xref: /openbmc/linux/mm/hugetlb.c (revision 7a010c3c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38 
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46 
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50 
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55 
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61 
62 __initdata LIST_HEAD(huge_boot_pages);
63 
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69 
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75 
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82 
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
87 {
88 	if (spool->count)
89 		return false;
90 	if (spool->max_hpages != -1)
91 		return spool->used_hpages == 0;
92 	if (spool->min_hpages != -1)
93 		return spool->rsv_hpages == spool->min_hpages;
94 
95 	return true;
96 }
97 
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99 						unsigned long irq_flags)
100 {
101 	spin_unlock_irqrestore(&spool->lock, irq_flags);
102 
103 	/* If no pages are used, and no other handles to the subpool
104 	 * remain, give up any reservations based on minimum size and
105 	 * free the subpool */
106 	if (subpool_is_free(spool)) {
107 		if (spool->min_hpages != -1)
108 			hugetlb_acct_memory(spool->hstate,
109 						-spool->min_hpages);
110 		kfree(spool);
111 	}
112 }
113 
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115 						long min_hpages)
116 {
117 	struct hugepage_subpool *spool;
118 
119 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
120 	if (!spool)
121 		return NULL;
122 
123 	spin_lock_init(&spool->lock);
124 	spool->count = 1;
125 	spool->max_hpages = max_hpages;
126 	spool->hstate = h;
127 	spool->min_hpages = min_hpages;
128 
129 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130 		kfree(spool);
131 		return NULL;
132 	}
133 	spool->rsv_hpages = min_hpages;
134 
135 	return spool;
136 }
137 
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
139 {
140 	unsigned long flags;
141 
142 	spin_lock_irqsave(&spool->lock, flags);
143 	BUG_ON(!spool->count);
144 	spool->count--;
145 	unlock_or_release_subpool(spool, flags);
146 }
147 
148 /*
149  * Subpool accounting for allocating and reserving pages.
150  * Return -ENOMEM if there are not enough resources to satisfy the
151  * request.  Otherwise, return the number of pages by which the
152  * global pools must be adjusted (upward).  The returned value may
153  * only be different than the passed value (delta) in the case where
154  * a subpool minimum size must be maintained.
155  */
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157 				      long delta)
158 {
159 	long ret = delta;
160 
161 	if (!spool)
162 		return ret;
163 
164 	spin_lock_irq(&spool->lock);
165 
166 	if (spool->max_hpages != -1) {		/* maximum size accounting */
167 		if ((spool->used_hpages + delta) <= spool->max_hpages)
168 			spool->used_hpages += delta;
169 		else {
170 			ret = -ENOMEM;
171 			goto unlock_ret;
172 		}
173 	}
174 
175 	/* minimum size accounting */
176 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
177 		if (delta > spool->rsv_hpages) {
178 			/*
179 			 * Asking for more reserves than those already taken on
180 			 * behalf of subpool.  Return difference.
181 			 */
182 			ret = delta - spool->rsv_hpages;
183 			spool->rsv_hpages = 0;
184 		} else {
185 			ret = 0;	/* reserves already accounted for */
186 			spool->rsv_hpages -= delta;
187 		}
188 	}
189 
190 unlock_ret:
191 	spin_unlock_irq(&spool->lock);
192 	return ret;
193 }
194 
195 /*
196  * Subpool accounting for freeing and unreserving pages.
197  * Return the number of global page reservations that must be dropped.
198  * The return value may only be different than the passed value (delta)
199  * in the case where a subpool minimum size must be maintained.
200  */
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202 				       long delta)
203 {
204 	long ret = delta;
205 	unsigned long flags;
206 
207 	if (!spool)
208 		return delta;
209 
210 	spin_lock_irqsave(&spool->lock, flags);
211 
212 	if (spool->max_hpages != -1)		/* maximum size accounting */
213 		spool->used_hpages -= delta;
214 
215 	 /* minimum size accounting */
216 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 		if (spool->rsv_hpages + delta <= spool->min_hpages)
218 			ret = 0;
219 		else
220 			ret = spool->rsv_hpages + delta - spool->min_hpages;
221 
222 		spool->rsv_hpages += delta;
223 		if (spool->rsv_hpages > spool->min_hpages)
224 			spool->rsv_hpages = spool->min_hpages;
225 	}
226 
227 	/*
228 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 	 * quota reference, free it now.
230 	 */
231 	unlock_or_release_subpool(spool, flags);
232 
233 	return ret;
234 }
235 
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238 	return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240 
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243 	return subpool_inode(file_inode(vma->vm_file));
244 }
245 
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252 	struct file_region *nrg = NULL;
253 
254 	VM_BUG_ON(resv->region_cache_count <= 0);
255 
256 	resv->region_cache_count--;
257 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 	list_del(&nrg->link);
259 
260 	nrg->from = from;
261 	nrg->to = to;
262 
263 	return nrg;
264 }
265 
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 					      struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 	nrg->reservation_counter = rg->reservation_counter;
271 	nrg->css = rg->css;
272 	if (rg->css)
273 		css_get(rg->css);
274 #endif
275 }
276 
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 						struct hstate *h,
280 						struct resv_map *resv,
281 						struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 	if (h_cg) {
285 		nrg->reservation_counter =
286 			&h_cg->rsvd_hugepage[hstate_index(h)];
287 		nrg->css = &h_cg->css;
288 		/*
289 		 * The caller will hold exactly one h_cg->css reference for the
290 		 * whole contiguous reservation region. But this area might be
291 		 * scattered when there are already some file_regions reside in
292 		 * it. As a result, many file_regions may share only one css
293 		 * reference. In order to ensure that one file_region must hold
294 		 * exactly one h_cg->css reference, we should do css_get for
295 		 * each file_region and leave the reference held by caller
296 		 * untouched.
297 		 */
298 		css_get(&h_cg->css);
299 		if (!resv->pages_per_hpage)
300 			resv->pages_per_hpage = pages_per_huge_page(h);
301 		/* pages_per_hpage should be the same for all entries in
302 		 * a resv_map.
303 		 */
304 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 	} else {
306 		nrg->reservation_counter = NULL;
307 		nrg->css = NULL;
308 	}
309 #endif
310 }
311 
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315 	if (rg->css)
316 		css_put(rg->css);
317 #endif
318 }
319 
320 static bool has_same_uncharge_info(struct file_region *rg,
321 				   struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324 	return rg && org &&
325 	       rg->reservation_counter == org->reservation_counter &&
326 	       rg->css == org->css;
327 
328 #else
329 	return true;
330 #endif
331 }
332 
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335 	struct file_region *nrg = NULL, *prg = NULL;
336 
337 	prg = list_prev_entry(rg, link);
338 	if (&prg->link != &resv->regions && prg->to == rg->from &&
339 	    has_same_uncharge_info(prg, rg)) {
340 		prg->to = rg->to;
341 
342 		list_del(&rg->link);
343 		put_uncharge_info(rg);
344 		kfree(rg);
345 
346 		rg = prg;
347 	}
348 
349 	nrg = list_next_entry(rg, link);
350 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 	    has_same_uncharge_info(nrg, rg)) {
352 		nrg->from = rg->from;
353 
354 		list_del(&rg->link);
355 		put_uncharge_info(rg);
356 		kfree(rg);
357 	}
358 }
359 
360 static inline long
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
363 		     long *regions_needed)
364 {
365 	struct file_region *nrg;
366 
367 	if (!regions_needed) {
368 		nrg = get_file_region_entry_from_cache(map, from, to);
369 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370 		list_add(&nrg->link, rg->link.prev);
371 		coalesce_file_region(map, nrg);
372 	} else
373 		*regions_needed += 1;
374 
375 	return to - from;
376 }
377 
378 /*
379  * Must be called with resv->lock held.
380  *
381  * Calling this with regions_needed != NULL will count the number of pages
382  * to be added but will not modify the linked list. And regions_needed will
383  * indicate the number of file_regions needed in the cache to carry out to add
384  * the regions for this range.
385  */
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387 				     struct hugetlb_cgroup *h_cg,
388 				     struct hstate *h, long *regions_needed)
389 {
390 	long add = 0;
391 	struct list_head *head = &resv->regions;
392 	long last_accounted_offset = f;
393 	struct file_region *rg = NULL, *trg = NULL;
394 
395 	if (regions_needed)
396 		*regions_needed = 0;
397 
398 	/* In this loop, we essentially handle an entry for the range
399 	 * [last_accounted_offset, rg->from), at every iteration, with some
400 	 * bounds checking.
401 	 */
402 	list_for_each_entry_safe(rg, trg, head, link) {
403 		/* Skip irrelevant regions that start before our range. */
404 		if (rg->from < f) {
405 			/* If this region ends after the last accounted offset,
406 			 * then we need to update last_accounted_offset.
407 			 */
408 			if (rg->to > last_accounted_offset)
409 				last_accounted_offset = rg->to;
410 			continue;
411 		}
412 
413 		/* When we find a region that starts beyond our range, we've
414 		 * finished.
415 		 */
416 		if (rg->from >= t)
417 			break;
418 
419 		/* Add an entry for last_accounted_offset -> rg->from, and
420 		 * update last_accounted_offset.
421 		 */
422 		if (rg->from > last_accounted_offset)
423 			add += hugetlb_resv_map_add(resv, rg,
424 						    last_accounted_offset,
425 						    rg->from, h, h_cg,
426 						    regions_needed);
427 
428 		last_accounted_offset = rg->to;
429 	}
430 
431 	/* Handle the case where our range extends beyond
432 	 * last_accounted_offset.
433 	 */
434 	if (last_accounted_offset < t)
435 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436 					    t, h, h_cg, regions_needed);
437 
438 	VM_BUG_ON(add < 0);
439 	return add;
440 }
441 
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443  */
444 static int allocate_file_region_entries(struct resv_map *resv,
445 					int regions_needed)
446 	__must_hold(&resv->lock)
447 {
448 	struct list_head allocated_regions;
449 	int to_allocate = 0, i = 0;
450 	struct file_region *trg = NULL, *rg = NULL;
451 
452 	VM_BUG_ON(regions_needed < 0);
453 
454 	INIT_LIST_HEAD(&allocated_regions);
455 
456 	/*
457 	 * Check for sufficient descriptors in the cache to accommodate
458 	 * the number of in progress add operations plus regions_needed.
459 	 *
460 	 * This is a while loop because when we drop the lock, some other call
461 	 * to region_add or region_del may have consumed some region_entries,
462 	 * so we keep looping here until we finally have enough entries for
463 	 * (adds_in_progress + regions_needed).
464 	 */
465 	while (resv->region_cache_count <
466 	       (resv->adds_in_progress + regions_needed)) {
467 		to_allocate = resv->adds_in_progress + regions_needed -
468 			      resv->region_cache_count;
469 
470 		/* At this point, we should have enough entries in the cache
471 		 * for all the existing adds_in_progress. We should only be
472 		 * needing to allocate for regions_needed.
473 		 */
474 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475 
476 		spin_unlock(&resv->lock);
477 		for (i = 0; i < to_allocate; i++) {
478 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479 			if (!trg)
480 				goto out_of_memory;
481 			list_add(&trg->link, &allocated_regions);
482 		}
483 
484 		spin_lock(&resv->lock);
485 
486 		list_splice(&allocated_regions, &resv->region_cache);
487 		resv->region_cache_count += to_allocate;
488 	}
489 
490 	return 0;
491 
492 out_of_memory:
493 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494 		list_del(&rg->link);
495 		kfree(rg);
496 	}
497 	return -ENOMEM;
498 }
499 
500 /*
501  * Add the huge page range represented by [f, t) to the reserve
502  * map.  Regions will be taken from the cache to fill in this range.
503  * Sufficient regions should exist in the cache due to the previous
504  * call to region_chg with the same range, but in some cases the cache will not
505  * have sufficient entries due to races with other code doing region_add or
506  * region_del.  The extra needed entries will be allocated.
507  *
508  * regions_needed is the out value provided by a previous call to region_chg.
509  *
510  * Return the number of new huge pages added to the map.  This number is greater
511  * than or equal to zero.  If file_region entries needed to be allocated for
512  * this operation and we were not able to allocate, it returns -ENOMEM.
513  * region_add of regions of length 1 never allocate file_regions and cannot
514  * fail; region_chg will always allocate at least 1 entry and a region_add for
515  * 1 page will only require at most 1 entry.
516  */
517 static long region_add(struct resv_map *resv, long f, long t,
518 		       long in_regions_needed, struct hstate *h,
519 		       struct hugetlb_cgroup *h_cg)
520 {
521 	long add = 0, actual_regions_needed = 0;
522 
523 	spin_lock(&resv->lock);
524 retry:
525 
526 	/* Count how many regions are actually needed to execute this add. */
527 	add_reservation_in_range(resv, f, t, NULL, NULL,
528 				 &actual_regions_needed);
529 
530 	/*
531 	 * Check for sufficient descriptors in the cache to accommodate
532 	 * this add operation. Note that actual_regions_needed may be greater
533 	 * than in_regions_needed, as the resv_map may have been modified since
534 	 * the region_chg call. In this case, we need to make sure that we
535 	 * allocate extra entries, such that we have enough for all the
536 	 * existing adds_in_progress, plus the excess needed for this
537 	 * operation.
538 	 */
539 	if (actual_regions_needed > in_regions_needed &&
540 	    resv->region_cache_count <
541 		    resv->adds_in_progress +
542 			    (actual_regions_needed - in_regions_needed)) {
543 		/* region_add operation of range 1 should never need to
544 		 * allocate file_region entries.
545 		 */
546 		VM_BUG_ON(t - f <= 1);
547 
548 		if (allocate_file_region_entries(
549 			    resv, actual_regions_needed - in_regions_needed)) {
550 			return -ENOMEM;
551 		}
552 
553 		goto retry;
554 	}
555 
556 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
557 
558 	resv->adds_in_progress -= in_regions_needed;
559 
560 	spin_unlock(&resv->lock);
561 	return add;
562 }
563 
564 /*
565  * Examine the existing reserve map and determine how many
566  * huge pages in the specified range [f, t) are NOT currently
567  * represented.  This routine is called before a subsequent
568  * call to region_add that will actually modify the reserve
569  * map to add the specified range [f, t).  region_chg does
570  * not change the number of huge pages represented by the
571  * map.  A number of new file_region structures is added to the cache as a
572  * placeholder, for the subsequent region_add call to use. At least 1
573  * file_region structure is added.
574  *
575  * out_regions_needed is the number of regions added to the
576  * resv->adds_in_progress.  This value needs to be provided to a follow up call
577  * to region_add or region_abort for proper accounting.
578  *
579  * Returns the number of huge pages that need to be added to the existing
580  * reservation map for the range [f, t).  This number is greater or equal to
581  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
582  * is needed and can not be allocated.
583  */
584 static long region_chg(struct resv_map *resv, long f, long t,
585 		       long *out_regions_needed)
586 {
587 	long chg = 0;
588 
589 	spin_lock(&resv->lock);
590 
591 	/* Count how many hugepages in this range are NOT represented. */
592 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593 				       out_regions_needed);
594 
595 	if (*out_regions_needed == 0)
596 		*out_regions_needed = 1;
597 
598 	if (allocate_file_region_entries(resv, *out_regions_needed))
599 		return -ENOMEM;
600 
601 	resv->adds_in_progress += *out_regions_needed;
602 
603 	spin_unlock(&resv->lock);
604 	return chg;
605 }
606 
607 /*
608  * Abort the in progress add operation.  The adds_in_progress field
609  * of the resv_map keeps track of the operations in progress between
610  * calls to region_chg and region_add.  Operations are sometimes
611  * aborted after the call to region_chg.  In such cases, region_abort
612  * is called to decrement the adds_in_progress counter. regions_needed
613  * is the value returned by the region_chg call, it is used to decrement
614  * the adds_in_progress counter.
615  *
616  * NOTE: The range arguments [f, t) are not needed or used in this
617  * routine.  They are kept to make reading the calling code easier as
618  * arguments will match the associated region_chg call.
619  */
620 static void region_abort(struct resv_map *resv, long f, long t,
621 			 long regions_needed)
622 {
623 	spin_lock(&resv->lock);
624 	VM_BUG_ON(!resv->region_cache_count);
625 	resv->adds_in_progress -= regions_needed;
626 	spin_unlock(&resv->lock);
627 }
628 
629 /*
630  * Delete the specified range [f, t) from the reserve map.  If the
631  * t parameter is LONG_MAX, this indicates that ALL regions after f
632  * should be deleted.  Locate the regions which intersect [f, t)
633  * and either trim, delete or split the existing regions.
634  *
635  * Returns the number of huge pages deleted from the reserve map.
636  * In the normal case, the return value is zero or more.  In the
637  * case where a region must be split, a new region descriptor must
638  * be allocated.  If the allocation fails, -ENOMEM will be returned.
639  * NOTE: If the parameter t == LONG_MAX, then we will never split
640  * a region and possibly return -ENOMEM.  Callers specifying
641  * t == LONG_MAX do not need to check for -ENOMEM error.
642  */
643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645 	struct list_head *head = &resv->regions;
646 	struct file_region *rg, *trg;
647 	struct file_region *nrg = NULL;
648 	long del = 0;
649 
650 retry:
651 	spin_lock(&resv->lock);
652 	list_for_each_entry_safe(rg, trg, head, link) {
653 		/*
654 		 * Skip regions before the range to be deleted.  file_region
655 		 * ranges are normally of the form [from, to).  However, there
656 		 * may be a "placeholder" entry in the map which is of the form
657 		 * (from, to) with from == to.  Check for placeholder entries
658 		 * at the beginning of the range to be deleted.
659 		 */
660 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661 			continue;
662 
663 		if (rg->from >= t)
664 			break;
665 
666 		if (f > rg->from && t < rg->to) { /* Must split region */
667 			/*
668 			 * Check for an entry in the cache before dropping
669 			 * lock and attempting allocation.
670 			 */
671 			if (!nrg &&
672 			    resv->region_cache_count > resv->adds_in_progress) {
673 				nrg = list_first_entry(&resv->region_cache,
674 							struct file_region,
675 							link);
676 				list_del(&nrg->link);
677 				resv->region_cache_count--;
678 			}
679 
680 			if (!nrg) {
681 				spin_unlock(&resv->lock);
682 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683 				if (!nrg)
684 					return -ENOMEM;
685 				goto retry;
686 			}
687 
688 			del += t - f;
689 			hugetlb_cgroup_uncharge_file_region(
690 				resv, rg, t - f, false);
691 
692 			/* New entry for end of split region */
693 			nrg->from = t;
694 			nrg->to = rg->to;
695 
696 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697 
698 			INIT_LIST_HEAD(&nrg->link);
699 
700 			/* Original entry is trimmed */
701 			rg->to = f;
702 
703 			list_add(&nrg->link, &rg->link);
704 			nrg = NULL;
705 			break;
706 		}
707 
708 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709 			del += rg->to - rg->from;
710 			hugetlb_cgroup_uncharge_file_region(resv, rg,
711 							    rg->to - rg->from, true);
712 			list_del(&rg->link);
713 			kfree(rg);
714 			continue;
715 		}
716 
717 		if (f <= rg->from) {	/* Trim beginning of region */
718 			hugetlb_cgroup_uncharge_file_region(resv, rg,
719 							    t - rg->from, false);
720 
721 			del += t - rg->from;
722 			rg->from = t;
723 		} else {		/* Trim end of region */
724 			hugetlb_cgroup_uncharge_file_region(resv, rg,
725 							    rg->to - f, false);
726 
727 			del += rg->to - f;
728 			rg->to = f;
729 		}
730 	}
731 
732 	spin_unlock(&resv->lock);
733 	kfree(nrg);
734 	return del;
735 }
736 
737 /*
738  * A rare out of memory error was encountered which prevented removal of
739  * the reserve map region for a page.  The huge page itself was free'ed
740  * and removed from the page cache.  This routine will adjust the subpool
741  * usage count, and the global reserve count if needed.  By incrementing
742  * these counts, the reserve map entry which could not be deleted will
743  * appear as a "reserved" entry instead of simply dangling with incorrect
744  * counts.
745  */
746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748 	struct hugepage_subpool *spool = subpool_inode(inode);
749 	long rsv_adjust;
750 	bool reserved = false;
751 
752 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753 	if (rsv_adjust > 0) {
754 		struct hstate *h = hstate_inode(inode);
755 
756 		if (!hugetlb_acct_memory(h, 1))
757 			reserved = true;
758 	} else if (!rsv_adjust) {
759 		reserved = true;
760 	}
761 
762 	if (!reserved)
763 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765 
766 /*
767  * Count and return the number of huge pages in the reserve map
768  * that intersect with the range [f, t).
769  */
770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772 	struct list_head *head = &resv->regions;
773 	struct file_region *rg;
774 	long chg = 0;
775 
776 	spin_lock(&resv->lock);
777 	/* Locate each segment we overlap with, and count that overlap. */
778 	list_for_each_entry(rg, head, link) {
779 		long seg_from;
780 		long seg_to;
781 
782 		if (rg->to <= f)
783 			continue;
784 		if (rg->from >= t)
785 			break;
786 
787 		seg_from = max(rg->from, f);
788 		seg_to = min(rg->to, t);
789 
790 		chg += seg_to - seg_from;
791 	}
792 	spin_unlock(&resv->lock);
793 
794 	return chg;
795 }
796 
797 /*
798  * Convert the address within this vma to the page offset within
799  * the mapping, in pagecache page units; huge pages here.
800  */
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802 			struct vm_area_struct *vma, unsigned long address)
803 {
804 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
805 			(vma->vm_pgoff >> huge_page_order(h));
806 }
807 
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809 				     unsigned long address)
810 {
811 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814 
815 /*
816  * Return the size of the pages allocated when backing a VMA. In the majority
817  * cases this will be same size as used by the page table entries.
818  */
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821 	if (vma->vm_ops && vma->vm_ops->pagesize)
822 		return vma->vm_ops->pagesize(vma);
823 	return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826 
827 /*
828  * Return the page size being used by the MMU to back a VMA. In the majority
829  * of cases, the page size used by the kernel matches the MMU size. On
830  * architectures where it differs, an architecture-specific 'strong'
831  * version of this symbol is required.
832  */
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835 	return vma_kernel_pagesize(vma);
836 }
837 
838 /*
839  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
840  * bits of the reservation map pointer, which are always clear due to
841  * alignment.
842  */
843 #define HPAGE_RESV_OWNER    (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846 
847 /*
848  * These helpers are used to track how many pages are reserved for
849  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850  * is guaranteed to have their future faults succeed.
851  *
852  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853  * the reserve counters are updated with the hugetlb_lock held. It is safe
854  * to reset the VMA at fork() time as it is not in use yet and there is no
855  * chance of the global counters getting corrupted as a result of the values.
856  *
857  * The private mapping reservation is represented in a subtly different
858  * manner to a shared mapping.  A shared mapping has a region map associated
859  * with the underlying file, this region map represents the backing file
860  * pages which have ever had a reservation assigned which this persists even
861  * after the page is instantiated.  A private mapping has a region map
862  * associated with the original mmap which is attached to all VMAs which
863  * reference it, this region map represents those offsets which have consumed
864  * reservation ie. where pages have been instantiated.
865  */
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868 	return (unsigned long)vma->vm_private_data;
869 }
870 
871 static void set_vma_private_data(struct vm_area_struct *vma,
872 							unsigned long value)
873 {
874 	vma->vm_private_data = (void *)value;
875 }
876 
877 static void
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879 					  struct hugetlb_cgroup *h_cg,
880 					  struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883 	if (!h_cg || !h) {
884 		resv_map->reservation_counter = NULL;
885 		resv_map->pages_per_hpage = 0;
886 		resv_map->css = NULL;
887 	} else {
888 		resv_map->reservation_counter =
889 			&h_cg->rsvd_hugepage[hstate_index(h)];
890 		resv_map->pages_per_hpage = pages_per_huge_page(h);
891 		resv_map->css = &h_cg->css;
892 	}
893 #endif
894 }
895 
896 struct resv_map *resv_map_alloc(void)
897 {
898 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900 
901 	if (!resv_map || !rg) {
902 		kfree(resv_map);
903 		kfree(rg);
904 		return NULL;
905 	}
906 
907 	kref_init(&resv_map->refs);
908 	spin_lock_init(&resv_map->lock);
909 	INIT_LIST_HEAD(&resv_map->regions);
910 
911 	resv_map->adds_in_progress = 0;
912 	/*
913 	 * Initialize these to 0. On shared mappings, 0's here indicate these
914 	 * fields don't do cgroup accounting. On private mappings, these will be
915 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
916 	 * reservations are to be un-charged from here.
