xref: /openbmc/linux/mm/hugetlb.c (revision 8e694cd2)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26 
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36 
37 int hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43  * Minimum page order among possible hugepage sizes, set to a proper value
44  * at boot time.
45  */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47 
48 __initdata LIST_HEAD(huge_boot_pages);
49 
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54 static bool __initdata parsed_valid_hugepagesz = true;
55 
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61 
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68 
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71 
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
75 
76 	spin_unlock(&spool->lock);
77 
78 	/* If no pages are used, and no other handles to the subpool
79 	 * remain, give up any reservations mased on minimum size and
80 	 * free the subpool */
81 	if (free) {
82 		if (spool->min_hpages != -1)
83 			hugetlb_acct_memory(spool->hstate,
84 						-spool->min_hpages);
85 		kfree(spool);
86 	}
87 }
88 
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 						long min_hpages)
91 {
92 	struct hugepage_subpool *spool;
93 
94 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 	if (!spool)
96 		return NULL;
97 
98 	spin_lock_init(&spool->lock);
99 	spool->count = 1;
100 	spool->max_hpages = max_hpages;
101 	spool->hstate = h;
102 	spool->min_hpages = min_hpages;
103 
104 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 		kfree(spool);
106 		return NULL;
107 	}
108 	spool->rsv_hpages = min_hpages;
109 
110 	return spool;
111 }
112 
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 	spin_lock(&spool->lock);
116 	BUG_ON(!spool->count);
117 	spool->count--;
118 	unlock_or_release_subpool(spool);
119 }
120 
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 				      long delta)
131 {
132 	long ret = delta;
133 
134 	if (!spool)
135 		return ret;
136 
137 	spin_lock(&spool->lock);
138 
139 	if (spool->max_hpages != -1) {		/* maximum size accounting */
140 		if ((spool->used_hpages + delta) <= spool->max_hpages)
141 			spool->used_hpages += delta;
142 		else {
143 			ret = -ENOMEM;
144 			goto unlock_ret;
145 		}
146 	}
147 
148 	/* minimum size accounting */
149 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 		if (delta > spool->rsv_hpages) {
151 			/*
152 			 * Asking for more reserves than those already taken on
153 			 * behalf of subpool.  Return difference.
154 			 */
155 			ret = delta - spool->rsv_hpages;
156 			spool->rsv_hpages = 0;
157 		} else {
158 			ret = 0;	/* reserves already accounted for */
159 			spool->rsv_hpages -= delta;
160 		}
161 	}
162 
163 unlock_ret:
164 	spin_unlock(&spool->lock);
165 	return ret;
166 }
167 
168 /*
169  * Subpool accounting for freeing and unreserving pages.
170  * Return the number of global page reservations that must be dropped.
171  * The return value may only be different than the passed value (delta)
172  * in the case where a subpool minimum size must be maintained.
173  */
174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 				       long delta)
176 {
177 	long ret = delta;
178 
179 	if (!spool)
180 		return delta;
181 
182 	spin_lock(&spool->lock);
183 
184 	if (spool->max_hpages != -1)		/* maximum size accounting */
185 		spool->used_hpages -= delta;
186 
187 	 /* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 		if (spool->rsv_hpages + delta <= spool->min_hpages)
190 			ret = 0;
191 		else
192 			ret = spool->rsv_hpages + delta - spool->min_hpages;
193 
194 		spool->rsv_hpages += delta;
195 		if (spool->rsv_hpages > spool->min_hpages)
196 			spool->rsv_hpages = spool->min_hpages;
197 	}
198 
199 	/*
200 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 	 * quota reference, free it now.
202 	 */
203 	unlock_or_release_subpool(spool);
204 
205 	return ret;
206 }
207 
208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209 {
210 	return HUGETLBFS_SB(inode->i_sb)->spool;
211 }
212 
213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214 {
215 	return subpool_inode(file_inode(vma->vm_file));
216 }
217 
218 /*
219  * Region tracking -- allows tracking of reservations and instantiated pages
220  *                    across the pages in a mapping.
221  *
222  * The region data structures are embedded into a resv_map and protected
223  * by a resv_map's lock.  The set of regions within the resv_map represent
224  * reservations for huge pages, or huge pages that have already been
225  * instantiated within the map.  The from and to elements are huge page
226  * indicies into the associated mapping.  from indicates the starting index
227  * of the region.  to represents the first index past the end of  the region.
228  *
229  * For example, a file region structure with from == 0 and to == 4 represents
230  * four huge pages in a mapping.  It is important to note that the to element
231  * represents the first element past the end of the region. This is used in
232  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233  *
234  * Interval notation of the form [from, to) will be used to indicate that
235  * the endpoint from is inclusive and to is exclusive.
236  */
237 struct file_region {
238 	struct list_head link;
239 	long from;
240 	long to;
241 };
242 
243 /*
244  * Add the huge page range represented by [f, t) to the reserve
245  * map.  In the normal case, existing regions will be expanded
246  * to accommodate the specified range.  Sufficient regions should
247  * exist for expansion due to the previous call to region_chg
248  * with the same range.  However, it is possible that region_del
249  * could have been called after region_chg and modifed the map
250  * in such a way that no region exists to be expanded.  In this
251  * case, pull a region descriptor from the cache associated with
252  * the map and use that for the new range.
253  *
254  * Return the number of new huge pages added to the map.  This
255  * number is greater than or equal to zero.
256  */
257 static long region_add(struct resv_map *resv, long f, long t)
258 {
259 	struct list_head *head = &resv->regions;
260 	struct file_region *rg, *nrg, *trg;
261 	long add = 0;
262 
263 	spin_lock(&resv->lock);
264 	/* Locate the region we are either in or before. */
265 	list_for_each_entry(rg, head, link)
266 		if (f <= rg->to)
267 			break;
268 
269 	/*
270 	 * If no region exists which can be expanded to include the
271 	 * specified range, the list must have been modified by an
272 	 * interleving call to region_del().  Pull a region descriptor
273 	 * from the cache and use it for this range.
274 	 */
275 	if (&rg->link == head || t < rg->from) {
276 		VM_BUG_ON(resv->region_cache_count <= 0);
277 
278 		resv->region_cache_count--;
279 		nrg = list_first_entry(&resv->region_cache, struct file_region,
280 					link);
281 		list_del(&nrg->link);
282 
283 		nrg->from = f;
284 		nrg->to = t;
285 		list_add(&nrg->link, rg->link.prev);
286 
287 		add += t - f;
288 		goto out_locked;
289 	}
290 
291 	/* Round our left edge to the current segment if it encloses us. */
292 	if (f > rg->from)
293 		f = rg->from;
294 
295 	/* Check for and consume any regions we now overlap with. */
296 	nrg = rg;
297 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 		if (&rg->link == head)
299 			break;
300 		if (rg->from > t)
301 			break;
302 
303 		/* If this area reaches higher then extend our area to
304 		 * include it completely.  If this is not the first area
305 		 * which we intend to reuse, free it. */
306 		if (rg->to > t)
307 			t = rg->to;
308 		if (rg != nrg) {
309 			/* Decrement return value by the deleted range.
310 			 * Another range will span this area so that by
311 			 * end of routine add will be >= zero
312 			 */
313 			add -= (rg->to - rg->from);
314 			list_del(&rg->link);
315 			kfree(rg);
316 		}
317 	}
318 
319 	add += (nrg->from - f);		/* Added to beginning of region */
320 	nrg->from = f;
321 	add += t - nrg->to;		/* Added to end of region */
322 	nrg->to = t;
323 
324 out_locked:
325 	resv->adds_in_progress--;
326 	spin_unlock(&resv->lock);
327 	VM_BUG_ON(add < 0);
328 	return add;
329 }
330 
331 /*
332  * Examine the existing reserve map and determine how many
333  * huge pages in the specified range [f, t) are NOT currently
334  * represented.  This routine is called before a subsequent
335  * call to region_add that will actually modify the reserve
336  * map to add the specified range [f, t).  region_chg does
337  * not change the number of huge pages represented by the
338  * map.  However, if the existing regions in the map can not
339  * be expanded to represent the new range, a new file_region
340  * structure is added to the map as a placeholder.  This is
341  * so that the subsequent region_add call will have all the
342  * regions it needs and will not fail.
343  *
344  * Upon entry, region_chg will also examine the cache of region descriptors
345  * associated with the map.  If there are not enough descriptors cached, one
346  * will be allocated for the in progress add operation.
347  *
348  * Returns the number of huge pages that need to be added to the existing
349  * reservation map for the range [f, t).  This number is greater or equal to
350  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
351  * is needed and can not be allocated.
352  */
353 static long region_chg(struct resv_map *resv, long f, long t)
354 {
355 	struct list_head *head = &resv->regions;
356 	struct file_region *rg, *nrg = NULL;
357 	long chg = 0;
358 
359 retry:
360 	spin_lock(&resv->lock);
361 retry_locked:
362 	resv->adds_in_progress++;
363 
364 	/*
365 	 * Check for sufficient descriptors in the cache to accommodate
366 	 * the number of in progress add operations.
367 	 */
368 	if (resv->adds_in_progress > resv->region_cache_count) {
369 		struct file_region *trg;
370 
371 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 		/* Must drop lock to allocate a new descriptor. */
373 		resv->adds_in_progress--;
374 		spin_unlock(&resv->lock);
375 
376 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 		if (!trg) {
378 			kfree(nrg);
379 			return -ENOMEM;
380 		}
381 
382 		spin_lock(&resv->lock);
383 		list_add(&trg->link, &resv->region_cache);
384 		resv->region_cache_count++;
385 		goto retry_locked;
386 	}
387 
388 	/* Locate the region we are before or in. */
389 	list_for_each_entry(rg, head, link)
390 		if (f <= rg->to)
391 			break;
392 
393 	/* If we are below the current region then a new region is required.
394 	 * Subtle, allocate a new region at the position but make it zero
395 	 * size such that we can guarantee to record the reservation. */
396 	if (&rg->link == head || t < rg->from) {
397 		if (!nrg) {
398 			resv->adds_in_progress--;
399 			spin_unlock(&resv->lock);
400 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 			if (!nrg)
402 				return -ENOMEM;
403 
404 			nrg->from = f;
405 			nrg->to   = f;
406 			INIT_LIST_HEAD(&nrg->link);
407 			goto retry;
408 		}
409 
410 		list_add(&nrg->link, rg->link.prev);
411 		chg = t - f;
412 		goto out_nrg;
413 	}
414 
415 	/* Round our left edge to the current segment if it encloses us. */
416 	if (f > rg->from)
417 		f = rg->from;
418 	chg = t - f;
419 
420 	/* Check for and consume any regions we now overlap with. */
421 	list_for_each_entry(rg, rg->link.prev, link) {
422 		if (&rg->link == head)
423 			break;
424 		if (rg->from > t)
425 			goto out;
426 
427 		/* We overlap with this area, if it extends further than
428 		 * us then we must extend ourselves.  Account for its
429 		 * existing reservation. */
430 		if (rg->to > t) {
431 			chg += rg->to - t;
432 			t = rg->to;
433 		}
434 		chg -= rg->to - rg->from;
435 	}
436 
437 out:
438 	spin_unlock(&resv->lock);
439 	/*  We already know we raced and no longer need the new region */
440 	kfree(nrg);
441 	return chg;
442 out_nrg:
443 	spin_unlock(&resv->lock);
444 	return chg;
445 }
446 
447 /*
448  * Abort the in progress add operation.  The adds_in_progress field
449  * of the resv_map keeps track of the operations in progress between
450  * calls to region_chg and region_add.  Operations are sometimes
451  * aborted after the call to region_chg.  In such cases, region_abort
452  * is called to decrement the adds_in_progress counter.
453  *
454  * NOTE: The range arguments [f, t) are not needed or used in this
455  * routine.  They are kept to make reading the calling code easier as
456  * arguments will match the associated region_chg call.
457  */
458 static void region_abort(struct resv_map *resv, long f, long t)
459 {
460 	spin_lock(&resv->lock);
461 	VM_BUG_ON(!resv->region_cache_count);
462 	resv->adds_in_progress--;
463 	spin_unlock(&resv->lock);
464 }
465 
466 /*
467  * Delete the specified range [f, t) from the reserve map.  If the
468  * t parameter is LONG_MAX, this indicates that ALL regions after f
469  * should be deleted.  Locate the regions which intersect [f, t)
470  * and either trim, delete or split the existing regions.
471  *
472  * Returns the number of huge pages deleted from the reserve map.
473  * In the normal case, the return value is zero or more.  In the
474  * case where a region must be split, a new region descriptor must
475  * be allocated.  If the allocation fails, -ENOMEM will be returned.
476  * NOTE: If the parameter t == LONG_MAX, then we will never split
477  * a region and possibly return -ENOMEM.  Callers specifying
478  * t == LONG_MAX do not need to check for -ENOMEM error.
479  */
480 static long region_del(struct resv_map *resv, long f, long t)
481 {
482 	struct list_head *head = &resv->regions;
483 	struct file_region *rg, *trg;
484 	struct file_region *nrg = NULL;
485 	long del = 0;
486 
487 retry:
488 	spin_lock(&resv->lock);
489 	list_for_each_entry_safe(rg, trg, head, link) {
490 		/*
491 		 * Skip regions before the range to be deleted.  file_region
492 		 * ranges are normally of the form [from, to).  However, there
493 		 * may be a "placeholder" entry in the map which is of the form
494 		 * (from, to) with from == to.  Check for placeholder entries
495 		 * at the beginning of the range to be deleted.
496 		 */
497 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 			continue;
499 
500 		if (rg->from >= t)
501 			break;
502 
503 		if (f > rg->from && t < rg->to) { /* Must split region */
504 			/*
505 			 * Check for an entry in the cache before dropping
506 			 * lock and attempting allocation.
507 			 */
508 			if (!nrg &&
509 			    resv->region_cache_count > resv->adds_in_progress) {
510 				nrg = list_first_entry(&resv->region_cache,
511 							struct file_region,
512 							link);
513 				list_del(&nrg->link);
514 				resv->region_cache_count--;
515 			}
516 
517 			if (!nrg) {
518 				spin_unlock(&resv->lock);
519 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 				if (!nrg)
521 					return -ENOMEM;
522 				goto retry;
523 			}
524 
525 			del += t - f;
526 
527 			/* New entry for end of split region */
528 			nrg->from = t;
529 			nrg->to = rg->to;
530 			INIT_LIST_HEAD(&nrg->link);
531 
532 			/* Original entry is trimmed */
533 			rg->to = f;
534 
535 			list_add(&nrg->link, &rg->link);
536 			nrg = NULL;
537 			break;
538 		}
539 
540 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 			del += rg->to - rg->from;
542 			list_del(&rg->link);
543 			kfree(rg);
544 			continue;
545 		}
546 
547 		if (f <= rg->from) {	/* Trim beginning of region */
548 			del += t - rg->from;
549 			rg->from = t;
550 		} else {		/* Trim end of region */
551 			del += rg->to - f;
552 			rg->to = f;
553 		}
554 	}
555 
556 	spin_unlock(&resv->lock);
557 	kfree(nrg);
558 	return del;
559 }
560 
561 /*
562  * A rare out of memory error was encountered which prevented removal of
563  * the reserve map region for a page.  The huge page itself was free'ed
564  * and removed from the page cache.  This routine will adjust the subpool
565  * usage count, and the global reserve count if needed.  By incrementing
566  * these counts, the reserve map entry which could not be deleted will
567  * appear as a "reserved" entry instead of simply dangling with incorrect
568  * counts.
569  */
570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
571 {
572 	struct hugepage_subpool *spool = subpool_inode(inode);
573 	long rsv_adjust;
574 
575 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 	if (restore_reserve && rsv_adjust) {
577 		struct hstate *h = hstate_inode(inode);
578 
579 		hugetlb_acct_memory(h, 1);
580 	}
581 }
582 
583 /*
584  * Count and return the number of huge pages in the reserve map
585  * that intersect with the range [f, t).
586  */
587 static long region_count(struct resv_map *resv, long f, long t)
588 {
589 	struct list_head *head = &resv->regions;
590 	struct file_region *rg;
591 	long chg = 0;
592 
593 	spin_lock(&resv->lock);
594 	/* Locate each segment we overlap with, and count that overlap. */
595 	list_for_each_entry(rg, head, link) {
596 		long seg_from;
597 		long seg_to;
598 
599 		if (rg->to <= f)
600 			continue;
601 		if (rg->from >= t)
602 			break;
603 
604 		seg_from = max(rg->from, f);
605 		seg_to = min(rg->to, t);
606 
607 		chg += seg_to - seg_from;
608 	}
609 	spin_unlock(&resv->lock);
610 
611 	return chg;
612 }
613 
614 /*
615  * Convert the address within this vma to the page offset within
616  * the mapping, in pagecache page units; huge pages here.
617  */
618 static pgoff_t vma_hugecache_offset(struct hstate *h,
619 			struct vm_area_struct *vma, unsigned long address)
620 {
621 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 			(vma->vm_pgoff >> huge_page_order(h));
623 }
624 
625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 				     unsigned long address)
627 {
628 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
629 }
630 EXPORT_SYMBOL_GPL(linear_hugepage_index);
631 
632 /*
633  * Return the size of the pages allocated when backing a VMA. In the majority
634  * cases this will be same size as used by the page table entries.
