning than that of shared mappings.  If NO
2790 	 * entry is in the reserve map, it means a reservation exists.
2791 	 * If an entry exists in the reserve map, it means the
2792 	 * reservation has already been consumed.  As a result, the
2793 	 * return value of this routine is the opposite of the
2794 	 * value returned from reserve map manipulation routines above.
2795 	 */
2796 	if (ret > 0)
2797 		return 0;
2798 	if (ret == 0)
2799 		return 1;
2800 	return ret;
2801 }
2802 
2803 static long vma_needs_reservation(struct hstate *h,
2804 			struct vm_area_struct *vma, unsigned long addr)
2805 {
2806 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2807 }
2808 
2809 static long vma_commit_reservation(struct hstate *h,
2810 			struct vm_area_struct *vma, unsigned long addr)
2811 {
2812 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2813 }
2814 
2815 static void vma_end_reservation(struct hstate *h,
2816 			struct vm_area_struct *vma, unsigned long addr)
2817 {
2818 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2819 }
2820 
2821 static long vma_add_reservation(struct hstate *h,
2822 			struct vm_area_struct *vma, unsigned long addr)
2823 {
2824 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2825 }
2826 
2827 static long vma_del_reservation(struct hstate *h,
2828 			struct vm_area_struct *vma, unsigned long addr)
2829 {
2830 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2831 }
2832 
2833 /*
2834  * This routine is called to restore reservation information on error paths.
2835  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2836  * and the hugetlb mutex should remain held when calling this routine.
2837  *
2838  * It handles two specific cases:
2839  * 1) A reservation was in place and the folio consumed the reservation.
2840  *    hugetlb_restore_reserve is set in the folio.
2841  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2842  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2843  *
2844  * In case 1, free_huge_folio later in the error path will increment the
2845  * global reserve count.  But, free_huge_folio does not have enough context
2846  * to adjust the reservation map.  This case deals primarily with private
2847  * mappings.  Adjust the reserve map here to be consistent with global
2848  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2849  * reserve map indicates there is a reservation present.
2850  *
2851  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2852  */
2853 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2854 			unsigned long address, struct folio *folio)
2855 {
2856 	long rc = vma_needs_reservation(h, vma, address);
2857 
2858 	if (folio_test_hugetlb_restore_reserve(folio)) {
2859 		if (unlikely(rc < 0))
2860 			/*
2861 			 * Rare out of memory condition in reserve map
2862 			 * manipulation.  Clear hugetlb_restore_reserve so
2863 			 * that global reserve count will not be incremented
2864 			 * by free_huge_folio.  This will make it appear
2865 			 * as though the reservation for this folio was
2866 			 * consumed.  This may prevent the task from
2867 			 * faulting in the folio at a later time.  This
2868 			 * is better than inconsistent global huge page
2869 			 * accounting of reserve counts.
2870 			 */
2871 			folio_clear_hugetlb_restore_reserve(folio);
2872 		else if (rc)
2873 			(void)vma_add_reservation(h, vma, address);
2874 		else
2875 			vma_end_reservation(h, vma, address);
2876 	} else {
2877 		if (!rc) {
2878 			/*
2879 			 * This indicates there is an entry in the reserve map
2880 			 * not added by alloc_hugetlb_folio.  We know it was added
2881 			 * before the alloc_hugetlb_folio call, otherwise
2882 			 * hugetlb_restore_reserve would be set on the folio.
2883 			 * Remove the entry so that a subsequent allocation
2884 			 * does not consume a reservation.
2885 			 */
2886 			rc = vma_del_reservation(h, vma, address);
2887 			if (rc < 0)
2888 				/*
2889 				 * VERY rare out of memory condition.  Since
2890 				 * we can not delete the entry, set
2891 				 * hugetlb_restore_reserve so that the reserve
2892 				 * count will be incremented when the folio
2893 				 * is freed.  This reserve will be consumed
2894 				 * on a subsequent allocation.
2895 				 */
2896 				folio_set_hugetlb_restore_reserve(folio);
2897 		} else if (rc < 0) {
2898 			/*
2899 			 * Rare out of memory condition from
2900 			 * vma_needs_reservation call.  Memory allocation is
2901 			 * only attempted if a new entry is needed.  Therefore,
2902 			 * this implies there is not an entry in the
2903 			 * reserve map.
2904 			 *
2905 			 * For shared mappings, no entry in the map indicates
2906 			 * no reservation.  We are done.
2907 			 */
2908 			if (!(vma->vm_flags & VM_MAYSHARE))
2909 				/*
2910 				 * For private mappings, no entry indicates
2911 				 * a reservation is present.  Since we can
2912 				 * not add an entry, set hugetlb_restore_reserve
2913 				 * on the folio so reserve count will be
2914 				 * incremented when freed.  This reserve will
2915 				 * be consumed on a subsequent allocation.
2916 				 */
2917 				folio_set_hugetlb_restore_reserve(folio);
2918 		} else
2919 			/*
2920 			 * No reservation present, do nothing
2921 			 */
2922 			 vma_end_reservation(h, vma, address);
2923 	}
2924 }
2925 
2926 /*
2927  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2928  * the old one
2929  * @h: struct hstate old page belongs to
2930  * @old_folio: Old folio to dissolve
2931  * @list: List to isolate the page in case we need to
2932  * Returns 0 on success, otherwise negated error.
2933  */
2934 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2935 			struct folio *old_folio, struct list_head *list)
2936 {
2937 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2938 	int nid = folio_nid(old_folio);
2939 	struct folio *new_folio;
2940 	int ret = 0;
2941 
2942 	/*
2943 	 * Before dissolving the folio, we need to allocate a new one for the
2944 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2945 	 * by doing everything but actually updating counters and adding to
2946 	 * the pool.  This simplifies and let us do most of the processing
2947 	 * under the lock.
2948 	 */
2949 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2950 	if (!new_folio)
2951 		return -ENOMEM;
2952 	__prep_new_hugetlb_folio(h, new_folio);
2953 
2954 retry:
2955 	spin_lock_irq(&hugetlb_lock);
2956 	if (!folio_test_hugetlb(old_folio)) {
2957 		/*
2958 		 * Freed from under us. Drop new_folio too.
2959 		 */
2960 		goto free_new;
2961 	} else if (folio_ref_count(old_folio)) {
2962 		bool isolated;
2963 
2964 		/*
2965 		 * Someone has grabbed the folio, try to isolate it here.
2966 		 * Fail with -EBUSY if not possible.
2967 		 */
2968 		spin_unlock_irq(&hugetlb_lock);
2969 		isolated = isolate_hugetlb(old_folio, list);
2970 		ret = isolated ? 0 : -EBUSY;
2971 		spin_lock_irq(&hugetlb_lock);
2972 		goto free_new;
2973 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2974 		/*
2975 		 * Folio's refcount is 0 but it has not been enqueued in the
2976 		 * freelist yet. Race window is small, so we can succeed here if
2977 		 * we retry.
2978 		 */
2979 		spin_unlock_irq(&hugetlb_lock);
2980 		cond_resched();
2981 		goto retry;
2982 	} else {
2983 		/*
2984 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2985 		 * the freelist and decrease the counters. These will be
2986 		 * incremented again when calling __prep_account_new_huge_page()
2987 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2988 		 * remain stable since this happens under the lock.
2989 		 */
2990 		remove_hugetlb_folio(h, old_folio, false);
2991 
2992 		/*
2993 		 * Ref count on new_folio is already zero as it was dropped
2994 		 * earlier.  It can be directly added to the pool free list.
2995 		 */
2996 		__prep_account_new_huge_page(h, nid);
2997 		enqueue_hugetlb_folio(h, new_folio);
2998 
2999 		/*
3000 		 * Folio has been replaced, we can safely free the old one.
3001 		 */
3002 		spin_unlock_irq(&hugetlb_lock);
3003 		update_and_free_hugetlb_folio(h, old_folio, false);
3004 	}
3005 
3006 	return ret;
3007 
3008 free_new:
3009 	spin_unlock_irq(&hugetlb_lock);
3010 	/* Folio has a zero ref count, but needs a ref to be freed */
3011 	folio_ref_unfreeze(new_folio, 1);
3012 	update_and_free_hugetlb_folio(h, new_folio, false);
3013 
3014 	return ret;
3015 }
3016 
3017 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3018 {
3019 	struct hstate *h;
3020 	struct folio *folio = page_folio(page);
3021 	int ret = -EBUSY;
3022 
3023 	/*
3024 	 * The page might have been dissolved from under our feet, so make sure
3025 	 * to carefully check the state under the lock.
3026 	 * Return success when racing as if we dissolved the page ourselves.
3027 	 */
3028 	spin_lock_irq(&hugetlb_lock);
3029 	if (folio_test_hugetlb(folio)) {
3030 		h = folio_hstate(folio);
3031 	} else {
3032 		spin_unlock_irq(&hugetlb_lock);
3033 		return 0;
3034 	}
3035 	spin_unlock_irq(&hugetlb_lock);
3036 
3037 	/*
3038 	 * Fence off gigantic pages as there is a cyclic dependency between
3039 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3040 	 * of bailing out right away without further retrying.
3041 	 */
3042 	if (hstate_is_gigantic(h))
3043 		return -ENOMEM;
3044 
3045 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3046 		ret = 0;
3047 	else if (!folio_ref_count(folio))
3048 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3049 
3050 	return ret;
3051 }
3052 
3053 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3054 				    unsigned long addr, int avoid_reserve)
3055 {
3056 	struct hugepage_subpool *spool = subpool_vma(vma);
3057 	struct hstate *h = hstate_vma(vma);
3058 	struct folio *folio;
3059 	long map_chg, map_commit;
3060 	long gbl_chg;
3061 	int ret, idx;
3062 	struct hugetlb_cgroup *h_cg = NULL;
3063 	bool deferred_reserve;
3064 
3065 	idx = hstate_index(h);
3066 	/*
3067 	 * Examine the region/reserve map to determine if the process
3068 	 * has a reservation for the page to be allocated.  A return
3069 	 * code of zero indicates a reservation exists (no change).
3070 	 */
3071 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3072 	if (map_chg < 0)
3073 		return ERR_PTR(-ENOMEM);
3074 
3075 	/*
3076 	 * Processes that did not create the mapping will have no
3077 	 * reserves as indicated by the region/reserve map. Check
3078 	 * that the allocation will not exceed the subpool limit.
3079 	 * Allocations for MAP_NORESERVE mappings also need to be
3080 	 * checked against any subpool limit.
3081 	 */
3082 	if (map_chg || avoid_reserve) {
3083 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3084 		if (gbl_chg < 0) {
3085 			vma_end_reservation(h, vma, addr);
3086 			return ERR_PTR(-ENOSPC);
3087 		}
3088 
3089 		/*
3090 		 * Even though there was no reservation in the region/reserve
3091 		 * map, there could be reservations associated with the
3092 		 * subpool that can be used.  This would be indicated if the
3093 		 * return value of hugepage_subpool_get_pages() is zero.
3094 		 * However, if avoid_reserve is specified we still avoid even
3095 		 * the subpool reservations.
3096 		 */
3097 		if (avoid_reserve)
3098 			gbl_chg = 1;
3099 	}
3100 
3101 	/* If this allocation is not consuming a reservation, charge it now.
3102 	 */
3103 	deferred_reserve = map_chg || avoid_reserve;
3104 	if (deferred_reserve) {
3105 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3106 			idx, pages_per_huge_page(h), &h_cg);
3107 		if (ret)
3108 			goto out_subpool_put;
3109 	}
3110 
3111 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3112 	if (ret)
3113 		goto out_uncharge_cgroup_reservation;
3114 
3115 	spin_lock_irq(&hugetlb_lock);
3116 	/*
3117 	 * glb_chg is passed to indicate whether or not a page must be taken
3118 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3119 	 * a reservation exists for the allocation.
3120 	 */
3121 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3122 	if (!folio) {
3123 		spin_unlock_irq(&hugetlb_lock);
3124 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3125 		if (!folio)
3126 			goto out_uncharge_cgroup;
3127 		spin_lock_irq(&hugetlb_lock);
3128 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3129 			folio_set_hugetlb_restore_reserve(folio);
3130 			h->resv_huge_pages--;
3131 		}
3132 		list_add(&folio->lru, &h->hugepage_activelist);
3133 		folio_ref_unfreeze(folio, 1);
3134 		/* Fall through */
3135 	}
3136 
3137 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3138 	/* If allocation is not consuming a reservation, also store the
3139 	 * hugetlb_cgroup pointer on the page.
3140 	 */
3141 	if (deferred_reserve) {
3142 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3143 						  h_cg, folio);
3144 	}
3145 
3146 	spin_unlock_irq(&hugetlb_lock);
3147 
3148 	hugetlb_set_folio_subpool(folio, spool);
3149 
3150 	map_commit = vma_commit_reservation(h, vma, addr);
3151 	if (unlikely(map_chg > map_commit)) {
3152 		/*
3153 		 * The page was added to the reservation map between
3154 		 * vma_needs_reservation and vma_commit_reservation.
3155 		 * This indicates a race with hugetlb_reserve_pages.
3156 		 * Adjust for the subpool count incremented above AND
3157 		 * in hugetlb_reserve_pages for the same page.  Also,
3158 		 * the reservation count added in hugetlb_reserve_pages
3159 		 * no longer applies.
3160 		 */
3161 		long rsv_adjust;
3162 
3163 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3164 		hugetlb_acct_memory(h, -rsv_adjust);
3165 		if (deferred_reserve) {
3166 			spin_lock_irq(&hugetlb_lock);
3167 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3168 					pages_per_huge_page(h), folio);
3169 			spin_unlock_irq(&hugetlb_lock);
3170 		}
3171 	}
3172 	return folio;
3173 
3174 out_uncharge_cgroup:
3175 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3176 out_uncharge_cgroup_reservation:
3177 	if (deferred_reserve)
3178 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3179 						    h_cg);
3180 out_subpool_put:
3181 	if (map_chg || avoid_reserve)
3182 		hugepage_subpool_put_pages(spool, 1);
3183 	vma_end_reservation(h, vma, addr);
3184 	return ERR_PTR(-ENOSPC);
3185 }
3186 
3187 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3188 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3189 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3190 {
3191 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3192 	int nr_nodes, node;
3193 
3194 	/* do node specific alloc */
3195 	if (nid != NUMA_NO_NODE) {
3196 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3197 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3198 		if (!m)
3199 			return 0;
3200 		goto found;
3201 	}
3202 	/* allocate from next node when distributing huge pages */
3203 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3204 		m = memblock_alloc_try_nid_raw(
3205 				huge_page_size(h), huge_page_size(h),
3206 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3207 		/*
3208 		 * Use the beginning of the huge page to store the
3209 		 * huge_bootmem_page struct (until gather_bootmem
3210 		 * puts them into the mem_map).
3211 		 */
3212 		if (!m)
3213 			return 0;
3214 		goto found;
3215 	}
3216 
3217 found:
3218 	/* Put them into a private list first because mem_map is not up yet */
3219 	INIT_LIST_HEAD(&m->list);
3220 	list_add(&m->list, &huge_boot_pages);
3221 	m->hstate = h;
3222 	return 1;
3223 }
3224 
3225 /*
3226  * Put bootmem huge pages into the standard lists after mem_map is up.
3227  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3228  */
3229 static void __init gather_bootmem_prealloc(void)
3230 {
3231 	struct huge_bootmem_page *m;
3232 
3233 	list_for_each_entry(m, &huge_boot_pages, list) {
3234 		struct page *page = virt_to_page(m);
3235 		struct folio *folio = page_folio(page);
3236 		struct hstate *h = m->hstate;
3237 
3238 		VM_BUG_ON(!hstate_is_gigantic(h));
3239 		WARN_ON(folio_ref_count(folio) != 1);
3240 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3241 			WARN_ON(folio_test_reserved(folio));
3242 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3243 			free_huge_folio(folio); /* add to the hugepage allocator */
3244 		} else {
3245 			/* VERY unlikely inflated ref count on a tail page */
3246 			free_gigantic_folio(folio, huge_page_order(h));
3247 		}
3248 
3249 		/*
3250 		 * We need to restore the 'stolen' pages to totalram_pages
3251 		 * in order to fix confusing memory reports from free(1) and
3252 		 * other side-effects, like CommitLimit going negative.
3253 		 */
3254 		adjust_managed_page_count(page, pages_per_huge_page(h));
3255 		cond_resched();
3256 	}
3257 }
3258 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3259 {
3260 	unsigned long i;
3261 	char buf[32];
3262 
3263 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3264 		if (hstate_is_gigantic(h)) {
3265 			if (!alloc_bootmem_huge_page(h, nid))
3266 				break;
3267 		} else {
3268 			struct folio *folio;
3269 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3270 
3271 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3272 					&node_states[N_MEMORY], NULL);
3273 			if (!folio)
3274 				break;
3275 			free_huge_folio(folio); /* free it into the hugepage allocator */
3276 		}
3277 		cond_resched();
3278 	}
3279 	if (i == h->max_huge_pages_node[nid])
3280 		return;
3281 
3282 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3283 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3284 		h->max_huge_pages_node[nid], buf, nid, i);
3285 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3286 	h->max_huge_pages_node[nid] = i;
3287 }
3288 
3289 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3290 {
3291 	unsigned long i;
3292 	nodemask_t *node_alloc_noretry;
3293 	bool node_specific_alloc = false;
3294 
3295 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3296 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3297 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3298 		return;
3299 	}
3300 
3301 	/* do node specific alloc */
3302 	for_each_online_node(i) {
3303 		if (h->max_huge_pages_node[i] > 0) {
3304 			hugetlb_hstate_alloc_pages_onenode(h, i);
3305 			node_specific_alloc = true;
3306 		}
3307 	}
3308 
3309 	if (node_specific_alloc)
3310 		return;
3311 
3312 	/* below will do all node balanced alloc */
3313 	if (!hstate_is_gigantic(h)) {
3314 		/*
3315 		 * Bit mask controlling how hard we retry per-node allocations.
3316 		 * Ignore errors as lower level routines can deal with
3317 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3318 		 * time, we are likely in bigger trouble.
3319 		 */
3320 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3321 						GFP_KERNEL);
3322 	} else {
3323 		/* allocations done at boot time */
3324 		node_alloc_noretry = NULL;
3325 	}
3326 
3327 	/* bit mask controlling how hard we retry per-node allocations */
3328 	if (node_alloc_noretry)
3329 		nodes_clear(*node_alloc_noretry);
3330 
3331 	for (i = 0; i < h->max_huge_pages; ++i) {
3332 		if (hstate_is_gigantic(h)) {
3333 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3334 				break;
3335 		} else if (!alloc_pool_huge_page(h,
3336 					 &node_states[N_MEMORY],
3337 					 node_alloc_noretry))
3338 			break;
3339 		cond_resched();
3340 	}
3341 	if (i < h->max_huge_pages) {
3342 		char buf[32];
3343 
3344 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3345 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3346 			h->max_huge_pages, buf, i);
3347 		h->max_huge_pages = i;
3348 	}
3349 	kfree(node_alloc_noretry);
3350 }
3351 
3352 static void __init hugetlb_init_hstates(void)
3353 {
3354 	struct hstate *h, *h2;
3355 
3356 	for_each_hstate(h) {
3357 		/* oversize hugepages were init'ed in early boot */
3358 		if (!hstate_is_gigantic(h))
3359 			hugetlb_hstate_alloc_pages(h);
3360 
3361 		/*
3362 		 * Set demote order for each hstate.  Note that
3363 		 * h->demote_order is initially 0.
