1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/sched/signal.h> 22 #include <linux/rmap.h> 23 #include <linux/string_helpers.h> 24 #include <linux/swap.h> 25 #include <linux/swapops.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include <linux/userfaultfd_k.h> 37 #include <linux/page_owner.h> 38 #include "internal.h" 39 40 int hugetlb_max_hstate __read_mostly; 41 unsigned int default_hstate_idx; 42 struct hstate hstates[HUGE_MAX_HSTATE]; 43 /* 44 * Minimum page order among possible hugepage sizes, set to a proper value 45 * at boot time. 46 */ 47 static unsigned int minimum_order __read_mostly = UINT_MAX; 48 49 __initdata LIST_HEAD(huge_boot_pages); 50 51 /* for command line parsing */ 52 static struct hstate * __initdata parsed_hstate; 53 static unsigned long __initdata default_hstate_max_huge_pages; 54 static unsigned long __initdata default_hstate_size; 55 static bool __initdata parsed_valid_hugepagesz = true; 56 57 /* 58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 59 * free_huge_pages, and surplus_huge_pages. 60 */ 61 DEFINE_SPINLOCK(hugetlb_lock); 62 63 /* 64 * Serializes faults on the same logical page. This is used to 65 * prevent spurious OOMs when the hugepage pool is fully utilized. 66 */ 67 static int num_fault_mutexes; 68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 69 70 /* Forward declaration */ 71 static int hugetlb_acct_memory(struct hstate *h, long delta); 72 73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 74 { 75 bool free = (spool->count == 0) && (spool->used_hpages == 0); 76 77 spin_unlock(&spool->lock); 78 79 /* If no pages are used, and no other handles to the subpool 80 * remain, give up any reservations mased on minimum size and 81 * free the subpool */ 82 if (free) { 83 if (spool->min_hpages != -1) 84 hugetlb_acct_memory(spool->hstate, 85 -spool->min_hpages); 86 kfree(spool); 87 } 88 } 89 90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 91 long min_hpages) 92 { 93 struct hugepage_subpool *spool; 94 95 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 96 if (!spool) 97 return NULL; 98 99 spin_lock_init(&spool->lock); 100 spool->count = 1; 101 spool->max_hpages = max_hpages; 102 spool->hstate = h; 103 spool->min_hpages = min_hpages; 104 105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 106 kfree(spool); 107 return NULL; 108 } 109 spool->rsv_hpages = min_hpages; 110 111 return spool; 112 } 113 114 void hugepage_put_subpool(struct hugepage_subpool *spool) 115 { 116 spin_lock(&spool->lock); 117 BUG_ON(!spool->count); 118 spool->count--; 119 unlock_or_release_subpool(spool); 120 } 121 122 /* 123 * Subpool accounting for allocating and reserving pages. 124 * Return -ENOMEM if there are not enough resources to satisfy the 125 * the request. Otherwise, return the number of pages by which the 126 * global pools must be adjusted (upward). The returned value may 127 * only be different than the passed value (delta) in the case where 128 * a subpool minimum size must be manitained. 129 */ 130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 131 long delta) 132 { 133 long ret = delta; 134 135 if (!spool) 136 return ret; 137 138 spin_lock(&spool->lock); 139 140 if (spool->max_hpages != -1) { /* maximum size accounting */ 141 if ((spool->used_hpages + delta) <= spool->max_hpages) 142 spool->used_hpages += delta; 143 else { 144 ret = -ENOMEM; 145 goto unlock_ret; 146 } 147 } 148 149 /* minimum size accounting */ 150 if (spool->min_hpages != -1 && spool->rsv_hpages) { 151 if (delta > spool->rsv_hpages) { 152 /* 153 * Asking for more reserves than those already taken on 154 * behalf of subpool. Return difference. 155 */ 156 ret = delta - spool->rsv_hpages; 157 spool->rsv_hpages = 0; 158 } else { 159 ret = 0; /* reserves already accounted for */ 160 spool->rsv_hpages -= delta; 161 } 162 } 163 164 unlock_ret: 165 spin_unlock(&spool->lock); 166 return ret; 167 } 168 169 /* 170 * Subpool accounting for freeing and unreserving pages. 171 * Return the number of global page reservations that must be dropped. 172 * The return value may only be different than the passed value (delta) 173 * in the case where a subpool minimum size must be maintained. 174 */ 175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 176 long delta) 177 { 178 long ret = delta; 179 180 if (!spool) 181 return delta; 182 183 spin_lock(&spool->lock); 184 185 if (spool->max_hpages != -1) /* maximum size accounting */ 186 spool->used_hpages -= delta; 187 188 /* minimum size accounting */ 189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 190 if (spool->rsv_hpages + delta <= spool->min_hpages) 191 ret = 0; 192 else 193 ret = spool->rsv_hpages + delta - spool->min_hpages; 194 195 spool->rsv_hpages += delta; 196 if (spool->rsv_hpages > spool->min_hpages) 197 spool->rsv_hpages = spool->min_hpages; 198 } 199 200 /* 201 * If hugetlbfs_put_super couldn't free spool due to an outstanding 202 * quota reference, free it now. 203 */ 204 unlock_or_release_subpool(spool); 205 206 return ret; 207 } 208 209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 210 { 211 return HUGETLBFS_SB(inode->i_sb)->spool; 212 } 213 214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 215 { 216 return subpool_inode(file_inode(vma->vm_file)); 217 } 218 219 /* 220 * Region tracking -- allows tracking of reservations and instantiated pages 221 * across the pages in a mapping. 222 * 223 * The region data structures are embedded into a resv_map and protected 224 * by a resv_map's lock. The set of regions within the resv_map represent 225 * reservations for huge pages, or huge pages that have already been 226 * instantiated within the map. The from and to elements are huge page 227 * indicies into the associated mapping. from indicates the starting index 228 * of the region. to represents the first index past the end of the region. 229 * 230 * For example, a file region structure with from == 0 and to == 4 represents 231 * four huge pages in a mapping. It is important to note that the to element 232 * represents the first element past the end of the region. This is used in 233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 234 * 235 * Interval notation of the form [from, to) will be used to indicate that 236 * the endpoint from is inclusive and to is exclusive. 237 */ 238 struct file_region { 239 struct list_head link; 240 long from; 241 long to; 242 }; 243 244 /* 245 * Add the huge page range represented by [f, t) to the reserve 246 * map. In the normal case, existing regions will be expanded 247 * to accommodate the specified range. Sufficient regions should 248 * exist for expansion due to the previous call to region_chg 249 * with the same range. However, it is possible that region_del 250 * could have been called after region_chg and modifed the map 251 * in such a way that no region exists to be expanded. In this 252 * case, pull a region descriptor from the cache associated with 253 * the map and use that for the new range. 254 * 255 * Return the number of new huge pages added to the map. This 256 * number is greater than or equal to zero. 257 */ 258 static long region_add(struct resv_map *resv, long f, long t) 259 { 260 struct list_head *head = &resv->regions; 261 struct file_region *rg, *nrg, *trg; 262 long add = 0; 263 264 spin_lock(&resv->lock); 265 /* Locate the region we are either in or before. */ 266 list_for_each_entry(rg, head, link) 267 if (f <= rg->to) 268 break; 269 270 /* 271 * If no region exists which can be expanded to include the 272 * specified range, the list must have been modified by an 273 * interleving call to region_del(). Pull a region descriptor 274 * from the cache and use it for this range. 275 */ 276 if (&rg->link == head || t < rg->from) { 277 VM_BUG_ON(resv->region_cache_count <= 0); 278 279 resv->region_cache_count--; 280 nrg = list_first_entry(&resv->region_cache, struct file_region, 281 link); 282 list_del(&nrg->link); 283 284 nrg->from = f; 285 nrg->to = t; 286 list_add(&nrg->link, rg->link.prev); 287 288 add += t - f; 289 goto out_locked; 290 } 291 292 /* Round our left edge to the current segment if it encloses us. */ 293 if (f > rg->from) 294 f = rg->from; 295 296 /* Check for and consume any regions we now overlap with. */ 297 nrg = rg; 298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 299 if (&rg->link == head) 300 break; 301 if (rg->from > t) 302 break; 303 304 /* If this area reaches higher then extend our area to 305 * include it completely. If this is not the first area 306 * which we intend to reuse, free it. */ 307 if (rg->to > t) 308 t = rg->to; 309 if (rg != nrg) { 310 /* Decrement return value by the deleted range. 311 * Another range will span this area so that by 312 * end of routine add will be >= zero 313 */ 314 add -= (rg->to - rg->from); 315 list_del(&rg->link); 316 kfree(rg); 317 } 318 } 319 320 add += (nrg->from - f); /* Added to beginning of region */ 321 nrg->from = f; 322 add += t - nrg->to; /* Added to end of region */ 323 nrg->to = t; 324 325 out_locked: 326 resv->adds_in_progress--; 327 spin_unlock(&resv->lock); 328 VM_BUG_ON(add < 0); 329 return add; 330 } 331 332 /* 333 * Examine the existing reserve map and determine how many 334 * huge pages in the specified range [f, t) are NOT currently 335 * represented. This routine is called before a subsequent 336 * call to region_add that will actually modify the reserve 337 * map to add the specified range [f, t). region_chg does 338 * not change the number of huge pages represented by the 339 * map. However, if the existing regions in the map can not 340 * be expanded to represent the new range, a new file_region 341 * structure is added to the map as a placeholder. This is 342 * so that the subsequent region_add call will have all the 343 * regions it needs and will not fail. 344 * 345 * Upon entry, region_chg will also examine the cache of region descriptors 346 * associated with the map. If there are not enough descriptors cached, one 347 * will be allocated for the in progress add operation. 348 * 349 * Returns the number of huge pages that need to be added to the existing 350 * reservation map for the range [f, t). This number is greater or equal to 351 * zero. -ENOMEM is returned if a new file_region structure or cache entry 352 * is needed and can not be allocated. 353 */ 354 static long region_chg(struct resv_map *resv, long f, long t) 355 { 356 struct list_head *head = &resv->regions; 357 struct file_region *rg, *nrg = NULL; 358 long chg = 0; 359 360 retry: 361 spin_lock(&resv->lock); 362 retry_locked: 363 resv->adds_in_progress++; 364 365 /* 366 * Check for sufficient descriptors in the cache to accommodate 367 * the number of in progress add operations. 368 */ 369 if (resv->adds_in_progress > resv->region_cache_count) { 370 struct file_region *trg; 371 372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 373 /* Must drop lock to allocate a new descriptor. */ 374 resv->adds_in_progress--; 375 spin_unlock(&resv->lock); 376 377 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 378 if (!trg) { 379 kfree(nrg); 380 return -ENOMEM; 381 } 382 383 spin_lock(&resv->lock); 384 list_add(&trg->link, &resv->region_cache); 385 resv->region_cache_count++; 386 goto retry_locked; 387 } 388 389 /* Locate the region we are before or in. */ 390 list_for_each_entry(rg, head, link) 391 if (f <= rg->to) 392 break; 393 394 /* If we are below the current region then a new region is required. 395 * Subtle, allocate a new region at the position but make it zero 396 * size such that we can guarantee to record the reservation. */ 397 if (&rg->link == head || t < rg->from) { 398 if (!nrg) { 399 resv->adds_in_progress--; 400 spin_unlock(&resv->lock); 401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 402 if (!nrg) 403 return -ENOMEM; 404 405 nrg->from = f; 406 nrg->to = f; 407 INIT_LIST_HEAD(&nrg->link); 408 goto retry; 409 } 410 411 list_add(&nrg->link, rg->link.prev); 412 chg = t - f; 413 goto out_nrg; 414 } 415 416 /* Round our left edge to the current segment if it encloses us. */ 417 if (f > rg->from) 418 f = rg->from; 419 chg = t - f; 420 421 /* Check for and consume any regions we now overlap with. */ 422 list_for_each_entry(rg, rg->link.prev, link) { 423 if (&rg->link == head) 424 break; 425 if (rg->from > t) 426 goto out; 427 428 /* We overlap with this area, if it extends further than 429 * us then we must extend ourselves. Account for its 430 * existing reservation. */ 431 if (rg->to > t) { 432 chg += rg->to - t; 433 t = rg->to; 434 } 435 chg -= rg->to - rg->from; 436 } 437 438 out: 439 spin_unlock(&resv->lock); 440 /* We already know we raced and no longer need the new region */ 441 kfree(nrg); 442 return chg; 443 out_nrg: 444 spin_unlock(&resv->lock); 445 return chg; 446 } 447 448 /* 449 * Abort the in progress add operation. The adds_in_progress field 450 * of the resv_map keeps track of the operations in progress between 451 * calls to region_chg and region_add. Operations are sometimes 452 * aborted after the call to region_chg. In such cases, region_abort 453 * is called to decrement the adds_in_progress counter. 454 * 455 * NOTE: The range arguments [f, t) are not needed or used in this 456 * routine. They are kept to make reading the calling code easier as 457 * arguments will match the associated region_chg call. 458 */ 459 static void region_abort(struct resv_map *resv, long f, long t) 460 { 461 spin_lock(&resv->lock); 462 VM_BUG_ON(!resv->region_cache_count); 463 resv->adds_in_progress--; 464 spin_unlock(&resv->lock); 465 } 466 467 /* 468 * Delete the specified range [f, t) from the reserve map. If the 469 * t parameter is LONG_MAX, this indicates that ALL regions after f 470 * should be deleted. Locate the regions which intersect [f, t) 471 * and either trim, delete or split the existing regions. 472 * 473 * Returns the number of huge pages deleted from the reserve map. 474 * In the normal case, the return value is zero or more. In the 475 * case where a region must be split, a new region descriptor must 476 * be allocated. If the allocation fails, -ENOMEM will be returned. 477 * NOTE: If the parameter t == LONG_MAX, then we will never split 478 * a region and possibly return -ENOMEM. Callers specifying 479 * t == LONG_MAX do not need to check for -ENOMEM error. 480 */ 481 static long region_del(struct resv_map *resv, long f, long t) 482 { 483 struct list_head *head = &resv->regions; 484 struct file_region *rg, *trg; 485 struct file_region *nrg = NULL; 486 long del = 0; 487 488 retry: 489 spin_lock(&resv->lock); 490 list_for_each_entry_safe(rg, trg, head, link) { 491 /* 492 * Skip regions before the range to be deleted. file_region 493 * ranges are normally of the form [from, to). However, there 494 * may be a "placeholder" entry in the map which is of the form 495 * (from, to) with from == to. Check for placeholder entries 496 * at the beginning of the range to be deleted. 497 */ 498 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 499 continue; 500 501 if (rg->from >= t) 502 break; 503 504 if (f > rg->from && t < rg->to) { /* Must split region */ 505 /* 506 * Check for an entry in the cache before dropping 507 * lock and attempting allocation. 508 */ 509 if (!nrg && 510 resv->region_cache_count > resv->adds_in_progress) { 511 nrg = list_first_entry(&resv->region_cache, 512 struct file_region, 513 link); 514 list_del(&nrg->link); 515 resv->region_cache_count--; 516 } 517 518 if (!nrg) { 519 spin_unlock(&resv->lock); 520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 521 if (!nrg) 522 return -ENOMEM; 523 goto retry; 524 } 525 526 del += t - f; 527 528 /* New entry for end of split region */ 529 nrg->from = t; 530 nrg->to = rg->to; 531 INIT_LIST_HEAD(&nrg->link); 532 533 /* Original entry is trimmed */ 534 rg->to = f; 535 536 list_add(&nrg->link, &rg->link); 537 nrg = NULL; 538 break; 539 } 540 541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 542 del += rg->to - rg->from; 543 list_del(&rg->link); 544 kfree(rg); 545 continue; 546 } 547 548 if (f <= rg->from) { /* Trim beginning of region */ 549 del += t - rg->from; 550 rg->from = t; 551 } else { /* Trim end of region */ 552 del += rg->to - f; 553 rg->to = f; 554 } 555 } 556 557 spin_unlock(&resv->lock); 558 kfree(nrg); 559 return del; 560 } 561 562 /* 563 * A rare out of memory error was encountered which prevented removal of 564 * the reserve map region for a page. The huge page itself was free'ed 565 * and removed from the page cache. This routine will adjust the subpool 566 * usage count, and the global reserve count if needed. By incrementing 567 * these counts, the reserve map entry which could not be deleted will 568 * appear as a "reserved" entry instead of simply dangling with incorrect 569 * counts. 570 */ 571 void hugetlb_fix_reserve_counts(struct inode *inode) 572 { 573 struct hugepage_subpool *spool = subpool_inode(inode); 574 long rsv_adjust; 575 576 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 577 if (rsv_adjust) { 578 struct hstate *h = hstate_inode(inode); 579 580 hugetlb_acct_memory(h, 1); 581 } 582 } 583 584 /* 585 * Count and return the number of huge pages in the reserve map 586 * that intersect with the range [f, t). 587 */ 588 static long region_count(struct resv_map *resv, long f, long t) 589 { 590 struct list_head *head = &resv->regions; 591 struct file_region *rg; 592 long chg = 0; 593 594 spin_lock(&resv->lock); 595 /* Locate each segment we overlap with, and count that overlap. */ 596 list_for_each_entry(rg, head, link) { 597 long seg_from; 598 long seg_to; 599 600 if (rg->to <= f) 601 continue; 602 if (rg->from >= t) 603 break; 604 605 seg_from = max(rg->from, f); 606 seg_to = min(rg->to, t); 607 608 chg += seg_to - seg_from; 609 } 610 spin_unlock(&resv->lock); 611 612 return chg; 613 } 614 615 /* 616 * Convert the address within this vma to the page offset within 617 * the mapping, in pagecache page units; huge pages here. 618 */ 619 static pgoff_t vma_hugecache_offset(struct hstate *h, 620 struct vm_area_struct *vma, unsigned long address) 621 { 622 return ((address - vma->vm_start) >> huge_page_shift(h)) + 623 (vma->vm_pgoff >> huge_page_order(h)); 624 } 625 626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 627 unsigned long address) 628 { 629 return vma_hugecache_offset(hstate_vma(vma), vma, address); 630 } 631 EXPORT_SYMBOL_GPL(linear_hugepage_index); 632 633 /* 634 * Return the size of the pages allocated when backing a VMA. In the majority 635 * cases this will be same size as used by the page table entries. 