1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_page(struct page *page, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_page(struct page *page, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 98 static inline bool subpool_is_free(struct hugepage_subpool *spool) 99 { 100 if (spool->count) 101 return false; 102 if (spool->max_hpages != -1) 103 return spool->used_hpages == 0; 104 if (spool->min_hpages != -1) 105 return spool->rsv_hpages == spool->min_hpages; 106 107 return true; 108 } 109 110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 111 unsigned long irq_flags) 112 { 113 spin_unlock_irqrestore(&spool->lock, irq_flags); 114 115 /* If no pages are used, and no other handles to the subpool 116 * remain, give up any reservations based on minimum size and 117 * free the subpool */ 118 if (subpool_is_free(spool)) { 119 if (spool->min_hpages != -1) 120 hugetlb_acct_memory(spool->hstate, 121 -spool->min_hpages); 122 kfree(spool); 123 } 124 } 125 126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 127 long min_hpages) 128 { 129 struct hugepage_subpool *spool; 130 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 132 if (!spool) 133 return NULL; 134 135 spin_lock_init(&spool->lock); 136 spool->count = 1; 137 spool->max_hpages = max_hpages; 138 spool->hstate = h; 139 spool->min_hpages = min_hpages; 140 141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 142 kfree(spool); 143 return NULL; 144 } 145 spool->rsv_hpages = min_hpages; 146 147 return spool; 148 } 149 150 void hugepage_put_subpool(struct hugepage_subpool *spool) 151 { 152 unsigned long flags; 153 154 spin_lock_irqsave(&spool->lock, flags); 155 BUG_ON(!spool->count); 156 spool->count--; 157 unlock_or_release_subpool(spool, flags); 158 } 159 160 /* 161 * Subpool accounting for allocating and reserving pages. 162 * Return -ENOMEM if there are not enough resources to satisfy the 163 * request. Otherwise, return the number of pages by which the 164 * global pools must be adjusted (upward). The returned value may 165 * only be different than the passed value (delta) in the case where 166 * a subpool minimum size must be maintained. 167 */ 168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 169 long delta) 170 { 171 long ret = delta; 172 173 if (!spool) 174 return ret; 175 176 spin_lock_irq(&spool->lock); 177 178 if (spool->max_hpages != -1) { /* maximum size accounting */ 179 if ((spool->used_hpages + delta) <= spool->max_hpages) 180 spool->used_hpages += delta; 181 else { 182 ret = -ENOMEM; 183 goto unlock_ret; 184 } 185 } 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->rsv_hpages) { 189 if (delta > spool->rsv_hpages) { 190 /* 191 * Asking for more reserves than those already taken on 192 * behalf of subpool. Return difference. 193 */ 194 ret = delta - spool->rsv_hpages; 195 spool->rsv_hpages = 0; 196 } else { 197 ret = 0; /* reserves already accounted for */ 198 spool->rsv_hpages -= delta; 199 } 200 } 201 202 unlock_ret: 203 spin_unlock_irq(&spool->lock); 204 return ret; 205 } 206 207 /* 208 * Subpool accounting for freeing and unreserving pages. 209 * Return the number of global page reservations that must be dropped. 210 * The return value may only be different than the passed value (delta) 211 * in the case where a subpool minimum size must be maintained. 212 */ 213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 214 long delta) 215 { 216 long ret = delta; 217 unsigned long flags; 218 219 if (!spool) 220 return delta; 221 222 spin_lock_irqsave(&spool->lock, flags); 223 224 if (spool->max_hpages != -1) /* maximum size accounting */ 225 spool->used_hpages -= delta; 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 229 if (spool->rsv_hpages + delta <= spool->min_hpages) 230 ret = 0; 231 else 232 ret = spool->rsv_hpages + delta - spool->min_hpages; 233 234 spool->rsv_hpages += delta; 235 if (spool->rsv_hpages > spool->min_hpages) 236 spool->rsv_hpages = spool->min_hpages; 237 } 238 239 /* 240 * If hugetlbfs_put_super couldn't free spool due to an outstanding 241 * quota reference, free it now. 242 */ 243 unlock_or_release_subpool(spool, flags); 244 245 return ret; 246 } 247 248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 249 { 250 return HUGETLBFS_SB(inode->i_sb)->spool; 251 } 252 253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 254 { 255 return subpool_inode(file_inode(vma->vm_file)); 256 } 257 258 /* Helper that removes a struct file_region from the resv_map cache and returns 259 * it for use. 260 */ 261 static struct file_region * 262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 263 { 264 struct file_region *nrg; 265 266 VM_BUG_ON(resv->region_cache_count <= 0); 267 268 resv->region_cache_count--; 269 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 270 list_del(&nrg->link); 271 272 nrg->from = from; 273 nrg->to = to; 274 275 return nrg; 276 } 277 278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 279 struct file_region *rg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 nrg->reservation_counter = rg->reservation_counter; 283 nrg->css = rg->css; 284 if (rg->css) 285 css_get(rg->css); 286 #endif 287 } 288 289 /* Helper that records hugetlb_cgroup uncharge info. */ 290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 291 struct hstate *h, 292 struct resv_map *resv, 293 struct file_region *nrg) 294 { 295 #ifdef CONFIG_CGROUP_HUGETLB 296 if (h_cg) { 297 nrg->reservation_counter = 298 &h_cg->rsvd_hugepage[hstate_index(h)]; 299 nrg->css = &h_cg->css; 300 /* 301 * The caller will hold exactly one h_cg->css reference for the 302 * whole contiguous reservation region. But this area might be 303 * scattered when there are already some file_regions reside in 304 * it. As a result, many file_regions may share only one css 305 * reference. In order to ensure that one file_region must hold 306 * exactly one h_cg->css reference, we should do css_get for 307 * each file_region and leave the reference held by caller 308 * untouched. 309 */ 310 css_get(&h_cg->css); 311 if (!resv->pages_per_hpage) 312 resv->pages_per_hpage = pages_per_huge_page(h); 313 /* pages_per_hpage should be the same for all entries in 314 * a resv_map. 315 */ 316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 317 } else { 318 nrg->reservation_counter = NULL; 319 nrg->css = NULL; 320 } 321 #endif 322 } 323 324 static void put_uncharge_info(struct file_region *rg) 325 { 326 #ifdef CONFIG_CGROUP_HUGETLB 327 if (rg->css) 328 css_put(rg->css); 329 #endif 330 } 331 332 static bool has_same_uncharge_info(struct file_region *rg, 333 struct file_region *org) 334 { 335 #ifdef CONFIG_CGROUP_HUGETLB 336 return rg->reservation_counter == org->reservation_counter && 337 rg->css == org->css; 338 339 #else 340 return true; 341 #endif 342 } 343 344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 345 { 346 struct file_region *nrg, *prg; 347 348 prg = list_prev_entry(rg, link); 349 if (&prg->link != &resv->regions && prg->to == rg->from && 350 has_same_uncharge_info(prg, rg)) { 351 prg->to = rg->to; 352 353 list_del(&rg->link); 354 put_uncharge_info(rg); 355 kfree(rg); 356 357 rg = prg; 358 } 359 360 nrg = list_next_entry(rg, link); 361 if (&nrg->link != &resv->regions && nrg->from == rg->to && 362 has_same_uncharge_info(nrg, rg)) { 363 nrg->from = rg->from; 364 365 list_del(&rg->link); 366 put_uncharge_info(rg); 367 kfree(rg); 368 } 369 } 370 371 static inline long 372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 373 long to, struct hstate *h, struct hugetlb_cgroup *cg, 374 long *regions_needed) 375 { 376 struct file_region *nrg; 377 378 if (!regions_needed) { 379 nrg = get_file_region_entry_from_cache(map, from, to); 380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 381 list_add(&nrg->link, rg); 382 coalesce_file_region(map, nrg); 383 } else 384 *regions_needed += 1; 385 386 return to - from; 387 } 388 389 /* 390 * Must be called with resv->lock held. 391 * 392 * Calling this with regions_needed != NULL will count the number of pages 393 * to be added but will not modify the linked list. And regions_needed will 394 * indicate the number of file_regions needed in the cache to carry out to add 395 * the regions for this range. 396 */ 397 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 398 struct hugetlb_cgroup *h_cg, 399 struct hstate *h, long *regions_needed) 400 { 401 long add = 0; 402 struct list_head *head = &resv->regions; 403 long last_accounted_offset = f; 404 struct file_region *iter, *trg = NULL; 405 struct list_head *rg = NULL; 406 407 if (regions_needed) 408 *regions_needed = 0; 409 410 /* In this loop, we essentially handle an entry for the range 411 * [last_accounted_offset, iter->from), at every iteration, with some 412 * bounds checking. 413 */ 414 list_for_each_entry_safe(iter, trg, head, link) { 415 /* Skip irrelevant regions that start before our range. */ 416 if (iter->from < f) { 417 /* If this region ends after the last accounted offset, 418 * then we need to update last_accounted_offset. 419 */ 420 if (iter->to > last_accounted_offset) 421 last_accounted_offset = iter->to; 422 continue; 423 } 424 425 /* When we find a region that starts beyond our range, we've 426 * finished. 427 */ 428 if (iter->from >= t) { 429 rg = iter->link.prev; 430 break; 431 } 432 433 /* Add an entry for last_accounted_offset -> iter->from, and 434 * update last_accounted_offset. 435 */ 436 if (iter->from > last_accounted_offset) 437 add += hugetlb_resv_map_add(resv, iter->link.prev, 438 last_accounted_offset, 439 iter->from, h, h_cg, 440 regions_needed); 441 442 last_accounted_offset = iter->to; 443 } 444 445 /* Handle the case where our range extends beyond 446 * last_accounted_offset. 447 */ 448 if (!rg) 449 rg = head->prev; 450 if (last_accounted_offset < t) 451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 452 t, h, h_cg, regions_needed); 453 454 return add; 455 } 456 457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 458 */ 459 static int allocate_file_region_entries(struct resv_map *resv, 460 int regions_needed) 461 __must_hold(&resv->lock) 462 { 463 LIST_HEAD(allocated_regions); 464 int to_allocate = 0, i = 0; 465 struct file_region *trg = NULL, *rg = NULL; 466 467 VM_BUG_ON(regions_needed < 0); 468 469 /* 470 * Check for sufficient descriptors in the cache to accommodate 471 * the number of in progress add operations plus regions_needed. 472 * 473 * This is a while loop because when we drop the lock, some other call 474 * to region_add or region_del may have consumed some region_entries, 475 * so we keep looping here until we finally have enough entries for 476 * (adds_in_progress + regions_needed). 477 */ 478 while (resv->region_cache_count < 479 (resv->adds_in_progress + regions_needed)) { 480 to_allocate = resv->adds_in_progress + regions_needed - 481 resv->region_cache_count; 482 483 /* At this point, we should have enough entries in the cache 484 * for all the existing adds_in_progress. We should only be 485 * needing to allocate for regions_needed. 486 */ 487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 488 489 spin_unlock(&resv->lock); 490 for (i = 0; i < to_allocate; i++) { 491 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 492 if (!trg) 493 goto out_of_memory; 494 list_add(&trg->link, &allocated_regions); 495 } 496 497 spin_lock(&resv->lock); 498 499 list_splice(&allocated_regions, &resv->region_cache); 500 resv->region_cache_count += to_allocate; 501 } 502 503 return 0; 504 505 out_of_memory: 506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 507 list_del(&rg->link); 508 kfree(rg); 509 } 510 return -ENOMEM; 511 } 512 513 /* 514 * Add the huge page range represented by [f, t) to the reserve 515 * map. Regions will be taken from the cache to fill in this range. 516 * Sufficient regions should exist in the cache due to the previous 517 * call to region_chg with the same range, but in some cases the cache will not 518 * have sufficient entries due to races with other code doing region_add or 519 * region_del. The extra needed entries will be allocated. 520 * 521 * regions_needed is the out value provided by a previous call to region_chg. 522 * 523 * Return the number of new huge pages added to the map. This number is greater 524 * than or equal to zero. If file_region entries needed to be allocated for 525 * this operation and we were not able to allocate, it returns -ENOMEM. 526 * region_add of regions of length 1 never allocate file_regions and cannot 527 * fail; region_chg will always allocate at least 1 entry and a region_add for 528 * 1 page will only require at most 1 entry. 529 */ 530 static long region_add(struct resv_map *resv, long f, long t, 531 long in_regions_needed, struct hstate *h, 532 struct hugetlb_cgroup *h_cg) 533 { 534 long add = 0, actual_regions_needed = 0; 535 536 spin_lock(&resv->lock); 537 retry: 538 539 /* Count how many regions are actually needed to execute this add. */ 540 add_reservation_in_range(resv, f, t, NULL, NULL, 541 &actual_regions_needed); 542 543 /* 544 * Check for sufficient descriptors in the cache to accommodate 545 * this add operation. Note that actual_regions_needed may be greater 546 * than in_regions_needed, as the resv_map may have been modified since 547 * the region_chg call. In this case, we need to make sure that we 548 * allocate extra entries, such that we have enough for all the 549 * existing adds_in_progress, plus the excess needed for this 550 * operation. 551 */ 552 if (actual_regions_needed > in_regions_needed && 553 resv->region_cache_count < 554 resv->adds_in_progress + 555 (actual_regions_needed - in_regions_needed)) { 556 /* region_add operation of range 1 should never need to 557 * allocate file_region entries. 558 */ 559 VM_BUG_ON(t - f <= 1); 560 561 if (allocate_file_region_entries( 562 resv, actual_regions_needed - in_regions_needed)) { 563 return -ENOMEM; 564 } 565 566 goto retry; 567 } 568 569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 570 571 resv->adds_in_progress -= in_regions_needed; 572 573 spin_unlock(&resv->lock); 574 return add; 575 } 576 577 /* 578 * Examine the existing reserve map and determine how many 579 * huge pages in the specified range [f, t) are NOT currently 580 * represented. This routine is called before a subsequent 581 * call to region_add that will actually modify the reserve 582 * map to add the specified range [f, t). region_chg does 583 * not change the number of huge pages represented by the 584 * map. A number of new file_region structures is added to the cache as a 585 * placeholder, for the subsequent region_add call to use. At least 1 586 * file_region structure is added. 587 * 588 * out_regions_needed is the number of regions added to the 589 * resv->adds_in_progress. This value needs to be provided to a follow up call 590 * to region_add or region_abort for proper accounting. 591 * 592 * Returns the number of huge pages that need to be added to the existing 593 * reservation map for the range [f, t). This number is greater or equal to 594 * zero. -ENOMEM is returned if a new file_region structure or cache entry 595 * is needed and can not be allocated. 596 */ 597 static long region_chg(struct resv_map *resv, long f, long t, 598 long *out_regions_needed) 599 { 600 long chg = 0; 601 602 spin_lock(&resv->lock); 603 604 /* Count how many hugepages in this range are NOT represented. */ 605 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 606 out_regions_needed); 607 608 if (*out_regions_needed == 0) 609 *out_regions_needed = 1; 610 611 if (allocate_file_region_entries(resv, *out_regions_needed)) 612 return -ENOMEM; 613 614 resv->adds_in_progress += *out_regions_needed; 615 616 spin_unlock(&resv->lock); 617 return chg; 618 } 619 620 /* 621 * Abort the in progress add operation. The adds_in_progress field 622 * of the resv_map keeps track of the operations in progress between 623 * calls to region_chg and region_add. Operations are sometimes 624 * aborted after the call to region_chg. In such cases, region_abort 625 * is called to decrement the adds_in_progress counter. regions_needed 626 * is the value returned by the region_chg call, it is used to decrement 627 * the adds_in_progress counter. 628 * 629 * NOTE: The range arguments [f, t) are not needed or used in this 630 * routine. They are kept to make reading the calling code easier as 631 * arguments will match the associated region_chg call. 632 */ 633 static void region_abort(struct resv_map *resv, long f, long t, 634 long regions_needed) 635 { 636 spin_lock(&resv->lock); 637 VM_BUG_ON(!resv->region_cache_count); 638 resv->adds_in_progress -= regions_needed; 639 spin_unlock(&resv->lock); 640 } 641 642 /* 643 * Delete the specified range [f, t) from the reserve map. If the 644 * t parameter is LONG_MAX, this indicates that ALL regions after f 645 * should be deleted. Locate the regions which intersect [f, t) 646 * and either trim, delete or split the existing regions. 647 * 648 * Returns the number of huge pages deleted from the reserve map. 649 * In the normal case, the return value is zero or more. In the 650 * case where a region must be split, a new region descriptor must 651 * be allocated. If the allocation fails, -ENOMEM will be returned. 652 * NOTE: If the parameter t == LONG_MAX, then we will never split 653 * a region and possibly return -ENOMEM. Callers specifying 654 * t == LONG_MAX do not need to check for -ENOMEM error. 655 */ 656 static long region_del(struct resv_map *resv, long f, long t) 657 { 658 struct list_head *head = &resv->regions; 659 struct file_region *rg, *trg; 660 struct file_region *nrg = NULL; 661 long del = 0; 662 663 retry: 664 spin_lock(&resv->lock); 665 list_for_each_entry_safe(rg, trg, head, link) { 666 /* 667 * Skip regions before the range to be deleted. file_region 668 * ranges are normally of the form [from, to). However, there 669 * may be a "placeholder" entry in the map which is of the form 670 * (from, to) with from == to. Check for placeholder entries 671 * at the beginning of the range to be deleted. 672 */ 673 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 674 continue; 675 676 if (rg->from >= t) 677 break; 678 679 if (f > rg->from && t < rg->to) { /* Must split region */ 680 /* 681 * Check for an entry in the cache before dropping 682 * lock and attempting allocation. 683 */ 684 if (!nrg && 685 resv->region_cache_count > resv->adds_in_progress) { 686 nrg = list_first_entry(&resv->region_cache, 687 struct file_region, 688 link); 689 list_del(&nrg->link); 690 resv->region_cache_count--; 691 } 692 693 if (!nrg) { 694 spin_unlock(&resv->lock); 695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 696 if (!nrg) 697 return -ENOMEM; 698 goto retry; 699 } 700 701 del += t - f; 702 hugetlb_cgroup_uncharge_file_region( 703 resv, rg, t - f, false); 704 705 /* New entry for end of split region */ 706 nrg->from = t; 707 nrg->to = rg->to; 708 709 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 710 711 INIT_LIST_HEAD(&nrg->link); 712 713 /* Original entry is trimmed */ 714 rg->to = f; 715 716 list_add(&nrg->link, &rg->link); 717 nrg = NULL; 718 break; 719 } 720 721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 722 del += rg->to - rg->from; 723 hugetlb_cgroup_uncharge_file_region(resv, rg, 724 rg->to - rg->from, true); 725 list_del(&rg->link); 726 kfree(rg); 727 continue; 728 } 729 730 if (f <= rg->from) { /* Trim beginning of region */ 731 hugetlb_cgroup_uncharge_file_region(resv, rg, 732 t - rg->from, false); 733 734 del += t - rg->from; 735 rg->from = t; 736 } else { /* Trim end of region */ 737 hugetlb_cgroup_uncharge_file_region(resv, rg, 738 rg->to - f, false); 739 740 del += rg->to - f; 741 rg->to = f; 742 } 743 } 744 745 spin_unlock(&resv->lock); 746 kfree(nrg); 747 return del; 748 } 749 750 /* 751 * A rare out of memory error was encountered which prevented removal of 752 * the reserve map region for a page. The huge page itself was free'ed 753 * and removed from the page cache. This routine will adjust the subpool 754 * usage count, and the global reserve count if needed. By incrementing 755 * these counts, the reserve map entry which could not be deleted will 756 * appear as a "reserved" entry instead of simply dangling with incorrect 757 * counts. 758 */ 759 void hugetlb_fix_reserve_counts(struct inode *inode) 760 { 761 struct hugepage_subpool *spool = subpool_inode(inode); 762 long rsv_adjust; 763 bool reserved = false; 764 765 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 766 if (rsv_adjust > 0) { 767 struct hstate *h = hstate_inode(inode); 768 769 if (!hugetlb_acct_memory(h, 1)) 770 reserved = true; 771 } else if (!rsv_adjust) { 772 reserved = true; 773 } 774 775 if (!reserved) 776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 777 } 778 779 /* 780 * Count and return the number of huge pages in the reserve map 781 * that intersect with the range [f, t). 782 */ 783 static long region_count(struct resv_map *resv, long f, long t) 784 { 785 struct list_head *head = &resv->regions; 786 struct file_region *rg; 787 long chg = 0; 788 789 spin_lock(&resv->lock); 790 /* Locate each segment we overlap with, and count that overlap. */ 791 list_for_each_entry(rg, head, link) { 792 long seg_from; 793 long seg_to; 794 795 if (rg->to <= f) 796 continue; 797 if (rg->from >= t) 798 break; 799 800 seg_from = max(rg->from, f); 801 seg_to = min(rg->to, t); 802 803 chg += seg_to - seg_from; 804 } 805 spin_unlock(&resv->lock); 806 807 return chg; 808 } 809 810 /* 811 * Convert the address within this vma to the page offset within 812 * the mapping, in pagecache page units; huge pages here. 813 */ 814 static pgoff_t vma_hugecache_offset(struct hstate *h, 815 struct vm_area_struct *vma, unsigned long address) 816 { 817 return ((address - vma->vm_start) >> huge_page_shift(h)) + 818 (vma->vm_pgoff >> huge_page_order(h)); 819 } 820 821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 822 unsigned long address) 823 { 824 return vma_hugecache_offset(hstate_vma(vma), vma, address); 825 } 826 EXPORT_SYMBOL_GPL(linear_hugepage_index); 827 828 /* 829 * Return the size of the pages allocated when backing a VMA. In the majority 830 * cases this will be same size as used by the page table entries. 831 */ 832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 833 { 834 if (vma->vm_ops && vma->vm_ops->pagesize) 835 return vma->vm_ops->pagesize(vma); 836 return PAGE_SIZE; 837 } 838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 839 840 /* 841 * Return the page size being used by the MMU to back a VMA. In the majority 842 * of cases, the page size used by the kernel matches the MMU size. On 843 * architectures where it differs, an architecture-specific 'strong' 844 * version of this symbol is required. 845 */ 846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 847 { 848 return vma_kernel_pagesize(vma); 849 } 850 851 /* 852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 853 * bits of the reservation map pointer, which are always clear due to 854 * alignment. 855 */ 856 #define HPAGE_RESV_OWNER (1UL << 0) 857 #define HPAGE_RESV_UNMAPPED (1UL << 1) 858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 859 860 /* 861 * These helpers are used to track how many pages are reserved for 862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 863 * is guaranteed to have their future faults succeed. 864 * 865 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 866 * the reserve counters are updated with the hugetlb_lock held. It is safe 867 * to reset the VMA at fork() time as it is not in use yet and there is no 868 * chance of the global counters getting corrupted as a result of the values. 869 * 870 * The private mapping reservation is represented in a subtly different 871 * manner to a shared mapping. A shared mapping has a region map associated 872 * with the underlying file, this region map represents the backing file 873 * pages which have ever had a reservation assigned which this persists even 874 * after the page is instantiated. A private mapping has a region map 875 * associated with the original mmap which is attached to all VMAs which 876 * reference it, this region map represents those offsets which have consumed 877 * reservation ie. where pages have been instantiated. 878 */ 879 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 880 { 881 return (unsigned long)vma->vm_private_data; 882 } 883 884 static void set_vma_private_data(struct vm_area_struct *vma, 885 unsigned long value) 886 { 887 vma->vm_private_data = (void *)value; 888 } 889 890 static void 891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 892 struct hugetlb_cgroup *h_cg, 893 struct hstate *h) 894 { 895 #ifdef CONFIG_CGROUP_HUGETLB 896 if (!h_cg || !h) { 897 resv_map->reservation_counter = NULL; 898 resv_map->pages_per_hpage = 0; 899 resv_map->css = NULL; 900 } else { 901 resv_map->reservation_counter = 902 &h_cg->rsvd_hugepage[hstate_index(h)]; 903 resv_map->pages_per_hpage = pages_per_huge_page(h); 904 resv_map->css = &h_cg->css; 905 } 906 #endif 907 } 908 909 struct resv_map *resv_map_alloc(void) 910 { 911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 913 914 if (!resv_map || !rg) { 915 kfree(resv_map); 916 kfree(rg); 917 return NULL; 918 } 919 920 kref_init(&resv_map->refs); 921 spin_lock_init(&resv_map->lock); 922 INIT_LIST_HEAD(&resv_map->regions); 923 924 resv_map->adds_in_progress = 0; 925 /* 926 * Initialize these to 0. On shared mappings, 0's here indicate these 927 * fields don't do cgroup accounting. On private mappings, these will be 928 * re-initialized to the proper values, to indicate that hugetlb cgroup 929 * reservations are to be un-charged from here. 930 */ 931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 932 933 INIT_LIST_HEAD(&resv_map->region_cache); 934 list_add(&rg->link, &resv_map->region_cache); 935 resv_map->region_cache_count = 1; 936 937 return resv_map; 938 } 939 940 void resv_map_release(struct kref *ref) 941 { 942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 943 struct list_head *head = &resv_map->region_cache; 944 struct file_region *rg, *trg; 945 946 /* Clear out any active regions before we release the map. */ 947 region_del(resv_map, 0, LONG_MAX); 948 949 /* ... and any entries left in the cache */ 950 list_for_each_entry_safe(rg, trg, head, link) { 951 list_del(&rg->link); 952 kfree(rg); 953 } 954 955 VM_BUG_ON(resv_map->adds_in_progress); 956 957 kfree(resv_map); 958 } 959 960 static inline struct resv_map *inode_resv_map(struct inode *inode) 961 { 962 /* 963 * At inode evict time, i_mapping may not point to the original 964 * address space within the inode. This original address space 965 * contains the pointer to the resv_map. So, always use the 966 * address space embedded within the inode. 967 * The VERY common case is inode->mapping == &inode->i_data but, 968 * this may not be true for device special inodes. 969 */ 970 return (struct resv_map *)(&inode->i_data)->private_data; 971 } 972 973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 if (vma->vm_flags & VM_MAYSHARE) { 977 struct address_space *mapping = vma->vm_file->f_mapping; 978 struct inode *inode = mapping->host; 979 980 return inode_resv_map(inode); 981 982 } else { 983 return (struct resv_map *)(get_vma_private_data(vma) & 984 ~HPAGE_RESV_MASK); 985 } 986 } 987 988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 989 { 990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 992 993 set_vma_private_data(vma, (get_vma_private_data(vma) & 994 HPAGE_RESV_MASK) | (unsigned long)map); 995 } 996 997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 998 { 999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1001 1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1003 } 1004 1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1006 { 1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1008 1009 return (get_vma_private_data(vma) & flag) != 0; 1010 } 1011 1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1013 { 1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1015 /* 1016 * Clear vm_private_data 1017 * - For shared mappings this is a per-vma semaphore that may be 1018 * allocated in a subsequent call to hugetlb_vm_op_open. 1019 * Before clearing, make sure pointer is not associated with vma 1020 * as this will leak the structure. This is the case when called 1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1022 * been called to allocate a new structure. 