3364 		 * - We can not demote gigantic pages if runtime freeing
3365 		 *   is not supported, so skip this.
3366 		 * - If CMA allocation is possible, we can not demote
3367 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3368 		 */
3369 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3370 			continue;
3371 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3372 			continue;
3373 		for_each_hstate(h2) {
3374 			if (h2 == h)
3375 				continue;
3376 			if (h2->order < h->order &&
3377 			    h2->order > h->demote_order)
3378 				h->demote_order = h2->order;
3379 		}
3380 	}
3381 }
3382 
3383 static void __init report_hugepages(void)
3384 {
3385 	struct hstate *h;
3386 
3387 	for_each_hstate(h) {
3388 		char buf[32];
3389 
3390 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3391 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3392 			buf, h->free_huge_pages);
3393 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3394 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3395 	}
3396 }
3397 
3398 #ifdef CONFIG_HIGHMEM
3399 static void try_to_free_low(struct hstate *h, unsigned long count,
3400 						nodemask_t *nodes_allowed)
3401 {
3402 	int i;
3403 	LIST_HEAD(page_list);
3404 
3405 	lockdep_assert_held(&hugetlb_lock);
3406 	if (hstate_is_gigantic(h))
3407 		return;
3408 
3409 	/*
3410 	 * Collect pages to be freed on a list, and free after dropping lock
3411 	 */
3412 	for_each_node_mask(i, *nodes_allowed) {
3413 		struct page *page, *next;
3414 		struct list_head *freel = &h->hugepage_freelists[i];
3415 		list_for_each_entry_safe(page, next, freel, lru) {
3416 			if (count >= h->nr_huge_pages)
3417 				goto out;
3418 			if (PageHighMem(page))
3419 				continue;
3420 			remove_hugetlb_folio(h, page_folio(page), false);
3421 			list_add(&page->lru, &page_list);
3422 		}
3423 	}
3424 
3425 out:
3426 	spin_unlock_irq(&hugetlb_lock);
3427 	update_and_free_pages_bulk(h, &page_list);
3428 	spin_lock_irq(&hugetlb_lock);
3429 }
3430 #else
3431 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3432 						nodemask_t *nodes_allowed)
3433 {
3434 }
3435 #endif
3436 
3437 /*
3438  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3439  * balanced by operating on them in a round-robin fashion.
3440  * Returns 1 if an adjustment was made.
3441  */
3442 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3443 				int delta)
3444 {
3445 	int nr_nodes, node;
3446 
3447 	lockdep_assert_held(&hugetlb_lock);
3448 	VM_BUG_ON(delta != -1 && delta != 1);
3449 
3450 	if (delta < 0) {
3451 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3452 			if (h->surplus_huge_pages_node[node])
3453 				goto found;
3454 		}
3455 	} else {
3456 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3457 			if (h->surplus_huge_pages_node[node] <
3458 					h->nr_huge_pages_node[node])
3459 				goto found;
3460 		}
3461 	}
3462 	return 0;
3463 
3464 found:
3465 	h->surplus_huge_pages += delta;
3466 	h->surplus_huge_pages_node[node] += delta;
3467 	return 1;
3468 }
3469 
3470 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3471 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3472 			      nodemask_t *nodes_allowed)
3473 {
3474 	unsigned long min_count, ret;
3475 	struct page *page;
3476 	LIST_HEAD(page_list);
3477 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3478 
3479 	/*
3480 	 * Bit mask controlling how hard we retry per-node allocations.
3481 	 * If we can not allocate the bit mask, do not attempt to allocate
3482 	 * the requested huge pages.
3483 	 */
3484 	if (node_alloc_noretry)
3485 		nodes_clear(*node_alloc_noretry);
3486 	else
3487 		return -ENOMEM;
3488 
3489 	/*
3490 	 * resize_lock mutex prevents concurrent adjustments to number of
3491 	 * pages in hstate via the proc/sysfs interfaces.
3492 	 */
3493 	mutex_lock(&h->resize_lock);
3494 	flush_free_hpage_work(h);
3495 	spin_lock_irq(&hugetlb_lock);
3496 
3497 	/*
3498 	 * Check for a node specific request.
3499 	 * Changing node specific huge page count may require a corresponding
3500 	 * change to the global count.  In any case, the passed node mask
3501 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3502 	 */
3503 	if (nid != NUMA_NO_NODE) {
3504 		unsigned long old_count = count;
3505 
3506 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3507 		/*
3508 		 * User may have specified a large count value which caused the
3509 		 * above calculation to overflow.  In this case, they wanted
3510 		 * to allocate as many huge pages as possible.  Set count to
3511 		 * largest possible value to align with their intention.
3512 		 */
3513 		if (count < old_count)
3514 			count = ULONG_MAX;
3515 	}
3516 
3517 	/*
3518 	 * Gigantic pages runtime allocation depend on the capability for large
3519 	 * page range allocation.
3520 	 * If the system does not provide this feature, return an error when
3521 	 * the user tries to allocate gigantic pages but let the user free the
3522 	 * boottime allocated gigantic pages.
3523 	 */
3524 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3525 		if (count > persistent_huge_pages(h)) {
3526 			spin_unlock_irq(&hugetlb_lock);
3527 			mutex_unlock(&h->resize_lock);
3528 			NODEMASK_FREE(node_alloc_noretry);
3529 			return -EINVAL;
3530 		}
3531 		/* Fall through to decrease pool */
3532 	}
3533 
3534 	/*
3535 	 * Increase the pool size
3536 	 * First take pages out of surplus state.  Then make up the
3537 	 * remaining difference by allocating fresh huge pages.
3538 	 *
3539 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3540 	 * to convert a surplus huge page to a normal huge page. That is
3541 	 * not critical, though, it just means the overall size of the
3542 	 * pool might be one hugepage larger than it needs to be, but
3543 	 * within all the constraints specified by the sysctls.
3544 	 */
3545 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3546 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3547 			break;
3548 	}
3549 
3550 	while (count > persistent_huge_pages(h)) {
3551 		/*
3552 		 * If this allocation races such that we no longer need the
3553 		 * page, free_huge_folio will handle it by freeing the page
3554 		 * and reducing the surplus.
3555 		 */
3556 		spin_unlock_irq(&hugetlb_lock);
3557 
3558 		/* yield cpu to avoid soft lockup */
3559 		cond_resched();
3560 
3561 		ret = alloc_pool_huge_page(h, nodes_allowed,
3562 						node_alloc_noretry);
3563 		spin_lock_irq(&hugetlb_lock);
3564 		if (!ret)
3565 			goto out;
3566 
3567 		/* Bail for signals. Probably ctrl-c from user */
3568 		if (signal_pending(current))
3569 			goto out;
3570 	}
3571 
3572 	/*
3573 	 * Decrease the pool size
3574 	 * First return free pages to the buddy allocator (being careful
3575 	 * to keep enough around to satisfy reservations).  Then place
3576 	 * pages into surplus state as needed so the pool will shrink
3577 	 * to the desired size as pages become free.
3578 	 *
3579 	 * By placing pages into the surplus state independent of the
3580 	 * overcommit value, we are allowing the surplus pool size to
3581 	 * exceed overcommit. There are few sane options here. Since
3582 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3583 	 * though, we'll note that we're not allowed to exceed surplus
3584 	 * and won't grow the pool anywhere else. Not until one of the
3585 	 * sysctls are changed, or the surplus pages go out of use.
3586 	 */
3587 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3588 	min_count = max(count, min_count);
3589 	try_to_free_low(h, min_count, nodes_allowed);
3590 
3591 	/*
3592 	 * Collect pages to be removed on list without dropping lock
3593 	 */
3594 	while (min_count < persistent_huge_pages(h)) {
3595 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3596 		if (!page)
3597 			break;
3598 
3599 		list_add(&page->lru, &page_list);
3600 	}
3601 	/* free the pages after dropping lock */
3602 	spin_unlock_irq(&hugetlb_lock);
3603 	update_and_free_pages_bulk(h, &page_list);
3604 	flush_free_hpage_work(h);
3605 	spin_lock_irq(&hugetlb_lock);
3606 
3607 	while (count < persistent_huge_pages(h)) {
3608 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3609 			break;
3610 	}
3611 out:
3612 	h->max_huge_pages = persistent_huge_pages(h);
3613 	spin_unlock_irq(&hugetlb_lock);
3614 	mutex_unlock(&h->resize_lock);
3615 
3616 	NODEMASK_FREE(node_alloc_noretry);
3617 
3618 	return 0;
3619 }
3620 
3621 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3622 {
3623 	int i, nid = folio_nid(folio);
3624 	struct hstate *target_hstate;
3625 	struct page *subpage;
3626 	struct folio *inner_folio;
3627 	int rc = 0;
3628 
3629 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3630 
3631 	remove_hugetlb_folio_for_demote(h, folio, false);
3632 	spin_unlock_irq(&hugetlb_lock);
3633 
3634 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3635 	if (rc) {
3636 		/* Allocation of vmemmmap failed, we can not demote folio */
3637 		spin_lock_irq(&hugetlb_lock);
3638 		folio_ref_unfreeze(folio, 1);
3639 		add_hugetlb_folio(h, folio, false);
3640 		return rc;
3641 	}
3642 
3643 	/*
3644 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3645 	 * sizes as it will not ref count folios.
3646 	 */
3647 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3648 
3649 	/*
3650 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3651 	 * Without the mutex, pages added to target hstate could be marked
3652 	 * as surplus.
3653 	 *
3654 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3655 	 * use the convention of always taking larger size hstate mutex first.
3656 	 */
3657 	mutex_lock(&target_hstate->resize_lock);
3658 	for (i = 0; i < pages_per_huge_page(h);
3659 				i += pages_per_huge_page(target_hstate)) {
3660 		subpage = folio_page(folio, i);
3661 		inner_folio = page_folio(subpage);
3662 		if (hstate_is_gigantic(target_hstate))
3663 			prep_compound_gigantic_folio_for_demote(inner_folio,
3664 							target_hstate->order);
3665 		else
3666 			prep_compound_page(subpage, target_hstate->order);
3667 		folio_change_private(inner_folio, NULL);
3668 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3669 		free_huge_folio(inner_folio);
3670 	}
3671 	mutex_unlock(&target_hstate->resize_lock);
3672 
3673 	spin_lock_irq(&hugetlb_lock);
3674 
3675 	/*
3676 	 * Not absolutely necessary, but for consistency update max_huge_pages
3677 	 * based on pool changes for the demoted page.
3678 	 */
3679 	h->max_huge_pages--;
3680 	target_hstate->max_huge_pages +=
3681 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3682 
3683 	return rc;
3684 }
3685 
3686 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3687 	__must_hold(&hugetlb_lock)
3688 {
3689 	int nr_nodes, node;
3690 	struct folio *folio;
3691 
3692 	lockdep_assert_held(&hugetlb_lock);
3693 
3694 	/* We should never get here if no demote order */
3695 	if (!h->demote_order) {
3696 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3697 		return -EINVAL;		/* internal error */
3698 	}
3699 
3700 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3701 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3702 			if (folio_test_hwpoison(folio))
3703 				continue;
3704 			return demote_free_hugetlb_folio(h, folio);
3705 		}
3706 	}
3707 
3708 	/*
3709 	 * Only way to get here is if all pages on free lists are poisoned.
3710 	 * Return -EBUSY so that caller will not retry.
3711 	 */
3712 	return -EBUSY;
3713 }
3714 
3715 #define HSTATE_ATTR_RO(_name) \
3716 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3717 
3718 #define HSTATE_ATTR_WO(_name) \
3719 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3720 
3721 #define HSTATE_ATTR(_name) \
3722 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3723 
3724 static struct kobject *hugepages_kobj;
3725 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3726 
3727 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3728 
3729 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3730 {
3731 	int i;
3732 
3733 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3734 		if (hstate_kobjs[i] == kobj) {
3735 			if (nidp)
3736 				*nidp = NUMA_NO_NODE;
3737 			return &hstates[i];
3738 		}
3739 
3740 	return kobj_to_node_hstate(kobj, nidp);
3741 }
3742 
3743 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3744 					struct kobj_attribute *attr, char *buf)
3745 {
3746 	struct hstate *h;
3747 	unsigned long nr_huge_pages;
3748 	int nid;
3749 
3750 	h = kobj_to_hstate(kobj, &nid);
3751 	if (nid == NUMA_NO_NODE)
3752 		nr_huge_pages = h->nr_huge_pages;
3753 	else
3754 		nr_huge_pages = h->nr_huge_pages_node[nid];
3755 
3756 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3757 }
3758 
3759 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3760 					   struct hstate *h, int nid,
3761 					   unsigned long count, size_t len)
3762 {
3763 	int err;
3764 	nodemask_t nodes_allowed, *n_mask;
3765 
3766 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3767 		return -EINVAL;
3768 
3769 	if (nid == NUMA_NO_NODE) {
3770 		/*
3771 		 * global hstate attribute
3772 		 */
3773 		if (!(obey_mempolicy &&
3774 				init_nodemask_of_mempolicy(&nodes_allowed)))
3775 			n_mask = &node_states[N_MEMORY];
3776 		else
3777 			n_mask = &nodes_allowed;
3778 	} else {
3779 		/*
3780 		 * Node specific request.  count adjustment happens in
3781 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3782 		 */
3783 		init_nodemask_of_node(&nodes_allowed, nid);
3784 		n_mask = &nodes_allowed;
3785 	}
3786 
3787 	err = set_max_huge_pages(h, count, nid, n_mask);
3788 
3789 	return err ? err : len;
3790 }
3791 
3792 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3793 					 struct kobject *kobj, const char *buf,
3794 					 size_t len)
3795 {
3796 	struct hstate *h;
3797 	unsigned long count;
3798 	int nid;
3799 	int err;
3800 
3801 	err = kstrtoul(buf, 10, &count);
3802 	if (err)
3803 		return err;
3804 
3805 	h = kobj_to_hstate(kobj, &nid);
3806 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3807 }
3808 
3809 static ssize_t nr_hugepages_show(struct kobject *kobj,
3810 				       struct kobj_attribute *attr, char *buf)
3811 {
3812 	return nr_hugepages_show_common(kobj, attr, buf);
3813 }
3814 
3815 static ssize_t nr_hugepages_store(struct kobject *kobj,
3816 	       struct kobj_attribute *attr, const char *buf, size_t len)
3817 {
3818 	return nr_hugepages_store_common(false, kobj, buf, len);
3819 }
3820 HSTATE_ATTR(nr_hugepages);
3821 
3822 #ifdef CONFIG_NUMA
3823 
3824 /*
3825  * hstate attribute for optionally mempolicy-based constraint on persistent
3826  * huge page alloc/free.