636 */ 637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 638 { 639 struct hstate *hstate; 640 641 if (!is_vm_hugetlb_page(vma)) 642 return PAGE_SIZE; 643 644 hstate = hstate_vma(vma); 645 646 return 1UL << huge_page_shift(hstate); 647 } 648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 649 650 /* 651 * Return the page size being used by the MMU to back a VMA. In the majority 652 * of cases, the page size used by the kernel matches the MMU size. On 653 * architectures where it differs, an architecture-specific version of this 654 * function is required. 655 */ 656 #ifndef vma_mmu_pagesize 657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 658 { 659 return vma_kernel_pagesize(vma); 660 } 661 #endif 662 663 /* 664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 665 * bits of the reservation map pointer, which are always clear due to 666 * alignment. 667 */ 668 #define HPAGE_RESV_OWNER (1UL << 0) 669 #define HPAGE_RESV_UNMAPPED (1UL << 1) 670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 671 672 /* 673 * These helpers are used to track how many pages are reserved for 674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 675 * is guaranteed to have their future faults succeed. 676 * 677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 678 * the reserve counters are updated with the hugetlb_lock held. It is safe 679 * to reset the VMA at fork() time as it is not in use yet and there is no 680 * chance of the global counters getting corrupted as a result of the values. 681 * 682 * The private mapping reservation is represented in a subtly different 683 * manner to a shared mapping. A shared mapping has a region map associated 684 * with the underlying file, this region map represents the backing file 685 * pages which have ever had a reservation assigned which this persists even 686 * after the page is instantiated. A private mapping has a region map 687 * associated with the original mmap which is attached to all VMAs which 688 * reference it, this region map represents those offsets which have consumed 689 * reservation ie. where pages have been instantiated. 690 */ 691 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 692 { 693 return (unsigned long)vma->vm_private_data; 694 } 695 696 static void set_vma_private_data(struct vm_area_struct *vma, 697 unsigned long value) 698 { 699 vma->vm_private_data = (void *)value; 700 } 701 702 struct resv_map *resv_map_alloc(void) 703 { 704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 706 707 if (!resv_map || !rg) { 708 kfree(resv_map); 709 kfree(rg); 710 return NULL; 711 } 712 713 kref_init(&resv_map->refs); 714 spin_lock_init(&resv_map->lock); 715 INIT_LIST_HEAD(&resv_map->regions); 716 717 resv_map->adds_in_progress = 0; 718 719 INIT_LIST_HEAD(&resv_map->region_cache); 720 list_add(&rg->link, &resv_map->region_cache); 721 resv_map->region_cache_count = 1; 722 723 return resv_map; 724 } 725 726 void resv_map_release(struct kref *ref) 727 { 728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 729 struct list_head *head = &resv_map->region_cache; 730 struct file_region *rg, *trg; 731 732 /* Clear out any active regions before we release the map. */ 733 region_del(resv_map, 0, LONG_MAX); 734 735 /* ... and any entries left in the cache */ 736 list_for_each_entry_safe(rg, trg, head, link) { 737 list_del(&rg->link); 738 kfree(rg); 739 } 740 741 VM_BUG_ON(resv_map->adds_in_progress); 742 743 kfree(resv_map); 744 } 745 746 static inline struct resv_map *inode_resv_map(struct inode *inode) 747 { 748 return inode->i_mapping->private_data; 749 } 750 751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 752 { 753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 754 if (vma->vm_flags & VM_MAYSHARE) { 755 struct address_space *mapping = vma->vm_file->f_mapping; 756 struct inode *inode = mapping->host; 757 758 return inode_resv_map(inode); 759 760 } else { 761 return (struct resv_map *)(get_vma_private_data(vma) & 762 ~HPAGE_RESV_MASK); 763 } 764 } 765 766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 767 { 768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 770 771 set_vma_private_data(vma, (get_vma_private_data(vma) & 772 HPAGE_RESV_MASK) | (unsigned long)map); 773 } 774 775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 776 { 777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 779 780 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 781 } 782 783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 784 { 785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 786 787 return (get_vma_private_data(vma) & flag) != 0; 788 } 789 790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 792 { 793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 794 if (!(vma->vm_flags & VM_MAYSHARE)) 795 vma->vm_private_data = (void *)0; 796 } 797 798 /* Returns true if the VMA has associated reserve pages */ 799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 800 { 801 if (vma->vm_flags & VM_NORESERVE) { 802 /* 803 * This address is already reserved by other process(chg == 0), 804 * so, we should decrement reserved count. Without decrementing, 805 * reserve count remains after releasing inode, because this 806 * allocated page will go into page cache and is regarded as 807 * coming from reserved pool in releasing step. Currently, we 808 * don't have any other solution to deal with this situation 809 * properly, so add work-around here. 810 */ 811 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 812 return true; 813 else 814 return false; 815 } 816 817 /* Shared mappings always use reserves */ 818 if (vma->vm_flags & VM_MAYSHARE) { 819 /* 820 * We know VM_NORESERVE is not set. Therefore, there SHOULD 821 * be a region map for all pages. The only situation where 822 * there is no region map is if a hole was punched via 823 * fallocate. In this case, there really are no reverves to 824 * use. This situation is indicated if chg != 0. 825 */ 826 if (chg) 827 return false; 828 else 829 return true; 830 } 831 832 /* 833 * Only the process that called mmap() has reserves for 834 * private mappings. 835 */ 836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 837 /* 838 * Like the shared case above, a hole punch or truncate 839 * could have been performed on the private mapping. 840 * Examine the value of chg to determine if reserves 841 * actually exist or were previously consumed. 842 * Very Subtle - The value of chg comes from a previous 843 * call to vma_needs_reserves(). The reserve map for 844 * private mappings has different (opposite) semantics 845 * than that of shared mappings. vma_needs_reserves() 846 * has already taken this difference in semantics into 847 * account. Therefore, the meaning of chg is the same 848 * as in the shared case above. Code could easily be 849 * combined, but keeping it separate draws attention to 850 * subtle differences. 851 */ 852 if (chg) 853 return false; 854 else 855 return true; 856 } 857 858 return false; 859 } 860 861 static void enqueue_huge_page(struct hstate *h, struct page *page) 862 { 863 int nid = page_to_nid(page); 864 list_move(&page->lru, &h->hugepage_freelists[nid]); 865 h->free_huge_pages++; 866 h->free_huge_pages_node[nid]++; 867 } 868 869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 870 { 871 struct page *page; 872 873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 874 if (!PageHWPoison(page)) 875 break; 876 /* 877 * if 'non-isolated free hugepage' not found on the list, 878 * the allocation fails. 879 */ 880 if (&h->hugepage_freelists[nid] == &page->lru) 881 return NULL; 882 list_move(&page->lru, &h->hugepage_activelist); 883 set_page_refcounted(page); 884 h->free_huge_pages--; 885 h->free_huge_pages_node[nid]--; 886 return page; 887 } 888 889 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 890 nodemask_t *nmask) 891 { 892 unsigned int cpuset_mems_cookie; 893 struct zonelist *zonelist; 894 struct zone *zone; 895 struct zoneref *z; 896 int node = -1; 897 898 zonelist = node_zonelist(nid, gfp_mask); 899 900 retry_cpuset: 901 cpuset_mems_cookie = read_mems_allowed_begin(); 902 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 903 struct page *page; 904 905 if (!cpuset_zone_allowed(zone, gfp_mask)) 906 continue; 907 /* 908 * no need to ask again on the same node. Pool is node rather than 909 * zone aware 910 */ 911 if (zone_to_nid(zone) == node) 912 continue; 913 node = zone_to_nid(zone); 914 915 page = dequeue_huge_page_node_exact(h, node); 916 if (page) 917 return page; 918 } 919 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 920 goto retry_cpuset; 921 922 return NULL; 923 } 924 925 /* Movability of hugepages depends on migration support. */ 926 static inline gfp_t htlb_alloc_mask(struct hstate *h) 927 { 928 if (hugepage_migration_supported(h)) 929 return GFP_HIGHUSER_MOVABLE; 930 else 931 return GFP_HIGHUSER; 932 } 933 934 static struct page *dequeue_huge_page_vma(struct hstate *h, 935 struct vm_area_struct *vma, 936 unsigned long address, int avoid_reserve, 937 long chg) 938 { 939 struct page *page; 940 struct mempolicy *mpol; 941 gfp_t gfp_mask; 942 nodemask_t *nodemask; 943 int nid; 944 945 /* 946 * A child process with MAP_PRIVATE mappings created by their parent 947 * have no page reserves. This check ensures that reservations are 948 * not "stolen". The child may still get SIGKILLed 949 */ 950 if (!vma_has_reserves(vma, chg) && 951 h->free_huge_pages - h->resv_huge_pages == 0) 952 goto err; 953 954 /* If reserves cannot be used, ensure enough pages are in the pool */ 955 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 956 goto err; 957 958 gfp_mask = htlb_alloc_mask(h); 959 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 960 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 961 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 962 SetPagePrivate(page); 963 h->resv_huge_pages--; 964 } 965 966 mpol_cond_put(mpol); 967 return page; 968 969 err: 970 return NULL; 971 } 972 973 /* 974 * common helper functions for hstate_next_node_to_{alloc|free}. 975 * We may have allocated or freed a huge page based on a different 976 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 977 * be outside of *nodes_allowed. Ensure that we use an allowed 978 * node for alloc or free. 979 */ 980 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 981 { 982 nid = next_node_in(nid, *nodes_allowed); 983 VM_BUG_ON(nid >= MAX_NUMNODES); 984 985 return nid; 986 } 987 988 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 989 { 990 if (!node_isset(nid, *nodes_allowed)) 991 nid = next_node_allowed(nid, nodes_allowed); 992 return nid; 993 } 994 995 /* 996 * returns the previously saved node ["this node"] from which to 997 * allocate a persistent huge page for the pool and advance the 998 * next node from which to allocate, handling wrap at end of node 999 * mask. 1000 */ 1001 static int hstate_next_node_to_alloc(struct hstate *h, 1002 nodemask_t *nodes_allowed) 1003 { 1004 int nid; 1005 1006 VM_BUG_ON(!nodes_allowed); 1007 1008 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1009 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1010 1011 return nid; 1012 } 1013 1014 /* 1015 * helper for free_pool_huge_page() - return the previously saved 1016 * node ["this node"] from which to free a huge page. Advance the 1017 * next node id whether or not we find a free huge page to free so 1018 * that the next attempt to free addresses the next node. 1019 */ 1020 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1021 { 1022 int nid; 1023 1024 VM_BUG_ON(!nodes_allowed); 1025 1026 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1027 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1028 1029 return nid; 1030 } 1031 1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1033 for (nr_nodes = nodes_weight(*mask); \ 1034 nr_nodes > 0 && \ 1035 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1036 nr_nodes--) 1037 1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1039 for (nr_nodes = nodes_weight(*mask); \ 1040 nr_nodes > 0 && \ 1041 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1042 nr_nodes--) 1043 1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1045 static void destroy_compound_gigantic_page(struct page *page, 1046 unsigned int order) 1047 { 1048 int i; 1049 int nr_pages = 1 << order; 1050 struct page *p = page + 1; 1051 1052 atomic_set(compound_mapcount_ptr(page), 0); 1053 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1054 clear_compound_head(p); 1055 set_page_refcounted(p); 1056 } 1057 1058 set_compound_order(page, 0); 1059 __ClearPageHead(page); 1060 } 1061 1062 static void free_gigantic_page(struct page *page, unsigned int order) 1063 { 1064 free_contig_range(page_to_pfn(page), 1 << order); 1065 } 1066 1067 static int __alloc_gigantic_page(unsigned long start_pfn, 1068 unsigned long nr_pages, gfp_t gfp_mask) 1069 { 1070 unsigned long end_pfn = start_pfn + nr_pages; 1071 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1072 gfp_mask); 1073 } 1074 1075 static bool pfn_range_valid_gigantic(struct zone *z, 1076 unsigned long start_pfn, unsigned long nr_pages) 1077 { 1078 unsigned long i, end_pfn = start_pfn + nr_pages; 1079 struct page *page; 1080 1081 for (i = start_pfn; i < end_pfn; i++) { 1082 if (!pfn_valid(i)) 1083 return false; 1084 1085 page = pfn_to_page(i); 1086 1087 if (page_zone(page) != z) 1088 return false; 1089 1090 if (PageReserved(page)) 1091 return false; 1092 1093 if (page_count(page) > 0) 1094 return false; 1095 1096 if (PageHuge(page)) 1097 return false; 1098 } 1099 1100 return true; 1101 } 1102 1103 static bool zone_spans_last_pfn(const struct zone *zone, 1104 unsigned long start_pfn, unsigned long nr_pages) 1105 { 1106 unsigned long last_pfn = start_pfn + nr_pages - 1; 1107 return zone_spans_pfn(zone, last_pfn); 1108 } 1109 1110 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1111 int nid, nodemask_t *nodemask) 1112 { 1113 unsigned int order = huge_page_order(h); 1114 unsigned long nr_pages = 1 << order; 1115 unsigned long ret, pfn, flags; 1116 struct zonelist *zonelist; 1117 struct zone *zone; 1118 struct zoneref *z; 1119 1120 zonelist = node_zonelist(nid, gfp_mask); 1121 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1122 spin_lock_irqsave(&zone->lock, flags); 1123 1124 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1125 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1126 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1127 /* 1128 * We release the zone lock here because 1129 * alloc_contig_range() will also lock the zone 1130 * at some point. If there's an allocation 1131 * spinning on this lock, it may win the race 1132 * and cause alloc_contig_range() to fail... 1133 */ 1134 spin_unlock_irqrestore(&zone->lock, flags); 1135 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1136 if (!ret) 1137 return pfn_to_page(pfn); 1138 spin_lock_irqsave(&zone->lock, flags); 1139 } 1140 pfn += nr_pages; 1141 } 1142 1143 spin_unlock_irqrestore(&zone->lock, flags); 1144 } 1145 1146 return NULL; 1147 } 1148 1149 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1150 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1151 1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1153 static inline bool gigantic_page_supported(void) { return false; } 1154 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1155 int nid, nodemask_t *nodemask) { return NULL; } 1156 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1157 static inline void destroy_compound_gigantic_page(struct page *page, 1158 unsigned int order) { } 1159 #endif 1160 1161 static void update_and_free_page(struct hstate *h, struct page *page) 1162 { 1163 int i; 1164 1165 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1166 return; 1167 1168 h->nr_huge_pages--; 1169 h->nr_huge_pages_node[page_to_nid(page)]--; 1170 for (i = 0; i < pages_per_huge_page(h); i++) { 1171 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1172 1 << PG_referenced | 1 << PG_dirty | 1173 1 << PG_active | 1 << PG_private | 1174 1 << PG_writeback); 1175 } 1176 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1177 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1178 set_page_refcounted(page); 1179 if (hstate_is_gigantic(h)) { 1180 destroy_compound_gigantic_page(page, huge_page_order(h)); 1181 free_gigantic_page(page, huge_page_order(h)); 1182 } else { 1183 __free_pages(page, huge_page_order(h)); 1184 } 1185 } 1186 1187 struct hstate *size_to_hstate(unsigned long size) 1188 { 1189 struct hstate *h; 1190 1191 for_each_hstate(h) { 1192 if (huge_page_size(h) == size) 1193 return h; 1194 } 1195 return NULL; 1196 } 1197 1198 /* 1199 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1200 * to hstate->hugepage_activelist.) 1201 * 1202 * This function can be called for tail pages, but never returns true for them. 1203 */ 1204 bool page_huge_active(struct page *page) 1205 { 1206 VM_BUG_ON_PAGE(!PageHuge(page), page); 1207 return PageHead(page) && PagePrivate(&page[1]); 1208 } 1209 1210 /* never called for tail page */ 1211 static void set_page_huge_active(struct page *page) 1212 { 1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1214 SetPagePrivate(&page[1]); 1215 } 1216 1217 static void clear_page_huge_active(struct page *page) 1218 { 1219 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1220 ClearPagePrivate(&page[1]); 1221 } 1222 1223 /* 1224 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1225 * code 1226 */ 1227 static inline bool PageHugeTemporary(struct page *page) 1228 { 1229 if (!PageHuge(page)) 1230 return false; 1231 1232 return (unsigned long)page[2].mapping == -1U; 1233 } 1234 1235 static inline void SetPageHugeTemporary(struct page *page) 1236 { 1237 page[2].mapping = (void *)-1U; 1238 } 1239 1240 static inline void ClearPageHugeTemporary(struct page *page) 1241 { 1242 page[2].mapping = NULL; 1243 } 1244 1245 void free_huge_page(struct page *page) 1246 { 1247 /* 1248 * Can't pass hstate in here because it is called from the 1249 * compound page destructor. 