635  */
636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637 {
638 	struct hstate *hstate;
639 
640 	if (!is_vm_hugetlb_page(vma))
641 		return PAGE_SIZE;
642 
643 	hstate = hstate_vma(vma);
644 
645 	return 1UL << huge_page_shift(hstate);
646 }
647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648 
649 /*
650  * Return the page size being used by the MMU to back a VMA. In the majority
651  * of cases, the page size used by the kernel matches the MMU size. On
652  * architectures where it differs, an architecture-specific version of this
653  * function is required.
654  */
655 #ifndef vma_mmu_pagesize
656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657 {
658 	return vma_kernel_pagesize(vma);
659 }
660 #endif
661 
662 /*
663  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
664  * bits of the reservation map pointer, which are always clear due to
665  * alignment.
666  */
667 #define HPAGE_RESV_OWNER    (1UL << 0)
668 #define HPAGE_RESV_UNMAPPED (1UL << 1)
669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670 
671 /*
672  * These helpers are used to track how many pages are reserved for
673  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674  * is guaranteed to have their future faults succeed.
675  *
676  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677  * the reserve counters are updated with the hugetlb_lock held. It is safe
678  * to reset the VMA at fork() time as it is not in use yet and there is no
679  * chance of the global counters getting corrupted as a result of the values.
680  *
681  * The private mapping reservation is represented in a subtly different
682  * manner to a shared mapping.  A shared mapping has a region map associated
683  * with the underlying file, this region map represents the backing file
684  * pages which have ever had a reservation assigned which this persists even
685  * after the page is instantiated.  A private mapping has a region map
686  * associated with the original mmap which is attached to all VMAs which
687  * reference it, this region map represents those offsets which have consumed
688  * reservation ie. where pages have been instantiated.
689  */
690 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691 {
692 	return (unsigned long)vma->vm_private_data;
693 }
694 
695 static void set_vma_private_data(struct vm_area_struct *vma,
696 							unsigned long value)
697 {
698 	vma->vm_private_data = (void *)value;
699 }
700 
701 struct resv_map *resv_map_alloc(void)
702 {
703 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705 
706 	if (!resv_map || !rg) {
707 		kfree(resv_map);
708 		kfree(rg);
709 		return NULL;
710 	}
711 
712 	kref_init(&resv_map->refs);
713 	spin_lock_init(&resv_map->lock);
714 	INIT_LIST_HEAD(&resv_map->regions);
715 
716 	resv_map->adds_in_progress = 0;
717 
718 	INIT_LIST_HEAD(&resv_map->region_cache);
719 	list_add(&rg->link, &resv_map->region_cache);
720 	resv_map->region_cache_count = 1;
721 
722 	return resv_map;
723 }
724 
725 void resv_map_release(struct kref *ref)
726 {
727 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 	struct list_head *head = &resv_map->region_cache;
729 	struct file_region *rg, *trg;
730 
731 	/* Clear out any active regions before we release the map. */
732 	region_del(resv_map, 0, LONG_MAX);
733 
734 	/* ... and any entries left in the cache */
735 	list_for_each_entry_safe(rg, trg, head, link) {
736 		list_del(&rg->link);
737 		kfree(rg);
738 	}
739 
740 	VM_BUG_ON(resv_map->adds_in_progress);
741 
742 	kfree(resv_map);
743 }
744 
745 static inline struct resv_map *inode_resv_map(struct inode *inode)
746 {
747 	return inode->i_mapping->private_data;
748 }
749 
750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751 {
752 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 	if (vma->vm_flags & VM_MAYSHARE) {
754 		struct address_space *mapping = vma->vm_file->f_mapping;
755 		struct inode *inode = mapping->host;
756 
757 		return inode_resv_map(inode);
758 
759 	} else {
760 		return (struct resv_map *)(get_vma_private_data(vma) &
761 							~HPAGE_RESV_MASK);
762 	}
763 }
764 
765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766 {
767 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769 
770 	set_vma_private_data(vma, (get_vma_private_data(vma) &
771 				HPAGE_RESV_MASK) | (unsigned long)map);
772 }
773 
774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775 {
776 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 
779 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 }
781 
782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783 {
784 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 
786 	return (get_vma_private_data(vma) & flag) != 0;
787 }
788 
789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791 {
792 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 	if (!(vma->vm_flags & VM_MAYSHARE))
794 		vma->vm_private_data = (void *)0;
795 }
796 
797 /* Returns true if the VMA has associated reserve pages */
798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799 {
800 	if (vma->vm_flags & VM_NORESERVE) {
801 		/*
802 		 * This address is already reserved by other process(chg == 0),
803 		 * so, we should decrement reserved count. Without decrementing,
804 		 * reserve count remains after releasing inode, because this
805 		 * allocated page will go into page cache and is regarded as
806 		 * coming from reserved pool in releasing step.  Currently, we
807 		 * don't have any other solution to deal with this situation
808 		 * properly, so add work-around here.
809 		 */
810 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 			return true;
812 		else
813 			return false;
814 	}
815 
816 	/* Shared mappings always use reserves */
817 	if (vma->vm_flags & VM_MAYSHARE) {
818 		/*
819 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
820 		 * be a region map for all pages.  The only situation where
821 		 * there is no region map is if a hole was punched via
822 		 * fallocate.  In this case, there really are no reverves to
823 		 * use.  This situation is indicated if chg != 0.
824 		 */
825 		if (chg)
826 			return false;
827 		else
828 			return true;
829 	}
830 
831 	/*
832 	 * Only the process that called mmap() has reserves for
833 	 * private mappings.
834 	 */
835 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 		/*
837 		 * Like the shared case above, a hole punch or truncate
838 		 * could have been performed on the private mapping.
839 		 * Examine the value of chg to determine if reserves
840 		 * actually exist or were previously consumed.
841 		 * Very Subtle - The value of chg comes from a previous
842 		 * call to vma_needs_reserves().  The reserve map for
843 		 * private mappings has different (opposite) semantics
844 		 * than that of shared mappings.  vma_needs_reserves()
845 		 * has already taken this difference in semantics into
846 		 * account.  Therefore, the meaning of chg is the same
847 		 * as in the shared case above.  Code could easily be
848 		 * combined, but keeping it separate draws attention to
849 		 * subtle differences.
850 		 */
851 		if (chg)
852 			return false;
853 		else
854 			return true;
855 	}
856 
857 	return false;
858 }
859 
860 static void enqueue_huge_page(struct hstate *h, struct page *page)
861 {
862 	int nid = page_to_nid(page);
863 	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 	h->free_huge_pages++;
865 	h->free_huge_pages_node[nid]++;
866 }
867 
868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869 {
870 	struct page *page;
871 
872 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 		if (!is_migrate_isolate_page(page))
874 			break;
875 	/*
876 	 * if 'non-isolated free hugepage' not found on the list,
877 	 * the allocation fails.
878 	 */
879 	if (&h->hugepage_freelists[nid] == &page->lru)
880 		return NULL;
881 	list_move(&page->lru, &h->hugepage_activelist);
882 	set_page_refcounted(page);
883 	h->free_huge_pages--;
884 	h->free_huge_pages_node[nid]--;
885 	return page;
886 }
887 
888 /* Movability of hugepages depends on migration support. */
889 static inline gfp_t htlb_alloc_mask(struct hstate *h)
890 {
891 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 		return GFP_HIGHUSER_MOVABLE;
893 	else
894 		return GFP_HIGHUSER;
895 }
896 
897 static struct page *dequeue_huge_page_vma(struct hstate *h,
898 				struct vm_area_struct *vma,
899 				unsigned long address, int avoid_reserve,
900 				long chg)
901 {
902 	struct page *page = NULL;
903 	struct mempolicy *mpol;
904 	nodemask_t *nodemask;
905 	struct zonelist *zonelist;
906 	struct zone *zone;
907 	struct zoneref *z;
908 	unsigned int cpuset_mems_cookie;
909 
910 	/*
911 	 * A child process with MAP_PRIVATE mappings created by their parent
912 	 * have no page reserves. This check ensures that reservations are
913 	 * not "stolen". The child may still get SIGKILLed
914 	 */
915 	if (!vma_has_reserves(vma, chg) &&
916 			h->free_huge_pages - h->resv_huge_pages == 0)
917 		goto err;
918 
919 	/* If reserves cannot be used, ensure enough pages are in the pool */
920 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 		goto err;
922 
923 retry_cpuset:
924 	cpuset_mems_cookie = read_mems_allowed_begin();
925 	zonelist = huge_zonelist(vma, address,
926 					htlb_alloc_mask(h), &mpol, &nodemask);
927 
928 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 						MAX_NR_ZONES - 1, nodemask) {
930 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 			if (page) {
933 				if (avoid_reserve)
934 					break;
935 				if (!vma_has_reserves(vma, chg))
936 					break;
937 
938 				SetPagePrivate(page);
939 				h->resv_huge_pages--;
940 				break;
941 			}
942 		}
943 	}
944 
945 	mpol_cond_put(mpol);
946 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 		goto retry_cpuset;
948 	return page;
949 
950 err:
951 	return NULL;
952 }
953 
954 /*
955  * common helper functions for hstate_next_node_to_{alloc|free}.
956  * We may have allocated or freed a huge page based on a different
957  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958  * be outside of *nodes_allowed.  Ensure that we use an allowed
959  * node for alloc or free.
960  */
961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962 {
963 	nid = next_node_in(nid, *nodes_allowed);
964 	VM_BUG_ON(nid >= MAX_NUMNODES);
965 
966 	return nid;
967 }
968 
969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970 {
971 	if (!node_isset(nid, *nodes_allowed))
972 		nid = next_node_allowed(nid, nodes_allowed);
973 	return nid;
974 }
975 
976 /*
977  * returns the previously saved node ["this node"] from which to
978  * allocate a persistent huge page for the pool and advance the
979  * next node from which to allocate, handling wrap at end of node
980  * mask.
981  */
982 static int hstate_next_node_to_alloc(struct hstate *h,
983 					nodemask_t *nodes_allowed)
984 {
985 	int nid;
986 
987 	VM_BUG_ON(!nodes_allowed);
988 
989 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991 
992 	return nid;
993 }
994 
995 /*
996  * helper for free_pool_huge_page() - return the previously saved
997  * node ["this node"] from which to free a huge page.  Advance the
998  * next node id whether or not we find a free huge page to free so
999  * that the next attempt to free addresses the next node.
1000  */
1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002 {
1003 	int nid;
1004 
1005 	VM_BUG_ON(!nodes_allowed);
1006 
1007 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009 
1010 	return nid;
1011 }
1012 
1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1014 	for (nr_nodes = nodes_weight(*mask);				\
1015 		nr_nodes > 0 &&						\
1016 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1017 		nr_nodes--)
1018 
1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1020 	for (nr_nodes = nodes_weight(*mask);				\
1021 		nr_nodes > 0 &&						\
1022 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1023 		nr_nodes--)
1024 
1025 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1026 static void destroy_compound_gigantic_page(struct page *page,
1027 					unsigned int order)
1028 {
1029 	int i;
1030 	int nr_pages = 1 << order;
1031 	struct page *p = page + 1;
1032 
1033 	atomic_set(compound_mapcount_ptr(page), 0);
1034 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1035 		clear_compound_head(p);
1036 		set_page_refcounted(p);
1037 	}
1038 
1039 	set_compound_order(page, 0);
1040 	__ClearPageHead(page);
1041 }
1042 
1043 static void free_gigantic_page(struct page *page, unsigned int order)
1044 {
1045 	free_contig_range(page_to_pfn(page), 1 << order);
1046 }
1047 
1048 static int __alloc_gigantic_page(unsigned long start_pfn,
1049 				unsigned long nr_pages)
1050 {
1051 	unsigned long end_pfn = start_pfn + nr_pages;
1052 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1053 }
1054 
1055 static bool pfn_range_valid_gigantic(struct zone *z,
1056 			unsigned long start_pfn, unsigned long nr_pages)
1057 {
1058 	unsigned long i, end_pfn = start_pfn + nr_pages;
1059 	struct page *page;
1060 
1061 	for (i = start_pfn; i < end_pfn; i++) {
1062 		if (!pfn_valid(i))
1063 			return false;
1064 
1065 		page = pfn_to_page(i);
1066 
1067 		if (page_zone(page) != z)
1068 			return false;
1069 
1070 		if (PageReserved(page))
1071 			return false;
1072 
1073 		if (page_count(page) > 0)
1074 			return false;
1075 
1076 		if (PageHuge(page))
1077 			return false;
1078 	}
1079 
1080 	return true;
1081 }
1082 
1083 static bool zone_spans_last_pfn(const struct zone *zone,
1084 			unsigned long start_pfn, unsigned long nr_pages)
1085 {
1086 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1087 	return zone_spans_pfn(zone, last_pfn);
1088 }
1089 
1090 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1091 {
1092 	unsigned long nr_pages = 1 << order;
1093 	unsigned long ret, pfn, flags;
1094 	struct zone *z;
1095 
1096 	z = NODE_DATA(nid)->node_zones;
1097 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1098 		spin_lock_irqsave(&z->lock, flags);
1099 
1100 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1101 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1102 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1103 				/*
1104 				 * We release the zone lock here because
1105 				 * alloc_contig_range() will also lock the zone
1106 				 * at some point. If there's an allocation
1107 				 * spinning on this lock, it may win the race
1108 				 * and cause alloc_contig_range() to fail...
1109 				 */
1110 				spin_unlock_irqrestore(&z->lock, flags);
1111 				ret = __alloc_gigantic_page(pfn, nr_pages);
1112 				if (!ret)
1113 					return pfn_to_page(pfn);
1114 				spin_lock_irqsave(&z->lock, flags);
1115 			}
1116 			pfn += nr_pages;
1117 		}
1118 
1119 		spin_unlock_irqrestore(&z->lock, flags);
1120 	}
1121 
1122 	return NULL;
1123 }
1124 
1125 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1126 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1127 
1128 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1129 {
1130 	struct page *page;
1131 
1132 	page = alloc_gigantic_page(nid, huge_page_order(h));
1133 	if (page) {
1134 		prep_compound_gigantic_page(page, huge_page_order(h));
1135 		prep_new_huge_page(h, page, nid);
1136 	}
1137 
1138 	return page;
1139 }
1140 
1141 static int alloc_fresh_gigantic_page(struct hstate *h,
1142 				nodemask_t *nodes_allowed)
1143 {
1144 	struct page *page = NULL;
1145 	int nr_nodes, node;
1146 
1147 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1148 		page = alloc_fresh_gigantic_page_node(h, node);
1149 		if (page)
1150 			return 1;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static inline bool gigantic_page_supported(void) { return true; }
1157 #else
1158 static inline bool gigantic_page_supported(void) { return false; }
1159 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1160 static inline void destroy_compound_gigantic_page(struct page *page,
1161 						unsigned int order) { }
1162 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1163 					nodemask_t *nodes_allowed) { return 0; }
1164 #endif
1165 
1166 static void update_and_free_page(struct hstate *h, struct page *page)
1167 {
1168 	int i;
1169 
1170 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1171 		return;
1172 
1173 	h->nr_huge_pages--;
1174 	h->nr_huge_pages_node[page_to_nid(page)]--;
1175 	for (i = 0; i < pages_per_huge_page(h); i++) {
1176 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1177 				1 << PG_referenced | 1 << PG_dirty |
1178 				1 << PG_active | 1 << PG_private |
1179 				1 << PG_writeback);
1180 	}
1181 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1182 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1183 	set_page_refcounted(page);
1184 	if (hstate_is_gigantic(h)) {
1185 		destroy_compound_gigantic_page(page, huge_page_order(h));
1186 		free_gigantic_page(page, huge_page_order(h));
1187 	} else {
1188 		__free_pages(page, huge_page_order(h));
1189 	}
1190 }
1191 
1192 struct hstate *size_to_hstate(unsigned long size)
1193 {
1194 	struct hstate *h;
1195 
1196 	for_each_hstate(h) {
1197 		if (huge_page_size(h) == size)
1198 			return h;
1199 	}
1200 	return NULL;
1201 }
1202 
1203 /*
1204  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205  * to hstate->hugepage_activelist.)
1206  *
1207  * This function can be called for tail pages, but never returns true for them.
1208  */
1209 bool page_huge_active(struct page *page)
1210 {
1211 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1212 	return PageHead(page) && PagePrivate(&page[1]);
1213 }
1214 
1215 /* never called for tail page */
1216 static void set_page_huge_active(struct page *page)
1217 {
1218 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219 	SetPagePrivate(&page[1]);
1220 }
1221 
1222 static void clear_page_huge_active(struct page *page)
1223 {
1224 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1225 	ClearPagePrivate(&page[1]);
1226 }
1227 
1228 void free_huge_page(struct page *page)
1229 {
1230 	/*
1231 	 * Can't pass hstate in here because it is called from the
1232 	 * compound page destructor.
1233 	 */
1234 	struct hstate *h = page_hstate(page);
1235 	int nid = page_to_nid(page);
1236 	struct hugepage_subpool *spool =
1237 		(struct hugepage_subpool *)page_private(page);
1238 	bool restore_reserve;
1239 
1240 	set_page_private(page, 0);
1241 	page->mapping = NULL;
1242 	VM_BUG_ON_PAGE(page_count(page), page);
1243 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1244 	restore_reserve = PagePrivate(page);
1245 	ClearPagePrivate(page);
1246 
1247 	/*
1248 	 * A return code of zero implies that the subpool will be under its
1249 	 * minimum size if the reservation is not restored after page is free.
