xref: /openbmc/linux/mm/hugetlb.c (revision 7b0364ea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlb.h>
39 
40 #include <linux/io.h>
41 #include <linux/hugetlb.h>
42 #include <linux/hugetlb_cgroup.h>
43 #include <linux/node.h>
44 #include <linux/page_owner.h>
45 #include "internal.h"
46 #include "hugetlb_vmemmap.h"
47 
48 int hugetlb_max_hstate __read_mostly;
49 unsigned int default_hstate_idx;
50 struct hstate hstates[HUGE_MAX_HSTATE];
51 
52 #ifdef CONFIG_CMA
53 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 static bool hugetlb_cma_page(struct page *page, unsigned int order)
56 {
57 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
58 				1 << order);
59 }
60 #else
61 static bool hugetlb_cma_page(struct page *page, unsigned int order)
62 {
63 	return false;
64 }
65 #endif
66 static unsigned long hugetlb_cma_size __initdata;
67 
68 /*
69  * Minimum page order among possible hugepage sizes, set to a proper value
70  * at boot time.
71  */
72 static unsigned int minimum_order __read_mostly = UINT_MAX;
73 
74 __initdata LIST_HEAD(huge_boot_pages);
75 
76 /* for command line parsing */
77 static struct hstate * __initdata parsed_hstate;
78 static unsigned long __initdata default_hstate_max_huge_pages;
79 static bool __initdata parsed_valid_hugepagesz = true;
80 static bool __initdata parsed_default_hugepagesz;
81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82 
83 /*
84  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
85  * free_huge_pages, and surplus_huge_pages.
86  */
87 DEFINE_SPINLOCK(hugetlb_lock);
88 
89 /*
90  * Serializes faults on the same logical page.  This is used to
91  * prevent spurious OOMs when the hugepage pool is fully utilized.
92  */
93 static int num_fault_mutexes;
94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95 
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98 
99 static inline bool subpool_is_free(struct hugepage_subpool *spool)
100 {
101 	if (spool->count)
102 		return false;
103 	if (spool->max_hpages != -1)
104 		return spool->used_hpages == 0;
105 	if (spool->min_hpages != -1)
106 		return spool->rsv_hpages == spool->min_hpages;
107 
108 	return true;
109 }
110 
111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
112 						unsigned long irq_flags)
113 {
114 	spin_unlock_irqrestore(&spool->lock, irq_flags);
115 
116 	/* If no pages are used, and no other handles to the subpool
117 	 * remain, give up any reservations based on minimum size and
118 	 * free the subpool */
119 	if (subpool_is_free(spool)) {
120 		if (spool->min_hpages != -1)
121 			hugetlb_acct_memory(spool->hstate,
122 						-spool->min_hpages);
123 		kfree(spool);
124 	}
125 }
126 
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128 						long min_hpages)
129 {
130 	struct hugepage_subpool *spool;
131 
132 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133 	if (!spool)
134 		return NULL;
135 
136 	spin_lock_init(&spool->lock);
137 	spool->count = 1;
138 	spool->max_hpages = max_hpages;
139 	spool->hstate = h;
140 	spool->min_hpages = min_hpages;
141 
142 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143 		kfree(spool);
144 		return NULL;
145 	}
146 	spool->rsv_hpages = min_hpages;
147 
148 	return spool;
149 }
150 
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&spool->lock, flags);
156 	BUG_ON(!spool->count);
157 	spool->count--;
158 	unlock_or_release_subpool(spool, flags);
159 }
160 
161 /*
162  * Subpool accounting for allocating and reserving pages.
163  * Return -ENOMEM if there are not enough resources to satisfy the
164  * request.  Otherwise, return the number of pages by which the
165  * global pools must be adjusted (upward).  The returned value may
166  * only be different than the passed value (delta) in the case where
167  * a subpool minimum size must be maintained.
168  */
169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
170 				      long delta)
171 {
172 	long ret = delta;
173 
174 	if (!spool)
175 		return ret;
176 
177 	spin_lock_irq(&spool->lock);
178 
179 	if (spool->max_hpages != -1) {		/* maximum size accounting */
180 		if ((spool->used_hpages + delta) <= spool->max_hpages)
181 			spool->used_hpages += delta;
182 		else {
183 			ret = -ENOMEM;
184 			goto unlock_ret;
185 		}
186 	}
187 
188 	/* minimum size accounting */
189 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
190 		if (delta > spool->rsv_hpages) {
191 			/*
192 			 * Asking for more reserves than those already taken on
193 			 * behalf of subpool.  Return difference.
194 			 */
195 			ret = delta - spool->rsv_hpages;
196 			spool->rsv_hpages = 0;
197 		} else {
198 			ret = 0;	/* reserves already accounted for */
199 			spool->rsv_hpages -= delta;
200 		}
201 	}
202 
203 unlock_ret:
204 	spin_unlock_irq(&spool->lock);
205 	return ret;
206 }
207 
208 /*
209  * Subpool accounting for freeing and unreserving pages.
210  * Return the number of global page reservations that must be dropped.
211  * The return value may only be different than the passed value (delta)
212  * in the case where a subpool minimum size must be maintained.
213  */
214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
215 				       long delta)
216 {
217 	long ret = delta;
218 	unsigned long flags;
219 
220 	if (!spool)
221 		return delta;
222 
223 	spin_lock_irqsave(&spool->lock, flags);
224 
225 	if (spool->max_hpages != -1)		/* maximum size accounting */
226 		spool->used_hpages -= delta;
227 
228 	 /* minimum size accounting */
229 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230 		if (spool->rsv_hpages + delta <= spool->min_hpages)
231 			ret = 0;
232 		else
233 			ret = spool->rsv_hpages + delta - spool->min_hpages;
234 
235 		spool->rsv_hpages += delta;
236 		if (spool->rsv_hpages > spool->min_hpages)
237 			spool->rsv_hpages = spool->min_hpages;
238 	}
239 
240 	/*
241 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
242 	 * quota reference, free it now.
243 	 */
244 	unlock_or_release_subpool(spool, flags);
245 
246 	return ret;
247 }
248 
249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 {
251 	return HUGETLBFS_SB(inode->i_sb)->spool;
252 }
253 
254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 {
256 	return subpool_inode(file_inode(vma->vm_file));
257 }
258 
259 /* Helper that removes a struct file_region from the resv_map cache and returns
260  * it for use.
261  */
262 static struct file_region *
263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 {
265 	struct file_region *nrg = NULL;
266 
267 	VM_BUG_ON(resv->region_cache_count <= 0);
268 
269 	resv->region_cache_count--;
270 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
271 	list_del(&nrg->link);
272 
273 	nrg->from = from;
274 	nrg->to = to;
275 
276 	return nrg;
277 }
278 
279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
280 					      struct file_region *rg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	nrg->reservation_counter = rg->reservation_counter;
284 	nrg->css = rg->css;
285 	if (rg->css)
286 		css_get(rg->css);
287 #endif
288 }
289 
290 /* Helper that records hugetlb_cgroup uncharge info. */
291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 						struct hstate *h,
293 						struct resv_map *resv,
294 						struct file_region *nrg)
295 {
296 #ifdef CONFIG_CGROUP_HUGETLB
297 	if (h_cg) {
298 		nrg->reservation_counter =
299 			&h_cg->rsvd_hugepage[hstate_index(h)];
300 		nrg->css = &h_cg->css;
301 		/*
302 		 * The caller will hold exactly one h_cg->css reference for the
303 		 * whole contiguous reservation region. But this area might be
304 		 * scattered when there are already some file_regions reside in
305 		 * it. As a result, many file_regions may share only one css
306 		 * reference. In order to ensure that one file_region must hold
307 		 * exactly one h_cg->css reference, we should do css_get for
308 		 * each file_region and leave the reference held by caller
309 		 * untouched.
310 		 */
311 		css_get(&h_cg->css);
312 		if (!resv->pages_per_hpage)
313 			resv->pages_per_hpage = pages_per_huge_page(h);
314 		/* pages_per_hpage should be the same for all entries in
315 		 * a resv_map.
316 		 */
317 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 	} else {
319 		nrg->reservation_counter = NULL;
320 		nrg->css = NULL;
321 	}
322 #endif
323 }
324 
325 static void put_uncharge_info(struct file_region *rg)
326 {
327 #ifdef CONFIG_CGROUP_HUGETLB
328 	if (rg->css)
329 		css_put(rg->css);
330 #endif
331 }
332 
333 static bool has_same_uncharge_info(struct file_region *rg,
334 				   struct file_region *org)
335 {
336 #ifdef CONFIG_CGROUP_HUGETLB
337 	return rg->reservation_counter == org->reservation_counter &&
338 	       rg->css == org->css;
339 
340 #else
341 	return true;
342 #endif
343 }
344 
345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 {
347 	struct file_region *nrg = NULL, *prg = NULL;
348 
349 	prg = list_prev_entry(rg, link);
350 	if (&prg->link != &resv->regions && prg->to == rg->from &&
351 	    has_same_uncharge_info(prg, rg)) {
352 		prg->to = rg->to;
353 
354 		list_del(&rg->link);
355 		put_uncharge_info(rg);
356 		kfree(rg);
357 
358 		rg = prg;
359 	}
360 
361 	nrg = list_next_entry(rg, link);
362 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
363 	    has_same_uncharge_info(nrg, rg)) {
364 		nrg->from = rg->from;
365 
366 		list_del(&rg->link);
367 		put_uncharge_info(rg);
368 		kfree(rg);
369 	}
370 }
371 
372 static inline long
373 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
374 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
375 		     long *regions_needed)
376 {
377 	struct file_region *nrg;
378 
379 	if (!regions_needed) {
380 		nrg = get_file_region_entry_from_cache(map, from, to);
381 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382 		list_add(&nrg->link, rg->link.prev);
383 		coalesce_file_region(map, nrg);
384 	} else
385 		*regions_needed += 1;
386 
387 	return to - from;
388 }
389 
390 /*
391  * Must be called with resv->lock held.
392  *
393  * Calling this with regions_needed != NULL will count the number of pages
394  * to be added but will not modify the linked list. And regions_needed will
395  * indicate the number of file_regions needed in the cache to carry out to add
396  * the regions for this range.
397  */
398 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399 				     struct hugetlb_cgroup *h_cg,
400 				     struct hstate *h, long *regions_needed)
401 {
402 	long add = 0;
403 	struct list_head *head = &resv->regions;
404 	long last_accounted_offset = f;
405 	struct file_region *rg = NULL, *trg = NULL;
406 
407 	if (regions_needed)
408 		*regions_needed = 0;
409 
410 	/* In this loop, we essentially handle an entry for the range
411 	 * [last_accounted_offset, rg->from), at every iteration, with some
412 	 * bounds checking.
413 	 */
414 	list_for_each_entry_safe(rg, trg, head, link) {
415 		/* Skip irrelevant regions that start before our range. */
416 		if (rg->from < f) {
417 			/* If this region ends after the last accounted offset,
418 			 * then we need to update last_accounted_offset.
419 			 */
420 			if (rg->to > last_accounted_offset)
421 				last_accounted_offset = rg->to;
422 			continue;
423 		}
424 
425 		/* When we find a region that starts beyond our range, we've
426 		 * finished.
427 		 */
428 		if (rg->from >= t)
429 			break;
430 
431 		/* Add an entry for last_accounted_offset -> rg->from, and
432 		 * update last_accounted_offset.
433 		 */
434 		if (rg->from > last_accounted_offset)
435 			add += hugetlb_resv_map_add(resv, rg,
436 						    last_accounted_offset,
437 						    rg->from, h, h_cg,
438 						    regions_needed);
439 
440 		last_accounted_offset = rg->to;
441 	}
442 
443 	/* Handle the case where our range extends beyond
444 	 * last_accounted_offset.
445 	 */
446 	if (last_accounted_offset < t)
447 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448 					    t, h, h_cg, regions_needed);
449 
450 	return add;
451 }
452 
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456 					int regions_needed)
457 	__must_hold(&resv->lock)
458 {
459 	struct list_head allocated_regions;
460 	int to_allocate = 0, i = 0;
461 	struct file_region *trg = NULL, *rg = NULL;
462 
463 	VM_BUG_ON(regions_needed < 0);
464 
465 	INIT_LIST_HEAD(&allocated_regions);
466 
467 	/*
468 	 * Check for sufficient descriptors in the cache to accommodate
469 	 * the number of in progress add operations plus regions_needed.
470 	 *
471 	 * This is a while loop because when we drop the lock, some other call
472 	 * to region_add or region_del may have consumed some region_entries,
473 	 * so we keep looping here until we finally have enough entries for
474 	 * (adds_in_progress + regions_needed).
475 	 */
476 	while (resv->region_cache_count <
477 	       (resv->adds_in_progress + regions_needed)) {
478 		to_allocate = resv->adds_in_progress + regions_needed -
479 			      resv->region_cache_count;
480 
481 		/* At this point, we should have enough entries in the cache
482 		 * for all the existing adds_in_progress. We should only be
483 		 * needing to allocate for regions_needed.
484 		 */
485 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486 
487 		spin_unlock(&resv->lock);
488 		for (i = 0; i < to_allocate; i++) {
489 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490 			if (!trg)
491 				goto out_of_memory;
492 			list_add(&trg->link, &allocated_regions);
493 		}
494 
495 		spin_lock(&resv->lock);
496 
497 		list_splice(&allocated_regions, &resv->region_cache);
498 		resv->region_cache_count += to_allocate;
499 	}
500 
501 	return 0;
502 
503 out_of_memory:
504 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505 		list_del(&rg->link);
506 		kfree(rg);
507 	}
508 	return -ENOMEM;
509 }
510 
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529 		       long in_regions_needed, struct hstate *h,
530 		       struct hugetlb_cgroup *h_cg)
531 {
532 	long add = 0, actual_regions_needed = 0;
533 
534 	spin_lock(&resv->lock);
535 retry:
536 
537 	/* Count how many regions are actually needed to execute this add. */
538 	add_reservation_in_range(resv, f, t, NULL, NULL,
539 				 &actual_regions_needed);
540 
541 	/*
542 	 * Check for sufficient descriptors in the cache to accommodate
543 	 * this add operation. Note that actual_regions_needed may be greater
544 	 * than in_regions_needed, as the resv_map may have been modified since
545 	 * the region_chg call. In this case, we need to make sure that we
546 	 * allocate extra entries, such that we have enough for all the
547 	 * existing adds_in_progress, plus the excess needed for this
548 	 * operation.
549 	 */
550 	if (actual_regions_needed > in_regions_needed &&
551 	    resv->region_cache_count <
552 		    resv->adds_in_progress +
553 			    (actual_regions_needed - in_regions_needed)) {
554 		/* region_add operation of range 1 should never need to
555 		 * allocate file_region entries.
556 		 */
557 		VM_BUG_ON(t - f <= 1);
558 
559 		if (allocate_file_region_entries(
560 			    resv, actual_regions_needed - in_regions_needed)) {
561 			return -ENOMEM;
562 		}
563 
564 		goto retry;
565 	}
566 
567 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568 
569 	resv->adds_in_progress -= in_regions_needed;
570 
571 	spin_unlock(&resv->lock);
572 	return add;
573 }
574 
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596 		       long *out_regions_needed)
597 {
598 	long chg = 0;
599 
600 	spin_lock(&resv->lock);
601 
602 	/* Count how many hugepages in this range are NOT represented. */
603 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604 				       out_regions_needed);
605 
606 	if (*out_regions_needed == 0)
607 		*out_regions_needed = 1;
608 
609 	if (allocate_file_region_entries(resv, *out_regions_needed))
610 		return -ENOMEM;
611 
612 	resv->adds_in_progress += *out_regions_needed;
613 
614 	spin_unlock(&resv->lock);
615 	return chg;
616 }
617 
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632 			 long regions_needed)
633 {
634 	spin_lock(&resv->lock);
635 	VM_BUG_ON(!resv->region_cache_count);
636 	resv->adds_in_progress -= regions_needed;
637 	spin_unlock(&resv->lock);
638 }
639 
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656 	struct list_head *head = &resv->regions;
657 	struct file_region *rg, *trg;
658 	struct file_region *nrg = NULL;
659 	long del = 0;
660 
661 retry:
662 	spin_lock(&resv->lock);
663 	list_for_each_entry_safe(rg, trg, head, link) {
664 		/*
665 		 * Skip regions before the range to be deleted.  file_region
666 		 * ranges are normally of the form [from, to).  However, there
667 		 * may be a "placeholder" entry in the map which is of the form
668 		 * (from, to) with from == to.  Check for placeholder entries
669 		 * at the beginning of the range to be deleted.
670 		 */
671 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672 			continue;
673 
674 		if (rg->from >= t)
675 			break;
676 
677 		if (f > rg->from && t < rg->to) { /* Must split region */
678 			/*
679 			 * Check for an entry in the cache before dropping
680 			 * lock and attempting allocation.
681 			 */
682 			if (!nrg &&
683 			    resv->region_cache_count > resv->adds_in_progress) {
684 				nrg = list_first_entry(&resv->region_cache,
685 							struct file_region,
686 							link);
687 				list_del(&nrg->link);
688 				resv->region_cache_count--;
689 			}
690 
691 			if (!nrg) {
692 				spin_unlock(&resv->lock);
693 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694 				if (!nrg)
695 					return -ENOMEM;
696 				goto retry;
697 			}
698 
699 			del += t - f;
700 			hugetlb_cgroup_uncharge_file_region(
701 				resv, rg, t - f, false);
702 
703 			/* New entry for end of split region */
704 			nrg->from = t;
705 			nrg->to = rg->to;
706 
707 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708 
709 			INIT_LIST_HEAD(&nrg->link);
710 
711 			/* Original entry is trimmed */
712 			rg->to = f;
713 
714 			list_add(&nrg->link, &rg->link);
715 			nrg = NULL;
716 			break;
717 		}
718 
719 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720 			del += rg->to - rg->from;
721 			hugetlb_cgroup_uncharge_file_region(resv, rg,
722 							    rg->to - rg->from, true);
723 			list_del(&rg->link);
724 			kfree(rg);
725 			continue;
726 		}
727 
728 		if (f <= rg->from) {	/* Trim beginning of region */
729 			hugetlb_cgroup_uncharge_file_region(resv, rg,
730 							    t - rg->from, false);
731 
732 			del += t - rg->from;
733 			rg->from = t;
734 		} else {		/* Trim end of region */
735 			hugetlb_cgroup_uncharge_file_region(resv, rg,
736 							    rg->to - f, false);
737 
738 			del += rg->to - f;
739 			rg->to = f;
740 		}
741 	}
742 
743 	spin_unlock(&resv->lock);
744 	kfree(nrg);
745 	return del;
746 }
747 
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759 	struct hugepage_subpool *spool = subpool_inode(inode);
760 	long rsv_adjust;
761 	bool reserved = false;
762 
763 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764 	if (rsv_adjust > 0) {
765 		struct hstate *h = hstate_inode(inode);
766 
767 		if (!hugetlb_acct_memory(h, 1))
768 			reserved = true;
769 	} else if (!rsv_adjust) {
770 		reserved = true;
771 	}
772 
773 	if (!reserved)
774 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776 
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783 	struct list_head *head = &resv->regions;
784 	struct file_region *rg;
785 	long chg = 0;
786 
787 	spin_lock(&resv->lock);
788 	/* Locate each segment we overlap with, and count that overlap. */
789 	list_for_each_entry(rg, head, link) {
790 		long seg_from;
791 		long seg_to;
792 
793 		if (rg->to <= f)
794 			continue;
795 		if (rg->from >= t)
796 			break;
797 
798 		seg_from = max(rg->from, f);
799 		seg_to = min(rg->to, t);
800 
801 		chg += seg_to - seg_from;
802 	}
803 	spin_unlock(&resv->lock);
804 
805 	return chg;
806 }
807 
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813 			struct vm_area_struct *vma, unsigned long address)
814 {
815 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
816 			(vma->vm_pgoff >> huge_page_order(h));
817 }
818 
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820 				     unsigned long address)
821 {
822 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825 
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832 	if (vma->vm_ops && vma->vm_ops->pagesize)
833 		return vma->vm_ops->pagesize(vma);
834 	return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837 
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846 	return vma_kernel_pagesize(vma);
847 }
848 
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857 
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879 	return (unsigned long)vma->vm_private_data;
880 }
881 
882 static void set_vma_private_data(struct vm_area_struct *vma,
883 							unsigned long value)
884 {
885 	vma->vm_private_data = (void *)value;
886 }
887 
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890 					  struct hugetlb_cgroup *h_cg,
891 					  struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894 	if (!h_cg || !h) {
895 		resv_map->reservation_counter = NULL;
896 		resv_map->pages_per_hpage = 0;
897 		resv_map->css = NULL;
898 	} else {
899 		resv_map->reservation_counter =
900 			&h_cg->rsvd_hugepage[hstate_index(h)];
901 		resv_map->pages_per_hpage = pages_per_huge_page(h);
902 		resv_map->css = &h_cg->css;
903 	}
904 #endif
905 }
906 
907 struct resv_map *resv_map_alloc(void)
908 {
909 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911 
912 	if (!resv_map || !rg) {
913 		kfree(resv_map);
914 		kfree(rg);
915 		return NULL;
916 	}
917 
918 	kref_init(&resv_map->refs);
919 	spin_lock_init(&resv_map->lock);
920 	INIT_LIST_HEAD(&resv_map->regions);
921 
922 	resv_map->adds_in_progress = 0;
923 	/*
924 	 * Initialize these to 0. On shared mappings, 0's here indicate these
925 	 * fields don't do cgroup accounting. On private mappings, these will be
926 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
927 	 * reservations are to be un-charged from here.
928 	 */
929 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930 
931 	INIT_LIST_HEAD(&resv_map->region_cache);
932 	list_add(&rg->link, &resv_map->region_cache);
933 	resv_map->region_cache_count = 1;
934 
935 	return resv_map;
936 }
937 
938 void resv_map_release(struct kref *ref)
939 {
940 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941 	struct list_head *head = &resv_map->region_cache;
942 	struct file_region *rg, *trg;
943 
944 	/* Clear out any active regions before we release the map. */
945 	region_del(resv_map, 0, LONG_MAX);
946 
947 	/* ... and any entries left in the cache */
948 	list_for_each_entry_safe(rg, trg, head, link) {
949 		list_del(&rg->link);
950 		kfree(rg);
951 	}
952 
953 	VM_BUG_ON(resv_map->adds_in_progress);
954 
955 	kfree(resv_map);
956 }
957 
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960 	/*
961 	 * At inode evict time, i_mapping may not point to the original
962 	 * address space within the inode.  This original address space
963 	 * contains the pointer to the resv_map.  So, always use the
964 	 * address space embedded within the inode.
965 	 * The VERY common case is inode->mapping == &inode->i_data but,
966 	 * this may not be true for device special inodes.
967 	 */
968 	return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970 
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974 	if (vma->vm_flags & VM_MAYSHARE) {
975 		struct address_space *mapping = vma->vm_file->f_mapping;
976 		struct inode *inode = mapping->host;
977 
978 		return inode_resv_map(inode);
979 
980 	} else {
981 		return (struct resv_map *)(get_vma_private_data(vma) &
982 							~HPAGE_RESV_MASK);
983 	}
984 }
985 
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 
991 	set_vma_private_data(vma, (get_vma_private_data(vma) &
992 				HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994 
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999 
1000 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002 
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006 
1007 	return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009 
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014 	if (!(vma->vm_flags & VM_MAYSHARE))
1015 		vma->vm_private_data = (void *)0;
1016 }
1017 
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027 	/*
1028 	 * Clear the old hugetlb private page reservation.
1029 	 * It has already been transferred to new_vma.
1030 	 *
1031 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1032 	 * which copies vma into new_vma and unmaps vma. After the copy
1033 	 * operation both new_vma and vma share a reference to the resv_map
1034 	 * struct, and at that point vma is about to be unmapped. We don't
1035 	 * want to return the reservation to the pool at unmap of vma because
1036 	 * the reservation still lives on in new_vma, so simply decrement the
1037 	 * ref here and remove the resv_map reference from this vma.
1038 	 */
1039 	struct resv_map *reservations = vma_resv_map(vma);
1040 
1041 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043 		kref_put(&reservations->refs, resv_map_release);
1044 	}
1045 
1046 	reset_vma_resv_huge_pages(vma);
1047 }
1048 
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052 	if (vma->vm_flags & VM_NORESERVE) {
1053 		/*
1054 		 * This address is already reserved by other process(chg == 0),
1055 		 * so, we should decrement reserved count. Without decrementing,
1056 		 * reserve count remains after releasing inode, because this
1057 		 * allocated page will go into page cache and is regarded as
1058 		 * coming from reserved pool in releasing step.  Currently, we
1059 		 * don't have any other solution to deal with this situation
1060 		 * properly, so add work-around here.
1061 		 */
1062 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063 			return true;
1064 		else
1065 			return false;
1066 	}
1067 
1068 	/* Shared mappings always use reserves */
1069 	if (vma->vm_flags & VM_MAYSHARE) {
1070 		/*
1071 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072 		 * be a region map for all pages.  The only situation where
1073 		 * there is no region map is if a hole was punched via
1074 		 * fallocate.  In this case, there really are no reserves to
1075 		 * use.  This situation is indicated if chg != 0.
1076 		 */
1077 		if (chg)
1078 			return false;
1079 		else
1080 			return true;
1081 	}
1082 
1083 	/*
1084 	 * Only the process that called mmap() has reserves for
1085 	 * private mappings.
1086 	 */
1087 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 		/*
1089 		 * Like the shared case above, a hole punch or truncate
1090 		 * could have been performed on the private mapping.
1091 		 * Examine the value of chg to determine if reserves
1092 		 * actually exist or were previously consumed.
1093 		 * Very Subtle - The value of chg comes from a previous
1094 		 * call to vma_needs_reserves().  The reserve map for
1095 		 * private mappings has different (opposite) semantics
1096 		 * than that of shared mappings.  vma_needs_reserves()
1097 		 * has already taken this difference in semantics into
1098 		 * account.  Therefore, the meaning of chg is the same
1099 		 * as in the shared case above.  Code could easily be
1100 		 * combined, but keeping it separate draws attention to
1101 		 * subtle differences.