1023 * - For MAP_PRIVATE mappings, this is the reserve map which does 1024 * not apply to children. Faults generated by the children are 1025 * not guaranteed to succeed, even if read-only. 1026 */ 1027 if (vma->vm_flags & VM_MAYSHARE) { 1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1029 1030 if (vma_lock && vma_lock->vma != vma) 1031 vma->vm_private_data = NULL; 1032 } else 1033 vma->vm_private_data = NULL; 1034 } 1035 1036 /* 1037 * Reset and decrement one ref on hugepage private reservation. 1038 * Called with mm->mmap_sem writer semaphore held. 1039 * This function should be only used by move_vma() and operate on 1040 * same sized vma. It should never come here with last ref on the 1041 * reservation. 1042 */ 1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1044 { 1045 /* 1046 * Clear the old hugetlb private page reservation. 1047 * It has already been transferred to new_vma. 1048 * 1049 * During a mremap() operation of a hugetlb vma we call move_vma() 1050 * which copies vma into new_vma and unmaps vma. After the copy 1051 * operation both new_vma and vma share a reference to the resv_map 1052 * struct, and at that point vma is about to be unmapped. We don't 1053 * want to return the reservation to the pool at unmap of vma because 1054 * the reservation still lives on in new_vma, so simply decrement the 1055 * ref here and remove the resv_map reference from this vma. 1056 */ 1057 struct resv_map *reservations = vma_resv_map(vma); 1058 1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1061 kref_put(&reservations->refs, resv_map_release); 1062 } 1063 1064 hugetlb_dup_vma_private(vma); 1065 } 1066 1067 /* Returns true if the VMA has associated reserve pages */ 1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1069 { 1070 if (vma->vm_flags & VM_NORESERVE) { 1071 /* 1072 * This address is already reserved by other process(chg == 0), 1073 * so, we should decrement reserved count. Without decrementing, 1074 * reserve count remains after releasing inode, because this 1075 * allocated page will go into page cache and is regarded as 1076 * coming from reserved pool in releasing step. Currently, we 1077 * don't have any other solution to deal with this situation 1078 * properly, so add work-around here. 1079 */ 1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1081 return true; 1082 else 1083 return false; 1084 } 1085 1086 /* Shared mappings always use reserves */ 1087 if (vma->vm_flags & VM_MAYSHARE) { 1088 /* 1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1090 * be a region map for all pages. The only situation where 1091 * there is no region map is if a hole was punched via 1092 * fallocate. In this case, there really are no reserves to 1093 * use. This situation is indicated if chg != 0. 1094 */ 1095 if (chg) 1096 return false; 1097 else 1098 return true; 1099 } 1100 1101 /* 1102 * Only the process that called mmap() has reserves for 1103 * private mappings. 1104 */ 1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1106 /* 1107 * Like the shared case above, a hole punch or truncate 1108 * could have been performed on the private mapping. 1109 * Examine the value of chg to determine if reserves 1110 * actually exist or were previously consumed. 1111 * Very Subtle - The value of chg comes from a previous 1112 * call to vma_needs_reserves(). The reserve map for 1113 * private mappings has different (opposite) semantics 1114 * than that of shared mappings. vma_needs_reserves() 1115 * has already taken this difference in semantics into 1116 * account. Therefore, the meaning of chg is the same 1117 * as in the shared case above. Code could easily be 1118 * combined, but keeping it separate draws attention to 1119 * subtle differences. 1120 */ 1121 if (chg) 1122 return false; 1123 else 1124 return true; 1125 } 1126 1127 return false; 1128 } 1129 1130 static void enqueue_huge_page(struct hstate *h, struct page *page) 1131 { 1132 int nid = page_to_nid(page); 1133 1134 lockdep_assert_held(&hugetlb_lock); 1135 VM_BUG_ON_PAGE(page_count(page), page); 1136 1137 list_move(&page->lru, &h->hugepage_freelists[nid]); 1138 h->free_huge_pages++; 1139 h->free_huge_pages_node[nid]++; 1140 SetHPageFreed(page); 1141 } 1142 1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1144 { 1145 struct page *page; 1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1147 1148 lockdep_assert_held(&hugetlb_lock); 1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1150 if (pin && !is_longterm_pinnable_page(page)) 1151 continue; 1152 1153 if (PageHWPoison(page)) 1154 continue; 1155 1156 list_move(&page->lru, &h->hugepage_activelist); 1157 set_page_refcounted(page); 1158 ClearHPageFreed(page); 1159 h->free_huge_pages--; 1160 h->free_huge_pages_node[nid]--; 1161 return page; 1162 } 1163 1164 return NULL; 1165 } 1166 1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1168 nodemask_t *nmask) 1169 { 1170 unsigned int cpuset_mems_cookie; 1171 struct zonelist *zonelist; 1172 struct zone *zone; 1173 struct zoneref *z; 1174 int node = NUMA_NO_NODE; 1175 1176 zonelist = node_zonelist(nid, gfp_mask); 1177 1178 retry_cpuset: 1179 cpuset_mems_cookie = read_mems_allowed_begin(); 1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1181 struct page *page; 1182 1183 if (!cpuset_zone_allowed(zone, gfp_mask)) 1184 continue; 1185 /* 1186 * no need to ask again on the same node. Pool is node rather than 1187 * zone aware 1188 */ 1189 if (zone_to_nid(zone) == node) 1190 continue; 1191 node = zone_to_nid(zone); 1192 1193 page = dequeue_huge_page_node_exact(h, node); 1194 if (page) 1195 return page; 1196 } 1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1198 goto retry_cpuset; 1199 1200 return NULL; 1201 } 1202 1203 static unsigned long available_huge_pages(struct hstate *h) 1204 { 1205 return h->free_huge_pages - h->resv_huge_pages; 1206 } 1207 1208 static struct page *dequeue_huge_page_vma(struct hstate *h, 1209 struct vm_area_struct *vma, 1210 unsigned long address, int avoid_reserve, 1211 long chg) 1212 { 1213 struct page *page = NULL; 1214 struct mempolicy *mpol; 1215 gfp_t gfp_mask; 1216 nodemask_t *nodemask; 1217 int nid; 1218 1219 /* 1220 * A child process with MAP_PRIVATE mappings created by their parent 1221 * have no page reserves. This check ensures that reservations are 1222 * not "stolen". The child may still get SIGKILLed 1223 */ 1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1225 goto err; 1226 1227 /* If reserves cannot be used, ensure enough pages are in the pool */ 1228 if (avoid_reserve && !available_huge_pages(h)) 1229 goto err; 1230 1231 gfp_mask = htlb_alloc_mask(h); 1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1233 1234 if (mpol_is_preferred_many(mpol)) { 1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1236 1237 /* Fallback to all nodes if page==NULL */ 1238 nodemask = NULL; 1239 } 1240 1241 if (!page) 1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1243 1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1245 SetHPageRestoreReserve(page); 1246 h->resv_huge_pages--; 1247 } 1248 1249 mpol_cond_put(mpol); 1250 return page; 1251 1252 err: 1253 return NULL; 1254 } 1255 1256 /* 1257 * common helper functions for hstate_next_node_to_{alloc|free}. 1258 * We may have allocated or freed a huge page based on a different 1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1260 * be outside of *nodes_allowed. Ensure that we use an allowed 1261 * node for alloc or free. 1262 */ 1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1264 { 1265 nid = next_node_in(nid, *nodes_allowed); 1266 VM_BUG_ON(nid >= MAX_NUMNODES); 1267 1268 return nid; 1269 } 1270 1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1272 { 1273 if (!node_isset(nid, *nodes_allowed)) 1274 nid = next_node_allowed(nid, nodes_allowed); 1275 return nid; 1276 } 1277 1278 /* 1279 * returns the previously saved node ["this node"] from which to 1280 * allocate a persistent huge page for the pool and advance the 1281 * next node from which to allocate, handling wrap at end of node 1282 * mask. 1283 */ 1284 static int hstate_next_node_to_alloc(struct hstate *h, 1285 nodemask_t *nodes_allowed) 1286 { 1287 int nid; 1288 1289 VM_BUG_ON(!nodes_allowed); 1290 1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1293 1294 return nid; 1295 } 1296 1297 /* 1298 * helper for remove_pool_huge_page() - return the previously saved 1299 * node ["this node"] from which to free a huge page. Advance the 1300 * next node id whether or not we find a free huge page to free so 1301 * that the next attempt to free addresses the next node. 1302 */ 1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1304 { 1305 int nid; 1306 1307 VM_BUG_ON(!nodes_allowed); 1308 1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1311 1312 return nid; 1313 } 1314 1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1316 for (nr_nodes = nodes_weight(*mask); \ 1317 nr_nodes > 0 && \ 1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1319 nr_nodes--) 1320 1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1322 for (nr_nodes = nodes_weight(*mask); \ 1323 nr_nodes > 0 && \ 1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1325 nr_nodes--) 1326 1327 /* used to demote non-gigantic_huge pages as well */ 1328 static void __destroy_compound_gigantic_page(struct page *page, 1329 unsigned int order, bool demote) 1330 { 1331 int i; 1332 int nr_pages = 1 << order; 1333 struct page *p; 1334 1335 atomic_set(compound_mapcount_ptr(page), 0); 1336 atomic_set(subpages_mapcount_ptr(page), 0); 1337 atomic_set(compound_pincount_ptr(page), 0); 1338 1339 for (i = 1; i < nr_pages; i++) { 1340 p = nth_page(page, i); 1341 p->mapping = NULL; 1342 clear_compound_head(p); 1343 if (!demote) 1344 set_page_refcounted(p); 1345 } 1346 1347 set_compound_order(page, 0); 1348 #ifdef CONFIG_64BIT 1349 page[1].compound_nr = 0; 1350 #endif 1351 __ClearPageHead(page); 1352 } 1353 1354 static void destroy_compound_hugetlb_page_for_demote(struct page *page, 1355 unsigned int order) 1356 { 1357 __destroy_compound_gigantic_page(page, order, true); 1358 } 1359 1360 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1361 static void destroy_compound_gigantic_page(struct page *page, 1362 unsigned int order) 1363 { 1364 __destroy_compound_gigantic_page(page, order, false); 1365 } 1366 1367 static void free_gigantic_page(struct page *page, unsigned int order) 1368 { 1369 /* 1370 * If the page isn't allocated using the cma allocator, 1371 * cma_release() returns false. 1372 */ 1373 #ifdef CONFIG_CMA 1374 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1375 return; 1376 #endif 1377 1378 free_contig_range(page_to_pfn(page), 1 << order); 1379 } 1380 1381 #ifdef CONFIG_CONTIG_ALLOC 1382 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1383 int nid, nodemask_t *nodemask) 1384 { 1385 unsigned long nr_pages = pages_per_huge_page(h); 1386 if (nid == NUMA_NO_NODE) 1387 nid = numa_mem_id(); 1388 1389 #ifdef CONFIG_CMA 1390 { 1391 struct page *page; 1392 int node; 1393 1394 if (hugetlb_cma[nid]) { 1395 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1396 huge_page_order(h), true); 1397 if (page) 1398 return page; 1399 } 1400 1401 if (!(gfp_mask & __GFP_THISNODE)) { 1402 for_each_node_mask(node, *nodemask) { 1403 if (node == nid || !hugetlb_cma[node]) 1404 continue; 1405 1406 page = cma_alloc(hugetlb_cma[node], nr_pages, 1407 huge_page_order(h), true); 1408 if (page) 1409 return page; 1410 } 1411 } 1412 } 1413 #endif 1414 1415 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1416 } 1417 1418 #else /* !CONFIG_CONTIG_ALLOC */ 1419 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1420 int nid, nodemask_t *nodemask) 1421 { 1422 return NULL; 1423 } 1424 #endif /* CONFIG_CONTIG_ALLOC */ 1425 1426 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1427 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1428 int nid, nodemask_t *nodemask) 1429 { 1430 return NULL; 1431 } 1432 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1433 static inline void destroy_compound_gigantic_page(struct page *page, 1434 unsigned int order) { } 1435 #endif 1436 1437 /* 1438 * Remove hugetlb page from lists, and update dtor so that page appears 1439 * as just a compound page. 1440 * 1441 * A reference is held on the page, except in the case of demote. 1442 * 1443 * Must be called with hugetlb lock held. 1444 */ 1445 static void __remove_hugetlb_page(struct hstate *h, struct page *page, 1446 bool adjust_surplus, 1447 bool demote) 1448 { 1449 int nid = page_to_nid(page); 1450 struct folio *folio = page_folio(page); 1451 1452 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1453 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1454 1455 lockdep_assert_held(&hugetlb_lock); 1456 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1457 return; 1458 1459 list_del(&page->lru); 1460 1461 if (HPageFreed(page)) { 1462 h->free_huge_pages--; 1463 h->free_huge_pages_node[nid]--; 1464 } 1465 if (adjust_surplus) { 1466 h->surplus_huge_pages--; 1467 h->surplus_huge_pages_node[nid]--; 1468 } 1469 1470 /* 1471 * Very subtle 1472 * 1473 * For non-gigantic pages set the destructor to the normal compound 1474 * page dtor. This is needed in case someone takes an additional 1475 * temporary ref to the page, and freeing is delayed until they drop 1476 * their reference. 1477 * 1478 * For gigantic pages set the destructor to the null dtor. This 1479 * destructor will never be called. Before freeing the gigantic 1480 * page destroy_compound_gigantic_page will turn the compound page 1481 * into a simple group of pages. After this the destructor does not 1482 * apply. 1483 * 1484 * This handles the case where more than one ref is held when and 1485 * after update_and_free_page is called. 1486 * 1487 * In the case of demote we do not ref count the page as it will soon 1488 * be turned into a page of smaller size. 1489 */ 1490 if (!demote) 1491 set_page_refcounted(page); 1492 if (hstate_is_gigantic(h)) 1493 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1494 else 1495 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 1496 1497 h->nr_huge_pages--; 1498 h->nr_huge_pages_node[nid]--; 1499 } 1500 1501 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1502 bool adjust_surplus) 1503 { 1504 __remove_hugetlb_page(h, page, adjust_surplus, false); 1505 } 1506 1507 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page, 1508 bool adjust_surplus) 1509 { 1510 __remove_hugetlb_page(h, page, adjust_surplus, true); 1511 } 1512 1513 static void add_hugetlb_page(struct hstate *h, struct page *page, 1514 bool adjust_surplus) 1515 { 1516 int zeroed; 1517 int nid = page_to_nid(page); 1518 1519 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page); 1520 1521 lockdep_assert_held(&hugetlb_lock); 1522 1523 INIT_LIST_HEAD(&page->lru); 1524 h->nr_huge_pages++; 1525 h->nr_huge_pages_node[nid]++; 1526 1527 if (adjust_surplus) { 1528 h->surplus_huge_pages++; 1529 h->surplus_huge_pages_node[nid]++; 1530 } 1531 1532 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1533 set_page_private(page, 0); 1534 /* 1535 * We have to set HPageVmemmapOptimized again as above 1536 * set_page_private(page, 0) cleared it. 1537 */ 1538 SetHPageVmemmapOptimized(page); 1539 1540 /* 1541 * This page is about to be managed by the hugetlb allocator and 1542 * should have no users. Drop our reference, and check for others 1543 * just in case. 1544 */ 1545 zeroed = put_page_testzero(page); 1546 if (!zeroed) 1547 /* 1548 * It is VERY unlikely soneone else has taken a ref on 1549 * the page. In this case, we simply return as the 1550 * hugetlb destructor (free_huge_page) will be called 1551 * when this other ref is dropped. 1552 */ 1553 return; 1554 1555 arch_clear_hugepage_flags(page); 1556 enqueue_huge_page(h, page); 1557 } 1558 1559 static void __update_and_free_page(struct hstate *h, struct page *page) 1560 { 1561 int i; 1562 struct page *subpage; 1563 1564 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1565 return; 1566 1567 /* 1568 * If we don't know which subpages are hwpoisoned, we can't free 1569 * the hugepage, so it's leaked intentionally. 1570 */ 1571 if (HPageRawHwpUnreliable(page)) 1572 return; 1573 1574 if (hugetlb_vmemmap_restore(h, page)) { 1575 spin_lock_irq(&hugetlb_lock); 1576 /* 1577 * If we cannot allocate vmemmap pages, just refuse to free the 1578 * page and put the page back on the hugetlb free list and treat 1579 * as a surplus page. 1580 */ 1581 add_hugetlb_page(h, page, true); 1582 spin_unlock_irq(&hugetlb_lock); 1583 return; 1584 } 1585 1586 /* 1587 * Move PageHWPoison flag from head page to the raw error pages, 1588 * which makes any healthy subpages reusable. 1589 */ 1590 if (unlikely(PageHWPoison(page))) 1591 hugetlb_clear_page_hwpoison(page); 1592 1593 for (i = 0; i < pages_per_huge_page(h); i++) { 1594 subpage = nth_page(page, i); 1595 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1596 1 << PG_referenced | 1 << PG_dirty | 1597 1 << PG_active | 1 << PG_private | 1598 1 << PG_writeback); 1599 } 1600 1601 /* 1602 * Non-gigantic pages demoted from CMA allocated gigantic pages 1603 * need to be given back to CMA in free_gigantic_page. 1604 */ 1605 if (hstate_is_gigantic(h) || 1606 hugetlb_cma_page(page, huge_page_order(h))) { 1607 destroy_compound_gigantic_page(page, huge_page_order(h)); 1608 free_gigantic_page(page, huge_page_order(h)); 1609 } else { 1610 __free_pages(page, huge_page_order(h)); 1611 } 1612 } 1613 1614 /* 1615 * As update_and_free_page() can be called under any context, so we cannot 1616 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1617 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1618 * the vmemmap pages. 1619 * 1620 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1621 * freed and frees them one-by-one. As the page->mapping pointer is going 1622 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1623 * structure of a lockless linked list of huge pages to be freed. 1624 */ 1625 static LLIST_HEAD(hpage_freelist); 1626 1627 static void free_hpage_workfn(struct work_struct *work) 1628 { 1629 struct llist_node *node; 1630 1631 node = llist_del_all(&hpage_freelist); 1632 1633 while (node) { 1634 struct page *page; 1635 struct hstate *h; 1636 1637 page = container_of((struct address_space **)node, 1638 struct page, mapping); 1639 node = node->next; 1640 page->mapping = NULL; 1641 /* 1642 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1643 * is going to trigger because a previous call to 1644 * remove_hugetlb_page() will set_compound_page_dtor(page, 1645 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly. 1646 */ 1647 h = size_to_hstate(page_size(page)); 1648 1649 __update_and_free_page(h, page); 1650 1651 cond_resched(); 1652 } 1653 } 1654 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1655 1656 static inline void flush_free_hpage_work(struct hstate *h) 1657 { 1658 if (hugetlb_vmemmap_optimizable(h)) 1659 flush_work(&free_hpage_work); 1660 } 1661 1662 static void update_and_free_page(struct hstate *h, struct page *page, 1663 bool atomic) 1664 { 1665 if (!HPageVmemmapOptimized(page) || !atomic) { 1666 __update_and_free_page(h, page); 1667 return; 1668 } 1669 1670 /* 1671 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1672 * 1673 * Only call schedule_work() if hpage_freelist is previously 1674 * empty. Otherwise, schedule_work() had been called but the workfn 1675 * hasn't retrieved the list yet. 1676 */ 1677 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist)) 1678 schedule_work(&free_hpage_work); 1679 } 1680 1681 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1682 { 1683 struct page *page, *t_page; 1684 1685 list_for_each_entry_safe(page, t_page, list, lru) { 1686 update_and_free_page(h, page, false); 1687 cond_resched(); 1688 } 1689 } 1690 1691 struct hstate *size_to_hstate(unsigned long size) 1692 { 1693 struct hstate *h; 1694 1695 for_each_hstate(h) { 1696 if (huge_page_size(h) == size) 1697 return h; 1698 } 1699 return NULL; 1700 } 1701 1702 void free_huge_page(struct page *page) 1703 { 1704 /* 1705 * Can't pass hstate in here because it is called from the 1706 * compound page destructor. 1707 */ 1708 struct folio *folio = page_folio(page); 1709 struct hstate *h = folio_hstate(folio); 1710 int nid = folio_nid(folio); 1711 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1712 bool restore_reserve; 1713 unsigned long flags; 1714 1715 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1716 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1717 1718 hugetlb_set_folio_subpool(folio, NULL); 1719 if (folio_test_anon(folio)) 1720 __ClearPageAnonExclusive(&folio->page); 1721 folio->mapping = NULL; 1722 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1723 folio_clear_hugetlb_restore_reserve(folio); 1724 1725 /* 1726 * If HPageRestoreReserve was set on page, page allocation consumed a 1727 * reservation. If the page was associated with a subpool, there 1728 * would have been a page reserved in the subpool before allocation 1729 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1730 * reservation, do not call hugepage_subpool_put_pages() as this will 1731 * remove the reserved page from the subpool. 1732 */ 1733 if (!restore_reserve) { 1734 /* 1735 * A return code of zero implies that the subpool will be 1736 * under its minimum size if the reservation is not restored 1737 * after page is free. Therefore, force restore_reserve 1738 * operation. 1739 */ 1740 if (hugepage_subpool_put_pages(spool, 1) == 0) 1741 restore_reserve = true; 1742 } 1743 1744 spin_lock_irqsave(&hugetlb_lock, flags); 1745 folio_clear_hugetlb_migratable(folio); 1746 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1747 pages_per_huge_page(h), folio); 1748 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1749 pages_per_huge_page(h), folio); 1750 if (restore_reserve) 1751 h->resv_huge_pages++; 1752 1753 if (folio_test_hugetlb_temporary(folio)) { 1754 remove_hugetlb_page(h, page, false); 1755 spin_unlock_irqrestore(&hugetlb_lock, flags); 1756 update_and_free_page(h, page, true); 1757 } else if (h->surplus_huge_pages_node[nid]) { 1758 /* remove the page from active list */ 1759 remove_hugetlb_page(h, page, true); 1760 spin_unlock_irqrestore(&hugetlb_lock, flags); 1761 update_and_free_page(h, page, true); 1762 } else { 1763 arch_clear_hugepage_flags(page); 1764 enqueue_huge_page(h, page); 1765 spin_unlock_irqrestore(&hugetlb_lock, flags); 1766 } 1767 } 1768 1769 /* 1770 * Must be called with the hugetlb lock held 1771 */ 1772 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1773 { 1774 lockdep_assert_held(&hugetlb_lock); 1775 h->nr_huge_pages++; 1776 h->nr_huge_pages_node[nid]++; 1777 } 1778 1779 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1780 { 1781 hugetlb_vmemmap_optimize(h, &folio->page); 1782 INIT_LIST_HEAD(&folio->lru); 1783 folio->_folio_dtor = HUGETLB_PAGE_DTOR; 1784 hugetlb_set_folio_subpool(folio, NULL); 1785 set_hugetlb_cgroup(folio, NULL); 1786 set_hugetlb_cgroup_rsvd(folio, NULL); 1787 } 1788 1789 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1790 { 1791 struct folio *folio = page_folio(page); 1792 1793 __prep_new_hugetlb_folio(h, folio); 1794 spin_lock_irq(&hugetlb_lock); 1795 __prep_account_new_huge_page(h, nid); 1796 spin_unlock_irq(&hugetlb_lock); 1797 } 1798 1799 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order, 1800 bool demote) 1801 { 1802 int i, j; 1803 int nr_pages = 1 << order; 1804 struct page *p; 1805 1806 /* we rely on prep_new_huge_page to set the destructor */ 1807 set_compound_order(page, order); 1808 __ClearPageReserved(page); 1809 __SetPageHead(page); 1810 for (i = 0; i < nr_pages; i++) { 1811 p = nth_page(page, i); 1812 1813 /* 1814 * For gigantic hugepages allocated through bootmem at 1815 * boot, it's safer to be consistent with the not-gigantic 1816 * hugepages and clear the PG_reserved bit from all tail pages 1817 * too. Otherwise drivers using get_user_pages() to access tail 1818 * pages may get the reference counting wrong if they see 1819 * PG_reserved set on a tail page (despite the head page not 1820 * having PG_reserved set). Enforcing this consistency between 1821 * head and tail pages allows drivers to optimize away a check 1822 * on the head page when they need know if put_page() is needed 1823 * after get_user_pages(). 1824 */ 1825 if (i != 0) /* head page cleared above */ 1826 __ClearPageReserved(p); 1827 /* 1828 * Subtle and very unlikely 1829 * 1830 * Gigantic 'page allocators' such as memblock or cma will 1831 * return a set of pages with each page ref counted. We need 1832 * to turn this set of pages into a compound page with tail 1833 * page ref counts set to zero. Code such as speculative page 1834 * cache adding could take a ref on a 'to be' tail page. 1835 * We need to respect any increased ref count, and only set 1836 * the ref count to zero if count is currently 1. If count 1837 * is not 1, we return an error. An error return indicates 1838 * the set of pages can not be converted to a gigantic page. 1839 * The caller who allocated the pages should then discard the 1840 * pages using the appropriate free interface. 1841 * 1842 * In the case of demote, the ref count will be zero. 1843 */ 1844 if (!demote) { 1845 if (!page_ref_freeze(p, 1)) { 1846 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1847 goto out_error; 1848 } 1849 } else { 1850 VM_BUG_ON_PAGE(page_count(p), p); 1851 } 1852 if (i != 0) 1853 set_compound_head(p, page); 1854 } 1855 atomic_set(compound_mapcount_ptr(page), -1); 1856 atomic_set(subpages_mapcount_ptr(page), 0); 1857 atomic_set(compound_pincount_ptr(page), 0); 1858 return true; 1859 1860 out_error: 1861 /* undo page modifications made above */ 1862 for (j = 0; j < i; j++) { 1863 p = nth_page(page, j); 1864 if (j != 0) 1865 clear_compound_head(p); 1866 set_page_refcounted(p); 1867 } 1868 /* need to clear PG_reserved on remaining tail pages */ 1869 for (; j < nr_pages; j++) { 1870 p = nth_page(page, j); 1871 __ClearPageReserved(p); 1872 } 1873 set_compound_order(page, 0); 1874 #ifdef CONFIG_64BIT 1875 page[1].compound_nr = 0; 1876 #endif 1877 __ClearPageHead(page); 1878 return false; 1879 } 1880 1881 static bool prep_compound_gigantic_page(struct page *page, unsigned int order) 1882 { 1883 return __prep_compound_gigantic_page(page, order, false); 1884 } 1885 1886 static bool prep_compound_gigantic_page_for_demote(struct page *page, 1887 unsigned int order) 1888 { 1889 return __prep_compound_gigantic_page(page, order, true); 1890 } 1891 1892 /* 1893 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1894 * transparent huge pages. See the PageTransHuge() documentation for more 1895 * details. 1896 */ 1897 int PageHuge(struct page *page) 1898 { 1899 if (!PageCompound(page)) 1900 return 0; 1901 1902 page = compound_head(page); 1903 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1904 } 1905 EXPORT_SYMBOL_GPL(PageHuge); 1906 1907 /* 1908 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1909 * normal or transparent huge pages. 1910 */ 1911 int PageHeadHuge(struct page *page_head) 1912 { 1913 if (!PageHead(page_head)) 1914 return 0; 1915 1916 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1917 } 1918 EXPORT_SYMBOL_GPL(PageHeadHuge); 1919 1920 /* 1921 * Find and lock address space (mapping) in write mode. 1922 * 1923 * Upon entry, the page is locked which means that page_mapping() is 1924 * stable. Due to locking order, we can only trylock_write. If we can 1925 * not get the lock, simply return NULL to caller. 1926 */ 1927 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1928 { 1929 struct address_space *mapping = page_mapping(hpage); 1930 1931 if (!mapping) 1932 return mapping; 1933 1934 if (i_mmap_trylock_write(mapping)) 1935 return mapping; 1936 1937 return NULL; 1938 } 1939 1940 pgoff_t hugetlb_basepage_index(struct page *page) 1941 { 1942 struct page *page_head = compound_head(page); 1943 pgoff_t index = page_index(page_head); 1944 unsigned long compound_idx; 1945 1946 if (compound_order(page_head) >= MAX_ORDER) 1947 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1948 else 1949 compound_idx = page - page_head; 1950 1951 return (index << compound_order(page_head)) + compound_idx; 1952 } 1953 1954 static struct page *alloc_buddy_huge_page(struct hstate *h, 1955 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1956 nodemask_t *node_alloc_noretry) 1957 { 1958 int order = huge_page_order(h); 1959 struct page *page; 1960 bool alloc_try_hard = true; 1961 bool retry = true; 1962 1963 /* 1964 * By default we always try hard to allocate the page with 1965 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1966 * a loop (to adjust global huge page counts) and previous allocation 1967 * failed, do not continue to try hard on the same node. Use the 1968 * node_alloc_noretry bitmap to manage this state information. 