1250 	 * Therefore, force restore_reserve operation.
1251 	 */
1252 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1253 		restore_reserve = true;
1254 
1255 	spin_lock(&hugetlb_lock);
1256 	clear_page_huge_active(page);
1257 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1258 				     pages_per_huge_page(h), page);
1259 	if (restore_reserve)
1260 		h->resv_huge_pages++;
1261 
1262 	if (h->surplus_huge_pages_node[nid]) {
1263 		/* remove the page from active list */
1264 		list_del(&page->lru);
1265 		update_and_free_page(h, page);
1266 		h->surplus_huge_pages--;
1267 		h->surplus_huge_pages_node[nid]--;
1268 	} else {
1269 		arch_clear_hugepage_flags(page);
1270 		enqueue_huge_page(h, page);
1271 	}
1272 	spin_unlock(&hugetlb_lock);
1273 }
1274 
1275 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1276 {
1277 	INIT_LIST_HEAD(&page->lru);
1278 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1279 	spin_lock(&hugetlb_lock);
1280 	set_hugetlb_cgroup(page, NULL);
1281 	h->nr_huge_pages++;
1282 	h->nr_huge_pages_node[nid]++;
1283 	spin_unlock(&hugetlb_lock);
1284 	put_page(page); /* free it into the hugepage allocator */
1285 }
1286 
1287 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1288 {
1289 	int i;
1290 	int nr_pages = 1 << order;
1291 	struct page *p = page + 1;
1292 
1293 	/* we rely on prep_new_huge_page to set the destructor */
1294 	set_compound_order(page, order);
1295 	__ClearPageReserved(page);
1296 	__SetPageHead(page);
1297 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1298 		/*
1299 		 * For gigantic hugepages allocated through bootmem at
1300 		 * boot, it's safer to be consistent with the not-gigantic
1301 		 * hugepages and clear the PG_reserved bit from all tail pages
1302 		 * too.  Otherwse drivers using get_user_pages() to access tail
1303 		 * pages may get the reference counting wrong if they see
1304 		 * PG_reserved set on a tail page (despite the head page not
1305 		 * having PG_reserved set).  Enforcing this consistency between
1306 		 * head and tail pages allows drivers to optimize away a check
1307 		 * on the head page when they need know if put_page() is needed
1308 		 * after get_user_pages().
1309 		 */
1310 		__ClearPageReserved(p);
1311 		set_page_count(p, 0);
1312 		set_compound_head(p, page);
1313 	}
1314 	atomic_set(compound_mapcount_ptr(page), -1);
1315 }
1316 
1317 /*
1318  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1319  * transparent huge pages.  See the PageTransHuge() documentation for more
1320  * details.
1321  */
1322 int PageHuge(struct page *page)
1323 {
1324 	if (!PageCompound(page))
1325 		return 0;
1326 
1327 	page = compound_head(page);
1328 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1329 }
1330 EXPORT_SYMBOL_GPL(PageHuge);
1331 
1332 /*
1333  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1334  * normal or transparent huge pages.
1335  */
1336 int PageHeadHuge(struct page *page_head)
1337 {
1338 	if (!PageHead(page_head))
1339 		return 0;
1340 
1341 	return get_compound_page_dtor(page_head) == free_huge_page;
1342 }
1343 
1344 pgoff_t __basepage_index(struct page *page)
1345 {
1346 	struct page *page_head = compound_head(page);
1347 	pgoff_t index = page_index(page_head);
1348 	unsigned long compound_idx;
1349 
1350 	if (!PageHuge(page_head))
1351 		return page_index(page);
1352 
1353 	if (compound_order(page_head) >= MAX_ORDER)
1354 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1355 	else
1356 		compound_idx = page - page_head;
1357 
1358 	return (index << compound_order(page_head)) + compound_idx;
1359 }
1360 
1361 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1362 {
1363 	struct page *page;
1364 
1365 	page = __alloc_pages_node(nid,
1366 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1367 						__GFP_REPEAT|__GFP_NOWARN,
1368 		huge_page_order(h));
1369 	if (page) {
1370 		prep_new_huge_page(h, page, nid);
1371 	}
1372 
1373 	return page;
1374 }
1375 
1376 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1377 {
1378 	struct page *page;
1379 	int nr_nodes, node;
1380 	int ret = 0;
1381 
1382 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1383 		page = alloc_fresh_huge_page_node(h, node);
1384 		if (page) {
1385 			ret = 1;
1386 			break;
1387 		}
1388 	}
1389 
1390 	if (ret)
1391 		count_vm_event(HTLB_BUDDY_PGALLOC);
1392 	else
1393 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1394 
1395 	return ret;
1396 }
1397 
1398 /*
1399  * Free huge page from pool from next node to free.
1400  * Attempt to keep persistent huge pages more or less
1401  * balanced over allowed nodes.
1402  * Called with hugetlb_lock locked.
1403  */
1404 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1405 							 bool acct_surplus)
1406 {
1407 	int nr_nodes, node;
1408 	int ret = 0;
1409 
1410 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1411 		/*
1412 		 * If we're returning unused surplus pages, only examine
1413 		 * nodes with surplus pages.
1414 		 */
1415 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1416 		    !list_empty(&h->hugepage_freelists[node])) {
1417 			struct page *page =
1418 				list_entry(h->hugepage_freelists[node].next,
1419 					  struct page, lru);
1420 			list_del(&page->lru);
1421 			h->free_huge_pages--;
1422 			h->free_huge_pages_node[node]--;
1423 			if (acct_surplus) {
1424 				h->surplus_huge_pages--;
1425 				h->surplus_huge_pages_node[node]--;
1426 			}
1427 			update_and_free_page(h, page);
1428 			ret = 1;
1429 			break;
1430 		}
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 /*
1437  * Dissolve a given free hugepage into free buddy pages. This function does
1438  * nothing for in-use (including surplus) hugepages.
1439  */
1440 static void dissolve_free_huge_page(struct page *page)
1441 {
1442 	spin_lock(&hugetlb_lock);
1443 	if (PageHuge(page) && !page_count(page)) {
1444 		struct hstate *h = page_hstate(page);
1445 		int nid = page_to_nid(page);
1446 		list_del(&page->lru);
1447 		h->free_huge_pages--;
1448 		h->free_huge_pages_node[nid]--;
1449 		update_and_free_page(h, page);
1450 	}
1451 	spin_unlock(&hugetlb_lock);
1452 }
1453 
1454 /*
1455  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1456  * make specified memory blocks removable from the system.
1457  * Note that start_pfn should aligned with (minimum) hugepage size.
1458  */
1459 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1460 {
1461 	unsigned long pfn;
1462 
1463 	if (!hugepages_supported())
1464 		return;
1465 
1466 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1467 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1468 		dissolve_free_huge_page(pfn_to_page(pfn));
1469 }
1470 
1471 /*
1472  * There are 3 ways this can get called:
1473  * 1. With vma+addr: we use the VMA's memory policy
1474  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1475  *    page from any node, and let the buddy allocator itself figure
1476  *    it out.
1477  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1478  *    strictly from 'nid'
1479  */
1480 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1481 		struct vm_area_struct *vma, unsigned long addr, int nid)
1482 {
1483 	int order = huge_page_order(h);
1484 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1485 	unsigned int cpuset_mems_cookie;
1486 
1487 	/*
1488 	 * We need a VMA to get a memory policy.  If we do not
1489 	 * have one, we use the 'nid' argument.
1490 	 *
1491 	 * The mempolicy stuff below has some non-inlined bits
1492 	 * and calls ->vm_ops.  That makes it hard to optimize at
1493 	 * compile-time, even when NUMA is off and it does
1494 	 * nothing.  This helps the compiler optimize it out.
1495 	 */
1496 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1497 		/*
1498 		 * If a specific node is requested, make sure to
1499 		 * get memory from there, but only when a node
1500 		 * is explicitly specified.
1501 		 */
1502 		if (nid != NUMA_NO_NODE)
1503 			gfp |= __GFP_THISNODE;
1504 		/*
1505 		 * Make sure to call something that can handle
1506 		 * nid=NUMA_NO_NODE
1507 		 */
1508 		return alloc_pages_node(nid, gfp, order);
1509 	}
1510 
1511 	/*
1512 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1513 	 * allocate a huge page with it.  We will only reach this
1514 	 * when CONFIG_NUMA=y.
1515 	 */
1516 	do {
1517 		struct page *page;
1518 		struct mempolicy *mpol;
1519 		struct zonelist *zl;
1520 		nodemask_t *nodemask;
1521 
1522 		cpuset_mems_cookie = read_mems_allowed_begin();
1523 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1524 		mpol_cond_put(mpol);
1525 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1526 		if (page)
1527 			return page;
1528 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1529 
1530 	return NULL;
1531 }
1532 
1533 /*
1534  * There are two ways to allocate a huge page:
1535  * 1. When you have a VMA and an address (like a fault)
1536  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1537  *
1538  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1539  * this case which signifies that the allocation should be done with
1540  * respect for the VMA's memory policy.
1541  *
1542  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1543  * implies that memory policies will not be taken in to account.
1544  */
1545 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1546 		struct vm_area_struct *vma, unsigned long addr, int nid)
1547 {
1548 	struct page *page;
1549 	unsigned int r_nid;
1550 
1551 	if (hstate_is_gigantic(h))
1552 		return NULL;
1553 
1554 	/*
1555 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1556 	 * This makes sure the caller is picking _one_ of the modes with which
1557 	 * we can call this function, not both.
1558 	 */
1559 	if (vma || (addr != -1)) {
1560 		VM_WARN_ON_ONCE(addr == -1);
1561 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1562 	}
1563 	/*
1564 	 * Assume we will successfully allocate the surplus page to
1565 	 * prevent racing processes from causing the surplus to exceed
1566 	 * overcommit
1567 	 *
1568 	 * This however introduces a different race, where a process B
1569 	 * tries to grow the static hugepage pool while alloc_pages() is
1570 	 * called by process A. B will only examine the per-node
1571 	 * counters in determining if surplus huge pages can be
1572 	 * converted to normal huge pages in adjust_pool_surplus(). A
1573 	 * won't be able to increment the per-node counter, until the
1574 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1575 	 * no more huge pages can be converted from surplus to normal
1576 	 * state (and doesn't try to convert again). Thus, we have a
1577 	 * case where a surplus huge page exists, the pool is grown, and
1578 	 * the surplus huge page still exists after, even though it
1579 	 * should just have been converted to a normal huge page. This
1580 	 * does not leak memory, though, as the hugepage will be freed
1581 	 * once it is out of use. It also does not allow the counters to
1582 	 * go out of whack in adjust_pool_surplus() as we don't modify
1583 	 * the node values until we've gotten the hugepage and only the
1584 	 * per-node value is checked there.
1585 	 */
1586 	spin_lock(&hugetlb_lock);
1587 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1588 		spin_unlock(&hugetlb_lock);
1589 		return NULL;
1590 	} else {
1591 		h->nr_huge_pages++;
1592 		h->surplus_huge_pages++;
1593 	}
1594 	spin_unlock(&hugetlb_lock);
1595 
1596 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1597 
1598 	spin_lock(&hugetlb_lock);
1599 	if (page) {
1600 		INIT_LIST_HEAD(&page->lru);
1601 		r_nid = page_to_nid(page);
1602 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1603 		set_hugetlb_cgroup(page, NULL);
1604 		/*
1605 		 * We incremented the global counters already
1606 		 */
1607 		h->nr_huge_pages_node[r_nid]++;
1608 		h->surplus_huge_pages_node[r_nid]++;
1609 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1610 	} else {
1611 		h->nr_huge_pages--;
1612 		h->surplus_huge_pages--;
1613 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1614 	}
1615 	spin_unlock(&hugetlb_lock);
1616 
1617 	return page;
1618 }
1619 
1620 /*
1621  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1622  * NUMA_NO_NODE, which means that it may be allocated
1623  * anywhere.
1624  */
1625 static
1626 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1627 {
1628 	unsigned long addr = -1;
1629 
1630 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1631 }
1632 
1633 /*
1634  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1635  */
1636 static
1637 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1638 		struct vm_area_struct *vma, unsigned long addr)
1639 {
1640 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1641 }
1642 
1643 /*
1644  * This allocation function is useful in the context where vma is irrelevant.
1645  * E.g. soft-offlining uses this function because it only cares physical
1646  * address of error page.
1647  */
1648 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1649 {
1650 	struct page *page = NULL;
1651 
1652 	spin_lock(&hugetlb_lock);
1653 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1654 		page = dequeue_huge_page_node(h, nid);
1655 	spin_unlock(&hugetlb_lock);
1656 
1657 	if (!page)
1658 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1659 
1660 	return page;
1661 }
1662 
1663 /*
1664  * Increase the hugetlb pool such that it can accommodate a reservation
1665  * of size 'delta'.
1666  */
1667 static int gather_surplus_pages(struct hstate *h, int delta)
1668 {
1669 	struct list_head surplus_list;
1670 	struct page *page, *tmp;
1671 	int ret, i;
1672 	int needed, allocated;
1673 	bool alloc_ok = true;
1674 
1675 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1676 	if (needed <= 0) {
1677 		h->resv_huge_pages += delta;
1678 		return 0;
1679 	}
1680 
1681 	allocated = 0;
1682 	INIT_LIST_HEAD(&surplus_list);
1683 
1684 	ret = -ENOMEM;
1685 retry:
1686 	spin_unlock(&hugetlb_lock);
1687 	for (i = 0; i < needed; i++) {
1688 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1689 		if (!page) {
1690 			alloc_ok = false;
1691 			break;
1692 		}
1693 		list_add(&page->lru, &surplus_list);
1694 	}
1695 	allocated += i;
1696 
1697 	/*
1698 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1699 	 * because either resv_huge_pages or free_huge_pages may have changed.
1700 	 */
1701 	spin_lock(&hugetlb_lock);
1702 	needed = (h->resv_huge_pages + delta) -
1703 			(h->free_huge_pages + allocated);
1704 	if (needed > 0) {
1705 		if (alloc_ok)
1706 			goto retry;
1707 		/*
1708 		 * We were not able to allocate enough pages to
1709 		 * satisfy the entire reservation so we free what
1710 		 * we've allocated so far.
1711 		 */
1712 		goto free;
1713 	}
1714 	/*
1715 	 * The surplus_list now contains _at_least_ the number of extra pages
1716 	 * needed to accommodate the reservation.  Add the appropriate number
1717 	 * of pages to the hugetlb pool and free the extras back to the buddy
1718 	 * allocator.  Commit the entire reservation here to prevent another
1719 	 * process from stealing the pages as they are added to the pool but
1720 	 * before they are reserved.
1721 	 */
1722 	needed += allocated;
1723 	h->resv_huge_pages += delta;
1724 	ret = 0;
1725 
1726 	/* Free the needed pages to the hugetlb pool */
1727 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1728 		if ((--needed) < 0)
1729 			break;
1730 		/*
1731 		 * This page is now managed by the hugetlb allocator and has
1732 		 * no users -- drop the buddy allocator's reference.
1733 		 */
1734 		put_page_testzero(page);
1735 		VM_BUG_ON_PAGE(page_count(page), page);
1736 		enqueue_huge_page(h, page);
1737 	}
1738 free:
1739 	spin_unlock(&hugetlb_lock);
1740 
1741 	/* Free unnecessary surplus pages to the buddy allocator */
1742 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1743 		put_page(page);
1744 	spin_lock(&hugetlb_lock);
1745 
1746 	return ret;
1747 }
1748 
1749 /*
1750  * When releasing a hugetlb pool reservation, any surplus pages that were
1751  * allocated to satisfy the reservation must be explicitly freed if they were
1752  * never used.
1753  * Called with hugetlb_lock held.
1754  */
1755 static void return_unused_surplus_pages(struct hstate *h,
1756 					unsigned long unused_resv_pages)
1757 {
1758 	unsigned long nr_pages;
1759 
1760 	/* Uncommit the reservation */
1761 	h->resv_huge_pages -= unused_resv_pages;
1762 
1763 	/* Cannot return gigantic pages currently */
1764 	if (hstate_is_gigantic(h))
1765 		return;
1766 
1767 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1768 
1769 	/*
1770 	 * We want to release as many surplus pages as possible, spread
1771 	 * evenly across all nodes with memory. Iterate across these nodes
1772 	 * until we can no longer free unreserved surplus pages. This occurs
1773 	 * when the nodes with surplus pages have no free pages.
1774 	 * free_pool_huge_page() will balance the the freed pages across the
1775 	 * on-line nodes with memory and will handle the hstate accounting.
1776 	 */
1777 	while (nr_pages--) {
1778 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1779 			break;
1780 		cond_resched_lock(&hugetlb_lock);
1781 	}
1782 }
1783 
1784 
1785 /*
1786  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1787  * are used by the huge page allocation routines to manage reservations.