1102 		 */
1103 		if (chg)
1104 			return false;
1105 		else
1106 			return true;
1107 	}
1108 
1109 	return false;
1110 }
1111 
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114 	int nid = page_to_nid(page);
1115 
1116 	lockdep_assert_held(&hugetlb_lock);
1117 	VM_BUG_ON_PAGE(page_count(page), page);
1118 
1119 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1120 	h->free_huge_pages++;
1121 	h->free_huge_pages_node[nid]++;
1122 	SetHPageFreed(page);
1123 }
1124 
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127 	struct page *page;
1128 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129 
1130 	lockdep_assert_held(&hugetlb_lock);
1131 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132 		if (pin && !is_pinnable_page(page))
1133 			continue;
1134 
1135 		if (PageHWPoison(page))
1136 			continue;
1137 
1138 		list_move(&page->lru, &h->hugepage_activelist);
1139 		set_page_refcounted(page);
1140 		ClearHPageFreed(page);
1141 		h->free_huge_pages--;
1142 		h->free_huge_pages_node[nid]--;
1143 		return page;
1144 	}
1145 
1146 	return NULL;
1147 }
1148 
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150 		nodemask_t *nmask)
1151 {
1152 	unsigned int cpuset_mems_cookie;
1153 	struct zonelist *zonelist;
1154 	struct zone *zone;
1155 	struct zoneref *z;
1156 	int node = NUMA_NO_NODE;
1157 
1158 	zonelist = node_zonelist(nid, gfp_mask);
1159 
1160 retry_cpuset:
1161 	cpuset_mems_cookie = read_mems_allowed_begin();
1162 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163 		struct page *page;
1164 
1165 		if (!cpuset_zone_allowed(zone, gfp_mask))
1166 			continue;
1167 		/*
1168 		 * no need to ask again on the same node. Pool is node rather than
1169 		 * zone aware
1170 		 */
1171 		if (zone_to_nid(zone) == node)
1172 			continue;
1173 		node = zone_to_nid(zone);
1174 
1175 		page = dequeue_huge_page_node_exact(h, node);
1176 		if (page)
1177 			return page;
1178 	}
1179 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180 		goto retry_cpuset;
1181 
1182 	return NULL;
1183 }
1184 
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186 				struct vm_area_struct *vma,
1187 				unsigned long address, int avoid_reserve,
1188 				long chg)
1189 {
1190 	struct page *page = NULL;
1191 	struct mempolicy *mpol;
1192 	gfp_t gfp_mask;
1193 	nodemask_t *nodemask;
1194 	int nid;
1195 
1196 	/*
1197 	 * A child process with MAP_PRIVATE mappings created by their parent
1198 	 * have no page reserves. This check ensures that reservations are
1199 	 * not "stolen". The child may still get SIGKILLed
1200 	 */
1201 	if (!vma_has_reserves(vma, chg) &&
1202 			h->free_huge_pages - h->resv_huge_pages == 0)
1203 		goto err;
1204 
1205 	/* If reserves cannot be used, ensure enough pages are in the pool */
1206 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207 		goto err;
1208 
1209 	gfp_mask = htlb_alloc_mask(h);
1210 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211 
1212 	if (mpol_is_preferred_many(mpol)) {
1213 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214 
1215 		/* Fallback to all nodes if page==NULL */
1216 		nodemask = NULL;
1217 	}
1218 
1219 	if (!page)
1220 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221 
1222 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223 		SetHPageRestoreReserve(page);
1224 		h->resv_huge_pages--;
1225 	}
1226 
1227 	mpol_cond_put(mpol);
1228 	return page;
1229 
1230 err:
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243 	nid = next_node_in(nid, *nodes_allowed);
1244 	VM_BUG_ON(nid >= MAX_NUMNODES);
1245 
1246 	return nid;
1247 }
1248 
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251 	if (!node_isset(nid, *nodes_allowed))
1252 		nid = next_node_allowed(nid, nodes_allowed);
1253 	return nid;
1254 }
1255 
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263 					nodemask_t *nodes_allowed)
1264 {
1265 	int nid;
1266 
1267 	VM_BUG_ON(!nodes_allowed);
1268 
1269 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271 
1272 	return nid;
1273 }
1274 
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283 	int nid;
1284 
1285 	VM_BUG_ON(!nodes_allowed);
1286 
1287 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289 
1290 	return nid;
1291 }
1292 
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1294 	for (nr_nodes = nodes_weight(*mask);				\
1295 		nr_nodes > 0 &&						\
1296 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1297 		nr_nodes--)
1298 
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1300 	for (nr_nodes = nodes_weight(*mask);				\
1301 		nr_nodes > 0 &&						\
1302 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1303 		nr_nodes--)
1304 
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307 					unsigned int order, bool demote)
1308 {
1309 	int i;
1310 	int nr_pages = 1 << order;
1311 	struct page *p = page + 1;
1312 
1313 	atomic_set(compound_mapcount_ptr(page), 0);
1314 	atomic_set(compound_pincount_ptr(page), 0);
1315 
1316 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317 		p->mapping = NULL;
1318 		clear_compound_head(p);
1319 		if (!demote)
1320 			set_page_refcounted(p);
1321 	}
1322 
1323 	set_compound_order(page, 0);
1324 #ifdef CONFIG_64BIT
1325 	page[1].compound_nr = 0;
1326 #endif
1327 	__ClearPageHead(page);
1328 }
1329 
1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331 					unsigned int order)
1332 {
1333 	__destroy_compound_gigantic_page(page, order, true);
1334 }
1335 
1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1337 static void destroy_compound_gigantic_page(struct page *page,
1338 					unsigned int order)
1339 {
1340 	__destroy_compound_gigantic_page(page, order, false);
1341 }
1342 
1343 static void free_gigantic_page(struct page *page, unsigned int order)
1344 {
1345 	/*
1346 	 * If the page isn't allocated using the cma allocator,
1347 	 * cma_release() returns false.
1348 	 */
1349 #ifdef CONFIG_CMA
1350 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351 		return;
1352 #endif
1353 
1354 	free_contig_range(page_to_pfn(page), 1 << order);
1355 }
1356 
1357 #ifdef CONFIG_CONTIG_ALLOC
1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359 		int nid, nodemask_t *nodemask)
1360 {
1361 	unsigned long nr_pages = pages_per_huge_page(h);
1362 	if (nid == NUMA_NO_NODE)
1363 		nid = numa_mem_id();
1364 
1365 #ifdef CONFIG_CMA
1366 	{
1367 		struct page *page;
1368 		int node;
1369 
1370 		if (hugetlb_cma[nid]) {
1371 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372 					huge_page_order(h), true);
1373 			if (page)
1374 				return page;
1375 		}
1376 
1377 		if (!(gfp_mask & __GFP_THISNODE)) {
1378 			for_each_node_mask(node, *nodemask) {
1379 				if (node == nid || !hugetlb_cma[node])
1380 					continue;
1381 
1382 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1383 						huge_page_order(h), true);
1384 				if (page)
1385 					return page;
1386 			}
1387 		}
1388 	}
1389 #endif
1390 
1391 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1392 }
1393 
1394 #else /* !CONFIG_CONTIG_ALLOC */
1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396 					int nid, nodemask_t *nodemask)
1397 {
1398 	return NULL;
1399 }
1400 #endif /* CONFIG_CONTIG_ALLOC */
1401 
1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1404 					int nid, nodemask_t *nodemask)
1405 {
1406 	return NULL;
1407 }
1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1409 static inline void destroy_compound_gigantic_page(struct page *page,
1410 						unsigned int order) { }
1411 #endif
1412 
1413 /*
1414  * Remove hugetlb page from lists, and update dtor so that page appears
1415  * as just a compound page.
1416  *
1417  * A reference is held on the page, except in the case of demote.
1418  *
1419  * Must be called with hugetlb lock held.
1420  */
1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422 							bool adjust_surplus,
1423 							bool demote)
1424 {
1425 	int nid = page_to_nid(page);
1426 
1427 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429 
1430 	lockdep_assert_held(&hugetlb_lock);
1431 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432 		return;
1433 
1434 	list_del(&page->lru);
1435 
1436 	if (HPageFreed(page)) {
1437 		h->free_huge_pages--;
1438 		h->free_huge_pages_node[nid]--;
1439 	}
1440 	if (adjust_surplus) {
1441 		h->surplus_huge_pages--;
1442 		h->surplus_huge_pages_node[nid]--;
1443 	}
1444 
1445 	/*
1446 	 * Very subtle
1447 	 *
1448 	 * For non-gigantic pages set the destructor to the normal compound
1449 	 * page dtor.  This is needed in case someone takes an additional
1450 	 * temporary ref to the page, and freeing is delayed until they drop
1451 	 * their reference.
1452 	 *
1453 	 * For gigantic pages set the destructor to the null dtor.  This
1454 	 * destructor will never be called.  Before freeing the gigantic
1455 	 * page destroy_compound_gigantic_page will turn the compound page
1456 	 * into a simple group of pages.  After this the destructor does not
1457 	 * apply.
1458 	 *
1459 	 * This handles the case where more than one ref is held when and
1460 	 * after update_and_free_page is called.
1461 	 *
1462 	 * In the case of demote we do not ref count the page as it will soon
1463 	 * be turned into a page of smaller size.
1464 	 */
1465 	if (!demote)
1466 		set_page_refcounted(page);
1467 	if (hstate_is_gigantic(h))
1468 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469 	else
1470 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1471 
1472 	h->nr_huge_pages--;
1473 	h->nr_huge_pages_node[nid]--;
1474 }
1475 
1476 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477 							bool adjust_surplus)
1478 {
1479 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1480 }
1481 
1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483 							bool adjust_surplus)
1484 {
1485 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1486 }
1487 
1488 static void add_hugetlb_page(struct hstate *h, struct page *page,
1489 			     bool adjust_surplus)
1490 {
1491 	int zeroed;
1492 	int nid = page_to_nid(page);
1493 
1494 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495 
1496 	lockdep_assert_held(&hugetlb_lock);
1497 
1498 	INIT_LIST_HEAD(&page->lru);
1499 	h->nr_huge_pages++;
1500 	h->nr_huge_pages_node[nid]++;
1501 
1502 	if (adjust_surplus) {
1503 		h->surplus_huge_pages++;
1504 		h->surplus_huge_pages_node[nid]++;
1505 	}
1506 
1507 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508 	set_page_private(page, 0);
1509 	SetHPageVmemmapOptimized(page);
1510 
1511 	/*
1512 	 * This page is about to be managed by the hugetlb allocator and
1513 	 * should have no users.  Drop our reference, and check for others
1514 	 * just in case.
1515 	 */
1516 	zeroed = put_page_testzero(page);
1517 	if (!zeroed)
1518 		/*
1519 		 * It is VERY unlikely soneone else has taken a ref on
1520 		 * the page.  In this case, we simply return as the
1521 		 * hugetlb destructor (free_huge_page) will be called
1522 		 * when this other ref is dropped.
1523 		 */
1524 		return;
1525 
1526 	arch_clear_hugepage_flags(page);
1527 	enqueue_huge_page(h, page);
1528 }
1529 
1530 static void __update_and_free_page(struct hstate *h, struct page *page)
1531 {
1532 	int i;
1533 	struct page *subpage = page;
1534 
1535 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1536 		return;
1537 
1538 	if (alloc_huge_page_vmemmap(h, page)) {
1539 		spin_lock_irq(&hugetlb_lock);
1540 		/*
1541 		 * If we cannot allocate vmemmap pages, just refuse to free the
1542 		 * page and put the page back on the hugetlb free list and treat
1543 		 * as a surplus page.
1544 		 */
1545 		add_hugetlb_page(h, page, true);
1546 		spin_unlock_irq(&hugetlb_lock);
1547 		return;
1548 	}
1549 
1550 	for (i = 0; i < pages_per_huge_page(h);
1551 	     i++, subpage = mem_map_next(subpage, page, i)) {
1552 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1553 				1 << PG_referenced | 1 << PG_dirty |
1554 				1 << PG_active | 1 << PG_private |
1555 				1 << PG_writeback);
1556 	}
1557 
1558 	/*
1559 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1560 	 * need to be given back to CMA in free_gigantic_page.
1561 	 */
1562 	if (hstate_is_gigantic(h) ||
1563 	    hugetlb_cma_page(page, huge_page_order(h))) {
1564 		destroy_compound_gigantic_page(page, huge_page_order(h));
1565 		free_gigantic_page(page, huge_page_order(h));
1566 	} else {
1567 		__free_pages(page, huge_page_order(h));
1568 	}
1569 }
1570 
1571 /*
1572  * As update_and_free_page() can be called under any context, so we cannot
1573  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1574  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1575  * the vmemmap pages.
1576  *
1577  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1578  * freed and frees them one-by-one. As the page->mapping pointer is going
1579  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1580  * structure of a lockless linked list of huge pages to be freed.
1581  */
1582 static LLIST_HEAD(hpage_freelist);
1583 
1584 static void free_hpage_workfn(struct work_struct *work)
1585 {
1586 	struct llist_node *node;
1587 
1588 	node = llist_del_all(&hpage_freelist);
1589 
1590 	while (node) {
1591 		struct page *page;
1592 		struct hstate *h;
1593 
1594 		page = container_of((struct address_space **)node,
1595 				     struct page, mapping);
1596 		node = node->next;
1597 		page->mapping = NULL;
1598 		/*
1599 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1600 		 * is going to trigger because a previous call to
1601 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1602 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1603 		 */
1604 		h = size_to_hstate(page_size(page));
1605 
1606 		__update_and_free_page(h, page);
1607 
1608 		cond_resched();
1609 	}
1610 }
1611 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1612 
1613 static inline void flush_free_hpage_work(struct hstate *h)
1614 {
1615 	if (free_vmemmap_pages_per_hpage(h))
1616 		flush_work(&free_hpage_work);
1617 }
1618 
1619 static void update_and_free_page(struct hstate *h, struct page *page,
1620 				 bool atomic)
1621 {
1622 	if (!HPageVmemmapOptimized(page) || !atomic) {
1623 		__update_and_free_page(h, page);
1624 		return;
1625 	}
1626 
1627 	/*
1628 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1629 	 *
1630 	 * Only call schedule_work() if hpage_freelist is previously
1631 	 * empty. Otherwise, schedule_work() had been called but the workfn
1632 	 * hasn't retrieved the list yet.
1633 	 */
1634 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1635 		schedule_work(&free_hpage_work);
1636 }
1637 
1638 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1639 {
1640 	struct page *page, *t_page;
1641 
1642 	list_for_each_entry_safe(page, t_page, list, lru) {
1643 		update_and_free_page(h, page, false);
1644 		cond_resched();
1645 	}
1646 }
1647 
1648 struct hstate *size_to_hstate(unsigned long size)
1649 {
1650 	struct hstate *h;
1651 
1652 	for_each_hstate(h) {
1653 		if (huge_page_size(h) == size)
1654 			return h;
1655 	}
1656 	return NULL;
1657 }
1658 
1659 void free_huge_page(struct page *page)
1660 {
1661 	/*
1662 	 * Can't pass hstate in here because it is called from the
1663 	 * compound page destructor.
1664 	 */
1665 	struct hstate *h = page_hstate(page);
1666 	int nid = page_to_nid(page);
1667 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1668 	bool restore_reserve;
1669 	unsigned long flags;
1670 
1671 	VM_BUG_ON_PAGE(page_count(page), page);
1672 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1673 
1674 	hugetlb_set_page_subpool(page, NULL);
1675 	page->mapping = NULL;
1676 	restore_reserve = HPageRestoreReserve(page);
1677 	ClearHPageRestoreReserve(page);
1678 
1679 	/*
1680 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1681 	 * reservation.  If the page was associated with a subpool, there
1682 	 * would have been a page reserved in the subpool before allocation
1683 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1684 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1685 	 * remove the reserved page from the subpool.
1686 	 */
1687 	if (!restore_reserve) {
1688 		/*
1689 		 * A return code of zero implies that the subpool will be
1690 		 * under its minimum size if the reservation is not restored
1691 		 * after page is free.  Therefore, force restore_reserve
1692 		 * operation.
1693 		 */
1694 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1695 			restore_reserve = true;
1696 	}
1697 
1698 	spin_lock_irqsave(&hugetlb_lock, flags);
1699 	ClearHPageMigratable(page);
1700 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1701 				     pages_per_huge_page(h), page);
1702 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1703 					  pages_per_huge_page(h), page);
1704 	if (restore_reserve)
1705 		h->resv_huge_pages++;
1706 
1707 	if (HPageTemporary(page)) {
1708 		remove_hugetlb_page(h, page, false);
1709 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1710 		update_and_free_page(h, page, true);
1711 	} else if (h->surplus_huge_pages_node[nid]) {
1712 		/* remove the page from active list */
1713 		remove_hugetlb_page(h, page, true);
1714 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1715 		update_and_free_page(h, page, true);
1716 	} else {
1717 		arch_clear_hugepage_flags(page);
1718 		enqueue_huge_page(h, page);
1719 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1720 	}
1721 }
1722 
1723 /*
1724  * Must be called with the hugetlb lock held
1725  */
1726 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1727 {
1728 	lockdep_assert_held(&hugetlb_lock);
1729 	h->nr_huge_pages++;
1730 	h->nr_huge_pages_node[nid]++;
1731 }
1732 
1733 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1734 {
1735 	free_huge_page_vmemmap(h, page);
1736 	INIT_LIST_HEAD(&page->lru);
1737 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1738 	hugetlb_set_page_subpool(page, NULL);
1739 	set_hugetlb_cgroup(page, NULL);
1740 	set_hugetlb_cgroup_rsvd(page, NULL);
1741 }
1742 
1743 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1744 {
1745 	__prep_new_huge_page(h, page);
1746 	spin_lock_irq(&hugetlb_lock);
1747 	__prep_account_new_huge_page(h, nid);
1748 	spin_unlock_irq(&hugetlb_lock);
1749 }
1750 
1751 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1752 								bool demote)
1753 {
1754 	int i, j;
1755 	int nr_pages = 1 << order;
1756 	struct page *p = page + 1;
1757 
1758 	/* we rely on prep_new_huge_page to set the destructor */
1759 	set_compound_order(page, order);
1760 	__ClearPageReserved(page);
1761 	__SetPageHead(page);
1762 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1763 		/*
1764 		 * For gigantic hugepages allocated through bootmem at
1765 		 * boot, it's safer to be consistent with the not-gigantic
1766 		 * hugepages and clear the PG_reserved bit from all tail pages
1767 		 * too.  Otherwise drivers using get_user_pages() to access tail
1768 		 * pages may get the reference counting wrong if they see
1769 		 * PG_reserved set on a tail page (despite the head page not
1770 		 * having PG_reserved set).  Enforcing this consistency between
1771 		 * head and tail pages allows drivers to optimize away a check
1772 		 * on the head page when they need know if put_page() is needed
1773 		 * after get_user_pages().
1774 		 */
1775 		__ClearPageReserved(p);
1776 		/*
1777 		 * Subtle and very unlikely
1778 		 *
1779 		 * Gigantic 'page allocators' such as memblock or cma will
1780 		 * return a set of pages with each page ref counted.  We need
1781 		 * to turn this set of pages into a compound page with tail
1782 		 * page ref counts set to zero.  Code such as speculative page
1783 		 * cache adding could take a ref on a 'to be' tail page.
1784 		 * We need to respect any increased ref count, and only set
1785 		 * the ref count to zero if count is currently 1.  If count
1786 		 * is not 1, we return an error.  An error return indicates
1787 		 * the set of pages can not be converted to a gigantic page.
1788 		 * The caller who allocated the pages should then discard the
1789 		 * pages using the appropriate free interface.
1790 		 *
1791 		 * In the case of demote, the ref count will be zero.
1792 		 */
1793 		if (!demote) {
1794 			if (!page_ref_freeze(p, 1)) {
1795 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1796 				goto out_error;
1797 			}
1798 		} else {
1799 			VM_BUG_ON_PAGE(page_count(p), p);
1800 		}
1801 		set_compound_head(p, page);
1802 	}
1803 	atomic_set(compound_mapcount_ptr(page), -1);
1804 	atomic_set(compound_pincount_ptr(page), 0);
1805 	return true;
1806 
1807 out_error:
1808 	/* undo tail page modifications made above */
1809 	p = page + 1;
1810 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1811 		clear_compound_head(p);
1812 		set_page_refcounted(p);
1813 	}
1814 	/* need to clear PG_reserved on remaining tail pages  */
1815 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1816 		__ClearPageReserved(p);
1817 	set_compound_order(page, 0);
1818 #ifdef CONFIG_64BIT
1819 	page[1].compound_nr = 0;
1820 #endif
1821 	__ClearPageHead(page);
1822 	return false;
1823 }
1824 
1825 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1826 {
1827 	return __prep_compound_gigantic_page(page, order, false);
1828 }
1829 
1830 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1831 							unsigned int order)
1832 {
1833 	return __prep_compound_gigantic_page(page, order, true);
1834 }
1835 
1836 /*
1837  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1838  * transparent huge pages.  See the PageTransHuge() documentation for more
1839  * details.
1840  */
1841 int PageHuge(struct page *page)
1842 {
1843 	if (!PageCompound(page))
1844 		return 0;
1845 
1846 	page = compound_head(page);
1847 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1848 }
1849 EXPORT_SYMBOL_GPL(PageHuge);
1850 
1851 /*
1852  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1853  * normal or transparent huge pages.
1854  */
1855 int PageHeadHuge(struct page *page_head)
1856 {
1857 	if (!PageHead(page_head))
1858 		return 0;
1859 
1860 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1861 }
1862 EXPORT_SYMBOL_GPL(PageHeadHuge);
1863 
1864 /*
1865  * Find and lock address space (mapping) in write mode.
1866  *
1867  * Upon entry, the page is locked which means that page_mapping() is
1868  * stable.  Due to locking order, we can only trylock_write.  If we can
1869  * not get the lock, simply return NULL to caller.
1870  */
1871 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1872 {
1873 	struct address_space *mapping = page_mapping(hpage);
1874 
1875 	if (!mapping)
1876 		return mapping;
1877 
1878 	if (i_mmap_trylock_write(mapping))
1879 		return mapping;
1880 
1881 	return NULL;
1882 }
1883 
1884 pgoff_t hugetlb_basepage_index(struct page *page)
1885 {
1886 	struct page *page_head = compound_head(page);
1887 	pgoff_t index = page_index(page_head);
1888 	unsigned long compound_idx;
1889 
1890 	if (compound_order(page_head) >= MAX_ORDER)
1891 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1892 	else
1893 		compound_idx = page - page_head;
1894 
1895 	return (index << compound_order(page_head)) + compound_idx;
1896 }
1897 
1898 static struct page *alloc_buddy_huge_page(struct hstate *h,
1899 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1900 		nodemask_t *node_alloc_noretry)
1901 {
1902 	int order = huge_page_order(h);
1903 	struct page *page;
1904 	bool alloc_try_hard = true;
1905 
1906 	/*
1907 	 * By default we always try hard to allocate the page with
1908 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1909 	 * a loop (to adjust global huge page counts) and previous allocation
1910 	 * failed, do not continue to try hard on the same node.  Use the
1911 	 * node_alloc_noretry bitmap to manage this state information.
1912 	 */
1913 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1914 		alloc_try_hard = false;
1915 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1916 	if (alloc_try_hard)
1917 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1918 	if (nid == NUMA_NO_NODE)
1919 		nid = numa_mem_id();
1920 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1921 	if (page)
1922 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1923 	else
1924 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1925 
1926 	/*
1927 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1928 	 * indicates an overall state change.  Clear bit so that we resume
1929 	 * normal 'try hard' allocations.
1930 	 */
1931 	if (node_alloc_noretry && page && !alloc_try_hard)
1932 		node_clear(nid, *node_alloc_noretry);
1933 
1934 	/*
1935 	 * If we tried hard to get a page but failed, set bit so that
1936 	 * subsequent attempts will not try as hard until there is an
1937 	 * overall state change.
1938 	 */
1939 	if (node_alloc_noretry && !page && alloc_try_hard)
1940 		node_set(nid, *node_alloc_noretry);
1941 
1942 	return page;
1943 }
1944 
1945 /*
1946  * Common helper to allocate a fresh hugetlb page. All specific allocators
1947  * should use this function to get new hugetlb pages
1948  */
1949 static struct page *alloc_fresh_huge_page(struct hstate *h,
1950 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1951 		nodemask_t *node_alloc_noretry)
1952 {
1953 	struct page *page;
1954 	bool retry = false;
1955 
1956 retry:
1957 	if (hstate_is_gigantic(h))
1958 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1959 	else
1960 		page = alloc_buddy_huge_page(h, gfp_mask,
1961 				nid, nmask, node_alloc_noretry);
1962 	if (!page)
1963 		return NULL;
1964 
1965 	if (hstate_is_gigantic(h)) {
1966 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1967 			/*
1968 			 * Rare failure to convert pages to compound page.
1969 			 * Free pages and try again - ONCE!
1970 			 */
1971 			free_gigantic_page(page, huge_page_order(h));
1972 			if (!retry) {
1973 				retry = true;
1974 				goto retry;
1975 			}
1976 			return NULL;
1977 		}
1978 	}
1979 	prep_new_huge_page(h, page, page_to_nid(page));
1980 
1981 	return page;
1982 }
1983 
1984 /*
1985  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1986  * manner.
1987  */
1988 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1989 				nodemask_t *node_alloc_noretry)
1990 {
1991 	struct page *page;
1992 	int nr_nodes, node;
1993 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1994 
1995 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1996 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1997 						node_alloc_noretry);
1998 		if (page)
1999 			break;
2000 	}
2001 
2002 	if (!page)
2003 		return 0;
2004 
2005 	put_page(page); /* free it into the hugepage allocator */
2006 
2007 	return 1;
2008 }
2009 
2010 /*
2011  * Remove huge page from pool from next node to free.  Attempt to keep
2012  * persistent huge pages more or less balanced over allowed nodes.
2013  * This routine only 'removes' the hugetlb page.  The caller must make
2014  * an additional call to free the page to low level allocators.
2015  * Called with hugetlb_lock locked.
2016  */
2017 static struct page *remove_pool_huge_page(struct hstate *h,
2018 						nodemask_t *nodes_allowed,
2019 						 bool acct_surplus)
2020 {
2021 	int nr_nodes, node;
2022 	struct page *page = NULL;
2023 
2024 	lockdep_assert_held(&hugetlb_lock);
2025 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2026 		/*
2027 		 * If we're returning unused surplus pages, only examine
2028 		 * nodes with surplus pages.
2029 		 */
2030 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2031 		    !list_empty(&h->hugepage_freelists[node])) {
2032 			page = list_entry(h->hugepage_freelists[node].next,
2033 					  struct page, lru);
2034 			remove_hugetlb_page(h, page, acct_surplus);
2035 			break;
2036 		}
2037 	}
2038 
2039 	return page;
2040 }
2041 
2042 /*
2043  * Dissolve a given free hugepage into free buddy pages. This function does
2044  * nothing for in-use hugepages and non-hugepages.