3827  */
3828 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3829 					   struct kobj_attribute *attr,
3830 					   char *buf)
3831 {
3832 	return nr_hugepages_show_common(kobj, attr, buf);
3833 }
3834 
3835 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3836 	       struct kobj_attribute *attr, const char *buf, size_t len)
3837 {
3838 	return nr_hugepages_store_common(true, kobj, buf, len);
3839 }
3840 HSTATE_ATTR(nr_hugepages_mempolicy);
3841 #endif
3842 
3843 
3844 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3845 					struct kobj_attribute *attr, char *buf)
3846 {
3847 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3848 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3849 }
3850 
3851 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3852 		struct kobj_attribute *attr, const char *buf, size_t count)
3853 {
3854 	int err;
3855 	unsigned long input;
3856 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3857 
3858 	if (hstate_is_gigantic(h))
3859 		return -EINVAL;
3860 
3861 	err = kstrtoul(buf, 10, &input);
3862 	if (err)
3863 		return err;
3864 
3865 	spin_lock_irq(&hugetlb_lock);
3866 	h->nr_overcommit_huge_pages = input;
3867 	spin_unlock_irq(&hugetlb_lock);
3868 
3869 	return count;
3870 }
3871 HSTATE_ATTR(nr_overcommit_hugepages);
3872 
3873 static ssize_t free_hugepages_show(struct kobject *kobj,
3874 					struct kobj_attribute *attr, char *buf)
3875 {
3876 	struct hstate *h;
3877 	unsigned long free_huge_pages;
3878 	int nid;
3879 
3880 	h = kobj_to_hstate(kobj, &nid);
3881 	if (nid == NUMA_NO_NODE)
3882 		free_huge_pages = h->free_huge_pages;
3883 	else
3884 		free_huge_pages = h->free_huge_pages_node[nid];
3885 
3886 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3887 }
3888 HSTATE_ATTR_RO(free_hugepages);
3889 
3890 static ssize_t resv_hugepages_show(struct kobject *kobj,
3891 					struct kobj_attribute *attr, char *buf)
3892 {
3893 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3894 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3895 }
3896 HSTATE_ATTR_RO(resv_hugepages);
3897 
3898 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3899 					struct kobj_attribute *attr, char *buf)
3900 {
3901 	struct hstate *h;
3902 	unsigned long surplus_huge_pages;
3903 	int nid;
3904 
3905 	h = kobj_to_hstate(kobj, &nid);
3906 	if (nid == NUMA_NO_NODE)
3907 		surplus_huge_pages = h->surplus_huge_pages;
3908 	else
3909 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3910 
3911 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3912 }
3913 HSTATE_ATTR_RO(surplus_hugepages);
3914 
3915 static ssize_t demote_store(struct kobject *kobj,
3916 	       struct kobj_attribute *attr, const char *buf, size_t len)
3917 {
3918 	unsigned long nr_demote;
3919 	unsigned long nr_available;
3920 	nodemask_t nodes_allowed, *n_mask;
3921 	struct hstate *h;
3922 	int err;
3923 	int nid;
3924 
3925 	err = kstrtoul(buf, 10, &nr_demote);
3926 	if (err)
3927 		return err;
3928 	h = kobj_to_hstate(kobj, &nid);
3929 
3930 	if (nid != NUMA_NO_NODE) {
3931 		init_nodemask_of_node(&nodes_allowed, nid);
3932 		n_mask = &nodes_allowed;
3933 	} else {
3934 		n_mask = &node_states[N_MEMORY];
3935 	}
3936 
3937 	/* Synchronize with other sysfs operations modifying huge pages */
3938 	mutex_lock(&h->resize_lock);
3939 	spin_lock_irq(&hugetlb_lock);
3940 
3941 	while (nr_demote) {
3942 		/*
3943 		 * Check for available pages to demote each time thorough the
3944 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3945 		 */
3946 		if (nid != NUMA_NO_NODE)
3947 			nr_available = h->free_huge_pages_node[nid];
3948 		else
3949 			nr_available = h->free_huge_pages;
3950 		nr_available -= h->resv_huge_pages;
3951 		if (!nr_available)
3952 			break;
3953 
3954 		err = demote_pool_huge_page(h, n_mask);
3955 		if (err)
3956 			break;
3957 
3958 		nr_demote--;
3959 	}
3960 
3961 	spin_unlock_irq(&hugetlb_lock);
3962 	mutex_unlock(&h->resize_lock);
3963 
3964 	if (err)
3965 		return err;
3966 	return len;
3967 }
3968 HSTATE_ATTR_WO(demote);
3969 
3970 static ssize_t demote_size_show(struct kobject *kobj,
3971 					struct kobj_attribute *attr, char *buf)
3972 {
3973 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3974 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3975 
3976 	return sysfs_emit(buf, "%lukB\n", demote_size);
3977 }
3978 
3979 static ssize_t demote_size_store(struct kobject *kobj,
3980 					struct kobj_attribute *attr,
3981 					const char *buf, size_t count)
3982 {
3983 	struct hstate *h, *demote_hstate;
3984 	unsigned long demote_size;
3985 	unsigned int demote_order;
3986 
3987 	demote_size = (unsigned long)memparse(buf, NULL);
3988 
3989 	demote_hstate = size_to_hstate(demote_size);
3990 	if (!demote_hstate)
3991 		return -EINVAL;
3992 	demote_order = demote_hstate->order;
3993 	if (demote_order < HUGETLB_PAGE_ORDER)
3994 		return -EINVAL;
3995 
3996 	/* demote order must be smaller than hstate order */
3997 	h = kobj_to_hstate(kobj, NULL);
3998 	if (demote_order >= h->order)
3999 		return -EINVAL;
4000 
4001 	/* resize_lock synchronizes access to demote size and writes */
4002 	mutex_lock(&h->resize_lock);
4003 	h->demote_order = demote_order;
4004 	mutex_unlock(&h->resize_lock);
4005 
4006 	return count;
4007 }
4008 HSTATE_ATTR(demote_size);
4009 
4010 static struct attribute *hstate_attrs[] = {
4011 	&nr_hugepages_attr.attr,
4012 	&nr_overcommit_hugepages_attr.attr,
4013 	&free_hugepages_attr.attr,
4014 	&resv_hugepages_attr.attr,
4015 	&surplus_hugepages_attr.attr,
4016 #ifdef CONFIG_NUMA
4017 	&nr_hugepages_mempolicy_attr.attr,
4018 #endif
4019 	NULL,
4020 };
4021 
4022 static const struct attribute_group hstate_attr_group = {
4023 	.attrs = hstate_attrs,
4024 };
4025 
4026 static struct attribute *hstate_demote_attrs[] = {
4027 	&demote_size_attr.attr,
4028 	&demote_attr.attr,
4029 	NULL,
4030 };
4031 
4032 static const struct attribute_group hstate_demote_attr_group = {
4033 	.attrs = hstate_demote_attrs,
4034 };
4035 
4036 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4037 				    struct kobject **hstate_kobjs,
4038 				    const struct attribute_group *hstate_attr_group)
4039 {
4040 	int retval;
4041 	int hi = hstate_index(h);
4042 
4043 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4044 	if (!hstate_kobjs[hi])
4045 		return -ENOMEM;
4046 
4047 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4048 	if (retval) {
4049 		kobject_put(hstate_kobjs[hi]);
4050 		hstate_kobjs[hi] = NULL;
4051 		return retval;
4052 	}
4053 
4054 	if (h->demote_order) {
4055 		retval = sysfs_create_group(hstate_kobjs[hi],
4056 					    &hstate_demote_attr_group);
4057 		if (retval) {
4058 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4059 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4060 			kobject_put(hstate_kobjs[hi]);
4061 			hstate_kobjs[hi] = NULL;
4062 			return retval;
4063 		}
4064 	}
4065 
4066 	return 0;
4067 }
4068 
4069 #ifdef CONFIG_NUMA
4070 static bool hugetlb_sysfs_initialized __ro_after_init;
4071 
4072 /*
4073  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4074  * with node devices in node_devices[] using a parallel array.  The array
4075  * index of a node device or _hstate == node id.
4076  * This is here to avoid any static dependency of the node device driver, in
4077  * the base kernel, on the hugetlb module.
4078  */
4079 struct node_hstate {
4080 	struct kobject		*hugepages_kobj;
4081 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4082 };
4083 static struct node_hstate node_hstates[MAX_NUMNODES];
4084 
4085 /*
4086  * A subset of global hstate attributes for node devices
4087  */
4088 static struct attribute *per_node_hstate_attrs[] = {
4089 	&nr_hugepages_attr.attr,
4090 	&free_hugepages_attr.attr,
4091 	&surplus_hugepages_attr.attr,
4092 	NULL,
4093 };
4094 
4095 static const struct attribute_group per_node_hstate_attr_group = {
4096 	.attrs = per_node_hstate_attrs,
4097 };
4098 
4099 /*
4100  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4101  * Returns node id via non-NULL nidp.
4102  */
4103 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4104 {
4105 	int nid;
4106 
4107 	for (nid = 0; nid < nr_node_ids; nid++) {
4108 		struct node_hstate *nhs = &node_hstates[nid];
4109 		int i;
4110 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4111 			if (nhs->hstate_kobjs[i] == kobj) {
4112 				if (nidp)
4113 					*nidp = nid;
4114 				return &hstates[i];
4115 			}
4116 	}
4117 
4118 	BUG();
4119 	return NULL;
4120 }
4121 
4122 /*
4123  * Unregister hstate attributes from a single node device.
4124  * No-op if no hstate attributes attached.
4125  */
4126 void hugetlb_unregister_node(struct node *node)
4127 {
4128 	struct hstate *h;
4129 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4130 
4131 	if (!nhs->hugepages_kobj)
4132 		return;		/* no hstate attributes */
4133 
4134 	for_each_hstate(h) {
4135 		int idx = hstate_index(h);
4136 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4137 
4138 		if (!hstate_kobj)
4139 			continue;
4140 		if (h->demote_order)
4141 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4142 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4143 		kobject_put(hstate_kobj);
4144 		nhs->hstate_kobjs[idx] = NULL;
4145 	}
4146 
4147 	kobject_put(nhs->hugepages_kobj);
4148 	nhs->hugepages_kobj = NULL;
4149 }
4150 
4151 
4152 /*
4153  * Register hstate attributes for a single node device.
4154  * No-op if attributes already registered.
4155  */
4156 void hugetlb_register_node(struct node *node)
4157 {
4158 	struct hstate *h;
4159 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4160 	int err;
4161 
4162 	if (!hugetlb_sysfs_initialized)
4163 		return;
4164 
4165 	if (nhs->hugepages_kobj)
4166 		return;		/* already allocated */
4167 
4168 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4169 							&node->dev.kobj);
4170 	if (!nhs->hugepages_kobj)
4171 		return;
4172 
4173 	for_each_hstate(h) {
4174 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4175 						nhs->hstate_kobjs,
4176 						&per_node_hstate_attr_group);
4177 		if (err) {
4178 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4179 				h->name, node->dev.id);
4180 			hugetlb_unregister_node(node);
4181 			break;
4182 		}
4183 	}
4184 }
4185 
4186 /*
4187  * hugetlb init time:  register hstate attributes for all registered node
4188  * devices of nodes that have memory.  All on-line nodes should have
4189  * registered their associated device by this time.
4190  */
4191 static void __init hugetlb_register_all_nodes(void)
4192 {
4193 	int nid;
4194 
4195 	for_each_online_node(nid)
4196 		hugetlb_register_node(node_devices[nid]);
4197 }
4198 #else	/* !CONFIG_NUMA */
4199 
4200 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4201 {
4202 	BUG();
4203 	if (nidp)
4204 		*nidp = -1;
4205 	return NULL;
4206 }
4207 
4208 static void hugetlb_register_all_nodes(void) { }
4209 
4210 #endif
4211 
4212 #ifdef CONFIG_CMA
4213 static void __init hugetlb_cma_check(void);
4214 #else
4215 static inline __init void hugetlb_cma_check(void)
4216 {
4217 }
4218 #endif
4219 
4220 static void __init hugetlb_sysfs_init(void)
4221 {
4222 	struct hstate *h;
4223 	int err;
4224 
4225 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4226 	if (!hugepages_kobj)
4227 		return;
4228 
4229 	for_each_hstate(h) {
4230 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4231 					 hstate_kobjs, &hstate_attr_group);
4232 		if (err)
4233 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4234 	}
4235 
4236 #ifdef CONFIG_NUMA
4237 	hugetlb_sysfs_initialized = true;
4238 #endif
4239 	hugetlb_register_all_nodes();
4240 }
4241 
4242 #ifdef CONFIG_SYSCTL
4243 static void hugetlb_sysctl_init(void);
4244 #else
4245 static inline void hugetlb_sysctl_init(void) { }
4246 #endif
4247 
4248 static int __init hugetlb_init(void)
4249 {
4250 	int i;
4251 
4252 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4253 			__NR_HPAGEFLAGS);
4254 
4255 	if (!hugepages_supported()) {
4256 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4257 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4258 		return 0;
4259 	}
4260 
4261 	/*
4262 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4263 	 * architectures depend on setup being done here.
4264 	 */
4265 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4266 	if (!parsed_default_hugepagesz) {
4267 		/*
4268 		 * If we did not parse a default huge page size, set
4269 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4270 		 * number of huge pages for this default size was implicitly
4271 		 * specified, set that here as well.
4272 		 * Note that the implicit setting will overwrite an explicit
4273 		 * setting.  A warning will be printed in this case.
4274 		 */
4275 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4276 		if (default_hstate_max_huge_pages) {
4277 			if (default_hstate.max_huge_pages) {
4278 				char buf[32];
4279 
4280 				string_get_size(huge_page_size(&default_hstate),
4281 					1, STRING_UNITS_2, buf, 32);
4282 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4283 					default_hstate.max_huge_pages, buf);
4284 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4285 					default_hstate_max_huge_pages);
4286 			}
4287 			default_hstate.max_huge_pages =
4288 				default_hstate_max_huge_pages;
4289 
4290 			for_each_online_node(i)
4291 				default_hstate.max_huge_pages_node[i] =
4292 					default_hugepages_in_node[i];
4293 		}
4294 	}
4295 
4296 	hugetlb_cma_check();
4297 	hugetlb_init_hstates();
4298 	gather_bootmem_prealloc();
4299 	report_hugepages();
4300 
4301 	hugetlb_sysfs_init();
4302 	hugetlb_cgroup_file_init();
4303 	hugetlb_sysctl_init();
4304 
4305 #ifdef CONFIG_SMP
4306 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4307 #else
4308 	num_fault_mutexes = 1;
4309 #endif
4310 	hugetlb_fault_mutex_table =
4311 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4312 			      GFP_KERNEL);
4313 	BUG_ON(!hugetlb_fault_mutex_table);
4314 
4315 	for (i = 0; i < num_fault_mutexes; i++)
4316 		mutex_init(&hugetlb_fault_mutex_table[i]);
4317 	return 0;
4318 }
4319 subsys_initcall(hugetlb_init);
4320 
4321 /* Overwritten by architectures with more huge page sizes */
4322 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4323 {
4324 	return size == HPAGE_SIZE;
4325 }
4326 
4327 void __init hugetlb_add_hstate(unsigned int order)
4328 {
4329 	struct hstate *h;
4330 	unsigned long i;
4331 
4332 	if (size_to_hstate(PAGE_SIZE << order)) {
4333 		return;
4334 	}
4335 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4336 	BUG_ON(order == 0);
4337 	h = &hstates[hugetlb_max_hstate++];
4338 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4339 	h->order = order;
4340 	h->mask = ~(huge_page_size(h) - 1);
4341 	for (i = 0; i < MAX_NUMNODES; ++i)
4342 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4343 	INIT_LIST_HEAD(&h->hugepage_activelist);
4344 	h->next_nid_to_alloc = first_memory_node;
4345 	h->next_nid_to_free = first_memory_node;
4346 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4347 					huge_page_size(h)/SZ_1K);
4348 
4349 	parsed_hstate = h;
4350 }
4351 
4352 bool __init __weak hugetlb_node_alloc_supported(void)
4353 {
4354 	return true;
4355 }
4356 
4357 static void __init hugepages_clear_pages_in_node(void)
4358 {
4359 	if (!hugetlb_max_hstate) {
4360 		default_hstate_max_huge_pages = 0;
4361 		memset(default_hugepages_in_node, 0,
4362 			sizeof(default_hugepages_in_node));
4363 	} else {
4364 		parsed_hstate->max_huge_pages = 0;
4365 		memset(parsed_hstate->max_huge_pages_node, 0,
4366 			sizeof(parsed_hstate->max_huge_pages_node));
4367 	}
4368 }
4369 
4370 /*
4371  * hugepages command line processing
4372  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4373  * specification.  If not, ignore the hugepages value.  hugepages can also
4374  * be the first huge page command line  option in which case it implicitly
4375  * specifies the number of huge pages for the default size.
4376  */
4377 static int __init hugepages_setup(char *s)
4378 {
4379 	unsigned long *mhp;
4380 	static unsigned long *last_mhp;
4381 	int node = NUMA_NO_NODE;
4382 	int count;
4383 	unsigned long tmp;
4384 	char *p = s;
4385 
4386 	if (!parsed_valid_hugepagesz) {
4387 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4388 		parsed_valid_hugepagesz = true;
4389 		return 1;
4390 	}
4391 
4392 	/*
4393 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4394 	 * yet, so this hugepages= parameter goes to the "default hstate".
4395 	 * Otherwise, it goes with the previously parsed hugepagesz or
4396 	 * default_hugepagesz.
4397 	 */
4398 	else if (!hugetlb_max_hstate)
4399 		mhp = &default_hstate_max_huge_pages;
4400 	else
4401 		mhp = &parsed_hstate->max_huge_pages;
4402 
4403 	if (mhp == last_mhp) {
4404 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4405 		return 1;
4406 	}
4407 
4408 	while (*p) {
4409 		count = 0;
4410 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4411 			goto invalid;
4412 		/* Parameter is node format */
4413 		if (p[count] == ':') {
4414 			if (!hugetlb_node_alloc_supported()) {
4415 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4416 				return 1;
4417 			}
4418 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4419 				goto invalid;
4420 			node = array_index_nospec(tmp, MAX_NUMNODES);
4421 			p += count + 1;
4422 			/* Parse hugepages */
4423 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4424 				goto invalid;
4425 			if (!hugetlb_max_hstate)
4426 				default_hugepages_in_node[node] = tmp;
4427 			else
4428 				parsed_hstate->max_huge_pages_node[node] = tmp;
4429 			*mhp += tmp;
4430 			/* Go to parse next node*/
4431 			if (p[count] == ',')
4432 				p += count + 1;
4433 			else
4434 				break;
4435 		} else {
4436 			if (p != s)
4437 				goto invalid;
4438 			*mhp = tmp;
4439 			break;
4440 		}
4441 	}
4442 
4443 	/*
4444 	 * Global state is always initialized later in hugetlb_init.
4445 	 * But we need to allocate gigantic hstates here early to still
4446 	 * use the bootmem allocator.
4447 	 */
4448 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4449 		hugetlb_hstate_alloc_pages(parsed_hstate);
4450 
4451 	last_mhp = mhp;
4452 
4453 	return 1;
4454 
4455 invalid:
4456 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4457 	hugepages_clear_pages_in_node();
4458 	return 1;
4459 }
4460 __setup("hugepages=", hugepages_setup);
4461 
4462 /*
4463  * hugepagesz command line processing
4464  * A specific huge page size can only be specified once with hugepagesz.
4465  * hugepagesz is followed by hugepages on the command line.  The global
4466  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4467  * hugepagesz argument was valid.
4468  */
4469 static int __init hugepagesz_setup(char *s)
4470 {
4471 	unsigned long size;
4472 	struct hstate *h;
4473 
4474 	parsed_valid_hugepagesz = false;
4475 	size = (unsigned long)memparse(s, NULL);
4476 
4477 	if (!arch_hugetlb_valid_size(size)) {
4478 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4479 		return 1;
4480 	}
4481 
4482 	h = size_to_hstate(size);
4483 	if (h) {
4484 		/*
4485 		 * hstate for this size already exists.  This is normally
4486 		 * an error, but is allowed if the existing hstate is the
4487 		 * default hstate.  More specifically, it is only allowed if
4488 		 * the number of huge pages for the default hstate was not
4489 		 * previously specified.
4490 		 */
4491 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4492 		    default_hstate.max_huge_pages) {
4493 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4494 			return 1;
4495 		}
4496 
4497 		/*
4498 		 * No need to call hugetlb_add_hstate() as hstate already
4499 		 * exists.  But, do set parsed_hstate so that a following
4500 		 * hugepages= parameter will be applied to this hstate.
4501 		 */
4502 		parsed_hstate = h;
4503 		parsed_valid_hugepagesz = true;
4504 		return 1;
4505 	}
4506 
4507 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4508 	parsed_valid_hugepagesz = true;
4509 	return 1;
4510 }
4511 __setup("hugepagesz=", hugepagesz_setup);
4512 
4513 /*
4514  * default_hugepagesz command line input
4515  * Only one instance of default_hugepagesz allowed on command line.
4516  */
4517 static int __init default_hugepagesz_setup(char *s)
4518 {
4519 	unsigned long size;
4520 	int i;
4521 
4522 	parsed_valid_hugepagesz = false;
4523 	if (parsed_default_hugepagesz) {
4524 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4525 		return 1;
4526 	}
4527 
4528 	size = (unsigned long)memparse(s, NULL);
4529 
4530 	if (!arch_hugetlb_valid_size(size)) {
4531 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4532 		return 1;
4533 	}
4534 
4535 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4536 	parsed_valid_hugepagesz = true;
4537 	parsed_default_hugepagesz = true;
4538 	default_hstate_idx = hstate_index(size_to_hstate(size));
4539 
4540 	/*
4541 	 * The number of default huge pages (for this size) could have been
4542 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4543 	 * then default_hstate_max_huge_pages is set.  If the default huge
4544 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4545 	 * allocated here from bootmem allocator.