1788  *
1789  * vma_needs_reservation is called to determine if the huge page at addr
1790  * within the vma has an associated reservation.  If a reservation is
1791  * needed, the value 1 is returned.  The caller is then responsible for
1792  * managing the global reservation and subpool usage counts.  After
1793  * the huge page has been allocated, vma_commit_reservation is called
1794  * to add the page to the reservation map.  If the page allocation fails,
1795  * the reservation must be ended instead of committed.  vma_end_reservation
1796  * is called in such cases.
1797  *
1798  * In the normal case, vma_commit_reservation returns the same value
1799  * as the preceding vma_needs_reservation call.  The only time this
1800  * is not the case is if a reserve map was changed between calls.  It
1801  * is the responsibility of the caller to notice the difference and
1802  * take appropriate action.
1803  */
1804 enum vma_resv_mode {
1805 	VMA_NEEDS_RESV,
1806 	VMA_COMMIT_RESV,
1807 	VMA_END_RESV,
1808 };
1809 static long __vma_reservation_common(struct hstate *h,
1810 				struct vm_area_struct *vma, unsigned long addr,
1811 				enum vma_resv_mode mode)
1812 {
1813 	struct resv_map *resv;
1814 	pgoff_t idx;
1815 	long ret;
1816 
1817 	resv = vma_resv_map(vma);
1818 	if (!resv)
1819 		return 1;
1820 
1821 	idx = vma_hugecache_offset(h, vma, addr);
1822 	switch (mode) {
1823 	case VMA_NEEDS_RESV:
1824 		ret = region_chg(resv, idx, idx + 1);
1825 		break;
1826 	case VMA_COMMIT_RESV:
1827 		ret = region_add(resv, idx, idx + 1);
1828 		break;
1829 	case VMA_END_RESV:
1830 		region_abort(resv, idx, idx + 1);
1831 		ret = 0;
1832 		break;
1833 	default:
1834 		BUG();
1835 	}
1836 
1837 	if (vma->vm_flags & VM_MAYSHARE)
1838 		return ret;
1839 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1840 		/*
1841 		 * In most cases, reserves always exist for private mappings.
1842 		 * However, a file associated with mapping could have been
1843 		 * hole punched or truncated after reserves were consumed.
1844 		 * As subsequent fault on such a range will not use reserves.
1845 		 * Subtle - The reserve map for private mappings has the
1846 		 * opposite meaning than that of shared mappings.  If NO
1847 		 * entry is in the reserve map, it means a reservation exists.
1848 		 * If an entry exists in the reserve map, it means the
1849 		 * reservation has already been consumed.  As a result, the
1850 		 * return value of this routine is the opposite of the
1851 		 * value returned from reserve map manipulation routines above.
1852 		 */
1853 		if (ret)
1854 			return 0;
1855 		else
1856 			return 1;
1857 	}
1858 	else
1859 		return ret < 0 ? ret : 0;
1860 }
1861 
1862 static long vma_needs_reservation(struct hstate *h,
1863 			struct vm_area_struct *vma, unsigned long addr)
1864 {
1865 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1866 }
1867 
1868 static long vma_commit_reservation(struct hstate *h,
1869 			struct vm_area_struct *vma, unsigned long addr)
1870 {
1871 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1872 }
1873 
1874 static void vma_end_reservation(struct hstate *h,
1875 			struct vm_area_struct *vma, unsigned long addr)
1876 {
1877 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1878 }
1879 
1880 struct page *alloc_huge_page(struct vm_area_struct *vma,
1881 				    unsigned long addr, int avoid_reserve)
1882 {
1883 	struct hugepage_subpool *spool = subpool_vma(vma);
1884 	struct hstate *h = hstate_vma(vma);
1885 	struct page *page;
1886 	long map_chg, map_commit;
1887 	long gbl_chg;
1888 	int ret, idx;
1889 	struct hugetlb_cgroup *h_cg;
1890 
1891 	idx = hstate_index(h);
1892 	/*
1893 	 * Examine the region/reserve map to determine if the process
1894 	 * has a reservation for the page to be allocated.  A return
1895 	 * code of zero indicates a reservation exists (no change).
1896 	 */
1897 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1898 	if (map_chg < 0)
1899 		return ERR_PTR(-ENOMEM);
1900 
1901 	/*
1902 	 * Processes that did not create the mapping will have no
1903 	 * reserves as indicated by the region/reserve map. Check
1904 	 * that the allocation will not exceed the subpool limit.
1905 	 * Allocations for MAP_NORESERVE mappings also need to be
1906 	 * checked against any subpool limit.
1907 	 */
1908 	if (map_chg || avoid_reserve) {
1909 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1910 		if (gbl_chg < 0) {
1911 			vma_end_reservation(h, vma, addr);
1912 			return ERR_PTR(-ENOSPC);
1913 		}
1914 
1915 		/*
1916 		 * Even though there was no reservation in the region/reserve
1917 		 * map, there could be reservations associated with the
1918 		 * subpool that can be used.  This would be indicated if the
1919 		 * return value of hugepage_subpool_get_pages() is zero.
1920 		 * However, if avoid_reserve is specified we still avoid even
1921 		 * the subpool reservations.
1922 		 */
1923 		if (avoid_reserve)
1924 			gbl_chg = 1;
1925 	}
1926 
1927 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1928 	if (ret)
1929 		goto out_subpool_put;
1930 
1931 	spin_lock(&hugetlb_lock);
1932 	/*
1933 	 * glb_chg is passed to indicate whether or not a page must be taken
1934 	 * from the global free pool (global change).  gbl_chg == 0 indicates
1935 	 * a reservation exists for the allocation.
1936 	 */
1937 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1938 	if (!page) {
1939 		spin_unlock(&hugetlb_lock);
1940 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1941 		if (!page)
1942 			goto out_uncharge_cgroup;
1943 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1944 			SetPagePrivate(page);
1945 			h->resv_huge_pages--;
1946 		}
1947 		spin_lock(&hugetlb_lock);
1948 		list_move(&page->lru, &h->hugepage_activelist);
1949 		/* Fall through */
1950 	}
1951 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1952 	spin_unlock(&hugetlb_lock);
1953 
1954 	set_page_private(page, (unsigned long)spool);
1955 
1956 	map_commit = vma_commit_reservation(h, vma, addr);
1957 	if (unlikely(map_chg > map_commit)) {
1958 		/*
1959 		 * The page was added to the reservation map between
1960 		 * vma_needs_reservation and vma_commit_reservation.
1961 		 * This indicates a race with hugetlb_reserve_pages.
1962 		 * Adjust for the subpool count incremented above AND
1963 		 * in hugetlb_reserve_pages for the same page.  Also,
1964 		 * the reservation count added in hugetlb_reserve_pages
1965 		 * no longer applies.
1966 		 */
1967 		long rsv_adjust;
1968 
1969 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1970 		hugetlb_acct_memory(h, -rsv_adjust);
1971 	}
1972 	return page;
1973 
1974 out_uncharge_cgroup:
1975 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1976 out_subpool_put:
1977 	if (map_chg || avoid_reserve)
1978 		hugepage_subpool_put_pages(spool, 1);
1979 	vma_end_reservation(h, vma, addr);
1980 	return ERR_PTR(-ENOSPC);
1981 }
1982 
1983 /*
1984  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1985  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1986  * where no ERR_VALUE is expected to be returned.
1987  */
1988 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1989 				unsigned long addr, int avoid_reserve)
1990 {
1991 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1992 	if (IS_ERR(page))
1993 		page = NULL;
1994 	return page;
1995 }
1996 
1997 int __weak alloc_bootmem_huge_page(struct hstate *h)
1998 {
1999 	struct huge_bootmem_page *m;
2000 	int nr_nodes, node;
2001 
2002 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2003 		void *addr;
2004 
2005 		addr = memblock_virt_alloc_try_nid_nopanic(
2006 				huge_page_size(h), huge_page_size(h),
2007 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2008 		if (addr) {
2009 			/*
2010 			 * Use the beginning of the huge page to store the
2011 			 * huge_bootmem_page struct (until gather_bootmem
2012 			 * puts them into the mem_map).
2013 			 */
2014 			m = addr;
2015 			goto found;
2016 		}
2017 	}
2018 	return 0;
2019 
2020 found:
2021 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2022 	/* Put them into a private list first because mem_map is not up yet */
2023 	list_add(&m->list, &huge_boot_pages);
2024 	m->hstate = h;
2025 	return 1;
2026 }
2027 
2028 static void __init prep_compound_huge_page(struct page *page,
2029 		unsigned int order)
2030 {
2031 	if (unlikely(order > (MAX_ORDER - 1)))
2032 		prep_compound_gigantic_page(page, order);
2033 	else
2034 		prep_compound_page(page, order);
2035 }
2036 
2037 /* Put bootmem huge pages into the standard lists after mem_map is up */
2038 static void __init gather_bootmem_prealloc(void)
2039 {
2040 	struct huge_bootmem_page *m;
2041 
2042 	list_for_each_entry(m, &huge_boot_pages, list) {
2043 		struct hstate *h = m->hstate;
2044 		struct page *page;
2045 
2046 #ifdef CONFIG_HIGHMEM
2047 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2048 		memblock_free_late(__pa(m),
2049 				   sizeof(struct huge_bootmem_page));
2050 #else
2051 		page = virt_to_page(m);
2052 #endif
2053 		WARN_ON(page_count(page) != 1);
2054 		prep_compound_huge_page(page, h->order);
2055 		WARN_ON(PageReserved(page));
2056 		prep_new_huge_page(h, page, page_to_nid(page));
2057 		/*
2058 		 * If we had gigantic hugepages allocated at boot time, we need
2059 		 * to restore the 'stolen' pages to totalram_pages in order to
2060 		 * fix confusing memory reports from free(1) and another
2061 		 * side-effects, like CommitLimit going negative.
2062 		 */
2063 		if (hstate_is_gigantic(h))
2064 			adjust_managed_page_count(page, 1 << h->order);
2065 	}
2066 }
2067 
2068 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2069 {
2070 	unsigned long i;
2071 
2072 	for (i = 0; i < h->max_huge_pages; ++i) {
2073 		if (hstate_is_gigantic(h)) {
2074 			if (!alloc_bootmem_huge_page(h))
2075 				break;
2076 		} else if (!alloc_fresh_huge_page(h,
2077 					 &node_states[N_MEMORY]))
2078 			break;
2079 	}
2080 	h->max_huge_pages = i;
2081 }
2082 
2083 static void __init hugetlb_init_hstates(void)
2084 {
2085 	struct hstate *h;
2086 
2087 	for_each_hstate(h) {
2088 		if (minimum_order > huge_page_order(h))
2089 			minimum_order = huge_page_order(h);
2090 
2091 		/* oversize hugepages were init'ed in early boot */
2092 		if (!hstate_is_gigantic(h))
2093 			hugetlb_hstate_alloc_pages(h);
2094 	}
2095 	VM_BUG_ON(minimum_order == UINT_MAX);
2096 }
2097 
2098 static char * __init memfmt(char *buf, unsigned long n)
2099 {
2100 	if (n >= (1UL << 30))
2101 		sprintf(buf, "%lu GB", n >> 30);
2102 	else if (n >= (1UL << 20))
2103 		sprintf(buf, "%lu MB", n >> 20);
2104 	else
2105 		sprintf(buf, "%lu KB", n >> 10);
2106 	return buf;
2107 }
2108 
2109 static void __init report_hugepages(void)
2110 {
2111 	struct hstate *h;
2112 
2113 	for_each_hstate(h) {
2114 		char buf[32];
2115 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2116 			memfmt(buf, huge_page_size(h)),
2117 			h->free_huge_pages);
2118 	}
2119 }
2120 
2121 #ifdef CONFIG_HIGHMEM
2122 static void try_to_free_low(struct hstate *h, unsigned long count,
2123 						nodemask_t *nodes_allowed)
2124 {
2125 	int i;
2126 
2127 	if (hstate_is_gigantic(h))
2128 		return;
2129 
2130 	for_each_node_mask(i, *nodes_allowed) {
2131 		struct page *page, *next;
2132 		struct list_head *freel = &h->hugepage_freelists[i];
2133 		list_for_each_entry_safe(page, next, freel, lru) {
2134 			if (count >= h->nr_huge_pages)
2135 				return;
2136 			if (PageHighMem(page))
2137 				continue;
2138 			list_del(&page->lru);
2139 			update_and_free_page(h, page);
2140 			h->free_huge_pages--;
2141 			h->free_huge_pages_node[page_to_nid(page)]--;
2142 		}
2143 	}
2144 }
2145 #else
2146 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2147 						nodemask_t *nodes_allowed)
2148 {
2149 }
2150 #endif
2151 
2152 /*
2153  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2154  * balanced by operating on them in a round-robin fashion.
2155  * Returns 1 if an adjustment was made.
2156  */
2157 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2158 				int delta)
2159 {
2160 	int nr_nodes, node;
2161 
2162 	VM_BUG_ON(delta != -1 && delta != 1);
2163 
2164 	if (delta < 0) {
2165 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2166 			if (h->surplus_huge_pages_node[node])
2167 				goto found;
2168 		}
2169 	} else {
2170 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2171 			if (h->surplus_huge_pages_node[node] <
2172 					h->nr_huge_pages_node[node])
2173 				goto found;
2174 		}
2175 	}
2176 	return 0;
2177 
2178 found:
2179 	h->surplus_huge_pages += delta;
2180 	h->surplus_huge_pages_node[node] += delta;
2181 	return 1;
2182 }
2183 
2184 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2185 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2186 						nodemask_t *nodes_allowed)
2187 {
2188 	unsigned long min_count, ret;
2189 
2190 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2191 		return h->max_huge_pages;
2192 
2193 	/*
2194 	 * Increase the pool size
2195 	 * First take pages out of surplus state.  Then make up the
2196 	 * remaining difference by allocating fresh huge pages.
2197 	 *
2198 	 * We might race with __alloc_buddy_huge_page() here and be unable
2199 	 * to convert a surplus huge page to a normal huge page. That is
2200 	 * not critical, though, it just means the overall size of the
2201 	 * pool might be one hugepage larger than it needs to be, but
2202 	 * within all the constraints specified by the sysctls.
2203 	 */
2204 	spin_lock(&hugetlb_lock);
2205 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2206 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2207 			break;
2208 	}
2209 
2210 	while (count > persistent_huge_pages(h)) {
2211 		/*
2212 		 * If this allocation races such that we no longer need the
2213 		 * page, free_huge_page will handle it by freeing the page
2214 		 * and reducing the surplus.
2215 		 */
2216 		spin_unlock(&hugetlb_lock);
2217 		if (hstate_is_gigantic(h))
2218 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2219 		else
2220 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2221 		spin_lock(&hugetlb_lock);
2222 		if (!ret)
2223 			goto out;
2224 
2225 		/* Bail for signals. Probably ctrl-c from user */
2226 		if (signal_pending(current))
2227 			goto out;
2228 	}
2229 
2230 	/*
2231 	 * Decrease the pool size
2232 	 * First return free pages to the buddy allocator (being careful
2233 	 * to keep enough around to satisfy reservations).  Then place
2234 	 * pages into surplus state as needed so the pool will shrink
2235 	 * to the desired size as pages become free.
2236 	 *
2237 	 * By placing pages into the surplus state independent of the
2238 	 * overcommit value, we are allowing the surplus pool size to
2239 	 * exceed overcommit. There are few sane options here. Since
2240 	 * __alloc_buddy_huge_page() is checking the global counter,
2241 	 * though, we'll note that we're not allowed to exceed surplus
2242 	 * and won't grow the pool anywhere else. Not until one of the
2243 	 * sysctls are changed, or the surplus pages go out of use.
2244 	 */
2245 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2246 	min_count = max(count, min_count);
2247 	try_to_free_low(h, min_count, nodes_allowed);
2248 	while (min_count < persistent_huge_pages(h)) {
2249 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2250 			break;
2251 		cond_resched_lock(&hugetlb_lock);
2252 	}
2253 	while (count < persistent_huge_pages(h)) {
2254 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2255 			break;
2256 	}
2257 out:
2258 	ret = persistent_huge_pages(h);
2259 	spin_unlock(&hugetlb_lock);
2260 	return ret;
2261 }
2262 
2263 #define HSTATE_ATTR_RO(_name) \
2264 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2265 
2266 #define HSTATE_ATTR(_name) \
2267 	static struct kobj_attribute _name##_attr = \
2268 		__ATTR(_name, 0644, _name##_show, _name##_store)
2269 
2270 static struct kobject *hugepages_kobj;
2271 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2272 
2273 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2274 
2275 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2276 {
2277 	int i;
2278 
2279 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2280 		if (hstate_kobjs[i] == kobj) {
2281 			if (nidp)
2282 				*nidp = NUMA_NO_NODE;
2283 			return &hstates[i];
2284 		}
2285 
2286 	return kobj_to_node_hstate(kobj, nidp);
2287 }
2288 
2289 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2290 					struct kobj_attribute *attr, char *buf)
2291 {
2292 	struct hstate *h;
2293 	unsigned long nr_huge_pages;
2294 	int nid;
2295 
2296 	h = kobj_to_hstate(kobj, &nid);
2297 	if (nid == NUMA_NO_NODE)
2298 		nr_huge_pages = h->nr_huge_pages;
2299 	else
2300 		nr_huge_pages = h->nr_huge_pages_node[nid];
2301 
2302 	return sprintf(buf, "%lu\n", nr_huge_pages);
2303 }
2304 
2305 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2306 					   struct hstate *h, int nid,
2307 					   unsigned long count, size_t len)
2308 {
2309 	int err;
2310 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2311 
2312 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2313 		err = -EINVAL;
2314 		goto out;
2315 	}
2316 
2317 	if (nid == NUMA_NO_NODE) {
2318 		/*
2319 		 * global hstate attribute
2320 		 */
2321 		if (!(obey_mempolicy &&
2322 				init_nodemask_of_mempolicy(nodes_allowed))) {
2323 			NODEMASK_FREE(nodes_allowed);
2324 			nodes_allowed = &node_states[N_MEMORY];
2325 		}
2326 	} else if (nodes_allowed) {
2327 		/*
2328 		 * per node hstate attribute: adjust count to global,
2329 		 * but restrict alloc/free to the specified node.
