xref: /openbmc/linux/mm/hugetlb.c (revision 87c2ce3b)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 
17 #include <asm/page.h>
18 #include <asm/pgtable.h>
19 
20 #include <linux/hugetlb.h>
21 
22 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
23 static unsigned long nr_huge_pages, free_huge_pages;
24 unsigned long max_huge_pages;
25 static struct list_head hugepage_freelists[MAX_NUMNODES];
26 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
27 static unsigned int free_huge_pages_node[MAX_NUMNODES];
28 
29 /*
30  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
31  */
32 static DEFINE_SPINLOCK(hugetlb_lock);
33 
34 static void enqueue_huge_page(struct page *page)
35 {
36 	int nid = page_to_nid(page);
37 	list_add(&page->lru, &hugepage_freelists[nid]);
38 	free_huge_pages++;
39 	free_huge_pages_node[nid]++;
40 }
41 
42 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
43 				unsigned long address)
44 {
45 	int nid = numa_node_id();
46 	struct page *page = NULL;
47 	struct zonelist *zonelist = huge_zonelist(vma, address);
48 	struct zone **z;
49 
50 	for (z = zonelist->zones; *z; z++) {
51 		nid = (*z)->zone_pgdat->node_id;
52 		if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
53 		    !list_empty(&hugepage_freelists[nid]))
54 			break;
55 	}
56 
57 	if (*z) {
58 		page = list_entry(hugepage_freelists[nid].next,
59 				  struct page, lru);
60 		list_del(&page->lru);
61 		free_huge_pages--;
62 		free_huge_pages_node[nid]--;
63 	}
64 	return page;
65 }
66 
67 static struct page *alloc_fresh_huge_page(void)
68 {
69 	static int nid = 0;
70 	struct page *page;
71 	page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
72 					HUGETLB_PAGE_ORDER);
73 	nid = (nid + 1) % num_online_nodes();
74 	if (page) {
75 		spin_lock(&hugetlb_lock);
76 		nr_huge_pages++;
77 		nr_huge_pages_node[page_to_nid(page)]++;
78 		spin_unlock(&hugetlb_lock);
79 	}
80 	return page;
81 }
82 
83 void free_huge_page(struct page *page)
84 {
85 	BUG_ON(page_count(page));
86 
87 	INIT_LIST_HEAD(&page->lru);
88 	page[1].mapping = NULL;
89 
90 	spin_lock(&hugetlb_lock);
91 	enqueue_huge_page(page);
92 	spin_unlock(&hugetlb_lock);
93 }
94 
95 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
96 {
97 	struct page *page;
98 	int i;
99 
100 	spin_lock(&hugetlb_lock);
101 	page = dequeue_huge_page(vma, addr);
102 	if (!page) {
103 		spin_unlock(&hugetlb_lock);
104 		return NULL;
105 	}
106 	spin_unlock(&hugetlb_lock);
107 	set_page_count(page, 1);
108 	page[1].mapping = (void *)free_huge_page;
109 	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
110 		clear_highpage(&page[i]);
111 	return page;
112 }
113 
114 static int __init hugetlb_init(void)
115 {
116 	unsigned long i;
117 	struct page *page;
118 
119 	if (HPAGE_SHIFT == 0)
120 		return 0;
121 
122 	for (i = 0; i < MAX_NUMNODES; ++i)
123 		INIT_LIST_HEAD(&hugepage_freelists[i]);
124 
125 	for (i = 0; i < max_huge_pages; ++i) {
126 		page = alloc_fresh_huge_page();
127 		if (!page)
128 			break;
129 		spin_lock(&hugetlb_lock);
130 		enqueue_huge_page(page);
131 		spin_unlock(&hugetlb_lock);
132 	}
133 	max_huge_pages = free_huge_pages = nr_huge_pages = i;
134 	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
135 	return 0;
136 }
137 module_init(hugetlb_init);
138 
139 static int __init hugetlb_setup(char *s)
140 {