4546 	 */
4547 	if (default_hstate_max_huge_pages) {
4548 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4549 		for_each_online_node(i)
4550 			default_hstate.max_huge_pages_node[i] =
4551 				default_hugepages_in_node[i];
4552 		if (hstate_is_gigantic(&default_hstate))
4553 			hugetlb_hstate_alloc_pages(&default_hstate);
4554 		default_hstate_max_huge_pages = 0;
4555 	}
4556 
4557 	return 1;
4558 }
4559 __setup("default_hugepagesz=", default_hugepagesz_setup);
4560 
4561 static unsigned int allowed_mems_nr(struct hstate *h)
4562 {
4563 	int node;
4564 	unsigned int nr = 0;
4565 	nodemask_t *mbind_nodemask;
4566 	unsigned int *array = h->free_huge_pages_node;
4567 	gfp_t gfp_mask = htlb_alloc_mask(h);
4568 
4569 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4570 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4571 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4572 			nr += array[node];
4573 	}
4574 
4575 	return nr;
4576 }
4577 
4578 #ifdef CONFIG_SYSCTL
4579 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4580 					  void *buffer, size_t *length,
4581 					  loff_t *ppos, unsigned long *out)
4582 {
4583 	struct ctl_table dup_table;
4584 
4585 	/*
4586 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4587 	 * can duplicate the @table and alter the duplicate of it.
4588 	 */
4589 	dup_table = *table;
4590 	dup_table.data = out;
4591 
4592 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4593 }
4594 
4595 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4596 			 struct ctl_table *table, int write,
4597 			 void *buffer, size_t *length, loff_t *ppos)
4598 {
4599 	struct hstate *h = &default_hstate;
4600 	unsigned long tmp = h->max_huge_pages;
4601 	int ret;
4602 
4603 	if (!hugepages_supported())
4604 		return -EOPNOTSUPP;
4605 
4606 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4607 					     &tmp);
4608 	if (ret)
4609 		goto out;
4610 
4611 	if (write)
4612 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4613 						  NUMA_NO_NODE, tmp, *length);
4614 out:
4615 	return ret;
4616 }
4617 
4618 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4619 			  void *buffer, size_t *length, loff_t *ppos)
4620 {
4621 
4622 	return hugetlb_sysctl_handler_common(false, table, write,
4623 							buffer, length, ppos);
4624 }
4625 
4626 #ifdef CONFIG_NUMA
4627 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4628 			  void *buffer, size_t *length, loff_t *ppos)
4629 {
4630 	return hugetlb_sysctl_handler_common(true, table, write,
4631 							buffer, length, ppos);
4632 }
4633 #endif /* CONFIG_NUMA */
4634 
4635 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4636 		void *buffer, size_t *length, loff_t *ppos)
4637 {
4638 	struct hstate *h = &default_hstate;
4639 	unsigned long tmp;
4640 	int ret;
4641 
4642 	if (!hugepages_supported())
4643 		return -EOPNOTSUPP;
4644 
4645 	tmp = h->nr_overcommit_huge_pages;
4646 
4647 	if (write && hstate_is_gigantic(h))
4648 		return -EINVAL;
4649 
4650 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4651 					     &tmp);
4652 	if (ret)
4653 		goto out;
4654 
4655 	if (write) {
4656 		spin_lock_irq(&hugetlb_lock);
4657 		h->nr_overcommit_huge_pages = tmp;
4658 		spin_unlock_irq(&hugetlb_lock);
4659 	}
4660 out:
4661 	return ret;
4662 }
4663 
4664 static struct ctl_table hugetlb_table[] = {
4665 	{
4666 		.procname	= "nr_hugepages",
4667 		.data		= NULL,
4668 		.maxlen		= sizeof(unsigned long),
4669 		.mode		= 0644,
4670 		.proc_handler	= hugetlb_sysctl_handler,
4671 	},
4672 #ifdef CONFIG_NUMA
4673 	{
4674 		.procname       = "nr_hugepages_mempolicy",
4675 		.data           = NULL,
4676 		.maxlen         = sizeof(unsigned long),
4677 		.mode           = 0644,
4678 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4679 	},
4680 #endif
4681 	{
4682 		.procname	= "hugetlb_shm_group",
4683 		.data		= &sysctl_hugetlb_shm_group,
4684 		.maxlen		= sizeof(gid_t),
4685 		.mode		= 0644,
4686 		.proc_handler	= proc_dointvec,
4687 	},
4688 	{
4689 		.procname	= "nr_overcommit_hugepages",
4690 		.data		= NULL,
4691 		.maxlen		= sizeof(unsigned long),
4692 		.mode		= 0644,
4693 		.proc_handler	= hugetlb_overcommit_handler,
4694 	},
4695 	{ }
4696 };
4697 
4698 static void hugetlb_sysctl_init(void)
4699 {
4700 	register_sysctl_init("vm", hugetlb_table);
4701 }
4702 #endif /* CONFIG_SYSCTL */
4703 
4704 void hugetlb_report_meminfo(struct seq_file *m)
4705 {
4706 	struct hstate *h;
4707 	unsigned long total = 0;
4708 
4709 	if (!hugepages_supported())
4710 		return;
4711 
4712 	for_each_hstate(h) {
4713 		unsigned long count = h->nr_huge_pages;
4714 
4715 		total += huge_page_size(h) * count;
4716 
4717 		if (h == &default_hstate)
4718 			seq_printf(m,
4719 				   "HugePages_Total:   %5lu\n"
4720 				   "HugePages_Free:    %5lu\n"
4721 				   "HugePages_Rsvd:    %5lu\n"
4722 				   "HugePages_Surp:    %5lu\n"
4723 				   "Hugepagesize:   %8lu kB\n",
4724 				   count,
4725 				   h->free_huge_pages,
4726 				   h->resv_huge_pages,
4727 				   h->surplus_huge_pages,
4728 				   huge_page_size(h) / SZ_1K);
4729 	}
4730 
4731 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4732 }
4733 
4734 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4735 {
4736 	struct hstate *h = &default_hstate;
4737 
4738 	if (!hugepages_supported())
4739 		return 0;
4740 
4741 	return sysfs_emit_at(buf, len,
4742 			     "Node %d HugePages_Total: %5u\n"
4743 			     "Node %d HugePages_Free:  %5u\n"
4744 			     "Node %d HugePages_Surp:  %5u\n",
4745 			     nid, h->nr_huge_pages_node[nid],
4746 			     nid, h->free_huge_pages_node[nid],
4747 			     nid, h->surplus_huge_pages_node[nid]);
4748 }
4749 
4750 void hugetlb_show_meminfo_node(int nid)
4751 {
4752 	struct hstate *h;
4753 
4754 	if (!hugepages_supported())
4755 		return;
4756 
4757 	for_each_hstate(h)
4758 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4759 			nid,
4760 			h->nr_huge_pages_node[nid],
4761 			h->free_huge_pages_node[nid],
4762 			h->surplus_huge_pages_node[nid],
4763 			huge_page_size(h) / SZ_1K);
4764 }
4765 
4766 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4767 {
4768 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4769 		   K(atomic_long_read(&mm->hugetlb_usage)));
4770 }
4771 
4772 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4773 unsigned long hugetlb_total_pages(void)
4774 {
4775 	struct hstate *h;
4776 	unsigned long nr_total_pages = 0;
4777 
4778 	for_each_hstate(h)
4779 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4780 	return nr_total_pages;
4781 }
4782 
4783 static int hugetlb_acct_memory(struct hstate *h, long delta)
4784 {
4785 	int ret = -ENOMEM;
4786 
4787 	if (!delta)
4788 		return 0;
4789 
4790 	spin_lock_irq(&hugetlb_lock);
4791 	/*
4792 	 * When cpuset is configured, it breaks the strict hugetlb page
4793 	 * reservation as the accounting is done on a global variable. Such
4794 	 * reservation is completely rubbish in the presence of cpuset because
4795 	 * the reservation is not checked against page availability for the
4796 	 * current cpuset. Application can still potentially OOM'ed by kernel
4797 	 * with lack of free htlb page in cpuset that the task is in.
4798 	 * Attempt to enforce strict accounting with cpuset is almost
4799 	 * impossible (or too ugly) because cpuset is too fluid that
4800 	 * task or memory node can be dynamically moved between cpusets.
4801 	 *
4802 	 * The change of semantics for shared hugetlb mapping with cpuset is
4803 	 * undesirable. However, in order to preserve some of the semantics,
4804 	 * we fall back to check against current free page availability as
4805 	 * a best attempt and hopefully to minimize the impact of changing
4806 	 * semantics that cpuset has.
4807 	 *
4808 	 * Apart from cpuset, we also have memory policy mechanism that
4809 	 * also determines from which node the kernel will allocate memory
4810 	 * in a NUMA system. So similar to cpuset, we also should consider
4811 	 * the memory policy of the current task. Similar to the description
4812 	 * above.
4813 	 */
4814 	if (delta > 0) {
4815 		if (gather_surplus_pages(h, delta) < 0)
4816 			goto out;
4817 
4818 		if (delta > allowed_mems_nr(h)) {
4819 			return_unused_surplus_pages(h, delta);
4820 			goto out;
4821 		}
4822 	}
4823 
4824 	ret = 0;
4825 	if (delta < 0)
4826 		return_unused_surplus_pages(h, (unsigned long) -delta);
4827 
4828 out:
4829 	spin_unlock_irq(&hugetlb_lock);
4830 	return ret;
4831 }
4832 
4833 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4834 {
4835 	struct resv_map *resv = vma_resv_map(vma);
4836 
4837 	/*
4838 	 * HPAGE_RESV_OWNER indicates a private mapping.
4839 	 * This new VMA should share its siblings reservation map if present.
4840 	 * The VMA will only ever have a valid reservation map pointer where
4841 	 * it is being copied for another still existing VMA.  As that VMA
4842 	 * has a reference to the reservation map it cannot disappear until
4843 	 * after this open call completes.  It is therefore safe to take a
4844 	 * new reference here without additional locking.
4845 	 */
4846 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4847 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4848 		kref_get(&resv->refs);
4849 	}
4850 
4851 	/*
4852 	 * vma_lock structure for sharable mappings is vma specific.
4853 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4854 	 * new structure.  Before clearing, make sure vma_lock is not
4855 	 * for this vma.
4856 	 */
4857 	if (vma->vm_flags & VM_MAYSHARE) {
4858 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4859 
4860 		if (vma_lock) {
4861 			if (vma_lock->vma != vma) {
4862 				vma->vm_private_data = NULL;
4863 				hugetlb_vma_lock_alloc(vma);
4864 			} else
4865 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4866 		} else
4867 			hugetlb_vma_lock_alloc(vma);
4868 	}
4869 }
4870 
4871 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4872 {
4873 	struct hstate *h = hstate_vma(vma);
4874 	struct resv_map *resv;
4875 	struct hugepage_subpool *spool = subpool_vma(vma);
4876 	unsigned long reserve, start, end;
4877 	long gbl_reserve;
4878 
4879 	hugetlb_vma_lock_free(vma);
4880 
4881 	resv = vma_resv_map(vma);
4882 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4883 		return;
4884 
4885 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4886 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4887 
4888 	reserve = (end - start) - region_count(resv, start, end);
4889 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4890 	if (reserve) {
4891 		/*
4892 		 * Decrement reserve counts.  The global reserve count may be
4893 		 * adjusted if the subpool has a minimum size.
4894 		 */
4895 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4896 		hugetlb_acct_memory(h, -gbl_reserve);
4897 	}
4898 
4899 	kref_put(&resv->refs, resv_map_release);
4900 }
4901 
4902 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4903 {
4904 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4905 		return -EINVAL;
4906 
4907 	/*
4908 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4909 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4910 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4911 	 */
4912 	if (addr & ~PUD_MASK) {
4913 		/*
4914 		 * hugetlb_vm_op_split is called right before we attempt to
4915 		 * split the VMA. We will need to unshare PMDs in the old and
4916 		 * new VMAs, so let's unshare before we split.
4917 		 */
4918 		unsigned long floor = addr & PUD_MASK;
4919 		unsigned long ceil = floor + PUD_SIZE;
4920 
4921 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4922 			hugetlb_unshare_pmds(vma, floor, ceil);
4923 	}
4924 
4925 	return 0;
4926 }
4927 
4928 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4929 {
4930 	return huge_page_size(hstate_vma(vma));
4931 }
4932 
4933 /*
4934  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4935  * handle_mm_fault() to try to instantiate regular-sized pages in the
4936  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4937  * this far.
4938  */
4939 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4940 {
4941 	BUG();
4942 	return 0;
4943 }
4944 
4945 /*
4946  * When a new function is introduced to vm_operations_struct and added
4947  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4948  * This is because under System V memory model, mappings created via
4949  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4950  * their original vm_ops are overwritten with shm_vm_ops.
4951  */
4952 const struct vm_operations_struct hugetlb_vm_ops = {
4953 	.fault = hugetlb_vm_op_fault,
4954 	.open = hugetlb_vm_op_open,
4955 	.close = hugetlb_vm_op_close,
4956 	.may_split = hugetlb_vm_op_split,
4957 	.pagesize = hugetlb_vm_op_pagesize,
4958 };
4959 
4960 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4961 				int writable)
4962 {
4963 	pte_t entry;
4964 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4965 
4966 	if (writable) {
4967 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4968 					 vma->vm_page_prot)));
4969 	} else {
4970 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4971 					   vma->vm_page_prot));
4972 	}
4973 	entry = pte_mkyoung(entry);
4974 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4975 
4976 	return entry;
4977 }
4978 
4979 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4980 				   unsigned long address, pte_t *ptep)
4981 {
4982 	pte_t entry;
4983 
4984 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4985 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4986 		update_mmu_cache(vma, address, ptep);
4987 }
4988 
4989 bool is_hugetlb_entry_migration(pte_t pte)
4990 {
4991 	swp_entry_t swp;
4992 
4993 	if (huge_pte_none(pte) || pte_present(pte))
4994 		return false;
4995 	swp = pte_to_swp_entry(pte);
4996 	if (is_migration_entry(swp))
4997 		return true;
4998 	else
4999 		return false;
5000 }
5001 
5002 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5003 {
5004 	swp_entry_t swp;
5005 
5006 	if (huge_pte_none(pte) || pte_present(pte))
5007 		return false;
5008 	swp = pte_to_swp_entry(pte);
5009 	if (is_hwpoison_entry(swp))
5010 		return true;
5011 	else
5012 		return false;
5013 }
5014 
5015 static void
5016 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5017 		      struct folio *new_folio, pte_t old, unsigned long sz)
5018 {
5019 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5020 
5021 	__folio_mark_uptodate(new_folio);
5022 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5023 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5024 		newpte = huge_pte_mkuffd_wp(newpte);
5025 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5026 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5027 	folio_set_hugetlb_migratable(new_folio);
5028 }
5029 
5030 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5031 			    struct vm_area_struct *dst_vma,
5032 			    struct vm_area_struct *src_vma)
5033 {
5034 	pte_t *src_pte, *dst_pte, entry;
5035 	struct folio *pte_folio;
5036 	unsigned long addr;
5037 	bool cow = is_cow_mapping(src_vma->vm_flags);
5038 	struct hstate *h = hstate_vma(src_vma);
5039 	unsigned long sz = huge_page_size(h);
5040 	unsigned long npages = pages_per_huge_page(h);
5041 	struct mmu_notifier_range range;
5042 	unsigned long last_addr_mask;
5043 	int ret = 0;
5044 
5045 	if (cow) {
5046 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5047 					src_vma->vm_start,
5048 					src_vma->vm_end);
5049 		mmu_notifier_invalidate_range_start(&range);
5050 		vma_assert_write_locked(src_vma);
5051 		raw_write_seqcount_begin(&src->write_protect_seq);
5052 	} else {
5053 		/*
5054 		 * For shared mappings the vma lock must be held before
5055 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5056 		 * returned ptep could go away if part of a shared pmd and
5057 		 * another thread calls huge_pmd_unshare.
5058 		 */
5059 		hugetlb_vma_lock_read(src_vma);
5060 	}
5061 
5062 	last_addr_mask = hugetlb_mask_last_page(h);
5063 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5064 		spinlock_t *src_ptl, *dst_ptl;
5065 		src_pte = hugetlb_walk(src_vma, addr, sz);
5066 		if (!src_pte) {
5067 			addr |= last_addr_mask;
5068 			continue;
5069 		}
5070 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5071 		if (!dst_pte) {
5072 			ret = -ENOMEM;
5073 			break;
5074 		}
5075 
5076 		/*
5077 		 * If the pagetables are shared don't copy or take references.
5078 		 *
5079 		 * dst_pte == src_pte is the common case of src/dest sharing.
5080 		 * However, src could have 'unshared' and dst shares with
5081 		 * another vma. So page_count of ptep page is checked instead
5082 		 * to reliably determine whether pte is shared.
5083 		 */
5084 		if (page_count(virt_to_page(dst_pte)) > 1) {
5085 			addr |= last_addr_mask;
5086 			continue;
5087 		}
5088 
5089 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5090 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5091 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5092 		entry = huge_ptep_get(src_pte);
5093 again:
5094 		if (huge_pte_none(entry)) {
5095 			/*
5096 			 * Skip if src entry none.
5097 			 */
5098 			;
5099 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5100 			if (!userfaultfd_wp(dst_vma))
5101 				entry = huge_pte_clear_uffd_wp(entry);
5102 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5103 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5104 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5105 			bool uffd_wp = pte_swp_uffd_wp(entry);
5106 
5107 			if (!is_readable_migration_entry(swp_entry) && cow) {
5108 				/*
5109 				 * COW mappings require pages in both
5110 				 * parent and child to be set to read.
5111 				 */
5112 				swp_entry = make_readable_migration_entry(
5113 							swp_offset(swp_entry));
5114 				entry = swp_entry_to_pte(swp_entry);
5115 				if (userfaultfd_wp(src_vma) && uffd_wp)
5116 					entry = pte_swp_mkuffd_wp(entry);
5117 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5118 			}
5119 			if (!userfaultfd_wp(dst_vma))
5120 				entry = huge_pte_clear_uffd_wp(entry);
5121 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5122 		} else if (unlikely(is_pte_marker(entry))) {
5123 			pte_marker marker = copy_pte_marker(
5124 				pte_to_swp_entry(entry), dst_vma);
5125 
5126 			if (marker)
5127 				set_huge_pte_at(dst, addr, dst_pte,
5128 						make_pte_marker(marker), sz);
5129 		} else {
5130 			entry = huge_ptep_get(src_pte);
5131 			pte_folio = page_folio(pte_page(entry));
5132 			folio_get(pte_folio);
5133 
5134 			/*
5135 			 * Failing to duplicate the anon rmap is a rare case
5136 			 * where we see pinned hugetlb pages while they're
5137 			 * prone to COW. We need to do the COW earlier during
5138 			 * fork.
5139 			 *
5140 			 * When pre-allocating the page or copying data, we
5141 			 * need to be without the pgtable locks since we could
5142 			 * sleep during the process.