2330 		 */
2331 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2332 		init_nodemask_of_node(nodes_allowed, nid);
2333 	} else
2334 		nodes_allowed = &node_states[N_MEMORY];
2335 
2336 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2337 
2338 	if (nodes_allowed != &node_states[N_MEMORY])
2339 		NODEMASK_FREE(nodes_allowed);
2340 
2341 	return len;
2342 out:
2343 	NODEMASK_FREE(nodes_allowed);
2344 	return err;
2345 }
2346 
2347 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2348 					 struct kobject *kobj, const char *buf,
2349 					 size_t len)
2350 {
2351 	struct hstate *h;
2352 	unsigned long count;
2353 	int nid;
2354 	int err;
2355 
2356 	err = kstrtoul(buf, 10, &count);
2357 	if (err)
2358 		return err;
2359 
2360 	h = kobj_to_hstate(kobj, &nid);
2361 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2362 }
2363 
2364 static ssize_t nr_hugepages_show(struct kobject *kobj,
2365 				       struct kobj_attribute *attr, char *buf)
2366 {
2367 	return nr_hugepages_show_common(kobj, attr, buf);
2368 }
2369 
2370 static ssize_t nr_hugepages_store(struct kobject *kobj,
2371 	       struct kobj_attribute *attr, const char *buf, size_t len)
2372 {
2373 	return nr_hugepages_store_common(false, kobj, buf, len);
2374 }
2375 HSTATE_ATTR(nr_hugepages);
2376 
2377 #ifdef CONFIG_NUMA
2378 
2379 /*
2380  * hstate attribute for optionally mempolicy-based constraint on persistent
2381  * huge page alloc/free.
2382  */
2383 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2384 				       struct kobj_attribute *attr, char *buf)
2385 {
2386 	return nr_hugepages_show_common(kobj, attr, buf);
2387 }
2388 
2389 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2390 	       struct kobj_attribute *attr, const char *buf, size_t len)
2391 {
2392 	return nr_hugepages_store_common(true, kobj, buf, len);
2393 }
2394 HSTATE_ATTR(nr_hugepages_mempolicy);
2395 #endif
2396 
2397 
2398 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2399 					struct kobj_attribute *attr, char *buf)
2400 {
2401 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2402 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2403 }
2404 
2405 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2406 		struct kobj_attribute *attr, const char *buf, size_t count)
2407 {
2408 	int err;
2409 	unsigned long input;
2410 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2411 
2412 	if (hstate_is_gigantic(h))
2413 		return -EINVAL;
2414 
2415 	err = kstrtoul(buf, 10, &input);
2416 	if (err)
2417 		return err;
2418 
2419 	spin_lock(&hugetlb_lock);
2420 	h->nr_overcommit_huge_pages = input;
2421 	spin_unlock(&hugetlb_lock);
2422 
2423 	return count;
2424 }
2425 HSTATE_ATTR(nr_overcommit_hugepages);
2426 
2427 static ssize_t free_hugepages_show(struct kobject *kobj,
2428 					struct kobj_attribute *attr, char *buf)
2429 {
2430 	struct hstate *h;
2431 	unsigned long free_huge_pages;
2432 	int nid;
2433 
2434 	h = kobj_to_hstate(kobj, &nid);
2435 	if (nid == NUMA_NO_NODE)
2436 		free_huge_pages = h->free_huge_pages;
2437 	else
2438 		free_huge_pages = h->free_huge_pages_node[nid];
2439 
2440 	return sprintf(buf, "%lu\n", free_huge_pages);
2441 }
2442 HSTATE_ATTR_RO(free_hugepages);
2443 
2444 static ssize_t resv_hugepages_show(struct kobject *kobj,
2445 					struct kobj_attribute *attr, char *buf)
2446 {
2447 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2448 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2449 }
2450 HSTATE_ATTR_RO(resv_hugepages);
2451 
2452 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2453 					struct kobj_attribute *attr, char *buf)
2454 {
2455 	struct hstate *h;
2456 	unsigned long surplus_huge_pages;
2457 	int nid;
2458 
2459 	h = kobj_to_hstate(kobj, &nid);
2460 	if (nid == NUMA_NO_NODE)
2461 		surplus_huge_pages = h->surplus_huge_pages;
2462 	else
2463 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2464 
2465 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2466 }
2467 HSTATE_ATTR_RO(surplus_hugepages);
2468 
2469 static struct attribute *hstate_attrs[] = {
2470 	&nr_hugepages_attr.attr,
2471 	&nr_overcommit_hugepages_attr.attr,
2472 	&free_hugepages_attr.attr,
2473 	&resv_hugepages_attr.attr,
2474 	&surplus_hugepages_attr.attr,
2475 #ifdef CONFIG_NUMA
2476 	&nr_hugepages_mempolicy_attr.attr,
2477 #endif
2478 	NULL,
2479 };
2480 
2481 static struct attribute_group hstate_attr_group = {
2482 	.attrs = hstate_attrs,
2483 };
2484 
2485 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2486 				    struct kobject **hstate_kobjs,
2487 				    struct attribute_group *hstate_attr_group)
2488 {
2489 	int retval;
2490 	int hi = hstate_index(h);
2491 
2492 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2493 	if (!hstate_kobjs[hi])
2494 		return -ENOMEM;
2495 
2496 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2497 	if (retval)
2498 		kobject_put(hstate_kobjs[hi]);
2499 
2500 	return retval;
2501 }
2502 
2503 static void __init hugetlb_sysfs_init(void)
2504 {
2505 	struct hstate *h;
2506 	int err;
2507 
2508 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2509 	if (!hugepages_kobj)
2510 		return;
2511 
2512 	for_each_hstate(h) {
2513 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2514 					 hstate_kobjs, &hstate_attr_group);
2515 		if (err)
2516 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2517 	}
2518 }
2519 
2520 #ifdef CONFIG_NUMA
2521 
2522 /*
2523  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2524  * with node devices in node_devices[] using a parallel array.  The array
2525  * index of a node device or _hstate == node id.
2526  * This is here to avoid any static dependency of the node device driver, in
2527  * the base kernel, on the hugetlb module.
2528  */
2529 struct node_hstate {
2530 	struct kobject		*hugepages_kobj;
2531 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2532 };
2533 static struct node_hstate node_hstates[MAX_NUMNODES];
2534 
2535 /*
2536  * A subset of global hstate attributes for node devices
2537  */
2538 static struct attribute *per_node_hstate_attrs[] = {
2539 	&nr_hugepages_attr.attr,
2540 	&free_hugepages_attr.attr,
2541 	&surplus_hugepages_attr.attr,
2542 	NULL,
2543 };
2544 
2545 static struct attribute_group per_node_hstate_attr_group = {
2546 	.attrs = per_node_hstate_attrs,
2547 };
2548 
2549 /*
2550  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2551  * Returns node id via non-NULL nidp.
2552  */
2553 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2554 {
2555 	int nid;
2556 
2557 	for (nid = 0; nid < nr_node_ids; nid++) {
2558 		struct node_hstate *nhs = &node_hstates[nid];
2559 		int i;
2560 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2561 			if (nhs->hstate_kobjs[i] == kobj) {
2562 				if (nidp)
2563 					*nidp = nid;
2564 				return &hstates[i];
2565 			}
2566 	}
2567 
2568 	BUG();
2569 	return NULL;
2570 }
2571 
2572 /*
2573  * Unregister hstate attributes from a single node device.
2574  * No-op if no hstate attributes attached.
2575  */
2576 static void hugetlb_unregister_node(struct node *node)
2577 {
2578 	struct hstate *h;
2579 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2580 
2581 	if (!nhs->hugepages_kobj)
2582 		return;		/* no hstate attributes */
2583 
2584 	for_each_hstate(h) {
2585 		int idx = hstate_index(h);
2586 		if (nhs->hstate_kobjs[idx]) {
2587 			kobject_put(nhs->hstate_kobjs[idx]);
2588 			nhs->hstate_kobjs[idx] = NULL;
2589 		}
2590 	}
2591 
2592 	kobject_put(nhs->hugepages_kobj);
2593 	nhs->hugepages_kobj = NULL;
2594 }
2595 
2596 
2597 /*
2598  * Register hstate attributes for a single node device.
2599  * No-op if attributes already registered.
2600  */
2601 static void hugetlb_register_node(struct node *node)
2602 {
2603 	struct hstate *h;
2604 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2605 	int err;
2606 
2607 	if (nhs->hugepages_kobj)
2608 		return;		/* already allocated */
2609 
2610 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2611 							&node->dev.kobj);
2612 	if (!nhs->hugepages_kobj)
2613 		return;
2614 
2615 	for_each_hstate(h) {
2616 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2617 						nhs->hstate_kobjs,
2618 						&per_node_hstate_attr_group);
2619 		if (err) {
2620 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2621 				h->name, node->dev.id);
2622 			hugetlb_unregister_node(node);
2623 			break;
2624 		}
2625 	}
2626 }
2627 
2628 /*
2629  * hugetlb init time:  register hstate attributes for all registered node
2630  * devices of nodes that have memory.  All on-line nodes should have
2631  * registered their associated device by this time.
2632  */
2633 static void __init hugetlb_register_all_nodes(void)
2634 {
2635 	int nid;
2636 
2637 	for_each_node_state(nid, N_MEMORY) {
2638 		struct node *node = node_devices[nid];
2639 		if (node->dev.id == nid)
2640 			hugetlb_register_node(node);
2641 	}
2642 
2643 	/*
2644 	 * Let the node device driver know we're here so it can
2645 	 * [un]register hstate attributes on node hotplug.
2646 	 */
2647 	register_hugetlbfs_with_node(hugetlb_register_node,
2648 				     hugetlb_unregister_node);
2649 }
2650 #else	/* !CONFIG_NUMA */
2651 
2652 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2653 {
2654 	BUG();
2655 	if (nidp)
2656 		*nidp = -1;
2657 	return NULL;
2658 }
2659 
2660 static void hugetlb_register_all_nodes(void) { }
2661 
2662 #endif
2663 
2664 static int __init hugetlb_init(void)
2665 {
2666 	int i;
2667 
2668 	if (!hugepages_supported())
2669 		return 0;
2670 
2671 	if (!size_to_hstate(default_hstate_size)) {
2672 		default_hstate_size = HPAGE_SIZE;
2673 		if (!size_to_hstate(default_hstate_size))
2674 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2675 	}
2676 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2677 	if (default_hstate_max_huge_pages) {
2678 		if (!default_hstate.max_huge_pages)
2679 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2680 	}
2681 
2682 	hugetlb_init_hstates();
2683 	gather_bootmem_prealloc();
2684 	report_hugepages();
2685 
2686 	hugetlb_sysfs_init();
2687 	hugetlb_register_all_nodes();
2688 	hugetlb_cgroup_file_init();
2689 
2690 #ifdef CONFIG_SMP
2691 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2692 #else
2693 	num_fault_mutexes = 1;
2694 #endif
2695 	hugetlb_fault_mutex_table =
2696 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2697 	BUG_ON(!hugetlb_fault_mutex_table);
2698 
2699 	for (i = 0; i < num_fault_mutexes; i++)
2700 		mutex_init(&hugetlb_fault_mutex_table[i]);
2701 	return 0;
2702 }
2703 subsys_initcall(hugetlb_init);
2704 
2705 /* Should be called on processing a hugepagesz=... option */
2706 void __init hugetlb_bad_size(void)
2707 {
2708 	parsed_valid_hugepagesz = false;
2709 }
2710 
2711 void __init hugetlb_add_hstate(unsigned int order)
2712 {
2713 	struct hstate *h;
2714 	unsigned long i;
2715 
2716 	if (size_to_hstate(PAGE_SIZE << order)) {
2717 		pr_warn("hugepagesz= specified twice, ignoring\n");
2718 		return;
2719 	}
2720 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2721 	BUG_ON(order == 0);
2722 	h = &hstates[hugetlb_max_hstate++];
2723 	h->order = order;
2724 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2725 	h->nr_huge_pages = 0;
2726 	h->free_huge_pages = 0;
2727 	for (i = 0; i < MAX_NUMNODES; ++i)
2728 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2729 	INIT_LIST_HEAD(&h->hugepage_activelist);
2730 	h->next_nid_to_alloc = first_memory_node;
2731 	h->next_nid_to_free = first_memory_node;
2732 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2733 					huge_page_size(h)/1024);
2734 
2735 	parsed_hstate = h;
2736 }
2737 
2738 static int __init hugetlb_nrpages_setup(char *s)
2739 {
2740 	unsigned long *mhp;
2741 	static unsigned long *last_mhp;
2742 
2743 	if (!parsed_valid_hugepagesz) {
2744 		pr_warn("hugepages = %s preceded by "
2745 			"an unsupported hugepagesz, ignoring\n", s);
2746 		parsed_valid_hugepagesz = true;
2747 		return 1;
2748 	}
2749 	/*
2750 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2751 	 * so this hugepages= parameter goes to the "default hstate".
2752 	 */
2753 	else if (!hugetlb_max_hstate)
2754 		mhp = &default_hstate_max_huge_pages;
2755 	else
2756 		mhp = &parsed_hstate->max_huge_pages;
2757 
2758 	if (mhp == last_mhp) {
2759 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2760 		return 1;
2761 	}
2762 
2763 	if (sscanf(s, "%lu", mhp) <= 0)
2764 		*mhp = 0;
2765 
2766 	/*
2767 	 * Global state is always initialized later in hugetlb_init.
2768 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2769 	 * use the bootmem allocator.
2770 	 */
2771 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2772 		hugetlb_hstate_alloc_pages(parsed_hstate);
2773 
2774 	last_mhp = mhp;
2775 
2776 	return 1;
2777 }
2778 __setup("hugepages=", hugetlb_nrpages_setup);
2779 
2780 static int __init hugetlb_default_setup(char *s)
2781 {
2782 	default_hstate_size = memparse(s, &s);
2783 	return 1;
2784 }
2785 __setup("default_hugepagesz=", hugetlb_default_setup);
2786 
2787 static unsigned int cpuset_mems_nr(unsigned int *array)
2788 {
2789 	int node;
2790 	unsigned int nr = 0;
2791 
2792 	for_each_node_mask(node, cpuset_current_mems_allowed)
2793 		nr += array[node];
2794 
2795 	return nr;
2796 }
2797 
2798 #ifdef CONFIG_SYSCTL
2799 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2800 			 struct ctl_table *table, int write,
2801 			 void __user *buffer, size_t *length, loff_t *ppos)
2802 {
2803 	struct hstate *h = &default_hstate;
2804 	unsigned long tmp = h->max_huge_pages;
2805 	int ret;
2806 
2807 	if (!hugepages_supported())
2808 		return -EOPNOTSUPP;
2809 
2810 	table->data = &tmp;
2811 	table->maxlen = sizeof(unsigned long);
2812 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2813 	if (ret)
2814 		goto out;
2815 
2816 	if (write)
2817 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2818 						  NUMA_NO_NODE, tmp, *length);
2819 out:
2820 	return ret;
2821 }
2822 
2823 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2824 			  void __user *buffer, size_t *length, loff_t *ppos)
2825 {
2826 
2827 	return hugetlb_sysctl_handler_common(false, table, write,
2828 							buffer, length, ppos);
2829 }
2830 
2831 #ifdef CONFIG_NUMA
2832 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2833 			  void __user *buffer, size_t *length, loff_t *ppos)
2834 {
2835 	return hugetlb_sysctl_handler_common(true, table, write,
2836 							buffer, length, ppos);
2837 }
2838 #endif /* CONFIG_NUMA */
2839 
2840 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2841 			void __user *buffer,
2842 			size_t *length, loff_t *ppos)
2843 {
2844 	struct hstate *h = &default_hstate;
2845 	unsigned long tmp;
2846 	int ret;
2847 
2848 	if (!hugepages_supported())
2849 		return -EOPNOTSUPP;
2850 
2851 	tmp = h->nr_overcommit_huge_pages;
2852 
2853 	if (write && hstate_is_gigantic(h))
2854 		return -EINVAL;
2855 
2856 	table->data = &tmp;
2857 	table->maxlen = sizeof(unsigned long);
2858 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2859 	if (ret)
2860 		goto out;
2861 
2862 	if (write) {
2863 		spin_lock(&hugetlb_lock);
2864 		h->nr_overcommit_huge_pages = tmp;
2865 		spin_unlock(&hugetlb_lock);
2866 	}
2867 out:
2868 	return ret;
2869 }
2870 
2871 #endif /* CONFIG_SYSCTL */
2872 
2873 void hugetlb_report_meminfo(struct seq_file *m)
2874 {
2875 	struct hstate *h = &default_hstate;
2876 	if (!hugepages_supported())
2877 		return;
2878 	seq_printf(m,
2879 			"HugePages_Total:   %5lu\n"
2880 			"HugePages_Free:    %5lu\n"
2881 			"HugePages_Rsvd:    %5lu\n"
2882 			"HugePages_Surp:    %5lu\n"
2883 			"Hugepagesize:   %8lu kB\n",
2884 			h->nr_huge_pages,
2885 			h->free_huge_pages,
2886 			h->resv_huge_pages,
2887 			h->surplus_huge_pages,
2888 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2889 }
2890 
2891 int hugetlb_report_node_meminfo(int nid, char *buf)
2892 {
2893 	struct hstate *h = &default_hstate;
2894 	if (!hugepages_supported())
2895 		return 0;
2896 	return sprintf(buf,
2897 		"Node %d HugePages_Total: %5u\n"
2898 		"Node %d HugePages_Free:  %5u\n"
2899 		"Node %d HugePages_Surp:  %5u\n",
2900 		nid, h->nr_huge_pages_node[nid],
2901 		nid, h->free_huge_pages_node[nid],
2902 		nid, h->surplus_huge_pages_node[nid]);
2903 }
2904 
2905 void hugetlb_show_meminfo(void)
2906 {
2907 	struct hstate *h;
2908 	int nid;
2909 
2910 	if (!hugepages_supported())
2911 		return;
2912 
2913 	for_each_node_state(nid, N_MEMORY)
2914 		for_each_hstate(h)
2915 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2916 				nid,
2917 				h->nr_huge_pages_node[nid],
2918 				h->free_huge_pages_node[nid],
2919 				h->surplus_huge_pages_node[nid],
2920 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2921 }
2922 
2923 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2924 {
2925 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2926 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2927 }
2928 
2929 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2930 unsigned long hugetlb_total_pages(void)
2931 {
2932 	struct hstate *h;
2933 	unsigned long nr_total_pages = 0;
2934 
2935 	for_each_hstate(h)
2936 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2937 	return nr_total_pages;
2938 }
2939 
2940 static int hugetlb_acct_memory(struct hstate *h, long delta)
2941 {
2942 	int ret = -ENOMEM;
2943 
2944 	spin_lock(&hugetlb_lock);
2945 	/*
2946 	 * When cpuset is configured, it breaks the strict hugetlb page
2947 	 * reservation as the accounting is done on a global variable. Such
2948 	 * reservation is completely rubbish in the presence of cpuset because
2949 	 * the reservation is not checked against page availability for the
2950 	 * current cpuset. Application can still potentially OOM'ed by kernel
2951 	 * with lack of free htlb page in cpuset that the task is in.
