1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 25 #include <asm/page.h> 26 #include <asm/pgtable.h> 27 #include <asm/tlb.h> 28 29 #include <linux/io.h> 30 #include <linux/hugetlb.h> 31 #include <linux/hugetlb_cgroup.h> 32 #include <linux/node.h> 33 #include "internal.h" 34 35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 37 unsigned long hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 43 __initdata LIST_HEAD(huge_boot_pages); 44 45 /* for command line parsing */ 46 static struct hstate * __initdata parsed_hstate; 47 static unsigned long __initdata default_hstate_max_huge_pages; 48 static unsigned long __initdata default_hstate_size; 49 50 /* 51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 52 */ 53 DEFINE_SPINLOCK(hugetlb_lock); 54 55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 56 { 57 bool free = (spool->count == 0) && (spool->used_hpages == 0); 58 59 spin_unlock(&spool->lock); 60 61 /* If no pages are used, and no other handles to the subpool 62 * remain, free the subpool the subpool remain */ 63 if (free) 64 kfree(spool); 65 } 66 67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 68 { 69 struct hugepage_subpool *spool; 70 71 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 72 if (!spool) 73 return NULL; 74 75 spin_lock_init(&spool->lock); 76 spool->count = 1; 77 spool->max_hpages = nr_blocks; 78 spool->used_hpages = 0; 79 80 return spool; 81 } 82 83 void hugepage_put_subpool(struct hugepage_subpool *spool) 84 { 85 spin_lock(&spool->lock); 86 BUG_ON(!spool->count); 87 spool->count--; 88 unlock_or_release_subpool(spool); 89 } 90 91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 92 long delta) 93 { 94 int ret = 0; 95 96 if (!spool) 97 return 0; 98 99 spin_lock(&spool->lock); 100 if ((spool->used_hpages + delta) <= spool->max_hpages) { 101 spool->used_hpages += delta; 102 } else { 103 ret = -ENOMEM; 104 } 105 spin_unlock(&spool->lock); 106 107 return ret; 108 } 109 110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 111 long delta) 112 { 113 if (!spool) 114 return; 115 116 spin_lock(&spool->lock); 117 spool->used_hpages -= delta; 118 /* If hugetlbfs_put_super couldn't free spool due to 119 * an outstanding quota reference, free it now. */ 120 unlock_or_release_subpool(spool); 121 } 122 123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 124 { 125 return HUGETLBFS_SB(inode->i_sb)->spool; 126 } 127 128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 129 { 130 return subpool_inode(file_inode(vma->vm_file)); 131 } 132 133 /* 134 * Region tracking -- allows tracking of reservations and instantiated pages 135 * across the pages in a mapping. 136 * 137 * The region data structures are protected by a combination of the mmap_sem 138 * and the hugetlb_instantion_mutex. To access or modify a region the caller 139 * must either hold the mmap_sem for write, or the mmap_sem for read and 140 * the hugetlb_instantiation mutex: 141 * 142 * down_write(&mm->mmap_sem); 143 * or 144 * down_read(&mm->mmap_sem); 145 * mutex_lock(&hugetlb_instantiation_mutex); 146 */ 147 struct file_region { 148 struct list_head link; 149 long from; 150 long to; 151 }; 152 153 static long region_add(struct list_head *head, long f, long t) 154 { 155 struct file_region *rg, *nrg, *trg; 156 157 /* Locate the region we are either in or before. */ 158 list_for_each_entry(rg, head, link) 159 if (f <= rg->to) 160 break; 161 162 /* Round our left edge to the current segment if it encloses us. */ 163 if (f > rg->from) 164 f = rg->from; 165 166 /* Check for and consume any regions we now overlap with. */ 167 nrg = rg; 168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 169 if (&rg->link == head) 170 break; 171 if (rg->from > t) 172 break; 173 174 /* If this area reaches higher then extend our area to 175 * include it completely. If this is not the first area 176 * which we intend to reuse, free it. */ 177 if (rg->to > t) 178 t = rg->to; 179 if (rg != nrg) { 180 list_del(&rg->link); 181 kfree(rg); 182 } 183 } 184 nrg->from = f; 185 nrg->to = t; 186 return 0; 187 } 188 189 static long region_chg(struct list_head *head, long f, long t) 190 { 191 struct file_region *rg, *nrg; 192 long chg = 0; 193 194 /* Locate the region we are before or in. */ 195 list_for_each_entry(rg, head, link) 196 if (f <= rg->to) 197 break; 198 199 /* If we are below the current region then a new region is required. 200 * Subtle, allocate a new region at the position but make it zero 201 * size such that we can guarantee to record the reservation. */ 202 if (&rg->link == head || t < rg->from) { 203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 204 if (!nrg) 205 return -ENOMEM; 206 nrg->from = f; 207 nrg->to = f; 208 INIT_LIST_HEAD(&nrg->link); 209 list_add(&nrg->link, rg->link.prev); 210 211 return t - f; 212 } 213 214 /* Round our left edge to the current segment if it encloses us. */ 215 if (f > rg->from) 216 f = rg->from; 217 chg = t - f; 218 219 /* Check for and consume any regions we now overlap with. */ 220 list_for_each_entry(rg, rg->link.prev, link) { 221 if (&rg->link == head) 222 break; 223 if (rg->from > t) 224 return chg; 225 226 /* We overlap with this area, if it extends further than 227 * us then we must extend ourselves. Account for its 228 * existing reservation. */ 229 if (rg->to > t) { 230 chg += rg->to - t; 231 t = rg->to; 232 } 233 chg -= rg->to - rg->from; 234 } 235 return chg; 236 } 237 238 static long region_truncate(struct list_head *head, long end) 239 { 240 struct file_region *rg, *trg; 241 long chg = 0; 242 243 /* Locate the region we are either in or before. */ 244 list_for_each_entry(rg, head, link) 245 if (end <= rg->to) 246 break; 247 if (&rg->link == head) 248 return 0; 249 250 /* If we are in the middle of a region then adjust it. */ 251 if (end > rg->from) { 252 chg = rg->to - end; 253 rg->to = end; 254 rg = list_entry(rg->link.next, typeof(*rg), link); 255 } 256 257 /* Drop any remaining regions. */ 258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 259 if (&rg->link == head) 260 break; 261 chg += rg->to - rg->from; 262 list_del(&rg->link); 263 kfree(rg); 264 } 265 return chg; 266 } 267 268 static long region_count(struct list_head *head, long f, long t) 269 { 270 struct file_region *rg; 271 long chg = 0; 272 273 /* Locate each segment we overlap with, and count that overlap. */ 274 list_for_each_entry(rg, head, link) { 275 long seg_from; 276 long seg_to; 277 278 if (rg->to <= f) 279 continue; 280 if (rg->from >= t) 281 break; 282 283 seg_from = max(rg->from, f); 284 seg_to = min(rg->to, t); 285 286 chg += seg_to - seg_from; 287 } 288 289 return chg; 290 } 291 292 /* 293 * Convert the address within this vma to the page offset within 294 * the mapping, in pagecache page units; huge pages here. 295 */ 296 static pgoff_t vma_hugecache_offset(struct hstate *h, 297 struct vm_area_struct *vma, unsigned long address) 298 { 299 return ((address - vma->vm_start) >> huge_page_shift(h)) + 300 (vma->vm_pgoff >> huge_page_order(h)); 301 } 302 303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 304 unsigned long address) 305 { 306 return vma_hugecache_offset(hstate_vma(vma), vma, address); 307 } 308 309 /* 310 * Return the size of the pages allocated when backing a VMA. In the majority 311 * cases this will be same size as used by the page table entries. 312 */ 313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 314 { 315 struct hstate *hstate; 316 317 if (!is_vm_hugetlb_page(vma)) 318 return PAGE_SIZE; 319 320 hstate = hstate_vma(vma); 321 322 return 1UL << huge_page_shift(hstate); 323 } 324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 325 326 /* 327 * Return the page size being used by the MMU to back a VMA. In the majority 328 * of cases, the page size used by the kernel matches the MMU size. On 329 * architectures where it differs, an architecture-specific version of this 330 * function is required. 331 */ 332 #ifndef vma_mmu_pagesize 333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 334 { 335 return vma_kernel_pagesize(vma); 336 } 337 #endif 338 339 /* 340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 341 * bits of the reservation map pointer, which are always clear due to 342 * alignment. 343 */ 344 #define HPAGE_RESV_OWNER (1UL << 0) 345 #define HPAGE_RESV_UNMAPPED (1UL << 1) 346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 347 348 /* 349 * These helpers are used to track how many pages are reserved for 350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 351 * is guaranteed to have their future faults succeed. 352 * 353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 354 * the reserve counters are updated with the hugetlb_lock held. It is safe 355 * to reset the VMA at fork() time as it is not in use yet and there is no 356 * chance of the global counters getting corrupted as a result of the values. 357 * 358 * The private mapping reservation is represented in a subtly different 359 * manner to a shared mapping. A shared mapping has a region map associated 360 * with the underlying file, this region map represents the backing file 361 * pages which have ever had a reservation assigned which this persists even 362 * after the page is instantiated. A private mapping has a region map 363 * associated with the original mmap which is attached to all VMAs which 364 * reference it, this region map represents those offsets which have consumed 365 * reservation ie. where pages have been instantiated. 366 */ 367 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 368 { 369 return (unsigned long)vma->vm_private_data; 370 } 371 372 static void set_vma_private_data(struct vm_area_struct *vma, 373 unsigned long value) 374 { 375 vma->vm_private_data = (void *)value; 376 } 377 378 struct resv_map { 379 struct kref refs; 380 struct list_head regions; 381 }; 382 383 static struct resv_map *resv_map_alloc(void) 384 { 385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 386 if (!resv_map) 387 return NULL; 388 389 kref_init(&resv_map->refs); 390 INIT_LIST_HEAD(&resv_map->regions); 391 392 return resv_map; 393 } 394 395 static void resv_map_release(struct kref *ref) 396 { 397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 398 399 /* Clear out any active regions before we release the map. */ 400 region_truncate(&resv_map->regions, 0); 401 kfree(resv_map); 402 } 403 404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 405 { 406 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 407 if (!(vma->vm_flags & VM_MAYSHARE)) 408 return (struct resv_map *)(get_vma_private_data(vma) & 409 ~HPAGE_RESV_MASK); 410 return NULL; 411 } 412 413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 414 { 415 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 417 418 set_vma_private_data(vma, (get_vma_private_data(vma) & 419 HPAGE_RESV_MASK) | (unsigned long)map); 420 } 421 422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 423 { 424 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 426 427 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 428 } 429 430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 431 { 432 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 433 434 return (get_vma_private_data(vma) & flag) != 0; 435 } 436 437 /* Decrement the reserved pages in the hugepage pool by one */ 438 static void decrement_hugepage_resv_vma(struct hstate *h, 439 struct vm_area_struct *vma) 440 { 441 if (vma->vm_flags & VM_NORESERVE) 442 return; 443 444 if (vma->vm_flags & VM_MAYSHARE) { 445 /* Shared mappings always use reserves */ 446 h->resv_huge_pages--; 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 448 /* 449 * Only the process that called mmap() has reserves for 450 * private mappings. 451 */ 452 h->resv_huge_pages--; 453 } 454 } 455 456 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 457 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 458 { 459 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 460 if (!