917 	 */
918 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919 
920 	INIT_LIST_HEAD(&resv_map->region_cache);
921 	list_add(&rg->link, &resv_map->region_cache);
922 	resv_map->region_cache_count = 1;
923 
924 	return resv_map;
925 }
926 
927 void resv_map_release(struct kref *ref)
928 {
929 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930 	struct list_head *head = &resv_map->region_cache;
931 	struct file_region *rg, *trg;
932 
933 	/* Clear out any active regions before we release the map. */
934 	region_del(resv_map, 0, LONG_MAX);
935 
936 	/* ... and any entries left in the cache */
937 	list_for_each_entry_safe(rg, trg, head, link) {
938 		list_del(&rg->link);
939 		kfree(rg);
940 	}
941 
942 	VM_BUG_ON(resv_map->adds_in_progress);
943 
944 	kfree(resv_map);
945 }
946 
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949 	/*
950 	 * At inode evict time, i_mapping may not point to the original
951 	 * address space within the inode.  This original address space
952 	 * contains the pointer to the resv_map.  So, always use the
953 	 * address space embedded within the inode.
954 	 * The VERY common case is inode->mapping == &inode->i_data but,
955 	 * this may not be true for device special inodes.
956 	 */
957 	return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959 
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963 	if (vma->vm_flags & VM_MAYSHARE) {
964 		struct address_space *mapping = vma->vm_file->f_mapping;
965 		struct inode *inode = mapping->host;
966 
967 		return inode_resv_map(inode);
968 
969 	} else {
970 		return (struct resv_map *)(get_vma_private_data(vma) &
971 							~HPAGE_RESV_MASK);
972 	}
973 }
974 
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979 
980 	set_vma_private_data(vma, (get_vma_private_data(vma) &
981 				HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983 
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988 
989 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991 
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995 
996 	return (get_vma_private_data(vma) & flag) != 0;
997 }
998 
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003 	if (!(vma->vm_flags & VM_MAYSHARE))
1004 		vma->vm_private_data = (void *)0;
1005 }
1006 
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010 	if (vma->vm_flags & VM_NORESERVE) {
1011 		/*
1012 		 * This address is already reserved by other process(chg == 0),
1013 		 * so, we should decrement reserved count. Without decrementing,
1014 		 * reserve count remains after releasing inode, because this
1015 		 * allocated page will go into page cache and is regarded as
1016 		 * coming from reserved pool in releasing step.  Currently, we
1017 		 * don't have any other solution to deal with this situation
1018 		 * properly, so add work-around here.
1019 		 */
1020 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021 			return true;
1022 		else
1023 			return false;
1024 	}
1025 
1026 	/* Shared mappings always use reserves */
1027 	if (vma->vm_flags & VM_MAYSHARE) {
1028 		/*
1029 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030 		 * be a region map for all pages.  The only situation where
1031 		 * there is no region map is if a hole was punched via
1032 		 * fallocate.  In this case, there really are no reserves to
1033 		 * use.  This situation is indicated if chg != 0.
1034 		 */
1035 		if (chg)
1036 			return false;
1037 		else
1038 			return true;
1039 	}
1040 
1041 	/*
1042 	 * Only the process that called mmap() has reserves for
1043 	 * private mappings.
1044 	 */
1045 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046 		/*
1047 		 * Like the shared case above, a hole punch or truncate
1048 		 * could have been performed on the private mapping.
1049 		 * Examine the value of chg to determine if reserves
1050 		 * actually exist or were previously consumed.
1051 		 * Very Subtle - The value of chg comes from a previous
1052 		 * call to vma_needs_reserves().  The reserve map for
1053 		 * private mappings has different (opposite) semantics
1054 		 * than that of shared mappings.  vma_needs_reserves()
1055 		 * has already taken this difference in semantics into
1056 		 * account.  Therefore, the meaning of chg is the same
1057 		 * as in the shared case above.  Code could easily be
1058 		 * combined, but keeping it separate draws attention to
1059 		 * subtle differences.
1060 		 */
1061 		if (chg)
1062 			return false;
1063 		else
1064 			return true;
1065 	}
1066 
1067 	return false;
1068 }
1069 
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072 	int nid = page_to_nid(page);
1073 
1074 	lockdep_assert_held(&hugetlb_lock);
1075 	VM_BUG_ON_PAGE(page_count(page), page);
1076 
1077 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1078 	h->free_huge_pages++;
1079 	h->free_huge_pages_node[nid]++;
1080 	SetHPageFreed(page);
1081 }
1082 
1083 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1084 {
1085 	struct page *page;
1086 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1087 
1088 	lockdep_assert_held(&hugetlb_lock);
1089 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1090 		if (pin && !is_pinnable_page(page))
1091 			continue;
1092 
1093 		if (PageHWPoison(page))
1094 			continue;
1095 
1096 		list_move(&page->lru, &h->hugepage_activelist);
1097 		set_page_refcounted(page);
1098 		ClearHPageFreed(page);
1099 		h->free_huge_pages--;
1100 		h->free_huge_pages_node[nid]--;
1101 		return page;
1102 	}
1103 
1104 	return NULL;
1105 }
1106 
1107 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1108 		nodemask_t *nmask)
1109 {
1110 	unsigned int cpuset_mems_cookie;
1111 	struct zonelist *zonelist;
1112 	struct zone *zone;
1113 	struct zoneref *z;
1114 	int node = NUMA_NO_NODE;
1115 
1116 	zonelist = node_zonelist(nid, gfp_mask);
1117 
1118 retry_cpuset:
1119 	cpuset_mems_cookie = read_mems_allowed_begin();
1120 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1121 		struct page *page;
1122 
1123 		if (!cpuset_zone_allowed(zone, gfp_mask))
1124 			continue;
1125 		/*
1126 		 * no need to ask again on the same node. Pool is node rather than
1127 		 * zone aware
1128 		 */
1129 		if (zone_to_nid(zone) == node)
1130 			continue;
1131 		node = zone_to_nid(zone);
1132 
1133 		page = dequeue_huge_page_node_exact(h, node);
1134 		if (page)
1135 			return page;
1136 	}
1137 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1138 		goto retry_cpuset;
1139 
1140 	return NULL;
1141 }
1142 
1143 static struct page *dequeue_huge_page_vma(struct hstate *h,
1144 				struct vm_area_struct *vma,
1145 				unsigned long address, int avoid_reserve,
1146 				long chg)
1147 {
1148 	struct page *page = NULL;
1149 	struct mempolicy *mpol;
1150 	gfp_t gfp_mask;
1151 	nodemask_t *nodemask;
1152 	int nid;
1153 
1154 	/*
1155 	 * A child process with MAP_PRIVATE mappings created by their parent
1156 	 * have no page reserves. This check ensures that reservations are
1157 	 * not "stolen". The child may still get SIGKILLed
1158 	 */
1159 	if (!vma_has_reserves(vma, chg) &&
1160 			h->free_huge_pages - h->resv_huge_pages == 0)
1161 		goto err;
1162 
1163 	/* If reserves cannot be used, ensure enough pages are in the pool */
1164 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1165 		goto err;
1166 
1167 	gfp_mask = htlb_alloc_mask(h);
1168 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1169 
1170 	if (mpol_is_preferred_many(mpol)) {
1171 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1172 
1173 		/* Fallback to all nodes if page==NULL */
1174 		nodemask = NULL;
1175 	}
1176 
1177 	if (!page)
1178 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1179 
1180 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1181 		SetHPageRestoreReserve(page);
1182 		h->resv_huge_pages--;
1183 	}
1184 
1185 	mpol_cond_put(mpol);
1186 	return page;
1187 
1188 err:
1189 	return NULL;
1190 }
1191 
1192 /*
1193  * common helper functions for hstate_next_node_to_{alloc|free}.
1194  * We may have allocated or freed a huge page based on a different
1195  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1196  * be outside of *nodes_allowed.  Ensure that we use an allowed
1197  * node for alloc or free.
1198  */
1199 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1200 {
1201 	nid = next_node_in(nid, *nodes_allowed);
1202 	VM_BUG_ON(nid >= MAX_NUMNODES);
1203 
1204 	return nid;
1205 }
1206 
1207 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1208 {
1209 	if (!node_isset(nid, *nodes_allowed))
1210 		nid = next_node_allowed(nid, nodes_allowed);
1211 	return nid;
1212 }
1213 
1214 /*
1215  * returns the previously saved node ["this node"] from which to
1216  * allocate a persistent huge page for the pool and advance the
1217  * next node from which to allocate, handling wrap at end of node
1218  * mask.
1219  */
1220 static int hstate_next_node_to_alloc(struct hstate *h,
1221 					nodemask_t *nodes_allowed)
1222 {
1223 	int nid;
1224 
1225 	VM_BUG_ON(!nodes_allowed);
1226 
1227 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1228 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1229 
1230 	return nid;
1231 }
1232 
1233 /*
1234  * helper for remove_pool_huge_page() - return the previously saved
1235  * node ["this node"] from which to free a huge page.  Advance the
1236  * next node id whether or not we find a free huge page to free so
1237  * that the next attempt to free addresses the next node.
1238  */
1239 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1240 {
1241 	int nid;
1242 
1243 	VM_BUG_ON(!nodes_allowed);
1244 
1245 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1246 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1247 
1248 	return nid;
1249 }
1250 
1251 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1252 	for (nr_nodes = nodes_weight(*mask);				\
1253 		nr_nodes > 0 &&						\
1254 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1255 		nr_nodes--)
1256 
1257 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1258 	for (nr_nodes = nodes_weight(*mask);				\
1259 		nr_nodes > 0 &&						\
1260 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1261 		nr_nodes--)
1262 
1263 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1264 static void destroy_compound_gigantic_page(struct page *page,
1265 					unsigned int order)
1266 {
1267 	int i;
1268 	int nr_pages = 1 << order;
1269 	struct page *p = page + 1;
1270 
1271 	atomic_set(compound_mapcount_ptr(page), 0);
1272 	atomic_set(compound_pincount_ptr(page), 0);
1273 
1274 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1275 		clear_compound_head(p);
1276 		set_page_refcounted(p);
1277 	}
1278 
1279 	set_compound_order(page, 0);
1280 	page[1].compound_nr = 0;
1281 	__ClearPageHead(page);
1282 }
1283 
1284 static void free_gigantic_page(struct page *page, unsigned int order)
1285 {
1286 	/*
1287 	 * If the page isn't allocated using the cma allocator,
1288 	 * cma_release() returns false.
1289 	 */
1290 #ifdef CONFIG_CMA
1291 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1292 		return;
1293 #endif
1294 
1295 	free_contig_range(page_to_pfn(page), 1 << order);
1296 }
1297 
1298 #ifdef CONFIG_CONTIG_ALLOC
1299 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1300 		int nid, nodemask_t *nodemask)
1301 {
1302 	unsigned long nr_pages = pages_per_huge_page(h);
1303 	if (nid == NUMA_NO_NODE)
1304 		nid = numa_mem_id();
1305 
1306 #ifdef CONFIG_CMA
1307 	{
1308 		struct page *page;
1309 		int node;
1310 
1311 		if (hugetlb_cma[nid]) {
1312 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1313 					huge_page_order(h), true);
1314 			if (page)
1315 				return page;
1316 		}
1317 
1318 		if (!(gfp_mask & __GFP_THISNODE)) {
1319 			for_each_node_mask(node, *nodemask) {
1320 				if (node == nid || !hugetlb_cma[node])
1321 					continue;
1322 
1323 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1324 						huge_page_order(h), true);
1325 				if (page)
1326 					return page;
1327 			}
1328 		}
1329 	}
1330 #endif
1331 
1332 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1333 }
1334 
1335 #else /* !CONFIG_CONTIG_ALLOC */
1336 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1337 					int nid, nodemask_t *nodemask)
1338 {
1339 	return NULL;
1340 }
1341 #endif /* CONFIG_CONTIG_ALLOC */
1342 
1343 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1344 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1345 					int nid, nodemask_t *nodemask)
1346 {
1347 	return NULL;
1348 }
1349 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1350 static inline void destroy_compound_gigantic_page(struct page *page,
1351 						unsigned int order) { }
1352 #endif
1353 
1354 /*
1355  * Remove hugetlb page from lists, and update dtor so that page appears
1356  * as just a compound page.  A reference is held on the page.
1357  *
1358  * Must be called with hugetlb lock held.
1359  */
1360 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1361 							bool adjust_surplus)
1362 {
1363 	int nid = page_to_nid(page);
1364 
1365 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1366 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1367 
1368 	lockdep_assert_held(&hugetlb_lock);
1369 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1370 		return;
1371 
1372 	list_del(&page->lru);
1373 
1374 	if (HPageFreed(page)) {
1375 		h->free_huge_pages--;
1376 		h->free_huge_pages_node[nid]--;
1377 	}
1378 	if (adjust_surplus) {
1379 		h->surplus_huge_pages--;
1380 		h->surplus_huge_pages_node[nid]--;
1381 	}
1382 
1383 	/*
1384 	 * Very subtle
1385 	 *
1386 	 * For non-gigantic pages set the destructor to the normal compound
1387 	 * page dtor.  This is needed in case someone takes an additional
1388 	 * temporary ref to the page, and freeing is delayed until they drop
1389 	 * their reference.
1390 	 *
1391 	 * For gigantic pages set the destructor to the null dtor.  This
1392 	 * destructor will never be called.  Before freeing the gigantic
1393 	 * page destroy_compound_gigantic_page will turn the compound page
1394 	 * into a simple group of pages.  After this the destructor does not
1395 	 * apply.
1396 	 *
1397 	 * This handles the case where more than one ref is held when and
1398 	 * after update_and_free_page is called.
1399 	 */
1400 	set_page_refcounted(page);
1401 	if (hstate_is_gigantic(h))
1402 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1403 	else
1404 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1405 
1406 	h->nr_huge_pages--;
1407 	h->nr_huge_pages_node[nid]--;
1408 }
1409 
1410 static void add_hugetlb_page(struct hstate *h, struct page *page,
1411 			     bool adjust_surplus)
1412 {
1413 	int zeroed;
1414 	int nid = page_to_nid(page);
1415 
1416 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1417 
1418 	lockdep_assert_held(&hugetlb_lock);
1419 
1420 	INIT_LIST_HEAD(&page->lru);
1421 	h->nr_huge_pages++;
1422 	h->nr_huge_pages_node[nid]++;
1423 
1424 	if (adjust_surplus) {
1425 		h->surplus_huge_pages++;
1426 		h->surplus_huge_pages_node[nid]++;
1427 	}
1428 
1429 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1430 	set_page_private(page, 0);
1431 	SetHPageVmemmapOptimized(page);
1432 
1433 	/*
1434 	 * This page is about to be managed by the hugetlb allocator and
1435 	 * should have no users.  Drop our reference, and check for others
1436 	 * just in case.
1437 	 */
1438 	zeroed = put_page_testzero(page);
1439 	if (!zeroed)
1440 		/*
1441 		 * It is VERY unlikely soneone else has taken a ref on
1442 		 * the page.  In this case, we simply return as the
1443 		 * hugetlb destructor (free_huge_page) will be called
1444 		 * when this other ref is dropped.
1445 		 */
1446 		return;
1447 
1448 	arch_clear_hugepage_flags(page);
1449 	enqueue_huge_page(h, page);
1450 }
1451 
1452 static void __update_and_free_page(struct hstate *h, struct page *page)
1453 {
1454 	int i;
1455 	struct page *subpage = page;
1456 
1457 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1458 		return;
1459 
1460 	if (alloc_huge_page_vmemmap(h, page)) {
1461 		spin_lock_irq(&hugetlb_lock);
1462 		/*
1463 		 * If we cannot allocate vmemmap pages, just refuse to free the
1464 		 * page and put the page back on the hugetlb free list and treat
1465 		 * as a surplus page.
1466 		 */
1467 		add_hugetlb_page(h, page, true);
1468 		spin_unlock_irq(&hugetlb_lock);
1469 		return;
1470 	}
1471 
1472 	for (i = 0; i < pages_per_huge_page(h);
1473 	     i++, subpage = mem_map_next(subpage, page, i)) {
1474 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1475 				1 << PG_referenced | 1 << PG_dirty |
1476 				1 << PG_active | 1 << PG_private |
1477 				1 << PG_writeback);
1478 	}
1479 	if (hstate_is_gigantic(h)) {
1480 		destroy_compound_gigantic_page(page, huge_page_order(h));
1481 		free_gigantic_page(page, huge_page_order(h));
1482 	} else {
1483 		__free_pages(page, huge_page_order(h));
1484 	}
1485 }
1486 
1487 /*
1488  * As update_and_free_page() can be called under any context, so we cannot
1489  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1490  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1491  * the vmemmap pages.
1492  *
1493  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1494  * freed and frees them one-by-one. As the page->mapping pointer is going
1495  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1496  * structure of a lockless linked list of huge pages to be freed.
1497  */
1498 static LLIST_HEAD(hpage_freelist);
1499 
1500 static void free_hpage_workfn(struct work_struct *work)
1501 {
1502 	struct llist_node *node;
1503 
1504 	node = llist_del_all(&hpage_freelist);
1505 
1506 	while (node) {
1507 		struct page *page;
1508 		struct hstate *h;
1509 
1510 		page = container_of((struct address_space **)node,
1511 				     struct page, mapping);
1512 		node = node->next;
1513 		page->mapping = NULL;
1514 		/*
1515 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1516 		 * is going to trigger because a previous call to
1517 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1518 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1519 		 */
1520 		h = size_to_hstate(page_size(page));
1521 
1522 		__update_and_free_page(h, page);
1523 
1524 		cond_resched();
1525 	}
1526 }
1527 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1528 
1529 static inline void flush_free_hpage_work(struct hstate *h)
1530 {
1531 	if (free_vmemmap_pages_per_hpage(h))
1532 		flush_work(&free_hpage_work);
1533 }
1534 
1535 static void update_and_free_page(struct hstate *h, struct page *page,
1536 				 bool atomic)
1537 {
1538 	if (!HPageVmemmapOptimized(page) || !atomic) {
1539 		__update_and_free_page(h, page);
1540 		return;
1541 	}
1542 
1543 	/*
1544 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1545 	 *
1546 	 * Only call schedule_work() if hpage_freelist is previously
1547 	 * empty. Otherwise, schedule_work() had been called but the workfn
1548 	 * hasn't retrieved the list yet.
1549 	 */
1550 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1551 		schedule_work(&free_hpage_work);
1552 }
1553 
1554 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1555 {
1556 	struct page *page, *t_page;
1557 
1558 	list_for_each_entry_safe(page, t_page, list, lru) {
1559 		update_and_free_page(h, page, false);
1560 		cond_resched();
1561 	}
1562 }
1563 
1564 struct hstate *size_to_hstate(unsigned long size)
1565 {
1566 	struct hstate *h;
1567 
1568 	for_each_hstate(h) {
1569 		if (huge_page_size(h) == size)
1570 			return h;
1571 	}
1572 	return NULL;
1573 }
1574 
1575 void free_huge_page(struct page *page)
1576 {
1577 	/*
1578 	 * Can't pass hstate in here because it is called from the
1579 	 * compound page destructor.
1580 	 */
1581 	struct hstate *h = page_hstate(page);
1582 	int nid = page_to_nid(page);
1583 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1584 	bool restore_reserve;
1585 	unsigned long flags;
1586 
1587 	VM_BUG_ON_PAGE(page_count(page), page);
1588 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1589 
1590 	hugetlb_set_page_subpool(page, NULL);
1591 	page->mapping = NULL;
1592 	restore_reserve = HPageRestoreReserve(page);
1593 	ClearHPageRestoreReserve(page);
1594 
1595 	/*
1596 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1597 	 * reservation.  If the page was associated with a subpool, there
1598 	 * would have been a page reserved in the subpool before allocation
1599 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1600 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1601 	 * remove the reserved page from the subpool.
1602 	 */
1603 	if (!restore_reserve) {
1604 		/*
1605 		 * A return code of zero implies that the subpool will be
1606 		 * under its minimum size if the reservation is not restored
1607 		 * after page is free.  Therefore, force restore_reserve
1608 		 * operation.
1609 		 */
1610 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1611 			restore_reserve = true;
1612 	}
1613 
1614 	spin_lock_irqsave(&hugetlb_lock, flags);
1615 	ClearHPageMigratable(page);
1616 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1617 				     pages_per_huge_page(h), page);
1618 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1619 					  pages_per_huge_page(h), page);
1620 	if (restore_reserve)
1621 		h->resv_huge_pages++;
1622 
1623 	if (HPageTemporary(page)) {
1624 		remove_hugetlb_page(h, page, false);
1625 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1626 		update_and_free_page(h, page, true);
1627 	} else if (h->surplus_huge_pages_node[nid]) {
1628 		/* remove the page from active list */
1629 		remove_hugetlb_page(h, page, true);
1630 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1631 		update_and_free_page(h, page, true);
1632 	} else {
1633 		arch_clear_hugepage_flags(page);
1634 		enqueue_huge_page(h, page);
1635 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1636 	}
1637 }
1638 
1639 /*
1640  * Must be called with the hugetlb lock held
1641  */
1642 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1643 {
1644 	lockdep_assert_held(&hugetlb_lock);
1645 	h->nr_huge_pages++;
1646 	h->nr_huge_pages_node[nid]++;
1647 }
1648 
1649 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1650 {
1651 	free_huge_page_vmemmap(h, page);
1652 	INIT_LIST_HEAD(&page->lru);
1653 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1654 	hugetlb_set_page_subpool(page, NULL);
1655 	set_hugetlb_cgroup(page, NULL);
1656 	set_hugetlb_cgroup_rsvd(page, NULL);
1657 }
1658 
1659 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1660 {
1661 	__prep_new_huge_page(h, page);
1662 	spin_lock_irq(&hugetlb_lock);
1663 	__prep_account_new_huge_page(h, nid);
1664 	spin_unlock_irq(&hugetlb_lock);
1665 }
1666 
1667 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1668 {
1669 	int i, j;
1670 	int nr_pages = 1 << order;
1671 	struct page *p = page + 1;
1672 
1673 	/* we rely on prep_new_huge_page to set the destructor */
1674 	set_compound_order(page, order);
1675 	__ClearPageReserved(page);
1676 	__SetPageHead(page);
1677 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1678 		/*
1679 		 * For gigantic hugepages allocated through bootmem at
1680 		 * boot, it's safer to be consistent with the not-gigantic
1681 		 * hugepages and clear the PG_reserved bit from all tail pages
1682 		 * too.  Otherwise drivers using get_user_pages() to access tail
1683 		 * pages may get the reference counting wrong if they see
1684 		 * PG_reserved set on a tail page (despite the head page not
1685 		 * having PG_reserved set).  Enforcing this consistency between
1686 		 * head and tail pages allows drivers to optimize away a check
1687 		 * on the head page when they need know if put_page() is needed
1688 		 * after get_user_pages().
1689 		 */
1690 		__ClearPageReserved(p);
1691 		/*
1692 		 * Subtle and very unlikely
1693 		 *
1694 		 * Gigantic 'page allocators' such as memblock or cma will
1695 		 * return a set of pages with each page ref counted.  We need
1696 		 * to turn this set of pages into a compound page with tail
1697 		 * page ref counts set to zero.  Code such as speculative page
1698 		 * cache adding could take a ref on a 'to be' tail page.
1699 		 * We need to respect any increased ref count, and only set
1700 		 * the ref count to zero if count is currently 1.  If count
1701 		 * is not 1, we return an error.  An error return indicates
1702 		 * the set of pages can not be converted to a gigantic page.
1703 		 * The caller who allocated the pages should then discard the
1704 		 * pages using the appropriate free interface.
1705 		 */
1706 		if (!page_ref_freeze(p, 1)) {
1707 			pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1708 			goto out_error;
1709 		}
1710 		set_page_count(p, 0);
1711 		set_compound_head(p, page);
1712 	}
1713 	atomic_set(compound_mapcount_ptr(page), -1);
1714 	atomic_set(compound_pincount_ptr(page), 0);
1715 	return true;
1716 
1717 out_error:
1718 	/* undo tail page modifications made above */
1719 	p = page + 1;
1720 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1721 		clear_compound_head(p);
1722 		set_page_refcounted(p);
1723 	}
1724 	/* need to clear PG_reserved on remaining tail pages  */
1725 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1726 		__ClearPageReserved(p);
1727 	set_compound_order(page, 0);
1728 	page[1].compound_nr = 0;
1729 	__ClearPageHead(page);
1730 	return false;
1731 }
1732 
1733 /*
1734  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1735  * transparent huge pages.  See the PageTransHuge() documentation for more
1736  * details.
1737  */
1738 int PageHuge(struct page *page)
1739 {
1740 	if (!PageCompound(page))
1741 		return 0;
1742 
1743 	page = compound_head(page);
1744 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1745 }
1746 EXPORT_SYMBOL_GPL(PageHuge);
1747 
1748 /*
1749  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1750  * normal or transparent huge pages.
1751  */
1752 int PageHeadHuge(struct page *page_head)
1753 {
1754 	if (!PageHead(page_head))
1755 		return 0;
1756 
1757 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1758 }
1759 
1760 /*
1761  * Find and lock address space (mapping) in write mode.