141 	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
142 		max_huge_pages = 0;
143 	return 1;
144 }
145 __setup("hugepages=", hugetlb_setup);
146 
147 #ifdef CONFIG_SYSCTL
148 static void update_and_free_page(struct page *page)
149 {
150 	int i;
151 	nr_huge_pages--;
152 	nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
153 	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
154 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
155 				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
156 				1 << PG_private | 1<< PG_writeback);
157 		set_page_count(&page[i], 0);
158 	}
159 	set_page_count(page, 1);
160 	__free_pages(page, HUGETLB_PAGE_ORDER);
161 }
162 
163 #ifdef CONFIG_HIGHMEM
164 static void try_to_free_low(unsigned long count)
165 {
166 	int i, nid;
167 	for (i = 0; i < MAX_NUMNODES; ++i) {
168 		struct page *page, *next;
169 		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
170 			if (PageHighMem(page))
171 				continue;
172 			list_del(&page->lru);
173 			update_and_free_page(page);
174 			nid = page_zone(page)->zone_pgdat->node_id;
175 			free_huge_pages--;
176 			free_huge_pages_node[nid]--;
177 			if (count >= nr_huge_pages)
178 				return;
179 		}
180 	}
181 }
182 #else
183 static inline void try_to_free_low(unsigned long count)
184 {
185 }
186 #endif
187 
188 static unsigned long set_max_huge_pages(unsigned long count)
189 {
190 	while (count > nr_huge_pages) {
191 		struct page *page = alloc_fresh_huge_page();
192 		if (!page)
193 			return nr_huge_pages;
194 		spin_lock(&hugetlb_lock);
195 		enqueue_huge_page(page);
196 		spin_unlock(&hugetlb_lock);
197 	}
198 	if (count >= nr_huge_pages)
199 		return nr_huge_pages;
200 
201 	spin_lock(&hugetlb_lock);
202 	try_to_free_low(count);
203 	while (count < nr_huge_pages) {
204 		struct page *page = dequeue_huge_page(NULL, 0);
205 		if (!page)
206 			break;
207 		update_and_free_page(page);
208 	}
209 	spin_unlock(&hugetlb_lock);
210 	return nr_huge_pages;
211 }
212 
213 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
214 			   struct file *file, void __user *buffer,
215 			   size_t *length, loff_t *ppos)
216 {
217 	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
218 	max_huge_pages = set_max_huge_pages(max_huge_pages);
219 	return 0;
220 }
221 #endif /* CONFIG_SYSCTL */
222 
223 int hugetlb_report_meminfo(char *buf)
224 {
225 	return sprintf(buf,
226 			"HugePages_Total: %5lu\n"
227 			"HugePages_Free:  %5lu\n"
228 			"Hugepagesize:    %5lu kB\n",
229 			nr_huge_pages,
230 			free_huge_pages,
231 			HPAGE_SIZE/1024);
232 }
233 
234 int hugetlb_report_node_meminfo(int nid, char *buf)
235 {
236 	return sprintf(buf,
237 		"Node %d HugePages_Total: %5u\n"
238 		"Node %d HugePages_Free:  %5u\n",
239 		nid, nr_huge_pages_node[nid],
240 		nid, free_huge_pages_node[nid]);
241 }
242 
243 int is_hugepage_mem_enough(size_t size)
244 {
245 	return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
246 }
247 
248 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
249 unsigned long hugetlb_total_pages(void)
250 {
251 	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
252 }
253 
254 /*
255  * We cannot handle pagefaults against hugetlb pages at all.  They cause
256  * handle_mm_fault() to try to instantiate regular-sized pages in the
257  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
258  * this far.