2045  * This function returns values like below:
2046  *
2047  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2048  *           when the system is under memory pressure and the feature of
2049  *           freeing unused vmemmap pages associated with each hugetlb page
2050  *           is enabled.
2051  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2052  *           (allocated or reserved.)
2053  *       0:  successfully dissolved free hugepages or the page is not a
2054  *           hugepage (considered as already dissolved)
2055  */
2056 int dissolve_free_huge_page(struct page *page)
2057 {
2058 	int rc = -EBUSY;
2059 
2060 retry:
2061 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2062 	if (!PageHuge(page))
2063 		return 0;
2064 
2065 	spin_lock_irq(&hugetlb_lock);
2066 	if (!PageHuge(page)) {
2067 		rc = 0;
2068 		goto out;
2069 	}
2070 
2071 	if (!page_count(page)) {
2072 		struct page *head = compound_head(page);
2073 		struct hstate *h = page_hstate(head);
2074 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2075 			goto out;
2076 
2077 		/*
2078 		 * We should make sure that the page is already on the free list
2079 		 * when it is dissolved.
2080 		 */
2081 		if (unlikely(!HPageFreed(head))) {
2082 			spin_unlock_irq(&hugetlb_lock);
2083 			cond_resched();
2084 
2085 			/*
2086 			 * Theoretically, we should return -EBUSY when we
2087 			 * encounter this race. In fact, we have a chance
2088 			 * to successfully dissolve the page if we do a
2089 			 * retry. Because the race window is quite small.
2090 			 * If we seize this opportunity, it is an optimization
2091 			 * for increasing the success rate of dissolving page.
2092 			 */
2093 			goto retry;
2094 		}
2095 
2096 		remove_hugetlb_page(h, head, false);
2097 		h->max_huge_pages--;
2098 		spin_unlock_irq(&hugetlb_lock);
2099 
2100 		/*
2101 		 * Normally update_and_free_page will allocate required vmemmmap
2102 		 * before freeing the page.  update_and_free_page will fail to
2103 		 * free the page if it can not allocate required vmemmap.  We
2104 		 * need to adjust max_huge_pages if the page is not freed.
2105 		 * Attempt to allocate vmemmmap here so that we can take
2106 		 * appropriate action on failure.
2107 		 */
2108 		rc = alloc_huge_page_vmemmap(h, head);
2109 		if (!rc) {
2110 			/*
2111 			 * Move PageHWPoison flag from head page to the raw
2112 			 * error page, which makes any subpages rather than
2113 			 * the error page reusable.
2114 			 */
2115 			if (PageHWPoison(head) && page != head) {
2116 				SetPageHWPoison(page);
2117 				ClearPageHWPoison(head);
2118 			}
2119 			update_and_free_page(h, head, false);
2120 		} else {
2121 			spin_lock_irq(&hugetlb_lock);
2122 			add_hugetlb_page(h, head, false);
2123 			h->max_huge_pages++;
2124 			spin_unlock_irq(&hugetlb_lock);
2125 		}
2126 
2127 		return rc;
2128 	}
2129 out:
2130 	spin_unlock_irq(&hugetlb_lock);
2131 	return rc;
2132 }
2133 
2134 /*
2135  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2136  * make specified memory blocks removable from the system.
2137  * Note that this will dissolve a free gigantic hugepage completely, if any
2138  * part of it lies within the given range.
2139  * Also note that if dissolve_free_huge_page() returns with an error, all
2140  * free hugepages that were dissolved before that error are lost.
2141  */
2142 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2143 {
2144 	unsigned long pfn;
2145 	struct page *page;
2146 	int rc = 0;
2147 
2148 	if (!hugepages_supported())
2149 		return rc;
2150 
2151 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2152 		page = pfn_to_page(pfn);
2153 		rc = dissolve_free_huge_page(page);
2154 		if (rc)
2155 			break;
2156 	}
2157 
2158 	return rc;
2159 }
2160 
2161 /*
2162  * Allocates a fresh surplus page from the page allocator.
2163  */
2164 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2165 		int nid, nodemask_t *nmask, bool zero_ref)
2166 {
2167 	struct page *page = NULL;
2168 	bool retry = false;
2169 
2170 	if (hstate_is_gigantic(h))
2171 		return NULL;
2172 
2173 	spin_lock_irq(&hugetlb_lock);
2174 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2175 		goto out_unlock;
2176 	spin_unlock_irq(&hugetlb_lock);
2177 
2178 retry:
2179 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2180 	if (!page)
2181 		return NULL;
2182 
2183 	spin_lock_irq(&hugetlb_lock);
2184 	/*
2185 	 * We could have raced with the pool size change.
2186 	 * Double check that and simply deallocate the new page
2187 	 * if we would end up overcommiting the surpluses. Abuse
2188 	 * temporary page to workaround the nasty free_huge_page
2189 	 * codeflow
2190 	 */
2191 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2192 		SetHPageTemporary(page);
2193 		spin_unlock_irq(&hugetlb_lock);
2194 		put_page(page);
2195 		return NULL;
2196 	}
2197 
2198 	if (zero_ref) {
2199 		/*
2200 		 * Caller requires a page with zero ref count.
2201 		 * We will drop ref count here.  If someone else is holding
2202 		 * a ref, the page will be freed when they drop it.  Abuse
2203 		 * temporary page flag to accomplish this.
2204 		 */
2205 		SetHPageTemporary(page);
2206 		if (!put_page_testzero(page)) {
2207 			/*
2208 			 * Unexpected inflated ref count on freshly allocated
2209 			 * huge.  Retry once.
2210 			 */
2211 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2212 			spin_unlock_irq(&hugetlb_lock);
2213 			if (retry)
2214 				return NULL;
2215 
2216 			retry = true;
2217 			goto retry;
2218 		}
2219 		ClearHPageTemporary(page);
2220 	}
2221 
2222 	h->surplus_huge_pages++;
2223 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2224 
2225 out_unlock:
2226 	spin_unlock_irq(&hugetlb_lock);
2227 
2228 	return page;
2229 }
2230 
2231 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2232 				     int nid, nodemask_t *nmask)
2233 {
2234 	struct page *page;
2235 
2236 	if (hstate_is_gigantic(h))
2237 		return NULL;
2238 
2239 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2240 	if (!page)
2241 		return NULL;
2242 
2243 	/*
2244 	 * We do not account these pages as surplus because they are only
2245 	 * temporary and will be released properly on the last reference
2246 	 */
2247 	SetHPageTemporary(page);
2248 
2249 	return page;
2250 }
2251 
2252 /*
2253  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2254  */
2255 static
2256 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2257 		struct vm_area_struct *vma, unsigned long addr)
2258 {
2259 	struct page *page = NULL;
2260 	struct mempolicy *mpol;
2261 	gfp_t gfp_mask = htlb_alloc_mask(h);
2262 	int nid;
2263 	nodemask_t *nodemask;
2264 
2265 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2266 	if (mpol_is_preferred_many(mpol)) {
2267 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2268 
2269 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2270 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2271 
2272 		/* Fallback to all nodes if page==NULL */
2273 		nodemask = NULL;
2274 	}
2275 
2276 	if (!page)
2277 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2278 	mpol_cond_put(mpol);
2279 	return page;
2280 }
2281 
2282 /* page migration callback function */
2283 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2284 		nodemask_t *nmask, gfp_t gfp_mask)
2285 {
2286 	spin_lock_irq(&hugetlb_lock);
2287 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2288 		struct page *page;
2289 
2290 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2291 		if (page) {
2292 			spin_unlock_irq(&hugetlb_lock);
2293 			return page;
2294 		}
2295 	}
2296 	spin_unlock_irq(&hugetlb_lock);
2297 
2298 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2299 }
2300 
2301 /* mempolicy aware migration callback */
2302 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2303 		unsigned long address)
2304 {
2305 	struct mempolicy *mpol;
2306 	nodemask_t *nodemask;
2307 	struct page *page;
2308 	gfp_t gfp_mask;
2309 	int node;
2310 
2311 	gfp_mask = htlb_alloc_mask(h);
2312 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2313 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2314 	mpol_cond_put(mpol);
2315 
2316 	return page;
2317 }
2318 
2319 /*
2320  * Increase the hugetlb pool such that it can accommodate a reservation
2321  * of size 'delta'.
2322  */
2323 static int gather_surplus_pages(struct hstate *h, long delta)
2324 	__must_hold(&hugetlb_lock)
2325 {
2326 	struct list_head surplus_list;
2327 	struct page *page, *tmp;
2328 	int ret;
2329 	long i;
2330 	long needed, allocated;
2331 	bool alloc_ok = true;
2332 
2333 	lockdep_assert_held(&hugetlb_lock);
2334 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2335 	if (needed <= 0) {
2336 		h->resv_huge_pages += delta;
2337 		return 0;
2338 	}
2339 
2340 	allocated = 0;
2341 	INIT_LIST_HEAD(&surplus_list);
2342 
2343 	ret = -ENOMEM;
2344 retry:
2345 	spin_unlock_irq(&hugetlb_lock);
2346 	for (i = 0; i < needed; i++) {
2347 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2348 				NUMA_NO_NODE, NULL, true);
2349 		if (!page) {
2350 			alloc_ok = false;
2351 			break;
2352 		}
2353 		list_add(&page->lru, &surplus_list);
2354 		cond_resched();
2355 	}
2356 	allocated += i;
2357 
2358 	/*
2359 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2360 	 * because either resv_huge_pages or free_huge_pages may have changed.
2361 	 */
2362 	spin_lock_irq(&hugetlb_lock);
2363 	needed = (h->resv_huge_pages + delta) -
2364 			(h->free_huge_pages + allocated);
2365 	if (needed > 0) {
2366 		if (alloc_ok)
2367 			goto retry;
2368 		/*
2369 		 * We were not able to allocate enough pages to
2370 		 * satisfy the entire reservation so we free what
2371 		 * we've allocated so far.
2372 		 */
2373 		goto free;
2374 	}
2375 	/*
2376 	 * The surplus_list now contains _at_least_ the number of extra pages
2377 	 * needed to accommodate the reservation.  Add the appropriate number
2378 	 * of pages to the hugetlb pool and free the extras back to the buddy
2379 	 * allocator.  Commit the entire reservation here to prevent another
2380 	 * process from stealing the pages as they are added to the pool but
2381 	 * before they are reserved.
2382 	 */
2383 	needed += allocated;
2384 	h->resv_huge_pages += delta;
2385 	ret = 0;
2386 
2387 	/* Free the needed pages to the hugetlb pool */
2388 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2389 		if ((--needed) < 0)
2390 			break;
2391 		/* Add the page to the hugetlb allocator */
2392 		enqueue_huge_page(h, page);
2393 	}
2394 free:
2395 	spin_unlock_irq(&hugetlb_lock);
2396 
2397 	/*
2398 	 * Free unnecessary surplus pages to the buddy allocator.
2399 	 * Pages have no ref count, call free_huge_page directly.
2400 	 */
2401 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2402 		free_huge_page(page);
2403 	spin_lock_irq(&hugetlb_lock);
2404 
2405 	return ret;
2406 }
2407 
2408 /*
2409  * This routine has two main purposes:
2410  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2411  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2412  *    to the associated reservation map.
2413  * 2) Free any unused surplus pages that may have been allocated to satisfy
2414  *    the reservation.  As many as unused_resv_pages may be freed.
2415  */
2416 static void return_unused_surplus_pages(struct hstate *h,
2417 					unsigned long unused_resv_pages)
2418 {
2419 	unsigned long nr_pages;
2420 	struct page *page;
2421 	LIST_HEAD(page_list);
2422 
2423 	lockdep_assert_held(&hugetlb_lock);
2424 	/* Uncommit the reservation */
2425 	h->resv_huge_pages -= unused_resv_pages;
2426 
2427 	/* Cannot return gigantic pages currently */
2428 	if (hstate_is_gigantic(h))
2429 		goto out;
2430 
2431 	/*
2432 	 * Part (or even all) of the reservation could have been backed
2433 	 * by pre-allocated pages. Only free surplus pages.
2434 	 */
2435 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2436 
2437 	/*
2438 	 * We want to release as many surplus pages as possible, spread
2439 	 * evenly across all nodes with memory. Iterate across these nodes
2440 	 * until we can no longer free unreserved surplus pages. This occurs
2441 	 * when the nodes with surplus pages have no free pages.
2442 	 * remove_pool_huge_page() will balance the freed pages across the
2443 	 * on-line nodes with memory and will handle the hstate accounting.
2444 	 */
2445 	while (nr_pages--) {
2446 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2447 		if (!page)
2448 			goto out;
2449 
2450 		list_add(&page->lru, &page_list);
2451 	}
2452 
2453 out:
2454 	spin_unlock_irq(&hugetlb_lock);
2455 	update_and_free_pages_bulk(h, &page_list);
2456 	spin_lock_irq(&hugetlb_lock);
2457 }
2458 
2459 
2460 /*
2461  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2462  * are used by the huge page allocation routines to manage reservations.
2463  *
2464  * vma_needs_reservation is called to determine if the huge page at addr
2465  * within the vma has an associated reservation.  If a reservation is
2466  * needed, the value 1 is returned.  The caller is then responsible for
2467  * managing the global reservation and subpool usage counts.  After
2468  * the huge page has been allocated, vma_commit_reservation is called
2469  * to add the page to the reservation map.  If the page allocation fails,
2470  * the reservation must be ended instead of committed.  vma_end_reservation
2471  * is called in such cases.
2472  *
2473  * In the normal case, vma_commit_reservation returns the same value
2474  * as the preceding vma_needs_reservation call.  The only time this
2475  * is not the case is if a reserve map was changed between calls.  It
2476  * is the responsibility of the caller to notice the difference and
2477  * take appropriate action.
2478  *
2479  * vma_add_reservation is used in error paths where a reservation must
2480  * be restored when a newly allocated huge page must be freed.  It is
2481  * to be called after calling vma_needs_reservation to determine if a
2482  * reservation exists.
2483  *
2484  * vma_del_reservation is used in error paths where an entry in the reserve
2485  * map was created during huge page allocation and must be removed.  It is to
2486  * be called after calling vma_needs_reservation to determine if a reservation
2487  * exists.
2488  */
2489 enum vma_resv_mode {
2490 	VMA_NEEDS_RESV,
2491 	VMA_COMMIT_RESV,
2492 	VMA_END_RESV,
2493 	VMA_ADD_RESV,
2494 	VMA_DEL_RESV,
2495 };
2496 static long __vma_reservation_common(struct hstate *h,
2497 				struct vm_area_struct *vma, unsigned long addr,
2498 				enum vma_resv_mode mode)
2499 {
2500 	struct resv_map *resv;
2501 	pgoff_t idx;
2502 	long ret;
2503 	long dummy_out_regions_needed;
2504 
2505 	resv = vma_resv_map(vma);
2506 	if (!resv)
2507 		return 1;
2508 
2509 	idx = vma_hugecache_offset(h, vma, addr);
2510 	switch (mode) {
2511 	case VMA_NEEDS_RESV:
2512 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2513 		/* We assume that vma_reservation_* routines always operate on
2514 		 * 1 page, and that adding to resv map a 1 page entry can only
2515 		 * ever require 1 region.
2516 		 */
2517 		VM_BUG_ON(dummy_out_regions_needed != 1);
2518 		break;
2519 	case VMA_COMMIT_RESV:
2520 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2521 		/* region_add calls of range 1 should never fail. */
2522 		VM_BUG_ON(ret < 0);
2523 		break;
2524 	case VMA_END_RESV:
2525 		region_abort(resv, idx, idx + 1, 1);
2526 		ret = 0;
2527 		break;
2528 	case VMA_ADD_RESV:
2529 		if (vma->vm_flags & VM_MAYSHARE) {
2530 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2531 			/* region_add calls of range 1 should never fail. */
2532 			VM_BUG_ON(ret < 0);
2533 		} else {
2534 			region_abort(resv, idx, idx + 1, 1);
2535 			ret = region_del(resv, idx, idx + 1);
2536 		}
2537 		break;
2538 	case VMA_DEL_RESV:
2539 		if (vma->vm_flags & VM_MAYSHARE) {
2540 			region_abort(resv, idx, idx + 1, 1);
2541 			ret = region_del(resv, idx, idx + 1);
2542 		} else {
2543 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2544 			/* region_add calls of range 1 should never fail. */
2545 			VM_BUG_ON(ret < 0);
2546 		}
2547 		break;
2548 	default:
2549 		BUG();
2550 	}
2551 
2552 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2553 		return ret;
2554 	/*
2555 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2556 	 *
2557 	 * In most cases, reserves always exist for private mappings.
2558 	 * However, a file associated with mapping could have been
2559 	 * hole punched or truncated after reserves were consumed.
2560 	 * As subsequent fault on such a range will not use reserves.
2561 	 * Subtle - The reserve map for private mappings has the
2562 	 * opposite meaning than that of shared mappings.  If NO
2563 	 * entry is in the reserve map, it means a reservation exists.
2564 	 * If an entry exists in the reserve map, it means the
2565 	 * reservation has already been consumed.  As a result, the
2566 	 * return value of this routine is the opposite of the
2567 	 * value returned from reserve map manipulation routines above.
2568 	 */
2569 	if (ret > 0)
2570 		return 0;
2571 	if (ret == 0)
2572 		return 1;
2573 	return ret;
2574 }
2575 
2576 static long vma_needs_reservation(struct hstate *h,
2577 			struct vm_area_struct *vma, unsigned long addr)
2578 {
2579 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2580 }
2581 
2582 static long vma_commit_reservation(struct hstate *h,
2583 			struct vm_area_struct *vma, unsigned long addr)
2584 {
2585 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2586 }
2587 
2588 static void vma_end_reservation(struct hstate *h,
2589 			struct vm_area_struct *vma, unsigned long addr)
2590 {
2591 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2592 }
2593 
2594 static long vma_add_reservation(struct hstate *h,
2595 			struct vm_area_struct *vma, unsigned long addr)
2596 {
2597 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2598 }
2599 
2600 static long vma_del_reservation(struct hstate *h,
2601 			struct vm_area_struct *vma, unsigned long addr)
2602 {
2603 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2604 }
2605 
2606 /*
2607  * This routine is called to restore reservation information on error paths.
2608  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2609  * the hugetlb mutex should remain held when calling this routine.
2610  *
2611  * It handles two specific cases:
2612  * 1) A reservation was in place and the page consumed the reservation.
2613  *    HPageRestoreReserve is set in the page.
2614  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2615  *    not set.  However, alloc_huge_page always updates the reserve map.
2616  *
2617  * In case 1, free_huge_page later in the error path will increment the
2618  * global reserve count.  But, free_huge_page does not have enough context
2619  * to adjust the reservation map.  This case deals primarily with private
2620  * mappings.  Adjust the reserve map here to be consistent with global
2621  * reserve count adjustments to be made by free_huge_page.  Make sure the
2622  * reserve map indicates there is a reservation present.
2623  *
2624  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2625  */
2626 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2627 			unsigned long address, struct page *page)
2628 {
2629 	long rc = vma_needs_reservation(h, vma, address);
2630 
2631 	if (HPageRestoreReserve(page)) {
2632 		if (unlikely(rc < 0))
2633 			/*
2634 			 * Rare out of memory condition in reserve map
2635 			 * manipulation.  Clear HPageRestoreReserve so that
2636 			 * global reserve count will not be incremented
2637 			 * by free_huge_page.  This will make it appear
2638 			 * as though the reservation for this page was
2639 			 * consumed.  This may prevent the task from
2640 			 * faulting in the page at a later time.  This
2641 			 * is better than inconsistent global huge page
2642 			 * accounting of reserve counts.
2643 			 */
2644 			ClearHPageRestoreReserve(page);
2645 		else if (rc)
2646 			(void)vma_add_reservation(h, vma, address);
2647 		else
2648 			vma_end_reservation(h, vma, address);
2649 	} else {
2650 		if (!rc) {
2651 			/*
2652 			 * This indicates there is an entry in the reserve map
2653 			 * not added by alloc_huge_page.  We know it was added
2654 			 * before the alloc_huge_page call, otherwise
2655 			 * HPageRestoreReserve would be set on the page.
2656 			 * Remove the entry so that a subsequent allocation
2657 			 * does not consume a reservation.
2658 			 */
2659 			rc = vma_del_reservation(h, vma, address);
2660 			if (rc < 0)
2661 				/*
2662 				 * VERY rare out of memory condition.  Since
2663 				 * we can not delete the entry, set
2664 				 * HPageRestoreReserve so that the reserve
2665 				 * count will be incremented when the page
2666 				 * is freed.  This reserve will be consumed
2667 				 * on a subsequent allocation.
2668 				 */
2669 				SetHPageRestoreReserve(page);
2670 		} else if (rc < 0) {
2671 			/*
2672 			 * Rare out of memory condition from
2673 			 * vma_needs_reservation call.  Memory allocation is
2674 			 * only attempted if a new entry is needed.  Therefore,
2675 			 * this implies there is not an entry in the
2676 			 * reserve map.
2677 			 *
2678 			 * For shared mappings, no entry in the map indicates
2679 			 * no reservation.  We are done.
2680 			 */
2681 			if (!(vma->vm_flags & VM_MAYSHARE))
2682 				/*
2683 				 * For private mappings, no entry indicates
2684 				 * a reservation is present.  Since we can
2685 				 * not add an entry, set SetHPageRestoreReserve
2686 				 * on the page so reserve count will be
2687 				 * incremented when freed.  This reserve will
2688 				 * be consumed on a subsequent allocation.
2689 				 */
2690 				SetHPageRestoreReserve(page);
2691 		} else
2692 			/*
2693 			 * No reservation present, do nothing
2694 			 */
2695 			 vma_end_reservation(h, vma, address);
2696 	}
2697 }
2698 
2699 /*
2700  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2701  * @h: struct hstate old page belongs to
2702  * @old_page: Old page to dissolve
2703  * @list: List to isolate the page in case we need to
2704  * Returns 0 on success, otherwise negated error.
2705  */
2706 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2707 					struct list_head *list)
2708 {
2709 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2710 	int nid = page_to_nid(old_page);
2711 	bool alloc_retry = false;
2712 	struct page *new_page;
2713 	int ret = 0;
2714 
2715 	/*
2716 	 * Before dissolving the page, we need to allocate a new one for the
2717 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2718 	 * by doing everything but actually updating counters and adding to
2719 	 * the pool.  This simplifies and let us do most of the processing
2720 	 * under the lock.
2721 	 */
2722 alloc_retry:
2723 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2724 	if (!new_page)
2725 		return -ENOMEM;
2726 	/*
2727 	 * If all goes well, this page will be directly added to the free
2728 	 * list in the pool.  For this the ref count needs to be zero.
2729 	 * Attempt to drop now, and retry once if needed.  It is VERY
2730 	 * unlikely there is another ref on the page.
2731 	 *
2732 	 * If someone else has a reference to the page, it will be freed
2733 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2734 	 * this.  Retry once if there is an inflated ref count.
2735 	 */
2736 	SetHPageTemporary(new_page);
2737 	if (!put_page_testzero(new_page)) {
2738 		if (alloc_retry)
2739 			return -EBUSY;
2740 
2741 		alloc_retry = true;
2742 		goto alloc_retry;
2743 	}
2744 	ClearHPageTemporary(new_page);
2745 
2746 	__prep_new_huge_page(h, new_page);
2747 
2748 retry:
2749 	spin_lock_irq(&hugetlb_lock);
2750 	if (!PageHuge(old_page)) {
2751 		/*
2752 		 * Freed from under us. Drop new_page too.
2753 		 */
2754 		goto free_new;
2755 	} else if (page_count(old_page)) {
2756 		/*
2757 		 * Someone has grabbed the page, try to isolate it here.
2758 		 * Fail with -EBUSY if not possible.
2759 		 */
2760 		spin_unlock_irq(&hugetlb_lock);
2761 		if (!isolate_huge_page(old_page, list))
2762 			ret = -EBUSY;
2763 		spin_lock_irq(&hugetlb_lock);
2764 		goto free_new;
2765 	} else if (!HPageFreed(old_page)) {
2766 		/*
2767 		 * Page's refcount is 0 but it has not been enqueued in the
2768 		 * freelist yet. Race window is small, so we can succeed here if
2769 		 * we retry.
2770 		 */
2771 		spin_unlock_irq(&hugetlb_lock);
2772 		cond_resched();
2773 		goto retry;
2774 	} else {
2775 		/*
2776 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2777 		 * the freelist and decrease the counters. These will be
2778 		 * incremented again when calling __prep_account_new_huge_page()
2779 		 * and enqueue_huge_page() for new_page. The counters will remain
2780 		 * stable since this happens under the lock.
2781 		 */
2782 		remove_hugetlb_page(h, old_page, false);
2783 
2784 		/*
2785 		 * Ref count on new page is already zero as it was dropped
2786 		 * earlier.  It can be directly added to the pool free list.
2787 		 */
2788 		__prep_account_new_huge_page(h, nid);
2789 		enqueue_huge_page(h, new_page);
2790 
2791 		/*
2792 		 * Pages have been replaced, we can safely free the old one.
2793 		 */
2794 		spin_unlock_irq(&hugetlb_lock);
2795 		update_and_free_page(h, old_page, false);
2796 	}
2797 
2798 	return ret;
2799 
2800 free_new:
2801 	spin_unlock_irq(&hugetlb_lock);
2802 	/* Page has a zero ref count, but needs a ref to be freed */
2803 	set_page_refcounted(new_page);
2804 	update_and_free_page(h, new_page, false);
2805 
2806 	return ret;
2807 }
2808 
2809 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2810 {
2811 	struct hstate *h;
2812 	struct page *head;
2813 	int ret = -EBUSY;
2814 
2815 	/*
2816 	 * The page might have been dissolved from under our feet, so make sure
2817 	 * to carefully check the state under the lock.
2818 	 * Return success when racing as if we dissolved the page ourselves.
2819 	 */
2820 	spin_lock_irq(&hugetlb_lock);
2821 	if (PageHuge(page)) {
2822 		head = compound_head(page);
2823 		h = page_hstate(head);
2824 	} else {
2825 		spin_unlock_irq(&hugetlb_lock);
2826 		return 0;
2827 	}
2828 	spin_unlock_irq(&hugetlb_lock);
2829 
2830 	/*
2831 	 * Fence off gigantic pages as there is a cyclic dependency between
2832 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2833 	 * of bailing out right away without further retrying.