1762  *
1763  * Upon entry, the page is locked which means that page_mapping() is
1764  * stable.  Due to locking order, we can only trylock_write.  If we can
1765  * not get the lock, simply return NULL to caller.
1766  */
1767 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1768 {
1769 	struct address_space *mapping = page_mapping(hpage);
1770 
1771 	if (!mapping)
1772 		return mapping;
1773 
1774 	if (i_mmap_trylock_write(mapping))
1775 		return mapping;
1776 
1777 	return NULL;
1778 }
1779 
1780 pgoff_t hugetlb_basepage_index(struct page *page)
1781 {
1782 	struct page *page_head = compound_head(page);
1783 	pgoff_t index = page_index(page_head);
1784 	unsigned long compound_idx;
1785 
1786 	if (compound_order(page_head) >= MAX_ORDER)
1787 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1788 	else
1789 		compound_idx = page - page_head;
1790 
1791 	return (index << compound_order(page_head)) + compound_idx;
1792 }
1793 
1794 static struct page *alloc_buddy_huge_page(struct hstate *h,
1795 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1796 		nodemask_t *node_alloc_noretry)
1797 {
1798 	int order = huge_page_order(h);
1799 	struct page *page;
1800 	bool alloc_try_hard = true;
1801 
1802 	/*
1803 	 * By default we always try hard to allocate the page with
1804 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1805 	 * a loop (to adjust global huge page counts) and previous allocation
1806 	 * failed, do not continue to try hard on the same node.  Use the
1807 	 * node_alloc_noretry bitmap to manage this state information.
1808 	 */
1809 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1810 		alloc_try_hard = false;
1811 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1812 	if (alloc_try_hard)
1813 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1814 	if (nid == NUMA_NO_NODE)
1815 		nid = numa_mem_id();
1816 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1817 	if (page)
1818 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1819 	else
1820 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1821 
1822 	/*
1823 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1824 	 * indicates an overall state change.  Clear bit so that we resume
1825 	 * normal 'try hard' allocations.
1826 	 */
1827 	if (node_alloc_noretry && page && !alloc_try_hard)
1828 		node_clear(nid, *node_alloc_noretry);
1829 
1830 	/*
1831 	 * If we tried hard to get a page but failed, set bit so that
1832 	 * subsequent attempts will not try as hard until there is an
1833 	 * overall state change.
1834 	 */
1835 	if (node_alloc_noretry && !page && alloc_try_hard)
1836 		node_set(nid, *node_alloc_noretry);
1837 
1838 	return page;
1839 }
1840 
1841 /*
1842  * Common helper to allocate a fresh hugetlb page. All specific allocators
1843  * should use this function to get new hugetlb pages
1844  */
1845 static struct page *alloc_fresh_huge_page(struct hstate *h,
1846 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1847 		nodemask_t *node_alloc_noretry)
1848 {
1849 	struct page *page;
1850 	bool retry = false;
1851 
1852 retry:
1853 	if (hstate_is_gigantic(h))
1854 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1855 	else
1856 		page = alloc_buddy_huge_page(h, gfp_mask,
1857 				nid, nmask, node_alloc_noretry);
1858 	if (!page)
1859 		return NULL;
1860 
1861 	if (hstate_is_gigantic(h)) {
1862 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1863 			/*
1864 			 * Rare failure to convert pages to compound page.
1865 			 * Free pages and try again - ONCE!
1866 			 */
1867 			free_gigantic_page(page, huge_page_order(h));
1868 			if (!retry) {
1869 				retry = true;
1870 				goto retry;
1871 			}
1872 			return NULL;
1873 		}
1874 	}
1875 	prep_new_huge_page(h, page, page_to_nid(page));
1876 
1877 	return page;
1878 }
1879 
1880 /*
1881  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1882  * manner.
1883  */
1884 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1885 				nodemask_t *node_alloc_noretry)
1886 {
1887 	struct page *page;
1888 	int nr_nodes, node;
1889 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1890 
1891 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1892 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1893 						node_alloc_noretry);
1894 		if (page)
1895 			break;
1896 	}
1897 
1898 	if (!page)
1899 		return 0;
1900 
1901 	put_page(page); /* free it into the hugepage allocator */
1902 
1903 	return 1;
1904 }
1905 
1906 /*
1907  * Remove huge page from pool from next node to free.  Attempt to keep
1908  * persistent huge pages more or less balanced over allowed nodes.
1909  * This routine only 'removes' the hugetlb page.  The caller must make
1910  * an additional call to free the page to low level allocators.
1911  * Called with hugetlb_lock locked.
1912  */
1913 static struct page *remove_pool_huge_page(struct hstate *h,
1914 						nodemask_t *nodes_allowed,
1915 						 bool acct_surplus)
1916 {
1917 	int nr_nodes, node;
1918 	struct page *page = NULL;
1919 
1920 	lockdep_assert_held(&hugetlb_lock);
1921 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1922 		/*
1923 		 * If we're returning unused surplus pages, only examine
1924 		 * nodes with surplus pages.
1925 		 */
1926 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1927 		    !list_empty(&h->hugepage_freelists[node])) {
1928 			page = list_entry(h->hugepage_freelists[node].next,
1929 					  struct page, lru);
1930 			remove_hugetlb_page(h, page, acct_surplus);
1931 			break;
1932 		}
1933 	}
1934 
1935 	return page;
1936 }
1937 
1938 /*
1939  * Dissolve a given free hugepage into free buddy pages. This function does
1940  * nothing for in-use hugepages and non-hugepages.
1941  * This function returns values like below:
1942  *
1943  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1944  *           when the system is under memory pressure and the feature of
1945  *           freeing unused vmemmap pages associated with each hugetlb page
1946  *           is enabled.
1947  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1948  *           (allocated or reserved.)
1949  *       0:  successfully dissolved free hugepages or the page is not a
1950  *           hugepage (considered as already dissolved)
1951  */
1952 int dissolve_free_huge_page(struct page *page)
1953 {
1954 	int rc = -EBUSY;
1955 
1956 retry:
1957 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1958 	if (!PageHuge(page))
1959 		return 0;
1960 
1961 	spin_lock_irq(&hugetlb_lock);
1962 	if (!PageHuge(page)) {
1963 		rc = 0;
1964 		goto out;
1965 	}
1966 
1967 	if (!page_count(page)) {
1968 		struct page *head = compound_head(page);
1969 		struct hstate *h = page_hstate(head);
1970 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1971 			goto out;
1972 
1973 		/*
1974 		 * We should make sure that the page is already on the free list
1975 		 * when it is dissolved.
1976 		 */
1977 		if (unlikely(!HPageFreed(head))) {
1978 			spin_unlock_irq(&hugetlb_lock);
1979 			cond_resched();
1980 
1981 			/*
1982 			 * Theoretically, we should return -EBUSY when we
1983 			 * encounter this race. In fact, we have a chance
1984 			 * to successfully dissolve the page if we do a
1985 			 * retry. Because the race window is quite small.
1986 			 * If we seize this opportunity, it is an optimization
1987 			 * for increasing the success rate of dissolving page.
1988 			 */
1989 			goto retry;
1990 		}
1991 
1992 		remove_hugetlb_page(h, head, false);
1993 		h->max_huge_pages--;
1994 		spin_unlock_irq(&hugetlb_lock);
1995 
1996 		/*
1997 		 * Normally update_and_free_page will allocate required vmemmmap
1998 		 * before freeing the page.  update_and_free_page will fail to
1999 		 * free the page if it can not allocate required vmemmap.  We
2000 		 * need to adjust max_huge_pages if the page is not freed.
2001 		 * Attempt to allocate vmemmmap here so that we can take
2002 		 * appropriate action on failure.
2003 		 */
2004 		rc = alloc_huge_page_vmemmap(h, head);
2005 		if (!rc) {
2006 			/*
2007 			 * Move PageHWPoison flag from head page to the raw
2008 			 * error page, which makes any subpages rather than
2009 			 * the error page reusable.
2010 			 */
2011 			if (PageHWPoison(head) && page != head) {
2012 				SetPageHWPoison(page);
2013 				ClearPageHWPoison(head);
2014 			}
2015 			update_and_free_page(h, head, false);
2016 		} else {
2017 			spin_lock_irq(&hugetlb_lock);
2018 			add_hugetlb_page(h, head, false);
2019 			h->max_huge_pages++;
2020 			spin_unlock_irq(&hugetlb_lock);
2021 		}
2022 
2023 		return rc;
2024 	}
2025 out:
2026 	spin_unlock_irq(&hugetlb_lock);
2027 	return rc;
2028 }
2029 
2030 /*
2031  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2032  * make specified memory blocks removable from the system.
2033  * Note that this will dissolve a free gigantic hugepage completely, if any
2034  * part of it lies within the given range.
2035  * Also note that if dissolve_free_huge_page() returns with an error, all
2036  * free hugepages that were dissolved before that error are lost.
2037  */
2038 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2039 {
2040 	unsigned long pfn;
2041 	struct page *page;
2042 	int rc = 0;
2043 
2044 	if (!hugepages_supported())
2045 		return rc;
2046 
2047 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2048 		page = pfn_to_page(pfn);
2049 		rc = dissolve_free_huge_page(page);
2050 		if (rc)
2051 			break;
2052 	}
2053 
2054 	return rc;
2055 }
2056 
2057 /*
2058  * Allocates a fresh surplus page from the page allocator.
2059  */
2060 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2061 		int nid, nodemask_t *nmask, bool zero_ref)
2062 {
2063 	struct page *page = NULL;
2064 	bool retry = false;
2065 
2066 	if (hstate_is_gigantic(h))
2067 		return NULL;
2068 
2069 	spin_lock_irq(&hugetlb_lock);
2070 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2071 		goto out_unlock;
2072 	spin_unlock_irq(&hugetlb_lock);
2073 
2074 retry:
2075 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2076 	if (!page)
2077 		return NULL;
2078 
2079 	spin_lock_irq(&hugetlb_lock);
2080 	/*
2081 	 * We could have raced with the pool size change.
2082 	 * Double check that and simply deallocate the new page
2083 	 * if we would end up overcommiting the surpluses. Abuse
2084 	 * temporary page to workaround the nasty free_huge_page
2085 	 * codeflow
2086 	 */
2087 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2088 		SetHPageTemporary(page);
2089 		spin_unlock_irq(&hugetlb_lock);
2090 		put_page(page);
2091 		return NULL;
2092 	}
2093 
2094 	if (zero_ref) {
2095 		/*
2096 		 * Caller requires a page with zero ref count.
2097 		 * We will drop ref count here.  If someone else is holding
2098 		 * a ref, the page will be freed when they drop it.  Abuse
2099 		 * temporary page flag to accomplish this.
2100 		 */
2101 		SetHPageTemporary(page);
2102 		if (!put_page_testzero(page)) {
2103 			/*
2104 			 * Unexpected inflated ref count on freshly allocated
2105 			 * huge.  Retry once.
2106 			 */
2107 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2108 			spin_unlock_irq(&hugetlb_lock);
2109 			if (retry)
2110 				return NULL;
2111 
2112 			retry = true;
2113 			goto retry;
2114 		}
2115 		ClearHPageTemporary(page);
2116 	}
2117 
2118 	h->surplus_huge_pages++;
2119 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2120 
2121 out_unlock:
2122 	spin_unlock_irq(&hugetlb_lock);
2123 
2124 	return page;
2125 }
2126 
2127 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2128 				     int nid, nodemask_t *nmask)
2129 {
2130 	struct page *page;
2131 
2132 	if (hstate_is_gigantic(h))
2133 		return NULL;
2134 
2135 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2136 	if (!page)
2137 		return NULL;
2138 
2139 	/*
2140 	 * We do not account these pages as surplus because they are only
2141 	 * temporary and will be released properly on the last reference
2142 	 */
2143 	SetHPageTemporary(page);
2144 
2145 	return page;
2146 }
2147 
2148 /*
2149  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2150  */
2151 static
2152 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2153 		struct vm_area_struct *vma, unsigned long addr)
2154 {
2155 	struct page *page = NULL;
2156 	struct mempolicy *mpol;
2157 	gfp_t gfp_mask = htlb_alloc_mask(h);
2158 	int nid;
2159 	nodemask_t *nodemask;
2160 
2161 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2162 	if (mpol_is_preferred_many(mpol)) {
2163 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2164 
2165 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2166 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2167 
2168 		/* Fallback to all nodes if page==NULL */
2169 		nodemask = NULL;
2170 	}
2171 
2172 	if (!page)
2173 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2174 	mpol_cond_put(mpol);
2175 	return page;
2176 }
2177 
2178 /* page migration callback function */
2179 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2180 		nodemask_t *nmask, gfp_t gfp_mask)
2181 {
2182 	spin_lock_irq(&hugetlb_lock);
2183 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2184 		struct page *page;
2185 
2186 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2187 		if (page) {
2188 			spin_unlock_irq(&hugetlb_lock);
2189 			return page;
2190 		}
2191 	}
2192 	spin_unlock_irq(&hugetlb_lock);
2193 
2194 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2195 }
2196 
2197 /* mempolicy aware migration callback */
2198 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2199 		unsigned long address)
2200 {
2201 	struct mempolicy *mpol;
2202 	nodemask_t *nodemask;
2203 	struct page *page;
2204 	gfp_t gfp_mask;
2205 	int node;
2206 
2207 	gfp_mask = htlb_alloc_mask(h);
2208 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2209 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2210 	mpol_cond_put(mpol);
2211 
2212 	return page;
2213 }
2214 
2215 /*
2216  * Increase the hugetlb pool such that it can accommodate a reservation
2217  * of size 'delta'.
2218  */
2219 static int gather_surplus_pages(struct hstate *h, long delta)
2220 	__must_hold(&hugetlb_lock)
2221 {
2222 	struct list_head surplus_list;
2223 	struct page *page, *tmp;
2224 	int ret;
2225 	long i;
2226 	long needed, allocated;
2227 	bool alloc_ok = true;
2228 
2229 	lockdep_assert_held(&hugetlb_lock);
2230 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2231 	if (needed <= 0) {
2232 		h->resv_huge_pages += delta;
2233 		return 0;
2234 	}
2235 
2236 	allocated = 0;
2237 	INIT_LIST_HEAD(&surplus_list);
2238 
2239 	ret = -ENOMEM;
2240 retry:
2241 	spin_unlock_irq(&hugetlb_lock);
2242 	for (i = 0; i < needed; i++) {
2243 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2244 				NUMA_NO_NODE, NULL, true);
2245 		if (!page) {
2246 			alloc_ok = false;
2247 			break;
2248 		}
2249 		list_add(&page->lru, &surplus_list);
2250 		cond_resched();
2251 	}
2252 	allocated += i;
2253 
2254 	/*
2255 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2256 	 * because either resv_huge_pages or free_huge_pages may have changed.
2257 	 */
2258 	spin_lock_irq(&hugetlb_lock);
2259 	needed = (h->resv_huge_pages + delta) -
2260 			(h->free_huge_pages + allocated);
2261 	if (needed > 0) {
2262 		if (alloc_ok)
2263 			goto retry;
2264 		/*
2265 		 * We were not able to allocate enough pages to
2266 		 * satisfy the entire reservation so we free what
2267 		 * we've allocated so far.
2268 		 */
2269 		goto free;
2270 	}
2271 	/*
2272 	 * The surplus_list now contains _at_least_ the number of extra pages
2273 	 * needed to accommodate the reservation.  Add the appropriate number
2274 	 * of pages to the hugetlb pool and free the extras back to the buddy
2275 	 * allocator.  Commit the entire reservation here to prevent another
2276 	 * process from stealing the pages as they are added to the pool but
2277 	 * before they are reserved.
2278 	 */
2279 	needed += allocated;
2280 	h->resv_huge_pages += delta;
2281 	ret = 0;
2282 
2283 	/* Free the needed pages to the hugetlb pool */
2284 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2285 		if ((--needed) < 0)
2286 			break;
2287 		/* Add the page to the hugetlb allocator */
2288 		enqueue_huge_page(h, page);
2289 	}
2290 free:
2291 	spin_unlock_irq(&hugetlb_lock);
2292 
2293 	/*
2294 	 * Free unnecessary surplus pages to the buddy allocator.
2295 	 * Pages have no ref count, call free_huge_page directly.
2296 	 */
2297 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2298 		free_huge_page(page);
2299 	spin_lock_irq(&hugetlb_lock);
2300 
2301 	return ret;
2302 }
2303 
2304 /*
2305  * This routine has two main purposes:
2306  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2307  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2308  *    to the associated reservation map.
2309  * 2) Free any unused surplus pages that may have been allocated to satisfy
2310  *    the reservation.  As many as unused_resv_pages may be freed.
2311  */
2312 static void return_unused_surplus_pages(struct hstate *h,
2313 					unsigned long unused_resv_pages)
2314 {
2315 	unsigned long nr_pages;
2316 	struct page *page;
2317 	LIST_HEAD(page_list);
2318 
2319 	lockdep_assert_held(&hugetlb_lock);
2320 	/* Uncommit the reservation */
2321 	h->resv_huge_pages -= unused_resv_pages;
2322 
2323 	/* Cannot return gigantic pages currently */
2324 	if (hstate_is_gigantic(h))
2325 		goto out;
2326 
2327 	/*
2328 	 * Part (or even all) of the reservation could have been backed
2329 	 * by pre-allocated pages. Only free surplus pages.
2330 	 */
2331 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2332 
2333 	/*
2334 	 * We want to release as many surplus pages as possible, spread
2335 	 * evenly across all nodes with memory. Iterate across these nodes
2336 	 * until we can no longer free unreserved surplus pages. This occurs
2337 	 * when the nodes with surplus pages have no free pages.
2338 	 * remove_pool_huge_page() will balance the freed pages across the
2339 	 * on-line nodes with memory and will handle the hstate accounting.
2340 	 */
2341 	while (nr_pages--) {
2342 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2343 		if (!page)
2344 			goto out;
2345 
2346 		list_add(&page->lru, &page_list);
2347 	}
2348 
2349 out:
2350 	spin_unlock_irq(&hugetlb_lock);
2351 	update_and_free_pages_bulk(h, &page_list);
2352 	spin_lock_irq(&hugetlb_lock);
2353 }
2354 
2355 
2356 /*
2357  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2358  * are used by the huge page allocation routines to manage reservations.
2359  *
2360  * vma_needs_reservation is called to determine if the huge page at addr
2361  * within the vma has an associated reservation.  If a reservation is
2362  * needed, the value 1 is returned.  The caller is then responsible for
2363  * managing the global reservation and subpool usage counts.  After
2364  * the huge page has been allocated, vma_commit_reservation is called
2365  * to add the page to the reservation map.  If the page allocation fails,
2366  * the reservation must be ended instead of committed.  vma_end_reservation
2367  * is called in such cases.
2368  *
2369  * In the normal case, vma_commit_reservation returns the same value
2370  * as the preceding vma_needs_reservation call.  The only time this
2371  * is not the case is if a reserve map was changed between calls.  It
2372  * is the responsibility of the caller to notice the difference and
2373  * take appropriate action.
2374  *
2375  * vma_add_reservation is used in error paths where a reservation must
2376  * be restored when a newly allocated huge page must be freed.  It is
2377  * to be called after calling vma_needs_reservation to determine if a
2378  * reservation exists.
2379  *
2380  * vma_del_reservation is used in error paths where an entry in the reserve
2381  * map was created during huge page allocation and must be removed.  It is to
2382  * be called after calling vma_needs_reservation to determine if a reservation
2383  * exists.
2384  */
2385 enum vma_resv_mode {
2386 	VMA_NEEDS_RESV,
2387 	VMA_COMMIT_RESV,
2388 	VMA_END_RESV,
2389 	VMA_ADD_RESV,
2390 	VMA_DEL_RESV,
2391 };
2392 static long __vma_reservation_common(struct hstate *h,
2393 				struct vm_area_struct *vma, unsigned long addr,
2394 				enum vma_resv_mode mode)
2395 {
2396 	struct resv_map *resv;
2397 	pgoff_t idx;
2398 	long ret;
2399 	long dummy_out_regions_needed;
2400 
2401 	resv = vma_resv_map(vma);
2402 	if (!resv)
2403 		return 1;
2404 
2405 	idx = vma_hugecache_offset(h, vma, addr);
2406 	switch (mode) {
2407 	case VMA_NEEDS_RESV:
2408 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2409 		/* We assume that vma_reservation_* routines always operate on
2410 		 * 1 page, and that adding to resv map a 1 page entry can only
2411 		 * ever require 1 region.
2412 		 */
2413 		VM_BUG_ON(dummy_out_regions_needed != 1);
2414 		break;
2415 	case VMA_COMMIT_RESV:
2416 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2417 		/* region_add calls of range 1 should never fail. */
2418 		VM_BUG_ON(ret < 0);
2419 		break;
2420 	case VMA_END_RESV:
2421 		region_abort(resv, idx, idx + 1, 1);
2422 		ret = 0;
2423 		break;
2424 	case VMA_ADD_RESV:
2425 		if (vma->vm_flags & VM_MAYSHARE) {
2426 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2427 			/* region_add calls of range 1 should never fail. */
2428 			VM_BUG_ON(ret < 0);
2429 		} else {
2430 			region_abort(resv, idx, idx + 1, 1);
2431 			ret = region_del(resv, idx, idx + 1);
2432 		}
2433 		break;
2434 	case VMA_DEL_RESV:
2435 		if (vma->vm_flags & VM_MAYSHARE) {
2436 			region_abort(resv, idx, idx + 1, 1);
2437 			ret = region_del(resv, idx, idx + 1);
2438 		} else {
2439 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2440 			/* region_add calls of range 1 should never fail. */
2441 			VM_BUG_ON(ret < 0);
2442 		}
2443 		break;
2444 	default:
2445 		BUG();
2446 	}
2447 
2448 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2449 		return ret;
2450 	/*
2451 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2452 	 *
2453 	 * In most cases, reserves always exist for private mappings.
2454 	 * However, a file associated with mapping could have been
2455 	 * hole punched or truncated after reserves were consumed.
2456 	 * As subsequent fault on such a range will not use reserves.
2457 	 * Subtle - The reserve map for private mappings has the
2458 	 * opposite meaning than that of shared mappings.  If NO
2459 	 * entry is in the reserve map, it means a reservation exists.
2460 	 * If an entry exists in the reserve map, it means the
2461 	 * reservation has already been consumed.  As a result, the
2462 	 * return value of this routine is the opposite of the
2463 	 * value returned from reserve map manipulation routines above.
2464 	 */
2465 	if (ret > 0)
2466 		return 0;
2467 	if (ret == 0)
2468 		return 1;
2469 	return ret;
2470 }
2471 
2472 static long vma_needs_reservation(struct hstate *h,
2473 			struct vm_area_struct *vma, unsigned long addr)
2474 {
2475 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2476 }
2477 
2478 static long vma_commit_reservation(struct hstate *h,
2479 			struct vm_area_struct *vma, unsigned long addr)
2480 {
2481 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2482 }
2483 
2484 static void vma_end_reservation(struct hstate *h,
2485 			struct vm_area_struct *vma, unsigned long addr)
2486 {
2487 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2488 }
2489 
2490 static long vma_add_reservation(struct hstate *h,
2491 			struct vm_area_struct *vma, unsigned long addr)
2492 {
2493 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2494 }
2495 
2496 static long vma_del_reservation(struct hstate *h,
2497 			struct vm_area_struct *vma, unsigned long addr)
2498 {
2499 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2500 }
2501 
2502 /*
2503  * This routine is called to restore reservation information on error paths.
2504  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2505  * the hugetlb mutex should remain held when calling this routine.
2506  *
2507  * It handles two specific cases:
2508  * 1) A reservation was in place and the page consumed the reservation.
2509  *    HPageRestoreReserve is set in the page.
2510  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2511  *    not set.  However, alloc_huge_page always updates the reserve map.
2512  *
2513  * In case 1, free_huge_page later in the error path will increment the
2514  * global reserve count.  But, free_huge_page does not have enough context
2515  * to adjust the reservation map.  This case deals primarily with private
2516  * mappings.  Adjust the reserve map here to be consistent with global
2517  * reserve count adjustments to be made by free_huge_page.  Make sure the
2518  * reserve map indicates there is a reservation present.
2519  *
2520  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2521  */
2522 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2523 			unsigned long address, struct page *page)
2524 {
2525 	long rc = vma_needs_reservation(h, vma, address);
2526 
2527 	if (HPageRestoreReserve(page)) {
2528 		if (unlikely(rc < 0))
2529 			/*
2530 			 * Rare out of memory condition in reserve map
2531 			 * manipulation.  Clear HPageRestoreReserve so that
2532 			 * global reserve count will not be incremented
2533 			 * by free_huge_page.  This will make it appear
2534 			 * as though the reservation for this page was
2535 			 * consumed.  This may prevent the task from
2536 			 * faulting in the page at a later time.  This
2537 			 * is better than inconsistent global huge page
2538 			 * accounting of reserve counts.