(vma->vm_flags & VM_MAYSHARE)) 461 vma->vm_private_data = (void *)0; 462 } 463 464 /* Returns true if the VMA has associated reserve pages */ 465 static int vma_has_reserves(struct vm_area_struct *vma) 466 { 467 if (vma->vm_flags & VM_MAYSHARE) 468 return 1; 469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 470 return 1; 471 return 0; 472 } 473 474 static void copy_gigantic_page(struct page *dst, struct page *src) 475 { 476 int i; 477 struct hstate *h = page_hstate(src); 478 struct page *dst_base = dst; 479 struct page *src_base = src; 480 481 for (i = 0; i < pages_per_huge_page(h); ) { 482 cond_resched(); 483 copy_highpage(dst, src); 484 485 i++; 486 dst = mem_map_next(dst, dst_base, i); 487 src = mem_map_next(src, src_base, i); 488 } 489 } 490 491 void copy_huge_page(struct page *dst, struct page *src) 492 { 493 int i; 494 struct hstate *h = page_hstate(src); 495 496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 497 copy_gigantic_page(dst, src); 498 return; 499 } 500 501 might_sleep(); 502 for (i = 0; i < pages_per_huge_page(h); i++) { 503 cond_resched(); 504 copy_highpage(dst + i, src + i); 505 } 506 } 507 508 static void enqueue_huge_page(struct hstate *h, struct page *page) 509 { 510 int nid = page_to_nid(page); 511 list_move(&page->lru, &h->hugepage_freelists[nid]); 512 h->free_huge_pages++; 513 h->free_huge_pages_node[nid]++; 514 } 515 516 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 517 { 518 struct page *page; 519 520 if (list_empty(&h->hugepage_freelists[nid])) 521 return NULL; 522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); 523 list_move(&page->lru, &h->hugepage_activelist); 524 set_page_refcounted(page); 525 h->free_huge_pages--; 526 h->free_huge_pages_node[nid]--; 527 return page; 528 } 529 530 static struct page *dequeue_huge_page_vma(struct hstate *h, 531 struct vm_area_struct *vma, 532 unsigned long address, int avoid_reserve) 533 { 534 struct page *page = NULL; 535 struct mempolicy *mpol; 536 nodemask_t *nodemask; 537 struct zonelist *zonelist; 538 struct zone *zone; 539 struct zoneref *z; 540 unsigned int cpuset_mems_cookie; 541 542 retry_cpuset: 543 cpuset_mems_cookie = get_mems_allowed(); 544 zonelist = huge_zonelist(vma, address, 545 htlb_alloc_mask, &mpol, &nodemask); 546 /* 547 * A child process with MAP_PRIVATE mappings created by their parent 548 * have no page reserves. This check ensures that reservations are 549 * not "stolen". The child may still get SIGKILLed 550 */ 551 if (!vma_has_reserves(vma) && 552 h->free_huge_pages - h->resv_huge_pages == 0) 553 goto err; 554 555 /* If reserves cannot be used, ensure enough pages are in the pool */ 556 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 557 goto err; 558 559 for_each_zone_zonelist_nodemask(zone, z, zonelist, 560 MAX_NR_ZONES - 1, nodemask) { 561 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { 562 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 563 if (page) { 564 if (!avoid_reserve) 565 decrement_hugepage_resv_vma(h, vma); 566 break; 567 } 568 } 569 } 570 571 mpol_cond_put(mpol); 572 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 573 goto retry_cpuset; 574 return page; 575 576 err: 577 mpol_cond_put(mpol); 578 return NULL; 579 } 580 581 static void update_and_free_page(struct hstate *h, struct page *page) 582 { 583 int i; 584 585 VM_BUG_ON(h->order >= MAX_ORDER); 586 587 h->nr_huge_pages--; 588 h->nr_huge_pages_node[page_to_nid(page)]--; 589 for (i = 0; i < pages_per_huge_page(h); i++) { 590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 591 1 << PG_referenced | 1 << PG_dirty | 592 1 << PG_active | 1 << PG_reserved | 593 1 << PG_private | 1 << PG_writeback); 594 } 595 VM_BUG_ON(hugetlb_cgroup_from_page(page)); 596 set_compound_page_dtor(page, NULL); 597 set_page_refcounted(page); 598 arch_release_hugepage(page); 599 __free_pages(page, huge_page_order(h)); 600 } 601 602 struct hstate *size_to_hstate(unsigned long size) 603 { 604 struct hstate *h; 605 606 for_each_hstate(h) { 607 if (huge_page_size(h) == size) 608 return h; 609 } 610 return NULL; 611 } 612 613 static void free_huge_page(struct page *page) 614 { 615 /* 616 * Can't pass hstate in here because it is called from the 617 * compound page destructor. 618 */ 619 struct hstate *h = page_hstate(page); 620 int nid = page_to_nid(page); 621 struct hugepage_subpool *spool = 622 (struct hugepage_subpool *)page_private(page); 623 624 set_page_private(page, 0); 625 page->mapping = NULL; 626 BUG_ON(page_count(page)); 627 BUG_ON(page_mapcount(page)); 628 629 spin_lock(&hugetlb_lock); 630 hugetlb_cgroup_uncharge_page(hstate_index(h), 631 pages_per_huge_page(h), page); 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 633 /* remove the page from active list */ 634 list_del(&page->lru); 635 update_and_free_page(h, page); 636 h->surplus_huge_pages--; 637 h->surplus_huge_pages_node[nid]--; 638 } else { 639 arch_clear_hugepage_flags(page); 640 enqueue_huge_page(h, page); 641 } 642 spin_unlock(&hugetlb_lock); 643 hugepage_subpool_put_pages(spool, 1); 644 } 645 646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 647 { 648 INIT_LIST_HEAD(&page->lru); 649 set_compound_page_dtor(page, free_huge_page); 650 spin_lock(&hugetlb_lock); 651 set_hugetlb_cgroup(page, NULL); 652 h->nr_huge_pages++; 653 h->nr_huge_pages_node[nid]++; 654 spin_unlock(&hugetlb_lock); 655 put_page(page); /* free it into the hugepage allocator */ 656 } 657 658 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 659 { 660 int i; 661 int nr_pages = 1 << order; 662 struct page *p = page + 1; 663 664 /* we rely on prep_new_huge_page to set the destructor */ 665 set_compound_order(page, order); 666 __SetPageHead(page); 667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 668 __SetPageTail(p); 669 set_page_count(p, 0); 670 p->first_page = page; 671 } 672 } 673 674 /* 675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 676 * transparent huge pages. See the PageTransHuge() documentation for more 677 * details. 678 */ 679 int PageHuge(struct page *page) 680 { 681 compound_page_dtor *dtor; 682 683 if (!PageCompound(page)) 684 return 0; 685 686 page = compound_head(page); 687 dtor = get_compound_page_dtor(page); 688 689 return dtor == free_huge_page; 690 } 691 EXPORT_SYMBOL_GPL(PageHuge); 692 693 pgoff_t __basepage_index(struct page *page) 694 { 695 struct page *page_head = compound_head(page); 696 pgoff_t index = page_index(page_head); 697 unsigned long compound_idx; 698 699 if (!PageHuge(page_head)) 700 return page_index(page); 701 702 if (compound_order(page_head) >= MAX_ORDER) 703 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 704 else 705 compound_idx = page - page_head; 706 707 return (index << compound_order(page_head)) + compound_idx; 708 } 709 710 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 711 { 712 struct page *page; 713 714 if (h->order >= MAX_ORDER) 715 return NULL; 716 717 page = alloc_pages_exact_node(nid, 718 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 719 __GFP_REPEAT|__GFP_NOWARN, 720 huge_page_order(h)); 721 if (page) { 722 if (arch_prepare_hugepage(page)) { 723 __free_pages(page, huge_page_order(h)); 724 return NULL; 725 } 726 prep_new_huge_page(h, page, nid); 727 } 728 729 return page; 730 } 731 732 /* 733 * common helper functions for hstate_next_node_to_{alloc|free}. 734 * We may have allocated or freed a huge page based on a different 735 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 736 * be outside of *nodes_allowed. Ensure that we use an allowed 737 * node for alloc or free. 738 */ 739 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 740 { 741 nid = next_node(nid, *nodes_allowed); 742 if (nid == MAX_NUMNODES) 743 nid = first_node(*nodes_allowed); 744 VM_BUG_ON(nid >= MAX_NUMNODES); 745 746 return nid; 747 } 748 749 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 750 { 751 if (!node_isset(nid, *nodes_allowed)) 752 nid = next_node_allowed(nid, nodes_allowed); 753 return nid; 754 } 755 756 /* 757 * returns the previously saved node ["this node"] from which to 758 * allocate a persistent huge page for the pool and advance the 759 * next node from which to allocate, handling wrap at end of node 760 * mask. 761 */ 762 static int hstate_next_node_to_alloc(struct hstate *h, 763 nodemask_t *nodes_allowed) 764 { 765 int nid; 766 767 VM_BUG_ON(!nodes_allowed); 768 769 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 770 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 771 772 return nid; 773 } 774 775 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 776 { 777 struct page *page; 778 int start_nid; 779 int next_nid; 780 int ret = 0; 781 782 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 783 next_nid = start_nid; 784 785 do { 786 page = alloc_fresh_huge_page_node(h, next_nid); 787 if (page) { 788 ret = 1; 789 break; 790 } 791 next_nid = hstate_next_node_to_alloc(h, nodes_allowed); 792 } while (next_nid != start_nid); 793 794 if (ret) 795 count_vm_event(HTLB_BUDDY_PGALLOC); 796 else 797 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 798 799 return ret; 800 } 801 802 /* 803 * helper for free_pool_huge_page() - return the previously saved 804 * node ["this node"] from which to free a huge page. Advance the 805 * next node id whether or not we find a free huge page to free so 806 * that the next attempt to free addresses the next node. 807 */ 808 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 809 { 810 int nid; 811 812 VM_BUG_ON(!nodes_allowed); 813 814 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 815 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 816 817 return nid; 818 } 819 820 /* 821 * Free huge page from pool from next node to free. 822 * Attempt to keep persistent huge pages more or less 823 * balanced over allowed nodes. 824 * Called with hugetlb_lock locked. 825 */ 826 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 827 bool acct_surplus) 828 { 829 int start_nid; 830 int next_nid; 831 int ret = 0; 832 833 start_nid = hstate_next_node_to_free(h, nodes_allowed); 834 next_nid = start_nid; 835 836 do { 837 /* 838 * If we're returning unused surplus pages, only examine 839 * nodes with surplus pages. 840 */ 841 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && 842 !list_empty(&h->hugepage_freelists[next_nid])) { 843 struct page *page = 844 list_entry(h->hugepage_freelists[next_nid].next, 845 struct page, lru); 846 list_del(&page->lru); 847 h->free_huge_pages--; 848 h->free_huge_pages_node[next_nid]--; 849 if (acct_surplus) { 850 h->surplus_huge_pages--; 851 h->surplus_huge_pages_node[next_nid]--; 852 } 853 update_and_free_page(h, page); 854 ret = 1; 855 break; 856 } 857 next_nid = hstate_next_node_to_free(h, nodes_allowed); 858 } while (next_nid != start_nid); 859 860 return ret; 861 } 862 863 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 864 { 865 struct page *page; 866 unsigned int r_nid; 867 868 if (h->order >= MAX_ORDER) 869 return NULL; 870 871 /* 872 * Assume we will successfully allocate the surplus page to 873 * prevent racing processes from causing the surplus to exceed 874 * overcommit 875 * 876 * This however introduces a different race, where a process B 877 * tries to grow the static hugepage pool while alloc_pages() is 878 * called by process A. B will only examine the per-node 879 * counters in determining if surplus huge pages can be 880 * converted to normal huge pages in adjust_pool_surplus(). A 881 * won't be able to increment the per-node counter, until the 882 * lock is dropped by B, but B doesn't drop hugetlb_lock until 883 * no more huge pages can be converted from surplus to normal 884 * state (and doesn't try to convert again). Thus, we have a 885 * case where a surplus huge page exists, the pool is grown, and 886 * the surplus huge page still exists after, even though it 887 * should just have been converted to a normal huge page. This 888 * does not leak memory, though, as the hugepage will be freed 889 * once it is out of use. It also does not allow the counters to 890 * go out of whack in adjust_pool_surplus() as we don't modify 891 * the node values until we've gotten the hugepage and only the 892 * per-node value is checked there. 893 */ 894 spin_lock(&hugetlb_lock); 895 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 896 spin_unlock(&hugetlb_lock); 897 return NULL; 898 } else { 899 h->nr_huge_pages++; 900 h->surplus_huge_pages++; 901 } 902 spin_unlock(&hugetlb_lock); 903 904 if (nid == NUMA_NO_NODE) 905 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 906 __GFP_REPEAT|__GFP_NOWARN, 907 huge_page_order(h)); 908 else 909 page = alloc_pages_exact_node(nid, 910 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 911 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 912 913 if (page && arch_prepare_hugepage(page)) { 914 __free_pages(page, huge_page_order(h)); 915 page = NULL; 916 } 917 918 spin_lock(&hugetlb_lock); 919 if (page) { 920 INIT_LIST_HEAD(&page->lru); 921 r_nid = page_to_nid(page); 922 set_compound_page_dtor(page, free_huge_page); 923 set_hugetlb_cgroup(page, NULL); 924 /* 925 * We incremented the global counters already 926 */ 927 h->nr_huge_pages_node[r_nid]++; 928 h->surplus_huge_pages_node[r_nid]++; 929 __count_vm_event(HTLB_BUDDY_PGALLOC); 930 } else { 931 h->nr_huge_pages--; 932 h->surplus_huge_pages--; 933 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 934 } 935 spin_unlock(&hugetlb_lock); 936 937 return page; 938 } 939 940 /* 941 * This allocation function is useful in the context where vma is irrelevant. 