5143 			 */
5144 			if (!folio_test_anon(pte_folio)) {
5145 				page_dup_file_rmap(&pte_folio->page, true);
5146 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5147 							  true, src_vma)) {
5148 				pte_t src_pte_old = entry;
5149 				struct folio *new_folio;
5150 
5151 				spin_unlock(src_ptl);
5152 				spin_unlock(dst_ptl);
5153 				/* Do not use reserve as it's private owned */
5154 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5155 				if (IS_ERR(new_folio)) {
5156 					folio_put(pte_folio);
5157 					ret = PTR_ERR(new_folio);
5158 					break;
5159 				}
5160 				ret = copy_user_large_folio(new_folio,
5161 							    pte_folio,
5162 							    addr, dst_vma);
5163 				folio_put(pte_folio);
5164 				if (ret) {
5165 					folio_put(new_folio);
5166 					break;
5167 				}
5168 
5169 				/* Install the new hugetlb folio if src pte stable */
5170 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5171 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5172 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5173 				entry = huge_ptep_get(src_pte);
5174 				if (!pte_same(src_pte_old, entry)) {
5175 					restore_reserve_on_error(h, dst_vma, addr,
5176 								new_folio);
5177 					folio_put(new_folio);
5178 					/* huge_ptep of dst_pte won't change as in child */
5179 					goto again;
5180 				}
5181 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5182 						      new_folio, src_pte_old, sz);
5183 				spin_unlock(src_ptl);
5184 				spin_unlock(dst_ptl);
5185 				continue;
5186 			}
5187 
5188 			if (cow) {
5189 				/*
5190 				 * No need to notify as we are downgrading page
5191 				 * table protection not changing it to point
5192 				 * to a new page.
5193 				 *
5194 				 * See Documentation/mm/mmu_notifier.rst
5195 				 */
5196 				huge_ptep_set_wrprotect(src, addr, src_pte);
5197 				entry = huge_pte_wrprotect(entry);
5198 			}
5199 
5200 			if (!userfaultfd_wp(dst_vma))
5201 				entry = huge_pte_clear_uffd_wp(entry);
5202 
5203 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5204 			hugetlb_count_add(npages, dst);
5205 		}
5206 		spin_unlock(src_ptl);
5207 		spin_unlock(dst_ptl);
5208 	}
5209 
5210 	if (cow) {
5211 		raw_write_seqcount_end(&src->write_protect_seq);
5212 		mmu_notifier_invalidate_range_end(&range);
5213 	} else {
5214 		hugetlb_vma_unlock_read(src_vma);
5215 	}
5216 
5217 	return ret;
5218 }
5219 
5220 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5221 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5222 			  unsigned long sz)
5223 {
5224 	struct hstate *h = hstate_vma(vma);
5225 	struct mm_struct *mm = vma->vm_mm;
5226 	spinlock_t *src_ptl, *dst_ptl;
5227 	pte_t pte;
5228 
5229 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5230 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5231 
5232 	/*
5233 	 * We don't have to worry about the ordering of src and dst ptlocks
5234 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5235 	 */
5236 	if (src_ptl != dst_ptl)
5237 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5238 
5239 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5240 	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5241 
5242 	if (src_ptl != dst_ptl)
5243 		spin_unlock(src_ptl);
5244 	spin_unlock(dst_ptl);
5245 }
5246 
5247 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5248 			     struct vm_area_struct *new_vma,
5249 			     unsigned long old_addr, unsigned long new_addr,
5250 			     unsigned long len)
5251 {
5252 	struct hstate *h = hstate_vma(vma);
5253 	struct address_space *mapping = vma->vm_file->f_mapping;
5254 	unsigned long sz = huge_page_size(h);
5255 	struct mm_struct *mm = vma->vm_mm;
5256 	unsigned long old_end = old_addr + len;
5257 	unsigned long last_addr_mask;
5258 	pte_t *src_pte, *dst_pte;
5259 	struct mmu_notifier_range range;
5260 	bool shared_pmd = false;
5261 
5262 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5263 				old_end);
5264 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5265 	/*
5266 	 * In case of shared PMDs, we should cover the maximum possible
5267 	 * range.
5268 	 */
5269 	flush_cache_range(vma, range.start, range.end);
5270 
5271 	mmu_notifier_invalidate_range_start(&range);
5272 	last_addr_mask = hugetlb_mask_last_page(h);
5273 	/* Prevent race with file truncation */
5274 	hugetlb_vma_lock_write(vma);
5275 	i_mmap_lock_write(mapping);
5276 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5277 		src_pte = hugetlb_walk(vma, old_addr, sz);
5278 		if (!src_pte) {
5279 			old_addr |= last_addr_mask;
5280 			new_addr |= last_addr_mask;
5281 			continue;
5282 		}
5283 		if (huge_pte_none(huge_ptep_get(src_pte)))
5284 			continue;
5285 
5286 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5287 			shared_pmd = true;
5288 			old_addr |= last_addr_mask;
5289 			new_addr |= last_addr_mask;
5290 			continue;
5291 		}
5292 
5293 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5294 		if (!dst_pte)
5295 			break;
5296 
5297 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5298 	}
5299 
5300 	if (shared_pmd)
5301 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5302 	else
5303 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5304 	mmu_notifier_invalidate_range_end(&range);
5305 	i_mmap_unlock_write(mapping);
5306 	hugetlb_vma_unlock_write(vma);
5307 
5308 	return len + old_addr - old_end;
5309 }
5310 
5311 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5312 			    unsigned long start, unsigned long end,
5313 			    struct page *ref_page, zap_flags_t zap_flags)
5314 {
5315 	struct mm_struct *mm = vma->vm_mm;
5316 	unsigned long address;
5317 	pte_t *ptep;
5318 	pte_t pte;
5319 	spinlock_t *ptl;
5320 	struct page *page;
5321 	struct hstate *h = hstate_vma(vma);
5322 	unsigned long sz = huge_page_size(h);
5323 	unsigned long last_addr_mask;
5324 	bool force_flush = false;
5325 
5326 	WARN_ON(!is_vm_hugetlb_page(vma));
5327 	BUG_ON(start & ~huge_page_mask(h));
5328 	BUG_ON(end & ~huge_page_mask(h));
5329 
5330 	/*
5331 	 * This is a hugetlb vma, all the pte entries should point
5332 	 * to huge page.
5333 	 */
5334 	tlb_change_page_size(tlb, sz);
5335 	tlb_start_vma(tlb, vma);
5336 
5337 	last_addr_mask = hugetlb_mask_last_page(h);
5338 	address = start;
5339 	for (; address < end; address += sz) {
5340 		ptep = hugetlb_walk(vma, address, sz);
5341 		if (!ptep) {
5342 			address |= last_addr_mask;
5343 			continue;
5344 		}
5345 
5346 		ptl = huge_pte_lock(h, mm, ptep);
5347 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5348 			spin_unlock(ptl);
5349 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5350 			force_flush = true;
5351 			address |= last_addr_mask;
5352 			continue;
5353 		}
5354 
5355 		pte = huge_ptep_get(ptep);
5356 		if (huge_pte_none(pte)) {
5357 			spin_unlock(ptl);
5358 			continue;
5359 		}
5360 
5361 		/*
5362 		 * Migrating hugepage or HWPoisoned hugepage is already
5363 		 * unmapped and its refcount is dropped, so just clear pte here.
5364 		 */
5365 		if (unlikely(!pte_present(pte))) {
5366 			/*
5367 			 * If the pte was wr-protected by uffd-wp in any of the
5368 			 * swap forms, meanwhile the caller does not want to
5369 			 * drop the uffd-wp bit in this zap, then replace the
5370 			 * pte with a marker.
5371 			 */
5372 			if (pte_swp_uffd_wp_any(pte) &&
5373 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5374 				set_huge_pte_at(mm, address, ptep,
5375 						make_pte_marker(PTE_MARKER_UFFD_WP),
5376 						sz);
5377 			else
5378 				huge_pte_clear(mm, address, ptep, sz);
5379 			spin_unlock(ptl);
5380 			continue;
5381 		}
5382 
5383 		page = pte_page(pte);
5384 		/*
5385 		 * If a reference page is supplied, it is because a specific
5386 		 * page is being unmapped, not a range. Ensure the page we
5387 		 * are about to unmap is the actual page of interest.
5388 		 */
5389 		if (ref_page) {
5390 			if (page != ref_page) {
5391 				spin_unlock(ptl);
5392 				continue;
5393 			}
5394 			/*
5395 			 * Mark the VMA as having unmapped its page so that
5396 			 * future faults in this VMA will fail rather than
5397 			 * looking like data was lost
5398 			 */
5399 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5400 		}
5401 
5402 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5403 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5404 		if (huge_pte_dirty(pte))
5405 			set_page_dirty(page);
5406 		/* Leave a uffd-wp pte marker if needed */
5407 		if (huge_pte_uffd_wp(pte) &&
5408 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5409 			set_huge_pte_at(mm, address, ptep,
5410 					make_pte_marker(PTE_MARKER_UFFD_WP),
5411 					sz);
5412 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5413 		page_remove_rmap(page, vma, true);
5414 
5415 		spin_unlock(ptl);
5416 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5417 		/*
5418 		 * Bail out after unmapping reference page if supplied
5419 		 */
5420 		if (ref_page)
5421 			break;
5422 	}
5423 	tlb_end_vma(tlb, vma);
5424 
5425 	/*
5426 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5427 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5428 	 * guaranteed that the last refernece would not be dropped. But we must
5429 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5430 	 * dropped and the last reference to the shared PMDs page might be
5431 	 * dropped as well.
5432 	 *
5433 	 * In theory we could defer the freeing of the PMD pages as well, but
5434 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5435 	 * detect sharing, so we cannot defer the release of the page either.
5436 	 * Instead, do flush now.
5437 	 */
5438 	if (force_flush)
5439 		tlb_flush_mmu_tlbonly(tlb);
5440 }
5441 
5442 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5443 			 unsigned long *start, unsigned long *end)
5444 {
5445 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5446 		return;
5447 
5448 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5449 	hugetlb_vma_lock_write(vma);
5450 	if (vma->vm_file)
5451 		i_mmap_lock_write(vma->vm_file->f_mapping);
5452 }
5453 
5454 void __hugetlb_zap_end(struct vm_area_struct *vma,
5455 		       struct zap_details *details)
5456 {
5457 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5458 
5459 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5460 		return;
5461 
5462 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5463 		/*
5464 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5465 		 * When the vma_lock is freed, this makes the vma ineligible
5466 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5467 		 * pmd sharing.  This is important as page tables for this
5468 		 * unmapped range will be asynchrously deleted.  If the page
5469 		 * tables are shared, there will be issues when accessed by
5470 		 * someone else.
5471 		 */
5472 		__hugetlb_vma_unlock_write_free(vma);
5473 	} else {
5474 		hugetlb_vma_unlock_write(vma);
5475 	}
5476 
5477 	if (vma->vm_file)
5478 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5479 }
5480 
5481 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5482 			  unsigned long end, struct page *ref_page,
5483 			  zap_flags_t zap_flags)
5484 {
5485 	struct mmu_notifier_range range;
5486 	struct mmu_gather tlb;
5487 
5488 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5489 				start, end);
5490 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5491 	mmu_notifier_invalidate_range_start(&range);
5492 	tlb_gather_mmu(&tlb, vma->vm_mm);
5493 
5494 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5495 
5496 	mmu_notifier_invalidate_range_end(&range);
5497 	tlb_finish_mmu(&tlb);
5498 }
5499 
5500 /*
5501  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5502  * mapping it owns the reserve page for. The intention is to unmap the page
5503  * from other VMAs and let the children be SIGKILLed if they are faulting the
5504  * same region.
5505  */
5506 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5507 			      struct page *page, unsigned long address)
5508 {
5509 	struct hstate *h = hstate_vma(vma);
5510 	struct vm_area_struct *iter_vma;
5511 	struct address_space *mapping;
5512 	pgoff_t pgoff;
5513 
5514 	/*
5515 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5516 	 * from page cache lookup which is in HPAGE_SIZE units.
5517 	 */
5518 	address = address & huge_page_mask(h);
5519 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5520 			vma->vm_pgoff;
5521 	mapping = vma->vm_file->f_mapping;
5522 
5523 	/*
5524 	 * Take the mapping lock for the duration of the table walk. As
5525 	 * this mapping should be shared between all the VMAs,
5526 	 * __unmap_hugepage_range() is called as the lock is already held
5527 	 */
5528 	i_mmap_lock_write(mapping);
5529 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5530 		/* Do not unmap the current VMA */
5531 		if (iter_vma == vma)
5532 			continue;
5533 
5534 		/*
5535 		 * Shared VMAs have their own reserves and do not affect
5536 		 * MAP_PRIVATE accounting but it is possible that a shared
5537 		 * VMA is using the same page so check and skip such VMAs.
5538 		 */
5539 		if (iter_vma->vm_flags & VM_MAYSHARE)
5540 			continue;
5541 
5542 		/*
5543 		 * Unmap the page from other VMAs without their own reserves.
5544 		 * They get marked to be SIGKILLed if they fault in these
5545 		 * areas. This is because a future no-page fault on this VMA
5546 		 * could insert a zeroed page instead of the data existing
5547 		 * from the time of fork. This would look like data corruption
5548 		 */
5549 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5550 			unmap_hugepage_range(iter_vma, address,
5551 					     address + huge_page_size(h), page, 0);
5552 	}
5553 	i_mmap_unlock_write(mapping);
5554 }
5555 
5556 /*
5557  * hugetlb_wp() should be called with page lock of the original hugepage held.
5558  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5559  * cannot race with other handlers or page migration.
5560  * Keep the pte_same checks anyway to make transition from the mutex easier.
5561  */
5562 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5563 		       unsigned long address, pte_t *ptep, unsigned int flags,
5564 		       struct folio *pagecache_folio, spinlock_t *ptl)
5565 {
5566 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5567 	pte_t pte = huge_ptep_get(ptep);
5568 	struct hstate *h = hstate_vma(vma);
5569 	struct folio *old_folio;
5570 	struct folio *new_folio;
5571 	int outside_reserve = 0;
5572 	vm_fault_t ret = 0;
5573 	unsigned long haddr = address & huge_page_mask(h);
5574 	struct mmu_notifier_range range;
5575 
5576 	/*
5577 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5578 	 * handled when the uffd-wp protection is removed.
5579 	 *
5580 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5581 	 * can trigger this, because hugetlb_fault() will always resolve
5582 	 * uffd-wp bit first.
5583 	 */
5584 	if (!unshare && huge_pte_uffd_wp(pte))
5585 		return 0;
5586 
5587 	/*
5588 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5589 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5590 	 */
5591 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5592 		return VM_FAULT_SIGSEGV;
5593 
5594 	/* Let's take out MAP_SHARED mappings first. */
5595 	if (vma->vm_flags & VM_MAYSHARE) {
5596 		set_huge_ptep_writable(vma, haddr, ptep);
5597 		return 0;
5598 	}
5599 
5600 	old_folio = page_folio(pte_page(pte));
5601 
5602 	delayacct_wpcopy_start();
5603 
5604 retry_avoidcopy:
5605 	/*
5606 	 * If no-one else is actually using this page, we're the exclusive
5607 	 * owner and can reuse this page.
5608 	 */
5609 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5610 		if (!PageAnonExclusive(&old_folio->page))
5611 			page_move_anon_rmap(&old_folio->page, vma);
5612 		if (likely(!unshare))
5613 			set_huge_ptep_writable(vma, haddr, ptep);
5614 
5615 		delayacct_wpcopy_end();
5616 		return 0;
5617 	}
5618 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5619 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5620 
5621 	/*
5622 	 * If the process that created a MAP_PRIVATE mapping is about to
5623 	 * perform a COW due to a shared page count, attempt to satisfy
5624 	 * the allocation without using the existing reserves. The pagecache
5625 	 * page is used to determine if the reserve at this address was
5626 	 * consumed or not. If reserves were used, a partial faulted mapping
5627 	 * at the time of fork() could consume its reserves on COW instead
5628 	 * of the full address range.
5629 	 */
5630 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5631 			old_folio != pagecache_folio)
5632 		outside_reserve = 1;
5633 
5634 	folio_get(old_folio);
5635 
5636 	/*
5637 	 * Drop page table lock as buddy allocator may be called. It will
5638 	 * be acquired again before returning to the caller, as expected.
5639 	 */
5640 	spin_unlock(ptl);
5641 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5642 
5643 	if (IS_ERR(new_folio)) {
5644 		/*
5645 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5646 		 * it is due to references held by a child and an insufficient
5647 		 * huge page pool. To guarantee the original mappers
5648 		 * reliability, unmap the page from child processes. The child
5649 		 * may get SIGKILLed if it later faults.
5650 		 */
5651 		if (outside_reserve) {
5652 			struct address_space *mapping = vma->vm_file->f_mapping;
5653 			pgoff_t idx;
5654 			u32 hash;
5655 
5656 			folio_put(old_folio);
5657 			/*
5658 			 * Drop hugetlb_fault_mutex and vma_lock before
5659 			 * unmapping.  unmapping needs to hold vma_lock
5660 			 * in write mode.  Dropping vma_lock in read mode
5661 			 * here is OK as COW mappings do not interact with
5662 			 * PMD sharing.
5663 			 *
5664 			 * Reacquire both after unmap operation.
5665 			 */
5666 			idx = vma_hugecache_offset(h, vma, haddr);
5667 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5668 			hugetlb_vma_unlock_read(vma);
5669 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5670 
5671 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5672 
5673 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5674 			hugetlb_vma_lock_read(vma);
5675 			spin_lock(ptl);
5676 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5677 			if (likely(ptep &&
5678 				   pte_same(huge_ptep_get(ptep), pte)))
5679 				goto retry_avoidcopy;
5680 			/*
5681 			 * race occurs while re-acquiring page table
5682 			 * lock, and our job is done.
5683 			 */
5684 			delayacct_wpcopy_end();
5685 			return 0;
5686 		}
5687 
5688 		ret = vmf_error(PTR_ERR(new_folio));
5689 		goto out_release_old;
5690 	}
5691 
5692 	/*
5693 	 * When the original hugepage is shared one, it does not have
5694 	 * anon_vma prepared.