2834 	 */
2835 	if (hstate_is_gigantic(h))
2836 		return -ENOMEM;
2837 
2838 	if (page_count(head) && isolate_huge_page(head, list))
2839 		ret = 0;
2840 	else if (!page_count(head))
2841 		ret = alloc_and_dissolve_huge_page(h, head, list);
2842 
2843 	return ret;
2844 }
2845 
2846 struct page *alloc_huge_page(struct vm_area_struct *vma,
2847 				    unsigned long addr, int avoid_reserve)
2848 {
2849 	struct hugepage_subpool *spool = subpool_vma(vma);
2850 	struct hstate *h = hstate_vma(vma);
2851 	struct page *page;
2852 	long map_chg, map_commit;
2853 	long gbl_chg;
2854 	int ret, idx;
2855 	struct hugetlb_cgroup *h_cg;
2856 	bool deferred_reserve;
2857 
2858 	idx = hstate_index(h);
2859 	/*
2860 	 * Examine the region/reserve map to determine if the process
2861 	 * has a reservation for the page to be allocated.  A return
2862 	 * code of zero indicates a reservation exists (no change).
2863 	 */
2864 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2865 	if (map_chg < 0)
2866 		return ERR_PTR(-ENOMEM);
2867 
2868 	/*
2869 	 * Processes that did not create the mapping will have no
2870 	 * reserves as indicated by the region/reserve map. Check
2871 	 * that the allocation will not exceed the subpool limit.
2872 	 * Allocations for MAP_NORESERVE mappings also need to be
2873 	 * checked against any subpool limit.
2874 	 */
2875 	if (map_chg || avoid_reserve) {
2876 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2877 		if (gbl_chg < 0) {
2878 			vma_end_reservation(h, vma, addr);
2879 			return ERR_PTR(-ENOSPC);
2880 		}
2881 
2882 		/*
2883 		 * Even though there was no reservation in the region/reserve
2884 		 * map, there could be reservations associated with the
2885 		 * subpool that can be used.  This would be indicated if the
2886 		 * return value of hugepage_subpool_get_pages() is zero.
2887 		 * However, if avoid_reserve is specified we still avoid even
2888 		 * the subpool reservations.
2889 		 */
2890 		if (avoid_reserve)
2891 			gbl_chg = 1;
2892 	}
2893 
2894 	/* If this allocation is not consuming a reservation, charge it now.
2895 	 */
2896 	deferred_reserve = map_chg || avoid_reserve;
2897 	if (deferred_reserve) {
2898 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2899 			idx, pages_per_huge_page(h), &h_cg);
2900 		if (ret)
2901 			goto out_subpool_put;
2902 	}
2903 
2904 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2905 	if (ret)
2906 		goto out_uncharge_cgroup_reservation;
2907 
2908 	spin_lock_irq(&hugetlb_lock);
2909 	/*
2910 	 * glb_chg is passed to indicate whether or not a page must be taken
2911 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2912 	 * a reservation exists for the allocation.
2913 	 */
2914 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2915 	if (!page) {
2916 		spin_unlock_irq(&hugetlb_lock);
2917 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2918 		if (!page)
2919 			goto out_uncharge_cgroup;
2920 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2921 			SetHPageRestoreReserve(page);
2922 			h->resv_huge_pages--;
2923 		}
2924 		spin_lock_irq(&hugetlb_lock);
2925 		list_add(&page->lru, &h->hugepage_activelist);
2926 		/* Fall through */
2927 	}
2928 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2929 	/* If allocation is not consuming a reservation, also store the
2930 	 * hugetlb_cgroup pointer on the page.
2931 	 */
2932 	if (deferred_reserve) {
2933 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2934 						  h_cg, page);
2935 	}
2936 
2937 	spin_unlock_irq(&hugetlb_lock);
2938 
2939 	hugetlb_set_page_subpool(page, spool);
2940 
2941 	map_commit = vma_commit_reservation(h, vma, addr);
2942 	if (unlikely(map_chg > map_commit)) {
2943 		/*
2944 		 * The page was added to the reservation map between
2945 		 * vma_needs_reservation and vma_commit_reservation.
2946 		 * This indicates a race with hugetlb_reserve_pages.
2947 		 * Adjust for the subpool count incremented above AND
2948 		 * in hugetlb_reserve_pages for the same page.  Also,
2949 		 * the reservation count added in hugetlb_reserve_pages
2950 		 * no longer applies.
2951 		 */
2952 		long rsv_adjust;
2953 
2954 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2955 		hugetlb_acct_memory(h, -rsv_adjust);
2956 		if (deferred_reserve)
2957 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2958 					pages_per_huge_page(h), page);
2959 	}
2960 	return page;
2961 
2962 out_uncharge_cgroup:
2963 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2964 out_uncharge_cgroup_reservation:
2965 	if (deferred_reserve)
2966 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2967 						    h_cg);
2968 out_subpool_put:
2969 	if (map_chg || avoid_reserve)
2970 		hugepage_subpool_put_pages(spool, 1);
2971 	vma_end_reservation(h, vma, addr);
2972 	return ERR_PTR(-ENOSPC);
2973 }
2974 
2975 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2976 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2977 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2978 {
2979 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2980 	int nr_nodes, node;
2981 
2982 	if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2983 		return 0;
2984 	/* do node specific alloc */
2985 	if (nid != NUMA_NO_NODE) {
2986 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2987 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2988 		if (!m)
2989 			return 0;
2990 		goto found;
2991 	}
2992 	/* allocate from next node when distributing huge pages */
2993 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2994 		m = memblock_alloc_try_nid_raw(
2995 				huge_page_size(h), huge_page_size(h),
2996 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2997 		/*
2998 		 * Use the beginning of the huge page to store the
2999 		 * huge_bootmem_page struct (until gather_bootmem
3000 		 * puts them into the mem_map).
3001 		 */
3002 		if (!m)
3003 			return 0;
3004 		goto found;
3005 	}
3006 
3007 found:
3008 	/* Put them into a private list first because mem_map is not up yet */
3009 	INIT_LIST_HEAD(&m->list);
3010 	list_add(&m->list, &huge_boot_pages);
3011 	m->hstate = h;
3012 	return 1;
3013 }
3014 
3015 /*
3016  * Put bootmem huge pages into the standard lists after mem_map is up.
3017  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3018  */
3019 static void __init gather_bootmem_prealloc(void)
3020 {
3021 	struct huge_bootmem_page *m;
3022 
3023 	list_for_each_entry(m, &huge_boot_pages, list) {
3024 		struct page *page = virt_to_page(m);
3025 		struct hstate *h = m->hstate;
3026 
3027 		VM_BUG_ON(!hstate_is_gigantic(h));
3028 		WARN_ON(page_count(page) != 1);
3029 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3030 			WARN_ON(PageReserved(page));
3031 			prep_new_huge_page(h, page, page_to_nid(page));
3032 			put_page(page); /* add to the hugepage allocator */
3033 		} else {
3034 			/* VERY unlikely inflated ref count on a tail page */
3035 			free_gigantic_page(page, huge_page_order(h));
3036 		}
3037 
3038 		/*
3039 		 * We need to restore the 'stolen' pages to totalram_pages
3040 		 * in order to fix confusing memory reports from free(1) and
3041 		 * other side-effects, like CommitLimit going negative.
3042 		 */
3043 		adjust_managed_page_count(page, pages_per_huge_page(h));
3044 		cond_resched();
3045 	}
3046 }
3047 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3048 {
3049 	unsigned long i;
3050 	char buf[32];
3051 
3052 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3053 		if (hstate_is_gigantic(h)) {
3054 			if (!alloc_bootmem_huge_page(h, nid))
3055 				break;
3056 		} else {
3057 			struct page *page;
3058 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3059 
3060 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3061 					&node_states[N_MEMORY], NULL);
3062 			if (!page)
3063 				break;
3064 			put_page(page); /* free it into the hugepage allocator */
3065 		}
3066 		cond_resched();
3067 	}
3068 	if (i == h->max_huge_pages_node[nid])
3069 		return;
3070 
3071 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3072 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3073 		h->max_huge_pages_node[nid], buf, nid, i);
3074 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3075 	h->max_huge_pages_node[nid] = i;
3076 }
3077 
3078 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3079 {
3080 	unsigned long i;
3081 	nodemask_t *node_alloc_noretry;
3082 	bool node_specific_alloc = false;
3083 
3084 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3085 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3086 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3087 		return;
3088 	}
3089 
3090 	/* do node specific alloc */
3091 	for (i = 0; i < nr_online_nodes; i++) {
3092 		if (h->max_huge_pages_node[i] > 0) {
3093 			hugetlb_hstate_alloc_pages_onenode(h, i);
3094 			node_specific_alloc = true;
3095 		}
3096 	}
3097 
3098 	if (node_specific_alloc)
3099 		return;
3100 
3101 	/* below will do all node balanced alloc */
3102 	if (!hstate_is_gigantic(h)) {
3103 		/*
3104 		 * Bit mask controlling how hard we retry per-node allocations.
3105 		 * Ignore errors as lower level routines can deal with
3106 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3107 		 * time, we are likely in bigger trouble.
3108 		 */
3109 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3110 						GFP_KERNEL);
3111 	} else {
3112 		/* allocations done at boot time */
3113 		node_alloc_noretry = NULL;
3114 	}
3115 
3116 	/* bit mask controlling how hard we retry per-node allocations */
3117 	if (node_alloc_noretry)
3118 		nodes_clear(*node_alloc_noretry);
3119 
3120 	for (i = 0; i < h->max_huge_pages; ++i) {
3121 		if (hstate_is_gigantic(h)) {
3122 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3123 				break;
3124 		} else if (!alloc_pool_huge_page(h,
3125 					 &node_states[N_MEMORY],
3126 					 node_alloc_noretry))
3127 			break;
3128 		cond_resched();
3129 	}
3130 	if (i < h->max_huge_pages) {
3131 		char buf[32];
3132 
3133 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3134 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3135 			h->max_huge_pages, buf, i);
3136 		h->max_huge_pages = i;
3137 	}
3138 	kfree(node_alloc_noretry);
3139 }
3140 
3141 static void __init hugetlb_init_hstates(void)
3142 {
3143 	struct hstate *h, *h2;
3144 
3145 	for_each_hstate(h) {
3146 		if (minimum_order > huge_page_order(h))
3147 			minimum_order = huge_page_order(h);
3148 
3149 		/* oversize hugepages were init'ed in early boot */
3150 		if (!hstate_is_gigantic(h))
3151 			hugetlb_hstate_alloc_pages(h);
3152 
3153 		/*
3154 		 * Set demote order for each hstate.  Note that
3155 		 * h->demote_order is initially 0.
3156 		 * - We can not demote gigantic pages if runtime freeing
3157 		 *   is not supported, so skip this.
3158 		 * - If CMA allocation is possible, we can not demote
3159 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3160 		 */
3161 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3162 			continue;
3163 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3164 			continue;
3165 		for_each_hstate(h2) {
3166 			if (h2 == h)
3167 				continue;
3168 			if (h2->order < h->order &&
3169 			    h2->order > h->demote_order)
3170 				h->demote_order = h2->order;
3171 		}
3172 	}
3173 	VM_BUG_ON(minimum_order == UINT_MAX);
3174 }
3175 
3176 static void __init report_hugepages(void)
3177 {
3178 	struct hstate *h;
3179 
3180 	for_each_hstate(h) {
3181 		char buf[32];
3182 
3183 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3184 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3185 			buf, h->free_huge_pages);
3186 	}
3187 }
3188 
3189 #ifdef CONFIG_HIGHMEM
3190 static void try_to_free_low(struct hstate *h, unsigned long count,
3191 						nodemask_t *nodes_allowed)
3192 {
3193 	int i;
3194 	LIST_HEAD(page_list);
3195 
3196 	lockdep_assert_held(&hugetlb_lock);
3197 	if (hstate_is_gigantic(h))
3198 		return;
3199 
3200 	/*
3201 	 * Collect pages to be freed on a list, and free after dropping lock
3202 	 */
3203 	for_each_node_mask(i, *nodes_allowed) {
3204 		struct page *page, *next;
3205 		struct list_head *freel = &h->hugepage_freelists[i];
3206 		list_for_each_entry_safe(page, next, freel, lru) {
3207 			if (count >= h->nr_huge_pages)
3208 				goto out;
3209 			if (PageHighMem(page))
3210 				continue;
3211 			remove_hugetlb_page(h, page, false);
3212 			list_add(&page->lru, &page_list);
3213 		}
3214 	}
3215 
3216 out:
3217 	spin_unlock_irq(&hugetlb_lock);
3218 	update_and_free_pages_bulk(h, &page_list);
3219 	spin_lock_irq(&hugetlb_lock);
3220 }
3221 #else
3222 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3223 						nodemask_t *nodes_allowed)
3224 {
3225 }
3226 #endif
3227 
3228 /*
3229  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3230  * balanced by operating on them in a round-robin fashion.
3231  * Returns 1 if an adjustment was made.
3232  */
3233 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3234 				int delta)
3235 {
3236 	int nr_nodes, node;
3237 
3238 	lockdep_assert_held(&hugetlb_lock);
3239 	VM_BUG_ON(delta != -1 && delta != 1);
3240 
3241 	if (delta < 0) {
3242 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3243 			if (h->surplus_huge_pages_node[node])
3244 				goto found;
3245 		}
3246 	} else {
3247 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3248 			if (h->surplus_huge_pages_node[node] <
3249 					h->nr_huge_pages_node[node])
3250 				goto found;
3251 		}
3252 	}
3253 	return 0;
3254 
3255 found:
3256 	h->surplus_huge_pages += delta;
3257 	h->surplus_huge_pages_node[node] += delta;
3258 	return 1;
3259 }
3260 
3261 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3262 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3263 			      nodemask_t *nodes_allowed)
3264 {
3265 	unsigned long min_count, ret;
3266 	struct page *page;
3267 	LIST_HEAD(page_list);
3268 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3269 
3270 	/*
3271 	 * Bit mask controlling how hard we retry per-node allocations.
3272 	 * If we can not allocate the bit mask, do not attempt to allocate
3273 	 * the requested huge pages.
3274 	 */
3275 	if (node_alloc_noretry)
3276 		nodes_clear(*node_alloc_noretry);
3277 	else
3278 		return -ENOMEM;
3279 
3280 	/*
3281 	 * resize_lock mutex prevents concurrent adjustments to number of
3282 	 * pages in hstate via the proc/sysfs interfaces.
3283 	 */
3284 	mutex_lock(&h->resize_lock);
3285 	flush_free_hpage_work(h);
3286 	spin_lock_irq(&hugetlb_lock);
3287 
3288 	/*
3289 	 * Check for a node specific request.
3290 	 * Changing node specific huge page count may require a corresponding
3291 	 * change to the global count.  In any case, the passed node mask
3292 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3293 	 */
3294 	if (nid != NUMA_NO_NODE) {
3295 		unsigned long old_count = count;
3296 
3297 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3298 		/*
3299 		 * User may have specified a large count value which caused the
3300 		 * above calculation to overflow.  In this case, they wanted
3301 		 * to allocate as many huge pages as possible.  Set count to
3302 		 * largest possible value to align with their intention.
3303 		 */
3304 		if (count < old_count)
3305 			count = ULONG_MAX;
3306 	}
3307 
3308 	/*
3309 	 * Gigantic pages runtime allocation depend on the capability for large
3310 	 * page range allocation.
3311 	 * If the system does not provide this feature, return an error when
3312 	 * the user tries to allocate gigantic pages but let the user free the
3313 	 * boottime allocated gigantic pages.
3314 	 */
3315 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3316 		if (count > persistent_huge_pages(h)) {
3317 			spin_unlock_irq(&hugetlb_lock);
3318 			mutex_unlock(&h->resize_lock);
3319 			NODEMASK_FREE(node_alloc_noretry);
3320 			return -EINVAL;
3321 		}
3322 		/* Fall through to decrease pool */
3323 	}
3324 
3325 	/*
3326 	 * Increase the pool size
3327 	 * First take pages out of surplus state.  Then make up the
3328 	 * remaining difference by allocating fresh huge pages.
3329 	 *
3330 	 * We might race with alloc_surplus_huge_page() here and be unable
3331 	 * to convert a surplus huge page to a normal huge page. That is
3332 	 * not critical, though, it just means the overall size of the
3333 	 * pool might be one hugepage larger than it needs to be, but
3334 	 * within all the constraints specified by the sysctls.
3335 	 */
3336 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3337 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3338 			break;
3339 	}
3340 
3341 	while (count > persistent_huge_pages(h)) {
3342 		/*
3343 		 * If this allocation races such that we no longer need the
3344 		 * page, free_huge_page will handle it by freeing the page
3345 		 * and reducing the surplus.
3346 		 */
3347 		spin_unlock_irq(&hugetlb_lock);
3348 
3349 		/* yield cpu to avoid soft lockup */
3350 		cond_resched();
3351 
3352 		ret = alloc_pool_huge_page(h, nodes_allowed,
3353 						node_alloc_noretry);
3354 		spin_lock_irq(&hugetlb_lock);
3355 		if (!ret)
3356 			goto out;
3357 
3358 		/* Bail for signals. Probably ctrl-c from user */
3359 		if (signal_pending(current))
3360 			goto out;
3361 	}
3362 
3363 	/*
3364 	 * Decrease the pool size
3365 	 * First return free pages to the buddy allocator (being careful
3366 	 * to keep enough around to satisfy reservations).  Then place
3367 	 * pages into surplus state as needed so the pool will shrink
3368 	 * to the desired size as pages become free.
3369 	 *
3370 	 * By placing pages into the surplus state independent of the
3371 	 * overcommit value, we are allowing the surplus pool size to
3372 	 * exceed overcommit. There are few sane options here. Since
3373 	 * alloc_surplus_huge_page() is checking the global counter,
3374 	 * though, we'll note that we're not allowed to exceed surplus
3375 	 * and won't grow the pool anywhere else. Not until one of the
3376 	 * sysctls are changed, or the surplus pages go out of use.
3377 	 */
3378 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3379 	min_count = max(count, min_count);
3380 	try_to_free_low(h, min_count, nodes_allowed);
3381 
3382 	/*
3383 	 * Collect pages to be removed on list without dropping lock
3384 	 */
3385 	while (min_count < persistent_huge_pages(h)) {
3386 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3387 		if (!page)
3388 			break;
3389 
3390 		list_add(&page->lru, &page_list);
3391 	}
3392 	/* free the pages after dropping lock */
3393 	spin_unlock_irq(&hugetlb_lock);
3394 	update_and_free_pages_bulk(h, &page_list);
3395 	flush_free_hpage_work(h);
3396 	spin_lock_irq(&hugetlb_lock);
3397 
3398 	while (count < persistent_huge_pages(h)) {
3399 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3400 			break;
3401 	}
3402 out:
3403 	h->max_huge_pages = persistent_huge_pages(h);
3404 	spin_unlock_irq(&hugetlb_lock);
3405 	mutex_unlock(&h->resize_lock);
3406 
3407 	NODEMASK_FREE(node_alloc_noretry);
3408 
3409 	return 0;
3410 }
3411 
3412 static int demote_free_huge_page(struct hstate *h, struct page *page)
3413 {
3414 	int i, nid = page_to_nid(page);
3415 	struct hstate *target_hstate;
3416 	int rc = 0;
3417 
3418 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3419 
3420 	remove_hugetlb_page_for_demote(h, page, false);
3421 	spin_unlock_irq(&hugetlb_lock);
3422 
3423 	rc = alloc_huge_page_vmemmap(h, page);
3424 	if (rc) {
3425 		/* Allocation of vmemmmap failed, we can not demote page */
3426 		spin_lock_irq(&hugetlb_lock);
3427 		set_page_refcounted(page);
3428 		add_hugetlb_page(h, page, false);
3429 		return rc;
3430 	}
3431 
3432 	/*
3433 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3434 	 * sizes as it will not ref count pages.
3435 	 */
3436 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3437 
3438 	/*
3439 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3440 	 * Without the mutex, pages added to target hstate could be marked
3441 	 * as surplus.
3442 	 *
3443 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3444 	 * use the convention of always taking larger size hstate mutex first.
3445 	 */
3446 	mutex_lock(&target_hstate->resize_lock);
3447 	for (i = 0; i < pages_per_huge_page(h);
3448 				i += pages_per_huge_page(target_hstate)) {
3449 		if (hstate_is_gigantic(target_hstate))
3450 			prep_compound_gigantic_page_for_demote(page + i,
3451 							target_hstate->order);
3452 		else
3453 			prep_compound_page(page + i, target_hstate->order);
3454 		set_page_private(page + i, 0);
3455 		set_page_refcounted(page + i);
3456 		prep_new_huge_page(target_hstate, page + i, nid);
3457 		put_page(page + i);
3458 	}
3459 	mutex_unlock(&target_hstate->resize_lock);
3460 
3461 	spin_lock_irq(&hugetlb_lock);
3462 
3463 	/*
3464 	 * Not absolutely necessary, but for consistency update max_huge_pages
3465 	 * based on pool changes for the demoted page.
3466 	 */
3467 	h->max_huge_pages--;
3468 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3469 
3470 	return rc;
3471 }
3472 
3473 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3474 	__must_hold(&hugetlb_lock)
3475 {
3476 	int nr_nodes, node;
3477 	struct page *page;
3478 
3479 	lockdep_assert_held(&hugetlb_lock);
3480 
3481 	/* We should never get here if no demote order */
3482 	if (!h->demote_order) {
3483 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3484 		return -EINVAL;		/* internal error */
3485 	}
3486 
3487 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3488 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3489 			if (PageHWPoison(page))
3490 				continue;
3491 
3492 			return demote_free_huge_page(h, page);
3493 		}
3494 	}
3495 
3496 	/*
3497 	 * Only way to get here is if all pages on free lists are poisoned.
3498 	 * Return -EBUSY so that caller will not retry.
3499 	 */
3500 	return -EBUSY;
3501 }
3502 
3503 #define HSTATE_ATTR_RO(_name) \
3504 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3505 
3506 #define HSTATE_ATTR_WO(_name) \
3507 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3508 
3509 #define HSTATE_ATTR(_name) \
3510 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3511 
3512 static struct kobject *hugepages_kobj;
3513 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3514 
3515 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3516 
3517 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3518 {
3519 	int i;
3520 
3521 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3522 		if (hstate_kobjs[i] == kobj) {
3523 			if (nidp)
3524 				*nidp = NUMA_NO_NODE;
3525 			return &hstates[i];
3526 		}
3527 
3528 	return kobj_to_node_hstate(kobj, nidp);
3529 }
3530 
3531 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3532 					struct kobj_attribute *attr, char *buf)
3533 {
3534 	struct hstate *h;
3535 	unsigned long nr_huge_pages;
3536 	int nid;
3537 
3538 	h = kobj_to_hstate(kobj, &nid);
3539 	if (nid == NUMA_NO_NODE)
3540 		nr_huge_pages = h->nr_huge_pages;
3541 	else
3542 		nr_huge_pages = h->nr_huge_pages_node[nid];
3543 
3544 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3545 }
3546 
3547 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3548 					   struct hstate *h, int nid,
3549 					   unsigned long count, size_t len)
3550 {
3551 	int err;
3552 	nodemask_t nodes_allowed, *n_mask;
3553 
3554 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3555 		return -EINVAL;
3556 
3557 	if (nid == NUMA_NO_NODE) {
3558 		/*
3559 		 * global hstate attribute
3560 		 */
3561 		if (!(obey_mempolicy &&
3562 				init_nodemask_of_mempolicy(&nodes_allowed)))
3563 			n_mask = &node_states[N_MEMORY];
3564 		else
3565 			n_mask = &nodes_allowed;
3566 	} else {
3567 		/*
3568 		 * Node specific request.  count adjustment happens in
3569 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3570 		 */
3571 		init_nodemask_of_node(&nodes_allowed, nid);
3572 		n_mask = &nodes_allowed;
3573 	}
3574 
3575 	err = set_max_huge_pages(h, count, nid, n_mask);
3576 
3577 	return err ? err : len;
3578 }
3579 
3580 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3581 					 struct kobject *kobj, const char *buf,
3582 					 size_t len)
3583 {
3584 	struct hstate *h;
3585 	unsigned long count;
3586 	int nid;
3587 	int err;
3588 
3589 	err = kstrtoul(buf, 10, &count);
3590 	if (err)
3591 		return err;
3592 
3593 	h = kobj_to_hstate(kobj, &nid);
3594 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3595 }
3596 
3597 static ssize_t nr_hugepages_show(struct kobject *kobj,
3598 				       struct kobj_attribute *attr, char *buf)
3599 {
3600 	return nr_hugepages_show_common(kobj, attr, buf);
3601 }
3602 
3603 static ssize_t nr_hugepages_store(struct kobject *kobj,
3604 	       struct kobj_attribute *attr, const char *buf, size_t len)
3605 {
3606 	return nr_hugepages_store_common(false, kobj, buf, len);
3607 }
3608 HSTATE_ATTR(nr_hugepages);
3609 
3610 #ifdef CONFIG_NUMA
3611 
3612 /*
3613  * hstate attribute for optionally mempolicy-based constraint on persistent
3614  * huge page alloc/free.
