xref: /openbmc/linux/mm/hugetlb.c (revision 7ae5c03a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40 
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48 
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52 
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59 				1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64 	return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68 
69 __initdata LIST_HEAD(huge_boot_pages);
70 
71 /* for command line parsing */
72 static struct hstate * __initdata parsed_hstate;
73 static unsigned long __initdata default_hstate_max_huge_pages;
74 static bool __initdata parsed_valid_hugepagesz = true;
75 static bool __initdata parsed_default_hugepagesz;
76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
77 
78 /*
79  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80  * free_huge_pages, and surplus_huge_pages.
81  */
82 DEFINE_SPINLOCK(hugetlb_lock);
83 
84 /*
85  * Serializes faults on the same logical page.  This is used to
86  * prevent spurious OOMs when the hugepage pool is fully utilized.
87  */
88 static int num_fault_mutexes;
89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
90 
91 /* Forward declaration */
92 static int hugetlb_acct_memory(struct hstate *h, long delta);
93 
94 static inline bool subpool_is_free(struct hugepage_subpool *spool)
95 {
96 	if (spool->count)
97 		return false;
98 	if (spool->max_hpages != -1)
99 		return spool->used_hpages == 0;
100 	if (spool->min_hpages != -1)
101 		return spool->rsv_hpages == spool->min_hpages;
102 
103 	return true;
104 }
105 
106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107 						unsigned long irq_flags)
108 {
109 	spin_unlock_irqrestore(&spool->lock, irq_flags);
110 
111 	/* If no pages are used, and no other handles to the subpool
112 	 * remain, give up any reservations based on minimum size and
113 	 * free the subpool */
114 	if (subpool_is_free(spool)) {
115 		if (spool->min_hpages != -1)
116 			hugetlb_acct_memory(spool->hstate,
117 						-spool->min_hpages);
118 		kfree(spool);
119 	}
120 }
121 
122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123 						long min_hpages)
124 {
125 	struct hugepage_subpool *spool;
126 
127 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
128 	if (!spool)
129 		return NULL;
130 
131 	spin_lock_init(&spool->lock);
132 	spool->count = 1;
133 	spool->max_hpages = max_hpages;
134 	spool->hstate = h;
135 	spool->min_hpages = min_hpages;
136 
137 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138 		kfree(spool);
139 		return NULL;
140 	}
141 	spool->rsv_hpages = min_hpages;
142 
143 	return spool;
144 }
145 
146 void hugepage_put_subpool(struct hugepage_subpool *spool)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&spool->lock, flags);
151 	BUG_ON(!spool->count);
152 	spool->count--;
153 	unlock_or_release_subpool(spool, flags);
154 }
155 
156 /*
157  * Subpool accounting for allocating and reserving pages.
158  * Return -ENOMEM if there are not enough resources to satisfy the
159  * request.  Otherwise, return the number of pages by which the
160  * global pools must be adjusted (upward).  The returned value may
161  * only be different than the passed value (delta) in the case where
162  * a subpool minimum size must be maintained.
163  */
164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
165 				      long delta)
166 {
167 	long ret = delta;
168 
169 	if (!spool)
170 		return ret;
171 
172 	spin_lock_irq(&spool->lock);
173 
174 	if (spool->max_hpages != -1) {		/* maximum size accounting */
175 		if ((spool->used_hpages + delta) <= spool->max_hpages)
176 			spool->used_hpages += delta;
177 		else {
178 			ret = -ENOMEM;
179 			goto unlock_ret;
180 		}
181 	}
182 
183 	/* minimum size accounting */
184 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
185 		if (delta > spool->rsv_hpages) {
186 			/*
187 			 * Asking for more reserves than those already taken on
188 			 * behalf of subpool.  Return difference.
189 			 */
190 			ret = delta - spool->rsv_hpages;
191 			spool->rsv_hpages = 0;
192 		} else {
193 			ret = 0;	/* reserves already accounted for */
194 			spool->rsv_hpages -= delta;
195 		}
196 	}
197 
198 unlock_ret:
199 	spin_unlock_irq(&spool->lock);
200 	return ret;
201 }
202 
203 /*
204  * Subpool accounting for freeing and unreserving pages.
205  * Return the number of global page reservations that must be dropped.
206  * The return value may only be different than the passed value (delta)
207  * in the case where a subpool minimum size must be maintained.
208  */
209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210 				       long delta)
211 {
212 	long ret = delta;
213 	unsigned long flags;
214 
215 	if (!spool)
216 		return delta;
217 
218 	spin_lock_irqsave(&spool->lock, flags);
219 
220 	if (spool->max_hpages != -1)		/* maximum size accounting */
221 		spool->used_hpages -= delta;
222 
223 	 /* minimum size accounting */
224 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
225 		if (spool->rsv_hpages + delta <= spool->min_hpages)
226 			ret = 0;
227 		else
228 			ret = spool->rsv_hpages + delta - spool->min_hpages;
229 
230 		spool->rsv_hpages += delta;
231 		if (spool->rsv_hpages > spool->min_hpages)
232 			spool->rsv_hpages = spool->min_hpages;
233 	}
234 
235 	/*
236 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
237 	 * quota reference, free it now.
238 	 */
239 	unlock_or_release_subpool(spool, flags);
240 
241 	return ret;
242 }
243 
244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245 {
246 	return HUGETLBFS_SB(inode->i_sb)->spool;
247 }
248 
249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250 {
251 	return subpool_inode(file_inode(vma->vm_file));
252 }
253 
254 /* Helper that removes a struct file_region from the resv_map cache and returns
255  * it for use.
256  */
257 static struct file_region *
258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259 {
260 	struct file_region *nrg = NULL;
261 
262 	VM_BUG_ON(resv->region_cache_count <= 0);
263 
264 	resv->region_cache_count--;
265 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
266 	list_del(&nrg->link);
267 
268 	nrg->from = from;
269 	nrg->to = to;
270 
271 	return nrg;
272 }
273 
274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275 					      struct file_region *rg)
276 {
277 #ifdef CONFIG_CGROUP_HUGETLB
278 	nrg->reservation_counter = rg->reservation_counter;
279 	nrg->css = rg->css;
280 	if (rg->css)
281 		css_get(rg->css);
282 #endif
283 }
284 
285 /* Helper that records hugetlb_cgroup uncharge info. */
286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287 						struct hstate *h,
288 						struct resv_map *resv,
289 						struct file_region *nrg)
290 {
291 #ifdef CONFIG_CGROUP_HUGETLB
292 	if (h_cg) {
293 		nrg->reservation_counter =
294 			&h_cg->rsvd_hugepage[hstate_index(h)];
295 		nrg->css = &h_cg->css;
296 		/*
297 		 * The caller will hold exactly one h_cg->css reference for the
298 		 * whole contiguous reservation region. But this area might be
299 		 * scattered when there are already some file_regions reside in
300 		 * it. As a result, many file_regions may share only one css
301 		 * reference. In order to ensure that one file_region must hold
302 		 * exactly one h_cg->css reference, we should do css_get for
303 		 * each file_region and leave the reference held by caller
304 		 * untouched.
305 		 */
306 		css_get(&h_cg->css);
307 		if (!resv->pages_per_hpage)
308 			resv->pages_per_hpage = pages_per_huge_page(h);
309 		/* pages_per_hpage should be the same for all entries in
310 		 * a resv_map.
311 		 */
312 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313 	} else {
314 		nrg->reservation_counter = NULL;
315 		nrg->css = NULL;
316 	}
317 #endif
318 }
319 
320 static void put_uncharge_info(struct file_region *rg)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 	if (rg->css)
324 		css_put(rg->css);
325 #endif
326 }
327 
328 static bool has_same_uncharge_info(struct file_region *rg,
329 				   struct file_region *org)
330 {
331 #ifdef CONFIG_CGROUP_HUGETLB
332 	return rg->reservation_counter == org->reservation_counter &&
333 	       rg->css == org->css;
334 
335 #else
336 	return true;
337 #endif
338 }
339 
340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341 {
342 	struct file_region *nrg = NULL, *prg = NULL;
343 
344 	prg = list_prev_entry(rg, link);
345 	if (&prg->link != &resv->regions && prg->to == rg->from &&
346 	    has_same_uncharge_info(prg, rg)) {
347 		prg->to = rg->to;
348 
349 		list_del(&rg->link);
350 		put_uncharge_info(rg);
351 		kfree(rg);
352 
353 		rg = prg;
354 	}
355 
356 	nrg = list_next_entry(rg, link);
357 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358 	    has_same_uncharge_info(nrg, rg)) {
359 		nrg->from = rg->from;
360 
361 		list_del(&rg->link);
362 		put_uncharge_info(rg);
363 		kfree(rg);
364 	}
365 }
366 
367 static inline long
368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
369 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
370 		     long *regions_needed)
371 {
372 	struct file_region *nrg;
373 
374 	if (!regions_needed) {
375 		nrg = get_file_region_entry_from_cache(map, from, to);
376 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
377 		list_add(&nrg->link, rg);
378 		coalesce_file_region(map, nrg);
379 	} else
380 		*regions_needed += 1;
381 
382 	return to - from;
383 }
384 
385 /*
386  * Must be called with resv->lock held.
387  *
388  * Calling this with regions_needed != NULL will count the number of pages
389  * to be added but will not modify the linked list. And regions_needed will
390  * indicate the number of file_regions needed in the cache to carry out to add
391  * the regions for this range.
392  */
393 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
394 				     struct hugetlb_cgroup *h_cg,
395 				     struct hstate *h, long *regions_needed)
396 {
397 	long add = 0;
398 	struct list_head *head = &resv->regions;
399 	long last_accounted_offset = f;
400 	struct file_region *iter, *trg = NULL;
401 	struct list_head *rg = NULL;
402 
403 	if (regions_needed)
404 		*regions_needed = 0;
405 
406 	/* In this loop, we essentially handle an entry for the range
407 	 * [last_accounted_offset, iter->from), at every iteration, with some
408 	 * bounds checking.
409 	 */
410 	list_for_each_entry_safe(iter, trg, head, link) {
411 		/* Skip irrelevant regions that start before our range. */
412 		if (iter->from < f) {
413 			/* If this region ends after the last accounted offset,
414 			 * then we need to update last_accounted_offset.
415 			 */
416 			if (iter->to > last_accounted_offset)
417 				last_accounted_offset = iter->to;
418 			continue;
419 		}
420 
421 		/* When we find a region that starts beyond our range, we've
422 		 * finished.
423 		 */
424 		if (iter->from >= t) {
425 			rg = iter->link.prev;
426 			break;
427 		}
428 
429 		/* Add an entry for last_accounted_offset -> iter->from, and
430 		 * update last_accounted_offset.
431 		 */
432 		if (iter->from > last_accounted_offset)
433 			add += hugetlb_resv_map_add(resv, iter->link.prev,
434 						    last_accounted_offset,
435 						    iter->from, h, h_cg,
436 						    regions_needed);
437 
438 		last_accounted_offset = iter->to;
439 	}
440 
441 	/* Handle the case where our range extends beyond
442 	 * last_accounted_offset.
443 	 */
444 	if (!rg)
445 		rg = head->prev;
446 	if (last_accounted_offset < t)
447 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448 					    t, h, h_cg, regions_needed);
449 
450 	return add;
451 }
452 
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456 					int regions_needed)
457 	__must_hold(&resv->lock)
458 {
459 	struct list_head allocated_regions;
460 	int to_allocate = 0, i = 0;
461 	struct file_region *trg = NULL, *rg = NULL;
462 
463 	VM_BUG_ON(regions_needed < 0);
464 
465 	INIT_LIST_HEAD(&allocated_regions);
466 
467 	/*
468 	 * Check for sufficient descriptors in the cache to accommodate
469 	 * the number of in progress add operations plus regions_needed.
470 	 *
471 	 * This is a while loop because when we drop the lock, some other call
472 	 * to region_add or region_del may have consumed some region_entries,
473 	 * so we keep looping here until we finally have enough entries for
474 	 * (adds_in_progress + regions_needed).
475 	 */
476 	while (resv->region_cache_count <
477 	       (resv->adds_in_progress + regions_needed)) {
478 		to_allocate = resv->adds_in_progress + regions_needed -
479 			      resv->region_cache_count;
480 
481 		/* At this point, we should have enough entries in the cache
482 		 * for all the existing adds_in_progress. We should only be
483 		 * needing to allocate for regions_needed.
484 		 */
485 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486 
487 		spin_unlock(&resv->lock);
488 		for (i = 0; i < to_allocate; i++) {
489 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490 			if (!trg)
491 				goto out_of_memory;
492 			list_add(&trg->link, &allocated_regions);
493 		}
494 
495 		spin_lock(&resv->lock);
496 
497 		list_splice(&allocated_regions, &resv->region_cache);
498 		resv->region_cache_count += to_allocate;
499 	}
500 
501 	return 0;
502 
503 out_of_memory:
504 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505 		list_del(&rg->link);
506 		kfree(rg);
507 	}
508 	return -ENOMEM;
509 }
510 
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529 		       long in_regions_needed, struct hstate *h,
530 		       struct hugetlb_cgroup *h_cg)
531 {
532 	long add = 0, actual_regions_needed = 0;
533 
534 	spin_lock(&resv->lock);
535 retry:
536 
537 	/* Count how many regions are actually needed to execute this add. */
538 	add_reservation_in_range(resv, f, t, NULL, NULL,
539 				 &actual_regions_needed);
540 
541 	/*
542 	 * Check for sufficient descriptors in the cache to accommodate
543 	 * this add operation. Note that actual_regions_needed may be greater
544 	 * than in_regions_needed, as the resv_map may have been modified since
545 	 * the region_chg call. In this case, we need to make sure that we
546 	 * allocate extra entries, such that we have enough for all the
547 	 * existing adds_in_progress, plus the excess needed for this
548 	 * operation.
549 	 */
550 	if (actual_regions_needed > in_regions_needed &&
551 	    resv->region_cache_count <
552 		    resv->adds_in_progress +
553 			    (actual_regions_needed - in_regions_needed)) {
554 		/* region_add operation of range 1 should never need to
555 		 * allocate file_region entries.
556 		 */
557 		VM_BUG_ON(t - f <= 1);
558 
559 		if (allocate_file_region_entries(
560 			    resv, actual_regions_needed - in_regions_needed)) {
561 			return -ENOMEM;
562 		}
563 
564 		goto retry;
565 	}
566 
567 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568 
569 	resv->adds_in_progress -= in_regions_needed;
570 
571 	spin_unlock(&resv->lock);
572 	return add;
573 }
574 
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596 		       long *out_regions_needed)
597 {
598 	long chg = 0;
599 
600 	spin_lock(&resv->lock);
601 
602 	/* Count how many hugepages in this range are NOT represented. */
603 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604 				       out_regions_needed);
605 
606 	if (*out_regions_needed == 0)
607 		*out_regions_needed = 1;
608 
609 	if (allocate_file_region_entries(resv, *out_regions_needed))
610 		return -ENOMEM;
611 
612 	resv->adds_in_progress += *out_regions_needed;
613 
614 	spin_unlock(&resv->lock);
615 	return chg;
616 }
617 
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632 			 long regions_needed)
633 {
634 	spin_lock(&resv->lock);
635 	VM_BUG_ON(!resv->region_cache_count);
636 	resv->adds_in_progress -= regions_needed;
637 	spin_unlock(&resv->lock);
638 }
639 
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656 	struct list_head *head = &resv->regions;
657 	struct file_region *rg, *trg;
658 	struct file_region *nrg = NULL;
659 	long del = 0;
660 
661 retry:
662 	spin_lock(&resv->lock);
663 	list_for_each_entry_safe(rg, trg, head, link) {
664 		/*
665 		 * Skip regions before the range to be deleted.  file_region
666 		 * ranges are normally of the form [from, to).  However, there
667 		 * may be a "placeholder" entry in the map which is of the form
668 		 * (from, to) with from == to.  Check for placeholder entries
669 		 * at the beginning of the range to be deleted.
670 		 */
671 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672 			continue;
673 
674 		if (rg->from >= t)
675 			break;
676 
677 		if (f > rg->from && t < rg->to) { /* Must split region */
678 			/*
679 			 * Check for an entry in the cache before dropping
680 			 * lock and attempting allocation.
681 			 */
682 			if (!nrg &&
683 			    resv->region_cache_count > resv->adds_in_progress) {
684 				nrg = list_first_entry(&resv->region_cache,
685 							struct file_region,
686 							link);
687 				list_del(&nrg->link);
688 				resv->region_cache_count--;
689 			}
690 
691 			if (!nrg) {
692 				spin_unlock(&resv->lock);
693 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694 				if (!nrg)
695 					return -ENOMEM;
696 				goto retry;
697 			}
698 
699 			del += t - f;
700 			hugetlb_cgroup_uncharge_file_region(
701 				resv, rg, t - f, false);
702 
703 			/* New entry for end of split region */
704 			nrg->from = t;
705 			nrg->to = rg->to;
706 
707 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708 
709 			INIT_LIST_HEAD(&nrg->link);
710 
711 			/* Original entry is trimmed */
712 			rg->to = f;
713 
714 			list_add(&nrg->link, &rg->link);
715 			nrg = NULL;
716 			break;
717 		}
718 
719 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720 			del += rg->to - rg->from;
721 			hugetlb_cgroup_uncharge_file_region(resv, rg,
722 							    rg->to - rg->from, true);
723 			list_del(&rg->link);
724 			kfree(rg);
725 			continue;
726 		}
727 
728 		if (f <= rg->from) {	/* Trim beginning of region */
729 			hugetlb_cgroup_uncharge_file_region(resv, rg,
730 							    t - rg->from, false);
731 
732 			del += t - rg->from;
733 			rg->from = t;
734 		} else {		/* Trim end of region */
735 			hugetlb_cgroup_uncharge_file_region(resv, rg,
736 							    rg->to - f, false);
737 
738 			del += rg->to - f;
739 			rg->to = f;
740 		}
741 	}
742 
743 	spin_unlock(&resv->lock);
744 	kfree(nrg);
745 	return del;
746 }
747 
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759 	struct hugepage_subpool *spool = subpool_inode(inode);
760 	long rsv_adjust;
761 	bool reserved = false;
762 
763 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764 	if (rsv_adjust > 0) {
765 		struct hstate *h = hstate_inode(inode);
766 
767 		if (!hugetlb_acct_memory(h, 1))
768 			reserved = true;
769 	} else if (!rsv_adjust) {
770 		reserved = true;
771 	}
772 
773 	if (!reserved)
774 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776 
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783 	struct list_head *head = &resv->regions;
784 	struct file_region *rg;
785 	long chg = 0;
786 
787 	spin_lock(&resv->lock);
788 	/* Locate each segment we overlap with, and count that overlap. */
789 	list_for_each_entry(rg, head, link) {
790 		long seg_from;
791 		long seg_to;
792 
793 		if (rg->to <= f)
794 			continue;
795 		if (rg->from >= t)
796 			break;
797 
798 		seg_from = max(rg->from, f);
799 		seg_to = min(rg->to, t);
800 
801 		chg += seg_to - seg_from;
802 	}
803 	spin_unlock(&resv->lock);
804 
805 	return chg;
806 }
807 
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813 			struct vm_area_struct *vma, unsigned long address)
814 {
815 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
816 			(vma->vm_pgoff >> huge_page_order(h));
817 }
818 
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820 				     unsigned long address)
821 {
822 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825 
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832 	if (vma->vm_ops && vma->vm_ops->pagesize)
833 		return vma->vm_ops->pagesize(vma);
834 	return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837 
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846 	return vma_kernel_pagesize(vma);
847 }
848 
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857 
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879 	return (unsigned long)vma->vm_private_data;
880 }
881 
882 static void set_vma_private_data(struct vm_area_struct *vma,
883 							unsigned long value)
884 {
885 	vma->vm_private_data = (void *)value;
886 }
887 
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890 					  struct hugetlb_cgroup *h_cg,
891 					  struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894 	if (!h_cg || !h) {
895 		resv_map->reservation_counter = NULL;
896 		resv_map->pages_per_hpage = 0;
897 		resv_map->css = NULL;
898 	} else {
899 		resv_map->reservation_counter =
900 			&h_cg->rsvd_hugepage[hstate_index(h)];
901 		resv_map->pages_per_hpage = pages_per_huge_page(h);
902 		resv_map->css = &h_cg->css;
903 	}
904 #endif
905 }
906 
907 struct resv_map *resv_map_alloc(void)
908 {
909 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911 
912 	if (!resv_map || !rg) {
913 		kfree(resv_map);
914 		kfree(rg);
915 		return NULL;
916 	}
917 
918 	kref_init(&resv_map->refs);
919 	spin_lock_init(&resv_map->lock);
920 	INIT_LIST_HEAD(&resv_map->regions);
921 
922 	resv_map->adds_in_progress = 0;
923 	/*
924 	 * Initialize these to 0. On shared mappings, 0's here indicate these
925 	 * fields don't do cgroup accounting. On private mappings, these will be
926 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
927 	 * reservations are to be un-charged from here.
928 	 */
929 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930 
931 	INIT_LIST_HEAD(&resv_map->region_cache);
932 	list_add(&rg->link, &resv_map->region_cache);
933 	resv_map->region_cache_count = 1;
934 
935 	return resv_map;
936 }
937 
938 void resv_map_release(struct kref *ref)
939 {
940 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941 	struct list_head *head = &resv_map->region_cache;
942 	struct file_region *rg, *trg;
943 
944 	/* Clear out any active regions before we release the map. */
945 	region_del(resv_map, 0, LONG_MAX);
946 
947 	/* ... and any entries left in the cache */
948 	list_for_each_entry_safe(rg, trg, head, link) {
949 		list_del(&rg->link);
950 		kfree(rg);
951 	}
952 
953 	VM_BUG_ON(resv_map->adds_in_progress);
954 
955 	kfree(resv_map);
956 }
957 
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960 	/*
961 	 * At inode evict time, i_mapping may not point to the original
962 	 * address space within the inode.  This original address space
963 	 * contains the pointer to the resv_map.  So, always use the
964 	 * address space embedded within the inode.
965 	 * The VERY common case is inode->mapping == &inode->i_data but,
966 	 * this may not be true for device special inodes.
967 	 */
968 	return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970 
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974 	if (vma->vm_flags & VM_MAYSHARE) {
975 		struct address_space *mapping = vma->vm_file->f_mapping;
976 		struct inode *inode = mapping->host;
977 
978 		return inode_resv_map(inode);
979 
980 	} else {
981 		return (struct resv_map *)(get_vma_private_data(vma) &
982 							~HPAGE_RESV_MASK);
983 	}
984 }
985 
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990 
991 	set_vma_private_data(vma, (get_vma_private_data(vma) &
992 				HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994 
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999 
1000 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002 
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006 
1007 	return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009 
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014 	if (!(vma->vm_flags & VM_MAYSHARE))
1015 		vma->vm_private_data = (void *)0;
1016 }
1017 
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027 	/*
1028 	 * Clear the old hugetlb private page reservation.
1029 	 * It has already been transferred to new_vma.
1030 	 *
1031 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1032 	 * which copies vma into new_vma and unmaps vma. After the copy
1033 	 * operation both new_vma and vma share a reference to the resv_map
1034 	 * struct, and at that point vma is about to be unmapped. We don't
1035 	 * want to return the reservation to the pool at unmap of vma because
1036 	 * the reservation still lives on in new_vma, so simply decrement the
1037 	 * ref here and remove the resv_map reference from this vma.
1038 	 */
1039 	struct resv_map *reservations = vma_resv_map(vma);
1040 
1041 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043 		kref_put(&reservations->refs, resv_map_release);
1044 	}
1045 
1046 	reset_vma_resv_huge_pages(vma);
1047 }
1048 
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052 	if (vma->vm_flags & VM_NORESERVE) {
1053 		/*
1054 		 * This address is already reserved by other process(chg == 0),
1055 		 * so, we should decrement reserved count. Without decrementing,
1056 		 * reserve count remains after releasing inode, because this
1057 		 * allocated page will go into page cache and is regarded as
1058 		 * coming from reserved pool in releasing step.  Currently, we
1059 		 * don't have any other solution to deal with this situation
1060 		 * properly, so add work-around here.
1061 		 */
1062 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063 			return true;
1064 		else
1065 			return false;
1066 	}
1067 
1068 	/* Shared mappings always use reserves */
1069 	if (vma->vm_flags & VM_MAYSHARE) {
1070 		/*
1071 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072 		 * be a region map for all pages.  The only situation where
1073 		 * there is no region map is if a hole was punched via
1074 		 * fallocate.  In this case, there really are no reserves to
1075 		 * use.  This situation is indicated if chg != 0.
1076 		 */
1077 		if (chg)
1078 			return false;
1079 		else
1080 			return true;
1081 	}
1082 
1083 	/*
1084 	 * Only the process that called mmap() has reserves for
1085 	 * private mappings.
1086 	 */
1087 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088 		/*
1089 		 * Like the shared case above, a hole punch or truncate
1090 		 * could have been performed on the private mapping.
1091 		 * Examine the value of chg to determine if reserves
1092 		 * actually exist or were previously consumed.
1093 		 * Very Subtle - The value of chg comes from a previous
1094 		 * call to vma_needs_reserves().  The reserve map for
1095 		 * private mappings has different (opposite) semantics
1096 		 * than that of shared mappings.  vma_needs_reserves()
1097 		 * has already taken this difference in semantics into
1098 		 * account.  Therefore, the meaning of chg is the same
1099 		 * as in the shared case above.  Code could easily be
1100 		 * combined, but keeping it separate draws attention to
1101 		 * subtle differences.
