1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/mmdebug.h> 23 #include <linux/sched/signal.h> 24 #include <linux/rmap.h> 25 #include <linux/string_helpers.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/jhash.h> 29 #include <linux/numa.h> 30 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/tlb.h> 34 35 #include <linux/io.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/node.h> 39 #include <linux/userfaultfd_k.h> 40 #include <linux/page_owner.h> 41 #include "internal.h" 42 43 int hugetlb_max_hstate __read_mostly; 44 unsigned int default_hstate_idx; 45 struct hstate hstates[HUGE_MAX_HSTATE]; 46 /* 47 * Minimum page order among possible hugepage sizes, set to a proper value 48 * at boot time. 49 */ 50 static unsigned int minimum_order __read_mostly = UINT_MAX; 51 52 __initdata LIST_HEAD(huge_boot_pages); 53 54 /* for command line parsing */ 55 static struct hstate * __initdata parsed_hstate; 56 static unsigned long __initdata default_hstate_max_huge_pages; 57 static unsigned long __initdata default_hstate_size; 58 static bool __initdata parsed_valid_hugepagesz = true; 59 60 /* 61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 62 * free_huge_pages, and surplus_huge_pages. 63 */ 64 DEFINE_SPINLOCK(hugetlb_lock); 65 66 /* 67 * Serializes faults on the same logical page. This is used to 68 * prevent spurious OOMs when the hugepage pool is fully utilized. 69 */ 70 static int num_fault_mutexes; 71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 72 73 /* Forward declaration */ 74 static int hugetlb_acct_memory(struct hstate *h, long delta); 75 76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 77 { 78 bool free = (spool->count == 0) && (spool->used_hpages == 0); 79 80 spin_unlock(&spool->lock); 81 82 /* If no pages are used, and no other handles to the subpool 83 * remain, give up any reservations mased on minimum size and 84 * free the subpool */ 85 if (free) { 86 if (spool->min_hpages != -1) 87 hugetlb_acct_memory(spool->hstate, 88 -spool->min_hpages); 89 kfree(spool); 90 } 91 } 92 93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 94 long min_hpages) 95 { 96 struct hugepage_subpool *spool; 97 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 99 if (!spool) 100 return NULL; 101 102 spin_lock_init(&spool->lock); 103 spool->count = 1; 104 spool->max_hpages = max_hpages; 105 spool->hstate = h; 106 spool->min_hpages = min_hpages; 107 108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 109 kfree(spool); 110 return NULL; 111 } 112 spool->rsv_hpages = min_hpages; 113 114 return spool; 115 } 116 117 void hugepage_put_subpool(struct hugepage_subpool *spool) 118 { 119 spin_lock(&spool->lock); 120 BUG_ON(!spool->count); 121 spool->count--; 122 unlock_or_release_subpool(spool); 123 } 124 125 /* 126 * Subpool accounting for allocating and reserving pages. 127 * Return -ENOMEM if there are not enough resources to satisfy the 128 * the request. Otherwise, return the number of pages by which the 129 * global pools must be adjusted (upward). The returned value may 130 * only be different than the passed value (delta) in the case where 131 * a subpool minimum size must be manitained. 132 */ 133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 134 long delta) 135 { 136 long ret = delta; 137 138 if (!spool) 139 return ret; 140 141 spin_lock(&spool->lock); 142 143 if (spool->max_hpages != -1) { /* maximum size accounting */ 144 if ((spool->used_hpages + delta) <= spool->max_hpages) 145 spool->used_hpages += delta; 146 else { 147 ret = -ENOMEM; 148 goto unlock_ret; 149 } 150 } 151 152 /* minimum size accounting */ 153 if (spool->min_hpages != -1 && spool->rsv_hpages) { 154 if (delta > spool->rsv_hpages) { 155 /* 156 * Asking for more reserves than those already taken on 157 * behalf of subpool. Return difference. 158 */ 159 ret = delta - spool->rsv_hpages; 160 spool->rsv_hpages = 0; 161 } else { 162 ret = 0; /* reserves already accounted for */ 163 spool->rsv_hpages -= delta; 164 } 165 } 166 167 unlock_ret: 168 spin_unlock(&spool->lock); 169 return ret; 170 } 171 172 /* 173 * Subpool accounting for freeing and unreserving pages. 174 * Return the number of global page reservations that must be dropped. 175 * The return value may only be different than the passed value (delta) 176 * in the case where a subpool minimum size must be maintained. 177 */ 178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 179 long delta) 180 { 181 long ret = delta; 182 183 if (!spool) 184 return delta; 185 186 spin_lock(&spool->lock); 187 188 if (spool->max_hpages != -1) /* maximum size accounting */ 189 spool->used_hpages -= delta; 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 193 if (spool->rsv_hpages + delta <= spool->min_hpages) 194 ret = 0; 195 else 196 ret = spool->rsv_hpages + delta - spool->min_hpages; 197 198 spool->rsv_hpages += delta; 199 if (spool->rsv_hpages > spool->min_hpages) 200 spool->rsv_hpages = spool->min_hpages; 201 } 202 203 /* 204 * If hugetlbfs_put_super couldn't free spool due to an outstanding 205 * quota reference, free it now. 206 */ 207 unlock_or_release_subpool(spool); 208 209 return ret; 210 } 211 212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 213 { 214 return HUGETLBFS_SB(inode->i_sb)->spool; 215 } 216 217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 218 { 219 return subpool_inode(file_inode(vma->vm_file)); 220 } 221 222 /* 223 * Region tracking -- allows tracking of reservations and instantiated pages 224 * across the pages in a mapping. 225 * 226 * The region data structures are embedded into a resv_map and protected 227 * by a resv_map's lock. The set of regions within the resv_map represent 228 * reservations for huge pages, or huge pages that have already been 229 * instantiated within the map. The from and to elements are huge page 230 * indicies into the associated mapping. from indicates the starting index 231 * of the region. to represents the first index past the end of the region. 232 * 233 * For example, a file region structure with from == 0 and to == 4 represents 234 * four huge pages in a mapping. It is important to note that the to element 235 * represents the first element past the end of the region. This is used in 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 237 * 238 * Interval notation of the form [from, to) will be used to indicate that 239 * the endpoint from is inclusive and to is exclusive. 240 */ 241 struct file_region { 242 struct list_head link; 243 long from; 244 long to; 245 }; 246 247 /* 248 * Add the huge page range represented by [f, t) to the reserve 249 * map. In the normal case, existing regions will be expanded 250 * to accommodate the specified range. Sufficient regions should 251 * exist for expansion due to the previous call to region_chg 252 * with the same range. However, it is possible that region_del 253 * could have been called after region_chg and modifed the map 254 * in such a way that no region exists to be expanded. In this 255 * case, pull a region descriptor from the cache associated with 256 * the map and use that for the new range. 257 * 258 * Return the number of new huge pages added to the map. This 259 * number is greater than or equal to zero. 260 */ 261 static long region_add(struct resv_map *resv, long f, long t) 262 { 263 struct list_head *head = &resv->regions; 264 struct file_region *rg, *nrg, *trg; 265 long add = 0; 266 267 spin_lock(&resv->lock); 268 /* Locate the region we are either in or before. */ 269 list_for_each_entry(rg, head, link) 270 if (f <= rg->to) 271 break; 272 273 /* 274 * If no region exists which can be expanded to include the 275 * specified range, the list must have been modified by an 276 * interleving call to region_del(). Pull a region descriptor 277 * from the cache and use it for this range. 278 */ 279 if (&rg->link == head || t < rg->from) { 280 VM_BUG_ON(resv->region_cache_count <= 0); 281 282 resv->region_cache_count--; 283 nrg = list_first_entry(&resv->region_cache, struct file_region, 284 link); 285 list_del(&nrg->link); 286 287 nrg->from = f; 288 nrg->to = t; 289 list_add(&nrg->link, rg->link.prev); 290 291 add += t - f; 292 goto out_locked; 293 } 294 295 /* Round our left edge to the current segment if it encloses us. */ 296 if (f > rg->from) 297 f = rg->from; 298 299 /* Check for and consume any regions we now overlap with. */ 300 nrg = rg; 301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 302 if (&rg->link == head) 303 break; 304 if (rg->from > t) 305 break; 306 307 /* If this area reaches higher then extend our area to 308 * include it completely. If this is not the first area 309 * which we intend to reuse, free it. */ 310 if (rg->to > t) 311 t = rg->to; 312 if (rg != nrg) { 313 /* Decrement return value by the deleted range. 314 * Another range will span this area so that by 315 * end of routine add will be >= zero 316 */ 317 add -= (rg->to - rg->from); 318 list_del(&rg->link); 319 kfree(rg); 320 } 321 } 322 323 add += (nrg->from - f); /* Added to beginning of region */ 324 nrg->from = f; 325 add += t - nrg->to; /* Added to end of region */ 326 nrg->to = t; 327 328 out_locked: 329 resv->adds_in_progress--; 330 spin_unlock(&resv->lock); 331 VM_BUG_ON(add < 0); 332 return add; 333 } 334 335 /* 336 * Examine the existing reserve map and determine how many 337 * huge pages in the specified range [f, t) are NOT currently 338 * represented. This routine is called before a subsequent 339 * call to region_add that will actually modify the reserve 340 * map to add the specified range [f, t). region_chg does 341 * not change the number of huge pages represented by the 342 * map. However, if the existing regions in the map can not 343 * be expanded to represent the new range, a new file_region 344 * structure is added to the map as a placeholder. This is 345 * so that the subsequent region_add call will have all the 346 * regions it needs and will not fail. 347 * 348 * Upon entry, region_chg will also examine the cache of region descriptors 349 * associated with the map. If there are not enough descriptors cached, one 350 * will be allocated for the in progress add operation. 351 * 352 * Returns the number of huge pages that need to be added to the existing 353 * reservation map for the range [f, t). This number is greater or equal to 354 * zero. -ENOMEM is returned if a new file_region structure or cache entry 355 * is needed and can not be allocated. 356 */ 357 static long region_chg(struct resv_map *resv, long f, long t) 358 { 359 struct list_head *head = &resv->regions; 360 struct file_region *rg, *nrg = NULL; 361 long chg = 0; 362 363 retry: 364 spin_lock(&resv->lock); 365 retry_locked: 366 resv->adds_in_progress++; 367 368 /* 369 * Check for sufficient descriptors in the cache to accommodate 370 * the number of in progress add operations. 371 */ 372 if (resv->adds_in_progress > resv->region_cache_count) { 373 struct file_region *trg; 374 375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 376 /* Must drop lock to allocate a new descriptor. */ 377 resv->adds_in_progress--; 378 spin_unlock(&resv->lock); 379 380 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 381 if (!trg) { 382 kfree(nrg); 383 return -ENOMEM; 384 } 385 386 spin_lock(&resv->lock); 387 list_add(&trg->link, &resv->region_cache); 388 resv->region_cache_count++; 389 goto retry_locked; 390 } 391 392 /* Locate the region we are before or in. */ 393 list_for_each_entry(rg, head, link) 394 if (f <= rg->to) 395 break; 396 397 /* If we are below the current region then a new region is required. 398 * Subtle, allocate a new region at the position but make it zero 399 * size such that we can guarantee to record the reservation. */ 400 if (&rg->link == head || t < rg->from) { 401 if (!nrg) { 402 resv->adds_in_progress--; 403 spin_unlock(&resv->lock); 404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 405 if (!nrg) 406 return -ENOMEM; 407 408 nrg->from = f; 409 nrg->to = f; 410 INIT_LIST_HEAD(&nrg->link); 411 goto retry; 412 } 413 414 list_add(&nrg->link, rg->link.prev); 415 chg = t - f; 416 goto out_nrg; 417 } 418 419 /* Round our left edge to the current segment if it encloses us. */ 420 if (f > rg->from) 421 f = rg->from; 422 chg = t - f; 423 424 /* Check for and consume any regions we now overlap with. */ 425 list_for_each_entry(rg, rg->link.prev, link) { 426 if (&rg->link == head) 427 break; 428 if (rg->from > t) 429 goto out; 430 431 /* We overlap with this area, if it extends further than 432 * us then we must extend ourselves. Account for its 433 * existing reservation. */ 434 if (rg->to > t) { 435 chg += rg->to - t; 436 t = rg->to; 437 } 438 chg -= rg->to - rg->from; 439 } 440 441 out: 442 spin_unlock(&resv->lock); 443 /* We already know we raced and no longer need the new region */ 444 kfree(nrg); 445 return chg; 446 out_nrg: 447 spin_unlock(&resv->lock); 448 return chg; 449 } 450 451 /* 452 * Abort the in progress add operation. The adds_in_progress field 453 * of the resv_map keeps track of the operations in progress between 454 * calls to region_chg and region_add. Operations are sometimes 455 * aborted after the call to region_chg. In such cases, region_abort 456 * is called to decrement the adds_in_progress counter. 457 * 458 * NOTE: The range arguments [f, t) are not needed or used in this 459 * routine. They are kept to make reading the calling code easier as 460 * arguments will match the associated region_chg call. 461 */ 462 static void region_abort(struct resv_map *resv, long f, long t) 463 { 464 spin_lock(&resv->lock); 465 VM_BUG_ON(!resv->region_cache_count); 466 resv->adds_in_progress--; 467 spin_unlock(&resv->lock); 468 } 469 470 /* 471 * Delete the specified range [f, t) from the reserve map. If the 472 * t parameter is LONG_MAX, this indicates that ALL regions after f 473 * should be deleted. Locate the regions which intersect [f, t) 474 * and either trim, delete or split the existing regions. 475 * 476 * Returns the number of huge pages deleted from the reserve map. 477 * In the normal case, the return value is zero or more. In the 478 * case where a region must be split, a new region descriptor must 479 * be allocated. If the allocation fails, -ENOMEM will be returned. 480 * NOTE: If the parameter t == LONG_MAX, then we will never split 481 * a region and possibly return -ENOMEM. Callers specifying 482 * t == LONG_MAX do not need to check for -ENOMEM error. 483 */ 484 static long region_del(struct resv_map *resv, long f, long t) 485 { 486 struct list_head *head = &resv->regions; 487 struct file_region *rg, *trg; 488 struct file_region *nrg = NULL; 489 long del = 0; 490 491 retry: 492 spin_lock(&resv->lock); 493 list_for_each_entry_safe(rg, trg, head, link) { 494 /* 495 * Skip regions before the range to be deleted. file_region 496 * ranges are normally of the form [from, to). However, there 497 * may be a "placeholder" entry in the map which is of the form 498 * (from, to) with from == to. Check for placeholder entries 499 * at the beginning of the range to be deleted. 500 */ 501 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 502 continue; 503 504 if (rg->from >= t) 505 break; 506 507 if (f > rg->from && t < rg->to) { /* Must split region */ 508 /* 509 * Check for an entry in the cache before dropping 510 * lock and attempting allocation. 511 */ 512 if (!nrg && 513 resv->region_cache_count > resv->adds_in_progress) { 514 nrg = list_first_entry(&resv->region_cache, 515 struct file_region, 516 link); 517 list_del(&nrg->link); 518 resv->region_cache_count--; 519 } 520 521 if (!nrg) { 522 spin_unlock(&resv->lock); 523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 524 if (!nrg) 525 return -ENOMEM; 526 goto retry; 527 } 528 529 del += t - f; 530 531 /* New entry for end of split region */ 532 nrg->from = t; 533 nrg->to = rg->to; 534 INIT_LIST_HEAD(&nrg->link); 535 536 /* Original entry is trimmed */ 537 rg->to = f; 538 539 list_add(&nrg->link, &rg->link); 540 nrg = NULL; 541 break; 542 } 543 544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 545 del += rg->to - rg->from; 546 list_del(&rg->link); 547 kfree(rg); 548 continue; 549 } 550 551 if (f <= rg->from) { /* Trim beginning of region */ 552 del += t - rg->from; 553 rg->from = t; 554 } else { /* Trim end of region */ 555 del += rg->to - f; 556 rg->to = f; 557 } 558 } 559 560 spin_unlock(&resv->lock); 561 kfree(nrg); 562 return del; 563 } 564 565 /* 566 * A rare out of memory error was encountered which prevented removal of 567 * the reserve map region for a page. The huge page itself was free'ed 568 * and removed from the page cache. This routine will adjust the subpool 569 * usage count, and the global reserve count if needed. By incrementing 570 * these counts, the reserve map entry which could not be deleted will 571 * appear as a "reserved" entry instead of simply dangling with incorrect 572 * counts. 573 */ 574 void hugetlb_fix_reserve_counts(struct inode *inode) 575 { 576 struct hugepage_subpool *spool = subpool_inode(inode); 577 long rsv_adjust; 578 579 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 580 if (rsv_adjust) { 581 struct hstate *h = hstate_inode(inode); 582 583 hugetlb_acct_memory(h, 1); 584 } 585 } 586 587 /* 588 * Count and return the number of huge pages in the reserve map 589 * that intersect with the range [f, t). 590 */ 591 static long region_count(struct resv_map *resv, long f, long t) 592 { 593 struct list_head *head = &resv->regions; 594 struct file_region *rg; 595 long chg = 0; 596 597 spin_lock(&resv->lock); 598 /* Locate each segment we overlap with, and count that overlap. */ 599 list_for_each_entry(rg, head, link) { 600 long seg_from; 601 long seg_to; 602 603 if (rg->to <= f) 604 continue; 605 if (rg->from >= t) 606 break; 607 608 seg_from = max(rg->from, f); 609 seg_to = min(rg->to, t); 610 611 chg += seg_to - seg_from; 612 } 613 spin_unlock(&resv->lock); 614 615 return chg; 616 } 617 618 /* 619 * Convert the address within this vma to the page offset within 620 * the mapping, in pagecache page units; huge pages here. 621 */ 622 static pgoff_t vma_hugecache_offset(struct hstate *h, 623 struct vm_area_struct *vma, unsigned long address) 624 { 625 return ((address - vma->vm_start) >> huge_page_shift(h)) + 626 (vma->vm_pgoff >> huge_page_order(h)); 627 } 628 629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 630 unsigned long address) 631 { 632 return vma_hugecache_offset(hstate_vma(vma), vma, address); 633 } 634 EXPORT_SYMBOL_GPL(linear_hugepage_index); 635 636 /* 637 * Return the size of the pages allocated when backing a VMA. In the majority 638 * cases this will be same size as used by the page table entries. 639 */ 640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 641 { 642 if (vma->vm_ops && vma->vm_ops->pagesize) 643 return vma->vm_ops->pagesize(vma); 644 return PAGE_SIZE; 645 } 646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 647 648 /* 649 * Return the page size being used by the MMU to back a VMA. In the majority 650 * of cases, the page size used by the kernel matches the MMU size. On 651 * architectures where it differs, an architecture-specific 'strong' 652 * version of this symbol is required. 