3615  */
3616 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3617 					   struct kobj_attribute *attr,
3618 					   char *buf)
3619 {
3620 	return nr_hugepages_show_common(kobj, attr, buf);
3621 }
3622 
3623 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3624 	       struct kobj_attribute *attr, const char *buf, size_t len)
3625 {
3626 	return nr_hugepages_store_common(true, kobj, buf, len);
3627 }
3628 HSTATE_ATTR(nr_hugepages_mempolicy);
3629 #endif
3630 
3631 
3632 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3633 					struct kobj_attribute *attr, char *buf)
3634 {
3635 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3636 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3637 }
3638 
3639 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3640 		struct kobj_attribute *attr, const char *buf, size_t count)
3641 {
3642 	int err;
3643 	unsigned long input;
3644 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3645 
3646 	if (hstate_is_gigantic(h))
3647 		return -EINVAL;
3648 
3649 	err = kstrtoul(buf, 10, &input);
3650 	if (err)
3651 		return err;
3652 
3653 	spin_lock_irq(&hugetlb_lock);
3654 	h->nr_overcommit_huge_pages = input;
3655 	spin_unlock_irq(&hugetlb_lock);
3656 
3657 	return count;
3658 }
3659 HSTATE_ATTR(nr_overcommit_hugepages);
3660 
3661 static ssize_t free_hugepages_show(struct kobject *kobj,
3662 					struct kobj_attribute *attr, char *buf)
3663 {
3664 	struct hstate *h;
3665 	unsigned long free_huge_pages;
3666 	int nid;
3667 
3668 	h = kobj_to_hstate(kobj, &nid);
3669 	if (nid == NUMA_NO_NODE)
3670 		free_huge_pages = h->free_huge_pages;
3671 	else
3672 		free_huge_pages = h->free_huge_pages_node[nid];
3673 
3674 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3675 }
3676 HSTATE_ATTR_RO(free_hugepages);
3677 
3678 static ssize_t resv_hugepages_show(struct kobject *kobj,
3679 					struct kobj_attribute *attr, char *buf)
3680 {
3681 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3682 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3683 }
3684 HSTATE_ATTR_RO(resv_hugepages);
3685 
3686 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3687 					struct kobj_attribute *attr, char *buf)
3688 {
3689 	struct hstate *h;
3690 	unsigned long surplus_huge_pages;
3691 	int nid;
3692 
3693 	h = kobj_to_hstate(kobj, &nid);
3694 	if (nid == NUMA_NO_NODE)
3695 		surplus_huge_pages = h->surplus_huge_pages;
3696 	else
3697 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3698 
3699 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3700 }
3701 HSTATE_ATTR_RO(surplus_hugepages);
3702 
3703 static ssize_t demote_store(struct kobject *kobj,
3704 	       struct kobj_attribute *attr, const char *buf, size_t len)
3705 {
3706 	unsigned long nr_demote;
3707 	unsigned long nr_available;
3708 	nodemask_t nodes_allowed, *n_mask;
3709 	struct hstate *h;
3710 	int err = 0;
3711 	int nid;
3712 
3713 	err = kstrtoul(buf, 10, &nr_demote);
3714 	if (err)
3715 		return err;
3716 	h = kobj_to_hstate(kobj, &nid);
3717 
3718 	if (nid != NUMA_NO_NODE) {
3719 		init_nodemask_of_node(&nodes_allowed, nid);
3720 		n_mask = &nodes_allowed;
3721 	} else {
3722 		n_mask = &node_states[N_MEMORY];
3723 	}
3724 
3725 	/* Synchronize with other sysfs operations modifying huge pages */
3726 	mutex_lock(&h->resize_lock);
3727 	spin_lock_irq(&hugetlb_lock);
3728 
3729 	while (nr_demote) {
3730 		/*
3731 		 * Check for available pages to demote each time thorough the
3732 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3733 		 */
3734 		if (nid != NUMA_NO_NODE)
3735 			nr_available = h->free_huge_pages_node[nid];
3736 		else
3737 			nr_available = h->free_huge_pages;
3738 		nr_available -= h->resv_huge_pages;
3739 		if (!nr_available)
3740 			break;
3741 
3742 		err = demote_pool_huge_page(h, n_mask);
3743 		if (err)
3744 			break;
3745 
3746 		nr_demote--;
3747 	}
3748 
3749 	spin_unlock_irq(&hugetlb_lock);
3750 	mutex_unlock(&h->resize_lock);
3751 
3752 	if (err)
3753 		return err;
3754 	return len;
3755 }
3756 HSTATE_ATTR_WO(demote);
3757 
3758 static ssize_t demote_size_show(struct kobject *kobj,
3759 					struct kobj_attribute *attr, char *buf)
3760 {
3761 	int nid;
3762 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3763 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3764 
3765 	return sysfs_emit(buf, "%lukB\n", demote_size);
3766 }
3767 
3768 static ssize_t demote_size_store(struct kobject *kobj,
3769 					struct kobj_attribute *attr,
3770 					const char *buf, size_t count)
3771 {
3772 	struct hstate *h, *demote_hstate;
3773 	unsigned long demote_size;
3774 	unsigned int demote_order;
3775 	int nid;
3776 
3777 	demote_size = (unsigned long)memparse(buf, NULL);
3778 
3779 	demote_hstate = size_to_hstate(demote_size);
3780 	if (!demote_hstate)
3781 		return -EINVAL;
3782 	demote_order = demote_hstate->order;
3783 	if (demote_order < HUGETLB_PAGE_ORDER)
3784 		return -EINVAL;
3785 
3786 	/* demote order must be smaller than hstate order */
3787 	h = kobj_to_hstate(kobj, &nid);
3788 	if (demote_order >= h->order)
3789 		return -EINVAL;
3790 
3791 	/* resize_lock synchronizes access to demote size and writes */
3792 	mutex_lock(&h->resize_lock);
3793 	h->demote_order = demote_order;
3794 	mutex_unlock(&h->resize_lock);
3795 
3796 	return count;
3797 }
3798 HSTATE_ATTR(demote_size);
3799 
3800 static struct attribute *hstate_attrs[] = {
3801 	&nr_hugepages_attr.attr,
3802 	&nr_overcommit_hugepages_attr.attr,
3803 	&free_hugepages_attr.attr,
3804 	&resv_hugepages_attr.attr,
3805 	&surplus_hugepages_attr.attr,
3806 #ifdef CONFIG_NUMA
3807 	&nr_hugepages_mempolicy_attr.attr,
3808 #endif
3809 	NULL,
3810 };
3811 
3812 static const struct attribute_group hstate_attr_group = {
3813 	.attrs = hstate_attrs,
3814 };
3815 
3816 static struct attribute *hstate_demote_attrs[] = {
3817 	&demote_size_attr.attr,
3818 	&demote_attr.attr,
3819 	NULL,
3820 };
3821 
3822 static const struct attribute_group hstate_demote_attr_group = {
3823 	.attrs = hstate_demote_attrs,
3824 };
3825 
3826 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3827 				    struct kobject **hstate_kobjs,
3828 				    const struct attribute_group *hstate_attr_group)
3829 {
3830 	int retval;
3831 	int hi = hstate_index(h);
3832 
3833 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3834 	if (!hstate_kobjs[hi])
3835 		return -ENOMEM;
3836 
3837 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3838 	if (retval) {
3839 		kobject_put(hstate_kobjs[hi]);
3840 		hstate_kobjs[hi] = NULL;
3841 	}
3842 
3843 	if (h->demote_order) {
3844 		if (sysfs_create_group(hstate_kobjs[hi],
3845 					&hstate_demote_attr_group))
3846 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3847 	}
3848 
3849 	return retval;
3850 }
3851 
3852 static void __init hugetlb_sysfs_init(void)
3853 {
3854 	struct hstate *h;
3855 	int err;
3856 
3857 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3858 	if (!hugepages_kobj)
3859 		return;
3860 
3861 	for_each_hstate(h) {
3862 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3863 					 hstate_kobjs, &hstate_attr_group);
3864 		if (err)
3865 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3866 	}
3867 }
3868 
3869 #ifdef CONFIG_NUMA
3870 
3871 /*
3872  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3873  * with node devices in node_devices[] using a parallel array.  The array
3874  * index of a node device or _hstate == node id.
3875  * This is here to avoid any static dependency of the node device driver, in
3876  * the base kernel, on the hugetlb module.
3877  */
3878 struct node_hstate {
3879 	struct kobject		*hugepages_kobj;
3880 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3881 };
3882 static struct node_hstate node_hstates[MAX_NUMNODES];
3883 
3884 /*
3885  * A subset of global hstate attributes for node devices
3886  */
3887 static struct attribute *per_node_hstate_attrs[] = {
3888 	&nr_hugepages_attr.attr,
3889 	&free_hugepages_attr.attr,
3890 	&surplus_hugepages_attr.attr,
3891 	NULL,
3892 };
3893 
3894 static const struct attribute_group per_node_hstate_attr_group = {
3895 	.attrs = per_node_hstate_attrs,
3896 };
3897 
3898 /*
3899  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3900  * Returns node id via non-NULL nidp.
3901  */
3902 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3903 {
3904 	int nid;
3905 
3906 	for (nid = 0; nid < nr_node_ids; nid++) {
3907 		struct node_hstate *nhs = &node_hstates[nid];
3908 		int i;
3909 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3910 			if (nhs->hstate_kobjs[i] == kobj) {
3911 				if (nidp)
3912 					*nidp = nid;
3913 				return &hstates[i];
3914 			}
3915 	}
3916 
3917 	BUG();
3918 	return NULL;
3919 }
3920 
3921 /*
3922  * Unregister hstate attributes from a single node device.
3923  * No-op if no hstate attributes attached.
3924  */
3925 static void hugetlb_unregister_node(struct node *node)
3926 {
3927 	struct hstate *h;
3928 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3929 
3930 	if (!nhs->hugepages_kobj)
3931 		return;		/* no hstate attributes */
3932 
3933 	for_each_hstate(h) {
3934 		int idx = hstate_index(h);
3935 		if (nhs->hstate_kobjs[idx]) {
3936 			kobject_put(nhs->hstate_kobjs[idx]);
3937 			nhs->hstate_kobjs[idx] = NULL;
3938 		}
3939 	}
3940 
3941 	kobject_put(nhs->hugepages_kobj);
3942 	nhs->hugepages_kobj = NULL;
3943 }
3944 
3945 
3946 /*
3947  * Register hstate attributes for a single node device.
3948  * No-op if attributes already registered.
3949  */
3950 static void hugetlb_register_node(struct node *node)
3951 {
3952 	struct hstate *h;
3953 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3954 	int err;
3955 
3956 	if (nhs->hugepages_kobj)
3957 		return;		/* already allocated */
3958 
3959 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3960 							&node->dev.kobj);
3961 	if (!nhs->hugepages_kobj)
3962 		return;
3963 
3964 	for_each_hstate(h) {
3965 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3966 						nhs->hstate_kobjs,
3967 						&per_node_hstate_attr_group);
3968 		if (err) {
3969 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3970 				h->name, node->dev.id);
3971 			hugetlb_unregister_node(node);
3972 			break;
3973 		}
3974 	}
3975 }
3976 
3977 /*
3978  * hugetlb init time:  register hstate attributes for all registered node
3979  * devices of nodes that have memory.  All on-line nodes should have
3980  * registered their associated device by this time.
3981  */
3982 static void __init hugetlb_register_all_nodes(void)
3983 {
3984 	int nid;
3985 
3986 	for_each_node_state(nid, N_MEMORY) {
3987 		struct node *node = node_devices[nid];
3988 		if (node->dev.id == nid)
3989 			hugetlb_register_node(node);
3990 	}
3991 
3992 	/*
3993 	 * Let the node device driver know we're here so it can
3994 	 * [un]register hstate attributes on node hotplug.
3995 	 */
3996 	register_hugetlbfs_with_node(hugetlb_register_node,
3997 				     hugetlb_unregister_node);
3998 }
3999 #else	/* !CONFIG_NUMA */
4000 
4001 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4002 {
4003 	BUG();
4004 	if (nidp)
4005 		*nidp = -1;
4006 	return NULL;
4007 }
4008 
4009 static void hugetlb_register_all_nodes(void) { }
4010 
4011 #endif
4012 
4013 static int __init hugetlb_init(void)
4014 {
4015 	int i;
4016 
4017 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4018 			__NR_HPAGEFLAGS);
4019 
4020 	if (!hugepages_supported()) {
4021 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4022 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4023 		return 0;
4024 	}
4025 
4026 	/*
4027 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4028 	 * architectures depend on setup being done here.
4029 	 */
4030 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4031 	if (!parsed_default_hugepagesz) {
4032 		/*
4033 		 * If we did not parse a default huge page size, set
4034 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4035 		 * number of huge pages for this default size was implicitly
4036 		 * specified, set that here as well.
4037 		 * Note that the implicit setting will overwrite an explicit
4038 		 * setting.  A warning will be printed in this case.
4039 		 */
4040 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4041 		if (default_hstate_max_huge_pages) {
4042 			if (default_hstate.max_huge_pages) {
4043 				char buf[32];
4044 
4045 				string_get_size(huge_page_size(&default_hstate),
4046 					1, STRING_UNITS_2, buf, 32);
4047 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4048 					default_hstate.max_huge_pages, buf);
4049 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4050 					default_hstate_max_huge_pages);
4051 			}
4052 			default_hstate.max_huge_pages =
4053 				default_hstate_max_huge_pages;
4054 
4055 			for (i = 0; i < nr_online_nodes; i++)
4056 				default_hstate.max_huge_pages_node[i] =
4057 					default_hugepages_in_node[i];
4058 		}
4059 	}
4060 
4061 	hugetlb_cma_check();
4062 	hugetlb_init_hstates();
4063 	gather_bootmem_prealloc();
4064 	report_hugepages();
4065 
4066 	hugetlb_sysfs_init();
4067 	hugetlb_register_all_nodes();
4068 	hugetlb_cgroup_file_init();
4069 
4070 #ifdef CONFIG_SMP
4071 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4072 #else
4073 	num_fault_mutexes = 1;
4074 #endif
4075 	hugetlb_fault_mutex_table =
4076 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4077 			      GFP_KERNEL);
4078 	BUG_ON(!hugetlb_fault_mutex_table);
4079 
4080 	for (i = 0; i < num_fault_mutexes; i++)
4081 		mutex_init(&hugetlb_fault_mutex_table[i]);
4082 	return 0;
4083 }
4084 subsys_initcall(hugetlb_init);
4085 
4086 /* Overwritten by architectures with more huge page sizes */
4087 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4088 {
4089 	return size == HPAGE_SIZE;
4090 }
4091 
4092 void __init hugetlb_add_hstate(unsigned int order)
4093 {
4094 	struct hstate *h;
4095 	unsigned long i;
4096 
4097 	if (size_to_hstate(PAGE_SIZE << order)) {
4098 		return;
4099 	}
4100 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4101 	BUG_ON(order == 0);
4102 	h = &hstates[hugetlb_max_hstate++];
4103 	mutex_init(&h->resize_lock);
4104 	h->order = order;
4105 	h->mask = ~(huge_page_size(h) - 1);
4106 	for (i = 0; i < MAX_NUMNODES; ++i)
4107 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4108 	INIT_LIST_HEAD(&h->hugepage_activelist);
4109 	h->next_nid_to_alloc = first_memory_node;
4110 	h->next_nid_to_free = first_memory_node;
4111 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4112 					huge_page_size(h)/1024);
4113 	hugetlb_vmemmap_init(h);
4114 
4115 	parsed_hstate = h;
4116 }
4117 
4118 bool __init __weak hugetlb_node_alloc_supported(void)
4119 {
4120 	return true;
4121 }
4122 /*
4123  * hugepages command line processing
4124  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4125  * specification.  If not, ignore the hugepages value.  hugepages can also
4126  * be the first huge page command line  option in which case it implicitly
4127  * specifies the number of huge pages for the default size.
4128  */
4129 static int __init hugepages_setup(char *s)
4130 {
4131 	unsigned long *mhp;
4132 	static unsigned long *last_mhp;
4133 	int node = NUMA_NO_NODE;
4134 	int count;
4135 	unsigned long tmp;
4136 	char *p = s;
4137 
4138 	if (!parsed_valid_hugepagesz) {
4139 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4140 		parsed_valid_hugepagesz = true;
4141 		return 0;
4142 	}
4143 
4144 	/*
4145 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4146 	 * yet, so this hugepages= parameter goes to the "default hstate".
4147 	 * Otherwise, it goes with the previously parsed hugepagesz or
4148 	 * default_hugepagesz.
4149 	 */
4150 	else if (!hugetlb_max_hstate)
4151 		mhp = &default_hstate_max_huge_pages;
4152 	else
4153 		mhp = &parsed_hstate->max_huge_pages;
4154 
4155 	if (mhp == last_mhp) {
4156 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4157 		return 0;
4158 	}
4159 
4160 	while (*p) {
4161 		count = 0;
4162 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4163 			goto invalid;
4164 		/* Parameter is node format */
4165 		if (p[count] == ':') {
4166 			if (!hugetlb_node_alloc_supported()) {
4167 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4168 				return 0;
4169 			}
4170 			if (tmp >= nr_online_nodes)
4171 				goto invalid;
4172 			node = array_index_nospec(tmp, nr_online_nodes);
4173 			p += count + 1;
4174 			/* Parse hugepages */
4175 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4176 				goto invalid;
4177 			if (!hugetlb_max_hstate)
4178 				default_hugepages_in_node[node] = tmp;
4179 			else
4180 				parsed_hstate->max_huge_pages_node[node] = tmp;
4181 			*mhp += tmp;
4182 			/* Go to parse next node*/
4183 			if (p[count] == ',')
4184 				p += count + 1;
4185 			else
4186 				break;
4187 		} else {
4188 			if (p != s)
4189 				goto invalid;
4190 			*mhp = tmp;
4191 			break;
4192 		}
4193 	}
4194 
4195 	/*
4196 	 * Global state is always initialized later in hugetlb_init.
4197 	 * But we need to allocate gigantic hstates here early to still
4198 	 * use the bootmem allocator.
4199 	 */
4200 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4201 		hugetlb_hstate_alloc_pages(parsed_hstate);
4202 
4203 	last_mhp = mhp;
4204 
4205 	return 1;
4206 
4207 invalid:
4208 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4209 	return 0;
4210 }
4211 __setup("hugepages=", hugepages_setup);
4212 
4213 /*
4214  * hugepagesz command line processing
4215  * A specific huge page size can only be specified once with hugepagesz.
4216  * hugepagesz is followed by hugepages on the command line.  The global
4217  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4218  * hugepagesz argument was valid.
4219  */
4220 static int __init hugepagesz_setup(char *s)
4221 {
4222 	unsigned long size;
4223 	struct hstate *h;
4224 
4225 	parsed_valid_hugepagesz = false;
4226 	size = (unsigned long)memparse(s, NULL);
4227 
4228 	if (!arch_hugetlb_valid_size(size)) {
4229 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4230 		return 0;
4231 	}
4232 
4233 	h = size_to_hstate(size);
4234 	if (h) {
4235 		/*
4236 		 * hstate for this size already exists.  This is normally
4237 		 * an error, but is allowed if the existing hstate is the
4238 		 * default hstate.  More specifically, it is only allowed if
4239 		 * the number of huge pages for the default hstate was not
4240 		 * previously specified.
4241 		 */
4242 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4243 		    default_hstate.max_huge_pages) {
4244 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4245 			return 0;
4246 		}
4247 
4248 		/*
4249 		 * No need to call hugetlb_add_hstate() as hstate already
4250 		 * exists.  But, do set parsed_hstate so that a following
4251 		 * hugepages= parameter will be applied to this hstate.
4252 		 */
4253 		parsed_hstate = h;
4254 		parsed_valid_hugepagesz = true;
4255 		return 1;
4256 	}
4257 
4258 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4259 	parsed_valid_hugepagesz = true;
4260 	return 1;
4261 }
4262 __setup("hugepagesz=", hugepagesz_setup);
4263 
4264 /*
4265  * default_hugepagesz command line input
4266  * Only one instance of default_hugepagesz allowed on command line.
4267  */
4268 static int __init default_hugepagesz_setup(char *s)
4269 {
4270 	unsigned long size;
4271 	int i;
4272 
4273 	parsed_valid_hugepagesz = false;
4274 	if (parsed_default_hugepagesz) {
4275 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4276 		return 0;
4277 	}
4278 
4279 	size = (unsigned long)memparse(s, NULL);
4280 
4281 	if (!arch_hugetlb_valid_size(size)) {
4282 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4283 		return 0;
4284 	}
4285 
4286 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4287 	parsed_valid_hugepagesz = true;
4288 	parsed_default_hugepagesz = true;
4289 	default_hstate_idx = hstate_index(size_to_hstate(size));
4290 
4291 	/*
4292 	 * The number of default huge pages (for this size) could have been
4293 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4294 	 * then default_hstate_max_huge_pages is set.  If the default huge
4295 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4296 	 * allocated here from bootmem allocator.
4297 	 */
4298 	if (default_hstate_max_huge_pages) {
4299 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4300 		for (i = 0; i < nr_online_nodes; i++)
4301 			default_hstate.max_huge_pages_node[i] =
4302 				default_hugepages_in_node[i];
4303 		if (hstate_is_gigantic(&default_hstate))
4304 			hugetlb_hstate_alloc_pages(&default_hstate);
4305 		default_hstate_max_huge_pages = 0;
4306 	}
4307 
4308 	return 1;
4309 }
4310 __setup("default_hugepagesz=", default_hugepagesz_setup);
4311 
4312 static unsigned int allowed_mems_nr(struct hstate *h)
4313 {
4314 	int node;
4315 	unsigned int nr = 0;
4316 	nodemask_t *mpol_allowed;
4317 	unsigned int *array = h->free_huge_pages_node;
4318 	gfp_t gfp_mask = htlb_alloc_mask(h);
4319 
4320 	mpol_allowed = policy_nodemask_current(gfp_mask);
4321 
4322 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4323 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4324 			nr += array[node];
4325 	}
4326 
4327 	return nr;
4328 }
4329 
4330 #ifdef CONFIG_SYSCTL
4331 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4332 					  void *buffer, size_t *length,
4333 					  loff_t *ppos, unsigned long *out)
4334 {
4335 	struct ctl_table dup_table;
4336 
4337 	/*
4338 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4339 	 * can duplicate the @table and alter the duplicate of it.
4340 	 */
4341 	dup_table = *table;
4342 	dup_table.data = out;
4343 
4344 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4345 }
4346 
4347 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4348 			 struct ctl_table *table, int write,
4349 			 void *buffer, size_t *length, loff_t *ppos)
4350 {
4351 	struct hstate *h = &default_hstate;
4352 	unsigned long tmp = h->max_huge_pages;
4353 	int ret;
4354 
4355 	if (!hugepages_supported())
4356 		return -EOPNOTSUPP;
4357 
4358 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4359 					     &tmp);
4360 	if (ret)
4361 		goto out;
4362 
4363 	if (write)
4364 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4365 						  NUMA_NO_NODE, tmp, *length);
4366 out:
4367 	return ret;
4368 }
4369 
4370 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4371 			  void *buffer, size_t *length, loff_t *ppos)
4372 {
4373 
4374 	return hugetlb_sysctl_handler_common(false, table, write,
4375 							buffer, length, ppos);
4376 }
4377 
4378 #ifdef CONFIG_NUMA
4379 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4380 			  void *buffer, size_t *length, loff_t *ppos)
4381 {
4382 	return hugetlb_sysctl_handler_common(true, table, write,
4383 							buffer, length, ppos);
4384 }
4385 #endif /* CONFIG_NUMA */
4386 
4387 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4388 		void *buffer, size_t *length, loff_t *ppos)
4389 {
4390 	struct hstate *h = &default_hstate;
4391 	unsigned long tmp;
4392 	int ret;
4393 
4394 	if (!hugepages_supported())
4395 		return -EOPNOTSUPP;
4396 
4397 	tmp = h->nr_overcommit_huge_pages;
4398 
4399 	if (write && hstate_is_gigantic(h))
4400 		return -EINVAL;
4401 
4402 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4403 					     &tmp);
4404 	if (ret)
4405 		goto out;
4406 
4407 	if (write) {
4408 		spin_lock_irq(&hugetlb_lock);
4409 		h->nr_overcommit_huge_pages = tmp;
4410 		spin_unlock_irq(&hugetlb_lock);
4411 	}
4412 out:
4413 	return ret;
4414 }
4415 
4416 #endif /* CONFIG_SYSCTL */
4417 
4418 void hugetlb_report_meminfo(struct seq_file *m)
4419 {
4420 	struct hstate *h;
4421 	unsigned long total = 0;
4422 
4423 	if (!hugepages_supported())
4424 		return;
4425 
4426 	for_each_hstate(h) {
4427 		unsigned long count = h->nr_huge_pages;
4428 
4429 		total += huge_page_size(h) * count;
4430 
4431 		if (h == &default_hstate)
4432 			seq_printf(m,
4433 				   "HugePages_Total:   %5lu\n"
4434 				   "HugePages_Free:    %5lu\n"
4435 				   "HugePages_Rsvd:    %5lu\n"
4436 				   "HugePages_Surp:    %5lu\n"
4437 				   "Hugepagesize:   %8lu kB\n",
4438 				   count,
4439 				   h->free_huge_pages,
4440 				   h->resv_huge_pages,
4441 				   h->surplus_huge_pages,
4442 				   huge_page_size(h) / SZ_1K);
4443 	}
4444 
4445 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4446 }
4447 
4448 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4449 {
4450 	struct hstate *h = &default_hstate;
4451 
4452 	if (!hugepages_supported())
4453 		return 0;
4454 
4455 	return sysfs_emit_at(buf, len,
4456 			     "Node %d HugePages_Total: %5u\n"
4457 			     "Node %d HugePages_Free:  %5u\n"
4458 			     "Node %d HugePages_Surp:  %5u\n",
4459 			     nid, h->nr_huge_pages_node[nid],
4460 			     nid, h->free_huge_pages_node[nid],
4461 			     nid, h->surplus_huge_pages_node[nid]);
4462 }
4463 
4464 void hugetlb_show_meminfo(void)
4465 {
4466 	struct hstate *h;
4467 	int nid;
4468 
4469 	if (!hugepages_supported())
4470 		return;
4471 
4472 	for_each_node_state(nid, N_MEMORY)
4473 		for_each_hstate(h)
4474 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4475 				nid,
4476 				h->nr_huge_pages_node[nid],
4477 				h->free_huge_pages_node[nid],
4478 				h->surplus_huge_pages_node[nid],
4479 				huge_page_size(h) / SZ_1K);
4480 }
4481 
4482 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4483 {
4484 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4485 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4486 }
4487 
4488 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4489 unsigned long hugetlb_total_pages(void)
4490 {
4491 	struct hstate *h;
4492 	unsigned long nr_total_pages = 0;
4493 
4494 	for_each_hstate(h)
4495 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4496 	return nr_total_pages;
4497 }
4498 
4499 static int hugetlb_acct_memory(struct hstate *h, long delta)
4500 {
4501 	int ret = -ENOMEM;
4502 
4503 	if (!delta)
4504 		return 0;
4505 
4506 	spin_lock_irq(&hugetlb_lock);
4507 	/*
4508 	 * When cpuset is configured, it breaks the strict hugetlb page
4509 	 * reservation as the accounting is done on a global variable. Such
4510 	 * reservation is completely rubbish in the presence of cpuset because
4511 	 * the reservation is not checked against page availability for the
4512 	 * current cpuset. Application can still potentially OOM'ed by kernel
4513 	 * with lack of free htlb page in cpuset that the task is in.
4514 	 * Attempt to enforce strict accounting with cpuset is almost
4515 	 * impossible (or too ugly) because cpuset is too fluid that
4516 	 * task or memory node can be dynamically moved between cpusets.
4517 	 *
4518 	 * The change of semantics for shared hugetlb mapping with cpuset is
4519 	 * undesirable. However, in order to preserve some of the semantics,
4520 	 * we fall back to check against current free page availability as
4521 	 * a best attempt and hopefully to minimize the impact of changing
4522 	 * semantics that cpuset has.