1250 */ 1251 struct hstate *h = page_hstate(page); 1252 int nid = page_to_nid(page); 1253 struct hugepage_subpool *spool = 1254 (struct hugepage_subpool *)page_private(page); 1255 bool restore_reserve; 1256 1257 set_page_private(page, 0); 1258 page->mapping = NULL; 1259 VM_BUG_ON_PAGE(page_count(page), page); 1260 VM_BUG_ON_PAGE(page_mapcount(page), page); 1261 restore_reserve = PagePrivate(page); 1262 ClearPagePrivate(page); 1263 1264 /* 1265 * A return code of zero implies that the subpool will be under its 1266 * minimum size if the reservation is not restored after page is free. 1267 * Therefore, force restore_reserve operation. 1268 */ 1269 if (hugepage_subpool_put_pages(spool, 1) == 0) 1270 restore_reserve = true; 1271 1272 spin_lock(&hugetlb_lock); 1273 clear_page_huge_active(page); 1274 hugetlb_cgroup_uncharge_page(hstate_index(h), 1275 pages_per_huge_page(h), page); 1276 if (restore_reserve) 1277 h->resv_huge_pages++; 1278 1279 if (PageHugeTemporary(page)) { 1280 list_del(&page->lru); 1281 ClearPageHugeTemporary(page); 1282 update_and_free_page(h, page); 1283 } else if (h->surplus_huge_pages_node[nid]) { 1284 /* remove the page from active list */ 1285 list_del(&page->lru); 1286 update_and_free_page(h, page); 1287 h->surplus_huge_pages--; 1288 h->surplus_huge_pages_node[nid]--; 1289 } else { 1290 arch_clear_hugepage_flags(page); 1291 enqueue_huge_page(h, page); 1292 } 1293 spin_unlock(&hugetlb_lock); 1294 } 1295 1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1297 { 1298 INIT_LIST_HEAD(&page->lru); 1299 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1300 spin_lock(&hugetlb_lock); 1301 set_hugetlb_cgroup(page, NULL); 1302 h->nr_huge_pages++; 1303 h->nr_huge_pages_node[nid]++; 1304 spin_unlock(&hugetlb_lock); 1305 } 1306 1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1308 { 1309 int i; 1310 int nr_pages = 1 << order; 1311 struct page *p = page + 1; 1312 1313 /* we rely on prep_new_huge_page to set the destructor */ 1314 set_compound_order(page, order); 1315 __ClearPageReserved(page); 1316 __SetPageHead(page); 1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1318 /* 1319 * For gigantic hugepages allocated through bootmem at 1320 * boot, it's safer to be consistent with the not-gigantic 1321 * hugepages and clear the PG_reserved bit from all tail pages 1322 * too. Otherwse drivers using get_user_pages() to access tail 1323 * pages may get the reference counting wrong if they see 1324 * PG_reserved set on a tail page (despite the head page not 1325 * having PG_reserved set). Enforcing this consistency between 1326 * head and tail pages allows drivers to optimize away a check 1327 * on the head page when they need know if put_page() is needed 1328 * after get_user_pages(). 1329 */ 1330 __ClearPageReserved(p); 1331 set_page_count(p, 0); 1332 set_compound_head(p, page); 1333 } 1334 atomic_set(compound_mapcount_ptr(page), -1); 1335 } 1336 1337 /* 1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1339 * transparent huge pages. See the PageTransHuge() documentation for more 1340 * details. 1341 */ 1342 int PageHuge(struct page *page) 1343 { 1344 if (!PageCompound(page)) 1345 return 0; 1346 1347 page = compound_head(page); 1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1349 } 1350 EXPORT_SYMBOL_GPL(PageHuge); 1351 1352 /* 1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1354 * normal or transparent huge pages. 1355 */ 1356 int PageHeadHuge(struct page *page_head) 1357 { 1358 if (!PageHead(page_head)) 1359 return 0; 1360 1361 return get_compound_page_dtor(page_head) == free_huge_page; 1362 } 1363 1364 pgoff_t __basepage_index(struct page *page) 1365 { 1366 struct page *page_head = compound_head(page); 1367 pgoff_t index = page_index(page_head); 1368 unsigned long compound_idx; 1369 1370 if (!PageHuge(page_head)) 1371 return page_index(page); 1372 1373 if (compound_order(page_head) >= MAX_ORDER) 1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1375 else 1376 compound_idx = page - page_head; 1377 1378 return (index << compound_order(page_head)) + compound_idx; 1379 } 1380 1381 static struct page *alloc_buddy_huge_page(struct hstate *h, 1382 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1383 { 1384 int order = huge_page_order(h); 1385 struct page *page; 1386 1387 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1388 if (nid == NUMA_NO_NODE) 1389 nid = numa_mem_id(); 1390 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1391 if (page) 1392 __count_vm_event(HTLB_BUDDY_PGALLOC); 1393 else 1394 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1395 1396 return page; 1397 } 1398 1399 /* 1400 * Common helper to allocate a fresh hugetlb page. All specific allocators 1401 * should use this function to get new hugetlb pages 1402 */ 1403 static struct page *alloc_fresh_huge_page(struct hstate *h, 1404 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1405 { 1406 struct page *page; 1407 1408 if (hstate_is_gigantic(h)) 1409 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1410 else 1411 page = alloc_buddy_huge_page(h, gfp_mask, 1412 nid, nmask); 1413 if (!page) 1414 return NULL; 1415 1416 if (hstate_is_gigantic(h)) 1417 prep_compound_gigantic_page(page, huge_page_order(h)); 1418 prep_new_huge_page(h, page, page_to_nid(page)); 1419 1420 return page; 1421 } 1422 1423 /* 1424 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1425 * manner. 1426 */ 1427 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1428 { 1429 struct page *page; 1430 int nr_nodes, node; 1431 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1432 1433 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1434 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1435 if (page) 1436 break; 1437 } 1438 1439 if (!page) 1440 return 0; 1441 1442 put_page(page); /* free it into the hugepage allocator */ 1443 1444 return 1; 1445 } 1446 1447 /* 1448 * Free huge page from pool from next node to free. 1449 * Attempt to keep persistent huge pages more or less 1450 * balanced over allowed nodes. 1451 * Called with hugetlb_lock locked. 1452 */ 1453 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1454 bool acct_surplus) 1455 { 1456 int nr_nodes, node; 1457 int ret = 0; 1458 1459 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1460 /* 1461 * If we're returning unused surplus pages, only examine 1462 * nodes with surplus pages. 1463 */ 1464 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1465 !list_empty(&h->hugepage_freelists[node])) { 1466 struct page *page = 1467 list_entry(h->hugepage_freelists[node].next, 1468 struct page, lru); 1469 list_del(&page->lru); 1470 h->free_huge_pages--; 1471 h->free_huge_pages_node[node]--; 1472 if (acct_surplus) { 1473 h->surplus_huge_pages--; 1474 h->surplus_huge_pages_node[node]--; 1475 } 1476 update_and_free_page(h, page); 1477 ret = 1; 1478 break; 1479 } 1480 } 1481 1482 return ret; 1483 } 1484 1485 /* 1486 * Dissolve a given free hugepage into free buddy pages. This function does 1487 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1488 * number of free hugepages would be reduced below the number of reserved 1489 * hugepages. 1490 */ 1491 int dissolve_free_huge_page(struct page *page) 1492 { 1493 int rc = 0; 1494 1495 spin_lock(&hugetlb_lock); 1496 if (PageHuge(page) && !page_count(page)) { 1497 struct page *head = compound_head(page); 1498 struct hstate *h = page_hstate(head); 1499 int nid = page_to_nid(head); 1500 if (h->free_huge_pages - h->resv_huge_pages == 0) { 1501 rc = -EBUSY; 1502 goto out; 1503 } 1504 /* 1505 * Move PageHWPoison flag from head page to the raw error page, 1506 * which makes any subpages rather than the error page reusable. 1507 */ 1508 if (PageHWPoison(head) && page != head) { 1509 SetPageHWPoison(page); 1510 ClearPageHWPoison(head); 1511 } 1512 list_del(&head->lru); 1513 h->free_huge_pages--; 1514 h->free_huge_pages_node[nid]--; 1515 h->max_huge_pages--; 1516 update_and_free_page(h, head); 1517 } 1518 out: 1519 spin_unlock(&hugetlb_lock); 1520 return rc; 1521 } 1522 1523 /* 1524 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1525 * make specified memory blocks removable from the system. 1526 * Note that this will dissolve a free gigantic hugepage completely, if any 1527 * part of it lies within the given range. 1528 * Also note that if dissolve_free_huge_page() returns with an error, all 1529 * free hugepages that were dissolved before that error are lost. 1530 */ 1531 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1532 { 1533 unsigned long pfn; 1534 struct page *page; 1535 int rc = 0; 1536 1537 if (!hugepages_supported()) 1538 return rc; 1539 1540 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1541 page = pfn_to_page(pfn); 1542 if (PageHuge(page) && !page_count(page)) { 1543 rc = dissolve_free_huge_page(page); 1544 if (rc) 1545 break; 1546 } 1547 } 1548 1549 return rc; 1550 } 1551 1552 /* 1553 * Allocates a fresh surplus page from the page allocator. 1554 */ 1555 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1556 int nid, nodemask_t *nmask) 1557 { 1558 struct page *page = NULL; 1559 1560 if (hstate_is_gigantic(h)) 1561 return NULL; 1562 1563 spin_lock(&hugetlb_lock); 1564 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1565 goto out_unlock; 1566 spin_unlock(&hugetlb_lock); 1567 1568 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1569 if (!page) 1570 return NULL; 1571 1572 spin_lock(&hugetlb_lock); 1573 /* 1574 * We could have raced with the pool size change. 1575 * Double check that and simply deallocate the new page 1576 * if we would end up overcommiting the surpluses. Abuse 1577 * temporary page to workaround the nasty free_huge_page 1578 * codeflow 1579 */ 1580 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1581 SetPageHugeTemporary(page); 1582 put_page(page); 1583 page = NULL; 1584 } else { 1585 h->surplus_huge_pages++; 1586 h->nr_huge_pages_node[page_to_nid(page)]++; 1587 } 1588 1589 out_unlock: 1590 spin_unlock(&hugetlb_lock); 1591 1592 return page; 1593 } 1594 1595 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1596 int nid, nodemask_t *nmask) 1597 { 1598 struct page *page; 1599 1600 if (hstate_is_gigantic(h)) 1601 return NULL; 1602 1603 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1604 if (!page) 1605 return NULL; 1606 1607 /* 1608 * We do not account these pages as surplus because they are only 1609 * temporary and will be released properly on the last reference 1610 */ 1611 SetPageHugeTemporary(page); 1612 1613 return page; 1614 } 1615 1616 /* 1617 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1618 */ 1619 static 1620 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1621 struct vm_area_struct *vma, unsigned long addr) 1622 { 1623 struct page *page; 1624 struct mempolicy *mpol; 1625 gfp_t gfp_mask = htlb_alloc_mask(h); 1626 int nid; 1627 nodemask_t *nodemask; 1628 1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1630 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1631 mpol_cond_put(mpol); 1632 1633 return page; 1634 } 1635 1636 /* page migration callback function */ 1637 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1638 { 1639 gfp_t gfp_mask = htlb_alloc_mask(h); 1640 struct page *page = NULL; 1641 1642 if (nid != NUMA_NO_NODE) 1643 gfp_mask |= __GFP_THISNODE; 1644 1645 spin_lock(&hugetlb_lock); 1646 if (h->free_huge_pages - h->resv_huge_pages > 0) 1647 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1648 spin_unlock(&hugetlb_lock); 1649 1650 if (!page) 1651 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1652 1653 return page; 1654 } 1655 1656 /* page migration callback function */ 1657 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1658 nodemask_t *nmask) 1659 { 1660 gfp_t gfp_mask = htlb_alloc_mask(h); 1661 1662 spin_lock(&hugetlb_lock); 1663 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1664 struct page *page; 1665 1666 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1667 if (page) { 1668 spin_unlock(&hugetlb_lock); 1669 return page; 1670 } 1671 } 1672 spin_unlock(&hugetlb_lock); 1673 1674 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1675 } 1676 1677 /* mempolicy aware migration callback */ 1678 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1679 unsigned long address) 1680 { 1681 struct mempolicy *mpol; 1682 nodemask_t *nodemask; 1683 struct page *page; 1684 gfp_t gfp_mask; 1685 int node; 1686 1687 gfp_mask = htlb_alloc_mask(h); 1688 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1689 page = alloc_huge_page_nodemask(h, node, nodemask); 1690 mpol_cond_put(mpol); 1691 1692 return page; 1693 } 1694 1695 /* 1696 * Increase the hugetlb pool such that it can accommodate a reservation 1697 * of size 'delta'. 1698 */ 1699 static int gather_surplus_pages(struct hstate *h, int delta) 1700 { 1701 struct list_head surplus_list; 1702 struct page *page, *tmp; 1703 int ret, i; 1704 int needed, allocated; 1705 bool alloc_ok = true; 1706 1707 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1708 if (needed <= 0) { 1709 h->resv_huge_pages += delta; 1710 return 0; 1711 } 1712 1713 allocated = 0; 1714 INIT_LIST_HEAD(&surplus_list); 1715 1716 ret = -ENOMEM; 1717 retry: 1718 spin_unlock(&hugetlb_lock); 1719 for (i = 0; i < needed; i++) { 1720 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1721 NUMA_NO_NODE, NULL); 1722 if (!page) { 1723 alloc_ok = false; 1724 break; 1725 } 1726 list_add(&page->lru, &surplus_list); 1727 cond_resched(); 1728 } 1729 allocated += i; 1730 1731 /* 1732 * After retaking hugetlb_lock, we need to recalculate 'needed' 1733 * because either resv_huge_pages or free_huge_pages may have changed. 1734 */ 1735 spin_lock(&hugetlb_lock); 1736 needed = (h->resv_huge_pages + delta) - 1737 (h->free_huge_pages + allocated); 1738 if (needed > 0) { 1739 if (alloc_ok) 1740 goto retry; 1741 /* 1742 * We were not able to allocate enough pages to 1743 * satisfy the entire reservation so we free what 1744 * we've allocated so far. 1745 */ 1746 goto free; 1747 } 1748 /* 1749 * The surplus_list now contains _at_least_ the number of extra pages 1750 * needed to accommodate the reservation. Add the appropriate number 1751 * of pages to the hugetlb pool and free the extras back to the buddy 1752 * allocator. Commit the entire reservation here to prevent another 1753 * process from stealing the pages as they are added to the pool but 1754 * before they are reserved. 1755 */ 1756 needed += allocated; 1757 h->resv_huge_pages += delta; 1758 ret = 0; 1759 1760 /* Free the needed pages to the hugetlb pool */ 1761 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1762 if ((--needed) < 0) 1763 break; 1764 /* 1765 * This page is now managed by the hugetlb allocator and has 1766 * no users -- drop the buddy allocator's reference. 1767 */ 1768 put_page_testzero(page); 1769 VM_BUG_ON_PAGE(page_count(page), page); 1770 enqueue_huge_page(h, page); 1771 } 1772 free: 1773 spin_unlock(&hugetlb_lock); 1774 1775 /* Free unnecessary surplus pages to the buddy allocator */ 1776 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1777 put_page(page); 1778 spin_lock(&hugetlb_lock); 1779 1780 return ret; 1781 } 1782 1783 /* 1784 * This routine has two main purposes: 1785 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1786 * in unused_resv_pages. This corresponds to the prior adjustments made 1787 * to the associated reservation map. 1788 * 2) Free any unused surplus pages that may have been allocated to satisfy 1789 * the reservation. As many as unused_resv_pages may be freed. 1790 * 1791 * Called with hugetlb_lock held. However, the lock could be dropped (and 1792 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1793 * we must make sure nobody else can claim pages we are in the process of 1794 * freeing. Do this by ensuring resv_huge_page always is greater than the 1795 * number of huge pages we plan to free when dropping the lock. 1796 */ 1797 static void return_unused_surplus_pages(struct hstate *h, 1798 unsigned long unused_resv_pages) 1799 { 1800 unsigned long nr_pages; 1801 1802 /* Cannot return gigantic pages currently */ 1803 if (hstate_is_gigantic(h)) 1804 goto out; 1805 1806 /* 1807 * Part (or even all) of the reservation could have been backed 1808 * by pre-allocated pages. Only free surplus pages. 1809 */ 1810 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1811 1812 /* 1813 * We want to release as many surplus pages as possible, spread 1814 * evenly across all nodes with memory. Iterate across these nodes 1815 * until we can no longer free unreserved surplus pages. This occurs 1816 * when the nodes with surplus pages have no free pages. 1817 * free_pool_huge_page() will balance the the freed pages across the 1818 * on-line nodes with memory and will handle the hstate accounting. 1819 * 1820 * Note that we decrement resv_huge_pages as we free the pages. If 1821 * we drop the lock, resv_huge_pages will still be sufficiently large 1822 * to cover subsequent pages we may free. 1823 */ 1824 while (nr_pages--) { 1825 h->resv_huge_pages--; 1826 unused_resv_pages--; 1827 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1828 goto out; 1829 cond_resched_lock(&hugetlb_lock); 1830 } 1831 1832 out: 1833 /* Fully uncommit the reservation */ 1834 h->resv_huge_pages -= unused_resv_pages; 1835 } 1836 1837 1838 /* 1839 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1840 * are used by the huge page allocation routines to manage reservations. 