xref: /openbmc/linux/mm/hugetlb.c (revision 78beef62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34 
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42 
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47  * Minimum page order among possible hugepage sizes, set to a proper value
48  * at boot time.
49  */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51 
52 __initdata LIST_HEAD(huge_boot_pages);
53 
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59 
60 /*
61  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62  * free_huge_pages, and surplus_huge_pages.
63  */
64 DEFINE_SPINLOCK(hugetlb_lock);
65 
66 /*
67  * Serializes faults on the same logical page.  This is used to
68  * prevent spurious OOMs when the hugepage pool is fully utilized.
69  */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72 
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75 
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
79 
80 	spin_unlock(&spool->lock);
81 
82 	/* If no pages are used, and no other handles to the subpool
83 	 * remain, give up any reservations mased on minimum size and
84 	 * free the subpool */
85 	if (free) {
86 		if (spool->min_hpages != -1)
87 			hugetlb_acct_memory(spool->hstate,
88 						-spool->min_hpages);
89 		kfree(spool);
90 	}
91 }
92 
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 						long min_hpages)
95 {
96 	struct hugepage_subpool *spool;
97 
98 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 	if (!spool)
100 		return NULL;
101 
102 	spin_lock_init(&spool->lock);
103 	spool->count = 1;
104 	spool->max_hpages = max_hpages;
105 	spool->hstate = h;
106 	spool->min_hpages = min_hpages;
107 
108 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 		kfree(spool);
110 		return NULL;
111 	}
112 	spool->rsv_hpages = min_hpages;
113 
114 	return spool;
115 }
116 
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119 	spin_lock(&spool->lock);
120 	BUG_ON(!spool->count);
121 	spool->count--;
122 	unlock_or_release_subpool(spool);
123 }
124 
125 /*
126  * Subpool accounting for allocating and reserving pages.
127  * Return -ENOMEM if there are not enough resources to satisfy the
128  * the request.  Otherwise, return the number of pages by which the
129  * global pools must be adjusted (upward).  The returned value may
130  * only be different than the passed value (delta) in the case where
131  * a subpool minimum size must be manitained.
132  */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 				      long delta)
135 {
136 	long ret = delta;
137 
138 	if (!spool)
139 		return ret;
140 
141 	spin_lock(&spool->lock);
142 
143 	if (spool->max_hpages != -1) {		/* maximum size accounting */
144 		if ((spool->used_hpages + delta) <= spool->max_hpages)
145 			spool->used_hpages += delta;
146 		else {
147 			ret = -ENOMEM;
148 			goto unlock_ret;
149 		}
150 	}
151 
152 	/* minimum size accounting */
153 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 		if (delta > spool->rsv_hpages) {
155 			/*
156 			 * Asking for more reserves than those already taken on
157 			 * behalf of subpool.  Return difference.
158 			 */
159 			ret = delta - spool->rsv_hpages;
160 			spool->rsv_hpages = 0;
161 		} else {
162 			ret = 0;	/* reserves already accounted for */
163 			spool->rsv_hpages -= delta;
164 		}
165 	}
166 
167 unlock_ret:
168 	spin_unlock(&spool->lock);
169 	return ret;
170 }
171 
172 /*
173  * Subpool accounting for freeing and unreserving pages.
174  * Return the number of global page reservations that must be dropped.
175  * The return value may only be different than the passed value (delta)
176  * in the case where a subpool minimum size must be maintained.
177  */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 				       long delta)
180 {
181 	long ret = delta;
182 
183 	if (!spool)
184 		return delta;
185 
186 	spin_lock(&spool->lock);
187 
188 	if (spool->max_hpages != -1)		/* maximum size accounting */
189 		spool->used_hpages -= delta;
190 
191 	 /* minimum size accounting */
192 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 		if (spool->rsv_hpages + delta <= spool->min_hpages)
194 			ret = 0;
195 		else
196 			ret = spool->rsv_hpages + delta - spool->min_hpages;
197 
198 		spool->rsv_hpages += delta;
199 		if (spool->rsv_hpages > spool->min_hpages)
200 			spool->rsv_hpages = spool->min_hpages;
201 	}
202 
203 	/*
204 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 	 * quota reference, free it now.
206 	 */
207 	unlock_or_release_subpool(spool);
208 
209 	return ret;
210 }
211 
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214 	return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216 
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219 	return subpool_inode(file_inode(vma->vm_file));
220 }
221 
222 /*
223  * Region tracking -- allows tracking of reservations and instantiated pages
224  *                    across the pages in a mapping.
225  *
226  * The region data structures are embedded into a resv_map and protected
227  * by a resv_map's lock.  The set of regions within the resv_map represent
228  * reservations for huge pages, or huge pages that have already been
229  * instantiated within the map.  The from and to elements are huge page
230  * indicies into the associated mapping.  from indicates the starting index
231  * of the region.  to represents the first index past the end of  the region.
232  *
233  * For example, a file region structure with from == 0 and to == 4 represents
234  * four huge pages in a mapping.  It is important to note that the to element
235  * represents the first element past the end of the region. This is used in
236  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237  *
238  * Interval notation of the form [from, to) will be used to indicate that
239  * the endpoint from is inclusive and to is exclusive.
240  */
241 struct file_region {
242 	struct list_head link;
243 	long from;
244 	long to;
245 };
246 
247 /*
248  * Add the huge page range represented by [f, t) to the reserve
249  * map.  In the normal case, existing regions will be expanded
250  * to accommodate the specified range.  Sufficient regions should
251  * exist for expansion due to the previous call to region_chg
252  * with the same range.  However, it is possible that region_del
253  * could have been called after region_chg and modifed the map
254  * in such a way that no region exists to be expanded.  In this
255  * case, pull a region descriptor from the cache associated with
256  * the map and use that for the new range.