653 */ 654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 655 { 656 return vma_kernel_pagesize(vma); 657 } 658 659 /* 660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 661 * bits of the reservation map pointer, which are always clear due to 662 * alignment. 663 */ 664 #define HPAGE_RESV_OWNER (1UL << 0) 665 #define HPAGE_RESV_UNMAPPED (1UL << 1) 666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 667 668 /* 669 * These helpers are used to track how many pages are reserved for 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 671 * is guaranteed to have their future faults succeed. 672 * 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 674 * the reserve counters are updated with the hugetlb_lock held. It is safe 675 * to reset the VMA at fork() time as it is not in use yet and there is no 676 * chance of the global counters getting corrupted as a result of the values. 677 * 678 * The private mapping reservation is represented in a subtly different 679 * manner to a shared mapping. A shared mapping has a region map associated 680 * with the underlying file, this region map represents the backing file 681 * pages which have ever had a reservation assigned which this persists even 682 * after the page is instantiated. A private mapping has a region map 683 * associated with the original mmap which is attached to all VMAs which 684 * reference it, this region map represents those offsets which have consumed 685 * reservation ie. where pages have been instantiated. 686 */ 687 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 688 { 689 return (unsigned long)vma->vm_private_data; 690 } 691 692 static void set_vma_private_data(struct vm_area_struct *vma, 693 unsigned long value) 694 { 695 vma->vm_private_data = (void *)value; 696 } 697 698 struct resv_map *resv_map_alloc(void) 699 { 700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 702 703 if (!resv_map || !rg) { 704 kfree(resv_map); 705 kfree(rg); 706 return NULL; 707 } 708 709 kref_init(&resv_map->refs); 710 spin_lock_init(&resv_map->lock); 711 INIT_LIST_HEAD(&resv_map->regions); 712 713 resv_map->adds_in_progress = 0; 714 715 INIT_LIST_HEAD(&resv_map->region_cache); 716 list_add(&rg->link, &resv_map->region_cache); 717 resv_map->region_cache_count = 1; 718 719 return resv_map; 720 } 721 722 void resv_map_release(struct kref *ref) 723 { 724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 725 struct list_head *head = &resv_map->region_cache; 726 struct file_region *rg, *trg; 727 728 /* Clear out any active regions before we release the map. */ 729 region_del(resv_map, 0, LONG_MAX); 730 731 /* ... and any entries left in the cache */ 732 list_for_each_entry_safe(rg, trg, head, link) { 733 list_del(&rg->link); 734 kfree(rg); 735 } 736 737 VM_BUG_ON(resv_map->adds_in_progress); 738 739 kfree(resv_map); 740 } 741 742 static inline struct resv_map *inode_resv_map(struct inode *inode) 743 { 744 /* 745 * At inode evict time, i_mapping may not point to the original 746 * address space within the inode. This original address space 747 * contains the pointer to the resv_map. So, always use the 748 * address space embedded within the inode. 749 * The VERY common case is inode->mapping == &inode->i_data but, 750 * this may not be true for device special inodes. 751 */ 752 return (struct resv_map *)(&inode->i_data)->private_data; 753 } 754 755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 756 { 757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 758 if (vma->vm_flags & VM_MAYSHARE) { 759 struct address_space *mapping = vma->vm_file->f_mapping; 760 struct inode *inode = mapping->host; 761 762 return inode_resv_map(inode); 763 764 } else { 765 return (struct resv_map *)(get_vma_private_data(vma) & 766 ~HPAGE_RESV_MASK); 767 } 768 } 769 770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 771 { 772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 774 775 set_vma_private_data(vma, (get_vma_private_data(vma) & 776 HPAGE_RESV_MASK) | (unsigned long)map); 777 } 778 779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 780 { 781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 783 784 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 785 } 786 787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 788 { 789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 790 791 return (get_vma_private_data(vma) & flag) != 0; 792 } 793 794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 796 { 797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 798 if (!(vma->vm_flags & VM_MAYSHARE)) 799 vma->vm_private_data = (void *)0; 800 } 801 802 /* Returns true if the VMA has associated reserve pages */ 803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 804 { 805 if (vma->vm_flags & VM_NORESERVE) { 806 /* 807 * This address is already reserved by other process(chg == 0), 808 * so, we should decrement reserved count. Without decrementing, 809 * reserve count remains after releasing inode, because this 810 * allocated page will go into page cache and is regarded as 811 * coming from reserved pool in releasing step. Currently, we 812 * don't have any other solution to deal with this situation 813 * properly, so add work-around here. 814 */ 815 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 816 return true; 817 else 818 return false; 819 } 820 821 /* Shared mappings always use reserves */ 822 if (vma->vm_flags & VM_MAYSHARE) { 823 /* 824 * We know VM_NORESERVE is not set. Therefore, there SHOULD 825 * be a region map for all pages. The only situation where 826 * there is no region map is if a hole was punched via 827 * fallocate. In this case, there really are no reverves to 828 * use. This situation is indicated if chg != 0. 829 */ 830 if (chg) 831 return false; 832 else 833 return true; 834 } 835 836 /* 837 * Only the process that called mmap() has reserves for 838 * private mappings. 839 */ 840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 841 /* 842 * Like the shared case above, a hole punch or truncate 843 * could have been performed on the private mapping. 844 * Examine the value of chg to determine if reserves 845 * actually exist or were previously consumed. 846 * Very Subtle - The value of chg comes from a previous 847 * call to vma_needs_reserves(). The reserve map for 848 * private mappings has different (opposite) semantics 849 * than that of shared mappings. vma_needs_reserves() 850 * has already taken this difference in semantics into 851 * account. Therefore, the meaning of chg is the same 852 * as in the shared case above. Code could easily be 853 * combined, but keeping it separate draws attention to 854 * subtle differences. 855 */ 856 if (chg) 857 return false; 858 else 859 return true; 860 } 861 862 return false; 863 } 864 865 static void enqueue_huge_page(struct hstate *h, struct page *page) 866 { 867 int nid = page_to_nid(page); 868 list_move(&page->lru, &h->hugepage_freelists[nid]); 869 h->free_huge_pages++; 870 h->free_huge_pages_node[nid]++; 871 } 872 873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 874 { 875 struct page *page; 876 877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 878 if (!PageHWPoison(page)) 879 break; 880 /* 881 * if 'non-isolated free hugepage' not found on the list, 882 * the allocation fails. 883 */ 884 if (&h->hugepage_freelists[nid] == &page->lru) 885 return NULL; 886 list_move(&page->lru, &h->hugepage_activelist); 887 set_page_refcounted(page); 888 h->free_huge_pages--; 889 h->free_huge_pages_node[nid]--; 890 return page; 891 } 892 893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 894 nodemask_t *nmask) 895 { 896 unsigned int cpuset_mems_cookie; 897 struct zonelist *zonelist; 898 struct zone *zone; 899 struct zoneref *z; 900 int node = NUMA_NO_NODE; 901 902 zonelist = node_zonelist(nid, gfp_mask); 903 904 retry_cpuset: 905 cpuset_mems_cookie = read_mems_allowed_begin(); 906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 907 struct page *page; 908 909 if (!cpuset_zone_allowed(zone, gfp_mask)) 910 continue; 911 /* 912 * no need to ask again on the same node. Pool is node rather than 913 * zone aware 914 */ 915 if (zone_to_nid(zone) == node) 916 continue; 917 node = zone_to_nid(zone); 918 919 page = dequeue_huge_page_node_exact(h, node); 920 if (page) 921 return page; 922 } 923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 924 goto retry_cpuset; 925 926 return NULL; 927 } 928 929 /* Movability of hugepages depends on migration support. */ 930 static inline gfp_t htlb_alloc_mask(struct hstate *h) 931 { 932 if (hugepage_movable_supported(h)) 933 return GFP_HIGHUSER_MOVABLE; 934 else 935 return GFP_HIGHUSER; 936 } 937 938 static struct page *dequeue_huge_page_vma(struct hstate *h, 939 struct vm_area_struct *vma, 940 unsigned long address, int avoid_reserve, 941 long chg) 942 { 943 struct page *page; 944 struct mempolicy *mpol; 945 gfp_t gfp_mask; 946 nodemask_t *nodemask; 947 int nid; 948 949 /* 950 * A child process with MAP_PRIVATE mappings created by their parent 951 * have no page reserves. This check ensures that reservations are 952 * not "stolen". The child may still get SIGKILLed 953 */ 954 if (!vma_has_reserves(vma, chg) && 955 h->free_huge_pages - h->resv_huge_pages == 0) 956 goto err; 957 958 /* If reserves cannot be used, ensure enough pages are in the pool */ 959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 960 goto err; 961 962 gfp_mask = htlb_alloc_mask(h); 963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 966 SetPagePrivate(page); 967 h->resv_huge_pages--; 968 } 969 970 mpol_cond_put(mpol); 971 return page; 972 973 err: 974 return NULL; 975 } 976 977 /* 978 * common helper functions for hstate_next_node_to_{alloc|free}. 979 * We may have allocated or freed a huge page based on a different 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 981 * be outside of *nodes_allowed. Ensure that we use an allowed 982 * node for alloc or free. 983 */ 984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 985 { 986 nid = next_node_in(nid, *nodes_allowed); 987 VM_BUG_ON(nid >= MAX_NUMNODES); 988 989 return nid; 990 } 991 992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 993 { 994 if (!node_isset(nid, *nodes_allowed)) 995 nid = next_node_allowed(nid, nodes_allowed); 996 return nid; 997 } 998 999 /* 1000 * returns the previously saved node ["this node"] from which to 1001 * allocate a persistent huge page for the pool and advance the 1002 * next node from which to allocate, handling wrap at end of node 1003 * mask. 1004 */ 1005 static int hstate_next_node_to_alloc(struct hstate *h, 1006 nodemask_t *nodes_allowed) 1007 { 1008 int nid; 1009 1010 VM_BUG_ON(!nodes_allowed); 1011 1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1014 1015 return nid; 1016 } 1017 1018 /* 1019 * helper for free_pool_huge_page() - return the previously saved 1020 * node ["this node"] from which to free a huge page. Advance the 1021 * next node id whether or not we find a free huge page to free so 1022 * that the next attempt to free addresses the next node. 1023 */ 1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1025 { 1026 int nid; 1027 1028 VM_BUG_ON(!nodes_allowed); 1029 1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1032 1033 return nid; 1034 } 1035 1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1037 for (nr_nodes = nodes_weight(*mask); \ 1038 nr_nodes > 0 && \ 1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1040 nr_nodes--) 1041 1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1043 for (nr_nodes = nodes_weight(*mask); \ 1044 nr_nodes > 0 && \ 1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1046 nr_nodes--) 1047 1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1049 static void destroy_compound_gigantic_page(struct page *page, 1050 unsigned int order) 1051 { 1052 int i; 1053 int nr_pages = 1 << order; 1054 struct page *p = page + 1; 1055 1056 atomic_set(compound_mapcount_ptr(page), 0); 1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1058 clear_compound_head(p); 1059 set_page_refcounted(p); 1060 } 1061 1062 set_compound_order(page, 0); 1063 __ClearPageHead(page); 1064 } 1065 1066 static void free_gigantic_page(struct page *page, unsigned int order) 1067 { 1068 free_contig_range(page_to_pfn(page), 1 << order); 1069 } 1070 1071 #ifdef CONFIG_CONTIG_ALLOC 1072 static int __alloc_gigantic_page(unsigned long start_pfn, 1073 unsigned long nr_pages, gfp_t gfp_mask) 1074 { 1075 unsigned long end_pfn = start_pfn + nr_pages; 1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1077 gfp_mask); 1078 } 1079 1080 static bool pfn_range_valid_gigantic(struct zone *z, 1081 unsigned long start_pfn, unsigned long nr_pages) 1082 { 1083 unsigned long i, end_pfn = start_pfn + nr_pages; 1084 struct page *page; 1085 1086 for (i = start_pfn; i < end_pfn; i++) { 1087 if (!pfn_valid(i)) 1088 return false; 1089 1090 page = pfn_to_page(i); 1091 1092 if (page_zone(page) != z) 1093 return false; 1094 1095 if (PageReserved(page)) 1096 return false; 1097 1098 if (page_count(page) > 0) 1099 return false; 1100 1101 if (PageHuge(page)) 1102 return false; 1103 } 1104 1105 return true; 1106 } 1107 1108 static bool zone_spans_last_pfn(const struct zone *zone, 1109 unsigned long start_pfn, unsigned long nr_pages) 1110 { 1111 unsigned long last_pfn = start_pfn + nr_pages - 1; 1112 return zone_spans_pfn(zone, last_pfn); 1113 } 1114 1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1116 int nid, nodemask_t *nodemask) 1117 { 1118 unsigned int order = huge_page_order(h); 1119 unsigned long nr_pages = 1 << order; 1120 unsigned long ret, pfn, flags; 1121 struct zonelist *zonelist; 1122 struct zone *zone; 1123 struct zoneref *z; 1124 1125 zonelist = node_zonelist(nid, gfp_mask); 1126 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1127 spin_lock_irqsave(&zone->lock, flags); 1128 1129 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1130 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1131 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1132 /* 1133 * We release the zone lock here because 1134 * alloc_contig_range() will also lock the zone 1135 * at some point. If there's an allocation 1136 * spinning on this lock, it may win the race 1137 * and cause alloc_contig_range() to fail... 1138 */ 1139 spin_unlock_irqrestore(&zone->lock, flags); 1140 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1141 if (!ret) 1142 return pfn_to_page(pfn); 1143 spin_lock_irqsave(&zone->lock, flags); 1144 } 1145 pfn += nr_pages; 1146 } 1147 1148 spin_unlock_irqrestore(&zone->lock, flags); 1149 } 1150 1151 return NULL; 1152 } 1153 1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1156 #else /* !CONFIG_CONTIG_ALLOC */ 1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1158 int nid, nodemask_t *nodemask) 1159 { 1160 return NULL; 1161 } 1162 #endif /* CONFIG_CONTIG_ALLOC */ 1163 1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1166 int nid, nodemask_t *nodemask) 1167 { 1168 return NULL; 1169 } 1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1171 static inline void destroy_compound_gigantic_page(struct page *page, 1172 unsigned int order) { } 1173 #endif 1174 1175 static void update_and_free_page(struct hstate *h, struct page *page) 1176 { 1177 int i; 1178 1179 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1180 return; 1181 1182 h->nr_huge_pages--; 1183 h->nr_huge_pages_node[page_to_nid(page)]--; 1184 for (i = 0; i < pages_per_huge_page(h); i++) { 1185 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1186 1 << PG_referenced | 1 << PG_dirty | 1187 1 << PG_active | 1 << PG_private | 1188 1 << PG_writeback); 1189 } 1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1191 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1192 set_page_refcounted(page); 1193 if (hstate_is_gigantic(h)) { 1194 destroy_compound_gigantic_page(page, huge_page_order(h)); 1195 free_gigantic_page(page, huge_page_order(h)); 1196 } else { 1197 __free_pages(page, huge_page_order(h)); 1198 } 1199 } 1200 1201 struct hstate *size_to_hstate(unsigned long size) 1202 { 1203 struct hstate *h; 1204 1205 for_each_hstate(h) { 1206 if (huge_page_size(h) == size) 1207 return h; 1208 } 1209 return NULL; 1210 } 1211 1212 /* 1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1214 * to hstate->hugepage_activelist.) 1215 * 1216 * This function can be called for tail pages, but never returns true for them. 1217 */ 1218 bool page_huge_active(struct page *page) 1219 { 1220 VM_BUG_ON_PAGE(!PageHuge(page), page); 1221 return PageHead(page) && PagePrivate(&page[1]); 1222 } 1223 1224 /* never called for tail page */ 1225 static void set_page_huge_active(struct page *page) 1226 { 1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1228 SetPagePrivate(&page[1]); 1229 } 1230 1231 static void clear_page_huge_active(struct page *page) 1232 { 1233 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1234 ClearPagePrivate(&page[1]); 1235 } 1236 1237 /* 1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1239 * code 1240 */ 1241 static inline bool PageHugeTemporary(struct page *page) 1242 { 1243 if (!PageHuge(page)) 1244 return false; 1245 1246 return (unsigned long)page[2].mapping == -1U; 1247 } 1248 1249 static inline void SetPageHugeTemporary(struct page *page) 1250 { 1251 page[2].mapping = (void *)-1U; 1252 } 1253 1254 static inline void ClearPageHugeTemporary(struct page *page) 1255 { 1256 page[2].mapping = NULL; 1257 } 1258 1259 void free_huge_page(struct page *page) 1260 { 1261 /* 1262 * Can't pass hstate in here because it is called from the 1263 * compound page destructor. 1264 */ 1265 struct hstate *h = page_hstate(page); 1266 int nid = page_to_nid(page); 1267 struct hugepage_subpool *spool = 1268 (struct hugepage_subpool *)page_private(page); 1269 bool restore_reserve; 1270 1271 VM_BUG_ON_PAGE(page_count(page), page); 1272 VM_BUG_ON_PAGE(page_mapcount(page), page); 1273 1274 set_page_private(page, 0); 1275 page->mapping = NULL; 1276 restore_reserve = PagePrivate(page); 1277 ClearPagePrivate(page); 1278 1279 /* 1280 * If PagePrivate() was set on page, page allocation consumed a 1281 * reservation. If the page was associated with a subpool, there 1282 * would have been a page reserved in the subpool before allocation 1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1284 * reservtion, do not call hugepage_subpool_put_pages() as this will 1285 * remove the reserved page from the subpool. 1286 */ 1287 if (!restore_reserve) { 1288 /* 1289 * A return code of zero implies that the subpool will be 1290 * under its minimum size if the reservation is not restored 1291 * after page is free. Therefore, force restore_reserve 1292 * operation. 