1102 		 */
1103 		if (chg)
1104 			return false;
1105 		else
1106 			return true;
1107 	}
1108 
1109 	return false;
1110 }
1111 
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114 	int nid = page_to_nid(page);
1115 
1116 	lockdep_assert_held(&hugetlb_lock);
1117 	VM_BUG_ON_PAGE(page_count(page), page);
1118 
1119 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1120 	h->free_huge_pages++;
1121 	h->free_huge_pages_node[nid]++;
1122 	SetHPageFreed(page);
1123 }
1124 
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127 	struct page *page;
1128 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129 
1130 	lockdep_assert_held(&hugetlb_lock);
1131 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132 		if (pin && !is_longterm_pinnable_page(page))
1133 			continue;
1134 
1135 		if (PageHWPoison(page))
1136 			continue;
1137 
1138 		list_move(&page->lru, &h->hugepage_activelist);
1139 		set_page_refcounted(page);
1140 		ClearHPageFreed(page);
1141 		h->free_huge_pages--;
1142 		h->free_huge_pages_node[nid]--;
1143 		return page;
1144 	}
1145 
1146 	return NULL;
1147 }
1148 
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150 		nodemask_t *nmask)
1151 {
1152 	unsigned int cpuset_mems_cookie;
1153 	struct zonelist *zonelist;
1154 	struct zone *zone;
1155 	struct zoneref *z;
1156 	int node = NUMA_NO_NODE;
1157 
1158 	zonelist = node_zonelist(nid, gfp_mask);
1159 
1160 retry_cpuset:
1161 	cpuset_mems_cookie = read_mems_allowed_begin();
1162 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163 		struct page *page;
1164 
1165 		if (!cpuset_zone_allowed(zone, gfp_mask))
1166 			continue;
1167 		/*
1168 		 * no need to ask again on the same node. Pool is node rather than
1169 		 * zone aware
1170 		 */
1171 		if (zone_to_nid(zone) == node)
1172 			continue;
1173 		node = zone_to_nid(zone);
1174 
1175 		page = dequeue_huge_page_node_exact(h, node);
1176 		if (page)
1177 			return page;
1178 	}
1179 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180 		goto retry_cpuset;
1181 
1182 	return NULL;
1183 }
1184 
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186 				struct vm_area_struct *vma,
1187 				unsigned long address, int avoid_reserve,
1188 				long chg)
1189 {
1190 	struct page *page = NULL;
1191 	struct mempolicy *mpol;
1192 	gfp_t gfp_mask;
1193 	nodemask_t *nodemask;
1194 	int nid;
1195 
1196 	/*
1197 	 * A child process with MAP_PRIVATE mappings created by their parent
1198 	 * have no page reserves. This check ensures that reservations are
1199 	 * not "stolen". The child may still get SIGKILLed
1200 	 */
1201 	if (!vma_has_reserves(vma, chg) &&
1202 			h->free_huge_pages - h->resv_huge_pages == 0)
1203 		goto err;
1204 
1205 	/* If reserves cannot be used, ensure enough pages are in the pool */
1206 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207 		goto err;
1208 
1209 	gfp_mask = htlb_alloc_mask(h);
1210 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211 
1212 	if (mpol_is_preferred_many(mpol)) {
1213 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214 
1215 		/* Fallback to all nodes if page==NULL */
1216 		nodemask = NULL;
1217 	}
1218 
1219 	if (!page)
1220 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221 
1222 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223 		SetHPageRestoreReserve(page);
1224 		h->resv_huge_pages--;
1225 	}
1226 
1227 	mpol_cond_put(mpol);
1228 	return page;
1229 
1230 err:
1231 	return NULL;
1232 }
1233 
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243 	nid = next_node_in(nid, *nodes_allowed);
1244 	VM_BUG_ON(nid >= MAX_NUMNODES);
1245 
1246 	return nid;
1247 }
1248 
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251 	if (!node_isset(nid, *nodes_allowed))
1252 		nid = next_node_allowed(nid, nodes_allowed);
1253 	return nid;
1254 }
1255 
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263 					nodemask_t *nodes_allowed)
1264 {
1265 	int nid;
1266 
1267 	VM_BUG_ON(!nodes_allowed);
1268 
1269 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271 
1272 	return nid;
1273 }
1274 
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283 	int nid;
1284 
1285 	VM_BUG_ON(!nodes_allowed);
1286 
1287 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289 
1290 	return nid;
1291 }
1292 
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1294 	for (nr_nodes = nodes_weight(*mask);				\
1295 		nr_nodes > 0 &&						\
1296 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1297 		nr_nodes--)
1298 
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1300 	for (nr_nodes = nodes_weight(*mask);				\
1301 		nr_nodes > 0 &&						\
1302 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1303 		nr_nodes--)
1304 
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307 					unsigned int order, bool demote)
1308 {
1309 	int i;
1310 	int nr_pages = 1 << order;
1311 	struct page *p = page + 1;
1312 
1313 	atomic_set(compound_mapcount_ptr(page), 0);
1314 	atomic_set(compound_pincount_ptr(page), 0);
1315 
1316 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317 		p->mapping = NULL;
1318 		clear_compound_head(p);
1319 		if (!demote)
1320 			set_page_refcounted(p);
1321 	}
1322 
1323 	set_compound_order(page, 0);
1324 #ifdef CONFIG_64BIT
1325 	page[1].compound_nr = 0;
1326 #endif
1327 	__ClearPageHead(page);
1328 }
1329 
1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331 					unsigned int order)
1332 {
1333 	__destroy_compound_gigantic_page(page, order, true);
1334 }
1335 
1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1337 static void destroy_compound_gigantic_page(struct page *page,
1338 					unsigned int order)
1339 {
1340 	__destroy_compound_gigantic_page(page, order, false);
1341 }
1342 
1343 static void free_gigantic_page(struct page *page, unsigned int order)
1344 {
1345 	/*
1346 	 * If the page isn't allocated using the cma allocator,
1347 	 * cma_release() returns false.
1348 	 */
1349 #ifdef CONFIG_CMA
1350 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351 		return;
1352 #endif
1353 
1354 	free_contig_range(page_to_pfn(page), 1 << order);
1355 }
1356 
1357 #ifdef CONFIG_CONTIG_ALLOC
1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359 		int nid, nodemask_t *nodemask)
1360 {
1361 	unsigned long nr_pages = pages_per_huge_page(h);
1362 	if (nid == NUMA_NO_NODE)
1363 		nid = numa_mem_id();
1364 
1365 #ifdef CONFIG_CMA
1366 	{
1367 		struct page *page;
1368 		int node;
1369 
1370 		if (hugetlb_cma[nid]) {
1371 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372 					huge_page_order(h), true);
1373 			if (page)
1374 				return page;
1375 		}
1376 
1377 		if (!(gfp_mask & __GFP_THISNODE)) {
1378 			for_each_node_mask(node, *nodemask) {
1379 				if (node == nid || !hugetlb_cma[node])
1380 					continue;
1381 
1382 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1383 						huge_page_order(h), true);
1384 				if (page)
1385 					return page;
1386 			}
1387 		}
1388 	}
1389 #endif
1390 
1391 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1392 }
1393 
1394 #else /* !CONFIG_CONTIG_ALLOC */
1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396 					int nid, nodemask_t *nodemask)
1397 {
1398 	return NULL;
1399 }
1400 #endif /* CONFIG_CONTIG_ALLOC */
1401 
1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1404 					int nid, nodemask_t *nodemask)
1405 {
1406 	return NULL;
1407 }
1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1409 static inline void destroy_compound_gigantic_page(struct page *page,
1410 						unsigned int order) { }
1411 #endif
1412 
1413 /*
1414  * Remove hugetlb page from lists, and update dtor so that page appears
1415  * as just a compound page.
1416  *
1417  * A reference is held on the page, except in the case of demote.
1418  *
1419  * Must be called with hugetlb lock held.
1420  */
1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422 							bool adjust_surplus,
1423 							bool demote)
1424 {
1425 	int nid = page_to_nid(page);
1426 
1427 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429 
1430 	lockdep_assert_held(&hugetlb_lock);
1431 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432 		return;
1433 
1434 	list_del(&page->lru);
1435 
1436 	if (HPageFreed(page)) {
1437 		h->free_huge_pages--;
1438 		h->free_huge_pages_node[nid]--;
1439 	}
1440 	if (adjust_surplus) {
1441 		h->surplus_huge_pages--;
1442 		h->surplus_huge_pages_node[nid]--;
1443 	}
1444 
1445 	/*
1446 	 * Very subtle
1447 	 *
1448 	 * For non-gigantic pages set the destructor to the normal compound
1449 	 * page dtor.  This is needed in case someone takes an additional
1450 	 * temporary ref to the page, and freeing is delayed until they drop
1451 	 * their reference.
1452 	 *
1453 	 * For gigantic pages set the destructor to the null dtor.  This
1454 	 * destructor will never be called.  Before freeing the gigantic
1455 	 * page destroy_compound_gigantic_page will turn the compound page
1456 	 * into a simple group of pages.  After this the destructor does not
1457 	 * apply.
1458 	 *
1459 	 * This handles the case where more than one ref is held when and
1460 	 * after update_and_free_page is called.
1461 	 *
1462 	 * In the case of demote we do not ref count the page as it will soon
1463 	 * be turned into a page of smaller size.
1464 	 */
1465 	if (!demote)
1466 		set_page_refcounted(page);
1467 	if (hstate_is_gigantic(h))
1468 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469 	else
1470 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1471 
1472 	h->nr_huge_pages--;
1473 	h->nr_huge_pages_node[nid]--;
1474 }
1475 
1476 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477 							bool adjust_surplus)
1478 {
1479 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1480 }
1481 
1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483 							bool adjust_surplus)
1484 {
1485 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1486 }
1487 
1488 static void add_hugetlb_page(struct hstate *h, struct page *page,
1489 			     bool adjust_surplus)
1490 {
1491 	int zeroed;
1492 	int nid = page_to_nid(page);
1493 
1494 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495 
1496 	lockdep_assert_held(&hugetlb_lock);
1497 
1498 	INIT_LIST_HEAD(&page->lru);
1499 	h->nr_huge_pages++;
1500 	h->nr_huge_pages_node[nid]++;
1501 
1502 	if (adjust_surplus) {
1503 		h->surplus_huge_pages++;
1504 		h->surplus_huge_pages_node[nid]++;
1505 	}
1506 
1507 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508 	set_page_private(page, 0);
1509 	SetHPageVmemmapOptimized(page);
1510 
1511 	/*
1512 	 * This page is about to be managed by the hugetlb allocator and
1513 	 * should have no users.  Drop our reference, and check for others
1514 	 * just in case.
1515 	 */
1516 	zeroed = put_page_testzero(page);
1517 	if (!zeroed)
1518 		/*
1519 		 * It is VERY unlikely soneone else has taken a ref on
1520 		 * the page.  In this case, we simply return as the
1521 		 * hugetlb destructor (free_huge_page) will be called
1522 		 * when this other ref is dropped.
1523 		 */
1524 		return;
1525 
1526 	arch_clear_hugepage_flags(page);
1527 	enqueue_huge_page(h, page);
1528 }
1529 
1530 static void __update_and_free_page(struct hstate *h, struct page *page)
1531 {
1532 	int i;
1533 	struct page *subpage = page;
1534 
1535 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1536 		return;
1537 
1538 	if (hugetlb_vmemmap_alloc(h, page)) {
1539 		spin_lock_irq(&hugetlb_lock);
1540 		/*
1541 		 * If we cannot allocate vmemmap pages, just refuse to free the
1542 		 * page and put the page back on the hugetlb free list and treat
1543 		 * as a surplus page.
1544 		 */
1545 		add_hugetlb_page(h, page, true);
1546 		spin_unlock_irq(&hugetlb_lock);
1547 		return;
1548 	}
1549 
1550 	for (i = 0; i < pages_per_huge_page(h);
1551 	     i++, subpage = mem_map_next(subpage, page, i)) {
1552 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1553 				1 << PG_referenced | 1 << PG_dirty |
1554 				1 << PG_active | 1 << PG_private |
1555 				1 << PG_writeback);
1556 	}
1557 
1558 	/*
1559 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1560 	 * need to be given back to CMA in free_gigantic_page.
1561 	 */
1562 	if (hstate_is_gigantic(h) ||
1563 	    hugetlb_cma_page(page, huge_page_order(h))) {
1564 		destroy_compound_gigantic_page(page, huge_page_order(h));
1565 		free_gigantic_page(page, huge_page_order(h));
1566 	} else {
1567 		__free_pages(page, huge_page_order(h));
1568 	}
1569 }
1570 
1571 /*
1572  * As update_and_free_page() can be called under any context, so we cannot
1573  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1574  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1575  * the vmemmap pages.
1576  *
1577  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1578  * freed and frees them one-by-one. As the page->mapping pointer is going
1579  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1580  * structure of a lockless linked list of huge pages to be freed.
1581  */
1582 static LLIST_HEAD(hpage_freelist);
1583 
1584 static void free_hpage_workfn(struct work_struct *work)
1585 {
1586 	struct llist_node *node;
1587 
1588 	node = llist_del_all(&hpage_freelist);
1589 
1590 	while (node) {
1591 		struct page *page;
1592 		struct hstate *h;
1593 
1594 		page = container_of((struct address_space **)node,
1595 				     struct page, mapping);
1596 		node = node->next;
1597 		page->mapping = NULL;
1598 		/*
1599 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1600 		 * is going to trigger because a previous call to
1601 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1602 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1603 		 */
1604 		h = size_to_hstate(page_size(page));
1605 
1606 		__update_and_free_page(h, page);
1607 
1608 		cond_resched();
1609 	}
1610 }
1611 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1612 
1613 static inline void flush_free_hpage_work(struct hstate *h)
1614 {
1615 	if (hugetlb_optimize_vmemmap_pages(h))
1616 		flush_work(&free_hpage_work);
1617 }
1618 
1619 static void update_and_free_page(struct hstate *h, struct page *page,
1620 				 bool atomic)
1621 {
1622 	if (!HPageVmemmapOptimized(page) || !atomic) {
1623 		__update_and_free_page(h, page);
1624 		return;
1625 	}
1626 
1627 	/*
1628 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1629 	 *
1630 	 * Only call schedule_work() if hpage_freelist is previously
1631 	 * empty. Otherwise, schedule_work() had been called but the workfn
1632 	 * hasn't retrieved the list yet.
1633 	 */
1634 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1635 		schedule_work(&free_hpage_work);
1636 }
1637 
1638 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1639 {
1640 	struct page *page, *t_page;
1641 
1642 	list_for_each_entry_safe(page, t_page, list, lru) {
1643 		update_and_free_page(h, page, false);
1644 		cond_resched();
1645 	}
1646 }
1647 
1648 struct hstate *size_to_hstate(unsigned long size)
1649 {
1650 	struct hstate *h;
1651 
1652 	for_each_hstate(h) {
1653 		if (huge_page_size(h) == size)
1654 			return h;
1655 	}
1656 	return NULL;
1657 }
1658 
1659 void free_huge_page(struct page *page)
1660 {
1661 	/*
1662 	 * Can't pass hstate in here because it is called from the
1663 	 * compound page destructor.
1664 	 */
1665 	struct hstate *h = page_hstate(page);
1666 	int nid = page_to_nid(page);
1667 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1668 	bool restore_reserve;
1669 	unsigned long flags;
1670 
1671 	VM_BUG_ON_PAGE(page_count(page), page);
1672 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1673 
1674 	hugetlb_set_page_subpool(page, NULL);
1675 	if (PageAnon(page))
1676 		__ClearPageAnonExclusive(page);
1677 	page->mapping = NULL;
1678 	restore_reserve = HPageRestoreReserve(page);
1679 	ClearHPageRestoreReserve(page);
1680 
1681 	/*
1682 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1683 	 * reservation.  If the page was associated with a subpool, there
1684 	 * would have been a page reserved in the subpool before allocation
1685 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1686 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1687 	 * remove the reserved page from the subpool.
1688 	 */
1689 	if (!restore_reserve) {
1690 		/*
1691 		 * A return code of zero implies that the subpool will be
1692 		 * under its minimum size if the reservation is not restored
1693 		 * after page is free.  Therefore, force restore_reserve
1694 		 * operation.
1695 		 */
1696 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1697 			restore_reserve = true;
1698 	}
1699 
1700 	spin_lock_irqsave(&hugetlb_lock, flags);
1701 	ClearHPageMigratable(page);
1702 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1703 				     pages_per_huge_page(h), page);
1704 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1705 					  pages_per_huge_page(h), page);
1706 	if (restore_reserve)
1707 		h->resv_huge_pages++;
1708 
1709 	if (HPageTemporary(page)) {
1710 		remove_hugetlb_page(h, page, false);
1711 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1712 		update_and_free_page(h, page, true);
1713 	} else if (h->surplus_huge_pages_node[nid]) {
1714 		/* remove the page from active list */
1715 		remove_hugetlb_page(h, page, true);
1716 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1717 		update_and_free_page(h, page, true);
1718 	} else {
1719 		arch_clear_hugepage_flags(page);
1720 		enqueue_huge_page(h, page);
1721 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1722 	}
1723 }
1724 
1725 /*
1726  * Must be called with the hugetlb lock held
1727  */
1728 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1729 {
1730 	lockdep_assert_held(&hugetlb_lock);
1731 	h->nr_huge_pages++;
1732 	h->nr_huge_pages_node[nid]++;
1733 }
1734 
1735 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1736 {
1737 	hugetlb_vmemmap_free(h, page);
1738 	INIT_LIST_HEAD(&page->lru);
1739 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1740 	hugetlb_set_page_subpool(page, NULL);
1741 	set_hugetlb_cgroup(page, NULL);
1742 	set_hugetlb_cgroup_rsvd(page, NULL);
1743 }
1744 
1745 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1746 {
1747 	__prep_new_huge_page(h, page);
1748 	spin_lock_irq(&hugetlb_lock);
1749 	__prep_account_new_huge_page(h, nid);
1750 	spin_unlock_irq(&hugetlb_lock);
1751 }
1752 
1753 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1754 								bool demote)
1755 {
1756 	int i, j;
1757 	int nr_pages = 1 << order;
1758 	struct page *p = page + 1;
1759 
1760 	/* we rely on prep_new_huge_page to set the destructor */
1761 	set_compound_order(page, order);
1762 	__ClearPageReserved(page);
1763 	__SetPageHead(page);
1764 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1765 		/*
1766 		 * For gigantic hugepages allocated through bootmem at
1767 		 * boot, it's safer to be consistent with the not-gigantic
1768 		 * hugepages and clear the PG_reserved bit from all tail pages
1769 		 * too.  Otherwise drivers using get_user_pages() to access tail
1770 		 * pages may get the reference counting wrong if they see
1771 		 * PG_reserved set on a tail page (despite the head page not
1772 		 * having PG_reserved set).  Enforcing this consistency between
1773 		 * head and tail pages allows drivers to optimize away a check
1774 		 * on the head page when they need know if put_page() is needed
1775 		 * after get_user_pages().
1776 		 */
1777 		__ClearPageReserved(p);
1778 		/*
1779 		 * Subtle and very unlikely
1780 		 *
1781 		 * Gigantic 'page allocators' such as memblock or cma will
1782 		 * return a set of pages with each page ref counted.  We need
1783 		 * to turn this set of pages into a compound page with tail
1784 		 * page ref counts set to zero.  Code such as speculative page
1785 		 * cache adding could take a ref on a 'to be' tail page.
1786 		 * We need to respect any increased ref count, and only set
1787 		 * the ref count to zero if count is currently 1.  If count
1788 		 * is not 1, we return an error.  An error return indicates
1789 		 * the set of pages can not be converted to a gigantic page.
1790 		 * The caller who allocated the pages should then discard the
1791 		 * pages using the appropriate free interface.
1792 		 *
1793 		 * In the case of demote, the ref count will be zero.
1794 		 */
1795 		if (!demote) {
1796 			if (!page_ref_freeze(p, 1)) {
1797 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1798 				goto out_error;
1799 			}
1800 		} else {
1801 			VM_BUG_ON_PAGE(page_count(p), p);
1802 		}
1803 		set_compound_head(p, page);
1804 	}
1805 	atomic_set(compound_mapcount_ptr(page), -1);
1806 	atomic_set(compound_pincount_ptr(page), 0);
1807 	return true;
1808 
1809 out_error:
1810 	/* undo tail page modifications made above */
1811 	p = page + 1;
1812 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1813 		clear_compound_head(p);
1814 		set_page_refcounted(p);
1815 	}
1816 	/* need to clear PG_reserved on remaining tail pages  */
1817 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1818 		__ClearPageReserved(p);
1819 	set_compound_order(page, 0);
1820 #ifdef CONFIG_64BIT
1821 	page[1].compound_nr = 0;
1822 #endif
1823 	__ClearPageHead(page);
1824 	return false;
1825 }
1826 
1827 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1828 {
1829 	return __prep_compound_gigantic_page(page, order, false);
1830 }
1831 
1832 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1833 							unsigned int order)
1834 {
1835 	return __prep_compound_gigantic_page(page, order, true);
1836 }
1837 
1838 /*
1839  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1840  * transparent huge pages.  See the PageTransHuge() documentation for more
1841  * details.
1842  */
1843 int PageHuge(struct page *page)
1844 {
1845 	if (!PageCompound(page))
1846 		return 0;
1847 
1848 	page = compound_head(page);
1849 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1850 }
1851 EXPORT_SYMBOL_GPL(PageHuge);
1852 
1853 /*
1854  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1855  * normal or transparent huge pages.
1856  */
1857 int PageHeadHuge(struct page *page_head)
1858 {
1859 	if (!PageHead(page_head))
1860 		return 0;
1861 
1862 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1863 }
1864 EXPORT_SYMBOL_GPL(PageHeadHuge);
1865 
1866 /*
1867  * Find and lock address space (mapping) in write mode.
1868  *
1869  * Upon entry, the page is locked which means that page_mapping() is
1870  * stable.  Due to locking order, we can only trylock_write.  If we can
1871  * not get the lock, simply return NULL to caller.
1872  */
1873 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1874 {
1875 	struct address_space *mapping = page_mapping(hpage);
1876 
1877 	if (!mapping)
1878 		return mapping;
1879 
1880 	if (i_mmap_trylock_write(mapping))
1881 		return mapping;
1882 
1883 	return NULL;
1884 }
1885 
1886 pgoff_t hugetlb_basepage_index(struct page *page)
1887 {
1888 	struct page *page_head = compound_head(page);
1889 	pgoff_t index = page_index(page_head);
1890 	unsigned long compound_idx;
1891 
1892 	if (compound_order(page_head) >= MAX_ORDER)
1893 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1894 	else
1895 		compound_idx = page - page_head;
1896 
1897 	return (index << compound_order(page_head)) + compound_idx;
1898 }
1899 
1900 static struct page *alloc_buddy_huge_page(struct hstate *h,
1901 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1902 		nodemask_t *node_alloc_noretry)
1903 {
1904 	int order = huge_page_order(h);
1905 	struct page *page;
1906 	bool alloc_try_hard = true;
1907 
1908 	/*
1909 	 * By default we always try hard to allocate the page with
1910 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1911 	 * a loop (to adjust global huge page counts) and previous allocation
1912 	 * failed, do not continue to try hard on the same node.  Use the
1913 	 * node_alloc_noretry bitmap to manage this state information.
1914 	 */
1915 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1916 		alloc_try_hard = false;
1917 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1918 	if (alloc_try_hard)
1919 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1920 	if (nid == NUMA_NO_NODE)
1921 		nid = numa_mem_id();
1922 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1923 	if (page)
1924 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1925 	else
1926 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1927 
1928 	/*
1929 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1930 	 * indicates an overall state change.  Clear bit so that we resume
1931 	 * normal 'try hard' allocations.
1932 	 */
1933 	if (node_alloc_noretry && page && !alloc_try_hard)
1934 		node_clear(nid, *node_alloc_noretry);
1935 
1936 	/*
1937 	 * If we tried hard to get a page but failed, set bit so that
1938 	 * subsequent attempts will not try as hard until there is an
1939 	 * overall state change.
1940 	 */
1941 	if (node_alloc_noretry && !page && alloc_try_hard)
1942 		node_set(nid, *node_alloc_noretry);
1943 
1944 	return page;
1945 }
1946 
1947 /*
1948  * Common helper to allocate a fresh hugetlb page. All specific allocators
1949  * should use this function to get new hugetlb pages
1950  */
1951 static struct page *alloc_fresh_huge_page(struct hstate *h,
1952 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1953 		nodemask_t *node_alloc_noretry)
1954 {
1955 	struct page *page;
1956 	bool retry = false;
1957 
1958 retry:
1959 	if (hstate_is_gigantic(h))
1960 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1961 	else
1962 		page = alloc_buddy_huge_page(h, gfp_mask,
1963 				nid, nmask, node_alloc_noretry);
1964 	if (!page)
1965 		return NULL;
1966 
1967 	if (hstate_is_gigantic(h)) {
1968 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1969 			/*
1970 			 * Rare failure to convert pages to compound page.
1971 			 * Free pages and try again - ONCE!
1972 			 */
1973 			free_gigantic_page(page, huge_page_order(h));
1974 			if (!retry) {
1975 				retry = true;
1976 				goto retry;
1977 			}
1978 			return NULL;
1979 		}
1980 	}
1981 	prep_new_huge_page(h, page, page_to_nid(page));
1982 
1983 	return page;
1984 }
1985 
1986 /*
1987  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1988  * manner.
1989  */
1990 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1991 				nodemask_t *node_alloc_noretry)
1992 {
1993 	struct page *page;
1994 	int nr_nodes, node;
1995 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1996 
1997 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1998 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1999 						node_alloc_noretry);
2000 		if (page)
2001 			break;
2002 	}
2003 
2004 	if (!page)
2005 		return 0;
2006 
2007 	put_page(page); /* free it into the hugepage allocator */
2008 
2009 	return 1;
2010 }
2011 
2012 /*
2013  * Remove huge page from pool from next node to free.  Attempt to keep
2014  * persistent huge pages more or less balanced over allowed nodes.
2015  * This routine only 'removes' the hugetlb page.  The caller must make
2016  * an additional call to free the page to low level allocators.
2017  * Called with hugetlb_lock locked.
2018  */
2019 static struct page *remove_pool_huge_page(struct hstate *h,
2020 						nodemask_t *nodes_allowed,
2021 						 bool acct_surplus)
2022 {
2023 	int nr_nodes, node;
2024 	struct page *page = NULL;
2025 
2026 	lockdep_assert_held(&hugetlb_lock);
2027 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2028 		/*
2029 		 * If we're returning unused surplus pages, only examine
2030 		 * nodes with surplus pages.
2031 		 */
2032 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2033 		    !list_empty(&h->hugepage_freelists[node])) {
2034 			page = list_entry(h->hugepage_freelists[node].next,
2035 					  struct page, lru);
2036 			remove_hugetlb_page(h, page, acct_surplus);
2037 			break;
2038 		}
2039 	}
2040 
2041 	return page;
2042 }
2043 
2044 /*
2045  * Dissolve a given free hugepage into free buddy pages. This function does
2046  * nothing for in-use hugepages and non-hugepages.
2047  * This function returns values like below:
2048  *
2049  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2050  *           when the system is under memory pressure and the feature of
2051  *           freeing unused vmemmap pages associated with each hugetlb page
2052  *           is enabled.
2053  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2054  *           (allocated or reserved.)
2055  *       0:  successfully dissolved free hugepages or the page is not a
2056  *           hugepage (considered as already dissolved)
2057  */
2058 int dissolve_free_huge_page(struct page *page)
2059 {
2060 	int rc = -EBUSY;
2061 
2062 retry:
2063 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2064 	if (!PageHuge(page))
2065 		return 0;
2066 
2067 	spin_lock_irq(&hugetlb_lock);
2068 	if (!PageHuge(page)) {
2069 		rc = 0;
2070 		goto out;
2071 	}
2072 
2073 	if (!page_count(page)) {
2074 		struct page *head = compound_head(page);
2075 		struct hstate *h = page_hstate(head);
2076 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2077 			goto out;
2078 
2079 		/*
2080 		 * We should make sure that the page is already on the free list
2081 		 * when it is dissolved.
2082 		 */
2083 		if (unlikely(!HPageFreed(head))) {
2084 			spin_unlock_irq(&hugetlb_lock);
2085 			cond_resched();
2086 
2087 			/*
2088 			 * Theoretically, we should return -EBUSY when we
2089 			 * encounter this race. In fact, we have a chance
2090 			 * to successfully dissolve the page if we do a
2091 			 * retry. Because the race window is quite small.
2092 			 * If we seize this opportunity, it is an optimization
2093 			 * for increasing the success rate of dissolving page.
2094 			 */
2095 			goto retry;
2096 		}
2097 
2098 		remove_hugetlb_page(h, head, false);
2099 		h->max_huge_pages--;
2100 		spin_unlock_irq(&hugetlb_lock);
2101 
2102 		/*
2103 		 * Normally update_and_free_page will allocate required vmemmmap
2104 		 * before freeing the page.  update_and_free_page will fail to
2105 		 * free the page if it can not allocate required vmemmap.  We
2106 		 * need to adjust max_huge_pages if the page is not freed.
2107 		 * Attempt to allocate vmemmmap here so that we can take
2108 		 * appropriate action on failure.
2109 		 */
2110 		rc = hugetlb_vmemmap_alloc(h, head);
2111 		if (!rc) {
2112 			/*
2113 			 * Move PageHWPoison flag from head page to the raw
2114 			 * error page, which makes any subpages rather than
2115 			 * the error page reusable.