257  *
258  * Return the number of new huge pages added to the map.  This
259  * number is greater than or equal to zero.
260  */
261 static long region_add(struct resv_map *resv, long f, long t)
262 {
263 	struct list_head *head = &resv->regions;
264 	struct file_region *rg, *nrg, *trg;
265 	long add = 0;
266 
267 	spin_lock(&resv->lock);
268 	/* Locate the region we are either in or before. */
269 	list_for_each_entry(rg, head, link)
270 		if (f <= rg->to)
271 			break;
272 
273 	/*
274 	 * If no region exists which can be expanded to include the
275 	 * specified range, the list must have been modified by an
276 	 * interleving call to region_del().  Pull a region descriptor
277 	 * from the cache and use it for this range.
278 	 */
279 	if (&rg->link == head || t < rg->from) {
280 		VM_BUG_ON(resv->region_cache_count <= 0);
281 
282 		resv->region_cache_count--;
283 		nrg = list_first_entry(&resv->region_cache, struct file_region,
284 					link);
285 		list_del(&nrg->link);
286 
287 		nrg->from = f;
288 		nrg->to = t;
289 		list_add(&nrg->link, rg->link.prev);
290 
291 		add += t - f;
292 		goto out_locked;
293 	}
294 
295 	/* Round our left edge to the current segment if it encloses us. */
296 	if (f > rg->from)
297 		f = rg->from;
298 
299 	/* Check for and consume any regions we now overlap with. */
300 	nrg = rg;
301 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 		if (&rg->link == head)
303 			break;
304 		if (rg->from > t)
305 			break;
306 
307 		/* If this area reaches higher then extend our area to
308 		 * include it completely.  If this is not the first area
309 		 * which we intend to reuse, free it. */
310 		if (rg->to > t)
311 			t = rg->to;
312 		if (rg != nrg) {
313 			/* Decrement return value by the deleted range.
314 			 * Another range will span this area so that by
315 			 * end of routine add will be >= zero
316 			 */
317 			add -= (rg->to - rg->from);
318 			list_del(&rg->link);
319 			kfree(rg);
320 		}
321 	}
322 
323 	add += (nrg->from - f);		/* Added to beginning of region */
324 	nrg->from = f;
325 	add += t - nrg->to;		/* Added to end of region */
326 	nrg->to = t;
327 
328 out_locked:
329 	resv->adds_in_progress--;
330 	spin_unlock(&resv->lock);
331 	VM_BUG_ON(add < 0);
332 	return add;
333 }
334 
335 /*
336  * Examine the existing reserve map and determine how many
337  * huge pages in the specified range [f, t) are NOT currently
338  * represented.  This routine is called before a subsequent
339  * call to region_add that will actually modify the reserve
340  * map to add the specified range [f, t).  region_chg does
341  * not change the number of huge pages represented by the
342  * map.  However, if the existing regions in the map can not
343  * be expanded to represent the new range, a new file_region
344  * structure is added to the map as a placeholder.  This is
345  * so that the subsequent region_add call will have all the
346  * regions it needs and will not fail.
347  *
348  * Upon entry, region_chg will also examine the cache of region descriptors
349  * associated with the map.  If there are not enough descriptors cached, one
350  * will be allocated for the in progress add operation.
351  *
352  * Returns the number of huge pages that need to be added to the existing
353  * reservation map for the range [f, t).  This number is greater or equal to
354  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
355  * is needed and can not be allocated.
356  */
357 static long region_chg(struct resv_map *resv, long f, long t)
358 {
359 	struct list_head *head = &resv->regions;
360 	struct file_region *rg, *nrg = NULL;
361 	long chg = 0;
362 
363 retry:
364 	spin_lock(&resv->lock);
365 retry_locked:
366 	resv->adds_in_progress++;
367 
368 	/*
369 	 * Check for sufficient descriptors in the cache to accommodate
370 	 * the number of in progress add operations.
371 	 */
372 	if (resv->adds_in_progress > resv->region_cache_count) {
373 		struct file_region *trg;
374 
375 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 		/* Must drop lock to allocate a new descriptor. */
377 		resv->adds_in_progress--;
378 		spin_unlock(&resv->lock);
379 
380 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 		if (!trg) {
382 			kfree(nrg);
383 			return -ENOMEM;
384 		}
385 
386 		spin_lock(&resv->lock);
387 		list_add(&trg->link, &resv->region_cache);
388 		resv->region_cache_count++;
389 		goto retry_locked;
390 	}
391 
392 	/* Locate the region we are before or in. */
393 	list_for_each_entry(rg, head, link)
394 		if (f <= rg->to)
395 			break;
396 
397 	/* If we are below the current region then a new region is required.