1969 */ 1970 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1971 alloc_try_hard = false; 1972 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1973 if (alloc_try_hard) 1974 gfp_mask |= __GFP_RETRY_MAYFAIL; 1975 if (nid == NUMA_NO_NODE) 1976 nid = numa_mem_id(); 1977 retry: 1978 page = __alloc_pages(gfp_mask, order, nid, nmask); 1979 1980 /* Freeze head page */ 1981 if (page && !page_ref_freeze(page, 1)) { 1982 __free_pages(page, order); 1983 if (retry) { /* retry once */ 1984 retry = false; 1985 goto retry; 1986 } 1987 /* WOW! twice in a row. */ 1988 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 1989 page = NULL; 1990 } 1991 1992 if (page) 1993 __count_vm_event(HTLB_BUDDY_PGALLOC); 1994 else 1995 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1996 1997 /* 1998 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1999 * indicates an overall state change. Clear bit so that we resume 2000 * normal 'try hard' allocations. 2001 */ 2002 if (node_alloc_noretry && page && !alloc_try_hard) 2003 node_clear(nid, *node_alloc_noretry); 2004 2005 /* 2006 * If we tried hard to get a page but failed, set bit so that 2007 * subsequent attempts will not try as hard until there is an 2008 * overall state change. 2009 */ 2010 if (node_alloc_noretry && !page && alloc_try_hard) 2011 node_set(nid, *node_alloc_noretry); 2012 2013 return page; 2014 } 2015 2016 /* 2017 * Common helper to allocate a fresh hugetlb page. All specific allocators 2018 * should use this function to get new hugetlb pages 2019 * 2020 * Note that returned page is 'frozen': ref count of head page and all tail 2021 * pages is zero. 2022 */ 2023 static struct page *alloc_fresh_huge_page(struct hstate *h, 2024 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2025 nodemask_t *node_alloc_noretry) 2026 { 2027 struct page *page; 2028 bool retry = false; 2029 2030 retry: 2031 if (hstate_is_gigantic(h)) 2032 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 2033 else 2034 page = alloc_buddy_huge_page(h, gfp_mask, 2035 nid, nmask, node_alloc_noretry); 2036 if (!page) 2037 return NULL; 2038 2039 if (hstate_is_gigantic(h)) { 2040 if (!prep_compound_gigantic_page(page, huge_page_order(h))) { 2041 /* 2042 * Rare failure to convert pages to compound page. 2043 * Free pages and try again - ONCE! 2044 */ 2045 free_gigantic_page(page, huge_page_order(h)); 2046 if (!retry) { 2047 retry = true; 2048 goto retry; 2049 } 2050 return NULL; 2051 } 2052 } 2053 prep_new_huge_page(h, page, page_to_nid(page)); 2054 2055 return page; 2056 } 2057 2058 /* 2059 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2060 * manner. 2061 */ 2062 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2063 nodemask_t *node_alloc_noretry) 2064 { 2065 struct page *page; 2066 int nr_nodes, node; 2067 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2068 2069 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2070 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 2071 node_alloc_noretry); 2072 if (page) 2073 break; 2074 } 2075 2076 if (!page) 2077 return 0; 2078 2079 free_huge_page(page); /* free it into the hugepage allocator */ 2080 2081 return 1; 2082 } 2083 2084 /* 2085 * Remove huge page from pool from next node to free. Attempt to keep 2086 * persistent huge pages more or less balanced over allowed nodes. 2087 * This routine only 'removes' the hugetlb page. The caller must make 2088 * an additional call to free the page to low level allocators. 2089 * Called with hugetlb_lock locked. 2090 */ 2091 static struct page *remove_pool_huge_page(struct hstate *h, 2092 nodemask_t *nodes_allowed, 2093 bool acct_surplus) 2094 { 2095 int nr_nodes, node; 2096 struct page *page = NULL; 2097 2098 lockdep_assert_held(&hugetlb_lock); 2099 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2100 /* 2101 * If we're returning unused surplus pages, only examine 2102 * nodes with surplus pages. 2103 */ 2104 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2105 !list_empty(&h->hugepage_freelists[node])) { 2106 page = list_entry(h->hugepage_freelists[node].next, 2107 struct page, lru); 2108 remove_hugetlb_page(h, page, acct_surplus); 2109 break; 2110 } 2111 } 2112 2113 return page; 2114 } 2115 2116 /* 2117 * Dissolve a given free hugepage into free buddy pages. This function does 2118 * nothing for in-use hugepages and non-hugepages. 2119 * This function returns values like below: 2120 * 2121 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2122 * when the system is under memory pressure and the feature of 2123 * freeing unused vmemmap pages associated with each hugetlb page 2124 * is enabled. 2125 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2126 * (allocated or reserved.) 2127 * 0: successfully dissolved free hugepages or the page is not a 2128 * hugepage (considered as already dissolved) 2129 */ 2130 int dissolve_free_huge_page(struct page *page) 2131 { 2132 int rc = -EBUSY; 2133 2134 retry: 2135 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2136 if (!PageHuge(page)) 2137 return 0; 2138 2139 spin_lock_irq(&hugetlb_lock); 2140 if (!PageHuge(page)) { 2141 rc = 0; 2142 goto out; 2143 } 2144 2145 if (!page_count(page)) { 2146 struct page *head = compound_head(page); 2147 struct hstate *h = page_hstate(head); 2148 if (!available_huge_pages(h)) 2149 goto out; 2150 2151 /* 2152 * We should make sure that the page is already on the free list 2153 * when it is dissolved. 2154 */ 2155 if (unlikely(!HPageFreed(head))) { 2156 spin_unlock_irq(&hugetlb_lock); 2157 cond_resched(); 2158 2159 /* 2160 * Theoretically, we should return -EBUSY when we 2161 * encounter this race. In fact, we have a chance 2162 * to successfully dissolve the page if we do a 2163 * retry. Because the race window is quite small. 2164 * If we seize this opportunity, it is an optimization 2165 * for increasing the success rate of dissolving page. 2166 */ 2167 goto retry; 2168 } 2169 2170 remove_hugetlb_page(h, head, false); 2171 h->max_huge_pages--; 2172 spin_unlock_irq(&hugetlb_lock); 2173 2174 /* 2175 * Normally update_and_free_page will allocate required vmemmmap 2176 * before freeing the page. update_and_free_page will fail to 2177 * free the page if it can not allocate required vmemmap. We 2178 * need to adjust max_huge_pages if the page is not freed. 2179 * Attempt to allocate vmemmmap here so that we can take 2180 * appropriate action on failure. 2181 */ 2182 rc = hugetlb_vmemmap_restore(h, head); 2183 if (!rc) { 2184 update_and_free_page(h, head, false); 2185 } else { 2186 spin_lock_irq(&hugetlb_lock); 2187 add_hugetlb_page(h, head, false); 2188 h->max_huge_pages++; 2189 spin_unlock_irq(&hugetlb_lock); 2190 } 2191 2192 return rc; 2193 } 2194 out: 2195 spin_unlock_irq(&hugetlb_lock); 2196 return rc; 2197 } 2198 2199 /* 2200 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2201 * make specified memory blocks removable from the system. 2202 * Note that this will dissolve a free gigantic hugepage completely, if any 2203 * part of it lies within the given range. 2204 * Also note that if dissolve_free_huge_page() returns with an error, all 2205 * free hugepages that were dissolved before that error are lost. 2206 */ 2207 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2208 { 2209 unsigned long pfn; 2210 struct page *page; 2211 int rc = 0; 2212 unsigned int order; 2213 struct hstate *h; 2214 2215 if (!hugepages_supported()) 2216 return rc; 2217 2218 order = huge_page_order(&default_hstate); 2219 for_each_hstate(h) 2220 order = min(order, huge_page_order(h)); 2221 2222 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2223 page = pfn_to_page(pfn); 2224 rc = dissolve_free_huge_page(page); 2225 if (rc) 2226 break; 2227 } 2228 2229 return rc; 2230 } 2231 2232 /* 2233 * Allocates a fresh surplus page from the page allocator. 2234 */ 2235 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2236 int nid, nodemask_t *nmask) 2237 { 2238 struct page *page = NULL; 2239 2240 if (hstate_is_gigantic(h)) 2241 return NULL; 2242 2243 spin_lock_irq(&hugetlb_lock); 2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2245 goto out_unlock; 2246 spin_unlock_irq(&hugetlb_lock); 2247 2248 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2249 if (!page) 2250 return NULL; 2251 2252 spin_lock_irq(&hugetlb_lock); 2253 /* 2254 * We could have raced with the pool size change. 2255 * Double check that and simply deallocate the new page 2256 * if we would end up overcommiting the surpluses. Abuse 2257 * temporary page to workaround the nasty free_huge_page 2258 * codeflow 2259 */ 2260 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2261 SetHPageTemporary(page); 2262 spin_unlock_irq(&hugetlb_lock); 2263 free_huge_page(page); 2264 return NULL; 2265 } 2266 2267 h->surplus_huge_pages++; 2268 h->surplus_huge_pages_node[page_to_nid(page)]++; 2269 2270 out_unlock: 2271 spin_unlock_irq(&hugetlb_lock); 2272 2273 return page; 2274 } 2275 2276 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2277 int nid, nodemask_t *nmask) 2278 { 2279 struct page *page; 2280 2281 if (hstate_is_gigantic(h)) 2282 return NULL; 2283 2284 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 2285 if (!page) 2286 return NULL; 2287 2288 /* fresh huge pages are frozen */ 2289 set_page_refcounted(page); 2290 2291 /* 2292 * We do not account these pages as surplus because they are only 2293 * temporary and will be released properly on the last reference 2294 */ 2295 SetHPageTemporary(page); 2296 2297 return page; 2298 } 2299 2300 /* 2301 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2302 */ 2303 static 2304 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2305 struct vm_area_struct *vma, unsigned long addr) 2306 { 2307 struct page *page = NULL; 2308 struct mempolicy *mpol; 2309 gfp_t gfp_mask = htlb_alloc_mask(h); 2310 int nid; 2311 nodemask_t *nodemask; 2312 2313 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2314 if (mpol_is_preferred_many(mpol)) { 2315 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2316 2317 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2318 page = alloc_surplus_huge_page(h, gfp, nid, nodemask); 2319 2320 /* Fallback to all nodes if page==NULL */ 2321 nodemask = NULL; 2322 } 2323 2324 if (!page) 2325 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 2326 mpol_cond_put(mpol); 2327 return page; 2328 } 2329 2330 /* page migration callback function */ 2331 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2332 nodemask_t *nmask, gfp_t gfp_mask) 2333 { 2334 spin_lock_irq(&hugetlb_lock); 2335 if (available_huge_pages(h)) { 2336 struct page *page; 2337 2338 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2339 if (page) { 2340 spin_unlock_irq(&hugetlb_lock); 2341 return page; 2342 } 2343 } 2344 spin_unlock_irq(&hugetlb_lock); 2345 2346 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2347 } 2348 2349 /* mempolicy aware migration callback */ 2350 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2351 unsigned long address) 2352 { 2353 struct mempolicy *mpol; 2354 nodemask_t *nodemask; 2355 struct page *page; 2356 gfp_t gfp_mask; 2357 int node; 2358 2359 gfp_mask = htlb_alloc_mask(h); 2360 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2361 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2362 mpol_cond_put(mpol); 2363 2364 return page; 2365 } 2366 2367 /* 2368 * Increase the hugetlb pool such that it can accommodate a reservation 2369 * of size 'delta'. 2370 */ 2371 static int gather_surplus_pages(struct hstate *h, long delta) 2372 __must_hold(&hugetlb_lock) 2373 { 2374 LIST_HEAD(surplus_list); 2375 struct page *page, *tmp; 2376 int ret; 2377 long i; 2378 long needed, allocated; 2379 bool alloc_ok = true; 2380 2381 lockdep_assert_held(&hugetlb_lock); 2382 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2383 if (needed <= 0) { 2384 h->resv_huge_pages += delta; 2385 return 0; 2386 } 2387 2388 allocated = 0; 2389 2390 ret = -ENOMEM; 2391 retry: 2392 spin_unlock_irq(&hugetlb_lock); 2393 for (i = 0; i < needed; i++) { 2394 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2395 NUMA_NO_NODE, NULL); 2396 if (!page) { 2397 alloc_ok = false; 2398 break; 2399 } 2400 list_add(&page->lru, &surplus_list); 2401 cond_resched(); 2402 } 2403 allocated += i; 2404 2405 /* 2406 * After retaking hugetlb_lock, we need to recalculate 'needed' 2407 * because either resv_huge_pages or free_huge_pages may have changed. 2408 */ 2409 spin_lock_irq(&hugetlb_lock); 2410 needed = (h->resv_huge_pages + delta) - 2411 (h->free_huge_pages + allocated); 2412 if (needed > 0) { 2413 if (alloc_ok) 2414 goto retry; 2415 /* 2416 * We were not able to allocate enough pages to 2417 * satisfy the entire reservation so we free what 2418 * we've allocated so far. 2419 */ 2420 goto free; 2421 } 2422 /* 2423 * The surplus_list now contains _at_least_ the number of extra pages 2424 * needed to accommodate the reservation. Add the appropriate number 2425 * of pages to the hugetlb pool and free the extras back to the buddy 2426 * allocator. Commit the entire reservation here to prevent another 2427 * process from stealing the pages as they are added to the pool but 2428 * before they are reserved. 2429 */ 2430 needed += allocated; 2431 h->resv_huge_pages += delta; 2432 ret = 0; 2433 2434 /* Free the needed pages to the hugetlb pool */ 2435 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2436 if ((--needed) < 0) 2437 break; 2438 /* Add the page to the hugetlb allocator */ 2439 enqueue_huge_page(h, page); 2440 } 2441 free: 2442 spin_unlock_irq(&hugetlb_lock); 2443 2444 /* 2445 * Free unnecessary surplus pages to the buddy allocator. 2446 * Pages have no ref count, call free_huge_page directly. 2447 */ 2448 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2449 free_huge_page(page); 2450 spin_lock_irq(&hugetlb_lock); 2451 2452 return ret; 2453 } 2454 2455 /* 2456 * This routine has two main purposes: 2457 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2458 * in unused_resv_pages. This corresponds to the prior adjustments made 2459 * to the associated reservation map. 2460 * 2) Free any unused surplus pages that may have been allocated to satisfy 2461 * the reservation. As many as unused_resv_pages may be freed. 2462 */ 2463 static void return_unused_surplus_pages(struct hstate *h, 2464 unsigned long unused_resv_pages) 2465 { 2466 unsigned long nr_pages; 2467 struct page *page; 2468 LIST_HEAD(page_list); 2469 2470 lockdep_assert_held(&hugetlb_lock); 2471 /* Uncommit the reservation */ 2472 h->resv_huge_pages -= unused_resv_pages; 2473 2474 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2475 goto out; 2476 2477 /* 2478 * Part (or even all) of the reservation could have been backed 2479 * by pre-allocated pages. Only free surplus pages. 2480 */ 2481 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2482 2483 /* 2484 * We want to release as many surplus pages as possible, spread 2485 * evenly across all nodes with memory. Iterate across these nodes 2486 * until we can no longer free unreserved surplus pages. This occurs 2487 * when the nodes with surplus pages have no free pages. 2488 * remove_pool_huge_page() will balance the freed pages across the 2489 * on-line nodes with memory and will handle the hstate accounting. 2490 */ 2491 while (nr_pages--) { 2492 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2493 if (!page) 2494 goto out; 2495 2496 list_add(&page->lru, &page_list); 2497 } 2498 2499 out: 2500 spin_unlock_irq(&hugetlb_lock); 2501 update_and_free_pages_bulk(h, &page_list); 2502 spin_lock_irq(&hugetlb_lock); 2503 } 2504 2505 2506 /* 2507 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2508 * are used by the huge page allocation routines to manage reservations. 2509 * 2510 * vma_needs_reservation is called to determine if the huge page at addr 2511 * within the vma has an associated reservation. If a reservation is 2512 * needed, the value 1 is returned. The caller is then responsible for 2513 * managing the global reservation and subpool usage counts. After 2514 * the huge page has been allocated, vma_commit_reservation is called 2515 * to add the page to the reservation map. If the page allocation fails, 2516 * the reservation must be ended instead of committed. vma_end_reservation 2517 * is called in such cases. 2518 * 2519 * In the normal case, vma_commit_reservation returns the same value 2520 * as the preceding vma_needs_reservation call. The only time this 2521 * is not the case is if a reserve map was changed between calls. It 2522 * is the responsibility of the caller to notice the difference and 2523 * take appropriate action. 2524 * 2525 * vma_add_reservation is used in error paths where a reservation must 2526 * be restored when a newly allocated huge page must be freed. It is 2527 * to be called after calling vma_needs_reservation to determine if a 2528 * reservation exists. 2529 * 2530 * vma_del_reservation is used in error paths where an entry in the reserve 2531 * map was created during huge page allocation and must be removed. It is to 2532 * be called after calling vma_needs_reservation to determine if a reservation 2533 * exists. 2534 */ 2535 enum vma_resv_mode { 2536 VMA_NEEDS_RESV, 2537 VMA_COMMIT_RESV, 2538 VMA_END_RESV, 2539 VMA_ADD_RESV, 2540 VMA_DEL_RESV, 2541 }; 2542 static long __vma_reservation_common(struct hstate *h, 2543 struct vm_area_struct *vma, unsigned long addr, 2544 enum vma_resv_mode mode) 2545 { 2546 struct resv_map *resv; 2547 pgoff_t idx; 2548 long ret; 2549 long dummy_out_regions_needed; 2550 2551 resv = vma_resv_map(vma); 2552 if (!resv) 2553 return 1; 2554 2555 idx = vma_hugecache_offset(h, vma, addr); 2556 switch (mode) { 2557 case VMA_NEEDS_RESV: 2558 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2559 /* We assume that vma_reservation_* routines always operate on 2560 * 1 page, and that adding to resv map a 1 page entry can only 2561 * ever require 1 region. 2562 */ 2563 VM_BUG_ON(dummy_out_regions_needed != 1); 2564 break; 2565 case VMA_COMMIT_RESV: 2566 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2567 /* region_add calls of range 1 should never fail. */ 2568 VM_BUG_ON(ret < 0); 2569 break; 2570 case VMA_END_RESV: 2571 region_abort(resv, idx, idx + 1, 1); 2572 ret = 0; 2573 break; 2574 case VMA_ADD_RESV: 2575 if (vma->vm_flags & VM_MAYSHARE) { 2576 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2577 /* region_add calls of range 1 should never fail. */ 2578 VM_BUG_ON(ret < 0); 2579 } else { 2580 region_abort(resv, idx, idx + 1, 1); 2581 ret = region_del(resv, idx, idx + 1); 2582 } 2583 break; 2584 case VMA_DEL_RESV: 2585 if (vma->vm_flags & VM_MAYSHARE) { 2586 region_abort(resv, idx, idx + 1, 1); 2587 ret = region_del(resv, idx, idx + 1); 2588 } else { 2589 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2590 /* region_add calls of range 1 should never fail. */ 2591 VM_BUG_ON(ret < 0); 2592 } 2593 break; 2594 default: 2595 BUG(); 2596 } 2597 2598 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2599 return ret; 2600 /* 2601 * We know private mapping must have HPAGE_RESV_OWNER set. 2602 * 2603 * In most cases, reserves always exist for private mappings. 2604 * However, a file associated with mapping could have been 2605 * hole punched or truncated after reserves were consumed. 2606 * As subsequent fault on such a range will not use reserves. 2607 * Subtle - The reserve map for private mappings has the 2608 * opposite meaning than that of shared mappings. If NO 2609 * entry is in the reserve map, it means a reservation exists. 2610 * If an entry exists in the reserve map, it means the 2611 * reservation has already been consumed. As a result, the 2612 * return value of this routine is the opposite of the 2613 * value returned from reserve map manipulation routines above. 2614 */ 2615 if (ret > 0) 2616 return 0; 2617 if (ret == 0) 2618 return 1; 2619 return ret; 2620 } 2621 2622 static long vma_needs_reservation(struct hstate *h, 2623 struct vm_area_struct *vma, unsigned long addr) 2624 { 2625 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2626 } 2627 2628 static long vma_commit_reservation(struct hstate *h, 2629 struct vm_area_struct *vma, unsigned long addr) 2630 { 2631 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2632 } 2633 2634 static void vma_end_reservation(struct hstate *h, 2635 struct vm_area_struct *vma, unsigned long addr) 2636 { 2637 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2638 } 2639 2640 static long vma_add_reservation(struct hstate *h, 2641 struct vm_area_struct *vma, unsigned long addr) 2642 { 2643 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2644 } 2645 2646 static long vma_del_reservation(struct hstate *h, 2647 struct vm_area_struct *vma, unsigned long addr) 2648 { 2649 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2650 } 2651 2652 /* 2653 * This routine is called to restore reservation information on error paths. 2654 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2655 * the hugetlb mutex should remain held when calling this routine. 2656 * 2657 * It handles two specific cases: 2658 * 1) A reservation was in place and the page consumed the reservation. 2659 * HPageRestoreReserve is set in the page. 2660 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2661 * not set. However, alloc_huge_page always updates the reserve map. 2662 * 2663 * In case 1, free_huge_page later in the error path will increment the 2664 * global reserve count. But, free_huge_page does not have enough context 2665 * to adjust the reservation map. This case deals primarily with private 2666 * mappings. Adjust the reserve map here to be consistent with global 2667 * reserve count adjustments to be made by free_huge_page. Make sure the 2668 * reserve map indicates there is a reservation present. 2669 * 2670 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2671 */ 2672 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2673 unsigned long address, struct page *page) 2674 { 2675 long rc = vma_needs_reservation(h, vma, address); 2676 2677 if (HPageRestoreReserve(page)) { 2678 if (unlikely(rc < 0)) 2679 /* 2680 * Rare out of memory condition in reserve map 2681 * manipulation. Clear HPageRestoreReserve so that 2682 * global reserve count will not be incremented 2683 * by free_huge_page. This will make it appear 2684 * as though the reservation for this page was 2685 * consumed. This may prevent the task from 2686 * faulting in the page at a later time. This 2687 * is better than inconsistent global huge page 2688 * accounting of reserve counts. 2689 */ 2690 ClearHPageRestoreReserve(page); 2691 else if (rc) 2692 (void)vma_add_reservation(h, vma, address); 2693 else 2694 vma_end_reservation(h, vma, address); 2695 } else { 2696 if (!rc) { 2697 /* 2698 * This indicates there is an entry in the reserve map 2699 * not added by alloc_huge_page. We know it was added 2700 * before the alloc_huge_page call, otherwise 2701 * HPageRestoreReserve would be set on the page. 2702 * Remove the entry so that a subsequent allocation 2703 * does not consume a reservation. 2704 */ 2705 rc = vma_del_reservation(h, vma, address); 2706 if (rc < 0) 2707 /* 2708 * VERY rare out of memory condition. Since 2709 * we can not delete the entry, set 2710 * HPageRestoreReserve so that the reserve 2711 * count will be incremented when the page 2712 * is freed. This reserve will be consumed 2713 * on a subsequent allocation. 2714 */ 2715 SetHPageRestoreReserve(page); 2716 } else if (rc < 0) { 2717 /* 2718 * Rare out of memory condition from 2719 * vma_needs_reservation call. Memory allocation is 2720 * only attempted if a new entry is needed. Therefore, 2721 * this implies there is not an entry in the 2722 * reserve map. 2723 * 2724 * For shared mappings, no entry in the map indicates 2725 * no reservation. We are done. 2726 */ 2727 if (!(vma->vm_flags & VM_MAYSHARE)) 2728 /* 2729 * For private mappings, no entry indicates 2730 * a reservation is present. Since we can 2731 * not add an entry, set SetHPageRestoreReserve 2732 * on the page so reserve count will be 2733 * incremented when freed. This reserve will 2734 * be consumed on a subsequent allocation. 2735 */ 2736 SetHPageRestoreReserve(page); 2737 } else 2738 /* 2739 * No reservation present, do nothing 2740 */ 2741 vma_end_reservation(h, vma, address); 2742 } 2743 } 2744 2745 /* 2746 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2747 * @h: struct hstate old page belongs to 2748 * @old_page: Old page to dissolve 2749 * @list: List to isolate the page in case we need to 2750 * Returns 0 on success, otherwise negated error. 2751 */ 2752 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2753 struct list_head *list) 2754 { 2755 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2756 struct folio *old_folio = page_folio(old_page); 2757 int nid = folio_nid(old_folio); 2758 struct page *new_page; 2759 struct folio *new_folio; 2760 int ret = 0; 2761 2762 /* 2763 * Before dissolving the page, we need to allocate a new one for the 2764 * pool to remain stable. Here, we allocate the page and 'prep' it 2765 * by doing everything but actually updating counters and adding to 2766 * the pool. This simplifies and let us do most of the processing 2767 * under the lock. 2768 */ 2769 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2770 if (!new_page) 2771 return -ENOMEM; 2772 new_folio = page_folio(new_page); 2773 __prep_new_hugetlb_folio(h, new_folio); 2774 2775 retry: 2776 spin_lock_irq(&hugetlb_lock); 2777 if (!folio_test_hugetlb(old_folio)) { 2778 /* 2779 * Freed from under us. Drop new_page too. 2780 */ 2781 goto free_new; 2782 } else if (folio_ref_count(old_folio)) { 2783 /* 2784 * Someone has grabbed the page, try to isolate it here. 2785 * Fail with -EBUSY if not possible. 2786 */ 2787 spin_unlock_irq(&hugetlb_lock); 2788 ret = isolate_hugetlb(old_page, list); 2789 spin_lock_irq(&hugetlb_lock); 2790 goto free_new; 2791 } else if (!folio_test_hugetlb_freed(old_folio)) { 2792 /* 2793 * Page's refcount is 0 but it has not been enqueued in the 2794 * freelist yet. Race window is small, so we can succeed here if 2795 * we retry. 2796 */ 2797 spin_unlock_irq(&hugetlb_lock); 2798 cond_resched(); 2799 goto retry; 2800 } else { 2801 /* 2802 * Ok, old_page is still a genuine free hugepage. Remove it from 2803 * the freelist and decrease the counters. These will be 2804 * incremented again when calling __prep_account_new_huge_page() 2805 * and enqueue_huge_page() for new_page. The counters will remain 2806 * stable since this happens under the lock. 2807 */ 2808 remove_hugetlb_page(h, old_page, false); 2809 2810 /* 2811 * Ref count on new page is already zero as it was dropped 2812 * earlier. It can be directly added to the pool free list. 2813 */ 2814 __prep_account_new_huge_page(h, nid); 2815 enqueue_huge_page(h, new_page); 2816 2817 /* 2818 * Pages have been replaced, we can safely free the old one. 2819 */ 2820 spin_unlock_irq(&hugetlb_lock); 2821 update_and_free_page(h, old_page, false); 2822 } 2823 2824 return ret; 2825 2826 free_new: 2827 spin_unlock_irq(&hugetlb_lock); 2828 /* Page has a zero ref count, but needs a ref to be freed */ 2829 folio_ref_unfreeze(new_folio, 1); 2830 update_and_free_page(h, new_page, false); 2831 2832 return ret; 2833 } 2834 2835 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2836 { 2837 struct hstate *h; 2838 struct folio *folio = page_folio(page); 2839 int ret = -EBUSY; 2840 2841 /* 2842 * The page might have been dissolved from under our feet, so make sure 2843 * to carefully check the state under the lock. 2844 * Return success when racing as if we dissolved the page ourselves. 