1293 */ 1294 if (hugepage_subpool_put_pages(spool, 1) == 0) 1295 restore_reserve = true; 1296 } 1297 1298 spin_lock(&hugetlb_lock); 1299 clear_page_huge_active(page); 1300 hugetlb_cgroup_uncharge_page(hstate_index(h), 1301 pages_per_huge_page(h), page); 1302 if (restore_reserve) 1303 h->resv_huge_pages++; 1304 1305 if (PageHugeTemporary(page)) { 1306 list_del(&page->lru); 1307 ClearPageHugeTemporary(page); 1308 update_and_free_page(h, page); 1309 } else if (h->surplus_huge_pages_node[nid]) { 1310 /* remove the page from active list */ 1311 list_del(&page->lru); 1312 update_and_free_page(h, page); 1313 h->surplus_huge_pages--; 1314 h->surplus_huge_pages_node[nid]--; 1315 } else { 1316 arch_clear_hugepage_flags(page); 1317 enqueue_huge_page(h, page); 1318 } 1319 spin_unlock(&hugetlb_lock); 1320 } 1321 1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1323 { 1324 INIT_LIST_HEAD(&page->lru); 1325 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1326 spin_lock(&hugetlb_lock); 1327 set_hugetlb_cgroup(page, NULL); 1328 h->nr_huge_pages++; 1329 h->nr_huge_pages_node[nid]++; 1330 spin_unlock(&hugetlb_lock); 1331 } 1332 1333 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1334 { 1335 int i; 1336 int nr_pages = 1 << order; 1337 struct page *p = page + 1; 1338 1339 /* we rely on prep_new_huge_page to set the destructor */ 1340 set_compound_order(page, order); 1341 __ClearPageReserved(page); 1342 __SetPageHead(page); 1343 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1344 /* 1345 * For gigantic hugepages allocated through bootmem at 1346 * boot, it's safer to be consistent with the not-gigantic 1347 * hugepages and clear the PG_reserved bit from all tail pages 1348 * too. Otherwse drivers using get_user_pages() to access tail 1349 * pages may get the reference counting wrong if they see 1350 * PG_reserved set on a tail page (despite the head page not 1351 * having PG_reserved set). Enforcing this consistency between 1352 * head and tail pages allows drivers to optimize away a check 1353 * on the head page when they need know if put_page() is needed 1354 * after get_user_pages(). 1355 */ 1356 __ClearPageReserved(p); 1357 set_page_count(p, 0); 1358 set_compound_head(p, page); 1359 } 1360 atomic_set(compound_mapcount_ptr(page), -1); 1361 } 1362 1363 /* 1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1365 * transparent huge pages. See the PageTransHuge() documentation for more 1366 * details. 1367 */ 1368 int PageHuge(struct page *page) 1369 { 1370 if (!PageCompound(page)) 1371 return 0; 1372 1373 page = compound_head(page); 1374 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1375 } 1376 EXPORT_SYMBOL_GPL(PageHuge); 1377 1378 /* 1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1380 * normal or transparent huge pages. 1381 */ 1382 int PageHeadHuge(struct page *page_head) 1383 { 1384 if (!PageHead(page_head)) 1385 return 0; 1386 1387 return get_compound_page_dtor(page_head) == free_huge_page; 1388 } 1389 1390 pgoff_t __basepage_index(struct page *page) 1391 { 1392 struct page *page_head = compound_head(page); 1393 pgoff_t index = page_index(page_head); 1394 unsigned long compound_idx; 1395 1396 if (!PageHuge(page_head)) 1397 return page_index(page); 1398 1399 if (compound_order(page_head) >= MAX_ORDER) 1400 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1401 else 1402 compound_idx = page - page_head; 1403 1404 return (index << compound_order(page_head)) + compound_idx; 1405 } 1406 1407 static struct page *alloc_buddy_huge_page(struct hstate *h, 1408 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1409 nodemask_t *node_alloc_noretry) 1410 { 1411 int order = huge_page_order(h); 1412 struct page *page; 1413 bool alloc_try_hard = true; 1414 1415 /* 1416 * By default we always try hard to allocate the page with 1417 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1418 * a loop (to adjust global huge page counts) and previous allocation 1419 * failed, do not continue to try hard on the same node. Use the 1420 * node_alloc_noretry bitmap to manage this state information. 1421 */ 1422 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1423 alloc_try_hard = false; 1424 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1425 if (alloc_try_hard) 1426 gfp_mask |= __GFP_RETRY_MAYFAIL; 1427 if (nid == NUMA_NO_NODE) 1428 nid = numa_mem_id(); 1429 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1430 if (page) 1431 __count_vm_event(HTLB_BUDDY_PGALLOC); 1432 else 1433 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1434 1435 /* 1436 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1437 * indicates an overall state change. Clear bit so that we resume 1438 * normal 'try hard' allocations. 1439 */ 1440 if (node_alloc_noretry && page && !alloc_try_hard) 1441 node_clear(nid, *node_alloc_noretry); 1442 1443 /* 1444 * If we tried hard to get a page but failed, set bit so that 1445 * subsequent attempts will not try as hard until there is an 1446 * overall state change. 1447 */ 1448 if (node_alloc_noretry && !page && alloc_try_hard) 1449 node_set(nid, *node_alloc_noretry); 1450 1451 return page; 1452 } 1453 1454 /* 1455 * Common helper to allocate a fresh hugetlb page. All specific allocators 1456 * should use this function to get new hugetlb pages 1457 */ 1458 static struct page *alloc_fresh_huge_page(struct hstate *h, 1459 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1460 nodemask_t *node_alloc_noretry) 1461 { 1462 struct page *page; 1463 1464 if (hstate_is_gigantic(h)) 1465 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1466 else 1467 page = alloc_buddy_huge_page(h, gfp_mask, 1468 nid, nmask, node_alloc_noretry); 1469 if (!page) 1470 return NULL; 1471 1472 if (hstate_is_gigantic(h)) 1473 prep_compound_gigantic_page(page, huge_page_order(h)); 1474 prep_new_huge_page(h, page, page_to_nid(page)); 1475 1476 return page; 1477 } 1478 1479 /* 1480 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1481 * manner. 1482 */ 1483 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1484 nodemask_t *node_alloc_noretry) 1485 { 1486 struct page *page; 1487 int nr_nodes, node; 1488 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1489 1490 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1491 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1492 node_alloc_noretry); 1493 if (page) 1494 break; 1495 } 1496 1497 if (!page) 1498 return 0; 1499 1500 put_page(page); /* free it into the hugepage allocator */ 1501 1502 return 1; 1503 } 1504 1505 /* 1506 * Free huge page from pool from next node to free. 1507 * Attempt to keep persistent huge pages more or less 1508 * balanced over allowed nodes. 1509 * Called with hugetlb_lock locked. 1510 */ 1511 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1512 bool acct_surplus) 1513 { 1514 int nr_nodes, node; 1515 int ret = 0; 1516 1517 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1518 /* 1519 * If we're returning unused surplus pages, only examine 1520 * nodes with surplus pages. 1521 */ 1522 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1523 !list_empty(&h->hugepage_freelists[node])) { 1524 struct page *page = 1525 list_entry(h->hugepage_freelists[node].next, 1526 struct page, lru); 1527 list_del(&page->lru); 1528 h->free_huge_pages--; 1529 h->free_huge_pages_node[node]--; 1530 if (acct_surplus) { 1531 h->surplus_huge_pages--; 1532 h->surplus_huge_pages_node[node]--; 1533 } 1534 update_and_free_page(h, page); 1535 ret = 1; 1536 break; 1537 } 1538 } 1539 1540 return ret; 1541 } 1542 1543 /* 1544 * Dissolve a given free hugepage into free buddy pages. This function does 1545 * nothing for in-use hugepages and non-hugepages. 1546 * This function returns values like below: 1547 * 1548 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1549 * (allocated or reserved.) 1550 * 0: successfully dissolved free hugepages or the page is not a 1551 * hugepage (considered as already dissolved) 1552 */ 1553 int dissolve_free_huge_page(struct page *page) 1554 { 1555 int rc = -EBUSY; 1556 1557 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1558 if (!PageHuge(page)) 1559 return 0; 1560 1561 spin_lock(&hugetlb_lock); 1562 if (!PageHuge(page)) { 1563 rc = 0; 1564 goto out; 1565 } 1566 1567 if (!page_count(page)) { 1568 struct page *head = compound_head(page); 1569 struct hstate *h = page_hstate(head); 1570 int nid = page_to_nid(head); 1571 if (h->free_huge_pages - h->resv_huge_pages == 0) 1572 goto out; 1573 /* 1574 * Move PageHWPoison flag from head page to the raw error page, 1575 * which makes any subpages rather than the error page reusable. 1576 */ 1577 if (PageHWPoison(head) && page != head) { 1578 SetPageHWPoison(page); 1579 ClearPageHWPoison(head); 1580 } 1581 list_del(&head->lru); 1582 h->free_huge_pages--; 1583 h->free_huge_pages_node[nid]--; 1584 h->max_huge_pages--; 1585 update_and_free_page(h, head); 1586 rc = 0; 1587 } 1588 out: 1589 spin_unlock(&hugetlb_lock); 1590 return rc; 1591 } 1592 1593 /* 1594 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1595 * make specified memory blocks removable from the system. 1596 * Note that this will dissolve a free gigantic hugepage completely, if any 1597 * part of it lies within the given range. 1598 * Also note that if dissolve_free_huge_page() returns with an error, all 1599 * free hugepages that were dissolved before that error are lost. 1600 */ 1601 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1602 { 1603 unsigned long pfn; 1604 struct page *page; 1605 int rc = 0; 1606 1607 if (!hugepages_supported()) 1608 return rc; 1609 1610 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1611 page = pfn_to_page(pfn); 1612 rc = dissolve_free_huge_page(page); 1613 if (rc) 1614 break; 1615 } 1616 1617 return rc; 1618 } 1619 1620 /* 1621 * Allocates a fresh surplus page from the page allocator. 1622 */ 1623 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1624 int nid, nodemask_t *nmask) 1625 { 1626 struct page *page = NULL; 1627 1628 if (hstate_is_gigantic(h)) 1629 return NULL; 1630 1631 spin_lock(&hugetlb_lock); 1632 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1633 goto out_unlock; 1634 spin_unlock(&hugetlb_lock); 1635 1636 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1637 if (!page) 1638 return NULL; 1639 1640 spin_lock(&hugetlb_lock); 1641 /* 1642 * We could have raced with the pool size change. 1643 * Double check that and simply deallocate the new page 1644 * if we would end up overcommiting the surpluses. Abuse 1645 * temporary page to workaround the nasty free_huge_page 1646 * codeflow 1647 */ 1648 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1649 SetPageHugeTemporary(page); 1650 spin_unlock(&hugetlb_lock); 1651 put_page(page); 1652 return NULL; 1653 } else { 1654 h->surplus_huge_pages++; 1655 h->surplus_huge_pages_node[page_to_nid(page)]++; 1656 } 1657 1658 out_unlock: 1659 spin_unlock(&hugetlb_lock); 1660 1661 return page; 1662 } 1663 1664 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1665 int nid, nodemask_t *nmask) 1666 { 1667 struct page *page; 1668 1669 if (hstate_is_gigantic(h)) 1670 return NULL; 1671 1672 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1673 if (!page) 1674 return NULL; 1675 1676 /* 1677 * We do not account these pages as surplus because they are only 1678 * temporary and will be released properly on the last reference 1679 */ 1680 SetPageHugeTemporary(page); 1681 1682 return page; 1683 } 1684 1685 /* 1686 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1687 */ 1688 static 1689 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1690 struct vm_area_struct *vma, unsigned long addr) 1691 { 1692 struct page *page; 1693 struct mempolicy *mpol; 1694 gfp_t gfp_mask = htlb_alloc_mask(h); 1695 int nid; 1696 nodemask_t *nodemask; 1697 1698 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1699 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1700 mpol_cond_put(mpol); 1701 1702 return page; 1703 } 1704 1705 /* page migration callback function */ 1706 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1707 { 1708 gfp_t gfp_mask = htlb_alloc_mask(h); 1709 struct page *page = NULL; 1710 1711 if (nid != NUMA_NO_NODE) 1712 gfp_mask |= __GFP_THISNODE; 1713 1714 spin_lock(&hugetlb_lock); 1715 if (h->free_huge_pages - h->resv_huge_pages > 0) 1716 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1717 spin_unlock(&hugetlb_lock); 1718 1719 if (!page) 1720 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1721 1722 return page; 1723 } 1724 1725 /* page migration callback function */ 1726 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1727 nodemask_t *nmask) 1728 { 1729 gfp_t gfp_mask = htlb_alloc_mask(h); 1730 1731 spin_lock(&hugetlb_lock); 1732 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1733 struct page *page; 1734 1735 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1736 if (page) { 1737 spin_unlock(&hugetlb_lock); 1738 return page; 1739 } 1740 } 1741 spin_unlock(&hugetlb_lock); 1742 1743 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1744 } 1745 1746 /* mempolicy aware migration callback */ 1747 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1748 unsigned long address) 1749 { 1750 struct mempolicy *mpol; 1751 nodemask_t *nodemask; 1752 struct page *page; 1753 gfp_t gfp_mask; 1754 int node; 1755 1756 gfp_mask = htlb_alloc_mask(h); 1757 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1758 page = alloc_huge_page_nodemask(h, node, nodemask); 1759 mpol_cond_put(mpol); 1760 1761 return page; 1762 } 1763 1764 /* 1765 * Increase the hugetlb pool such that it can accommodate a reservation 1766 * of size 'delta'. 1767 */ 1768 static int gather_surplus_pages(struct hstate *h, int delta) 1769 { 1770 struct list_head surplus_list; 1771 struct page *page, *tmp; 1772 int ret, i; 1773 int needed, allocated; 1774 bool alloc_ok = true; 1775 1776 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1777 if (needed <= 0) { 1778 h->resv_huge_pages += delta; 1779 return 0; 1780 } 1781 1782 allocated = 0; 1783 INIT_LIST_HEAD(&surplus_list); 1784 1785 ret = -ENOMEM; 1786 retry: 1787 spin_unlock(&hugetlb_lock); 1788 for (i = 0; i < needed; i++) { 1789 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1790 NUMA_NO_NODE, NULL); 1791 if (!page) { 1792 alloc_ok = false; 1793 break; 1794 } 1795 list_add(&page->lru, &surplus_list); 1796 cond_resched(); 1797 } 1798 allocated += i; 1799 1800 /* 1801 * After retaking hugetlb_lock, we need to recalculate 'needed' 1802 * because either resv_huge_pages or free_huge_pages may have changed. 1803 */ 1804 spin_lock(&hugetlb_lock); 1805 needed = (h->resv_huge_pages + delta) - 1806 (h->free_huge_pages + allocated); 1807 if (needed > 0) { 1808 if (alloc_ok) 1809 goto retry; 1810 /* 1811 * We were not able to allocate enough pages to 1812 * satisfy the entire reservation so we free what 1813 * we've allocated so far. 1814 */ 1815 goto free; 1816 } 1817 /* 1818 * The surplus_list now contains _at_least_ the number of extra pages 1819 * needed to accommodate the reservation. Add the appropriate number 1820 * of pages to the hugetlb pool and free the extras back to the buddy 1821 * allocator. Commit the entire reservation here to prevent another 1822 * process from stealing the pages as they are added to the pool but 1823 * before they are reserved. 1824 */ 1825 needed += allocated; 1826 h->resv_huge_pages += delta; 1827 ret = 0; 1828 1829 /* Free the needed pages to the hugetlb pool */ 1830 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1831 if ((--needed) < 0) 1832 break; 1833 /* 1834 * This page is now managed by the hugetlb allocator and has 1835 * no users -- drop the buddy allocator's reference. 1836 */ 1837 put_page_testzero(page); 1838 VM_BUG_ON_PAGE(page_count(page), page); 1839 enqueue_huge_page(h, page); 1840 } 1841 free: 1842 spin_unlock(&hugetlb_lock); 1843 1844 /* Free unnecessary surplus pages to the buddy allocator */ 1845 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1846 put_page(page); 1847 spin_lock(&hugetlb_lock); 1848 1849 return ret; 1850 } 1851 1852 /* 1853 * This routine has two main purposes: 1854 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1855 * in unused_resv_pages. This corresponds to the prior adjustments made 1856 * to the associated reservation map. 1857 * 2) Free any unused surplus pages that may have been allocated to satisfy 1858 * the reservation. As many as unused_resv_pages may be freed. 1859 * 1860 * Called with hugetlb_lock held. However, the lock could be dropped (and 1861 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1862 * we must make sure nobody else can claim pages we are in the process of 1863 * freeing. Do this by ensuring resv_huge_page always is greater than the 1864 * number of huge pages we plan to free when dropping the lock. 1865 */ 1866 static void return_unused_surplus_pages(struct hstate *h, 1867 unsigned long unused_resv_pages) 1868 { 1869 unsigned long nr_pages; 1870 1871 /* Cannot return gigantic pages currently */ 1872 if (hstate_is_gigantic(h)) 1873 goto out; 1874 1875 /* 1876 * Part (or even all) of the reservation could have been backed 1877 * by pre-allocated pages. Only free surplus pages. 1878 */ 1879 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1880 1881 /* 1882 * We want to release as many surplus pages as possible, spread 1883 * evenly across all nodes with memory. Iterate across these nodes 1884 * until we can no longer free unreserved surplus pages. This occurs 1885 * when the nodes with surplus pages have no free pages. 1886 * free_pool_huge_page() will balance the the freed pages across the 1887 * on-line nodes with memory and will handle the hstate accounting. 1888 * 1889 * Note that we decrement resv_huge_pages as we free the pages. If 1890 * we drop the lock, resv_huge_pages will still be sufficiently large 1891 * to cover subsequent pages we may free. 1892 */ 1893 while (nr_pages--) { 1894 h->resv_huge_pages--; 1895 unused_resv_pages--; 1896 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1897 goto out; 1898 cond_resched_lock(&hugetlb_lock); 1899 } 1900 1901 out: 1902 /* Fully uncommit the reservation */ 1903 h->resv_huge_pages -= unused_resv_pages; 1904 } 1905 1906 1907 /* 1908 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1909 * are used by the huge page allocation routines to manage reservations. 1910 * 1911 * vma_needs_reservation is called to determine if the huge page at addr 1912 * within the vma has an associated reservation. If a reservation is 1913 * needed, the value 1 is returned. The caller is then responsible for 1914 * managing the global reservation and subpool usage counts. After 1915 * the huge page has been allocated, vma_commit_reservation is called 1916 * to add the page to the reservation map. If the page allocation fails, 1917 * the reservation must be ended instead of committed. vma_end_reservation 1918 * is called in such cases. 1919 * 1920 * In the normal case, vma_commit_reservation returns the same value 1921 * as the preceding vma_needs_reservation call. The only time this 1922 * is not the case is if a reserve map was changed between calls. It 1923 * is the responsibility of the caller to notice the difference and 1924 * take appropriate action. 1925 * 1926 * vma_add_reservation is used in error paths where a reservation must 1927 * be restored when a newly allocated huge page must be freed. It is 1928 * to be called after calling vma_needs_reservation to determine if a 1929 * reservation exists. 