2116 			 */
2117 			if (PageHWPoison(head) && page != head) {
2118 				SetPageHWPoison(page);
2119 				ClearPageHWPoison(head);
2120 			}
2121 			update_and_free_page(h, head, false);
2122 		} else {
2123 			spin_lock_irq(&hugetlb_lock);
2124 			add_hugetlb_page(h, head, false);
2125 			h->max_huge_pages++;
2126 			spin_unlock_irq(&hugetlb_lock);
2127 		}
2128 
2129 		return rc;
2130 	}
2131 out:
2132 	spin_unlock_irq(&hugetlb_lock);
2133 	return rc;
2134 }
2135 
2136 /*
2137  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2138  * make specified memory blocks removable from the system.
2139  * Note that this will dissolve a free gigantic hugepage completely, if any
2140  * part of it lies within the given range.
2141  * Also note that if dissolve_free_huge_page() returns with an error, all
2142  * free hugepages that were dissolved before that error are lost.
2143  */
2144 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2145 {
2146 	unsigned long pfn;
2147 	struct page *page;
2148 	int rc = 0;
2149 	unsigned int order;
2150 	struct hstate *h;
2151 
2152 	if (!hugepages_supported())
2153 		return rc;
2154 
2155 	order = huge_page_order(&default_hstate);
2156 	for_each_hstate(h)
2157 		order = min(order, huge_page_order(h));
2158 
2159 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2160 		page = pfn_to_page(pfn);
2161 		rc = dissolve_free_huge_page(page);
2162 		if (rc)
2163 			break;
2164 	}
2165 
2166 	return rc;
2167 }
2168 
2169 /*
2170  * Allocates a fresh surplus page from the page allocator.
2171  */
2172 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2173 		int nid, nodemask_t *nmask, bool zero_ref)
2174 {
2175 	struct page *page = NULL;
2176 	bool retry = false;
2177 
2178 	if (hstate_is_gigantic(h))
2179 		return NULL;
2180 
2181 	spin_lock_irq(&hugetlb_lock);
2182 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183 		goto out_unlock;
2184 	spin_unlock_irq(&hugetlb_lock);
2185 
2186 retry:
2187 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2188 	if (!page)
2189 		return NULL;
2190 
2191 	spin_lock_irq(&hugetlb_lock);
2192 	/*
2193 	 * We could have raced with the pool size change.
2194 	 * Double check that and simply deallocate the new page
2195 	 * if we would end up overcommiting the surpluses. Abuse
2196 	 * temporary page to workaround the nasty free_huge_page
2197 	 * codeflow
2198 	 */
2199 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2200 		SetHPageTemporary(page);
2201 		spin_unlock_irq(&hugetlb_lock);
2202 		put_page(page);
2203 		return NULL;
2204 	}
2205 
2206 	if (zero_ref) {
2207 		/*
2208 		 * Caller requires a page with zero ref count.
2209 		 * We will drop ref count here.  If someone else is holding
2210 		 * a ref, the page will be freed when they drop it.  Abuse
2211 		 * temporary page flag to accomplish this.
2212 		 */
2213 		SetHPageTemporary(page);
2214 		if (!put_page_testzero(page)) {
2215 			/*
2216 			 * Unexpected inflated ref count on freshly allocated
2217 			 * huge.  Retry once.
2218 			 */
2219 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220 			spin_unlock_irq(&hugetlb_lock);
2221 			if (retry)
2222 				return NULL;
2223 
2224 			retry = true;
2225 			goto retry;
2226 		}
2227 		ClearHPageTemporary(page);
2228 	}
2229 
2230 	h->surplus_huge_pages++;
2231 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2232 
2233 out_unlock:
2234 	spin_unlock_irq(&hugetlb_lock);
2235 
2236 	return page;
2237 }
2238 
2239 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2240 				     int nid, nodemask_t *nmask)
2241 {
2242 	struct page *page;
2243 
2244 	if (hstate_is_gigantic(h))
2245 		return NULL;
2246 
2247 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2248 	if (!page)
2249 		return NULL;
2250 
2251 	/*
2252 	 * We do not account these pages as surplus because they are only
2253 	 * temporary and will be released properly on the last reference
2254 	 */
2255 	SetHPageTemporary(page);
2256 
2257 	return page;
2258 }
2259 
2260 /*
2261  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262  */
2263 static
2264 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2265 		struct vm_area_struct *vma, unsigned long addr)
2266 {
2267 	struct page *page = NULL;
2268 	struct mempolicy *mpol;
2269 	gfp_t gfp_mask = htlb_alloc_mask(h);
2270 	int nid;
2271 	nodemask_t *nodemask;
2272 
2273 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2274 	if (mpol_is_preferred_many(mpol)) {
2275 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276 
2277 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2279 
2280 		/* Fallback to all nodes if page==NULL */
2281 		nodemask = NULL;
2282 	}
2283 
2284 	if (!page)
2285 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286 	mpol_cond_put(mpol);
2287 	return page;
2288 }
2289 
2290 /* page migration callback function */
2291 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2292 		nodemask_t *nmask, gfp_t gfp_mask)
2293 {
2294 	spin_lock_irq(&hugetlb_lock);
2295 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2296 		struct page *page;
2297 
2298 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299 		if (page) {
2300 			spin_unlock_irq(&hugetlb_lock);
2301 			return page;
2302 		}
2303 	}
2304 	spin_unlock_irq(&hugetlb_lock);
2305 
2306 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2307 }
2308 
2309 /* mempolicy aware migration callback */
2310 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311 		unsigned long address)
2312 {
2313 	struct mempolicy *mpol;
2314 	nodemask_t *nodemask;
2315 	struct page *page;
2316 	gfp_t gfp_mask;
2317 	int node;
2318 
2319 	gfp_mask = htlb_alloc_mask(h);
2320 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2321 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2322 	mpol_cond_put(mpol);
2323 
2324 	return page;
2325 }
2326 
2327 /*
2328  * Increase the hugetlb pool such that it can accommodate a reservation
2329  * of size 'delta'.
2330  */
2331 static int gather_surplus_pages(struct hstate *h, long delta)
2332 	__must_hold(&hugetlb_lock)
2333 {
2334 	struct list_head surplus_list;
2335 	struct page *page, *tmp;
2336 	int ret;
2337 	long i;
2338 	long needed, allocated;
2339 	bool alloc_ok = true;
2340 
2341 	lockdep_assert_held(&hugetlb_lock);
2342 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2343 	if (needed <= 0) {
2344 		h->resv_huge_pages += delta;
2345 		return 0;
2346 	}
2347 
2348 	allocated = 0;
2349 	INIT_LIST_HEAD(&surplus_list);
2350 
2351 	ret = -ENOMEM;
2352 retry:
2353 	spin_unlock_irq(&hugetlb_lock);
2354 	for (i = 0; i < needed; i++) {
2355 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2356 				NUMA_NO_NODE, NULL, true);
2357 		if (!page) {
2358 			alloc_ok = false;
2359 			break;
2360 		}
2361 		list_add(&page->lru, &surplus_list);
2362 		cond_resched();
2363 	}
2364 	allocated += i;
2365 
2366 	/*
2367 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2368 	 * because either resv_huge_pages or free_huge_pages may have changed.
2369 	 */
2370 	spin_lock_irq(&hugetlb_lock);
2371 	needed = (h->resv_huge_pages + delta) -
2372 			(h->free_huge_pages + allocated);
2373 	if (needed > 0) {
2374 		if (alloc_ok)
2375 			goto retry;
2376 		/*
2377 		 * We were not able to allocate enough pages to
2378 		 * satisfy the entire reservation so we free what
2379 		 * we've allocated so far.
2380 		 */
2381 		goto free;
2382 	}
2383 	/*
2384 	 * The surplus_list now contains _at_least_ the number of extra pages
2385 	 * needed to accommodate the reservation.  Add the appropriate number
2386 	 * of pages to the hugetlb pool and free the extras back to the buddy
2387 	 * allocator.  Commit the entire reservation here to prevent another
2388 	 * process from stealing the pages as they are added to the pool but
2389 	 * before they are reserved.
2390 	 */
2391 	needed += allocated;
2392 	h->resv_huge_pages += delta;
2393 	ret = 0;
2394 
2395 	/* Free the needed pages to the hugetlb pool */
2396 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2397 		if ((--needed) < 0)
2398 			break;
2399 		/* Add the page to the hugetlb allocator */
2400 		enqueue_huge_page(h, page);
2401 	}
2402 free:
2403 	spin_unlock_irq(&hugetlb_lock);
2404 
2405 	/*
2406 	 * Free unnecessary surplus pages to the buddy allocator.
2407 	 * Pages have no ref count, call free_huge_page directly.
2408 	 */
2409 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2410 		free_huge_page(page);
2411 	spin_lock_irq(&hugetlb_lock);
2412 
2413 	return ret;
2414 }
2415 
2416 /*
2417  * This routine has two main purposes:
2418  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2420  *    to the associated reservation map.
2421  * 2) Free any unused surplus pages that may have been allocated to satisfy
2422  *    the reservation.  As many as unused_resv_pages may be freed.
2423  */
2424 static void return_unused_surplus_pages(struct hstate *h,
2425 					unsigned long unused_resv_pages)
2426 {
2427 	unsigned long nr_pages;
2428 	struct page *page;
2429 	LIST_HEAD(page_list);
2430 
2431 	lockdep_assert_held(&hugetlb_lock);
2432 	/* Uncommit the reservation */
2433 	h->resv_huge_pages -= unused_resv_pages;
2434 
2435 	/* Cannot return gigantic pages currently */
2436 	if (hstate_is_gigantic(h))
2437 		goto out;
2438 
2439 	/*
2440 	 * Part (or even all) of the reservation could have been backed
2441 	 * by pre-allocated pages. Only free surplus pages.
2442 	 */
2443 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2444 
2445 	/*
2446 	 * We want to release as many surplus pages as possible, spread
2447 	 * evenly across all nodes with memory. Iterate across these nodes
2448 	 * until we can no longer free unreserved surplus pages. This occurs
2449 	 * when the nodes with surplus pages have no free pages.
2450 	 * remove_pool_huge_page() will balance the freed pages across the
2451 	 * on-line nodes with memory and will handle the hstate accounting.
2452 	 */
2453 	while (nr_pages--) {
2454 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455 		if (!page)
2456 			goto out;
2457 
2458 		list_add(&page->lru, &page_list);
2459 	}
2460 
2461 out:
2462 	spin_unlock_irq(&hugetlb_lock);
2463 	update_and_free_pages_bulk(h, &page_list);
2464 	spin_lock_irq(&hugetlb_lock);
2465 }
2466 
2467 
2468 /*
2469  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2470  * are used by the huge page allocation routines to manage reservations.
2471  *
2472  * vma_needs_reservation is called to determine if the huge page at addr
2473  * within the vma has an associated reservation.  If a reservation is
2474  * needed, the value 1 is returned.  The caller is then responsible for
2475  * managing the global reservation and subpool usage counts.  After
2476  * the huge page has been allocated, vma_commit_reservation is called
2477  * to add the page to the reservation map.  If the page allocation fails,
2478  * the reservation must be ended instead of committed.  vma_end_reservation
2479  * is called in such cases.
2480  *
2481  * In the normal case, vma_commit_reservation returns the same value
2482  * as the preceding vma_needs_reservation call.  The only time this
2483  * is not the case is if a reserve map was changed between calls.  It
2484  * is the responsibility of the caller to notice the difference and
2485  * take appropriate action.
2486  *
2487  * vma_add_reservation is used in error paths where a reservation must
2488  * be restored when a newly allocated huge page must be freed.  It is
2489  * to be called after calling vma_needs_reservation to determine if a
2490  * reservation exists.
2491  *
2492  * vma_del_reservation is used in error paths where an entry in the reserve
2493  * map was created during huge page allocation and must be removed.  It is to
2494  * be called after calling vma_needs_reservation to determine if a reservation
2495  * exists.
2496  */
2497 enum vma_resv_mode {
2498 	VMA_NEEDS_RESV,
2499 	VMA_COMMIT_RESV,
2500 	VMA_END_RESV,
2501 	VMA_ADD_RESV,
2502 	VMA_DEL_RESV,
2503 };
2504 static long __vma_reservation_common(struct hstate *h,
2505 				struct vm_area_struct *vma, unsigned long addr,
2506 				enum vma_resv_mode mode)
2507 {
2508 	struct resv_map *resv;
2509 	pgoff_t idx;
2510 	long ret;
2511 	long dummy_out_regions_needed;
2512 
2513 	resv = vma_resv_map(vma);
2514 	if (!resv)
2515 		return 1;
2516 
2517 	idx = vma_hugecache_offset(h, vma, addr);
2518 	switch (mode) {
2519 	case VMA_NEEDS_RESV:
2520 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521 		/* We assume that vma_reservation_* routines always operate on
2522 		 * 1 page, and that adding to resv map a 1 page entry can only
2523 		 * ever require 1 region.
2524 		 */
2525 		VM_BUG_ON(dummy_out_regions_needed != 1);
2526 		break;
2527 	case VMA_COMMIT_RESV:
2528 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2529 		/* region_add calls of range 1 should never fail. */
2530 		VM_BUG_ON(ret < 0);
2531 		break;
2532 	case VMA_END_RESV:
2533 		region_abort(resv, idx, idx + 1, 1);
2534 		ret = 0;
2535 		break;
2536 	case VMA_ADD_RESV:
2537 		if (vma->vm_flags & VM_MAYSHARE) {
2538 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2539 			/* region_add calls of range 1 should never fail. */
2540 			VM_BUG_ON(ret < 0);
2541 		} else {
2542 			region_abort(resv, idx, idx + 1, 1);
2543 			ret = region_del(resv, idx, idx + 1);
2544 		}
2545 		break;
2546 	case VMA_DEL_RESV:
2547 		if (vma->vm_flags & VM_MAYSHARE) {
2548 			region_abort(resv, idx, idx + 1, 1);
2549 			ret = region_del(resv, idx, idx + 1);
2550 		} else {
2551 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552 			/* region_add calls of range 1 should never fail. */
2553 			VM_BUG_ON(ret < 0);
2554 		}
2555 		break;
2556 	default:
2557 		BUG();
2558 	}
2559 
2560 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2561 		return ret;
2562 	/*
2563 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2564 	 *
2565 	 * In most cases, reserves always exist for private mappings.
2566 	 * However, a file associated with mapping could have been
2567 	 * hole punched or truncated after reserves were consumed.
2568 	 * As subsequent fault on such a range will not use reserves.
2569 	 * Subtle - The reserve map for private mappings has the
2570 	 * opposite meaning than that of shared mappings.  If NO
2571 	 * entry is in the reserve map, it means a reservation exists.
2572 	 * If an entry exists in the reserve map, it means the
2573 	 * reservation has already been consumed.  As a result, the
2574 	 * return value of this routine is the opposite of the
2575 	 * value returned from reserve map manipulation routines above.
2576 	 */
2577 	if (ret > 0)
2578 		return 0;
2579 	if (ret == 0)
2580 		return 1;
2581 	return ret;
2582 }
2583 
2584 static long vma_needs_reservation(struct hstate *h,
2585 			struct vm_area_struct *vma, unsigned long addr)
2586 {
2587 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2588 }
2589 
2590 static long vma_commit_reservation(struct hstate *h,
2591 			struct vm_area_struct *vma, unsigned long addr)
2592 {
2593 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594 }
2595 
2596 static void vma_end_reservation(struct hstate *h,
2597 			struct vm_area_struct *vma, unsigned long addr)
2598 {
2599 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2600 }
2601 
2602 static long vma_add_reservation(struct hstate *h,
2603 			struct vm_area_struct *vma, unsigned long addr)
2604 {
2605 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606 }
2607 
2608 static long vma_del_reservation(struct hstate *h,
2609 			struct vm_area_struct *vma, unsigned long addr)
2610 {
2611 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612 }
2613 
2614 /*
2615  * This routine is called to restore reservation information on error paths.
2616  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617  * the hugetlb mutex should remain held when calling this routine.
2618  *
2619  * It handles two specific cases:
2620  * 1) A reservation was in place and the page consumed the reservation.
2621  *    HPageRestoreReserve is set in the page.
2622  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623  *    not set.  However, alloc_huge_page always updates the reserve map.
2624  *
2625  * In case 1, free_huge_page later in the error path will increment the
2626  * global reserve count.  But, free_huge_page does not have enough context
2627  * to adjust the reservation map.  This case deals primarily with private
2628  * mappings.  Adjust the reserve map here to be consistent with global
2629  * reserve count adjustments to be made by free_huge_page.  Make sure the
2630  * reserve map indicates there is a reservation present.
2631  *
2632  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2633  */
2634 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635 			unsigned long address, struct page *page)
2636 {
2637 	long rc = vma_needs_reservation(h, vma, address);
2638 
2639 	if (HPageRestoreReserve(page)) {
2640 		if (unlikely(rc < 0))
2641 			/*
2642 			 * Rare out of memory condition in reserve map
2643 			 * manipulation.  Clear HPageRestoreReserve so that
2644 			 * global reserve count will not be incremented
2645 			 * by free_huge_page.  This will make it appear
2646 			 * as though the reservation for this page was
2647 			 * consumed.  This may prevent the task from
2648 			 * faulting in the page at a later time.  This
2649 			 * is better than inconsistent global huge page
2650 			 * accounting of reserve counts.
2651 			 */
2652 			ClearHPageRestoreReserve(page);
2653 		else if (rc)
2654 			(void)vma_add_reservation(h, vma, address);
2655 		else
2656 			vma_end_reservation(h, vma, address);
2657 	} else {
2658 		if (!rc) {
2659 			/*
2660 			 * This indicates there is an entry in the reserve map
2661 			 * not added by alloc_huge_page.  We know it was added
2662 			 * before the alloc_huge_page call, otherwise
2663 			 * HPageRestoreReserve would be set on the page.
2664 			 * Remove the entry so that a subsequent allocation
2665 			 * does not consume a reservation.
2666 			 */
2667 			rc = vma_del_reservation(h, vma, address);
2668 			if (rc < 0)
2669 				/*
2670 				 * VERY rare out of memory condition.  Since
2671 				 * we can not delete the entry, set
2672 				 * HPageRestoreReserve so that the reserve
2673 				 * count will be incremented when the page
2674 				 * is freed.  This reserve will be consumed
2675 				 * on a subsequent allocation.
2676 				 */
2677 				SetHPageRestoreReserve(page);
2678 		} else if (rc < 0) {
2679 			/*
2680 			 * Rare out of memory condition from
2681 			 * vma_needs_reservation call.  Memory allocation is
2682 			 * only attempted if a new entry is needed.  Therefore,
2683 			 * this implies there is not an entry in the
2684 			 * reserve map.
2685 			 *
2686 			 * For shared mappings, no entry in the map indicates
2687 			 * no reservation.  We are done.
2688 			 */
2689 			if (!(vma->vm_flags & VM_MAYSHARE))
2690 				/*
2691 				 * For private mappings, no entry indicates
2692 				 * a reservation is present.  Since we can
2693 				 * not add an entry, set SetHPageRestoreReserve
2694 				 * on the page so reserve count will be
2695 				 * incremented when freed.  This reserve will
2696 				 * be consumed on a subsequent allocation.
2697 				 */
2698 				SetHPageRestoreReserve(page);
2699 		} else
2700 			/*
2701 			 * No reservation present, do nothing
2702 			 */
2703 			 vma_end_reservation(h, vma, address);
2704 	}
2705 }
2706 
2707 /*
2708  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709  * @h: struct hstate old page belongs to
2710  * @old_page: Old page to dissolve
2711  * @list: List to isolate the page in case we need to
2712  * Returns 0 on success, otherwise negated error.
2713  */
2714 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715 					struct list_head *list)
2716 {
2717 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718 	int nid = page_to_nid(old_page);
2719 	bool alloc_retry = false;
2720 	struct page *new_page;
2721 	int ret = 0;
2722 
2723 	/*
2724 	 * Before dissolving the page, we need to allocate a new one for the
2725 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2726 	 * by doing everything but actually updating counters and adding to
2727 	 * the pool.  This simplifies and let us do most of the processing
2728 	 * under the lock.
2729 	 */
2730 alloc_retry:
2731 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732 	if (!new_page)
2733 		return -ENOMEM;
2734 	/*
2735 	 * If all goes well, this page will be directly added to the free
2736 	 * list in the pool.  For this the ref count needs to be zero.
2737 	 * Attempt to drop now, and retry once if needed.  It is VERY
2738 	 * unlikely there is another ref on the page.
2739 	 *
2740 	 * If someone else has a reference to the page, it will be freed
2741 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2742 	 * this.  Retry once if there is an inflated ref count.
2743 	 */
2744 	SetHPageTemporary(new_page);
2745 	if (!put_page_testzero(new_page)) {
2746 		if (alloc_retry)
2747 			return -EBUSY;
2748 
2749 		alloc_retry = true;
2750 		goto alloc_retry;
2751 	}
2752 	ClearHPageTemporary(new_page);
2753 
2754 	__prep_new_huge_page(h, new_page);
2755 
2756 retry:
2757 	spin_lock_irq(&hugetlb_lock);
2758 	if (!PageHuge(old_page)) {
2759 		/*
2760 		 * Freed from under us. Drop new_page too.
2761 		 */
2762 		goto free_new;
2763 	} else if (page_count(old_page)) {
2764 		/*
2765 		 * Someone has grabbed the page, try to isolate it here.
2766 		 * Fail with -EBUSY if not possible.
2767 		 */
2768 		spin_unlock_irq(&hugetlb_lock);
2769 		ret = isolate_hugetlb(old_page, list);
2770 		spin_lock_irq(&hugetlb_lock);
2771 		goto free_new;
2772 	} else if (!HPageFreed(old_page)) {
2773 		/*
2774 		 * Page's refcount is 0 but it has not been enqueued in the
2775 		 * freelist yet. Race window is small, so we can succeed here if
2776 		 * we retry.
2777 		 */
2778 		spin_unlock_irq(&hugetlb_lock);
2779 		cond_resched();
2780 		goto retry;
2781 	} else {
2782 		/*
2783 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2784 		 * the freelist and decrease the counters. These will be
2785 		 * incremented again when calling __prep_account_new_huge_page()
2786 		 * and enqueue_huge_page() for new_page. The counters will remain
2787 		 * stable since this happens under the lock.
2788 		 */
2789 		remove_hugetlb_page(h, old_page, false);
2790 
2791 		/*
2792 		 * Ref count on new page is already zero as it was dropped
2793 		 * earlier.  It can be directly added to the pool free list.
2794 		 */
2795 		__prep_account_new_huge_page(h, nid);
2796 		enqueue_huge_page(h, new_page);
2797 
2798 		/*
2799 		 * Pages have been replaced, we can safely free the old one.
2800 		 */
2801 		spin_unlock_irq(&hugetlb_lock);
2802 		update_and_free_page(h, old_page, false);
2803 	}
2804 
2805 	return ret;
2806 
2807 free_new:
2808 	spin_unlock_irq(&hugetlb_lock);
2809 	/* Page has a zero ref count, but needs a ref to be freed */
2810 	set_page_refcounted(new_page);
2811 	update_and_free_page(h, new_page, false);
2812 
2813 	return ret;
2814 }
2815 
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818 	struct hstate *h;
2819 	struct page *head;
2820 	int ret = -EBUSY;
2821 
2822 	/*
2823 	 * The page might have been dissolved from under our feet, so make sure
2824 	 * to carefully check the state under the lock.
2825 	 * Return success when racing as if we dissolved the page ourselves.
2826 	 */
2827 	spin_lock_irq(&hugetlb_lock);
2828 	if (PageHuge(page)) {
2829 		head = compound_head(page);
2830 		h = page_hstate(head);
2831 	} else {
2832 		spin_unlock_irq(&hugetlb_lock);
2833 		return 0;
2834 	}
2835 	spin_unlock_irq(&hugetlb_lock);
2836 
2837 	/*
2838 	 * Fence off gigantic pages as there is a cyclic dependency between
2839 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840 	 * of bailing out right away without further retrying.
2841 	 */
2842 	if (hstate_is_gigantic(h))
2843 		return -ENOMEM;
2844 
2845 	if (page_count(head) && !isolate_hugetlb(head, list))
2846 		ret = 0;
2847 	else if (!page_count(head))
2848 		ret = alloc_and_dissolve_huge_page(h, head, list);
2849 
2850 	return ret;
2851 }
2852 
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854 				    unsigned long addr, int avoid_reserve)
2855 {
2856 	struct hugepage_subpool *spool = subpool_vma(vma);
2857 	struct hstate *h = hstate_vma(vma);
2858 	struct page *page;
2859 	long map_chg, map_commit;
2860 	long gbl_chg;
2861 	int ret, idx;
2862 	struct hugetlb_cgroup *h_cg;
2863 	bool deferred_reserve;
2864 
2865 	idx = hstate_index(h);
2866 	/*
2867 	 * Examine the region/reserve map to determine if the process
2868 	 * has a reservation for the page to be allocated.  A return
2869 	 * code of zero indicates a reservation exists (no change).
2870 	 */
2871 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872 	if (map_chg < 0)
2873 		return ERR_PTR(-ENOMEM);
2874 
2875 	/*
2876 	 * Processes that did not create the mapping will have no
2877 	 * reserves as indicated by the region/reserve map. Check
2878 	 * that the allocation will not exceed the subpool limit.
2879 	 * Allocations for MAP_NORESERVE mappings also need to be
2880 	 * checked against any subpool limit.
2881 	 */
2882 	if (map_chg || avoid_reserve) {
2883 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884 		if (gbl_chg < 0) {
2885 			vma_end_reservation(h, vma, addr);
2886 			return ERR_PTR(-ENOSPC);
2887 		}
2888 
2889 		/*
2890 		 * Even though there was no reservation in the region/reserve
2891 		 * map, there could be reservations associated with the
2892 		 * subpool that can be used.  This would be indicated if the
2893 		 * return value of hugepage_subpool_get_pages() is zero.
2894 		 * However, if avoid_reserve is specified we still avoid even
2895 		 * the subpool reservations.
2896 		 */
2897 		if (avoid_reserve)
2898 			gbl_chg = 1;
2899 	}
2900 
2901 	/* If this allocation is not consuming a reservation, charge it now.
2902 	 */
2903 	deferred_reserve = map_chg || avoid_reserve;
2904 	if (deferred_reserve) {
2905 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906 			idx, pages_per_huge_page(h), &h_cg);
2907 		if (ret)
2908 			goto out_subpool_put;
2909 	}
2910 
2911 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912 	if (ret)
2913 		goto out_uncharge_cgroup_reservation;
2914 
2915 	spin_lock_irq(&hugetlb_lock);
2916 	/*
2917 	 * glb_chg is passed to indicate whether or not a page must be taken
2918 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2919 	 * a reservation exists for the allocation.
2920 	 */
2921 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922 	if (!page) {
2923 		spin_unlock_irq(&hugetlb_lock);
2924 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925 		if (!page)
2926 			goto out_uncharge_cgroup;
2927 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928 			SetHPageRestoreReserve(page);
2929 			h->resv_huge_pages--;
2930 		}
2931 		spin_lock_irq(&hugetlb_lock);
2932 		list_add(&page->lru, &h->hugepage_activelist);
2933 		/* Fall through */
2934 	}
2935 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2936 	/* If allocation is not consuming a reservation, also store the
2937 	 * hugetlb_cgroup pointer on the page.