5695 	 */
5696 	if (unlikely(anon_vma_prepare(vma))) {
5697 		ret = VM_FAULT_OOM;
5698 		goto out_release_all;
5699 	}
5700 
5701 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5702 		ret = VM_FAULT_HWPOISON_LARGE;
5703 		goto out_release_all;
5704 	}
5705 	__folio_mark_uptodate(new_folio);
5706 
5707 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5708 				haddr + huge_page_size(h));
5709 	mmu_notifier_invalidate_range_start(&range);
5710 
5711 	/*
5712 	 * Retake the page table lock to check for racing updates
5713 	 * before the page tables are altered
5714 	 */
5715 	spin_lock(ptl);
5716 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5717 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5718 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5719 
5720 		/* Break COW or unshare */
5721 		huge_ptep_clear_flush(vma, haddr, ptep);
5722 		page_remove_rmap(&old_folio->page, vma, true);
5723 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5724 		if (huge_pte_uffd_wp(pte))
5725 			newpte = huge_pte_mkuffd_wp(newpte);
5726 		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5727 		folio_set_hugetlb_migratable(new_folio);
5728 		/* Make the old page be freed below */
5729 		new_folio = old_folio;
5730 	}
5731 	spin_unlock(ptl);
5732 	mmu_notifier_invalidate_range_end(&range);
5733 out_release_all:
5734 	/*
5735 	 * No restore in case of successful pagetable update (Break COW or
5736 	 * unshare)
5737 	 */
5738 	if (new_folio != old_folio)
5739 		restore_reserve_on_error(h, vma, haddr, new_folio);
5740 	folio_put(new_folio);
5741 out_release_old:
5742 	folio_put(old_folio);
5743 
5744 	spin_lock(ptl); /* Caller expects lock to be held */
5745 
5746 	delayacct_wpcopy_end();
5747 	return ret;
5748 }
5749 
5750 /*
5751  * Return whether there is a pagecache page to back given address within VMA.
5752  */
5753 static bool hugetlbfs_pagecache_present(struct hstate *h,
5754 			struct vm_area_struct *vma, unsigned long address)
5755 {
5756 	struct address_space *mapping = vma->vm_file->f_mapping;
5757 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5758 	struct folio *folio;
5759 
5760 	folio = filemap_get_folio(mapping, idx);
5761 	if (IS_ERR(folio))
5762 		return false;
5763 	folio_put(folio);
5764 	return true;
5765 }
5766 
5767 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5768 			   pgoff_t idx)
5769 {
5770 	struct inode *inode = mapping->host;
5771 	struct hstate *h = hstate_inode(inode);
5772 	int err;
5773 
5774 	__folio_set_locked(folio);
5775 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5776 
5777 	if (unlikely(err)) {
5778 		__folio_clear_locked(folio);
5779 		return err;
5780 	}
5781 	folio_clear_hugetlb_restore_reserve(folio);
5782 
5783 	/*
5784 	 * mark folio dirty so that it will not be removed from cache/file
5785 	 * by non-hugetlbfs specific code paths.
5786 	 */
5787 	folio_mark_dirty(folio);
5788 
5789 	spin_lock(&inode->i_lock);
5790 	inode->i_blocks += blocks_per_huge_page(h);
5791 	spin_unlock(&inode->i_lock);
5792 	return 0;
5793 }
5794 
5795 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5796 						  struct address_space *mapping,
5797 						  pgoff_t idx,
5798 						  unsigned int flags,
5799 						  unsigned long haddr,
5800 						  unsigned long addr,
5801 						  unsigned long reason)
5802 {
5803 	u32 hash;
5804 	struct vm_fault vmf = {
5805 		.vma = vma,
5806 		.address = haddr,
5807 		.real_address = addr,
5808 		.flags = flags,
5809 
5810 		/*
5811 		 * Hard to debug if it ends up being
5812 		 * used by a callee that assumes
5813 		 * something about the other
5814 		 * uninitialized fields... same as in
5815 		 * memory.c
5816 		 */
5817 	};
5818 
5819 	/*
5820 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5821 	 * userfault. Also mmap_lock could be dropped due to handling
5822 	 * userfault, any vma operation should be careful from here.
5823 	 */
5824 	hugetlb_vma_unlock_read(vma);
5825 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5826 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5827 	return handle_userfault(&vmf, reason);
5828 }
5829 
5830 /*
5831  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5832  * false if pte changed or is changing.
5833  */
5834 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5835 			       pte_t *ptep, pte_t old_pte)
5836 {
5837 	spinlock_t *ptl;
5838 	bool same;
5839 
5840 	ptl = huge_pte_lock(h, mm, ptep);
5841 	same = pte_same(huge_ptep_get(ptep), old_pte);
5842 	spin_unlock(ptl);
5843 
5844 	return same;
5845 }
5846 
5847 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5848 			struct vm_area_struct *vma,
5849 			struct address_space *mapping, pgoff_t idx,
5850 			unsigned long address, pte_t *ptep,
5851 			pte_t old_pte, unsigned int flags)
5852 {
5853 	struct hstate *h = hstate_vma(vma);
5854 	vm_fault_t ret = VM_FAULT_SIGBUS;
5855 	int anon_rmap = 0;
5856 	unsigned long size;
5857 	struct folio *folio;
5858 	pte_t new_pte;
5859 	spinlock_t *ptl;
5860 	unsigned long haddr = address & huge_page_mask(h);
5861 	bool new_folio, new_pagecache_folio = false;
5862 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5863 
5864 	/*
5865 	 * Currently, we are forced to kill the process in the event the
5866 	 * original mapper has unmapped pages from the child due to a failed
5867 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5868 	 * be obvious.
5869 	 */
5870 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5871 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5872 			   current->pid);
5873 		goto out;
5874 	}
5875 
5876 	/*
5877 	 * Use page lock to guard against racing truncation
5878 	 * before we get page_table_lock.
5879 	 */
5880 	new_folio = false;
5881 	folio = filemap_lock_folio(mapping, idx);
5882 	if (IS_ERR(folio)) {
5883 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5884 		if (idx >= size)
5885 			goto out;
5886 		/* Check for page in userfault range */
5887 		if (userfaultfd_missing(vma)) {
5888 			/*
5889 			 * Since hugetlb_no_page() was examining pte
5890 			 * without pgtable lock, we need to re-test under
5891 			 * lock because the pte may not be stable and could
5892 			 * have changed from under us.  Try to detect
5893 			 * either changed or during-changing ptes and retry
5894 			 * properly when needed.
5895 			 *
5896 			 * Note that userfaultfd is actually fine with
5897 			 * false positives (e.g. caused by pte changed),
5898 			 * but not wrong logical events (e.g. caused by
5899 			 * reading a pte during changing).  The latter can
5900 			 * confuse the userspace, so the strictness is very
5901 			 * much preferred.  E.g., MISSING event should
5902 			 * never happen on the page after UFFDIO_COPY has
5903 			 * correctly installed the page and returned.
5904 			 */
5905 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5906 				ret = 0;
5907 				goto out;
5908 			}
5909 
5910 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5911 							haddr, address,
5912 							VM_UFFD_MISSING);
5913 		}
5914 
5915 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5916 		if (IS_ERR(folio)) {
5917 			/*
5918 			 * Returning error will result in faulting task being
5919 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5920 			 * tasks from racing to fault in the same page which
5921 			 * could result in false unable to allocate errors.
5922 			 * Page migration does not take the fault mutex, but
5923 			 * does a clear then write of pte's under page table
5924 			 * lock.  Page fault code could race with migration,
5925 			 * notice the clear pte and try to allocate a page
5926 			 * here.  Before returning error, get ptl and make
5927 			 * sure there really is no pte entry.
5928 			 */
5929 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5930 				ret = vmf_error(PTR_ERR(folio));
5931 			else
5932 				ret = 0;
5933 			goto out;
5934 		}
5935 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5936 		__folio_mark_uptodate(folio);
5937 		new_folio = true;
5938 
5939 		if (vma->vm_flags & VM_MAYSHARE) {
5940 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5941 			if (err) {
5942 				/*
5943 				 * err can't be -EEXIST which implies someone
5944 				 * else consumed the reservation since hugetlb
5945 				 * fault mutex is held when add a hugetlb page
5946 				 * to the page cache. So it's safe to call
5947 				 * restore_reserve_on_error() here.
5948 				 */
5949 				restore_reserve_on_error(h, vma, haddr, folio);
5950 				folio_put(folio);
5951 				goto out;
5952 			}
5953 			new_pagecache_folio = true;
5954 		} else {
5955 			folio_lock(folio);
5956 			if (unlikely(anon_vma_prepare(vma))) {
5957 				ret = VM_FAULT_OOM;
5958 				goto backout_unlocked;
5959 			}
5960 			anon_rmap = 1;
5961 		}
5962 	} else {
5963 		/*
5964 		 * If memory error occurs between mmap() and fault, some process
5965 		 * don't have hwpoisoned swap entry for errored virtual address.
5966 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5967 		 */
5968 		if (unlikely(folio_test_hwpoison(folio))) {
5969 			ret = VM_FAULT_HWPOISON_LARGE |
5970 				VM_FAULT_SET_HINDEX(hstate_index(h));
5971 			goto backout_unlocked;
5972 		}
5973 
5974 		/* Check for page in userfault range. */
5975 		if (userfaultfd_minor(vma)) {
5976 			folio_unlock(folio);
5977 			folio_put(folio);
5978 			/* See comment in userfaultfd_missing() block above */
5979 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5980 				ret = 0;
5981 				goto out;
5982 			}
5983 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5984 							haddr, address,
5985 							VM_UFFD_MINOR);
5986 		}
5987 	}
5988 
5989 	/*
5990 	 * If we are going to COW a private mapping later, we examine the
5991 	 * pending reservations for this page now. This will ensure that
5992 	 * any allocations necessary to record that reservation occur outside
5993 	 * the spinlock.
5994 	 */
5995 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5996 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5997 			ret = VM_FAULT_OOM;
5998 			goto backout_unlocked;
5999 		}
6000 		/* Just decrements count, does not deallocate */
6001 		vma_end_reservation(h, vma, haddr);
6002 	}
6003 
6004 	ptl = huge_pte_lock(h, mm, ptep);
6005 	ret = 0;
6006 	/* If pte changed from under us, retry */
6007 	if (!pte_same(huge_ptep_get(ptep), old_pte))
6008 		goto backout;
6009 
6010 	if (anon_rmap)
6011 		hugepage_add_new_anon_rmap(folio, vma, haddr);
6012 	else
6013 		page_dup_file_rmap(&folio->page, true);
6014 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6015 				&& (vma->vm_flags & VM_SHARED)));
6016 	/*
6017 	 * If this pte was previously wr-protected, keep it wr-protected even
6018 	 * if populated.
6019 	 */
6020 	if (unlikely(pte_marker_uffd_wp(old_pte)))
6021 		new_pte = huge_pte_mkuffd_wp(new_pte);
6022 	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6023 
6024 	hugetlb_count_add(pages_per_huge_page(h), mm);
6025 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6026 		/* Optimization, do the COW without a second fault */
6027 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6028 	}
6029 
6030 	spin_unlock(ptl);
6031 
6032 	/*
6033 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6034 	 * found in the pagecache may not have hugetlb_migratable if they have
6035 	 * been isolated for migration.
6036 	 */
6037 	if (new_folio)
6038 		folio_set_hugetlb_migratable(folio);
6039 
6040 	folio_unlock(folio);
6041 out:
6042 	hugetlb_vma_unlock_read(vma);
6043 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6044 	return ret;
6045 
6046 backout:
6047 	spin_unlock(ptl);
6048 backout_unlocked:
6049 	if (new_folio && !new_pagecache_folio)
6050 		restore_reserve_on_error(h, vma, haddr, folio);
6051 
6052 	folio_unlock(folio);
6053 	folio_put(folio);
6054 	goto out;
6055 }
6056 
6057 #ifdef CONFIG_SMP
6058 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6059 {
6060 	unsigned long key[2];
6061 	u32 hash;
6062 
6063 	key[0] = (unsigned long) mapping;
6064 	key[1] = idx;
6065 
6066 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6067 
6068 	return hash & (num_fault_mutexes - 1);
6069 }
6070 #else
6071 /*
6072  * For uniprocessor systems we always use a single mutex, so just
6073  * return 0 and avoid the hashing overhead.
6074  */
6075 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6076 {
6077 	return 0;
6078 }
6079 #endif
6080 
6081 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6082 			unsigned long address, unsigned int flags)
6083 {
6084 	pte_t *ptep, entry;
6085 	spinlock_t *ptl;
6086 	vm_fault_t ret;
6087 	u32 hash;
6088 	pgoff_t idx;
6089 	struct folio *folio = NULL;
6090 	struct folio *pagecache_folio = NULL;
6091 	struct hstate *h = hstate_vma(vma);
6092 	struct address_space *mapping;
6093 	int need_wait_lock = 0;
6094 	unsigned long haddr = address & huge_page_mask(h);
6095 
6096 	/* TODO: Handle faults under the VMA lock */
6097 	if (flags & FAULT_FLAG_VMA_LOCK) {
6098 		vma_end_read(vma);
6099 		return VM_FAULT_RETRY;
6100 	}
6101 
6102 	/*
6103 	 * Serialize hugepage allocation and instantiation, so that we don't
6104 	 * get spurious allocation failures if two CPUs race to instantiate
6105 	 * the same page in the page cache.
6106 	 */
6107 	mapping = vma->vm_file->f_mapping;
6108 	idx = vma_hugecache_offset(h, vma, haddr);
6109 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6110 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6111 
6112 	/*
6113 	 * Acquire vma lock before calling huge_pte_alloc and hold
6114 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6115 	 * being called elsewhere and making the ptep no longer valid.
6116 	 */
6117 	hugetlb_vma_lock_read(vma);
6118 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6119 	if (!ptep) {
6120 		hugetlb_vma_unlock_read(vma);
6121 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6122 		return VM_FAULT_OOM;
6123 	}
6124 
6125 	entry = huge_ptep_get(ptep);
6126 	if (huge_pte_none_mostly(entry)) {
6127 		if (is_pte_marker(entry)) {
6128 			pte_marker marker =
6129 				pte_marker_get(pte_to_swp_entry(entry));
6130 
6131 			if (marker & PTE_MARKER_POISONED) {
6132 				ret = VM_FAULT_HWPOISON_LARGE;
6133 				goto out_mutex;
6134 			}
6135 		}
6136 
6137 		/*
6138 		 * Other PTE markers should be handled the same way as none PTE.
6139 		 *
6140 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6141 		 * mutex internally, which make us return immediately.
6142 		 */
6143 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6144 				      entry, flags);
6145 	}
6146 
6147 	ret = 0;
6148 
6149 	/*
6150 	 * entry could be a migration/hwpoison entry at this point, so this
6151 	 * check prevents the kernel from going below assuming that we have
6152 	 * an active hugepage in pagecache. This goto expects the 2nd page
6153 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6154 	 * properly handle it.
6155 	 */
6156 	if (!pte_present(entry)) {
6157 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6158 			/*
6159 			 * Release the hugetlb fault lock now, but retain
6160 			 * the vma lock, because it is needed to guard the
6161 			 * huge_pte_lockptr() later in
6162 			 * migration_entry_wait_huge(). The vma lock will
6163 			 * be released there.
6164 			 */
6165 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6166 			migration_entry_wait_huge(vma, ptep);
6167 			return 0;
6168 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6169 			ret = VM_FAULT_HWPOISON_LARGE |
6170 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6171 		goto out_mutex;
6172 	}
6173 
6174 	/*
6175 	 * If we are going to COW/unshare the mapping later, we examine the
6176 	 * pending reservations for this page now. This will ensure that any
6177 	 * allocations necessary to record that reservation occur outside the
6178 	 * spinlock. Also lookup the pagecache page now as it is used to
6179 	 * determine if a reservation has been consumed.
6180 	 */
6181 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6182 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6183 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6184 			ret = VM_FAULT_OOM;
6185 			goto out_mutex;
6186 		}
6187 		/* Just decrements count, does not deallocate */
6188 		vma_end_reservation(h, vma, haddr);
6189 
6190 		pagecache_folio = filemap_lock_folio(mapping, idx);
6191 		if (IS_ERR(pagecache_folio))
6192 			pagecache_folio = NULL;
6193 	}
6194 
6195 	ptl = huge_pte_lock(h, mm, ptep);
6196 
6197 	/* Check for a racing update before calling hugetlb_wp() */
6198 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6199 		goto out_ptl;
6200 
6201 	/* Handle userfault-wp first, before trying to lock more pages */
6202 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6203 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6204 		struct vm_fault vmf = {
6205 			.vma = vma,
6206 			.address = haddr,
6207 			.real_address = address,
6208 			.flags = flags,
6209 		};
6210 
6211 		spin_unlock(ptl);
6212 		if (pagecache_folio) {
6213 			folio_unlock(pagecache_folio);
6214 			folio_put(pagecache_folio);
6215 		}
6216 		hugetlb_vma_unlock_read(vma);
6217 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6218 		return handle_userfault(&vmf, VM_UFFD_WP);
6219 	}
6220 
6221 	/*
6222 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6223 	 * pagecache_folio, so here we need take the former one
6224 	 * when folio != pagecache_folio or !pagecache_folio.
6225 	 */
6226 	folio = page_folio(pte_page(entry));
6227 	if (folio != pagecache_folio)
6228 		if (!folio_trylock(folio)) {
6229 			need_wait_lock = 1;
6230 			goto out_ptl;
6231 		}
6232 
6233 	folio_get(folio);
6234 
6235 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6236 		if (!huge_pte_write(entry)) {
6237 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6238 					 pagecache_folio, ptl);
6239 			goto out_put_page;
6240 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6241 			entry = huge_pte_mkdirty(entry);
6242 		}
6243 	}
6244 	entry = pte_mkyoung(entry);
6245 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6246 						flags & FAULT_FLAG_WRITE))
6247 		update_mmu_cache(vma, haddr, ptep);
6248 out_put_page:
6249 	if (folio != pagecache_folio)
6250 		folio_unlock(folio);
6251 	folio_put(folio);
6252 out_ptl:
6253 	spin_unlock(ptl);
6254 
6255 	if (pagecache_folio) {
6256 		folio_unlock(pagecache_folio);
6257 		folio_put(pagecache_folio);
6258 	}
6259 out_mutex:
6260 	hugetlb_vma_unlock_read(vma);
6261 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6262 	/*
6263 	 * Generally it's safe to hold refcount during waiting page lock. But
6264 	 * here we just wait to defer the next page fault to avoid busy loop and
6265 	 * the page is not used after unlocked before returning from the current
6266 	 * page fault. So we are safe from accessing freed page, even if we wait
6267 	 * here without taking refcount.
6268 	 */
6269 	if (need_wait_lock)
6270 		folio_wait_locked(folio);
6271 	return ret;
6272 }
6273 
6274 #ifdef CONFIG_USERFAULTFD
6275 /*
6276  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6277  * with modifications for hugetlb pages.
6278  */
6279 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6280 			     struct vm_area_struct *dst_vma,
6281 			     unsigned long dst_addr,
6282 			     unsigned long src_addr,
6283 			     uffd_flags_t flags,
6284 			     struct folio **foliop)
6285 {
6286 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6287 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6288 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6289 	struct hstate *h = hstate_vma(dst_vma);
6290 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6291 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6292 	unsigned long size;
6293 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6294 	pte_t _dst_pte;
6295 	spinlock_t *ptl;
6296 	int ret = -ENOMEM;
6297 	struct folio *folio;
6298 	int writable;
6299 	bool folio_in_pagecache = false;
6300 
6301 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6302 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6303 
6304 		/* Don't overwrite any existing PTEs (even markers) */
6305 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6306 			spin_unlock(ptl);
6307 			return -EEXIST;
6308 		}
6309 
6310 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6311 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6312 				huge_page_size(h));
6313 
6314 		/* No need to invalidate - it was non-present before */
6315 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6316 
6317 		spin_unlock(ptl);
6318 		return 0;
6319 	}
6320 
6321 	if (is_continue) {
6322 		ret = -EFAULT;
6323 		folio = filemap_lock_folio(mapping, idx);
6324 		if (IS_ERR(folio))
6325 			goto out;
6326 		folio_in_pagecache = true;
6327 	} else if (!*foliop) {
6328 		/* If a folio already exists, then it's UFFDIO_COPY for
6329 		 * a non-missing case. Return -EEXIST.