1930 */ 1931 enum vma_resv_mode { 1932 VMA_NEEDS_RESV, 1933 VMA_COMMIT_RESV, 1934 VMA_END_RESV, 1935 VMA_ADD_RESV, 1936 }; 1937 static long __vma_reservation_common(struct hstate *h, 1938 struct vm_area_struct *vma, unsigned long addr, 1939 enum vma_resv_mode mode) 1940 { 1941 struct resv_map *resv; 1942 pgoff_t idx; 1943 long ret; 1944 1945 resv = vma_resv_map(vma); 1946 if (!resv) 1947 return 1; 1948 1949 idx = vma_hugecache_offset(h, vma, addr); 1950 switch (mode) { 1951 case VMA_NEEDS_RESV: 1952 ret = region_chg(resv, idx, idx + 1); 1953 break; 1954 case VMA_COMMIT_RESV: 1955 ret = region_add(resv, idx, idx + 1); 1956 break; 1957 case VMA_END_RESV: 1958 region_abort(resv, idx, idx + 1); 1959 ret = 0; 1960 break; 1961 case VMA_ADD_RESV: 1962 if (vma->vm_flags & VM_MAYSHARE) 1963 ret = region_add(resv, idx, idx + 1); 1964 else { 1965 region_abort(resv, idx, idx + 1); 1966 ret = region_del(resv, idx, idx + 1); 1967 } 1968 break; 1969 default: 1970 BUG(); 1971 } 1972 1973 if (vma->vm_flags & VM_MAYSHARE) 1974 return ret; 1975 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1976 /* 1977 * In most cases, reserves always exist for private mappings. 1978 * However, a file associated with mapping could have been 1979 * hole punched or truncated after reserves were consumed. 1980 * As subsequent fault on such a range will not use reserves. 1981 * Subtle - The reserve map for private mappings has the 1982 * opposite meaning than that of shared mappings. If NO 1983 * entry is in the reserve map, it means a reservation exists. 1984 * If an entry exists in the reserve map, it means the 1985 * reservation has already been consumed. As a result, the 1986 * return value of this routine is the opposite of the 1987 * value returned from reserve map manipulation routines above. 1988 */ 1989 if (ret) 1990 return 0; 1991 else 1992 return 1; 1993 } 1994 else 1995 return ret < 0 ? ret : 0; 1996 } 1997 1998 static long vma_needs_reservation(struct hstate *h, 1999 struct vm_area_struct *vma, unsigned long addr) 2000 { 2001 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2002 } 2003 2004 static long vma_commit_reservation(struct hstate *h, 2005 struct vm_area_struct *vma, unsigned long addr) 2006 { 2007 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2008 } 2009 2010 static void vma_end_reservation(struct hstate *h, 2011 struct vm_area_struct *vma, unsigned long addr) 2012 { 2013 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2014 } 2015 2016 static long vma_add_reservation(struct hstate *h, 2017 struct vm_area_struct *vma, unsigned long addr) 2018 { 2019 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2020 } 2021 2022 /* 2023 * This routine is called to restore a reservation on error paths. In the 2024 * specific error paths, a huge page was allocated (via alloc_huge_page) 2025 * and is about to be freed. If a reservation for the page existed, 2026 * alloc_huge_page would have consumed the reservation and set PagePrivate 2027 * in the newly allocated page. When the page is freed via free_huge_page, 2028 * the global reservation count will be incremented if PagePrivate is set. 2029 * However, free_huge_page can not adjust the reserve map. Adjust the 2030 * reserve map here to be consistent with global reserve count adjustments 2031 * to be made by free_huge_page. 2032 */ 2033 static void restore_reserve_on_error(struct hstate *h, 2034 struct vm_area_struct *vma, unsigned long address, 2035 struct page *page) 2036 { 2037 if (unlikely(PagePrivate(page))) { 2038 long rc = vma_needs_reservation(h, vma, address); 2039 2040 if (unlikely(rc < 0)) { 2041 /* 2042 * Rare out of memory condition in reserve map 2043 * manipulation. Clear PagePrivate so that 2044 * global reserve count will not be incremented 2045 * by free_huge_page. This will make it appear 2046 * as though the reservation for this page was 2047 * consumed. This may prevent the task from 2048 * faulting in the page at a later time. This 2049 * is better than inconsistent global huge page 2050 * accounting of reserve counts. 2051 */ 2052 ClearPagePrivate(page); 2053 } else if (rc) { 2054 rc = vma_add_reservation(h, vma, address); 2055 if (unlikely(rc < 0)) 2056 /* 2057 * See above comment about rare out of 2058 * memory condition. 2059 */ 2060 ClearPagePrivate(page); 2061 } else 2062 vma_end_reservation(h, vma, address); 2063 } 2064 } 2065 2066 struct page *alloc_huge_page(struct vm_area_struct *vma, 2067 unsigned long addr, int avoid_reserve) 2068 { 2069 struct hugepage_subpool *spool = subpool_vma(vma); 2070 struct hstate *h = hstate_vma(vma); 2071 struct page *page; 2072 long map_chg, map_commit; 2073 long gbl_chg; 2074 int ret, idx; 2075 struct hugetlb_cgroup *h_cg; 2076 2077 idx = hstate_index(h); 2078 /* 2079 * Examine the region/reserve map to determine if the process 2080 * has a reservation for the page to be allocated. A return 2081 * code of zero indicates a reservation exists (no change). 2082 */ 2083 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2084 if (map_chg < 0) 2085 return ERR_PTR(-ENOMEM); 2086 2087 /* 2088 * Processes that did not create the mapping will have no 2089 * reserves as indicated by the region/reserve map. Check 2090 * that the allocation will not exceed the subpool limit. 2091 * Allocations for MAP_NORESERVE mappings also need to be 2092 * checked against any subpool limit. 2093 */ 2094 if (map_chg || avoid_reserve) { 2095 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2096 if (gbl_chg < 0) { 2097 vma_end_reservation(h, vma, addr); 2098 return ERR_PTR(-ENOSPC); 2099 } 2100 2101 /* 2102 * Even though there was no reservation in the region/reserve 2103 * map, there could be reservations associated with the 2104 * subpool that can be used. This would be indicated if the 2105 * return value of hugepage_subpool_get_pages() is zero. 2106 * However, if avoid_reserve is specified we still avoid even 2107 * the subpool reservations. 2108 */ 2109 if (avoid_reserve) 2110 gbl_chg = 1; 2111 } 2112 2113 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2114 if (ret) 2115 goto out_subpool_put; 2116 2117 spin_lock(&hugetlb_lock); 2118 /* 2119 * glb_chg is passed to indicate whether or not a page must be taken 2120 * from the global free pool (global change). gbl_chg == 0 indicates 2121 * a reservation exists for the allocation. 2122 */ 2123 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2124 if (!page) { 2125 spin_unlock(&hugetlb_lock); 2126 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2127 if (!page) 2128 goto out_uncharge_cgroup; 2129 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2130 SetPagePrivate(page); 2131 h->resv_huge_pages--; 2132 } 2133 spin_lock(&hugetlb_lock); 2134 list_move(&page->lru, &h->hugepage_activelist); 2135 /* Fall through */ 2136 } 2137 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2138 spin_unlock(&hugetlb_lock); 2139 2140 set_page_private(page, (unsigned long)spool); 2141 2142 map_commit = vma_commit_reservation(h, vma, addr); 2143 if (unlikely(map_chg > map_commit)) { 2144 /* 2145 * The page was added to the reservation map between 2146 * vma_needs_reservation and vma_commit_reservation. 2147 * This indicates a race with hugetlb_reserve_pages. 2148 * Adjust for the subpool count incremented above AND 2149 * in hugetlb_reserve_pages for the same page. Also, 2150 * the reservation count added in hugetlb_reserve_pages 2151 * no longer applies. 2152 */ 2153 long rsv_adjust; 2154 2155 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2156 hugetlb_acct_memory(h, -rsv_adjust); 2157 } 2158 return page; 2159 2160 out_uncharge_cgroup: 2161 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2162 out_subpool_put: 2163 if (map_chg || avoid_reserve) 2164 hugepage_subpool_put_pages(spool, 1); 2165 vma_end_reservation(h, vma, addr); 2166 return ERR_PTR(-ENOSPC); 2167 } 2168 2169 int alloc_bootmem_huge_page(struct hstate *h) 2170 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2171 int __alloc_bootmem_huge_page(struct hstate *h) 2172 { 2173 struct huge_bootmem_page *m; 2174 int nr_nodes, node; 2175 2176 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2177 void *addr; 2178 2179 addr = memblock_alloc_try_nid_raw( 2180 huge_page_size(h), huge_page_size(h), 2181 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2182 if (addr) { 2183 /* 2184 * Use the beginning of the huge page to store the 2185 * huge_bootmem_page struct (until gather_bootmem 2186 * puts them into the mem_map). 2187 */ 2188 m = addr; 2189 goto found; 2190 } 2191 } 2192 return 0; 2193 2194 found: 2195 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2196 /* Put them into a private list first because mem_map is not up yet */ 2197 INIT_LIST_HEAD(&m->list); 2198 list_add(&m->list, &huge_boot_pages); 2199 m->hstate = h; 2200 return 1; 2201 } 2202 2203 static void __init prep_compound_huge_page(struct page *page, 2204 unsigned int order) 2205 { 2206 if (unlikely(order > (MAX_ORDER - 1))) 2207 prep_compound_gigantic_page(page, order); 2208 else 2209 prep_compound_page(page, order); 2210 } 2211 2212 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2213 static void __init gather_bootmem_prealloc(void) 2214 { 2215 struct huge_bootmem_page *m; 2216 2217 list_for_each_entry(m, &huge_boot_pages, list) { 2218 struct page *page = virt_to_page(m); 2219 struct hstate *h = m->hstate; 2220 2221 WARN_ON(page_count(page) != 1); 2222 prep_compound_huge_page(page, h->order); 2223 WARN_ON(PageReserved(page)); 2224 prep_new_huge_page(h, page, page_to_nid(page)); 2225 put_page(page); /* free it into the hugepage allocator */ 2226 2227 /* 2228 * If we had gigantic hugepages allocated at boot time, we need 2229 * to restore the 'stolen' pages to totalram_pages in order to 2230 * fix confusing memory reports from free(1) and another 2231 * side-effects, like CommitLimit going negative. 2232 */ 2233 if (hstate_is_gigantic(h)) 2234 adjust_managed_page_count(page, 1 << h->order); 2235 cond_resched(); 2236 } 2237 } 2238 2239 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2240 { 2241 unsigned long i; 2242 nodemask_t *node_alloc_noretry; 2243 2244 if (!hstate_is_gigantic(h)) { 2245 /* 2246 * Bit mask controlling how hard we retry per-node allocations. 2247 * Ignore errors as lower level routines can deal with 2248 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2249 * time, we are likely in bigger trouble. 2250 */ 2251 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2252 GFP_KERNEL); 2253 } else { 2254 /* allocations done at boot time */ 2255 node_alloc_noretry = NULL; 2256 } 2257 2258 /* bit mask controlling how hard we retry per-node allocations */ 2259 if (node_alloc_noretry) 2260 nodes_clear(*node_alloc_noretry); 2261 2262 for (i = 0; i < h->max_huge_pages; ++i) { 2263 if (hstate_is_gigantic(h)) { 2264 if (!alloc_bootmem_huge_page(h)) 2265 break; 2266 } else if (!alloc_pool_huge_page(h, 2267 &node_states[N_MEMORY], 2268 node_alloc_noretry)) 2269 break; 2270 cond_resched(); 2271 } 2272 if (i < h->max_huge_pages) { 2273 char buf[32]; 2274 2275 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2276 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2277 h->max_huge_pages, buf, i); 2278 h->max_huge_pages = i; 2279 } 2280 2281 kfree(node_alloc_noretry); 2282 } 2283 2284 static void __init hugetlb_init_hstates(void) 2285 { 2286 struct hstate *h; 2287 2288 for_each_hstate(h) { 2289 if (minimum_order > huge_page_order(h)) 2290 minimum_order = huge_page_order(h); 2291 2292 /* oversize hugepages were init'ed in early boot */ 2293 if (!hstate_is_gigantic(h)) 2294 hugetlb_hstate_alloc_pages(h); 2295 } 2296 VM_BUG_ON(minimum_order == UINT_MAX); 2297 } 2298 2299 static void __init report_hugepages(void) 2300 { 2301 struct hstate *h; 2302 2303 for_each_hstate(h) { 2304 char buf[32]; 2305 2306 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2307 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2308 buf, h->free_huge_pages); 2309 } 2310 } 2311 2312 #ifdef CONFIG_HIGHMEM 2313 static void try_to_free_low(struct hstate *h, unsigned long count, 2314 nodemask_t *nodes_allowed) 2315 { 2316 int i; 2317 2318 if (hstate_is_gigantic(h)) 2319 return; 2320 2321 for_each_node_mask(i, *nodes_allowed) { 2322 struct page *page, *next; 2323 struct list_head *freel = &h->hugepage_freelists[i]; 2324 list_for_each_entry_safe(page, next, freel, lru) { 2325 if (count >= h->nr_huge_pages) 2326 return; 2327 if (PageHighMem(page)) 2328 continue; 2329 list_del(&page->lru); 2330 update_and_free_page(h, page); 2331 h->free_huge_pages--; 2332 h->free_huge_pages_node[page_to_nid(page)]--; 2333 } 2334 } 2335 } 2336 #else 2337 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2338 nodemask_t *nodes_allowed) 2339 { 2340 } 2341 #endif 2342 2343 /* 2344 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2345 * balanced by operating on them in a round-robin fashion. 2346 * Returns 1 if an adjustment was made. 2347 */ 2348 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2349 int delta) 2350 { 2351 int nr_nodes, node; 2352 2353 VM_BUG_ON(delta != -1 && delta != 1); 2354 2355 if (delta < 0) { 2356 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2357 if (h->surplus_huge_pages_node[node]) 2358 goto found; 2359 } 2360 } else { 2361 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2362 if (h->surplus_huge_pages_node[node] < 2363 h->nr_huge_pages_node[node]) 2364 goto found; 2365 } 2366 } 2367 return 0; 2368 2369 found: 2370 h->surplus_huge_pages += delta; 2371 h->surplus_huge_pages_node[node] += delta; 2372 return 1; 2373 } 2374 2375 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2376 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2377 nodemask_t *nodes_allowed) 2378 { 2379 unsigned long min_count, ret; 2380 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2381 2382 /* 2383 * Bit mask controlling how hard we retry per-node allocations. 2384 * If we can not allocate the bit mask, do not attempt to allocate 2385 * the requested huge pages. 2386 */ 2387 if (node_alloc_noretry) 2388 nodes_clear(*node_alloc_noretry); 2389 else 2390 return -ENOMEM; 2391 2392 spin_lock(&hugetlb_lock); 2393 2394 /* 2395 * Check for a node specific request. 2396 * Changing node specific huge page count may require a corresponding 2397 * change to the global count. In any case, the passed node mask 2398 * (nodes_allowed) will restrict alloc/free to the specified node. 2399 */ 2400 if (nid != NUMA_NO_NODE) { 2401 unsigned long old_count = count; 2402 2403 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2404 /* 2405 * User may have specified a large count value which caused the 2406 * above calculation to overflow. In this case, they wanted 2407 * to allocate as many huge pages as possible. Set count to 2408 * largest possible value to align with their intention. 2409 */ 2410 if (count < old_count) 2411 count = ULONG_MAX; 2412 } 2413 2414 /* 2415 * Gigantic pages runtime allocation depend on the capability for large 2416 * page range allocation. 2417 * If the system does not provide this feature, return an error when 2418 * the user tries to allocate gigantic pages but let the user free the 2419 * boottime allocated gigantic pages. 2420 */ 2421 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2422 if (count > persistent_huge_pages(h)) { 2423 spin_unlock(&hugetlb_lock); 2424 NODEMASK_FREE(node_alloc_noretry); 2425 return -EINVAL; 2426 } 2427 /* Fall through to decrease pool */ 2428 } 2429 2430 /* 2431 * Increase the pool size 2432 * First take pages out of surplus state. Then make up the 2433 * remaining difference by allocating fresh huge pages. 2434 * 2435 * We might race with alloc_surplus_huge_page() here and be unable 2436 * to convert a surplus huge page to a normal huge page. That is 2437 * not critical, though, it just means the overall size of the 2438 * pool might be one hugepage larger than it needs to be, but 2439 * within all the constraints specified by the sysctls. 2440 */ 2441 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2442 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2443 break; 2444 } 2445 2446 while (count > persistent_huge_pages(h)) { 2447 /* 2448 * If this allocation races such that we no longer need the 2449 * page, free_huge_page will handle it by freeing the page 2450 * and reducing the surplus. 2451 */ 2452 spin_unlock(&hugetlb_lock); 2453 2454 /* yield cpu to avoid soft lockup */ 2455 cond_resched(); 2456 2457 ret = alloc_pool_huge_page(h, nodes_allowed, 2458 node_alloc_noretry); 2459 spin_lock(&hugetlb_lock); 2460 if (!ret) 2461 goto out; 2462 2463 /* Bail for signals. Probably ctrl-c from user */ 2464 if (signal_pending(current)) 2465 goto out; 2466 } 2467 2468 /* 2469 * Decrease the pool size 2470 * First return free pages to the buddy allocator (being careful 2471 * to keep enough around to satisfy reservations). Then place 2472 * pages into surplus state as needed so the pool will shrink 2473 * to the desired size as pages become free. 2474 * 2475 * By placing pages into the surplus state independent of the 2476 * overcommit value, we are allowing the surplus pool size to 2477 * exceed overcommit. There are few sane options here. Since 2478 * alloc_surplus_huge_page() is checking the global counter, 2479 * though, we'll note that we're not allowed to exceed surplus 2480 * and won't grow the pool anywhere else. Not until one of the 2481 * sysctls are changed, or the surplus pages go out of use. 2482 */ 2483 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2484 min_count = max(count, min_count); 2485 try_to_free_low(h, min_count, nodes_allowed); 2486 while (min_count < persistent_huge_pages(h)) { 2487 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2488 break; 2489 cond_resched_lock(&hugetlb_lock); 2490 } 2491 while (count < persistent_huge_pages(h)) { 2492 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2493 break; 2494 } 2495 out: 2496 h->max_huge_pages = persistent_huge_pages(h); 2497 spin_unlock(&hugetlb_lock); 2498 2499 NODEMASK_FREE(node_alloc_noretry); 2500 2501 return 0; 2502 } 2503 2504 #define HSTATE_ATTR_RO(_name) \ 2505 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2506 2507 #define HSTATE_ATTR(_name) \ 2508 static struct kobj_attribute _name##_attr = \ 2509 __ATTR(_name, 0644, _name##_show, _name##_store) 2510 2511 static struct kobject *hugepages_kobj; 2512 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2513 2514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2515 2516 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2517 { 2518 int i; 2519 2520 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2521 if (hstate_kobjs[i] == kobj) { 2522 if (nidp) 2523 *nidp = NUMA_NO_NODE; 2524 return &hstates[i]; 2525 } 2526 2527 return kobj_to_node_hstate(kobj, nidp); 2528 } 2529 2530 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2531 struct kobj_attribute *attr, char *buf) 2532 { 2533 struct hstate *h; 2534 unsigned long nr_huge_pages; 2535 int nid; 2536 2537 h = kobj_to_hstate(kobj, &nid); 2538 if (nid == NUMA_NO_NODE) 2539 nr_huge_pages = h->nr_huge_pages; 2540 else 2541 nr_huge_pages = h->nr_huge_pages_node[nid]; 2542 2543 return sprintf(buf, "%lu\n", nr_huge_pages); 2544 } 2545 2546 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2547 struct hstate *h, int nid, 2548 unsigned long count, size_t len) 2549 { 2550 int err; 2551 nodemask_t nodes_allowed, *n_mask; 2552 2553 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2554 return -EINVAL; 2555 2556 if (nid == NUMA_NO_NODE) { 2557 /* 2558 * global hstate attribute 2559 */ 2560 if (!