2938 	 */
2939 	if (deferred_reserve) {
2940 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2941 						  h_cg, page);
2942 	}
2943 
2944 	spin_unlock_irq(&hugetlb_lock);
2945 
2946 	hugetlb_set_page_subpool(page, spool);
2947 
2948 	map_commit = vma_commit_reservation(h, vma, addr);
2949 	if (unlikely(map_chg > map_commit)) {
2950 		/*
2951 		 * The page was added to the reservation map between
2952 		 * vma_needs_reservation and vma_commit_reservation.
2953 		 * This indicates a race with hugetlb_reserve_pages.
2954 		 * Adjust for the subpool count incremented above AND
2955 		 * in hugetlb_reserve_pages for the same page.  Also,
2956 		 * the reservation count added in hugetlb_reserve_pages
2957 		 * no longer applies.
2958 		 */
2959 		long rsv_adjust;
2960 
2961 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962 		hugetlb_acct_memory(h, -rsv_adjust);
2963 		if (deferred_reserve)
2964 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965 					pages_per_huge_page(h), page);
2966 	}
2967 	return page;
2968 
2969 out_uncharge_cgroup:
2970 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2971 out_uncharge_cgroup_reservation:
2972 	if (deferred_reserve)
2973 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2974 						    h_cg);
2975 out_subpool_put:
2976 	if (map_chg || avoid_reserve)
2977 		hugepage_subpool_put_pages(spool, 1);
2978 	vma_end_reservation(h, vma, addr);
2979 	return ERR_PTR(-ENOSPC);
2980 }
2981 
2982 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2983 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2984 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2985 {
2986 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2987 	int nr_nodes, node;
2988 
2989 	/* do node specific alloc */
2990 	if (nid != NUMA_NO_NODE) {
2991 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993 		if (!m)
2994 			return 0;
2995 		goto found;
2996 	}
2997 	/* allocate from next node when distributing huge pages */
2998 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999 		m = memblock_alloc_try_nid_raw(
3000 				huge_page_size(h), huge_page_size(h),
3001 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3002 		/*
3003 		 * Use the beginning of the huge page to store the
3004 		 * huge_bootmem_page struct (until gather_bootmem
3005 		 * puts them into the mem_map).
3006 		 */
3007 		if (!m)
3008 			return 0;
3009 		goto found;
3010 	}
3011 
3012 found:
3013 	/* Put them into a private list first because mem_map is not up yet */
3014 	INIT_LIST_HEAD(&m->list);
3015 	list_add(&m->list, &huge_boot_pages);
3016 	m->hstate = h;
3017 	return 1;
3018 }
3019 
3020 /*
3021  * Put bootmem huge pages into the standard lists after mem_map is up.
3022  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023  */
3024 static void __init gather_bootmem_prealloc(void)
3025 {
3026 	struct huge_bootmem_page *m;
3027 
3028 	list_for_each_entry(m, &huge_boot_pages, list) {
3029 		struct page *page = virt_to_page(m);
3030 		struct hstate *h = m->hstate;
3031 
3032 		VM_BUG_ON(!hstate_is_gigantic(h));
3033 		WARN_ON(page_count(page) != 1);
3034 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035 			WARN_ON(PageReserved(page));
3036 			prep_new_huge_page(h, page, page_to_nid(page));
3037 			put_page(page); /* add to the hugepage allocator */
3038 		} else {
3039 			/* VERY unlikely inflated ref count on a tail page */
3040 			free_gigantic_page(page, huge_page_order(h));
3041 		}
3042 
3043 		/*
3044 		 * We need to restore the 'stolen' pages to totalram_pages
3045 		 * in order to fix confusing memory reports from free(1) and
3046 		 * other side-effects, like CommitLimit going negative.
3047 		 */
3048 		adjust_managed_page_count(page, pages_per_huge_page(h));
3049 		cond_resched();
3050 	}
3051 }
3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053 {
3054 	unsigned long i;
3055 	char buf[32];
3056 
3057 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058 		if (hstate_is_gigantic(h)) {
3059 			if (!alloc_bootmem_huge_page(h, nid))
3060 				break;
3061 		} else {
3062 			struct page *page;
3063 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064 
3065 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066 					&node_states[N_MEMORY], NULL);
3067 			if (!page)
3068 				break;
3069 			put_page(page); /* free it into the hugepage allocator */
3070 		}
3071 		cond_resched();
3072 	}
3073 	if (i == h->max_huge_pages_node[nid])
3074 		return;
3075 
3076 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3078 		h->max_huge_pages_node[nid], buf, nid, i);
3079 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080 	h->max_huge_pages_node[nid] = i;
3081 }
3082 
3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3084 {
3085 	unsigned long i;
3086 	nodemask_t *node_alloc_noretry;
3087 	bool node_specific_alloc = false;
3088 
3089 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092 		return;
3093 	}
3094 
3095 	/* do node specific alloc */
3096 	for_each_online_node(i) {
3097 		if (h->max_huge_pages_node[i] > 0) {
3098 			hugetlb_hstate_alloc_pages_onenode(h, i);
3099 			node_specific_alloc = true;
3100 		}
3101 	}
3102 
3103 	if (node_specific_alloc)
3104 		return;
3105 
3106 	/* below will do all node balanced alloc */
3107 	if (!hstate_is_gigantic(h)) {
3108 		/*
3109 		 * Bit mask controlling how hard we retry per-node allocations.
3110 		 * Ignore errors as lower level routines can deal with
3111 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3112 		 * time, we are likely in bigger trouble.
3113 		 */
3114 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115 						GFP_KERNEL);
3116 	} else {
3117 		/* allocations done at boot time */
3118 		node_alloc_noretry = NULL;
3119 	}
3120 
3121 	/* bit mask controlling how hard we retry per-node allocations */
3122 	if (node_alloc_noretry)
3123 		nodes_clear(*node_alloc_noretry);
3124 
3125 	for (i = 0; i < h->max_huge_pages; ++i) {
3126 		if (hstate_is_gigantic(h)) {
3127 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3128 				break;
3129 		} else if (!alloc_pool_huge_page(h,
3130 					 &node_states[N_MEMORY],
3131 					 node_alloc_noretry))
3132 			break;
3133 		cond_resched();
3134 	}
3135 	if (i < h->max_huge_pages) {
3136 		char buf[32];
3137 
3138 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3140 			h->max_huge_pages, buf, i);
3141 		h->max_huge_pages = i;
3142 	}
3143 	kfree(node_alloc_noretry);
3144 }
3145 
3146 static void __init hugetlb_init_hstates(void)
3147 {
3148 	struct hstate *h, *h2;
3149 
3150 	for_each_hstate(h) {
3151 		/* oversize hugepages were init'ed in early boot */
3152 		if (!hstate_is_gigantic(h))
3153 			hugetlb_hstate_alloc_pages(h);
3154 
3155 		/*
3156 		 * Set demote order for each hstate.  Note that
3157 		 * h->demote_order is initially 0.
3158 		 * - We can not demote gigantic pages if runtime freeing
3159 		 *   is not supported, so skip this.
3160 		 * - If CMA allocation is possible, we can not demote
3161 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3162 		 */
3163 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3164 			continue;
3165 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3166 			continue;
3167 		for_each_hstate(h2) {
3168 			if (h2 == h)
3169 				continue;
3170 			if (h2->order < h->order &&
3171 			    h2->order > h->demote_order)
3172 				h->demote_order = h2->order;
3173 		}
3174 	}
3175 }
3176 
3177 static void __init report_hugepages(void)
3178 {
3179 	struct hstate *h;
3180 
3181 	for_each_hstate(h) {
3182 		char buf[32];
3183 
3184 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3185 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3186 			buf, h->free_huge_pages);
3187 	}
3188 }
3189 
3190 #ifdef CONFIG_HIGHMEM
3191 static void try_to_free_low(struct hstate *h, unsigned long count,
3192 						nodemask_t *nodes_allowed)
3193 {
3194 	int i;
3195 	LIST_HEAD(page_list);
3196 
3197 	lockdep_assert_held(&hugetlb_lock);
3198 	if (hstate_is_gigantic(h))
3199 		return;
3200 
3201 	/*
3202 	 * Collect pages to be freed on a list, and free after dropping lock
3203 	 */
3204 	for_each_node_mask(i, *nodes_allowed) {
3205 		struct page *page, *next;
3206 		struct list_head *freel = &h->hugepage_freelists[i];
3207 		list_for_each_entry_safe(page, next, freel, lru) {
3208 			if (count >= h->nr_huge_pages)
3209 				goto out;
3210 			if (PageHighMem(page))
3211 				continue;
3212 			remove_hugetlb_page(h, page, false);
3213 			list_add(&page->lru, &page_list);
3214 		}
3215 	}
3216 
3217 out:
3218 	spin_unlock_irq(&hugetlb_lock);
3219 	update_and_free_pages_bulk(h, &page_list);
3220 	spin_lock_irq(&hugetlb_lock);
3221 }
3222 #else
3223 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3224 						nodemask_t *nodes_allowed)
3225 {
3226 }
3227 #endif
3228 
3229 /*
3230  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3231  * balanced by operating on them in a round-robin fashion.
3232  * Returns 1 if an adjustment was made.
3233  */
3234 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3235 				int delta)
3236 {
3237 	int nr_nodes, node;
3238 
3239 	lockdep_assert_held(&hugetlb_lock);
3240 	VM_BUG_ON(delta != -1 && delta != 1);
3241 
3242 	if (delta < 0) {
3243 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3244 			if (h->surplus_huge_pages_node[node])
3245 				goto found;
3246 		}
3247 	} else {
3248 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3249 			if (h->surplus_huge_pages_node[node] <
3250 					h->nr_huge_pages_node[node])
3251 				goto found;
3252 		}
3253 	}
3254 	return 0;
3255 
3256 found:
3257 	h->surplus_huge_pages += delta;
3258 	h->surplus_huge_pages_node[node] += delta;
3259 	return 1;
3260 }
3261 
3262 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3263 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3264 			      nodemask_t *nodes_allowed)
3265 {
3266 	unsigned long min_count, ret;
3267 	struct page *page;
3268 	LIST_HEAD(page_list);
3269 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3270 
3271 	/*
3272 	 * Bit mask controlling how hard we retry per-node allocations.
3273 	 * If we can not allocate the bit mask, do not attempt to allocate
3274 	 * the requested huge pages.
3275 	 */
3276 	if (node_alloc_noretry)
3277 		nodes_clear(*node_alloc_noretry);
3278 	else
3279 		return -ENOMEM;
3280 
3281 	/*
3282 	 * resize_lock mutex prevents concurrent adjustments to number of
3283 	 * pages in hstate via the proc/sysfs interfaces.
3284 	 */
3285 	mutex_lock(&h->resize_lock);
3286 	flush_free_hpage_work(h);
3287 	spin_lock_irq(&hugetlb_lock);
3288 
3289 	/*
3290 	 * Check for a node specific request.
3291 	 * Changing node specific huge page count may require a corresponding
3292 	 * change to the global count.  In any case, the passed node mask
3293 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3294 	 */
3295 	if (nid != NUMA_NO_NODE) {
3296 		unsigned long old_count = count;
3297 
3298 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3299 		/*
3300 		 * User may have specified a large count value which caused the
3301 		 * above calculation to overflow.  In this case, they wanted
3302 		 * to allocate as many huge pages as possible.  Set count to
3303 		 * largest possible value to align with their intention.
3304 		 */
3305 		if (count < old_count)
3306 			count = ULONG_MAX;
3307 	}
3308 
3309 	/*
3310 	 * Gigantic pages runtime allocation depend on the capability for large
3311 	 * page range allocation.
3312 	 * If the system does not provide this feature, return an error when
3313 	 * the user tries to allocate gigantic pages but let the user free the
3314 	 * boottime allocated gigantic pages.
3315 	 */
3316 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3317 		if (count > persistent_huge_pages(h)) {
3318 			spin_unlock_irq(&hugetlb_lock);
3319 			mutex_unlock(&h->resize_lock);
3320 			NODEMASK_FREE(node_alloc_noretry);
3321 			return -EINVAL;
3322 		}
3323 		/* Fall through to decrease pool */
3324 	}
3325 
3326 	/*
3327 	 * Increase the pool size
3328 	 * First take pages out of surplus state.  Then make up the
3329 	 * remaining difference by allocating fresh huge pages.
3330 	 *
3331 	 * We might race with alloc_surplus_huge_page() here and be unable
3332 	 * to convert a surplus huge page to a normal huge page. That is
3333 	 * not critical, though, it just means the overall size of the
3334 	 * pool might be one hugepage larger than it needs to be, but
3335 	 * within all the constraints specified by the sysctls.
3336 	 */
3337 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3338 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3339 			break;
3340 	}
3341 
3342 	while (count > persistent_huge_pages(h)) {
3343 		/*
3344 		 * If this allocation races such that we no longer need the
3345 		 * page, free_huge_page will handle it by freeing the page
3346 		 * and reducing the surplus.
3347 		 */
3348 		spin_unlock_irq(&hugetlb_lock);
3349 
3350 		/* yield cpu to avoid soft lockup */
3351 		cond_resched();
3352 
3353 		ret = alloc_pool_huge_page(h, nodes_allowed,
3354 						node_alloc_noretry);
3355 		spin_lock_irq(&hugetlb_lock);
3356 		if (!ret)
3357 			goto out;
3358 
3359 		/* Bail for signals. Probably ctrl-c from user */
3360 		if (signal_pending(current))
3361 			goto out;
3362 	}
3363 
3364 	/*
3365 	 * Decrease the pool size
3366 	 * First return free pages to the buddy allocator (being careful
3367 	 * to keep enough around to satisfy reservations).  Then place
3368 	 * pages into surplus state as needed so the pool will shrink
3369 	 * to the desired size as pages become free.
3370 	 *
3371 	 * By placing pages into the surplus state independent of the
3372 	 * overcommit value, we are allowing the surplus pool size to
3373 	 * exceed overcommit. There are few sane options here. Since
3374 	 * alloc_surplus_huge_page() is checking the global counter,
3375 	 * though, we'll note that we're not allowed to exceed surplus
3376 	 * and won't grow the pool anywhere else. Not until one of the
3377 	 * sysctls are changed, or the surplus pages go out of use.
3378 	 */
3379 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3380 	min_count = max(count, min_count);
3381 	try_to_free_low(h, min_count, nodes_allowed);
3382 
3383 	/*
3384 	 * Collect pages to be removed on list without dropping lock
3385 	 */
3386 	while (min_count < persistent_huge_pages(h)) {
3387 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3388 		if (!page)
3389 			break;
3390 
3391 		list_add(&page->lru, &page_list);
3392 	}
3393 	/* free the pages after dropping lock */
3394 	spin_unlock_irq(&hugetlb_lock);
3395 	update_and_free_pages_bulk(h, &page_list);
3396 	flush_free_hpage_work(h);
3397 	spin_lock_irq(&hugetlb_lock);
3398 
3399 	while (count < persistent_huge_pages(h)) {
3400 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3401 			break;
3402 	}
3403 out:
3404 	h->max_huge_pages = persistent_huge_pages(h);
3405 	spin_unlock_irq(&hugetlb_lock);
3406 	mutex_unlock(&h->resize_lock);
3407 
3408 	NODEMASK_FREE(node_alloc_noretry);
3409 
3410 	return 0;
3411 }
3412 
3413 static int demote_free_huge_page(struct hstate *h, struct page *page)
3414 {
3415 	int i, nid = page_to_nid(page);
3416 	struct hstate *target_hstate;
3417 	int rc = 0;
3418 
3419 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3420 
3421 	remove_hugetlb_page_for_demote(h, page, false);
3422 	spin_unlock_irq(&hugetlb_lock);
3423 
3424 	rc = hugetlb_vmemmap_alloc(h, page);
3425 	if (rc) {
3426 		/* Allocation of vmemmmap failed, we can not demote page */
3427 		spin_lock_irq(&hugetlb_lock);
3428 		set_page_refcounted(page);
3429 		add_hugetlb_page(h, page, false);
3430 		return rc;
3431 	}
3432 
3433 	/*
3434 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3435 	 * sizes as it will not ref count pages.
3436 	 */
3437 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3438 
3439 	/*
3440 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3441 	 * Without the mutex, pages added to target hstate could be marked
3442 	 * as surplus.
3443 	 *
3444 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3445 	 * use the convention of always taking larger size hstate mutex first.
3446 	 */
3447 	mutex_lock(&target_hstate->resize_lock);
3448 	for (i = 0; i < pages_per_huge_page(h);
3449 				i += pages_per_huge_page(target_hstate)) {
3450 		if (hstate_is_gigantic(target_hstate))
3451 			prep_compound_gigantic_page_for_demote(page + i,
3452 							target_hstate->order);
3453 		else
3454 			prep_compound_page(page + i, target_hstate->order);
3455 		set_page_private(page + i, 0);
3456 		set_page_refcounted(page + i);
3457 		prep_new_huge_page(target_hstate, page + i, nid);
3458 		put_page(page + i);
3459 	}
3460 	mutex_unlock(&target_hstate->resize_lock);
3461 
3462 	spin_lock_irq(&hugetlb_lock);
3463 
3464 	/*
3465 	 * Not absolutely necessary, but for consistency update max_huge_pages
3466 	 * based on pool changes for the demoted page.
3467 	 */
3468 	h->max_huge_pages--;
3469 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3470 
3471 	return rc;
3472 }
3473 
3474 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3475 	__must_hold(&hugetlb_lock)
3476 {
3477 	int nr_nodes, node;
3478 	struct page *page;
3479 
3480 	lockdep_assert_held(&hugetlb_lock);
3481 
3482 	/* We should never get here if no demote order */
3483 	if (!h->demote_order) {
3484 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3485 		return -EINVAL;		/* internal error */
3486 	}
3487 
3488 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3489 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3490 			if (PageHWPoison(page))
3491 				continue;
3492 
3493 			return demote_free_huge_page(h, page);
3494 		}
3495 	}
3496 
3497 	/*
3498 	 * Only way to get here is if all pages on free lists are poisoned.
3499 	 * Return -EBUSY so that caller will not retry.
3500 	 */
3501 	return -EBUSY;
3502 }
3503 
3504 #define HSTATE_ATTR_RO(_name) \
3505 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3506 
3507 #define HSTATE_ATTR_WO(_name) \
3508 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3509 
3510 #define HSTATE_ATTR(_name) \
3511 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3512 
3513 static struct kobject *hugepages_kobj;
3514 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3515 
3516 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3517 
3518 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3519 {
3520 	int i;
3521 
3522 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3523 		if (hstate_kobjs[i] == kobj) {
3524 			if (nidp)
3525 				*nidp = NUMA_NO_NODE;
3526 			return &hstates[i];
3527 		}
3528 
3529 	return kobj_to_node_hstate(kobj, nidp);
3530 }
3531 
3532 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3533 					struct kobj_attribute *attr, char *buf)
3534 {
3535 	struct hstate *h;
3536 	unsigned long nr_huge_pages;
3537 	int nid;
3538 
3539 	h = kobj_to_hstate(kobj, &nid);
3540 	if (nid == NUMA_NO_NODE)
3541 		nr_huge_pages = h->nr_huge_pages;
3542 	else
3543 		nr_huge_pages = h->nr_huge_pages_node[nid];
3544 
3545 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3546 }
3547 
3548 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3549 					   struct hstate *h, int nid,
3550 					   unsigned long count, size_t len)
3551 {
3552 	int err;
3553 	nodemask_t nodes_allowed, *n_mask;
3554 
3555 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3556 		return -EINVAL;
3557 
3558 	if (nid == NUMA_NO_NODE) {
3559 		/*
3560 		 * global hstate attribute
3561 		 */
3562 		if (!(obey_mempolicy &&
3563 				init_nodemask_of_mempolicy(&nodes_allowed)))
3564 			n_mask = &node_states[N_MEMORY];
3565 		else
3566 			n_mask = &nodes_allowed;
3567 	} else {
3568 		/*
3569 		 * Node specific request.  count adjustment happens in
3570 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3571 		 */
3572 		init_nodemask_of_node(&nodes_allowed, nid);
3573 		n_mask = &nodes_allowed;
3574 	}
3575 
3576 	err = set_max_huge_pages(h, count, nid, n_mask);
3577 
3578 	return err ? err : len;
3579 }
3580 
3581 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3582 					 struct kobject *kobj, const char *buf,
3583 					 size_t len)
3584 {
3585 	struct hstate *h;
3586 	unsigned long count;
3587 	int nid;
3588 	int err;
3589 
3590 	err = kstrtoul(buf, 10, &count);
3591 	if (err)
3592 		return err;
3593 
3594 	h = kobj_to_hstate(kobj, &nid);
3595 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3596 }
3597 
3598 static ssize_t nr_hugepages_show(struct kobject *kobj,
3599 				       struct kobj_attribute *attr, char *buf)
3600 {
3601 	return nr_hugepages_show_common(kobj, attr, buf);
3602 }
3603 
3604 static ssize_t nr_hugepages_store(struct kobject *kobj,
3605 	       struct kobj_attribute *attr, const char *buf, size_t len)
3606 {
3607 	return nr_hugepages_store_common(false, kobj, buf, len);
3608 }
3609 HSTATE_ATTR(nr_hugepages);
3610 
3611 #ifdef CONFIG_NUMA
3612 
3613 /*
3614  * hstate attribute for optionally mempolicy-based constraint on persistent
3615  * huge page alloc/free.
3616  */
3617 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3618 					   struct kobj_attribute *attr,
3619 					   char *buf)
3620 {
3621 	return nr_hugepages_show_common(kobj, attr, buf);
3622 }
3623 
3624 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3625 	       struct kobj_attribute *attr, const char *buf, size_t len)
3626 {
3627 	return nr_hugepages_store_common(true, kobj, buf, len);
3628 }
3629 HSTATE_ATTR(nr_hugepages_mempolicy);
3630 #endif
3631 
3632 
3633 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3634 					struct kobj_attribute *attr, char *buf)
3635 {
3636 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3637 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3638 }
3639 
3640 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3641 		struct kobj_attribute *attr, const char *buf, size_t count)
3642 {
3643 	int err;
3644 	unsigned long input;
3645 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3646 
3647 	if (hstate_is_gigantic(h))
3648 		return -EINVAL;
3649 
3650 	err = kstrtoul(buf, 10, &input);
3651 	if (err)
3652 		return err;
3653 
3654 	spin_lock_irq(&hugetlb_lock);
3655 	h->nr_overcommit_huge_pages = input;
3656 	spin_unlock_irq(&hugetlb_lock);
3657 
3658 	return count;
3659 }
3660 HSTATE_ATTR(nr_overcommit_hugepages);
3661 
3662 static ssize_t free_hugepages_show(struct kobject *kobj,
3663 					struct kobj_attribute *attr, char *buf)
3664 {
3665 	struct hstate *h;
3666 	unsigned long free_huge_pages;
3667 	int nid;
3668 
3669 	h = kobj_to_hstate(kobj, &nid);
3670 	if (nid == NUMA_NO_NODE)
3671 		free_huge_pages = h->free_huge_pages;
3672 	else
3673 		free_huge_pages = h->free_huge_pages_node[nid];
3674 
3675 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3676 }
3677 HSTATE_ATTR_RO(free_hugepages);
3678 
3679 static ssize_t resv_hugepages_show(struct kobject *kobj,
3680 					struct kobj_attribute *attr, char *buf)
3681 {
3682 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3683 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3684 }
3685 HSTATE_ATTR_RO(resv_hugepages);
3686 
3687 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3688 					struct kobj_attribute *attr, char *buf)
3689 {
3690 	struct hstate *h;
3691 	unsigned long surplus_huge_pages;
3692 	int nid;
3693 
3694 	h = kobj_to_hstate(kobj, &nid);
3695 	if (nid == NUMA_NO_NODE)
3696 		surplus_huge_pages = h->surplus_huge_pages;
3697 	else
3698 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3699 
3700 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3701 }
3702 HSTATE_ATTR_RO(surplus_hugepages);
3703 
3704 static ssize_t demote_store(struct kobject *kobj,
3705 	       struct kobj_attribute *attr, const char *buf, size_t len)
3706 {
3707 	unsigned long nr_demote;
3708 	unsigned long nr_available;
3709 	nodemask_t nodes_allowed, *n_mask;
3710 	struct hstate *h;
3711 	int err = 0;
3712 	int nid;
3713 
3714 	err = kstrtoul(buf, 10, &nr_demote);
3715 	if (err)
3716 		return err;
3717 	h = kobj_to_hstate(kobj, &nid);
3718 
3719 	if (nid != NUMA_NO_NODE) {
3720 		init_nodemask_of_node(&nodes_allowed, nid);
3721 		n_mask = &nodes_allowed;
3722 	} else {
3723 		n_mask = &node_states[N_MEMORY];
3724 	}
3725 
3726 	/* Synchronize with other sysfs operations modifying huge pages */
3727 	mutex_lock(&h->resize_lock);
3728 	spin_lock_irq(&hugetlb_lock);
3729 
3730 	while (nr_demote) {
3731 		/*
3732 		 * Check for available pages to demote each time thorough the
3733 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3734 		 */
3735 		if (nid != NUMA_NO_NODE)
3736 			nr_available = h->free_huge_pages_node[nid];
3737 		else
3738 			nr_available = h->free_huge_pages;
3739 		nr_available -= h->resv_huge_pages;
3740 		if (!nr_available)
3741 			break;
3742 
3743 		err = demote_pool_huge_page(h, n_mask);
3744 		if (err)
3745 			break;
3746 
3747 		nr_demote--;
3748 	}
3749 
3750 	spin_unlock_irq(&hugetlb_lock);
3751 	mutex_unlock(&h->resize_lock);
3752 
3753 	if (err)
3754 		return err;
3755 	return len;
3756 }
3757 HSTATE_ATTR_WO(demote);
3758 
3759 static ssize_t demote_size_show(struct kobject *kobj,
3760 					struct kobj_attribute *attr, char *buf)
3761 {
3762 	int nid;
3763 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3764 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3765 
3766 	return sysfs_emit(buf, "%lukB\n", demote_size);
3767 }
3768 
3769 static ssize_t demote_size_store(struct kobject *kobj,
3770 					struct kobj_attribute *attr,
3771 					const char *buf, size_t count)
3772 {
3773 	struct hstate *h, *demote_hstate;
3774 	unsigned long demote_size;
3775 	unsigned int demote_order;
3776 	int nid;
3777 
3778 	demote_size = (unsigned long)memparse(buf, NULL);
3779 
3780 	demote_hstate = size_to_hstate(demote_size);
3781 	if (!demote_hstate)
3782 		return -EINVAL;
3783 	demote_order = demote_hstate->order;
3784 	if (demote_order < HUGETLB_PAGE_ORDER)
3785 		return -EINVAL;
3786 
3787 	/* demote order must be smaller than hstate order */
3788 	h = kobj_to_hstate(kobj, &nid);
3789 	if (demote_order >= h->order)
3790 		return -EINVAL;
3791 
3792 	/* resize_lock synchronizes access to demote size and writes */
3793 	mutex_lock(&h->resize_lock);
3794 	h->demote_order = demote_order;
3795 	mutex_unlock(&h->resize_lock);
3796 
3797 	return count;
3798 }
3799 HSTATE_ATTR(demote_size);
3800 
3801 static struct attribute *hstate_attrs[] = {
3802 	&nr_hugepages_attr.attr,
3803 	&nr_overcommit_hugepages_attr.attr,
3804 	&free_hugepages_attr.attr,
3805 	&resv_hugepages_attr.attr,
3806 	&surplus_hugepages_attr.attr,
3807 #ifdef CONFIG_NUMA
3808 	&nr_hugepages_mempolicy_attr.attr,
3809 #endif
3810 	NULL,
3811 };
3812 
3813 static const struct attribute_group hstate_attr_group = {
3814 	.attrs = hstate_attrs,
3815 };
3816 
3817 static struct attribute *hstate_demote_attrs[] = {
3818 	&demote_size_attr.attr,
3819 	&demote_attr.attr,
3820 	NULL,
3821 };
3822 
3823 static const struct attribute_group hstate_demote_attr_group = {
3824 	.attrs = hstate_demote_attrs,
3825 };
3826 
3827 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3828 				    struct kobject **hstate_kobjs,
3829 				    const struct attribute_group *hstate_attr_group)
3830 {
3831 	int retval;
3832 	int hi = hstate_index(h);
3833 
3834 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3835 	if (!hstate_kobjs[hi])
3836 		return -ENOMEM;
3837 
3838 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3839 	if (retval) {
3840 		kobject_put(hstate_kobjs[hi]);
3841 		hstate_kobjs[hi] = NULL;
3842 	}
3843 
3844 	if (h->demote_order) {
3845 		if (sysfs_create_group(hstate_kobjs[hi],
3846 					&hstate_demote_attr_group))
3847 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3848 	}
3849 
3850 	return retval;
3851 }
3852 
3853 static void __init hugetlb_sysfs_init(void)
3854 {
3855 	struct hstate *h;
3856 	int err;
3857 
3858 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3859 	if (!hugepages_kobj)
3860 		return;
3861 
3862 	for_each_hstate(h) {
3863 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3864 					 hstate_kobjs, &hstate_attr_group);
3865 		if (err)
3866 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3867 	}
3868 }
3869 
3870 #ifdef CONFIG_NUMA
3871 
3872 /*
3873  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3874  * with node devices in node_devices[] using a parallel array.  The array
3875  * index of a node device or _hstate == node id.