4523 	 *
4524 	 * Apart from cpuset, we also have memory policy mechanism that
4525 	 * also determines from which node the kernel will allocate memory
4526 	 * in a NUMA system. So similar to cpuset, we also should consider
4527 	 * the memory policy of the current task. Similar to the description
4528 	 * above.
4529 	 */
4530 	if (delta > 0) {
4531 		if (gather_surplus_pages(h, delta) < 0)
4532 			goto out;
4533 
4534 		if (delta > allowed_mems_nr(h)) {
4535 			return_unused_surplus_pages(h, delta);
4536 			goto out;
4537 		}
4538 	}
4539 
4540 	ret = 0;
4541 	if (delta < 0)
4542 		return_unused_surplus_pages(h, (unsigned long) -delta);
4543 
4544 out:
4545 	spin_unlock_irq(&hugetlb_lock);
4546 	return ret;
4547 }
4548 
4549 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4550 {
4551 	struct resv_map *resv = vma_resv_map(vma);
4552 
4553 	/*
4554 	 * This new VMA should share its siblings reservation map if present.
4555 	 * The VMA will only ever have a valid reservation map pointer where
4556 	 * it is being copied for another still existing VMA.  As that VMA
4557 	 * has a reference to the reservation map it cannot disappear until
4558 	 * after this open call completes.  It is therefore safe to take a
4559 	 * new reference here without additional locking.
4560 	 */
4561 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4562 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4563 		kref_get(&resv->refs);
4564 	}
4565 }
4566 
4567 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4568 {
4569 	struct hstate *h = hstate_vma(vma);
4570 	struct resv_map *resv = vma_resv_map(vma);
4571 	struct hugepage_subpool *spool = subpool_vma(vma);
4572 	unsigned long reserve, start, end;
4573 	long gbl_reserve;
4574 
4575 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4576 		return;
4577 
4578 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4579 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4580 
4581 	reserve = (end - start) - region_count(resv, start, end);
4582 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4583 	if (reserve) {
4584 		/*
4585 		 * Decrement reserve counts.  The global reserve count may be
4586 		 * adjusted if the subpool has a minimum size.
4587 		 */
4588 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4589 		hugetlb_acct_memory(h, -gbl_reserve);
4590 	}
4591 
4592 	kref_put(&resv->refs, resv_map_release);
4593 }
4594 
4595 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4596 {
4597 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4598 		return -EINVAL;
4599 	return 0;
4600 }
4601 
4602 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4603 {
4604 	return huge_page_size(hstate_vma(vma));
4605 }
4606 
4607 /*
4608  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4609  * handle_mm_fault() to try to instantiate regular-sized pages in the
4610  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4611  * this far.
4612  */
4613 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4614 {
4615 	BUG();
4616 	return 0;
4617 }
4618 
4619 /*
4620  * When a new function is introduced to vm_operations_struct and added
4621  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4622  * This is because under System V memory model, mappings created via
4623  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4624  * their original vm_ops are overwritten with shm_vm_ops.
4625  */
4626 const struct vm_operations_struct hugetlb_vm_ops = {
4627 	.fault = hugetlb_vm_op_fault,
4628 	.open = hugetlb_vm_op_open,
4629 	.close = hugetlb_vm_op_close,
4630 	.may_split = hugetlb_vm_op_split,
4631 	.pagesize = hugetlb_vm_op_pagesize,
4632 };
4633 
4634 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4635 				int writable)
4636 {
4637 	pte_t entry;
4638 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4639 
4640 	if (writable) {
4641 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4642 					 vma->vm_page_prot)));
4643 	} else {
4644 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4645 					   vma->vm_page_prot));
4646 	}
4647 	entry = pte_mkyoung(entry);
4648 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4649 
4650 	return entry;
4651 }
4652 
4653 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4654 				   unsigned long address, pte_t *ptep)
4655 {
4656 	pte_t entry;
4657 
4658 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4659 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4660 		update_mmu_cache(vma, address, ptep);
4661 }
4662 
4663 bool is_hugetlb_entry_migration(pte_t pte)
4664 {
4665 	swp_entry_t swp;
4666 
4667 	if (huge_pte_none(pte) || pte_present(pte))
4668 		return false;
4669 	swp = pte_to_swp_entry(pte);
4670 	if (is_migration_entry(swp))
4671 		return true;
4672 	else
4673 		return false;
4674 }
4675 
4676 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4677 {
4678 	swp_entry_t swp;
4679 
4680 	if (huge_pte_none(pte) || pte_present(pte))
4681 		return false;
4682 	swp = pte_to_swp_entry(pte);
4683 	if (is_hwpoison_entry(swp))
4684 		return true;
4685 	else
4686 		return false;
4687 }
4688 
4689 static void
4690 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4691 		     struct page *new_page)
4692 {
4693 	__SetPageUptodate(new_page);
4694 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4695 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4696 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4697 	ClearHPageRestoreReserve(new_page);
4698 	SetHPageMigratable(new_page);
4699 }
4700 
4701 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4702 			    struct vm_area_struct *vma)
4703 {
4704 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4705 	struct page *ptepage;
4706 	unsigned long addr;
4707 	bool cow = is_cow_mapping(vma->vm_flags);
4708 	struct hstate *h = hstate_vma(vma);
4709 	unsigned long sz = huge_page_size(h);
4710 	unsigned long npages = pages_per_huge_page(h);
4711 	struct address_space *mapping = vma->vm_file->f_mapping;
4712 	struct mmu_notifier_range range;
4713 	int ret = 0;
4714 
4715 	if (cow) {
4716 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4717 					vma->vm_start,
4718 					vma->vm_end);
4719 		mmu_notifier_invalidate_range_start(&range);
4720 	} else {
4721 		/*
4722 		 * For shared mappings i_mmap_rwsem must be held to call
4723 		 * huge_pte_alloc, otherwise the returned ptep could go
4724 		 * away if part of a shared pmd and another thread calls
4725 		 * huge_pmd_unshare.
4726 		 */
4727 		i_mmap_lock_read(mapping);
4728 	}
4729 
4730 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4731 		spinlock_t *src_ptl, *dst_ptl;
4732 		src_pte = huge_pte_offset(src, addr, sz);
4733 		if (!src_pte)
4734 			continue;
4735 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4736 		if (!dst_pte) {
4737 			ret = -ENOMEM;
4738 			break;
4739 		}
4740 
4741 		/*
4742 		 * If the pagetables are shared don't copy or take references.
4743 		 * dst_pte == src_pte is the common case of src/dest sharing.
4744 		 *
4745 		 * However, src could have 'unshared' and dst shares with
4746 		 * another vma.  If dst_pte !none, this implies sharing.
4747 		 * Check here before taking page table lock, and once again
4748 		 * after taking the lock below.
4749 		 */
4750 		dst_entry = huge_ptep_get(dst_pte);
4751 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4752 			continue;
4753 
4754 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4755 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4756 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4757 		entry = huge_ptep_get(src_pte);
4758 		dst_entry = huge_ptep_get(dst_pte);
4759 again:
4760 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4761 			/*
4762 			 * Skip if src entry none.  Also, skip in the
4763 			 * unlikely case dst entry !none as this implies
4764 			 * sharing with another vma.
4765 			 */
4766 			;
4767 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4768 				    is_hugetlb_entry_hwpoisoned(entry))) {
4769 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4770 
4771 			if (is_writable_migration_entry(swp_entry) && cow) {
4772 				/*
4773 				 * COW mappings require pages in both
4774 				 * parent and child to be set to read.
4775 				 */
4776 				swp_entry = make_readable_migration_entry(
4777 							swp_offset(swp_entry));
4778 				entry = swp_entry_to_pte(swp_entry);
4779 				set_huge_swap_pte_at(src, addr, src_pte,
4780 						     entry, sz);
4781 			}
4782 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4783 		} else {
4784 			entry = huge_ptep_get(src_pte);
4785 			ptepage = pte_page(entry);
4786 			get_page(ptepage);
4787 
4788 			/*
4789 			 * This is a rare case where we see pinned hugetlb
4790 			 * pages while they're prone to COW.  We need to do the
4791 			 * COW earlier during fork.
4792 			 *
4793 			 * When pre-allocating the page or copying data, we
4794 			 * need to be without the pgtable locks since we could
4795 			 * sleep during the process.
4796 			 */
4797 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4798 				pte_t src_pte_old = entry;
4799 				struct page *new;
4800 
4801 				spin_unlock(src_ptl);
4802 				spin_unlock(dst_ptl);
4803 				/* Do not use reserve as it's private owned */
4804 				new = alloc_huge_page(vma, addr, 1);
4805 				if (IS_ERR(new)) {
4806 					put_page(ptepage);
4807 					ret = PTR_ERR(new);
4808 					break;
4809 				}
4810 				copy_user_huge_page(new, ptepage, addr, vma,
4811 						    npages);
4812 				put_page(ptepage);
4813 
4814 				/* Install the new huge page if src pte stable */
4815 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4816 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4817 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4818 				entry = huge_ptep_get(src_pte);
4819 				if (!pte_same(src_pte_old, entry)) {
4820 					restore_reserve_on_error(h, vma, addr,
4821 								new);
4822 					put_page(new);
4823 					/* dst_entry won't change as in child */
4824 					goto again;
4825 				}
4826 				hugetlb_install_page(vma, dst_pte, addr, new);
4827 				spin_unlock(src_ptl);
4828 				spin_unlock(dst_ptl);
4829 				continue;
4830 			}
4831 
4832 			if (cow) {
4833 				/*
4834 				 * No need to notify as we are downgrading page
4835 				 * table protection not changing it to point
4836 				 * to a new page.
4837 				 *
4838 				 * See Documentation/vm/mmu_notifier.rst
4839 				 */
4840 				huge_ptep_set_wrprotect(src, addr, src_pte);
4841 				entry = huge_pte_wrprotect(entry);
4842 			}
4843 
4844 			page_dup_rmap(ptepage, true);
4845 			set_huge_pte_at(dst, addr, dst_pte, entry);
4846 			hugetlb_count_add(npages, dst);
4847 		}
4848 		spin_unlock(src_ptl);
4849 		spin_unlock(dst_ptl);
4850 	}
4851 
4852 	if (cow)
4853 		mmu_notifier_invalidate_range_end(&range);
4854 	else
4855 		i_mmap_unlock_read(mapping);
4856 
4857 	return ret;
4858 }
4859 
4860 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4861 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4862 {
4863 	struct hstate *h = hstate_vma(vma);
4864 	struct mm_struct *mm = vma->vm_mm;
4865 	spinlock_t *src_ptl, *dst_ptl;
4866 	pte_t pte;
4867 
4868 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4869 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4870 
4871 	/*
4872 	 * We don't have to worry about the ordering of src and dst ptlocks
4873 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4874 	 */
4875 	if (src_ptl != dst_ptl)
4876 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4877 
4878 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4879 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4880 
4881 	if (src_ptl != dst_ptl)
4882 		spin_unlock(src_ptl);
4883 	spin_unlock(dst_ptl);
4884 }
4885 
4886 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4887 			     struct vm_area_struct *new_vma,
4888 			     unsigned long old_addr, unsigned long new_addr,
4889 			     unsigned long len)
4890 {
4891 	struct hstate *h = hstate_vma(vma);
4892 	struct address_space *mapping = vma->vm_file->f_mapping;
4893 	unsigned long sz = huge_page_size(h);
4894 	struct mm_struct *mm = vma->vm_mm;
4895 	unsigned long old_end = old_addr + len;
4896 	unsigned long old_addr_copy;
4897 	pte_t *src_pte, *dst_pte;
4898 	struct mmu_notifier_range range;
4899 
4900 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4901 				old_end);
4902 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4903 	mmu_notifier_invalidate_range_start(&range);
4904 	/* Prevent race with file truncation */
4905 	i_mmap_lock_write(mapping);
4906 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4907 		src_pte = huge_pte_offset(mm, old_addr, sz);
4908 		if (!src_pte)
4909 			continue;
4910 		if (huge_pte_none(huge_ptep_get(src_pte)))
4911 			continue;
4912 
4913 		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
4914 		 * arg may be modified. Pass a copy instead to preserve the
4915 		 * value in old_addr.
4916 		 */
4917 		old_addr_copy = old_addr;
4918 
4919 		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4920 			continue;
4921 
4922 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4923 		if (!dst_pte)
4924 			break;
4925 
4926 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4927 	}
4928 	flush_tlb_range(vma, old_end - len, old_end);
4929 	mmu_notifier_invalidate_range_end(&range);
4930 	i_mmap_unlock_write(mapping);
4931 
4932 	return len + old_addr - old_end;
4933 }
4934 
4935 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4936 				   unsigned long start, unsigned long end,
4937 				   struct page *ref_page)
4938 {
4939 	struct mm_struct *mm = vma->vm_mm;
4940 	unsigned long address;
4941 	pte_t *ptep;
4942 	pte_t pte;
4943 	spinlock_t *ptl;
4944 	struct page *page;
4945 	struct hstate *h = hstate_vma(vma);
4946 	unsigned long sz = huge_page_size(h);
4947 	struct mmu_notifier_range range;
4948 	bool force_flush = false;
4949 
4950 	WARN_ON(!is_vm_hugetlb_page(vma));
4951 	BUG_ON(start & ~huge_page_mask(h));
4952 	BUG_ON(end & ~huge_page_mask(h));
4953 
4954 	/*
4955 	 * This is a hugetlb vma, all the pte entries should point
4956 	 * to huge page.
4957 	 */
4958 	tlb_change_page_size(tlb, sz);
4959 	tlb_start_vma(tlb, vma);
4960 
4961 	/*
4962 	 * If sharing possible, alert mmu notifiers of worst case.
4963 	 */
4964 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4965 				end);
4966 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4967 	mmu_notifier_invalidate_range_start(&range);
4968 	address = start;
4969 	for (; address < end; address += sz) {
4970 		ptep = huge_pte_offset(mm, address, sz);
4971 		if (!ptep)
4972 			continue;
4973 
4974 		ptl = huge_pte_lock(h, mm, ptep);
4975 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4976 			spin_unlock(ptl);
4977 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4978 			force_flush = true;
4979 			continue;
4980 		}
4981 
4982 		pte = huge_ptep_get(ptep);
4983 		if (huge_pte_none(pte)) {
4984 			spin_unlock(ptl);
4985 			continue;
4986 		}
4987 
4988 		/*
4989 		 * Migrating hugepage or HWPoisoned hugepage is already
4990 		 * unmapped and its refcount is dropped, so just clear pte here.
4991 		 */
4992 		if (unlikely(!pte_present(pte))) {
4993 			huge_pte_clear(mm, address, ptep, sz);
4994 			spin_unlock(ptl);
4995 			continue;
4996 		}
4997 
4998 		page = pte_page(pte);
4999 		/*
5000 		 * If a reference page is supplied, it is because a specific
5001 		 * page is being unmapped, not a range. Ensure the page we
5002 		 * are about to unmap is the actual page of interest.
5003 		 */
5004 		if (ref_page) {
5005 			if (page != ref_page) {
5006 				spin_unlock(ptl);
5007 				continue;
5008 			}
5009 			/*
5010 			 * Mark the VMA as having unmapped its page so that
5011 			 * future faults in this VMA will fail rather than
5012 			 * looking like data was lost
5013 			 */
5014 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5015 		}
5016 
5017 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5018 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5019 		if (huge_pte_dirty(pte))
5020 			set_page_dirty(page);
5021 
5022 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5023 		page_remove_rmap(page, vma, true);
5024 
5025 		spin_unlock(ptl);
5026 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5027 		/*
5028 		 * Bail out after unmapping reference page if supplied
5029 		 */
5030 		if (ref_page)
5031 			break;
5032 	}
5033 	mmu_notifier_invalidate_range_end(&range);
5034 	tlb_end_vma(tlb, vma);
5035 
5036 	/*
5037 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5038 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5039 	 * guaranteed that the last refernece would not be dropped. But we must
5040 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5041 	 * dropped and the last reference to the shared PMDs page might be
5042 	 * dropped as well.
5043 	 *
5044 	 * In theory we could defer the freeing of the PMD pages as well, but
5045 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5046 	 * detect sharing, so we cannot defer the release of the page either.
5047 	 * Instead, do flush now.
5048 	 */
5049 	if (force_flush)
5050 		tlb_flush_mmu_tlbonly(tlb);
5051 }
5052 
5053 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5054 			  struct vm_area_struct *vma, unsigned long start,
5055 			  unsigned long end, struct page *ref_page)
5056 {
5057 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
5058 
5059 	/*
5060 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5061 	 * test will fail on a vma being torn down, and not grab a page table
5062 	 * on its way out.  We're lucky that the flag has such an appropriate
5063 	 * name, and can in fact be safely cleared here. We could clear it
5064 	 * before the __unmap_hugepage_range above, but all that's necessary
5065 	 * is to clear it before releasing the i_mmap_rwsem. This works
5066 	 * because in the context this is called, the VMA is about to be
5067 	 * destroyed and the i_mmap_rwsem is held.
5068 	 */
5069 	vma->vm_flags &= ~VM_MAYSHARE;
5070 }
5071 
5072 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5073 			  unsigned long end, struct page *ref_page)
5074 {
5075 	struct mmu_gather tlb;
5076 
5077 	tlb_gather_mmu(&tlb, vma->vm_mm);
5078 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5079 	tlb_finish_mmu(&tlb);
5080 }
5081 
5082 /*
5083  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5084  * mapping it owns the reserve page for. The intention is to unmap the page
5085  * from other VMAs and let the children be SIGKILLed if they are faulting the
5086  * same region.
5087  */
5088 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5089 			      struct page *page, unsigned long address)
5090 {
5091 	struct hstate *h = hstate_vma(vma);
5092 	struct vm_area_struct *iter_vma;
5093 	struct address_space *mapping;
5094 	pgoff_t pgoff;
5095 
5096 	/*
5097 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5098 	 * from page cache lookup which is in HPAGE_SIZE units.
5099 	 */
5100 	address = address & huge_page_mask(h);
5101 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5102 			vma->vm_pgoff;
5103 	mapping = vma->vm_file->f_mapping;
5104 
5105 	/*
5106 	 * Take the mapping lock for the duration of the table walk. As
5107 	 * this mapping should be shared between all the VMAs,
5108 	 * __unmap_hugepage_range() is called as the lock is already held
5109 	 */
5110 	i_mmap_lock_write(mapping);
5111 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5112 		/* Do not unmap the current VMA */
5113 		if (iter_vma == vma)
5114 			continue;
5115 
5116 		/*
5117 		 * Shared VMAs have their own reserves and do not affect
5118 		 * MAP_PRIVATE accounting but it is possible that a shared
5119 		 * VMA is using the same page so check and skip such VMAs.
5120 		 */
5121 		if (iter_vma->vm_flags & VM_MAYSHARE)
5122 			continue;
5123 
5124 		/*
5125 		 * Unmap the page from other VMAs without their own reserves.
5126 		 * They get marked to be SIGKILLed if they fault in these
5127 		 * areas. This is because a future no-page fault on this VMA
5128 		 * could insert a zeroed page instead of the data existing
5129 		 * from the time of fork. This would look like data corruption
5130 		 */
5131 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5132 			unmap_hugepage_range(iter_vma, address,
5133 					     address + huge_page_size(h), page);
5134 	}
5135 	i_mmap_unlock_write(mapping);
5136 }
5137 
5138 /*
5139  * Hugetlb_cow() should be called with page lock of the original hugepage held.
5140  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5141  * cannot race with other handlers or page migration.
5142  * Keep the pte_same checks anyway to make transition from the mutex easier.
5143  */
5144 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5145 		       unsigned long address, pte_t *ptep,
5146 		       struct page *pagecache_page, spinlock_t *ptl)
5147 {
5148 	pte_t pte;
5149 	struct hstate *h = hstate_vma(vma);
5150 	struct page *old_page, *new_page;
5151 	int outside_reserve = 0;
5152 	vm_fault_t ret = 0;
5153 	unsigned long haddr = address & huge_page_mask(h);
5154 	struct mmu_notifier_range range;
5155 
5156 	pte = huge_ptep_get(ptep);
5157 	old_page = pte_page(pte);
5158 
5159 retry_avoidcopy:
5160 	/* If no-one else is actually using this page, avoid the copy
5161 	 * and just make the page writable */
5162 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5163 		page_move_anon_rmap(old_page, vma);
5164 		set_huge_ptep_writable(vma, haddr, ptep);
5165 		return 0;
5166 	}
5167 
5168 	/*
5169 	 * If the process that created a MAP_PRIVATE mapping is about to
5170 	 * perform a COW due to a shared page count, attempt to satisfy
5171 	 * the allocation without using the existing reserves. The pagecache
5172 	 * page is used to determine if the reserve at this address was
5173 	 * consumed or not. If reserves were used, a partial faulted mapping
5174 	 * at the time of fork() could consume its reserves on COW instead
5175 	 * of the full address range.
5176 	 */
5177 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5178 			old_page != pagecache_page)
5179 		outside_reserve = 1;
5180 
5181 	get_page(old_page);
5182 
5183 	/*
5184 	 * Drop page table lock as buddy allocator may be called. It will
5185 	 * be acquired again before returning to the caller, as expected.
5186 	 */
5187 	spin_unlock(ptl);
5188 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5189 
5190 	if (IS_ERR(new_page)) {
5191 		/*
5192 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5193 		 * it is due to references held by a child and an insufficient
5194 		 * huge page pool. To guarantee the original mappers
5195 		 * reliability, unmap the page from child processes. The child
5196 		 * may get SIGKILLed if it later faults.
5197 		 */
5198 		if (outside_reserve) {
5199 			struct address_space *mapping = vma->vm_file->f_mapping;
5200 			pgoff_t idx;
5201 			u32 hash;
5202 
5203 			put_page(old_page);
5204 			BUG_ON(huge_pte_none(pte));
5205 			/*
5206 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5207 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5208 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5209 			 * here is OK as COW mappings do not interact with
5210 			 * PMD sharing.
5211 			 *
5212 			 * Reacquire both after unmap operation.
5213 			 */
5214 			idx = vma_hugecache_offset(h, vma, haddr);
5215 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5216 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5217 			i_mmap_unlock_read(mapping);
5218 
5219 			unmap_ref_private(mm, vma, old_page, haddr);
5220 
5221 			i_mmap_lock_read(mapping);
5222 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5223 			spin_lock(ptl);
5224 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5225 			if (likely(ptep &&
5226 				   pte_same(huge_ptep_get(ptep), pte)))
5227 				goto retry_avoidcopy;
5228 			/*
5229 			 * race occurs while re-acquiring page table
5230 			 * lock, and our job is done.
5231 			 */
5232 			return 0;
5233 		}
5234 
5235 		ret = vmf_error(PTR_ERR(new_page));
5236 		goto out_release_old;
5237 	}
5238 
5239 	/*
5240 	 * When the original hugepage is shared one, it does not have
5241 	 * anon_vma prepared.
5242 	 */
5243 	if (unlikely(anon_vma_prepare(vma))) {
5244 		ret = VM_FAULT_OOM;
5245 		goto out_release_all;
5246 	}
5247 
5248 	copy_user_huge_page(new_page, old_page, address, vma,
5249 			    pages_per_huge_page(h));
5250 	__SetPageUptodate(new_page);
5251 
5252 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5253 				haddr + huge_page_size(h));
5254 	mmu_notifier_invalidate_range_start(&range);
5255 
5256 	/*
5257 	 * Retake the page table lock to check for racing updates
5258 	 * before the page tables are altered
5259 	 */
5260 	spin_lock(ptl);
5261 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5262 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5263 		ClearHPageRestoreReserve(new_page);
5264 
5265 		/* Break COW */
5266 		huge_ptep_clear_flush(vma, haddr, ptep);
5267 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5268 		page_remove_rmap(old_page, vma, true);
5269 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5270 		set_huge_pte_at(mm, haddr, ptep,
5271 				make_huge_pte(vma, new_page, 1));
5272 		SetHPageMigratable(new_page);
5273 		/* Make the old page be freed below */
5274 		new_page = old_page;
5275 	}
5276 	spin_unlock(ptl);
5277 	mmu_notifier_invalidate_range_end(&range);
5278 out_release_all:
5279 	/* No restore in case of successful pagetable update (Break COW) */
5280 	if (new_page != old_page)
5281 		restore_reserve_on_error(h, vma, haddr, new_page);
5282 	put_page(new_page);
5283 out_release_old:
5284 	put_page(old_page);
5285 
5286 	spin_lock(ptl); /* Caller expects lock to be held */
5287 	return ret;
5288 }
5289 
5290 /* Return the pagecache page at a given address within a VMA */
5291 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5292 			struct vm_area_struct *vma, unsigned long address)
5293 {
5294 	struct address_space *mapping;
5295 	pgoff_t idx;
5296 
5297 	mapping = vma->vm_file->f_mapping;
5298 	idx = vma_hugecache_offset(h, vma, address);
5299 
5300 	return find_lock_page(mapping, idx);
5301 }
5302 
5303 /*
5304  * Return whether there is a pagecache page to back given address within VMA.
5305  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5306  */
5307 static bool hugetlbfs_pagecache_present(struct hstate *h,
5308 			struct vm_area_struct *vma, unsigned long address)
5309 {
5310 	struct address_space *mapping;
5311 	pgoff_t idx;
5312 	struct page *page;
5313 
5314 	mapping = vma->vm_file->f_mapping;
5315 	idx = vma_hugecache_offset(h, vma, address);
5316 
5317 	page = find_get_page(mapping, idx);
5318 	if (page)
5319 		put_page(page);
5320 	return page != NULL;
5321 }
5322 
5323 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5324 			   pgoff_t idx)
5325 {
5326 	struct inode *inode = mapping->host;
5327 	struct hstate *h = hstate_inode(inode);
5328 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5329 
5330 	if (err)
5331 		return err;
5332 	ClearHPageRestoreReserve(page);
5333 
5334 	/*
5335 	 * set page dirty so that it will not be removed from cache/file
5336 	 * by non-hugetlbfs specific code paths.