2539 			 */
2540 			ClearHPageRestoreReserve(page);
2541 		else if (rc)
2542 			(void)vma_add_reservation(h, vma, address);
2543 		else
2544 			vma_end_reservation(h, vma, address);
2545 	} else {
2546 		if (!rc) {
2547 			/*
2548 			 * This indicates there is an entry in the reserve map
2549 			 * not added by alloc_huge_page.  We know it was added
2550 			 * before the alloc_huge_page call, otherwise
2551 			 * HPageRestoreReserve would be set on the page.
2552 			 * Remove the entry so that a subsequent allocation
2553 			 * does not consume a reservation.
2554 			 */
2555 			rc = vma_del_reservation(h, vma, address);
2556 			if (rc < 0)
2557 				/*
2558 				 * VERY rare out of memory condition.  Since
2559 				 * we can not delete the entry, set
2560 				 * HPageRestoreReserve so that the reserve
2561 				 * count will be incremented when the page
2562 				 * is freed.  This reserve will be consumed
2563 				 * on a subsequent allocation.
2564 				 */
2565 				SetHPageRestoreReserve(page);
2566 		} else if (rc < 0) {
2567 			/*
2568 			 * Rare out of memory condition from
2569 			 * vma_needs_reservation call.  Memory allocation is
2570 			 * only attempted if a new entry is needed.  Therefore,
2571 			 * this implies there is not an entry in the
2572 			 * reserve map.
2573 			 *
2574 			 * For shared mappings, no entry in the map indicates
2575 			 * no reservation.  We are done.
2576 			 */
2577 			if (!(vma->vm_flags & VM_MAYSHARE))
2578 				/*
2579 				 * For private mappings, no entry indicates
2580 				 * a reservation is present.  Since we can
2581 				 * not add an entry, set SetHPageRestoreReserve
2582 				 * on the page so reserve count will be
2583 				 * incremented when freed.  This reserve will
2584 				 * be consumed on a subsequent allocation.
2585 				 */
2586 				SetHPageRestoreReserve(page);
2587 		} else
2588 			/*
2589 			 * No reservation present, do nothing
2590 			 */
2591 			 vma_end_reservation(h, vma, address);
2592 	}
2593 }
2594 
2595 /*
2596  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2597  * @h: struct hstate old page belongs to
2598  * @old_page: Old page to dissolve
2599  * @list: List to isolate the page in case we need to
2600  * Returns 0 on success, otherwise negated error.
2601  */
2602 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2603 					struct list_head *list)
2604 {
2605 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2606 	int nid = page_to_nid(old_page);
2607 	bool alloc_retry = false;
2608 	struct page *new_page;
2609 	int ret = 0;
2610 
2611 	/*
2612 	 * Before dissolving the page, we need to allocate a new one for the
2613 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2614 	 * by doing everything but actually updating counters and adding to
2615 	 * the pool.  This simplifies and let us do most of the processing
2616 	 * under the lock.
2617 	 */
2618 alloc_retry:
2619 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2620 	if (!new_page)
2621 		return -ENOMEM;
2622 	/*
2623 	 * If all goes well, this page will be directly added to the free
2624 	 * list in the pool.  For this the ref count needs to be zero.
2625 	 * Attempt to drop now, and retry once if needed.  It is VERY
2626 	 * unlikely there is another ref on the page.
2627 	 *
2628 	 * If someone else has a reference to the page, it will be freed
2629 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2630 	 * this.  Retry once if there is an inflated ref count.
2631 	 */
2632 	SetHPageTemporary(new_page);
2633 	if (!put_page_testzero(new_page)) {
2634 		if (alloc_retry)
2635 			return -EBUSY;
2636 
2637 		alloc_retry = true;
2638 		goto alloc_retry;
2639 	}
2640 	ClearHPageTemporary(new_page);
2641 
2642 	__prep_new_huge_page(h, new_page);
2643 
2644 retry:
2645 	spin_lock_irq(&hugetlb_lock);
2646 	if (!PageHuge(old_page)) {
2647 		/*
2648 		 * Freed from under us. Drop new_page too.
2649 		 */
2650 		goto free_new;
2651 	} else if (page_count(old_page)) {
2652 		/*
2653 		 * Someone has grabbed the page, try to isolate it here.
2654 		 * Fail with -EBUSY if not possible.
2655 		 */
2656 		spin_unlock_irq(&hugetlb_lock);
2657 		if (!isolate_huge_page(old_page, list))
2658 			ret = -EBUSY;
2659 		spin_lock_irq(&hugetlb_lock);
2660 		goto free_new;
2661 	} else if (!HPageFreed(old_page)) {
2662 		/*
2663 		 * Page's refcount is 0 but it has not been enqueued in the
2664 		 * freelist yet. Race window is small, so we can succeed here if
2665 		 * we retry.
2666 		 */
2667 		spin_unlock_irq(&hugetlb_lock);
2668 		cond_resched();
2669 		goto retry;
2670 	} else {
2671 		/*
2672 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2673 		 * the freelist and decrease the counters. These will be
2674 		 * incremented again when calling __prep_account_new_huge_page()
2675 		 * and enqueue_huge_page() for new_page. The counters will remain
2676 		 * stable since this happens under the lock.
2677 		 */
2678 		remove_hugetlb_page(h, old_page, false);
2679 
2680 		/*
2681 		 * Ref count on new page is already zero as it was dropped
2682 		 * earlier.  It can be directly added to the pool free list.
2683 		 */
2684 		__prep_account_new_huge_page(h, nid);
2685 		enqueue_huge_page(h, new_page);
2686 
2687 		/*
2688 		 * Pages have been replaced, we can safely free the old one.
2689 		 */
2690 		spin_unlock_irq(&hugetlb_lock);
2691 		update_and_free_page(h, old_page, false);
2692 	}
2693 
2694 	return ret;
2695 
2696 free_new:
2697 	spin_unlock_irq(&hugetlb_lock);
2698 	/* Page has a zero ref count, but needs a ref to be freed */
2699 	set_page_refcounted(new_page);
2700 	update_and_free_page(h, new_page, false);
2701 
2702 	return ret;
2703 }
2704 
2705 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2706 {
2707 	struct hstate *h;
2708 	struct page *head;
2709 	int ret = -EBUSY;
2710 
2711 	/*
2712 	 * The page might have been dissolved from under our feet, so make sure
2713 	 * to carefully check the state under the lock.
2714 	 * Return success when racing as if we dissolved the page ourselves.
2715 	 */
2716 	spin_lock_irq(&hugetlb_lock);
2717 	if (PageHuge(page)) {
2718 		head = compound_head(page);
2719 		h = page_hstate(head);
2720 	} else {
2721 		spin_unlock_irq(&hugetlb_lock);
2722 		return 0;
2723 	}
2724 	spin_unlock_irq(&hugetlb_lock);
2725 
2726 	/*
2727 	 * Fence off gigantic pages as there is a cyclic dependency between
2728 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2729 	 * of bailing out right away without further retrying.
2730 	 */
2731 	if (hstate_is_gigantic(h))
2732 		return -ENOMEM;
2733 
2734 	if (page_count(head) && isolate_huge_page(head, list))
2735 		ret = 0;
2736 	else if (!page_count(head))
2737 		ret = alloc_and_dissolve_huge_page(h, head, list);
2738 
2739 	return ret;
2740 }
2741 
2742 struct page *alloc_huge_page(struct vm_area_struct *vma,
2743 				    unsigned long addr, int avoid_reserve)
2744 {
2745 	struct hugepage_subpool *spool = subpool_vma(vma);
2746 	struct hstate *h = hstate_vma(vma);
2747 	struct page *page;
2748 	long map_chg, map_commit;
2749 	long gbl_chg;
2750 	int ret, idx;
2751 	struct hugetlb_cgroup *h_cg;
2752 	bool deferred_reserve;
2753 
2754 	idx = hstate_index(h);
2755 	/*
2756 	 * Examine the region/reserve map to determine if the process
2757 	 * has a reservation for the page to be allocated.  A return
2758 	 * code of zero indicates a reservation exists (no change).
2759 	 */
2760 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2761 	if (map_chg < 0)
2762 		return ERR_PTR(-ENOMEM);
2763 
2764 	/*
2765 	 * Processes that did not create the mapping will have no
2766 	 * reserves as indicated by the region/reserve map. Check
2767 	 * that the allocation will not exceed the subpool limit.
2768 	 * Allocations for MAP_NORESERVE mappings also need to be
2769 	 * checked against any subpool limit.
2770 	 */
2771 	if (map_chg || avoid_reserve) {
2772 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2773 		if (gbl_chg < 0) {
2774 			vma_end_reservation(h, vma, addr);
2775 			return ERR_PTR(-ENOSPC);
2776 		}
2777 
2778 		/*
2779 		 * Even though there was no reservation in the region/reserve
2780 		 * map, there could be reservations associated with the
2781 		 * subpool that can be used.  This would be indicated if the
2782 		 * return value of hugepage_subpool_get_pages() is zero.
2783 		 * However, if avoid_reserve is specified we still avoid even
2784 		 * the subpool reservations.
2785 		 */
2786 		if (avoid_reserve)
2787 			gbl_chg = 1;
2788 	}
2789 
2790 	/* If this allocation is not consuming a reservation, charge it now.
2791 	 */
2792 	deferred_reserve = map_chg || avoid_reserve;
2793 	if (deferred_reserve) {
2794 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2795 			idx, pages_per_huge_page(h), &h_cg);
2796 		if (ret)
2797 			goto out_subpool_put;
2798 	}
2799 
2800 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2801 	if (ret)
2802 		goto out_uncharge_cgroup_reservation;
2803 
2804 	spin_lock_irq(&hugetlb_lock);
2805 	/*
2806 	 * glb_chg is passed to indicate whether or not a page must be taken
2807 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2808 	 * a reservation exists for the allocation.
2809 	 */
2810 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2811 	if (!page) {
2812 		spin_unlock_irq(&hugetlb_lock);
2813 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2814 		if (!page)
2815 			goto out_uncharge_cgroup;
2816 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2817 			SetHPageRestoreReserve(page);
2818 			h->resv_huge_pages--;
2819 		}
2820 		spin_lock_irq(&hugetlb_lock);
2821 		list_add(&page->lru, &h->hugepage_activelist);
2822 		/* Fall through */
2823 	}
2824 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2825 	/* If allocation is not consuming a reservation, also store the
2826 	 * hugetlb_cgroup pointer on the page.
2827 	 */
2828 	if (deferred_reserve) {
2829 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2830 						  h_cg, page);
2831 	}
2832 
2833 	spin_unlock_irq(&hugetlb_lock);
2834 
2835 	hugetlb_set_page_subpool(page, spool);
2836 
2837 	map_commit = vma_commit_reservation(h, vma, addr);
2838 	if (unlikely(map_chg > map_commit)) {
2839 		/*
2840 		 * The page was added to the reservation map between
2841 		 * vma_needs_reservation and vma_commit_reservation.
2842 		 * This indicates a race with hugetlb_reserve_pages.
2843 		 * Adjust for the subpool count incremented above AND
2844 		 * in hugetlb_reserve_pages for the same page.  Also,
2845 		 * the reservation count added in hugetlb_reserve_pages
2846 		 * no longer applies.
2847 		 */
2848 		long rsv_adjust;
2849 
2850 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2851 		hugetlb_acct_memory(h, -rsv_adjust);
2852 		if (deferred_reserve)
2853 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2854 					pages_per_huge_page(h), page);
2855 	}
2856 	return page;
2857 
2858 out_uncharge_cgroup:
2859 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2860 out_uncharge_cgroup_reservation:
2861 	if (deferred_reserve)
2862 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2863 						    h_cg);
2864 out_subpool_put:
2865 	if (map_chg || avoid_reserve)
2866 		hugepage_subpool_put_pages(spool, 1);
2867 	vma_end_reservation(h, vma, addr);
2868 	return ERR_PTR(-ENOSPC);
2869 }
2870 
2871 int alloc_bootmem_huge_page(struct hstate *h)
2872 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2873 int __alloc_bootmem_huge_page(struct hstate *h)
2874 {
2875 	struct huge_bootmem_page *m;
2876 	int nr_nodes, node;
2877 
2878 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2879 		void *addr;
2880 
2881 		addr = memblock_alloc_try_nid_raw(
2882 				huge_page_size(h), huge_page_size(h),
2883 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2884 		if (addr) {
2885 			/*
2886 			 * Use the beginning of the huge page to store the
2887 			 * huge_bootmem_page struct (until gather_bootmem
2888 			 * puts them into the mem_map).
2889 			 */
2890 			m = addr;
2891 			goto found;
2892 		}
2893 	}
2894 	return 0;
2895 
2896 found:
2897 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2898 	/* Put them into a private list first because mem_map is not up yet */
2899 	INIT_LIST_HEAD(&m->list);
2900 	list_add(&m->list, &huge_boot_pages);
2901 	m->hstate = h;
2902 	return 1;
2903 }
2904 
2905 /*
2906  * Put bootmem huge pages into the standard lists after mem_map is up.
2907  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2908  */
2909 static void __init gather_bootmem_prealloc(void)
2910 {
2911 	struct huge_bootmem_page *m;
2912 
2913 	list_for_each_entry(m, &huge_boot_pages, list) {
2914 		struct page *page = virt_to_page(m);
2915 		struct hstate *h = m->hstate;
2916 
2917 		VM_BUG_ON(!hstate_is_gigantic(h));
2918 		WARN_ON(page_count(page) != 1);
2919 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2920 			WARN_ON(PageReserved(page));
2921 			prep_new_huge_page(h, page, page_to_nid(page));
2922 			put_page(page); /* add to the hugepage allocator */
2923 		} else {
2924 			/* VERY unlikely inflated ref count on a tail page */
2925 			free_gigantic_page(page, huge_page_order(h));
2926 		}
2927 
2928 		/*
2929 		 * We need to restore the 'stolen' pages to totalram_pages
2930 		 * in order to fix confusing memory reports from free(1) and
2931 		 * other side-effects, like CommitLimit going negative.
2932 		 */
2933 		adjust_managed_page_count(page, pages_per_huge_page(h));
2934 		cond_resched();
2935 	}
2936 }
2937 
2938 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2939 {
2940 	unsigned long i;
2941 	nodemask_t *node_alloc_noretry;
2942 
2943 	if (!hstate_is_gigantic(h)) {
2944 		/*
2945 		 * Bit mask controlling how hard we retry per-node allocations.
2946 		 * Ignore errors as lower level routines can deal with
2947 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2948 		 * time, we are likely in bigger trouble.
2949 		 */
2950 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2951 						GFP_KERNEL);
2952 	} else {
2953 		/* allocations done at boot time */
2954 		node_alloc_noretry = NULL;
2955 	}
2956 
2957 	/* bit mask controlling how hard we retry per-node allocations */
2958 	if (node_alloc_noretry)
2959 		nodes_clear(*node_alloc_noretry);
2960 
2961 	for (i = 0; i < h->max_huge_pages; ++i) {
2962 		if (hstate_is_gigantic(h)) {
2963 			if (hugetlb_cma_size) {
2964 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2965 				goto free;
2966 			}
2967 			if (!alloc_bootmem_huge_page(h))
2968 				break;
2969 		} else if (!alloc_pool_huge_page(h,
2970 					 &node_states[N_MEMORY],
2971 					 node_alloc_noretry))
2972 			break;
2973 		cond_resched();
2974 	}
2975 	if (i < h->max_huge_pages) {
2976 		char buf[32];
2977 
2978 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2979 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2980 			h->max_huge_pages, buf, i);
2981 		h->max_huge_pages = i;
2982 	}
2983 free:
2984 	kfree(node_alloc_noretry);
2985 }
2986 
2987 static void __init hugetlb_init_hstates(void)
2988 {
2989 	struct hstate *h;
2990 
2991 	for_each_hstate(h) {
2992 		if (minimum_order > huge_page_order(h))
2993 			minimum_order = huge_page_order(h);
2994 
2995 		/* oversize hugepages were init'ed in early boot */
2996 		if (!hstate_is_gigantic(h))
2997 			hugetlb_hstate_alloc_pages(h);
2998 	}
2999 	VM_BUG_ON(minimum_order == UINT_MAX);
3000 }
3001 
3002 static void __init report_hugepages(void)
3003 {
3004 	struct hstate *h;
3005 
3006 	for_each_hstate(h) {
3007 		char buf[32];
3008 
3009 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3010 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3011 			buf, h->free_huge_pages);
3012 	}
3013 }
3014 
3015 #ifdef CONFIG_HIGHMEM
3016 static void try_to_free_low(struct hstate *h, unsigned long count,
3017 						nodemask_t *nodes_allowed)
3018 {
3019 	int i;
3020 	LIST_HEAD(page_list);
3021 
3022 	lockdep_assert_held(&hugetlb_lock);
3023 	if (hstate_is_gigantic(h))
3024 		return;
3025 
3026 	/*
3027 	 * Collect pages to be freed on a list, and free after dropping lock
3028 	 */
3029 	for_each_node_mask(i, *nodes_allowed) {
3030 		struct page *page, *next;
3031 		struct list_head *freel = &h->hugepage_freelists[i];
3032 		list_for_each_entry_safe(page, next, freel, lru) {
3033 			if (count >= h->nr_huge_pages)
3034 				goto out;
3035 			if (PageHighMem(page))
3036 				continue;
3037 			remove_hugetlb_page(h, page, false);
3038 			list_add(&page->lru, &page_list);
3039 		}
3040 	}
3041 
3042 out:
3043 	spin_unlock_irq(&hugetlb_lock);
3044 	update_and_free_pages_bulk(h, &page_list);
3045 	spin_lock_irq(&hugetlb_lock);
3046 }
3047 #else
3048 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3049 						nodemask_t *nodes_allowed)
3050 {
3051 }
3052 #endif
3053 
3054 /*
3055  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3056  * balanced by operating on them in a round-robin fashion.
3057  * Returns 1 if an adjustment was made.
3058  */
3059 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3060 				int delta)
3061 {
3062 	int nr_nodes, node;
3063 
3064 	lockdep_assert_held(&hugetlb_lock);
3065 	VM_BUG_ON(delta != -1 && delta != 1);
3066 
3067 	if (delta < 0) {
3068 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3069 			if (h->surplus_huge_pages_node[node])
3070 				goto found;
3071 		}
3072 	} else {
3073 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3074 			if (h->surplus_huge_pages_node[node] <
3075 					h->nr_huge_pages_node[node])
3076 				goto found;
3077 		}
3078 	}
3079 	return 0;
3080 
3081 found:
3082 	h->surplus_huge_pages += delta;
3083 	h->surplus_huge_pages_node[node] += delta;
3084 	return 1;
3085 }
3086 
3087 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3088 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3089 			      nodemask_t *nodes_allowed)
3090 {
3091 	unsigned long min_count, ret;
3092 	struct page *page;
3093 	LIST_HEAD(page_list);
3094 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3095 
3096 	/*
3097 	 * Bit mask controlling how hard we retry per-node allocations.
3098 	 * If we can not allocate the bit mask, do not attempt to allocate
3099 	 * the requested huge pages.
3100 	 */
3101 	if (node_alloc_noretry)
3102 		nodes_clear(*node_alloc_noretry);
3103 	else
3104 		return -ENOMEM;
3105 
3106 	/*
3107 	 * resize_lock mutex prevents concurrent adjustments to number of
3108 	 * pages in hstate via the proc/sysfs interfaces.
3109 	 */
3110 	mutex_lock(&h->resize_lock);
3111 	flush_free_hpage_work(h);
3112 	spin_lock_irq(&hugetlb_lock);
3113 
3114 	/*
3115 	 * Check for a node specific request.
3116 	 * Changing node specific huge page count may require a corresponding
3117 	 * change to the global count.  In any case, the passed node mask
3118 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3119 	 */
3120 	if (nid != NUMA_NO_NODE) {
3121 		unsigned long old_count = count;
3122 
3123 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3124 		/*
3125 		 * User may have specified a large count value which caused the
3126 		 * above calculation to overflow.  In this case, they wanted
3127 		 * to allocate as many huge pages as possible.  Set count to
3128 		 * largest possible value to align with their intention.
3129 		 */
3130 		if (count < old_count)
3131 			count = ULONG_MAX;
3132 	}
3133 
3134 	/*
3135 	 * Gigantic pages runtime allocation depend on the capability for large
3136 	 * page range allocation.
3137 	 * If the system does not provide this feature, return an error when
3138 	 * the user tries to allocate gigantic pages but let the user free the
3139 	 * boottime allocated gigantic pages.
3140 	 */
3141 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3142 		if (count > persistent_huge_pages(h)) {
3143 			spin_unlock_irq(&hugetlb_lock);
3144 			mutex_unlock(&h->resize_lock);
3145 			NODEMASK_FREE(node_alloc_noretry);
3146 			return -EINVAL;
3147 		}
3148 		/* Fall through to decrease pool */
3149 	}
3150 
3151 	/*
3152 	 * Increase the pool size
3153 	 * First take pages out of surplus state.  Then make up the
3154 	 * remaining difference by allocating fresh huge pages.
3155 	 *
3156 	 * We might race with alloc_surplus_huge_page() here and be unable
3157 	 * to convert a surplus huge page to a normal huge page. That is
3158 	 * not critical, though, it just means the overall size of the
3159 	 * pool might be one hugepage larger than it needs to be, but
3160 	 * within all the constraints specified by the sysctls.
3161 	 */
3162 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3163 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3164 			break;
3165 	}
3166 
3167 	while (count > persistent_huge_pages(h)) {
3168 		/*
3169 		 * If this allocation races such that we no longer need the
3170 		 * page, free_huge_page will handle it by freeing the page
3171 		 * and reducing the surplus.
3172 		 */
3173 		spin_unlock_irq(&hugetlb_lock);
3174 
3175 		/* yield cpu to avoid soft lockup */
3176 		cond_resched();
3177 
3178 		ret = alloc_pool_huge_page(h, nodes_allowed,
3179 						node_alloc_noretry);
3180 		spin_lock_irq(&hugetlb_lock);
3181 		if (!ret)
3182 			goto out;
3183 
3184 		/* Bail for signals. Probably ctrl-c from user */
3185 		if (signal_pending(current))
3186 			goto out;
3187 	}
3188 
3189 	/*
3190 	 * Decrease the pool size
3191 	 * First return free pages to the buddy allocator (being careful
3192 	 * to keep enough around to satisfy reservations).  Then place
3193 	 * pages into surplus state as needed so the pool will shrink
3194 	 * to the desired size as pages become free.
3195 	 *
3196 	 * By placing pages into the surplus state independent of the
3197 	 * overcommit value, we are allowing the surplus pool size to
3198 	 * exceed overcommit. There are few sane options here. Since
3199 	 * alloc_surplus_huge_page() is checking the global counter,
3200 	 * though, we'll note that we're not allowed to exceed surplus
3201 	 * and won't grow the pool anywhere else. Not until one of the
3202 	 * sysctls are changed, or the surplus pages go out of use.