3876  * This is here to avoid any static dependency of the node device driver, in
3877  * the base kernel, on the hugetlb module.
3878  */
3879 struct node_hstate {
3880 	struct kobject		*hugepages_kobj;
3881 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3882 };
3883 static struct node_hstate node_hstates[MAX_NUMNODES];
3884 
3885 /*
3886  * A subset of global hstate attributes for node devices
3887  */
3888 static struct attribute *per_node_hstate_attrs[] = {
3889 	&nr_hugepages_attr.attr,
3890 	&free_hugepages_attr.attr,
3891 	&surplus_hugepages_attr.attr,
3892 	NULL,
3893 };
3894 
3895 static const struct attribute_group per_node_hstate_attr_group = {
3896 	.attrs = per_node_hstate_attrs,
3897 };
3898 
3899 /*
3900  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3901  * Returns node id via non-NULL nidp.
3902  */
3903 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3904 {
3905 	int nid;
3906 
3907 	for (nid = 0; nid < nr_node_ids; nid++) {
3908 		struct node_hstate *nhs = &node_hstates[nid];
3909 		int i;
3910 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3911 			if (nhs->hstate_kobjs[i] == kobj) {
3912 				if (nidp)
3913 					*nidp = nid;
3914 				return &hstates[i];
3915 			}
3916 	}
3917 
3918 	BUG();
3919 	return NULL;
3920 }
3921 
3922 /*
3923  * Unregister hstate attributes from a single node device.
3924  * No-op if no hstate attributes attached.
3925  */
3926 static void hugetlb_unregister_node(struct node *node)
3927 {
3928 	struct hstate *h;
3929 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3930 
3931 	if (!nhs->hugepages_kobj)
3932 		return;		/* no hstate attributes */
3933 
3934 	for_each_hstate(h) {
3935 		int idx = hstate_index(h);
3936 		if (nhs->hstate_kobjs[idx]) {
3937 			kobject_put(nhs->hstate_kobjs[idx]);
3938 			nhs->hstate_kobjs[idx] = NULL;
3939 		}
3940 	}
3941 
3942 	kobject_put(nhs->hugepages_kobj);
3943 	nhs->hugepages_kobj = NULL;
3944 }
3945 
3946 
3947 /*
3948  * Register hstate attributes for a single node device.
3949  * No-op if attributes already registered.
3950  */
3951 static void hugetlb_register_node(struct node *node)
3952 {
3953 	struct hstate *h;
3954 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3955 	int err;
3956 
3957 	if (nhs->hugepages_kobj)
3958 		return;		/* already allocated */
3959 
3960 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3961 							&node->dev.kobj);
3962 	if (!nhs->hugepages_kobj)
3963 		return;
3964 
3965 	for_each_hstate(h) {
3966 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3967 						nhs->hstate_kobjs,
3968 						&per_node_hstate_attr_group);
3969 		if (err) {
3970 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3971 				h->name, node->dev.id);
3972 			hugetlb_unregister_node(node);
3973 			break;
3974 		}
3975 	}
3976 }
3977 
3978 /*
3979  * hugetlb init time:  register hstate attributes for all registered node
3980  * devices of nodes that have memory.  All on-line nodes should have
3981  * registered their associated device by this time.
3982  */
3983 static void __init hugetlb_register_all_nodes(void)
3984 {
3985 	int nid;
3986 
3987 	for_each_node_state(nid, N_MEMORY) {
3988 		struct node *node = node_devices[nid];
3989 		if (node->dev.id == nid)
3990 			hugetlb_register_node(node);
3991 	}
3992 
3993 	/*
3994 	 * Let the node device driver know we're here so it can
3995 	 * [un]register hstate attributes on node hotplug.
3996 	 */
3997 	register_hugetlbfs_with_node(hugetlb_register_node,
3998 				     hugetlb_unregister_node);
3999 }
4000 #else	/* !CONFIG_NUMA */
4001 
4002 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4003 {
4004 	BUG();
4005 	if (nidp)
4006 		*nidp = -1;
4007 	return NULL;
4008 }
4009 
4010 static void hugetlb_register_all_nodes(void) { }
4011 
4012 #endif
4013 
4014 static int __init hugetlb_init(void)
4015 {
4016 	int i;
4017 
4018 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4019 			__NR_HPAGEFLAGS);
4020 
4021 	if (!hugepages_supported()) {
4022 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4023 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4024 		return 0;
4025 	}
4026 
4027 	/*
4028 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4029 	 * architectures depend on setup being done here.
4030 	 */
4031 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4032 	if (!parsed_default_hugepagesz) {
4033 		/*
4034 		 * If we did not parse a default huge page size, set
4035 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4036 		 * number of huge pages for this default size was implicitly
4037 		 * specified, set that here as well.
4038 		 * Note that the implicit setting will overwrite an explicit
4039 		 * setting.  A warning will be printed in this case.
4040 		 */
4041 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4042 		if (default_hstate_max_huge_pages) {
4043 			if (default_hstate.max_huge_pages) {
4044 				char buf[32];
4045 
4046 				string_get_size(huge_page_size(&default_hstate),
4047 					1, STRING_UNITS_2, buf, 32);
4048 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4049 					default_hstate.max_huge_pages, buf);
4050 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4051 					default_hstate_max_huge_pages);
4052 			}
4053 			default_hstate.max_huge_pages =
4054 				default_hstate_max_huge_pages;
4055 
4056 			for_each_online_node(i)
4057 				default_hstate.max_huge_pages_node[i] =
4058 					default_hugepages_in_node[i];
4059 		}
4060 	}
4061 
4062 	hugetlb_cma_check();
4063 	hugetlb_init_hstates();
4064 	gather_bootmem_prealloc();
4065 	report_hugepages();
4066 
4067 	hugetlb_sysfs_init();
4068 	hugetlb_register_all_nodes();
4069 	hugetlb_cgroup_file_init();
4070 
4071 #ifdef CONFIG_SMP
4072 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4073 #else
4074 	num_fault_mutexes = 1;
4075 #endif
4076 	hugetlb_fault_mutex_table =
4077 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4078 			      GFP_KERNEL);
4079 	BUG_ON(!hugetlb_fault_mutex_table);
4080 
4081 	for (i = 0; i < num_fault_mutexes; i++)
4082 		mutex_init(&hugetlb_fault_mutex_table[i]);
4083 	return 0;
4084 }
4085 subsys_initcall(hugetlb_init);
4086 
4087 /* Overwritten by architectures with more huge page sizes */
4088 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4089 {
4090 	return size == HPAGE_SIZE;
4091 }
4092 
4093 void __init hugetlb_add_hstate(unsigned int order)
4094 {
4095 	struct hstate *h;
4096 	unsigned long i;
4097 
4098 	if (size_to_hstate(PAGE_SIZE << order)) {
4099 		return;
4100 	}
4101 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4102 	BUG_ON(order == 0);
4103 	h = &hstates[hugetlb_max_hstate++];
4104 	mutex_init(&h->resize_lock);
4105 	h->order = order;
4106 	h->mask = ~(huge_page_size(h) - 1);
4107 	for (i = 0; i < MAX_NUMNODES; ++i)
4108 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4109 	INIT_LIST_HEAD(&h->hugepage_activelist);
4110 	h->next_nid_to_alloc = first_memory_node;
4111 	h->next_nid_to_free = first_memory_node;
4112 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4113 					huge_page_size(h)/1024);
4114 	hugetlb_vmemmap_init(h);
4115 
4116 	parsed_hstate = h;
4117 }
4118 
4119 bool __init __weak hugetlb_node_alloc_supported(void)
4120 {
4121 	return true;
4122 }
4123 
4124 static void __init hugepages_clear_pages_in_node(void)
4125 {
4126 	if (!hugetlb_max_hstate) {
4127 		default_hstate_max_huge_pages = 0;
4128 		memset(default_hugepages_in_node, 0,
4129 			MAX_NUMNODES * sizeof(unsigned int));
4130 	} else {
4131 		parsed_hstate->max_huge_pages = 0;
4132 		memset(parsed_hstate->max_huge_pages_node, 0,
4133 			MAX_NUMNODES * sizeof(unsigned int));
4134 	}
4135 }
4136 
4137 /*
4138  * hugepages command line processing
4139  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4140  * specification.  If not, ignore the hugepages value.  hugepages can also
4141  * be the first huge page command line  option in which case it implicitly
4142  * specifies the number of huge pages for the default size.
4143  */
4144 static int __init hugepages_setup(char *s)
4145 {
4146 	unsigned long *mhp;
4147 	static unsigned long *last_mhp;
4148 	int node = NUMA_NO_NODE;
4149 	int count;
4150 	unsigned long tmp;
4151 	char *p = s;
4152 
4153 	if (!parsed_valid_hugepagesz) {
4154 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4155 		parsed_valid_hugepagesz = true;
4156 		return 1;
4157 	}
4158 
4159 	/*
4160 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4161 	 * yet, so this hugepages= parameter goes to the "default hstate".
4162 	 * Otherwise, it goes with the previously parsed hugepagesz or
4163 	 * default_hugepagesz.
4164 	 */
4165 	else if (!hugetlb_max_hstate)
4166 		mhp = &default_hstate_max_huge_pages;
4167 	else
4168 		mhp = &parsed_hstate->max_huge_pages;
4169 
4170 	if (mhp == last_mhp) {
4171 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4172 		return 1;
4173 	}
4174 
4175 	while (*p) {
4176 		count = 0;
4177 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4178 			goto invalid;
4179 		/* Parameter is node format */
4180 		if (p[count] == ':') {
4181 			if (!hugetlb_node_alloc_supported()) {
4182 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4183 				return 1;
4184 			}
4185 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4186 				goto invalid;
4187 			node = array_index_nospec(tmp, MAX_NUMNODES);
4188 			p += count + 1;
4189 			/* Parse hugepages */
4190 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4191 				goto invalid;
4192 			if (!hugetlb_max_hstate)
4193 				default_hugepages_in_node[node] = tmp;
4194 			else
4195 				parsed_hstate->max_huge_pages_node[node] = tmp;
4196 			*mhp += tmp;
4197 			/* Go to parse next node*/
4198 			if (p[count] == ',')
4199 				p += count + 1;
4200 			else
4201 				break;
4202 		} else {
4203 			if (p != s)
4204 				goto invalid;
4205 			*mhp = tmp;
4206 			break;
4207 		}
4208 	}
4209 
4210 	/*
4211 	 * Global state is always initialized later in hugetlb_init.
4212 	 * But we need to allocate gigantic hstates here early to still
4213 	 * use the bootmem allocator.
4214 	 */
4215 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4216 		hugetlb_hstate_alloc_pages(parsed_hstate);
4217 
4218 	last_mhp = mhp;
4219 
4220 	return 1;
4221 
4222 invalid:
4223 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4224 	hugepages_clear_pages_in_node();
4225 	return 1;
4226 }
4227 __setup("hugepages=", hugepages_setup);
4228 
4229 /*
4230  * hugepagesz command line processing
4231  * A specific huge page size can only be specified once with hugepagesz.
4232  * hugepagesz is followed by hugepages on the command line.  The global
4233  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4234  * hugepagesz argument was valid.
4235  */
4236 static int __init hugepagesz_setup(char *s)
4237 {
4238 	unsigned long size;
4239 	struct hstate *h;
4240 
4241 	parsed_valid_hugepagesz = false;
4242 	size = (unsigned long)memparse(s, NULL);
4243 
4244 	if (!arch_hugetlb_valid_size(size)) {
4245 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4246 		return 1;
4247 	}
4248 
4249 	h = size_to_hstate(size);
4250 	if (h) {
4251 		/*
4252 		 * hstate for this size already exists.  This is normally
4253 		 * an error, but is allowed if the existing hstate is the
4254 		 * default hstate.  More specifically, it is only allowed if
4255 		 * the number of huge pages for the default hstate was not
4256 		 * previously specified.
4257 		 */
4258 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4259 		    default_hstate.max_huge_pages) {
4260 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4261 			return 1;
4262 		}
4263 
4264 		/*
4265 		 * No need to call hugetlb_add_hstate() as hstate already
4266 		 * exists.  But, do set parsed_hstate so that a following
4267 		 * hugepages= parameter will be applied to this hstate.
4268 		 */
4269 		parsed_hstate = h;
4270 		parsed_valid_hugepagesz = true;
4271 		return 1;
4272 	}
4273 
4274 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4275 	parsed_valid_hugepagesz = true;
4276 	return 1;
4277 }
4278 __setup("hugepagesz=", hugepagesz_setup);
4279 
4280 /*
4281  * default_hugepagesz command line input
4282  * Only one instance of default_hugepagesz allowed on command line.
4283  */
4284 static int __init default_hugepagesz_setup(char *s)
4285 {
4286 	unsigned long size;
4287 	int i;
4288 
4289 	parsed_valid_hugepagesz = false;
4290 	if (parsed_default_hugepagesz) {
4291 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4292 		return 1;
4293 	}
4294 
4295 	size = (unsigned long)memparse(s, NULL);
4296 
4297 	if (!arch_hugetlb_valid_size(size)) {
4298 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4299 		return 1;
4300 	}
4301 
4302 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4303 	parsed_valid_hugepagesz = true;
4304 	parsed_default_hugepagesz = true;
4305 	default_hstate_idx = hstate_index(size_to_hstate(size));
4306 
4307 	/*
4308 	 * The number of default huge pages (for this size) could have been
4309 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4310 	 * then default_hstate_max_huge_pages is set.  If the default huge
4311 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4312 	 * allocated here from bootmem allocator.
4313 	 */
4314 	if (default_hstate_max_huge_pages) {
4315 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4316 		for_each_online_node(i)
4317 			default_hstate.max_huge_pages_node[i] =
4318 				default_hugepages_in_node[i];
4319 		if (hstate_is_gigantic(&default_hstate))
4320 			hugetlb_hstate_alloc_pages(&default_hstate);
4321 		default_hstate_max_huge_pages = 0;
4322 	}
4323 
4324 	return 1;
4325 }
4326 __setup("default_hugepagesz=", default_hugepagesz_setup);
4327 
4328 static unsigned int allowed_mems_nr(struct hstate *h)
4329 {
4330 	int node;
4331 	unsigned int nr = 0;
4332 	nodemask_t *mpol_allowed;
4333 	unsigned int *array = h->free_huge_pages_node;
4334 	gfp_t gfp_mask = htlb_alloc_mask(h);
4335 
4336 	mpol_allowed = policy_nodemask_current(gfp_mask);
4337 
4338 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4339 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4340 			nr += array[node];
4341 	}
4342 
4343 	return nr;
4344 }
4345 
4346 #ifdef CONFIG_SYSCTL
4347 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4348 					  void *buffer, size_t *length,
4349 					  loff_t *ppos, unsigned long *out)
4350 {
4351 	struct ctl_table dup_table;
4352 
4353 	/*
4354 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4355 	 * can duplicate the @table and alter the duplicate of it.
4356 	 */
4357 	dup_table = *table;
4358 	dup_table.data = out;
4359 
4360 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4361 }
4362 
4363 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4364 			 struct ctl_table *table, int write,
4365 			 void *buffer, size_t *length, loff_t *ppos)
4366 {
4367 	struct hstate *h = &default_hstate;
4368 	unsigned long tmp = h->max_huge_pages;
4369 	int ret;
4370 
4371 	if (!hugepages_supported())
4372 		return -EOPNOTSUPP;
4373 
4374 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4375 					     &tmp);
4376 	if (ret)
4377 		goto out;
4378 
4379 	if (write)
4380 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4381 						  NUMA_NO_NODE, tmp, *length);
4382 out:
4383 	return ret;
4384 }
4385 
4386 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4387 			  void *buffer, size_t *length, loff_t *ppos)
4388 {
4389 
4390 	return hugetlb_sysctl_handler_common(false, table, write,
4391 							buffer, length, ppos);
4392 }
4393 
4394 #ifdef CONFIG_NUMA
4395 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4396 			  void *buffer, size_t *length, loff_t *ppos)
4397 {
4398 	return hugetlb_sysctl_handler_common(true, table, write,
4399 							buffer, length, ppos);
4400 }
4401 #endif /* CONFIG_NUMA */
4402 
4403 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4404 		void *buffer, size_t *length, loff_t *ppos)
4405 {
4406 	struct hstate *h = &default_hstate;
4407 	unsigned long tmp;
4408 	int ret;
4409 
4410 	if (!hugepages_supported())
4411 		return -EOPNOTSUPP;
4412 
4413 	tmp = h->nr_overcommit_huge_pages;
4414 
4415 	if (write && hstate_is_gigantic(h))
4416 		return -EINVAL;
4417 
4418 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4419 					     &tmp);
4420 	if (ret)
4421 		goto out;
4422 
4423 	if (write) {
4424 		spin_lock_irq(&hugetlb_lock);
4425 		h->nr_overcommit_huge_pages = tmp;
4426 		spin_unlock_irq(&hugetlb_lock);
4427 	}
4428 out:
4429 	return ret;
4430 }
4431 
4432 #endif /* CONFIG_SYSCTL */
4433 
4434 void hugetlb_report_meminfo(struct seq_file *m)
4435 {
4436 	struct hstate *h;
4437 	unsigned long total = 0;
4438 
4439 	if (!hugepages_supported())
4440 		return;
4441 
4442 	for_each_hstate(h) {
4443 		unsigned long count = h->nr_huge_pages;
4444 
4445 		total += huge_page_size(h) * count;
4446 
4447 		if (h == &default_hstate)
4448 			seq_printf(m,
4449 				   "HugePages_Total:   %5lu\n"
4450 				   "HugePages_Free:    %5lu\n"
4451 				   "HugePages_Rsvd:    %5lu\n"
4452 				   "HugePages_Surp:    %5lu\n"
4453 				   "Hugepagesize:   %8lu kB\n",
4454 				   count,
4455 				   h->free_huge_pages,
4456 				   h->resv_huge_pages,
4457 				   h->surplus_huge_pages,
4458 				   huge_page_size(h) / SZ_1K);
4459 	}
4460 
4461 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4462 }
4463 
4464 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4465 {
4466 	struct hstate *h = &default_hstate;
4467 
4468 	if (!hugepages_supported())
4469 		return 0;
4470 
4471 	return sysfs_emit_at(buf, len,
4472 			     "Node %d HugePages_Total: %5u\n"
4473 			     "Node %d HugePages_Free:  %5u\n"
4474 			     "Node %d HugePages_Surp:  %5u\n",
4475 			     nid, h->nr_huge_pages_node[nid],
4476 			     nid, h->free_huge_pages_node[nid],
4477 			     nid, h->surplus_huge_pages_node[nid]);
4478 }
4479 
4480 void hugetlb_show_meminfo_node(int nid)
4481 {
4482 	struct hstate *h;
4483 
4484 	if (!hugepages_supported())
4485 		return;
4486 
4487 	for_each_hstate(h)
4488 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4489 			nid,
4490 			h->nr_huge_pages_node[nid],
4491 			h->free_huge_pages_node[nid],
4492 			h->surplus_huge_pages_node[nid],
4493 			huge_page_size(h) / SZ_1K);
4494 }
4495 
4496 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4497 {
4498 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4499 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4500 }
4501 
4502 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4503 unsigned long hugetlb_total_pages(void)
4504 {
4505 	struct hstate *h;
4506 	unsigned long nr_total_pages = 0;
4507 
4508 	for_each_hstate(h)
4509 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4510 	return nr_total_pages;
4511 }
4512 
4513 static int hugetlb_acct_memory(struct hstate *h, long delta)
4514 {
4515 	int ret = -ENOMEM;
4516 
4517 	if (!delta)
4518 		return 0;
4519 
4520 	spin_lock_irq(&hugetlb_lock);
4521 	/*
4522 	 * When cpuset is configured, it breaks the strict hugetlb page
4523 	 * reservation as the accounting is done on a global variable. Such
4524 	 * reservation is completely rubbish in the presence of cpuset because
4525 	 * the reservation is not checked against page availability for the
4526 	 * current cpuset. Application can still potentially OOM'ed by kernel
4527 	 * with lack of free htlb page in cpuset that the task is in.
4528 	 * Attempt to enforce strict accounting with cpuset is almost
4529 	 * impossible (or too ugly) because cpuset is too fluid that
4530 	 * task or memory node can be dynamically moved between cpusets.
4531 	 *
4532 	 * The change of semantics for shared hugetlb mapping with cpuset is
4533 	 * undesirable. However, in order to preserve some of the semantics,
4534 	 * we fall back to check against current free page availability as
4535 	 * a best attempt and hopefully to minimize the impact of changing
4536 	 * semantics that cpuset has.
4537 	 *
4538 	 * Apart from cpuset, we also have memory policy mechanism that
4539 	 * also determines from which node the kernel will allocate memory
4540 	 * in a NUMA system. So similar to cpuset, we also should consider
4541 	 * the memory policy of the current task. Similar to the description
4542 	 * above.
4543 	 */
4544 	if (delta > 0) {
4545 		if (gather_surplus_pages(h, delta) < 0)
4546 			goto out;
4547 
4548 		if (delta > allowed_mems_nr(h)) {
4549 			return_unused_surplus_pages(h, delta);
4550 			goto out;
4551 		}
4552 	}
4553 
4554 	ret = 0;
4555 	if (delta < 0)
4556 		return_unused_surplus_pages(h, (unsigned long) -delta);
4557 
4558 out:
4559 	spin_unlock_irq(&hugetlb_lock);
4560 	return ret;
4561 }
4562 
4563 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4564 {
4565 	struct resv_map *resv = vma_resv_map(vma);
4566 
4567 	/*
4568 	 * This new VMA should share its siblings reservation map if present.
4569 	 * The VMA will only ever have a valid reservation map pointer where
4570 	 * it is being copied for another still existing VMA.  As that VMA
4571 	 * has a reference to the reservation map it cannot disappear until
4572 	 * after this open call completes.  It is therefore safe to take a
4573 	 * new reference here without additional locking.
4574 	 */
4575 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4576 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4577 		kref_get(&resv->refs);
4578 	}
4579 }
4580 
4581 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4582 {
4583 	struct hstate *h = hstate_vma(vma);
4584 	struct resv_map *resv = vma_resv_map(vma);
4585 	struct hugepage_subpool *spool = subpool_vma(vma);
4586 	unsigned long reserve, start, end;
4587 	long gbl_reserve;
4588 
4589 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4590 		return;
4591 
4592 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4593 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4594 
4595 	reserve = (end - start) - region_count(resv, start, end);
4596 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4597 	if (reserve) {
4598 		/*
4599 		 * Decrement reserve counts.  The global reserve count may be
4600 		 * adjusted if the subpool has a minimum size.
4601 		 */
4602 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4603 		hugetlb_acct_memory(h, -gbl_reserve);
4604 	}
4605 
4606 	kref_put(&resv->refs, resv_map_release);
4607 }
4608 
4609 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4610 {
4611 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4612 		return -EINVAL;
4613 	return 0;
4614 }
4615 
4616 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4617 {
4618 	return huge_page_size(hstate_vma(vma));
4619 }
4620 
4621 /*
4622  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4623  * handle_mm_fault() to try to instantiate regular-sized pages in the
4624  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4625  * this far.
4626  */
4627 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4628 {
4629 	BUG();
4630 	return 0;
4631 }
4632 
4633 /*
4634  * When a new function is introduced to vm_operations_struct and added
4635  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4636  * This is because under System V memory model, mappings created via
4637  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4638  * their original vm_ops are overwritten with shm_vm_ops.
4639  */
4640 const struct vm_operations_struct hugetlb_vm_ops = {
4641 	.fault = hugetlb_vm_op_fault,
4642 	.open = hugetlb_vm_op_open,
4643 	.close = hugetlb_vm_op_close,
4644 	.may_split = hugetlb_vm_op_split,
4645 	.pagesize = hugetlb_vm_op_pagesize,
4646 };
4647 
4648 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4649 				int writable)
4650 {
4651 	pte_t entry;
4652 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4653 
4654 	if (writable) {
4655 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4656 					 vma->vm_page_prot)));
4657 	} else {
4658 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4659 					   vma->vm_page_prot));
4660 	}
4661 	entry = pte_mkyoung(entry);
4662 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4663 
4664 	return entry;
4665 }
4666 
4667 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4668 				   unsigned long address, pte_t *ptep)
4669 {
4670 	pte_t entry;
4671 
4672 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4673 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4674 		update_mmu_cache(vma, address, ptep);
4675 }
4676 
4677 bool is_hugetlb_entry_migration(pte_t pte)
4678 {
4679 	swp_entry_t swp;
4680 
4681 	if (huge_pte_none(pte) || pte_present(pte))
4682 		return false;
4683 	swp = pte_to_swp_entry(pte);
4684 	if (is_migration_entry(swp))
4685 		return true;
4686 	else
4687 		return false;
4688 }
4689 
4690 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4691 {
4692 	swp_entry_t swp;
4693 
4694 	if (huge_pte_none(pte) || pte_present(pte))
4695 		return false;
4696 	swp = pte_to_swp_entry(pte);
4697 	if (is_hwpoison_entry(swp))
4698 		return true;
4699 	else
4700 		return false;
4701 }
4702 
4703 static void
4704 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4705 		     struct page *new_page)
4706 {
4707 	__SetPageUptodate(new_page);
4708 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4709 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4710 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4711 	ClearHPageRestoreReserve(new_page);
4712 	SetHPageMigratable(new_page);
4713 }
4714 
4715 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4716 			    struct vm_area_struct *dst_vma,
4717 			    struct vm_area_struct *src_vma)
4718 {
4719 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4720 	struct page *ptepage;
4721 	unsigned long addr;
4722 	bool cow = is_cow_mapping(src_vma->vm_flags);
4723 	struct hstate *h = hstate_vma(src_vma);
4724 	unsigned long sz = huge_page_size(h);
4725 	unsigned long npages = pages_per_huge_page(h);
4726 	struct address_space *mapping = src_vma->vm_file->f_mapping;
4727 	struct mmu_notifier_range range;
4728 	unsigned long last_addr_mask;
4729 	int ret = 0;
4730 
4731 	if (cow) {
4732 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4733 					src_vma->vm_start,
4734 					src_vma->vm_end);
4735 		mmu_notifier_invalidate_range_start(&range);
4736 		mmap_assert_write_locked(src);
4737 		raw_write_seqcount_begin(&src->write_protect_seq);
4738 	} else {
4739 		/*
4740 		 * For shared mappings i_mmap_rwsem must be held to call
4741 		 * huge_pte_alloc, otherwise the returned ptep could go
4742 		 * away if part of a shared pmd and another thread calls
4743 		 * huge_pmd_unshare.