2845 */ 2846 spin_lock_irq(&hugetlb_lock); 2847 if (folio_test_hugetlb(folio)) { 2848 h = folio_hstate(folio); 2849 } else { 2850 spin_unlock_irq(&hugetlb_lock); 2851 return 0; 2852 } 2853 spin_unlock_irq(&hugetlb_lock); 2854 2855 /* 2856 * Fence off gigantic pages as there is a cyclic dependency between 2857 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2858 * of bailing out right away without further retrying. 2859 */ 2860 if (hstate_is_gigantic(h)) 2861 return -ENOMEM; 2862 2863 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list)) 2864 ret = 0; 2865 else if (!folio_ref_count(folio)) 2866 ret = alloc_and_dissolve_huge_page(h, &folio->page, list); 2867 2868 return ret; 2869 } 2870 2871 struct page *alloc_huge_page(struct vm_area_struct *vma, 2872 unsigned long addr, int avoid_reserve) 2873 { 2874 struct hugepage_subpool *spool = subpool_vma(vma); 2875 struct hstate *h = hstate_vma(vma); 2876 struct page *page; 2877 struct folio *folio; 2878 long map_chg, map_commit; 2879 long gbl_chg; 2880 int ret, idx; 2881 struct hugetlb_cgroup *h_cg; 2882 bool deferred_reserve; 2883 2884 idx = hstate_index(h); 2885 /* 2886 * Examine the region/reserve map to determine if the process 2887 * has a reservation for the page to be allocated. A return 2888 * code of zero indicates a reservation exists (no change). 2889 */ 2890 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2891 if (map_chg < 0) 2892 return ERR_PTR(-ENOMEM); 2893 2894 /* 2895 * Processes that did not create the mapping will have no 2896 * reserves as indicated by the region/reserve map. Check 2897 * that the allocation will not exceed the subpool limit. 2898 * Allocations for MAP_NORESERVE mappings also need to be 2899 * checked against any subpool limit. 2900 */ 2901 if (map_chg || avoid_reserve) { 2902 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2903 if (gbl_chg < 0) { 2904 vma_end_reservation(h, vma, addr); 2905 return ERR_PTR(-ENOSPC); 2906 } 2907 2908 /* 2909 * Even though there was no reservation in the region/reserve 2910 * map, there could be reservations associated with the 2911 * subpool that can be used. This would be indicated if the 2912 * return value of hugepage_subpool_get_pages() is zero. 2913 * However, if avoid_reserve is specified we still avoid even 2914 * the subpool reservations. 2915 */ 2916 if (avoid_reserve) 2917 gbl_chg = 1; 2918 } 2919 2920 /* If this allocation is not consuming a reservation, charge it now. 2921 */ 2922 deferred_reserve = map_chg || avoid_reserve; 2923 if (deferred_reserve) { 2924 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2925 idx, pages_per_huge_page(h), &h_cg); 2926 if (ret) 2927 goto out_subpool_put; 2928 } 2929 2930 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2931 if (ret) 2932 goto out_uncharge_cgroup_reservation; 2933 2934 spin_lock_irq(&hugetlb_lock); 2935 /* 2936 * glb_chg is passed to indicate whether or not a page must be taken 2937 * from the global free pool (global change). gbl_chg == 0 indicates 2938 * a reservation exists for the allocation. 2939 */ 2940 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2941 2942 if (!page) { 2943 spin_unlock_irq(&hugetlb_lock); 2944 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2945 if (!page) 2946 goto out_uncharge_cgroup; 2947 spin_lock_irq(&hugetlb_lock); 2948 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2949 SetHPageRestoreReserve(page); 2950 h->resv_huge_pages--; 2951 } 2952 list_add(&page->lru, &h->hugepage_activelist); 2953 set_page_refcounted(page); 2954 /* Fall through */ 2955 } 2956 folio = page_folio(page); 2957 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2958 /* If allocation is not consuming a reservation, also store the 2959 * hugetlb_cgroup pointer on the page. 2960 */ 2961 if (deferred_reserve) { 2962 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2963 h_cg, page); 2964 } 2965 2966 spin_unlock_irq(&hugetlb_lock); 2967 2968 hugetlb_set_page_subpool(page, spool); 2969 2970 map_commit = vma_commit_reservation(h, vma, addr); 2971 if (unlikely(map_chg > map_commit)) { 2972 /* 2973 * The page was added to the reservation map between 2974 * vma_needs_reservation and vma_commit_reservation. 2975 * This indicates a race with hugetlb_reserve_pages. 2976 * Adjust for the subpool count incremented above AND 2977 * in hugetlb_reserve_pages for the same page. Also, 2978 * the reservation count added in hugetlb_reserve_pages 2979 * no longer applies. 2980 */ 2981 long rsv_adjust; 2982 2983 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2984 hugetlb_acct_memory(h, -rsv_adjust); 2985 if (deferred_reserve) 2986 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2987 pages_per_huge_page(h), folio); 2988 } 2989 return page; 2990 2991 out_uncharge_cgroup: 2992 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2993 out_uncharge_cgroup_reservation: 2994 if (deferred_reserve) 2995 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2996 h_cg); 2997 out_subpool_put: 2998 if (map_chg || avoid_reserve) 2999 hugepage_subpool_put_pages(spool, 1); 3000 vma_end_reservation(h, vma, addr); 3001 return ERR_PTR(-ENOSPC); 3002 } 3003 3004 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3005 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3006 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3007 { 3008 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3009 int nr_nodes, node; 3010 3011 /* do node specific alloc */ 3012 if (nid != NUMA_NO_NODE) { 3013 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3014 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3015 if (!m) 3016 return 0; 3017 goto found; 3018 } 3019 /* allocate from next node when distributing huge pages */ 3020 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3021 m = memblock_alloc_try_nid_raw( 3022 huge_page_size(h), huge_page_size(h), 3023 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3024 /* 3025 * Use the beginning of the huge page to store the 3026 * huge_bootmem_page struct (until gather_bootmem 3027 * puts them into the mem_map). 3028 */ 3029 if (!m) 3030 return 0; 3031 goto found; 3032 } 3033 3034 found: 3035 /* Put them into a private list first because mem_map is not up yet */ 3036 INIT_LIST_HEAD(&m->list); 3037 list_add(&m->list, &huge_boot_pages); 3038 m->hstate = h; 3039 return 1; 3040 } 3041 3042 /* 3043 * Put bootmem huge pages into the standard lists after mem_map is up. 3044 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3045 */ 3046 static void __init gather_bootmem_prealloc(void) 3047 { 3048 struct huge_bootmem_page *m; 3049 3050 list_for_each_entry(m, &huge_boot_pages, list) { 3051 struct page *page = virt_to_page(m); 3052 struct hstate *h = m->hstate; 3053 3054 VM_BUG_ON(!hstate_is_gigantic(h)); 3055 WARN_ON(page_count(page) != 1); 3056 if (prep_compound_gigantic_page(page, huge_page_order(h))) { 3057 WARN_ON(PageReserved(page)); 3058 prep_new_huge_page(h, page, page_to_nid(page)); 3059 free_huge_page(page); /* add to the hugepage allocator */ 3060 } else { 3061 /* VERY unlikely inflated ref count on a tail page */ 3062 free_gigantic_page(page, huge_page_order(h)); 3063 } 3064 3065 /* 3066 * We need to restore the 'stolen' pages to totalram_pages 3067 * in order to fix confusing memory reports from free(1) and 3068 * other side-effects, like CommitLimit going negative. 3069 */ 3070 adjust_managed_page_count(page, pages_per_huge_page(h)); 3071 cond_resched(); 3072 } 3073 } 3074 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3075 { 3076 unsigned long i; 3077 char buf[32]; 3078 3079 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3080 if (hstate_is_gigantic(h)) { 3081 if (!alloc_bootmem_huge_page(h, nid)) 3082 break; 3083 } else { 3084 struct page *page; 3085 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3086 3087 page = alloc_fresh_huge_page(h, gfp_mask, nid, 3088 &node_states[N_MEMORY], NULL); 3089 if (!page) 3090 break; 3091 free_huge_page(page); /* free it into the hugepage allocator */ 3092 } 3093 cond_resched(); 3094 } 3095 if (i == h->max_huge_pages_node[nid]) 3096 return; 3097 3098 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3099 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3100 h->max_huge_pages_node[nid], buf, nid, i); 3101 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3102 h->max_huge_pages_node[nid] = i; 3103 } 3104 3105 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3106 { 3107 unsigned long i; 3108 nodemask_t *node_alloc_noretry; 3109 bool node_specific_alloc = false; 3110 3111 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3112 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3113 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3114 return; 3115 } 3116 3117 /* do node specific alloc */ 3118 for_each_online_node(i) { 3119 if (h->max_huge_pages_node[i] > 0) { 3120 hugetlb_hstate_alloc_pages_onenode(h, i); 3121 node_specific_alloc = true; 3122 } 3123 } 3124 3125 if (node_specific_alloc) 3126 return; 3127 3128 /* below will do all node balanced alloc */ 3129 if (!hstate_is_gigantic(h)) { 3130 /* 3131 * Bit mask controlling how hard we retry per-node allocations. 3132 * Ignore errors as lower level routines can deal with 3133 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3134 * time, we are likely in bigger trouble. 3135 */ 3136 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3137 GFP_KERNEL); 3138 } else { 3139 /* allocations done at boot time */ 3140 node_alloc_noretry = NULL; 3141 } 3142 3143 /* bit mask controlling how hard we retry per-node allocations */ 3144 if (node_alloc_noretry) 3145 nodes_clear(*node_alloc_noretry); 3146 3147 for (i = 0; i < h->max_huge_pages; ++i) { 3148 if (hstate_is_gigantic(h)) { 3149 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3150 break; 3151 } else if (!alloc_pool_huge_page(h, 3152 &node_states[N_MEMORY], 3153 node_alloc_noretry)) 3154 break; 3155 cond_resched(); 3156 } 3157 if (i < h->max_huge_pages) { 3158 char buf[32]; 3159 3160 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3161 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3162 h->max_huge_pages, buf, i); 3163 h->max_huge_pages = i; 3164 } 3165 kfree(node_alloc_noretry); 3166 } 3167 3168 static void __init hugetlb_init_hstates(void) 3169 { 3170 struct hstate *h, *h2; 3171 3172 for_each_hstate(h) { 3173 /* oversize hugepages were init'ed in early boot */ 3174 if (!hstate_is_gigantic(h)) 3175 hugetlb_hstate_alloc_pages(h); 3176 3177 /* 3178 * Set demote order for each hstate. Note that 3179 * h->demote_order is initially 0. 3180 * - We can not demote gigantic pages if runtime freeing 3181 * is not supported, so skip this. 3182 * - If CMA allocation is possible, we can not demote 3183 * HUGETLB_PAGE_ORDER or smaller size pages. 3184 */ 3185 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3186 continue; 3187 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3188 continue; 3189 for_each_hstate(h2) { 3190 if (h2 == h) 3191 continue; 3192 if (h2->order < h->order && 3193 h2->order > h->demote_order) 3194 h->demote_order = h2->order; 3195 } 3196 } 3197 } 3198 3199 static void __init report_hugepages(void) 3200 { 3201 struct hstate *h; 3202 3203 for_each_hstate(h) { 3204 char buf[32]; 3205 3206 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3207 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3208 buf, h->free_huge_pages); 3209 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3210 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3211 } 3212 } 3213 3214 #ifdef CONFIG_HIGHMEM 3215 static void try_to_free_low(struct hstate *h, unsigned long count, 3216 nodemask_t *nodes_allowed) 3217 { 3218 int i; 3219 LIST_HEAD(page_list); 3220 3221 lockdep_assert_held(&hugetlb_lock); 3222 if (hstate_is_gigantic(h)) 3223 return; 3224 3225 /* 3226 * Collect pages to be freed on a list, and free after dropping lock 3227 */ 3228 for_each_node_mask(i, *nodes_allowed) { 3229 struct page *page, *next; 3230 struct list_head *freel = &h->hugepage_freelists[i]; 3231 list_for_each_entry_safe(page, next, freel, lru) { 3232 if (count >= h->nr_huge_pages) 3233 goto out; 3234 if (PageHighMem(page)) 3235 continue; 3236 remove_hugetlb_page(h, page, false); 3237 list_add(&page->lru, &page_list); 3238 } 3239 } 3240 3241 out: 3242 spin_unlock_irq(&hugetlb_lock); 3243 update_and_free_pages_bulk(h, &page_list); 3244 spin_lock_irq(&hugetlb_lock); 3245 } 3246 #else 3247 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3248 nodemask_t *nodes_allowed) 3249 { 3250 } 3251 #endif 3252 3253 /* 3254 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3255 * balanced by operating on them in a round-robin fashion. 3256 * Returns 1 if an adjustment was made. 3257 */ 3258 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3259 int delta) 3260 { 3261 int nr_nodes, node; 3262 3263 lockdep_assert_held(&hugetlb_lock); 3264 VM_BUG_ON(delta != -1 && delta != 1); 3265 3266 if (delta < 0) { 3267 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3268 if (h->surplus_huge_pages_node[node]) 3269 goto found; 3270 } 3271 } else { 3272 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3273 if (h->surplus_huge_pages_node[node] < 3274 h->nr_huge_pages_node[node]) 3275 goto found; 3276 } 3277 } 3278 return 0; 3279 3280 found: 3281 h->surplus_huge_pages += delta; 3282 h->surplus_huge_pages_node[node] += delta; 3283 return 1; 3284 } 3285 3286 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3287 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3288 nodemask_t *nodes_allowed) 3289 { 3290 unsigned long min_count, ret; 3291 struct page *page; 3292 LIST_HEAD(page_list); 3293 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3294 3295 /* 3296 * Bit mask controlling how hard we retry per-node allocations. 3297 * If we can not allocate the bit mask, do not attempt to allocate 3298 * the requested huge pages. 3299 */ 3300 if (node_alloc_noretry) 3301 nodes_clear(*node_alloc_noretry); 3302 else 3303 return -ENOMEM; 3304 3305 /* 3306 * resize_lock mutex prevents concurrent adjustments to number of 3307 * pages in hstate via the proc/sysfs interfaces. 3308 */ 3309 mutex_lock(&h->resize_lock); 3310 flush_free_hpage_work(h); 3311 spin_lock_irq(&hugetlb_lock); 3312 3313 /* 3314 * Check for a node specific request. 3315 * Changing node specific huge page count may require a corresponding 3316 * change to the global count. In any case, the passed node mask 3317 * (nodes_allowed) will restrict alloc/free to the specified node. 3318 */ 3319 if (nid != NUMA_NO_NODE) { 3320 unsigned long old_count = count; 3321 3322 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3323 /* 3324 * User may have specified a large count value which caused the 3325 * above calculation to overflow. In this case, they wanted 3326 * to allocate as many huge pages as possible. Set count to 3327 * largest possible value to align with their intention. 3328 */ 3329 if (count < old_count) 3330 count = ULONG_MAX; 3331 } 3332 3333 /* 3334 * Gigantic pages runtime allocation depend on the capability for large 3335 * page range allocation. 3336 * If the system does not provide this feature, return an error when 3337 * the user tries to allocate gigantic pages but let the user free the 3338 * boottime allocated gigantic pages. 3339 */ 3340 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3341 if (count > persistent_huge_pages(h)) { 3342 spin_unlock_irq(&hugetlb_lock); 3343 mutex_unlock(&h->resize_lock); 3344 NODEMASK_FREE(node_alloc_noretry); 3345 return -EINVAL; 3346 } 3347 /* Fall through to decrease pool */ 3348 } 3349 3350 /* 3351 * Increase the pool size 3352 * First take pages out of surplus state. Then make up the 3353 * remaining difference by allocating fresh huge pages. 3354 * 3355 * We might race with alloc_surplus_huge_page() here and be unable 3356 * to convert a surplus huge page to a normal huge page. That is 3357 * not critical, though, it just means the overall size of the 3358 * pool might be one hugepage larger than it needs to be, but 3359 * within all the constraints specified by the sysctls. 3360 */ 3361 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3362 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3363 break; 3364 } 3365 3366 while (count > persistent_huge_pages(h)) { 3367 /* 3368 * If this allocation races such that we no longer need the 3369 * page, free_huge_page will handle it by freeing the page 3370 * and reducing the surplus. 3371 */ 3372 spin_unlock_irq(&hugetlb_lock); 3373 3374 /* yield cpu to avoid soft lockup */ 3375 cond_resched(); 3376 3377 ret = alloc_pool_huge_page(h, nodes_allowed, 3378 node_alloc_noretry); 3379 spin_lock_irq(&hugetlb_lock); 3380 if (!ret) 3381 goto out; 3382 3383 /* Bail for signals. Probably ctrl-c from user */ 3384 if (signal_pending(current)) 3385 goto out; 3386 } 3387 3388 /* 3389 * Decrease the pool size 3390 * First return free pages to the buddy allocator (being careful 3391 * to keep enough around to satisfy reservations). Then place 3392 * pages into surplus state as needed so the pool will shrink 3393 * to the desired size as pages become free. 3394 * 3395 * By placing pages into the surplus state independent of the 3396 * overcommit value, we are allowing the surplus pool size to 3397 * exceed overcommit. There are few sane options here. Since 3398 * alloc_surplus_huge_page() is checking the global counter, 3399 * though, we'll note that we're not allowed to exceed surplus 3400 * and won't grow the pool anywhere else. Not until one of the 3401 * sysctls are changed, or the surplus pages go out of use. 3402 */ 3403 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3404 min_count = max(count, min_count); 3405 try_to_free_low(h, min_count, nodes_allowed); 3406 3407 /* 3408 * Collect pages to be removed on list without dropping lock 3409 */ 3410 while (min_count < persistent_huge_pages(h)) { 3411 page = remove_pool_huge_page(h, nodes_allowed, 0); 3412 if (!page) 3413 break; 3414 3415 list_add(&page->lru, &page_list); 3416 } 3417 /* free the pages after dropping lock */ 3418 spin_unlock_irq(&hugetlb_lock); 3419 update_and_free_pages_bulk(h, &page_list); 3420 flush_free_hpage_work(h); 3421 spin_lock_irq(&hugetlb_lock); 3422 3423 while (count < persistent_huge_pages(h)) { 3424 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3425 break; 3426 } 3427 out: 3428 h->max_huge_pages = persistent_huge_pages(h); 3429 spin_unlock_irq(&hugetlb_lock); 3430 mutex_unlock(&h->resize_lock); 3431 3432 NODEMASK_FREE(node_alloc_noretry); 3433 3434 return 0; 3435 } 3436 3437 static int demote_free_huge_page(struct hstate *h, struct page *page) 3438 { 3439 int i, nid = page_to_nid(page); 3440 struct hstate *target_hstate; 3441 struct page *subpage; 3442 int rc = 0; 3443 3444 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3445 3446 remove_hugetlb_page_for_demote(h, page, false); 3447 spin_unlock_irq(&hugetlb_lock); 3448 3449 rc = hugetlb_vmemmap_restore(h, page); 3450 if (rc) { 3451 /* Allocation of vmemmmap failed, we can not demote page */ 3452 spin_lock_irq(&hugetlb_lock); 3453 set_page_refcounted(page); 3454 add_hugetlb_page(h, page, false); 3455 return rc; 3456 } 3457 3458 /* 3459 * Use destroy_compound_hugetlb_page_for_demote for all huge page 3460 * sizes as it will not ref count pages. 3461 */ 3462 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h)); 3463 3464 /* 3465 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3466 * Without the mutex, pages added to target hstate could be marked 3467 * as surplus. 3468 * 3469 * Note that we already hold h->resize_lock. To prevent deadlock, 3470 * use the convention of always taking larger size hstate mutex first. 3471 */ 3472 mutex_lock(&target_hstate->resize_lock); 3473 for (i = 0; i < pages_per_huge_page(h); 3474 i += pages_per_huge_page(target_hstate)) { 3475 subpage = nth_page(page, i); 3476 if (hstate_is_gigantic(target_hstate)) 3477 prep_compound_gigantic_page_for_demote(subpage, 3478 target_hstate->order); 3479 else 3480 prep_compound_page(subpage, target_hstate->order); 3481 set_page_private(subpage, 0); 3482 prep_new_huge_page(target_hstate, subpage, nid); 3483 free_huge_page(subpage); 3484 } 3485 mutex_unlock(&target_hstate->resize_lock); 3486 3487 spin_lock_irq(&hugetlb_lock); 3488 3489 /* 3490 * Not absolutely necessary, but for consistency update max_huge_pages 3491 * based on pool changes for the demoted page. 3492 */ 3493 h->max_huge_pages--; 3494 target_hstate->max_huge_pages += 3495 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3496 3497 return rc; 3498 } 3499 3500 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3501 __must_hold(&hugetlb_lock) 3502 { 3503 int nr_nodes, node; 3504 struct page *page; 3505 3506 lockdep_assert_held(&hugetlb_lock); 3507 3508 /* We should never get here if no demote order */ 3509 if (!h->demote_order) { 3510 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3511 return -EINVAL; /* internal error */ 3512 } 3513 3514 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3515 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3516 if (PageHWPoison(page)) 3517 continue; 3518 3519 return demote_free_huge_page(h, page); 3520 } 3521 } 3522 3523 /* 3524 * Only way to get here is if all pages on free lists are poisoned. 3525 * Return -EBUSY so that caller will not retry. 3526 */ 3527 return -EBUSY; 3528 } 3529 3530 #define HSTATE_ATTR_RO(_name) \ 3531 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3532 3533 #define HSTATE_ATTR_WO(_name) \ 3534 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3535 3536 #define HSTATE_ATTR(_name) \ 3537 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3538 3539 static struct kobject *hugepages_kobj; 3540 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3541 3542 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3543 3544 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3545 { 3546 int i; 3547 3548 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3549 if (hstate_kobjs[i] == kobj) { 3550 if (nidp) 3551 *nidp = NUMA_NO_NODE; 3552 return &hstates[i]; 3553 } 3554 3555 return kobj_to_node_hstate(kobj, nidp); 3556 } 3557 3558 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3559 struct kobj_attribute *attr, char *buf) 3560 { 3561 struct hstate *h; 3562 unsigned long nr_huge_pages; 3563 int nid; 3564 3565 h = kobj_to_hstate(kobj, &nid); 3566 if (nid == NUMA_NO_NODE) 3567 nr_huge_pages = h->nr_huge_pages; 3568 else 3569 nr_huge_pages = h->nr_huge_pages_node[nid]; 3570 3571 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3572 } 3573 3574 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3575 struct hstate *h, int nid, 3576 unsigned long count, size_t len) 3577 { 3578 int err; 3579 nodemask_t nodes_allowed, *n_mask; 3580 3581 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3582 return -EINVAL; 3583 3584 if (nid == NUMA_NO_NODE) { 3585 /* 3586 * global hstate attribute 3587 */ 3588 if (!(obey_mempolicy && 3589 init_nodemask_of_mempolicy(&nodes_allowed))) 3590 n_mask = &node_states[N_MEMORY]; 3591 else 3592 n_mask = &nodes_allowed; 3593 } else { 3594 /* 3595 * Node specific request. count adjustment happens in 3596 * set_max_huge_pages() after acquiring hugetlb_lock. 3597 */ 3598 init_nodemask_of_node(&nodes_allowed, nid); 3599 n_mask = &nodes_allowed; 3600 } 3601 3602 err = set_max_huge_pages(h, count, nid, n_mask); 3603 3604 return err ? err : len; 3605 } 3606 3607 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3608 struct kobject *kobj, const char *buf, 3609 size_t len) 3610 { 3611 struct hstate *h; 3612 unsigned long count; 3613 int nid; 3614 int err; 3615 3616 err = kstrtoul(buf, 10, &count); 3617 if (err) 3618 return err; 3619 3620 h = kobj_to_hstate(kobj, &nid); 3621 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3622 } 3623 3624 static ssize_t nr_hugepages_show(struct kobject *kobj, 3625 struct kobj_attribute *attr, char *buf) 3626 { 3627 return nr_hugepages_show_common(kobj, attr, buf); 3628 } 3629 3630 static ssize_t nr_hugepages_store(struct kobject *kobj, 3631 struct kobj_attribute *attr, const char *buf, size_t len) 3632 { 3633 return nr_hugepages_store_common(false, kobj, buf, len); 3634 } 3635 HSTATE_ATTR(nr_hugepages); 3636 3637 #ifdef CONFIG_NUMA 3638 3639 /* 3640 * hstate attribute for optionally mempolicy-based constraint on persistent 3641 * huge page alloc/free. 3642 */ 3643 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3644 struct kobj_attribute *attr, 3645 char *buf) 3646 { 3647 return nr_hugepages_show_common(kobj, attr, buf); 3648 } 3649 3650 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3651 struct kobj_attribute *attr, const char *buf, size_t len) 3652 { 3653 return nr_hugepages_store_common(true, kobj, buf, len); 3654 } 3655 HSTATE_ATTR(nr_hugepages_mempolicy); 3656 #endif 3657 3658 3659 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3660 struct kobj_attribute *attr, char *buf) 3661 { 3662 struct hstate *h = kobj_to_hstate(kobj, NULL); 3663 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3664 } 3665 3666 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3667 struct kobj_attribute *attr, const char *buf, size_t count) 3668 { 3669 int err; 3670 unsigned long input; 3671 struct hstate *h = kobj_to_hstate(kobj, NULL); 3672 3673 if (hstate_is_gigantic(h)) 3674 return -EINVAL; 3675 3676 err = kstrtoul(buf, 10, &input); 3677 if (err) 3678 return err; 3679 3680 spin_lock_irq(&hugetlb_lock); 3681 h->nr_overcommit_huge_pages = input; 3682 spin_unlock_irq(&hugetlb_lock); 3683 3684 return count; 3685 } 3686 HSTATE_ATTR(nr_overcommit_hugepages); 3687 3688 static ssize_t free_hugepages_show(struct kobject *kobj, 3689 struct kobj_attribute *attr, char *buf) 3690 { 3691 struct hstate *h; 3692 unsigned long free_huge_pages; 3693 int nid; 3694 3695 h = kobj_to_hstate(kobj, &nid); 3696 if (nid == NUMA_NO_NODE) 3697 free_huge_pages = h->free_huge_pages; 3698 else 3699 free_huge_pages = h->free_huge_pages_node[nid]; 3700 3701 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3702 } 3703 HSTATE_ATTR_RO(free_hugepages); 3704 3705 static ssize_t resv_hugepages_show(struct kobject *kobj, 3706 struct kobj_attribute *attr, char *buf) 3707 { 3708 struct hstate *h = kobj_to_hstate(kobj, NULL); 3709 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3710 } 3711 HSTATE_ATTR_RO(resv_hugepages); 3712 3713 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3714 struct kobj_attribute *attr, char *buf) 3715 { 3716 struct hstate *h; 3717 unsigned long surplus_huge_pages; 3718 int nid; 3719 3720 h = kobj_to_hstate(kobj, &nid); 3721 if (nid == NUMA_NO_NODE) 3722 surplus_huge_pages = h->surplus_huge_pages; 3723 else 3724 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3725 3726 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3727 } 3728 HSTATE_ATTR_RO(surplus_hugepages); 3729 3730 static ssize_t demote_store(struct kobject *kobj, 3731 struct kobj_attribute *attr, const char *buf, size_t len) 3732 { 3733 unsigned long nr_demote; 3734 unsigned long nr_available; 3735 nodemask_t nodes_allowed, *n_mask; 3736 struct hstate *h; 3737 int err; 3738 int nid; 3739 3740 err = kstrtoul(buf, 10, &nr_demote); 3741 if (err) 3742 return err; 3743 h = kobj_to_hstate(kobj, &nid); 3744 3745 if (nid != NUMA_NO_NODE) { 3746 init_nodemask_of_node(&nodes_allowed, nid); 3747 n_mask = &nodes_allowed; 3748 } else { 3749 n_mask = &node_states[N_MEMORY]; 3750 } 3751 3752 /* Synchronize with other sysfs operations modifying huge pages */ 3753 mutex_lock(&h->resize_lock); 3754 spin_lock_irq(&hugetlb_lock); 3755 3756 while (nr_demote) { 3757 /* 3758 * Check for available pages to demote each time thorough the 3759 * loop as demote_pool_huge_page will drop hugetlb_lock. 3760 */ 3761 if (nid != NUMA_NO_NODE) 3762 nr_available = h->free_huge_pages_node[nid]; 3763 else 3764 nr_available = h->free_huge_pages; 3765 nr_available -= h->resv_huge_pages; 3766 if (!nr_available) 3767 break; 3768 3769 err = demote_pool_huge_page(h, n_mask); 3770 if (err) 3771 break; 3772 3773 nr_demote--; 3774 } 3775 3776 spin_unlock_irq(&hugetlb_lock); 3777 mutex_unlock(&h->resize_lock); 3778 3779 if (err) 3780 return err; 3781 return len; 3782 } 3783 HSTATE_ATTR_WO(demote); 3784 3785 static ssize_t demote_size_show(struct kobject *kobj, 3786 struct kobj_attribute *attr, char *buf) 3787 { 3788 struct hstate *h = kobj_to_hstate(kobj, NULL); 3789 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3790 3791 return sysfs_emit(buf, "%lukB\n", demote_size); 3792 } 3793 3794 static ssize_t demote_size_store(struct kobject *kobj, 3795 struct kobj_attribute *attr, 3796 const char *buf, size_t count) 3797 { 3798 struct hstate *h, *demote_hstate; 3799 unsigned long demote_size; 3800 unsigned int demote_order; 3801 3802 demote_size = (unsigned long)memparse(buf, NULL); 3803 3804 demote_hstate = size_to_hstate(demote_size); 3805 if (!demote_hstate) 3806 return -EINVAL; 3807 demote_order = demote_hstate->order; 3808 if (demote_order < HUGETLB_PAGE_ORDER) 3809 return -EINVAL; 3810 3811 /* demote order must be smaller than hstate order */ 3812 h = kobj_to_hstate(kobj, NULL); 3813 if (demote_order >= h->order) 3814 return -EINVAL; 3815 3816 /* resize_lock synchronizes access to demote size and writes */ 3817 mutex_lock(&h->resize_lock); 3818 h->demote_order = demote_order; 3819 mutex_unlock(&h->resize_lock); 3820 3821 return count; 3822 } 3823 HSTATE_ATTR(demote_size); 3824 3825 static struct attribute *hstate_attrs[] = { 3826 &nr_hugepages_attr.attr, 3827 &nr_overcommit_hugepages_attr.attr, 3828 &free_hugepages_attr.attr, 3829 &resv_hugepages_attr.attr, 3830 &surplus_hugepages_attr.attr, 3831 #ifdef CONFIG_NUMA 3832 &nr_hugepages_mempolicy_attr.attr, 3833 #endif 3834 NULL, 3835 }; 3836 3837 static const struct attribute_group hstate_attr_group = { 3838 .attrs = hstate_attrs, 3839 }; 3840 3841 static struct attribute *hstate_demote_attrs[] = { 3842 &demote_size_attr.attr, 3843 &demote_attr.attr, 3844 NULL, 3845 }; 3846 3847 static const struct attribute_group hstate_demote_attr_group = { 3848 .attrs = hstate_demote_attrs, 3849 }; 3850 3851 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3852 struct kobject **hstate_kobjs, 3853 const struct attribute_group *hstate_attr_group) 3854 { 3855 int retval; 3856 int hi = hstate_index(h); 3857 3858 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3859 if (!hstate_kobjs[hi]) 3860 return -ENOMEM; 3861 3862 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3863 if (retval) { 3864 kobject_put(hstate_kobjs[hi]); 3865 hstate_kobjs[hi] = NULL; 3866 return retval; 3867 } 3868 3869 if (h->demote_order) { 3870 retval = sysfs_create_group(hstate_kobjs[hi], 3871 &hstate_demote_attr_group); 3872 if (retval) { 3873 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3874 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 3875 kobject_put(hstate_kobjs[hi]); 3876 hstate_kobjs[hi] = NULL; 3877 return retval; 3878 } 3879 } 3880 3881 return 0; 3882 } 3883 3884 #ifdef CONFIG_NUMA 3885 static bool hugetlb_sysfs_initialized __ro_after_init; 3886 3887 /* 3888 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3889 * with node devices in node_devices[] using a parallel array. The array 3890 * index of a node device or _hstate == node id. 3891 * This is here to avoid any static dependency of the node device driver, in 3892 * the base kernel, on the hugetlb module. 