3203 	 */
3204 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3205 	min_count = max(count, min_count);
3206 	try_to_free_low(h, min_count, nodes_allowed);
3207 
3208 	/*
3209 	 * Collect pages to be removed on list without dropping lock
3210 	 */
3211 	while (min_count < persistent_huge_pages(h)) {
3212 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3213 		if (!page)
3214 			break;
3215 
3216 		list_add(&page->lru, &page_list);
3217 	}
3218 	/* free the pages after dropping lock */
3219 	spin_unlock_irq(&hugetlb_lock);
3220 	update_and_free_pages_bulk(h, &page_list);
3221 	flush_free_hpage_work(h);
3222 	spin_lock_irq(&hugetlb_lock);
3223 
3224 	while (count < persistent_huge_pages(h)) {
3225 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3226 			break;
3227 	}
3228 out:
3229 	h->max_huge_pages = persistent_huge_pages(h);
3230 	spin_unlock_irq(&hugetlb_lock);
3231 	mutex_unlock(&h->resize_lock);
3232 
3233 	NODEMASK_FREE(node_alloc_noretry);
3234 
3235 	return 0;
3236 }
3237 
3238 #define HSTATE_ATTR_RO(_name) \
3239 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3240 
3241 #define HSTATE_ATTR(_name) \
3242 	static struct kobj_attribute _name##_attr = \
3243 		__ATTR(_name, 0644, _name##_show, _name##_store)
3244 
3245 static struct kobject *hugepages_kobj;
3246 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3247 
3248 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3249 
3250 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3251 {
3252 	int i;
3253 
3254 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3255 		if (hstate_kobjs[i] == kobj) {
3256 			if (nidp)
3257 				*nidp = NUMA_NO_NODE;
3258 			return &hstates[i];
3259 		}
3260 
3261 	return kobj_to_node_hstate(kobj, nidp);
3262 }
3263 
3264 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3265 					struct kobj_attribute *attr, char *buf)
3266 {
3267 	struct hstate *h;
3268 	unsigned long nr_huge_pages;
3269 	int nid;
3270 
3271 	h = kobj_to_hstate(kobj, &nid);
3272 	if (nid == NUMA_NO_NODE)
3273 		nr_huge_pages = h->nr_huge_pages;
3274 	else
3275 		nr_huge_pages = h->nr_huge_pages_node[nid];
3276 
3277 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3278 }
3279 
3280 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3281 					   struct hstate *h, int nid,
3282 					   unsigned long count, size_t len)
3283 {
3284 	int err;
3285 	nodemask_t nodes_allowed, *n_mask;
3286 
3287 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3288 		return -EINVAL;
3289 
3290 	if (nid == NUMA_NO_NODE) {
3291 		/*
3292 		 * global hstate attribute
3293 		 */
3294 		if (!(obey_mempolicy &&
3295 				init_nodemask_of_mempolicy(&nodes_allowed)))
3296 			n_mask = &node_states[N_MEMORY];
3297 		else
3298 			n_mask = &nodes_allowed;
3299 	} else {
3300 		/*
3301 		 * Node specific request.  count adjustment happens in
3302 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3303 		 */
3304 		init_nodemask_of_node(&nodes_allowed, nid);
3305 		n_mask = &nodes_allowed;
3306 	}
3307 
3308 	err = set_max_huge_pages(h, count, nid, n_mask);
3309 
3310 	return err ? err : len;
3311 }
3312 
3313 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3314 					 struct kobject *kobj, const char *buf,
3315 					 size_t len)
3316 {
3317 	struct hstate *h;
3318 	unsigned long count;
3319 	int nid;
3320 	int err;
3321 
3322 	err = kstrtoul(buf, 10, &count);
3323 	if (err)
3324 		return err;
3325 
3326 	h = kobj_to_hstate(kobj, &nid);
3327 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3328 }
3329 
3330 static ssize_t nr_hugepages_show(struct kobject *kobj,
3331 				       struct kobj_attribute *attr, char *buf)
3332 {
3333 	return nr_hugepages_show_common(kobj, attr, buf);
3334 }
3335 
3336 static ssize_t nr_hugepages_store(struct kobject *kobj,
3337 	       struct kobj_attribute *attr, const char *buf, size_t len)
3338 {
3339 	return nr_hugepages_store_common(false, kobj, buf, len);
3340 }
3341 HSTATE_ATTR(nr_hugepages);
3342 
3343 #ifdef CONFIG_NUMA
3344 
3345 /*
3346  * hstate attribute for optionally mempolicy-based constraint on persistent
3347  * huge page alloc/free.
3348  */
3349 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3350 					   struct kobj_attribute *attr,
3351 					   char *buf)
3352 {
3353 	return nr_hugepages_show_common(kobj, attr, buf);
3354 }
3355 
3356 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3357 	       struct kobj_attribute *attr, const char *buf, size_t len)
3358 {
3359 	return nr_hugepages_store_common(true, kobj, buf, len);
3360 }
3361 HSTATE_ATTR(nr_hugepages_mempolicy);
3362 #endif
3363 
3364 
3365 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3366 					struct kobj_attribute *attr, char *buf)
3367 {
3368 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3369 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3370 }
3371 
3372 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3373 		struct kobj_attribute *attr, const char *buf, size_t count)
3374 {
3375 	int err;
3376 	unsigned long input;
3377 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3378 
3379 	if (hstate_is_gigantic(h))
3380 		return -EINVAL;
3381 
3382 	err = kstrtoul(buf, 10, &input);
3383 	if (err)
3384 		return err;
3385 
3386 	spin_lock_irq(&hugetlb_lock);
3387 	h->nr_overcommit_huge_pages = input;
3388 	spin_unlock_irq(&hugetlb_lock);
3389 
3390 	return count;
3391 }
3392 HSTATE_ATTR(nr_overcommit_hugepages);
3393 
3394 static ssize_t free_hugepages_show(struct kobject *kobj,
3395 					struct kobj_attribute *attr, char *buf)
3396 {
3397 	struct hstate *h;
3398 	unsigned long free_huge_pages;
3399 	int nid;
3400 
3401 	h = kobj_to_hstate(kobj, &nid);
3402 	if (nid == NUMA_NO_NODE)
3403 		free_huge_pages = h->free_huge_pages;
3404 	else
3405 		free_huge_pages = h->free_huge_pages_node[nid];
3406 
3407 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3408 }
3409 HSTATE_ATTR_RO(free_hugepages);
3410 
3411 static ssize_t resv_hugepages_show(struct kobject *kobj,
3412 					struct kobj_attribute *attr, char *buf)
3413 {
3414 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3415 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3416 }
3417 HSTATE_ATTR_RO(resv_hugepages);
3418 
3419 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3420 					struct kobj_attribute *attr, char *buf)
3421 {
3422 	struct hstate *h;
3423 	unsigned long surplus_huge_pages;
3424 	int nid;
3425 
3426 	h = kobj_to_hstate(kobj, &nid);
3427 	if (nid == NUMA_NO_NODE)
3428 		surplus_huge_pages = h->surplus_huge_pages;
3429 	else
3430 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3431 
3432 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3433 }
3434 HSTATE_ATTR_RO(surplus_hugepages);
3435 
3436 static struct attribute *hstate_attrs[] = {
3437 	&nr_hugepages_attr.attr,
3438 	&nr_overcommit_hugepages_attr.attr,
3439 	&free_hugepages_attr.attr,
3440 	&resv_hugepages_attr.attr,
3441 	&surplus_hugepages_attr.attr,
3442 #ifdef CONFIG_NUMA
3443 	&nr_hugepages_mempolicy_attr.attr,
3444 #endif
3445 	NULL,
3446 };
3447 
3448 static const struct attribute_group hstate_attr_group = {
3449 	.attrs = hstate_attrs,
3450 };
3451 
3452 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3453 				    struct kobject **hstate_kobjs,
3454 				    const struct attribute_group *hstate_attr_group)
3455 {
3456 	int retval;
3457 	int hi = hstate_index(h);
3458 
3459 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3460 	if (!hstate_kobjs[hi])
3461 		return -ENOMEM;
3462 
3463 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3464 	if (retval) {
3465 		kobject_put(hstate_kobjs[hi]);
3466 		hstate_kobjs[hi] = NULL;
3467 	}
3468 
3469 	return retval;
3470 }
3471 
3472 static void __init hugetlb_sysfs_init(void)
3473 {
3474 	struct hstate *h;
3475 	int err;
3476 
3477 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3478 	if (!hugepages_kobj)
3479 		return;
3480 
3481 	for_each_hstate(h) {
3482 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3483 					 hstate_kobjs, &hstate_attr_group);
3484 		if (err)
3485 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3486 	}
3487 }
3488 
3489 #ifdef CONFIG_NUMA
3490 
3491 /*
3492  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3493  * with node devices in node_devices[] using a parallel array.  The array
3494  * index of a node device or _hstate == node id.
3495  * This is here to avoid any static dependency of the node device driver, in
3496  * the base kernel, on the hugetlb module.
3497  */
3498 struct node_hstate {
3499 	struct kobject		*hugepages_kobj;
3500 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3501 };
3502 static struct node_hstate node_hstates[MAX_NUMNODES];
3503 
3504 /*
3505  * A subset of global hstate attributes for node devices
3506  */
3507 static struct attribute *per_node_hstate_attrs[] = {
3508 	&nr_hugepages_attr.attr,
3509 	&free_hugepages_attr.attr,
3510 	&surplus_hugepages_attr.attr,
3511 	NULL,
3512 };
3513 
3514 static const struct attribute_group per_node_hstate_attr_group = {
3515 	.attrs = per_node_hstate_attrs,
3516 };
3517 
3518 /*
3519  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3520  * Returns node id via non-NULL nidp.
3521  */
3522 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3523 {
3524 	int nid;
3525 
3526 	for (nid = 0; nid < nr_node_ids; nid++) {
3527 		struct node_hstate *nhs = &node_hstates[nid];
3528 		int i;
3529 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3530 			if (nhs->hstate_kobjs[i] == kobj) {
3531 				if (nidp)
3532 					*nidp = nid;
3533 				return &hstates[i];
3534 			}
3535 	}
3536 
3537 	BUG();
3538 	return NULL;
3539 }
3540 
3541 /*
3542  * Unregister hstate attributes from a single node device.
3543  * No-op if no hstate attributes attached.
3544  */
3545 static void hugetlb_unregister_node(struct node *node)
3546 {
3547 	struct hstate *h;
3548 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3549 
3550 	if (!nhs->hugepages_kobj)
3551 		return;		/* no hstate attributes */
3552 
3553 	for_each_hstate(h) {
3554 		int idx = hstate_index(h);
3555 		if (nhs->hstate_kobjs[idx]) {
3556 			kobject_put(nhs->hstate_kobjs[idx]);
3557 			nhs->hstate_kobjs[idx] = NULL;
3558 		}
3559 	}
3560 
3561 	kobject_put(nhs->hugepages_kobj);
3562 	nhs->hugepages_kobj = NULL;
3563 }
3564 
3565 
3566 /*
3567  * Register hstate attributes for a single node device.
3568  * No-op if attributes already registered.
3569  */
3570 static void hugetlb_register_node(struct node *node)
3571 {
3572 	struct hstate *h;
3573 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3574 	int err;
3575 
3576 	if (nhs->hugepages_kobj)
3577 		return;		/* already allocated */
3578 
3579 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3580 							&node->dev.kobj);
3581 	if (!nhs->hugepages_kobj)
3582 		return;
3583 
3584 	for_each_hstate(h) {
3585 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3586 						nhs->hstate_kobjs,
3587 						&per_node_hstate_attr_group);
3588 		if (err) {
3589 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3590 				h->name, node->dev.id);
3591 			hugetlb_unregister_node(node);
3592 			break;
3593 		}
3594 	}
3595 }
3596 
3597 /*
3598  * hugetlb init time:  register hstate attributes for all registered node
3599  * devices of nodes that have memory.  All on-line nodes should have
3600  * registered their associated device by this time.
3601  */
3602 static void __init hugetlb_register_all_nodes(void)
3603 {
3604 	int nid;
3605 
3606 	for_each_node_state(nid, N_MEMORY) {
3607 		struct node *node = node_devices[nid];
3608 		if (node->dev.id == nid)
3609 			hugetlb_register_node(node);
3610 	}
3611 
3612 	/*
3613 	 * Let the node device driver know we're here so it can
3614 	 * [un]register hstate attributes on node hotplug.
3615 	 */
3616 	register_hugetlbfs_with_node(hugetlb_register_node,
3617 				     hugetlb_unregister_node);
3618 }
3619 #else	/* !CONFIG_NUMA */
3620 
3621 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3622 {
3623 	BUG();
3624 	if (nidp)
3625 		*nidp = -1;
3626 	return NULL;
3627 }
3628 
3629 static void hugetlb_register_all_nodes(void) { }
3630 
3631 #endif
3632 
3633 static int __init hugetlb_init(void)
3634 {
3635 	int i;
3636 
3637 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3638 			__NR_HPAGEFLAGS);
3639 
3640 	if (!hugepages_supported()) {
3641 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3642 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3643 		return 0;
3644 	}
3645 
3646 	/*
3647 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3648 	 * architectures depend on setup being done here.
3649 	 */
3650 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3651 	if (!parsed_default_hugepagesz) {
3652 		/*
3653 		 * If we did not parse a default huge page size, set
3654 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3655 		 * number of huge pages for this default size was implicitly
3656 		 * specified, set that here as well.
3657 		 * Note that the implicit setting will overwrite an explicit
3658 		 * setting.  A warning will be printed in this case.
3659 		 */
3660 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3661 		if (default_hstate_max_huge_pages) {
3662 			if (default_hstate.max_huge_pages) {
3663 				char buf[32];
3664 
3665 				string_get_size(huge_page_size(&default_hstate),
3666 					1, STRING_UNITS_2, buf, 32);
3667 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3668 					default_hstate.max_huge_pages, buf);
3669 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3670 					default_hstate_max_huge_pages);
3671 			}
3672 			default_hstate.max_huge_pages =
3673 				default_hstate_max_huge_pages;
3674 		}
3675 	}
3676 
3677 	hugetlb_cma_check();
3678 	hugetlb_init_hstates();
3679 	gather_bootmem_prealloc();
3680 	report_hugepages();
3681 
3682 	hugetlb_sysfs_init();
3683 	hugetlb_register_all_nodes();
3684 	hugetlb_cgroup_file_init();
3685 
3686 #ifdef CONFIG_SMP
3687 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3688 #else
3689 	num_fault_mutexes = 1;
3690 #endif
3691 	hugetlb_fault_mutex_table =
3692 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3693 			      GFP_KERNEL);
3694 	BUG_ON(!hugetlb_fault_mutex_table);
3695 
3696 	for (i = 0; i < num_fault_mutexes; i++)
3697 		mutex_init(&hugetlb_fault_mutex_table[i]);
3698 	return 0;
3699 }
3700 subsys_initcall(hugetlb_init);
3701 
3702 /* Overwritten by architectures with more huge page sizes */
3703 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3704 {
3705 	return size == HPAGE_SIZE;
3706 }
3707 
3708 void __init hugetlb_add_hstate(unsigned int order)
3709 {
3710 	struct hstate *h;
3711 	unsigned long i;
3712 
3713 	if (size_to_hstate(PAGE_SIZE << order)) {
3714 		return;
3715 	}
3716 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3717 	BUG_ON(order == 0);
3718 	h = &hstates[hugetlb_max_hstate++];
3719 	mutex_init(&h->resize_lock);
3720 	h->order = order;
3721 	h->mask = ~(huge_page_size(h) - 1);
3722 	for (i = 0; i < MAX_NUMNODES; ++i)
3723 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3724 	INIT_LIST_HEAD(&h->hugepage_activelist);
3725 	h->next_nid_to_alloc = first_memory_node;
3726 	h->next_nid_to_free = first_memory_node;
3727 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3728 					huge_page_size(h)/1024);
3729 	hugetlb_vmemmap_init(h);
3730 
3731 	parsed_hstate = h;
3732 }
3733 
3734 /*
3735  * hugepages command line processing
3736  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3737  * specification.  If not, ignore the hugepages value.  hugepages can also
3738  * be the first huge page command line  option in which case it implicitly
3739  * specifies the number of huge pages for the default size.
3740  */
3741 static int __init hugepages_setup(char *s)
3742 {
3743 	unsigned long *mhp;
3744 	static unsigned long *last_mhp;
3745 
3746 	if (!parsed_valid_hugepagesz) {
3747 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3748 		parsed_valid_hugepagesz = true;
3749 		return 0;
3750 	}
3751 
3752 	/*
3753 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3754 	 * yet, so this hugepages= parameter goes to the "default hstate".
3755 	 * Otherwise, it goes with the previously parsed hugepagesz or
3756 	 * default_hugepagesz.
3757 	 */
3758 	else if (!hugetlb_max_hstate)
3759 		mhp = &default_hstate_max_huge_pages;
3760 	else
3761 		mhp = &parsed_hstate->max_huge_pages;
3762 
3763 	if (mhp == last_mhp) {
3764 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3765 		return 0;
3766 	}
3767 
3768 	if (sscanf(s, "%lu", mhp) <= 0)
3769 		*mhp = 0;
3770 
3771 	/*
3772 	 * Global state is always initialized later in hugetlb_init.
3773 	 * But we need to allocate gigantic hstates here early to still
3774 	 * use the bootmem allocator.
3775 	 */
3776 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3777 		hugetlb_hstate_alloc_pages(parsed_hstate);
3778 
3779 	last_mhp = mhp;
3780 
3781 	return 1;
3782 }
3783 __setup("hugepages=", hugepages_setup);
3784 
3785 /*
3786  * hugepagesz command line processing
3787  * A specific huge page size can only be specified once with hugepagesz.
3788  * hugepagesz is followed by hugepages on the command line.  The global
3789  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3790  * hugepagesz argument was valid.
3791  */
3792 static int __init hugepagesz_setup(char *s)
3793 {
3794 	unsigned long size;
3795 	struct hstate *h;
3796 
3797 	parsed_valid_hugepagesz = false;
3798 	size = (unsigned long)memparse(s, NULL);
3799 
3800 	if (!arch_hugetlb_valid_size(size)) {
3801 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3802 		return 0;
3803 	}
3804 
3805 	h = size_to_hstate(size);
3806 	if (h) {
3807 		/*
3808 		 * hstate for this size already exists.  This is normally
3809 		 * an error, but is allowed if the existing hstate is the
3810 		 * default hstate.  More specifically, it is only allowed if
3811 		 * the number of huge pages for the default hstate was not
3812 		 * previously specified.
3813 		 */
3814 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3815 		    default_hstate.max_huge_pages) {
3816 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3817 			return 0;
3818 		}
3819 
3820 		/*
3821 		 * No need to call hugetlb_add_hstate() as hstate already
3822 		 * exists.  But, do set parsed_hstate so that a following
3823 		 * hugepages= parameter will be applied to this hstate.
3824 		 */
3825 		parsed_hstate = h;
3826 		parsed_valid_hugepagesz = true;
3827 		return 1;
3828 	}
3829 
3830 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3831 	parsed_valid_hugepagesz = true;
3832 	return 1;
3833 }
3834 __setup("hugepagesz=", hugepagesz_setup);
3835 
3836 /*
3837  * default_hugepagesz command line input
3838  * Only one instance of default_hugepagesz allowed on command line.
3839  */
3840 static int __init default_hugepagesz_setup(char *s)
3841 {
3842 	unsigned long size;
3843 
3844 	parsed_valid_hugepagesz = false;
3845 	if (parsed_default_hugepagesz) {
3846 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3847 		return 0;
3848 	}
3849 
3850 	size = (unsigned long)memparse(s, NULL);
3851 
3852 	if (!arch_hugetlb_valid_size(size)) {
3853 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3854 		return 0;
3855 	}
3856 
3857 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3858 	parsed_valid_hugepagesz = true;
3859 	parsed_default_hugepagesz = true;
3860 	default_hstate_idx = hstate_index(size_to_hstate(size));
3861 
3862 	/*
3863 	 * The number of default huge pages (for this size) could have been
3864 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3865 	 * then default_hstate_max_huge_pages is set.  If the default huge
3866 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3867 	 * allocated here from bootmem allocator.
3868 	 */
3869 	if (default_hstate_max_huge_pages) {
3870 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3871 		if (hstate_is_gigantic(&default_hstate))
3872 			hugetlb_hstate_alloc_pages(&default_hstate);
3873 		default_hstate_max_huge_pages = 0;
3874 	}
3875 
3876 	return 1;
3877 }
3878 __setup("default_hugepagesz=", default_hugepagesz_setup);
3879 
3880 static unsigned int allowed_mems_nr(struct hstate *h)
3881 {
3882 	int node;
3883 	unsigned int nr = 0;
3884 	nodemask_t *mpol_allowed;
3885 	unsigned int *array = h->free_huge_pages_node;
3886 	gfp_t gfp_mask = htlb_alloc_mask(h);
3887 
3888 	mpol_allowed = policy_nodemask_current(gfp_mask);
3889 
3890 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3891 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3892 			nr += array[node];
3893 	}
3894 
3895 	return nr;
3896 }
3897 
3898 #ifdef CONFIG_SYSCTL
3899 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3900 					  void *buffer, size_t *length,
3901 					  loff_t *ppos, unsigned long *out)
3902 {
3903 	struct ctl_table dup_table;
3904 
3905 	/*
3906 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3907 	 * can duplicate the @table and alter the duplicate of it.
3908 	 */
3909 	dup_table = *table;
3910 	dup_table.data = out;
3911 
3912 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3913 }
3914 
3915 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3916 			 struct ctl_table *table, int write,
3917 			 void *buffer, size_t *length, loff_t *ppos)
3918 {
3919 	struct hstate *h = &default_hstate;
3920 	unsigned long tmp = h->max_huge_pages;
3921 	int ret;
3922 
3923 	if (!hugepages_supported())
3924 		return -EOPNOTSUPP;
3925 
3926 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3927 					     &tmp);
3928 	if (ret)
3929 		goto out;
3930 
3931 	if (write)
3932 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3933 						  NUMA_NO_NODE, tmp, *length);
3934 out:
3935 	return ret;
3936 }
3937 
3938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3939 			  void *buffer, size_t *length, loff_t *ppos)
3940 {
3941 
3942 	return hugetlb_sysctl_handler_common(false, table, write,
3943 							buffer, length, ppos);
3944 }
3945 
3946 #ifdef CONFIG_NUMA
3947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3948 			  void *buffer, size_t *length, loff_t *ppos)
3949 {
3950 	return hugetlb_sysctl_handler_common(true, table, write,
3951 							buffer, length, ppos);
3952 }
3953 #endif /* CONFIG_NUMA */
3954 
3955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3956 		void *buffer, size_t *length, loff_t *ppos)
3957 {
3958 	struct hstate *h = &default_hstate;
3959 	unsigned long tmp;
3960 	int ret;
3961 
3962 	if (!hugepages_supported())
3963 		return -EOPNOTSUPP;
3964 
3965 	tmp = h->nr_overcommit_huge_pages;
3966 
3967 	if (write && hstate_is_gigantic(h))
3968 		return -EINVAL;
3969 
3970 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3971 					     &tmp);
3972 	if (ret)
3973 		goto out;
3974 
3975 	if (write) {
3976 		spin_lock_irq(&hugetlb_lock);
3977 		h->nr_overcommit_huge_pages = tmp;
3978 		spin_unlock_irq(&hugetlb_lock);
3979 	}
3980 out:
3981 	return ret;
3982 }
3983 
3984 #endif /* CONFIG_SYSCTL */
3985 
3986 void hugetlb_report_meminfo(struct seq_file *m)
3987 {
3988 	struct hstate *h;
3989 	unsigned long total = 0;
3990 
3991 	if (!hugepages_supported())
3992 		return;
3993 
3994 	for_each_hstate(h) {
3995 		unsigned long count = h->nr_huge_pages;
3996 
3997 		total += huge_page_size(h) * count;
3998 
3999 		if (h == &default_hstate)
4000 			seq_printf(m,
4001 				   "HugePages_Total:   %5lu\n"
4002 				   "HugePages_Free:    %5lu\n"
4003 				   "HugePages_Rsvd:    %5lu\n"
4004 				   "HugePages_Surp:    %5lu\n"
4005 				   "Hugepagesize:   %8lu kB\n",
4006 				   count,
4007 				   h->free_huge_pages,
4008 				   h->resv_huge_pages,
4009 				   h->surplus_huge_pages,
4010 				   huge_page_size(h) / SZ_1K);
4011 	}
4012 
4013 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4014 }
4015 
4016 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4017 {
4018 	struct hstate *h = &default_hstate;
4019 
4020 	if (!hugepages_supported())
4021 		return 0;
4022 
4023 	return sysfs_emit_at(buf, len,
4024 			     "Node %d HugePages_Total: %5u\n"
4025 			     "Node %d HugePages_Free:  %5u\n"
4026 			     "Node %d HugePages_Surp:  %5u\n",
4027 			     nid, h->nr_huge_pages_node[nid],
4028 			     nid, h->free_huge_pages_node[nid],
4029 			     nid, h->surplus_huge_pages_node[nid]);
4030 }
4031 
4032 void hugetlb_show_meminfo(void)
4033 {
4034 	struct hstate *h;
4035 	int nid;
4036 
4037 	if (!hugepages_supported())
4038 		return;
4039 
4040 	for_each_node_state(nid, N_MEMORY)
4041 		for_each_hstate(h)
4042 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4043 				nid,
4044 				h->nr_huge_pages_node[nid],
4045 				h->free_huge_pages_node[nid],
4046 				h->surplus_huge_pages_node[nid],
4047 				huge_page_size(h) / SZ_1K);
4048 }
4049 
4050 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4051 {
4052 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4053 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4054 }
4055 
4056 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4057 unsigned long hugetlb_total_pages(void)
4058 {
4059 	struct hstate *h;
4060 	unsigned long nr_total_pages = 0;
4061 
4062 	for_each_hstate(h)
4063 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4064 	return nr_total_pages;
4065 }
4066 
4067 static int hugetlb_acct_memory(struct hstate *h, long delta)
4068 {
4069 	int ret = -ENOMEM;
4070 
4071 	if (!delta)
4072 		return 0;
4073 
4074 	spin_lock_irq(&hugetlb_lock);
4075 	/*
4076 	 * When cpuset is configured, it breaks the strict hugetlb page
4077 	 * reservation as the accounting is done on a global variable. Such
4078 	 * reservation is completely rubbish in the presence of cpuset because
4079 	 * the reservation is not checked against page availability for the
4080 	 * current cpuset. Application can still potentially OOM'ed by kernel
4081 	 * with lack of free htlb page in cpuset that the task is in.
4082 	 * Attempt to enforce strict accounting with cpuset is almost
4083 	 * impossible (or too ugly) because cpuset is too fluid that
4084 	 * task or memory node can be dynamically moved between cpusets.