(obey_mempolicy && 2561 init_nodemask_of_mempolicy(&nodes_allowed))) 2562 n_mask = &node_states[N_MEMORY]; 2563 else 2564 n_mask = &nodes_allowed; 2565 } else { 2566 /* 2567 * Node specific request. count adjustment happens in 2568 * set_max_huge_pages() after acquiring hugetlb_lock. 2569 */ 2570 init_nodemask_of_node(&nodes_allowed, nid); 2571 n_mask = &nodes_allowed; 2572 } 2573 2574 err = set_max_huge_pages(h, count, nid, n_mask); 2575 2576 return err ? err : len; 2577 } 2578 2579 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2580 struct kobject *kobj, const char *buf, 2581 size_t len) 2582 { 2583 struct hstate *h; 2584 unsigned long count; 2585 int nid; 2586 int err; 2587 2588 err = kstrtoul(buf, 10, &count); 2589 if (err) 2590 return err; 2591 2592 h = kobj_to_hstate(kobj, &nid); 2593 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2594 } 2595 2596 static ssize_t nr_hugepages_show(struct kobject *kobj, 2597 struct kobj_attribute *attr, char *buf) 2598 { 2599 return nr_hugepages_show_common(kobj, attr, buf); 2600 } 2601 2602 static ssize_t nr_hugepages_store(struct kobject *kobj, 2603 struct kobj_attribute *attr, const char *buf, size_t len) 2604 { 2605 return nr_hugepages_store_common(false, kobj, buf, len); 2606 } 2607 HSTATE_ATTR(nr_hugepages); 2608 2609 #ifdef CONFIG_NUMA 2610 2611 /* 2612 * hstate attribute for optionally mempolicy-based constraint on persistent 2613 * huge page alloc/free. 2614 */ 2615 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2616 struct kobj_attribute *attr, char *buf) 2617 { 2618 return nr_hugepages_show_common(kobj, attr, buf); 2619 } 2620 2621 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2622 struct kobj_attribute *attr, const char *buf, size_t len) 2623 { 2624 return nr_hugepages_store_common(true, kobj, buf, len); 2625 } 2626 HSTATE_ATTR(nr_hugepages_mempolicy); 2627 #endif 2628 2629 2630 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2631 struct kobj_attribute *attr, char *buf) 2632 { 2633 struct hstate *h = kobj_to_hstate(kobj, NULL); 2634 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2635 } 2636 2637 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2638 struct kobj_attribute *attr, const char *buf, size_t count) 2639 { 2640 int err; 2641 unsigned long input; 2642 struct hstate *h = kobj_to_hstate(kobj, NULL); 2643 2644 if (hstate_is_gigantic(h)) 2645 return -EINVAL; 2646 2647 err = kstrtoul(buf, 10, &input); 2648 if (err) 2649 return err; 2650 2651 spin_lock(&hugetlb_lock); 2652 h->nr_overcommit_huge_pages = input; 2653 spin_unlock(&hugetlb_lock); 2654 2655 return count; 2656 } 2657 HSTATE_ATTR(nr_overcommit_hugepages); 2658 2659 static ssize_t free_hugepages_show(struct kobject *kobj, 2660 struct kobj_attribute *attr, char *buf) 2661 { 2662 struct hstate *h; 2663 unsigned long free_huge_pages; 2664 int nid; 2665 2666 h = kobj_to_hstate(kobj, &nid); 2667 if (nid == NUMA_NO_NODE) 2668 free_huge_pages = h->free_huge_pages; 2669 else 2670 free_huge_pages = h->free_huge_pages_node[nid]; 2671 2672 return sprintf(buf, "%lu\n", free_huge_pages); 2673 } 2674 HSTATE_ATTR_RO(free_hugepages); 2675 2676 static ssize_t resv_hugepages_show(struct kobject *kobj, 2677 struct kobj_attribute *attr, char *buf) 2678 { 2679 struct hstate *h = kobj_to_hstate(kobj, NULL); 2680 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2681 } 2682 HSTATE_ATTR_RO(resv_hugepages); 2683 2684 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2685 struct kobj_attribute *attr, char *buf) 2686 { 2687 struct hstate *h; 2688 unsigned long surplus_huge_pages; 2689 int nid; 2690 2691 h = kobj_to_hstate(kobj, &nid); 2692 if (nid == NUMA_NO_NODE) 2693 surplus_huge_pages = h->surplus_huge_pages; 2694 else 2695 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2696 2697 return sprintf(buf, "%lu\n", surplus_huge_pages); 2698 } 2699 HSTATE_ATTR_RO(surplus_hugepages); 2700 2701 static struct attribute *hstate_attrs[] = { 2702 &nr_hugepages_attr.attr, 2703 &nr_overcommit_hugepages_attr.attr, 2704 &free_hugepages_attr.attr, 2705 &resv_hugepages_attr.attr, 2706 &surplus_hugepages_attr.attr, 2707 #ifdef CONFIG_NUMA 2708 &nr_hugepages_mempolicy_attr.attr, 2709 #endif 2710 NULL, 2711 }; 2712 2713 static const struct attribute_group hstate_attr_group = { 2714 .attrs = hstate_attrs, 2715 }; 2716 2717 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2718 struct kobject **hstate_kobjs, 2719 const struct attribute_group *hstate_attr_group) 2720 { 2721 int retval; 2722 int hi = hstate_index(h); 2723 2724 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2725 if (!hstate_kobjs[hi]) 2726 return -ENOMEM; 2727 2728 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2729 if (retval) 2730 kobject_put(hstate_kobjs[hi]); 2731 2732 return retval; 2733 } 2734 2735 static void __init hugetlb_sysfs_init(void) 2736 { 2737 struct hstate *h; 2738 int err; 2739 2740 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2741 if (!hugepages_kobj) 2742 return; 2743 2744 for_each_hstate(h) { 2745 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2746 hstate_kobjs, &hstate_attr_group); 2747 if (err) 2748 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2749 } 2750 } 2751 2752 #ifdef CONFIG_NUMA 2753 2754 /* 2755 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2756 * with node devices in node_devices[] using a parallel array. The array 2757 * index of a node device or _hstate == node id. 2758 * This is here to avoid any static dependency of the node device driver, in 2759 * the base kernel, on the hugetlb module. 2760 */ 2761 struct node_hstate { 2762 struct kobject *hugepages_kobj; 2763 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2764 }; 2765 static struct node_hstate node_hstates[MAX_NUMNODES]; 2766 2767 /* 2768 * A subset of global hstate attributes for node devices 2769 */ 2770 static struct attribute *per_node_hstate_attrs[] = { 2771 &nr_hugepages_attr.attr, 2772 &free_hugepages_attr.attr, 2773 &surplus_hugepages_attr.attr, 2774 NULL, 2775 }; 2776 2777 static const struct attribute_group per_node_hstate_attr_group = { 2778 .attrs = per_node_hstate_attrs, 2779 }; 2780 2781 /* 2782 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2783 * Returns node id via non-NULL nidp. 2784 */ 2785 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2786 { 2787 int nid; 2788 2789 for (nid = 0; nid < nr_node_ids; nid++) { 2790 struct node_hstate *nhs = &node_hstates[nid]; 2791 int i; 2792 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2793 if (nhs->hstate_kobjs[i] == kobj) { 2794 if (nidp) 2795 *nidp = nid; 2796 return &hstates[i]; 2797 } 2798 } 2799 2800 BUG(); 2801 return NULL; 2802 } 2803 2804 /* 2805 * Unregister hstate attributes from a single node device. 2806 * No-op if no hstate attributes attached. 2807 */ 2808 static void hugetlb_unregister_node(struct node *node) 2809 { 2810 struct hstate *h; 2811 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2812 2813 if (!nhs->hugepages_kobj) 2814 return; /* no hstate attributes */ 2815 2816 for_each_hstate(h) { 2817 int idx = hstate_index(h); 2818 if (nhs->hstate_kobjs[idx]) { 2819 kobject_put(nhs->hstate_kobjs[idx]); 2820 nhs->hstate_kobjs[idx] = NULL; 2821 } 2822 } 2823 2824 kobject_put(nhs->hugepages_kobj); 2825 nhs->hugepages_kobj = NULL; 2826 } 2827 2828 2829 /* 2830 * Register hstate attributes for a single node device. 2831 * No-op if attributes already registered. 2832 */ 2833 static void hugetlb_register_node(struct node *node) 2834 { 2835 struct hstate *h; 2836 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2837 int err; 2838 2839 if (nhs->hugepages_kobj) 2840 return; /* already allocated */ 2841 2842 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2843 &node->dev.kobj); 2844 if (!nhs->hugepages_kobj) 2845 return; 2846 2847 for_each_hstate(h) { 2848 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2849 nhs->hstate_kobjs, 2850 &per_node_hstate_attr_group); 2851 if (err) { 2852 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2853 h->name, node->dev.id); 2854 hugetlb_unregister_node(node); 2855 break; 2856 } 2857 } 2858 } 2859 2860 /* 2861 * hugetlb init time: register hstate attributes for all registered node 2862 * devices of nodes that have memory. All on-line nodes should have 2863 * registered their associated device by this time. 2864 */ 2865 static void __init hugetlb_register_all_nodes(void) 2866 { 2867 int nid; 2868 2869 for_each_node_state(nid, N_MEMORY) { 2870 struct node *node = node_devices[nid]; 2871 if (node->dev.id == nid) 2872 hugetlb_register_node(node); 2873 } 2874 2875 /* 2876 * Let the node device driver know we're here so it can 2877 * [un]register hstate attributes on node hotplug. 2878 */ 2879 register_hugetlbfs_with_node(hugetlb_register_node, 2880 hugetlb_unregister_node); 2881 } 2882 #else /* !CONFIG_NUMA */ 2883 2884 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2885 { 2886 BUG(); 2887 if (nidp) 2888 *nidp = -1; 2889 return NULL; 2890 } 2891 2892 static void hugetlb_register_all_nodes(void) { } 2893 2894 #endif 2895 2896 static int __init hugetlb_init(void) 2897 { 2898 int i; 2899 2900 if (!hugepages_supported()) 2901 return 0; 2902 2903 if (!size_to_hstate(default_hstate_size)) { 2904 if (default_hstate_size != 0) { 2905 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2906 default_hstate_size, HPAGE_SIZE); 2907 } 2908 2909 default_hstate_size = HPAGE_SIZE; 2910 if (!size_to_hstate(default_hstate_size)) 2911 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2912 } 2913 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2914 if (default_hstate_max_huge_pages) { 2915 if (!default_hstate.max_huge_pages) 2916 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2917 } 2918 2919 hugetlb_init_hstates(); 2920 gather_bootmem_prealloc(); 2921 report_hugepages(); 2922 2923 hugetlb_sysfs_init(); 2924 hugetlb_register_all_nodes(); 2925 hugetlb_cgroup_file_init(); 2926 2927 #ifdef CONFIG_SMP 2928 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2929 #else 2930 num_fault_mutexes = 1; 2931 #endif 2932 hugetlb_fault_mutex_table = 2933 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2934 GFP_KERNEL); 2935 BUG_ON(!hugetlb_fault_mutex_table); 2936 2937 for (i = 0; i < num_fault_mutexes; i++) 2938 mutex_init(&hugetlb_fault_mutex_table[i]); 2939 return 0; 2940 } 2941 subsys_initcall(hugetlb_init); 2942 2943 /* Should be called on processing a hugepagesz=... option */ 2944 void __init hugetlb_bad_size(void) 2945 { 2946 parsed_valid_hugepagesz = false; 2947 } 2948 2949 void __init hugetlb_add_hstate(unsigned int order) 2950 { 2951 struct hstate *h; 2952 unsigned long i; 2953 2954 if (size_to_hstate(PAGE_SIZE << order)) { 2955 pr_warn("hugepagesz= specified twice, ignoring\n"); 2956 return; 2957 } 2958 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2959 BUG_ON(order == 0); 2960 h = &hstates[hugetlb_max_hstate++]; 2961 h->order = order; 2962 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2963 h->nr_huge_pages = 0; 2964 h->free_huge_pages = 0; 2965 for (i = 0; i < MAX_NUMNODES; ++i) 2966 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2967 INIT_LIST_HEAD(&h->hugepage_activelist); 2968 h->next_nid_to_alloc = first_memory_node; 2969 h->next_nid_to_free = first_memory_node; 2970 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2971 huge_page_size(h)/1024); 2972 2973 parsed_hstate = h; 2974 } 2975 2976 static int __init hugetlb_nrpages_setup(char *s) 2977 { 2978 unsigned long *mhp; 2979 static unsigned long *last_mhp; 2980 2981 if (!parsed_valid_hugepagesz) { 2982 pr_warn("hugepages = %s preceded by " 2983 "an unsupported hugepagesz, ignoring\n", s); 2984 parsed_valid_hugepagesz = true; 2985 return 1; 2986 } 2987 /* 2988 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2989 * so this hugepages= parameter goes to the "default hstate". 2990 */ 2991 else if (!hugetlb_max_hstate) 2992 mhp = &default_hstate_max_huge_pages; 2993 else 2994 mhp = &parsed_hstate->max_huge_pages; 2995 2996 if (mhp == last_mhp) { 2997 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2998 return 1; 2999 } 3000 3001 if (sscanf(s, "%lu", mhp) <= 0) 3002 *mhp = 0; 3003 3004 /* 3005 * Global state is always initialized later in hugetlb_init. 3006 * But we need to allocate >= MAX_ORDER hstates here early to still 3007 * use the bootmem allocator. 3008 */ 3009 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 3010 hugetlb_hstate_alloc_pages(parsed_hstate); 3011 3012 last_mhp = mhp; 3013 3014 return 1; 3015 } 3016 __setup("hugepages=", hugetlb_nrpages_setup); 3017 3018 static int __init hugetlb_default_setup(char *s) 3019 { 3020 default_hstate_size = memparse(s, &s); 3021 return 1; 3022 } 3023 __setup("default_hugepagesz=", hugetlb_default_setup); 3024 3025 static unsigned int cpuset_mems_nr(unsigned int *array) 3026 { 3027 int node; 3028 unsigned int nr = 0; 3029 3030 for_each_node_mask(node, cpuset_current_mems_allowed) 3031 nr += array[node]; 3032 3033 return nr; 3034 } 3035 3036 #ifdef CONFIG_SYSCTL 3037 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3038 struct ctl_table *table, int write, 3039 void __user *buffer, size_t *length, loff_t *ppos) 3040 { 3041 struct hstate *h = &default_hstate; 3042 unsigned long tmp = h->max_huge_pages; 3043 int ret; 3044 3045 if (!hugepages_supported()) 3046 return -EOPNOTSUPP; 3047 3048 table->data = &tmp; 3049 table->maxlen = sizeof(unsigned long); 3050 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3051 if (ret) 3052 goto out; 3053 3054 if (write) 3055 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3056 NUMA_NO_NODE, tmp, *length); 3057 out: 3058 return ret; 3059 } 3060 3061 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3062 void __user *buffer, size_t *length, loff_t *ppos) 3063 { 3064 3065 return hugetlb_sysctl_handler_common(false, table, write, 3066 buffer, length, ppos); 3067 } 3068 3069 #ifdef CONFIG_NUMA 3070 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3071 void __user *buffer, size_t *length, loff_t *ppos) 3072 { 3073 return hugetlb_sysctl_handler_common(true, table, write, 3074 buffer, length, ppos); 3075 } 3076 #endif /* CONFIG_NUMA */ 3077 3078 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3079 void __user *buffer, 3080 size_t *length, loff_t *ppos) 3081 { 3082 struct hstate *h = &default_hstate; 3083 unsigned long tmp; 3084 int ret; 3085 3086 if (!hugepages_supported()) 3087 return -EOPNOTSUPP; 3088 3089 tmp = h->nr_overcommit_huge_pages; 3090 3091 if (write && hstate_is_gigantic(h)) 3092 return -EINVAL; 3093 3094 table->data = &tmp; 3095 table->maxlen = sizeof(unsigned long); 3096 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3097 if (ret) 3098 goto out; 3099 3100 if (write) { 3101 spin_lock(&hugetlb_lock); 3102 h->nr_overcommit_huge_pages = tmp; 3103 spin_unlock(&hugetlb_lock); 3104 } 3105 out: 3106 return ret; 3107 } 3108 3109 #endif /* CONFIG_SYSCTL */ 3110 3111 void hugetlb_report_meminfo(struct seq_file *m) 3112 { 3113 struct hstate *h; 3114 unsigned long total = 0; 3115 3116 if (!hugepages_supported()) 3117 return; 3118 3119 for_each_hstate(h) { 3120 unsigned long count = h->nr_huge_pages; 3121 3122 total += (PAGE_SIZE << huge_page_order(h)) * count; 3123 3124 if (h == &default_hstate) 3125 seq_printf(m, 3126 "HugePages_Total: %5lu\n" 3127 "HugePages_Free: %5lu\n" 3128 "HugePages_Rsvd: %5lu\n" 3129 "HugePages_Surp: %5lu\n" 3130 "Hugepagesize: %8lu kB\n", 3131 count, 3132 h->free_huge_pages, 3133 h->resv_huge_pages, 3134 h->surplus_huge_pages, 3135 (PAGE_SIZE << huge_page_order(h)) / 1024); 3136 } 3137 3138 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3139 } 3140 3141 int hugetlb_report_node_meminfo(int nid, char *buf) 3142 { 3143 struct hstate *h = &default_hstate; 3144 if (!hugepages_supported()) 3145 return 0; 3146 return sprintf(buf, 3147 "Node %d HugePages_Total: %5u\n" 3148 "Node %d HugePages_Free: %5u\n" 3149 "Node %d HugePages_Surp: %5u\n", 3150 nid, h->nr_huge_pages_node[nid], 3151 nid, h->free_huge_pages_node[nid], 3152 nid, h->surplus_huge_pages_node[nid]); 3153 } 3154 3155 void hugetlb_show_meminfo(void) 3156 { 3157 struct hstate *h; 3158 int nid; 3159 3160 if (!hugepages_supported()) 3161 return; 3162 3163 for_each_node_state(nid, N_MEMORY) 3164 for_each_hstate(h) 3165 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3166 nid, 3167 h->nr_huge_pages_node[nid], 3168 h->free_huge_pages_node[nid], 3169 h->surplus_huge_pages_node[nid], 3170 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3171 } 3172 3173 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3174 { 3175 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3176 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3177 } 3178 3179 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3180 unsigned long hugetlb_total_pages(void) 3181 { 3182 struct hstate *h; 3183 unsigned long nr_total_pages = 0; 3184 3185 for_each_hstate(h) 3186 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3187 return nr_total_pages; 3188 } 3189 3190 static int hugetlb_acct_memory(struct hstate *h, long delta) 3191 { 3192 int ret = -ENOMEM; 3193 3194 spin_lock(&hugetlb_lock); 3195 /* 3196 * When cpuset is configured, it breaks the strict hugetlb page 3197 * reservation as the accounting is done on a global variable. Such 3198 * reservation is completely rubbish in the presence of cpuset because 3199 * the reservation is not checked against page availability for the 3200 * current cpuset. Application can still potentially OOM'ed by kernel 3201 * with lack of free htlb page in cpuset that the task is in. 3202 * Attempt to enforce strict accounting with cpuset is almost 3203 * impossible (or too ugly) because cpuset is too fluid that 3204 * task or memory node can be dynamically moved between cpusets. 3205 * 3206 * The change of semantics for shared hugetlb mapping with cpuset is 3207 * undesirable. However, in order to preserve some of the semantics, 3208 * we fall back to check against current free page availability as 3209 * a best attempt and hopefully to minimize the impact of changing 3210 * semantics that cpuset has. 3211 */ 3212 if (delta > 0) { 3213 if (gather_surplus_pages(h, delta) < 0) 3214 goto out; 3215 3216 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3217 return_unused_surplus_pages(h, delta); 3218 goto out; 3219 } 3220 } 3221 3222 ret = 0; 3223 if (delta < 0) 3224 return_unused_surplus_pages(h, (unsigned long) -delta); 3225 3226 out: 3227 spin_unlock(&hugetlb_lock); 3228 return ret; 3229 } 3230 3231 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3232 { 3233 struct resv_map *resv = vma_resv_map(vma); 3234 3235 /* 3236 * This new VMA should share its siblings reservation map if present. 