3893 */ 3894 struct node_hstate { 3895 struct kobject *hugepages_kobj; 3896 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3897 }; 3898 static struct node_hstate node_hstates[MAX_NUMNODES]; 3899 3900 /* 3901 * A subset of global hstate attributes for node devices 3902 */ 3903 static struct attribute *per_node_hstate_attrs[] = { 3904 &nr_hugepages_attr.attr, 3905 &free_hugepages_attr.attr, 3906 &surplus_hugepages_attr.attr, 3907 NULL, 3908 }; 3909 3910 static const struct attribute_group per_node_hstate_attr_group = { 3911 .attrs = per_node_hstate_attrs, 3912 }; 3913 3914 /* 3915 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3916 * Returns node id via non-NULL nidp. 3917 */ 3918 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3919 { 3920 int nid; 3921 3922 for (nid = 0; nid < nr_node_ids; nid++) { 3923 struct node_hstate *nhs = &node_hstates[nid]; 3924 int i; 3925 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3926 if (nhs->hstate_kobjs[i] == kobj) { 3927 if (nidp) 3928 *nidp = nid; 3929 return &hstates[i]; 3930 } 3931 } 3932 3933 BUG(); 3934 return NULL; 3935 } 3936 3937 /* 3938 * Unregister hstate attributes from a single node device. 3939 * No-op if no hstate attributes attached. 3940 */ 3941 void hugetlb_unregister_node(struct node *node) 3942 { 3943 struct hstate *h; 3944 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3945 3946 if (!nhs->hugepages_kobj) 3947 return; /* no hstate attributes */ 3948 3949 for_each_hstate(h) { 3950 int idx = hstate_index(h); 3951 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 3952 3953 if (!hstate_kobj) 3954 continue; 3955 if (h->demote_order) 3956 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 3957 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 3958 kobject_put(hstate_kobj); 3959 nhs->hstate_kobjs[idx] = NULL; 3960 } 3961 3962 kobject_put(nhs->hugepages_kobj); 3963 nhs->hugepages_kobj = NULL; 3964 } 3965 3966 3967 /* 3968 * Register hstate attributes for a single node device. 3969 * No-op if attributes already registered. 3970 */ 3971 void hugetlb_register_node(struct node *node) 3972 { 3973 struct hstate *h; 3974 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3975 int err; 3976 3977 if (!hugetlb_sysfs_initialized) 3978 return; 3979 3980 if (nhs->hugepages_kobj) 3981 return; /* already allocated */ 3982 3983 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3984 &node->dev.kobj); 3985 if (!nhs->hugepages_kobj) 3986 return; 3987 3988 for_each_hstate(h) { 3989 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3990 nhs->hstate_kobjs, 3991 &per_node_hstate_attr_group); 3992 if (err) { 3993 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3994 h->name, node->dev.id); 3995 hugetlb_unregister_node(node); 3996 break; 3997 } 3998 } 3999 } 4000 4001 /* 4002 * hugetlb init time: register hstate attributes for all registered node 4003 * devices of nodes that have memory. All on-line nodes should have 4004 * registered their associated device by this time. 4005 */ 4006 static void __init hugetlb_register_all_nodes(void) 4007 { 4008 int nid; 4009 4010 for_each_online_node(nid) 4011 hugetlb_register_node(node_devices[nid]); 4012 } 4013 #else /* !CONFIG_NUMA */ 4014 4015 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4016 { 4017 BUG(); 4018 if (nidp) 4019 *nidp = -1; 4020 return NULL; 4021 } 4022 4023 static void hugetlb_register_all_nodes(void) { } 4024 4025 #endif 4026 4027 #ifdef CONFIG_CMA 4028 static void __init hugetlb_cma_check(void); 4029 #else 4030 static inline __init void hugetlb_cma_check(void) 4031 { 4032 } 4033 #endif 4034 4035 static void __init hugetlb_sysfs_init(void) 4036 { 4037 struct hstate *h; 4038 int err; 4039 4040 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4041 if (!hugepages_kobj) 4042 return; 4043 4044 for_each_hstate(h) { 4045 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4046 hstate_kobjs, &hstate_attr_group); 4047 if (err) 4048 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4049 } 4050 4051 #ifdef CONFIG_NUMA 4052 hugetlb_sysfs_initialized = true; 4053 #endif 4054 hugetlb_register_all_nodes(); 4055 } 4056 4057 static int __init hugetlb_init(void) 4058 { 4059 int i; 4060 4061 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4062 __NR_HPAGEFLAGS); 4063 4064 if (!hugepages_supported()) { 4065 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4066 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4067 return 0; 4068 } 4069 4070 /* 4071 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4072 * architectures depend on setup being done here. 4073 */ 4074 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4075 if (!parsed_default_hugepagesz) { 4076 /* 4077 * If we did not parse a default huge page size, set 4078 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4079 * number of huge pages for this default size was implicitly 4080 * specified, set that here as well. 4081 * Note that the implicit setting will overwrite an explicit 4082 * setting. A warning will be printed in this case. 4083 */ 4084 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4085 if (default_hstate_max_huge_pages) { 4086 if (default_hstate.max_huge_pages) { 4087 char buf[32]; 4088 4089 string_get_size(huge_page_size(&default_hstate), 4090 1, STRING_UNITS_2, buf, 32); 4091 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4092 default_hstate.max_huge_pages, buf); 4093 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4094 default_hstate_max_huge_pages); 4095 } 4096 default_hstate.max_huge_pages = 4097 default_hstate_max_huge_pages; 4098 4099 for_each_online_node(i) 4100 default_hstate.max_huge_pages_node[i] = 4101 default_hugepages_in_node[i]; 4102 } 4103 } 4104 4105 hugetlb_cma_check(); 4106 hugetlb_init_hstates(); 4107 gather_bootmem_prealloc(); 4108 report_hugepages(); 4109 4110 hugetlb_sysfs_init(); 4111 hugetlb_cgroup_file_init(); 4112 4113 #ifdef CONFIG_SMP 4114 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4115 #else 4116 num_fault_mutexes = 1; 4117 #endif 4118 hugetlb_fault_mutex_table = 4119 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4120 GFP_KERNEL); 4121 BUG_ON(!hugetlb_fault_mutex_table); 4122 4123 for (i = 0; i < num_fault_mutexes; i++) 4124 mutex_init(&hugetlb_fault_mutex_table[i]); 4125 return 0; 4126 } 4127 subsys_initcall(hugetlb_init); 4128 4129 /* Overwritten by architectures with more huge page sizes */ 4130 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4131 { 4132 return size == HPAGE_SIZE; 4133 } 4134 4135 void __init hugetlb_add_hstate(unsigned int order) 4136 { 4137 struct hstate *h; 4138 unsigned long i; 4139 4140 if (size_to_hstate(PAGE_SIZE << order)) { 4141 return; 4142 } 4143 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4144 BUG_ON(order == 0); 4145 h = &hstates[hugetlb_max_hstate++]; 4146 mutex_init(&h->resize_lock); 4147 h->order = order; 4148 h->mask = ~(huge_page_size(h) - 1); 4149 for (i = 0; i < MAX_NUMNODES; ++i) 4150 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4151 INIT_LIST_HEAD(&h->hugepage_activelist); 4152 h->next_nid_to_alloc = first_memory_node; 4153 h->next_nid_to_free = first_memory_node; 4154 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4155 huge_page_size(h)/SZ_1K); 4156 4157 parsed_hstate = h; 4158 } 4159 4160 bool __init __weak hugetlb_node_alloc_supported(void) 4161 { 4162 return true; 4163 } 4164 4165 static void __init hugepages_clear_pages_in_node(void) 4166 { 4167 if (!hugetlb_max_hstate) { 4168 default_hstate_max_huge_pages = 0; 4169 memset(default_hugepages_in_node, 0, 4170 sizeof(default_hugepages_in_node)); 4171 } else { 4172 parsed_hstate->max_huge_pages = 0; 4173 memset(parsed_hstate->max_huge_pages_node, 0, 4174 sizeof(parsed_hstate->max_huge_pages_node)); 4175 } 4176 } 4177 4178 /* 4179 * hugepages command line processing 4180 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4181 * specification. If not, ignore the hugepages value. hugepages can also 4182 * be the first huge page command line option in which case it implicitly 4183 * specifies the number of huge pages for the default size. 4184 */ 4185 static int __init hugepages_setup(char *s) 4186 { 4187 unsigned long *mhp; 4188 static unsigned long *last_mhp; 4189 int node = NUMA_NO_NODE; 4190 int count; 4191 unsigned long tmp; 4192 char *p = s; 4193 4194 if (!parsed_valid_hugepagesz) { 4195 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4196 parsed_valid_hugepagesz = true; 4197 return 1; 4198 } 4199 4200 /* 4201 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4202 * yet, so this hugepages= parameter goes to the "default hstate". 4203 * Otherwise, it goes with the previously parsed hugepagesz or 4204 * default_hugepagesz. 4205 */ 4206 else if (!hugetlb_max_hstate) 4207 mhp = &default_hstate_max_huge_pages; 4208 else 4209 mhp = &parsed_hstate->max_huge_pages; 4210 4211 if (mhp == last_mhp) { 4212 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4213 return 1; 4214 } 4215 4216 while (*p) { 4217 count = 0; 4218 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4219 goto invalid; 4220 /* Parameter is node format */ 4221 if (p[count] == ':') { 4222 if (!hugetlb_node_alloc_supported()) { 4223 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4224 return 1; 4225 } 4226 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4227 goto invalid; 4228 node = array_index_nospec(tmp, MAX_NUMNODES); 4229 p += count + 1; 4230 /* Parse hugepages */ 4231 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4232 goto invalid; 4233 if (!hugetlb_max_hstate) 4234 default_hugepages_in_node[node] = tmp; 4235 else 4236 parsed_hstate->max_huge_pages_node[node] = tmp; 4237 *mhp += tmp; 4238 /* Go to parse next node*/ 4239 if (p[count] == ',') 4240 p += count + 1; 4241 else 4242 break; 4243 } else { 4244 if (p != s) 4245 goto invalid; 4246 *mhp = tmp; 4247 break; 4248 } 4249 } 4250 4251 /* 4252 * Global state is always initialized later in hugetlb_init. 4253 * But we need to allocate gigantic hstates here early to still 4254 * use the bootmem allocator. 4255 */ 4256 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4257 hugetlb_hstate_alloc_pages(parsed_hstate); 4258 4259 last_mhp = mhp; 4260 4261 return 1; 4262 4263 invalid: 4264 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4265 hugepages_clear_pages_in_node(); 4266 return 1; 4267 } 4268 __setup("hugepages=", hugepages_setup); 4269 4270 /* 4271 * hugepagesz command line processing 4272 * A specific huge page size can only be specified once with hugepagesz. 4273 * hugepagesz is followed by hugepages on the command line. The global 4274 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4275 * hugepagesz argument was valid. 4276 */ 4277 static int __init hugepagesz_setup(char *s) 4278 { 4279 unsigned long size; 4280 struct hstate *h; 4281 4282 parsed_valid_hugepagesz = false; 4283 size = (unsigned long)memparse(s, NULL); 4284 4285 if (!arch_hugetlb_valid_size(size)) { 4286 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4287 return 1; 4288 } 4289 4290 h = size_to_hstate(size); 4291 if (h) { 4292 /* 4293 * hstate for this size already exists. This is normally 4294 * an error, but is allowed if the existing hstate is the 4295 * default hstate. More specifically, it is only allowed if 4296 * the number of huge pages for the default hstate was not 4297 * previously specified. 4298 */ 4299 if (!parsed_default_hugepagesz || h != &default_hstate || 4300 default_hstate.max_huge_pages) { 4301 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4302 return 1; 4303 } 4304 4305 /* 4306 * No need to call hugetlb_add_hstate() as hstate already 4307 * exists. But, do set parsed_hstate so that a following 4308 * hugepages= parameter will be applied to this hstate. 4309 */ 4310 parsed_hstate = h; 4311 parsed_valid_hugepagesz = true; 4312 return 1; 4313 } 4314 4315 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4316 parsed_valid_hugepagesz = true; 4317 return 1; 4318 } 4319 __setup("hugepagesz=", hugepagesz_setup); 4320 4321 /* 4322 * default_hugepagesz command line input 4323 * Only one instance of default_hugepagesz allowed on command line. 4324 */ 4325 static int __init default_hugepagesz_setup(char *s) 4326 { 4327 unsigned long size; 4328 int i; 4329 4330 parsed_valid_hugepagesz = false; 4331 if (parsed_default_hugepagesz) { 4332 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4333 return 1; 4334 } 4335 4336 size = (unsigned long)memparse(s, NULL); 4337 4338 if (!arch_hugetlb_valid_size(size)) { 4339 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4340 return 1; 4341 } 4342 4343 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4344 parsed_valid_hugepagesz = true; 4345 parsed_default_hugepagesz = true; 4346 default_hstate_idx = hstate_index(size_to_hstate(size)); 4347 4348 /* 4349 * The number of default huge pages (for this size) could have been 4350 * specified as the first hugetlb parameter: hugepages=X. If so, 4351 * then default_hstate_max_huge_pages is set. If the default huge 4352 * page size is gigantic (>= MAX_ORDER), then the pages must be 4353 * allocated here from bootmem allocator. 4354 */ 4355 if (default_hstate_max_huge_pages) { 4356 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4357 for_each_online_node(i) 4358 default_hstate.max_huge_pages_node[i] = 4359 default_hugepages_in_node[i]; 4360 if (hstate_is_gigantic(&default_hstate)) 4361 hugetlb_hstate_alloc_pages(&default_hstate); 4362 default_hstate_max_huge_pages = 0; 4363 } 4364 4365 return 1; 4366 } 4367 __setup("default_hugepagesz=", default_hugepagesz_setup); 4368 4369 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4370 { 4371 #ifdef CONFIG_NUMA 4372 struct mempolicy *mpol = get_task_policy(current); 4373 4374 /* 4375 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4376 * (from policy_nodemask) specifically for hugetlb case 4377 */ 4378 if (mpol->mode == MPOL_BIND && 4379 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4380 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4381 return &mpol->nodes; 4382 #endif 4383 return NULL; 4384 } 4385 4386 static unsigned int allowed_mems_nr(struct hstate *h) 4387 { 4388 int node; 4389 unsigned int nr = 0; 4390 nodemask_t *mbind_nodemask; 4391 unsigned int *array = h->free_huge_pages_node; 4392 gfp_t gfp_mask = htlb_alloc_mask(h); 4393 4394 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4395 for_each_node_mask(node, cpuset_current_mems_allowed) { 4396 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4397 nr += array[node]; 4398 } 4399 4400 return nr; 4401 } 4402 4403 #ifdef CONFIG_SYSCTL 4404 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4405 void *buffer, size_t *length, 4406 loff_t *ppos, unsigned long *out) 4407 { 4408 struct ctl_table dup_table; 4409 4410 /* 4411 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4412 * can duplicate the @table and alter the duplicate of it. 4413 */ 4414 dup_table = *table; 4415 dup_table.data = out; 4416 4417 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4418 } 4419 4420 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4421 struct ctl_table *table, int write, 4422 void *buffer, size_t *length, loff_t *ppos) 4423 { 4424 struct hstate *h = &default_hstate; 4425 unsigned long tmp = h->max_huge_pages; 4426 int ret; 4427 4428 if (!hugepages_supported()) 4429 return -EOPNOTSUPP; 4430 4431 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4432 &tmp); 4433 if (ret) 4434 goto out; 4435 4436 if (write) 4437 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4438 NUMA_NO_NODE, tmp, *length); 4439 out: 4440 return ret; 4441 } 4442 4443 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4444 void *buffer, size_t *length, loff_t *ppos) 4445 { 4446 4447 return hugetlb_sysctl_handler_common(false, table, write, 4448 buffer, length, ppos); 4449 } 4450 4451 #ifdef CONFIG_NUMA 4452 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4453 void *buffer, size_t *length, loff_t *ppos) 4454 { 4455 return hugetlb_sysctl_handler_common(true, table, write, 4456 buffer, length, ppos); 4457 } 4458 #endif /* CONFIG_NUMA */ 4459 4460 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4461 void *buffer, size_t *length, loff_t *ppos) 4462 { 4463 struct hstate *h = &default_hstate; 4464 unsigned long tmp; 4465 int ret; 4466 4467 if (!hugepages_supported()) 4468 return -EOPNOTSUPP; 4469 4470 tmp = h->nr_overcommit_huge_pages; 4471 4472 if (write && hstate_is_gigantic(h)) 4473 return -EINVAL; 4474 4475 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4476 &tmp); 4477 if (ret) 4478 goto out; 4479 4480 if (write) { 4481 spin_lock_irq(&hugetlb_lock); 4482 h->nr_overcommit_huge_pages = tmp; 4483 spin_unlock_irq(&hugetlb_lock); 4484 } 4485 out: 4486 return ret; 4487 } 4488 4489 #endif /* CONFIG_SYSCTL */ 4490 4491 void hugetlb_report_meminfo(struct seq_file *m) 4492 { 4493 struct hstate *h; 4494 unsigned long total = 0; 4495 4496 if (!hugepages_supported()) 4497 return; 4498 4499 for_each_hstate(h) { 4500 unsigned long count = h->nr_huge_pages; 4501 4502 total += huge_page_size(h) * count; 4503 4504 if (h == &default_hstate) 4505 seq_printf(m, 4506 "HugePages_Total: %5lu\n" 4507 "HugePages_Free: %5lu\n" 4508 "HugePages_Rsvd: %5lu\n" 4509 "HugePages_Surp: %5lu\n" 4510 "Hugepagesize: %8lu kB\n", 4511 count, 4512 h->free_huge_pages, 4513 h->resv_huge_pages, 4514 h->surplus_huge_pages, 4515 huge_page_size(h) / SZ_1K); 4516 } 4517 4518 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4519 } 4520 4521 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4522 { 4523 struct hstate *h = &default_hstate; 4524 4525 if (!hugepages_supported()) 4526 return 0; 4527 4528 return sysfs_emit_at(buf, len, 4529 "Node %d HugePages_Total: %5u\n" 4530 "Node %d HugePages_Free: %5u\n" 4531 "Node %d HugePages_Surp: %5u\n", 4532 nid, h->nr_huge_pages_node[nid], 4533 nid, h->free_huge_pages_node[nid], 4534 nid, h->surplus_huge_pages_node[nid]); 4535 } 4536 4537 void hugetlb_show_meminfo_node(int nid) 4538 { 4539 struct hstate *h; 4540 4541 if (!hugepages_supported()) 4542 return; 4543 4544 for_each_hstate(h) 4545 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4546 nid, 4547 h->nr_huge_pages_node[nid], 4548 h->free_huge_pages_node[nid], 4549 h->surplus_huge_pages_node[nid], 4550 huge_page_size(h) / SZ_1K); 4551 } 4552 4553 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4554 { 4555 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4556 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4557 } 4558 4559 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4560 unsigned long hugetlb_total_pages(void) 4561 { 4562 struct hstate *h; 4563 unsigned long nr_total_pages = 0; 4564 4565 for_each_hstate(h) 4566 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4567 return nr_total_pages; 4568 } 4569 4570 static int hugetlb_acct_memory(struct hstate *h, long delta) 4571 { 4572 int ret = -ENOMEM; 4573 4574 if (!delta) 4575 return 0; 4576 4577 spin_lock_irq(&hugetlb_lock); 4578 /* 4579 * When cpuset is configured, it breaks the strict hugetlb page 4580 * reservation as the accounting is done on a global variable. Such 4581 * reservation is completely rubbish in the presence of cpuset because 4582 * the reservation is not checked against page availability for the 4583 * current cpuset. Application can still potentially OOM'ed by kernel 4584 * with lack of free htlb page in cpuset that the task is in. 4585 * Attempt to enforce strict accounting with cpuset is almost 4586 * impossible (or too ugly) because cpuset is too fluid that 4587 * task or memory node can be dynamically moved between cpusets. 4588 * 4589 * The change of semantics for shared hugetlb mapping with cpuset is 4590 * undesirable. However, in order to preserve some of the semantics, 4591 * we fall back to check against current free page availability as 4592 * a best attempt and hopefully to minimize the impact of changing 4593 * semantics that cpuset has. 4594 * 4595 * Apart from cpuset, we also have memory policy mechanism that 4596 * also determines from which node the kernel will allocate memory 4597 * in a NUMA system. So similar to cpuset, we also should consider 4598 * the memory policy of the current task. Similar to the description 4599 * above. 4600 */ 4601 if (delta > 0) { 4602 if (gather_surplus_pages(h, delta) < 0) 4603 goto out; 4604 4605 if (delta > allowed_mems_nr(h)) { 4606 return_unused_surplus_pages(h, delta); 4607 goto out; 4608 } 4609 } 4610 4611 ret = 0; 4612 if (delta < 0) 4613 return_unused_surplus_pages(h, (unsigned long) -delta); 4614 4615 out: 4616 spin_unlock_irq(&hugetlb_lock); 4617 return ret; 4618 } 4619 4620 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4621 { 4622 struct resv_map *resv = vma_resv_map(vma); 4623 4624 /* 4625 * HPAGE_RESV_OWNER indicates a private mapping. 4626 * This new VMA should share its siblings reservation map if present. 4627 * The VMA will only ever have a valid reservation map pointer where 4628 * it is being copied for another still existing VMA. As that VMA 4629 * has a reference to the reservation map it cannot disappear until 4630 * after this open call completes. It is therefore safe to take a 4631 * new reference here without additional locking. 4632 */ 4633 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4634 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4635 kref_get(&resv->refs); 4636 } 4637 4638 /* 4639 * vma_lock structure for sharable mappings is vma specific. 4640 * Clear old pointer (if copied via vm_area_dup) and allocate 4641 * new structure. Before clearing, make sure vma_lock is not 4642 * for this vma. 4643 */ 4644 if (vma->vm_flags & VM_MAYSHARE) { 4645 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4646 4647 if (vma_lock) { 4648 if (vma_lock->vma != vma) { 4649 vma->vm_private_data = NULL; 4650 hugetlb_vma_lock_alloc(vma); 4651 } else 4652 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4653 } else 4654 hugetlb_vma_lock_alloc(vma); 4655 } 4656 } 4657 4658 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4659 { 4660 struct hstate *h = hstate_vma(vma); 4661 struct resv_map *resv; 4662 struct hugepage_subpool *spool = subpool_vma(vma); 4663 unsigned long reserve, start, end; 4664 long gbl_reserve; 4665 4666 hugetlb_vma_lock_free(vma); 4667 4668 resv = vma_resv_map(vma); 4669 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4670 return; 4671 4672 start = vma_hugecache_offset(h, vma, vma->vm_start); 4673 end = vma_hugecache_offset(h, vma, vma->vm_end); 4674 4675 reserve = (end - start) - region_count(resv, start, end); 4676 hugetlb_cgroup_uncharge_counter(resv, start, end); 4677 if (reserve) { 4678 /* 4679 * Decrement reserve counts. The global reserve count may be 4680 * adjusted if the subpool has a minimum size. 4681 */ 4682 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4683 hugetlb_acct_memory(h, -gbl_reserve); 4684 } 4685 4686 kref_put(&resv->refs, resv_map_release); 4687 } 4688 4689 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4690 { 4691 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4692 return -EINVAL; 4693 return 0; 4694 } 4695 4696 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4697 { 4698 return huge_page_size(hstate_vma(vma)); 4699 } 4700 4701 /* 4702 * We cannot handle pagefaults against hugetlb pages at all. They cause 4703 * handle_mm_fault() to try to instantiate regular-sized pages in the 4704 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4705 * this far. 4706 */ 4707 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4708 { 4709 BUG(); 4710 return 0; 4711 } 4712 4713 /* 4714 * When a new function is introduced to vm_operations_struct and added 4715 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4716 * This is because under System V memory model, mappings created via 4717 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4718 * their original vm_ops are overwritten with shm_vm_ops. 4719 */ 4720 const struct vm_operations_struct hugetlb_vm_ops = { 4721 .fault = hugetlb_vm_op_fault, 4722 .open = hugetlb_vm_op_open, 4723 .close = hugetlb_vm_op_close, 4724 .may_split = hugetlb_vm_op_split, 4725 .pagesize = hugetlb_vm_op_pagesize, 4726 }; 4727 4728 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4729 int writable) 4730 { 4731 pte_t entry; 4732 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4733 4734 if (writable) { 4735 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4736 vma->vm_page_prot))); 4737 } else { 4738 entry = huge_pte_wrprotect(mk_huge_pte(page, 4739 vma->vm_page_prot)); 4740 } 4741 entry = pte_mkyoung(entry); 4742 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4743 4744 return entry; 4745 } 4746 4747 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4748 unsigned long address, pte_t *ptep) 4749 { 4750 pte_t entry; 4751 4752 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4753 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4754 update_mmu_cache(vma, address, ptep); 4755 } 4756 4757 bool is_hugetlb_entry_migration(pte_t pte) 4758 { 4759 swp_entry_t swp; 4760 4761 if (huge_pte_none(pte) || pte_present(pte)) 4762 return false; 4763 swp = pte_to_swp_entry(pte); 4764 if (is_migration_entry(swp)) 4765 return true; 4766 else 4767 return false; 4768 } 4769 4770 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4771 { 4772 swp_entry_t swp; 4773 4774 if (huge_pte_none(pte) || pte_present(pte)) 4775 return false; 4776 swp = pte_to_swp_entry(pte); 4777 if (is_hwpoison_entry(swp)) 4778 return true; 4779 else 4780 return false; 4781 } 4782 4783 static void 4784 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4785 struct page *new_page) 4786 { 4787 __SetPageUptodate(new_page); 4788 hugepage_add_new_anon_rmap(new_page, vma, addr); 4789 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4790 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4791 SetHPageMigratable(new_page); 4792 } 4793 4794 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4795 struct vm_area_struct *dst_vma, 4796 struct vm_area_struct *src_vma) 4797 { 4798 pte_t *src_pte, *dst_pte, entry; 4799 struct page *ptepage; 4800 unsigned long addr; 4801 bool cow = is_cow_mapping(src_vma->vm_flags); 4802 struct hstate *h = hstate_vma(src_vma); 4803 unsigned long sz = huge_page_size(h); 4804 unsigned long npages = pages_per_huge_page(h); 4805 struct mmu_notifier_range range; 4806 unsigned long last_addr_mask; 4807 int ret = 0; 4808 4809 if (cow) { 4810 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4811 src_vma->vm_start, 4812 src_vma->vm_end); 4813 mmu_notifier_invalidate_range_start(&range); 4814 mmap_assert_write_locked(src); 4815 raw_write_seqcount_begin(&src->write_protect_seq); 4816 } else { 4817 /* 4818 * For shared mappings the vma lock must be held before 4819 * calling huge_pte_offset in the src vma. Otherwise, the 4820 * returned ptep could go away if part of a shared pmd and 4821 * another thread calls huge_pmd_unshare. 