942 * E.g. soft-offlining uses this function because it only cares physical 943 * address of error page. 944 */ 945 struct page *alloc_huge_page_node(struct hstate *h, int nid) 946 { 947 struct page *page; 948 949 spin_lock(&hugetlb_lock); 950 page = dequeue_huge_page_node(h, nid); 951 spin_unlock(&hugetlb_lock); 952 953 if (!page) 954 page = alloc_buddy_huge_page(h, nid); 955 956 return page; 957 } 958 959 /* 960 * Increase the hugetlb pool such that it can accommodate a reservation 961 * of size 'delta'. 962 */ 963 static int gather_surplus_pages(struct hstate *h, int delta) 964 { 965 struct list_head surplus_list; 966 struct page *page, *tmp; 967 int ret, i; 968 int needed, allocated; 969 bool alloc_ok = true; 970 971 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 972 if (needed <= 0) { 973 h->resv_huge_pages += delta; 974 return 0; 975 } 976 977 allocated = 0; 978 INIT_LIST_HEAD(&surplus_list); 979 980 ret = -ENOMEM; 981 retry: 982 spin_unlock(&hugetlb_lock); 983 for (i = 0; i < needed; i++) { 984 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 985 if (!page) { 986 alloc_ok = false; 987 break; 988 } 989 list_add(&page->lru, &surplus_list); 990 } 991 allocated += i; 992 993 /* 994 * After retaking hugetlb_lock, we need to recalculate 'needed' 995 * because either resv_huge_pages or free_huge_pages may have changed. 996 */ 997 spin_lock(&hugetlb_lock); 998 needed = (h->resv_huge_pages + delta) - 999 (h->free_huge_pages + allocated); 1000 if (needed > 0) { 1001 if (alloc_ok) 1002 goto retry; 1003 /* 1004 * We were not able to allocate enough pages to 1005 * satisfy the entire reservation so we free what 1006 * we've allocated so far. 1007 */ 1008 goto free; 1009 } 1010 /* 1011 * The surplus_list now contains _at_least_ the number of extra pages 1012 * needed to accommodate the reservation. Add the appropriate number 1013 * of pages to the hugetlb pool and free the extras back to the buddy 1014 * allocator. Commit the entire reservation here to prevent another 1015 * process from stealing the pages as they are added to the pool but 1016 * before they are reserved. 1017 */ 1018 needed += allocated; 1019 h->resv_huge_pages += delta; 1020 ret = 0; 1021 1022 /* Free the needed pages to the hugetlb pool */ 1023 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1024 if ((--needed) < 0) 1025 break; 1026 /* 1027 * This page is now managed by the hugetlb allocator and has 1028 * no users -- drop the buddy allocator's reference. 1029 */ 1030 put_page_testzero(page); 1031 VM_BUG_ON(page_count(page)); 1032 enqueue_huge_page(h, page); 1033 } 1034 free: 1035 spin_unlock(&hugetlb_lock); 1036 1037 /* Free unnecessary surplus pages to the buddy allocator */ 1038 if (!list_empty(&surplus_list)) { 1039 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1040 put_page(page); 1041 } 1042 } 1043 spin_lock(&hugetlb_lock); 1044 1045 return ret; 1046 } 1047 1048 /* 1049 * When releasing a hugetlb pool reservation, any surplus pages that were 1050 * allocated to satisfy the reservation must be explicitly freed if they were 1051 * never used. 1052 * Called with hugetlb_lock held. 1053 */ 1054 static void return_unused_surplus_pages(struct hstate *h, 1055 unsigned long unused_resv_pages) 1056 { 1057 unsigned long nr_pages; 1058 1059 /* Uncommit the reservation */ 1060 h->resv_huge_pages -= unused_resv_pages; 1061 1062 /* Cannot return gigantic pages currently */ 1063 if (h->order >= MAX_ORDER) 1064 return; 1065 1066 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1067 1068 /* 1069 * We want to release as many surplus pages as possible, spread 1070 * evenly across all nodes with memory. Iterate across these nodes 1071 * until we can no longer free unreserved surplus pages. This occurs 1072 * when the nodes with surplus pages have no free pages. 1073 * free_pool_huge_page() will balance the the freed pages across the 1074 * on-line nodes with memory and will handle the hstate accounting. 1075 */ 1076 while (nr_pages--) { 1077 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1078 break; 1079 } 1080 } 1081 1082 /* 1083 * Determine if the huge page at addr within the vma has an associated 1084 * reservation. Where it does not we will need to logically increase 1085 * reservation and actually increase subpool usage before an allocation 1086 * can occur. Where any new reservation would be required the 1087 * reservation change is prepared, but not committed. Once the page 1088 * has been allocated from the subpool and instantiated the change should 1089 * be committed via vma_commit_reservation. No action is required on 1090 * failure. 1091 */ 1092 static long vma_needs_reservation(struct hstate *h, 1093 struct vm_area_struct *vma, unsigned long addr) 1094 { 1095 struct address_space *mapping = vma->vm_file->f_mapping; 1096 struct inode *inode = mapping->host; 1097 1098 if (vma->vm_flags & VM_MAYSHARE) { 1099 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1100 return region_chg(&inode->i_mapping->private_list, 1101 idx, idx + 1); 1102 1103 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1104 return 1; 1105 1106 } else { 1107 long err; 1108 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1109 struct resv_map *reservations = vma_resv_map(vma); 1110 1111 err = region_chg(&reservations->regions, idx, idx + 1); 1112 if (err < 0) 1113 return err; 1114 return 0; 1115 } 1116 } 1117 static void vma_commit_reservation(struct hstate *h, 1118 struct vm_area_struct *vma, unsigned long addr) 1119 { 1120 struct address_space *mapping = vma->vm_file->f_mapping; 1121 struct inode *inode = mapping->host; 1122 1123 if (vma->vm_flags & VM_MAYSHARE) { 1124 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1125 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1126 1127 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1128 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1129 struct resv_map *reservations = vma_resv_map(vma); 1130 1131 /* Mark this page used in the map. */ 1132 region_add(&reservations->regions, idx, idx + 1); 1133 } 1134 } 1135 1136 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1137 unsigned long addr, int avoid_reserve) 1138 { 1139 struct hugepage_subpool *spool = subpool_vma(vma); 1140 struct hstate *h = hstate_vma(vma); 1141 struct page *page; 1142 long chg; 1143 int ret, idx; 1144 struct hugetlb_cgroup *h_cg; 1145 1146 idx = hstate_index(h); 1147 /* 1148 * Processes that did not create the mapping will have no 1149 * reserves and will not have accounted against subpool 1150 * limit. Check that the subpool limit can be made before 1151 * satisfying the allocation MAP_NORESERVE mappings may also 1152 * need pages and subpool limit allocated allocated if no reserve 1153 * mapping overlaps. 1154 */ 1155 chg = vma_needs_reservation(h, vma, addr); 1156 if (chg < 0) 1157 return ERR_PTR(-ENOMEM); 1158 if (chg) 1159 if (hugepage_subpool_get_pages(spool, chg)) 1160 return ERR_PTR(-ENOSPC); 1161 1162 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1163 if (ret) { 1164 hugepage_subpool_put_pages(spool, chg); 1165 return ERR_PTR(-ENOSPC); 1166 } 1167 spin_lock(&hugetlb_lock); 1168 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 1169 if (page) { 1170 /* update page cgroup details */ 1171 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), 1172 h_cg, page); 1173 spin_unlock(&hugetlb_lock); 1174 } else { 1175 spin_unlock(&hugetlb_lock); 1176 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1177 if (!page) { 1178 hugetlb_cgroup_uncharge_cgroup(idx, 1179 pages_per_huge_page(h), 1180 h_cg); 1181 hugepage_subpool_put_pages(spool, chg); 1182 return ERR_PTR(-ENOSPC); 1183 } 1184 spin_lock(&hugetlb_lock); 1185 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), 1186 h_cg, page); 1187 list_move(&page->lru, &h->hugepage_activelist); 1188 spin_unlock(&hugetlb_lock); 1189 } 1190 1191 set_page_private(page, (unsigned long)spool); 1192 1193 vma_commit_reservation(h, vma, addr); 1194 return page; 1195 } 1196 1197 int __weak alloc_bootmem_huge_page(struct hstate *h) 1198 { 1199 struct huge_bootmem_page *m; 1200 int nr_nodes = nodes_weight(node_states[N_MEMORY]); 1201 1202 while (nr_nodes) { 1203 void *addr; 1204 1205 addr = __alloc_bootmem_node_nopanic( 1206 NODE_DATA(hstate_next_node_to_alloc(h, 1207 &node_states[N_MEMORY])), 1208 huge_page_size(h), huge_page_size(h), 0); 1209 1210 if (addr) { 1211 /* 1212 * Use the beginning of the huge page to store the 1213 * huge_bootmem_page struct (until gather_bootmem 1214 * puts them into the mem_map). 1215 */ 1216 m = addr; 1217 goto found; 1218 } 1219 nr_nodes--; 1220 } 1221 return 0; 1222 1223 found: 1224 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1225 /* Put them into a private list first because mem_map is not up yet */ 1226 list_add(&m->list, &huge_boot_pages); 1227 m->hstate = h; 1228 return 1; 1229 } 1230 1231 static void prep_compound_huge_page(struct page *page, int order) 1232 { 1233 if (unlikely(order > (MAX_ORDER - 1))) 1234 prep_compound_gigantic_page(page, order); 1235 else 1236 prep_compound_page(page, order); 1237 } 1238 1239 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1240 static void __init gather_bootmem_prealloc(void) 1241 { 1242 struct huge_bootmem_page *m; 1243 1244 list_for_each_entry(m, &huge_boot_pages, list) { 1245 struct hstate *h = m->hstate; 1246 struct page *page; 1247 1248 #ifdef CONFIG_HIGHMEM 1249 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1250 free_bootmem_late((unsigned long)m, 1251 sizeof(struct huge_bootmem_page)); 1252 #else 1253 page = virt_to_page(m); 1254 #endif 1255 __ClearPageReserved(page); 1256 WARN_ON(page_count(page) != 1); 1257 prep_compound_huge_page(page, h->order); 1258 prep_new_huge_page(h, page, page_to_nid(page)); 1259 /* 1260 * If we had gigantic hugepages allocated at boot time, we need 1261 * to restore the 'stolen' pages to totalram_pages in order to 1262 * fix confusing memory reports from free(1) and another 1263 * side-effects, like CommitLimit going negative. 1264 */ 1265 if (h->order > (MAX_ORDER - 1)) 1266 adjust_managed_page_count(page, 1 << h->order); 1267 } 1268 } 1269 1270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1271 { 1272 unsigned long i; 1273 1274 for (i = 0; i < h->max_huge_pages; ++i) { 1275 if (h->order >= MAX_ORDER) { 1276 if (!alloc_bootmem_huge_page(h)) 1277 break; 1278 } else if (!alloc_fresh_huge_page(h, 1279 &node_states[N_MEMORY])) 1280 break; 1281 } 1282 h->max_huge_pages = i; 1283 } 1284 1285 static void __init hugetlb_init_hstates(void) 1286 { 1287 struct hstate *h; 1288 1289 for_each_hstate(h) { 1290 /* oversize hugepages were init'ed in early boot */ 1291 if (h->order < MAX_ORDER) 1292 hugetlb_hstate_alloc_pages(h); 1293 } 1294 } 1295 1296 static char * __init memfmt(char *buf, unsigned long n) 1297 { 1298 if (n >= (1UL << 30)) 1299 sprintf(buf, "%lu GB", n >> 30); 1300 else if (n >= (1UL << 20)) 1301 sprintf(buf, "%lu MB", n >> 20); 1302 else 1303 sprintf(buf, "%lu KB", n >> 10); 1304 return buf; 1305 } 1306 1307 static void __init report_hugepages(void) 1308 { 1309 struct hstate *h; 1310 1311 for_each_hstate(h) { 1312 char buf[32]; 1313 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1314 memfmt(buf, huge_page_size(h)), 1315 h->free_huge_pages); 1316 } 1317 } 1318 1319 #ifdef CONFIG_HIGHMEM 1320 static void try_to_free_low(struct hstate *h, unsigned long count, 1321 nodemask_t *nodes_allowed) 1322 { 1323 int i; 1324 1325 if (h->order >= MAX_ORDER) 1326 return; 1327 1328 for_each_node_mask(i, *nodes_allowed) { 1329 struct page *page, *next; 1330 struct list_head *freel = &h->hugepage_freelists[i]; 1331 list_for_each_entry_safe(page, next, freel, lru) { 1332 if (count >= h->nr_huge_pages) 1333 return; 1334 if (PageHighMem(page)) 1335 continue; 1336 list_del(&page->lru); 1337 update_and_free_page(h, page); 1338 h->free_huge_pages--; 1339 h->free_huge_pages_node[page_to_nid(page)]--; 1340 } 1341 } 1342 } 1343 #else 1344 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1345 nodemask_t *nodes_allowed) 1346 { 1347 } 1348 #endif 1349 1350 /* 1351 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1352 * balanced by operating on them in a round-robin fashion. 