259  */
260 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
261 				unsigned long address, int *unused)
262 {
263 	BUG();
264 	return NULL;
265 }
266 
267 struct vm_operations_struct hugetlb_vm_ops = {
268 	.nopage = hugetlb_nopage,
269 };
270 
271 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
272 				int writable)
273 {
274 	pte_t entry;
275 
276 	if (writable) {
277 		entry =
278 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
279 	} else {
280 		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
281 	}
282 	entry = pte_mkyoung(entry);
283 	entry = pte_mkhuge(entry);
284 
285 	return entry;
286 }
287 
288 static void set_huge_ptep_writable(struct vm_area_struct *vma,
289 				   unsigned long address, pte_t *ptep)
290 {
291 	pte_t entry;
292 
293 	entry = pte_mkwrite(pte_mkdirty(*ptep));
294 	ptep_set_access_flags(vma, address, ptep, entry, 1);
295 	update_mmu_cache(vma, address, entry);
296 	lazy_mmu_prot_update(entry);
297 }
298 
299 
300 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
301 			    struct vm_area_struct *vma)
302 {
303 	pte_t *src_pte, *dst_pte, entry;
304 	struct page *ptepage;
305 	unsigned long addr;
306 	int cow;
307 
308 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
309 
310 	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
311 		src_pte = huge_pte_offset(src, addr);
312 		if (!src_pte)
313 			continue;
314 		dst_pte = huge_pte_alloc(dst, addr);
315 		if (!dst_pte)
316 			goto nomem;
317 		spin_lock(&dst->page_table_lock);
318 		spin_lock(&src->page_table_lock);
319 		if (!pte_none(*src_pte)) {
320 			if (cow)
321 				ptep_set_wrprotect(src, addr, src_pte);
322 			entry = *src_pte;
323 			ptepage = pte_page(entry);
324 			get_page(ptepage);
325 			add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
326 			set_huge_pte_at(dst, addr, dst_pte, entry);
327 		}
328 		spin_unlock(&src->page_table_lock);
329 		spin_unlock(&dst->page_table_lock);
330 	}
331 	return 0;
332 
333 nomem:
334 	return -ENOMEM;
335 }
336 
337 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
338 			  unsigned long end)
339 {
340 	struct mm_struct *mm = vma->vm_mm;
341 	unsigned long address;
342 	pte_t *ptep;
343 	pte_t pte;
344 	struct page *page;
345 
346 	WARN_ON(!is_vm_hugetlb_page(vma));
347 	BUG_ON(start & ~HPAGE_MASK);
348 	BUG_ON(end & ~HPAGE_MASK);
349 
350 	spin_lock(&mm->page_table_lock);
351 
352 	/* Update high watermark before we lower rss */
353 	update_hiwater_rss(mm);
354 
355 	for (address = start; address < end; address += HPAGE_SIZE) {
356 		ptep = huge_pte_offset(mm, address);
357 		if (!ptep)
358 			continue;
359 
360 		pte = huge_ptep_get_and_clear(mm, address, ptep);
361 		if (pte_none(pte))
362 			continue;
363 
364 		page = pte_page(pte);
365 		put_page(page);
366 		add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
367 	}
368 
369 	spin_unlock(&mm->page_table_lock);
370 	flush_tlb_range(vma, start, end);
371 }
372 
373 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
374 			unsigned long address, pte_t *ptep, pte_t pte)
375 {
376 	struct page *old_page, *new_page;
377 	int i, avoidcopy;
378 
379 	old_page = pte_page(pte);
380 
381 	/* If no-one else is actually using this page, avoid the copy
382 	 * and just make the page writable */
383 	avoidcopy = (page_count(old_page) == 1);
384 	if (avoidcopy) {
385 		set_huge_ptep_writable(vma, address, ptep);
386 		return VM_FAULT_MINOR;
387 	}
388 
389 	page_cache_get(old_page);
390 	new_page = alloc_huge_page(vma, address);
391 
392 	if (!new_page) {
393 		page_cache_release(old_page);
394 
395 		/* Logically this is OOM, not a SIGBUS, but an OOM
396 		 * could cause the kernel to go killing other
397 		 * processes which won't help the hugepage situation
398 		 * at all (?) */
399 		return VM_FAULT_SIGBUS;
400 	}
401 
402 	spin_unlock(&mm->page_table_lock);
403 	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
404 		copy_user_highpage(new_page + i, old_page + i,
405 				   address + i*PAGE_SIZE);
406 	spin_lock(&mm->page_table_lock);
407 
408 	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
409 	if (likely(pte_same(*ptep, pte))) {
410 		/* Break COW */
411 		set_huge_pte_at(mm, address, ptep,
412 				make_huge_pte(vma, new_page, 1));
413 		/* Make the old page be freed below */
414 		new_page = old_page;
415 	}
416 	page_cache_release(new_page);
417 	page_cache_release(old_page);
418 	return VM_FAULT_MINOR;
419 }
420 
421 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
422 			unsigned long address, pte_t *ptep, int write_access)
423 {
424 	int ret = VM_FAULT_SIGBUS;
425 	unsigned long idx;
426 	unsigned long size;
427 	struct page *page;
428 	struct address_space *mapping;
429 	pte_t new_pte;
430 
431 	mapping = vma->vm_file->f_mapping;
432 	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
433 		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
434 
435 	/*
436 	 * Use page lock to guard against racing truncation
437 	 * before we get page_table_lock.