1841 * 1842 * vma_needs_reservation is called to determine if the huge page at addr 1843 * within the vma has an associated reservation. If a reservation is 1844 * needed, the value 1 is returned. The caller is then responsible for 1845 * managing the global reservation and subpool usage counts. After 1846 * the huge page has been allocated, vma_commit_reservation is called 1847 * to add the page to the reservation map. If the page allocation fails, 1848 * the reservation must be ended instead of committed. vma_end_reservation 1849 * is called in such cases. 1850 * 1851 * In the normal case, vma_commit_reservation returns the same value 1852 * as the preceding vma_needs_reservation call. The only time this 1853 * is not the case is if a reserve map was changed between calls. It 1854 * is the responsibility of the caller to notice the difference and 1855 * take appropriate action. 1856 * 1857 * vma_add_reservation is used in error paths where a reservation must 1858 * be restored when a newly allocated huge page must be freed. It is 1859 * to be called after calling vma_needs_reservation to determine if a 1860 * reservation exists. 1861 */ 1862 enum vma_resv_mode { 1863 VMA_NEEDS_RESV, 1864 VMA_COMMIT_RESV, 1865 VMA_END_RESV, 1866 VMA_ADD_RESV, 1867 }; 1868 static long __vma_reservation_common(struct hstate *h, 1869 struct vm_area_struct *vma, unsigned long addr, 1870 enum vma_resv_mode mode) 1871 { 1872 struct resv_map *resv; 1873 pgoff_t idx; 1874 long ret; 1875 1876 resv = vma_resv_map(vma); 1877 if (!resv) 1878 return 1; 1879 1880 idx = vma_hugecache_offset(h, vma, addr); 1881 switch (mode) { 1882 case VMA_NEEDS_RESV: 1883 ret = region_chg(resv, idx, idx + 1); 1884 break; 1885 case VMA_COMMIT_RESV: 1886 ret = region_add(resv, idx, idx + 1); 1887 break; 1888 case VMA_END_RESV: 1889 region_abort(resv, idx, idx + 1); 1890 ret = 0; 1891 break; 1892 case VMA_ADD_RESV: 1893 if (vma->vm_flags & VM_MAYSHARE) 1894 ret = region_add(resv, idx, idx + 1); 1895 else { 1896 region_abort(resv, idx, idx + 1); 1897 ret = region_del(resv, idx, idx + 1); 1898 } 1899 break; 1900 default: 1901 BUG(); 1902 } 1903 1904 if (vma->vm_flags & VM_MAYSHARE) 1905 return ret; 1906 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1907 /* 1908 * In most cases, reserves always exist for private mappings. 1909 * However, a file associated with mapping could have been 1910 * hole punched or truncated after reserves were consumed. 1911 * As subsequent fault on such a range will not use reserves. 1912 * Subtle - The reserve map for private mappings has the 1913 * opposite meaning than that of shared mappings. If NO 1914 * entry is in the reserve map, it means a reservation exists. 1915 * If an entry exists in the reserve map, it means the 1916 * reservation has already been consumed. As a result, the 1917 * return value of this routine is the opposite of the 1918 * value returned from reserve map manipulation routines above. 1919 */ 1920 if (ret) 1921 return 0; 1922 else 1923 return 1; 1924 } 1925 else 1926 return ret < 0 ? ret : 0; 1927 } 1928 1929 static long vma_needs_reservation(struct hstate *h, 1930 struct vm_area_struct *vma, unsigned long addr) 1931 { 1932 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1933 } 1934 1935 static long vma_commit_reservation(struct hstate *h, 1936 struct vm_area_struct *vma, unsigned long addr) 1937 { 1938 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1939 } 1940 1941 static void vma_end_reservation(struct hstate *h, 1942 struct vm_area_struct *vma, unsigned long addr) 1943 { 1944 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1945 } 1946 1947 static long vma_add_reservation(struct hstate *h, 1948 struct vm_area_struct *vma, unsigned long addr) 1949 { 1950 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1951 } 1952 1953 /* 1954 * This routine is called to restore a reservation on error paths. In the 1955 * specific error paths, a huge page was allocated (via alloc_huge_page) 1956 * and is about to be freed. If a reservation for the page existed, 1957 * alloc_huge_page would have consumed the reservation and set PagePrivate 1958 * in the newly allocated page. When the page is freed via free_huge_page, 1959 * the global reservation count will be incremented if PagePrivate is set. 1960 * However, free_huge_page can not adjust the reserve map. Adjust the 1961 * reserve map here to be consistent with global reserve count adjustments 1962 * to be made by free_huge_page. 1963 */ 1964 static void restore_reserve_on_error(struct hstate *h, 1965 struct vm_area_struct *vma, unsigned long address, 1966 struct page *page) 1967 { 1968 if (unlikely(PagePrivate(page))) { 1969 long rc = vma_needs_reservation(h, vma, address); 1970 1971 if (unlikely(rc < 0)) { 1972 /* 1973 * Rare out of memory condition in reserve map 1974 * manipulation. Clear PagePrivate so that 1975 * global reserve count will not be incremented 1976 * by free_huge_page. This will make it appear 1977 * as though the reservation for this page was 1978 * consumed. This may prevent the task from 1979 * faulting in the page at a later time. This 1980 * is better than inconsistent global huge page 1981 * accounting of reserve counts. 1982 */ 1983 ClearPagePrivate(page); 1984 } else if (rc) { 1985 rc = vma_add_reservation(h, vma, address); 1986 if (unlikely(rc < 0)) 1987 /* 1988 * See above comment about rare out of 1989 * memory condition. 1990 */ 1991 ClearPagePrivate(page); 1992 } else 1993 vma_end_reservation(h, vma, address); 1994 } 1995 } 1996 1997 struct page *alloc_huge_page(struct vm_area_struct *vma, 1998 unsigned long addr, int avoid_reserve) 1999 { 2000 struct hugepage_subpool *spool = subpool_vma(vma); 2001 struct hstate *h = hstate_vma(vma); 2002 struct page *page; 2003 long map_chg, map_commit; 2004 long gbl_chg; 2005 int ret, idx; 2006 struct hugetlb_cgroup *h_cg; 2007 2008 idx = hstate_index(h); 2009 /* 2010 * Examine the region/reserve map to determine if the process 2011 * has a reservation for the page to be allocated. A return 2012 * code of zero indicates a reservation exists (no change). 2013 */ 2014 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2015 if (map_chg < 0) 2016 return ERR_PTR(-ENOMEM); 2017 2018 /* 2019 * Processes that did not create the mapping will have no 2020 * reserves as indicated by the region/reserve map. Check 2021 * that the allocation will not exceed the subpool limit. 2022 * Allocations for MAP_NORESERVE mappings also need to be 2023 * checked against any subpool limit. 2024 */ 2025 if (map_chg || avoid_reserve) { 2026 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2027 if (gbl_chg < 0) { 2028 vma_end_reservation(h, vma, addr); 2029 return ERR_PTR(-ENOSPC); 2030 } 2031 2032 /* 2033 * Even though there was no reservation in the region/reserve 2034 * map, there could be reservations associated with the 2035 * subpool that can be used. This would be indicated if the 2036 * return value of hugepage_subpool_get_pages() is zero. 2037 * However, if avoid_reserve is specified we still avoid even 2038 * the subpool reservations. 2039 */ 2040 if (avoid_reserve) 2041 gbl_chg = 1; 2042 } 2043 2044 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2045 if (ret) 2046 goto out_subpool_put; 2047 2048 spin_lock(&hugetlb_lock); 2049 /* 2050 * glb_chg is passed to indicate whether or not a page must be taken 2051 * from the global free pool (global change). gbl_chg == 0 indicates 2052 * a reservation exists for the allocation. 2053 */ 2054 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2055 if (!page) { 2056 spin_unlock(&hugetlb_lock); 2057 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2058 if (!page) 2059 goto out_uncharge_cgroup; 2060 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2061 SetPagePrivate(page); 2062 h->resv_huge_pages--; 2063 } 2064 spin_lock(&hugetlb_lock); 2065 list_move(&page->lru, &h->hugepage_activelist); 2066 /* Fall through */ 2067 } 2068 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2069 spin_unlock(&hugetlb_lock); 2070 2071 set_page_private(page, (unsigned long)spool); 2072 2073 map_commit = vma_commit_reservation(h, vma, addr); 2074 if (unlikely(map_chg > map_commit)) { 2075 /* 2076 * The page was added to the reservation map between 2077 * vma_needs_reservation and vma_commit_reservation. 2078 * This indicates a race with hugetlb_reserve_pages. 2079 * Adjust for the subpool count incremented above AND 2080 * in hugetlb_reserve_pages for the same page. Also, 2081 * the reservation count added in hugetlb_reserve_pages 2082 * no longer applies. 2083 */ 2084 long rsv_adjust; 2085 2086 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2087 hugetlb_acct_memory(h, -rsv_adjust); 2088 } 2089 return page; 2090 2091 out_uncharge_cgroup: 2092 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2093 out_subpool_put: 2094 if (map_chg || avoid_reserve) 2095 hugepage_subpool_put_pages(spool, 1); 2096 vma_end_reservation(h, vma, addr); 2097 return ERR_PTR(-ENOSPC); 2098 } 2099 2100 int alloc_bootmem_huge_page(struct hstate *h) 2101 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2102 int __alloc_bootmem_huge_page(struct hstate *h) 2103 { 2104 struct huge_bootmem_page *m; 2105 int nr_nodes, node; 2106 2107 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2108 void *addr; 2109 2110 addr = memblock_virt_alloc_try_nid_nopanic( 2111 huge_page_size(h), huge_page_size(h), 2112 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2113 if (addr) { 2114 /* 2115 * Use the beginning of the huge page to store the 2116 * huge_bootmem_page struct (until gather_bootmem 2117 * puts them into the mem_map). 2118 */ 2119 m = addr; 2120 goto found; 2121 } 2122 } 2123 return 0; 2124 2125 found: 2126 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2127 /* Put them into a private list first because mem_map is not up yet */ 2128 list_add(&m->list, &huge_boot_pages); 2129 m->hstate = h; 2130 return 1; 2131 } 2132 2133 static void __init prep_compound_huge_page(struct page *page, 2134 unsigned int order) 2135 { 2136 if (unlikely(order > (MAX_ORDER - 1))) 2137 prep_compound_gigantic_page(page, order); 2138 else 2139 prep_compound_page(page, order); 2140 } 2141 2142 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2143 static void __init gather_bootmem_prealloc(void) 2144 { 2145 struct huge_bootmem_page *m; 2146 2147 list_for_each_entry(m, &huge_boot_pages, list) { 2148 struct hstate *h = m->hstate; 2149 struct page *page; 2150 2151 #ifdef CONFIG_HIGHMEM 2152 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2153 memblock_free_late(__pa(m), 2154 sizeof(struct huge_bootmem_page)); 2155 #else 2156 page = virt_to_page(m); 2157 #endif 2158 WARN_ON(page_count(page) != 1); 2159 prep_compound_huge_page(page, h->order); 2160 WARN_ON(PageReserved(page)); 2161 prep_new_huge_page(h, page, page_to_nid(page)); 2162 put_page(page); /* free it into the hugepage allocator */ 2163 2164 /* 2165 * If we had gigantic hugepages allocated at boot time, we need 2166 * to restore the 'stolen' pages to totalram_pages in order to 2167 * fix confusing memory reports from free(1) and another 2168 * side-effects, like CommitLimit going negative. 2169 */ 2170 if (hstate_is_gigantic(h)) 2171 adjust_managed_page_count(page, 1 << h->order); 2172 } 2173 } 2174 2175 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2176 { 2177 unsigned long i; 2178 2179 for (i = 0; i < h->max_huge_pages; ++i) { 2180 if (hstate_is_gigantic(h)) { 2181 if (!alloc_bootmem_huge_page(h)) 2182 break; 2183 } else if (!alloc_pool_huge_page(h, 2184 &node_states[N_MEMORY])) 2185 break; 2186 cond_resched(); 2187 } 2188 if (i < h->max_huge_pages) { 2189 char buf[32]; 2190 2191 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2192 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2193 h->max_huge_pages, buf, i); 2194 h->max_huge_pages = i; 2195 } 2196 } 2197 2198 static void __init hugetlb_init_hstates(void) 2199 { 2200 struct hstate *h; 2201 2202 for_each_hstate(h) { 2203 if (minimum_order > huge_page_order(h)) 2204 minimum_order = huge_page_order(h); 2205 2206 /* oversize hugepages were init'ed in early boot */ 2207 if (!hstate_is_gigantic(h)) 2208 hugetlb_hstate_alloc_pages(h); 2209 } 2210 VM_BUG_ON(minimum_order == UINT_MAX); 2211 } 2212 2213 static void __init report_hugepages(void) 2214 { 2215 struct hstate *h; 2216 2217 for_each_hstate(h) { 2218 char buf[32]; 2219 2220 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2221 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2222 buf, h->free_huge_pages); 2223 } 2224 } 2225 2226 #ifdef CONFIG_HIGHMEM 2227 static void try_to_free_low(struct hstate *h, unsigned long count, 2228 nodemask_t *nodes_allowed) 2229 { 2230 int i; 2231 2232 if (hstate_is_gigantic(h)) 2233 return; 2234 2235 for_each_node_mask(i, *nodes_allowed) { 2236 struct page *page, *next; 2237 struct list_head *freel = &h->hugepage_freelists[i]; 2238 list_for_each_entry_safe(page, next, freel, lru) { 2239 if (count >= h->nr_huge_pages) 2240 return; 2241 if (PageHighMem(page)) 2242 continue; 2243 list_del(&page->lru); 2244 update_and_free_page(h, page); 2245 h->free_huge_pages--; 2246 h->free_huge_pages_node[page_to_nid(page)]--; 2247 } 2248 } 2249 } 2250 #else 2251 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2252 nodemask_t *nodes_allowed) 2253 { 2254 } 2255 #endif 2256 2257 /* 2258 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2259 * balanced by operating on them in a round-robin fashion. 2260 * Returns 1 if an adjustment was made. 2261 */ 2262 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2263 int delta) 2264 { 2265 int nr_nodes, node; 2266 2267 VM_BUG_ON(delta != -1 && delta != 1); 2268 2269 if (delta < 0) { 2270 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2271 if (h->surplus_huge_pages_node[node]) 2272 goto found; 2273 } 2274 } else { 2275 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2276 if (h->surplus_huge_pages_node[node] < 2277 h->nr_huge_pages_node[node]) 2278 goto found; 2279 } 2280 } 2281 return 0; 2282 2283 found: 2284 h->surplus_huge_pages += delta; 2285 h->surplus_huge_pages_node[node] += delta; 2286 return 1; 2287 } 2288 2289 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2290 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2291 nodemask_t *nodes_allowed) 2292 { 2293 unsigned long min_count, ret; 2294 2295 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2296 return h->max_huge_pages; 2297 2298 /* 2299 * Increase the pool size 2300 * First take pages out of surplus state. Then make up the 2301 * remaining difference by allocating fresh huge pages. 2302 * 2303 * We might race with alloc_surplus_huge_page() here and be unable 2304 * to convert a surplus huge page to a normal huge page. That is 2305 * not critical, though, it just means the overall size of the 2306 * pool might be one hugepage larger than it needs to be, but 2307 * within all the constraints specified by the sysctls. 2308 */ 2309 spin_lock(&hugetlb_lock); 2310 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2311 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2312 break; 2313 } 2314 2315 while (count > persistent_huge_pages(h)) { 2316 /* 2317 * If this allocation races such that we no longer need the 2318 * page, free_huge_page will handle it by freeing the page 2319 * and reducing the surplus. 2320 */ 2321 spin_unlock(&hugetlb_lock); 2322 2323 /* yield cpu to avoid soft lockup */ 2324 cond_resched(); 2325 2326 ret = alloc_pool_huge_page(h, nodes_allowed); 2327 spin_lock(&hugetlb_lock); 2328 if (!ret) 2329 goto out; 2330 2331 /* Bail for signals. Probably ctrl-c from user */ 2332 if (signal_pending(current)) 2333 goto out; 2334 } 2335 2336 /* 2337 * Decrease the pool size 2338 * First return free pages to the buddy allocator (being careful 2339 * to keep enough around to satisfy reservations). Then place 2340 * pages into surplus state as needed so the pool will shrink 2341 * to the desired size as pages become free. 2342 * 2343 * By placing pages into the surplus state independent of the 2344 * overcommit value, we are allowing the surplus pool size to 2345 * exceed overcommit. There are few sane options here. Since 2346 * alloc_surplus_huge_page() is checking the global counter, 2347 * though, we'll note that we're not allowed to exceed surplus 2348 * and won't grow the pool anywhere else. Not until one of the 2349 * sysctls are changed, or the surplus pages go out of use. 2350 */ 2351 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2352 min_count = max(count, min_count); 2353 try_to_free_low(h, min_count, nodes_allowed); 2354 while (min_count < persistent_huge_pages(h)) { 2355 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2356 break; 2357 cond_resched_lock(&hugetlb_lock); 2358 } 2359 while (count < persistent_huge_pages(h)) { 2360 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2361 break; 2362 } 2363 out: 2364 ret = persistent_huge_pages(h); 2365 spin_unlock(&hugetlb_lock); 2366 return ret; 2367 } 2368 2369 #define HSTATE_ATTR_RO(_name) \ 2370 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2371 2372 #define HSTATE_ATTR(_name) \ 2373 static struct kobj_attribute _name##_attr = \ 2374 __ATTR(_name, 0644, _name##_show, _name##_store) 2375 2376 static struct kobject *hugepages_kobj; 2377 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2378 2379 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2380 2381 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2382 { 2383 int i; 2384 2385 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2386 if (hstate_kobjs[i] == kobj) { 2387 if (nidp) 2388 *nidp = NUMA_NO_NODE; 2389 return &hstates[i]; 2390 } 2391 2392 return kobj_to_node_hstate(kobj, nidp); 2393 } 2394 2395 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2396 struct kobj_attribute *attr, char *buf) 2397 { 2398 struct hstate *h; 2399 unsigned long nr_huge_pages; 2400 int nid; 2401 2402 h = kobj_to_hstate(kobj, &nid); 2403 if (nid == NUMA_NO_NODE) 2404 nr_huge_pages = h->nr_huge_pages; 2405 else 2406 nr_huge_pages = h->nr_huge_pages_node[nid]; 2407 2408 return sprintf(buf, "%lu\n", nr_huge_pages); 2409 } 2410 2411 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2412 struct hstate *h, int nid, 2413 unsigned long count, size_t len) 2414 { 2415 int err; 2416 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2417 2418 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2419 err = -EINVAL; 2420 goto out; 2421 } 2422 2423 if (nid == NUMA_NO_NODE) { 2424 /* 2425 * global hstate attribute 2426 */ 2427 if (!