5337 	 */
5338 	set_page_dirty(page);
5339 
5340 	spin_lock(&inode->i_lock);
5341 	inode->i_blocks += blocks_per_huge_page(h);
5342 	spin_unlock(&inode->i_lock);
5343 	return 0;
5344 }
5345 
5346 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5347 						  struct address_space *mapping,
5348 						  pgoff_t idx,
5349 						  unsigned int flags,
5350 						  unsigned long haddr,
5351 						  unsigned long addr,
5352 						  unsigned long reason)
5353 {
5354 	vm_fault_t ret;
5355 	u32 hash;
5356 	struct vm_fault vmf = {
5357 		.vma = vma,
5358 		.address = haddr,
5359 		.real_address = addr,
5360 		.flags = flags,
5361 
5362 		/*
5363 		 * Hard to debug if it ends up being
5364 		 * used by a callee that assumes
5365 		 * something about the other
5366 		 * uninitialized fields... same as in
5367 		 * memory.c
5368 		 */
5369 	};
5370 
5371 	/*
5372 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5373 	 * dropped before handling userfault.  Reacquire
5374 	 * after handling fault to make calling code simpler.
5375 	 */
5376 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5377 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5378 	i_mmap_unlock_read(mapping);
5379 	ret = handle_userfault(&vmf, reason);
5380 	i_mmap_lock_read(mapping);
5381 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5382 
5383 	return ret;
5384 }
5385 
5386 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5387 			struct vm_area_struct *vma,
5388 			struct address_space *mapping, pgoff_t idx,
5389 			unsigned long address, pte_t *ptep, unsigned int flags)
5390 {
5391 	struct hstate *h = hstate_vma(vma);
5392 	vm_fault_t ret = VM_FAULT_SIGBUS;
5393 	int anon_rmap = 0;
5394 	unsigned long size;
5395 	struct page *page;
5396 	pte_t new_pte;
5397 	spinlock_t *ptl;
5398 	unsigned long haddr = address & huge_page_mask(h);
5399 	bool new_page, new_pagecache_page = false;
5400 
5401 	/*
5402 	 * Currently, we are forced to kill the process in the event the
5403 	 * original mapper has unmapped pages from the child due to a failed
5404 	 * COW. Warn that such a situation has occurred as it may not be obvious
5405 	 */
5406 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5407 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5408 			   current->pid);
5409 		return ret;
5410 	}
5411 
5412 	/*
5413 	 * We can not race with truncation due to holding i_mmap_rwsem.
5414 	 * i_size is modified when holding i_mmap_rwsem, so check here
5415 	 * once for faults beyond end of file.
5416 	 */
5417 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5418 	if (idx >= size)
5419 		goto out;
5420 
5421 retry:
5422 	new_page = false;
5423 	page = find_lock_page(mapping, idx);
5424 	if (!page) {
5425 		/* Check for page in userfault range */
5426 		if (userfaultfd_missing(vma)) {
5427 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5428 						       flags, haddr, address,
5429 						       VM_UFFD_MISSING);
5430 			goto out;
5431 		}
5432 
5433 		page = alloc_huge_page(vma, haddr, 0);
5434 		if (IS_ERR(page)) {
5435 			/*
5436 			 * Returning error will result in faulting task being
5437 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5438 			 * tasks from racing to fault in the same page which
5439 			 * could result in false unable to allocate errors.
5440 			 * Page migration does not take the fault mutex, but
5441 			 * does a clear then write of pte's under page table
5442 			 * lock.  Page fault code could race with migration,
5443 			 * notice the clear pte and try to allocate a page
5444 			 * here.  Before returning error, get ptl and make
5445 			 * sure there really is no pte entry.
5446 			 */
5447 			ptl = huge_pte_lock(h, mm, ptep);
5448 			ret = 0;
5449 			if (huge_pte_none(huge_ptep_get(ptep)))
5450 				ret = vmf_error(PTR_ERR(page));
5451 			spin_unlock(ptl);
5452 			goto out;
5453 		}
5454 		clear_huge_page(page, address, pages_per_huge_page(h));
5455 		__SetPageUptodate(page);
5456 		new_page = true;
5457 
5458 		if (vma->vm_flags & VM_MAYSHARE) {
5459 			int err = huge_add_to_page_cache(page, mapping, idx);
5460 			if (err) {
5461 				put_page(page);
5462 				if (err == -EEXIST)
5463 					goto retry;
5464 				goto out;
5465 			}
5466 			new_pagecache_page = true;
5467 		} else {
5468 			lock_page(page);
5469 			if (unlikely(anon_vma_prepare(vma))) {
5470 				ret = VM_FAULT_OOM;
5471 				goto backout_unlocked;
5472 			}
5473 			anon_rmap = 1;
5474 		}
5475 	} else {
5476 		/*
5477 		 * If memory error occurs between mmap() and fault, some process
5478 		 * don't have hwpoisoned swap entry for errored virtual address.
5479 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5480 		 */
5481 		if (unlikely(PageHWPoison(page))) {
5482 			ret = VM_FAULT_HWPOISON_LARGE |
5483 				VM_FAULT_SET_HINDEX(hstate_index(h));
5484 			goto backout_unlocked;
5485 		}
5486 
5487 		/* Check for page in userfault range. */
5488 		if (userfaultfd_minor(vma)) {
5489 			unlock_page(page);
5490 			put_page(page);
5491 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5492 						       flags, haddr, address,
5493 						       VM_UFFD_MINOR);
5494 			goto out;
5495 		}
5496 	}
5497 
5498 	/*
5499 	 * If we are going to COW a private mapping later, we examine the
5500 	 * pending reservations for this page now. This will ensure that
5501 	 * any allocations necessary to record that reservation occur outside
5502 	 * the spinlock.
5503 	 */
5504 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5505 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5506 			ret = VM_FAULT_OOM;
5507 			goto backout_unlocked;
5508 		}
5509 		/* Just decrements count, does not deallocate */
5510 		vma_end_reservation(h, vma, haddr);
5511 	}
5512 
5513 	ptl = huge_pte_lock(h, mm, ptep);
5514 	ret = 0;
5515 	if (!huge_pte_none(huge_ptep_get(ptep)))
5516 		goto backout;
5517 
5518 	if (anon_rmap) {
5519 		ClearHPageRestoreReserve(page);
5520 		hugepage_add_new_anon_rmap(page, vma, haddr);
5521 	} else
5522 		page_dup_rmap(page, true);
5523 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5524 				&& (vma->vm_flags & VM_SHARED)));
5525 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5526 
5527 	hugetlb_count_add(pages_per_huge_page(h), mm);
5528 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5529 		/* Optimization, do the COW without a second fault */
5530 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5531 	}
5532 
5533 	spin_unlock(ptl);
5534 
5535 	/*
5536 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5537 	 * found in the pagecache may not have HPageMigratableset if they have
5538 	 * been isolated for migration.
5539 	 */
5540 	if (new_page)
5541 		SetHPageMigratable(page);
5542 
5543 	unlock_page(page);
5544 out:
5545 	return ret;
5546 
5547 backout:
5548 	spin_unlock(ptl);
5549 backout_unlocked:
5550 	unlock_page(page);
5551 	/* restore reserve for newly allocated pages not in page cache */
5552 	if (new_page && !new_pagecache_page)
5553 		restore_reserve_on_error(h, vma, haddr, page);
5554 	put_page(page);
5555 	goto out;
5556 }
5557 
5558 #ifdef CONFIG_SMP
5559 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5560 {
5561 	unsigned long key[2];
5562 	u32 hash;
5563 
5564 	key[0] = (unsigned long) mapping;
5565 	key[1] = idx;
5566 
5567 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5568 
5569 	return hash & (num_fault_mutexes - 1);
5570 }
5571 #else
5572 /*
5573  * For uniprocessor systems we always use a single mutex, so just
5574  * return 0 and avoid the hashing overhead.
5575  */
5576 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5577 {
5578 	return 0;
5579 }
5580 #endif
5581 
5582 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5583 			unsigned long address, unsigned int flags)
5584 {
5585 	pte_t *ptep, entry;
5586 	spinlock_t *ptl;
5587 	vm_fault_t ret;
5588 	u32 hash;
5589 	pgoff_t idx;
5590 	struct page *page = NULL;
5591 	struct page *pagecache_page = NULL;
5592 	struct hstate *h = hstate_vma(vma);
5593 	struct address_space *mapping;
5594 	int need_wait_lock = 0;
5595 	unsigned long haddr = address & huge_page_mask(h);
5596 
5597 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5598 	if (ptep) {
5599 		/*
5600 		 * Since we hold no locks, ptep could be stale.  That is
5601 		 * OK as we are only making decisions based on content and
5602 		 * not actually modifying content here.
5603 		 */
5604 		entry = huge_ptep_get(ptep);
5605 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5606 			migration_entry_wait_huge(vma, mm, ptep);
5607 			return 0;
5608 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5609 			return VM_FAULT_HWPOISON_LARGE |
5610 				VM_FAULT_SET_HINDEX(hstate_index(h));
5611 	}
5612 
5613 	/*
5614 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5615 	 * until finished with ptep.  This serves two purposes:
5616 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5617 	 *    and making the ptep no longer valid.
5618 	 * 2) It synchronizes us with i_size modifications during truncation.
5619 	 *
5620 	 * ptep could have already be assigned via huge_pte_offset.  That
5621 	 * is OK, as huge_pte_alloc will return the same value unless
5622 	 * something has changed.
5623 	 */
5624 	mapping = vma->vm_file->f_mapping;
5625 	i_mmap_lock_read(mapping);
5626 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5627 	if (!ptep) {
5628 		i_mmap_unlock_read(mapping);
5629 		return VM_FAULT_OOM;
5630 	}
5631 
5632 	/*
5633 	 * Serialize hugepage allocation and instantiation, so that we don't
5634 	 * get spurious allocation failures if two CPUs race to instantiate
5635 	 * the same page in the page cache.
5636 	 */
5637 	idx = vma_hugecache_offset(h, vma, haddr);
5638 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5639 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5640 
5641 	entry = huge_ptep_get(ptep);
5642 	if (huge_pte_none(entry)) {
5643 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5644 		goto out_mutex;
5645 	}
5646 
5647 	ret = 0;
5648 
5649 	/*
5650 	 * entry could be a migration/hwpoison entry at this point, so this
5651 	 * check prevents the kernel from going below assuming that we have
5652 	 * an active hugepage in pagecache. This goto expects the 2nd page
5653 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5654 	 * properly handle it.
5655 	 */
5656 	if (!pte_present(entry))
5657 		goto out_mutex;
5658 
5659 	/*
5660 	 * If we are going to COW the mapping later, we examine the pending
5661 	 * reservations for this page now. This will ensure that any
5662 	 * allocations necessary to record that reservation occur outside the
5663 	 * spinlock. For private mappings, we also lookup the pagecache
5664 	 * page now as it is used to determine if a reservation has been
5665 	 * consumed.
5666 	 */
5667 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5668 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5669 			ret = VM_FAULT_OOM;
5670 			goto out_mutex;
5671 		}
5672 		/* Just decrements count, does not deallocate */
5673 		vma_end_reservation(h, vma, haddr);
5674 
5675 		if (!(vma->vm_flags & VM_MAYSHARE))
5676 			pagecache_page = hugetlbfs_pagecache_page(h,
5677 								vma, haddr);
5678 	}
5679 
5680 	ptl = huge_pte_lock(h, mm, ptep);
5681 
5682 	/* Check for a racing update before calling hugetlb_cow */
5683 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5684 		goto out_ptl;
5685 
5686 	/*
5687 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5688 	 * pagecache_page, so here we need take the former one
5689 	 * when page != pagecache_page or !pagecache_page.
5690 	 */
5691 	page = pte_page(entry);
5692 	if (page != pagecache_page)
5693 		if (!trylock_page(page)) {
5694 			need_wait_lock = 1;
5695 			goto out_ptl;
5696 		}
5697 
5698 	get_page(page);
5699 
5700 	if (flags & FAULT_FLAG_WRITE) {
5701 		if (!huge_pte_write(entry)) {
5702 			ret = hugetlb_cow(mm, vma, address, ptep,
5703 					  pagecache_page, ptl);
5704 			goto out_put_page;
5705 		}
5706 		entry = huge_pte_mkdirty(entry);
5707 	}
5708 	entry = pte_mkyoung(entry);
5709 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5710 						flags & FAULT_FLAG_WRITE))
5711 		update_mmu_cache(vma, haddr, ptep);
5712 out_put_page:
5713 	if (page != pagecache_page)
5714 		unlock_page(page);
5715 	put_page(page);
5716 out_ptl:
5717 	spin_unlock(ptl);
5718 
5719 	if (pagecache_page) {
5720 		unlock_page(pagecache_page);
5721 		put_page(pagecache_page);
5722 	}
5723 out_mutex:
5724 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5725 	i_mmap_unlock_read(mapping);
5726 	/*
5727 	 * Generally it's safe to hold refcount during waiting page lock. But
5728 	 * here we just wait to defer the next page fault to avoid busy loop and
5729 	 * the page is not used after unlocked before returning from the current
5730 	 * page fault. So we are safe from accessing freed page, even if we wait
5731 	 * here without taking refcount.
5732 	 */
5733 	if (need_wait_lock)
5734 		wait_on_page_locked(page);
5735 	return ret;
5736 }
5737 
5738 #ifdef CONFIG_USERFAULTFD
5739 /*
5740  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5741  * modifications for huge pages.
5742  */
5743 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5744 			    pte_t *dst_pte,
5745 			    struct vm_area_struct *dst_vma,
5746 			    unsigned long dst_addr,
5747 			    unsigned long src_addr,
5748 			    enum mcopy_atomic_mode mode,
5749 			    struct page **pagep)
5750 {
5751 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5752 	struct hstate *h = hstate_vma(dst_vma);
5753 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5754 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5755 	unsigned long size;
5756 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5757 	pte_t _dst_pte;
5758 	spinlock_t *ptl;
5759 	int ret = -ENOMEM;
5760 	struct page *page;
5761 	int writable;
5762 	bool page_in_pagecache = false;
5763 
5764 	if (is_continue) {
5765 		ret = -EFAULT;
5766 		page = find_lock_page(mapping, idx);
5767 		if (!page)
5768 			goto out;
5769 		page_in_pagecache = true;
5770 	} else if (!*pagep) {
5771 		/* If a page already exists, then it's UFFDIO_COPY for
5772 		 * a non-missing case. Return -EEXIST.
5773 		 */
5774 		if (vm_shared &&
5775 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5776 			ret = -EEXIST;
5777 			goto out;
5778 		}
5779 
5780 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5781 		if (IS_ERR(page)) {
5782 			ret = -ENOMEM;
5783 			goto out;
5784 		}
5785 
5786 		ret = copy_huge_page_from_user(page,
5787 						(const void __user *) src_addr,
5788 						pages_per_huge_page(h), false);
5789 
5790 		/* fallback to copy_from_user outside mmap_lock */
5791 		if (unlikely(ret)) {
5792 			ret = -ENOENT;
5793 			/* Free the allocated page which may have
5794 			 * consumed a reservation.
5795 			 */
5796 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5797 			put_page(page);
5798 
5799 			/* Allocate a temporary page to hold the copied
5800 			 * contents.
5801 			 */
5802 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5803 			if (!page) {
5804 				ret = -ENOMEM;
5805 				goto out;
5806 			}
5807 			*pagep = page;
5808 			/* Set the outparam pagep and return to the caller to
5809 			 * copy the contents outside the lock. Don't free the
5810 			 * page.
5811 			 */
5812 			goto out;
5813 		}
5814 	} else {
5815 		if (vm_shared &&
5816 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5817 			put_page(*pagep);
5818 			ret = -EEXIST;
5819 			*pagep = NULL;
5820 			goto out;
5821 		}
5822 
5823 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5824 		if (IS_ERR(page)) {
5825 			ret = -ENOMEM;
5826 			*pagep = NULL;
5827 			goto out;
5828 		}
5829 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5830 				    pages_per_huge_page(h));
5831 		put_page(*pagep);
5832 		*pagep = NULL;
5833 	}
5834 
5835 	/*
5836 	 * The memory barrier inside __SetPageUptodate makes sure that
5837 	 * preceding stores to the page contents become visible before
5838 	 * the set_pte_at() write.
5839 	 */
5840 	__SetPageUptodate(page);
5841 
5842 	/* Add shared, newly allocated pages to the page cache. */
5843 	if (vm_shared && !is_continue) {
5844 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5845 		ret = -EFAULT;
5846 		if (idx >= size)
5847 			goto out_release_nounlock;
5848 
5849 		/*
5850 		 * Serialization between remove_inode_hugepages() and
5851 		 * huge_add_to_page_cache() below happens through the
5852 		 * hugetlb_fault_mutex_table that here must be hold by
5853 		 * the caller.
5854 		 */
5855 		ret = huge_add_to_page_cache(page, mapping, idx);
5856 		if (ret)
5857 			goto out_release_nounlock;
5858 		page_in_pagecache = true;
5859 	}
5860 
5861 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5862 	spin_lock(ptl);
5863 
5864 	/*
5865 	 * Recheck the i_size after holding PT lock to make sure not
5866 	 * to leave any page mapped (as page_mapped()) beyond the end
5867 	 * of the i_size (remove_inode_hugepages() is strict about
5868 	 * enforcing that). If we bail out here, we'll also leave a
5869 	 * page in the radix tree in the vm_shared case beyond the end
5870 	 * of the i_size, but remove_inode_hugepages() will take care
5871 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5872 	 */
5873 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5874 	ret = -EFAULT;
5875 	if (idx >= size)
5876 		goto out_release_unlock;
5877 
5878 	ret = -EEXIST;
5879 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5880 		goto out_release_unlock;
5881 
5882 	if (vm_shared) {
5883 		page_dup_rmap(page, true);
5884 	} else {
5885 		ClearHPageRestoreReserve(page);
5886 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5887 	}
5888 
5889 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5890 	if (is_continue && !vm_shared)
5891 		writable = 0;
5892 	else
5893 		writable = dst_vma->vm_flags & VM_WRITE;
5894 
5895 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5896 	if (writable)
5897 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5898 	_dst_pte = pte_mkyoung(_dst_pte);
5899 
5900 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5901 
5902 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5903 					dst_vma->vm_flags & VM_WRITE);
5904 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5905 
5906 	/* No need to invalidate - it was non-present before */
5907 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5908 
5909 	spin_unlock(ptl);
5910 	if (!is_continue)
5911 		SetHPageMigratable(page);
5912 	if (vm_shared || is_continue)
5913 		unlock_page(page);
5914 	ret = 0;
5915 out:
5916 	return ret;
5917 out_release_unlock:
5918 	spin_unlock(ptl);
5919 	if (vm_shared || is_continue)
5920 		unlock_page(page);
5921 out_release_nounlock:
5922 	if (!page_in_pagecache)
5923 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5924 	put_page(page);
5925 	goto out;
5926 }
5927 #endif /* CONFIG_USERFAULTFD */
5928 
5929 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5930 				 int refs, struct page **pages,
5931 				 struct vm_area_struct **vmas)
5932 {
5933 	int nr;
5934 
5935 	for (nr = 0; nr < refs; nr++) {
5936 		if (likely(pages))
5937 			pages[nr] = mem_map_offset(page, nr);
5938 		if (vmas)
5939 			vmas[nr] = vma;
5940 	}
5941 }
5942 
5943 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5944 			 struct page **pages, struct vm_area_struct **vmas,
5945 			 unsigned long *position, unsigned long *nr_pages,
5946 			 long i, unsigned int flags, int *locked)
5947 {
5948 	unsigned long pfn_offset;
5949 	unsigned long vaddr = *position;
5950 	unsigned long remainder = *nr_pages;
5951 	struct hstate *h = hstate_vma(vma);
5952 	int err = -EFAULT, refs;
5953 
5954 	while (vaddr < vma->vm_end && remainder) {
5955 		pte_t *pte;
5956 		spinlock_t *ptl = NULL;
5957 		int absent;
5958 		struct page *page;
5959 
5960 		/*
5961 		 * If we have a pending SIGKILL, don't keep faulting pages and
5962 		 * potentially allocating memory.
5963 		 */
5964 		if (fatal_signal_pending(current)) {
5965 			remainder = 0;
5966 			break;
5967 		}
5968 
5969 		/*
5970 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5971 		 * each hugepage.  We have to make sure we get the
5972 		 * first, for the page indexing below to work.
5973 		 *
5974 		 * Note that page table lock is not held when pte is null.
5975 		 */
5976 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5977 				      huge_page_size(h));
5978 		if (pte)
5979 			ptl = huge_pte_lock(h, mm, pte);
5980 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5981 
5982 		/*
5983 		 * When coredumping, it suits get_dump_page if we just return
5984 		 * an error where there's an empty slot with no huge pagecache
5985 		 * to back it.  This way, we avoid allocating a hugepage, and
5986 		 * the sparse dumpfile avoids allocating disk blocks, but its
5987 		 * huge holes still show up with zeroes where they need to be.
5988 		 */
5989 		if (absent && (flags & FOLL_DUMP) &&
5990 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5991 			if (pte)
5992 				spin_unlock(ptl);
5993 			remainder = 0;
5994 			break;
5995 		}
5996 
5997 		/*
5998 		 * We need call hugetlb_fault for both hugepages under migration
5999 		 * (in which case hugetlb_fault waits for the migration,) and
6000 		 * hwpoisoned hugepages (in which case we need to prevent the
6001 		 * caller from accessing to them.) In order to do this, we use
6002 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6003 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6004 		 * both cases, and because we can't follow correct pages
6005 		 * directly from any kind of swap entries.
6006 		 */
6007 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
6008 		    ((flags & FOLL_WRITE) &&
6009 		      !huge_pte_write(huge_ptep_get(pte)))) {
6010 			vm_fault_t ret;
6011 			unsigned int fault_flags = 0;
6012 
6013 			if (pte)
6014 				spin_unlock(ptl);
6015 			if (flags & FOLL_WRITE)
6016 				fault_flags |= FAULT_FLAG_WRITE;
6017 			if (locked)
6018 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6019 					FAULT_FLAG_KILLABLE;
6020 			if (flags & FOLL_NOWAIT)
6021 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6022 					FAULT_FLAG_RETRY_NOWAIT;
6023 			if (flags & FOLL_TRIED) {
6024 				/*
6025 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6026 				 * FAULT_FLAG_TRIED can co-exist
6027 				 */
6028 				fault_flags |= FAULT_FLAG_TRIED;
6029 			}
6030 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6031 			if (ret & VM_FAULT_ERROR) {
6032 				err = vm_fault_to_errno(ret, flags);
6033 				remainder = 0;
6034 				break;
6035 			}
6036 			if (ret & VM_FAULT_RETRY) {
6037 				if (locked &&
6038 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6039 					*locked = 0;
6040 				*nr_pages = 0;
6041 				/*
6042 				 * VM_FAULT_RETRY must not return an
6043 				 * error, it will return zero
6044 				 * instead.
6045 				 *
6046 				 * No need to update "position" as the
6047 				 * caller will not check it after
6048 				 * *nr_pages is set to 0.
6049 				 */
6050 				return i;
6051 			}
6052 			continue;
6053 		}
6054 
6055 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6056 		page = pte_page(huge_ptep_get(pte));
6057 
6058 		/*
6059 		 * If subpage information not requested, update counters
6060 		 * and skip the same_page loop below.
6061 		 */
6062 		if (!pages && !vmas && !pfn_offset &&
6063 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6064 		    (remainder >= pages_per_huge_page(h))) {
6065 			vaddr += huge_page_size(h);
6066 			remainder -= pages_per_huge_page(h);
6067 			i += pages_per_huge_page(h);
6068 			spin_unlock(ptl);
6069 			continue;
6070 		}
6071 
6072 		/* vaddr may not be aligned to PAGE_SIZE */
6073 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6074 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6075 
6076 		if (pages || vmas)
6077 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6078 					     vma, refs,
6079 					     likely(pages) ? pages + i : NULL,
6080 					     vmas ? vmas + i : NULL);
6081 
6082 		if (pages) {
6083 			/*
6084 			 * try_grab_folio() should always succeed here,
6085 			 * because: a) we hold the ptl lock, and b) we've just
6086 			 * checked that the huge page is present in the page
6087 			 * tables. If the huge page is present, then the tail
6088 			 * pages must also be present. The ptl prevents the
6089 			 * head page and tail pages from being rearranged in
6090 			 * any way. So this page must be available at this
6091 			 * point, unless the page refcount overflowed:
6092 			 */
6093 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6094 							 flags))) {
6095 				spin_unlock(ptl);
6096 				remainder = 0;
6097 				err = -ENOMEM;
6098 				break;
6099 			}
6100 		}
6101 
6102 		vaddr += (refs << PAGE_SHIFT);
6103 		remainder -= refs;
6104 		i += refs;
6105 
6106 		spin_unlock(ptl);
6107 	}
6108 	*nr_pages = remainder;
6109 	/*
6110 	 * setting position is actually required only if remainder is
6111 	 * not zero but it's faster not to add a "if (remainder)"
6112 	 * branch.
6113 	 */
6114 	*position = vaddr;
6115 
6116 	return i ? i : err;
6117 }
6118 
6119 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6120 		unsigned long address, unsigned long end, pgprot_t newprot)
6121 {
6122 	struct mm_struct *mm = vma->vm_mm;
6123 	unsigned long start = address;
6124 	pte_t *ptep;
6125 	pte_t pte;
6126 	struct hstate *h = hstate_vma(vma);
6127 	unsigned long pages = 0;
6128 	bool shared_pmd = false;
6129 	struct mmu_notifier_range range;
6130 
6131 	/*
6132 	 * In the case of shared PMDs, the area to flush could be beyond
6133 	 * start/end.  Set range.start/range.end to cover the maximum possible
6134 	 * range if PMD sharing is possible.
6135 	 */
6136 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6137 				0, vma, mm, start, end);
6138 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6139 
6140 	BUG_ON(address >= end);
6141 	flush_cache_range(vma, range.start, range.end);
6142 
6143 	mmu_notifier_invalidate_range_start(&range);
6144 	i_mmap_lock_write(vma->vm_file->f_mapping);
6145 	for (; address < end; address += huge_page_size(h)) {
6146 		spinlock_t *ptl;
6147 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6148 		if (!ptep)
6149 			continue;
6150 		ptl = huge_pte_lock(h, mm, ptep);
6151 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6152 			pages++;
6153 			spin_unlock(ptl);
6154 			shared_pmd = true;
6155 			continue;
6156 		}
6157 		pte = huge_ptep_get(ptep);
6158 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6159 			spin_unlock(ptl);
6160 			continue;
6161 		}
6162 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6163 			swp_entry_t entry = pte_to_swp_entry(pte);
6164 
6165 			if (is_writable_migration_entry(entry)) {
6166 				pte_t newpte;
6167 
6168 				entry = make_readable_migration_entry(
6169 							swp_offset(entry));
6170 				newpte = swp_entry_to_pte(entry);
6171 				set_huge_swap_pte_at(mm, address, ptep,
6172 						     newpte, huge_page_size(h));
6173 				pages++;
6174 			}
6175 			spin_unlock(ptl);
6176 			continue;
6177 		}
6178 		if (!huge_pte_none(pte)) {
6179 			pte_t old_pte;
6180 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6181 
6182 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6183 			pte = huge_pte_modify(old_pte, newprot);
6184 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6185 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6186 			pages++;
6187 		}
6188 		spin_unlock(ptl);
6189 	}
6190 	/*
6191 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6192 	 * may have cleared our pud entry and done put_page on the page table:
6193 	 * once we release i_mmap_rwsem, another task can do the final put_page
6194 	 * and that page table be reused and filled with junk.  If we actually
6195 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6196 	 */
6197 	if (shared_pmd)
6198 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6199 	else
6200 		flush_hugetlb_tlb_range(vma, start, end);
6201 	/*
6202 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6203 	 * page table protection not changing it to point to a new page.