3237 * The VMA will only ever have a valid reservation map pointer where 3238 * it is being copied for another still existing VMA. As that VMA 3239 * has a reference to the reservation map it cannot disappear until 3240 * after this open call completes. It is therefore safe to take a 3241 * new reference here without additional locking. 3242 */ 3243 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3244 kref_get(&resv->refs); 3245 } 3246 3247 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3248 { 3249 struct hstate *h = hstate_vma(vma); 3250 struct resv_map *resv = vma_resv_map(vma); 3251 struct hugepage_subpool *spool = subpool_vma(vma); 3252 unsigned long reserve, start, end; 3253 long gbl_reserve; 3254 3255 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3256 return; 3257 3258 start = vma_hugecache_offset(h, vma, vma->vm_start); 3259 end = vma_hugecache_offset(h, vma, vma->vm_end); 3260 3261 reserve = (end - start) - region_count(resv, start, end); 3262 3263 kref_put(&resv->refs, resv_map_release); 3264 3265 if (reserve) { 3266 /* 3267 * Decrement reserve counts. The global reserve count may be 3268 * adjusted if the subpool has a minimum size. 3269 */ 3270 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3271 hugetlb_acct_memory(h, -gbl_reserve); 3272 } 3273 } 3274 3275 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3276 { 3277 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3278 return -EINVAL; 3279 return 0; 3280 } 3281 3282 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3283 { 3284 struct hstate *hstate = hstate_vma(vma); 3285 3286 return 1UL << huge_page_shift(hstate); 3287 } 3288 3289 /* 3290 * We cannot handle pagefaults against hugetlb pages at all. They cause 3291 * handle_mm_fault() to try to instantiate regular-sized pages in the 3292 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3293 * this far. 3294 */ 3295 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3296 { 3297 BUG(); 3298 return 0; 3299 } 3300 3301 /* 3302 * When a new function is introduced to vm_operations_struct and added 3303 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3304 * This is because under System V memory model, mappings created via 3305 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3306 * their original vm_ops are overwritten with shm_vm_ops. 3307 */ 3308 const struct vm_operations_struct hugetlb_vm_ops = { 3309 .fault = hugetlb_vm_op_fault, 3310 .open = hugetlb_vm_op_open, 3311 .close = hugetlb_vm_op_close, 3312 .split = hugetlb_vm_op_split, 3313 .pagesize = hugetlb_vm_op_pagesize, 3314 }; 3315 3316 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3317 int writable) 3318 { 3319 pte_t entry; 3320 3321 if (writable) { 3322 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3323 vma->vm_page_prot))); 3324 } else { 3325 entry = huge_pte_wrprotect(mk_huge_pte(page, 3326 vma->vm_page_prot)); 3327 } 3328 entry = pte_mkyoung(entry); 3329 entry = pte_mkhuge(entry); 3330 entry = arch_make_huge_pte(entry, vma, page, writable); 3331 3332 return entry; 3333 } 3334 3335 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3336 unsigned long address, pte_t *ptep) 3337 { 3338 pte_t entry; 3339 3340 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3341 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3342 update_mmu_cache(vma, address, ptep); 3343 } 3344 3345 bool is_hugetlb_entry_migration(pte_t pte) 3346 { 3347 swp_entry_t swp; 3348 3349 if (huge_pte_none(pte) || pte_present(pte)) 3350 return false; 3351 swp = pte_to_swp_entry(pte); 3352 if (non_swap_entry(swp) && is_migration_entry(swp)) 3353 return true; 3354 else 3355 return false; 3356 } 3357 3358 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3359 { 3360 swp_entry_t swp; 3361 3362 if (huge_pte_none(pte) || pte_present(pte)) 3363 return 0; 3364 swp = pte_to_swp_entry(pte); 3365 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3366 return 1; 3367 else 3368 return 0; 3369 } 3370 3371 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3372 struct vm_area_struct *vma) 3373 { 3374 pte_t *src_pte, *dst_pte, entry, dst_entry; 3375 struct page *ptepage; 3376 unsigned long addr; 3377 int cow; 3378 struct hstate *h = hstate_vma(vma); 3379 unsigned long sz = huge_page_size(h); 3380 struct mmu_notifier_range range; 3381 int ret = 0; 3382 3383 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3384 3385 if (cow) { 3386 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3387 vma->vm_start, 3388 vma->vm_end); 3389 mmu_notifier_invalidate_range_start(&range); 3390 } 3391 3392 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3393 spinlock_t *src_ptl, *dst_ptl; 3394 src_pte = huge_pte_offset(src, addr, sz); 3395 if (!src_pte) 3396 continue; 3397 dst_pte = huge_pte_alloc(dst, addr, sz); 3398 if (!dst_pte) { 3399 ret = -ENOMEM; 3400 break; 3401 } 3402 3403 /* 3404 * If the pagetables are shared don't copy or take references. 3405 * dst_pte == src_pte is the common case of src/dest sharing. 3406 * 3407 * However, src could have 'unshared' and dst shares with 3408 * another vma. If dst_pte !none, this implies sharing. 3409 * Check here before taking page table lock, and once again 3410 * after taking the lock below. 3411 */ 3412 dst_entry = huge_ptep_get(dst_pte); 3413 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3414 continue; 3415 3416 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3417 src_ptl = huge_pte_lockptr(h, src, src_pte); 3418 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3419 entry = huge_ptep_get(src_pte); 3420 dst_entry = huge_ptep_get(dst_pte); 3421 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3422 /* 3423 * Skip if src entry none. Also, skip in the 3424 * unlikely case dst entry !none as this implies 3425 * sharing with another vma. 3426 */ 3427 ; 3428 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3429 is_hugetlb_entry_hwpoisoned(entry))) { 3430 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3431 3432 if (is_write_migration_entry(swp_entry) && cow) { 3433 /* 3434 * COW mappings require pages in both 3435 * parent and child to be set to read. 3436 */ 3437 make_migration_entry_read(&swp_entry); 3438 entry = swp_entry_to_pte(swp_entry); 3439 set_huge_swap_pte_at(src, addr, src_pte, 3440 entry, sz); 3441 } 3442 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3443 } else { 3444 if (cow) { 3445 /* 3446 * No need to notify as we are downgrading page 3447 * table protection not changing it to point 3448 * to a new page. 3449 * 3450 * See Documentation/vm/mmu_notifier.rst 3451 */ 3452 huge_ptep_set_wrprotect(src, addr, src_pte); 3453 } 3454 entry = huge_ptep_get(src_pte); 3455 ptepage = pte_page(entry); 3456 get_page(ptepage); 3457 page_dup_rmap(ptepage, true); 3458 set_huge_pte_at(dst, addr, dst_pte, entry); 3459 hugetlb_count_add(pages_per_huge_page(h), dst); 3460 } 3461 spin_unlock(src_ptl); 3462 spin_unlock(dst_ptl); 3463 } 3464 3465 if (cow) 3466 mmu_notifier_invalidate_range_end(&range); 3467 3468 return ret; 3469 } 3470 3471 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3472 unsigned long start, unsigned long end, 3473 struct page *ref_page) 3474 { 3475 struct mm_struct *mm = vma->vm_mm; 3476 unsigned long address; 3477 pte_t *ptep; 3478 pte_t pte; 3479 spinlock_t *ptl; 3480 struct page *page; 3481 struct hstate *h = hstate_vma(vma); 3482 unsigned long sz = huge_page_size(h); 3483 struct mmu_notifier_range range; 3484 3485 WARN_ON(!is_vm_hugetlb_page(vma)); 3486 BUG_ON(start & ~huge_page_mask(h)); 3487 BUG_ON(end & ~huge_page_mask(h)); 3488 3489 /* 3490 * This is a hugetlb vma, all the pte entries should point 3491 * to huge page. 3492 */ 3493 tlb_change_page_size(tlb, sz); 3494 tlb_start_vma(tlb, vma); 3495 3496 /* 3497 * If sharing possible, alert mmu notifiers of worst case. 3498 */ 3499 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3500 end); 3501 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3502 mmu_notifier_invalidate_range_start(&range); 3503 address = start; 3504 for (; address < end; address += sz) { 3505 ptep = huge_pte_offset(mm, address, sz); 3506 if (!ptep) 3507 continue; 3508 3509 ptl = huge_pte_lock(h, mm, ptep); 3510 if (huge_pmd_unshare(mm, &address, ptep)) { 3511 spin_unlock(ptl); 3512 /* 3513 * We just unmapped a page of PMDs by clearing a PUD. 3514 * The caller's TLB flush range should cover this area. 3515 */ 3516 continue; 3517 } 3518 3519 pte = huge_ptep_get(ptep); 3520 if (huge_pte_none(pte)) { 3521 spin_unlock(ptl); 3522 continue; 3523 } 3524 3525 /* 3526 * Migrating hugepage or HWPoisoned hugepage is already 3527 * unmapped and its refcount is dropped, so just clear pte here. 3528 */ 3529 if (unlikely(!pte_present(pte))) { 3530 huge_pte_clear(mm, address, ptep, sz); 3531 spin_unlock(ptl); 3532 continue; 3533 } 3534 3535 page = pte_page(pte); 3536 /* 3537 * If a reference page is supplied, it is because a specific 3538 * page is being unmapped, not a range. Ensure the page we 3539 * are about to unmap is the actual page of interest. 3540 */ 3541 if (ref_page) { 3542 if (page != ref_page) { 3543 spin_unlock(ptl); 3544 continue; 3545 } 3546 /* 3547 * Mark the VMA as having unmapped its page so that 3548 * future faults in this VMA will fail rather than 3549 * looking like data was lost 3550 */ 3551 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3552 } 3553 3554 pte = huge_ptep_get_and_clear(mm, address, ptep); 3555 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3556 if (huge_pte_dirty(pte)) 3557 set_page_dirty(page); 3558 3559 hugetlb_count_sub(pages_per_huge_page(h), mm); 3560 page_remove_rmap(page, true); 3561 3562 spin_unlock(ptl); 3563 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3564 /* 3565 * Bail out after unmapping reference page if supplied 3566 */ 3567 if (ref_page) 3568 break; 3569 } 3570 mmu_notifier_invalidate_range_end(&range); 3571 tlb_end_vma(tlb, vma); 3572 } 3573 3574 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3575 struct vm_area_struct *vma, unsigned long start, 3576 unsigned long end, struct page *ref_page) 3577 { 3578 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3579 3580 /* 3581 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3582 * test will fail on a vma being torn down, and not grab a page table 3583 * on its way out. We're lucky that the flag has such an appropriate 3584 * name, and can in fact be safely cleared here. We could clear it 3585 * before the __unmap_hugepage_range above, but all that's necessary 3586 * is to clear it before releasing the i_mmap_rwsem. This works 3587 * because in the context this is called, the VMA is about to be 3588 * destroyed and the i_mmap_rwsem is held. 3589 */ 3590 vma->vm_flags &= ~VM_MAYSHARE; 3591 } 3592 3593 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3594 unsigned long end, struct page *ref_page) 3595 { 3596 struct mm_struct *mm; 3597 struct mmu_gather tlb; 3598 unsigned long tlb_start = start; 3599 unsigned long tlb_end = end; 3600 3601 /* 3602 * If shared PMDs were possibly used within this vma range, adjust 3603 * start/end for worst case tlb flushing. 3604 * Note that we can not be sure if PMDs are shared until we try to 3605 * unmap pages. However, we want to make sure TLB flushing covers 3606 * the largest possible range. 3607 */ 3608 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3609 3610 mm = vma->vm_mm; 3611 3612 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3613 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3614 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3615 } 3616 3617 /* 3618 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3619 * mappping it owns the reserve page for. The intention is to unmap the page 3620 * from other VMAs and let the children be SIGKILLed if they are faulting the 3621 * same region. 3622 */ 3623 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3624 struct page *page, unsigned long address) 3625 { 3626 struct hstate *h = hstate_vma(vma); 3627 struct vm_area_struct *iter_vma; 3628 struct address_space *mapping; 3629 pgoff_t pgoff; 3630 3631 /* 3632 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3633 * from page cache lookup which is in HPAGE_SIZE units. 3634 */ 3635 address = address & huge_page_mask(h); 3636 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3637 vma->vm_pgoff; 3638 mapping = vma->vm_file->f_mapping; 3639 3640 /* 3641 * Take the mapping lock for the duration of the table walk. As 3642 * this mapping should be shared between all the VMAs, 3643 * __unmap_hugepage_range() is called as the lock is already held 3644 */ 3645 i_mmap_lock_write(mapping); 3646 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3647 /* Do not unmap the current VMA */ 3648 if (iter_vma == vma) 3649 continue; 3650 3651 /* 3652 * Shared VMAs have their own reserves and do not affect 3653 * MAP_PRIVATE accounting but it is possible that a shared 3654 * VMA is using the same page so check and skip such VMAs. 3655 */ 3656 if (iter_vma->vm_flags & VM_MAYSHARE) 3657 continue; 3658 3659 /* 3660 * Unmap the page from other VMAs without their own reserves. 3661 * They get marked to be SIGKILLed if they fault in these 3662 * areas. This is because a future no-page fault on this VMA 3663 * could insert a zeroed page instead of the data existing 3664 * from the time of fork. This would look like data corruption 3665 */ 3666 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3667 unmap_hugepage_range(iter_vma, address, 3668 address + huge_page_size(h), page); 3669 } 3670 i_mmap_unlock_write(mapping); 3671 } 3672 3673 /* 3674 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3675 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3676 * cannot race with other handlers or page migration. 3677 * Keep the pte_same checks anyway to make transition from the mutex easier. 3678 */ 3679 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3680 unsigned long address, pte_t *ptep, 3681 struct page *pagecache_page, spinlock_t *ptl) 3682 { 3683 pte_t pte; 3684 struct hstate *h = hstate_vma(vma); 3685 struct page *old_page, *new_page; 3686 int outside_reserve = 0; 3687 vm_fault_t ret = 0; 3688 unsigned long haddr = address & huge_page_mask(h); 3689 struct mmu_notifier_range range; 3690 3691 pte = huge_ptep_get(ptep); 3692 old_page = pte_page(pte); 3693 3694 retry_avoidcopy: 3695 /* If no-one else is actually using this page, avoid the copy 3696 * and just make the page writable */ 3697 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3698 page_move_anon_rmap(old_page, vma); 3699 set_huge_ptep_writable(vma, haddr, ptep); 3700 return 0; 3701 } 3702 3703 /* 3704 * If the process that created a MAP_PRIVATE mapping is about to 3705 * perform a COW due to a shared page count, attempt to satisfy 3706 * the allocation without using the existing reserves. The pagecache 3707 * page is used to determine if the reserve at this address was 3708 * consumed or not. If reserves were used, a partial faulted mapping 3709 * at the time of fork() could consume its reserves on COW instead 3710 * of the full address range. 3711 */ 3712 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3713 old_page != pagecache_page) 3714 outside_reserve = 1; 3715 3716 get_page(old_page); 3717 3718 /* 3719 * Drop page table lock as buddy allocator may be called. It will 3720 * be acquired again before returning to the caller, as expected. 3721 */ 3722 spin_unlock(ptl); 3723 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3724 3725 if (IS_ERR(new_page)) { 3726 /* 3727 * If a process owning a MAP_PRIVATE mapping fails to COW, 3728 * it is due to references held by a child and an insufficient 3729 * huge page pool. To guarantee the original mappers 3730 * reliability, unmap the page from child processes. The child 3731 * may get SIGKILLed if it later faults. 3732 */ 3733 if (outside_reserve) { 3734 put_page(old_page); 3735 BUG_ON(huge_pte_none(pte)); 3736 unmap_ref_private(mm, vma, old_page, haddr); 3737 BUG_ON(huge_pte_none(pte)); 3738 spin_lock(ptl); 3739 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3740 if (likely(ptep && 3741 pte_same(huge_ptep_get(ptep), pte))) 3742 goto retry_avoidcopy; 3743 /* 3744 * race occurs while re-acquiring page table 3745 * lock, and our job is done. 3746 */ 3747 return 0; 3748 } 3749 3750 ret = vmf_error(PTR_ERR(new_page)); 3751 goto out_release_old; 3752 } 3753 3754 /* 3755 * When the original hugepage is shared one, it does not have 3756 * anon_vma prepared. 3757 */ 3758 if (unlikely(anon_vma_prepare(vma))) { 3759 ret = VM_FAULT_OOM; 3760 goto out_release_all; 3761 } 3762 3763 copy_user_huge_page(new_page, old_page, address, vma, 3764 pages_per_huge_page(h)); 3765 __SetPageUptodate(new_page); 3766 3767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 3768 haddr + huge_page_size(h)); 3769 mmu_notifier_invalidate_range_start(&range); 3770 3771 /* 3772 * Retake the page table lock to check for racing updates 3773 * before the page tables are altered 3774 */ 3775 spin_lock(ptl); 3776 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3777 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3778 ClearPagePrivate(new_page); 3779 3780 /* Break COW */ 3781 huge_ptep_clear_flush(vma, haddr, ptep); 3782 mmu_notifier_invalidate_range(mm, range.start, range.end); 3783 set_huge_pte_at(mm, haddr, ptep, 3784 make_huge_pte(vma, new_page, 1)); 3785 page_remove_rmap(old_page, true); 3786 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3787 set_page_huge_active(new_page); 3788 /* Make the old page be freed below */ 3789 new_page = old_page; 3790 } 3791 spin_unlock(ptl); 3792 mmu_notifier_invalidate_range_end(&range); 3793 out_release_all: 3794 restore_reserve_on_error(h, vma, haddr, new_page); 3795 put_page(new_page); 3796 out_release_old: 3797 put_page(old_page); 3798 3799 spin_lock(ptl); /* Caller expects lock to be held */ 3800 return ret; 3801 } 3802 3803 /* Return the pagecache page at a given address within a VMA */ 3804 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3805 struct vm_area_struct *vma, unsigned long address) 3806 { 3807 struct address_space *mapping; 3808 pgoff_t idx; 3809 3810 mapping = vma->vm_file->f_mapping; 3811 idx = vma_hugecache_offset(h, vma, address); 3812 3813 return find_lock_page(mapping, idx); 3814 } 3815 3816 /* 3817 * Return whether there is a pagecache page to back given address within VMA. 3818 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3819 */ 3820 static bool hugetlbfs_pagecache_present(struct hstate *h, 3821 struct vm_area_struct *vma, unsigned long address) 3822 { 3823 struct address_space *mapping; 3824 pgoff_t idx; 3825 struct page *page; 3826 3827 mapping = vma->vm_file->f_mapping; 3828 idx = vma_hugecache_offset(h, vma, address); 3829 3830 page = find_get_page(mapping, idx); 3831 if (page) 3832 put_page(page); 3833 return page != NULL; 3834 } 3835 3836 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3837 pgoff_t idx) 3838 { 3839 struct inode *inode = mapping->host; 3840 struct hstate *h = hstate_inode(inode); 3841 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3842 3843 if (err) 3844 return err; 3845 ClearPagePrivate(page); 3846 3847 /* 3848 * set page dirty so that it will not be removed from cache/file 3849 * by non-hugetlbfs specific code paths. 