1353 * Returns 1 if an adjustment was made. 1354 */ 1355 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1356 int delta) 1357 { 1358 int start_nid, next_nid; 1359 int ret = 0; 1360 1361 VM_BUG_ON(delta != -1 && delta != 1); 1362 1363 if (delta < 0) 1364 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 1365 else 1366 start_nid = hstate_next_node_to_free(h, nodes_allowed); 1367 next_nid = start_nid; 1368 1369 do { 1370 int nid = next_nid; 1371 if (delta < 0) { 1372 /* 1373 * To shrink on this node, there must be a surplus page 1374 */ 1375 if (!h->surplus_huge_pages_node[nid]) { 1376 next_nid = hstate_next_node_to_alloc(h, 1377 nodes_allowed); 1378 continue; 1379 } 1380 } 1381 if (delta > 0) { 1382 /* 1383 * Surplus cannot exceed the total number of pages 1384 */ 1385 if (h->surplus_huge_pages_node[nid] >= 1386 h->nr_huge_pages_node[nid]) { 1387 next_nid = hstate_next_node_to_free(h, 1388 nodes_allowed); 1389 continue; 1390 } 1391 } 1392 1393 h->surplus_huge_pages += delta; 1394 h->surplus_huge_pages_node[nid] += delta; 1395 ret = 1; 1396 break; 1397 } while (next_nid != start_nid); 1398 1399 return ret; 1400 } 1401 1402 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1403 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1404 nodemask_t *nodes_allowed) 1405 { 1406 unsigned long min_count, ret; 1407 1408 if (h->order >= MAX_ORDER) 1409 return h->max_huge_pages; 1410 1411 /* 1412 * Increase the pool size 1413 * First take pages out of surplus state. Then make up the 1414 * remaining difference by allocating fresh huge pages. 1415 * 1416 * We might race with alloc_buddy_huge_page() here and be unable 1417 * to convert a surplus huge page to a normal huge page. That is 1418 * not critical, though, it just means the overall size of the 1419 * pool might be one hugepage larger than it needs to be, but 1420 * within all the constraints specified by the sysctls. 1421 */ 1422 spin_lock(&hugetlb_lock); 1423 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1424 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1425 break; 1426 } 1427 1428 while (count > persistent_huge_pages(h)) { 1429 /* 1430 * If this allocation races such that we no longer need the 1431 * page, free_huge_page will handle it by freeing the page 1432 * and reducing the surplus. 1433 */ 1434 spin_unlock(&hugetlb_lock); 1435 ret = alloc_fresh_huge_page(h, nodes_allowed); 1436 spin_lock(&hugetlb_lock); 1437 if (!ret) 1438 goto out; 1439 1440 /* Bail for signals. Probably ctrl-c from user */ 1441 if (signal_pending(current)) 1442 goto out; 1443 } 1444 1445 /* 1446 * Decrease the pool size 1447 * First return free pages to the buddy allocator (being careful 1448 * to keep enough around to satisfy reservations). Then place 1449 * pages into surplus state as needed so the pool will shrink 1450 * to the desired size as pages become free. 1451 * 1452 * By placing pages into the surplus state independent of the 1453 * overcommit value, we are allowing the surplus pool size to 1454 * exceed overcommit. There are few sane options here. Since 1455 * alloc_buddy_huge_page() is checking the global counter, 1456 * though, we'll note that we're not allowed to exceed surplus 1457 * and won't grow the pool anywhere else. Not until one of the 1458 * sysctls are changed, or the surplus pages go out of use. 1459 */ 1460 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1461 min_count = max(count, min_count); 1462 try_to_free_low(h, min_count, nodes_allowed); 1463 while (min_count < persistent_huge_pages(h)) { 1464 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1465 break; 1466 } 1467 while (count < persistent_huge_pages(h)) { 1468 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1469 break; 1470 } 1471 out: 1472 ret = persistent_huge_pages(h); 1473 spin_unlock(&hugetlb_lock); 1474 return ret; 1475 } 1476 1477 #define HSTATE_ATTR_RO(_name) \ 1478 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1479 1480 #define HSTATE_ATTR(_name) \ 1481 static struct kobj_attribute _name##_attr = \ 1482 __ATTR(_name, 0644, _name##_show, _name##_store) 1483 1484 static struct kobject *hugepages_kobj; 1485 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1486 1487 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1488 1489 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1490 { 1491 int i; 1492 1493 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1494 if (hstate_kobjs[i] == kobj) { 1495 if (nidp) 1496 *nidp = NUMA_NO_NODE; 1497 return &hstates[i]; 1498 } 1499 1500 return kobj_to_node_hstate(kobj, nidp); 1501 } 1502 1503 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1504 struct kobj_attribute *attr, char *buf) 1505 { 1506 struct hstate *h; 1507 unsigned long nr_huge_pages; 1508 int nid; 1509 1510 h = kobj_to_hstate(kobj, &nid); 1511 if (nid == NUMA_NO_NODE) 1512 nr_huge_pages = h->nr_huge_pages; 1513 else 1514 nr_huge_pages = h->nr_huge_pages_node[nid]; 1515 1516 return sprintf(buf, "%lu\n", nr_huge_pages); 1517 } 1518 1519 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1520 struct kobject *kobj, struct kobj_attribute *attr, 1521 const char *buf, size_t len) 1522 { 1523 int err; 1524 int nid; 1525 unsigned long count; 1526 struct hstate *h; 1527 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1528 1529 err = strict_strtoul(buf, 10, &count); 1530 if (err) 1531 goto out; 1532 1533 h = kobj_to_hstate(kobj, &nid); 1534 if (h->order >= MAX_ORDER) { 1535 err = -EINVAL; 1536 goto out; 1537 } 1538 1539 if (nid == NUMA_NO_NODE) { 1540 /* 1541 * global hstate attribute 1542 */ 1543 if (!(obey_mempolicy && 1544 init_nodemask_of_mempolicy(nodes_allowed))) { 1545 NODEMASK_FREE(nodes_allowed); 1546 nodes_allowed = &node_states[N_MEMORY]; 1547 } 1548 } else if (nodes_allowed) { 1549 /* 1550 * per node hstate attribute: adjust count to global, 1551 * but restrict alloc/free to the specified node. 1552 */ 1553 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1554 init_nodemask_of_node(nodes_allowed, nid); 1555 } else 1556 nodes_allowed = &node_states[N_MEMORY]; 1557 1558 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1559 1560 if (nodes_allowed != &node_states[N_MEMORY]) 1561 NODEMASK_FREE(nodes_allowed); 1562 1563 return len; 1564 out: 1565 NODEMASK_FREE(nodes_allowed); 1566 return err; 1567 } 1568 1569 static ssize_t nr_hugepages_show(struct kobject *kobj, 1570 struct kobj_attribute *attr, char *buf) 1571 { 1572 return nr_hugepages_show_common(kobj, attr, buf); 1573 } 1574 1575 static ssize_t nr_hugepages_store(struct kobject *kobj, 1576 struct kobj_attribute *attr, const char *buf, size_t len) 1577 { 1578 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1579 } 1580 HSTATE_ATTR(nr_hugepages); 1581 1582 #ifdef CONFIG_NUMA 1583 1584 /* 1585 * hstate attribute for optionally mempolicy-based constraint on persistent 1586 * huge page alloc/free. 1587 */ 1588 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1589 struct kobj_attribute *attr, char *buf) 1590 { 1591 return nr_hugepages_show_common(kobj, attr, buf); 1592 } 1593 1594 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1595 struct kobj_attribute *attr, const char *buf, size_t len) 1596 { 1597 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1598 } 1599 HSTATE_ATTR(nr_hugepages_mempolicy); 1600 #endif 1601 1602 1603 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1604 struct kobj_attribute *attr, char *buf) 1605 { 1606 struct hstate *h = kobj_to_hstate(kobj, NULL); 1607 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1608 } 1609 1610 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1611 struct kobj_attribute *attr, const char *buf, size_t count) 1612 { 1613 int err; 1614 unsigned long input; 1615 struct hstate *h = kobj_to_hstate(kobj, NULL); 1616 1617 if (h->order >= MAX_ORDER) 1618 return -EINVAL; 1619 1620 err = strict_strtoul(buf, 10, &input); 1621 if (err) 1622 return err; 1623 1624 spin_lock(&hugetlb_lock); 1625 h->nr_overcommit_huge_pages = input; 1626 spin_unlock(&hugetlb_lock); 1627 1628 return count; 1629 } 1630 HSTATE_ATTR(nr_overcommit_hugepages); 1631 1632 static ssize_t free_hugepages_show(struct kobject *kobj, 1633 struct kobj_attribute *attr, char *buf) 1634 { 1635 struct hstate *h; 1636 unsigned long free_huge_pages; 1637 int nid; 1638 1639 h = kobj_to_hstate(kobj, &nid); 1640 if (nid == NUMA_NO_NODE) 1641 free_huge_pages = h->free_huge_pages; 1642 else 1643 free_huge_pages = h->free_huge_pages_node[nid]; 1644 1645 return sprintf(buf, "%lu\n", free_huge_pages); 1646 } 1647 HSTATE_ATTR_RO(free_hugepages); 1648 1649 static ssize_t resv_hugepages_show(struct kobject *kobj, 1650 struct kobj_attribute *attr, char *buf) 1651 { 1652 struct hstate *h = kobj_to_hstate(kobj, NULL); 1653 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1654 } 1655 HSTATE_ATTR_RO(resv_hugepages); 1656 1657 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1658 struct kobj_attribute *attr, char *buf) 1659 { 1660 struct hstate *h; 1661 unsigned long surplus_huge_pages; 1662 int nid; 1663 1664 h = kobj_to_hstate(kobj, &nid); 1665 if (nid == NUMA_NO_NODE) 1666 surplus_huge_pages = h->surplus_huge_pages; 1667 else 1668 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1669 1670 return sprintf(buf, "%lu\n", surplus_huge_pages); 1671 } 1672 HSTATE_ATTR_RO(surplus_hugepages); 1673 1674 static struct attribute *hstate_attrs[] = { 1675 &nr_hugepages_attr.attr, 1676 &nr_overcommit_hugepages_attr.attr, 1677 &free_hugepages_attr.attr, 1678 &resv_hugepages_attr.attr, 1679 &surplus_hugepages_attr.attr, 1680 #ifdef CONFIG_NUMA 1681 &nr_hugepages_mempolicy_attr.attr, 1682 #endif 1683 NULL, 1684 }; 1685 1686 static struct attribute_group hstate_attr_group = { 1687 .attrs = hstate_attrs, 1688 }; 1689 1690 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1691 struct kobject **hstate_kobjs, 1692 struct attribute_group *hstate_attr_group) 1693 { 1694 int retval; 1695 int hi = hstate_index(h); 1696 1697 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1698 if (!hstate_kobjs[hi]) 1699 return -ENOMEM; 1700 1701 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1702 if (retval) 1703 kobject_put(hstate_kobjs[hi]); 1704 1705 return retval; 1706 } 1707 1708 static void __init hugetlb_sysfs_init(void) 1709 { 1710 struct hstate *h; 1711 int err; 1712 1713 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1714 if (!hugepages_kobj) 1715 return; 1716 1717 for_each_hstate(h) { 1718 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1719 hstate_kobjs, &hstate_attr_group); 1720 if (err) 1721 pr_err("Hugetlb: Unable to add hstate %s", h->name); 1722 } 1723 } 1724 1725 #ifdef CONFIG_NUMA 1726 1727 /* 1728 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1729 * with node devices in node_devices[] using a parallel array. The array 1730 * index of a node device or _hstate == node id. 1731 * This is here to avoid any static dependency of the node device driver, in 1732 * the base kernel, on the hugetlb module. 1733 */ 1734 struct node_hstate { 1735 struct kobject *hugepages_kobj; 1736 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1737 }; 1738 struct node_hstate node_hstates[MAX_NUMNODES]; 1739 1740 /* 1741 * A subset of global hstate attributes for node devices 1742 */ 1743 static struct attribute *per_node_hstate_attrs[] = { 1744 &nr_hugepages_attr.attr, 1745 &free_hugepages_attr.attr, 1746 &surplus_hugepages_attr.attr, 1747 NULL, 1748 }; 1749 1750 static struct attribute_group per_node_hstate_attr_group = { 1751 .attrs = per_node_hstate_attrs, 1752 }; 1753 1754 /* 1755 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1756 * Returns node id via non-NULL nidp. 1757 */ 1758 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1759 { 1760 int nid; 1761 1762 for (nid = 0; nid < nr_node_ids; nid++) { 1763 struct node_hstate *nhs = &node_hstates[nid]; 1764 int i; 1765 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1766 if (nhs->hstate_kobjs[i] == kobj) { 1767 if (nidp) 1768 *nidp = nid; 1769 return &hstates[i]; 1770 } 1771 } 1772 1773 BUG(); 1774 return NULL; 1775 } 1776 1777 /* 1778 * Unregister hstate attributes from a single node device. 