6204 	 *
6205 	 * See Documentation/vm/mmu_notifier.rst
6206 	 */
6207 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6208 	mmu_notifier_invalidate_range_end(&range);
6209 
6210 	return pages << h->order;
6211 }
6212 
6213 /* Return true if reservation was successful, false otherwise.  */
6214 bool hugetlb_reserve_pages(struct inode *inode,
6215 					long from, long to,
6216 					struct vm_area_struct *vma,
6217 					vm_flags_t vm_flags)
6218 {
6219 	long chg, add = -1;
6220 	struct hstate *h = hstate_inode(inode);
6221 	struct hugepage_subpool *spool = subpool_inode(inode);
6222 	struct resv_map *resv_map;
6223 	struct hugetlb_cgroup *h_cg = NULL;
6224 	long gbl_reserve, regions_needed = 0;
6225 
6226 	/* This should never happen */
6227 	if (from > to) {
6228 		VM_WARN(1, "%s called with a negative range\n", __func__);
6229 		return false;
6230 	}
6231 
6232 	/*
6233 	 * Only apply hugepage reservation if asked. At fault time, an
6234 	 * attempt will be made for VM_NORESERVE to allocate a page
6235 	 * without using reserves
6236 	 */
6237 	if (vm_flags & VM_NORESERVE)
6238 		return true;
6239 
6240 	/*
6241 	 * Shared mappings base their reservation on the number of pages that
6242 	 * are already allocated on behalf of the file. Private mappings need
6243 	 * to reserve the full area even if read-only as mprotect() may be
6244 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6245 	 */
6246 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6247 		/*
6248 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6249 		 * called for inodes for which resv_maps were created (see
6250 		 * hugetlbfs_get_inode).
6251 		 */
6252 		resv_map = inode_resv_map(inode);
6253 
6254 		chg = region_chg(resv_map, from, to, &regions_needed);
6255 
6256 	} else {
6257 		/* Private mapping. */
6258 		resv_map = resv_map_alloc();
6259 		if (!resv_map)
6260 			return false;
6261 
6262 		chg = to - from;
6263 
6264 		set_vma_resv_map(vma, resv_map);
6265 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6266 	}
6267 
6268 	if (chg < 0)
6269 		goto out_err;
6270 
6271 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6272 				chg * pages_per_huge_page(h), &h_cg) < 0)
6273 		goto out_err;
6274 
6275 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6276 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6277 		 * of the resv_map.
6278 		 */
6279 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6280 	}
6281 
6282 	/*
6283 	 * There must be enough pages in the subpool for the mapping. If
6284 	 * the subpool has a minimum size, there may be some global
6285 	 * reservations already in place (gbl_reserve).
6286 	 */
6287 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6288 	if (gbl_reserve < 0)
6289 		goto out_uncharge_cgroup;
6290 
6291 	/*
6292 	 * Check enough hugepages are available for the reservation.
6293 	 * Hand the pages back to the subpool if there are not
6294 	 */
6295 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6296 		goto out_put_pages;
6297 
6298 	/*
6299 	 * Account for the reservations made. Shared mappings record regions
6300 	 * that have reservations as they are shared by multiple VMAs.
6301 	 * When the last VMA disappears, the region map says how much
6302 	 * the reservation was and the page cache tells how much of
6303 	 * the reservation was consumed. Private mappings are per-VMA and
6304 	 * only the consumed reservations are tracked. When the VMA
6305 	 * disappears, the original reservation is the VMA size and the
6306 	 * consumed reservations are stored in the map. Hence, nothing
6307 	 * else has to be done for private mappings here
6308 	 */
6309 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6310 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6311 
6312 		if (unlikely(add < 0)) {
6313 			hugetlb_acct_memory(h, -gbl_reserve);
6314 			goto out_put_pages;
6315 		} else if (unlikely(chg > add)) {
6316 			/*
6317 			 * pages in this range were added to the reserve
6318 			 * map between region_chg and region_add.  This
6319 			 * indicates a race with alloc_huge_page.  Adjust
6320 			 * the subpool and reserve counts modified above
6321 			 * based on the difference.
6322 			 */
6323 			long rsv_adjust;
6324 
6325 			/*
6326 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6327 			 * reference to h_cg->css. See comment below for detail.
6328 			 */
6329 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6330 				hstate_index(h),
6331 				(chg - add) * pages_per_huge_page(h), h_cg);
6332 
6333 			rsv_adjust = hugepage_subpool_put_pages(spool,
6334 								chg - add);
6335 			hugetlb_acct_memory(h, -rsv_adjust);
6336 		} else if (h_cg) {
6337 			/*
6338 			 * The file_regions will hold their own reference to
6339 			 * h_cg->css. So we should release the reference held
6340 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6341 			 * done.
6342 			 */
6343 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6344 		}
6345 	}
6346 	return true;
6347 
6348 out_put_pages:
6349 	/* put back original number of pages, chg */
6350 	(void)hugepage_subpool_put_pages(spool, chg);
6351 out_uncharge_cgroup:
6352 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6353 					    chg * pages_per_huge_page(h), h_cg);
6354 out_err:
6355 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6356 		/* Only call region_abort if the region_chg succeeded but the
6357 		 * region_add failed or didn't run.
6358 		 */
6359 		if (chg >= 0 && add < 0)
6360 			region_abort(resv_map, from, to, regions_needed);
6361 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6362 		kref_put(&resv_map->refs, resv_map_release);
6363 	return false;
6364 }
6365 
6366 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6367 								long freed)
6368 {
6369 	struct hstate *h = hstate_inode(inode);
6370 	struct resv_map *resv_map = inode_resv_map(inode);
6371 	long chg = 0;
6372 	struct hugepage_subpool *spool = subpool_inode(inode);
6373 	long gbl_reserve;
6374 
6375 	/*
6376 	 * Since this routine can be called in the evict inode path for all
6377 	 * hugetlbfs inodes, resv_map could be NULL.
6378 	 */
6379 	if (resv_map) {
6380 		chg = region_del(resv_map, start, end);
6381 		/*
6382 		 * region_del() can fail in the rare case where a region
6383 		 * must be split and another region descriptor can not be
6384 		 * allocated.  If end == LONG_MAX, it will not fail.
6385 		 */
6386 		if (chg < 0)
6387 			return chg;
6388 	}
6389 
6390 	spin_lock(&inode->i_lock);
6391 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6392 	spin_unlock(&inode->i_lock);
6393 
6394 	/*
6395 	 * If the subpool has a minimum size, the number of global
6396 	 * reservations to be released may be adjusted.
6397 	 *
6398 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6399 	 * won't go negative.
6400 	 */
6401 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6402 	hugetlb_acct_memory(h, -gbl_reserve);
6403 
6404 	return 0;
6405 }
6406 
6407 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6408 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6409 				struct vm_area_struct *vma,
6410 				unsigned long addr, pgoff_t idx)
6411 {
6412 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6413 				svma->vm_start;
6414 	unsigned long sbase = saddr & PUD_MASK;
6415 	unsigned long s_end = sbase + PUD_SIZE;
6416 
6417 	/* Allow segments to share if only one is marked locked */
6418 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6419 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6420 
6421 	/*
6422 	 * match the virtual addresses, permission and the alignment of the
6423 	 * page table page.
6424 	 */
6425 	if (pmd_index(addr) != pmd_index(saddr) ||
6426 	    vm_flags != svm_flags ||
6427 	    !range_in_vma(svma, sbase, s_end))
6428 		return 0;
6429 
6430 	return saddr;
6431 }
6432 
6433 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6434 {
6435 	unsigned long base = addr & PUD_MASK;
6436 	unsigned long end = base + PUD_SIZE;
6437 
6438 	/*
6439 	 * check on proper vm_flags and page table alignment
6440 	 */
6441 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6442 		return true;
6443 	return false;
6444 }
6445 
6446 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6447 {
6448 #ifdef CONFIG_USERFAULTFD
6449 	if (uffd_disable_huge_pmd_share(vma))
6450 		return false;
6451 #endif
6452 	return vma_shareable(vma, addr);
6453 }
6454 
6455 /*
6456  * Determine if start,end range within vma could be mapped by shared pmd.
6457  * If yes, adjust start and end to cover range associated with possible
6458  * shared pmd mappings.
6459  */
6460 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6461 				unsigned long *start, unsigned long *end)
6462 {
6463 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6464 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6465 
6466 	/*
6467 	 * vma needs to span at least one aligned PUD size, and the range
6468 	 * must be at least partially within in.
6469 	 */
6470 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6471 		(*end <= v_start) || (*start >= v_end))
6472 		return;
6473 
6474 	/* Extend the range to be PUD aligned for a worst case scenario */
6475 	if (*start > v_start)
6476 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6477 
6478 	if (*end < v_end)
6479 		*end = ALIGN(*end, PUD_SIZE);
6480 }
6481 
6482 /*
6483  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6484  * and returns the corresponding pte. While this is not necessary for the
6485  * !shared pmd case because we can allocate the pmd later as well, it makes the
6486  * code much cleaner.
6487  *
6488  * This routine must be called with i_mmap_rwsem held in at least read mode if
6489  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6490  * table entries associated with the address space.  This is important as we
6491  * are setting up sharing based on existing page table entries (mappings).
6492  */
6493 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6494 		      unsigned long addr, pud_t *pud)
6495 {
6496 	struct address_space *mapping = vma->vm_file->f_mapping;
6497 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6498 			vma->vm_pgoff;
6499 	struct vm_area_struct *svma;
6500 	unsigned long saddr;
6501 	pte_t *spte = NULL;
6502 	pte_t *pte;
6503 	spinlock_t *ptl;
6504 
6505 	i_mmap_assert_locked(mapping);
6506 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6507 		if (svma == vma)
6508 			continue;
6509 
6510 		saddr = page_table_shareable(svma, vma, addr, idx);
6511 		if (saddr) {
6512 			spte = huge_pte_offset(svma->vm_mm, saddr,
6513 					       vma_mmu_pagesize(svma));
6514 			if (spte) {
6515 				get_page(virt_to_page(spte));
6516 				break;
6517 			}
6518 		}
6519 	}
6520 
6521 	if (!spte)
6522 		goto out;
6523 
6524 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6525 	if (pud_none(*pud)) {
6526 		pud_populate(mm, pud,
6527 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6528 		mm_inc_nr_pmds(mm);
6529 	} else {
6530 		put_page(virt_to_page(spte));
6531 	}
6532 	spin_unlock(ptl);
6533 out:
6534 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6535 	return pte;
6536 }
6537 
6538 /*
6539  * unmap huge page backed by shared pte.
6540  *
6541  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6542  * indicated by page_count > 1, unmap is achieved by clearing pud and
6543  * decrementing the ref count. If count == 1, the pte page is not shared.
6544  *
6545  * Called with page table lock held and i_mmap_rwsem held in write mode.
6546  *
6547  * returns: 1 successfully unmapped a shared pte page
6548  *	    0 the underlying pte page is not shared, or it is the last user
6549  */
6550 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6551 					unsigned long *addr, pte_t *ptep)
6552 {
6553 	pgd_t *pgd = pgd_offset(mm, *addr);
6554 	p4d_t *p4d = p4d_offset(pgd, *addr);
6555 	pud_t *pud = pud_offset(p4d, *addr);
6556 
6557 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6558 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6559 	if (page_count(virt_to_page(ptep)) == 1)
6560 		return 0;
6561 
6562 	pud_clear(pud);
6563 	put_page(virt_to_page(ptep));
6564 	mm_dec_nr_pmds(mm);
6565 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6566 	return 1;
6567 }
6568 
6569 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6570 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6571 		      unsigned long addr, pud_t *pud)
6572 {
6573 	return NULL;
6574 }
6575 
6576 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6577 				unsigned long *addr, pte_t *ptep)
6578 {
6579 	return 0;
6580 }
6581 
6582 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6583 				unsigned long *start, unsigned long *end)
6584 {
6585 }
6586 
6587 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6588 {
6589 	return false;
6590 }
6591 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6592 
6593 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6594 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6595 			unsigned long addr, unsigned long sz)
6596 {
6597 	pgd_t *pgd;
6598 	p4d_t *p4d;
6599 	pud_t *pud;
6600 	pte_t *pte = NULL;
6601 
6602 	pgd = pgd_offset(mm, addr);
6603 	p4d = p4d_alloc(mm, pgd, addr);
6604 	if (!p4d)
6605 		return NULL;
6606 	pud = pud_alloc(mm, p4d, addr);
6607 	if (pud) {
6608 		if (sz == PUD_SIZE) {
6609 			pte = (pte_t *)pud;
6610 		} else {
6611 			BUG_ON(sz != PMD_SIZE);
6612 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6613 				pte = huge_pmd_share(mm, vma, addr, pud);
6614 			else
6615 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6616 		}
6617 	}
6618 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6619 
6620 	return pte;
6621 }
6622 
6623 /*
6624  * huge_pte_offset() - Walk the page table to resolve the hugepage
6625  * entry at address @addr
6626  *
6627  * Return: Pointer to page table entry (PUD or PMD) for
6628  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6629  * size @sz doesn't match the hugepage size at this level of the page
6630  * table.
6631  */
6632 pte_t *huge_pte_offset(struct mm_struct *mm,
6633 		       unsigned long addr, unsigned long sz)
6634 {
6635 	pgd_t *pgd;
6636 	p4d_t *p4d;
6637 	pud_t *pud;
6638 	pmd_t *pmd;
6639 
6640 	pgd = pgd_offset(mm, addr);
6641 	if (!pgd_present(*pgd))
6642 		return NULL;
6643 	p4d = p4d_offset(pgd, addr);
6644 	if (!p4d_present(*p4d))
6645 		return NULL;
6646 
6647 	pud = pud_offset(p4d, addr);
6648 	if (sz == PUD_SIZE)
6649 		/* must be pud huge, non-present or none */
6650 		return (pte_t *)pud;
6651 	if (!pud_present(*pud))
6652 		return NULL;
6653 	/* must have a valid entry and size to go further */
6654 
6655 	pmd = pmd_offset(pud, addr);
6656 	/* must be pmd huge, non-present or none */
6657 	return (pte_t *)pmd;
6658 }
6659 
6660 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6661 
6662 /*
6663  * These functions are overwritable if your architecture needs its own
6664  * behavior.
6665  */
6666 struct page * __weak
6667 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6668 			      int write)
6669 {
6670 	return ERR_PTR(-EINVAL);
6671 }
6672 
6673 struct page * __weak
6674 follow_huge_pd(struct vm_area_struct *vma,
6675 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6676 {
6677 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6678 	return NULL;
6679 }
6680 
6681 struct page * __weak
6682 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6683 		pmd_t *pmd, int flags)
6684 {
6685 	struct page *page = NULL;
6686 	spinlock_t *ptl;
6687 	pte_t pte;
6688 
6689 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6690 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6691 			 (FOLL_PIN | FOLL_GET)))
6692 		return NULL;
6693 
6694 retry:
6695 	ptl = pmd_lockptr(mm, pmd);
6696 	spin_lock(ptl);
6697 	/*
6698 	 * make sure that the address range covered by this pmd is not
6699 	 * unmapped from other threads.
6700 	 */
6701 	if (!pmd_huge(*pmd))
6702 		goto out;
6703 	pte = huge_ptep_get((pte_t *)pmd);
6704 	if (pte_present(pte)) {
6705 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6706 		/*
6707 		 * try_grab_page() should always succeed here, because: a) we
6708 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6709 		 * huge pmd (head) page is present in the page tables. The ptl
6710 		 * prevents the head page and tail pages from being rearranged
6711 		 * in any way. So this page must be available at this point,
6712 		 * unless the page refcount overflowed:
6713 		 */
6714 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6715 			page = NULL;
6716 			goto out;
6717 		}
6718 	} else {
6719 		if (is_hugetlb_entry_migration(pte)) {
6720 			spin_unlock(ptl);
6721 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6722 			goto retry;
6723 		}
6724 		/*
6725 		 * hwpoisoned entry is treated as no_page_table in
6726 		 * follow_page_mask().
6727 		 */
6728 	}
6729 out:
6730 	spin_unlock(ptl);
6731 	return page;
6732 }
6733 
6734 struct page * __weak
6735 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6736 		pud_t *pud, int flags)
6737 {
6738 	if (flags & (FOLL_GET | FOLL_PIN))
6739 		return NULL;
6740 
6741 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6742 }
6743 
6744 struct page * __weak
6745 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6746 {
6747 	if (flags & (FOLL_GET | FOLL_PIN))
6748 		return NULL;
6749 
6750 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6751 }
6752 
6753 bool isolate_huge_page(struct page *page, struct list_head *list)
6754 {
6755 	bool ret = true;
6756 
6757 	spin_lock_irq(&hugetlb_lock);
6758 	if (!PageHeadHuge(page) ||
6759 	    !HPageMigratable(page) ||
6760 	    !get_page_unless_zero(page)) {
6761 		ret = false;
6762 		goto unlock;
6763 	}
6764 	ClearHPageMigratable(page);
6765 	list_move_tail(&page->lru, list);
6766 unlock:
6767 	spin_unlock_irq(&hugetlb_lock);
6768 	return ret;
6769 }
6770 
6771 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6772 {
6773 	int ret = 0;
6774 
6775 	*hugetlb = false;
6776 	spin_lock_irq(&hugetlb_lock);
6777 	if (PageHeadHuge(page)) {
6778 		*hugetlb = true;
6779 		if (HPageFreed(page) || HPageMigratable(page))
6780 			ret = get_page_unless_zero(page);
6781 		else
6782 			ret = -EBUSY;
6783 	}
6784 	spin_unlock_irq(&hugetlb_lock);
6785 	return ret;
6786 }
6787 
6788 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6789 {
6790 	int ret;
6791 
6792 	spin_lock_irq(&hugetlb_lock);
6793 	ret = __get_huge_page_for_hwpoison(pfn, flags);
6794 	spin_unlock_irq(&hugetlb_lock);
6795 	return ret;
6796 }
6797 
6798 void putback_active_hugepage(struct page *page)
6799 {
6800 	spin_lock_irq(&hugetlb_lock);
6801 	SetHPageMigratable(page);
6802 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6803 	spin_unlock_irq(&hugetlb_lock);
6804 	put_page(page);
6805 }
6806 
6807 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6808 {
6809 	struct hstate *h = page_hstate(oldpage);
6810 
6811 	hugetlb_cgroup_migrate(oldpage, newpage);
6812 	set_page_owner_migrate_reason(newpage, reason);
6813 
6814 	/*
6815 	 * transfer temporary state of the new huge page. This is
6816 	 * reverse to other transitions because the newpage is going to
6817 	 * be final while the old one will be freed so it takes over
6818 	 * the temporary status.
6819 	 *
6820 	 * Also note that we have to transfer the per-node surplus state
6821 	 * here as well otherwise the global surplus count will not match
6822 	 * the per-node's.
6823 	 */
6824 	if (HPageTemporary(newpage)) {
6825 		int old_nid = page_to_nid(oldpage);
6826 		int new_nid = page_to_nid(newpage);
6827 
6828 		SetHPageTemporary(oldpage);
6829 		ClearHPageTemporary(newpage);
6830 
6831 		/*
6832 		 * There is no need to transfer the per-node surplus state
6833 		 * when we do not cross the node.
6834 		 */
6835 		if (new_nid == old_nid)
6836 			return;
6837 		spin_lock_irq(&hugetlb_lock);
6838 		if (h->surplus_huge_pages_node[old_nid]) {
6839 			h->surplus_huge_pages_node[old_nid]--;
6840 			h->surplus_huge_pages_node[new_nid]++;
6841 		}
6842 		spin_unlock_irq(&hugetlb_lock);
6843 	}
6844 }
6845 
6846 /*
6847  * This function will unconditionally remove all the shared pmd pgtable entries
6848  * within the specific vma for a hugetlbfs memory range.
6849  */
6850 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6851 {
6852 	struct hstate *h = hstate_vma(vma);
6853 	unsigned long sz = huge_page_size(h);
6854 	struct mm_struct *mm = vma->vm_mm;
6855 	struct mmu_notifier_range range;
6856 	unsigned long address, start, end;
6857 	spinlock_t *ptl;
6858 	pte_t *ptep;
6859 
6860 	if (!(vma->vm_flags & VM_MAYSHARE))
6861 		return;
6862 
6863 	start = ALIGN(vma->vm_start, PUD_SIZE);
6864 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6865 
6866 	if (start >= end)
6867 		return;
6868 
6869 	/*
6870 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6871 	 * we have already done the PUD_SIZE alignment.
6872 	 */
6873 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6874 				start, end);
6875 	mmu_notifier_invalidate_range_start(&range);
6876 	i_mmap_lock_write(vma->vm_file->f_mapping);
6877 	for (address = start; address < end; address += PUD_SIZE) {
6878 		unsigned long tmp = address;
6879 
6880 		ptep = huge_pte_offset(mm, address, sz);
6881 		if (!ptep)
6882 			continue;
6883 		ptl = huge_pte_lock(h, mm, ptep);
6884 		/* We don't want 'address' to be changed */
6885 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6886 		spin_unlock(ptl);
6887 	}
6888 	flush_hugetlb_tlb_range(vma, start, end);
6889 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6890 	/*
6891 	 * No need to call mmu_notifier_invalidate_range(), see
6892 	 * Documentation/vm/mmu_notifier.rst.
6893 	 */
6894 	mmu_notifier_invalidate_range_end(&range);
6895 }
6896 
6897 #ifdef CONFIG_CMA
6898 static bool cma_reserve_called __initdata;
6899 
6900 static int __init cmdline_parse_hugetlb_cma(char *p)
6901 {
6902 	int nid, count = 0;
6903 	unsigned long tmp;
6904 	char *s = p;
6905 
6906 	while (*s) {
6907 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6908 			break;
6909 
6910 		if (s[count] == ':') {
6911 			if (tmp >= MAX_NUMNODES)
6912 				break;
6913 			nid = array_index_nospec(tmp, MAX_NUMNODES);
6914 
6915 			s += count + 1;
6916 			tmp = memparse(s, &s);
6917 			hugetlb_cma_size_in_node[nid] = tmp;
6918 			hugetlb_cma_size += tmp;
6919 
6920 			/*
6921 			 * Skip the separator if have one, otherwise
6922 			 * break the parsing.
6923 			 */
6924 			if (*s == ',')
6925 				s++;
6926 			else
6927 				break;
6928 		} else {
6929 			hugetlb_cma_size = memparse(p, &p);
6930 			break;
6931 		}
6932 	}
6933 
6934 	return 0;
6935 }
6936 
6937 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6938 
6939 void __init hugetlb_cma_reserve(int order)
6940 {
6941 	unsigned long size, reserved, per_node;
6942 	bool node_specific_cma_alloc = false;
6943 	int nid;
6944 
6945 	cma_reserve_called = true;
6946 
6947 	if (!hugetlb_cma_size)
6948 		return;
6949 
6950 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
6951 		if (hugetlb_cma_size_in_node[nid] == 0)
6952 			continue;
6953 
6954 		if (!node_state(nid, N_ONLINE)) {
6955 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6956 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6957 			hugetlb_cma_size_in_node[nid] = 0;
6958 			continue;
6959 		}
6960 
6961 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6962 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6963 				nid, (PAGE_SIZE << order) / SZ_1M);
6964 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6965 			hugetlb_cma_size_in_node[nid] = 0;
6966 		} else {
6967 			node_specific_cma_alloc = true;
6968 		}
6969 	}
6970 
6971 	/* Validate the CMA size again in case some invalid nodes specified. */
6972 	if (!hugetlb_cma_size)
6973 		return;
6974 
6975 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6976 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6977 			(PAGE_SIZE << order) / SZ_1M);
6978 		hugetlb_cma_size = 0;
6979 		return;
6980 	}
6981 
6982 	if (!node_specific_cma_alloc) {
6983 		/*
6984 		 * If 3 GB area is requested on a machine with 4 numa nodes,
6985 		 * let's allocate 1 GB on first three nodes and ignore the last one.
6986 		 */
6987 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6988 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6989 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6990 	}
6991 
6992 	reserved = 0;
6993 	for_each_node_state(nid, N_ONLINE) {
6994 		int res;
6995 		char name[CMA_MAX_NAME];
6996 
6997 		if (node_specific_cma_alloc) {
6998 			if (hugetlb_cma_size_in_node[nid] == 0)
6999 				continue;
7000 
7001 			size = hugetlb_cma_size_in_node[nid];
7002 		} else {
7003 			size = min(per_node, hugetlb_cma_size - reserved);
7004 		}
7005 
7006 		size = round_up(size, PAGE_SIZE << order);
7007 
7008 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7009 		/*
7010 		 * Note that 'order per bit' is based on smallest size that
7011 		 * may be returned to CMA allocator in the case of
7012 		 * huge page demotion.
7013 		 */
7014 		res = cma_declare_contiguous_nid(0, size, 0,
7015 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7016 						 0, false, name,
7017 						 &hugetlb_cma[nid], nid);
7018 		if (res) {
7019 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7020 				res, nid);
7021 			continue;
7022 		}
7023 
7024 		reserved += size;
7025 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7026 			size / SZ_1M, nid);
7027 
7028 		if (reserved >= hugetlb_cma_size)
7029 			break;
7030 	}
7031 
7032 	if (!reserved)
7033 		/*
7034 		 * hugetlb_cma_size is used to determine if allocations from
7035 		 * cma are possible.  Set to zero if no cma regions are set up.
7036 		 */
7037 		hugetlb_cma_size = 0;
7038 }
7039 
7040 void __init hugetlb_cma_check(void)
7041 {
7042 	if (!hugetlb_cma_size || cma_reserve_called)
7043 		return;
7044 
7045 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7046 }
7047 
7048 #endif /* CONFIG_CMA */
7049