(obey_mempolicy && 2428 init_nodemask_of_mempolicy(nodes_allowed))) { 2429 NODEMASK_FREE(nodes_allowed); 2430 nodes_allowed = &node_states[N_MEMORY]; 2431 } 2432 } else if (nodes_allowed) { 2433 /* 2434 * per node hstate attribute: adjust count to global, 2435 * but restrict alloc/free to the specified node. 2436 */ 2437 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2438 init_nodemask_of_node(nodes_allowed, nid); 2439 } else 2440 nodes_allowed = &node_states[N_MEMORY]; 2441 2442 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2443 2444 if (nodes_allowed != &node_states[N_MEMORY]) 2445 NODEMASK_FREE(nodes_allowed); 2446 2447 return len; 2448 out: 2449 NODEMASK_FREE(nodes_allowed); 2450 return err; 2451 } 2452 2453 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2454 struct kobject *kobj, const char *buf, 2455 size_t len) 2456 { 2457 struct hstate *h; 2458 unsigned long count; 2459 int nid; 2460 int err; 2461 2462 err = kstrtoul(buf, 10, &count); 2463 if (err) 2464 return err; 2465 2466 h = kobj_to_hstate(kobj, &nid); 2467 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2468 } 2469 2470 static ssize_t nr_hugepages_show(struct kobject *kobj, 2471 struct kobj_attribute *attr, char *buf) 2472 { 2473 return nr_hugepages_show_common(kobj, attr, buf); 2474 } 2475 2476 static ssize_t nr_hugepages_store(struct kobject *kobj, 2477 struct kobj_attribute *attr, const char *buf, size_t len) 2478 { 2479 return nr_hugepages_store_common(false, kobj, buf, len); 2480 } 2481 HSTATE_ATTR(nr_hugepages); 2482 2483 #ifdef CONFIG_NUMA 2484 2485 /* 2486 * hstate attribute for optionally mempolicy-based constraint on persistent 2487 * huge page alloc/free. 2488 */ 2489 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2490 struct kobj_attribute *attr, char *buf) 2491 { 2492 return nr_hugepages_show_common(kobj, attr, buf); 2493 } 2494 2495 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2496 struct kobj_attribute *attr, const char *buf, size_t len) 2497 { 2498 return nr_hugepages_store_common(true, kobj, buf, len); 2499 } 2500 HSTATE_ATTR(nr_hugepages_mempolicy); 2501 #endif 2502 2503 2504 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2505 struct kobj_attribute *attr, char *buf) 2506 { 2507 struct hstate *h = kobj_to_hstate(kobj, NULL); 2508 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2509 } 2510 2511 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2512 struct kobj_attribute *attr, const char *buf, size_t count) 2513 { 2514 int err; 2515 unsigned long input; 2516 struct hstate *h = kobj_to_hstate(kobj, NULL); 2517 2518 if (hstate_is_gigantic(h)) 2519 return -EINVAL; 2520 2521 err = kstrtoul(buf, 10, &input); 2522 if (err) 2523 return err; 2524 2525 spin_lock(&hugetlb_lock); 2526 h->nr_overcommit_huge_pages = input; 2527 spin_unlock(&hugetlb_lock); 2528 2529 return count; 2530 } 2531 HSTATE_ATTR(nr_overcommit_hugepages); 2532 2533 static ssize_t free_hugepages_show(struct kobject *kobj, 2534 struct kobj_attribute *attr, char *buf) 2535 { 2536 struct hstate *h; 2537 unsigned long free_huge_pages; 2538 int nid; 2539 2540 h = kobj_to_hstate(kobj, &nid); 2541 if (nid == NUMA_NO_NODE) 2542 free_huge_pages = h->free_huge_pages; 2543 else 2544 free_huge_pages = h->free_huge_pages_node[nid]; 2545 2546 return sprintf(buf, "%lu\n", free_huge_pages); 2547 } 2548 HSTATE_ATTR_RO(free_hugepages); 2549 2550 static ssize_t resv_hugepages_show(struct kobject *kobj, 2551 struct kobj_attribute *attr, char *buf) 2552 { 2553 struct hstate *h = kobj_to_hstate(kobj, NULL); 2554 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2555 } 2556 HSTATE_ATTR_RO(resv_hugepages); 2557 2558 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2559 struct kobj_attribute *attr, char *buf) 2560 { 2561 struct hstate *h; 2562 unsigned long surplus_huge_pages; 2563 int nid; 2564 2565 h = kobj_to_hstate(kobj, &nid); 2566 if (nid == NUMA_NO_NODE) 2567 surplus_huge_pages = h->surplus_huge_pages; 2568 else 2569 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2570 2571 return sprintf(buf, "%lu\n", surplus_huge_pages); 2572 } 2573 HSTATE_ATTR_RO(surplus_hugepages); 2574 2575 static struct attribute *hstate_attrs[] = { 2576 &nr_hugepages_attr.attr, 2577 &nr_overcommit_hugepages_attr.attr, 2578 &free_hugepages_attr.attr, 2579 &resv_hugepages_attr.attr, 2580 &surplus_hugepages_attr.attr, 2581 #ifdef CONFIG_NUMA 2582 &nr_hugepages_mempolicy_attr.attr, 2583 #endif 2584 NULL, 2585 }; 2586 2587 static const struct attribute_group hstate_attr_group = { 2588 .attrs = hstate_attrs, 2589 }; 2590 2591 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2592 struct kobject **hstate_kobjs, 2593 const struct attribute_group *hstate_attr_group) 2594 { 2595 int retval; 2596 int hi = hstate_index(h); 2597 2598 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2599 if (!hstate_kobjs[hi]) 2600 return -ENOMEM; 2601 2602 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2603 if (retval) 2604 kobject_put(hstate_kobjs[hi]); 2605 2606 return retval; 2607 } 2608 2609 static void __init hugetlb_sysfs_init(void) 2610 { 2611 struct hstate *h; 2612 int err; 2613 2614 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2615 if (!hugepages_kobj) 2616 return; 2617 2618 for_each_hstate(h) { 2619 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2620 hstate_kobjs, &hstate_attr_group); 2621 if (err) 2622 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2623 } 2624 } 2625 2626 #ifdef CONFIG_NUMA 2627 2628 /* 2629 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2630 * with node devices in node_devices[] using a parallel array. The array 2631 * index of a node device or _hstate == node id. 2632 * This is here to avoid any static dependency of the node device driver, in 2633 * the base kernel, on the hugetlb module. 2634 */ 2635 struct node_hstate { 2636 struct kobject *hugepages_kobj; 2637 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2638 }; 2639 static struct node_hstate node_hstates[MAX_NUMNODES]; 2640 2641 /* 2642 * A subset of global hstate attributes for node devices 2643 */ 2644 static struct attribute *per_node_hstate_attrs[] = { 2645 &nr_hugepages_attr.attr, 2646 &free_hugepages_attr.attr, 2647 &surplus_hugepages_attr.attr, 2648 NULL, 2649 }; 2650 2651 static const struct attribute_group per_node_hstate_attr_group = { 2652 .attrs = per_node_hstate_attrs, 2653 }; 2654 2655 /* 2656 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2657 * Returns node id via non-NULL nidp. 2658 */ 2659 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2660 { 2661 int nid; 2662 2663 for (nid = 0; nid < nr_node_ids; nid++) { 2664 struct node_hstate *nhs = &node_hstates[nid]; 2665 int i; 2666 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2667 if (nhs->hstate_kobjs[i] == kobj) { 2668 if (nidp) 2669 *nidp = nid; 2670 return &hstates[i]; 2671 } 2672 } 2673 2674 BUG(); 2675 return NULL; 2676 } 2677 2678 /* 2679 * Unregister hstate attributes from a single node device. 2680 * No-op if no hstate attributes attached. 2681 */ 2682 static void hugetlb_unregister_node(struct node *node) 2683 { 2684 struct hstate *h; 2685 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2686 2687 if (!nhs->hugepages_kobj) 2688 return; /* no hstate attributes */ 2689 2690 for_each_hstate(h) { 2691 int idx = hstate_index(h); 2692 if (nhs->hstate_kobjs[idx]) { 2693 kobject_put(nhs->hstate_kobjs[idx]); 2694 nhs->hstate_kobjs[idx] = NULL; 2695 } 2696 } 2697 2698 kobject_put(nhs->hugepages_kobj); 2699 nhs->hugepages_kobj = NULL; 2700 } 2701 2702 2703 /* 2704 * Register hstate attributes for a single node device. 2705 * No-op if attributes already registered. 2706 */ 2707 static void hugetlb_register_node(struct node *node) 2708 { 2709 struct hstate *h; 2710 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2711 int err; 2712 2713 if (nhs->hugepages_kobj) 2714 return; /* already allocated */ 2715 2716 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2717 &node->dev.kobj); 2718 if (!nhs->hugepages_kobj) 2719 return; 2720 2721 for_each_hstate(h) { 2722 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2723 nhs->hstate_kobjs, 2724 &per_node_hstate_attr_group); 2725 if (err) { 2726 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2727 h->name, node->dev.id); 2728 hugetlb_unregister_node(node); 2729 break; 2730 } 2731 } 2732 } 2733 2734 /* 2735 * hugetlb init time: register hstate attributes for all registered node 2736 * devices of nodes that have memory. All on-line nodes should have 2737 * registered their associated device by this time. 2738 */ 2739 static void __init hugetlb_register_all_nodes(void) 2740 { 2741 int nid; 2742 2743 for_each_node_state(nid, N_MEMORY) { 2744 struct node *node = node_devices[nid]; 2745 if (node->dev.id == nid) 2746 hugetlb_register_node(node); 2747 } 2748 2749 /* 2750 * Let the node device driver know we're here so it can 2751 * [un]register hstate attributes on node hotplug. 2752 */ 2753 register_hugetlbfs_with_node(hugetlb_register_node, 2754 hugetlb_unregister_node); 2755 } 2756 #else /* !CONFIG_NUMA */ 2757 2758 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2759 { 2760 BUG(); 2761 if (nidp) 2762 *nidp = -1; 2763 return NULL; 2764 } 2765 2766 static void hugetlb_register_all_nodes(void) { } 2767 2768 #endif 2769 2770 static int __init hugetlb_init(void) 2771 { 2772 int i; 2773 2774 if (!hugepages_supported()) 2775 return 0; 2776 2777 if (!size_to_hstate(default_hstate_size)) { 2778 if (default_hstate_size != 0) { 2779 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2780 default_hstate_size, HPAGE_SIZE); 2781 } 2782 2783 default_hstate_size = HPAGE_SIZE; 2784 if (!size_to_hstate(default_hstate_size)) 2785 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2786 } 2787 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2788 if (default_hstate_max_huge_pages) { 2789 if (!default_hstate.max_huge_pages) 2790 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2791 } 2792 2793 hugetlb_init_hstates(); 2794 gather_bootmem_prealloc(); 2795 report_hugepages(); 2796 2797 hugetlb_sysfs_init(); 2798 hugetlb_register_all_nodes(); 2799 hugetlb_cgroup_file_init(); 2800 2801 #ifdef CONFIG_SMP 2802 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2803 #else 2804 num_fault_mutexes = 1; 2805 #endif 2806 hugetlb_fault_mutex_table = 2807 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2808 BUG_ON(!hugetlb_fault_mutex_table); 2809 2810 for (i = 0; i < num_fault_mutexes; i++) 2811 mutex_init(&hugetlb_fault_mutex_table[i]); 2812 return 0; 2813 } 2814 subsys_initcall(hugetlb_init); 2815 2816 /* Should be called on processing a hugepagesz=... option */ 2817 void __init hugetlb_bad_size(void) 2818 { 2819 parsed_valid_hugepagesz = false; 2820 } 2821 2822 void __init hugetlb_add_hstate(unsigned int order) 2823 { 2824 struct hstate *h; 2825 unsigned long i; 2826 2827 if (size_to_hstate(PAGE_SIZE << order)) { 2828 pr_warn("hugepagesz= specified twice, ignoring\n"); 2829 return; 2830 } 2831 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2832 BUG_ON(order == 0); 2833 h = &hstates[hugetlb_max_hstate++]; 2834 h->order = order; 2835 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2836 h->nr_huge_pages = 0; 2837 h->free_huge_pages = 0; 2838 for (i = 0; i < MAX_NUMNODES; ++i) 2839 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2840 INIT_LIST_HEAD(&h->hugepage_activelist); 2841 h->next_nid_to_alloc = first_memory_node; 2842 h->next_nid_to_free = first_memory_node; 2843 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2844 huge_page_size(h)/1024); 2845 2846 parsed_hstate = h; 2847 } 2848 2849 static int __init hugetlb_nrpages_setup(char *s) 2850 { 2851 unsigned long *mhp; 2852 static unsigned long *last_mhp; 2853 2854 if (!parsed_valid_hugepagesz) { 2855 pr_warn("hugepages = %s preceded by " 2856 "an unsupported hugepagesz, ignoring\n", s); 2857 parsed_valid_hugepagesz = true; 2858 return 1; 2859 } 2860 /* 2861 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2862 * so this hugepages= parameter goes to the "default hstate". 2863 */ 2864 else if (!hugetlb_max_hstate) 2865 mhp = &default_hstate_max_huge_pages; 2866 else 2867 mhp = &parsed_hstate->max_huge_pages; 2868 2869 if (mhp == last_mhp) { 2870 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2871 return 1; 2872 } 2873 2874 if (sscanf(s, "%lu", mhp) <= 0) 2875 *mhp = 0; 2876 2877 /* 2878 * Global state is always initialized later in hugetlb_init. 2879 * But we need to allocate >= MAX_ORDER hstates here early to still 2880 * use the bootmem allocator. 2881 */ 2882 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2883 hugetlb_hstate_alloc_pages(parsed_hstate); 2884 2885 last_mhp = mhp; 2886 2887 return 1; 2888 } 2889 __setup("hugepages=", hugetlb_nrpages_setup); 2890 2891 static int __init hugetlb_default_setup(char *s) 2892 { 2893 default_hstate_size = memparse(s, &s); 2894 return 1; 2895 } 2896 __setup("default_hugepagesz=", hugetlb_default_setup); 2897 2898 static unsigned int cpuset_mems_nr(unsigned int *array) 2899 { 2900 int node; 2901 unsigned int nr = 0; 2902 2903 for_each_node_mask(node, cpuset_current_mems_allowed) 2904 nr += array[node]; 2905 2906 return nr; 2907 } 2908 2909 #ifdef CONFIG_SYSCTL 2910 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2911 struct ctl_table *table, int write, 2912 void __user *buffer, size_t *length, loff_t *ppos) 2913 { 2914 struct hstate *h = &default_hstate; 2915 unsigned long tmp = h->max_huge_pages; 2916 int ret; 2917 2918 if (!hugepages_supported()) 2919 return -EOPNOTSUPP; 2920 2921 table->data = &tmp; 2922 table->maxlen = sizeof(unsigned long); 2923 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2924 if (ret) 2925 goto out; 2926 2927 if (write) 2928 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2929 NUMA_NO_NODE, tmp, *length); 2930 out: 2931 return ret; 2932 } 2933 2934 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2935 void __user *buffer, size_t *length, loff_t *ppos) 2936 { 2937 2938 return hugetlb_sysctl_handler_common(false, table, write, 2939 buffer, length, ppos); 2940 } 2941 2942 #ifdef CONFIG_NUMA 2943 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2944 void __user *buffer, size_t *length, loff_t *ppos) 2945 { 2946 return hugetlb_sysctl_handler_common(true, table, write, 2947 buffer, length, ppos); 2948 } 2949 #endif /* CONFIG_NUMA */ 2950 2951 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2952 void __user *buffer, 2953 size_t *length, loff_t *ppos) 2954 { 2955 struct hstate *h = &default_hstate; 2956 unsigned long tmp; 2957 int ret; 2958 2959 if (!hugepages_supported()) 2960 return -EOPNOTSUPP; 2961 2962 tmp = h->nr_overcommit_huge_pages; 2963 2964 if (write && hstate_is_gigantic(h)) 2965 return -EINVAL; 2966 2967 table->data = &tmp; 2968 table->maxlen = sizeof(unsigned long); 2969 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2970 if (ret) 2971 goto out; 2972 2973 if (write) { 2974 spin_lock(&hugetlb_lock); 2975 h->nr_overcommit_huge_pages = tmp; 2976 spin_unlock(&hugetlb_lock); 2977 } 2978 out: 2979 return ret; 2980 } 2981 2982 #endif /* CONFIG_SYSCTL */ 2983 2984 void hugetlb_report_meminfo(struct seq_file *m) 2985 { 2986 struct hstate *h; 2987 unsigned long total = 0; 2988 2989 if (!hugepages_supported()) 2990 return; 2991 2992 for_each_hstate(h) { 2993 unsigned long count = h->nr_huge_pages; 2994 2995 total += (PAGE_SIZE << huge_page_order(h)) * count; 2996 2997 if (h == &default_hstate) 2998 seq_printf(m, 2999 "HugePages_Total: %5lu\n" 3000 "HugePages_Free: %5lu\n" 3001 "HugePages_Rsvd: %5lu\n" 3002 "HugePages_Surp: %5lu\n" 3003 "Hugepagesize: %8lu kB\n", 3004 count, 3005 h->free_huge_pages, 3006 h->resv_huge_pages, 3007 h->surplus_huge_pages, 3008 (PAGE_SIZE << huge_page_order(h)) / 1024); 3009 } 3010 3011 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3012 } 3013 3014 int hugetlb_report_node_meminfo(int nid, char *buf) 3015 { 3016 struct hstate *h = &default_hstate; 3017 if (!hugepages_supported()) 3018 return 0; 3019 return sprintf(buf, 3020 "Node %d HugePages_Total: %5u\n" 3021 "Node %d HugePages_Free: %5u\n" 3022 "Node %d HugePages_Surp: %5u\n", 3023 nid, h->nr_huge_pages_node[nid], 3024 nid, h->free_huge_pages_node[nid], 3025 nid, h->surplus_huge_pages_node[nid]); 3026 } 3027 3028 void hugetlb_show_meminfo(void) 3029 { 3030 struct hstate *h; 3031 int nid; 3032 3033 if (!hugepages_supported()) 3034 return; 3035 3036 for_each_node_state(nid, N_MEMORY) 3037 for_each_hstate(h) 3038 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3039 nid, 3040 h->nr_huge_pages_node[nid], 3041 h->free_huge_pages_node[nid], 3042 h->surplus_huge_pages_node[nid], 3043 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3044 } 3045 3046 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3047 { 3048 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3049 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3050 } 3051 3052 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3053 unsigned long hugetlb_total_pages(void) 3054 { 3055 struct hstate *h; 3056 unsigned long nr_total_pages = 0; 3057 3058 for_each_hstate(h) 3059 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3060 return nr_total_pages; 3061 } 3062 3063 static int hugetlb_acct_memory(struct hstate *h, long delta) 3064 { 3065 int ret = -ENOMEM; 3066 3067 spin_lock(&hugetlb_lock); 3068 /* 3069 * When cpuset is configured, it breaks the strict hugetlb page 3070 * reservation as the accounting is done on a global variable. Such 3071 * reservation is completely rubbish in the presence of cpuset because 3072 * the reservation is not checked against page availability for the 3073 * current cpuset. Application can still potentially OOM'ed by kernel 3074 * with lack of free htlb page in cpuset that the task is in. 3075 * Attempt to enforce strict accounting with cpuset is almost 3076 * impossible (or too ugly) because cpuset is too fluid that 3077 * task or memory node can be dynamically moved between cpusets. 