1779 * No-op if no hstate attributes attached. 1780 */ 1781 static void hugetlb_unregister_node(struct node *node) 1782 { 1783 struct hstate *h; 1784 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1785 1786 if (!nhs->hugepages_kobj) 1787 return; /* no hstate attributes */ 1788 1789 for_each_hstate(h) { 1790 int idx = hstate_index(h); 1791 if (nhs->hstate_kobjs[idx]) { 1792 kobject_put(nhs->hstate_kobjs[idx]); 1793 nhs->hstate_kobjs[idx] = NULL; 1794 } 1795 } 1796 1797 kobject_put(nhs->hugepages_kobj); 1798 nhs->hugepages_kobj = NULL; 1799 } 1800 1801 /* 1802 * hugetlb module exit: unregister hstate attributes from node devices 1803 * that have them. 1804 */ 1805 static void hugetlb_unregister_all_nodes(void) 1806 { 1807 int nid; 1808 1809 /* 1810 * disable node device registrations. 1811 */ 1812 register_hugetlbfs_with_node(NULL, NULL); 1813 1814 /* 1815 * remove hstate attributes from any nodes that have them. 1816 */ 1817 for (nid = 0; nid < nr_node_ids; nid++) 1818 hugetlb_unregister_node(node_devices[nid]); 1819 } 1820 1821 /* 1822 * Register hstate attributes for a single node device. 1823 * No-op if attributes already registered. 1824 */ 1825 static void hugetlb_register_node(struct node *node) 1826 { 1827 struct hstate *h; 1828 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1829 int err; 1830 1831 if (nhs->hugepages_kobj) 1832 return; /* already allocated */ 1833 1834 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1835 &node->dev.kobj); 1836 if (!nhs->hugepages_kobj) 1837 return; 1838 1839 for_each_hstate(h) { 1840 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1841 nhs->hstate_kobjs, 1842 &per_node_hstate_attr_group); 1843 if (err) { 1844 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 1845 h->name, node->dev.id); 1846 hugetlb_unregister_node(node); 1847 break; 1848 } 1849 } 1850 } 1851 1852 /* 1853 * hugetlb init time: register hstate attributes for all registered node 1854 * devices of nodes that have memory. All on-line nodes should have 1855 * registered their associated device by this time. 1856 */ 1857 static void hugetlb_register_all_nodes(void) 1858 { 1859 int nid; 1860 1861 for_each_node_state(nid, N_MEMORY) { 1862 struct node *node = node_devices[nid]; 1863 if (node->dev.id == nid) 1864 hugetlb_register_node(node); 1865 } 1866 1867 /* 1868 * Let the node device driver know we're here so it can 1869 * [un]register hstate attributes on node hotplug. 1870 */ 1871 register_hugetlbfs_with_node(hugetlb_register_node, 1872 hugetlb_unregister_node); 1873 } 1874 #else /* !CONFIG_NUMA */ 1875 1876 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1877 { 1878 BUG(); 1879 if (nidp) 1880 *nidp = -1; 1881 return NULL; 1882 } 1883 1884 static void hugetlb_unregister_all_nodes(void) { } 1885 1886 static void hugetlb_register_all_nodes(void) { } 1887 1888 #endif 1889 1890 static void __exit hugetlb_exit(void) 1891 { 1892 struct hstate *h; 1893 1894 hugetlb_unregister_all_nodes(); 1895 1896 for_each_hstate(h) { 1897 kobject_put(hstate_kobjs[hstate_index(h)]); 1898 } 1899 1900 kobject_put(hugepages_kobj); 1901 } 1902 module_exit(hugetlb_exit); 1903 1904 static int __init hugetlb_init(void) 1905 { 1906 /* Some platform decide whether they support huge pages at boot 1907 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1908 * there is no such support 1909 */ 1910 if (HPAGE_SHIFT == 0) 1911 return 0; 1912 1913 if (!size_to_hstate(default_hstate_size)) { 1914 default_hstate_size = HPAGE_SIZE; 1915 if (!size_to_hstate(default_hstate_size)) 1916 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1917 } 1918 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 1919 if (default_hstate_max_huge_pages) 1920 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1921 1922 hugetlb_init_hstates(); 1923 gather_bootmem_prealloc(); 1924 report_hugepages(); 1925 1926 hugetlb_sysfs_init(); 1927 hugetlb_register_all_nodes(); 1928 hugetlb_cgroup_file_init(); 1929 1930 return 0; 1931 } 1932 module_init(hugetlb_init); 1933 1934 /* Should be called on processing a hugepagesz=... option */ 1935 void __init hugetlb_add_hstate(unsigned order) 1936 { 1937 struct hstate *h; 1938 unsigned long i; 1939 1940 if (size_to_hstate(PAGE_SIZE << order)) { 1941 pr_warning("hugepagesz= specified twice, ignoring\n"); 1942 return; 1943 } 1944 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 1945 BUG_ON(order == 0); 1946 h = &hstates[hugetlb_max_hstate++]; 1947 h->order = order; 1948 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1949 h->nr_huge_pages = 0; 1950 h->free_huge_pages = 0; 1951 for (i = 0; i < MAX_NUMNODES; ++i) 1952 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1953 INIT_LIST_HEAD(&h->hugepage_activelist); 1954 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 1955 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 1956 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 1957 huge_page_size(h)/1024); 1958 1959 parsed_hstate = h; 1960 } 1961 1962 static int __init hugetlb_nrpages_setup(char *s) 1963 { 1964 unsigned long *mhp; 1965 static unsigned long *last_mhp; 1966 1967 /* 1968 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 1969 * so this hugepages= parameter goes to the "default hstate". 1970 */ 1971 if (!hugetlb_max_hstate) 1972 mhp = &default_hstate_max_huge_pages; 1973 else 1974 mhp = &parsed_hstate->max_huge_pages; 1975 1976 if (mhp == last_mhp) { 1977 pr_warning("hugepages= specified twice without " 1978 "interleaving hugepagesz=, ignoring\n"); 1979 return 1; 1980 } 1981 1982 if (sscanf(s, "%lu", mhp) <= 0) 1983 *mhp = 0; 1984 1985 /* 1986 * Global state is always initialized later in hugetlb_init. 1987 * But we need to allocate >= MAX_ORDER hstates here early to still 1988 * use the bootmem allocator. 1989 */ 1990 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 1991 hugetlb_hstate_alloc_pages(parsed_hstate); 1992 1993 last_mhp = mhp; 1994 1995 return 1; 1996 } 1997 __setup("hugepages=", hugetlb_nrpages_setup); 1998 1999 static int __init hugetlb_default_setup(char *s) 2000 { 2001 default_hstate_size = memparse(s, &s); 2002 return 1; 2003 } 2004 __setup("default_hugepagesz=", hugetlb_default_setup); 2005 2006 static unsigned int cpuset_mems_nr(unsigned int *array) 2007 { 2008 int node; 2009 unsigned int nr = 0; 2010 2011 for_each_node_mask(node, cpuset_current_mems_allowed) 2012 nr += array[node]; 2013 2014 return nr; 2015 } 2016 2017 #ifdef CONFIG_SYSCTL 2018 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2019 struct ctl_table *table, int write, 2020 void __user *buffer, size_t *length, loff_t *ppos) 2021 { 2022 struct hstate *h = &default_hstate; 2023 unsigned long tmp; 2024 int ret; 2025 2026 tmp = h->max_huge_pages; 2027 2028 if (write && h->order >= MAX_ORDER) 2029 return -EINVAL; 2030 2031 table->data = &tmp; 2032 table->maxlen = sizeof(unsigned long); 2033 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2034 if (ret) 2035 goto out; 2036 2037 if (write) { 2038 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 2039 GFP_KERNEL | __GFP_NORETRY); 2040 if (!(obey_mempolicy && 2041 init_nodemask_of_mempolicy(nodes_allowed))) { 2042 NODEMASK_FREE(nodes_allowed); 2043 nodes_allowed = &node_states[N_MEMORY]; 2044 } 2045 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 2046 2047 if (nodes_allowed != &node_states[N_MEMORY]) 2048 NODEMASK_FREE(nodes_allowed); 2049 } 2050 out: 2051 return ret; 2052 } 2053 2054 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2055 void __user *buffer, size_t *length, loff_t *ppos) 2056 { 2057 2058 return hugetlb_sysctl_handler_common(false, table, write, 2059 buffer, length, ppos); 2060 } 2061 2062 #ifdef CONFIG_NUMA 2063 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2064 void __user *buffer, size_t *length, loff_t *ppos) 2065 { 2066 return hugetlb_sysctl_handler_common(true, table, write, 2067 buffer, length, ppos); 2068 } 2069 #endif /* CONFIG_NUMA */ 2070 2071 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 2072 void __user *buffer, 2073 size_t *length, loff_t *ppos) 2074 { 2075 proc_dointvec(table, write, buffer, length, ppos); 2076 if (hugepages_treat_as_movable) 2077 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 2078 else 2079 htlb_alloc_mask = GFP_HIGHUSER; 2080 return 0; 2081 } 2082 2083 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2084 void __user *buffer, 2085 size_t *length, loff_t *ppos) 2086 { 2087 struct hstate *h = &default_hstate; 2088 unsigned long tmp; 2089 int ret; 2090 2091 tmp = h->nr_overcommit_huge_pages; 2092 2093 if (write && h->order >= MAX_ORDER) 2094 return -EINVAL; 2095 2096 table->data = &tmp; 2097 table->maxlen = sizeof(unsigned long); 2098 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2099 if (ret) 2100 goto out; 2101 2102 if (write) { 2103 spin_lock(&hugetlb_lock); 2104 h->nr_overcommit_huge_pages = tmp; 2105 spin_unlock(&hugetlb_lock); 2106 } 2107 out: 2108 return ret; 2109 } 2110 2111 #endif /* CONFIG_SYSCTL */ 2112 2113 void hugetlb_report_meminfo(struct seq_file *m) 2114 { 2115 struct hstate *h = &default_hstate; 2116 seq_printf(m, 2117 "HugePages_Total: %5lu\n" 2118 "HugePages_Free: %5lu\n" 2119 "HugePages_Rsvd: %5lu\n" 2120 "HugePages_Surp: %5lu\n" 2121 "Hugepagesize: %8lu kB\n", 2122 h->nr_huge_pages, 2123 h->free_huge_pages, 2124 h->resv_huge_pages, 2125 h->surplus_huge_pages, 2126 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2127 } 2128 2129 int hugetlb_report_node_meminfo(int nid, char *buf) 2130 { 2131 struct hstate *h = &default_hstate; 2132 return sprintf(buf, 2133 "Node %d HugePages_Total: %5u\n" 2134 "Node %d HugePages_Free: %5u\n" 2135 "Node %d HugePages_Surp: %5u\n", 2136 nid, h->nr_huge_pages_node[nid], 2137 nid, h->free_huge_pages_node[nid], 2138 nid, h->surplus_huge_pages_node[nid]); 2139 } 2140 2141 void hugetlb_show_meminfo(void) 2142 { 2143 struct hstate *h; 2144 int nid; 2145 2146 for_each_node_state(nid, N_MEMORY) 2147 for_each_hstate(h) 2148 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2149 nid, 2150 h->nr_huge_pages_node[nid], 2151 h->free_huge_pages_node[nid], 2152 h->surplus_huge_pages_node[nid], 2153 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2154 } 2155 2156 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2157 unsigned long hugetlb_total_pages(void) 2158 { 2159 struct hstate *h; 2160 unsigned long nr_total_pages = 0; 2161 2162 for_each_hstate(h) 2163 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2164 return nr_total_pages; 2165 } 2166 2167 static int hugetlb_acct_memory(struct hstate *h, long delta) 2168 { 2169 int ret = -ENOMEM; 2170 2171 spin_lock(&hugetlb_lock); 2172 /* 2173 * When cpuset is configured, it breaks the strict hugetlb page 2174 * reservation as the accounting is done on a global variable. Such 2175 * reservation is completely rubbish in the presence of cpuset because 2176 * the reservation is not checked against page availability for the 2177 * current cpuset. Application can still potentially OOM'ed by kernel 2178 * with lack of free htlb page in cpuset that the task is in. 2179 * Attempt to enforce strict accounting with cpuset is almost 2180 * impossible (or too ugly) because cpuset is too fluid that 2181 * task or memory node can be dynamically moved between cpusets. 2182 * 2183 * The change of semantics for shared hugetlb mapping with cpuset is 2184 * undesirable. However, in order to preserve some of the semantics, 2185 * we fall back to check against current free page availability as 2186 * a best attempt and hopefully to minimize the impact of changing 2187 * semantics that cpuset has. 2188 */ 2189 if (delta > 0) { 2190 if (gather_surplus_pages(h, delta) < 0) 2191 goto out; 2192 2193 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2194 return_unused_surplus_pages(h, delta); 2195 goto out; 2196 } 2197 } 2198 2199 ret = 0; 2200 if (delta < 0) 2201 return_unused_surplus_pages(h, (unsigned long) -delta); 2202 2203 out: 2204 spin_unlock(&hugetlb_lock); 2205 return ret; 2206 } 2207 2208 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2209 { 2210 struct resv_map *reservations = vma_resv_map(vma); 2211 2212 /* 2213 * This new VMA should share its siblings reservation map if present. 