398 	 * Subtle, allocate a new region at the position but make it zero
399 	 * size such that we can guarantee to record the reservation. */
400 	if (&rg->link == head || t < rg->from) {
401 		if (!nrg) {
402 			resv->adds_in_progress--;
403 			spin_unlock(&resv->lock);
404 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 			if (!nrg)
406 				return -ENOMEM;
407 
408 			nrg->from = f;
409 			nrg->to   = f;
410 			INIT_LIST_HEAD(&nrg->link);
411 			goto retry;
412 		}
413 
414 		list_add(&nrg->link, rg->link.prev);
415 		chg = t - f;
416 		goto out_nrg;
417 	}
418 
419 	/* Round our left edge to the current segment if it encloses us. */
420 	if (f > rg->from)
421 		f = rg->from;
422 	chg = t - f;
423 
424 	/* Check for and consume any regions we now overlap with. */
425 	list_for_each_entry(rg, rg->link.prev, link) {
426 		if (&rg->link == head)
427 			break;
428 		if (rg->from > t)
429 			goto out;
430 
431 		/* We overlap with this area, if it extends further than
432 		 * us then we must extend ourselves.  Account for its
433 		 * existing reservation. */
434 		if (rg->to > t) {
435 			chg += rg->to - t;
436 			t = rg->to;
437 		}
438 		chg -= rg->to - rg->from;
439 	}
440 
441 out:
442 	spin_unlock(&resv->lock);
443 	/*  We already know we raced and no longer need the new region */
444 	kfree(nrg);
445 	return chg;
446 out_nrg:
447 	spin_unlock(&resv->lock);
448 	return chg;
449 }
450 
451 /*
452  * Abort the in progress add operation.  The adds_in_progress field
453  * of the resv_map keeps track of the operations in progress between
454  * calls to region_chg and region_add.  Operations are sometimes
455  * aborted after the call to region_chg.  In such cases, region_abort
456  * is called to decrement the adds_in_progress counter.
457  *
458  * NOTE: The range arguments [f, t) are not needed or used in this
459  * routine.  They are kept to make reading the calling code easier as
460  * arguments will match the associated region_chg call.
461  */
462 static void region_abort(struct resv_map *resv, long f, long t)
463 {
464 	spin_lock(&resv->lock);
465 	VM_BUG_ON(!resv->region_cache_count);
466 	resv->adds_in_progress--;
467 	spin_unlock(&resv->lock);
468 }
469 
470 /*
471  * Delete the specified range [f, t) from the reserve map.  If the
472  * t parameter is LONG_MAX, this indicates that ALL regions after f
473  * should be deleted.  Locate the regions which intersect [f, t)
474  * and either trim, delete or split the existing regions.
475  *
476  * Returns the number of huge pages deleted from the reserve map.
477  * In the normal case, the return value is zero or more.  In the
478  * case where a region must be split, a new region descriptor must
479  * be allocated.  If the allocation fails, -ENOMEM will be returned.
480  * NOTE: If the parameter t == LONG_MAX, then we will never split
481  * a region and possibly return -ENOMEM.  Callers specifying
482  * t == LONG_MAX do not need to check for -ENOMEM error.
483  */
484 static long region_del(struct resv_map *resv, long f, long t)
485 {
486 	struct list_head *head = &resv->regions;
487 	struct file_region *rg, *trg;
488 	struct file_region *nrg = NULL;
489 	long del = 0;
490 
491 retry:
492 	spin_lock(&resv->lock);
493 	list_for_each_entry_safe(rg, trg, head, link) {
494 		/*
495 		 * Skip regions before the range to be deleted.  file_region
496 		 * ranges are normally of the form [from, to).  However, there
497 		 * may be a "placeholder" entry in the map which is of the form
498 		 * (from, to) with from == to.  Check for placeholder entries
499 		 * at the beginning of the range to be deleted.
500 		 */
501 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 			continue;
503 
504 		if (rg->from >= t)
505 			break;
506 
507 		if (f > rg->from && t < rg->to) { /* Must split region */
508 			/*
509 			 * Check for an entry in the cache before dropping
510 			 * lock and attempting allocation.
511 			 */
512 			if (!nrg &&
513 			    resv->region_cache_count > resv->adds_in_progress) {
514 				nrg = list_first_entry(&resv->region_cache,
515 							struct file_region,
516 							link);
517 				list_del(&nrg->link);
518 				resv->region_cache_count--;
519 			}
520 
521 			if (!nrg) {
522 				spin_unlock(&resv->lock);
523 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 				if (!nrg)
525 					return -ENOMEM;
526 				goto retry;
527 			}
528 
529 			del += t - f;
530 
531 			/* New entry for end of split region */
532 			nrg->from = t;
533 			nrg->to = rg->to;
534 			INIT_LIST_HEAD(&nrg->link);
535 
536 			/* Original entry is trimmed */
537 			rg->to = f;
538 
539 			list_add(&nrg->link, &rg->link);
540 			nrg = NULL;
541 			break;
542 		}
543 
544 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 			del += rg->to - rg->from;
546 			list_del(&rg->link);
547 			kfree(rg);
548 			continue;
549 		}
550 
551 		if (f <= rg->from) {	/* Trim beginning of region */
552 			del += t - rg->from;
553 			rg->from = t;
554 		} else {		/* Trim end of region */
555 			del += rg->to - f;
556 			rg->to = f;
557 		}
558 	}
559 
560 	spin_unlock(&resv->lock);
561 	kfree(nrg);
562 	return del;
563 }
564 
565 /*
566  * A rare out of memory error was encountered which prevented removal of
567  * the reserve map region for a page.  The huge page itself was free'ed
568  * and removed from the page cache.  This routine will adjust the subpool
569  * usage count, and the global reserve count if needed.  By incrementing
570  * these counts, the reserve map entry which could not be deleted will
571  * appear as a "reserved" entry instead of simply dangling with incorrect
572  * counts.
573  */
574 void hugetlb_fix_reserve_counts(struct inode *inode)
575 {
576 	struct hugepage_subpool *spool = subpool_inode(inode);
577 	long rsv_adjust;
578 
579 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 	if (rsv_adjust) {
581 		struct hstate *h = hstate_inode(inode);
582 
583 		hugetlb_acct_memory(h, 1);
584 	}
585 }
586 
587 /*
588  * Count and return the number of huge pages in the reserve map
589  * that intersect with the range [f, t).