3850 */ 3851 set_page_dirty(page); 3852 3853 spin_lock(&inode->i_lock); 3854 inode->i_blocks += blocks_per_huge_page(h); 3855 spin_unlock(&inode->i_lock); 3856 return 0; 3857 } 3858 3859 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3860 struct vm_area_struct *vma, 3861 struct address_space *mapping, pgoff_t idx, 3862 unsigned long address, pte_t *ptep, unsigned int flags) 3863 { 3864 struct hstate *h = hstate_vma(vma); 3865 vm_fault_t ret = VM_FAULT_SIGBUS; 3866 int anon_rmap = 0; 3867 unsigned long size; 3868 struct page *page; 3869 pte_t new_pte; 3870 spinlock_t *ptl; 3871 unsigned long haddr = address & huge_page_mask(h); 3872 bool new_page = false; 3873 3874 /* 3875 * Currently, we are forced to kill the process in the event the 3876 * original mapper has unmapped pages from the child due to a failed 3877 * COW. Warn that such a situation has occurred as it may not be obvious 3878 */ 3879 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3880 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3881 current->pid); 3882 return ret; 3883 } 3884 3885 /* 3886 * Use page lock to guard against racing truncation 3887 * before we get page_table_lock. 3888 */ 3889 retry: 3890 page = find_lock_page(mapping, idx); 3891 if (!page) { 3892 size = i_size_read(mapping->host) >> huge_page_shift(h); 3893 if (idx >= size) 3894 goto out; 3895 3896 /* 3897 * Check for page in userfault range 3898 */ 3899 if (userfaultfd_missing(vma)) { 3900 u32 hash; 3901 struct vm_fault vmf = { 3902 .vma = vma, 3903 .address = haddr, 3904 .flags = flags, 3905 /* 3906 * Hard to debug if it ends up being 3907 * used by a callee that assumes 3908 * something about the other 3909 * uninitialized fields... same as in 3910 * memory.c 3911 */ 3912 }; 3913 3914 /* 3915 * hugetlb_fault_mutex must be dropped before 3916 * handling userfault. Reacquire after handling 3917 * fault to make calling code simpler. 3918 */ 3919 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 3920 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3921 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3922 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3923 goto out; 3924 } 3925 3926 page = alloc_huge_page(vma, haddr, 0); 3927 if (IS_ERR(page)) { 3928 /* 3929 * Returning error will result in faulting task being 3930 * sent SIGBUS. The hugetlb fault mutex prevents two 3931 * tasks from racing to fault in the same page which 3932 * could result in false unable to allocate errors. 3933 * Page migration does not take the fault mutex, but 3934 * does a clear then write of pte's under page table 3935 * lock. Page fault code could race with migration, 3936 * notice the clear pte and try to allocate a page 3937 * here. Before returning error, get ptl and make 3938 * sure there really is no pte entry. 3939 */ 3940 ptl = huge_pte_lock(h, mm, ptep); 3941 if (!huge_pte_none(huge_ptep_get(ptep))) { 3942 ret = 0; 3943 spin_unlock(ptl); 3944 goto out; 3945 } 3946 spin_unlock(ptl); 3947 ret = vmf_error(PTR_ERR(page)); 3948 goto out; 3949 } 3950 clear_huge_page(page, address, pages_per_huge_page(h)); 3951 __SetPageUptodate(page); 3952 new_page = true; 3953 3954 if (vma->vm_flags & VM_MAYSHARE) { 3955 int err = huge_add_to_page_cache(page, mapping, idx); 3956 if (err) { 3957 put_page(page); 3958 if (err == -EEXIST) 3959 goto retry; 3960 goto out; 3961 } 3962 } else { 3963 lock_page(page); 3964 if (unlikely(anon_vma_prepare(vma))) { 3965 ret = VM_FAULT_OOM; 3966 goto backout_unlocked; 3967 } 3968 anon_rmap = 1; 3969 } 3970 } else { 3971 /* 3972 * If memory error occurs between mmap() and fault, some process 3973 * don't have hwpoisoned swap entry for errored virtual address. 3974 * So we need to block hugepage fault by PG_hwpoison bit check. 3975 */ 3976 if (unlikely(PageHWPoison(page))) { 3977 ret = VM_FAULT_HWPOISON | 3978 VM_FAULT_SET_HINDEX(hstate_index(h)); 3979 goto backout_unlocked; 3980 } 3981 } 3982 3983 /* 3984 * If we are going to COW a private mapping later, we examine the 3985 * pending reservations for this page now. This will ensure that 3986 * any allocations necessary to record that reservation occur outside 3987 * the spinlock. 3988 */ 3989 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3990 if (vma_needs_reservation(h, vma, haddr) < 0) { 3991 ret = VM_FAULT_OOM; 3992 goto backout_unlocked; 3993 } 3994 /* Just decrements count, does not deallocate */ 3995 vma_end_reservation(h, vma, haddr); 3996 } 3997 3998 ptl = huge_pte_lock(h, mm, ptep); 3999 size = i_size_read(mapping->host) >> huge_page_shift(h); 4000 if (idx >= size) 4001 goto backout; 4002 4003 ret = 0; 4004 if (!huge_pte_none(huge_ptep_get(ptep))) 4005 goto backout; 4006 4007 if (anon_rmap) { 4008 ClearPagePrivate(page); 4009 hugepage_add_new_anon_rmap(page, vma, haddr); 4010 } else 4011 page_dup_rmap(page, true); 4012 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4013 && (vma->vm_flags & VM_SHARED))); 4014 set_huge_pte_at(mm, haddr, ptep, new_pte); 4015 4016 hugetlb_count_add(pages_per_huge_page(h), mm); 4017 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4018 /* Optimization, do the COW without a second fault */ 4019 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4020 } 4021 4022 spin_unlock(ptl); 4023 4024 /* 4025 * Only make newly allocated pages active. Existing pages found 4026 * in the pagecache could be !page_huge_active() if they have been 4027 * isolated for migration. 4028 */ 4029 if (new_page) 4030 set_page_huge_active(page); 4031 4032 unlock_page(page); 4033 out: 4034 return ret; 4035 4036 backout: 4037 spin_unlock(ptl); 4038 backout_unlocked: 4039 unlock_page(page); 4040 restore_reserve_on_error(h, vma, haddr, page); 4041 put_page(page); 4042 goto out; 4043 } 4044 4045 #ifdef CONFIG_SMP 4046 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 4047 pgoff_t idx, unsigned long address) 4048 { 4049 unsigned long key[2]; 4050 u32 hash; 4051 4052 key[0] = (unsigned long) mapping; 4053 key[1] = idx; 4054 4055 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 4056 4057 return hash & (num_fault_mutexes - 1); 4058 } 4059 #else 4060 /* 4061 * For uniprocesor systems we always use a single mutex, so just 4062 * return 0 and avoid the hashing overhead. 4063 */ 4064 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 4065 pgoff_t idx, unsigned long address) 4066 { 4067 return 0; 4068 } 4069 #endif 4070 4071 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4072 unsigned long address, unsigned int flags) 4073 { 4074 pte_t *ptep, entry; 4075 spinlock_t *ptl; 4076 vm_fault_t ret; 4077 u32 hash; 4078 pgoff_t idx; 4079 struct page *page = NULL; 4080 struct page *pagecache_page = NULL; 4081 struct hstate *h = hstate_vma(vma); 4082 struct address_space *mapping; 4083 int need_wait_lock = 0; 4084 unsigned long haddr = address & huge_page_mask(h); 4085 4086 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4087 if (ptep) { 4088 entry = huge_ptep_get(ptep); 4089 if (unlikely(is_hugetlb_entry_migration(entry))) { 4090 migration_entry_wait_huge(vma, mm, ptep); 4091 return 0; 4092 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4093 return VM_FAULT_HWPOISON_LARGE | 4094 VM_FAULT_SET_HINDEX(hstate_index(h)); 4095 } else { 4096 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 4097 if (!ptep) 4098 return VM_FAULT_OOM; 4099 } 4100 4101 mapping = vma->vm_file->f_mapping; 4102 idx = vma_hugecache_offset(h, vma, haddr); 4103 4104 /* 4105 * Serialize hugepage allocation and instantiation, so that we don't 4106 * get spurious allocation failures if two CPUs race to instantiate 4107 * the same page in the page cache. 4108 */ 4109 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 4110 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4111 4112 entry = huge_ptep_get(ptep); 4113 if (huge_pte_none(entry)) { 4114 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4115 goto out_mutex; 4116 } 4117 4118 ret = 0; 4119 4120 /* 4121 * entry could be a migration/hwpoison entry at this point, so this 4122 * check prevents the kernel from going below assuming that we have 4123 * a active hugepage in pagecache. This goto expects the 2nd page fault, 4124 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 4125 * handle it. 4126 */ 4127 if (!pte_present(entry)) 4128 goto out_mutex; 4129 4130 /* 4131 * If we are going to COW the mapping later, we examine the pending 4132 * reservations for this page now. This will ensure that any 4133 * allocations necessary to record that reservation occur outside the 4134 * spinlock. For private mappings, we also lookup the pagecache 4135 * page now as it is used to determine if a reservation has been 4136 * consumed. 4137 */ 4138 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4139 if (vma_needs_reservation(h, vma, haddr) < 0) { 4140 ret = VM_FAULT_OOM; 4141 goto out_mutex; 4142 } 4143 /* Just decrements count, does not deallocate */ 4144 vma_end_reservation(h, vma, haddr); 4145 4146 if (!(vma->vm_flags & VM_MAYSHARE)) 4147 pagecache_page = hugetlbfs_pagecache_page(h, 4148 vma, haddr); 4149 } 4150 4151 ptl = huge_pte_lock(h, mm, ptep); 4152 4153 /* Check for a racing update before calling hugetlb_cow */ 4154 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4155 goto out_ptl; 4156 4157 /* 4158 * hugetlb_cow() requires page locks of pte_page(entry) and 4159 * pagecache_page, so here we need take the former one 4160 * when page != pagecache_page or !pagecache_page. 4161 */ 4162 page = pte_page(entry); 4163 if (page != pagecache_page) 4164 if (!trylock_page(page)) { 4165 need_wait_lock = 1; 4166 goto out_ptl; 4167 } 4168 4169 get_page(page); 4170 4171 if (flags & FAULT_FLAG_WRITE) { 4172 if (!huge_pte_write(entry)) { 4173 ret = hugetlb_cow(mm, vma, address, ptep, 4174 pagecache_page, ptl); 4175 goto out_put_page; 4176 } 4177 entry = huge_pte_mkdirty(entry); 4178 } 4179 entry = pte_mkyoung(entry); 4180 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4181 flags & FAULT_FLAG_WRITE)) 4182 update_mmu_cache(vma, haddr, ptep); 4183 out_put_page: 4184 if (page != pagecache_page) 4185 unlock_page(page); 4186 put_page(page); 4187 out_ptl: 4188 spin_unlock(ptl); 4189 4190 if (pagecache_page) { 4191 unlock_page(pagecache_page); 4192 put_page(pagecache_page); 4193 } 4194 out_mutex: 4195 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4196 /* 4197 * Generally it's safe to hold refcount during waiting page lock. But 4198 * here we just wait to defer the next page fault to avoid busy loop and 4199 * the page is not used after unlocked before returning from the current 4200 * page fault. So we are safe from accessing freed page, even if we wait 4201 * here without taking refcount. 4202 */ 4203 if (need_wait_lock) 4204 wait_on_page_locked(page); 4205 return ret; 4206 } 4207 4208 /* 4209 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4210 * modifications for huge pages. 4211 */ 4212 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4213 pte_t *dst_pte, 4214 struct vm_area_struct *dst_vma, 4215 unsigned long dst_addr, 4216 unsigned long src_addr, 4217 struct page **pagep) 4218 { 4219 struct address_space *mapping; 4220 pgoff_t idx; 4221 unsigned long size; 4222 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4223 struct hstate *h = hstate_vma(dst_vma); 4224 pte_t _dst_pte; 4225 spinlock_t *ptl; 4226 int ret; 4227 struct page *page; 4228 4229 if (!*pagep) { 4230 ret = -ENOMEM; 4231 page = alloc_huge_page(dst_vma, dst_addr, 0); 4232 if (IS_ERR(page)) 4233 goto out; 4234 4235 ret = copy_huge_page_from_user(page, 4236 (const void __user *) src_addr, 4237 pages_per_huge_page(h), false); 4238 4239 /* fallback to copy_from_user outside mmap_sem */ 4240 if (unlikely(ret)) { 4241 ret = -ENOENT; 4242 *pagep = page; 4243 /* don't free the page */ 4244 goto out; 4245 } 4246 } else { 4247 page = *pagep; 4248 *pagep = NULL; 4249 } 4250 4251 /* 4252 * The memory barrier inside __SetPageUptodate makes sure that 4253 * preceding stores to the page contents become visible before 4254 * the set_pte_at() write. 4255 */ 4256 __SetPageUptodate(page); 4257 4258 mapping = dst_vma->vm_file->f_mapping; 4259 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4260 4261 /* 4262 * If shared, add to page cache 4263 */ 4264 if (vm_shared) { 4265 size = i_size_read(mapping->host) >> huge_page_shift(h); 4266 ret = -EFAULT; 4267 if (idx >= size) 4268 goto out_release_nounlock; 4269 4270 /* 4271 * Serialization between remove_inode_hugepages() and 4272 * huge_add_to_page_cache() below happens through the 4273 * hugetlb_fault_mutex_table that here must be hold by 4274 * the caller. 4275 */ 4276 ret = huge_add_to_page_cache(page, mapping, idx); 4277 if (ret) 4278 goto out_release_nounlock; 4279 } 4280 4281 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4282 spin_lock(ptl); 4283 4284 /* 4285 * Recheck the i_size after holding PT lock to make sure not 4286 * to leave any page mapped (as page_mapped()) beyond the end 4287 * of the i_size (remove_inode_hugepages() is strict about 4288 * enforcing that). If we bail out here, we'll also leave a 4289 * page in the radix tree in the vm_shared case beyond the end 4290 * of the i_size, but remove_inode_hugepages() will take care 4291 * of it as soon as we drop the hugetlb_fault_mutex_table. 4292 */ 4293 size = i_size_read(mapping->host) >> huge_page_shift(h); 4294 ret = -EFAULT; 4295 if (idx >= size) 4296 goto out_release_unlock; 4297 4298 ret = -EEXIST; 4299 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4300 goto out_release_unlock; 4301 4302 if (vm_shared) { 4303 page_dup_rmap(page, true); 4304 } else { 4305 ClearPagePrivate(page); 4306 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4307 } 4308 4309 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4310 if (dst_vma->vm_flags & VM_WRITE) 4311 _dst_pte = huge_pte_mkdirty(_dst_pte); 4312 _dst_pte = pte_mkyoung(_dst_pte); 4313 4314 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4315 4316 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4317 dst_vma->vm_flags & VM_WRITE); 4318 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4319 4320 /* No need to invalidate - it was non-present before */ 4321 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4322 4323 spin_unlock(ptl); 4324 set_page_huge_active(page); 4325 if (vm_shared) 4326 unlock_page(page); 4327 ret = 0; 4328 out: 4329 return ret; 4330 out_release_unlock: 4331 spin_unlock(ptl); 4332 if (vm_shared) 4333 unlock_page(page); 4334 out_release_nounlock: 4335 put_page(page); 4336 goto out; 4337 } 4338 4339 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4340 struct page **pages, struct vm_area_struct **vmas, 4341 unsigned long *position, unsigned long *nr_pages, 4342 long i, unsigned int flags, int *nonblocking) 4343 { 4344 unsigned long pfn_offset; 4345 unsigned long vaddr = *position; 4346 unsigned long remainder = *nr_pages; 4347 struct hstate *h = hstate_vma(vma); 4348 int err = -EFAULT; 4349 4350 while (vaddr < vma->vm_end && remainder) { 4351 pte_t *pte; 4352 spinlock_t *ptl = NULL; 4353 int absent; 4354 struct page *page; 4355 4356 /* 4357 * If we have a pending SIGKILL, don't keep faulting pages and 4358 * potentially allocating memory. 4359 */ 4360 if (fatal_signal_pending(current)) { 4361 remainder = 0; 4362 break; 4363 } 4364 4365 /* 4366 * Some archs (sparc64, sh*) have multiple pte_ts to 4367 * each hugepage. We have to make sure we get the 4368 * first, for the page indexing below to work. 4369 * 4370 * Note that page table lock is not held when pte is null. 4371 */ 4372 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4373 huge_page_size(h)); 4374 if (pte) 4375 ptl = huge_pte_lock(h, mm, pte); 4376 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4377 4378 /* 4379 * When coredumping, it suits get_dump_page if we just return 4380 * an error where there's an empty slot with no huge pagecache 4381 * to back it. This way, we avoid allocating a hugepage, and 4382 * the sparse dumpfile avoids allocating disk blocks, but its 4383 * huge holes still show up with zeroes where they need to be. 4384 */ 4385 if (absent && (flags & FOLL_DUMP) && 4386 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4387 if (pte) 4388 spin_unlock(ptl); 4389 remainder = 0; 4390 break; 4391 } 4392 4393 /* 4394 * We need call hugetlb_fault for both hugepages under migration 4395 * (in which case hugetlb_fault waits for the migration,) and 4396 * hwpoisoned hugepages (in which case we need to prevent the 4397 * caller from accessing to them.) In order to do this, we use 4398 * here is_swap_pte instead of is_hugetlb_entry_migration and 4399 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4400 * both cases, and because we can't follow correct pages 4401 * directly from any kind of swap entries. 4402 */ 4403 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4404 ((flags & FOLL_WRITE) && 4405 !huge_pte_write(huge_ptep_get(pte)))) { 4406 vm_fault_t ret; 4407 unsigned int fault_flags = 0; 4408 4409 if (pte) 4410 spin_unlock(ptl); 4411 if (flags & FOLL_WRITE) 4412 fault_flags |= FAULT_FLAG_WRITE; 4413 if (nonblocking) 4414 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4415 if (flags & FOLL_NOWAIT) 4416 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4417 FAULT_FLAG_RETRY_NOWAIT; 4418 if (flags & FOLL_TRIED) { 4419 VM_WARN_ON_ONCE(fault_flags & 4420 FAULT_FLAG_ALLOW_RETRY); 4421 fault_flags |= FAULT_FLAG_TRIED; 4422 } 4423 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4424 if (ret & VM_FAULT_ERROR) { 4425 err = vm_fault_to_errno(ret, flags); 4426 remainder = 0; 4427 break; 4428 } 4429 if (ret & VM_FAULT_RETRY) { 4430 if (nonblocking && 4431 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4432 *nonblocking = 0; 4433 *nr_pages = 0; 4434 /* 4435 * VM_FAULT_RETRY must not return an 4436 * error, it will return zero 4437 * instead. 4438 * 4439 * No need to update "position" as the 4440 * caller will not check it after 4441 * *nr_pages is set to 0. 4442 */ 4443 return i; 4444 } 4445 continue; 4446 } 4447 4448 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4449 page = pte_page(huge_ptep_get(pte)); 4450 4451 /* 4452 * Instead of doing 'try_get_page()' below in the same_page 4453 * loop, just check the count once here. 4454 */ 4455 if (unlikely(page_count(page) <= 0)) { 4456 if (pages) { 4457 spin_unlock(ptl); 4458 remainder = 0; 4459 err = -ENOMEM; 4460 break; 4461 } 4462 } 4463 same_page: 4464 if (pages) { 4465 pages[i] = mem_map_offset(page, pfn_offset); 4466 get_page(pages[i]); 4467 } 4468 4469 if (vmas) 4470 vmas[i] = vma; 4471 4472 vaddr += PAGE_SIZE; 4473 ++pfn_offset; 4474 --remainder; 4475 ++i; 4476 if (vaddr < vma->vm_end && remainder && 4477 pfn_offset < pages_per_huge_page(h)) { 4478 /* 4479 * We use pfn_offset to avoid touching the pageframes 4480 * of this compound page. 4481 */ 4482 goto same_page; 4483 } 4484 spin_unlock(ptl); 4485 } 4486 *nr_pages = remainder; 4487 /* 4488 * setting position is actually required only if remainder is 4489 * not zero but it's faster not to add a "if (remainder)" 4490 * branch. 