438 	 */
439 retry:
440 	page = find_lock_page(mapping, idx);
441 	if (!page) {
442 		if (hugetlb_get_quota(mapping))
443 			goto out;
444 		page = alloc_huge_page(vma, address);
445 		if (!page) {
446 			hugetlb_put_quota(mapping);
447 			goto out;
448 		}
449 
450 		if (vma->vm_flags & VM_SHARED) {
451 			int err;
452 
453 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
454 			if (err) {
455 				put_page(page);
456 				hugetlb_put_quota(mapping);
457 				if (err == -EEXIST)
458 					goto retry;
459 				goto out;
460 			}
461 		} else
462 			lock_page(page);
463 	}
464 
465 	spin_lock(&mm->page_table_lock);
466 	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
467 	if (idx >= size)
468 		goto backout;
469 
470 	ret = VM_FAULT_MINOR;
471 	if (!pte_none(*ptep))
472 		goto backout;
473 
474 	add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
475 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
476 				&& (vma->vm_flags & VM_SHARED)));
477 	set_huge_pte_at(mm, address, ptep, new_pte);
478 
479 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
480 		/* Optimization, do the COW without a second fault */
481 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
482 	}
483 
484 	spin_unlock(&mm->page_table_lock);
485 	unlock_page(page);
486 out:
487 	return ret;
488 
489 backout:
490 	spin_unlock(&mm->page_table_lock);
491 	hugetlb_put_quota(mapping);
492 	unlock_page(page);
493 	put_page(page);
494 	goto out;
495 }
496 
497 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
498 			unsigned long address, int write_access)
499 {
500 	pte_t *ptep;
501 	pte_t entry;
502 	int ret;
503 
504 	ptep = huge_pte_alloc(mm, address);
505 	if (!ptep)
506 		return VM_FAULT_OOM;
507 
508 	entry = *ptep;
509 	if (pte_none(entry))
510 		return hugetlb_no_page(mm, vma, address, ptep, write_access);
511 
512 	ret = VM_FAULT_MINOR;
513 
514 	spin_lock(&mm->page_table_lock);
515 	/* Check for a racing update before calling hugetlb_cow */
516 	if (likely(pte_same(entry, *ptep)))
517 		if (write_access && !pte_write(entry))
518 			ret = hugetlb_cow(mm, vma, address, ptep, entry);
519 	spin_unlock(&mm->page_table_lock);
520 
521 	return ret;
522 }
523 
524 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
525 			struct page **pages, struct vm_area_struct **vmas,
526 			unsigned long *position, int *length, int i)
527 {
528 	unsigned long vpfn, vaddr = *position;
529 	int remainder = *length;
530 
531 	vpfn = vaddr/PAGE_SIZE;
532 	spin_lock(&mm->page_table_lock);
533 	while (vaddr < vma->vm_end && remainder) {
534 		pte_t *pte;
535 		struct page *page;
536 
537 		/*
538 		 * Some archs (sparc64, sh*) have multiple pte_ts to
539 		 * each hugepage.  We have to make * sure we get the
540 		 * first, for the page indexing below to work.
541 		 */
542 		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
543 
544 		if (!pte || pte_none(*pte)) {
545 			int ret;
546 
547 			spin_unlock(&mm->page_table_lock);
548 			ret = hugetlb_fault(mm, vma, vaddr, 0);
549 			spin_lock(&mm->page_table_lock);
550 			if (ret == VM_FAULT_MINOR)
551 				continue;
552 
553 			remainder = 0;
554 			if (!i)
555 				i = -EFAULT;
556 			break;
557 		}
558 
559 		if (pages) {
560 			page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
561 			get_page(page);
562 			pages[i] = page;
563 		}
564 
565 		if (vmas)
566 			vmas[i] = vma;
567 
568 		vaddr += PAGE_SIZE;
569 		++vpfn;
570 		--remainder;
571 		++i;
572 	}
573 	spin_unlock(&mm->page_table_lock);
574 	*length = remainder;
575 	*position = vaddr;
576 
577 	return i;
578 }
579