2214 * The VMA will only ever have a valid reservation map pointer where 2215 * it is being copied for another still existing VMA. As that VMA 2216 * has a reference to the reservation map it cannot disappear until 2217 * after this open call completes. It is therefore safe to take a 2218 * new reference here without additional locking. 2219 */ 2220 if (reservations) 2221 kref_get(&reservations->refs); 2222 } 2223 2224 static void resv_map_put(struct vm_area_struct *vma) 2225 { 2226 struct resv_map *reservations = vma_resv_map(vma); 2227 2228 if (!reservations) 2229 return; 2230 kref_put(&reservations->refs, resv_map_release); 2231 } 2232 2233 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2234 { 2235 struct hstate *h = hstate_vma(vma); 2236 struct resv_map *reservations = vma_resv_map(vma); 2237 struct hugepage_subpool *spool = subpool_vma(vma); 2238 unsigned long reserve; 2239 unsigned long start; 2240 unsigned long end; 2241 2242 if (reservations) { 2243 start = vma_hugecache_offset(h, vma, vma->vm_start); 2244 end = vma_hugecache_offset(h, vma, vma->vm_end); 2245 2246 reserve = (end - start) - 2247 region_count(&reservations->regions, start, end); 2248 2249 resv_map_put(vma); 2250 2251 if (reserve) { 2252 hugetlb_acct_memory(h, -reserve); 2253 hugepage_subpool_put_pages(spool, reserve); 2254 } 2255 } 2256 } 2257 2258 /* 2259 * We cannot handle pagefaults against hugetlb pages at all. They cause 2260 * handle_mm_fault() to try to instantiate regular-sized pages in the 2261 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2262 * this far. 2263 */ 2264 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2265 { 2266 BUG(); 2267 return 0; 2268 } 2269 2270 const struct vm_operations_struct hugetlb_vm_ops = { 2271 .fault = hugetlb_vm_op_fault, 2272 .open = hugetlb_vm_op_open, 2273 .close = hugetlb_vm_op_close, 2274 }; 2275 2276 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2277 int writable) 2278 { 2279 pte_t entry; 2280 2281 if (writable) { 2282 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2283 vma->vm_page_prot))); 2284 } else { 2285 entry = huge_pte_wrprotect(mk_huge_pte(page, 2286 vma->vm_page_prot)); 2287 } 2288 entry = pte_mkyoung(entry); 2289 entry = pte_mkhuge(entry); 2290 entry = arch_make_huge_pte(entry, vma, page, writable); 2291 2292 return entry; 2293 } 2294 2295 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2296 unsigned long address, pte_t *ptep) 2297 { 2298 pte_t entry; 2299 2300 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2301 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2302 update_mmu_cache(vma, address, ptep); 2303 } 2304 2305 2306 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2307 struct vm_area_struct *vma) 2308 { 2309 pte_t *src_pte, *dst_pte, entry; 2310 struct page *ptepage; 2311 unsigned long addr; 2312 int cow; 2313 struct hstate *h = hstate_vma(vma); 2314 unsigned long sz = huge_page_size(h); 2315 2316 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2317 2318 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2319 src_pte = huge_pte_offset(src, addr); 2320 if (!src_pte) 2321 continue; 2322 dst_pte = huge_pte_alloc(dst, addr, sz); 2323 if (!dst_pte) 2324 goto nomem; 2325 2326 /* If the pagetables are shared don't copy or take references */ 2327 if (dst_pte == src_pte) 2328 continue; 2329 2330 spin_lock(&dst->page_table_lock); 2331 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2332 if (!huge_pte_none(huge_ptep_get(src_pte))) { 2333 if (cow) 2334 huge_ptep_set_wrprotect(src, addr, src_pte); 2335 entry = huge_ptep_get(src_pte); 2336 ptepage = pte_page(entry); 2337 get_page(ptepage); 2338 page_dup_rmap(ptepage); 2339 set_huge_pte_at(dst, addr, dst_pte, entry); 2340 } 2341 spin_unlock(&src->page_table_lock); 2342 spin_unlock(&dst->page_table_lock); 2343 } 2344 return 0; 2345 2346 nomem: 2347 return -ENOMEM; 2348 } 2349 2350 static int is_hugetlb_entry_migration(pte_t pte) 2351 { 2352 swp_entry_t swp; 2353 2354 if (huge_pte_none(pte) || pte_present(pte)) 2355 return 0; 2356 swp = pte_to_swp_entry(pte); 2357 if (non_swap_entry(swp) && is_migration_entry(swp)) 2358 return 1; 2359 else 2360 return 0; 2361 } 2362 2363 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2364 { 2365 swp_entry_t swp; 2366 2367 if (huge_pte_none(pte) || pte_present(pte)) 2368 return 0; 2369 swp = pte_to_swp_entry(pte); 2370 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2371 return 1; 2372 else 2373 return 0; 2374 } 2375 2376 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 2377 unsigned long start, unsigned long end, 2378 struct page *ref_page) 2379 { 2380 int force_flush = 0; 2381 struct mm_struct *mm = vma->vm_mm; 2382 unsigned long address; 2383 pte_t *ptep; 2384 pte_t pte; 2385 struct page *page; 2386 struct hstate *h = hstate_vma(vma); 2387 unsigned long sz = huge_page_size(h); 2388 const unsigned long mmun_start = start; /* For mmu_notifiers */ 2389 const unsigned long mmun_end = end; /* For mmu_notifiers */ 2390 2391 WARN_ON(!is_vm_hugetlb_page(vma)); 2392 BUG_ON(start & ~huge_page_mask(h)); 2393 BUG_ON(end & ~huge_page_mask(h)); 2394 2395 tlb_start_vma(tlb, vma); 2396 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2397 again: 2398 spin_lock(&mm->page_table_lock); 2399 for (address = start; address < end; address += sz) { 2400 ptep = huge_pte_offset(mm, address); 2401 if (!ptep) 2402 continue; 2403 2404 if (huge_pmd_unshare(mm, &address, ptep)) 2405 continue; 2406 2407 pte = huge_ptep_get(ptep); 2408 if (huge_pte_none(pte)) 2409 continue; 2410 2411 /* 2412 * HWPoisoned hugepage is already unmapped and dropped reference 2413 */ 2414 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 2415 huge_pte_clear(mm, address, ptep); 2416 continue; 2417 } 2418 2419 page = pte_page(pte); 2420 /* 2421 * If a reference page is supplied, it is because a specific 2422 * page is being unmapped, not a range. Ensure the page we 2423 * are about to unmap is the actual page of interest. 2424 */ 2425 if (ref_page) { 2426 if (page != ref_page) 2427 continue; 2428 2429 /* 2430 * Mark the VMA as having unmapped its page so that 2431 * future faults in this VMA will fail rather than 2432 * looking like data was lost 2433 */ 2434 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2435 } 2436 2437 pte = huge_ptep_get_and_clear(mm, address, ptep); 2438 tlb_remove_tlb_entry(tlb, ptep, address); 2439 if (huge_pte_dirty(pte)) 2440 set_page_dirty(page); 2441 2442 page_remove_rmap(page); 2443 force_flush = !__tlb_remove_page(tlb, page); 2444 if (force_flush) 2445 break; 2446 /* Bail out after unmapping reference page if supplied */ 2447 if (ref_page) 2448 break; 2449 } 2450 spin_unlock(&mm->page_table_lock); 2451 /* 2452 * mmu_gather ran out of room to batch pages, we break out of 2453 * the PTE lock to avoid doing the potential expensive TLB invalidate 2454 * and page-free while holding it. 2455 */ 2456 if (force_flush) { 2457 force_flush = 0; 2458 tlb_flush_mmu(tlb); 2459 if (address < end && !ref_page) 2460 goto again; 2461 } 2462 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2463 tlb_end_vma(tlb, vma); 2464 } 2465 2466 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 2467 struct vm_area_struct *vma, unsigned long start, 2468 unsigned long end, struct page *ref_page) 2469 { 2470 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 2471 2472 /* 2473 * Clear this flag so that x86's huge_pmd_share page_table_shareable 2474 * test will fail on a vma being torn down, and not grab a page table 2475 * on its way out. We're lucky that the flag has such an appropriate 2476 * name, and can in fact be safely cleared here. We could clear it 2477 * before the __unmap_hugepage_range above, but all that's necessary 2478 * is to clear it before releasing the i_mmap_mutex. This works 2479 * because in the context this is called, the VMA is about to be 2480 * destroyed and the i_mmap_mutex is held. 2481 */ 2482 vma->vm_flags &= ~VM_MAYSHARE; 2483 } 2484 2485 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2486 unsigned long end, struct page *ref_page) 2487 { 2488 struct mm_struct *mm; 2489 struct mmu_gather tlb; 2490 2491 mm = vma->vm_mm; 2492 2493 tlb_gather_mmu(&tlb, mm, 0); 2494 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 2495 tlb_finish_mmu(&tlb, start, end); 2496 } 2497 2498 /* 2499 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2500 * mappping it owns the reserve page for. The intention is to unmap the page 2501 * from other VMAs and let the children be SIGKILLed if they are faulting the 2502 * same region. 2503 */ 2504 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2505 struct page *page, unsigned long address) 2506 { 2507 struct hstate *h = hstate_vma(vma); 2508 struct vm_area_struct *iter_vma; 2509 struct address_space *mapping; 2510 pgoff_t pgoff; 2511 2512 /* 2513 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2514 * from page cache lookup which is in HPAGE_SIZE units. 2515 */ 2516 address = address & huge_page_mask(h); 2517 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 2518 vma->vm_pgoff; 2519 mapping = file_inode(vma->vm_file)->i_mapping; 2520 2521 /* 2522 * Take the mapping lock for the duration of the table walk. As 2523 * this mapping should be shared between all the VMAs, 2524 * __unmap_hugepage_range() is called as the lock is already held 2525 */ 2526 mutex_lock(&mapping->i_mmap_mutex); 2527 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 2528 /* Do not unmap the current VMA */ 2529 if (iter_vma == vma) 2530 continue; 2531 2532 /* 2533 * Unmap the page from other VMAs without their own reserves. 2534 * They get marked to be SIGKILLed if they fault in these 2535 * areas. This is because a future no-page fault on this VMA 2536 * could insert a zeroed page instead of the data existing 2537 * from the time of fork. This would look like data corruption 2538 */ 2539 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2540 unmap_hugepage_range(iter_vma, address, 2541 address + huge_page_size(h), page); 2542 } 2543 mutex_unlock(&mapping->i_mmap_mutex); 2544 2545 return 1; 2546 } 2547 2548 /* 2549 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2550 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2551 * cannot race with other handlers or page migration. 2552 * Keep the pte_same checks anyway to make transition from the mutex easier. 2553 */ 2554 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2555 unsigned long address, pte_t *ptep, pte_t pte, 2556 struct page *pagecache_page) 2557 { 2558 struct hstate *h = hstate_vma(vma); 2559 struct page *old_page, *new_page; 2560 int avoidcopy; 2561 int outside_reserve = 0; 2562 unsigned long mmun_start; /* For mmu_notifiers */ 2563 unsigned long mmun_end; /* For mmu_notifiers */ 2564 2565 old_page = pte_page(pte); 2566 2567 retry_avoidcopy: 2568 /* If no-one else is actually using this page, avoid the copy 2569 * and just make the page writable */ 2570 avoidcopy = (page_mapcount(old_page) == 1); 2571 if (avoidcopy) { 2572 if (PageAnon(old_page)) 2573 page_move_anon_rmap(old_page, vma, address); 2574 set_huge_ptep_writable(vma, address, ptep); 2575 return 0; 2576 } 2577 2578 /* 2579 * If the process that created a MAP_PRIVATE mapping is about to 2580 * perform a COW due to a shared page count, attempt to satisfy 2581 * the allocation without using the existing reserves. The pagecache 2582 * page is used to determine if the reserve at this address was 2583 * consumed or not. If reserves were used, a partial faulted mapping 2584 * at the time of fork() could consume its reserves on COW instead 2585 * of the full address range. 2586 */ 2587 if (!(vma->vm_flags & VM_MAYSHARE) && 2588 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2589 old_page != pagecache_page) 2590 outside_reserve = 1; 2591 2592 page_cache_get(old_page); 2593 2594 /* Drop page_table_lock as buddy allocator may be called */ 2595 spin_unlock(&mm->page_table_lock); 2596 new_page = alloc_huge_page(vma, address, outside_reserve); 2597 2598 if (IS_ERR(new_page)) { 2599 long err = PTR_ERR(new_page); 2600 page_cache_release(old_page); 2601 2602 /* 2603 * If a process owning a MAP_PRIVATE mapping fails to COW, 2604 * it is due to references held by a child and an insufficient 2605 * huge page pool. To guarantee the original mappers 2606 * reliability, unmap the page from child processes. The child 2607 * may get SIGKILLed if it later faults. 