3078 * 3079 * The change of semantics for shared hugetlb mapping with cpuset is 3080 * undesirable. However, in order to preserve some of the semantics, 3081 * we fall back to check against current free page availability as 3082 * a best attempt and hopefully to minimize the impact of changing 3083 * semantics that cpuset has. 3084 */ 3085 if (delta > 0) { 3086 if (gather_surplus_pages(h, delta) < 0) 3087 goto out; 3088 3089 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3090 return_unused_surplus_pages(h, delta); 3091 goto out; 3092 } 3093 } 3094 3095 ret = 0; 3096 if (delta < 0) 3097 return_unused_surplus_pages(h, (unsigned long) -delta); 3098 3099 out: 3100 spin_unlock(&hugetlb_lock); 3101 return ret; 3102 } 3103 3104 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3105 { 3106 struct resv_map *resv = vma_resv_map(vma); 3107 3108 /* 3109 * This new VMA should share its siblings reservation map if present. 3110 * The VMA will only ever have a valid reservation map pointer where 3111 * it is being copied for another still existing VMA. As that VMA 3112 * has a reference to the reservation map it cannot disappear until 3113 * after this open call completes. It is therefore safe to take a 3114 * new reference here without additional locking. 3115 */ 3116 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3117 kref_get(&resv->refs); 3118 } 3119 3120 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3121 { 3122 struct hstate *h = hstate_vma(vma); 3123 struct resv_map *resv = vma_resv_map(vma); 3124 struct hugepage_subpool *spool = subpool_vma(vma); 3125 unsigned long reserve, start, end; 3126 long gbl_reserve; 3127 3128 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3129 return; 3130 3131 start = vma_hugecache_offset(h, vma, vma->vm_start); 3132 end = vma_hugecache_offset(h, vma, vma->vm_end); 3133 3134 reserve = (end - start) - region_count(resv, start, end); 3135 3136 kref_put(&resv->refs, resv_map_release); 3137 3138 if (reserve) { 3139 /* 3140 * Decrement reserve counts. The global reserve count may be 3141 * adjusted if the subpool has a minimum size. 3142 */ 3143 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3144 hugetlb_acct_memory(h, -gbl_reserve); 3145 } 3146 } 3147 3148 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3149 { 3150 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3151 return -EINVAL; 3152 return 0; 3153 } 3154 3155 /* 3156 * We cannot handle pagefaults against hugetlb pages at all. They cause 3157 * handle_mm_fault() to try to instantiate regular-sized pages in the 3158 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3159 * this far. 3160 */ 3161 static int hugetlb_vm_op_fault(struct vm_fault *vmf) 3162 { 3163 BUG(); 3164 return 0; 3165 } 3166 3167 const struct vm_operations_struct hugetlb_vm_ops = { 3168 .fault = hugetlb_vm_op_fault, 3169 .open = hugetlb_vm_op_open, 3170 .close = hugetlb_vm_op_close, 3171 .split = hugetlb_vm_op_split, 3172 }; 3173 3174 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3175 int writable) 3176 { 3177 pte_t entry; 3178 3179 if (writable) { 3180 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3181 vma->vm_page_prot))); 3182 } else { 3183 entry = huge_pte_wrprotect(mk_huge_pte(page, 3184 vma->vm_page_prot)); 3185 } 3186 entry = pte_mkyoung(entry); 3187 entry = pte_mkhuge(entry); 3188 entry = arch_make_huge_pte(entry, vma, page, writable); 3189 3190 return entry; 3191 } 3192 3193 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3194 unsigned long address, pte_t *ptep) 3195 { 3196 pte_t entry; 3197 3198 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3199 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3200 update_mmu_cache(vma, address, ptep); 3201 } 3202 3203 bool is_hugetlb_entry_migration(pte_t pte) 3204 { 3205 swp_entry_t swp; 3206 3207 if (huge_pte_none(pte) || pte_present(pte)) 3208 return false; 3209 swp = pte_to_swp_entry(pte); 3210 if (non_swap_entry(swp) && is_migration_entry(swp)) 3211 return true; 3212 else 3213 return false; 3214 } 3215 3216 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3217 { 3218 swp_entry_t swp; 3219 3220 if (huge_pte_none(pte) || pte_present(pte)) 3221 return 0; 3222 swp = pte_to_swp_entry(pte); 3223 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3224 return 1; 3225 else 3226 return 0; 3227 } 3228 3229 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3230 struct vm_area_struct *vma) 3231 { 3232 pte_t *src_pte, *dst_pte, entry; 3233 struct page *ptepage; 3234 unsigned long addr; 3235 int cow; 3236 struct hstate *h = hstate_vma(vma); 3237 unsigned long sz = huge_page_size(h); 3238 unsigned long mmun_start; /* For mmu_notifiers */ 3239 unsigned long mmun_end; /* For mmu_notifiers */ 3240 int ret = 0; 3241 3242 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3243 3244 mmun_start = vma->vm_start; 3245 mmun_end = vma->vm_end; 3246 if (cow) 3247 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3248 3249 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3250 spinlock_t *src_ptl, *dst_ptl; 3251 src_pte = huge_pte_offset(src, addr, sz); 3252 if (!src_pte) 3253 continue; 3254 dst_pte = huge_pte_alloc(dst, addr, sz); 3255 if (!dst_pte) { 3256 ret = -ENOMEM; 3257 break; 3258 } 3259 3260 /* If the pagetables are shared don't copy or take references */ 3261 if (dst_pte == src_pte) 3262 continue; 3263 3264 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3265 src_ptl = huge_pte_lockptr(h, src, src_pte); 3266 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3267 entry = huge_ptep_get(src_pte); 3268 if (huge_pte_none(entry)) { /* skip none entry */ 3269 ; 3270 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3271 is_hugetlb_entry_hwpoisoned(entry))) { 3272 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3273 3274 if (is_write_migration_entry(swp_entry) && cow) { 3275 /* 3276 * COW mappings require pages in both 3277 * parent and child to be set to read. 3278 */ 3279 make_migration_entry_read(&swp_entry); 3280 entry = swp_entry_to_pte(swp_entry); 3281 set_huge_swap_pte_at(src, addr, src_pte, 3282 entry, sz); 3283 } 3284 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3285 } else { 3286 if (cow) { 3287 /* 3288 * No need to notify as we are downgrading page 3289 * table protection not changing it to point 3290 * to a new page. 3291 * 3292 * See Documentation/vm/mmu_notifier.txt 3293 */ 3294 huge_ptep_set_wrprotect(src, addr, src_pte); 3295 } 3296 entry = huge_ptep_get(src_pte); 3297 ptepage = pte_page(entry); 3298 get_page(ptepage); 3299 page_dup_rmap(ptepage, true); 3300 set_huge_pte_at(dst, addr, dst_pte, entry); 3301 hugetlb_count_add(pages_per_huge_page(h), dst); 3302 } 3303 spin_unlock(src_ptl); 3304 spin_unlock(dst_ptl); 3305 } 3306 3307 if (cow) 3308 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3309 3310 return ret; 3311 } 3312 3313 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3314 unsigned long start, unsigned long end, 3315 struct page *ref_page) 3316 { 3317 struct mm_struct *mm = vma->vm_mm; 3318 unsigned long address; 3319 pte_t *ptep; 3320 pte_t pte; 3321 spinlock_t *ptl; 3322 struct page *page; 3323 struct hstate *h = hstate_vma(vma); 3324 unsigned long sz = huge_page_size(h); 3325 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3326 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3327 3328 WARN_ON(!is_vm_hugetlb_page(vma)); 3329 BUG_ON(start & ~huge_page_mask(h)); 3330 BUG_ON(end & ~huge_page_mask(h)); 3331 3332 /* 3333 * This is a hugetlb vma, all the pte entries should point 3334 * to huge page. 3335 */ 3336 tlb_remove_check_page_size_change(tlb, sz); 3337 tlb_start_vma(tlb, vma); 3338 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3339 address = start; 3340 for (; address < end; address += sz) { 3341 ptep = huge_pte_offset(mm, address, sz); 3342 if (!ptep) 3343 continue; 3344 3345 ptl = huge_pte_lock(h, mm, ptep); 3346 if (huge_pmd_unshare(mm, &address, ptep)) { 3347 spin_unlock(ptl); 3348 continue; 3349 } 3350 3351 pte = huge_ptep_get(ptep); 3352 if (huge_pte_none(pte)) { 3353 spin_unlock(ptl); 3354 continue; 3355 } 3356 3357 /* 3358 * Migrating hugepage or HWPoisoned hugepage is already 3359 * unmapped and its refcount is dropped, so just clear pte here. 3360 */ 3361 if (unlikely(!pte_present(pte))) { 3362 huge_pte_clear(mm, address, ptep, sz); 3363 spin_unlock(ptl); 3364 continue; 3365 } 3366 3367 page = pte_page(pte); 3368 /* 3369 * If a reference page is supplied, it is because a specific 3370 * page is being unmapped, not a range. Ensure the page we 3371 * are about to unmap is the actual page of interest. 3372 */ 3373 if (ref_page) { 3374 if (page != ref_page) { 3375 spin_unlock(ptl); 3376 continue; 3377 } 3378 /* 3379 * Mark the VMA as having unmapped its page so that 3380 * future faults in this VMA will fail rather than 3381 * looking like data was lost 3382 */ 3383 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3384 } 3385 3386 pte = huge_ptep_get_and_clear(mm, address, ptep); 3387 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3388 if (huge_pte_dirty(pte)) 3389 set_page_dirty(page); 3390 3391 hugetlb_count_sub(pages_per_huge_page(h), mm); 3392 page_remove_rmap(page, true); 3393 3394 spin_unlock(ptl); 3395 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3396 /* 3397 * Bail out after unmapping reference page if supplied 3398 */ 3399 if (ref_page) 3400 break; 3401 } 3402 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3403 tlb_end_vma(tlb, vma); 3404 } 3405 3406 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3407 struct vm_area_struct *vma, unsigned long start, 3408 unsigned long end, struct page *ref_page) 3409 { 3410 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3411 3412 /* 3413 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3414 * test will fail on a vma being torn down, and not grab a page table 3415 * on its way out. We're lucky that the flag has such an appropriate 3416 * name, and can in fact be safely cleared here. We could clear it 3417 * before the __unmap_hugepage_range above, but all that's necessary 3418 * is to clear it before releasing the i_mmap_rwsem. This works 3419 * because in the context this is called, the VMA is about to be 3420 * destroyed and the i_mmap_rwsem is held. 3421 */ 3422 vma->vm_flags &= ~VM_MAYSHARE; 3423 } 3424 3425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3426 unsigned long end, struct page *ref_page) 3427 { 3428 struct mm_struct *mm; 3429 struct mmu_gather tlb; 3430 3431 mm = vma->vm_mm; 3432 3433 tlb_gather_mmu(&tlb, mm, start, end); 3434 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3435 tlb_finish_mmu(&tlb, start, end); 3436 } 3437 3438 /* 3439 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3440 * mappping it owns the reserve page for. The intention is to unmap the page 3441 * from other VMAs and let the children be SIGKILLed if they are faulting the 3442 * same region. 3443 */ 3444 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3445 struct page *page, unsigned long address) 3446 { 3447 struct hstate *h = hstate_vma(vma); 3448 struct vm_area_struct *iter_vma; 3449 struct address_space *mapping; 3450 pgoff_t pgoff; 3451 3452 /* 3453 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3454 * from page cache lookup which is in HPAGE_SIZE units. 3455 */ 3456 address = address & huge_page_mask(h); 3457 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3458 vma->vm_pgoff; 3459 mapping = vma->vm_file->f_mapping; 3460 3461 /* 3462 * Take the mapping lock for the duration of the table walk. As 3463 * this mapping should be shared between all the VMAs, 3464 * __unmap_hugepage_range() is called as the lock is already held 3465 */ 3466 i_mmap_lock_write(mapping); 3467 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3468 /* Do not unmap the current VMA */ 3469 if (iter_vma == vma) 3470 continue; 3471 3472 /* 3473 * Shared VMAs have their own reserves and do not affect 3474 * MAP_PRIVATE accounting but it is possible that a shared 3475 * VMA is using the same page so check and skip such VMAs. 3476 */ 3477 if (iter_vma->vm_flags & VM_MAYSHARE) 3478 continue; 3479 3480 /* 3481 * Unmap the page from other VMAs without their own reserves. 3482 * They get marked to be SIGKILLed if they fault in these 3483 * areas. This is because a future no-page fault on this VMA 3484 * could insert a zeroed page instead of the data existing 3485 * from the time of fork. This would look like data corruption 3486 */ 3487 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3488 unmap_hugepage_range(iter_vma, address, 3489 address + huge_page_size(h), page); 3490 } 3491 i_mmap_unlock_write(mapping); 3492 } 3493 3494 /* 3495 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3496 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3497 * cannot race with other handlers or page migration. 3498 * Keep the pte_same checks anyway to make transition from the mutex easier. 3499 */ 3500 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3501 unsigned long address, pte_t *ptep, 3502 struct page *pagecache_page, spinlock_t *ptl) 3503 { 3504 pte_t pte; 3505 struct hstate *h = hstate_vma(vma); 3506 struct page *old_page, *new_page; 3507 int ret = 0, outside_reserve = 0; 3508 unsigned long mmun_start; /* For mmu_notifiers */ 3509 unsigned long mmun_end; /* For mmu_notifiers */ 3510 3511 pte = huge_ptep_get(ptep); 3512 old_page = pte_page(pte); 3513 3514 retry_avoidcopy: 3515 /* If no-one else is actually using this page, avoid the copy 3516 * and just make the page writable */ 3517 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3518 page_move_anon_rmap(old_page, vma); 3519 set_huge_ptep_writable(vma, address, ptep); 3520 return 0; 3521 } 3522 3523 /* 3524 * If the process that created a MAP_PRIVATE mapping is about to 3525 * perform a COW due to a shared page count, attempt to satisfy 3526 * the allocation without using the existing reserves. The pagecache 3527 * page is used to determine if the reserve at this address was 3528 * consumed or not. If reserves were used, a partial faulted mapping 3529 * at the time of fork() could consume its reserves on COW instead 3530 * of the full address range. 3531 */ 3532 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3533 old_page != pagecache_page) 3534 outside_reserve = 1; 3535 3536 get_page(old_page); 3537 3538 /* 3539 * Drop page table lock as buddy allocator may be called. It will 3540 * be acquired again before returning to the caller, as expected. 3541 */ 3542 spin_unlock(ptl); 3543 new_page = alloc_huge_page(vma, address, outside_reserve); 3544 3545 if (IS_ERR(new_page)) { 3546 /* 3547 * If a process owning a MAP_PRIVATE mapping fails to COW, 3548 * it is due to references held by a child and an insufficient 3549 * huge page pool. To guarantee the original mappers 3550 * reliability, unmap the page from child processes. The child 3551 * may get SIGKILLed if it later faults. 3552 */ 3553 if (outside_reserve) { 3554 put_page(old_page); 3555 BUG_ON(huge_pte_none(pte)); 3556 unmap_ref_private(mm, vma, old_page, address); 3557 BUG_ON(huge_pte_none(pte)); 3558 spin_lock(ptl); 3559 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3560 huge_page_size(h)); 3561 if (likely(ptep && 3562 pte_same(huge_ptep_get(ptep), pte))) 3563 goto retry_avoidcopy; 3564 /* 3565 * race occurs while re-acquiring page table 3566 * lock, and our job is done. 3567 */ 3568 return 0; 3569 } 3570 3571 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3572 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3573 goto out_release_old; 3574 } 3575 3576 /* 3577 * When the original hugepage is shared one, it does not have 3578 * anon_vma prepared. 