590  */
591 static long region_count(struct resv_map *resv, long f, long t)
592 {
593 	struct list_head *head = &resv->regions;
594 	struct file_region *rg;
595 	long chg = 0;
596 
597 	spin_lock(&resv->lock);
598 	/* Locate each segment we overlap with, and count that overlap. */
599 	list_for_each_entry(rg, head, link) {
600 		long seg_from;
601 		long seg_to;
602 
603 		if (rg->to <= f)
604 			continue;
605 		if (rg->from >= t)
606 			break;
607 
608 		seg_from = max(rg->from, f);
609 		seg_to = min(rg->to, t);
610 
611 		chg += seg_to - seg_from;
612 	}
613 	spin_unlock(&resv->lock);
614 
615 	return chg;
616 }
617 
618 /*
619  * Convert the address within this vma to the page offset within
620  * the mapping, in pagecache page units; huge pages here.
621  */
622 static pgoff_t vma_hugecache_offset(struct hstate *h,
623 			struct vm_area_struct *vma, unsigned long address)
624 {
625 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 			(vma->vm_pgoff >> huge_page_order(h));
627 }
628 
629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 				     unsigned long address)
631 {
632 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
633 }
634 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635 
636 /*
637  * Return the size of the pages allocated when backing a VMA. In the majority
638  * cases this will be same size as used by the page table entries.
639  */
640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641 {
642 	if (vma->vm_ops && vma->vm_ops->pagesize)
643 		return vma->vm_ops->pagesize(vma);
644 	return PAGE_SIZE;
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647 
648 /*
649  * Return the page size being used by the MMU to back a VMA. In the majority
650  * of cases, the page size used by the kernel matches the MMU size. On
651  * architectures where it differs, an architecture-specific 'strong'
652  * version of this symbol is required.
653  */
654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655 {
656 	return vma_kernel_pagesize(vma);
657 }
658 
659 /*
660  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
661  * bits of the reservation map pointer, which are always clear due to
662  * alignment.
663  */
664 #define HPAGE_RESV_OWNER    (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667 
668 /*
669  * These helpers are used to track how many pages are reserved for
670  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671  * is guaranteed to have their future faults succeed.
672  *
673  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674  * the reserve counters are updated with the hugetlb_lock held. It is safe
675  * to reset the VMA at fork() time as it is not in use yet and there is no
676  * chance of the global counters getting corrupted as a result of the values.
677  *
678  * The private mapping reservation is represented in a subtly different
679  * manner to a shared mapping.  A shared mapping has a region map associated
680  * with the underlying file, this region map represents the backing file
681  * pages which have ever had a reservation assigned which this persists even
682  * after the page is instantiated.  A private mapping has a region map
683  * associated with the original mmap which is attached to all VMAs which
684  * reference it, this region map represents those offsets which have consumed
685  * reservation ie. where pages have been instantiated.
686  */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689 	return (unsigned long)vma->vm_private_data;
690 }
691 
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 							unsigned long value)
694 {
695 	vma->vm_private_data = (void *)value;
696 }
697 
698 struct resv_map *resv_map_alloc(void)
699 {
700 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702 
703 	if (!resv_map || !rg) {
704 		kfree(resv_map);
705 		kfree(rg);
706 		return NULL;
707 	}
708 
709 	kref_init(&resv_map->refs);
710 	spin_lock_init(&resv_map->lock);
711 	INIT_LIST_HEAD(&resv_map->regions);
712 
713 	resv_map->adds_in_progress = 0;
714 
715 	INIT_LIST_HEAD(&resv_map->region_cache);
716 	list_add(&rg->link, &resv_map->region_cache);
717 	resv_map->region_cache_count = 1;
718 
719 	return resv_map;
720 }
721 
722 void resv_map_release(struct kref *ref)
723 {
724 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 	struct list_head *head = &resv_map->region_cache;
726 	struct file_region *rg, *trg;
727 
728 	/* Clear out any active regions before we release the map. */
729 	region_del(resv_map, 0, LONG_MAX);
730 
731 	/* ... and any entries left in the cache */
732 	list_for_each_entry_safe(rg, trg, head, link) {
733 		list_del(&rg->link);
734 		kfree(rg);
735 	}
736 
737 	VM_BUG_ON(resv_map->adds_in_progress);
738 
739 	kfree(resv_map);
740 }
741 
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744 	/*
745 	 * At inode evict time, i_mapping may not point to the original
746 	 * address space within the inode.  This original address space
747 	 * contains the pointer to the resv_map.  So, always use the
748 	 * address space embedded within the inode.
749 	 * The VERY common case is inode->mapping == &inode->i_data but,
750 	 * this may not be true for device special inodes.
751 	 */
752 	return (struct resv_map *)(&inode->i_data)->private_data;
753 }
754 
755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756 {
757 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 	if (vma->vm_flags & VM_MAYSHARE) {
759 		struct address_space *mapping = vma->vm_file->f_mapping;
760 		struct inode *inode = mapping->host;
761 
762 		return inode_resv_map(inode);
763 
764 	} else {
765 		return (struct resv_map *)(get_vma_private_data(vma) &
766 							~HPAGE_RESV_MASK);
767 	}
768 }
769 
770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771 {
772 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774 
775 	set_vma_private_data(vma, (get_vma_private_data(vma) &
776 				HPAGE_RESV_MASK) | (unsigned long)map);
777 }
778 
779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780 {
781 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783 
784 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785 }
786 
787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788 {
789 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790 
791 	return (get_vma_private_data(vma) & flag) != 0;
792 }
793 
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796 {
797 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 	if (!(vma->vm_flags & VM_MAYSHARE))
799 		vma->vm_private_data = (void *)0;
800 }
801 
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804 {
805 	if (vma->vm_flags & VM_NORESERVE) {
806 		/*
807 		 * This address is already reserved by other process(chg == 0),
808 		 * so, we should decrement reserved count. Without decrementing,
809 		 * reserve count remains after releasing inode, because this
810 		 * allocated page will go into page cache and is regarded as
811 		 * coming from reserved pool in releasing step.  Currently, we
812 		 * don't have any other solution to deal with this situation
813 		 * properly, so add work-around here.