2608 */ 2609 if (outside_reserve) { 2610 BUG_ON(huge_pte_none(pte)); 2611 if (unmap_ref_private(mm, vma, old_page, address)) { 2612 BUG_ON(huge_pte_none(pte)); 2613 spin_lock(&mm->page_table_lock); 2614 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2615 if (likely(pte_same(huge_ptep_get(ptep), pte))) 2616 goto retry_avoidcopy; 2617 /* 2618 * race occurs while re-acquiring page_table_lock, and 2619 * our job is done. 2620 */ 2621 return 0; 2622 } 2623 WARN_ON_ONCE(1); 2624 } 2625 2626 /* Caller expects lock to be held */ 2627 spin_lock(&mm->page_table_lock); 2628 if (err == -ENOMEM) 2629 return VM_FAULT_OOM; 2630 else 2631 return VM_FAULT_SIGBUS; 2632 } 2633 2634 /* 2635 * When the original hugepage is shared one, it does not have 2636 * anon_vma prepared. 2637 */ 2638 if (unlikely(anon_vma_prepare(vma))) { 2639 page_cache_release(new_page); 2640 page_cache_release(old_page); 2641 /* Caller expects lock to be held */ 2642 spin_lock(&mm->page_table_lock); 2643 return VM_FAULT_OOM; 2644 } 2645 2646 copy_user_huge_page(new_page, old_page, address, vma, 2647 pages_per_huge_page(h)); 2648 __SetPageUptodate(new_page); 2649 2650 mmun_start = address & huge_page_mask(h); 2651 mmun_end = mmun_start + huge_page_size(h); 2652 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2653 /* 2654 * Retake the page_table_lock to check for racing updates 2655 * before the page tables are altered 2656 */ 2657 spin_lock(&mm->page_table_lock); 2658 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2659 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2660 /* Break COW */ 2661 huge_ptep_clear_flush(vma, address, ptep); 2662 set_huge_pte_at(mm, address, ptep, 2663 make_huge_pte(vma, new_page, 1)); 2664 page_remove_rmap(old_page); 2665 hugepage_add_new_anon_rmap(new_page, vma, address); 2666 /* Make the old page be freed below */ 2667 new_page = old_page; 2668 } 2669 spin_unlock(&mm->page_table_lock); 2670 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2671 /* Caller expects lock to be held */ 2672 spin_lock(&mm->page_table_lock); 2673 page_cache_release(new_page); 2674 page_cache_release(old_page); 2675 return 0; 2676 } 2677 2678 /* Return the pagecache page at a given address within a VMA */ 2679 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2680 struct vm_area_struct *vma, unsigned long address) 2681 { 2682 struct address_space *mapping; 2683 pgoff_t idx; 2684 2685 mapping = vma->vm_file->f_mapping; 2686 idx = vma_hugecache_offset(h, vma, address); 2687 2688 return find_lock_page(mapping, idx); 2689 } 2690 2691 /* 2692 * Return whether there is a pagecache page to back given address within VMA. 2693 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2694 */ 2695 static bool hugetlbfs_pagecache_present(struct hstate *h, 2696 struct vm_area_struct *vma, unsigned long address) 2697 { 2698 struct address_space *mapping; 2699 pgoff_t idx; 2700 struct page *page; 2701 2702 mapping = vma->vm_file->f_mapping; 2703 idx = vma_hugecache_offset(h, vma, address); 2704 2705 page = find_get_page(mapping, idx); 2706 if (page) 2707 put_page(page); 2708 return page != NULL; 2709 } 2710 2711 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2712 unsigned long address, pte_t *ptep, unsigned int flags) 2713 { 2714 struct hstate *h = hstate_vma(vma); 2715 int ret = VM_FAULT_SIGBUS; 2716 int anon_rmap = 0; 2717 pgoff_t idx; 2718 unsigned long size; 2719 struct page *page; 2720 struct address_space *mapping; 2721 pte_t new_pte; 2722 2723 /* 2724 * Currently, we are forced to kill the process in the event the 2725 * original mapper has unmapped pages from the child due to a failed 2726 * COW. Warn that such a situation has occurred as it may not be obvious 2727 */ 2728 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2729 pr_warning("PID %d killed due to inadequate hugepage pool\n", 2730 current->pid); 2731 return ret; 2732 } 2733 2734 mapping = vma->vm_file->f_mapping; 2735 idx = vma_hugecache_offset(h, vma, address); 2736 2737 /* 2738 * Use page lock to guard against racing truncation 2739 * before we get page_table_lock. 2740 */ 2741 retry: 2742 page = find_lock_page(mapping, idx); 2743 if (!page) { 2744 size = i_size_read(mapping->host) >> huge_page_shift(h); 2745 if (idx >= size) 2746 goto out; 2747 page = alloc_huge_page(vma, address, 0); 2748 if (IS_ERR(page)) { 2749 ret = PTR_ERR(page); 2750 if (ret == -ENOMEM) 2751 ret = VM_FAULT_OOM; 2752 else 2753 ret = VM_FAULT_SIGBUS; 2754 goto out; 2755 } 2756 clear_huge_page(page, address, pages_per_huge_page(h)); 2757 __SetPageUptodate(page); 2758 2759 if (vma->vm_flags & VM_MAYSHARE) { 2760 int err; 2761 struct inode *inode = mapping->host; 2762 2763 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2764 if (err) { 2765 put_page(page); 2766 if (err == -EEXIST) 2767 goto retry; 2768 goto out; 2769 } 2770 2771 spin_lock(&inode->i_lock); 2772 inode->i_blocks += blocks_per_huge_page(h); 2773 spin_unlock(&inode->i_lock); 2774 } else { 2775 lock_page(page); 2776 if (unlikely(anon_vma_prepare(vma))) { 2777 ret = VM_FAULT_OOM; 2778 goto backout_unlocked; 2779 } 2780 anon_rmap = 1; 2781 } 2782 } else { 2783 /* 2784 * If memory error occurs between mmap() and fault, some process 2785 * don't have hwpoisoned swap entry for errored virtual address. 2786 * So we need to block hugepage fault by PG_hwpoison bit check. 2787 */ 2788 if (unlikely(PageHWPoison(page))) { 2789 ret = VM_FAULT_HWPOISON | 2790 VM_FAULT_SET_HINDEX(hstate_index(h)); 2791 goto backout_unlocked; 2792 } 2793 } 2794 2795 /* 2796 * If we are going to COW a private mapping later, we examine the 2797 * pending reservations for this page now. This will ensure that 2798 * any allocations necessary to record that reservation occur outside 2799 * the spinlock. 2800 */ 2801 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2802 if (vma_needs_reservation(h, vma, address) < 0) { 2803 ret = VM_FAULT_OOM; 2804 goto backout_unlocked; 2805 } 2806 2807 spin_lock(&mm->page_table_lock); 2808 size = i_size_read(mapping->host) >> huge_page_shift(h); 2809 if (idx >= size) 2810 goto backout; 2811 2812 ret = 0; 2813 if (!huge_pte_none(huge_ptep_get(ptep))) 2814 goto backout; 2815 2816 if (anon_rmap) 2817 hugepage_add_new_anon_rmap(page, vma, address); 2818 else 2819 page_dup_rmap(page); 2820 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2821 && (vma->vm_flags & VM_SHARED))); 2822 set_huge_pte_at(mm, address, ptep, new_pte); 2823 2824 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2825 /* Optimization, do the COW without a second fault */ 2826 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2827 } 2828 2829 spin_unlock(&mm->page_table_lock); 2830 unlock_page(page); 2831 out: 2832 return ret; 2833 2834 backout: 2835 spin_unlock(&mm->page_table_lock); 2836 backout_unlocked: 2837 unlock_page(page); 2838 put_page(page); 2839 goto out; 2840 } 2841 2842 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2843 unsigned long address, unsigned int flags) 2844 { 2845 pte_t *ptep; 2846 pte_t entry; 2847 int ret; 2848 struct page *page = NULL; 2849 struct page *pagecache_page = NULL; 2850 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2851 struct hstate *h = hstate_vma(vma); 2852 2853 address &= huge_page_mask(h); 2854 2855 ptep = huge_pte_offset(mm, address); 2856 if (ptep) { 2857 entry = huge_ptep_get(ptep); 2858 if (unlikely(is_hugetlb_entry_migration(entry))) { 2859 migration_entry_wait_huge(mm, ptep); 2860 return 0; 2861 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2862 return VM_FAULT_HWPOISON_LARGE | 2863 VM_FAULT_SET_HINDEX(hstate_index(h)); 2864 } 2865 2866 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2867 if (!ptep) 2868 return VM_FAULT_OOM; 2869 2870 /* 2871 * Serialize hugepage allocation and instantiation, so that we don't 2872 * get spurious allocation failures if two CPUs race to instantiate 2873 * the same page in the page cache. 2874 */ 2875 mutex_lock(&hugetlb_instantiation_mutex); 2876 entry = huge_ptep_get(ptep); 2877 if (huge_pte_none(entry)) { 2878 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2879 goto out_mutex; 2880 } 2881 2882 ret = 0; 2883 2884 /* 2885 * If we are going to COW the mapping later, we examine the pending 2886 * reservations for this page now. This will ensure that any 2887 * allocations necessary to record that reservation occur outside the 2888 * spinlock. For private mappings, we also lookup the pagecache 2889 * page now as it is used to determine if a reservation has been 2890 * consumed. 2891 */ 2892 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 2893 if (vma_needs_reservation(h, vma, address) < 0) { 2894 ret = VM_FAULT_OOM; 2895 goto out_mutex; 2896 } 2897 2898 if (!(vma->vm_flags & VM_MAYSHARE)) 2899 pagecache_page = hugetlbfs_pagecache_page(h, 2900 vma, address); 2901 } 2902 2903 /* 2904 * hugetlb_cow() requires page locks of pte_page(entry) and 2905 * pagecache_page, so here we need take the former one 2906 * when page != pagecache_page or !pagecache_page. 2907 * Note that locking order is always pagecache_page -> page, 2908 * so no worry about deadlock. 2909 */ 2910 page = pte_page(entry); 2911 get_page(page); 2912 if (page != pagecache_page) 2913 lock_page(page); 2914 2915 spin_lock(&mm->page_table_lock); 2916 /* Check for a racing update before calling hugetlb_cow */ 2917 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2918 goto out_page_table_lock; 2919 2920 2921 if (flags & FAULT_FLAG_WRITE) { 2922 if (!huge_pte_write(entry)) { 2923 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2924 pagecache_page); 2925 goto out_page_table_lock; 2926 } 2927 entry = huge_pte_mkdirty(entry); 2928 } 2929 entry = pte_mkyoung(entry); 2930 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 2931 flags & FAULT_FLAG_WRITE)) 2932 update_mmu_cache(vma, address, ptep); 2933 2934 out_page_table_lock: 2935 spin_unlock(&mm->page_table_lock); 2936 2937 if (pagecache_page) { 2938 unlock_page(pagecache_page); 2939 put_page(pagecache_page); 2940 } 2941 if (page != pagecache_page) 2942 unlock_page(page); 2943 put_page(page); 2944 2945 out_mutex: 2946 mutex_unlock(&hugetlb_instantiation_mutex); 2947 2948 return ret; 2949 } 2950 2951 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 2952 struct page **pages, struct vm_area_struct **vmas, 2953 unsigned long *position, unsigned long *nr_pages, 2954 long i, unsigned int flags) 2955 { 2956 unsigned long pfn_offset; 2957 unsigned long vaddr = *position; 2958 unsigned long remainder = *nr_pages; 2959 struct hstate *h = hstate_vma(vma); 2960 2961 spin_lock(&mm->page_table_lock); 2962 while (vaddr < vma->vm_end && remainder) { 2963 pte_t *pte; 2964 int absent; 2965 struct page *page; 2966 2967 /* 2968 * Some archs (sparc64, sh*) have multiple pte_ts to 2969 * each hugepage. We have to make sure we get the 2970 * first, for the page indexing below to work. 2971 */ 2972 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 2973 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 2974 2975 /* 2976 * When coredumping, it suits get_dump_page if we just return 2977 * an error where there's an empty slot with no huge pagecache 2978 * to back it. This way, we avoid allocating a hugepage, and 2979 * the sparse dumpfile avoids allocating disk blocks, but its 2980 * huge holes still show up with zeroes where they need to be. 2981 */ 2982 if (absent && (flags & FOLL_DUMP) && 2983 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 2984 remainder = 0; 2985 break; 2986 } 2987 2988 /* 2989 * We need call hugetlb_fault for both hugepages under migration 2990 * (in which case hugetlb_fault waits for the migration,) and 2991 * hwpoisoned hugepages (in which case we need to prevent the 2992 * caller from accessing to them.) In order to do this, we use 2993 * here is_swap_pte instead of is_hugetlb_entry_migration and 2994 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 2995 * both cases, and because we can't follow correct pages 2996 * directly from any kind of swap entries. 2997 */ 2998 if (absent || is_swap_pte(huge_ptep_get(pte)) || 2999 ((flags & FOLL_WRITE) && 3000 !huge_pte_write(huge_ptep_get(pte)))) { 3001 int ret; 3002 3003 spin_unlock(&mm->page_table_lock); 3004 ret = hugetlb_fault(mm, vma, vaddr, 3005 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3006 spin_lock(&mm->page_table_lock); 3007 if (!