6330 		 */
6331 		if (vm_shared &&
6332 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6333 			ret = -EEXIST;
6334 			goto out;
6335 		}
6336 
6337 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6338 		if (IS_ERR(folio)) {
6339 			ret = -ENOMEM;
6340 			goto out;
6341 		}
6342 
6343 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6344 					   false);
6345 
6346 		/* fallback to copy_from_user outside mmap_lock */
6347 		if (unlikely(ret)) {
6348 			ret = -ENOENT;
6349 			/* Free the allocated folio which may have
6350 			 * consumed a reservation.
6351 			 */
6352 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6353 			folio_put(folio);
6354 
6355 			/* Allocate a temporary folio to hold the copied
6356 			 * contents.
6357 			 */
6358 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6359 			if (!folio) {
6360 				ret = -ENOMEM;
6361 				goto out;
6362 			}
6363 			*foliop = folio;
6364 			/* Set the outparam foliop and return to the caller to
6365 			 * copy the contents outside the lock. Don't free the
6366 			 * folio.
6367 			 */
6368 			goto out;
6369 		}
6370 	} else {
6371 		if (vm_shared &&
6372 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6373 			folio_put(*foliop);
6374 			ret = -EEXIST;
6375 			*foliop = NULL;
6376 			goto out;
6377 		}
6378 
6379 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6380 		if (IS_ERR(folio)) {
6381 			folio_put(*foliop);
6382 			ret = -ENOMEM;
6383 			*foliop = NULL;
6384 			goto out;
6385 		}
6386 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6387 		folio_put(*foliop);
6388 		*foliop = NULL;
6389 		if (ret) {
6390 			folio_put(folio);
6391 			goto out;
6392 		}
6393 	}
6394 
6395 	/*
6396 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6397 	 * preceding stores to the page contents become visible before
6398 	 * the set_pte_at() write.
6399 	 */
6400 	__folio_mark_uptodate(folio);
6401 
6402 	/* Add shared, newly allocated pages to the page cache. */
6403 	if (vm_shared && !is_continue) {
6404 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6405 		ret = -EFAULT;
6406 		if (idx >= size)
6407 			goto out_release_nounlock;
6408 
6409 		/*
6410 		 * Serialization between remove_inode_hugepages() and
6411 		 * hugetlb_add_to_page_cache() below happens through the
6412 		 * hugetlb_fault_mutex_table that here must be hold by
6413 		 * the caller.
6414 		 */
6415 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6416 		if (ret)
6417 			goto out_release_nounlock;
6418 		folio_in_pagecache = true;
6419 	}
6420 
6421 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6422 
6423 	ret = -EIO;
6424 	if (folio_test_hwpoison(folio))
6425 		goto out_release_unlock;
6426 
6427 	/*
6428 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6429 	 * registered, we firstly wr-protect a none pte which has no page cache
6430 	 * page backing it, then access the page.
6431 	 */
6432 	ret = -EEXIST;
6433 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6434 		goto out_release_unlock;
6435 
6436 	if (folio_in_pagecache)
6437 		page_dup_file_rmap(&folio->page, true);
6438 	else
6439 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6440 
6441 	/*
6442 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6443 	 * with wp flag set, don't set pte write bit.
6444 	 */
6445 	if (wp_enabled || (is_continue && !vm_shared))
6446 		writable = 0;
6447 	else
6448 		writable = dst_vma->vm_flags & VM_WRITE;
6449 
6450 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6451 	/*
6452 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6453 	 * extremely important for hugetlbfs for now since swapping is not
6454 	 * supported, but we should still be clear in that this page cannot be
6455 	 * thrown away at will, even if write bit not set.
6456 	 */
6457 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6458 	_dst_pte = pte_mkyoung(_dst_pte);
6459 
6460 	if (wp_enabled)
6461 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6462 
6463 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6464 
6465 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6466 
6467 	/* No need to invalidate - it was non-present before */
6468 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6469 
6470 	spin_unlock(ptl);
6471 	if (!is_continue)
6472 		folio_set_hugetlb_migratable(folio);
6473 	if (vm_shared || is_continue)
6474 		folio_unlock(folio);
6475 	ret = 0;
6476 out:
6477 	return ret;
6478 out_release_unlock:
6479 	spin_unlock(ptl);
6480 	if (vm_shared || is_continue)
6481 		folio_unlock(folio);
6482 out_release_nounlock:
6483 	if (!folio_in_pagecache)
6484 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6485 	folio_put(folio);
6486 	goto out;
6487 }
6488 #endif /* CONFIG_USERFAULTFD */
6489 
6490 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6491 				      unsigned long address, unsigned int flags,
6492 				      unsigned int *page_mask)
6493 {
6494 	struct hstate *h = hstate_vma(vma);
6495 	struct mm_struct *mm = vma->vm_mm;
6496 	unsigned long haddr = address & huge_page_mask(h);
6497 	struct page *page = NULL;
6498 	spinlock_t *ptl;
6499 	pte_t *pte, entry;
6500 	int ret;
6501 
6502 	hugetlb_vma_lock_read(vma);
6503 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6504 	if (!pte)
6505 		goto out_unlock;
6506 
6507 	ptl = huge_pte_lock(h, mm, pte);
6508 	entry = huge_ptep_get(pte);
6509 	if (pte_present(entry)) {
6510 		page = pte_page(entry);
6511 
6512 		if (!huge_pte_write(entry)) {
6513 			if (flags & FOLL_WRITE) {
6514 				page = NULL;
6515 				goto out;
6516 			}
6517 
6518 			if (gup_must_unshare(vma, flags, page)) {
6519 				/* Tell the caller to do unsharing */
6520 				page = ERR_PTR(-EMLINK);
6521 				goto out;
6522 			}
6523 		}
6524 
6525 		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6526 
6527 		/*
6528 		 * Note that page may be a sub-page, and with vmemmap
6529 		 * optimizations the page struct may be read only.
6530 		 * try_grab_page() will increase the ref count on the
6531 		 * head page, so this will be OK.
6532 		 *
6533 		 * try_grab_page() should always be able to get the page here,
6534 		 * because we hold the ptl lock and have verified pte_present().
6535 		 */
6536 		ret = try_grab_folio(page_folio(page), 1, flags);
6537 
6538 		if (WARN_ON_ONCE(ret)) {
6539 			page = ERR_PTR(ret);
6540 			goto out;
6541 		}
6542 
6543 		*page_mask = (1U << huge_page_order(h)) - 1;
6544 	}
6545 out:
6546 	spin_unlock(ptl);
6547 out_unlock:
6548 	hugetlb_vma_unlock_read(vma);
6549 
6550 	/*
6551 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6552 	 * don't try to allocate a new page but just skip it.
6553 	 */
6554 	if (!page && (flags & FOLL_DUMP) &&
6555 	    !hugetlbfs_pagecache_present(h, vma, address))
6556 		page = ERR_PTR(-EFAULT);
6557 
6558 	return page;
6559 }
6560 
6561 long hugetlb_change_protection(struct vm_area_struct *vma,
6562 		unsigned long address, unsigned long end,
6563 		pgprot_t newprot, unsigned long cp_flags)
6564 {
6565 	struct mm_struct *mm = vma->vm_mm;
6566 	unsigned long start = address;
6567 	pte_t *ptep;
6568 	pte_t pte;
6569 	struct hstate *h = hstate_vma(vma);
6570 	long pages = 0, psize = huge_page_size(h);
6571 	bool shared_pmd = false;
6572 	struct mmu_notifier_range range;
6573 	unsigned long last_addr_mask;
6574 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6575 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6576 
6577 	/*
6578 	 * In the case of shared PMDs, the area to flush could be beyond
6579 	 * start/end.  Set range.start/range.end to cover the maximum possible
6580 	 * range if PMD sharing is possible.
6581 	 */
6582 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6583 				0, mm, start, end);
6584 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6585 
6586 	BUG_ON(address >= end);
6587 	flush_cache_range(vma, range.start, range.end);
6588 
6589 	mmu_notifier_invalidate_range_start(&range);
6590 	hugetlb_vma_lock_write(vma);
6591 	i_mmap_lock_write(vma->vm_file->f_mapping);
6592 	last_addr_mask = hugetlb_mask_last_page(h);
6593 	for (; address < end; address += psize) {
6594 		spinlock_t *ptl;
6595 		ptep = hugetlb_walk(vma, address, psize);
6596 		if (!ptep) {
6597 			if (!uffd_wp) {
6598 				address |= last_addr_mask;
6599 				continue;
6600 			}
6601 			/*
6602 			 * Userfaultfd wr-protect requires pgtable
6603 			 * pre-allocations to install pte markers.
6604 			 */
6605 			ptep = huge_pte_alloc(mm, vma, address, psize);
6606 			if (!ptep) {
6607 				pages = -ENOMEM;
6608 				break;
6609 			}
6610 		}
6611 		ptl = huge_pte_lock(h, mm, ptep);
6612 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6613 			/*
6614 			 * When uffd-wp is enabled on the vma, unshare
6615 			 * shouldn't happen at all.  Warn about it if it
6616 			 * happened due to some reason.
6617 			 */
6618 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6619 			pages++;
6620 			spin_unlock(ptl);
6621 			shared_pmd = true;
6622 			address |= last_addr_mask;
6623 			continue;
6624 		}
6625 		pte = huge_ptep_get(ptep);
6626 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6627 			/* Nothing to do. */
6628 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6629 			swp_entry_t entry = pte_to_swp_entry(pte);
6630 			struct page *page = pfn_swap_entry_to_page(entry);
6631 			pte_t newpte = pte;
6632 
6633 			if (is_writable_migration_entry(entry)) {
6634 				if (PageAnon(page))
6635 					entry = make_readable_exclusive_migration_entry(
6636 								swp_offset(entry));
6637 				else
6638 					entry = make_readable_migration_entry(
6639 								swp_offset(entry));
6640 				newpte = swp_entry_to_pte(entry);
6641 				pages++;
6642 			}
6643 
6644 			if (uffd_wp)
6645 				newpte = pte_swp_mkuffd_wp(newpte);
6646 			else if (uffd_wp_resolve)
6647 				newpte = pte_swp_clear_uffd_wp(newpte);
6648 			if (!pte_same(pte, newpte))
6649 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6650 		} else if (unlikely(is_pte_marker(pte))) {
6651 			/*
6652 			 * Do nothing on a poison marker; page is
6653 			 * corrupted, permissons do not apply.  Here
6654 			 * pte_marker_uffd_wp()==true implies !poison
6655 			 * because they're mutual exclusive.
6656 			 */
6657 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6658 				/* Safe to modify directly (non-present->none). */
6659 				huge_pte_clear(mm, address, ptep, psize);
6660 		} else if (!huge_pte_none(pte)) {
6661 			pte_t old_pte;
6662 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6663 
6664 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6665 			pte = huge_pte_modify(old_pte, newprot);
6666 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6667 			if (uffd_wp)
6668 				pte = huge_pte_mkuffd_wp(pte);
6669 			else if (uffd_wp_resolve)
6670 				pte = huge_pte_clear_uffd_wp(pte);
6671 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6672 			pages++;
6673 		} else {
6674 			/* None pte */
6675 			if (unlikely(uffd_wp))
6676 				/* Safe to modify directly (none->non-present). */
6677 				set_huge_pte_at(mm, address, ptep,
6678 						make_pte_marker(PTE_MARKER_UFFD_WP),
6679 						psize);
6680 		}
6681 		spin_unlock(ptl);
6682 	}
6683 	/*
6684 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6685 	 * may have cleared our pud entry and done put_page on the page table:
6686 	 * once we release i_mmap_rwsem, another task can do the final put_page
6687 	 * and that page table be reused and filled with junk.  If we actually
6688 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6689 	 */
6690 	if (shared_pmd)
6691 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6692 	else
6693 		flush_hugetlb_tlb_range(vma, start, end);
6694 	/*
6695 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6696 	 * downgrading page table protection not changing it to point to a new
6697 	 * page.
6698 	 *
6699 	 * See Documentation/mm/mmu_notifier.rst
6700 	 */
6701 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6702 	hugetlb_vma_unlock_write(vma);
6703 	mmu_notifier_invalidate_range_end(&range);
6704 
6705 	return pages > 0 ? (pages << h->order) : pages;
6706 }
6707 
6708 /* Return true if reservation was successful, false otherwise.  */
6709 bool hugetlb_reserve_pages(struct inode *inode,
6710 					long from, long to,
6711 					struct vm_area_struct *vma,
6712 					vm_flags_t vm_flags)
6713 {
6714 	long chg = -1, add = -1;
6715 	struct hstate *h = hstate_inode(inode);
6716 	struct hugepage_subpool *spool = subpool_inode(inode);
6717 	struct resv_map *resv_map;
6718 	struct hugetlb_cgroup *h_cg = NULL;
6719 	long gbl_reserve, regions_needed = 0;
6720 
6721 	/* This should never happen */
6722 	if (from > to) {
6723 		VM_WARN(1, "%s called with a negative range\n", __func__);
6724 		return false;
6725 	}
6726 
6727 	/*
6728 	 * vma specific semaphore used for pmd sharing and fault/truncation
6729 	 * synchronization
6730 	 */
6731 	hugetlb_vma_lock_alloc(vma);
6732 
6733 	/*
6734 	 * Only apply hugepage reservation if asked. At fault time, an
6735 	 * attempt will be made for VM_NORESERVE to allocate a page
6736 	 * without using reserves
6737 	 */
6738 	if (vm_flags & VM_NORESERVE)
6739 		return true;
6740 
6741 	/*
6742 	 * Shared mappings base their reservation on the number of pages that
6743 	 * are already allocated on behalf of the file. Private mappings need
6744 	 * to reserve the full area even if read-only as mprotect() may be
6745 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6746 	 */
6747 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6748 		/*
6749 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6750 		 * called for inodes for which resv_maps were created (see
6751 		 * hugetlbfs_get_inode).
6752 		 */
6753 		resv_map = inode_resv_map(inode);
6754 
6755 		chg = region_chg(resv_map, from, to, &regions_needed);
6756 	} else {
6757 		/* Private mapping. */
6758 		resv_map = resv_map_alloc();
6759 		if (!resv_map)
6760 			goto out_err;
6761 
6762 		chg = to - from;
6763 
6764 		set_vma_resv_map(vma, resv_map);
6765 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6766 	}
6767 
6768 	if (chg < 0)
6769 		goto out_err;
6770 
6771 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6772 				chg * pages_per_huge_page(h), &h_cg) < 0)
6773 		goto out_err;
6774 
6775 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6776 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6777 		 * of the resv_map.
6778 		 */
6779 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6780 	}
6781 
6782 	/*
6783 	 * There must be enough pages in the subpool for the mapping. If
6784 	 * the subpool has a minimum size, there may be some global
6785 	 * reservations already in place (gbl_reserve).
6786 	 */
6787 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6788 	if (gbl_reserve < 0)
6789 		goto out_uncharge_cgroup;
6790 
6791 	/*
6792 	 * Check enough hugepages are available for the reservation.
6793 	 * Hand the pages back to the subpool if there are not
6794 	 */
6795 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6796 		goto out_put_pages;
6797 
6798 	/*
6799 	 * Account for the reservations made. Shared mappings record regions
6800 	 * that have reservations as they are shared by multiple VMAs.
6801 	 * When the last VMA disappears, the region map says how much
6802 	 * the reservation was and the page cache tells how much of
6803 	 * the reservation was consumed. Private mappings are per-VMA and
6804 	 * only the consumed reservations are tracked. When the VMA
6805 	 * disappears, the original reservation is the VMA size and the
6806 	 * consumed reservations are stored in the map. Hence, nothing
6807 	 * else has to be done for private mappings here
6808 	 */
6809 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6810 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6811 
6812 		if (unlikely(add < 0)) {
6813 			hugetlb_acct_memory(h, -gbl_reserve);
6814 			goto out_put_pages;
6815 		} else if (unlikely(chg > add)) {
6816 			/*
6817 			 * pages in this range were added to the reserve
6818 			 * map between region_chg and region_add.  This
6819 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6820 			 * the subpool and reserve counts modified above
6821 			 * based on the difference.
6822 			 */
6823 			long rsv_adjust;
6824 
6825 			/*
6826 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6827 			 * reference to h_cg->css. See comment below for detail.
6828 			 */
6829 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6830 				hstate_index(h),
6831 				(chg - add) * pages_per_huge_page(h), h_cg);
6832 
6833 			rsv_adjust = hugepage_subpool_put_pages(spool,
6834 								chg - add);
6835 			hugetlb_acct_memory(h, -rsv_adjust);
6836 		} else if (h_cg) {
6837 			/*
6838 			 * The file_regions will hold their own reference to
6839 			 * h_cg->css. So we should release the reference held
6840 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6841 			 * done.
6842 			 */
6843 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6844 		}
6845 	}
6846 	return true;
6847 
6848 out_put_pages:
6849 	/* put back original number of pages, chg */
6850 	(void)hugepage_subpool_put_pages(spool, chg);
6851 out_uncharge_cgroup:
6852 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6853 					    chg * pages_per_huge_page(h), h_cg);
6854 out_err:
6855 	hugetlb_vma_lock_free(vma);
6856 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6857 		/* Only call region_abort if the region_chg succeeded but the
6858 		 * region_add failed or didn't run.
6859 		 */
6860 		if (chg >= 0 && add < 0)
6861 			region_abort(resv_map, from, to, regions_needed);
6862 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6863 		kref_put(&resv_map->refs, resv_map_release);
6864 		set_vma_resv_map(vma, NULL);
6865 	}
6866 	return false;
6867 }
6868 
6869 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6870 								long freed)
6871 {
6872 	struct hstate *h = hstate_inode(inode);
6873 	struct resv_map *resv_map = inode_resv_map(inode);
6874 	long chg = 0;
6875 	struct hugepage_subpool *spool = subpool_inode(inode);
6876 	long gbl_reserve;
6877 
6878 	/*
6879 	 * Since this routine can be called in the evict inode path for all
6880 	 * hugetlbfs inodes, resv_map could be NULL.
6881 	 */
6882 	if (resv_map) {
6883 		chg = region_del(resv_map, start, end);
6884 		/*
6885 		 * region_del() can fail in the rare case where a region
6886 		 * must be split and another region descriptor can not be
6887 		 * allocated.  If end == LONG_MAX, it will not fail.