4085 	 *
4086 	 * The change of semantics for shared hugetlb mapping with cpuset is
4087 	 * undesirable. However, in order to preserve some of the semantics,
4088 	 * we fall back to check against current free page availability as
4089 	 * a best attempt and hopefully to minimize the impact of changing
4090 	 * semantics that cpuset has.
4091 	 *
4092 	 * Apart from cpuset, we also have memory policy mechanism that
4093 	 * also determines from which node the kernel will allocate memory
4094 	 * in a NUMA system. So similar to cpuset, we also should consider
4095 	 * the memory policy of the current task. Similar to the description
4096 	 * above.
4097 	 */
4098 	if (delta > 0) {
4099 		if (gather_surplus_pages(h, delta) < 0)
4100 			goto out;
4101 
4102 		if (delta > allowed_mems_nr(h)) {
4103 			return_unused_surplus_pages(h, delta);
4104 			goto out;
4105 		}
4106 	}
4107 
4108 	ret = 0;
4109 	if (delta < 0)
4110 		return_unused_surplus_pages(h, (unsigned long) -delta);
4111 
4112 out:
4113 	spin_unlock_irq(&hugetlb_lock);
4114 	return ret;
4115 }
4116 
4117 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4118 {
4119 	struct resv_map *resv = vma_resv_map(vma);
4120 
4121 	/*
4122 	 * This new VMA should share its siblings reservation map if present.
4123 	 * The VMA will only ever have a valid reservation map pointer where
4124 	 * it is being copied for another still existing VMA.  As that VMA
4125 	 * has a reference to the reservation map it cannot disappear until
4126 	 * after this open call completes.  It is therefore safe to take a
4127 	 * new reference here without additional locking.
4128 	 */
4129 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4130 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4131 		kref_get(&resv->refs);
4132 	}
4133 }
4134 
4135 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4136 {
4137 	struct hstate *h = hstate_vma(vma);
4138 	struct resv_map *resv = vma_resv_map(vma);
4139 	struct hugepage_subpool *spool = subpool_vma(vma);
4140 	unsigned long reserve, start, end;
4141 	long gbl_reserve;
4142 
4143 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4144 		return;
4145 
4146 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4147 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4148 
4149 	reserve = (end - start) - region_count(resv, start, end);
4150 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4151 	if (reserve) {
4152 		/*
4153 		 * Decrement reserve counts.  The global reserve count may be
4154 		 * adjusted if the subpool has a minimum size.
4155 		 */
4156 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4157 		hugetlb_acct_memory(h, -gbl_reserve);
4158 	}
4159 
4160 	kref_put(&resv->refs, resv_map_release);
4161 }
4162 
4163 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4164 {
4165 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4166 		return -EINVAL;
4167 	return 0;
4168 }
4169 
4170 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4171 {
4172 	return huge_page_size(hstate_vma(vma));
4173 }
4174 
4175 /*
4176  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4177  * handle_mm_fault() to try to instantiate regular-sized pages in the
4178  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4179  * this far.
4180  */
4181 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4182 {
4183 	BUG();
4184 	return 0;
4185 }
4186 
4187 /*
4188  * When a new function is introduced to vm_operations_struct and added
4189  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4190  * This is because under System V memory model, mappings created via
4191  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4192  * their original vm_ops are overwritten with shm_vm_ops.
4193  */
4194 const struct vm_operations_struct hugetlb_vm_ops = {
4195 	.fault = hugetlb_vm_op_fault,
4196 	.open = hugetlb_vm_op_open,
4197 	.close = hugetlb_vm_op_close,
4198 	.may_split = hugetlb_vm_op_split,
4199 	.pagesize = hugetlb_vm_op_pagesize,
4200 };
4201 
4202 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4203 				int writable)
4204 {
4205 	pte_t entry;
4206 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4207 
4208 	if (writable) {
4209 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4210 					 vma->vm_page_prot)));
4211 	} else {
4212 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4213 					   vma->vm_page_prot));
4214 	}
4215 	entry = pte_mkyoung(entry);
4216 	entry = pte_mkhuge(entry);
4217 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4218 
4219 	return entry;
4220 }
4221 
4222 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4223 				   unsigned long address, pte_t *ptep)
4224 {
4225 	pte_t entry;
4226 
4227 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4228 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4229 		update_mmu_cache(vma, address, ptep);
4230 }
4231 
4232 bool is_hugetlb_entry_migration(pte_t pte)
4233 {
4234 	swp_entry_t swp;
4235 
4236 	if (huge_pte_none(pte) || pte_present(pte))
4237 		return false;
4238 	swp = pte_to_swp_entry(pte);
4239 	if (is_migration_entry(swp))
4240 		return true;
4241 	else
4242 		return false;
4243 }
4244 
4245 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4246 {
4247 	swp_entry_t swp;
4248 
4249 	if (huge_pte_none(pte) || pte_present(pte))
4250 		return false;
4251 	swp = pte_to_swp_entry(pte);
4252 	if (is_hwpoison_entry(swp))
4253 		return true;
4254 	else
4255 		return false;
4256 }
4257 
4258 static void
4259 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4260 		     struct page *new_page)
4261 {
4262 	__SetPageUptodate(new_page);
4263 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4264 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4265 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4266 	ClearHPageRestoreReserve(new_page);
4267 	SetHPageMigratable(new_page);
4268 }
4269 
4270 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4271 			    struct vm_area_struct *vma)
4272 {
4273 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4274 	struct page *ptepage;
4275 	unsigned long addr;
4276 	bool cow = is_cow_mapping(vma->vm_flags);
4277 	struct hstate *h = hstate_vma(vma);
4278 	unsigned long sz = huge_page_size(h);
4279 	unsigned long npages = pages_per_huge_page(h);
4280 	struct address_space *mapping = vma->vm_file->f_mapping;
4281 	struct mmu_notifier_range range;
4282 	int ret = 0;
4283 
4284 	if (cow) {
4285 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4286 					vma->vm_start,
4287 					vma->vm_end);
4288 		mmu_notifier_invalidate_range_start(&range);
4289 	} else {
4290 		/*
4291 		 * For shared mappings i_mmap_rwsem must be held to call
4292 		 * huge_pte_alloc, otherwise the returned ptep could go
4293 		 * away if part of a shared pmd and another thread calls
4294 		 * huge_pmd_unshare.
4295 		 */
4296 		i_mmap_lock_read(mapping);
4297 	}
4298 
4299 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4300 		spinlock_t *src_ptl, *dst_ptl;
4301 		src_pte = huge_pte_offset(src, addr, sz);
4302 		if (!src_pte)
4303 			continue;
4304 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4305 		if (!dst_pte) {
4306 			ret = -ENOMEM;
4307 			break;
4308 		}
4309 
4310 		/*
4311 		 * If the pagetables are shared don't copy or take references.
4312 		 * dst_pte == src_pte is the common case of src/dest sharing.
4313 		 *
4314 		 * However, src could have 'unshared' and dst shares with
4315 		 * another vma.  If dst_pte !none, this implies sharing.
4316 		 * Check here before taking page table lock, and once again
4317 		 * after taking the lock below.
4318 		 */
4319 		dst_entry = huge_ptep_get(dst_pte);
4320 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4321 			continue;
4322 
4323 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4324 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4325 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4326 		entry = huge_ptep_get(src_pte);
4327 		dst_entry = huge_ptep_get(dst_pte);
4328 again:
4329 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4330 			/*
4331 			 * Skip if src entry none.  Also, skip in the
4332 			 * unlikely case dst entry !none as this implies
4333 			 * sharing with another vma.
4334 			 */
4335 			;
4336 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4337 				    is_hugetlb_entry_hwpoisoned(entry))) {
4338 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4339 
4340 			if (is_writable_migration_entry(swp_entry) && cow) {
4341 				/*
4342 				 * COW mappings require pages in both
4343 				 * parent and child to be set to read.
4344 				 */
4345 				swp_entry = make_readable_migration_entry(
4346 							swp_offset(swp_entry));
4347 				entry = swp_entry_to_pte(swp_entry);
4348 				set_huge_swap_pte_at(src, addr, src_pte,
4349 						     entry, sz);
4350 			}
4351 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4352 		} else {
4353 			entry = huge_ptep_get(src_pte);
4354 			ptepage = pte_page(entry);
4355 			get_page(ptepage);
4356 
4357 			/*
4358 			 * This is a rare case where we see pinned hugetlb
4359 			 * pages while they're prone to COW.  We need to do the
4360 			 * COW earlier during fork.
4361 			 *
4362 			 * When pre-allocating the page or copying data, we
4363 			 * need to be without the pgtable locks since we could
4364 			 * sleep during the process.
4365 			 */
4366 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4367 				pte_t src_pte_old = entry;
4368 				struct page *new;
4369 
4370 				spin_unlock(src_ptl);
4371 				spin_unlock(dst_ptl);
4372 				/* Do not use reserve as it's private owned */
4373 				new = alloc_huge_page(vma, addr, 1);
4374 				if (IS_ERR(new)) {
4375 					put_page(ptepage);
4376 					ret = PTR_ERR(new);
4377 					break;
4378 				}
4379 				copy_user_huge_page(new, ptepage, addr, vma,
4380 						    npages);
4381 				put_page(ptepage);
4382 
4383 				/* Install the new huge page if src pte stable */
4384 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4385 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4386 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4387 				entry = huge_ptep_get(src_pte);
4388 				if (!pte_same(src_pte_old, entry)) {
4389 					restore_reserve_on_error(h, vma, addr,
4390 								new);
4391 					put_page(new);
4392 					/* dst_entry won't change as in child */
4393 					goto again;
4394 				}
4395 				hugetlb_install_page(vma, dst_pte, addr, new);
4396 				spin_unlock(src_ptl);
4397 				spin_unlock(dst_ptl);
4398 				continue;
4399 			}
4400 
4401 			if (cow) {
4402 				/*
4403 				 * No need to notify as we are downgrading page
4404 				 * table protection not changing it to point
4405 				 * to a new page.
4406 				 *
4407 				 * See Documentation/vm/mmu_notifier.rst
4408 				 */
4409 				huge_ptep_set_wrprotect(src, addr, src_pte);
4410 				entry = huge_pte_wrprotect(entry);
4411 			}
4412 
4413 			page_dup_rmap(ptepage, true);
4414 			set_huge_pte_at(dst, addr, dst_pte, entry);
4415 			hugetlb_count_add(npages, dst);
4416 		}
4417 		spin_unlock(src_ptl);
4418 		spin_unlock(dst_ptl);
4419 	}
4420 
4421 	if (cow)
4422 		mmu_notifier_invalidate_range_end(&range);
4423 	else
4424 		i_mmap_unlock_read(mapping);
4425 
4426 	return ret;
4427 }
4428 
4429 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4430 			    unsigned long start, unsigned long end,
4431 			    struct page *ref_page)
4432 {
4433 	struct mm_struct *mm = vma->vm_mm;
4434 	unsigned long address;
4435 	pte_t *ptep;
4436 	pte_t pte;
4437 	spinlock_t *ptl;
4438 	struct page *page;
4439 	struct hstate *h = hstate_vma(vma);
4440 	unsigned long sz = huge_page_size(h);
4441 	struct mmu_notifier_range range;
4442 
4443 	WARN_ON(!is_vm_hugetlb_page(vma));
4444 	BUG_ON(start & ~huge_page_mask(h));
4445 	BUG_ON(end & ~huge_page_mask(h));
4446 
4447 	/*
4448 	 * This is a hugetlb vma, all the pte entries should point
4449 	 * to huge page.
4450 	 */
4451 	tlb_change_page_size(tlb, sz);
4452 	tlb_start_vma(tlb, vma);
4453 
4454 	/*
4455 	 * If sharing possible, alert mmu notifiers of worst case.
4456 	 */
4457 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4458 				end);
4459 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4460 	mmu_notifier_invalidate_range_start(&range);
4461 	address = start;
4462 	for (; address < end; address += sz) {
4463 		ptep = huge_pte_offset(mm, address, sz);
4464 		if (!ptep)
4465 			continue;
4466 
4467 		ptl = huge_pte_lock(h, mm, ptep);
4468 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4469 			spin_unlock(ptl);
4470 			/*
4471 			 * We just unmapped a page of PMDs by clearing a PUD.
4472 			 * The caller's TLB flush range should cover this area.
4473 			 */
4474 			continue;
4475 		}
4476 
4477 		pte = huge_ptep_get(ptep);
4478 		if (huge_pte_none(pte)) {
4479 			spin_unlock(ptl);
4480 			continue;
4481 		}
4482 
4483 		/*
4484 		 * Migrating hugepage or HWPoisoned hugepage is already
4485 		 * unmapped and its refcount is dropped, so just clear pte here.
4486 		 */
4487 		if (unlikely(!pte_present(pte))) {
4488 			huge_pte_clear(mm, address, ptep, sz);
4489 			spin_unlock(ptl);
4490 			continue;
4491 		}
4492 
4493 		page = pte_page(pte);
4494 		/*
4495 		 * If a reference page is supplied, it is because a specific
4496 		 * page is being unmapped, not a range. Ensure the page we
4497 		 * are about to unmap is the actual page of interest.
4498 		 */
4499 		if (ref_page) {
4500 			if (page != ref_page) {
4501 				spin_unlock(ptl);
4502 				continue;
4503 			}
4504 			/*
4505 			 * Mark the VMA as having unmapped its page so that
4506 			 * future faults in this VMA will fail rather than
4507 			 * looking like data was lost
4508 			 */
4509 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4510 		}
4511 
4512 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4513 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4514 		if (huge_pte_dirty(pte))
4515 			set_page_dirty(page);
4516 
4517 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4518 		page_remove_rmap(page, true);
4519 
4520 		spin_unlock(ptl);
4521 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4522 		/*
4523 		 * Bail out after unmapping reference page if supplied
4524 		 */
4525 		if (ref_page)
4526 			break;
4527 	}
4528 	mmu_notifier_invalidate_range_end(&range);
4529 	tlb_end_vma(tlb, vma);
4530 }
4531 
4532 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4533 			  struct vm_area_struct *vma, unsigned long start,
4534 			  unsigned long end, struct page *ref_page)
4535 {
4536 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4537 
4538 	/*
4539 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4540 	 * test will fail on a vma being torn down, and not grab a page table
4541 	 * on its way out.  We're lucky that the flag has such an appropriate
4542 	 * name, and can in fact be safely cleared here. We could clear it
4543 	 * before the __unmap_hugepage_range above, but all that's necessary
4544 	 * is to clear it before releasing the i_mmap_rwsem. This works
4545 	 * because in the context this is called, the VMA is about to be
4546 	 * destroyed and the i_mmap_rwsem is held.
4547 	 */
4548 	vma->vm_flags &= ~VM_MAYSHARE;
4549 }
4550 
4551 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4552 			  unsigned long end, struct page *ref_page)
4553 {
4554 	struct mmu_gather tlb;
4555 
4556 	tlb_gather_mmu(&tlb, vma->vm_mm);
4557 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4558 	tlb_finish_mmu(&tlb);
4559 }
4560 
4561 /*
4562  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4563  * mapping it owns the reserve page for. The intention is to unmap the page
4564  * from other VMAs and let the children be SIGKILLed if they are faulting the
4565  * same region.
4566  */
4567 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4568 			      struct page *page, unsigned long address)
4569 {
4570 	struct hstate *h = hstate_vma(vma);
4571 	struct vm_area_struct *iter_vma;
4572 	struct address_space *mapping;
4573 	pgoff_t pgoff;
4574 
4575 	/*
4576 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4577 	 * from page cache lookup which is in HPAGE_SIZE units.
4578 	 */
4579 	address = address & huge_page_mask(h);
4580 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4581 			vma->vm_pgoff;
4582 	mapping = vma->vm_file->f_mapping;
4583 
4584 	/*
4585 	 * Take the mapping lock for the duration of the table walk. As
4586 	 * this mapping should be shared between all the VMAs,
4587 	 * __unmap_hugepage_range() is called as the lock is already held
4588 	 */
4589 	i_mmap_lock_write(mapping);
4590 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4591 		/* Do not unmap the current VMA */
4592 		if (iter_vma == vma)
4593 			continue;
4594 
4595 		/*
4596 		 * Shared VMAs have their own reserves and do not affect
4597 		 * MAP_PRIVATE accounting but it is possible that a shared
4598 		 * VMA is using the same page so check and skip such VMAs.
4599 		 */
4600 		if (iter_vma->vm_flags & VM_MAYSHARE)
4601 			continue;
4602 
4603 		/*
4604 		 * Unmap the page from other VMAs without their own reserves.
4605 		 * They get marked to be SIGKILLed if they fault in these
4606 		 * areas. This is because a future no-page fault on this VMA
4607 		 * could insert a zeroed page instead of the data existing
4608 		 * from the time of fork. This would look like data corruption
4609 		 */
4610 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4611 			unmap_hugepage_range(iter_vma, address,
4612 					     address + huge_page_size(h), page);
4613 	}
4614 	i_mmap_unlock_write(mapping);
4615 }
4616 
4617 /*
4618  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4619  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4620  * cannot race with other handlers or page migration.
4621  * Keep the pte_same checks anyway to make transition from the mutex easier.
4622  */
4623 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4624 		       unsigned long address, pte_t *ptep,
4625 		       struct page *pagecache_page, spinlock_t *ptl)
4626 {
4627 	pte_t pte;
4628 	struct hstate *h = hstate_vma(vma);
4629 	struct page *old_page, *new_page;
4630 	int outside_reserve = 0;
4631 	vm_fault_t ret = 0;
4632 	unsigned long haddr = address & huge_page_mask(h);
4633 	struct mmu_notifier_range range;
4634 
4635 	pte = huge_ptep_get(ptep);
4636 	old_page = pte_page(pte);
4637 
4638 retry_avoidcopy:
4639 	/* If no-one else is actually using this page, avoid the copy
4640 	 * and just make the page writable */
4641 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4642 		page_move_anon_rmap(old_page, vma);
4643 		set_huge_ptep_writable(vma, haddr, ptep);
4644 		return 0;
4645 	}
4646 
4647 	/*
4648 	 * If the process that created a MAP_PRIVATE mapping is about to
4649 	 * perform a COW due to a shared page count, attempt to satisfy
4650 	 * the allocation without using the existing reserves. The pagecache
4651 	 * page is used to determine if the reserve at this address was
4652 	 * consumed or not. If reserves were used, a partial faulted mapping
4653 	 * at the time of fork() could consume its reserves on COW instead
4654 	 * of the full address range.
4655 	 */
4656 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4657 			old_page != pagecache_page)
4658 		outside_reserve = 1;
4659 
4660 	get_page(old_page);
4661 
4662 	/*
4663 	 * Drop page table lock as buddy allocator may be called. It will
4664 	 * be acquired again before returning to the caller, as expected.
4665 	 */
4666 	spin_unlock(ptl);
4667 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4668 
4669 	if (IS_ERR(new_page)) {
4670 		/*
4671 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4672 		 * it is due to references held by a child and an insufficient
4673 		 * huge page pool. To guarantee the original mappers
4674 		 * reliability, unmap the page from child processes. The child
4675 		 * may get SIGKILLed if it later faults.
4676 		 */
4677 		if (outside_reserve) {
4678 			struct address_space *mapping = vma->vm_file->f_mapping;
4679 			pgoff_t idx;
4680 			u32 hash;
4681 
4682 			put_page(old_page);
4683 			BUG_ON(huge_pte_none(pte));
4684 			/*
4685 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4686 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4687 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4688 			 * here is OK as COW mappings do not interact with
4689 			 * PMD sharing.
4690 			 *
4691 			 * Reacquire both after unmap operation.
4692 			 */
4693 			idx = vma_hugecache_offset(h, vma, haddr);
4694 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4695 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4696 			i_mmap_unlock_read(mapping);
4697 
4698 			unmap_ref_private(mm, vma, old_page, haddr);
4699 
4700 			i_mmap_lock_read(mapping);
4701 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4702 			spin_lock(ptl);
4703 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4704 			if (likely(ptep &&
4705 				   pte_same(huge_ptep_get(ptep), pte)))
4706 				goto retry_avoidcopy;
4707 			/*
4708 			 * race occurs while re-acquiring page table
4709 			 * lock, and our job is done.
4710 			 */
4711 			return 0;
4712 		}
4713 
4714 		ret = vmf_error(PTR_ERR(new_page));
4715 		goto out_release_old;
4716 	}
4717 
4718 	/*
4719 	 * When the original hugepage is shared one, it does not have
4720 	 * anon_vma prepared.
4721 	 */
4722 	if (unlikely(anon_vma_prepare(vma))) {
4723 		ret = VM_FAULT_OOM;
4724 		goto out_release_all;
4725 	}
4726 
4727 	copy_user_huge_page(new_page, old_page, address, vma,
4728 			    pages_per_huge_page(h));
4729 	__SetPageUptodate(new_page);
4730 
4731 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4732 				haddr + huge_page_size(h));
4733 	mmu_notifier_invalidate_range_start(&range);
4734 
4735 	/*
4736 	 * Retake the page table lock to check for racing updates
4737 	 * before the page tables are altered
4738 	 */
4739 	spin_lock(ptl);
4740 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4741 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4742 		ClearHPageRestoreReserve(new_page);
4743 
4744 		/* Break COW */
4745 		huge_ptep_clear_flush(vma, haddr, ptep);
4746 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4747 		set_huge_pte_at(mm, haddr, ptep,
4748 				make_huge_pte(vma, new_page, 1));
4749 		page_remove_rmap(old_page, true);
4750 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4751 		SetHPageMigratable(new_page);
4752 		/* Make the old page be freed below */
4753 		new_page = old_page;
4754 	}
4755 	spin_unlock(ptl);
4756 	mmu_notifier_invalidate_range_end(&range);
4757 out_release_all:
4758 	/* No restore in case of successful pagetable update (Break COW) */
4759 	if (new_page != old_page)
4760 		restore_reserve_on_error(h, vma, haddr, new_page);
4761 	put_page(new_page);
4762 out_release_old:
4763 	put_page(old_page);
4764 
4765 	spin_lock(ptl); /* Caller expects lock to be held */
4766 	return ret;
4767 }
4768 
4769 /* Return the pagecache page at a given address within a VMA */
4770 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4771 			struct vm_area_struct *vma, unsigned long address)
4772 {
4773 	struct address_space *mapping;
4774 	pgoff_t idx;
4775 
4776 	mapping = vma->vm_file->f_mapping;
4777 	idx = vma_hugecache_offset(h, vma, address);
4778 
4779 	return find_lock_page(mapping, idx);
4780 }
4781 
4782 /*
4783  * Return whether there is a pagecache page to back given address within VMA.
4784  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4785  */
4786 static bool hugetlbfs_pagecache_present(struct hstate *h,
4787 			struct vm_area_struct *vma, unsigned long address)
4788 {
4789 	struct address_space *mapping;
4790 	pgoff_t idx;
4791 	struct page *page;
4792 
4793 	mapping = vma->vm_file->f_mapping;
4794 	idx = vma_hugecache_offset(h, vma, address);
4795 
4796 	page = find_get_page(mapping, idx);
4797 	if (page)
4798 		put_page(page);
4799 	return page != NULL;
4800 }
4801 
4802 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4803 			   pgoff_t idx)
4804 {
4805 	struct inode *inode = mapping->host;
4806 	struct hstate *h = hstate_inode(inode);
4807 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4808 
4809 	if (err)
4810 		return err;
4811 	ClearHPageRestoreReserve(page);
4812 
4813 	/*
4814 	 * set page dirty so that it will not be removed from cache/file
4815 	 * by non-hugetlbfs specific code paths.
4816 	 */
4817 	set_page_dirty(page);
4818 
4819 	spin_lock(&inode->i_lock);
4820 	inode->i_blocks += blocks_per_huge_page(h);
4821 	spin_unlock(&inode->i_lock);
4822 	return 0;
4823 }
4824 
4825 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4826 						  struct address_space *mapping,
4827 						  pgoff_t idx,
4828 						  unsigned int flags,
4829 						  unsigned long haddr,
4830 						  unsigned long reason)
4831 {
4832 	vm_fault_t ret;
4833 	u32 hash;
4834 	struct vm_fault vmf = {
4835 		.vma = vma,
4836 		.address = haddr,
4837 		.flags = flags,
4838 
4839 		/*
4840 		 * Hard to debug if it ends up being
4841 		 * used by a callee that assumes
4842 		 * something about the other
4843 		 * uninitialized fields... same as in
4844 		 * memory.c
4845 		 */
4846 	};
4847 
4848 	/*
4849 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
4850 	 * dropped before handling userfault.  Reacquire
4851 	 * after handling fault to make calling code simpler.