2952 	 * Attempt to enforce strict accounting with cpuset is almost
2953 	 * impossible (or too ugly) because cpuset is too fluid that
2954 	 * task or memory node can be dynamically moved between cpusets.
2955 	 *
2956 	 * The change of semantics for shared hugetlb mapping with cpuset is
2957 	 * undesirable. However, in order to preserve some of the semantics,
2958 	 * we fall back to check against current free page availability as
2959 	 * a best attempt and hopefully to minimize the impact of changing
2960 	 * semantics that cpuset has.
2961 	 */
2962 	if (delta > 0) {
2963 		if (gather_surplus_pages(h, delta) < 0)
2964 			goto out;
2965 
2966 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2967 			return_unused_surplus_pages(h, delta);
2968 			goto out;
2969 		}
2970 	}
2971 
2972 	ret = 0;
2973 	if (delta < 0)
2974 		return_unused_surplus_pages(h, (unsigned long) -delta);
2975 
2976 out:
2977 	spin_unlock(&hugetlb_lock);
2978 	return ret;
2979 }
2980 
2981 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2982 {
2983 	struct resv_map *resv = vma_resv_map(vma);
2984 
2985 	/*
2986 	 * This new VMA should share its siblings reservation map if present.
2987 	 * The VMA will only ever have a valid reservation map pointer where
2988 	 * it is being copied for another still existing VMA.  As that VMA
2989 	 * has a reference to the reservation map it cannot disappear until
2990 	 * after this open call completes.  It is therefore safe to take a
2991 	 * new reference here without additional locking.
2992 	 */
2993 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2994 		kref_get(&resv->refs);
2995 }
2996 
2997 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2998 {
2999 	struct hstate *h = hstate_vma(vma);
3000 	struct resv_map *resv = vma_resv_map(vma);
3001 	struct hugepage_subpool *spool = subpool_vma(vma);
3002 	unsigned long reserve, start, end;
3003 	long gbl_reserve;
3004 
3005 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3006 		return;
3007 
3008 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3009 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3010 
3011 	reserve = (end - start) - region_count(resv, start, end);
3012 
3013 	kref_put(&resv->refs, resv_map_release);
3014 
3015 	if (reserve) {
3016 		/*
3017 		 * Decrement reserve counts.  The global reserve count may be
3018 		 * adjusted if the subpool has a minimum size.
3019 		 */
3020 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3021 		hugetlb_acct_memory(h, -gbl_reserve);
3022 	}
3023 }
3024 
3025 /*
3026  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3027  * handle_mm_fault() to try to instantiate regular-sized pages in the
3028  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3029  * this far.
3030  */
3031 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3032 {
3033 	BUG();
3034 	return 0;
3035 }
3036 
3037 const struct vm_operations_struct hugetlb_vm_ops = {
3038 	.fault = hugetlb_vm_op_fault,
3039 	.open = hugetlb_vm_op_open,
3040 	.close = hugetlb_vm_op_close,
3041 };
3042 
3043 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3044 				int writable)
3045 {
3046 	pte_t entry;
3047 
3048 	if (writable) {
3049 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3050 					 vma->vm_page_prot)));
3051 	} else {
3052 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3053 					   vma->vm_page_prot));
3054 	}
3055 	entry = pte_mkyoung(entry);
3056 	entry = pte_mkhuge(entry);
3057 	entry = arch_make_huge_pte(entry, vma, page, writable);
3058 
3059 	return entry;
3060 }
3061 
3062 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3063 				   unsigned long address, pte_t *ptep)
3064 {
3065 	pte_t entry;
3066 
3067 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3068 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3069 		update_mmu_cache(vma, address, ptep);
3070 }
3071 
3072 static int is_hugetlb_entry_migration(pte_t pte)
3073 {
3074 	swp_entry_t swp;
3075 
3076 	if (huge_pte_none(pte) || pte_present(pte))
3077 		return 0;
3078 	swp = pte_to_swp_entry(pte);
3079 	if (non_swap_entry(swp) && is_migration_entry(swp))
3080 		return 1;
3081 	else
3082 		return 0;
3083 }
3084 
3085 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3086 {
3087 	swp_entry_t swp;
3088 
3089 	if (huge_pte_none(pte) || pte_present(pte))
3090 		return 0;
3091 	swp = pte_to_swp_entry(pte);
3092 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3093 		return 1;
3094 	else
3095 		return 0;
3096 }
3097 
3098 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3099 			    struct vm_area_struct *vma)
3100 {
3101 	pte_t *src_pte, *dst_pte, entry;
3102 	struct page *ptepage;
3103 	unsigned long addr;
3104 	int cow;
3105 	struct hstate *h = hstate_vma(vma);
3106 	unsigned long sz = huge_page_size(h);
3107 	unsigned long mmun_start;	/* For mmu_notifiers */
3108 	unsigned long mmun_end;		/* For mmu_notifiers */
3109 	int ret = 0;
3110 
3111 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3112 
3113 	mmun_start = vma->vm_start;
3114 	mmun_end = vma->vm_end;
3115 	if (cow)
3116 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3117 
3118 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3119 		spinlock_t *src_ptl, *dst_ptl;
3120 		src_pte = huge_pte_offset(src, addr);
3121 		if (!src_pte)
3122 			continue;
3123 		dst_pte = huge_pte_alloc(dst, addr, sz);
3124 		if (!dst_pte) {
3125 			ret = -ENOMEM;
3126 			break;
3127 		}
3128 
3129 		/* If the pagetables are shared don't copy or take references */
3130 		if (dst_pte == src_pte)
3131 			continue;
3132 
3133 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3134 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3135 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3136 		entry = huge_ptep_get(src_pte);
3137 		if (huge_pte_none(entry)) { /* skip none entry */
3138 			;
3139 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3140 				    is_hugetlb_entry_hwpoisoned(entry))) {
3141 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3142 
3143 			if (is_write_migration_entry(swp_entry) && cow) {
3144 				/*
3145 				 * COW mappings require pages in both
3146 				 * parent and child to be set to read.
3147 				 */
3148 				make_migration_entry_read(&swp_entry);
3149 				entry = swp_entry_to_pte(swp_entry);
3150 				set_huge_pte_at(src, addr, src_pte, entry);
3151 			}
3152 			set_huge_pte_at(dst, addr, dst_pte, entry);
3153 		} else {
3154 			if (cow) {
3155 				huge_ptep_set_wrprotect(src, addr, src_pte);
3156 				mmu_notifier_invalidate_range(src, mmun_start,
3157 								   mmun_end);
3158 			}
3159 			entry = huge_ptep_get(src_pte);
3160 			ptepage = pte_page(entry);
3161 			get_page(ptepage);
3162 			page_dup_rmap(ptepage, true);
3163 			set_huge_pte_at(dst, addr, dst_pte, entry);
3164 			hugetlb_count_add(pages_per_huge_page(h), dst);
3165 		}
3166 		spin_unlock(src_ptl);
3167 		spin_unlock(dst_ptl);
3168 	}
3169 
3170 	if (cow)
3171 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3172 
3173 	return ret;
3174 }
3175 
3176 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3177 			    unsigned long start, unsigned long end,
3178 			    struct page *ref_page)
3179 {
3180 	int force_flush = 0;
3181 	struct mm_struct *mm = vma->vm_mm;
3182 	unsigned long address;
3183 	pte_t *ptep;
3184 	pte_t pte;
3185 	spinlock_t *ptl;
3186 	struct page *page;
3187 	struct hstate *h = hstate_vma(vma);
3188 	unsigned long sz = huge_page_size(h);
3189 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3190 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3191 
3192 	WARN_ON(!is_vm_hugetlb_page(vma));
3193 	BUG_ON(start & ~huge_page_mask(h));
3194 	BUG_ON(end & ~huge_page_mask(h));
3195 
3196 	tlb_start_vma(tlb, vma);
3197 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3198 	address = start;
3199 again:
3200 	for (; address < end; address += sz) {
3201 		ptep = huge_pte_offset(mm, address);
3202 		if (!ptep)
3203 			continue;
3204 
3205 		ptl = huge_pte_lock(h, mm, ptep);
3206 		if (huge_pmd_unshare(mm, &address, ptep))
3207 			goto unlock;
3208 
3209 		pte = huge_ptep_get(ptep);
3210 		if (huge_pte_none(pte))
3211 			goto unlock;
3212 
3213 		/*
3214 		 * Migrating hugepage or HWPoisoned hugepage is already
3215 		 * unmapped and its refcount is dropped, so just clear pte here.
3216 		 */
3217 		if (unlikely(!pte_present(pte))) {
3218 			huge_pte_clear(mm, address, ptep);
3219 			goto unlock;
3220 		}
3221 
3222 		page = pte_page(pte);
3223 		/*
3224 		 * If a reference page is supplied, it is because a specific
3225 		 * page is being unmapped, not a range. Ensure the page we
3226 		 * are about to unmap is the actual page of interest.
3227 		 */
3228 		if (ref_page) {
3229 			if (page != ref_page)
3230 				goto unlock;
3231 
3232 			/*
3233 			 * Mark the VMA as having unmapped its page so that
3234 			 * future faults in this VMA will fail rather than
3235 			 * looking like data was lost
3236 			 */
3237 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3238 		}
3239 
3240 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3241 		tlb_remove_tlb_entry(tlb, ptep, address);
3242 		if (huge_pte_dirty(pte))
3243 			set_page_dirty(page);
3244 
3245 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3246 		page_remove_rmap(page, true);
3247 		force_flush = !__tlb_remove_page(tlb, page);
3248 		if (force_flush) {
3249 			address += sz;
3250 			spin_unlock(ptl);
3251 			break;
3252 		}
3253 		/* Bail out after unmapping reference page if supplied */
3254 		if (ref_page) {
3255 			spin_unlock(ptl);
3256 			break;
3257 		}
3258 unlock:
3259 		spin_unlock(ptl);
3260 	}
3261 	/*
3262 	 * mmu_gather ran out of room to batch pages, we break out of
3263 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3264 	 * and page-free while holding it.
3265 	 */
3266 	if (force_flush) {
3267 		force_flush = 0;
3268 		tlb_flush_mmu(tlb);
3269 		if (address < end && !ref_page)
3270 			goto again;
3271 	}
3272 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3273 	tlb_end_vma(tlb, vma);
3274 }
3275 
3276 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3277 			  struct vm_area_struct *vma, unsigned long start,
3278 			  unsigned long end, struct page *ref_page)
3279 {
3280 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3281 
3282 	/*
3283 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3284 	 * test will fail on a vma being torn down, and not grab a page table
3285 	 * on its way out.  We're lucky that the flag has such an appropriate
3286 	 * name, and can in fact be safely cleared here. We could clear it
3287 	 * before the __unmap_hugepage_range above, but all that's necessary
3288 	 * is to clear it before releasing the i_mmap_rwsem. This works
3289 	 * because in the context this is called, the VMA is about to be
3290 	 * destroyed and the i_mmap_rwsem is held.
3291 	 */
3292 	vma->vm_flags &= ~VM_MAYSHARE;
3293 }
3294 
3295 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3296 			  unsigned long end, struct page *ref_page)
3297 {
3298 	struct mm_struct *mm;
3299 	struct mmu_gather tlb;
3300 
3301 	mm = vma->vm_mm;
3302 
3303 	tlb_gather_mmu(&tlb, mm, start, end);
3304 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3305 	tlb_finish_mmu(&tlb, start, end);
3306 }
3307 
3308 /*
3309  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3310  * mappping it owns the reserve page for. The intention is to unmap the page
3311  * from other VMAs and let the children be SIGKILLed if they are faulting the
3312  * same region.
3313  */
3314 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3315 			      struct page *page, unsigned long address)
3316 {
3317 	struct hstate *h = hstate_vma(vma);
3318 	struct vm_area_struct *iter_vma;
3319 	struct address_space *mapping;
3320 	pgoff_t pgoff;
3321 
3322 	/*
3323 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3324 	 * from page cache lookup which is in HPAGE_SIZE units.
3325 	 */
3326 	address = address & huge_page_mask(h);
3327 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3328 			vma->vm_pgoff;
3329 	mapping = file_inode(vma->vm_file)->i_mapping;
3330 
3331 	/*
3332 	 * Take the mapping lock for the duration of the table walk. As
3333 	 * this mapping should be shared between all the VMAs,
3334 	 * __unmap_hugepage_range() is called as the lock is already held
3335 	 */
3336 	i_mmap_lock_write(mapping);
3337 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3338 		/* Do not unmap the current VMA */
3339 		if (iter_vma == vma)
3340 			continue;
3341 
3342 		/*
3343 		 * Shared VMAs have their own reserves and do not affect
3344 		 * MAP_PRIVATE accounting but it is possible that a shared
3345 		 * VMA is using the same page so check and skip such VMAs.
3346 		 */
3347 		if (iter_vma->vm_flags & VM_MAYSHARE)
3348 			continue;
3349 
3350 		/*
3351 		 * Unmap the page from other VMAs without their own reserves.
3352 		 * They get marked to be SIGKILLed if they fault in these
3353 		 * areas. This is because a future no-page fault on this VMA
3354 		 * could insert a zeroed page instead of the data existing
3355 		 * from the time of fork. This would look like data corruption
3356 		 */
3357 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3358 			unmap_hugepage_range(iter_vma, address,
3359 					     address + huge_page_size(h), page);
3360 	}
3361 	i_mmap_unlock_write(mapping);
3362 }
3363 
3364 /*
3365  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3366  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3367  * cannot race with other handlers or page migration.
3368  * Keep the pte_same checks anyway to make transition from the mutex easier.
3369  */
3370 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3371 			unsigned long address, pte_t *ptep, pte_t pte,
3372 			struct page *pagecache_page, spinlock_t *ptl)
3373 {
3374 	struct hstate *h = hstate_vma(vma);
3375 	struct page *old_page, *new_page;
3376 	int ret = 0, outside_reserve = 0;
3377 	unsigned long mmun_start;	/* For mmu_notifiers */
3378 	unsigned long mmun_end;		/* For mmu_notifiers */
3379 
3380 	old_page = pte_page(pte);
3381 
3382 retry_avoidcopy:
3383 	/* If no-one else is actually using this page, avoid the copy
3384 	 * and just make the page writable */
3385 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3386 		page_move_anon_rmap(old_page, vma);
3387 		set_huge_ptep_writable(vma, address, ptep);
3388 		return 0;
3389 	}
3390 
3391 	/*
3392 	 * If the process that created a MAP_PRIVATE mapping is about to
3393 	 * perform a COW due to a shared page count, attempt to satisfy
3394 	 * the allocation without using the existing reserves. The pagecache
3395 	 * page is used to determine if the reserve at this address was
3396 	 * consumed or not. If reserves were used, a partial faulted mapping
3397 	 * at the time of fork() could consume its reserves on COW instead
3398 	 * of the full address range.