814 		 */
815 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 			return true;
817 		else
818 			return false;
819 	}
820 
821 	/* Shared mappings always use reserves */
822 	if (vma->vm_flags & VM_MAYSHARE) {
823 		/*
824 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
825 		 * be a region map for all pages.  The only situation where
826 		 * there is no region map is if a hole was punched via
827 		 * fallocate.  In this case, there really are no reverves to
828 		 * use.  This situation is indicated if chg != 0.
829 		 */
830 		if (chg)
831 			return false;
832 		else
833 			return true;
834 	}
835 
836 	/*
837 	 * Only the process that called mmap() has reserves for
838 	 * private mappings.
839 	 */
840 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 		/*
842 		 * Like the shared case above, a hole punch or truncate
843 		 * could have been performed on the private mapping.
844 		 * Examine the value of chg to determine if reserves
845 		 * actually exist or were previously consumed.
846 		 * Very Subtle - The value of chg comes from a previous
847 		 * call to vma_needs_reserves().  The reserve map for
848 		 * private mappings has different (opposite) semantics
849 		 * than that of shared mappings.  vma_needs_reserves()
850 		 * has already taken this difference in semantics into
851 		 * account.  Therefore, the meaning of chg is the same
852 		 * as in the shared case above.  Code could easily be
853 		 * combined, but keeping it separate draws attention to
854 		 * subtle differences.
855 		 */
856 		if (chg)
857 			return false;
858 		else
859 			return true;
860 	}
861 
862 	return false;
863 }
864 
865 static void enqueue_huge_page(struct hstate *h, struct page *page)
866 {
867 	int nid = page_to_nid(page);
868 	list_move(&page->lru, &h->hugepage_freelists[nid]);
869 	h->free_huge_pages++;
870 	h->free_huge_pages_node[nid]++;
871 }
872 
873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874 {
875 	struct page *page;
876 
877 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 		if (!PageHWPoison(page))
879 			break;
880 	/*
881 	 * if 'non-isolated free hugepage' not found on the list,
882 	 * the allocation fails.
883 	 */
884 	if (&h->hugepage_freelists[nid] == &page->lru)
885 		return NULL;
886 	list_move(&page->lru, &h->hugepage_activelist);
887 	set_page_refcounted(page);
888 	h->free_huge_pages--;
889 	h->free_huge_pages_node[nid]--;
890 	return page;
891 }
892 
893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 		nodemask_t *nmask)
895 {
896 	unsigned int cpuset_mems_cookie;
897 	struct zonelist *zonelist;
898 	struct zone *zone;
899 	struct zoneref *z;
900 	int node = NUMA_NO_NODE;
901 
902 	zonelist = node_zonelist(nid, gfp_mask);
903 
904 retry_cpuset:
905 	cpuset_mems_cookie = read_mems_allowed_begin();
906 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 		struct page *page;
908 
909 		if (!cpuset_zone_allowed(zone, gfp_mask))
910 			continue;
911 		/*
912 		 * no need to ask again on the same node. Pool is node rather than
913 		 * zone aware
914 		 */
915 		if (zone_to_nid(zone) == node)
916 			continue;
917 		node = zone_to_nid(zone);
918 
919 		page = dequeue_huge_page_node_exact(h, node);
920 		if (page)
921 			return page;
922 	}
923 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 		goto retry_cpuset;
925 
926 	return NULL;
927 }
928 
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t htlb_alloc_mask(struct hstate *h)
931 {
932 	if (hugepage_movable_supported(h))
933 		return GFP_HIGHUSER_MOVABLE;
934 	else
935 		return GFP_HIGHUSER;
936 }
937 
938 static struct page *dequeue_huge_page_vma(struct hstate *h,
939 				struct vm_area_struct *vma,
940 				unsigned long address, int avoid_reserve,
941 				long chg)
942 {
943 	struct page *page;
944 	struct mempolicy *mpol;
945 	gfp_t gfp_mask;
946 	nodemask_t *nodemask;
947 	int nid;
948 
949 	/*
950 	 * A child process with MAP_PRIVATE mappings created by their parent
951 	 * have no page reserves. This check ensures that reservations are
952 	 * not "stolen". The child may still get SIGKILLed
953 	 */
954 	if (!vma_has_reserves(vma, chg) &&
955 			h->free_huge_pages - h->resv_huge_pages == 0)
956 		goto err;
957 
958 	/* If reserves cannot be used, ensure enough pages are in the pool */
959 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 		goto err;
961 
962 	gfp_mask = htlb_alloc_mask(h);
963 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 		SetPagePrivate(page);
967 		h->resv_huge_pages--;
968 	}
969 
970 	mpol_cond_put(mpol);
971 	return page;
972 
973 err:
974 	return NULL;
975 }
976 
977 /*
978  * common helper functions for hstate_next_node_to_{alloc|free}.
979  * We may have allocated or freed a huge page based on a different
980  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981  * be outside of *nodes_allowed.  Ensure that we use an allowed
982  * node for alloc or free.
983  */
984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985 {
986 	nid = next_node_in(nid, *nodes_allowed);
987 	VM_BUG_ON(nid >= MAX_NUMNODES);
988 
989 	return nid;
990 }
991 
992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994 	if (!node_isset(nid, *nodes_allowed))
995 		nid = next_node_allowed(nid, nodes_allowed);
996 	return nid;
997 }
998 
999 /*
1000  * returns the previously saved node ["this node"] from which to
1001  * allocate a persistent huge page for the pool and advance the
1002  * next node from which to allocate, handling wrap at end of node
1003  * mask.