4852 	 */
4853 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4854 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4855 	i_mmap_unlock_read(mapping);
4856 	ret = handle_userfault(&vmf, reason);
4857 	i_mmap_lock_read(mapping);
4858 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4859 
4860 	return ret;
4861 }
4862 
4863 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4864 			struct vm_area_struct *vma,
4865 			struct address_space *mapping, pgoff_t idx,
4866 			unsigned long address, pte_t *ptep, unsigned int flags)
4867 {
4868 	struct hstate *h = hstate_vma(vma);
4869 	vm_fault_t ret = VM_FAULT_SIGBUS;
4870 	int anon_rmap = 0;
4871 	unsigned long size;
4872 	struct page *page;
4873 	pte_t new_pte;
4874 	spinlock_t *ptl;
4875 	unsigned long haddr = address & huge_page_mask(h);
4876 	bool new_page, new_pagecache_page = false;
4877 
4878 	/*
4879 	 * Currently, we are forced to kill the process in the event the
4880 	 * original mapper has unmapped pages from the child due to a failed
4881 	 * COW. Warn that such a situation has occurred as it may not be obvious
4882 	 */
4883 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4884 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4885 			   current->pid);
4886 		return ret;
4887 	}
4888 
4889 	/*
4890 	 * We can not race with truncation due to holding i_mmap_rwsem.
4891 	 * i_size is modified when holding i_mmap_rwsem, so check here
4892 	 * once for faults beyond end of file.
4893 	 */
4894 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4895 	if (idx >= size)
4896 		goto out;
4897 
4898 retry:
4899 	new_page = false;
4900 	page = find_lock_page(mapping, idx);
4901 	if (!page) {
4902 		/* Check for page in userfault range */
4903 		if (userfaultfd_missing(vma)) {
4904 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4905 						       flags, haddr,
4906 						       VM_UFFD_MISSING);
4907 			goto out;
4908 		}
4909 
4910 		page = alloc_huge_page(vma, haddr, 0);
4911 		if (IS_ERR(page)) {
4912 			/*
4913 			 * Returning error will result in faulting task being
4914 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4915 			 * tasks from racing to fault in the same page which
4916 			 * could result in false unable to allocate errors.
4917 			 * Page migration does not take the fault mutex, but
4918 			 * does a clear then write of pte's under page table
4919 			 * lock.  Page fault code could race with migration,
4920 			 * notice the clear pte and try to allocate a page
4921 			 * here.  Before returning error, get ptl and make
4922 			 * sure there really is no pte entry.
4923 			 */
4924 			ptl = huge_pte_lock(h, mm, ptep);
4925 			ret = 0;
4926 			if (huge_pte_none(huge_ptep_get(ptep)))
4927 				ret = vmf_error(PTR_ERR(page));
4928 			spin_unlock(ptl);
4929 			goto out;
4930 		}
4931 		clear_huge_page(page, address, pages_per_huge_page(h));
4932 		__SetPageUptodate(page);
4933 		new_page = true;
4934 
4935 		if (vma->vm_flags & VM_MAYSHARE) {
4936 			int err = huge_add_to_page_cache(page, mapping, idx);
4937 			if (err) {
4938 				put_page(page);
4939 				if (err == -EEXIST)
4940 					goto retry;
4941 				goto out;
4942 			}
4943 			new_pagecache_page = true;
4944 		} else {
4945 			lock_page(page);
4946 			if (unlikely(anon_vma_prepare(vma))) {
4947 				ret = VM_FAULT_OOM;
4948 				goto backout_unlocked;
4949 			}
4950 			anon_rmap = 1;
4951 		}
4952 	} else {
4953 		/*
4954 		 * If memory error occurs between mmap() and fault, some process
4955 		 * don't have hwpoisoned swap entry for errored virtual address.
4956 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4957 		 */
4958 		if (unlikely(PageHWPoison(page))) {
4959 			ret = VM_FAULT_HWPOISON_LARGE |
4960 				VM_FAULT_SET_HINDEX(hstate_index(h));
4961 			goto backout_unlocked;
4962 		}
4963 
4964 		/* Check for page in userfault range. */
4965 		if (userfaultfd_minor(vma)) {
4966 			unlock_page(page);
4967 			put_page(page);
4968 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4969 						       flags, haddr,
4970 						       VM_UFFD_MINOR);
4971 			goto out;
4972 		}
4973 	}
4974 
4975 	/*
4976 	 * If we are going to COW a private mapping later, we examine the
4977 	 * pending reservations for this page now. This will ensure that
4978 	 * any allocations necessary to record that reservation occur outside
4979 	 * the spinlock.
4980 	 */
4981 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4982 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4983 			ret = VM_FAULT_OOM;
4984 			goto backout_unlocked;
4985 		}
4986 		/* Just decrements count, does not deallocate */
4987 		vma_end_reservation(h, vma, haddr);
4988 	}
4989 
4990 	ptl = huge_pte_lock(h, mm, ptep);
4991 	ret = 0;
4992 	if (!huge_pte_none(huge_ptep_get(ptep)))
4993 		goto backout;
4994 
4995 	if (anon_rmap) {
4996 		ClearHPageRestoreReserve(page);
4997 		hugepage_add_new_anon_rmap(page, vma, haddr);
4998 	} else
4999 		page_dup_rmap(page, true);
5000 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5001 				&& (vma->vm_flags & VM_SHARED)));
5002 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5003 
5004 	hugetlb_count_add(pages_per_huge_page(h), mm);
5005 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5006 		/* Optimization, do the COW without a second fault */
5007 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5008 	}
5009 
5010 	spin_unlock(ptl);
5011 
5012 	/*
5013 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5014 	 * found in the pagecache may not have HPageMigratableset if they have
5015 	 * been isolated for migration.
5016 	 */
5017 	if (new_page)
5018 		SetHPageMigratable(page);
5019 
5020 	unlock_page(page);
5021 out:
5022 	return ret;
5023 
5024 backout:
5025 	spin_unlock(ptl);
5026 backout_unlocked:
5027 	unlock_page(page);
5028 	/* restore reserve for newly allocated pages not in page cache */
5029 	if (new_page && !new_pagecache_page)
5030 		restore_reserve_on_error(h, vma, haddr, page);
5031 	put_page(page);
5032 	goto out;
5033 }
5034 
5035 #ifdef CONFIG_SMP
5036 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5037 {
5038 	unsigned long key[2];
5039 	u32 hash;
5040 
5041 	key[0] = (unsigned long) mapping;
5042 	key[1] = idx;
5043 
5044 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5045 
5046 	return hash & (num_fault_mutexes - 1);
5047 }
5048 #else
5049 /*
5050  * For uniprocessor systems we always use a single mutex, so just
5051  * return 0 and avoid the hashing overhead.
5052  */
5053 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5054 {
5055 	return 0;
5056 }
5057 #endif
5058 
5059 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5060 			unsigned long address, unsigned int flags)
5061 {
5062 	pte_t *ptep, entry;
5063 	spinlock_t *ptl;
5064 	vm_fault_t ret;
5065 	u32 hash;
5066 	pgoff_t idx;
5067 	struct page *page = NULL;
5068 	struct page *pagecache_page = NULL;
5069 	struct hstate *h = hstate_vma(vma);
5070 	struct address_space *mapping;
5071 	int need_wait_lock = 0;
5072 	unsigned long haddr = address & huge_page_mask(h);
5073 
5074 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5075 	if (ptep) {
5076 		/*
5077 		 * Since we hold no locks, ptep could be stale.  That is
5078 		 * OK as we are only making decisions based on content and
5079 		 * not actually modifying content here.
5080 		 */
5081 		entry = huge_ptep_get(ptep);
5082 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5083 			migration_entry_wait_huge(vma, mm, ptep);
5084 			return 0;
5085 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5086 			return VM_FAULT_HWPOISON_LARGE |
5087 				VM_FAULT_SET_HINDEX(hstate_index(h));
5088 	}
5089 
5090 	/*
5091 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5092 	 * until finished with ptep.  This serves two purposes:
5093 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5094 	 *    and making the ptep no longer valid.
5095 	 * 2) It synchronizes us with i_size modifications during truncation.
5096 	 *
5097 	 * ptep could have already be assigned via huge_pte_offset.  That
5098 	 * is OK, as huge_pte_alloc will return the same value unless
5099 	 * something has changed.
5100 	 */
5101 	mapping = vma->vm_file->f_mapping;
5102 	i_mmap_lock_read(mapping);
5103 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5104 	if (!ptep) {
5105 		i_mmap_unlock_read(mapping);
5106 		return VM_FAULT_OOM;
5107 	}
5108 
5109 	/*
5110 	 * Serialize hugepage allocation and instantiation, so that we don't
5111 	 * get spurious allocation failures if two CPUs race to instantiate
5112 	 * the same page in the page cache.
5113 	 */
5114 	idx = vma_hugecache_offset(h, vma, haddr);
5115 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5116 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5117 
5118 	entry = huge_ptep_get(ptep);
5119 	if (huge_pte_none(entry)) {
5120 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5121 		goto out_mutex;
5122 	}
5123 
5124 	ret = 0;
5125 
5126 	/*
5127 	 * entry could be a migration/hwpoison entry at this point, so this
5128 	 * check prevents the kernel from going below assuming that we have
5129 	 * an active hugepage in pagecache. This goto expects the 2nd page
5130 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5131 	 * properly handle it.
5132 	 */
5133 	if (!pte_present(entry))
5134 		goto out_mutex;
5135 
5136 	/*
5137 	 * If we are going to COW the mapping later, we examine the pending
5138 	 * reservations for this page now. This will ensure that any
5139 	 * allocations necessary to record that reservation occur outside the
5140 	 * spinlock. For private mappings, we also lookup the pagecache
5141 	 * page now as it is used to determine if a reservation has been
5142 	 * consumed.
5143 	 */
5144 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5145 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5146 			ret = VM_FAULT_OOM;
5147 			goto out_mutex;
5148 		}
5149 		/* Just decrements count, does not deallocate */
5150 		vma_end_reservation(h, vma, haddr);
5151 
5152 		if (!(vma->vm_flags & VM_MAYSHARE))
5153 			pagecache_page = hugetlbfs_pagecache_page(h,
5154 								vma, haddr);
5155 	}
5156 
5157 	ptl = huge_pte_lock(h, mm, ptep);
5158 
5159 	/* Check for a racing update before calling hugetlb_cow */
5160 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5161 		goto out_ptl;
5162 
5163 	/*
5164 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5165 	 * pagecache_page, so here we need take the former one
5166 	 * when page != pagecache_page or !pagecache_page.
5167 	 */
5168 	page = pte_page(entry);
5169 	if (page != pagecache_page)
5170 		if (!trylock_page(page)) {
5171 			need_wait_lock = 1;
5172 			goto out_ptl;
5173 		}
5174 
5175 	get_page(page);
5176 
5177 	if (flags & FAULT_FLAG_WRITE) {
5178 		if (!huge_pte_write(entry)) {
5179 			ret = hugetlb_cow(mm, vma, address, ptep,
5180 					  pagecache_page, ptl);
5181 			goto out_put_page;
5182 		}
5183 		entry = huge_pte_mkdirty(entry);
5184 	}
5185 	entry = pte_mkyoung(entry);
5186 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5187 						flags & FAULT_FLAG_WRITE))
5188 		update_mmu_cache(vma, haddr, ptep);
5189 out_put_page:
5190 	if (page != pagecache_page)
5191 		unlock_page(page);
5192 	put_page(page);
5193 out_ptl:
5194 	spin_unlock(ptl);
5195 
5196 	if (pagecache_page) {
5197 		unlock_page(pagecache_page);
5198 		put_page(pagecache_page);
5199 	}
5200 out_mutex:
5201 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5202 	i_mmap_unlock_read(mapping);
5203 	/*
5204 	 * Generally it's safe to hold refcount during waiting page lock. But
5205 	 * here we just wait to defer the next page fault to avoid busy loop and
5206 	 * the page is not used after unlocked before returning from the current
5207 	 * page fault. So we are safe from accessing freed page, even if we wait
5208 	 * here without taking refcount.
5209 	 */
5210 	if (need_wait_lock)
5211 		wait_on_page_locked(page);
5212 	return ret;
5213 }
5214 
5215 #ifdef CONFIG_USERFAULTFD
5216 /*
5217  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5218  * modifications for huge pages.
5219  */
5220 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5221 			    pte_t *dst_pte,
5222 			    struct vm_area_struct *dst_vma,
5223 			    unsigned long dst_addr,
5224 			    unsigned long src_addr,
5225 			    enum mcopy_atomic_mode mode,
5226 			    struct page **pagep)
5227 {
5228 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5229 	struct hstate *h = hstate_vma(dst_vma);
5230 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5231 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5232 	unsigned long size;
5233 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5234 	pte_t _dst_pte;
5235 	spinlock_t *ptl;
5236 	int ret = -ENOMEM;
5237 	struct page *page;
5238 	int writable;
5239 	bool new_pagecache_page = false;
5240 
5241 	if (is_continue) {
5242 		ret = -EFAULT;
5243 		page = find_lock_page(mapping, idx);
5244 		if (!page)
5245 			goto out;
5246 	} else if (!*pagep) {
5247 		/* If a page already exists, then it's UFFDIO_COPY for
5248 		 * a non-missing case. Return -EEXIST.
5249 		 */
5250 		if (vm_shared &&
5251 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5252 			ret = -EEXIST;
5253 			goto out;
5254 		}
5255 
5256 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5257 		if (IS_ERR(page)) {
5258 			ret = -ENOMEM;
5259 			goto out;
5260 		}
5261 
5262 		ret = copy_huge_page_from_user(page,
5263 						(const void __user *) src_addr,
5264 						pages_per_huge_page(h), false);
5265 
5266 		/* fallback to copy_from_user outside mmap_lock */
5267 		if (unlikely(ret)) {
5268 			ret = -ENOENT;
5269 			/* Free the allocated page which may have
5270 			 * consumed a reservation.
5271 			 */
5272 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5273 			put_page(page);
5274 
5275 			/* Allocate a temporary page to hold the copied
5276 			 * contents.
5277 			 */
5278 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5279 			if (!page) {
5280 				ret = -ENOMEM;
5281 				goto out;
5282 			}
5283 			*pagep = page;
5284 			/* Set the outparam pagep and return to the caller to
5285 			 * copy the contents outside the lock. Don't free the
5286 			 * page.
5287 			 */
5288 			goto out;
5289 		}
5290 	} else {
5291 		if (vm_shared &&
5292 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5293 			put_page(*pagep);
5294 			ret = -EEXIST;
5295 			*pagep = NULL;
5296 			goto out;
5297 		}
5298 
5299 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5300 		if (IS_ERR(page)) {
5301 			ret = -ENOMEM;
5302 			*pagep = NULL;
5303 			goto out;
5304 		}
5305 		copy_huge_page(page, *pagep);
5306 		put_page(*pagep);
5307 		*pagep = NULL;
5308 	}
5309 
5310 	/*
5311 	 * The memory barrier inside __SetPageUptodate makes sure that
5312 	 * preceding stores to the page contents become visible before
5313 	 * the set_pte_at() write.
5314 	 */
5315 	__SetPageUptodate(page);
5316 
5317 	/* Add shared, newly allocated pages to the page cache. */
5318 	if (vm_shared && !is_continue) {
5319 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5320 		ret = -EFAULT;
5321 		if (idx >= size)
5322 			goto out_release_nounlock;
5323 
5324 		/*
5325 		 * Serialization between remove_inode_hugepages() and
5326 		 * huge_add_to_page_cache() below happens through the
5327 		 * hugetlb_fault_mutex_table that here must be hold by
5328 		 * the caller.
5329 		 */
5330 		ret = huge_add_to_page_cache(page, mapping, idx);
5331 		if (ret)
5332 			goto out_release_nounlock;
5333 		new_pagecache_page = true;
5334 	}
5335 
5336 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5337 	spin_lock(ptl);
5338 
5339 	/*
5340 	 * Recheck the i_size after holding PT lock to make sure not
5341 	 * to leave any page mapped (as page_mapped()) beyond the end
5342 	 * of the i_size (remove_inode_hugepages() is strict about
5343 	 * enforcing that). If we bail out here, we'll also leave a
5344 	 * page in the radix tree in the vm_shared case beyond the end
5345 	 * of the i_size, but remove_inode_hugepages() will take care
5346 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5347 	 */
5348 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5349 	ret = -EFAULT;
5350 	if (idx >= size)
5351 		goto out_release_unlock;
5352 
5353 	ret = -EEXIST;
5354 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5355 		goto out_release_unlock;
5356 
5357 	if (vm_shared) {
5358 		page_dup_rmap(page, true);
5359 	} else {
5360 		ClearHPageRestoreReserve(page);
5361 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5362 	}
5363 
5364 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5365 	if (is_continue && !vm_shared)
5366 		writable = 0;
5367 	else
5368 		writable = dst_vma->vm_flags & VM_WRITE;
5369 
5370 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5371 	if (writable)
5372 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5373 	_dst_pte = pte_mkyoung(_dst_pte);
5374 
5375 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5376 
5377 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5378 					dst_vma->vm_flags & VM_WRITE);
5379 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5380 
5381 	/* No need to invalidate - it was non-present before */
5382 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5383 
5384 	spin_unlock(ptl);
5385 	if (!is_continue)
5386 		SetHPageMigratable(page);
5387 	if (vm_shared || is_continue)
5388 		unlock_page(page);
5389 	ret = 0;
5390 out:
5391 	return ret;
5392 out_release_unlock:
5393 	spin_unlock(ptl);
5394 	if (vm_shared || is_continue)
5395 		unlock_page(page);
5396 out_release_nounlock:
5397 	if (!new_pagecache_page)
5398 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5399 	put_page(page);
5400 	goto out;
5401 }
5402 #endif /* CONFIG_USERFAULTFD */
5403 
5404 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5405 				 int refs, struct page **pages,
5406 				 struct vm_area_struct **vmas)
5407 {
5408 	int nr;
5409 
5410 	for (nr = 0; nr < refs; nr++) {
5411 		if (likely(pages))
5412 			pages[nr] = mem_map_offset(page, nr);
5413 		if (vmas)
5414 			vmas[nr] = vma;
5415 	}
5416 }
5417 
5418 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5419 			 struct page **pages, struct vm_area_struct **vmas,
5420 			 unsigned long *position, unsigned long *nr_pages,
5421 			 long i, unsigned int flags, int *locked)
5422 {
5423 	unsigned long pfn_offset;
5424 	unsigned long vaddr = *position;
5425 	unsigned long remainder = *nr_pages;
5426 	struct hstate *h = hstate_vma(vma);
5427 	int err = -EFAULT, refs;
5428 
5429 	while (vaddr < vma->vm_end && remainder) {
5430 		pte_t *pte;
5431 		spinlock_t *ptl = NULL;
5432 		int absent;
5433 		struct page *page;
5434 
5435 		/*
5436 		 * If we have a pending SIGKILL, don't keep faulting pages and
5437 		 * potentially allocating memory.
5438 		 */
5439 		if (fatal_signal_pending(current)) {
5440 			remainder = 0;
5441 			break;
5442 		}
5443 
5444 		/*
5445 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5446 		 * each hugepage.  We have to make sure we get the
5447 		 * first, for the page indexing below to work.
5448 		 *
5449 		 * Note that page table lock is not held when pte is null.
5450 		 */
5451 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5452 				      huge_page_size(h));
5453 		if (pte)
5454 			ptl = huge_pte_lock(h, mm, pte);
5455 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5456 
5457 		/*
5458 		 * When coredumping, it suits get_dump_page if we just return
5459 		 * an error where there's an empty slot with no huge pagecache
5460 		 * to back it.  This way, we avoid allocating a hugepage, and
5461 		 * the sparse dumpfile avoids allocating disk blocks, but its
5462 		 * huge holes still show up with zeroes where they need to be.
5463 		 */
5464 		if (absent && (flags & FOLL_DUMP) &&
5465 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5466 			if (pte)
5467 				spin_unlock(ptl);
5468 			remainder = 0;
5469 			break;
5470 		}
5471 
5472 		/*
5473 		 * We need call hugetlb_fault for both hugepages under migration
5474 		 * (in which case hugetlb_fault waits for the migration,) and
5475 		 * hwpoisoned hugepages (in which case we need to prevent the
5476 		 * caller from accessing to them.) In order to do this, we use
5477 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5478 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5479 		 * both cases, and because we can't follow correct pages
5480 		 * directly from any kind of swap entries.
5481 		 */
5482 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5483 		    ((flags & FOLL_WRITE) &&
5484 		      !huge_pte_write(huge_ptep_get(pte)))) {
5485 			vm_fault_t ret;
5486 			unsigned int fault_flags = 0;
5487 
5488 			if (pte)
5489 				spin_unlock(ptl);
5490 			if (flags & FOLL_WRITE)
5491 				fault_flags |= FAULT_FLAG_WRITE;
5492 			if (locked)
5493 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5494 					FAULT_FLAG_KILLABLE;
5495 			if (flags & FOLL_NOWAIT)
5496 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5497 					FAULT_FLAG_RETRY_NOWAIT;
5498 			if (flags & FOLL_TRIED) {
5499 				/*
5500 				 * Note: FAULT_FLAG_ALLOW_RETRY and
5501 				 * FAULT_FLAG_TRIED can co-exist
5502 				 */
5503 				fault_flags |= FAULT_FLAG_TRIED;
5504 			}
5505 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5506 			if (ret & VM_FAULT_ERROR) {
5507 				err = vm_fault_to_errno(ret, flags);
5508 				remainder = 0;
5509 				break;
5510 			}
5511 			if (ret & VM_FAULT_RETRY) {
5512 				if (locked &&
5513 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5514 					*locked = 0;
5515 				*nr_pages = 0;
5516 				/*
5517 				 * VM_FAULT_RETRY must not return an
5518 				 * error, it will return zero
5519 				 * instead.
5520 				 *
5521 				 * No need to update "position" as the
5522 				 * caller will not check it after
5523 				 * *nr_pages is set to 0.
5524 				 */
5525 				return i;
5526 			}
5527 			continue;
5528 		}
5529 
5530 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5531 		page = pte_page(huge_ptep_get(pte));
5532 
5533 		/*
5534 		 * If subpage information not requested, update counters
5535 		 * and skip the same_page loop below.
5536 		 */
5537 		if (!pages && !vmas && !pfn_offset &&
5538 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5539 		    (remainder >= pages_per_huge_page(h))) {
5540 			vaddr += huge_page_size(h);
5541 			remainder -= pages_per_huge_page(h);
5542 			i += pages_per_huge_page(h);
5543 			spin_unlock(ptl);
5544 			continue;
5545 		}
5546 
5547 		/* vaddr may not be aligned to PAGE_SIZE */
5548 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5549 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5550 
5551 		if (pages || vmas)
5552 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5553 					     vma, refs,
5554 					     likely(pages) ? pages + i : NULL,
5555 					     vmas ? vmas + i : NULL);
5556 
5557 		if (pages) {
5558 			/*
5559 			 * try_grab_compound_head() should always succeed here,
5560 			 * because: a) we hold the ptl lock, and b) we've just
5561 			 * checked that the huge page is present in the page
5562 			 * tables. If the huge page is present, then the tail
5563 			 * pages must also be present. The ptl prevents the
5564 			 * head page and tail pages from being rearranged in
5565 			 * any way. So this page must be available at this
5566 			 * point, unless the page refcount overflowed:
5567 			 */
5568 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5569 								 refs,
5570 								 flags))) {
5571 				spin_unlock(ptl);
5572 				remainder = 0;
5573 				err = -ENOMEM;
5574 				break;
5575 			}
5576 		}
5577 
5578 		vaddr += (refs << PAGE_SHIFT);
5579 		remainder -= refs;
5580 		i += refs;
5581 
5582 		spin_unlock(ptl);
5583 	}
5584 	*nr_pages = remainder;
5585 	/*
5586 	 * setting position is actually required only if remainder is
5587 	 * not zero but it's faster not to add a "if (remainder)"
5588 	 * branch.
5589 	 */
5590 	*position = vaddr;
5591 
5592 	return i ? i : err;
5593 }
5594 
5595 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5596 		unsigned long address, unsigned long end, pgprot_t newprot)
5597 {
5598 	struct mm_struct *mm = vma->vm_mm;
5599 	unsigned long start = address;
5600 	pte_t *ptep;
5601 	pte_t pte;
5602 	struct hstate *h = hstate_vma(vma);
5603 	unsigned long pages = 0;
5604 	bool shared_pmd = false;
5605 	struct mmu_notifier_range range;
5606 
5607 	/*
5608 	 * In the case of shared PMDs, the area to flush could be beyond
5609 	 * start/end.  Set range.start/range.end to cover the maximum possible
5610 	 * range if PMD sharing is possible.