4744 		 */
4745 		i_mmap_lock_read(mapping);
4746 	}
4747 
4748 	last_addr_mask = hugetlb_mask_last_page(h);
4749 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4750 		spinlock_t *src_ptl, *dst_ptl;
4751 		src_pte = huge_pte_offset(src, addr, sz);
4752 		if (!src_pte) {
4753 			addr |= last_addr_mask;
4754 			continue;
4755 		}
4756 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4757 		if (!dst_pte) {
4758 			ret = -ENOMEM;
4759 			break;
4760 		}
4761 
4762 		/*
4763 		 * If the pagetables are shared don't copy or take references.
4764 		 * dst_pte == src_pte is the common case of src/dest sharing.
4765 		 *
4766 		 * However, src could have 'unshared' and dst shares with
4767 		 * another vma.  If dst_pte !none, this implies sharing.
4768 		 * Check here before taking page table lock, and once again
4769 		 * after taking the lock below.
4770 		 */
4771 		dst_entry = huge_ptep_get(dst_pte);
4772 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) {
4773 			addr |= last_addr_mask;
4774 			continue;
4775 		}
4776 
4777 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4778 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4779 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4780 		entry = huge_ptep_get(src_pte);
4781 		dst_entry = huge_ptep_get(dst_pte);
4782 again:
4783 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4784 			/*
4785 			 * Skip if src entry none.  Also, skip in the
4786 			 * unlikely case dst entry !none as this implies
4787 			 * sharing with another vma.
4788 			 */
4789 			;
4790 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4791 			bool uffd_wp = huge_pte_uffd_wp(entry);
4792 
4793 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4794 				entry = huge_pte_clear_uffd_wp(entry);
4795 			set_huge_pte_at(dst, addr, dst_pte, entry);
4796 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4797 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4798 			bool uffd_wp = huge_pte_uffd_wp(entry);
4799 
4800 			if (!is_readable_migration_entry(swp_entry) && cow) {
4801 				/*
4802 				 * COW mappings require pages in both
4803 				 * parent and child to be set to read.
4804 				 */
4805 				swp_entry = make_readable_migration_entry(
4806 							swp_offset(swp_entry));
4807 				entry = swp_entry_to_pte(swp_entry);
4808 				if (userfaultfd_wp(src_vma) && uffd_wp)
4809 					entry = huge_pte_mkuffd_wp(entry);
4810 				set_huge_pte_at(src, addr, src_pte, entry);
4811 			}
4812 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4813 				entry = huge_pte_clear_uffd_wp(entry);
4814 			set_huge_pte_at(dst, addr, dst_pte, entry);
4815 		} else if (unlikely(is_pte_marker(entry))) {
4816 			/*
4817 			 * We copy the pte marker only if the dst vma has
4818 			 * uffd-wp enabled.
4819 			 */
4820 			if (userfaultfd_wp(dst_vma))
4821 				set_huge_pte_at(dst, addr, dst_pte, entry);
4822 		} else {
4823 			entry = huge_ptep_get(src_pte);
4824 			ptepage = pte_page(entry);
4825 			get_page(ptepage);
4826 
4827 			/*
4828 			 * Failing to duplicate the anon rmap is a rare case
4829 			 * where we see pinned hugetlb pages while they're
4830 			 * prone to COW. We need to do the COW earlier during
4831 			 * fork.
4832 			 *
4833 			 * When pre-allocating the page or copying data, we
4834 			 * need to be without the pgtable locks since we could
4835 			 * sleep during the process.
4836 			 */
4837 			if (!PageAnon(ptepage)) {
4838 				page_dup_file_rmap(ptepage, true);
4839 			} else if (page_try_dup_anon_rmap(ptepage, true,
4840 							  src_vma)) {
4841 				pte_t src_pte_old = entry;
4842 				struct page *new;
4843 
4844 				spin_unlock(src_ptl);
4845 				spin_unlock(dst_ptl);
4846 				/* Do not use reserve as it's private owned */
4847 				new = alloc_huge_page(dst_vma, addr, 1);
4848 				if (IS_ERR(new)) {
4849 					put_page(ptepage);
4850 					ret = PTR_ERR(new);
4851 					break;
4852 				}
4853 				copy_user_huge_page(new, ptepage, addr, dst_vma,
4854 						    npages);
4855 				put_page(ptepage);
4856 
4857 				/* Install the new huge page if src pte stable */
4858 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4859 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4860 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4861 				entry = huge_ptep_get(src_pte);
4862 				if (!pte_same(src_pte_old, entry)) {
4863 					restore_reserve_on_error(h, dst_vma, addr,
4864 								new);
4865 					put_page(new);
4866 					/* dst_entry won't change as in child */
4867 					goto again;
4868 				}
4869 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4870 				spin_unlock(src_ptl);
4871 				spin_unlock(dst_ptl);
4872 				continue;
4873 			}
4874 
4875 			if (cow) {
4876 				/*
4877 				 * No need to notify as we are downgrading page
4878 				 * table protection not changing it to point
4879 				 * to a new page.
4880 				 *
4881 				 * See Documentation/mm/mmu_notifier.rst
4882 				 */
4883 				huge_ptep_set_wrprotect(src, addr, src_pte);
4884 				entry = huge_pte_wrprotect(entry);
4885 			}
4886 
4887 			set_huge_pte_at(dst, addr, dst_pte, entry);
4888 			hugetlb_count_add(npages, dst);
4889 		}
4890 		spin_unlock(src_ptl);
4891 		spin_unlock(dst_ptl);
4892 	}
4893 
4894 	if (cow) {
4895 		raw_write_seqcount_end(&src->write_protect_seq);
4896 		mmu_notifier_invalidate_range_end(&range);
4897 	} else {
4898 		i_mmap_unlock_read(mapping);
4899 	}
4900 
4901 	return ret;
4902 }
4903 
4904 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4905 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4906 {
4907 	struct hstate *h = hstate_vma(vma);
4908 	struct mm_struct *mm = vma->vm_mm;
4909 	spinlock_t *src_ptl, *dst_ptl;
4910 	pte_t pte;
4911 
4912 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4913 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4914 
4915 	/*
4916 	 * We don't have to worry about the ordering of src and dst ptlocks
4917 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4918 	 */
4919 	if (src_ptl != dst_ptl)
4920 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4921 
4922 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4923 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4924 
4925 	if (src_ptl != dst_ptl)
4926 		spin_unlock(src_ptl);
4927 	spin_unlock(dst_ptl);
4928 }
4929 
4930 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4931 			     struct vm_area_struct *new_vma,
4932 			     unsigned long old_addr, unsigned long new_addr,
4933 			     unsigned long len)
4934 {
4935 	struct hstate *h = hstate_vma(vma);
4936 	struct address_space *mapping = vma->vm_file->f_mapping;
4937 	unsigned long sz = huge_page_size(h);
4938 	struct mm_struct *mm = vma->vm_mm;
4939 	unsigned long old_end = old_addr + len;
4940 	unsigned long last_addr_mask;
4941 	pte_t *src_pte, *dst_pte;
4942 	struct mmu_notifier_range range;
4943 	bool shared_pmd = false;
4944 
4945 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4946 				old_end);
4947 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4948 	/*
4949 	 * In case of shared PMDs, we should cover the maximum possible
4950 	 * range.
4951 	 */
4952 	flush_cache_range(vma, range.start, range.end);
4953 
4954 	mmu_notifier_invalidate_range_start(&range);
4955 	last_addr_mask = hugetlb_mask_last_page(h);
4956 	/* Prevent race with file truncation */
4957 	i_mmap_lock_write(mapping);
4958 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4959 		src_pte = huge_pte_offset(mm, old_addr, sz);
4960 		if (!src_pte) {
4961 			old_addr |= last_addr_mask;
4962 			new_addr |= last_addr_mask;
4963 			continue;
4964 		}
4965 		if (huge_pte_none(huge_ptep_get(src_pte)))
4966 			continue;
4967 
4968 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
4969 			shared_pmd = true;
4970 			old_addr |= last_addr_mask;
4971 			new_addr |= last_addr_mask;
4972 			continue;
4973 		}
4974 
4975 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4976 		if (!dst_pte)
4977 			break;
4978 
4979 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4980 	}
4981 
4982 	if (shared_pmd)
4983 		flush_tlb_range(vma, range.start, range.end);
4984 	else
4985 		flush_tlb_range(vma, old_end - len, old_end);
4986 	mmu_notifier_invalidate_range_end(&range);
4987 	i_mmap_unlock_write(mapping);
4988 
4989 	return len + old_addr - old_end;
4990 }
4991 
4992 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4993 				   unsigned long start, unsigned long end,
4994 				   struct page *ref_page, zap_flags_t zap_flags)
4995 {
4996 	struct mm_struct *mm = vma->vm_mm;
4997 	unsigned long address;
4998 	pte_t *ptep;
4999 	pte_t pte;
5000 	spinlock_t *ptl;
5001 	struct page *page;
5002 	struct hstate *h = hstate_vma(vma);
5003 	unsigned long sz = huge_page_size(h);
5004 	struct mmu_notifier_range range;
5005 	unsigned long last_addr_mask;
5006 	bool force_flush = false;
5007 
5008 	WARN_ON(!is_vm_hugetlb_page(vma));
5009 	BUG_ON(start & ~huge_page_mask(h));
5010 	BUG_ON(end & ~huge_page_mask(h));
5011 
5012 	/*
5013 	 * This is a hugetlb vma, all the pte entries should point
5014 	 * to huge page.
5015 	 */
5016 	tlb_change_page_size(tlb, sz);
5017 	tlb_start_vma(tlb, vma);
5018 
5019 	/*
5020 	 * If sharing possible, alert mmu notifiers of worst case.
5021 	 */
5022 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5023 				end);
5024 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5025 	mmu_notifier_invalidate_range_start(&range);
5026 	last_addr_mask = hugetlb_mask_last_page(h);
5027 	address = start;
5028 	for (; address < end; address += sz) {
5029 		ptep = huge_pte_offset(mm, address, sz);
5030 		if (!ptep) {
5031 			address |= last_addr_mask;
5032 			continue;
5033 		}
5034 
5035 		ptl = huge_pte_lock(h, mm, ptep);
5036 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5037 			spin_unlock(ptl);
5038 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5039 			force_flush = true;
5040 			address |= last_addr_mask;
5041 			continue;
5042 		}
5043 
5044 		pte = huge_ptep_get(ptep);
5045 		if (huge_pte_none(pte)) {
5046 			spin_unlock(ptl);
5047 			continue;
5048 		}
5049 
5050 		/*
5051 		 * Migrating hugepage or HWPoisoned hugepage is already
5052 		 * unmapped and its refcount is dropped, so just clear pte here.
5053 		 */
5054 		if (unlikely(!pte_present(pte))) {
5055 			/*
5056 			 * If the pte was wr-protected by uffd-wp in any of the
5057 			 * swap forms, meanwhile the caller does not want to
5058 			 * drop the uffd-wp bit in this zap, then replace the
5059 			 * pte with a marker.
5060 			 */
5061 			if (pte_swp_uffd_wp_any(pte) &&
5062 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5063 				set_huge_pte_at(mm, address, ptep,
5064 						make_pte_marker(PTE_MARKER_UFFD_WP));
5065 			else
5066 				huge_pte_clear(mm, address, ptep, sz);
5067 			spin_unlock(ptl);
5068 			continue;
5069 		}
5070 
5071 		page = pte_page(pte);
5072 		/*
5073 		 * If a reference page is supplied, it is because a specific
5074 		 * page is being unmapped, not a range. Ensure the page we
5075 		 * are about to unmap is the actual page of interest.
5076 		 */
5077 		if (ref_page) {
5078 			if (page != ref_page) {
5079 				spin_unlock(ptl);
5080 				continue;
5081 			}
5082 			/*
5083 			 * Mark the VMA as having unmapped its page so that
5084 			 * future faults in this VMA will fail rather than
5085 			 * looking like data was lost
5086 			 */
5087 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5088 		}
5089 
5090 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5091 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5092 		if (huge_pte_dirty(pte))
5093 			set_page_dirty(page);
5094 		/* Leave a uffd-wp pte marker if needed */
5095 		if (huge_pte_uffd_wp(pte) &&
5096 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5097 			set_huge_pte_at(mm, address, ptep,
5098 					make_pte_marker(PTE_MARKER_UFFD_WP));
5099 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5100 		page_remove_rmap(page, vma, true);
5101 
5102 		spin_unlock(ptl);
5103 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5104 		/*
5105 		 * Bail out after unmapping reference page if supplied
5106 		 */
5107 		if (ref_page)
5108 			break;
5109 	}
5110 	mmu_notifier_invalidate_range_end(&range);
5111 	tlb_end_vma(tlb, vma);
5112 
5113 	/*
5114 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5115 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5116 	 * guaranteed that the last refernece would not be dropped. But we must
5117 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5118 	 * dropped and the last reference to the shared PMDs page might be
5119 	 * dropped as well.
5120 	 *
5121 	 * In theory we could defer the freeing of the PMD pages as well, but
5122 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5123 	 * detect sharing, so we cannot defer the release of the page either.
5124 	 * Instead, do flush now.
5125 	 */
5126 	if (force_flush)
5127 		tlb_flush_mmu_tlbonly(tlb);
5128 }
5129 
5130 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5131 			  struct vm_area_struct *vma, unsigned long start,
5132 			  unsigned long end, struct page *ref_page,
5133 			  zap_flags_t zap_flags)
5134 {
5135 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5136 
5137 	/*
5138 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5139 	 * test will fail on a vma being torn down, and not grab a page table
5140 	 * on its way out.  We're lucky that the flag has such an appropriate
5141 	 * name, and can in fact be safely cleared here. We could clear it
5142 	 * before the __unmap_hugepage_range above, but all that's necessary
5143 	 * is to clear it before releasing the i_mmap_rwsem. This works
5144 	 * because in the context this is called, the VMA is about to be
5145 	 * destroyed and the i_mmap_rwsem is held.
5146 	 */
5147 	vma->vm_flags &= ~VM_MAYSHARE;
5148 }
5149 
5150 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5151 			  unsigned long end, struct page *ref_page,
5152 			  zap_flags_t zap_flags)
5153 {
5154 	struct mmu_gather tlb;
5155 
5156 	tlb_gather_mmu(&tlb, vma->vm_mm);
5157 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5158 	tlb_finish_mmu(&tlb);
5159 }
5160 
5161 /*
5162  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5163  * mapping it owns the reserve page for. The intention is to unmap the page
5164  * from other VMAs and let the children be SIGKILLed if they are faulting the
5165  * same region.
5166  */
5167 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5168 			      struct page *page, unsigned long address)
5169 {
5170 	struct hstate *h = hstate_vma(vma);
5171 	struct vm_area_struct *iter_vma;
5172 	struct address_space *mapping;
5173 	pgoff_t pgoff;
5174 
5175 	/*
5176 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5177 	 * from page cache lookup which is in HPAGE_SIZE units.
5178 	 */
5179 	address = address & huge_page_mask(h);
5180 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5181 			vma->vm_pgoff;
5182 	mapping = vma->vm_file->f_mapping;
5183 
5184 	/*
5185 	 * Take the mapping lock for the duration of the table walk. As
5186 	 * this mapping should be shared between all the VMAs,
5187 	 * __unmap_hugepage_range() is called as the lock is already held
5188 	 */
5189 	i_mmap_lock_write(mapping);
5190 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5191 		/* Do not unmap the current VMA */
5192 		if (iter_vma == vma)
5193 			continue;
5194 
5195 		/*
5196 		 * Shared VMAs have their own reserves and do not affect
5197 		 * MAP_PRIVATE accounting but it is possible that a shared
5198 		 * VMA is using the same page so check and skip such VMAs.
5199 		 */
5200 		if (iter_vma->vm_flags & VM_MAYSHARE)
5201 			continue;
5202 
5203 		/*
5204 		 * Unmap the page from other VMAs without their own reserves.
5205 		 * They get marked to be SIGKILLed if they fault in these
5206 		 * areas. This is because a future no-page fault on this VMA
5207 		 * could insert a zeroed page instead of the data existing
5208 		 * from the time of fork. This would look like data corruption
5209 		 */
5210 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5211 			unmap_hugepage_range(iter_vma, address,
5212 					     address + huge_page_size(h), page, 0);
5213 	}
5214 	i_mmap_unlock_write(mapping);
5215 }
5216 
5217 /*
5218  * hugetlb_wp() should be called with page lock of the original hugepage held.
5219  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5220  * cannot race with other handlers or page migration.
5221  * Keep the pte_same checks anyway to make transition from the mutex easier.
5222  */
5223 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5224 		       unsigned long address, pte_t *ptep, unsigned int flags,
5225 		       struct page *pagecache_page, spinlock_t *ptl)
5226 {
5227 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5228 	pte_t pte;
5229 	struct hstate *h = hstate_vma(vma);
5230 	struct page *old_page, *new_page;
5231 	int outside_reserve = 0;
5232 	vm_fault_t ret = 0;
5233 	unsigned long haddr = address & huge_page_mask(h);
5234 	struct mmu_notifier_range range;
5235 
5236 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5237 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5238 
5239 	pte = huge_ptep_get(ptep);
5240 	old_page = pte_page(pte);
5241 
5242 	delayacct_wpcopy_start();
5243 
5244 retry_avoidcopy:
5245 	/*
5246 	 * If no-one else is actually using this page, we're the exclusive
5247 	 * owner and can reuse this page.
5248 	 */
5249 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5250 		if (!PageAnonExclusive(old_page))
5251 			page_move_anon_rmap(old_page, vma);
5252 		if (likely(!unshare))
5253 			set_huge_ptep_writable(vma, haddr, ptep);
5254 
5255 		delayacct_wpcopy_end();
5256 		return 0;
5257 	}
5258 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5259 		       old_page);
5260 
5261 	/*
5262 	 * If the process that created a MAP_PRIVATE mapping is about to
5263 	 * perform a COW due to a shared page count, attempt to satisfy
5264 	 * the allocation without using the existing reserves. The pagecache
5265 	 * page is used to determine if the reserve at this address was
5266 	 * consumed or not. If reserves were used, a partial faulted mapping
5267 	 * at the time of fork() could consume its reserves on COW instead
5268 	 * of the full address range.
5269 	 */
5270 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5271 			old_page != pagecache_page)
5272 		outside_reserve = 1;
5273 
5274 	get_page(old_page);
5275 
5276 	/*
5277 	 * Drop page table lock as buddy allocator may be called. It will
5278 	 * be acquired again before returning to the caller, as expected.
5279 	 */
5280 	spin_unlock(ptl);
5281 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5282 
5283 	if (IS_ERR(new_page)) {
5284 		/*
5285 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5286 		 * it is due to references held by a child and an insufficient
5287 		 * huge page pool. To guarantee the original mappers
5288 		 * reliability, unmap the page from child processes. The child
5289 		 * may get SIGKILLed if it later faults.
5290 		 */
5291 		if (outside_reserve) {
5292 			struct address_space *mapping = vma->vm_file->f_mapping;
5293 			pgoff_t idx;
5294 			u32 hash;
5295 
5296 			put_page(old_page);
5297 			BUG_ON(huge_pte_none(pte));
5298 			/*
5299 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5300 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5301 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5302 			 * here is OK as COW mappings do not interact with
5303 			 * PMD sharing.
5304 			 *
5305 			 * Reacquire both after unmap operation.
5306 			 */
5307 			idx = vma_hugecache_offset(h, vma, haddr);
5308 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5309 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5310 			i_mmap_unlock_read(mapping);
5311 
5312 			unmap_ref_private(mm, vma, old_page, haddr);
5313 
5314 			i_mmap_lock_read(mapping);
5315 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5316 			spin_lock(ptl);
5317 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5318 			if (likely(ptep &&
5319 				   pte_same(huge_ptep_get(ptep), pte)))
5320 				goto retry_avoidcopy;
5321 			/*
5322 			 * race occurs while re-acquiring page table
5323 			 * lock, and our job is done.
5324 			 */
5325 			delayacct_wpcopy_end();
5326 			return 0;
5327 		}
5328 
5329 		ret = vmf_error(PTR_ERR(new_page));
5330 		goto out_release_old;
5331 	}
5332 
5333 	/*
5334 	 * When the original hugepage is shared one, it does not have
5335 	 * anon_vma prepared.
5336 	 */
5337 	if (unlikely(anon_vma_prepare(vma))) {
5338 		ret = VM_FAULT_OOM;
5339 		goto out_release_all;
5340 	}
5341 
5342 	copy_user_huge_page(new_page, old_page, address, vma,
5343 			    pages_per_huge_page(h));
5344 	__SetPageUptodate(new_page);
5345 
5346 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5347 				haddr + huge_page_size(h));
5348 	mmu_notifier_invalidate_range_start(&range);
5349 
5350 	/*
5351 	 * Retake the page table lock to check for racing updates
5352 	 * before the page tables are altered
5353 	 */
5354 	spin_lock(ptl);
5355 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5356 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5357 		ClearHPageRestoreReserve(new_page);
5358 
5359 		/* Break COW or unshare */
5360 		huge_ptep_clear_flush(vma, haddr, ptep);
5361 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5362 		page_remove_rmap(old_page, vma, true);
5363 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5364 		set_huge_pte_at(mm, haddr, ptep,
5365 				make_huge_pte(vma, new_page, !unshare));
5366 		SetHPageMigratable(new_page);
5367 		/* Make the old page be freed below */
5368 		new_page = old_page;
5369 	}
5370 	spin_unlock(ptl);
5371 	mmu_notifier_invalidate_range_end(&range);
5372 out_release_all:
5373 	/*
5374 	 * No restore in case of successful pagetable update (Break COW or
5375 	 * unshare)
5376 	 */
5377 	if (new_page != old_page)
5378 		restore_reserve_on_error(h, vma, haddr, new_page);
5379 	put_page(new_page);
5380 out_release_old:
5381 	put_page(old_page);
5382 
5383 	spin_lock(ptl); /* Caller expects lock to be held */
5384 
5385 	delayacct_wpcopy_end();
5386 	return ret;
5387 }
5388 
5389 /* Return the pagecache page at a given address within a VMA */
5390 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5391 			struct vm_area_struct *vma, unsigned long address)
5392 {
5393 	struct address_space *mapping;
5394 	pgoff_t idx;
5395 
5396 	mapping = vma->vm_file->f_mapping;
5397 	idx = vma_hugecache_offset(h, vma, address);
5398 
5399 	return find_lock_page(mapping, idx);
5400 }
5401 
5402 /*
5403  * Return whether there is a pagecache page to back given address within VMA.
5404  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5405  */
5406 static bool hugetlbfs_pagecache_present(struct hstate *h,
5407 			struct vm_area_struct *vma, unsigned long address)
5408 {
5409 	struct address_space *mapping;
5410 	pgoff_t idx;
5411 	struct page *page;
5412 
5413 	mapping = vma->vm_file->f_mapping;
5414 	idx = vma_hugecache_offset(h, vma, address);
5415 
5416 	page = find_get_page(mapping, idx);
5417 	if (page)
5418 		put_page(page);
5419 	return page != NULL;
5420 }
5421 
5422 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5423 			   pgoff_t idx)
5424 {
5425 	struct folio *folio = page_folio(page);
5426 	struct inode *inode = mapping->host;
5427 	struct hstate *h = hstate_inode(inode);
5428 	int err;
5429 
5430 	__folio_set_locked(folio);
5431 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5432 
5433 	if (unlikely(err)) {
5434 		__folio_clear_locked(folio);
5435 		return err;
5436 	}
5437 	ClearHPageRestoreReserve(page);
5438 
5439 	/*
5440 	 * mark folio dirty so that it will not be removed from cache/file
5441 	 * by non-hugetlbfs specific code paths.
5442 	 */
5443 	folio_mark_dirty(folio);
5444 
5445 	spin_lock(&inode->i_lock);
5446 	inode->i_blocks += blocks_per_huge_page(h);
5447 	spin_unlock(&inode->i_lock);
5448 	return 0;
5449 }
5450 
5451 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5452 						  struct address_space *mapping,
5453 						  pgoff_t idx,
5454 						  unsigned int flags,
5455 						  unsigned long haddr,
5456 						  unsigned long addr,
5457 						  unsigned long reason)
5458 {
5459 	vm_fault_t ret;
5460 	u32 hash;
5461 	struct vm_fault vmf = {
5462 		.vma = vma,
5463 		.address = haddr,
5464 		.real_address = addr,
5465 		.flags = flags,
5466 
5467 		/*
5468 		 * Hard to debug if it ends up being
5469 		 * used by a callee that assumes
5470 		 * something about the other
5471 		 * uninitialized fields... same as in
5472 		 * memory.c
5473 		 */
5474 	};
5475 
5476 	/*
5477 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5478 	 * dropped before handling userfault.  Reacquire
5479 	 * after handling fault to make calling code simpler.
5480 	 */
5481 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5482 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5483 	i_mmap_unlock_read(mapping);
5484 	ret = handle_userfault(&vmf, reason);
5485 	i_mmap_lock_read(mapping);
5486 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5487 
5488 	return ret;
5489 }
5490 
5491 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5492 			struct vm_area_struct *vma,
5493 			struct address_space *mapping, pgoff_t idx,
5494 			unsigned long address, pte_t *ptep,
5495 			pte_t old_pte, unsigned int flags)
5496 {
5497 	struct hstate *h = hstate_vma(vma);
5498 	vm_fault_t ret = VM_FAULT_SIGBUS;
5499 	int anon_rmap = 0;
5500 	unsigned long size;
5501 	struct page *page;
5502 	pte_t new_pte;
5503 	spinlock_t *ptl;
5504 	unsigned long haddr = address & huge_page_mask(h);
5505 	bool new_page, new_pagecache_page = false;
5506 
5507 	/*
5508 	 * Currently, we are forced to kill the process in the event the
5509 	 * original mapper has unmapped pages from the child due to a failed
5510 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5511 	 * be obvious.
5512 	 */
5513 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5514 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5515 			   current->pid);
5516 		return ret;
5517 	}
5518 
5519 	/*
5520 	 * We can not race with truncation due to holding i_mmap_rwsem.
5521 	 * i_size is modified when holding i_mmap_rwsem, so check here
5522 	 * once for faults beyond end of file.
5523 	 */
5524 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5525 	if (idx >= size)
5526 		goto out;
5527 
5528 retry:
5529 	new_page = false;
5530 	page = find_lock_page(mapping, idx);
5531 	if (!page) {
5532 		/* Check for page in userfault range */
5533 		if (userfaultfd_missing(vma)) {
5534 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5535 						       flags, haddr, address,
5536 						       VM_UFFD_MISSING);
5537 			goto out;
5538 		}
5539 
5540 		page = alloc_huge_page(vma, haddr, 0);
5541 		if (IS_ERR(page)) {
5542 			/*
5543 			 * Returning error will result in faulting task being
5544 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5545 			 * tasks from racing to fault in the same page which
5546 			 * could result in false unable to allocate errors.