3579 */ 3580 if (unlikely(anon_vma_prepare(vma))) { 3581 ret = VM_FAULT_OOM; 3582 goto out_release_all; 3583 } 3584 3585 copy_user_huge_page(new_page, old_page, address, vma, 3586 pages_per_huge_page(h)); 3587 __SetPageUptodate(new_page); 3588 set_page_huge_active(new_page); 3589 3590 mmun_start = address & huge_page_mask(h); 3591 mmun_end = mmun_start + huge_page_size(h); 3592 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3593 3594 /* 3595 * Retake the page table lock to check for racing updates 3596 * before the page tables are altered 3597 */ 3598 spin_lock(ptl); 3599 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3600 huge_page_size(h)); 3601 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3602 ClearPagePrivate(new_page); 3603 3604 /* Break COW */ 3605 huge_ptep_clear_flush(vma, address, ptep); 3606 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3607 set_huge_pte_at(mm, address, ptep, 3608 make_huge_pte(vma, new_page, 1)); 3609 page_remove_rmap(old_page, true); 3610 hugepage_add_new_anon_rmap(new_page, vma, address); 3611 /* Make the old page be freed below */ 3612 new_page = old_page; 3613 } 3614 spin_unlock(ptl); 3615 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3616 out_release_all: 3617 restore_reserve_on_error(h, vma, address, new_page); 3618 put_page(new_page); 3619 out_release_old: 3620 put_page(old_page); 3621 3622 spin_lock(ptl); /* Caller expects lock to be held */ 3623 return ret; 3624 } 3625 3626 /* Return the pagecache page at a given address within a VMA */ 3627 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3628 struct vm_area_struct *vma, unsigned long address) 3629 { 3630 struct address_space *mapping; 3631 pgoff_t idx; 3632 3633 mapping = vma->vm_file->f_mapping; 3634 idx = vma_hugecache_offset(h, vma, address); 3635 3636 return find_lock_page(mapping, idx); 3637 } 3638 3639 /* 3640 * Return whether there is a pagecache page to back given address within VMA. 3641 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3642 */ 3643 static bool hugetlbfs_pagecache_present(struct hstate *h, 3644 struct vm_area_struct *vma, unsigned long address) 3645 { 3646 struct address_space *mapping; 3647 pgoff_t idx; 3648 struct page *page; 3649 3650 mapping = vma->vm_file->f_mapping; 3651 idx = vma_hugecache_offset(h, vma, address); 3652 3653 page = find_get_page(mapping, idx); 3654 if (page) 3655 put_page(page); 3656 return page != NULL; 3657 } 3658 3659 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3660 pgoff_t idx) 3661 { 3662 struct inode *inode = mapping->host; 3663 struct hstate *h = hstate_inode(inode); 3664 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3665 3666 if (err) 3667 return err; 3668 ClearPagePrivate(page); 3669 3670 spin_lock(&inode->i_lock); 3671 inode->i_blocks += blocks_per_huge_page(h); 3672 spin_unlock(&inode->i_lock); 3673 return 0; 3674 } 3675 3676 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3677 struct address_space *mapping, pgoff_t idx, 3678 unsigned long address, pte_t *ptep, unsigned int flags) 3679 { 3680 struct hstate *h = hstate_vma(vma); 3681 int ret = VM_FAULT_SIGBUS; 3682 int anon_rmap = 0; 3683 unsigned long size; 3684 struct page *page; 3685 pte_t new_pte; 3686 spinlock_t *ptl; 3687 3688 /* 3689 * Currently, we are forced to kill the process in the event the 3690 * original mapper has unmapped pages from the child due to a failed 3691 * COW. Warn that such a situation has occurred as it may not be obvious 3692 */ 3693 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3694 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3695 current->pid); 3696 return ret; 3697 } 3698 3699 /* 3700 * Use page lock to guard against racing truncation 3701 * before we get page_table_lock. 3702 */ 3703 retry: 3704 page = find_lock_page(mapping, idx); 3705 if (!page) { 3706 size = i_size_read(mapping->host) >> huge_page_shift(h); 3707 if (idx >= size) 3708 goto out; 3709 3710 /* 3711 * Check for page in userfault range 3712 */ 3713 if (userfaultfd_missing(vma)) { 3714 u32 hash; 3715 struct vm_fault vmf = { 3716 .vma = vma, 3717 .address = address, 3718 .flags = flags, 3719 /* 3720 * Hard to debug if it ends up being 3721 * used by a callee that assumes 3722 * something about the other 3723 * uninitialized fields... same as in 3724 * memory.c 3725 */ 3726 }; 3727 3728 /* 3729 * hugetlb_fault_mutex must be dropped before 3730 * handling userfault. Reacquire after handling 3731 * fault to make calling code simpler. 3732 */ 3733 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3734 idx, address); 3735 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3736 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3737 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3738 goto out; 3739 } 3740 3741 page = alloc_huge_page(vma, address, 0); 3742 if (IS_ERR(page)) { 3743 ret = PTR_ERR(page); 3744 if (ret == -ENOMEM) 3745 ret = VM_FAULT_OOM; 3746 else 3747 ret = VM_FAULT_SIGBUS; 3748 goto out; 3749 } 3750 clear_huge_page(page, address, pages_per_huge_page(h)); 3751 __SetPageUptodate(page); 3752 set_page_huge_active(page); 3753 3754 if (vma->vm_flags & VM_MAYSHARE) { 3755 int err = huge_add_to_page_cache(page, mapping, idx); 3756 if (err) { 3757 put_page(page); 3758 if (err == -EEXIST) 3759 goto retry; 3760 goto out; 3761 } 3762 } else { 3763 lock_page(page); 3764 if (unlikely(anon_vma_prepare(vma))) { 3765 ret = VM_FAULT_OOM; 3766 goto backout_unlocked; 3767 } 3768 anon_rmap = 1; 3769 } 3770 } else { 3771 /* 3772 * If memory error occurs between mmap() and fault, some process 3773 * don't have hwpoisoned swap entry for errored virtual address. 3774 * So we need to block hugepage fault by PG_hwpoison bit check. 3775 */ 3776 if (unlikely(PageHWPoison(page))) { 3777 ret = VM_FAULT_HWPOISON | 3778 VM_FAULT_SET_HINDEX(hstate_index(h)); 3779 goto backout_unlocked; 3780 } 3781 } 3782 3783 /* 3784 * If we are going to COW a private mapping later, we examine the 3785 * pending reservations for this page now. This will ensure that 3786 * any allocations necessary to record that reservation occur outside 3787 * the spinlock. 3788 */ 3789 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3790 if (vma_needs_reservation(h, vma, address) < 0) { 3791 ret = VM_FAULT_OOM; 3792 goto backout_unlocked; 3793 } 3794 /* Just decrements count, does not deallocate */ 3795 vma_end_reservation(h, vma, address); 3796 } 3797 3798 ptl = huge_pte_lock(h, mm, ptep); 3799 size = i_size_read(mapping->host) >> huge_page_shift(h); 3800 if (idx >= size) 3801 goto backout; 3802 3803 ret = 0; 3804 if (!huge_pte_none(huge_ptep_get(ptep))) 3805 goto backout; 3806 3807 if (anon_rmap) { 3808 ClearPagePrivate(page); 3809 hugepage_add_new_anon_rmap(page, vma, address); 3810 } else 3811 page_dup_rmap(page, true); 3812 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3813 && (vma->vm_flags & VM_SHARED))); 3814 set_huge_pte_at(mm, address, ptep, new_pte); 3815 3816 hugetlb_count_add(pages_per_huge_page(h), mm); 3817 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3818 /* Optimization, do the COW without a second fault */ 3819 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3820 } 3821 3822 spin_unlock(ptl); 3823 unlock_page(page); 3824 out: 3825 return ret; 3826 3827 backout: 3828 spin_unlock(ptl); 3829 backout_unlocked: 3830 unlock_page(page); 3831 restore_reserve_on_error(h, vma, address, page); 3832 put_page(page); 3833 goto out; 3834 } 3835 3836 #ifdef CONFIG_SMP 3837 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3838 struct vm_area_struct *vma, 3839 struct address_space *mapping, 3840 pgoff_t idx, unsigned long address) 3841 { 3842 unsigned long key[2]; 3843 u32 hash; 3844 3845 if (vma->vm_flags & VM_SHARED) { 3846 key[0] = (unsigned long) mapping; 3847 key[1] = idx; 3848 } else { 3849 key[0] = (unsigned long) mm; 3850 key[1] = address >> huge_page_shift(h); 3851 } 3852 3853 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3854 3855 return hash & (num_fault_mutexes - 1); 3856 } 3857 #else 3858 /* 3859 * For uniprocesor systems we always use a single mutex, so just 3860 * return 0 and avoid the hashing overhead. 3861 */ 3862 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3863 struct vm_area_struct *vma, 3864 struct address_space *mapping, 3865 pgoff_t idx, unsigned long address) 3866 { 3867 return 0; 3868 } 3869 #endif 3870 3871 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3872 unsigned long address, unsigned int flags) 3873 { 3874 pte_t *ptep, entry; 3875 spinlock_t *ptl; 3876 int ret; 3877 u32 hash; 3878 pgoff_t idx; 3879 struct page *page = NULL; 3880 struct page *pagecache_page = NULL; 3881 struct hstate *h = hstate_vma(vma); 3882 struct address_space *mapping; 3883 int need_wait_lock = 0; 3884 3885 address &= huge_page_mask(h); 3886 3887 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 3888 if (ptep) { 3889 entry = huge_ptep_get(ptep); 3890 if (unlikely(is_hugetlb_entry_migration(entry))) { 3891 migration_entry_wait_huge(vma, mm, ptep); 3892 return 0; 3893 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3894 return VM_FAULT_HWPOISON_LARGE | 3895 VM_FAULT_SET_HINDEX(hstate_index(h)); 3896 } else { 3897 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3898 if (!ptep) 3899 return VM_FAULT_OOM; 3900 } 3901 3902 mapping = vma->vm_file->f_mapping; 3903 idx = vma_hugecache_offset(h, vma, address); 3904 3905 /* 3906 * Serialize hugepage allocation and instantiation, so that we don't 3907 * get spurious allocation failures if two CPUs race to instantiate 3908 * the same page in the page cache. 3909 */ 3910 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3911 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3912 3913 entry = huge_ptep_get(ptep); 3914 if (huge_pte_none(entry)) { 3915 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3916 goto out_mutex; 3917 } 3918 3919 ret = 0; 3920 3921 /* 3922 * entry could be a migration/hwpoison entry at this point, so this 3923 * check prevents the kernel from going below assuming that we have 3924 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3925 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3926 * handle it. 3927 */ 3928 if (!pte_present(entry)) 3929 goto out_mutex; 3930 3931 /* 3932 * If we are going to COW the mapping later, we examine the pending 3933 * reservations for this page now. This will ensure that any 3934 * allocations necessary to record that reservation occur outside the 3935 * spinlock. For private mappings, we also lookup the pagecache 3936 * page now as it is used to determine if a reservation has been 3937 * consumed. 3938 */ 3939 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3940 if (vma_needs_reservation(h, vma, address) < 0) { 3941 ret = VM_FAULT_OOM; 3942 goto out_mutex; 3943 } 3944 /* Just decrements count, does not deallocate */ 3945 vma_end_reservation(h, vma, address); 3946 3947 if (!(vma->vm_flags & VM_MAYSHARE)) 3948 pagecache_page = hugetlbfs_pagecache_page(h, 3949 vma, address); 3950 } 3951 3952 ptl = huge_pte_lock(h, mm, ptep); 3953 3954 /* Check for a racing update before calling hugetlb_cow */ 3955 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3956 goto out_ptl; 3957 3958 /* 3959 * hugetlb_cow() requires page locks of pte_page(entry) and 3960 * pagecache_page, so here we need take the former one 3961 * when page != pagecache_page or !pagecache_page. 3962 */ 3963 page = pte_page(entry); 3964 if (page != pagecache_page) 3965 if (!trylock_page(page)) { 3966 need_wait_lock = 1; 3967 goto out_ptl; 3968 } 3969 3970 get_page(page); 3971 3972 if (flags & FAULT_FLAG_WRITE) { 3973 if (!huge_pte_write(entry)) { 3974 ret = hugetlb_cow(mm, vma, address, ptep, 3975 pagecache_page, ptl); 3976 goto out_put_page; 3977 } 3978 entry = huge_pte_mkdirty(entry); 3979 } 3980 entry = pte_mkyoung(entry); 3981 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3982 flags & FAULT_FLAG_WRITE)) 3983 update_mmu_cache(vma, address, ptep); 3984 out_put_page: 3985 if (page != pagecache_page) 3986 unlock_page(page); 3987 put_page(page); 3988 out_ptl: 3989 spin_unlock(ptl); 3990 3991 if (pagecache_page) { 3992 unlock_page(pagecache_page); 3993 put_page(pagecache_page); 3994 } 3995 out_mutex: 3996 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3997 /* 3998 * Generally it's safe to hold refcount during waiting page lock. But 3999 * here we just wait to defer the next page fault to avoid busy loop and 4000 * the page is not used after unlocked before returning from the current 4001 * page fault. So we are safe from accessing freed page, even if we wait 4002 * here without taking refcount. 4003 */ 4004 if (need_wait_lock) 4005 wait_on_page_locked(page); 4006 return ret; 4007 } 4008 4009 /* 4010 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4011 * modifications for huge pages. 4012 */ 4013 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4014 pte_t *dst_pte, 4015 struct vm_area_struct *dst_vma, 4016 unsigned long dst_addr, 4017 unsigned long src_addr, 4018 struct page **pagep) 4019 { 4020 struct address_space *mapping; 4021 pgoff_t idx; 4022 unsigned long size; 4023 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4024 struct hstate *h = hstate_vma(dst_vma); 4025 pte_t _dst_pte; 4026 spinlock_t *ptl; 4027 int ret; 4028 struct page *page; 4029 4030 if (!*pagep) { 4031 ret = -ENOMEM; 4032 page = alloc_huge_page(dst_vma, dst_addr, 0); 4033 if (IS_ERR(page)) 4034 goto out; 4035 4036 ret = copy_huge_page_from_user(page, 4037 (const void __user *) src_addr, 4038 pages_per_huge_page(h), false); 4039 4040 /* fallback to copy_from_user outside mmap_sem */ 4041 if (unlikely(ret)) { 4042 ret = -EFAULT; 4043 *pagep = page; 4044 /* don't free the page */ 4045 goto out; 4046 } 4047 } else { 4048 page = *pagep; 4049 *pagep = NULL; 4050 } 4051 4052 /* 4053 * The memory barrier inside __SetPageUptodate makes sure that 4054 * preceding stores to the page contents become visible before 4055 * the set_pte_at() write. 4056 */ 4057 __SetPageUptodate(page); 4058 set_page_huge_active(page); 4059 4060 mapping = dst_vma->vm_file->f_mapping; 4061 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4062 4063 /* 4064 * If shared, add to page cache 4065 */ 4066 if (vm_shared) { 4067 size = i_size_read(mapping->host) >> huge_page_shift(h); 4068 ret = -EFAULT; 4069 if (idx >= size) 4070 goto out_release_nounlock; 4071 4072 /* 4073 * Serialization between remove_inode_hugepages() and 4074 * huge_add_to_page_cache() below happens through the 4075 * hugetlb_fault_mutex_table that here must be hold by 4076 * the caller. 4077 */ 4078 ret = huge_add_to_page_cache(page, mapping, idx); 4079 if (ret) 4080 goto out_release_nounlock; 4081 } 4082 4083 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4084 spin_lock(ptl); 4085 4086 /* 4087 * Recheck the i_size after holding PT lock to make sure not 4088 * to leave any page mapped (as page_mapped()) beyond the end 4089 * of the i_size (remove_inode_hugepages() is strict about 4090 * enforcing that). If we bail out here, we'll also leave a 4091 * page in the radix tree in the vm_shared case beyond the end 4092 * of the i_size, but remove_inode_hugepages() will take care 4093 * of it as soon as we drop the hugetlb_fault_mutex_table. 4094 */ 4095 size = i_size_read(mapping->host) >> huge_page_shift(h); 4096 ret = -EFAULT; 4097 if (idx >= size) 4098 goto out_release_unlock; 4099 4100 ret = -EEXIST; 4101 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4102 goto out_release_unlock; 4103 4104 if (vm_shared) { 4105 page_dup_rmap(page, true); 4106 } else { 4107 ClearPagePrivate(page); 4108 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4109 } 4110 4111 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4112 if (dst_vma->vm_flags & VM_WRITE) 4113 _dst_pte = huge_pte_mkdirty(_dst_pte); 4114 _dst_pte = pte_mkyoung(_dst_pte); 4115 4116 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4117 4118 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4119 dst_vma->vm_flags & VM_WRITE); 4120 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4121 4122 /* No need to invalidate - it was non-present before */ 4123 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4124 4125 spin_unlock(ptl); 4126 if (vm_shared) 4127 unlock_page(page); 4128 ret = 0; 4129 out: 4130 return ret; 4131 out_release_unlock: 4132 spin_unlock(ptl); 4133 if (vm_shared) 4134 unlock_page(page); 4135 out_release_nounlock: 4136 put_page(page); 4137 goto out; 4138 } 4139 4140 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4141 struct page **pages, struct vm_area_struct **vmas, 4142 unsigned long *position, unsigned long *nr_pages, 4143 long i, unsigned int flags, int *nonblocking) 4144 { 4145 unsigned long pfn_offset; 4146 unsigned long vaddr = *position; 4147 unsigned long remainder = *nr_pages; 4148 struct hstate *h = hstate_vma(vma); 4149 int err = -EFAULT; 4150 4151 while (vaddr < vma->vm_end && remainder) { 4152 pte_t *pte; 4153 spinlock_t *ptl = NULL; 4154 int absent; 4155 struct page *page; 4156 4157 /* 4158 * If we have a pending SIGKILL, don't keep faulting pages and 4159 * potentially allocating memory. 4160 */ 4161 if (unlikely(fatal_signal_pending(current))) { 4162 remainder = 0; 4163 break; 4164 } 4165 4166 /* 4167 * Some archs (sparc64, sh*) have multiple pte_ts to 4168 * each hugepage. We have to make sure we get the 4169 * first, for the page indexing below to work. 4170 * 4171 * Note that page table lock is not held when pte is null. 4172 */ 4173 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4174 huge_page_size(h)); 4175 if (pte) 4176 ptl = huge_pte_lock(h, mm, pte); 4177 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4178 4179 /* 4180 * When coredumping, it suits get_dump_page if we just return 4181 * an error where there's an empty slot with no huge pagecache 4182 * to back it. This way, we avoid allocating a hugepage, and 4183 * the sparse dumpfile avoids allocating disk blocks, but its 4184 * huge holes still show up with zeroes where they need to be. 4185 */ 4186 if (absent && (flags & FOLL_DUMP) && 4187 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4188 if (pte) 4189 spin_unlock(ptl); 4190 remainder = 0; 4191 break; 4192 } 4193 4194 /* 4195 * We need call hugetlb_fault for both hugepages under migration 4196 * (in which case hugetlb_fault waits for the migration,) and 4197 * hwpoisoned hugepages (in which case we need to prevent the 4198 * caller from accessing to them.) In order to do this, we use 4199 * here is_swap_pte instead of is_hugetlb_entry_migration and 4200 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4201 * both cases, and because we can't follow correct pages 4202 * directly from any kind of swap entries. 4203 */ 4204 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4205 ((flags & FOLL_WRITE) && 4206 !huge_pte_write(huge_ptep_get(pte)))) { 4207 int ret; 4208 unsigned int fault_flags = 0; 4209 4210 if (pte) 4211 spin_unlock(ptl); 4212 if (flags & FOLL_WRITE) 4213 fault_flags |= FAULT_FLAG_WRITE; 4214 if (nonblocking) 4215 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4216 if (flags & FOLL_NOWAIT) 4217 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4218 FAULT_FLAG_RETRY_NOWAIT; 4219 if (flags & FOLL_TRIED) { 4220 VM_WARN_ON_ONCE(fault_flags & 4221 FAULT_FLAG_ALLOW_RETRY); 4222 fault_flags |= FAULT_FLAG_TRIED; 4223 } 4224 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4225 if (ret & VM_FAULT_ERROR) { 4226 err = vm_fault_to_errno(ret, flags); 4227 remainder = 0; 4228 break; 4229 } 4230 if (ret & VM_FAULT_RETRY) { 4231 if (nonblocking) 4232 *nonblocking = 0; 4233 *nr_pages = 0; 4234 /* 4235 * VM_FAULT_RETRY must not return an 4236 * error, it will return zero 4237 * instead. 