6888 		 */
6889 		if (chg < 0)
6890 			return chg;
6891 	}
6892 
6893 	spin_lock(&inode->i_lock);
6894 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6895 	spin_unlock(&inode->i_lock);
6896 
6897 	/*
6898 	 * If the subpool has a minimum size, the number of global
6899 	 * reservations to be released may be adjusted.
6900 	 *
6901 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6902 	 * won't go negative.
6903 	 */
6904 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6905 	hugetlb_acct_memory(h, -gbl_reserve);
6906 
6907 	return 0;
6908 }
6909 
6910 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6911 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6912 				struct vm_area_struct *vma,
6913 				unsigned long addr, pgoff_t idx)
6914 {
6915 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6916 				svma->vm_start;
6917 	unsigned long sbase = saddr & PUD_MASK;
6918 	unsigned long s_end = sbase + PUD_SIZE;
6919 
6920 	/* Allow segments to share if only one is marked locked */
6921 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6922 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6923 
6924 	/*
6925 	 * match the virtual addresses, permission and the alignment of the
6926 	 * page table page.
6927 	 *
6928 	 * Also, vma_lock (vm_private_data) is required for sharing.
6929 	 */
6930 	if (pmd_index(addr) != pmd_index(saddr) ||
6931 	    vm_flags != svm_flags ||
6932 	    !range_in_vma(svma, sbase, s_end) ||
6933 	    !svma->vm_private_data)
6934 		return 0;
6935 
6936 	return saddr;
6937 }
6938 
6939 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6940 {
6941 	unsigned long start = addr & PUD_MASK;
6942 	unsigned long end = start + PUD_SIZE;
6943 
6944 #ifdef CONFIG_USERFAULTFD
6945 	if (uffd_disable_huge_pmd_share(vma))
6946 		return false;
6947 #endif
6948 	/*
6949 	 * check on proper vm_flags and page table alignment
6950 	 */
6951 	if (!(vma->vm_flags & VM_MAYSHARE))
6952 		return false;
6953 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6954 		return false;
6955 	if (!range_in_vma(vma, start, end))
6956 		return false;
6957 	return true;
6958 }
6959 
6960 /*
6961  * Determine if start,end range within vma could be mapped by shared pmd.
6962  * If yes, adjust start and end to cover range associated with possible
6963  * shared pmd mappings.
6964  */
6965 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6966 				unsigned long *start, unsigned long *end)
6967 {
6968 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6969 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6970 
6971 	/*
6972 	 * vma needs to span at least one aligned PUD size, and the range
6973 	 * must be at least partially within in.
6974 	 */
6975 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6976 		(*end <= v_start) || (*start >= v_end))
6977 		return;
6978 
6979 	/* Extend the range to be PUD aligned for a worst case scenario */
6980 	if (*start > v_start)
6981 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6982 
6983 	if (*end < v_end)
6984 		*end = ALIGN(*end, PUD_SIZE);
6985 }
6986 
6987 /*
6988  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6989  * and returns the corresponding pte. While this is not necessary for the
6990  * !shared pmd case because we can allocate the pmd later as well, it makes the
6991  * code much cleaner. pmd allocation is essential for the shared case because
6992  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6993  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6994  * bad pmd for sharing.
6995  */
6996 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6997 		      unsigned long addr, pud_t *pud)
6998 {
6999 	struct address_space *mapping = vma->vm_file->f_mapping;
7000 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7001 			vma->vm_pgoff;
7002 	struct vm_area_struct *svma;
7003 	unsigned long saddr;
7004 	pte_t *spte = NULL;
7005 	pte_t *pte;
7006 
7007 	i_mmap_lock_read(mapping);
7008 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7009 		if (svma == vma)
7010 			continue;
7011 
7012 		saddr = page_table_shareable(svma, vma, addr, idx);
7013 		if (saddr) {
7014 			spte = hugetlb_walk(svma, saddr,
7015 					    vma_mmu_pagesize(svma));
7016 			if (spte) {
7017 				get_page(virt_to_page(spte));
7018 				break;
7019 			}
7020 		}
7021 	}
7022 
7023 	if (!spte)
7024 		goto out;
7025 
7026 	spin_lock(&mm->page_table_lock);
7027 	if (pud_none(*pud)) {
7028 		pud_populate(mm, pud,
7029 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7030 		mm_inc_nr_pmds(mm);
7031 	} else {
7032 		put_page(virt_to_page(spte));
7033 	}
7034 	spin_unlock(&mm->page_table_lock);
7035 out:
7036 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7037 	i_mmap_unlock_read(mapping);
7038 	return pte;
7039 }
7040 
7041 /*
7042  * unmap huge page backed by shared pte.
7043  *
7044  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7045  * indicated by page_count > 1, unmap is achieved by clearing pud and
7046  * decrementing the ref count. If count == 1, the pte page is not shared.
7047  *
7048  * Called with page table lock held.
7049  *
7050  * returns: 1 successfully unmapped a shared pte page
7051  *	    0 the underlying pte page is not shared, or it is the last user
7052  */
7053 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7054 					unsigned long addr, pte_t *ptep)
7055 {
7056 	pgd_t *pgd = pgd_offset(mm, addr);
7057 	p4d_t *p4d = p4d_offset(pgd, addr);
7058 	pud_t *pud = pud_offset(p4d, addr);
7059 
7060 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7061 	hugetlb_vma_assert_locked(vma);
7062 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7063 	if (page_count(virt_to_page(ptep)) == 1)
7064 		return 0;
7065 
7066 	pud_clear(pud);
7067 	put_page(virt_to_page(ptep));
7068 	mm_dec_nr_pmds(mm);
7069 	return 1;
7070 }
7071 
7072 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7073 
7074 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7075 		      unsigned long addr, pud_t *pud)
7076 {
7077 	return NULL;
7078 }
7079 
7080 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7081 				unsigned long addr, pte_t *ptep)
7082 {
7083 	return 0;
7084 }
7085 
7086 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7087 				unsigned long *start, unsigned long *end)
7088 {
7089 }
7090 
7091 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7092 {
7093 	return false;
7094 }
7095 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7096 
7097 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7098 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7099 			unsigned long addr, unsigned long sz)
7100 {
7101 	pgd_t *pgd;
7102 	p4d_t *p4d;
7103 	pud_t *pud;
7104 	pte_t *pte = NULL;
7105 
7106 	pgd = pgd_offset(mm, addr);
7107 	p4d = p4d_alloc(mm, pgd, addr);
7108 	if (!p4d)
7109 		return NULL;
7110 	pud = pud_alloc(mm, p4d, addr);
7111 	if (pud) {
7112 		if (sz == PUD_SIZE) {
7113 			pte = (pte_t *)pud;
7114 		} else {
7115 			BUG_ON(sz != PMD_SIZE);
7116 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7117 				pte = huge_pmd_share(mm, vma, addr, pud);
7118 			else
7119 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7120 		}
7121 	}
7122 
7123 	if (pte) {
7124 		pte_t pteval = ptep_get_lockless(pte);
7125 
7126 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7127 	}
7128 
7129 	return pte;
7130 }
7131 
7132 /*
7133  * huge_pte_offset() - Walk the page table to resolve the hugepage
7134  * entry at address @addr
7135  *
7136  * Return: Pointer to page table entry (PUD or PMD) for
7137  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7138  * size @sz doesn't match the hugepage size at this level of the page
7139  * table.
7140  */
7141 pte_t *huge_pte_offset(struct mm_struct *mm,
7142 		       unsigned long addr, unsigned long sz)
7143 {
7144 	pgd_t *pgd;
7145 	p4d_t *p4d;
7146 	pud_t *pud;
7147 	pmd_t *pmd;
7148 
7149 	pgd = pgd_offset(mm, addr);
7150 	if (!pgd_present(*pgd))
7151 		return NULL;
7152 	p4d = p4d_offset(pgd, addr);
7153 	if (!p4d_present(*p4d))
7154 		return NULL;
7155 
7156 	pud = pud_offset(p4d, addr);
7157 	if (sz == PUD_SIZE)
7158 		/* must be pud huge, non-present or none */
7159 		return (pte_t *)pud;
7160 	if (!pud_present(*pud))
7161 		return NULL;
7162 	/* must have a valid entry and size to go further */
7163 
7164 	pmd = pmd_offset(pud, addr);
7165 	/* must be pmd huge, non-present or none */
7166 	return (pte_t *)pmd;
7167 }
7168 
7169 /*
7170  * Return a mask that can be used to update an address to the last huge
7171  * page in a page table page mapping size.  Used to skip non-present
7172  * page table entries when linearly scanning address ranges.  Architectures
7173  * with unique huge page to page table relationships can define their own
7174  * version of this routine.
7175  */
7176 unsigned long hugetlb_mask_last_page(struct hstate *h)
7177 {
7178 	unsigned long hp_size = huge_page_size(h);
7179 
7180 	if (hp_size == PUD_SIZE)
7181 		return P4D_SIZE - PUD_SIZE;
7182 	else if (hp_size == PMD_SIZE)
7183 		return PUD_SIZE - PMD_SIZE;
7184 	else
7185 		return 0UL;
7186 }
7187 
7188 #else
7189 
7190 /* See description above.  Architectures can provide their own version. */
7191 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7192 {
7193 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7194 	if (huge_page_size(h) == PMD_SIZE)
7195 		return PUD_SIZE - PMD_SIZE;
7196 #endif
7197 	return 0UL;
7198 }
7199 
7200 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7201 
7202 /*
7203  * These functions are overwritable if your architecture needs its own
7204  * behavior.
7205  */
7206 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7207 {
7208 	bool ret = true;
7209 
7210 	spin_lock_irq(&hugetlb_lock);
7211 	if (!folio_test_hugetlb(folio) ||
7212 	    !folio_test_hugetlb_migratable(folio) ||
7213 	    !folio_try_get(folio)) {
7214 		ret = false;
7215 		goto unlock;
7216 	}
7217 	folio_clear_hugetlb_migratable(folio);
7218 	list_move_tail(&folio->lru, list);
7219 unlock:
7220 	spin_unlock_irq(&hugetlb_lock);
7221 	return ret;
7222 }
7223 
7224 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7225 {
7226 	int ret = 0;
7227 
7228 	*hugetlb = false;
7229 	spin_lock_irq(&hugetlb_lock);
7230 	if (folio_test_hugetlb(folio)) {
7231 		*hugetlb = true;
7232 		if (folio_test_hugetlb_freed(folio))
7233 			ret = 0;
7234 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7235 			ret = folio_try_get(folio);
7236 		else
7237 			ret = -EBUSY;
7238 	}
7239 	spin_unlock_irq(&hugetlb_lock);
7240 	return ret;
7241 }
7242 
7243 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7244 				bool *migratable_cleared)
7245 {
7246 	int ret;
7247 
7248 	spin_lock_irq(&hugetlb_lock);
7249 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7250 	spin_unlock_irq(&hugetlb_lock);
7251 	return ret;
7252 }
7253 
7254 void folio_putback_active_hugetlb(struct folio *folio)
7255 {
7256 	spin_lock_irq(&hugetlb_lock);
7257 	folio_set_hugetlb_migratable(folio);
7258 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7259 	spin_unlock_irq(&hugetlb_lock);
7260 	folio_put(folio);
7261 }
7262 
7263 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7264 {
7265 	struct hstate *h = folio_hstate(old_folio);
7266 
7267 	hugetlb_cgroup_migrate(old_folio, new_folio);
7268 	set_page_owner_migrate_reason(&new_folio->page, reason);
7269 
7270 	/*
7271 	 * transfer temporary state of the new hugetlb folio. This is
7272 	 * reverse to other transitions because the newpage is going to
7273 	 * be final while the old one will be freed so it takes over
7274 	 * the temporary status.
7275 	 *
7276 	 * Also note that we have to transfer the per-node surplus state
7277 	 * here as well otherwise the global surplus count will not match
7278 	 * the per-node's.
7279 	 */
7280 	if (folio_test_hugetlb_temporary(new_folio)) {
7281 		int old_nid = folio_nid(old_folio);
7282 		int new_nid = folio_nid(new_folio);
7283 
7284 		folio_set_hugetlb_temporary(old_folio);
7285 		folio_clear_hugetlb_temporary(new_folio);
7286 
7287 
7288 		/*
7289 		 * There is no need to transfer the per-node surplus state
7290 		 * when we do not cross the node.
7291 		 */
7292 		if (new_nid == old_nid)
7293 			return;
7294 		spin_lock_irq(&hugetlb_lock);
7295 		if (h->surplus_huge_pages_node[old_nid]) {
7296 			h->surplus_huge_pages_node[old_nid]--;
7297 			h->surplus_huge_pages_node[new_nid]++;
7298 		}
7299 		spin_unlock_irq(&hugetlb_lock);
7300 	}
7301 }
7302 
7303 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7304 				   unsigned long start,
7305 				   unsigned long end)
7306 {
7307 	struct hstate *h = hstate_vma(vma);
7308 	unsigned long sz = huge_page_size(h);
7309 	struct mm_struct *mm = vma->vm_mm;
7310 	struct mmu_notifier_range range;
7311 	unsigned long address;
7312 	spinlock_t *ptl;
7313 	pte_t *ptep;
7314 
7315 	if (!(vma->vm_flags & VM_MAYSHARE))
7316 		return;
7317 
7318 	if (start >= end)
7319 		return;
7320 
7321 	flush_cache_range(vma, start, end);
7322 	/*
7323 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7324 	 * we have already done the PUD_SIZE alignment.
7325 	 */
7326 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7327 				start, end);
7328 	mmu_notifier_invalidate_range_start(&range);
7329 	hugetlb_vma_lock_write(vma);
7330 	i_mmap_lock_write(vma->vm_file->f_mapping);
7331 	for (address = start; address < end; address += PUD_SIZE) {
7332 		ptep = hugetlb_walk(vma, address, sz);
7333 		if (!ptep)
7334 			continue;
7335 		ptl = huge_pte_lock(h, mm, ptep);
7336 		huge_pmd_unshare(mm, vma, address, ptep);
7337 		spin_unlock(ptl);
7338 	}
7339 	flush_hugetlb_tlb_range(vma, start, end);
7340 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7341 	hugetlb_vma_unlock_write(vma);
7342 	/*
7343 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7344 	 * Documentation/mm/mmu_notifier.rst.
7345 	 */
7346 	mmu_notifier_invalidate_range_end(&range);
7347 }
7348 
7349 /*
7350  * This function will unconditionally remove all the shared pmd pgtable entries
7351  * within the specific vma for a hugetlbfs memory range.
7352  */
7353 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7354 {
7355 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7356 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7357 }
7358 
7359 #ifdef CONFIG_CMA
7360 static bool cma_reserve_called __initdata;
7361 
7362 static int __init cmdline_parse_hugetlb_cma(char *p)
7363 {
7364 	int nid, count = 0;
7365 	unsigned long tmp;
7366 	char *s = p;
7367 
7368 	while (*s) {
7369 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7370 			break;
7371 
7372 		if (s[count] == ':') {
7373 			if (tmp >= MAX_NUMNODES)
7374 				break;
7375 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7376 
7377 			s += count + 1;
7378 			tmp = memparse(s, &s);
7379 			hugetlb_cma_size_in_node[nid] = tmp;
7380 			hugetlb_cma_size += tmp;
7381 
7382 			/*
7383 			 * Skip the separator if have one, otherwise
7384 			 * break the parsing.
7385 			 */
7386 			if (*s == ',')
7387 				s++;
7388 			else
7389 				break;
7390 		} else {
7391 			hugetlb_cma_size = memparse(p, &p);
7392 			break;
7393 		}
7394 	}
7395 
7396 	return 0;
7397 }
7398 
7399 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7400 
7401 void __init hugetlb_cma_reserve(int order)
7402 {
7403 	unsigned long size, reserved, per_node;
7404 	bool node_specific_cma_alloc = false;
7405 	int nid;
7406 
7407 	cma_reserve_called = true;
7408 
7409 	if (!hugetlb_cma_size)
7410 		return;
7411 
7412 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7413 		if (hugetlb_cma_size_in_node[nid] == 0)
7414 			continue;
7415 
7416 		if (!node_online(nid)) {
7417 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7418 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7419 			hugetlb_cma_size_in_node[nid] = 0;
7420 			continue;
7421 		}
7422 
7423 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7424 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7425 				nid, (PAGE_SIZE << order) / SZ_1M);
7426 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7427 			hugetlb_cma_size_in_node[nid] = 0;
7428 		} else {
7429 			node_specific_cma_alloc = true;
7430 		}
7431 	}
7432 
7433 	/* Validate the CMA size again in case some invalid nodes specified. */
7434 	if (!hugetlb_cma_size)
7435 		return;
7436 
7437 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7438 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7439 			(PAGE_SIZE << order) / SZ_1M);
7440 		hugetlb_cma_size = 0;
7441 		return;
7442 	}
7443 
7444 	if (!node_specific_cma_alloc) {
7445 		/*
7446 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7447 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7448 		 */
7449 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7450 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7451 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7452 	}
7453 
7454 	reserved = 0;
7455 	for_each_online_node(nid) {
7456 		int res;
7457 		char name[CMA_MAX_NAME];
7458 
7459 		if (node_specific_cma_alloc) {
7460 			if (hugetlb_cma_size_in_node[nid] == 0)
7461 				continue;
7462 
7463 			size = hugetlb_cma_size_in_node[nid];
7464 		} else {
7465 			size = min(per_node, hugetlb_cma_size - reserved);
7466 		}
7467 
7468 		size = round_up(size, PAGE_SIZE << order);
7469 
7470 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7471 		/*
7472 		 * Note that 'order per bit' is based on smallest size that
7473 		 * may be returned to CMA allocator in the case of
7474 		 * huge page demotion.
7475 		 */
7476 		res = cma_declare_contiguous_nid(0, size, 0,
7477 					PAGE_SIZE << HUGETLB_PAGE_ORDER,
7478 					HUGETLB_PAGE_ORDER, false, name,
7479 					&hugetlb_cma[nid], nid);
7480 		if (res) {
7481 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7482 				res, nid);
7483 			continue;
7484 		}
7485 
7486 		reserved += size;
7487 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7488 			size / SZ_1M, nid);
7489 
7490 		if (reserved >= hugetlb_cma_size)
7491 			break;
7492 	}
7493 
7494 	if (!reserved)
7495 		/*
7496 		 * hugetlb_cma_size is used to determine if allocations from
7497 		 * cma are possible.  Set to zero if no cma regions are set up.
7498 		 */
7499 		hugetlb_cma_size = 0;
7500 }
7501 
7502 static void __init hugetlb_cma_check(void)
7503 {
7504 	if (!hugetlb_cma_size || cma_reserve_called)
7505 		return;
7506 
7507 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7508 }
7509 
7510 #endif /* CONFIG_CMA */
7511