5547 			 * Page migration does not take the fault mutex, but
5548 			 * does a clear then write of pte's under page table
5549 			 * lock.  Page fault code could race with migration,
5550 			 * notice the clear pte and try to allocate a page
5551 			 * here.  Before returning error, get ptl and make
5552 			 * sure there really is no pte entry.
5553 			 */
5554 			ptl = huge_pte_lock(h, mm, ptep);
5555 			ret = 0;
5556 			if (huge_pte_none(huge_ptep_get(ptep)))
5557 				ret = vmf_error(PTR_ERR(page));
5558 			spin_unlock(ptl);
5559 			goto out;
5560 		}
5561 		clear_huge_page(page, address, pages_per_huge_page(h));
5562 		__SetPageUptodate(page);
5563 		new_page = true;
5564 
5565 		if (vma->vm_flags & VM_MAYSHARE) {
5566 			int err = huge_add_to_page_cache(page, mapping, idx);
5567 			if (err) {
5568 				put_page(page);
5569 				if (err == -EEXIST)
5570 					goto retry;
5571 				goto out;
5572 			}
5573 			new_pagecache_page = true;
5574 		} else {
5575 			lock_page(page);
5576 			if (unlikely(anon_vma_prepare(vma))) {
5577 				ret = VM_FAULT_OOM;
5578 				goto backout_unlocked;
5579 			}
5580 			anon_rmap = 1;
5581 		}
5582 	} else {
5583 		/*
5584 		 * If memory error occurs between mmap() and fault, some process
5585 		 * don't have hwpoisoned swap entry for errored virtual address.
5586 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5587 		 */
5588 		if (unlikely(PageHWPoison(page))) {
5589 			ret = VM_FAULT_HWPOISON_LARGE |
5590 				VM_FAULT_SET_HINDEX(hstate_index(h));
5591 			goto backout_unlocked;
5592 		}
5593 
5594 		/* Check for page in userfault range. */
5595 		if (userfaultfd_minor(vma)) {
5596 			unlock_page(page);
5597 			put_page(page);
5598 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5599 						       flags, haddr, address,
5600 						       VM_UFFD_MINOR);
5601 			goto out;
5602 		}
5603 	}
5604 
5605 	/*
5606 	 * If we are going to COW a private mapping later, we examine the
5607 	 * pending reservations for this page now. This will ensure that
5608 	 * any allocations necessary to record that reservation occur outside
5609 	 * the spinlock.
5610 	 */
5611 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5612 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5613 			ret = VM_FAULT_OOM;
5614 			goto backout_unlocked;
5615 		}
5616 		/* Just decrements count, does not deallocate */
5617 		vma_end_reservation(h, vma, haddr);
5618 	}
5619 
5620 	ptl = huge_pte_lock(h, mm, ptep);
5621 	ret = 0;
5622 	/* If pte changed from under us, retry */
5623 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5624 		goto backout;
5625 
5626 	if (anon_rmap) {
5627 		ClearHPageRestoreReserve(page);
5628 		hugepage_add_new_anon_rmap(page, vma, haddr);
5629 	} else
5630 		page_dup_file_rmap(page, true);
5631 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5632 				&& (vma->vm_flags & VM_SHARED)));
5633 	/*
5634 	 * If this pte was previously wr-protected, keep it wr-protected even
5635 	 * if populated.
5636 	 */
5637 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5638 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5639 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5640 
5641 	hugetlb_count_add(pages_per_huge_page(h), mm);
5642 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5643 		/* Optimization, do the COW without a second fault */
5644 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5645 	}
5646 
5647 	spin_unlock(ptl);
5648 
5649 	/*
5650 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5651 	 * found in the pagecache may not have HPageMigratableset if they have
5652 	 * been isolated for migration.
5653 	 */
5654 	if (new_page)
5655 		SetHPageMigratable(page);
5656 
5657 	unlock_page(page);
5658 out:
5659 	return ret;
5660 
5661 backout:
5662 	spin_unlock(ptl);
5663 backout_unlocked:
5664 	unlock_page(page);
5665 	/* restore reserve for newly allocated pages not in page cache */
5666 	if (new_page && !new_pagecache_page)
5667 		restore_reserve_on_error(h, vma, haddr, page);
5668 	put_page(page);
5669 	goto out;
5670 }
5671 
5672 #ifdef CONFIG_SMP
5673 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5674 {
5675 	unsigned long key[2];
5676 	u32 hash;
5677 
5678 	key[0] = (unsigned long) mapping;
5679 	key[1] = idx;
5680 
5681 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5682 
5683 	return hash & (num_fault_mutexes - 1);
5684 }
5685 #else
5686 /*
5687  * For uniprocessor systems we always use a single mutex, so just
5688  * return 0 and avoid the hashing overhead.
5689  */
5690 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5691 {
5692 	return 0;
5693 }
5694 #endif
5695 
5696 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5697 			unsigned long address, unsigned int flags)
5698 {
5699 	pte_t *ptep, entry;
5700 	spinlock_t *ptl;
5701 	vm_fault_t ret;
5702 	u32 hash;
5703 	pgoff_t idx;
5704 	struct page *page = NULL;
5705 	struct page *pagecache_page = NULL;
5706 	struct hstate *h = hstate_vma(vma);
5707 	struct address_space *mapping;
5708 	int need_wait_lock = 0;
5709 	unsigned long haddr = address & huge_page_mask(h);
5710 
5711 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5712 	if (ptep) {
5713 		/*
5714 		 * Since we hold no locks, ptep could be stale.  That is
5715 		 * OK as we are only making decisions based on content and
5716 		 * not actually modifying content here.
5717 		 */
5718 		entry = huge_ptep_get(ptep);
5719 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5720 			migration_entry_wait_huge(vma, ptep);
5721 			return 0;
5722 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5723 			return VM_FAULT_HWPOISON_LARGE |
5724 				VM_FAULT_SET_HINDEX(hstate_index(h));
5725 	}
5726 
5727 	/*
5728 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5729 	 * until finished with ptep.  This serves two purposes:
5730 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5731 	 *    and making the ptep no longer valid.
5732 	 * 2) It synchronizes us with i_size modifications during truncation.
5733 	 *
5734 	 * ptep could have already be assigned via huge_pte_offset.  That
5735 	 * is OK, as huge_pte_alloc will return the same value unless
5736 	 * something has changed.
5737 	 */
5738 	mapping = vma->vm_file->f_mapping;
5739 	i_mmap_lock_read(mapping);
5740 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5741 	if (!ptep) {
5742 		i_mmap_unlock_read(mapping);
5743 		return VM_FAULT_OOM;
5744 	}
5745 
5746 	/*
5747 	 * Serialize hugepage allocation and instantiation, so that we don't
5748 	 * get spurious allocation failures if two CPUs race to instantiate
5749 	 * the same page in the page cache.
5750 	 */
5751 	idx = vma_hugecache_offset(h, vma, haddr);
5752 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5753 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5754 
5755 	entry = huge_ptep_get(ptep);
5756 	/* PTE markers should be handled the same way as none pte */
5757 	if (huge_pte_none_mostly(entry)) {
5758 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5759 				      entry, flags);
5760 		goto out_mutex;
5761 	}
5762 
5763 	ret = 0;
5764 
5765 	/*
5766 	 * entry could be a migration/hwpoison entry at this point, so this
5767 	 * check prevents the kernel from going below assuming that we have
5768 	 * an active hugepage in pagecache. This goto expects the 2nd page
5769 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5770 	 * properly handle it.
5771 	 */
5772 	if (!pte_present(entry))
5773 		goto out_mutex;
5774 
5775 	/*
5776 	 * If we are going to COW/unshare the mapping later, we examine the
5777 	 * pending reservations for this page now. This will ensure that any
5778 	 * allocations necessary to record that reservation occur outside the
5779 	 * spinlock. For private mappings, we also lookup the pagecache
5780 	 * page now as it is used to determine if a reservation has been
5781 	 * consumed.
5782 	 */
5783 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5784 	    !huge_pte_write(entry)) {
5785 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5786 			ret = VM_FAULT_OOM;
5787 			goto out_mutex;
5788 		}
5789 		/* Just decrements count, does not deallocate */
5790 		vma_end_reservation(h, vma, haddr);
5791 
5792 		if (!(vma->vm_flags & VM_MAYSHARE))
5793 			pagecache_page = hugetlbfs_pagecache_page(h,
5794 								vma, haddr);
5795 	}
5796 
5797 	ptl = huge_pte_lock(h, mm, ptep);
5798 
5799 	/* Check for a racing update before calling hugetlb_wp() */
5800 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5801 		goto out_ptl;
5802 
5803 	/* Handle userfault-wp first, before trying to lock more pages */
5804 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5805 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5806 		struct vm_fault vmf = {
5807 			.vma = vma,
5808 			.address = haddr,
5809 			.real_address = address,
5810 			.flags = flags,
5811 		};
5812 
5813 		spin_unlock(ptl);
5814 		if (pagecache_page) {
5815 			unlock_page(pagecache_page);
5816 			put_page(pagecache_page);
5817 		}
5818 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5819 		i_mmap_unlock_read(mapping);
5820 		return handle_userfault(&vmf, VM_UFFD_WP);
5821 	}
5822 
5823 	/*
5824 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5825 	 * pagecache_page, so here we need take the former one
5826 	 * when page != pagecache_page or !pagecache_page.
5827 	 */
5828 	page = pte_page(entry);
5829 	if (page != pagecache_page)
5830 		if (!trylock_page(page)) {
5831 			need_wait_lock = 1;
5832 			goto out_ptl;
5833 		}
5834 
5835 	get_page(page);
5836 
5837 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5838 		if (!huge_pte_write(entry)) {
5839 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5840 					 pagecache_page, ptl);
5841 			goto out_put_page;
5842 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5843 			entry = huge_pte_mkdirty(entry);
5844 		}
5845 	}
5846 	entry = pte_mkyoung(entry);
5847 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5848 						flags & FAULT_FLAG_WRITE))
5849 		update_mmu_cache(vma, haddr, ptep);
5850 out_put_page:
5851 	if (page != pagecache_page)
5852 		unlock_page(page);
5853 	put_page(page);
5854 out_ptl:
5855 	spin_unlock(ptl);
5856 
5857 	if (pagecache_page) {
5858 		unlock_page(pagecache_page);
5859 		put_page(pagecache_page);
5860 	}
5861 out_mutex:
5862 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5863 	i_mmap_unlock_read(mapping);
5864 	/*
5865 	 * Generally it's safe to hold refcount during waiting page lock. But
5866 	 * here we just wait to defer the next page fault to avoid busy loop and
5867 	 * the page is not used after unlocked before returning from the current
5868 	 * page fault. So we are safe from accessing freed page, even if we wait
5869 	 * here without taking refcount.
5870 	 */
5871 	if (need_wait_lock)
5872 		wait_on_page_locked(page);
5873 	return ret;
5874 }
5875 
5876 #ifdef CONFIG_USERFAULTFD
5877 /*
5878  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5879  * modifications for huge pages.
5880  */
5881 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5882 			    pte_t *dst_pte,
5883 			    struct vm_area_struct *dst_vma,
5884 			    unsigned long dst_addr,
5885 			    unsigned long src_addr,
5886 			    enum mcopy_atomic_mode mode,
5887 			    struct page **pagep,
5888 			    bool wp_copy)
5889 {
5890 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5891 	struct hstate *h = hstate_vma(dst_vma);
5892 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5893 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5894 	unsigned long size;
5895 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5896 	pte_t _dst_pte;
5897 	spinlock_t *ptl;
5898 	int ret = -ENOMEM;
5899 	struct page *page;
5900 	int writable;
5901 	bool page_in_pagecache = false;
5902 
5903 	if (is_continue) {
5904 		ret = -EFAULT;
5905 		page = find_lock_page(mapping, idx);
5906 		if (!page)
5907 			goto out;
5908 		page_in_pagecache = true;
5909 	} else if (!*pagep) {
5910 		/* If a page already exists, then it's UFFDIO_COPY for
5911 		 * a non-missing case. Return -EEXIST.
5912 		 */
5913 		if (vm_shared &&
5914 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5915 			ret = -EEXIST;
5916 			goto out;
5917 		}
5918 
5919 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5920 		if (IS_ERR(page)) {
5921 			ret = -ENOMEM;
5922 			goto out;
5923 		}
5924 
5925 		ret = copy_huge_page_from_user(page,
5926 						(const void __user *) src_addr,
5927 						pages_per_huge_page(h), false);
5928 
5929 		/* fallback to copy_from_user outside mmap_lock */
5930 		if (unlikely(ret)) {
5931 			ret = -ENOENT;
5932 			/* Free the allocated page which may have
5933 			 * consumed a reservation.
5934 			 */
5935 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5936 			put_page(page);
5937 
5938 			/* Allocate a temporary page to hold the copied
5939 			 * contents.
5940 			 */
5941 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5942 			if (!page) {
5943 				ret = -ENOMEM;
5944 				goto out;
5945 			}
5946 			*pagep = page;
5947 			/* Set the outparam pagep and return to the caller to
5948 			 * copy the contents outside the lock. Don't free the
5949 			 * page.
5950 			 */
5951 			goto out;
5952 		}
5953 	} else {
5954 		if (vm_shared &&
5955 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5956 			put_page(*pagep);
5957 			ret = -EEXIST;
5958 			*pagep = NULL;
5959 			goto out;
5960 		}
5961 
5962 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5963 		if (IS_ERR(page)) {
5964 			put_page(*pagep);
5965 			ret = -ENOMEM;
5966 			*pagep = NULL;
5967 			goto out;
5968 		}
5969 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5970 				    pages_per_huge_page(h));
5971 		put_page(*pagep);
5972 		*pagep = NULL;
5973 	}
5974 
5975 	/*
5976 	 * The memory barrier inside __SetPageUptodate makes sure that
5977 	 * preceding stores to the page contents become visible before
5978 	 * the set_pte_at() write.
5979 	 */
5980 	__SetPageUptodate(page);
5981 
5982 	/* Add shared, newly allocated pages to the page cache. */
5983 	if (vm_shared && !is_continue) {
5984 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5985 		ret = -EFAULT;
5986 		if (idx >= size)
5987 			goto out_release_nounlock;
5988 
5989 		/*
5990 		 * Serialization between remove_inode_hugepages() and
5991 		 * huge_add_to_page_cache() below happens through the
5992 		 * hugetlb_fault_mutex_table that here must be hold by
5993 		 * the caller.
5994 		 */
5995 		ret = huge_add_to_page_cache(page, mapping, idx);
5996 		if (ret)
5997 			goto out_release_nounlock;
5998 		page_in_pagecache = true;
5999 	}
6000 
6001 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
6002 	spin_lock(ptl);
6003 
6004 	/*
6005 	 * Recheck the i_size after holding PT lock to make sure not
6006 	 * to leave any page mapped (as page_mapped()) beyond the end
6007 	 * of the i_size (remove_inode_hugepages() is strict about
6008 	 * enforcing that). If we bail out here, we'll also leave a
6009 	 * page in the radix tree in the vm_shared case beyond the end
6010 	 * of the i_size, but remove_inode_hugepages() will take care
6011 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
6012 	 */
6013 	size = i_size_read(mapping->host) >> huge_page_shift(h);
6014 	ret = -EFAULT;
6015 	if (idx >= size)
6016 		goto out_release_unlock;
6017 
6018 	ret = -EEXIST;
6019 	/*
6020 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6021 	 * registered, we firstly wr-protect a none pte which has no page cache
6022 	 * page backing it, then access the page.
6023 	 */
6024 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6025 		goto out_release_unlock;
6026 
6027 	if (vm_shared) {
6028 		page_dup_file_rmap(page, true);
6029 	} else {
6030 		ClearHPageRestoreReserve(page);
6031 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6032 	}
6033 
6034 	/*
6035 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6036 	 * with wp flag set, don't set pte write bit.
6037 	 */
6038 	if (wp_copy || (is_continue && !vm_shared))
6039 		writable = 0;
6040 	else
6041 		writable = dst_vma->vm_flags & VM_WRITE;
6042 
6043 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6044 	/*
6045 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6046 	 * extremely important for hugetlbfs for now since swapping is not
6047 	 * supported, but we should still be clear in that this page cannot be
6048 	 * thrown away at will, even if write bit not set.
6049 	 */
6050 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6051 	_dst_pte = pte_mkyoung(_dst_pte);
6052 
6053 	if (wp_copy)
6054 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6055 
6056 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6057 
6058 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6059 
6060 	/* No need to invalidate - it was non-present before */
6061 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6062 
6063 	spin_unlock(ptl);
6064 	if (!is_continue)
6065 		SetHPageMigratable(page);
6066 	if (vm_shared || is_continue)
6067 		unlock_page(page);
6068 	ret = 0;
6069 out:
6070 	return ret;
6071 out_release_unlock:
6072 	spin_unlock(ptl);
6073 	if (vm_shared || is_continue)
6074 		unlock_page(page);
6075 out_release_nounlock:
6076 	if (!page_in_pagecache)
6077 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6078 	put_page(page);
6079 	goto out;
6080 }
6081 #endif /* CONFIG_USERFAULTFD */
6082 
6083 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6084 				 int refs, struct page **pages,
6085 				 struct vm_area_struct **vmas)
6086 {
6087 	int nr;
6088 
6089 	for (nr = 0; nr < refs; nr++) {
6090 		if (likely(pages))
6091 			pages[nr] = mem_map_offset(page, nr);
6092 		if (vmas)
6093 			vmas[nr] = vma;
6094 	}
6095 }
6096 
6097 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6098 					       bool *unshare)
6099 {
6100 	pte_t pteval = huge_ptep_get(pte);
6101 
6102 	*unshare = false;
6103 	if (is_swap_pte(pteval))
6104 		return true;
6105 	if (huge_pte_write(pteval))
6106 		return false;
6107 	if (flags & FOLL_WRITE)
6108 		return true;
6109 	if (gup_must_unshare(flags, pte_page(pteval))) {
6110 		*unshare = true;
6111 		return true;
6112 	}
6113 	return false;
6114 }
6115 
6116 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6117 			 struct page **pages, struct vm_area_struct **vmas,
6118 			 unsigned long *position, unsigned long *nr_pages,
6119 			 long i, unsigned int flags, int *locked)
6120 {
6121 	unsigned long pfn_offset;
6122 	unsigned long vaddr = *position;
6123 	unsigned long remainder = *nr_pages;
6124 	struct hstate *h = hstate_vma(vma);
6125 	int err = -EFAULT, refs;
6126 
6127 	while (vaddr < vma->vm_end && remainder) {
6128 		pte_t *pte;
6129 		spinlock_t *ptl = NULL;
6130 		bool unshare = false;
6131 		int absent;
6132 		struct page *page;
6133 
6134 		/*
6135 		 * If we have a pending SIGKILL, don't keep faulting pages and
6136 		 * potentially allocating memory.
6137 		 */
6138 		if (fatal_signal_pending(current)) {
6139 			remainder = 0;
6140 			break;
6141 		}
6142 
6143 		/*
6144 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6145 		 * each hugepage.  We have to make sure we get the
6146 		 * first, for the page indexing below to work.
6147 		 *
6148 		 * Note that page table lock is not held when pte is null.
6149 		 */
6150 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6151 				      huge_page_size(h));
6152 		if (pte)
6153 			ptl = huge_pte_lock(h, mm, pte);
6154 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6155 
6156 		/*
6157 		 * When coredumping, it suits get_dump_page if we just return
6158 		 * an error where there's an empty slot with no huge pagecache
6159 		 * to back it.  This way, we avoid allocating a hugepage, and
6160 		 * the sparse dumpfile avoids allocating disk blocks, but its
6161 		 * huge holes still show up with zeroes where they need to be.
6162 		 */
6163 		if (absent && (flags & FOLL_DUMP) &&
6164 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6165 			if (pte)
6166 				spin_unlock(ptl);
6167 			remainder = 0;
6168 			break;
6169 		}
6170 
6171 		/*
6172 		 * We need call hugetlb_fault for both hugepages under migration
6173 		 * (in which case hugetlb_fault waits for the migration,) and
6174 		 * hwpoisoned hugepages (in which case we need to prevent the
6175 		 * caller from accessing to them.) In order to do this, we use
6176 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6177 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6178 		 * both cases, and because we can't follow correct pages
6179 		 * directly from any kind of swap entries.
6180 		 */
6181 		if (absent ||
6182 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6183 			vm_fault_t ret;
6184 			unsigned int fault_flags = 0;
6185 
6186 			if (pte)
6187 				spin_unlock(ptl);
6188 			if (flags & FOLL_WRITE)
6189 				fault_flags |= FAULT_FLAG_WRITE;
6190 			else if (unshare)
6191 				fault_flags |= FAULT_FLAG_UNSHARE;
6192 			if (locked)
6193 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6194 					FAULT_FLAG_KILLABLE;
6195 			if (flags & FOLL_NOWAIT)
6196 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6197 					FAULT_FLAG_RETRY_NOWAIT;
6198 			if (flags & FOLL_TRIED) {
6199 				/*
6200 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6201 				 * FAULT_FLAG_TRIED can co-exist
6202 				 */
6203 				fault_flags |= FAULT_FLAG_TRIED;
6204 			}
6205 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6206 			if (ret & VM_FAULT_ERROR) {
6207 				err = vm_fault_to_errno(ret, flags);
6208 				remainder = 0;
6209 				break;
6210 			}
6211 			if (ret & VM_FAULT_RETRY) {
6212 				if (locked &&
6213 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6214 					*locked = 0;
6215 				*nr_pages = 0;
6216 				/*
6217 				 * VM_FAULT_RETRY must not return an
6218 				 * error, it will return zero
6219 				 * instead.
6220 				 *
6221 				 * No need to update "position" as the
6222 				 * caller will not check it after
6223 				 * *nr_pages is set to 0.
6224 				 */
6225 				return i;
6226 			}
6227 			continue;
6228 		}
6229 
6230 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6231 		page = pte_page(huge_ptep_get(pte));
6232 
6233 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6234 			       !PageAnonExclusive(page), page);
6235 
6236 		/*
6237 		 * If subpage information not requested, update counters
6238 		 * and skip the same_page loop below.
6239 		 */
6240 		if (!pages && !vmas && !pfn_offset &&
6241 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6242 		    (remainder >= pages_per_huge_page(h))) {
6243 			vaddr += huge_page_size(h);
6244 			remainder -= pages_per_huge_page(h);
6245 			i += pages_per_huge_page(h);
6246 			spin_unlock(ptl);
6247 			continue;
6248 		}
6249 
6250 		/* vaddr may not be aligned to PAGE_SIZE */
6251 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6252 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6253 
6254 		if (pages || vmas)
6255 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6256 					     vma, refs,
6257 					     likely(pages) ? pages + i : NULL,
6258 					     vmas ? vmas + i : NULL);
6259 
6260 		if (pages) {
6261 			/*
6262 			 * try_grab_folio() should always succeed here,
6263 			 * because: a) we hold the ptl lock, and b) we've just
6264 			 * checked that the huge page is present in the page
6265 			 * tables. If the huge page is present, then the tail
6266 			 * pages must also be present. The ptl prevents the
6267 			 * head page and tail pages from being rearranged in
6268 			 * any way. So this page must be available at this
6269 			 * point, unless the page refcount overflowed:
6270 			 */
6271 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6272 							 flags))) {
6273 				spin_unlock(ptl);
6274 				remainder = 0;
6275 				err = -ENOMEM;
6276 				break;
6277 			}
6278 		}
6279 
6280 		vaddr += (refs << PAGE_SHIFT);
6281 		remainder -= refs;
6282 		i += refs;
6283 
6284 		spin_unlock(ptl);
6285 	}
6286 	*nr_pages = remainder;
6287 	/*
6288 	 * setting position is actually required only if remainder is
6289 	 * not zero but it's faster not to add a "if (remainder)"
6290 	 * branch.
6291 	 */
6292 	*position = vaddr;
6293 
6294 	return i ? i : err;
6295 }
6296 
6297 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6298 		unsigned long address, unsigned long end,
6299 		pgprot_t newprot, unsigned long cp_flags)
6300 {
6301 	struct mm_struct *mm = vma->vm_mm;
6302 	unsigned long start = address;
6303 	pte_t *ptep;
6304 	pte_t pte;
6305 	struct hstate *h = hstate_vma(vma);
6306 	unsigned long pages = 0, psize = huge_page_size(h);
6307 	bool shared_pmd = false;
6308 	struct mmu_notifier_range range;
6309 	unsigned long last_addr_mask;
6310 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6311 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6312 
6313 	/*
6314 	 * In the case of shared PMDs, the area to flush could be beyond
6315 	 * start/end.  Set range.start/range.end to cover the maximum possible
6316 	 * range if PMD sharing is possible.
6317 	 */
6318 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6319 				0, vma, mm, start, end);
6320 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6321 
6322 	BUG_ON(address >= end);
6323 	flush_cache_range(vma, range.start, range.end);
6324 
6325 	mmu_notifier_invalidate_range_start(&range);
6326 	last_addr_mask = hugetlb_mask_last_page(h);
6327 	i_mmap_lock_write(vma->vm_file->f_mapping);
6328 	for (; address < end; address += psize) {
6329 		spinlock_t *ptl;
6330 		ptep = huge_pte_offset(mm, address, psize);
6331 		if (!ptep) {
6332 			address |= last_addr_mask;
6333 			continue;
6334 		}
6335 		ptl = huge_pte_lock(h, mm, ptep);
6336 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6337 			/*
6338 			 * When uffd-wp is enabled on the vma, unshare
6339 			 * shouldn't happen at all.  Warn about it if it
6340 			 * happened due to some reason.
6341 			 */
6342 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6343 			pages++;
6344 			spin_unlock(ptl);
6345 			shared_pmd = true;
6346 			address |= last_addr_mask;
6347 			continue;
6348 		}
6349 		pte = huge_ptep_get(ptep);
6350 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6351 			spin_unlock(ptl);
6352 			continue;
6353 		}
6354 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6355 			swp_entry_t entry = pte_to_swp_entry(pte);
6356 			struct page *page = pfn_swap_entry_to_page(entry);
6357 
6358 			if (!is_readable_migration_entry(entry)) {
6359 				pte_t newpte;
6360 
6361 				if (PageAnon(page))
6362 					entry = make_readable_exclusive_migration_entry(
6363 								swp_offset(entry));
6364 				else
6365 					entry = make_readable_migration_entry(
6366 								swp_offset(entry));
6367 				newpte = swp_entry_to_pte(entry);
6368 				if (uffd_wp)
6369 					newpte = pte_swp_mkuffd_wp(newpte);
6370 				else if (uffd_wp_resolve)
6371 					newpte = pte_swp_clear_uffd_wp(newpte);
6372 				set_huge_pte_at(mm, address, ptep, newpte);
6373 				pages++;
6374 			}
6375 			spin_unlock(ptl);
6376 			continue;
6377 		}
6378 		if (unlikely(pte_marker_uffd_wp(pte))) {
6379 			/*
6380 			 * This is changing a non-present pte into a none pte,
6381 			 * no need for huge_ptep_modify_prot_start/commit().