3399 	 */
3400 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3401 			old_page != pagecache_page)
3402 		outside_reserve = 1;
3403 
3404 	get_page(old_page);
3405 
3406 	/*
3407 	 * Drop page table lock as buddy allocator may be called. It will
3408 	 * be acquired again before returning to the caller, as expected.
3409 	 */
3410 	spin_unlock(ptl);
3411 	new_page = alloc_huge_page(vma, address, outside_reserve);
3412 
3413 	if (IS_ERR(new_page)) {
3414 		/*
3415 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3416 		 * it is due to references held by a child and an insufficient
3417 		 * huge page pool. To guarantee the original mappers
3418 		 * reliability, unmap the page from child processes. The child
3419 		 * may get SIGKILLed if it later faults.
3420 		 */
3421 		if (outside_reserve) {
3422 			put_page(old_page);
3423 			BUG_ON(huge_pte_none(pte));
3424 			unmap_ref_private(mm, vma, old_page, address);
3425 			BUG_ON(huge_pte_none(pte));
3426 			spin_lock(ptl);
3427 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3428 			if (likely(ptep &&
3429 				   pte_same(huge_ptep_get(ptep), pte)))
3430 				goto retry_avoidcopy;
3431 			/*
3432 			 * race occurs while re-acquiring page table
3433 			 * lock, and our job is done.
3434 			 */
3435 			return 0;
3436 		}
3437 
3438 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3439 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3440 		goto out_release_old;
3441 	}
3442 
3443 	/*
3444 	 * When the original hugepage is shared one, it does not have
3445 	 * anon_vma prepared.
3446 	 */
3447 	if (unlikely(anon_vma_prepare(vma))) {
3448 		ret = VM_FAULT_OOM;
3449 		goto out_release_all;
3450 	}
3451 
3452 	copy_user_huge_page(new_page, old_page, address, vma,
3453 			    pages_per_huge_page(h));
3454 	__SetPageUptodate(new_page);
3455 	set_page_huge_active(new_page);
3456 
3457 	mmun_start = address & huge_page_mask(h);
3458 	mmun_end = mmun_start + huge_page_size(h);
3459 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3460 
3461 	/*
3462 	 * Retake the page table lock to check for racing updates
3463 	 * before the page tables are altered
3464 	 */
3465 	spin_lock(ptl);
3466 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3467 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3468 		ClearPagePrivate(new_page);
3469 
3470 		/* Break COW */
3471 		huge_ptep_clear_flush(vma, address, ptep);
3472 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3473 		set_huge_pte_at(mm, address, ptep,
3474 				make_huge_pte(vma, new_page, 1));
3475 		page_remove_rmap(old_page, true);
3476 		hugepage_add_new_anon_rmap(new_page, vma, address);
3477 		/* Make the old page be freed below */
3478 		new_page = old_page;
3479 	}
3480 	spin_unlock(ptl);
3481 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3482 out_release_all:
3483 	put_page(new_page);
3484 out_release_old:
3485 	put_page(old_page);
3486 
3487 	spin_lock(ptl); /* Caller expects lock to be held */
3488 	return ret;
3489 }
3490 
3491 /* Return the pagecache page at a given address within a VMA */
3492 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3493 			struct vm_area_struct *vma, unsigned long address)
3494 {
3495 	struct address_space *mapping;
3496 	pgoff_t idx;
3497 
3498 	mapping = vma->vm_file->f_mapping;
3499 	idx = vma_hugecache_offset(h, vma, address);
3500 
3501 	return find_lock_page(mapping, idx);
3502 }
3503 
3504 /*
3505  * Return whether there is a pagecache page to back given address within VMA.
3506  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3507  */
3508 static bool hugetlbfs_pagecache_present(struct hstate *h,
3509 			struct vm_area_struct *vma, unsigned long address)
3510 {
3511 	struct address_space *mapping;
3512 	pgoff_t idx;
3513 	struct page *page;
3514 
3515 	mapping = vma->vm_file->f_mapping;
3516 	idx = vma_hugecache_offset(h, vma, address);
3517 
3518 	page = find_get_page(mapping, idx);
3519 	if (page)
3520 		put_page(page);
3521 	return page != NULL;
3522 }
3523 
3524 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3525 			   pgoff_t idx)
3526 {
3527 	struct inode *inode = mapping->host;
3528 	struct hstate *h = hstate_inode(inode);
3529 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3530 
3531 	if (err)
3532 		return err;
3533 	ClearPagePrivate(page);
3534 
3535 	spin_lock(&inode->i_lock);
3536 	inode->i_blocks += blocks_per_huge_page(h);
3537 	spin_unlock(&inode->i_lock);
3538 	return 0;
3539 }
3540 
3541 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3542 			   struct address_space *mapping, pgoff_t idx,
3543 			   unsigned long address, pte_t *ptep, unsigned int flags)
3544 {
3545 	struct hstate *h = hstate_vma(vma);
3546 	int ret = VM_FAULT_SIGBUS;
3547 	int anon_rmap = 0;
3548 	unsigned long size;
3549 	struct page *page;
3550 	pte_t new_pte;
3551 	spinlock_t *ptl;
3552 
3553 	/*
3554 	 * Currently, we are forced to kill the process in the event the
3555 	 * original mapper has unmapped pages from the child due to a failed
3556 	 * COW. Warn that such a situation has occurred as it may not be obvious
3557 	 */
3558 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3559 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3560 			   current->pid);
3561 		return ret;
3562 	}
3563 
3564 	/*
3565 	 * Use page lock to guard against racing truncation
3566 	 * before we get page_table_lock.
3567 	 */
3568 retry:
3569 	page = find_lock_page(mapping, idx);
3570 	if (!page) {
3571 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3572 		if (idx >= size)
3573 			goto out;
3574 		page = alloc_huge_page(vma, address, 0);
3575 		if (IS_ERR(page)) {
3576 			ret = PTR_ERR(page);
3577 			if (ret == -ENOMEM)
3578 				ret = VM_FAULT_OOM;
3579 			else
3580 				ret = VM_FAULT_SIGBUS;
3581 			goto out;
3582 		}
3583 		clear_huge_page(page, address, pages_per_huge_page(h));
3584 		__SetPageUptodate(page);
3585 		set_page_huge_active(page);
3586 
3587 		if (vma->vm_flags & VM_MAYSHARE) {
3588 			int err = huge_add_to_page_cache(page, mapping, idx);
3589 			if (err) {
3590 				put_page(page);
3591 				if (err == -EEXIST)
3592 					goto retry;
3593 				goto out;
3594 			}
3595 		} else {
3596 			lock_page(page);
3597 			if (unlikely(anon_vma_prepare(vma))) {
3598 				ret = VM_FAULT_OOM;
3599 				goto backout_unlocked;
3600 			}
3601 			anon_rmap = 1;
3602 		}
3603 	} else {
3604 		/*
3605 		 * If memory error occurs between mmap() and fault, some process
3606 		 * don't have hwpoisoned swap entry for errored virtual address.
3607 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3608 		 */
3609 		if (unlikely(PageHWPoison(page))) {
3610 			ret = VM_FAULT_HWPOISON |
3611 				VM_FAULT_SET_HINDEX(hstate_index(h));
3612 			goto backout_unlocked;
3613 		}
3614 	}
3615 
3616 	/*
3617 	 * If we are going to COW a private mapping later, we examine the
3618 	 * pending reservations for this page now. This will ensure that
3619 	 * any allocations necessary to record that reservation occur outside
3620 	 * the spinlock.
3621 	 */
3622 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3623 		if (vma_needs_reservation(h, vma, address) < 0) {
3624 			ret = VM_FAULT_OOM;
3625 			goto backout_unlocked;
3626 		}
3627 		/* Just decrements count, does not deallocate */
3628 		vma_end_reservation(h, vma, address);
3629 	}
3630 
3631 	ptl = huge_pte_lockptr(h, mm, ptep);
3632 	spin_lock(ptl);
3633 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3634 	if (idx >= size)
3635 		goto backout;
3636 
3637 	ret = 0;
3638 	if (!huge_pte_none(huge_ptep_get(ptep)))
3639 		goto backout;
3640 
3641 	if (anon_rmap) {
3642 		ClearPagePrivate(page);
3643 		hugepage_add_new_anon_rmap(page, vma, address);
3644 	} else
3645 		page_dup_rmap(page, true);
3646 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3647 				&& (vma->vm_flags & VM_SHARED)));
3648 	set_huge_pte_at(mm, address, ptep, new_pte);
3649 
3650 	hugetlb_count_add(pages_per_huge_page(h), mm);
3651 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3652 		/* Optimization, do the COW without a second fault */
3653 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3654 	}
3655 
3656 	spin_unlock(ptl);
3657 	unlock_page(page);
3658 out:
3659 	return ret;
3660 
3661 backout:
3662 	spin_unlock(ptl);
3663 backout_unlocked:
3664 	unlock_page(page);
3665 	put_page(page);
3666 	goto out;
3667 }
3668 
3669 #ifdef CONFIG_SMP
3670 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3671 			    struct vm_area_struct *vma,
3672 			    struct address_space *mapping,
3673 			    pgoff_t idx, unsigned long address)
3674 {
3675 	unsigned long key[2];
3676 	u32 hash;
3677 
3678 	if (vma->vm_flags & VM_SHARED) {
3679 		key[0] = (unsigned long) mapping;
3680 		key[1] = idx;
3681 	} else {
3682 		key[0] = (unsigned long) mm;
3683 		key[1] = address >> huge_page_shift(h);
3684 	}
3685 
3686 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3687 
3688 	return hash & (num_fault_mutexes - 1);
3689 }
3690 #else
3691 /*
3692  * For uniprocesor systems we always use a single mutex, so just
3693  * return 0 and avoid the hashing overhead.
3694  */
3695 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3696 			    struct vm_area_struct *vma,
3697 			    struct address_space *mapping,
3698 			    pgoff_t idx, unsigned long address)
3699 {
3700 	return 0;
3701 }
3702 #endif
3703 
3704 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3705 			unsigned long address, unsigned int flags)
3706 {
3707 	pte_t *ptep, entry;
3708 	spinlock_t *ptl;
3709 	int ret;
3710 	u32 hash;
3711 	pgoff_t idx;
3712 	struct page *page = NULL;
3713 	struct page *pagecache_page = NULL;
3714 	struct hstate *h = hstate_vma(vma);
3715 	struct address_space *mapping;
3716 	int need_wait_lock = 0;
3717 
3718 	address &= huge_page_mask(h);
3719 
3720 	ptep = huge_pte_offset(mm, address);
3721 	if (ptep) {
3722 		entry = huge_ptep_get(ptep);
3723 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3724 			migration_entry_wait_huge(vma, mm, ptep);
3725 			return 0;
3726 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3727 			return VM_FAULT_HWPOISON_LARGE |
3728 				VM_FAULT_SET_HINDEX(hstate_index(h));
3729 	} else {
3730 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3731 		if (!ptep)
3732 			return VM_FAULT_OOM;
3733 	}
3734 
3735 	mapping = vma->vm_file->f_mapping;
3736 	idx = vma_hugecache_offset(h, vma, address);
3737 
3738 	/*
3739 	 * Serialize hugepage allocation and instantiation, so that we don't
3740 	 * get spurious allocation failures if two CPUs race to instantiate
3741 	 * the same page in the page cache.
3742 	 */
3743 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3744 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3745 
3746 	entry = huge_ptep_get(ptep);
3747 	if (huge_pte_none(entry)) {
3748 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3749 		goto out_mutex;
3750 	}
3751 
3752 	ret = 0;
3753 
3754 	/*
3755 	 * entry could be a migration/hwpoison entry at this point, so this
3756 	 * check prevents the kernel from going below assuming that we have
3757 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3758 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3759 	 * handle it.
3760 	 */
3761 	if (!pte_present(entry))
3762 		goto out_mutex;
3763 
3764 	/*
3765 	 * If we are going to COW the mapping later, we examine the pending
3766 	 * reservations for this page now. This will ensure that any
3767 	 * allocations necessary to record that reservation occur outside the
3768 	 * spinlock. For private mappings, we also lookup the pagecache
3769 	 * page now as it is used to determine if a reservation has been
3770 	 * consumed.
3771 	 */
3772 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3773 		if (vma_needs_reservation(h, vma, address) < 0) {
3774 			ret = VM_FAULT_OOM;
3775 			goto out_mutex;
3776 		}
3777 		/* Just decrements count, does not deallocate */
3778 		vma_end_reservation(h, vma, address);
3779 
3780 		if (!(vma->vm_flags & VM_MAYSHARE))
3781 			pagecache_page = hugetlbfs_pagecache_page(h,
3782 								vma, address);
3783 	}
3784 
3785 	ptl = huge_pte_lock(h, mm, ptep);
3786 
3787 	/* Check for a racing update before calling hugetlb_cow */
3788 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3789 		goto out_ptl;
3790 
3791 	/*
3792 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3793 	 * pagecache_page, so here we need take the former one
3794 	 * when page != pagecache_page or !pagecache_page.
3795 	 */
3796 	page = pte_page(entry);
3797 	if (page != pagecache_page)
3798 		if (!trylock_page(page)) {
3799 			need_wait_lock = 1;
3800 			goto out_ptl;
3801 		}
3802 
3803 	get_page(page);
3804 
3805 	if (flags & FAULT_FLAG_WRITE) {
3806 		if (!huge_pte_write(entry)) {
3807 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3808 					pagecache_page, ptl);
3809 			goto out_put_page;
3810 		}
3811 		entry = huge_pte_mkdirty(entry);
3812 	}
3813 	entry = pte_mkyoung(entry);
3814 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3815 						flags & FAULT_FLAG_WRITE))
3816 		update_mmu_cache(vma, address, ptep);
3817 out_put_page:
3818 	if (page != pagecache_page)
3819 		unlock_page(page);
3820 	put_page(page);
3821 out_ptl:
3822 	spin_unlock(ptl);
3823 
3824 	if (pagecache_page) {
3825 		unlock_page(pagecache_page);
3826 		put_page(pagecache_page);
3827 	}
3828 out_mutex:
3829 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3830 	/*
3831 	 * Generally it's safe to hold refcount during waiting page lock. But
3832 	 * here we just wait to defer the next page fault to avoid busy loop and
3833 	 * the page is not used after unlocked before returning from the current
3834 	 * page fault. So we are safe from accessing freed page, even if we wait
3835 	 * here without taking refcount.
3836 	 */
3837 	if (need_wait_lock)
3838 		wait_on_page_locked(page);
3839 	return ret;
3840 }
3841 
3842 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3843 			 struct page **pages, struct vm_area_struct **vmas,
3844 			 unsigned long *position, unsigned long *nr_pages,
3845 			 long i, unsigned int flags)
3846 {
3847 	unsigned long pfn_offset;
3848 	unsigned long vaddr = *position;
3849 	unsigned long remainder = *nr_pages;
3850 	struct hstate *h = hstate_vma(vma);
3851 
3852 	while (vaddr < vma->vm_end && remainder) {
3853 		pte_t *pte;
3854 		spinlock_t *ptl = NULL;
3855 		int absent;
3856 		struct page *page;
3857 
3858 		/*
3859 		 * If we have a pending SIGKILL, don't keep faulting pages and
3860 		 * potentially allocating memory.
3861 		 */
3862 		if (unlikely(fatal_signal_pending(current))) {
3863 			remainder = 0;
3864 			break;
3865 		}
3866 
3867 		/*
3868 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3869 		 * each hugepage.  We have to make sure we get the
3870 		 * first, for the page indexing below to work.
3871 		 *
3872 		 * Note that page table lock is not held when pte is null.
3873 		 */
3874 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3875 		if (pte)
3876 			ptl = huge_pte_lock(h, mm, pte);
3877 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3878 
3879 		/*
3880 		 * When coredumping, it suits get_dump_page if we just return
3881 		 * an error where there's an empty slot with no huge pagecache
3882 		 * to back it.  This way, we avoid allocating a hugepage, and
3883 		 * the sparse dumpfile avoids allocating disk blocks, but its
3884 		 * huge holes still show up with zeroes where they need to be.
3885 		 */
3886 		if (absent && (flags & FOLL_DUMP) &&
3887 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3888 			if (pte)
3889 				spin_unlock(ptl);
3890 			remainder = 0;
3891 			break;
3892 		}
3893 
3894 		/*
3895 		 * We need call hugetlb_fault for both hugepages under migration
3896 		 * (in which case hugetlb_fault waits for the migration,) and
3897 		 * hwpoisoned hugepages (in which case we need to prevent the
3898 		 * caller from accessing to them.) In order to do this, we use
3899 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3900 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3901 		 * both cases, and because we can't follow correct pages
3902 		 * directly from any kind of swap entries.