4822 */ 4823 hugetlb_vma_lock_read(src_vma); 4824 } 4825 4826 last_addr_mask = hugetlb_mask_last_page(h); 4827 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4828 spinlock_t *src_ptl, *dst_ptl; 4829 src_pte = huge_pte_offset(src, addr, sz); 4830 if (!src_pte) { 4831 addr |= last_addr_mask; 4832 continue; 4833 } 4834 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4835 if (!dst_pte) { 4836 ret = -ENOMEM; 4837 break; 4838 } 4839 4840 /* 4841 * If the pagetables are shared don't copy or take references. 4842 * 4843 * dst_pte == src_pte is the common case of src/dest sharing. 4844 * However, src could have 'unshared' and dst shares with 4845 * another vma. So page_count of ptep page is checked instead 4846 * to reliably determine whether pte is shared. 4847 */ 4848 if (page_count(virt_to_page(dst_pte)) > 1) { 4849 addr |= last_addr_mask; 4850 continue; 4851 } 4852 4853 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4854 src_ptl = huge_pte_lockptr(h, src, src_pte); 4855 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4856 entry = huge_ptep_get(src_pte); 4857 again: 4858 if (huge_pte_none(entry)) { 4859 /* 4860 * Skip if src entry none. 4861 */ 4862 ; 4863 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 4864 bool uffd_wp = huge_pte_uffd_wp(entry); 4865 4866 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4867 entry = huge_pte_clear_uffd_wp(entry); 4868 set_huge_pte_at(dst, addr, dst_pte, entry); 4869 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 4870 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4871 bool uffd_wp = huge_pte_uffd_wp(entry); 4872 4873 if (!is_readable_migration_entry(swp_entry) && cow) { 4874 /* 4875 * COW mappings require pages in both 4876 * parent and child to be set to read. 4877 */ 4878 swp_entry = make_readable_migration_entry( 4879 swp_offset(swp_entry)); 4880 entry = swp_entry_to_pte(swp_entry); 4881 if (userfaultfd_wp(src_vma) && uffd_wp) 4882 entry = huge_pte_mkuffd_wp(entry); 4883 set_huge_pte_at(src, addr, src_pte, entry); 4884 } 4885 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4886 entry = huge_pte_clear_uffd_wp(entry); 4887 set_huge_pte_at(dst, addr, dst_pte, entry); 4888 } else if (unlikely(is_pte_marker(entry))) { 4889 /* 4890 * We copy the pte marker only if the dst vma has 4891 * uffd-wp enabled. 4892 */ 4893 if (userfaultfd_wp(dst_vma)) 4894 set_huge_pte_at(dst, addr, dst_pte, entry); 4895 } else { 4896 entry = huge_ptep_get(src_pte); 4897 ptepage = pte_page(entry); 4898 get_page(ptepage); 4899 4900 /* 4901 * Failing to duplicate the anon rmap is a rare case 4902 * where we see pinned hugetlb pages while they're 4903 * prone to COW. We need to do the COW earlier during 4904 * fork. 4905 * 4906 * When pre-allocating the page or copying data, we 4907 * need to be without the pgtable locks since we could 4908 * sleep during the process. 4909 */ 4910 if (!PageAnon(ptepage)) { 4911 page_dup_file_rmap(ptepage, true); 4912 } else if (page_try_dup_anon_rmap(ptepage, true, 4913 src_vma)) { 4914 pte_t src_pte_old = entry; 4915 struct page *new; 4916 4917 spin_unlock(src_ptl); 4918 spin_unlock(dst_ptl); 4919 /* Do not use reserve as it's private owned */ 4920 new = alloc_huge_page(dst_vma, addr, 1); 4921 if (IS_ERR(new)) { 4922 put_page(ptepage); 4923 ret = PTR_ERR(new); 4924 break; 4925 } 4926 copy_user_huge_page(new, ptepage, addr, dst_vma, 4927 npages); 4928 put_page(ptepage); 4929 4930 /* Install the new huge page if src pte stable */ 4931 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4932 src_ptl = huge_pte_lockptr(h, src, src_pte); 4933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4934 entry = huge_ptep_get(src_pte); 4935 if (!pte_same(src_pte_old, entry)) { 4936 restore_reserve_on_error(h, dst_vma, addr, 4937 new); 4938 put_page(new); 4939 /* huge_ptep of dst_pte won't change as in child */ 4940 goto again; 4941 } 4942 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4943 spin_unlock(src_ptl); 4944 spin_unlock(dst_ptl); 4945 continue; 4946 } 4947 4948 if (cow) { 4949 /* 4950 * No need to notify as we are downgrading page 4951 * table protection not changing it to point 4952 * to a new page. 4953 * 4954 * See Documentation/mm/mmu_notifier.rst 4955 */ 4956 huge_ptep_set_wrprotect(src, addr, src_pte); 4957 entry = huge_pte_wrprotect(entry); 4958 } 4959 4960 set_huge_pte_at(dst, addr, dst_pte, entry); 4961 hugetlb_count_add(npages, dst); 4962 } 4963 spin_unlock(src_ptl); 4964 spin_unlock(dst_ptl); 4965 } 4966 4967 if (cow) { 4968 raw_write_seqcount_end(&src->write_protect_seq); 4969 mmu_notifier_invalidate_range_end(&range); 4970 } else { 4971 hugetlb_vma_unlock_read(src_vma); 4972 } 4973 4974 return ret; 4975 } 4976 4977 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4978 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4979 { 4980 struct hstate *h = hstate_vma(vma); 4981 struct mm_struct *mm = vma->vm_mm; 4982 spinlock_t *src_ptl, *dst_ptl; 4983 pte_t pte; 4984 4985 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4986 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4987 4988 /* 4989 * We don't have to worry about the ordering of src and dst ptlocks 4990 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4991 */ 4992 if (src_ptl != dst_ptl) 4993 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4994 4995 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4996 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4997 4998 if (src_ptl != dst_ptl) 4999 spin_unlock(src_ptl); 5000 spin_unlock(dst_ptl); 5001 } 5002 5003 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5004 struct vm_area_struct *new_vma, 5005 unsigned long old_addr, unsigned long new_addr, 5006 unsigned long len) 5007 { 5008 struct hstate *h = hstate_vma(vma); 5009 struct address_space *mapping = vma->vm_file->f_mapping; 5010 unsigned long sz = huge_page_size(h); 5011 struct mm_struct *mm = vma->vm_mm; 5012 unsigned long old_end = old_addr + len; 5013 unsigned long last_addr_mask; 5014 pte_t *src_pte, *dst_pte; 5015 struct mmu_notifier_range range; 5016 bool shared_pmd = false; 5017 5018 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 5019 old_end); 5020 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5021 /* 5022 * In case of shared PMDs, we should cover the maximum possible 5023 * range. 5024 */ 5025 flush_cache_range(vma, range.start, range.end); 5026 5027 mmu_notifier_invalidate_range_start(&range); 5028 last_addr_mask = hugetlb_mask_last_page(h); 5029 /* Prevent race with file truncation */ 5030 hugetlb_vma_lock_write(vma); 5031 i_mmap_lock_write(mapping); 5032 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5033 src_pte = huge_pte_offset(mm, old_addr, sz); 5034 if (!src_pte) { 5035 old_addr |= last_addr_mask; 5036 new_addr |= last_addr_mask; 5037 continue; 5038 } 5039 if (huge_pte_none(huge_ptep_get(src_pte))) 5040 continue; 5041 5042 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5043 shared_pmd = true; 5044 old_addr |= last_addr_mask; 5045 new_addr |= last_addr_mask; 5046 continue; 5047 } 5048 5049 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5050 if (!dst_pte) 5051 break; 5052 5053 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5054 } 5055 5056 if (shared_pmd) 5057 flush_tlb_range(vma, range.start, range.end); 5058 else 5059 flush_tlb_range(vma, old_end - len, old_end); 5060 mmu_notifier_invalidate_range_end(&range); 5061 i_mmap_unlock_write(mapping); 5062 hugetlb_vma_unlock_write(vma); 5063 5064 return len + old_addr - old_end; 5065 } 5066 5067 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5068 unsigned long start, unsigned long end, 5069 struct page *ref_page, zap_flags_t zap_flags) 5070 { 5071 struct mm_struct *mm = vma->vm_mm; 5072 unsigned long address; 5073 pte_t *ptep; 5074 pte_t pte; 5075 spinlock_t *ptl; 5076 struct page *page; 5077 struct hstate *h = hstate_vma(vma); 5078 unsigned long sz = huge_page_size(h); 5079 unsigned long last_addr_mask; 5080 bool force_flush = false; 5081 5082 WARN_ON(!is_vm_hugetlb_page(vma)); 5083 BUG_ON(start & ~huge_page_mask(h)); 5084 BUG_ON(end & ~huge_page_mask(h)); 5085 5086 /* 5087 * This is a hugetlb vma, all the pte entries should point 5088 * to huge page. 5089 */ 5090 tlb_change_page_size(tlb, sz); 5091 tlb_start_vma(tlb, vma); 5092 5093 last_addr_mask = hugetlb_mask_last_page(h); 5094 address = start; 5095 for (; address < end; address += sz) { 5096 ptep = huge_pte_offset(mm, address, sz); 5097 if (!ptep) { 5098 address |= last_addr_mask; 5099 continue; 5100 } 5101 5102 ptl = huge_pte_lock(h, mm, ptep); 5103 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5104 spin_unlock(ptl); 5105 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5106 force_flush = true; 5107 address |= last_addr_mask; 5108 continue; 5109 } 5110 5111 pte = huge_ptep_get(ptep); 5112 if (huge_pte_none(pte)) { 5113 spin_unlock(ptl); 5114 continue; 5115 } 5116 5117 /* 5118 * Migrating hugepage or HWPoisoned hugepage is already 5119 * unmapped and its refcount is dropped, so just clear pte here. 5120 */ 5121 if (unlikely(!pte_present(pte))) { 5122 /* 5123 * If the pte was wr-protected by uffd-wp in any of the 5124 * swap forms, meanwhile the caller does not want to 5125 * drop the uffd-wp bit in this zap, then replace the 5126 * pte with a marker. 5127 */ 5128 if (pte_swp_uffd_wp_any(pte) && 5129 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5130 set_huge_pte_at(mm, address, ptep, 5131 make_pte_marker(PTE_MARKER_UFFD_WP)); 5132 else 5133 huge_pte_clear(mm, address, ptep, sz); 5134 spin_unlock(ptl); 5135 continue; 5136 } 5137 5138 page = pte_page(pte); 5139 /* 5140 * If a reference page is supplied, it is because a specific 5141 * page is being unmapped, not a range. Ensure the page we 5142 * are about to unmap is the actual page of interest. 5143 */ 5144 if (ref_page) { 5145 if (page != ref_page) { 5146 spin_unlock(ptl); 5147 continue; 5148 } 5149 /* 5150 * Mark the VMA as having unmapped its page so that 5151 * future faults in this VMA will fail rather than 5152 * looking like data was lost 5153 */ 5154 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5155 } 5156 5157 pte = huge_ptep_get_and_clear(mm, address, ptep); 5158 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5159 if (huge_pte_dirty(pte)) 5160 set_page_dirty(page); 5161 /* Leave a uffd-wp pte marker if needed */ 5162 if (huge_pte_uffd_wp(pte) && 5163 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5164 set_huge_pte_at(mm, address, ptep, 5165 make_pte_marker(PTE_MARKER_UFFD_WP)); 5166 hugetlb_count_sub(pages_per_huge_page(h), mm); 5167 page_remove_rmap(page, vma, true); 5168 5169 spin_unlock(ptl); 5170 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5171 /* 5172 * Bail out after unmapping reference page if supplied 5173 */ 5174 if (ref_page) 5175 break; 5176 } 5177 tlb_end_vma(tlb, vma); 5178 5179 /* 5180 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5181 * could defer the flush until now, since by holding i_mmap_rwsem we 5182 * guaranteed that the last refernece would not be dropped. But we must 5183 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5184 * dropped and the last reference to the shared PMDs page might be 5185 * dropped as well. 5186 * 5187 * In theory we could defer the freeing of the PMD pages as well, but 5188 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5189 * detect sharing, so we cannot defer the release of the page either. 5190 * Instead, do flush now. 5191 */ 5192 if (force_flush) 5193 tlb_flush_mmu_tlbonly(tlb); 5194 } 5195 5196 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5197 struct vm_area_struct *vma, unsigned long start, 5198 unsigned long end, struct page *ref_page, 5199 zap_flags_t zap_flags) 5200 { 5201 hugetlb_vma_lock_write(vma); 5202 i_mmap_lock_write(vma->vm_file->f_mapping); 5203 5204 /* mmu notification performed in caller */ 5205 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5206 5207 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5208 /* 5209 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5210 * When the vma_lock is freed, this makes the vma ineligible 5211 * for pmd sharing. And, i_mmap_rwsem is required to set up 5212 * pmd sharing. This is important as page tables for this 5213 * unmapped range will be asynchrously deleted. If the page 5214 * tables are shared, there will be issues when accessed by 5215 * someone else. 5216 */ 5217 __hugetlb_vma_unlock_write_free(vma); 5218 i_mmap_unlock_write(vma->vm_file->f_mapping); 5219 } else { 5220 i_mmap_unlock_write(vma->vm_file->f_mapping); 5221 hugetlb_vma_unlock_write(vma); 5222 } 5223 } 5224 5225 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5226 unsigned long end, struct page *ref_page, 5227 zap_flags_t zap_flags) 5228 { 5229 struct mmu_notifier_range range; 5230 struct mmu_gather tlb; 5231 5232 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 5233 start, end); 5234 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5235 mmu_notifier_invalidate_range_start(&range); 5236 tlb_gather_mmu(&tlb, vma->vm_mm); 5237 5238 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5239 5240 mmu_notifier_invalidate_range_end(&range); 5241 tlb_finish_mmu(&tlb); 5242 } 5243 5244 /* 5245 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5246 * mapping it owns the reserve page for. The intention is to unmap the page 5247 * from other VMAs and let the children be SIGKILLed if they are faulting the 5248 * same region. 5249 */ 5250 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5251 struct page *page, unsigned long address) 5252 { 5253 struct hstate *h = hstate_vma(vma); 5254 struct vm_area_struct *iter_vma; 5255 struct address_space *mapping; 5256 pgoff_t pgoff; 5257 5258 /* 5259 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5260 * from page cache lookup which is in HPAGE_SIZE units. 5261 */ 5262 address = address & huge_page_mask(h); 5263 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5264 vma->vm_pgoff; 5265 mapping = vma->vm_file->f_mapping; 5266 5267 /* 5268 * Take the mapping lock for the duration of the table walk. As 5269 * this mapping should be shared between all the VMAs, 5270 * __unmap_hugepage_range() is called as the lock is already held 5271 */ 5272 i_mmap_lock_write(mapping); 5273 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5274 /* Do not unmap the current VMA */ 5275 if (iter_vma == vma) 5276 continue; 5277 5278 /* 5279 * Shared VMAs have their own reserves and do not affect 5280 * MAP_PRIVATE accounting but it is possible that a shared 5281 * VMA is using the same page so check and skip such VMAs. 5282 */ 5283 if (iter_vma->vm_flags & VM_MAYSHARE) 5284 continue; 5285 5286 /* 5287 * Unmap the page from other VMAs without their own reserves. 5288 * They get marked to be SIGKILLed if they fault in these 5289 * areas. This is because a future no-page fault on this VMA 5290 * could insert a zeroed page instead of the data existing 5291 * from the time of fork. This would look like data corruption 5292 */ 5293 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5294 unmap_hugepage_range(iter_vma, address, 5295 address + huge_page_size(h), page, 0); 5296 } 5297 i_mmap_unlock_write(mapping); 5298 } 5299 5300 /* 5301 * hugetlb_wp() should be called with page lock of the original hugepage held. 5302 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5303 * cannot race with other handlers or page migration. 5304 * Keep the pte_same checks anyway to make transition from the mutex easier. 5305 */ 5306 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5307 unsigned long address, pte_t *ptep, unsigned int flags, 5308 struct page *pagecache_page, spinlock_t *ptl) 5309 { 5310 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5311 pte_t pte; 5312 struct hstate *h = hstate_vma(vma); 5313 struct page *old_page, *new_page; 5314 int outside_reserve = 0; 5315 vm_fault_t ret = 0; 5316 unsigned long haddr = address & huge_page_mask(h); 5317 struct mmu_notifier_range range; 5318 5319 /* 5320 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5321 * PTE mapped R/O such as maybe_mkwrite() would do. 5322 */ 5323 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5324 return VM_FAULT_SIGSEGV; 5325 5326 /* Let's take out MAP_SHARED mappings first. */ 5327 if (vma->vm_flags & VM_MAYSHARE) { 5328 set_huge_ptep_writable(vma, haddr, ptep); 5329 return 0; 5330 } 5331 5332 pte = huge_ptep_get(ptep); 5333 old_page = pte_page(pte); 5334 5335 delayacct_wpcopy_start(); 5336 5337 retry_avoidcopy: 5338 /* 5339 * If no-one else is actually using this page, we're the exclusive 5340 * owner and can reuse this page. 5341 */ 5342 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5343 if (!PageAnonExclusive(old_page)) 5344 page_move_anon_rmap(old_page, vma); 5345 if (likely(!unshare)) 5346 set_huge_ptep_writable(vma, haddr, ptep); 5347 5348 delayacct_wpcopy_end(); 5349 return 0; 5350 } 5351 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5352 old_page); 5353 5354 /* 5355 * If the process that created a MAP_PRIVATE mapping is about to 5356 * perform a COW due to a shared page count, attempt to satisfy 5357 * the allocation without using the existing reserves. The pagecache 5358 * page is used to determine if the reserve at this address was 5359 * consumed or not. If reserves were used, a partial faulted mapping 5360 * at the time of fork() could consume its reserves on COW instead 5361 * of the full address range. 5362 */ 5363 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5364 old_page != pagecache_page) 5365 outside_reserve = 1; 5366 5367 get_page(old_page); 5368 5369 /* 5370 * Drop page table lock as buddy allocator may be called. It will 5371 * be acquired again before returning to the caller, as expected. 5372 */ 5373 spin_unlock(ptl); 5374 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5375 5376 if (IS_ERR(new_page)) { 5377 /* 5378 * If a process owning a MAP_PRIVATE mapping fails to COW, 5379 * it is due to references held by a child and an insufficient 5380 * huge page pool. To guarantee the original mappers 5381 * reliability, unmap the page from child processes. The child 5382 * may get SIGKILLed if it later faults. 5383 */ 5384 if (outside_reserve) { 5385 struct address_space *mapping = vma->vm_file->f_mapping; 5386 pgoff_t idx; 5387 u32 hash; 5388 5389 put_page(old_page); 5390 /* 5391 * Drop hugetlb_fault_mutex and vma_lock before 5392 * unmapping. unmapping needs to hold vma_lock 5393 * in write mode. Dropping vma_lock in read mode 5394 * here is OK as COW mappings do not interact with 5395 * PMD sharing. 5396 * 5397 * Reacquire both after unmap operation. 5398 */ 5399 idx = vma_hugecache_offset(h, vma, haddr); 5400 hash = hugetlb_fault_mutex_hash(mapping, idx); 5401 hugetlb_vma_unlock_read(vma); 5402 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5403 5404 unmap_ref_private(mm, vma, old_page, haddr); 5405 5406 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5407 hugetlb_vma_lock_read(vma); 5408 spin_lock(ptl); 5409 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5410 if (likely(ptep && 5411 pte_same(huge_ptep_get(ptep), pte))) 5412 goto retry_avoidcopy; 5413 /* 5414 * race occurs while re-acquiring page table 5415 * lock, and our job is done. 5416 */ 5417 delayacct_wpcopy_end(); 5418 return 0; 5419 } 5420 5421 ret = vmf_error(PTR_ERR(new_page)); 5422 goto out_release_old; 5423 } 5424 5425 /* 5426 * When the original hugepage is shared one, it does not have 5427 * anon_vma prepared. 5428 */ 5429 if (unlikely(anon_vma_prepare(vma))) { 5430 ret = VM_FAULT_OOM; 5431 goto out_release_all; 5432 } 5433 5434 copy_user_huge_page(new_page, old_page, address, vma, 5435 pages_per_huge_page(h)); 5436 __SetPageUptodate(new_page); 5437 5438 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5439 haddr + huge_page_size(h)); 5440 mmu_notifier_invalidate_range_start(&range); 5441 5442 /* 5443 * Retake the page table lock to check for racing updates 5444 * before the page tables are altered 5445 */ 5446 spin_lock(ptl); 5447 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5448 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5449 /* Break COW or unshare */ 5450 huge_ptep_clear_flush(vma, haddr, ptep); 5451 mmu_notifier_invalidate_range(mm, range.start, range.end); 5452 page_remove_rmap(old_page, vma, true); 5453 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5454 set_huge_pte_at(mm, haddr, ptep, 5455 make_huge_pte(vma, new_page, !unshare)); 5456 SetHPageMigratable(new_page); 5457 /* Make the old page be freed below */ 5458 new_page = old_page; 5459 } 5460 spin_unlock(ptl); 5461 mmu_notifier_invalidate_range_end(&range); 5462 out_release_all: 5463 /* 5464 * No restore in case of successful pagetable update (Break COW or 5465 * unshare) 5466 */ 5467 if (new_page != old_page) 5468 restore_reserve_on_error(h, vma, haddr, new_page); 5469 put_page(new_page); 5470 out_release_old: 5471 put_page(old_page); 5472 5473 spin_lock(ptl); /* Caller expects lock to be held */ 5474 5475 delayacct_wpcopy_end(); 5476 return ret; 5477 } 5478 5479 /* 5480 * Return whether there is a pagecache page to back given address within VMA. 5481 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5482 */ 5483 static bool hugetlbfs_pagecache_present(struct hstate *h, 5484 struct vm_area_struct *vma, unsigned long address) 5485 { 5486 struct address_space *mapping; 5487 pgoff_t idx; 5488 struct page *page; 5489 5490 mapping = vma->vm_file->f_mapping; 5491 idx = vma_hugecache_offset(h, vma, address); 5492 5493 page = find_get_page(mapping, idx); 5494 if (page) 5495 put_page(page); 5496 return page != NULL; 5497 } 5498 5499 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, 5500 pgoff_t idx) 5501 { 5502 struct folio *folio = page_folio(page); 5503 struct inode *inode = mapping->host; 5504 struct hstate *h = hstate_inode(inode); 5505 int err; 5506 5507 __folio_set_locked(folio); 5508 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5509 5510 if (unlikely(err)) { 5511 __folio_clear_locked(folio); 5512 return err; 5513 } 5514 ClearHPageRestoreReserve(page); 5515 5516 /* 5517 * mark folio dirty so that it will not be removed from cache/file 5518 * by non-hugetlbfs specific code paths. 5519 */ 5520 folio_mark_dirty(folio); 5521 5522 spin_lock(&inode->i_lock); 5523 inode->i_blocks += blocks_per_huge_page(h); 5524 spin_unlock(&inode->i_lock); 5525 return 0; 5526 } 5527 5528 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5529 struct address_space *mapping, 5530 pgoff_t idx, 5531 unsigned int flags, 5532 unsigned long haddr, 5533 unsigned long addr, 5534 unsigned long reason) 5535 { 5536 u32 hash; 5537 struct vm_fault vmf = { 5538 .vma = vma, 5539 .address = haddr, 5540 .real_address = addr, 5541 .flags = flags, 5542 5543 /* 5544 * Hard to debug if it ends up being 5545 * used by a callee that assumes 5546 * something about the other 5547 * uninitialized fields... same as in 5548 * memory.c 5549 */ 5550 }; 5551 5552 /* 5553 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5554 * userfault. Also mmap_lock could be dropped due to handling 5555 * userfault, any vma operation should be careful from here. 5556 */ 5557 hugetlb_vma_unlock_read(vma); 5558 hash = hugetlb_fault_mutex_hash(mapping, idx); 5559 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5560 return handle_userfault(&vmf, reason); 5561 } 5562 5563 /* 5564 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5565 * false if pte changed or is changing. 5566 */ 5567 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5568 pte_t *ptep, pte_t old_pte) 5569 { 5570 spinlock_t *ptl; 5571 bool same; 5572 5573 ptl = huge_pte_lock(h, mm, ptep); 5574 same = pte_same(huge_ptep_get(ptep), old_pte); 5575 spin_unlock(ptl); 5576 5577 return same; 5578 } 5579 5580 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5581 struct vm_area_struct *vma, 5582 struct address_space *mapping, pgoff_t idx, 5583 unsigned long address, pte_t *ptep, 5584 pte_t old_pte, unsigned int flags) 5585 { 5586 struct hstate *h = hstate_vma(vma); 5587 vm_fault_t ret = VM_FAULT_SIGBUS; 5588 int anon_rmap = 0; 5589 unsigned long size; 5590 struct page *page; 5591 pte_t new_pte; 5592 spinlock_t *ptl; 5593 unsigned long haddr = address & huge_page_mask(h); 5594 bool new_page, new_pagecache_page = false; 5595 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5596 5597 /* 5598 * Currently, we are forced to kill the process in the event the 5599 * original mapper has unmapped pages from the child due to a failed 5600 * COW/unsharing. Warn that such a situation has occurred as it may not 5601 * be obvious. 5602 */ 5603 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5604 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5605 current->pid); 5606 goto out; 5607 } 5608 5609 /* 5610 * Use page lock to guard against racing truncation 5611 * before we get page_table_lock. 5612 */ 5613 new_page = false; 5614 page = find_lock_page(mapping, idx); 5615 if (!page) { 5616 size = i_size_read(mapping->host) >> huge_page_shift(h); 5617 if (idx >= size) 5618 goto out; 5619 /* Check for page in userfault range */ 5620 if (userfaultfd_missing(vma)) { 5621 /* 5622 * Since hugetlb_no_page() was examining pte 5623 * without pgtable lock, we need to re-test under 5624 * lock because the pte may not be stable and could 5625 * have changed from under us. Try to detect 5626 * either changed or during-changing ptes and retry 5627 * properly when needed. 5628 * 5629 * Note that userfaultfd is actually fine with 5630 * false positives (e.g. caused by pte changed), 5631 * but not wrong logical events (e.g. caused by 5632 * reading a pte during changing). The latter can 5633 * confuse the userspace, so the strictness is very 5634 * much preferred. E.g., MISSING event should 5635 * never happen on the page after UFFDIO_COPY has 5636 * correctly installed the page and returned. 5637 */ 5638 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5639 ret = 0; 5640 goto out; 5641 } 5642 5643 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5644 haddr, address, 5645 VM_UFFD_MISSING); 5646 } 5647 5648 page = alloc_huge_page(vma, haddr, 0); 5649 if (IS_ERR(page)) { 5650 /* 5651 * Returning error will result in faulting task being 5652 * sent SIGBUS. The hugetlb fault mutex prevents two 5653 * tasks from racing to fault in the same page which 5654 * could result in false unable to allocate errors. 5655 * Page migration does not take the fault mutex, but 5656 * does a clear then write of pte's under page table 5657 * lock. Page fault code could race with migration, 5658 * notice the clear pte and try to allocate a page 5659 * here. Before returning error, get ptl and make 5660 * sure there really is no pte entry. 