6382 			 */
6383 			if (uffd_wp_resolve)
6384 				huge_pte_clear(mm, address, ptep, psize);
6385 		}
6386 		if (!huge_pte_none(pte)) {
6387 			pte_t old_pte;
6388 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6389 
6390 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6391 			pte = huge_pte_modify(old_pte, newprot);
6392 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6393 			if (uffd_wp)
6394 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6395 			else if (uffd_wp_resolve)
6396 				pte = huge_pte_clear_uffd_wp(pte);
6397 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6398 			pages++;
6399 		} else {
6400 			/* None pte */
6401 			if (unlikely(uffd_wp))
6402 				/* Safe to modify directly (none->non-present). */
6403 				set_huge_pte_at(mm, address, ptep,
6404 						make_pte_marker(PTE_MARKER_UFFD_WP));
6405 		}
6406 		spin_unlock(ptl);
6407 	}
6408 	/*
6409 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6410 	 * may have cleared our pud entry and done put_page on the page table:
6411 	 * once we release i_mmap_rwsem, another task can do the final put_page
6412 	 * and that page table be reused and filled with junk.  If we actually
6413 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6414 	 */
6415 	if (shared_pmd)
6416 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6417 	else
6418 		flush_hugetlb_tlb_range(vma, start, end);
6419 	/*
6420 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6421 	 * page table protection not changing it to point to a new page.
6422 	 *
6423 	 * See Documentation/mm/mmu_notifier.rst
6424 	 */
6425 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6426 	mmu_notifier_invalidate_range_end(&range);
6427 
6428 	return pages << h->order;
6429 }
6430 
6431 /* Return true if reservation was successful, false otherwise.  */
6432 bool hugetlb_reserve_pages(struct inode *inode,
6433 					long from, long to,
6434 					struct vm_area_struct *vma,
6435 					vm_flags_t vm_flags)
6436 {
6437 	long chg, add = -1;
6438 	struct hstate *h = hstate_inode(inode);
6439 	struct hugepage_subpool *spool = subpool_inode(inode);
6440 	struct resv_map *resv_map;
6441 	struct hugetlb_cgroup *h_cg = NULL;
6442 	long gbl_reserve, regions_needed = 0;
6443 
6444 	/* This should never happen */
6445 	if (from > to) {
6446 		VM_WARN(1, "%s called with a negative range\n", __func__);
6447 		return false;
6448 	}
6449 
6450 	/*
6451 	 * Only apply hugepage reservation if asked. At fault time, an
6452 	 * attempt will be made for VM_NORESERVE to allocate a page
6453 	 * without using reserves
6454 	 */
6455 	if (vm_flags & VM_NORESERVE)
6456 		return true;
6457 
6458 	/*
6459 	 * Shared mappings base their reservation on the number of pages that
6460 	 * are already allocated on behalf of the file. Private mappings need
6461 	 * to reserve the full area even if read-only as mprotect() may be
6462 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6463 	 */
6464 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6465 		/*
6466 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6467 		 * called for inodes for which resv_maps were created (see
6468 		 * hugetlbfs_get_inode).
6469 		 */
6470 		resv_map = inode_resv_map(inode);
6471 
6472 		chg = region_chg(resv_map, from, to, &regions_needed);
6473 
6474 	} else {
6475 		/* Private mapping. */
6476 		resv_map = resv_map_alloc();
6477 		if (!resv_map)
6478 			return false;
6479 
6480 		chg = to - from;
6481 
6482 		set_vma_resv_map(vma, resv_map);
6483 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6484 	}
6485 
6486 	if (chg < 0)
6487 		goto out_err;
6488 
6489 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6490 				chg * pages_per_huge_page(h), &h_cg) < 0)
6491 		goto out_err;
6492 
6493 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6494 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6495 		 * of the resv_map.
6496 		 */
6497 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6498 	}
6499 
6500 	/*
6501 	 * There must be enough pages in the subpool for the mapping. If
6502 	 * the subpool has a minimum size, there may be some global
6503 	 * reservations already in place (gbl_reserve).
6504 	 */
6505 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6506 	if (gbl_reserve < 0)
6507 		goto out_uncharge_cgroup;
6508 
6509 	/*
6510 	 * Check enough hugepages are available for the reservation.
6511 	 * Hand the pages back to the subpool if there are not
6512 	 */
6513 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6514 		goto out_put_pages;
6515 
6516 	/*
6517 	 * Account for the reservations made. Shared mappings record regions
6518 	 * that have reservations as they are shared by multiple VMAs.
6519 	 * When the last VMA disappears, the region map says how much
6520 	 * the reservation was and the page cache tells how much of
6521 	 * the reservation was consumed. Private mappings are per-VMA and
6522 	 * only the consumed reservations are tracked. When the VMA
6523 	 * disappears, the original reservation is the VMA size and the
6524 	 * consumed reservations are stored in the map. Hence, nothing
6525 	 * else has to be done for private mappings here
6526 	 */
6527 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6528 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6529 
6530 		if (unlikely(add < 0)) {
6531 			hugetlb_acct_memory(h, -gbl_reserve);
6532 			goto out_put_pages;
6533 		} else if (unlikely(chg > add)) {
6534 			/*
6535 			 * pages in this range were added to the reserve
6536 			 * map between region_chg and region_add.  This
6537 			 * indicates a race with alloc_huge_page.  Adjust
6538 			 * the subpool and reserve counts modified above
6539 			 * based on the difference.
6540 			 */
6541 			long rsv_adjust;
6542 
6543 			/*
6544 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6545 			 * reference to h_cg->css. See comment below for detail.
6546 			 */
6547 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6548 				hstate_index(h),
6549 				(chg - add) * pages_per_huge_page(h), h_cg);
6550 
6551 			rsv_adjust = hugepage_subpool_put_pages(spool,
6552 								chg - add);
6553 			hugetlb_acct_memory(h, -rsv_adjust);
6554 		} else if (h_cg) {
6555 			/*
6556 			 * The file_regions will hold their own reference to
6557 			 * h_cg->css. So we should release the reference held
6558 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6559 			 * done.
6560 			 */
6561 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6562 		}
6563 	}
6564 	return true;
6565 
6566 out_put_pages:
6567 	/* put back original number of pages, chg */
6568 	(void)hugepage_subpool_put_pages(spool, chg);
6569 out_uncharge_cgroup:
6570 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6571 					    chg * pages_per_huge_page(h), h_cg);
6572 out_err:
6573 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6574 		/* Only call region_abort if the region_chg succeeded but the
6575 		 * region_add failed or didn't run.
6576 		 */
6577 		if (chg >= 0 && add < 0)
6578 			region_abort(resv_map, from, to, regions_needed);
6579 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6580 		kref_put(&resv_map->refs, resv_map_release);
6581 	return false;
6582 }
6583 
6584 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6585 								long freed)
6586 {
6587 	struct hstate *h = hstate_inode(inode);
6588 	struct resv_map *resv_map = inode_resv_map(inode);
6589 	long chg = 0;
6590 	struct hugepage_subpool *spool = subpool_inode(inode);
6591 	long gbl_reserve;
6592 
6593 	/*
6594 	 * Since this routine can be called in the evict inode path for all
6595 	 * hugetlbfs inodes, resv_map could be NULL.
6596 	 */
6597 	if (resv_map) {
6598 		chg = region_del(resv_map, start, end);
6599 		/*
6600 		 * region_del() can fail in the rare case where a region
6601 		 * must be split and another region descriptor can not be
6602 		 * allocated.  If end == LONG_MAX, it will not fail.
6603 		 */
6604 		if (chg < 0)
6605 			return chg;
6606 	}
6607 
6608 	spin_lock(&inode->i_lock);
6609 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6610 	spin_unlock(&inode->i_lock);
6611 
6612 	/*
6613 	 * If the subpool has a minimum size, the number of global
6614 	 * reservations to be released may be adjusted.
6615 	 *
6616 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6617 	 * won't go negative.
6618 	 */
6619 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6620 	hugetlb_acct_memory(h, -gbl_reserve);
6621 
6622 	return 0;
6623 }
6624 
6625 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6626 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6627 				struct vm_area_struct *vma,
6628 				unsigned long addr, pgoff_t idx)
6629 {
6630 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6631 				svma->vm_start;
6632 	unsigned long sbase = saddr & PUD_MASK;
6633 	unsigned long s_end = sbase + PUD_SIZE;
6634 
6635 	/* Allow segments to share if only one is marked locked */
6636 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6637 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6638 
6639 	/*
6640 	 * match the virtual addresses, permission and the alignment of the
6641 	 * page table page.
6642 	 */
6643 	if (pmd_index(addr) != pmd_index(saddr) ||
6644 	    vm_flags != svm_flags ||
6645 	    !range_in_vma(svma, sbase, s_end))
6646 		return 0;
6647 
6648 	return saddr;
6649 }
6650 
6651 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6652 {
6653 	unsigned long base = addr & PUD_MASK;
6654 	unsigned long end = base + PUD_SIZE;
6655 
6656 	/*
6657 	 * check on proper vm_flags and page table alignment
6658 	 */
6659 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6660 		return true;
6661 	return false;
6662 }
6663 
6664 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6665 {
6666 #ifdef CONFIG_USERFAULTFD
6667 	if (uffd_disable_huge_pmd_share(vma))
6668 		return false;
6669 #endif
6670 	return vma_shareable(vma, addr);
6671 }
6672 
6673 /*
6674  * Determine if start,end range within vma could be mapped by shared pmd.
6675  * If yes, adjust start and end to cover range associated with possible
6676  * shared pmd mappings.
6677  */
6678 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6679 				unsigned long *start, unsigned long *end)
6680 {
6681 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6682 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6683 
6684 	/*
6685 	 * vma needs to span at least one aligned PUD size, and the range
6686 	 * must be at least partially within in.
6687 	 */
6688 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6689 		(*end <= v_start) || (*start >= v_end))
6690 		return;
6691 
6692 	/* Extend the range to be PUD aligned for a worst case scenario */
6693 	if (*start > v_start)
6694 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6695 
6696 	if (*end < v_end)
6697 		*end = ALIGN(*end, PUD_SIZE);
6698 }
6699 
6700 /*
6701  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6702  * and returns the corresponding pte. While this is not necessary for the
6703  * !shared pmd case because we can allocate the pmd later as well, it makes the
6704  * code much cleaner.
6705  *
6706  * This routine must be called with i_mmap_rwsem held in at least read mode if
6707  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6708  * table entries associated with the address space.  This is important as we
6709  * are setting up sharing based on existing page table entries (mappings).
6710  */
6711 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6712 		      unsigned long addr, pud_t *pud)
6713 {
6714 	struct address_space *mapping = vma->vm_file->f_mapping;
6715 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6716 			vma->vm_pgoff;
6717 	struct vm_area_struct *svma;
6718 	unsigned long saddr;
6719 	pte_t *spte = NULL;
6720 	pte_t *pte;
6721 	spinlock_t *ptl;
6722 
6723 	i_mmap_assert_locked(mapping);
6724 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6725 		if (svma == vma)
6726 			continue;
6727 
6728 		saddr = page_table_shareable(svma, vma, addr, idx);
6729 		if (saddr) {
6730 			spte = huge_pte_offset(svma->vm_mm, saddr,
6731 					       vma_mmu_pagesize(svma));
6732 			if (spte) {
6733 				get_page(virt_to_page(spte));
6734 				break;
6735 			}
6736 		}
6737 	}
6738 
6739 	if (!spte)
6740 		goto out;
6741 
6742 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6743 	if (pud_none(*pud)) {
6744 		pud_populate(mm, pud,
6745 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6746 		mm_inc_nr_pmds(mm);
6747 	} else {
6748 		put_page(virt_to_page(spte));
6749 	}
6750 	spin_unlock(ptl);
6751 out:
6752 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6753 	return pte;
6754 }
6755 
6756 /*
6757  * unmap huge page backed by shared pte.
6758  *
6759  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6760  * indicated by page_count > 1, unmap is achieved by clearing pud and
6761  * decrementing the ref count. If count == 1, the pte page is not shared.
6762  *
6763  * Called with page table lock held and i_mmap_rwsem held in write mode.
6764  *
6765  * returns: 1 successfully unmapped a shared pte page
6766  *	    0 the underlying pte page is not shared, or it is the last user
6767  */
6768 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6769 					unsigned long addr, pte_t *ptep)
6770 {
6771 	pgd_t *pgd = pgd_offset(mm, addr);
6772 	p4d_t *p4d = p4d_offset(pgd, addr);
6773 	pud_t *pud = pud_offset(p4d, addr);
6774 
6775 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6776 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6777 	if (page_count(virt_to_page(ptep)) == 1)
6778 		return 0;
6779 
6780 	pud_clear(pud);
6781 	put_page(virt_to_page(ptep));
6782 	mm_dec_nr_pmds(mm);
6783 	return 1;
6784 }
6785 
6786 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6787 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6788 		      unsigned long addr, pud_t *pud)
6789 {
6790 	return NULL;
6791 }
6792 
6793 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6794 				unsigned long addr, pte_t *ptep)
6795 {
6796 	return 0;
6797 }
6798 
6799 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6800 				unsigned long *start, unsigned long *end)
6801 {
6802 }
6803 
6804 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6805 {
6806 	return false;
6807 }
6808 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6809 
6810 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6811 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6812 			unsigned long addr, unsigned long sz)
6813 {
6814 	pgd_t *pgd;
6815 	p4d_t *p4d;
6816 	pud_t *pud;
6817 	pte_t *pte = NULL;
6818 
6819 	pgd = pgd_offset(mm, addr);
6820 	p4d = p4d_alloc(mm, pgd, addr);
6821 	if (!p4d)
6822 		return NULL;
6823 	pud = pud_alloc(mm, p4d, addr);
6824 	if (pud) {
6825 		if (sz == PUD_SIZE) {
6826 			pte = (pte_t *)pud;
6827 		} else {
6828 			BUG_ON(sz != PMD_SIZE);
6829 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6830 				pte = huge_pmd_share(mm, vma, addr, pud);
6831 			else
6832 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6833 		}
6834 	}
6835 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6836 
6837 	return pte;
6838 }
6839 
6840 /*
6841  * huge_pte_offset() - Walk the page table to resolve the hugepage
6842  * entry at address @addr
6843  *
6844  * Return: Pointer to page table entry (PUD or PMD) for
6845  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6846  * size @sz doesn't match the hugepage size at this level of the page
6847  * table.
6848  */
6849 pte_t *huge_pte_offset(struct mm_struct *mm,
6850 		       unsigned long addr, unsigned long sz)
6851 {
6852 	pgd_t *pgd;
6853 	p4d_t *p4d;
6854 	pud_t *pud;
6855 	pmd_t *pmd;
6856 
6857 	pgd = pgd_offset(mm, addr);
6858 	if (!pgd_present(*pgd))
6859 		return NULL;
6860 	p4d = p4d_offset(pgd, addr);
6861 	if (!p4d_present(*p4d))
6862 		return NULL;
6863 
6864 	pud = pud_offset(p4d, addr);
6865 	if (sz == PUD_SIZE)
6866 		/* must be pud huge, non-present or none */
6867 		return (pte_t *)pud;
6868 	if (!pud_present(*pud))
6869 		return NULL;
6870 	/* must have a valid entry and size to go further */
6871 
6872 	pmd = pmd_offset(pud, addr);
6873 	/* must be pmd huge, non-present or none */
6874 	return (pte_t *)pmd;
6875 }
6876 
6877 /*
6878  * Return a mask that can be used to update an address to the last huge
6879  * page in a page table page mapping size.  Used to skip non-present
6880  * page table entries when linearly scanning address ranges.  Architectures
6881  * with unique huge page to page table relationships can define their own
6882  * version of this routine.
6883  */
6884 unsigned long hugetlb_mask_last_page(struct hstate *h)
6885 {
6886 	unsigned long hp_size = huge_page_size(h);
6887 
6888 	if (hp_size == PUD_SIZE)
6889 		return P4D_SIZE - PUD_SIZE;
6890 	else if (hp_size == PMD_SIZE)
6891 		return PUD_SIZE - PMD_SIZE;
6892 	else
6893 		return 0UL;
6894 }
6895 
6896 #else
6897 
6898 /* See description above.  Architectures can provide their own version. */
6899 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
6900 {
6901 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6902 	if (huge_page_size(h) == PMD_SIZE)
6903 		return PUD_SIZE - PMD_SIZE;
6904 #endif
6905 	return 0UL;
6906 }
6907 
6908 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6909 
6910 /*
6911  * These functions are overwritable if your architecture needs its own
6912  * behavior.
6913  */
6914 struct page * __weak
6915 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6916 			      int write)
6917 {
6918 	return ERR_PTR(-EINVAL);
6919 }
6920 
6921 struct page * __weak
6922 follow_huge_pd(struct vm_area_struct *vma,
6923 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6924 {
6925 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6926 	return NULL;
6927 }
6928 
6929 struct page * __weak
6930 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6931 		pmd_t *pmd, int flags)
6932 {
6933 	struct page *page = NULL;
6934 	spinlock_t *ptl;
6935 	pte_t pte;
6936 
6937 	/*
6938 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6939 	 * follow_hugetlb_page().
6940 	 */
6941 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6942 		return NULL;
6943 
6944 retry:
6945 	ptl = pmd_lockptr(mm, pmd);
6946 	spin_lock(ptl);
6947 	/*
6948 	 * make sure that the address range covered by this pmd is not
6949 	 * unmapped from other threads.
6950 	 */
6951 	if (!pmd_huge(*pmd))
6952 		goto out;
6953 	pte = huge_ptep_get((pte_t *)pmd);
6954 	if (pte_present(pte)) {
6955 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6956 		/*
6957 		 * try_grab_page() should always succeed here, because: a) we
6958 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6959 		 * huge pmd (head) page is present in the page tables. The ptl
6960 		 * prevents the head page and tail pages from being rearranged
6961 		 * in any way. So this page must be available at this point,
6962 		 * unless the page refcount overflowed:
6963 		 */
6964 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6965 			page = NULL;
6966 			goto out;
6967 		}
6968 	} else {
6969 		if (is_hugetlb_entry_migration(pte)) {
6970 			spin_unlock(ptl);
6971 			__migration_entry_wait_huge((pte_t *)pmd, ptl);
6972 			goto retry;
6973 		}
6974 		/*
6975 		 * hwpoisoned entry is treated as no_page_table in
6976 		 * follow_page_mask().
6977 		 */
6978 	}
6979 out:
6980 	spin_unlock(ptl);
6981 	return page;
6982 }
6983 
6984 struct page * __weak
6985 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6986 		pud_t *pud, int flags)
6987 {
6988 	if (flags & (FOLL_GET | FOLL_PIN))
6989 		return NULL;
6990 
6991 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6992 }
6993 
6994 struct page * __weak
6995 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6996 {
6997 	if (flags & (FOLL_GET | FOLL_PIN))
6998 		return NULL;
6999 
7000 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7001 }
7002 
7003 int isolate_hugetlb(struct page *page, struct list_head *list)
7004 {
7005 	int ret = 0;
7006 
7007 	spin_lock_irq(&hugetlb_lock);
7008 	if (!PageHeadHuge(page) ||
7009 	    !HPageMigratable(page) ||
7010 	    !get_page_unless_zero(page)) {
7011 		ret = -EBUSY;
7012 		goto unlock;
7013 	}
7014 	ClearHPageMigratable(page);
7015 	list_move_tail(&page->lru, list);
7016 unlock:
7017 	spin_unlock_irq(&hugetlb_lock);
7018 	return ret;
7019 }
7020 
7021 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7022 {
7023 	int ret = 0;
7024 
7025 	*hugetlb = false;
7026 	spin_lock_irq(&hugetlb_lock);
7027 	if (PageHeadHuge(page)) {
7028 		*hugetlb = true;
7029 		if (HPageFreed(page))
7030 			ret = 0;
7031 		else if (HPageMigratable(page))
7032 			ret = get_page_unless_zero(page);
7033 		else
7034 			ret = -EBUSY;
7035 	}
7036 	spin_unlock_irq(&hugetlb_lock);
7037 	return ret;
7038 }
7039 
7040 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7041 {
7042 	int ret;
7043 
7044 	spin_lock_irq(&hugetlb_lock);
7045 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7046 	spin_unlock_irq(&hugetlb_lock);
7047 	return ret;
7048 }
7049 
7050 void putback_active_hugepage(struct page *page)
7051 {
7052 	spin_lock_irq(&hugetlb_lock);
7053 	SetHPageMigratable(page);
7054 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7055 	spin_unlock_irq(&hugetlb_lock);
7056 	put_page(page);
7057 }
7058 
7059 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7060 {
7061 	struct hstate *h = page_hstate(oldpage);
7062 
7063 	hugetlb_cgroup_migrate(oldpage, newpage);
7064 	set_page_owner_migrate_reason(newpage, reason);
7065 
7066 	/*
7067 	 * transfer temporary state of the new huge page. This is
7068 	 * reverse to other transitions because the newpage is going to
7069 	 * be final while the old one will be freed so it takes over
7070 	 * the temporary status.
7071 	 *
7072 	 * Also note that we have to transfer the per-node surplus state
7073 	 * here as well otherwise the global surplus count will not match
7074 	 * the per-node's.
7075 	 */
7076 	if (HPageTemporary(newpage)) {
7077 		int old_nid = page_to_nid(oldpage);
7078 		int new_nid = page_to_nid(newpage);
7079 
7080 		SetHPageTemporary(oldpage);
7081 		ClearHPageTemporary(newpage);
7082 
7083 		/*
7084 		 * There is no need to transfer the per-node surplus state
7085 		 * when we do not cross the node.
7086 		 */
7087 		if (new_nid == old_nid)
7088 			return;
7089 		spin_lock_irq(&hugetlb_lock);
7090 		if (h->surplus_huge_pages_node[old_nid]) {
7091 			h->surplus_huge_pages_node[old_nid]--;
7092 			h->surplus_huge_pages_node[new_nid]++;
7093 		}
7094 		spin_unlock_irq(&hugetlb_lock);
7095 	}
7096 }
7097 
7098 /*
7099  * This function will unconditionally remove all the shared pmd pgtable entries
7100  * within the specific vma for a hugetlbfs memory range.
7101  */
7102 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7103 {
7104 	struct hstate *h = hstate_vma(vma);
7105 	unsigned long sz = huge_page_size(h);
7106 	struct mm_struct *mm = vma->vm_mm;
7107 	struct mmu_notifier_range range;
7108 	unsigned long address, start, end;
7109 	spinlock_t *ptl;
7110 	pte_t *ptep;
7111 
7112 	if (!(vma->vm_flags & VM_MAYSHARE))
7113 		return;
7114 
7115 	start = ALIGN(vma->vm_start, PUD_SIZE);
7116 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7117 
7118 	if (start >= end)
7119 		return;
7120 
7121 	flush_cache_range(vma, start, end);
7122 	/*
7123 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7124 	 * we have already done the PUD_SIZE alignment.
7125 	 */
7126 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7127 				start, end);
7128 	mmu_notifier_invalidate_range_start(&range);
7129 	i_mmap_lock_write(vma->vm_file->f_mapping);
7130 	for (address = start; address < end; address += PUD_SIZE) {
7131 		ptep = huge_pte_offset(mm, address, sz);
7132 		if (!ptep)
7133 			continue;
7134 		ptl = huge_pte_lock(h, mm, ptep);
7135 		huge_pmd_unshare(mm, vma, address, ptep);
7136 		spin_unlock(ptl);
7137 	}
7138 	flush_hugetlb_tlb_range(vma, start, end);
7139 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7140 	/*
7141 	 * No need to call mmu_notifier_invalidate_range(), see
7142 	 * Documentation/mm/mmu_notifier.rst.
7143 	 */
7144 	mmu_notifier_invalidate_range_end(&range);
7145 }
7146 
7147 #ifdef CONFIG_CMA
7148 static bool cma_reserve_called __initdata;
7149 
7150 static int __init cmdline_parse_hugetlb_cma(char *p)
7151 {
7152 	int nid, count = 0;
7153 	unsigned long tmp;
7154 	char *s = p;
7155 
7156 	while (*s) {
7157 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7158 			break;
7159 
7160 		if (s[count] == ':') {
7161 			if (tmp >= MAX_NUMNODES)
7162 				break;
7163 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7164 
7165 			s += count + 1;
7166 			tmp = memparse(s, &s);
7167 			hugetlb_cma_size_in_node[nid] = tmp;
7168 			hugetlb_cma_size += tmp;
7169 
7170 			/*
7171 			 * Skip the separator if have one, otherwise
7172 			 * break the parsing.
7173 			 */
7174 			if (*s == ',')
7175 				s++;
7176 			else
7177 				break;
7178 		} else {
7179 			hugetlb_cma_size = memparse(p, &p);
7180 			break;
7181 		}
7182 	}
7183 
7184 	return 0;
7185 }
7186 
7187 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7188 
7189 void __init hugetlb_cma_reserve(int order)
7190 {
7191 	unsigned long size, reserved, per_node;
7192 	bool node_specific_cma_alloc = false;
7193 	int nid;
7194 
7195 	cma_reserve_called = true;
7196 
7197 	if (!hugetlb_cma_size)
7198 		return;
7199 
7200 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7201 		if (hugetlb_cma_size_in_node[nid] == 0)
7202 			continue;
7203 
7204 		if (!node_online(nid)) {
7205 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7206 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7207 			hugetlb_cma_size_in_node[nid] = 0;
7208 			continue;
7209 		}
7210 
7211 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7212 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7213 				nid, (PAGE_SIZE << order) / SZ_1M);
7214 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7215 			hugetlb_cma_size_in_node[nid] = 0;
7216 		} else {
7217 			node_specific_cma_alloc = true;
7218 		}
7219 	}
7220 
7221 	/* Validate the CMA size again in case some invalid nodes specified. */
7222 	if (!hugetlb_cma_size)
7223 		return;
7224 
7225 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7226 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7227 			(PAGE_SIZE << order) / SZ_1M);
7228 		hugetlb_cma_size = 0;
7229 		return;
7230 	}
7231 
7232 	if (!node_specific_cma_alloc) {
7233 		/*
7234 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7235 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7236 		 */
7237 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7238 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7239 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7240 	}
7241 
7242 	reserved = 0;
7243 	for_each_online_node(nid) {
7244 		int res;
7245 		char name[CMA_MAX_NAME];
7246 
7247 		if (node_specific_cma_alloc) {
7248 			if (hugetlb_cma_size_in_node[nid] == 0)
7249 				continue;
7250 
7251 			size = hugetlb_cma_size_in_node[nid];
7252 		} else {
7253 			size = min(per_node, hugetlb_cma_size - reserved);
7254 		}
7255 
7256 		size = round_up(size, PAGE_SIZE << order);
7257 
7258 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7259 		/*
7260 		 * Note that 'order per bit' is based on smallest size that
7261 		 * may be returned to CMA allocator in the case of
7262 		 * huge page demotion.
7263 		 */
7264 		res = cma_declare_contiguous_nid(0, size, 0,
7265 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7266 						 0, false, name,
7267 						 &hugetlb_cma[nid], nid);
7268 		if (res) {
7269 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7270 				res, nid);
7271 			continue;
7272 		}
7273 
7274 		reserved += size;
7275 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7276 			size / SZ_1M, nid);
7277 
7278 		if (reserved >= hugetlb_cma_size)
7279 			break;
7280 	}
7281 
7282 	if (!reserved)
7283 		/*
7284 		 * hugetlb_cma_size is used to determine if allocations from
7285 		 * cma are possible.  Set to zero if no cma regions are set up.
7286 		 */
7287 		hugetlb_cma_size = 0;
7288 }
7289 
7290 void __init hugetlb_cma_check(void)
7291 {
7292 	if (!hugetlb_cma_size || cma_reserve_called)
7293 		return;
7294 
7295 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7296 }
7297 
7298 #endif /* CONFIG_CMA */
7299