1004  */
1005 static int hstate_next_node_to_alloc(struct hstate *h,
1006 					nodemask_t *nodes_allowed)
1007 {
1008 	int nid;
1009 
1010 	VM_BUG_ON(!nodes_allowed);
1011 
1012 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014 
1015 	return nid;
1016 }
1017 
1018 /*
1019  * helper for free_pool_huge_page() - return the previously saved
1020  * node ["this node"] from which to free a huge page.  Advance the
1021  * next node id whether or not we find a free huge page to free so
1022  * that the next attempt to free addresses the next node.
1023  */
1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025 {
1026 	int nid;
1027 
1028 	VM_BUG_ON(!nodes_allowed);
1029 
1030 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032 
1033 	return nid;
1034 }
1035 
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1037 	for (nr_nodes = nodes_weight(*mask);				\
1038 		nr_nodes > 0 &&						\
1039 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1040 		nr_nodes--)
1041 
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1043 	for (nr_nodes = nodes_weight(*mask);				\
1044 		nr_nodes > 0 &&						\
1045 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1046 		nr_nodes--)
1047 
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page *page,
1050 					unsigned int order)
1051 {
1052 	int i;
1053 	int nr_pages = 1 << order;
1054 	struct page *p = page + 1;
1055 
1056 	atomic_set(compound_mapcount_ptr(page), 0);
1057 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 		clear_compound_head(p);
1059 		set_page_refcounted(p);
1060 	}
1061 
1062 	set_compound_order(page, 0);
1063 	__ClearPageHead(page);
1064 }
1065 
1066 static void free_gigantic_page(struct page *page, unsigned int order)
1067 {
1068 	free_contig_range(page_to_pfn(page), 1 << order);
1069 }
1070 
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn,
1073 				unsigned long nr_pages, gfp_t gfp_mask)
1074 {
1075 	unsigned long end_pfn = start_pfn + nr_pages;
1076 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 				  gfp_mask);
1078 }
1079 
1080 static bool pfn_range_valid_gigantic(struct zone *z,
1081 			unsigned long start_pfn, unsigned long nr_pages)
1082 {
1083 	unsigned long i, end_pfn = start_pfn + nr_pages;
1084 	struct page *page;
1085 
1086 	for (i = start_pfn; i < end_pfn; i++) {
1087 		if (!pfn_valid(i))
1088 			return false;
1089 
1090 		page = pfn_to_page(i);
1091 
1092 		if (page_zone(page) != z)
1093 			return false;
1094 
1095 		if (PageReserved(page))
1096 			return false;
1097 
1098 		if (page_count(page) > 0)
1099 			return false;
1100 
1101 		if (PageHuge(page))
1102 			return false;
1103 	}
1104 
1105 	return true;
1106 }
1107 
1108 static bool zone_spans_last_pfn(const struct zone *zone,
1109 			unsigned long start_pfn, unsigned long nr_pages)
1110 {
1111 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 	return zone_spans_pfn(zone, last_pfn);
1113 }
1114 
1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 		int nid, nodemask_t *nodemask)
1117 {
1118 	unsigned int order = huge_page_order(h);
1119 	unsigned long nr_pages = 1 << order;
1120 	unsigned long ret, pfn, flags;
1121 	struct zonelist *zonelist;
1122 	struct zone *zone;
1123 	struct zoneref *z;
1124 
1125 	zonelist = node_zonelist(nid, gfp_mask);
1126 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127 		spin_lock_irqsave(&zone->lock, flags);
1128 
1129 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1132 				/*
1133 				 * We release the zone lock here because
1134 				 * alloc_contig_range() will also lock the zone
1135 				 * at some point. If there's an allocation
1136 				 * spinning on this lock, it may win the race
1137 				 * and cause alloc_contig_range() to fail...
1138 				 */
1139 				spin_unlock_irqrestore(&zone->lock, flags);
1140 				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141 				if (!ret)
1142 					return pfn_to_page(pfn);
1143 				spin_lock_irqsave(&zone->lock, flags);
1144 			}
1145 			pfn += nr_pages;
1146 		}
1147 
1148 		spin_unlock_irqrestore(&zone->lock, flags);
1149 	}
1150 
1151 	return NULL;
1152 }
1153 
1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 					int nid, nodemask_t *nodemask)
1159 {
1160 	return NULL;
1161 }
1162 #endif /* CONFIG_CONTIG_ALLOC */
1163 
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166 					int nid, nodemask_t *nodemask)
1167 {
1168 	return NULL;
1169 }
1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1171 static inline void destroy_compound_gigantic_page(struct page *page,
1172 						unsigned int order) { }
1173 #endif
1174 
1175 static void update_and_free_page(struct hstate *h, struct page *page)
1176 {
1177 	int i;
1178 
1179 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180 		return;
1181 
1182 	h->nr_huge_pages--;
1183 	h->nr_huge_pages_node[page_to_nid(page)]--;
1184 	for (i = 0; i < pages_per_huge_page(h); i++) {
1185 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 				1 << PG_referenced | 1 << PG_dirty |
1187 				1 << PG_active | 1 << PG_private |
1188 				1 << PG_writeback);
1189 	}
1190 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192 	set_page_refcounted(page);
1193 	if (hstate_is_gigantic(h)) {
1194 		destroy_compound_gigantic_page(page, huge_page_order(h));
1195 		free_gigantic_page(page, huge_page_order(h));
1196 	} else {
1197 		__free_pages(page, huge_page_order(h));
1198 	}
1199 }
1200 
1201 struct hstate *size_to_hstate(unsigned long size)
1202 {
1203 	struct hstate *h;
1204 
1205 	for_each_hstate(h) {
1206 		if (huge_page_size(h) == size)
1207 			return h;
1208 	}
1209 	return NULL;
1210 }
1211 
1212 /*
1213  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214  * to hstate->hugepage_activelist.)