4238 * 4239 * No need to update "position" as the 4240 * caller will not check it after 4241 * *nr_pages is set to 0. 4242 */ 4243 return i; 4244 } 4245 continue; 4246 } 4247 4248 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4249 page = pte_page(huge_ptep_get(pte)); 4250 same_page: 4251 if (pages) { 4252 pages[i] = mem_map_offset(page, pfn_offset); 4253 get_page(pages[i]); 4254 } 4255 4256 if (vmas) 4257 vmas[i] = vma; 4258 4259 vaddr += PAGE_SIZE; 4260 ++pfn_offset; 4261 --remainder; 4262 ++i; 4263 if (vaddr < vma->vm_end && remainder && 4264 pfn_offset < pages_per_huge_page(h)) { 4265 /* 4266 * We use pfn_offset to avoid touching the pageframes 4267 * of this compound page. 4268 */ 4269 goto same_page; 4270 } 4271 spin_unlock(ptl); 4272 } 4273 *nr_pages = remainder; 4274 /* 4275 * setting position is actually required only if remainder is 4276 * not zero but it's faster not to add a "if (remainder)" 4277 * branch. 4278 */ 4279 *position = vaddr; 4280 4281 return i ? i : err; 4282 } 4283 4284 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4285 /* 4286 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4287 * implement this. 4288 */ 4289 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4290 #endif 4291 4292 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4293 unsigned long address, unsigned long end, pgprot_t newprot) 4294 { 4295 struct mm_struct *mm = vma->vm_mm; 4296 unsigned long start = address; 4297 pte_t *ptep; 4298 pte_t pte; 4299 struct hstate *h = hstate_vma(vma); 4300 unsigned long pages = 0; 4301 4302 BUG_ON(address >= end); 4303 flush_cache_range(vma, address, end); 4304 4305 mmu_notifier_invalidate_range_start(mm, start, end); 4306 i_mmap_lock_write(vma->vm_file->f_mapping); 4307 for (; address < end; address += huge_page_size(h)) { 4308 spinlock_t *ptl; 4309 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4310 if (!ptep) 4311 continue; 4312 ptl = huge_pte_lock(h, mm, ptep); 4313 if (huge_pmd_unshare(mm, &address, ptep)) { 4314 pages++; 4315 spin_unlock(ptl); 4316 continue; 4317 } 4318 pte = huge_ptep_get(ptep); 4319 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4320 spin_unlock(ptl); 4321 continue; 4322 } 4323 if (unlikely(is_hugetlb_entry_migration(pte))) { 4324 swp_entry_t entry = pte_to_swp_entry(pte); 4325 4326 if (is_write_migration_entry(entry)) { 4327 pte_t newpte; 4328 4329 make_migration_entry_read(&entry); 4330 newpte = swp_entry_to_pte(entry); 4331 set_huge_swap_pte_at(mm, address, ptep, 4332 newpte, huge_page_size(h)); 4333 pages++; 4334 } 4335 spin_unlock(ptl); 4336 continue; 4337 } 4338 if (!huge_pte_none(pte)) { 4339 pte = huge_ptep_get_and_clear(mm, address, ptep); 4340 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4341 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4342 set_huge_pte_at(mm, address, ptep, pte); 4343 pages++; 4344 } 4345 spin_unlock(ptl); 4346 } 4347 /* 4348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4349 * may have cleared our pud entry and done put_page on the page table: 4350 * once we release i_mmap_rwsem, another task can do the final put_page 4351 * and that page table be reused and filled with junk. 4352 */ 4353 flush_hugetlb_tlb_range(vma, start, end); 4354 /* 4355 * No need to call mmu_notifier_invalidate_range() we are downgrading 4356 * page table protection not changing it to point to a new page. 4357 * 4358 * See Documentation/vm/mmu_notifier.txt 4359 */ 4360 i_mmap_unlock_write(vma->vm_file->f_mapping); 4361 mmu_notifier_invalidate_range_end(mm, start, end); 4362 4363 return pages << h->order; 4364 } 4365 4366 int hugetlb_reserve_pages(struct inode *inode, 4367 long from, long to, 4368 struct vm_area_struct *vma, 4369 vm_flags_t vm_flags) 4370 { 4371 long ret, chg; 4372 struct hstate *h = hstate_inode(inode); 4373 struct hugepage_subpool *spool = subpool_inode(inode); 4374 struct resv_map *resv_map; 4375 long gbl_reserve; 4376 4377 /* 4378 * Only apply hugepage reservation if asked. At fault time, an 4379 * attempt will be made for VM_NORESERVE to allocate a page 4380 * without using reserves 4381 */ 4382 if (vm_flags & VM_NORESERVE) 4383 return 0; 4384 4385 /* 4386 * Shared mappings base their reservation on the number of pages that 4387 * are already allocated on behalf of the file. Private mappings need 4388 * to reserve the full area even if read-only as mprotect() may be 4389 * called to make the mapping read-write. Assume !vma is a shm mapping 4390 */ 4391 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4392 resv_map = inode_resv_map(inode); 4393 4394 chg = region_chg(resv_map, from, to); 4395 4396 } else { 4397 resv_map = resv_map_alloc(); 4398 if (!resv_map) 4399 return -ENOMEM; 4400 4401 chg = to - from; 4402 4403 set_vma_resv_map(vma, resv_map); 4404 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4405 } 4406 4407 if (chg < 0) { 4408 ret = chg; 4409 goto out_err; 4410 } 4411 4412 /* 4413 * There must be enough pages in the subpool for the mapping. If 4414 * the subpool has a minimum size, there may be some global 4415 * reservations already in place (gbl_reserve). 4416 */ 4417 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4418 if (gbl_reserve < 0) { 4419 ret = -ENOSPC; 4420 goto out_err; 4421 } 4422 4423 /* 4424 * Check enough hugepages are available for the reservation. 4425 * Hand the pages back to the subpool if there are not 4426 */ 4427 ret = hugetlb_acct_memory(h, gbl_reserve); 4428 if (ret < 0) { 4429 /* put back original number of pages, chg */ 4430 (void)hugepage_subpool_put_pages(spool, chg); 4431 goto out_err; 4432 } 4433 4434 /* 4435 * Account for the reservations made. Shared mappings record regions 4436 * that have reservations as they are shared by multiple VMAs. 4437 * When the last VMA disappears, the region map says how much 4438 * the reservation was and the page cache tells how much of 4439 * the reservation was consumed. Private mappings are per-VMA and 4440 * only the consumed reservations are tracked. When the VMA 4441 * disappears, the original reservation is the VMA size and the 4442 * consumed reservations are stored in the map. Hence, nothing 4443 * else has to be done for private mappings here 4444 */ 4445 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4446 long add = region_add(resv_map, from, to); 4447 4448 if (unlikely(chg > add)) { 4449 /* 4450 * pages in this range were added to the reserve 4451 * map between region_chg and region_add. This 4452 * indicates a race with alloc_huge_page. Adjust 4453 * the subpool and reserve counts modified above 4454 * based on the difference. 4455 */ 4456 long rsv_adjust; 4457 4458 rsv_adjust = hugepage_subpool_put_pages(spool, 4459 chg - add); 4460 hugetlb_acct_memory(h, -rsv_adjust); 4461 } 4462 } 4463 return 0; 4464 out_err: 4465 if (!vma || vma->vm_flags & VM_MAYSHARE) 4466 /* Don't call region_abort if region_chg failed */ 4467 if (chg >= 0) 4468 region_abort(resv_map, from, to); 4469 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4470 kref_put(&resv_map->refs, resv_map_release); 4471 return ret; 4472 } 4473 4474 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4475 long freed) 4476 { 4477 struct hstate *h = hstate_inode(inode); 4478 struct resv_map *resv_map = inode_resv_map(inode); 4479 long chg = 0; 4480 struct hugepage_subpool *spool = subpool_inode(inode); 4481 long gbl_reserve; 4482 4483 if (resv_map) { 4484 chg = region_del(resv_map, start, end); 4485 /* 4486 * region_del() can fail in the rare case where a region 4487 * must be split and another region descriptor can not be 4488 * allocated. If end == LONG_MAX, it will not fail. 4489 */ 4490 if (chg < 0) 4491 return chg; 4492 } 4493 4494 spin_lock(&inode->i_lock); 4495 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4496 spin_unlock(&inode->i_lock); 4497 4498 /* 4499 * If the subpool has a minimum size, the number of global 4500 * reservations to be released may be adjusted. 4501 */ 4502 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4503 hugetlb_acct_memory(h, -gbl_reserve); 4504 4505 return 0; 4506 } 4507 4508 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4509 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4510 struct vm_area_struct *vma, 4511 unsigned long addr, pgoff_t idx) 4512 { 4513 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4514 svma->vm_start; 4515 unsigned long sbase = saddr & PUD_MASK; 4516 unsigned long s_end = sbase + PUD_SIZE; 4517 4518 /* Allow segments to share if only one is marked locked */ 4519 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4520 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4521 4522 /* 4523 * match the virtual addresses, permission and the alignment of the 4524 * page table page. 4525 */ 4526 if (pmd_index(addr) != pmd_index(saddr) || 4527 vm_flags != svm_flags || 4528 sbase < svma->vm_start || svma->vm_end < s_end) 4529 return 0; 4530 4531 return saddr; 4532 } 4533 4534 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4535 { 4536 unsigned long base = addr & PUD_MASK; 4537 unsigned long end = base + PUD_SIZE; 4538 4539 /* 4540 * check on proper vm_flags and page table alignment 4541 */ 4542 if (vma->vm_flags & VM_MAYSHARE && 4543 vma->vm_start <= base && end <= vma->vm_end) 4544 return true; 4545 return false; 4546 } 4547 4548 /* 4549 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4550 * and returns the corresponding pte. While this is not necessary for the 4551 * !shared pmd case because we can allocate the pmd later as well, it makes the 4552 * code much cleaner. pmd allocation is essential for the shared case because 4553 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4554 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4555 * bad pmd for sharing. 4556 */ 4557 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4558 { 4559 struct vm_area_struct *vma = find_vma(mm, addr); 4560 struct address_space *mapping = vma->vm_file->f_mapping; 4561 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4562 vma->vm_pgoff; 4563 struct vm_area_struct *svma; 4564 unsigned long saddr; 4565 pte_t *spte = NULL; 4566 pte_t *pte; 4567 spinlock_t *ptl; 4568 4569 if (!vma_shareable(vma, addr)) 4570 return (pte_t *)pmd_alloc(mm, pud, addr); 4571 4572 i_mmap_lock_write(mapping); 4573 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4574 if (svma == vma) 4575 continue; 4576 4577 saddr = page_table_shareable(svma, vma, addr, idx); 4578 if (saddr) { 4579 spte = huge_pte_offset(svma->vm_mm, saddr, 4580 vma_mmu_pagesize(svma)); 4581 if (spte) { 4582 get_page(virt_to_page(spte)); 4583 break; 4584 } 4585 } 4586 } 4587 4588 if (!spte) 4589 goto out; 4590 4591 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4592 if (pud_none(*pud)) { 4593 pud_populate(mm, pud, 4594 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4595 mm_inc_nr_pmds(mm); 4596 } else { 4597 put_page(virt_to_page(spte)); 4598 } 4599 spin_unlock(ptl); 4600 out: 4601 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4602 i_mmap_unlock_write(mapping); 4603 return pte; 4604 } 4605 4606 /* 4607 * unmap huge page backed by shared pte. 4608 * 4609 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4610 * indicated by page_count > 1, unmap is achieved by clearing pud and 4611 * decrementing the ref count. If count == 1, the pte page is not shared. 4612 * 4613 * called with page table lock held. 4614 * 4615 * returns: 1 successfully unmapped a shared pte page 4616 * 0 the underlying pte page is not shared, or it is the last user 4617 */ 4618 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4619 { 4620 pgd_t *pgd = pgd_offset(mm, *addr); 4621 p4d_t *p4d = p4d_offset(pgd, *addr); 4622 pud_t *pud = pud_offset(p4d, *addr); 4623 4624 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4625 if (page_count(virt_to_page(ptep)) == 1) 4626 return 0; 4627 4628 pud_clear(pud); 4629 put_page(virt_to_page(ptep)); 4630 mm_dec_nr_pmds(mm); 4631 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4632 return 1; 4633 } 4634 #define want_pmd_share() (1) 4635 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4636 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4637 { 4638 return NULL; 4639 } 4640 4641 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4642 { 4643 return 0; 4644 } 4645 #define want_pmd_share() (0) 4646 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4647 4648 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4649 pte_t *huge_pte_alloc(struct mm_struct *mm, 4650 unsigned long addr, unsigned long sz) 4651 { 4652 pgd_t *pgd; 4653 p4d_t *p4d; 4654 pud_t *pud; 4655 pte_t *pte = NULL; 4656 4657 pgd = pgd_offset(mm, addr); 4658 p4d = p4d_alloc(mm, pgd, addr); 4659 if (!p4d) 4660 return NULL; 4661 pud = pud_alloc(mm, p4d, addr); 4662 if (pud) { 4663 if (sz == PUD_SIZE) { 4664 pte = (pte_t *)pud; 4665 } else { 4666 BUG_ON(sz != PMD_SIZE); 4667 if (want_pmd_share() && pud_none(*pud)) 4668 pte = huge_pmd_share(mm, addr, pud); 4669 else 4670 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4671 } 4672 } 4673 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4674 4675 return pte; 4676 } 4677 4678 /* 4679 * huge_pte_offset() - Walk the page table to resolve the hugepage 4680 * entry at address @addr 4681 * 4682 * Return: Pointer to page table or swap entry (PUD or PMD) for 4683 * address @addr, or NULL if a p*d_none() entry is encountered and the 4684 * size @sz doesn't match the hugepage size at this level of the page 4685 * table. 4686 */ 4687 pte_t *huge_pte_offset(struct mm_struct *mm, 4688 unsigned long addr, unsigned long sz) 4689 { 4690 pgd_t *pgd; 4691 p4d_t *p4d; 4692 pud_t *pud; 4693 pmd_t *pmd; 4694 4695 pgd = pgd_offset(mm, addr); 4696 if (!pgd_present(*pgd)) 4697 return NULL; 4698 p4d = p4d_offset(pgd, addr); 4699 if (!p4d_present(*p4d)) 4700 return NULL; 4701 4702 pud = pud_offset(p4d, addr); 4703 if (sz != PUD_SIZE && pud_none(*pud)) 4704 return NULL; 4705 /* hugepage or swap? */ 4706 if (pud_huge(*pud) || !pud_present(*pud)) 4707 return (pte_t *)pud; 4708 4709 pmd = pmd_offset(pud, addr); 4710 if (sz != PMD_SIZE && pmd_none(*pmd)) 4711 return NULL; 4712 /* hugepage or swap? */ 4713 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4714 return (pte_t *)pmd; 4715 4716 return NULL; 4717 } 4718 4719 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4720 4721 /* 4722 * These functions are overwritable if your architecture needs its own 4723 * behavior. 4724 */ 4725 struct page * __weak 4726 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4727 int write) 4728 { 4729 return ERR_PTR(-EINVAL); 4730 } 4731 4732 struct page * __weak 4733 follow_huge_pd(struct vm_area_struct *vma, 4734 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4735 { 4736 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4737 return NULL; 4738 } 4739 4740 struct page * __weak 4741 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4742 pmd_t *pmd, int flags) 4743 { 4744 struct page *page = NULL; 4745 spinlock_t *ptl; 4746 pte_t pte; 4747 retry: 4748 ptl = pmd_lockptr(mm, pmd); 4749 spin_lock(ptl); 4750 /* 4751 * make sure that the address range covered by this pmd is not 4752 * unmapped from other threads. 4753 */ 4754 if (!pmd_huge(*pmd)) 4755 goto out; 4756 pte = huge_ptep_get((pte_t *)pmd); 4757 if (pte_present(pte)) { 4758 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4759 if (flags & FOLL_GET) 4760 get_page(page); 4761 } else { 4762 if (is_hugetlb_entry_migration(pte)) { 4763 spin_unlock(ptl); 4764 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4765 goto retry; 4766 } 4767 /* 4768 * hwpoisoned entry is treated as no_page_table in 4769 * follow_page_mask(). 4770 */ 4771 } 4772 out: 4773 spin_unlock(ptl); 4774 return page; 4775 } 4776 4777 struct page * __weak 4778 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4779 pud_t *pud, int flags) 4780 { 4781 if (flags & FOLL_GET) 4782 return NULL; 4783 4784 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4785 } 4786 4787 struct page * __weak 4788 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4789 { 4790 if (flags & FOLL_GET) 4791 return NULL; 4792 4793 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4794 } 4795 4796 bool isolate_huge_page(struct page *page, struct list_head *list) 4797 { 4798 bool ret = true; 4799 4800 VM_BUG_ON_PAGE(!PageHead(page), page); 4801 spin_lock(&hugetlb_lock); 4802 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4803 ret = false; 4804 goto unlock; 4805 } 4806 clear_page_huge_active(page); 4807 list_move_tail(&page->lru, list); 4808 unlock: 4809 spin_unlock(&hugetlb_lock); 4810 return ret; 4811 } 4812 4813 void putback_active_hugepage(struct page *page) 4814 { 4815 VM_BUG_ON_PAGE(!PageHead(page), page); 4816 spin_lock(&hugetlb_lock); 4817 set_page_huge_active(page); 4818 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4819 spin_unlock(&hugetlb_lock); 4820 put_page(page); 4821 } 4822 4823 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4824 { 4825 struct hstate *h = page_hstate(oldpage); 4826 4827 hugetlb_cgroup_migrate(oldpage, newpage); 4828 set_page_owner_migrate_reason(newpage, reason); 4829 4830 /* 4831 * transfer temporary state of the new huge page. This is 4832 * reverse to other transitions because the newpage is going to 4833 * be final while the old one will be freed so it takes over 4834 * the temporary status. 4835 * 4836 * Also note that we have to transfer the per-node surplus state 4837 * here as well otherwise the global surplus count will not match 4838 * the per-node's. 4839 */ 4840 if (PageHugeTemporary(newpage)) { 4841 int old_nid = page_to_nid(oldpage); 4842 int new_nid = page_to_nid(newpage); 4843 4844 SetPageHugeTemporary(oldpage); 4845 ClearPageHugeTemporary(newpage); 4846 4847 spin_lock(&hugetlb_lock); 4848 if (h->surplus_huge_pages_node[old_nid]) { 4849 h->surplus_huge_pages_node[old_nid]--; 4850 h->surplus_huge_pages_node[new_nid]++; 4851 } 4852 spin_unlock(&hugetlb_lock); 4853 } 4854 } 4855