5661 */ 5662 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5663 ret = vmf_error(PTR_ERR(page)); 5664 else 5665 ret = 0; 5666 goto out; 5667 } 5668 clear_huge_page(page, address, pages_per_huge_page(h)); 5669 __SetPageUptodate(page); 5670 new_page = true; 5671 5672 if (vma->vm_flags & VM_MAYSHARE) { 5673 int err = hugetlb_add_to_page_cache(page, mapping, idx); 5674 if (err) { 5675 /* 5676 * err can't be -EEXIST which implies someone 5677 * else consumed the reservation since hugetlb 5678 * fault mutex is held when add a hugetlb page 5679 * to the page cache. So it's safe to call 5680 * restore_reserve_on_error() here. 5681 */ 5682 restore_reserve_on_error(h, vma, haddr, page); 5683 put_page(page); 5684 goto out; 5685 } 5686 new_pagecache_page = true; 5687 } else { 5688 lock_page(page); 5689 if (unlikely(anon_vma_prepare(vma))) { 5690 ret = VM_FAULT_OOM; 5691 goto backout_unlocked; 5692 } 5693 anon_rmap = 1; 5694 } 5695 } else { 5696 /* 5697 * If memory error occurs between mmap() and fault, some process 5698 * don't have hwpoisoned swap entry for errored virtual address. 5699 * So we need to block hugepage fault by PG_hwpoison bit check. 5700 */ 5701 if (unlikely(PageHWPoison(page))) { 5702 ret = VM_FAULT_HWPOISON_LARGE | 5703 VM_FAULT_SET_HINDEX(hstate_index(h)); 5704 goto backout_unlocked; 5705 } 5706 5707 /* Check for page in userfault range. */ 5708 if (userfaultfd_minor(vma)) { 5709 unlock_page(page); 5710 put_page(page); 5711 /* See comment in userfaultfd_missing() block above */ 5712 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5713 ret = 0; 5714 goto out; 5715 } 5716 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5717 haddr, address, 5718 VM_UFFD_MINOR); 5719 } 5720 } 5721 5722 /* 5723 * If we are going to COW a private mapping later, we examine the 5724 * pending reservations for this page now. This will ensure that 5725 * any allocations necessary to record that reservation occur outside 5726 * the spinlock. 5727 */ 5728 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5729 if (vma_needs_reservation(h, vma, haddr) < 0) { 5730 ret = VM_FAULT_OOM; 5731 goto backout_unlocked; 5732 } 5733 /* Just decrements count, does not deallocate */ 5734 vma_end_reservation(h, vma, haddr); 5735 } 5736 5737 ptl = huge_pte_lock(h, mm, ptep); 5738 ret = 0; 5739 /* If pte changed from under us, retry */ 5740 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5741 goto backout; 5742 5743 if (anon_rmap) 5744 hugepage_add_new_anon_rmap(page, vma, haddr); 5745 else 5746 page_dup_file_rmap(page, true); 5747 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5748 && (vma->vm_flags & VM_SHARED))); 5749 /* 5750 * If this pte was previously wr-protected, keep it wr-protected even 5751 * if populated. 5752 */ 5753 if (unlikely(pte_marker_uffd_wp(old_pte))) 5754 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5755 set_huge_pte_at(mm, haddr, ptep, new_pte); 5756 5757 hugetlb_count_add(pages_per_huge_page(h), mm); 5758 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5759 /* Optimization, do the COW without a second fault */ 5760 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5761 } 5762 5763 spin_unlock(ptl); 5764 5765 /* 5766 * Only set HPageMigratable in newly allocated pages. Existing pages 5767 * found in the pagecache may not have HPageMigratableset if they have 5768 * been isolated for migration. 5769 */ 5770 if (new_page) 5771 SetHPageMigratable(page); 5772 5773 unlock_page(page); 5774 out: 5775 hugetlb_vma_unlock_read(vma); 5776 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5777 return ret; 5778 5779 backout: 5780 spin_unlock(ptl); 5781 backout_unlocked: 5782 if (new_page && !new_pagecache_page) 5783 restore_reserve_on_error(h, vma, haddr, page); 5784 5785 unlock_page(page); 5786 put_page(page); 5787 goto out; 5788 } 5789 5790 #ifdef CONFIG_SMP 5791 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5792 { 5793 unsigned long key[2]; 5794 u32 hash; 5795 5796 key[0] = (unsigned long) mapping; 5797 key[1] = idx; 5798 5799 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5800 5801 return hash & (num_fault_mutexes - 1); 5802 } 5803 #else 5804 /* 5805 * For uniprocessor systems we always use a single mutex, so just 5806 * return 0 and avoid the hashing overhead. 5807 */ 5808 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5809 { 5810 return 0; 5811 } 5812 #endif 5813 5814 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5815 unsigned long address, unsigned int flags) 5816 { 5817 pte_t *ptep, entry; 5818 spinlock_t *ptl; 5819 vm_fault_t ret; 5820 u32 hash; 5821 pgoff_t idx; 5822 struct page *page = NULL; 5823 struct page *pagecache_page = NULL; 5824 struct hstate *h = hstate_vma(vma); 5825 struct address_space *mapping; 5826 int need_wait_lock = 0; 5827 unsigned long haddr = address & huge_page_mask(h); 5828 5829 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5830 if (ptep) { 5831 /* 5832 * Since we hold no locks, ptep could be stale. That is 5833 * OK as we are only making decisions based on content and 5834 * not actually modifying content here. 5835 */ 5836 entry = huge_ptep_get(ptep); 5837 if (unlikely(is_hugetlb_entry_migration(entry))) { 5838 migration_entry_wait_huge(vma, ptep); 5839 return 0; 5840 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5841 return VM_FAULT_HWPOISON_LARGE | 5842 VM_FAULT_SET_HINDEX(hstate_index(h)); 5843 } 5844 5845 /* 5846 * Serialize hugepage allocation and instantiation, so that we don't 5847 * get spurious allocation failures if two CPUs race to instantiate 5848 * the same page in the page cache. 5849 */ 5850 mapping = vma->vm_file->f_mapping; 5851 idx = vma_hugecache_offset(h, vma, haddr); 5852 hash = hugetlb_fault_mutex_hash(mapping, idx); 5853 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5854 5855 /* 5856 * Acquire vma lock before calling huge_pte_alloc and hold 5857 * until finished with ptep. This prevents huge_pmd_unshare from 5858 * being called elsewhere and making the ptep no longer valid. 5859 * 5860 * ptep could have already be assigned via huge_pte_offset. That 5861 * is OK, as huge_pte_alloc will return the same value unless 5862 * something has changed. 5863 */ 5864 hugetlb_vma_lock_read(vma); 5865 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5866 if (!ptep) { 5867 hugetlb_vma_unlock_read(vma); 5868 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5869 return VM_FAULT_OOM; 5870 } 5871 5872 entry = huge_ptep_get(ptep); 5873 /* PTE markers should be handled the same way as none pte */ 5874 if (huge_pte_none_mostly(entry)) 5875 /* 5876 * hugetlb_no_page will drop vma lock and hugetlb fault 5877 * mutex internally, which make us return immediately. 5878 */ 5879 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5880 entry, flags); 5881 5882 ret = 0; 5883 5884 /* 5885 * entry could be a migration/hwpoison entry at this point, so this 5886 * check prevents the kernel from going below assuming that we have 5887 * an active hugepage in pagecache. This goto expects the 2nd page 5888 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5889 * properly handle it. 5890 */ 5891 if (!pte_present(entry)) 5892 goto out_mutex; 5893 5894 /* 5895 * If we are going to COW/unshare the mapping later, we examine the 5896 * pending reservations for this page now. This will ensure that any 5897 * allocations necessary to record that reservation occur outside the 5898 * spinlock. Also lookup the pagecache page now as it is used to 5899 * determine if a reservation has been consumed. 5900 */ 5901 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5902 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 5903 if (vma_needs_reservation(h, vma, haddr) < 0) { 5904 ret = VM_FAULT_OOM; 5905 goto out_mutex; 5906 } 5907 /* Just decrements count, does not deallocate */ 5908 vma_end_reservation(h, vma, haddr); 5909 5910 pagecache_page = find_lock_page(mapping, idx); 5911 } 5912 5913 ptl = huge_pte_lock(h, mm, ptep); 5914 5915 /* Check for a racing update before calling hugetlb_wp() */ 5916 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5917 goto out_ptl; 5918 5919 /* Handle userfault-wp first, before trying to lock more pages */ 5920 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5921 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5922 struct vm_fault vmf = { 5923 .vma = vma, 5924 .address = haddr, 5925 .real_address = address, 5926 .flags = flags, 5927 }; 5928 5929 spin_unlock(ptl); 5930 if (pagecache_page) { 5931 unlock_page(pagecache_page); 5932 put_page(pagecache_page); 5933 } 5934 hugetlb_vma_unlock_read(vma); 5935 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5936 return handle_userfault(&vmf, VM_UFFD_WP); 5937 } 5938 5939 /* 5940 * hugetlb_wp() requires page locks of pte_page(entry) and 5941 * pagecache_page, so here we need take the former one 5942 * when page != pagecache_page or !pagecache_page. 5943 */ 5944 page = pte_page(entry); 5945 if (page != pagecache_page) 5946 if (!trylock_page(page)) { 5947 need_wait_lock = 1; 5948 goto out_ptl; 5949 } 5950 5951 get_page(page); 5952 5953 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5954 if (!huge_pte_write(entry)) { 5955 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5956 pagecache_page, ptl); 5957 goto out_put_page; 5958 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5959 entry = huge_pte_mkdirty(entry); 5960 } 5961 } 5962 entry = pte_mkyoung(entry); 5963 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5964 flags & FAULT_FLAG_WRITE)) 5965 update_mmu_cache(vma, haddr, ptep); 5966 out_put_page: 5967 if (page != pagecache_page) 5968 unlock_page(page); 5969 put_page(page); 5970 out_ptl: 5971 spin_unlock(ptl); 5972 5973 if (pagecache_page) { 5974 unlock_page(pagecache_page); 5975 put_page(pagecache_page); 5976 } 5977 out_mutex: 5978 hugetlb_vma_unlock_read(vma); 5979 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5980 /* 5981 * Generally it's safe to hold refcount during waiting page lock. But 5982 * here we just wait to defer the next page fault to avoid busy loop and 5983 * the page is not used after unlocked before returning from the current 5984 * page fault. So we are safe from accessing freed page, even if we wait 5985 * here without taking refcount. 5986 */ 5987 if (need_wait_lock) 5988 wait_on_page_locked(page); 5989 return ret; 5990 } 5991 5992 #ifdef CONFIG_USERFAULTFD 5993 /* 5994 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5995 * modifications for huge pages. 5996 */ 5997 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5998 pte_t *dst_pte, 5999 struct vm_area_struct *dst_vma, 6000 unsigned long dst_addr, 6001 unsigned long src_addr, 6002 enum mcopy_atomic_mode mode, 6003 struct page **pagep, 6004 bool wp_copy) 6005 { 6006 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 6007 struct hstate *h = hstate_vma(dst_vma); 6008 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6009 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6010 unsigned long size; 6011 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6012 pte_t _dst_pte; 6013 spinlock_t *ptl; 6014 int ret = -ENOMEM; 6015 struct page *page; 6016 int writable; 6017 bool page_in_pagecache = false; 6018 6019 if (is_continue) { 6020 ret = -EFAULT; 6021 page = find_lock_page(mapping, idx); 6022 if (!page) 6023 goto out; 6024 page_in_pagecache = true; 6025 } else if (!*pagep) { 6026 /* If a page already exists, then it's UFFDIO_COPY for 6027 * a non-missing case. Return -EEXIST. 6028 */ 6029 if (vm_shared && 6030 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6031 ret = -EEXIST; 6032 goto out; 6033 } 6034 6035 page = alloc_huge_page(dst_vma, dst_addr, 0); 6036 if (IS_ERR(page)) { 6037 ret = -ENOMEM; 6038 goto out; 6039 } 6040 6041 ret = copy_huge_page_from_user(page, 6042 (const void __user *) src_addr, 6043 pages_per_huge_page(h), false); 6044 6045 /* fallback to copy_from_user outside mmap_lock */ 6046 if (unlikely(ret)) { 6047 ret = -ENOENT; 6048 /* Free the allocated page which may have 6049 * consumed a reservation. 6050 */ 6051 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6052 put_page(page); 6053 6054 /* Allocate a temporary page to hold the copied 6055 * contents. 6056 */ 6057 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 6058 if (!page) { 6059 ret = -ENOMEM; 6060 goto out; 6061 } 6062 *pagep = page; 6063 /* Set the outparam pagep and return to the caller to 6064 * copy the contents outside the lock. Don't free the 6065 * page. 6066 */ 6067 goto out; 6068 } 6069 } else { 6070 if (vm_shared && 6071 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6072 put_page(*pagep); 6073 ret = -EEXIST; 6074 *pagep = NULL; 6075 goto out; 6076 } 6077 6078 page = alloc_huge_page(dst_vma, dst_addr, 0); 6079 if (IS_ERR(page)) { 6080 put_page(*pagep); 6081 ret = -ENOMEM; 6082 *pagep = NULL; 6083 goto out; 6084 } 6085 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 6086 pages_per_huge_page(h)); 6087 put_page(*pagep); 6088 *pagep = NULL; 6089 } 6090 6091 /* 6092 * The memory barrier inside __SetPageUptodate makes sure that 6093 * preceding stores to the page contents become visible before 6094 * the set_pte_at() write. 6095 */ 6096 __SetPageUptodate(page); 6097 6098 /* Add shared, newly allocated pages to the page cache. */ 6099 if (vm_shared && !is_continue) { 6100 size = i_size_read(mapping->host) >> huge_page_shift(h); 6101 ret = -EFAULT; 6102 if (idx >= size) 6103 goto out_release_nounlock; 6104 6105 /* 6106 * Serialization between remove_inode_hugepages() and 6107 * hugetlb_add_to_page_cache() below happens through the 6108 * hugetlb_fault_mutex_table that here must be hold by 6109 * the caller. 6110 */ 6111 ret = hugetlb_add_to_page_cache(page, mapping, idx); 6112 if (ret) 6113 goto out_release_nounlock; 6114 page_in_pagecache = true; 6115 } 6116 6117 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6118 6119 ret = -EIO; 6120 if (PageHWPoison(page)) 6121 goto out_release_unlock; 6122 6123 /* 6124 * We allow to overwrite a pte marker: consider when both MISSING|WP 6125 * registered, we firstly wr-protect a none pte which has no page cache 6126 * page backing it, then access the page. 6127 */ 6128 ret = -EEXIST; 6129 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6130 goto out_release_unlock; 6131 6132 if (page_in_pagecache) 6133 page_dup_file_rmap(page, true); 6134 else 6135 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6136 6137 /* 6138 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6139 * with wp flag set, don't set pte write bit. 6140 */ 6141 if (wp_copy || (is_continue && !vm_shared)) 6142 writable = 0; 6143 else 6144 writable = dst_vma->vm_flags & VM_WRITE; 6145 6146 _dst_pte = make_huge_pte(dst_vma, page, writable); 6147 /* 6148 * Always mark UFFDIO_COPY page dirty; note that this may not be 6149 * extremely important for hugetlbfs for now since swapping is not 6150 * supported, but we should still be clear in that this page cannot be 6151 * thrown away at will, even if write bit not set. 6152 */ 6153 _dst_pte = huge_pte_mkdirty(_dst_pte); 6154 _dst_pte = pte_mkyoung(_dst_pte); 6155 6156 if (wp_copy) 6157 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6158 6159 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6160 6161 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6162 6163 /* No need to invalidate - it was non-present before */ 6164 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6165 6166 spin_unlock(ptl); 6167 if (!is_continue) 6168 SetHPageMigratable(page); 6169 if (vm_shared || is_continue) 6170 unlock_page(page); 6171 ret = 0; 6172 out: 6173 return ret; 6174 out_release_unlock: 6175 spin_unlock(ptl); 6176 if (vm_shared || is_continue) 6177 unlock_page(page); 6178 out_release_nounlock: 6179 if (!page_in_pagecache) 6180 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6181 put_page(page); 6182 goto out; 6183 } 6184 #endif /* CONFIG_USERFAULTFD */ 6185 6186 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6187 int refs, struct page **pages, 6188 struct vm_area_struct **vmas) 6189 { 6190 int nr; 6191 6192 for (nr = 0; nr < refs; nr++) { 6193 if (likely(pages)) 6194 pages[nr] = nth_page(page, nr); 6195 if (vmas) 6196 vmas[nr] = vma; 6197 } 6198 } 6199 6200 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, 6201 unsigned int flags, pte_t *pte, 6202 bool *unshare) 6203 { 6204 pte_t pteval = huge_ptep_get(pte); 6205 6206 *unshare = false; 6207 if (is_swap_pte(pteval)) 6208 return true; 6209 if (huge_pte_write(pteval)) 6210 return false; 6211 if (flags & FOLL_WRITE) 6212 return true; 6213 if (gup_must_unshare(vma, flags, pte_page(pteval))) { 6214 *unshare = true; 6215 return true; 6216 } 6217 return false; 6218 } 6219 6220 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6221 unsigned long address, unsigned int flags) 6222 { 6223 struct hstate *h = hstate_vma(vma); 6224 struct mm_struct *mm = vma->vm_mm; 6225 unsigned long haddr = address & huge_page_mask(h); 6226 struct page *page = NULL; 6227 spinlock_t *ptl; 6228 pte_t *pte, entry; 6229 6230 /* 6231 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6232 * follow_hugetlb_page(). 6233 */ 6234 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6235 return NULL; 6236 6237 retry: 6238 pte = huge_pte_offset(mm, haddr, huge_page_size(h)); 6239 if (!pte) 6240 return NULL; 6241 6242 ptl = huge_pte_lock(h, mm, pte); 6243 entry = huge_ptep_get(pte); 6244 if (pte_present(entry)) { 6245 page = pte_page(entry) + 6246 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6247 /* 6248 * Note that page may be a sub-page, and with vmemmap 6249 * optimizations the page struct may be read only. 6250 * try_grab_page() will increase the ref count on the 6251 * head page, so this will be OK. 6252 * 6253 * try_grab_page() should always succeed here, because we hold 6254 * the ptl lock and have verified pte_present(). 6255 */ 6256 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6257 page = NULL; 6258 goto out; 6259 } 6260 } else { 6261 if (is_hugetlb_entry_migration(entry)) { 6262 spin_unlock(ptl); 6263 __migration_entry_wait_huge(pte, ptl); 6264 goto retry; 6265 } 6266 /* 6267 * hwpoisoned entry is treated as no_page_table in 6268 * follow_page_mask(). 6269 */ 6270 } 6271 out: 6272 spin_unlock(ptl); 6273 return page; 6274 } 6275 6276 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6277 struct page **pages, struct vm_area_struct **vmas, 6278 unsigned long *position, unsigned long *nr_pages, 6279 long i, unsigned int flags, int *locked) 6280 { 6281 unsigned long pfn_offset; 6282 unsigned long vaddr = *position; 6283 unsigned long remainder = *nr_pages; 6284 struct hstate *h = hstate_vma(vma); 6285 int err = -EFAULT, refs; 6286 6287 while (vaddr < vma->vm_end && remainder) { 6288 pte_t *pte; 6289 spinlock_t *ptl = NULL; 6290 bool unshare = false; 6291 int absent; 6292 struct page *page; 6293 6294 /* 6295 * If we have a pending SIGKILL, don't keep faulting pages and 6296 * potentially allocating memory. 6297 */ 6298 if (fatal_signal_pending(current)) { 6299 remainder = 0; 6300 break; 6301 } 6302 6303 /* 6304 * Some archs (sparc64, sh*) have multiple pte_ts to 6305 * each hugepage. We have to make sure we get the 6306 * first, for the page indexing below to work. 6307 * 6308 * Note that page table lock is not held when pte is null. 6309 */ 6310 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6311 huge_page_size(h)); 6312 if (pte) 6313 ptl = huge_pte_lock(h, mm, pte); 6314 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6315 6316 /* 6317 * When coredumping, it suits get_dump_page if we just return 6318 * an error where there's an empty slot with no huge pagecache 6319 * to back it. This way, we avoid allocating a hugepage, and 6320 * the sparse dumpfile avoids allocating disk blocks, but its 6321 * huge holes still show up with zeroes where they need to be. 6322 */ 6323 if (absent && (flags & FOLL_DUMP) && 6324 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6325 if (pte) 6326 spin_unlock(ptl); 6327 remainder = 0; 6328 break; 6329 } 6330 6331 /* 6332 * We need call hugetlb_fault for both hugepages under migration 6333 * (in which case hugetlb_fault waits for the migration,) and 6334 * hwpoisoned hugepages (in which case we need to prevent the 6335 * caller from accessing to them.) In order to do this, we use 6336 * here is_swap_pte instead of is_hugetlb_entry_migration and 6337 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6338 * both cases, and because we can't follow correct pages 6339 * directly from any kind of swap entries. 6340 */ 6341 if (absent || 6342 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { 6343 vm_fault_t ret; 6344 unsigned int fault_flags = 0; 6345 6346 if (pte) 6347 spin_unlock(ptl); 6348 if (flags & FOLL_WRITE) 6349 fault_flags |= FAULT_FLAG_WRITE; 6350 else if (unshare) 6351 fault_flags |= FAULT_FLAG_UNSHARE; 6352 if (locked) 6353 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6354 FAULT_FLAG_KILLABLE; 6355 if (flags & FOLL_NOWAIT) 6356 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6357 FAULT_FLAG_RETRY_NOWAIT; 6358 if (flags & FOLL_TRIED) { 6359 /* 6360 * Note: FAULT_FLAG_ALLOW_RETRY and 6361 * FAULT_FLAG_TRIED can co-exist 6362 */ 6363 fault_flags |= FAULT_FLAG_TRIED; 6364 } 6365 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6366 if (ret & VM_FAULT_ERROR) { 6367 err = vm_fault_to_errno(ret, flags); 6368 remainder = 0; 6369 break; 6370 } 6371 if (ret & VM_FAULT_RETRY) { 6372 if (locked && 6373 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6374 *locked = 0; 6375 *nr_pages = 0; 6376 /* 6377 * VM_FAULT_RETRY must not return an 6378 * error, it will return zero 6379 * instead. 6380 * 6381 * No need to update "position" as the 6382 * caller will not check it after 6383 * *nr_pages is set to 0. 6384 */ 6385 return i; 6386 } 6387 continue; 6388 } 6389 6390 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6391 page = pte_page(huge_ptep_get(pte)); 6392 6393 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6394 !PageAnonExclusive(page), page); 6395 6396 /* 6397 * If subpage information not requested, update counters 6398 * and skip the same_page loop below. 6399 */ 6400 if (!pages && !vmas && !pfn_offset && 6401 (vaddr + huge_page_size(h) < vma->vm_end) && 6402 (remainder >= pages_per_huge_page(h))) { 6403 vaddr += huge_page_size(h); 6404 remainder -= pages_per_huge_page(h); 6405 i += pages_per_huge_page(h); 6406 spin_unlock(ptl); 6407 continue; 6408 } 6409 6410 /* vaddr may not be aligned to PAGE_SIZE */ 6411 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6412 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6413 6414 if (pages || vmas) 6415 record_subpages_vmas(nth_page(page, pfn_offset), 6416 vma, refs, 6417 likely(pages) ? pages + i : NULL, 6418 vmas ? vmas + i : NULL); 6419 6420 if (pages) { 6421 /* 6422 * try_grab_folio() should always succeed here, 6423 * because: a) we hold the ptl lock, and b) we've just 6424 * checked that the huge page is present in the page 6425 * tables. If the huge page is present, then the tail 6426 * pages must also be present. The ptl prevents the 6427 * head page and tail pages from being rearranged in 6428 * any way. So this page must be available at this 6429 * point, unless the page refcount overflowed: 6430 */ 6431 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6432 flags))) { 6433 spin_unlock(ptl); 6434 remainder = 0; 6435 err = -ENOMEM; 6436 break; 6437 } 6438 } 6439 6440 vaddr += (refs << PAGE_SHIFT); 6441 remainder -= refs; 6442 i += refs; 6443 6444 spin_unlock(ptl); 6445 } 6446 *nr_pages = remainder; 6447 /* 6448 * setting position is actually required only if remainder is 6449 * not zero but it's faster not to add a "if (remainder)" 6450 * branch. 6451 */ 6452 *position = vaddr; 6453 6454 return i ? i : err; 6455 } 6456 6457 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6458 unsigned long address, unsigned long end, 6459 pgprot_t newprot, unsigned long cp_flags) 6460 { 6461 struct mm_struct *mm = vma->vm_mm; 6462 unsigned long start = address; 6463 pte_t *ptep; 6464 pte_t pte; 6465 struct hstate *h = hstate_vma(vma); 6466 unsigned long pages = 0, psize = huge_page_size(h); 6467 bool shared_pmd = false; 6468 struct mmu_notifier_range range; 6469 unsigned long last_addr_mask; 6470 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6471 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6472 6473 /* 6474 * In the case of shared PMDs, the area to flush could be beyond 6475 * start/end. Set range.start/range.end to cover the maximum possible 6476 * range if PMD sharing is possible. 6477 */ 6478 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6479 0, vma, mm, start, end); 6480 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6481 6482 BUG_ON(address >= end); 6483 flush_cache_range(vma, range.start, range.end); 6484 6485 mmu_notifier_invalidate_range_start(&range); 6486 hugetlb_vma_lock_write(vma); 6487 i_mmap_lock_write(vma->vm_file->f_mapping); 6488 last_addr_mask = hugetlb_mask_last_page(h); 6489 for (; address < end; address += psize) { 6490 spinlock_t *ptl; 6491 ptep = huge_pte_offset(mm, address, psize); 6492 if (!ptep) { 6493 address |= last_addr_mask; 6494 continue; 6495 } 6496 ptl = huge_pte_lock(h, mm, ptep); 6497 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6498 /* 6499 * When uffd-wp is enabled on the vma, unshare 6500 * shouldn't happen at all. Warn about it if it 6501 * happened due to some reason. 6502 */ 6503 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6504 pages++; 6505 spin_unlock(ptl); 6506 shared_pmd = true; 6507 address |= last_addr_mask; 6508 continue; 6509 } 6510 pte = huge_ptep_get(ptep); 6511 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6512 spin_unlock(ptl); 6513 continue; 6514 } 6515 if (unlikely(is_hugetlb_entry_migration(pte))) { 6516 swp_entry_t entry = pte_to_swp_entry(pte); 6517 struct page *page = pfn_swap_entry_to_page(entry); 6518 6519 if (!is_readable_migration_entry(entry)) { 6520 pte_t newpte; 6521 6522 if (PageAnon(page)) 6523 entry = make_readable_exclusive_migration_entry( 6524 swp_offset(entry)); 6525 else 6526 entry = make_readable_migration_entry( 6527 swp_offset(entry)); 6528 newpte = swp_entry_to_pte(entry); 6529 if (uffd_wp) 6530 newpte = pte_swp_mkuffd_wp(newpte); 6531 else if (uffd_wp_resolve) 6532 newpte = pte_swp_clear_uffd_wp(newpte); 6533 set_huge_pte_at(mm, address, ptep, newpte); 6534 pages++; 6535 } 6536 spin_unlock(ptl); 6537 continue; 6538 } 6539 if (unlikely(pte_marker_uffd_wp(pte))) { 6540 /* 6541 * This is changing a non-present pte into a none pte, 6542 * no need for huge_ptep_modify_prot_start/commit(). 6543 */ 6544 if (uffd_wp_resolve) 6545 huge_pte_clear(mm, address, ptep, psize); 6546 } 6547 if (!huge_pte_none(pte)) { 6548 pte_t old_pte; 6549 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6550 6551 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6552 pte = huge_pte_modify(old_pte, newprot); 6553 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6554 if (uffd_wp) 6555 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6556 else if (uffd_wp_resolve) 6557 pte = huge_pte_clear_uffd_wp(pte); 6558 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6559 pages++; 6560 } else { 6561 /* None pte */ 6562 if (unlikely(uffd_wp)) 6563 /* Safe to modify directly (none->non-present). */ 6564 set_huge_pte_at(mm, address, ptep, 6565 make_pte_marker(PTE_MARKER_UFFD_WP)); 6566 } 6567 spin_unlock(ptl); 6568 } 6569 /* 6570 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6571 * may have cleared our pud entry and done put_page on the page table: 6572 * once we release i_mmap_rwsem, another task can do the final put_page 6573 * and that page table be reused and filled with junk. If we actually 6574 * did unshare a page of pmds, flush the range corresponding to the pud. 6575 */ 6576 if (shared_pmd) 6577 flush_hugetlb_tlb_range(vma, range.start, range.end); 6578 else 6579 flush_hugetlb_tlb_range(vma, start, end); 6580 /* 6581 * No need to call mmu_notifier_invalidate_range() we are downgrading 6582 * page table protection not changing it to point to a new page. 6583 * 6584 * See Documentation/mm/mmu_notifier.rst 6585 */ 6586 i_mmap_unlock_write(vma->vm_file->f_mapping); 6587 hugetlb_vma_unlock_write(vma); 6588 mmu_notifier_invalidate_range_end(&range); 6589 6590 return pages << h->order; 6591 } 6592 6593 /* Return true if reservation was successful, false otherwise. */ 6594 bool hugetlb_reserve_pages(struct inode *inode, 6595 long from, long to, 6596 struct vm_area_struct *vma, 6597 vm_flags_t vm_flags) 6598 { 6599 long chg, add = -1; 6600 struct hstate *h = hstate_inode(inode); 6601 struct hugepage_subpool *spool = subpool_inode(inode); 6602 struct resv_map *resv_map; 6603 struct hugetlb_cgroup *h_cg = NULL; 6604 long gbl_reserve, regions_needed = 0; 6605 6606 /* This should never happen */ 6607 if (from > to) { 6608 VM_WARN(1, "%s called with a negative range\n", __func__); 6609 return false; 6610 } 6611 6612 /* 6613 * vma specific semaphore used for pmd sharing synchronization 6614 */ 6615 hugetlb_vma_lock_alloc(vma); 6616 6617 /* 6618 * Only apply hugepage reservation if asked. At fault time, an 6619 * attempt will be made for VM_NORESERVE to allocate a page 6620 * without using reserves 6621 */ 6622 if (vm_flags & VM_NORESERVE) 6623 return true; 6624 6625 /* 6626 * Shared mappings base their reservation on the number of pages that 6627 * are already allocated on behalf of the file. Private mappings need 6628 * to reserve the full area even if read-only as mprotect() may be 6629 * called to make the mapping read-write. Assume !vma is a shm mapping 6630 */ 6631 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6632 /* 6633 * resv_map can not be NULL as hugetlb_reserve_pages is only 6634 * called for inodes for which resv_maps were created (see 6635 * hugetlbfs_get_inode). 