1215  *
1216  * This function can be called for tail pages, but never returns true for them.
1217  */
1218 bool page_huge_active(struct page *page)
1219 {
1220 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 	return PageHead(page) && PagePrivate(&page[1]);
1222 }
1223 
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page *page)
1226 {
1227 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 	SetPagePrivate(&page[1]);
1229 }
1230 
1231 static void clear_page_huge_active(struct page *page)
1232 {
1233 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 	ClearPagePrivate(&page[1]);
1235 }
1236 
1237 /*
1238  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239  * code
1240  */
1241 static inline bool PageHugeTemporary(struct page *page)
1242 {
1243 	if (!PageHuge(page))
1244 		return false;
1245 
1246 	return (unsigned long)page[2].mapping == -1U;
1247 }
1248 
1249 static inline void SetPageHugeTemporary(struct page *page)
1250 {
1251 	page[2].mapping = (void *)-1U;
1252 }
1253 
1254 static inline void ClearPageHugeTemporary(struct page *page)
1255 {
1256 	page[2].mapping = NULL;
1257 }
1258 
1259 void free_huge_page(struct page *page)
1260 {
1261 	/*
1262 	 * Can't pass hstate in here because it is called from the
1263 	 * compound page destructor.
1264 	 */
1265 	struct hstate *h = page_hstate(page);
1266 	int nid = page_to_nid(page);
1267 	struct hugepage_subpool *spool =
1268 		(struct hugepage_subpool *)page_private(page);
1269 	bool restore_reserve;
1270 
1271 	VM_BUG_ON_PAGE(page_count(page), page);
1272 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1273 
1274 	set_page_private(page, 0);
1275 	page->mapping = NULL;
1276 	restore_reserve = PagePrivate(page);
1277 	ClearPagePrivate(page);
1278 
1279 	/*
1280 	 * If PagePrivate() was set on page, page allocation consumed a
1281 	 * reservation.  If the page was associated with a subpool, there
1282 	 * would have been a page reserved in the subpool before allocation
1283 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1284 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 	 * remove the reserved page from the subpool.
1286 	 */
1287 	if (!restore_reserve) {
1288 		/*
1289 		 * A return code of zero implies that the subpool will be
1290 		 * under its minimum size if the reservation is not restored
1291 		 * after page is free.  Therefore, force restore_reserve
1292 		 * operation.
1293 		 */
1294 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 			restore_reserve = true;
1296 	}
1297 
1298 	spin_lock(&hugetlb_lock);
1299 	clear_page_huge_active(page);
1300 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 				     pages_per_huge_page(h), page);
1302 	if (restore_reserve)
1303 		h->resv_huge_pages++;
1304 
1305 	if (PageHugeTemporary(page)) {
1306 		list_del(&page->lru);
1307 		ClearPageHugeTemporary(page);
1308 		update_and_free_page(h, page);
1309 	} else if (h->surplus_huge_pages_node[nid]) {
1310 		/* remove the page from active list */
1311 		list_del(&page->lru);
1312 		update_and_free_page(h, page);
1313 		h->surplus_huge_pages--;
1314 		h->surplus_huge_pages_node[nid]--;
1315 	} else {
1316 		arch_clear_hugepage_flags(page);
1317 		enqueue_huge_page(h, page);
1318 	}
1319 	spin_unlock(&hugetlb_lock);
1320 }
1321 
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1323 {
1324 	INIT_LIST_HEAD(&page->lru);
1325 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1326 	spin_lock(&hugetlb_lock);
1327 	set_hugetlb_cgroup(page, NULL);
1328 	h->nr_huge_pages++;
1329 	h->nr_huge_pages_node[nid]++;
1330 	spin_unlock(&hugetlb_lock);
1331 }
1332 
1333 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1334 {
1335 	int i;
1336 	int nr_pages = 1 << order;
1337 	struct page *p = page + 1;
1338 
1339 	/* we rely on prep_new_huge_page to set the destructor */
1340 	set_compound_order(page, order);
1341 	__ClearPageReserved(page);
1342 	__SetPageHead(page);
1343 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1344 		/*
1345 		 * For gigantic hugepages allocated through bootmem at
1346 		 * boot, it's safer to be consistent with the not-gigantic
1347 		 * hugepages and clear the PG_reserved bit from all tail pages
1348 		 * too.  Otherwse drivers using get_user_pages() to access tail
1349 		 * pages may get the reference counting wrong if they see
1350 		 * PG_reserved set on a tail page (despite the head page not
1351 		 * having PG_reserved set).  Enforcing this consistency between
1352 		 * head and tail pages allows drivers to optimize away a check
1353 		 * on the head page when they need know if put_page() is needed
1354 		 * after get_user_pages().
1355 		 */
1356 		__ClearPageReserved(p);
1357 		set_page_count(p, 0);
1358 		set_compound_head(p, page);
1359 	}
1360 	atomic_set(compound_mapcount_ptr(page), -1);
1361 }
1362 
1363 /*
1364  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365  * transparent huge pages.  See the PageTransHuge() documentation for more
1366  * details.
1367  */
1368 int PageHuge(struct page *page)
1369 {
1370 	if (!PageCompound(page))
1371 		return 0;
1372 
1373 	page = compound_head(page);
1374 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1375 }
1376 EXPORT_SYMBOL_GPL(PageHuge);
1377 
1378 /*
1379  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380  * normal or transparent huge pages.