3903 		 */
3904 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3905 		    ((flags & FOLL_WRITE) &&
3906 		      !huge_pte_write(huge_ptep_get(pte)))) {
3907 			int ret;
3908 
3909 			if (pte)
3910 				spin_unlock(ptl);
3911 			ret = hugetlb_fault(mm, vma, vaddr,
3912 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3913 			if (!(ret & VM_FAULT_ERROR))
3914 				continue;
3915 
3916 			remainder = 0;
3917 			break;
3918 		}
3919 
3920 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3921 		page = pte_page(huge_ptep_get(pte));
3922 same_page:
3923 		if (pages) {
3924 			pages[i] = mem_map_offset(page, pfn_offset);
3925 			get_page(pages[i]);
3926 		}
3927 
3928 		if (vmas)
3929 			vmas[i] = vma;
3930 
3931 		vaddr += PAGE_SIZE;
3932 		++pfn_offset;
3933 		--remainder;
3934 		++i;
3935 		if (vaddr < vma->vm_end && remainder &&
3936 				pfn_offset < pages_per_huge_page(h)) {
3937 			/*
3938 			 * We use pfn_offset to avoid touching the pageframes
3939 			 * of this compound page.
3940 			 */
3941 			goto same_page;
3942 		}
3943 		spin_unlock(ptl);
3944 	}
3945 	*nr_pages = remainder;
3946 	*position = vaddr;
3947 
3948 	return i ? i : -EFAULT;
3949 }
3950 
3951 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3952 		unsigned long address, unsigned long end, pgprot_t newprot)
3953 {
3954 	struct mm_struct *mm = vma->vm_mm;
3955 	unsigned long start = address;
3956 	pte_t *ptep;
3957 	pte_t pte;
3958 	struct hstate *h = hstate_vma(vma);
3959 	unsigned long pages = 0;
3960 
3961 	BUG_ON(address >= end);
3962 	flush_cache_range(vma, address, end);
3963 
3964 	mmu_notifier_invalidate_range_start(mm, start, end);
3965 	i_mmap_lock_write(vma->vm_file->f_mapping);
3966 	for (; address < end; address += huge_page_size(h)) {
3967 		spinlock_t *ptl;
3968 		ptep = huge_pte_offset(mm, address);
3969 		if (!ptep)
3970 			continue;
3971 		ptl = huge_pte_lock(h, mm, ptep);
3972 		if (huge_pmd_unshare(mm, &address, ptep)) {
3973 			pages++;
3974 			spin_unlock(ptl);
3975 			continue;
3976 		}
3977 		pte = huge_ptep_get(ptep);
3978 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3979 			spin_unlock(ptl);
3980 			continue;
3981 		}
3982 		if (unlikely(is_hugetlb_entry_migration(pte))) {
3983 			swp_entry_t entry = pte_to_swp_entry(pte);
3984 
3985 			if (is_write_migration_entry(entry)) {
3986 				pte_t newpte;
3987 
3988 				make_migration_entry_read(&entry);
3989 				newpte = swp_entry_to_pte(entry);
3990 				set_huge_pte_at(mm, address, ptep, newpte);
3991 				pages++;
3992 			}
3993 			spin_unlock(ptl);
3994 			continue;
3995 		}
3996 		if (!huge_pte_none(pte)) {
3997 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3998 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3999 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4000 			set_huge_pte_at(mm, address, ptep, pte);
4001 			pages++;
4002 		}
4003 		spin_unlock(ptl);
4004 	}
4005 	/*
4006 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4007 	 * may have cleared our pud entry and done put_page on the page table:
4008 	 * once we release i_mmap_rwsem, another task can do the final put_page
4009 	 * and that page table be reused and filled with junk.
4010 	 */
4011 	flush_tlb_range(vma, start, end);
4012 	mmu_notifier_invalidate_range(mm, start, end);
4013 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4014 	mmu_notifier_invalidate_range_end(mm, start, end);
4015 
4016 	return pages << h->order;
4017 }
4018 
4019 int hugetlb_reserve_pages(struct inode *inode,
4020 					long from, long to,
4021 					struct vm_area_struct *vma,
4022 					vm_flags_t vm_flags)
4023 {
4024 	long ret, chg;
4025 	struct hstate *h = hstate_inode(inode);
4026 	struct hugepage_subpool *spool = subpool_inode(inode);
4027 	struct resv_map *resv_map;
4028 	long gbl_reserve;
4029 
4030 	/*
4031 	 * Only apply hugepage reservation if asked. At fault time, an
4032 	 * attempt will be made for VM_NORESERVE to allocate a page
4033 	 * without using reserves
4034 	 */
4035 	if (vm_flags & VM_NORESERVE)
4036 		return 0;
4037 
4038 	/*
4039 	 * Shared mappings base their reservation on the number of pages that
4040 	 * are already allocated on behalf of the file. Private mappings need
4041 	 * to reserve the full area even if read-only as mprotect() may be
4042 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4043 	 */
4044 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4045 		resv_map = inode_resv_map(inode);
4046 
4047 		chg = region_chg(resv_map, from, to);
4048 
4049 	} else {
4050 		resv_map = resv_map_alloc();
4051 		if (!resv_map)
4052 			return -ENOMEM;
4053 
4054 		chg = to - from;
4055 
4056 		set_vma_resv_map(vma, resv_map);
4057 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4058 	}
4059 
4060 	if (chg < 0) {
4061 		ret = chg;
4062 		goto out_err;
4063 	}
4064 
4065 	/*
4066 	 * There must be enough pages in the subpool for the mapping. If
4067 	 * the subpool has a minimum size, there may be some global
4068 	 * reservations already in place (gbl_reserve).
4069 	 */
4070 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4071 	if (gbl_reserve < 0) {
4072 		ret = -ENOSPC;
4073 		goto out_err;
4074 	}
4075 
4076 	/*
4077 	 * Check enough hugepages are available for the reservation.
4078 	 * Hand the pages back to the subpool if there are not
4079 	 */
4080 	ret = hugetlb_acct_memory(h, gbl_reserve);
4081 	if (ret < 0) {
4082 		/* put back original number of pages, chg */
4083 		(void)hugepage_subpool_put_pages(spool, chg);
4084 		goto out_err;
4085 	}
4086 
4087 	/*
4088 	 * Account for the reservations made. Shared mappings record regions
4089 	 * that have reservations as they are shared by multiple VMAs.
4090 	 * When the last VMA disappears, the region map says how much
4091 	 * the reservation was and the page cache tells how much of
4092 	 * the reservation was consumed. Private mappings are per-VMA and
4093 	 * only the consumed reservations are tracked. When the VMA
4094 	 * disappears, the original reservation is the VMA size and the
4095 	 * consumed reservations are stored in the map. Hence, nothing
4096 	 * else has to be done for private mappings here
4097 	 */
4098 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4099 		long add = region_add(resv_map, from, to);
4100 
4101 		if (unlikely(chg > add)) {
4102 			/*
4103 			 * pages in this range were added to the reserve
4104 			 * map between region_chg and region_add.  This
4105 			 * indicates a race with alloc_huge_page.  Adjust
4106 			 * the subpool and reserve counts modified above
4107 			 * based on the difference.
4108 			 */
4109 			long rsv_adjust;
4110 
4111 			rsv_adjust = hugepage_subpool_put_pages(spool,
4112 								chg - add);
4113 			hugetlb_acct_memory(h, -rsv_adjust);
4114 		}
4115 	}
4116 	return 0;
4117 out_err:
4118 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4119 		region_abort(resv_map, from, to);
4120 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4121 		kref_put(&resv_map->refs, resv_map_release);
4122 	return ret;
4123 }
4124 
4125 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4126 								long freed)
4127 {
4128 	struct hstate *h = hstate_inode(inode);
4129 	struct resv_map *resv_map = inode_resv_map(inode);
4130 	long chg = 0;
4131 	struct hugepage_subpool *spool = subpool_inode(inode);
4132 	long gbl_reserve;
4133 
4134 	if (resv_map) {
4135 		chg = region_del(resv_map, start, end);
4136 		/*
4137 		 * region_del() can fail in the rare case where a region
4138 		 * must be split and another region descriptor can not be
4139 		 * allocated.  If end == LONG_MAX, it will not fail.
4140 		 */
4141 		if (chg < 0)
4142 			return chg;
4143 	}
4144 
4145 	spin_lock(&inode->i_lock);
4146 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4147 	spin_unlock(&inode->i_lock);
4148 
4149 	/*
4150 	 * If the subpool has a minimum size, the number of global
4151 	 * reservations to be released may be adjusted.
4152 	 */
4153 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4154 	hugetlb_acct_memory(h, -gbl_reserve);
4155 
4156 	return 0;
4157 }
4158 
4159 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4160 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4161 				struct vm_area_struct *vma,
4162 				unsigned long addr, pgoff_t idx)
4163 {
4164 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4165 				svma->vm_start;
4166 	unsigned long sbase = saddr & PUD_MASK;
4167 	unsigned long s_end = sbase + PUD_SIZE;
4168 
4169 	/* Allow segments to share if only one is marked locked */
4170 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4171 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4172 
4173 	/*
4174 	 * match the virtual addresses, permission and the alignment of the
4175 	 * page table page.
4176 	 */
4177 	if (pmd_index(addr) != pmd_index(saddr) ||
4178 	    vm_flags != svm_flags ||
4179 	    sbase < svma->vm_start || svma->vm_end < s_end)
4180 		return 0;
4181 
4182 	return saddr;
4183 }
4184 
4185 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4186 {
4187 	unsigned long base = addr & PUD_MASK;
4188 	unsigned long end = base + PUD_SIZE;
4189 
4190 	/*
4191 	 * check on proper vm_flags and page table alignment
4192 	 */
4193 	if (vma->vm_flags & VM_MAYSHARE &&
4194 	    vma->vm_start <= base && end <= vma->vm_end)
4195 		return true;
4196 	return false;
4197 }
4198 
4199 /*
4200  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4201  * and returns the corresponding pte. While this is not necessary for the
4202  * !shared pmd case because we can allocate the pmd later as well, it makes the
4203  * code much cleaner. pmd allocation is essential for the shared case because
4204  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4205  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4206  * bad pmd for sharing.
4207  */
4208 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4209 {
4210 	struct vm_area_struct *vma = find_vma(mm, addr);
4211 	struct address_space *mapping = vma->vm_file->f_mapping;
4212 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4213 			vma->vm_pgoff;
4214 	struct vm_area_struct *svma;
4215 	unsigned long saddr;
4216 	pte_t *spte = NULL;
4217 	pte_t *pte;
4218 	spinlock_t *ptl;
4219 
4220 	if (!vma_shareable(vma, addr))
4221 		return (pte_t *)pmd_alloc(mm, pud, addr);
4222 
4223 	i_mmap_lock_write(mapping);
4224 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4225 		if (svma == vma)
4226 			continue;
4227 
4228 		saddr = page_table_shareable(svma, vma, addr, idx);
4229 		if (saddr) {
4230 			spte = huge_pte_offset(svma->vm_mm, saddr);
4231 			if (spte) {
4232 				get_page(virt_to_page(spte));
4233 				break;
4234 			}
4235 		}
4236 	}
4237 
4238 	if (!spte)
4239 		goto out;
4240 
4241 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4242 	spin_lock(ptl);
4243 	if (pud_none(*pud)) {
4244 		pud_populate(mm, pud,
4245 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4246 		mm_inc_nr_pmds(mm);
4247 	} else {
4248 		put_page(virt_to_page(spte));
4249 	}
4250 	spin_unlock(ptl);
4251 out:
4252 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4253 	i_mmap_unlock_write(mapping);
4254 	return pte;
4255 }
4256 
4257 /*
4258  * unmap huge page backed by shared pte.
4259  *
4260  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4261  * indicated by page_count > 1, unmap is achieved by clearing pud and
4262  * decrementing the ref count. If count == 1, the pte page is not shared.
4263  *
4264  * called with page table lock held.
4265  *
4266  * returns: 1 successfully unmapped a shared pte page
4267  *	    0 the underlying pte page is not shared, or it is the last user
4268  */
4269 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4270 {
4271 	pgd_t *pgd = pgd_offset(mm, *addr);
4272 	pud_t *pud = pud_offset(pgd, *addr);
4273 
4274 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4275 	if (page_count(virt_to_page(ptep)) == 1)
4276 		return 0;
4277 
4278 	pud_clear(pud);
4279 	put_page(virt_to_page(ptep));
4280 	mm_dec_nr_pmds(mm);
4281 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4282 	return 1;
4283 }
4284 #define want_pmd_share()	(1)
4285 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4286 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4287 {
4288 	return NULL;
4289 }
4290 
4291 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4292 {
4293 	return 0;
4294 }
4295 #define want_pmd_share()	(0)
4296 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4297 
4298 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4299 pte_t *huge_pte_alloc(struct mm_struct *mm,
4300 			unsigned long addr, unsigned long sz)
4301 {
4302 	pgd_t *pgd;
4303 	pud_t *pud;
4304 	pte_t *pte = NULL;
4305 
4306 	pgd = pgd_offset(mm, addr);
4307 	pud = pud_alloc(mm, pgd, addr);
4308 	if (pud) {
4309 		if (sz == PUD_SIZE) {
4310 			pte = (pte_t *)pud;
4311 		} else {
4312 			BUG_ON(sz != PMD_SIZE);
4313 			if (want_pmd_share() && pud_none(*pud))
4314 				pte = huge_pmd_share(mm, addr, pud);
4315 			else
4316 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4317 		}
4318 	}
4319 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4320 
4321 	return pte;
4322 }
4323 
4324 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4325 {
4326 	pgd_t *pgd;
4327 	pud_t *pud;
4328 	pmd_t *pmd = NULL;
4329 
4330 	pgd = pgd_offset(mm, addr);
4331 	if (pgd_present(*pgd)) {
4332 		pud = pud_offset(pgd, addr);
4333 		if (pud_present(*pud)) {
4334 			if (pud_huge(*pud))
4335 				return (pte_t *)pud;
4336 			pmd = pmd_offset(pud, addr);
4337 		}
4338 	}
4339 	return (pte_t *) pmd;
4340 }
4341 
4342 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4343 
4344 /*
4345  * These functions are overwritable if your architecture needs its own
4346  * behavior.
4347  */
4348 struct page * __weak
4349 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4350 			      int write)
4351 {
4352 	return ERR_PTR(-EINVAL);
4353 }
4354 
4355 struct page * __weak
4356 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4357 		pmd_t *pmd, int flags)
4358 {
4359 	struct page *page = NULL;
4360 	spinlock_t *ptl;
4361 retry:
4362 	ptl = pmd_lockptr(mm, pmd);
4363 	spin_lock(ptl);
4364 	/*
4365 	 * make sure that the address range covered by this pmd is not
4366 	 * unmapped from other threads.
4367 	 */
4368 	if (!pmd_huge(*pmd))
4369 		goto out;
4370 	if (pmd_present(*pmd)) {
4371 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4372 		if (flags & FOLL_GET)
4373 			get_page(page);
4374 	} else {
4375 		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4376 			spin_unlock(ptl);
4377 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4378 			goto retry;
4379 		}
4380 		/*
4381 		 * hwpoisoned entry is treated as no_page_table in
4382 		 * follow_page_mask().
4383 		 */
4384 	}
4385 out:
4386 	spin_unlock(ptl);
4387 	return page;
4388 }
4389 
4390 struct page * __weak
4391 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4392 		pud_t *pud, int flags)
4393 {
4394 	if (flags & FOLL_GET)
4395 		return NULL;
4396 
4397 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4398 }
4399 
4400 #ifdef CONFIG_MEMORY_FAILURE
4401 
4402 /*
4403  * This function is called from memory failure code.
4404  * Assume the caller holds page lock of the head page.
4405  */
4406 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4407 {
4408 	struct hstate *h = page_hstate(hpage);
4409 	int nid = page_to_nid(hpage);
4410 	int ret = -EBUSY;
4411 
4412 	spin_lock(&hugetlb_lock);
4413 	/*
4414 	 * Just checking !page_huge_active is not enough, because that could be
4415 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4416 	 */
4417 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4418 		/*
4419 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4420 		 * but dangling hpage->lru can trigger list-debug warnings
4421 		 * (this happens when we call unpoison_memory() on it),
4422 		 * so let it point to itself with list_del_init().
4423 		 */
4424 		list_del_init(&hpage->lru);
4425 		set_page_refcounted(hpage);
4426 		h->free_huge_pages--;
4427 		h->free_huge_pages_node[nid]--;
4428 		ret = 0;
4429 	}
4430 	spin_unlock(&hugetlb_lock);
4431 	return ret;
4432 }
4433 #endif
4434 
4435 bool isolate_huge_page(struct page *page, struct list_head *list)
4436 {
4437 	bool ret = true;
4438 
4439 	VM_BUG_ON_PAGE(!PageHead(page), page);
4440 	spin_lock(&hugetlb_lock);
4441 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4442 		ret = false;
4443 		goto unlock;
4444 	}
4445 	clear_page_huge_active(page);
4446 	list_move_tail(&page->lru, list);
4447 unlock:
4448 	spin_unlock(&hugetlb_lock);
4449 	return ret;
4450 }
4451 
4452 void putback_active_hugepage(struct page *page)
4453 {
4454 	VM_BUG_ON_PAGE(!PageHead(page), page);
4455 	spin_lock(&hugetlb_lock);
4456 	set_page_huge_active(page);
4457 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4458 	spin_unlock(&hugetlb_lock);
4459 	put_page(page);
4460 }
4461