(ret & VM_FAULT_ERROR)) 3008 continue; 3009 3010 remainder = 0; 3011 break; 3012 } 3013 3014 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3015 page = pte_page(huge_ptep_get(pte)); 3016 same_page: 3017 if (pages) { 3018 pages[i] = mem_map_offset(page, pfn_offset); 3019 get_page(pages[i]); 3020 } 3021 3022 if (vmas) 3023 vmas[i] = vma; 3024 3025 vaddr += PAGE_SIZE; 3026 ++pfn_offset; 3027 --remainder; 3028 ++i; 3029 if (vaddr < vma->vm_end && remainder && 3030 pfn_offset < pages_per_huge_page(h)) { 3031 /* 3032 * We use pfn_offset to avoid touching the pageframes 3033 * of this compound page. 3034 */ 3035 goto same_page; 3036 } 3037 } 3038 spin_unlock(&mm->page_table_lock); 3039 *nr_pages = remainder; 3040 *position = vaddr; 3041 3042 return i ? i : -EFAULT; 3043 } 3044 3045 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3046 unsigned long address, unsigned long end, pgprot_t newprot) 3047 { 3048 struct mm_struct *mm = vma->vm_mm; 3049 unsigned long start = address; 3050 pte_t *ptep; 3051 pte_t pte; 3052 struct hstate *h = hstate_vma(vma); 3053 unsigned long pages = 0; 3054 3055 BUG_ON(address >= end); 3056 flush_cache_range(vma, address, end); 3057 3058 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 3059 spin_lock(&mm->page_table_lock); 3060 for (; address < end; address += huge_page_size(h)) { 3061 ptep = huge_pte_offset(mm, address); 3062 if (!ptep) 3063 continue; 3064 if (huge_pmd_unshare(mm, &address, ptep)) { 3065 pages++; 3066 continue; 3067 } 3068 if (!huge_pte_none(huge_ptep_get(ptep))) { 3069 pte = huge_ptep_get_and_clear(mm, address, ptep); 3070 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3071 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3072 set_huge_pte_at(mm, address, ptep, pte); 3073 pages++; 3074 } 3075 } 3076 spin_unlock(&mm->page_table_lock); 3077 /* 3078 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare 3079 * may have cleared our pud entry and done put_page on the page table: 3080 * once we release i_mmap_mutex, another task can do the final put_page 3081 * and that page table be reused and filled with junk. 3082 */ 3083 flush_tlb_range(vma, start, end); 3084 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 3085 3086 return pages << h->order; 3087 } 3088 3089 int hugetlb_reserve_pages(struct inode *inode, 3090 long from, long to, 3091 struct vm_area_struct *vma, 3092 vm_flags_t vm_flags) 3093 { 3094 long ret, chg; 3095 struct hstate *h = hstate_inode(inode); 3096 struct hugepage_subpool *spool = subpool_inode(inode); 3097 3098 /* 3099 * Only apply hugepage reservation if asked. At fault time, an 3100 * attempt will be made for VM_NORESERVE to allocate a page 3101 * without using reserves 3102 */ 3103 if (vm_flags & VM_NORESERVE) 3104 return 0; 3105 3106 /* 3107 * Shared mappings base their reservation on the number of pages that 3108 * are already allocated on behalf of the file. Private mappings need 3109 * to reserve the full area even if read-only as mprotect() may be 3110 * called to make the mapping read-write. Assume !vma is a shm mapping 3111 */ 3112 if (!vma || vma->vm_flags & VM_MAYSHARE) 3113 chg = region_chg(&inode->i_mapping->private_list, from, to); 3114 else { 3115 struct resv_map *resv_map = resv_map_alloc(); 3116 if (!resv_map) 3117 return -ENOMEM; 3118 3119 chg = to - from; 3120 3121 set_vma_resv_map(vma, resv_map); 3122 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3123 } 3124 3125 if (chg < 0) { 3126 ret = chg; 3127 goto out_err; 3128 } 3129 3130 /* There must be enough pages in the subpool for the mapping */ 3131 if (hugepage_subpool_get_pages(spool, chg)) { 3132 ret = -ENOSPC; 3133 goto out_err; 3134 } 3135 3136 /* 3137 * Check enough hugepages are available for the reservation. 3138 * Hand the pages back to the subpool if there are not 3139 */ 3140 ret = hugetlb_acct_memory(h, chg); 3141 if (ret < 0) { 3142 hugepage_subpool_put_pages(spool, chg); 3143 goto out_err; 3144 } 3145 3146 /* 3147 * Account for the reservations made. Shared mappings record regions 3148 * that have reservations as they are shared by multiple VMAs. 3149 * When the last VMA disappears, the region map says how much 3150 * the reservation was and the page cache tells how much of 3151 * the reservation was consumed. Private mappings are per-VMA and 3152 * only the consumed reservations are tracked. When the VMA 3153 * disappears, the original reservation is the VMA size and the 3154 * consumed reservations are stored in the map. Hence, nothing 3155 * else has to be done for private mappings here 3156 */ 3157 if (!vma || vma->vm_flags & VM_MAYSHARE) 3158 region_add(&inode->i_mapping->private_list, from, to); 3159 return 0; 3160 out_err: 3161 if (vma) 3162 resv_map_put(vma); 3163 return ret; 3164 } 3165 3166 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3167 { 3168 struct hstate *h = hstate_inode(inode); 3169 long chg = region_truncate(&inode->i_mapping->private_list, offset); 3170 struct hugepage_subpool *spool = subpool_inode(inode); 3171 3172 spin_lock(&inode->i_lock); 3173 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3174 spin_unlock(&inode->i_lock); 3175 3176 hugepage_subpool_put_pages(spool, (chg - freed)); 3177 hugetlb_acct_memory(h, -(chg - freed)); 3178 } 3179 3180 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 3181 static unsigned long page_table_shareable(struct vm_area_struct *svma, 3182 struct vm_area_struct *vma, 3183 unsigned long addr, pgoff_t idx) 3184 { 3185 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 3186 svma->vm_start; 3187 unsigned long sbase = saddr & PUD_MASK; 3188 unsigned long s_end = sbase + PUD_SIZE; 3189 3190 /* Allow segments to share if only one is marked locked */ 3191 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; 3192 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; 3193 3194 /* 3195 * match the virtual addresses, permission and the alignment of the 3196 * page table page. 3197 */ 3198 if (pmd_index(addr) != pmd_index(saddr) || 3199 vm_flags != svm_flags || 3200 sbase < svma->vm_start || svma->vm_end < s_end) 3201 return 0; 3202 3203 return saddr; 3204 } 3205 3206 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) 3207 { 3208 unsigned long base = addr & PUD_MASK; 3209 unsigned long end = base + PUD_SIZE; 3210 3211 /* 3212 * check on proper vm_flags and page table alignment 3213 */ 3214 if (vma->vm_flags & VM_MAYSHARE && 3215 vma->vm_start <= base && end <= vma->vm_end) 3216 return 1; 3217 return 0; 3218 } 3219 3220 /* 3221 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 3222 * and returns the corresponding pte. While this is not necessary for the 3223 * !shared pmd case because we can allocate the pmd later as well, it makes the 3224 * code much cleaner. pmd allocation is essential for the shared case because 3225 * pud has to be populated inside the same i_mmap_mutex section - otherwise 3226 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 3227 * bad pmd for sharing. 3228 */ 3229 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3230 { 3231 struct vm_area_struct *vma = find_vma(mm, addr); 3232 struct address_space *mapping = vma->vm_file->f_mapping; 3233 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 3234 vma->vm_pgoff; 3235 struct vm_area_struct *svma; 3236 unsigned long saddr; 3237 pte_t *spte = NULL; 3238 pte_t *pte; 3239 3240 if (!vma_shareable(vma, addr)) 3241 return (pte_t *)pmd_alloc(mm, pud, addr); 3242 3243 mutex_lock(&mapping->i_mmap_mutex); 3244 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 3245 if (svma == vma) 3246 continue; 3247 3248 saddr = page_table_shareable(svma, vma, addr, idx); 3249 if (saddr) { 3250 spte = huge_pte_offset(svma->vm_mm, saddr); 3251 if (spte) { 3252 get_page(virt_to_page(spte)); 3253 break; 3254 } 3255 } 3256 } 3257 3258 if (!spte) 3259 goto out; 3260 3261 spin_lock(&mm->page_table_lock); 3262 if (pud_none(*pud)) 3263 pud_populate(mm, pud, 3264 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 3265 else 3266 put_page(virt_to_page(spte)); 3267 spin_unlock(&mm->page_table_lock); 3268 out: 3269 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3270 mutex_unlock(&mapping->i_mmap_mutex); 3271 return pte; 3272 } 3273 3274 /* 3275 * unmap huge page backed by shared pte. 3276 * 3277 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 3278 * indicated by page_count > 1, unmap is achieved by clearing pud and 3279 * decrementing the ref count. If count == 1, the pte page is not shared. 3280 * 3281 * called with vma->vm_mm->page_table_lock held. 3282 * 3283 * returns: 1 successfully unmapped a shared pte page 3284 * 0 the underlying pte page is not shared, or it is the last user 3285 */ 3286 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 3287 { 3288 pgd_t *pgd = pgd_offset(mm, *addr); 3289 pud_t *pud = pud_offset(pgd, *addr); 3290 3291 BUG_ON(page_count(virt_to_page(ptep)) == 0); 3292 if (page_count(virt_to_page(ptep)) == 1) 3293 return 0; 3294 3295 pud_clear(pud); 3296 put_page(virt_to_page(ptep)); 3297 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 3298 return 1; 3299 } 3300 #define want_pmd_share() (1) 3301 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3302 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 3303 { 3304 return NULL; 3305 } 3306 #define want_pmd_share() (0) 3307 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 3308 3309 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 3310 pte_t *huge_pte_alloc(struct mm_struct *mm, 3311 unsigned long addr, unsigned long sz) 3312 { 3313 pgd_t *pgd; 3314 pud_t *pud; 3315 pte_t *pte = NULL; 3316 3317 pgd = pgd_offset(mm, addr); 3318 pud = pud_alloc(mm, pgd, addr); 3319 if (pud) { 3320 if (sz == PUD_SIZE) { 3321 pte = (pte_t *)pud; 3322 } else { 3323 BUG_ON(sz != PMD_SIZE); 3324 if (want_pmd_share() && pud_none(*pud)) 3325 pte = huge_pmd_share(mm, addr, pud); 3326 else 3327 pte = (pte_t *)pmd_alloc(mm, pud, addr); 3328 } 3329 } 3330 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 3331 3332 return pte; 3333 } 3334 3335 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 3336 { 3337 pgd_t *pgd; 3338 pud_t *pud; 3339 pmd_t *pmd = NULL; 3340 3341 pgd = pgd_offset(mm, addr); 3342 if (pgd_present(*pgd)) { 3343 pud = pud_offset(pgd, addr); 3344 if (pud_present(*pud)) { 3345 if (pud_huge(*pud)) 3346 return (pte_t *)pud; 3347 pmd = pmd_offset(pud, addr); 3348 } 3349 } 3350 return (pte_t *) pmd; 3351 } 3352 3353 struct page * 3354 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 3355 pmd_t *pmd, int write) 3356 { 3357 struct page *page; 3358 3359 page = pte_page(*(pte_t *)pmd); 3360 if (page) 3361 page += ((address & ~PMD_MASK) >> PAGE_SHIFT); 3362 return page; 3363 } 3364 3365 struct page * 3366 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3367 pud_t *pud, int write) 3368 { 3369 struct page *page; 3370 3371 page = pte_page(*(pte_t *)pud); 3372 if (page) 3373 page += ((address & ~PUD_MASK) >> PAGE_SHIFT); 3374 return page; 3375 } 3376 3377 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3378 3379 /* Can be overriden by architectures */ 3380 __attribute__((weak)) struct page * 3381 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3382 pud_t *pud, int write) 3383 { 3384 BUG(); 3385 return NULL; 3386 } 3387 3388 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 3389 3390 #ifdef CONFIG_MEMORY_FAILURE 3391 3392 /* Should be called in hugetlb_lock */ 3393 static int is_hugepage_on_freelist(struct page *hpage) 3394 { 3395 struct page *page; 3396 struct page *tmp; 3397 struct hstate *h = page_hstate(hpage); 3398 int nid = page_to_nid(hpage); 3399 3400 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3401 if (page == hpage) 3402 return 1; 3403 return 0; 3404 } 3405 3406 /* 3407 * This function is called from memory failure code. 3408 * Assume the caller holds page lock of the head page. 3409 */ 3410 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3411 { 3412 struct hstate *h = page_hstate(hpage); 3413 int nid = page_to_nid(hpage); 3414 int ret = -EBUSY; 3415 3416 spin_lock(&hugetlb_lock); 3417 if (is_hugepage_on_freelist(hpage)) { 3418 /* 3419 * Hwpoisoned hugepage isn't linked to activelist or freelist, 3420 * but dangling hpage->lru can trigger list-debug warnings 3421 * (this happens when we call unpoison_memory() on it), 3422 * so let it point to itself with list_del_init(). 3423 */ 3424 list_del_init(&hpage->lru); 3425 set_page_refcounted(hpage); 3426 h->free_huge_pages--; 3427 h->free_huge_pages_node[nid]--; 3428 ret = 0; 3429 } 3430 spin_unlock(&hugetlb_lock); 3431 return ret; 3432 } 3433 #endif 3434