5611 	 */
5612 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5613 				0, vma, mm, start, end);
5614 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5615 
5616 	BUG_ON(address >= end);
5617 	flush_cache_range(vma, range.start, range.end);
5618 
5619 	mmu_notifier_invalidate_range_start(&range);
5620 	i_mmap_lock_write(vma->vm_file->f_mapping);
5621 	for (; address < end; address += huge_page_size(h)) {
5622 		spinlock_t *ptl;
5623 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5624 		if (!ptep)
5625 			continue;
5626 		ptl = huge_pte_lock(h, mm, ptep);
5627 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5628 			pages++;
5629 			spin_unlock(ptl);
5630 			shared_pmd = true;
5631 			continue;
5632 		}
5633 		pte = huge_ptep_get(ptep);
5634 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5635 			spin_unlock(ptl);
5636 			continue;
5637 		}
5638 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5639 			swp_entry_t entry = pte_to_swp_entry(pte);
5640 
5641 			if (is_writable_migration_entry(entry)) {
5642 				pte_t newpte;
5643 
5644 				entry = make_readable_migration_entry(
5645 							swp_offset(entry));
5646 				newpte = swp_entry_to_pte(entry);
5647 				set_huge_swap_pte_at(mm, address, ptep,
5648 						     newpte, huge_page_size(h));
5649 				pages++;
5650 			}
5651 			spin_unlock(ptl);
5652 			continue;
5653 		}
5654 		if (!huge_pte_none(pte)) {
5655 			pte_t old_pte;
5656 			unsigned int shift = huge_page_shift(hstate_vma(vma));
5657 
5658 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5659 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5660 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5661 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5662 			pages++;
5663 		}
5664 		spin_unlock(ptl);
5665 	}
5666 	/*
5667 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5668 	 * may have cleared our pud entry and done put_page on the page table:
5669 	 * once we release i_mmap_rwsem, another task can do the final put_page
5670 	 * and that page table be reused and filled with junk.  If we actually
5671 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5672 	 */
5673 	if (shared_pmd)
5674 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5675 	else
5676 		flush_hugetlb_tlb_range(vma, start, end);
5677 	/*
5678 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5679 	 * page table protection not changing it to point to a new page.
5680 	 *
5681 	 * See Documentation/vm/mmu_notifier.rst
5682 	 */
5683 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5684 	mmu_notifier_invalidate_range_end(&range);
5685 
5686 	return pages << h->order;
5687 }
5688 
5689 /* Return true if reservation was successful, false otherwise.  */
5690 bool hugetlb_reserve_pages(struct inode *inode,
5691 					long from, long to,
5692 					struct vm_area_struct *vma,
5693 					vm_flags_t vm_flags)
5694 {
5695 	long chg, add = -1;
5696 	struct hstate *h = hstate_inode(inode);
5697 	struct hugepage_subpool *spool = subpool_inode(inode);
5698 	struct resv_map *resv_map;
5699 	struct hugetlb_cgroup *h_cg = NULL;
5700 	long gbl_reserve, regions_needed = 0;
5701 
5702 	/* This should never happen */
5703 	if (from > to) {
5704 		VM_WARN(1, "%s called with a negative range\n", __func__);
5705 		return false;
5706 	}
5707 
5708 	/*
5709 	 * Only apply hugepage reservation if asked. At fault time, an
5710 	 * attempt will be made for VM_NORESERVE to allocate a page
5711 	 * without using reserves
5712 	 */
5713 	if (vm_flags & VM_NORESERVE)
5714 		return true;
5715 
5716 	/*
5717 	 * Shared mappings base their reservation on the number of pages that
5718 	 * are already allocated on behalf of the file. Private mappings need
5719 	 * to reserve the full area even if read-only as mprotect() may be
5720 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5721 	 */
5722 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5723 		/*
5724 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5725 		 * called for inodes for which resv_maps were created (see
5726 		 * hugetlbfs_get_inode).
5727 		 */
5728 		resv_map = inode_resv_map(inode);
5729 
5730 		chg = region_chg(resv_map, from, to, &regions_needed);
5731 
5732 	} else {
5733 		/* Private mapping. */
5734 		resv_map = resv_map_alloc();
5735 		if (!resv_map)
5736 			return false;
5737 
5738 		chg = to - from;
5739 
5740 		set_vma_resv_map(vma, resv_map);
5741 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5742 	}
5743 
5744 	if (chg < 0)
5745 		goto out_err;
5746 
5747 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5748 				chg * pages_per_huge_page(h), &h_cg) < 0)
5749 		goto out_err;
5750 
5751 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5752 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5753 		 * of the resv_map.
5754 		 */
5755 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5756 	}
5757 
5758 	/*
5759 	 * There must be enough pages in the subpool for the mapping. If
5760 	 * the subpool has a minimum size, there may be some global
5761 	 * reservations already in place (gbl_reserve).
5762 	 */
5763 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5764 	if (gbl_reserve < 0)
5765 		goto out_uncharge_cgroup;
5766 
5767 	/*
5768 	 * Check enough hugepages are available for the reservation.
5769 	 * Hand the pages back to the subpool if there are not
5770 	 */
5771 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5772 		goto out_put_pages;
5773 
5774 	/*
5775 	 * Account for the reservations made. Shared mappings record regions
5776 	 * that have reservations as they are shared by multiple VMAs.
5777 	 * When the last VMA disappears, the region map says how much
5778 	 * the reservation was and the page cache tells how much of
5779 	 * the reservation was consumed. Private mappings are per-VMA and
5780 	 * only the consumed reservations are tracked. When the VMA
5781 	 * disappears, the original reservation is the VMA size and the
5782 	 * consumed reservations are stored in the map. Hence, nothing
5783 	 * else has to be done for private mappings here
5784 	 */
5785 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5786 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5787 
5788 		if (unlikely(add < 0)) {
5789 			hugetlb_acct_memory(h, -gbl_reserve);
5790 			goto out_put_pages;
5791 		} else if (unlikely(chg > add)) {
5792 			/*
5793 			 * pages in this range were added to the reserve
5794 			 * map between region_chg and region_add.  This
5795 			 * indicates a race with alloc_huge_page.  Adjust
5796 			 * the subpool and reserve counts modified above
5797 			 * based on the difference.
5798 			 */
5799 			long rsv_adjust;
5800 
5801 			/*
5802 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5803 			 * reference to h_cg->css. See comment below for detail.
5804 			 */
5805 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5806 				hstate_index(h),
5807 				(chg - add) * pages_per_huge_page(h), h_cg);
5808 
5809 			rsv_adjust = hugepage_subpool_put_pages(spool,
5810 								chg - add);
5811 			hugetlb_acct_memory(h, -rsv_adjust);
5812 		} else if (h_cg) {
5813 			/*
5814 			 * The file_regions will hold their own reference to
5815 			 * h_cg->css. So we should release the reference held
5816 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5817 			 * done.
5818 			 */
5819 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5820 		}
5821 	}
5822 	return true;
5823 
5824 out_put_pages:
5825 	/* put back original number of pages, chg */
5826 	(void)hugepage_subpool_put_pages(spool, chg);
5827 out_uncharge_cgroup:
5828 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5829 					    chg * pages_per_huge_page(h), h_cg);
5830 out_err:
5831 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5832 		/* Only call region_abort if the region_chg succeeded but the
5833 		 * region_add failed or didn't run.
5834 		 */
5835 		if (chg >= 0 && add < 0)
5836 			region_abort(resv_map, from, to, regions_needed);
5837 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5838 		kref_put(&resv_map->refs, resv_map_release);
5839 	return false;
5840 }
5841 
5842 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5843 								long freed)
5844 {
5845 	struct hstate *h = hstate_inode(inode);
5846 	struct resv_map *resv_map = inode_resv_map(inode);
5847 	long chg = 0;
5848 	struct hugepage_subpool *spool = subpool_inode(inode);
5849 	long gbl_reserve;
5850 
5851 	/*
5852 	 * Since this routine can be called in the evict inode path for all
5853 	 * hugetlbfs inodes, resv_map could be NULL.
5854 	 */
5855 	if (resv_map) {
5856 		chg = region_del(resv_map, start, end);
5857 		/*
5858 		 * region_del() can fail in the rare case where a region
5859 		 * must be split and another region descriptor can not be
5860 		 * allocated.  If end == LONG_MAX, it will not fail.
5861 		 */
5862 		if (chg < 0)
5863 			return chg;
5864 	}
5865 
5866 	spin_lock(&inode->i_lock);
5867 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5868 	spin_unlock(&inode->i_lock);
5869 
5870 	/*
5871 	 * If the subpool has a minimum size, the number of global
5872 	 * reservations to be released may be adjusted.
5873 	 *
5874 	 * Note that !resv_map implies freed == 0. So (chg - freed)
5875 	 * won't go negative.
5876 	 */
5877 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5878 	hugetlb_acct_memory(h, -gbl_reserve);
5879 
5880 	return 0;
5881 }
5882 
5883 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5884 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5885 				struct vm_area_struct *vma,
5886 				unsigned long addr, pgoff_t idx)
5887 {
5888 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5889 				svma->vm_start;
5890 	unsigned long sbase = saddr & PUD_MASK;
5891 	unsigned long s_end = sbase + PUD_SIZE;
5892 
5893 	/* Allow segments to share if only one is marked locked */
5894 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5895 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5896 
5897 	/*
5898 	 * match the virtual addresses, permission and the alignment of the
5899 	 * page table page.
5900 	 */
5901 	if (pmd_index(addr) != pmd_index(saddr) ||
5902 	    vm_flags != svm_flags ||
5903 	    !range_in_vma(svma, sbase, s_end))
5904 		return 0;
5905 
5906 	return saddr;
5907 }
5908 
5909 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5910 {
5911 	unsigned long base = addr & PUD_MASK;
5912 	unsigned long end = base + PUD_SIZE;
5913 
5914 	/*
5915 	 * check on proper vm_flags and page table alignment
5916 	 */
5917 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5918 		return true;
5919 	return false;
5920 }
5921 
5922 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5923 {
5924 #ifdef CONFIG_USERFAULTFD
5925 	if (uffd_disable_huge_pmd_share(vma))
5926 		return false;
5927 #endif
5928 	return vma_shareable(vma, addr);
5929 }
5930 
5931 /*
5932  * Determine if start,end range within vma could be mapped by shared pmd.
5933  * If yes, adjust start and end to cover range associated with possible
5934  * shared pmd mappings.
5935  */
5936 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5937 				unsigned long *start, unsigned long *end)
5938 {
5939 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5940 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5941 
5942 	/*
5943 	 * vma needs to span at least one aligned PUD size, and the range
5944 	 * must be at least partially within in.
5945 	 */
5946 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5947 		(*end <= v_start) || (*start >= v_end))
5948 		return;
5949 
5950 	/* Extend the range to be PUD aligned for a worst case scenario */
5951 	if (*start > v_start)
5952 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5953 
5954 	if (*end < v_end)
5955 		*end = ALIGN(*end, PUD_SIZE);
5956 }
5957 
5958 /*
5959  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5960  * and returns the corresponding pte. While this is not necessary for the
5961  * !shared pmd case because we can allocate the pmd later as well, it makes the
5962  * code much cleaner.
5963  *
5964  * This routine must be called with i_mmap_rwsem held in at least read mode if
5965  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5966  * table entries associated with the address space.  This is important as we
5967  * are setting up sharing based on existing page table entries (mappings).
5968  *
5969  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5970  * huge_pte_alloc know that sharing is not possible and do not take
5971  * i_mmap_rwsem as a performance optimization.  This is handled by the
5972  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5973  * only required for subsequent processing.
5974  */
5975 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5976 		      unsigned long addr, pud_t *pud)
5977 {
5978 	struct address_space *mapping = vma->vm_file->f_mapping;
5979 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5980 			vma->vm_pgoff;
5981 	struct vm_area_struct *svma;
5982 	unsigned long saddr;
5983 	pte_t *spte = NULL;
5984 	pte_t *pte;
5985 	spinlock_t *ptl;
5986 
5987 	i_mmap_assert_locked(mapping);
5988 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5989 		if (svma == vma)
5990 			continue;
5991 
5992 		saddr = page_table_shareable(svma, vma, addr, idx);
5993 		if (saddr) {
5994 			spte = huge_pte_offset(svma->vm_mm, saddr,
5995 					       vma_mmu_pagesize(svma));
5996 			if (spte) {
5997 				get_page(virt_to_page(spte));
5998 				break;
5999 			}
6000 		}
6001 	}
6002 
6003 	if (!spte)
6004 		goto out;
6005 
6006 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6007 	if (pud_none(*pud)) {
6008 		pud_populate(mm, pud,
6009 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6010 		mm_inc_nr_pmds(mm);
6011 	} else {
6012 		put_page(virt_to_page(spte));
6013 	}
6014 	spin_unlock(ptl);
6015 out:
6016 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6017 	return pte;
6018 }
6019 
6020 /*
6021  * unmap huge page backed by shared pte.
6022  *
6023  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6024  * indicated by page_count > 1, unmap is achieved by clearing pud and
6025  * decrementing the ref count. If count == 1, the pte page is not shared.
6026  *
6027  * Called with page table lock held and i_mmap_rwsem held in write mode.
6028  *
6029  * returns: 1 successfully unmapped a shared pte page
6030  *	    0 the underlying pte page is not shared, or it is the last user
6031  */
6032 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6033 					unsigned long *addr, pte_t *ptep)
6034 {
6035 	pgd_t *pgd = pgd_offset(mm, *addr);
6036 	p4d_t *p4d = p4d_offset(pgd, *addr);
6037 	pud_t *pud = pud_offset(p4d, *addr);
6038 
6039 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6040 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6041 	if (page_count(virt_to_page(ptep)) == 1)
6042 		return 0;
6043 
6044 	pud_clear(pud);
6045 	put_page(virt_to_page(ptep));
6046 	mm_dec_nr_pmds(mm);
6047 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6048 	return 1;
6049 }
6050 
6051 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6052 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6053 		      unsigned long addr, pud_t *pud)
6054 {
6055 	return NULL;
6056 }
6057 
6058 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6059 				unsigned long *addr, pte_t *ptep)
6060 {
6061 	return 0;
6062 }
6063 
6064 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6065 				unsigned long *start, unsigned long *end)
6066 {
6067 }
6068 
6069 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6070 {
6071 	return false;
6072 }
6073 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6074 
6075 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6076 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6077 			unsigned long addr, unsigned long sz)
6078 {
6079 	pgd_t *pgd;
6080 	p4d_t *p4d;
6081 	pud_t *pud;
6082 	pte_t *pte = NULL;
6083 
6084 	pgd = pgd_offset(mm, addr);
6085 	p4d = p4d_alloc(mm, pgd, addr);
6086 	if (!p4d)
6087 		return NULL;
6088 	pud = pud_alloc(mm, p4d, addr);
6089 	if (pud) {
6090 		if (sz == PUD_SIZE) {
6091 			pte = (pte_t *)pud;
6092 		} else {
6093 			BUG_ON(sz != PMD_SIZE);
6094 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6095 				pte = huge_pmd_share(mm, vma, addr, pud);
6096 			else
6097 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6098 		}
6099 	}
6100 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6101 
6102 	return pte;
6103 }
6104 
6105 /*
6106  * huge_pte_offset() - Walk the page table to resolve the hugepage
6107  * entry at address @addr
6108  *
6109  * Return: Pointer to page table entry (PUD or PMD) for
6110  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6111  * size @sz doesn't match the hugepage size at this level of the page
6112  * table.
6113  */
6114 pte_t *huge_pte_offset(struct mm_struct *mm,
6115 		       unsigned long addr, unsigned long sz)
6116 {
6117 	pgd_t *pgd;
6118 	p4d_t *p4d;
6119 	pud_t *pud;
6120 	pmd_t *pmd;
6121 
6122 	pgd = pgd_offset(mm, addr);
6123 	if (!pgd_present(*pgd))
6124 		return NULL;
6125 	p4d = p4d_offset(pgd, addr);
6126 	if (!p4d_present(*p4d))
6127 		return NULL;
6128 
6129 	pud = pud_offset(p4d, addr);
6130 	if (sz == PUD_SIZE)
6131 		/* must be pud huge, non-present or none */
6132 		return (pte_t *)pud;
6133 	if (!pud_present(*pud))
6134 		return NULL;
6135 	/* must have a valid entry and size to go further */
6136 
6137 	pmd = pmd_offset(pud, addr);
6138 	/* must be pmd huge, non-present or none */
6139 	return (pte_t *)pmd;
6140 }
6141 
6142 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6143 
6144 /*
6145  * These functions are overwritable if your architecture needs its own
6146  * behavior.
6147  */
6148 struct page * __weak
6149 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6150 			      int write)
6151 {
6152 	return ERR_PTR(-EINVAL);
6153 }
6154 
6155 struct page * __weak
6156 follow_huge_pd(struct vm_area_struct *vma,
6157 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6158 {
6159 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6160 	return NULL;
6161 }
6162 
6163 struct page * __weak
6164 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6165 		pmd_t *pmd, int flags)
6166 {
6167 	struct page *page = NULL;
6168 	spinlock_t *ptl;
6169 	pte_t pte;
6170 
6171 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6172 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6173 			 (FOLL_PIN | FOLL_GET)))
6174 		return NULL;
6175 
6176 retry:
6177 	ptl = pmd_lockptr(mm, pmd);
6178 	spin_lock(ptl);
6179 	/*
6180 	 * make sure that the address range covered by this pmd is not
6181 	 * unmapped from other threads.
6182 	 */
6183 	if (!pmd_huge(*pmd))
6184 		goto out;
6185 	pte = huge_ptep_get((pte_t *)pmd);
6186 	if (pte_present(pte)) {
6187 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6188 		/*
6189 		 * try_grab_page() should always succeed here, because: a) we
6190 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6191 		 * huge pmd (head) page is present in the page tables. The ptl
6192 		 * prevents the head page and tail pages from being rearranged
6193 		 * in any way. So this page must be available at this point,
6194 		 * unless the page refcount overflowed:
6195 		 */
6196 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6197 			page = NULL;
6198 			goto out;
6199 		}
6200 	} else {
6201 		if (is_hugetlb_entry_migration(pte)) {
6202 			spin_unlock(ptl);
6203 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6204 			goto retry;
6205 		}
6206 		/*
6207 		 * hwpoisoned entry is treated as no_page_table in
6208 		 * follow_page_mask().
6209 		 */
6210 	}
6211 out:
6212 	spin_unlock(ptl);
6213 	return page;
6214 }
6215 
6216 struct page * __weak
6217 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6218 		pud_t *pud, int flags)
6219 {
6220 	if (flags & (FOLL_GET | FOLL_PIN))
6221 		return NULL;
6222 
6223 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6224 }
6225 
6226 struct page * __weak
6227 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6228 {
6229 	if (flags & (FOLL_GET | FOLL_PIN))
6230 		return NULL;
6231 
6232 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6233 }
6234 
6235 bool isolate_huge_page(struct page *page, struct list_head *list)
6236 {
6237 	bool ret = true;
6238 
6239 	spin_lock_irq(&hugetlb_lock);
6240 	if (!PageHeadHuge(page) ||
6241 	    !HPageMigratable(page) ||
6242 	    !get_page_unless_zero(page)) {
6243 		ret = false;
6244 		goto unlock;
6245 	}
6246 	ClearHPageMigratable(page);
6247 	list_move_tail(&page->lru, list);
6248 unlock:
6249 	spin_unlock_irq(&hugetlb_lock);
6250 	return ret;
6251 }
6252 
6253 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6254 {
6255 	int ret = 0;
6256 
6257 	*hugetlb = false;
6258 	spin_lock_irq(&hugetlb_lock);
6259 	if (PageHeadHuge(page)) {
6260 		*hugetlb = true;
6261 		if (HPageFreed(page) || HPageMigratable(page))
6262 			ret = get_page_unless_zero(page);
6263 		else
6264 			ret = -EBUSY;
6265 	}
6266 	spin_unlock_irq(&hugetlb_lock);
6267 	return ret;
6268 }
6269 
6270 void putback_active_hugepage(struct page *page)
6271 {
6272 	spin_lock_irq(&hugetlb_lock);
6273 	SetHPageMigratable(page);
6274 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6275 	spin_unlock_irq(&hugetlb_lock);
6276 	put_page(page);
6277 }
6278 
6279 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6280 {
6281 	struct hstate *h = page_hstate(oldpage);
6282 
6283 	hugetlb_cgroup_migrate(oldpage, newpage);
6284 	set_page_owner_migrate_reason(newpage, reason);
6285 
6286 	/*
6287 	 * transfer temporary state of the new huge page. This is
6288 	 * reverse to other transitions because the newpage is going to
6289 	 * be final while the old one will be freed so it takes over
6290 	 * the temporary status.
6291 	 *
6292 	 * Also note that we have to transfer the per-node surplus state
6293 	 * here as well otherwise the global surplus count will not match
6294 	 * the per-node's.
6295 	 */
6296 	if (HPageTemporary(newpage)) {
6297 		int old_nid = page_to_nid(oldpage);
6298 		int new_nid = page_to_nid(newpage);
6299 
6300 		SetHPageTemporary(oldpage);
6301 		ClearHPageTemporary(newpage);
6302 
6303 		/*
6304 		 * There is no need to transfer the per-node surplus state
6305 		 * when we do not cross the node.
6306 		 */
6307 		if (new_nid == old_nid)
6308 			return;
6309 		spin_lock_irq(&hugetlb_lock);
6310 		if (h->surplus_huge_pages_node[old_nid]) {
6311 			h->surplus_huge_pages_node[old_nid]--;
6312 			h->surplus_huge_pages_node[new_nid]++;
6313 		}
6314 		spin_unlock_irq(&hugetlb_lock);
6315 	}
6316 }
6317 
6318 /*
6319  * This function will unconditionally remove all the shared pmd pgtable entries
6320  * within the specific vma for a hugetlbfs memory range.
6321  */
6322 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6323 {
6324 	struct hstate *h = hstate_vma(vma);
6325 	unsigned long sz = huge_page_size(h);
6326 	struct mm_struct *mm = vma->vm_mm;
6327 	struct mmu_notifier_range range;
6328 	unsigned long address, start, end;
6329 	spinlock_t *ptl;
6330 	pte_t *ptep;
6331 
6332 	if (!(vma->vm_flags & VM_MAYSHARE))
6333 		return;
6334 
6335 	start = ALIGN(vma->vm_start, PUD_SIZE);
6336 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6337 
6338 	if (start >= end)
6339 		return;
6340 
6341 	/*
6342 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6343 	 * we have already done the PUD_SIZE alignment.
6344 	 */
6345 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6346 				start, end);
6347 	mmu_notifier_invalidate_range_start(&range);
6348 	i_mmap_lock_write(vma->vm_file->f_mapping);
6349 	for (address = start; address < end; address += PUD_SIZE) {
6350 		unsigned long tmp = address;
6351 
6352 		ptep = huge_pte_offset(mm, address, sz);
6353 		if (!ptep)
6354 			continue;
6355 		ptl = huge_pte_lock(h, mm, ptep);
6356 		/* We don't want 'address' to be changed */
6357 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6358 		spin_unlock(ptl);
6359 	}
6360 	flush_hugetlb_tlb_range(vma, start, end);
6361 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6362 	/*
6363 	 * No need to call mmu_notifier_invalidate_range(), see
6364 	 * Documentation/vm/mmu_notifier.rst.
6365 	 */
6366 	mmu_notifier_invalidate_range_end(&range);
6367 }
6368 
6369 #ifdef CONFIG_CMA
6370 static bool cma_reserve_called __initdata;
6371 
6372 static int __init cmdline_parse_hugetlb_cma(char *p)
6373 {
6374 	hugetlb_cma_size = memparse(p, &p);
6375 	return 0;
6376 }
6377 
6378 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6379 
6380 void __init hugetlb_cma_reserve(int order)
6381 {
6382 	unsigned long size, reserved, per_node;
6383 	int nid;
6384 
6385 	cma_reserve_called = true;
6386 
6387 	if (!hugetlb_cma_size)
6388 		return;
6389 
6390 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6391 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6392 			(PAGE_SIZE << order) / SZ_1M);
6393 		return;
6394 	}
6395 
6396 	/*
6397 	 * If 3 GB area is requested on a machine with 4 numa nodes,
6398 	 * let's allocate 1 GB on first three nodes and ignore the last one.
6399 	 */
6400 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6401 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6402 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6403 
6404 	reserved = 0;
6405 	for_each_node_state(nid, N_ONLINE) {
6406 		int res;
6407 		char name[CMA_MAX_NAME];
6408 
6409 		size = min(per_node, hugetlb_cma_size - reserved);
6410 		size = round_up(size, PAGE_SIZE << order);
6411 
6412 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6413 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6414 						 0, false, name,
6415 						 &hugetlb_cma[nid], nid);
6416 		if (res) {
6417 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6418 				res, nid);
6419 			continue;
6420 		}
6421 
6422 		reserved += size;
6423 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6424 			size / SZ_1M, nid);
6425 
6426 		if (reserved >= hugetlb_cma_size)
6427 			break;
6428 	}
6429 }
6430 
6431 void __init hugetlb_cma_check(void)
6432 {
6433 	if (!hugetlb_cma_size || cma_reserve_called)
6434 		return;
6435 
6436 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6437 }
6438 
6439 #endif /* CONFIG_CMA */
6440