4491 */ 4492 *position = vaddr; 4493 4494 return i ? i : err; 4495 } 4496 4497 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4498 /* 4499 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4500 * implement this. 4501 */ 4502 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4503 #endif 4504 4505 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4506 unsigned long address, unsigned long end, pgprot_t newprot) 4507 { 4508 struct mm_struct *mm = vma->vm_mm; 4509 unsigned long start = address; 4510 pte_t *ptep; 4511 pte_t pte; 4512 struct hstate *h = hstate_vma(vma); 4513 unsigned long pages = 0; 4514 bool shared_pmd = false; 4515 struct mmu_notifier_range range; 4516 4517 /* 4518 * In the case of shared PMDs, the area to flush could be beyond 4519 * start/end. Set range.start/range.end to cover the maximum possible 4520 * range if PMD sharing is possible. 4521 */ 4522 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4523 0, vma, mm, start, end); 4524 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4525 4526 BUG_ON(address >= end); 4527 flush_cache_range(vma, range.start, range.end); 4528 4529 mmu_notifier_invalidate_range_start(&range); 4530 i_mmap_lock_write(vma->vm_file->f_mapping); 4531 for (; address < end; address += huge_page_size(h)) { 4532 spinlock_t *ptl; 4533 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4534 if (!ptep) 4535 continue; 4536 ptl = huge_pte_lock(h, mm, ptep); 4537 if (huge_pmd_unshare(mm, &address, ptep)) { 4538 pages++; 4539 spin_unlock(ptl); 4540 shared_pmd = true; 4541 continue; 4542 } 4543 pte = huge_ptep_get(ptep); 4544 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4545 spin_unlock(ptl); 4546 continue; 4547 } 4548 if (unlikely(is_hugetlb_entry_migration(pte))) { 4549 swp_entry_t entry = pte_to_swp_entry(pte); 4550 4551 if (is_write_migration_entry(entry)) { 4552 pte_t newpte; 4553 4554 make_migration_entry_read(&entry); 4555 newpte = swp_entry_to_pte(entry); 4556 set_huge_swap_pte_at(mm, address, ptep, 4557 newpte, huge_page_size(h)); 4558 pages++; 4559 } 4560 spin_unlock(ptl); 4561 continue; 4562 } 4563 if (!huge_pte_none(pte)) { 4564 pte_t old_pte; 4565 4566 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4567 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4568 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4569 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4570 pages++; 4571 } 4572 spin_unlock(ptl); 4573 } 4574 /* 4575 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4576 * may have cleared our pud entry and done put_page on the page table: 4577 * once we release i_mmap_rwsem, another task can do the final put_page 4578 * and that page table be reused and filled with junk. If we actually 4579 * did unshare a page of pmds, flush the range corresponding to the pud. 4580 */ 4581 if (shared_pmd) 4582 flush_hugetlb_tlb_range(vma, range.start, range.end); 4583 else 4584 flush_hugetlb_tlb_range(vma, start, end); 4585 /* 4586 * No need to call mmu_notifier_invalidate_range() we are downgrading 4587 * page table protection not changing it to point to a new page. 4588 * 4589 * See Documentation/vm/mmu_notifier.rst 4590 */ 4591 i_mmap_unlock_write(vma->vm_file->f_mapping); 4592 mmu_notifier_invalidate_range_end(&range); 4593 4594 return pages << h->order; 4595 } 4596 4597 int hugetlb_reserve_pages(struct inode *inode, 4598 long from, long to, 4599 struct vm_area_struct *vma, 4600 vm_flags_t vm_flags) 4601 { 4602 long ret, chg; 4603 struct hstate *h = hstate_inode(inode); 4604 struct hugepage_subpool *spool = subpool_inode(inode); 4605 struct resv_map *resv_map; 4606 long gbl_reserve; 4607 4608 /* This should never happen */ 4609 if (from > to) { 4610 VM_WARN(1, "%s called with a negative range\n", __func__); 4611 return -EINVAL; 4612 } 4613 4614 /* 4615 * Only apply hugepage reservation if asked. At fault time, an 4616 * attempt will be made for VM_NORESERVE to allocate a page 4617 * without using reserves 4618 */ 4619 if (vm_flags & VM_NORESERVE) 4620 return 0; 4621 4622 /* 4623 * Shared mappings base their reservation on the number of pages that 4624 * are already allocated on behalf of the file. Private mappings need 4625 * to reserve the full area even if read-only as mprotect() may be 4626 * called to make the mapping read-write. Assume !vma is a shm mapping 4627 */ 4628 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4629 /* 4630 * resv_map can not be NULL as hugetlb_reserve_pages is only 4631 * called for inodes for which resv_maps were created (see 4632 * hugetlbfs_get_inode). 4633 */ 4634 resv_map = inode_resv_map(inode); 4635 4636 chg = region_chg(resv_map, from, to); 4637 4638 } else { 4639 resv_map = resv_map_alloc(); 4640 if (!resv_map) 4641 return -ENOMEM; 4642 4643 chg = to - from; 4644 4645 set_vma_resv_map(vma, resv_map); 4646 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4647 } 4648 4649 if (chg < 0) { 4650 ret = chg; 4651 goto out_err; 4652 } 4653 4654 /* 4655 * There must be enough pages in the subpool for the mapping. If 4656 * the subpool has a minimum size, there may be some global 4657 * reservations already in place (gbl_reserve). 4658 */ 4659 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4660 if (gbl_reserve < 0) { 4661 ret = -ENOSPC; 4662 goto out_err; 4663 } 4664 4665 /* 4666 * Check enough hugepages are available for the reservation. 4667 * Hand the pages back to the subpool if there are not 4668 */ 4669 ret = hugetlb_acct_memory(h, gbl_reserve); 4670 if (ret < 0) { 4671 /* put back original number of pages, chg */ 4672 (void)hugepage_subpool_put_pages(spool, chg); 4673 goto out_err; 4674 } 4675 4676 /* 4677 * Account for the reservations made. Shared mappings record regions 4678 * that have reservations as they are shared by multiple VMAs. 4679 * When the last VMA disappears, the region map says how much 4680 * the reservation was and the page cache tells how much of 4681 * the reservation was consumed. Private mappings are per-VMA and 4682 * only the consumed reservations are tracked. When the VMA 4683 * disappears, the original reservation is the VMA size and the 4684 * consumed reservations are stored in the map. Hence, nothing 4685 * else has to be done for private mappings here 4686 */ 4687 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4688 long add = region_add(resv_map, from, to); 4689 4690 if (unlikely(chg > add)) { 4691 /* 4692 * pages in this range were added to the reserve 4693 * map between region_chg and region_add. This 4694 * indicates a race with alloc_huge_page. Adjust 4695 * the subpool and reserve counts modified above 4696 * based on the difference. 4697 */ 4698 long rsv_adjust; 4699 4700 rsv_adjust = hugepage_subpool_put_pages(spool, 4701 chg - add); 4702 hugetlb_acct_memory(h, -rsv_adjust); 4703 } 4704 } 4705 return 0; 4706 out_err: 4707 if (!vma || vma->vm_flags & VM_MAYSHARE) 4708 /* Don't call region_abort if region_chg failed */ 4709 if (chg >= 0) 4710 region_abort(resv_map, from, to); 4711 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4712 kref_put(&resv_map->refs, resv_map_release); 4713 return ret; 4714 } 4715 4716 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4717 long freed) 4718 { 4719 struct hstate *h = hstate_inode(inode); 4720 struct resv_map *resv_map = inode_resv_map(inode); 4721 long chg = 0; 4722 struct hugepage_subpool *spool = subpool_inode(inode); 4723 long gbl_reserve; 4724 4725 /* 4726 * Since this routine can be called in the evict inode path for all 4727 * hugetlbfs inodes, resv_map could be NULL. 4728 */ 4729 if (resv_map) { 4730 chg = region_del(resv_map, start, end); 4731 /* 4732 * region_del() can fail in the rare case where a region 4733 * must be split and another region descriptor can not be 4734 * allocated. If end == LONG_MAX, it will not fail. 4735 */ 4736 if (chg < 0) 4737 return chg; 4738 } 4739 4740 spin_lock(&inode->i_lock); 4741 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4742 spin_unlock(&inode->i_lock); 4743 4744 /* 4745 * If the subpool has a minimum size, the number of global 4746 * reservations to be released may be adjusted. 4747 */ 4748 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4749 hugetlb_acct_memory(h, -gbl_reserve); 4750 4751 return 0; 4752 } 4753 4754 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4755 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4756 struct vm_area_struct *vma, 4757 unsigned long addr, pgoff_t idx) 4758 { 4759 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4760 svma->vm_start; 4761 unsigned long sbase = saddr & PUD_MASK; 4762 unsigned long s_end = sbase + PUD_SIZE; 4763 4764 /* Allow segments to share if only one is marked locked */ 4765 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4766 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4767 4768 /* 4769 * match the virtual addresses, permission and the alignment of the 4770 * page table page. 4771 */ 4772 if (pmd_index(addr) != pmd_index(saddr) || 4773 vm_flags != svm_flags || 4774 sbase < svma->vm_start || svma->vm_end < s_end) 4775 return 0; 4776 4777 return saddr; 4778 } 4779 4780 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4781 { 4782 unsigned long base = addr & PUD_MASK; 4783 unsigned long end = base + PUD_SIZE; 4784 4785 /* 4786 * check on proper vm_flags and page table alignment 4787 */ 4788 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4789 return true; 4790 return false; 4791 } 4792 4793 /* 4794 * Determine if start,end range within vma could be mapped by shared pmd. 4795 * If yes, adjust start and end to cover range associated with possible 4796 * shared pmd mappings. 4797 */ 4798 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4799 unsigned long *start, unsigned long *end) 4800 { 4801 unsigned long check_addr = *start; 4802 4803 if (!(vma->vm_flags & VM_MAYSHARE)) 4804 return; 4805 4806 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4807 unsigned long a_start = check_addr & PUD_MASK; 4808 unsigned long a_end = a_start + PUD_SIZE; 4809 4810 /* 4811 * If sharing is possible, adjust start/end if necessary. 4812 */ 4813 if (range_in_vma(vma, a_start, a_end)) { 4814 if (a_start < *start) 4815 *start = a_start; 4816 if (a_end > *end) 4817 *end = a_end; 4818 } 4819 } 4820 } 4821 4822 /* 4823 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4824 * and returns the corresponding pte. While this is not necessary for the 4825 * !shared pmd case because we can allocate the pmd later as well, it makes the 4826 * code much cleaner. pmd allocation is essential for the shared case because 4827 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4828 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4829 * bad pmd for sharing. 4830 */ 4831 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4832 { 4833 struct vm_area_struct *vma = find_vma(mm, addr); 4834 struct address_space *mapping = vma->vm_file->f_mapping; 4835 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4836 vma->vm_pgoff; 4837 struct vm_area_struct *svma; 4838 unsigned long saddr; 4839 pte_t *spte = NULL; 4840 pte_t *pte; 4841 spinlock_t *ptl; 4842 4843 if (!vma_shareable(vma, addr)) 4844 return (pte_t *)pmd_alloc(mm, pud, addr); 4845 4846 i_mmap_lock_write(mapping); 4847 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4848 if (svma == vma) 4849 continue; 4850 4851 saddr = page_table_shareable(svma, vma, addr, idx); 4852 if (saddr) { 4853 spte = huge_pte_offset(svma->vm_mm, saddr, 4854 vma_mmu_pagesize(svma)); 4855 if (spte) { 4856 get_page(virt_to_page(spte)); 4857 break; 4858 } 4859 } 4860 } 4861 4862 if (!spte) 4863 goto out; 4864 4865 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4866 if (pud_none(*pud)) { 4867 pud_populate(mm, pud, 4868 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4869 mm_inc_nr_pmds(mm); 4870 } else { 4871 put_page(virt_to_page(spte)); 4872 } 4873 spin_unlock(ptl); 4874 out: 4875 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4876 i_mmap_unlock_write(mapping); 4877 return pte; 4878 } 4879 4880 /* 4881 * unmap huge page backed by shared pte. 4882 * 4883 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4884 * indicated by page_count > 1, unmap is achieved by clearing pud and 4885 * decrementing the ref count. If count == 1, the pte page is not shared. 4886 * 4887 * called with page table lock held. 4888 * 4889 * returns: 1 successfully unmapped a shared pte page 4890 * 0 the underlying pte page is not shared, or it is the last user 4891 */ 4892 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4893 { 4894 pgd_t *pgd = pgd_offset(mm, *addr); 4895 p4d_t *p4d = p4d_offset(pgd, *addr); 4896 pud_t *pud = pud_offset(p4d, *addr); 4897 4898 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4899 if (page_count(virt_to_page(ptep)) == 1) 4900 return 0; 4901 4902 pud_clear(pud); 4903 put_page(virt_to_page(ptep)); 4904 mm_dec_nr_pmds(mm); 4905 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4906 return 1; 4907 } 4908 #define want_pmd_share() (1) 4909 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4910 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4911 { 4912 return NULL; 4913 } 4914 4915 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4916 { 4917 return 0; 4918 } 4919 4920 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4921 unsigned long *start, unsigned long *end) 4922 { 4923 } 4924 #define want_pmd_share() (0) 4925 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4926 4927 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4928 pte_t *huge_pte_alloc(struct mm_struct *mm, 4929 unsigned long addr, unsigned long sz) 4930 { 4931 pgd_t *pgd; 4932 p4d_t *p4d; 4933 pud_t *pud; 4934 pte_t *pte = NULL; 4935 4936 pgd = pgd_offset(mm, addr); 4937 p4d = p4d_alloc(mm, pgd, addr); 4938 if (!p4d) 4939 return NULL; 4940 pud = pud_alloc(mm, p4d, addr); 4941 if (pud) { 4942 if (sz == PUD_SIZE) { 4943 pte = (pte_t *)pud; 4944 } else { 4945 BUG_ON(sz != PMD_SIZE); 4946 if (want_pmd_share() && pud_none(*pud)) 4947 pte = huge_pmd_share(mm, addr, pud); 4948 else 4949 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4950 } 4951 } 4952 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4953 4954 return pte; 4955 } 4956 4957 /* 4958 * huge_pte_offset() - Walk the page table to resolve the hugepage 4959 * entry at address @addr 4960 * 4961 * Return: Pointer to page table or swap entry (PUD or PMD) for 4962 * address @addr, or NULL if a p*d_none() entry is encountered and the 4963 * size @sz doesn't match the hugepage size at this level of the page 4964 * table. 4965 */ 4966 pte_t *huge_pte_offset(struct mm_struct *mm, 4967 unsigned long addr, unsigned long sz) 4968 { 4969 pgd_t *pgd; 4970 p4d_t *p4d; 4971 pud_t *pud; 4972 pmd_t *pmd; 4973 4974 pgd = pgd_offset(mm, addr); 4975 if (!pgd_present(*pgd)) 4976 return NULL; 4977 p4d = p4d_offset(pgd, addr); 4978 if (!p4d_present(*p4d)) 4979 return NULL; 4980 4981 pud = pud_offset(p4d, addr); 4982 if (sz != PUD_SIZE && pud_none(*pud)) 4983 return NULL; 4984 /* hugepage or swap? */ 4985 if (pud_huge(*pud) || !pud_present(*pud)) 4986 return (pte_t *)pud; 4987 4988 pmd = pmd_offset(pud, addr); 4989 if (sz != PMD_SIZE && pmd_none(*pmd)) 4990 return NULL; 4991 /* hugepage or swap? */ 4992 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4993 return (pte_t *)pmd; 4994 4995 return NULL; 4996 } 4997 4998 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4999 5000 /* 5001 * These functions are overwritable if your architecture needs its own 5002 * behavior. 5003 */ 5004 struct page * __weak 5005 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5006 int write) 5007 { 5008 return ERR_PTR(-EINVAL); 5009 } 5010 5011 struct page * __weak 5012 follow_huge_pd(struct vm_area_struct *vma, 5013 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5014 { 5015 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5016 return NULL; 5017 } 5018 5019 struct page * __weak 5020 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5021 pmd_t *pmd, int flags) 5022 { 5023 struct page *page = NULL; 5024 spinlock_t *ptl; 5025 pte_t pte; 5026 retry: 5027 ptl = pmd_lockptr(mm, pmd); 5028 spin_lock(ptl); 5029 /* 5030 * make sure that the address range covered by this pmd is not 5031 * unmapped from other threads. 5032 */ 5033 if (!pmd_huge(*pmd)) 5034 goto out; 5035 pte = huge_ptep_get((pte_t *)pmd); 5036 if (pte_present(pte)) { 5037 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5038 if (flags & FOLL_GET) 5039 get_page(page); 5040 } else { 5041 if (is_hugetlb_entry_migration(pte)) { 5042 spin_unlock(ptl); 5043 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5044 goto retry; 5045 } 5046 /* 5047 * hwpoisoned entry is treated as no_page_table in 5048 * follow_page_mask(). 5049 */ 5050 } 5051 out: 5052 spin_unlock(ptl); 5053 return page; 5054 } 5055 5056 struct page * __weak 5057 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5058 pud_t *pud, int flags) 5059 { 5060 if (flags & FOLL_GET) 5061 return NULL; 5062 5063 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5064 } 5065 5066 struct page * __weak 5067 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5068 { 5069 if (flags & FOLL_GET) 5070 return NULL; 5071 5072 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5073 } 5074 5075 bool isolate_huge_page(struct page *page, struct list_head *list) 5076 { 5077 bool ret = true; 5078 5079 VM_BUG_ON_PAGE(!PageHead(page), page); 5080 spin_lock(&hugetlb_lock); 5081 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 5082 ret = false; 5083 goto unlock; 5084 } 5085 clear_page_huge_active(page); 5086 list_move_tail(&page->lru, list); 5087 unlock: 5088 spin_unlock(&hugetlb_lock); 5089 return ret; 5090 } 5091 5092 void putback_active_hugepage(struct page *page) 5093 { 5094 VM_BUG_ON_PAGE(!PageHead(page), page); 5095 spin_lock(&hugetlb_lock); 5096 set_page_huge_active(page); 5097 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5098 spin_unlock(&hugetlb_lock); 5099 put_page(page); 5100 } 5101 5102 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5103 { 5104 struct hstate *h = page_hstate(oldpage); 5105 5106 hugetlb_cgroup_migrate(oldpage, newpage); 5107 set_page_owner_migrate_reason(newpage, reason); 5108 5109 /* 5110 * transfer temporary state of the new huge page. This is 5111 * reverse to other transitions because the newpage is going to 5112 * be final while the old one will be freed so it takes over 5113 * the temporary status. 5114 * 5115 * Also note that we have to transfer the per-node surplus state 5116 * here as well otherwise the global surplus count will not match 5117 * the per-node's. 5118 */ 5119 if (PageHugeTemporary(newpage)) { 5120 int old_nid = page_to_nid(oldpage); 5121 int new_nid = page_to_nid(newpage); 5122 5123 SetPageHugeTemporary(oldpage); 5124 ClearPageHugeTemporary(newpage); 5125 5126 spin_lock(&hugetlb_lock); 5127 if (h->surplus_huge_pages_node[old_nid]) { 5128 h->surplus_huge_pages_node[old_nid]--; 5129 h->surplus_huge_pages_node[new_nid]++; 5130 } 5131 spin_unlock(&hugetlb_lock); 5132 } 5133 } 5134