6636 */ 6637 resv_map = inode_resv_map(inode); 6638 6639 chg = region_chg(resv_map, from, to, ®ions_needed); 6640 } else { 6641 /* Private mapping. */ 6642 resv_map = resv_map_alloc(); 6643 if (!resv_map) 6644 goto out_err; 6645 6646 chg = to - from; 6647 6648 set_vma_resv_map(vma, resv_map); 6649 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6650 } 6651 6652 if (chg < 0) 6653 goto out_err; 6654 6655 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6656 chg * pages_per_huge_page(h), &h_cg) < 0) 6657 goto out_err; 6658 6659 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6660 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6661 * of the resv_map. 6662 */ 6663 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6664 } 6665 6666 /* 6667 * There must be enough pages in the subpool for the mapping. If 6668 * the subpool has a minimum size, there may be some global 6669 * reservations already in place (gbl_reserve). 6670 */ 6671 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6672 if (gbl_reserve < 0) 6673 goto out_uncharge_cgroup; 6674 6675 /* 6676 * Check enough hugepages are available for the reservation. 6677 * Hand the pages back to the subpool if there are not 6678 */ 6679 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6680 goto out_put_pages; 6681 6682 /* 6683 * Account for the reservations made. Shared mappings record regions 6684 * that have reservations as they are shared by multiple VMAs. 6685 * When the last VMA disappears, the region map says how much 6686 * the reservation was and the page cache tells how much of 6687 * the reservation was consumed. Private mappings are per-VMA and 6688 * only the consumed reservations are tracked. When the VMA 6689 * disappears, the original reservation is the VMA size and the 6690 * consumed reservations are stored in the map. Hence, nothing 6691 * else has to be done for private mappings here 6692 */ 6693 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6694 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6695 6696 if (unlikely(add < 0)) { 6697 hugetlb_acct_memory(h, -gbl_reserve); 6698 goto out_put_pages; 6699 } else if (unlikely(chg > add)) { 6700 /* 6701 * pages in this range were added to the reserve 6702 * map between region_chg and region_add. This 6703 * indicates a race with alloc_huge_page. Adjust 6704 * the subpool and reserve counts modified above 6705 * based on the difference. 6706 */ 6707 long rsv_adjust; 6708 6709 /* 6710 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6711 * reference to h_cg->css. See comment below for detail. 6712 */ 6713 hugetlb_cgroup_uncharge_cgroup_rsvd( 6714 hstate_index(h), 6715 (chg - add) * pages_per_huge_page(h), h_cg); 6716 6717 rsv_adjust = hugepage_subpool_put_pages(spool, 6718 chg - add); 6719 hugetlb_acct_memory(h, -rsv_adjust); 6720 } else if (h_cg) { 6721 /* 6722 * The file_regions will hold their own reference to 6723 * h_cg->css. So we should release the reference held 6724 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6725 * done. 6726 */ 6727 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6728 } 6729 } 6730 return true; 6731 6732 out_put_pages: 6733 /* put back original number of pages, chg */ 6734 (void)hugepage_subpool_put_pages(spool, chg); 6735 out_uncharge_cgroup: 6736 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6737 chg * pages_per_huge_page(h), h_cg); 6738 out_err: 6739 hugetlb_vma_lock_free(vma); 6740 if (!vma || vma->vm_flags & VM_MAYSHARE) 6741 /* Only call region_abort if the region_chg succeeded but the 6742 * region_add failed or didn't run. 6743 */ 6744 if (chg >= 0 && add < 0) 6745 region_abort(resv_map, from, to, regions_needed); 6746 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6747 kref_put(&resv_map->refs, resv_map_release); 6748 return false; 6749 } 6750 6751 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6752 long freed) 6753 { 6754 struct hstate *h = hstate_inode(inode); 6755 struct resv_map *resv_map = inode_resv_map(inode); 6756 long chg = 0; 6757 struct hugepage_subpool *spool = subpool_inode(inode); 6758 long gbl_reserve; 6759 6760 /* 6761 * Since this routine can be called in the evict inode path for all 6762 * hugetlbfs inodes, resv_map could be NULL. 6763 */ 6764 if (resv_map) { 6765 chg = region_del(resv_map, start, end); 6766 /* 6767 * region_del() can fail in the rare case where a region 6768 * must be split and another region descriptor can not be 6769 * allocated. If end == LONG_MAX, it will not fail. 6770 */ 6771 if (chg < 0) 6772 return chg; 6773 } 6774 6775 spin_lock(&inode->i_lock); 6776 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6777 spin_unlock(&inode->i_lock); 6778 6779 /* 6780 * If the subpool has a minimum size, the number of global 6781 * reservations to be released may be adjusted. 6782 * 6783 * Note that !resv_map implies freed == 0. So (chg - freed) 6784 * won't go negative. 6785 */ 6786 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6787 hugetlb_acct_memory(h, -gbl_reserve); 6788 6789 return 0; 6790 } 6791 6792 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6793 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6794 struct vm_area_struct *vma, 6795 unsigned long addr, pgoff_t idx) 6796 { 6797 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6798 svma->vm_start; 6799 unsigned long sbase = saddr & PUD_MASK; 6800 unsigned long s_end = sbase + PUD_SIZE; 6801 6802 /* Allow segments to share if only one is marked locked */ 6803 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6804 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6805 6806 /* 6807 * match the virtual addresses, permission and the alignment of the 6808 * page table page. 6809 * 6810 * Also, vma_lock (vm_private_data) is required for sharing. 6811 */ 6812 if (pmd_index(addr) != pmd_index(saddr) || 6813 vm_flags != svm_flags || 6814 !range_in_vma(svma, sbase, s_end) || 6815 !svma->vm_private_data) 6816 return 0; 6817 6818 return saddr; 6819 } 6820 6821 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6822 { 6823 unsigned long start = addr & PUD_MASK; 6824 unsigned long end = start + PUD_SIZE; 6825 6826 #ifdef CONFIG_USERFAULTFD 6827 if (uffd_disable_huge_pmd_share(vma)) 6828 return false; 6829 #endif 6830 /* 6831 * check on proper vm_flags and page table alignment 6832 */ 6833 if (!(vma->vm_flags & VM_MAYSHARE)) 6834 return false; 6835 if (!vma->vm_private_data) /* vma lock required for sharing */ 6836 return false; 6837 if (!range_in_vma(vma, start, end)) 6838 return false; 6839 return true; 6840 } 6841 6842 /* 6843 * Determine if start,end range within vma could be mapped by shared pmd. 6844 * If yes, adjust start and end to cover range associated with possible 6845 * shared pmd mappings. 6846 */ 6847 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6848 unsigned long *start, unsigned long *end) 6849 { 6850 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6851 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6852 6853 /* 6854 * vma needs to span at least one aligned PUD size, and the range 6855 * must be at least partially within in. 6856 */ 6857 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6858 (*end <= v_start) || (*start >= v_end)) 6859 return; 6860 6861 /* Extend the range to be PUD aligned for a worst case scenario */ 6862 if (*start > v_start) 6863 *start = ALIGN_DOWN(*start, PUD_SIZE); 6864 6865 if (*end < v_end) 6866 *end = ALIGN(*end, PUD_SIZE); 6867 } 6868 6869 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma) 6870 { 6871 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) && 6872 vma->vm_private_data; 6873 } 6874 6875 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 6876 { 6877 if (__vma_shareable_flags_pmd(vma)) { 6878 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6879 6880 down_read(&vma_lock->rw_sema); 6881 } 6882 } 6883 6884 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 6885 { 6886 if (__vma_shareable_flags_pmd(vma)) { 6887 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6888 6889 up_read(&vma_lock->rw_sema); 6890 } 6891 } 6892 6893 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 6894 { 6895 if (__vma_shareable_flags_pmd(vma)) { 6896 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6897 6898 down_write(&vma_lock->rw_sema); 6899 } 6900 } 6901 6902 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 6903 { 6904 if (__vma_shareable_flags_pmd(vma)) { 6905 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6906 6907 up_write(&vma_lock->rw_sema); 6908 } 6909 } 6910 6911 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 6912 { 6913 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6914 6915 if (!__vma_shareable_flags_pmd(vma)) 6916 return 1; 6917 6918 return down_write_trylock(&vma_lock->rw_sema); 6919 } 6920 6921 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 6922 { 6923 if (__vma_shareable_flags_pmd(vma)) { 6924 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6925 6926 lockdep_assert_held(&vma_lock->rw_sema); 6927 } 6928 } 6929 6930 void hugetlb_vma_lock_release(struct kref *kref) 6931 { 6932 struct hugetlb_vma_lock *vma_lock = container_of(kref, 6933 struct hugetlb_vma_lock, refs); 6934 6935 kfree(vma_lock); 6936 } 6937 6938 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 6939 { 6940 struct vm_area_struct *vma = vma_lock->vma; 6941 6942 /* 6943 * vma_lock structure may or not be released as a result of put, 6944 * it certainly will no longer be attached to vma so clear pointer. 6945 * Semaphore synchronizes access to vma_lock->vma field. 6946 */ 6947 vma_lock->vma = NULL; 6948 vma->vm_private_data = NULL; 6949 up_write(&vma_lock->rw_sema); 6950 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 6951 } 6952 6953 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 6954 { 6955 if (__vma_shareable_flags_pmd(vma)) { 6956 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6957 6958 __hugetlb_vma_unlock_write_put(vma_lock); 6959 } 6960 } 6961 6962 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 6963 { 6964 /* 6965 * Only present in sharable vmas. 6966 */ 6967 if (!vma || !__vma_shareable_flags_pmd(vma)) 6968 return; 6969 6970 if (vma->vm_private_data) { 6971 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6972 6973 down_write(&vma_lock->rw_sema); 6974 __hugetlb_vma_unlock_write_put(vma_lock); 6975 } 6976 } 6977 6978 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 6979 { 6980 struct hugetlb_vma_lock *vma_lock; 6981 6982 /* Only establish in (flags) sharable vmas */ 6983 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 6984 return; 6985 6986 /* Should never get here with non-NULL vm_private_data */ 6987 if (vma->vm_private_data) 6988 return; 6989 6990 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 6991 if (!vma_lock) { 6992 /* 6993 * If we can not allocate structure, then vma can not 6994 * participate in pmd sharing. This is only a possible 6995 * performance enhancement and memory saving issue. 6996 * However, the lock is also used to synchronize page 6997 * faults with truncation. If the lock is not present, 6998 * unlikely races could leave pages in a file past i_size 6999 * until the file is removed. Warn in the unlikely case of 7000 * allocation failure. 7001 */ 7002 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 7003 return; 7004 } 7005 7006 kref_init(&vma_lock->refs); 7007 init_rwsem(&vma_lock->rw_sema); 7008 vma_lock->vma = vma; 7009 vma->vm_private_data = vma_lock; 7010 } 7011 7012 /* 7013 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7014 * and returns the corresponding pte. While this is not necessary for the 7015 * !shared pmd case because we can allocate the pmd later as well, it makes the 7016 * code much cleaner. pmd allocation is essential for the shared case because 7017 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7018 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7019 * bad pmd for sharing. 7020 */ 7021 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7022 unsigned long addr, pud_t *pud) 7023 { 7024 struct address_space *mapping = vma->vm_file->f_mapping; 7025 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7026 vma->vm_pgoff; 7027 struct vm_area_struct *svma; 7028 unsigned long saddr; 7029 pte_t *spte = NULL; 7030 pte_t *pte; 7031 spinlock_t *ptl; 7032 7033 i_mmap_lock_read(mapping); 7034 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7035 if (svma == vma) 7036 continue; 7037 7038 saddr = page_table_shareable(svma, vma, addr, idx); 7039 if (saddr) { 7040 spte = huge_pte_offset(svma->vm_mm, saddr, 7041 vma_mmu_pagesize(svma)); 7042 if (spte) { 7043 get_page(virt_to_page(spte)); 7044 break; 7045 } 7046 } 7047 } 7048 7049 if (!spte) 7050 goto out; 7051 7052 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 7053 if (pud_none(*pud)) { 7054 pud_populate(mm, pud, 7055 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7056 mm_inc_nr_pmds(mm); 7057 } else { 7058 put_page(virt_to_page(spte)); 7059 } 7060 spin_unlock(ptl); 7061 out: 7062 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7063 i_mmap_unlock_read(mapping); 7064 return pte; 7065 } 7066 7067 /* 7068 * unmap huge page backed by shared pte. 7069 * 7070 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7071 * indicated by page_count > 1, unmap is achieved by clearing pud and 7072 * decrementing the ref count. If count == 1, the pte page is not shared. 7073 * 7074 * Called with page table lock held. 7075 * 7076 * returns: 1 successfully unmapped a shared pte page 7077 * 0 the underlying pte page is not shared, or it is the last user 7078 */ 7079 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7080 unsigned long addr, pte_t *ptep) 7081 { 7082 pgd_t *pgd = pgd_offset(mm, addr); 7083 p4d_t *p4d = p4d_offset(pgd, addr); 7084 pud_t *pud = pud_offset(p4d, addr); 7085 7086 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7087 hugetlb_vma_assert_locked(vma); 7088 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7089 if (page_count(virt_to_page(ptep)) == 1) 7090 return 0; 7091 7092 pud_clear(pud); 7093 put_page(virt_to_page(ptep)); 7094 mm_dec_nr_pmds(mm); 7095 return 1; 7096 } 7097 7098 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7099 7100 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 7101 { 7102 } 7103 7104 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 7105 { 7106 } 7107 7108 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 7109 { 7110 } 7111 7112 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 7113 { 7114 } 7115 7116 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 7117 { 7118 return 1; 7119 } 7120 7121 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 7122 { 7123 } 7124 7125 void hugetlb_vma_lock_release(struct kref *kref) 7126 { 7127 } 7128 7129 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 7130 { 7131 } 7132 7133 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 7134 { 7135 } 7136 7137 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 7138 { 7139 } 7140 7141 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7142 unsigned long addr, pud_t *pud) 7143 { 7144 return NULL; 7145 } 7146 7147 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7148 unsigned long addr, pte_t *ptep) 7149 { 7150 return 0; 7151 } 7152 7153 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7154 unsigned long *start, unsigned long *end) 7155 { 7156 } 7157 7158 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7159 { 7160 return false; 7161 } 7162 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7163 7164 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7165 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7166 unsigned long addr, unsigned long sz) 7167 { 7168 pgd_t *pgd; 7169 p4d_t *p4d; 7170 pud_t *pud; 7171 pte_t *pte = NULL; 7172 7173 pgd = pgd_offset(mm, addr); 7174 p4d = p4d_alloc(mm, pgd, addr); 7175 if (!p4d) 7176 return NULL; 7177 pud = pud_alloc(mm, p4d, addr); 7178 if (pud) { 7179 if (sz == PUD_SIZE) { 7180 pte = (pte_t *)pud; 7181 } else { 7182 BUG_ON(sz != PMD_SIZE); 7183 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7184 pte = huge_pmd_share(mm, vma, addr, pud); 7185 else 7186 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7187 } 7188 } 7189 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7190 7191 return pte; 7192 } 7193 7194 /* 7195 * huge_pte_offset() - Walk the page table to resolve the hugepage 7196 * entry at address @addr 7197 * 7198 * Return: Pointer to page table entry (PUD or PMD) for 7199 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7200 * size @sz doesn't match the hugepage size at this level of the page 7201 * table. 7202 */ 7203 pte_t *huge_pte_offset(struct mm_struct *mm, 7204 unsigned long addr, unsigned long sz) 7205 { 7206 pgd_t *pgd; 7207 p4d_t *p4d; 7208 pud_t *pud; 7209 pmd_t *pmd; 7210 7211 pgd = pgd_offset(mm, addr); 7212 if (!pgd_present(*pgd)) 7213 return NULL; 7214 p4d = p4d_offset(pgd, addr); 7215 if (!p4d_present(*p4d)) 7216 return NULL; 7217 7218 pud = pud_offset(p4d, addr); 7219 if (sz == PUD_SIZE) 7220 /* must be pud huge, non-present or none */ 7221 return (pte_t *)pud; 7222 if (!pud_present(*pud)) 7223 return NULL; 7224 /* must have a valid entry and size to go further */ 7225 7226 pmd = pmd_offset(pud, addr); 7227 /* must be pmd huge, non-present or none */ 7228 return (pte_t *)pmd; 7229 } 7230 7231 /* 7232 * Return a mask that can be used to update an address to the last huge 7233 * page in a page table page mapping size. Used to skip non-present 7234 * page table entries when linearly scanning address ranges. Architectures 7235 * with unique huge page to page table relationships can define their own 7236 * version of this routine. 7237 */ 7238 unsigned long hugetlb_mask_last_page(struct hstate *h) 7239 { 7240 unsigned long hp_size = huge_page_size(h); 7241 7242 if (hp_size == PUD_SIZE) 7243 return P4D_SIZE - PUD_SIZE; 7244 else if (hp_size == PMD_SIZE) 7245 return PUD_SIZE - PMD_SIZE; 7246 else 7247 return 0UL; 7248 } 7249 7250 #else 7251 7252 /* See description above. Architectures can provide their own version. */ 7253 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7254 { 7255 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7256 if (huge_page_size(h) == PMD_SIZE) 7257 return PUD_SIZE - PMD_SIZE; 7258 #endif 7259 return 0UL; 7260 } 7261 7262 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7263 7264 /* 7265 * These functions are overwritable if your architecture needs its own 7266 * behavior. 7267 */ 7268 int isolate_hugetlb(struct page *page, struct list_head *list) 7269 { 7270 int ret = 0; 7271 7272 spin_lock_irq(&hugetlb_lock); 7273 if (!PageHeadHuge(page) || 7274 !HPageMigratable(page) || 7275 !get_page_unless_zero(page)) { 7276 ret = -EBUSY; 7277 goto unlock; 7278 } 7279 ClearHPageMigratable(page); 7280 list_move_tail(&page->lru, list); 7281 unlock: 7282 spin_unlock_irq(&hugetlb_lock); 7283 return ret; 7284 } 7285 7286 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison) 7287 { 7288 int ret = 0; 7289 7290 *hugetlb = false; 7291 spin_lock_irq(&hugetlb_lock); 7292 if (PageHeadHuge(page)) { 7293 *hugetlb = true; 7294 if (HPageFreed(page)) 7295 ret = 0; 7296 else if (HPageMigratable(page) || unpoison) 7297 ret = get_page_unless_zero(page); 7298 else 7299 ret = -EBUSY; 7300 } 7301 spin_unlock_irq(&hugetlb_lock); 7302 return ret; 7303 } 7304 7305 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7306 bool *migratable_cleared) 7307 { 7308 int ret; 7309 7310 spin_lock_irq(&hugetlb_lock); 7311 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7312 spin_unlock_irq(&hugetlb_lock); 7313 return ret; 7314 } 7315 7316 void putback_active_hugepage(struct page *page) 7317 { 7318 spin_lock_irq(&hugetlb_lock); 7319 SetHPageMigratable(page); 7320 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7321 spin_unlock_irq(&hugetlb_lock); 7322 put_page(page); 7323 } 7324 7325 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7326 { 7327 struct hstate *h = folio_hstate(old_folio); 7328 7329 hugetlb_cgroup_migrate(old_folio, new_folio); 7330 set_page_owner_migrate_reason(&new_folio->page, reason); 7331 7332 /* 7333 * transfer temporary state of the new hugetlb folio. This is 7334 * reverse to other transitions because the newpage is going to 7335 * be final while the old one will be freed so it takes over 7336 * the temporary status. 7337 * 7338 * Also note that we have to transfer the per-node surplus state 7339 * here as well otherwise the global surplus count will not match 7340 * the per-node's. 7341 */ 7342 if (folio_test_hugetlb_temporary(new_folio)) { 7343 int old_nid = folio_nid(old_folio); 7344 int new_nid = folio_nid(new_folio); 7345 7346 7347 folio_set_hugetlb_temporary(old_folio); 7348 folio_clear_hugetlb_temporary(new_folio); 7349 7350 7351 /* 7352 * There is no need to transfer the per-node surplus state 7353 * when we do not cross the node. 7354 */ 7355 if (new_nid == old_nid) 7356 return; 7357 spin_lock_irq(&hugetlb_lock); 7358 if (h->surplus_huge_pages_node[old_nid]) { 7359 h->surplus_huge_pages_node[old_nid]--; 7360 h->surplus_huge_pages_node[new_nid]++; 7361 } 7362 spin_unlock_irq(&hugetlb_lock); 7363 } 7364 } 7365 7366 /* 7367 * This function will unconditionally remove all the shared pmd pgtable entries 7368 * within the specific vma for a hugetlbfs memory range. 7369 */ 7370 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7371 { 7372 struct hstate *h = hstate_vma(vma); 7373 unsigned long sz = huge_page_size(h); 7374 struct mm_struct *mm = vma->vm_mm; 7375 struct mmu_notifier_range range; 7376 unsigned long address, start, end; 7377 spinlock_t *ptl; 7378 pte_t *ptep; 7379 7380 if (!(vma->vm_flags & VM_MAYSHARE)) 7381 return; 7382 7383 start = ALIGN(vma->vm_start, PUD_SIZE); 7384 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7385 7386 if (start >= end) 7387 return; 7388 7389 flush_cache_range(vma, start, end); 7390 /* 7391 * No need to call adjust_range_if_pmd_sharing_possible(), because 7392 * we have already done the PUD_SIZE alignment. 7393 */ 7394 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7395 start, end); 7396 mmu_notifier_invalidate_range_start(&range); 7397 hugetlb_vma_lock_write(vma); 7398 i_mmap_lock_write(vma->vm_file->f_mapping); 7399 for (address = start; address < end; address += PUD_SIZE) { 7400 ptep = huge_pte_offset(mm, address, sz); 7401 if (!ptep) 7402 continue; 7403 ptl = huge_pte_lock(h, mm, ptep); 7404 huge_pmd_unshare(mm, vma, address, ptep); 7405 spin_unlock(ptl); 7406 } 7407 flush_hugetlb_tlb_range(vma, start, end); 7408 i_mmap_unlock_write(vma->vm_file->f_mapping); 7409 hugetlb_vma_unlock_write(vma); 7410 /* 7411 * No need to call mmu_notifier_invalidate_range(), see 7412 * Documentation/mm/mmu_notifier.rst. 7413 */ 7414 mmu_notifier_invalidate_range_end(&range); 7415 } 7416 7417 #ifdef CONFIG_CMA 7418 static bool cma_reserve_called __initdata; 7419 7420 static int __init cmdline_parse_hugetlb_cma(char *p) 7421 { 7422 int nid, count = 0; 7423 unsigned long tmp; 7424 char *s = p; 7425 7426 while (*s) { 7427 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7428 break; 7429 7430 if (s[count] == ':') { 7431 if (tmp >= MAX_NUMNODES) 7432 break; 7433 nid = array_index_nospec(tmp, MAX_NUMNODES); 7434 7435 s += count + 1; 7436 tmp = memparse(s, &s); 7437 hugetlb_cma_size_in_node[nid] = tmp; 7438 hugetlb_cma_size += tmp; 7439 7440 /* 7441 * Skip the separator if have one, otherwise 7442 * break the parsing. 7443 */ 7444 if (*s == ',') 7445 s++; 7446 else 7447 break; 7448 } else { 7449 hugetlb_cma_size = memparse(p, &p); 7450 break; 7451 } 7452 } 7453 7454 return 0; 7455 } 7456 7457 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7458 7459 void __init hugetlb_cma_reserve(int order) 7460 { 7461 unsigned long size, reserved, per_node; 7462 bool node_specific_cma_alloc = false; 7463 int nid; 7464 7465 cma_reserve_called = true; 7466 7467 if (!hugetlb_cma_size) 7468 return; 7469 7470 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7471 if (hugetlb_cma_size_in_node[nid] == 0) 7472 continue; 7473 7474 if (!node_online(nid)) { 7475 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7476 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7477 hugetlb_cma_size_in_node[nid] = 0; 7478 continue; 7479 } 7480 7481 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7482 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7483 nid, (PAGE_SIZE << order) / SZ_1M); 7484 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7485 hugetlb_cma_size_in_node[nid] = 0; 7486 } else { 7487 node_specific_cma_alloc = true; 7488 } 7489 } 7490 7491 /* Validate the CMA size again in case some invalid nodes specified. */ 7492 if (!hugetlb_cma_size) 7493 return; 7494 7495 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7496 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7497 (PAGE_SIZE << order) / SZ_1M); 7498 hugetlb_cma_size = 0; 7499 return; 7500 } 7501 7502 if (!node_specific_cma_alloc) { 7503 /* 7504 * If 3 GB area is requested on a machine with 4 numa nodes, 7505 * let's allocate 1 GB on first three nodes and ignore the last one. 7506 */ 7507 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7508 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7509 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7510 } 7511 7512 reserved = 0; 7513 for_each_online_node(nid) { 7514 int res; 7515 char name[CMA_MAX_NAME]; 7516 7517 if (node_specific_cma_alloc) { 7518 if (hugetlb_cma_size_in_node[nid] == 0) 7519 continue; 7520 7521 size = hugetlb_cma_size_in_node[nid]; 7522 } else { 7523 size = min(per_node, hugetlb_cma_size - reserved); 7524 } 7525 7526 size = round_up(size, PAGE_SIZE << order); 7527 7528 snprintf(name, sizeof(name), "hugetlb%d", nid); 7529 /* 7530 * Note that 'order per bit' is based on smallest size that 7531 * may be returned to CMA allocator in the case of 7532 * huge page demotion. 7533 */ 7534 res = cma_declare_contiguous_nid(0, size, 0, 7535 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7536 0, false, name, 7537 &hugetlb_cma[nid], nid); 7538 if (res) { 7539 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7540 res, nid); 7541 continue; 7542 } 7543 7544 reserved += size; 7545 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7546 size / SZ_1M, nid); 7547 7548 if (reserved >= hugetlb_cma_size) 7549 break; 7550 } 7551 7552 if (!reserved) 7553 /* 7554 * hugetlb_cma_size is used to determine if allocations from 7555 * cma are possible. Set to zero if no cma regions are set up. 7556 */ 7557 hugetlb_cma_size = 0; 7558 } 7559 7560 static void __init hugetlb_cma_check(void) 7561 { 7562 if (!hugetlb_cma_size || cma_reserve_called) 7563 return; 7564 7565 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7566 } 7567 7568 #endif /* CONFIG_CMA */ 7569