1381  */
1382 int PageHeadHuge(struct page *page_head)
1383 {
1384 	if (!PageHead(page_head))
1385 		return 0;
1386 
1387 	return get_compound_page_dtor(page_head) == free_huge_page;
1388 }
1389 
1390 pgoff_t __basepage_index(struct page *page)
1391 {
1392 	struct page *page_head = compound_head(page);
1393 	pgoff_t index = page_index(page_head);
1394 	unsigned long compound_idx;
1395 
1396 	if (!PageHuge(page_head))
1397 		return page_index(page);
1398 
1399 	if (compound_order(page_head) >= MAX_ORDER)
1400 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401 	else
1402 		compound_idx = page - page_head;
1403 
1404 	return (index << compound_order(page_head)) + compound_idx;
1405 }
1406 
1407 static struct page *alloc_buddy_huge_page(struct hstate *h,
1408 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1409 {
1410 	int order = huge_page_order(h);
1411 	struct page *page;
1412 
1413 	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1414 	if (nid == NUMA_NO_NODE)
1415 		nid = numa_mem_id();
1416 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1417 	if (page)
1418 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1419 	else
1420 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1421 
1422 	return page;
1423 }
1424 
1425 /*
1426  * Common helper to allocate a fresh hugetlb page. All specific allocators
1427  * should use this function to get new hugetlb pages
1428  */
1429 static struct page *alloc_fresh_huge_page(struct hstate *h,
1430 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1431 {
1432 	struct page *page;
1433 
1434 	if (hstate_is_gigantic(h))
1435 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1436 	else
1437 		page = alloc_buddy_huge_page(h, gfp_mask,
1438 				nid, nmask);
1439 	if (!page)
1440 		return NULL;
1441 
1442 	if (hstate_is_gigantic(h))
1443 		prep_compound_gigantic_page(page, huge_page_order(h));
1444 	prep_new_huge_page(h, page, page_to_nid(page));
1445 
1446 	return page;
1447 }
1448 
1449 /*
1450  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1451  * manner.
1452  */
1453 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1454 {
1455 	struct page *page;
1456 	int nr_nodes, node;
1457 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1458 
1459 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1460 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1461 		if (page)
1462 			break;
1463 	}
1464 
1465 	if (!page)
1466 		return 0;
1467 
1468 	put_page(page); /* free it into the hugepage allocator */
1469 
1470 	return 1;
1471 }
1472 
1473 /*
1474  * Free huge page from pool from next node to free.
1475  * Attempt to keep persistent huge pages more or less
1476  * balanced over allowed nodes.
1477  * Called with hugetlb_lock locked.
1478  */
1479 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1480 							 bool acct_surplus)
1481 {
1482 	int nr_nodes, node;
1483 	int ret = 0;
1484 
1485 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1486 		/*
1487 		 * If we're returning unused surplus pages, only examine
1488 		 * nodes with surplus pages.
1489 		 */
1490 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1491 		    !list_empty(&h->hugepage_freelists[node])) {
1492 			struct page *page =
1493 				list_entry(h->hugepage_freelists[node].next,
1494 					  struct page, lru);
1495 			list_del(&page->lru);
1496 			h->free_huge_pages--;
1497 			h->free_huge_pages_node[node]--;
1498 			if (acct_surplus) {
1499 				h->surplus_huge_pages--;
1500 				h->surplus_huge_pages_node[node]--;
1501 			}
1502 			update_and_free_page(h, page);
1503 			ret = 1;
1504 			break;
1505 		}
1506 	}
1507 
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Dissolve a given free hugepage into free buddy pages. This function does
1513  * nothing for in-use hugepages and non-hugepages.
1514  * This function returns values like below:
1515  *
1516  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1517  *          (allocated or reserved.)
1518  *       0: successfully dissolved free hugepages or the page is not a
1519  *          hugepage (considered as already dissolved)
1520  */
1521 int dissolve_free_huge_page(struct page *page)
1522 {
1523 	int rc = -EBUSY;
1524 
1525 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1526 	if (!PageHuge(page))
1527 		return 0;
1528 
1529 	spin_lock(&hugetlb_lock);
1530 	if (!PageHuge(page)) {
1531 		rc = 0;
1532 		goto out;
1533 	}
1534 
1535 	if (!page_count(page)) {
1536 		struct page *head = compound_head(page);
1537 		struct hstate *h = page_hstate(head);
1538 		int nid = page_to_nid(head);
1539 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1540 			goto out;
1541 		/*
1542 		 * Move PageHWPoison flag from head page to the raw error page,
1543 		 * which makes any subpages rather than the error page reusable.
1544 		 */
1545 		if (PageHWPoison(head) && page != head) {
1546 			SetPageHWPoison(page);
1547 			ClearPageHWPoison(head);
1548 		}
1549 		list_del(&head->lru);
1550 		h->free_huge_pages--;
1551 		h->free_huge_pages_node[nid]--;
1552 		h->max_huge_pages--;
1553 		update_and_free_page(h, head);
1554 		rc = 0;
1555 	}
1556 out:
1557 	spin_unlock(&hugetlb_lock);
1558 	return rc;
1559 }
1560 
1561 /*
1562  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1563  * make specified memory blocks removable from the system.
1564  * Note that this will dissolve a free gigantic hugepage completely, if any
1565  * part of it lies within the given range.
1566  * Also note that if dissolve_free_huge_page() returns with an error, all
1567  * free hugepages that were dissolved before that error are lost.
1568  */
1569 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1570 {
1571 	unsigned long pfn;
1572 	struct page *page;
1573 	int rc = 0;
1574 
1575 	if (!hugepages_supported())
1576 		return rc;
1577 
1578 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1579 		page = pfn_to_page(pfn);
1580 		rc = dissolve_free_huge_page(page);
1581 		if (rc)
1582 			break;
1583 	}
1584 
1585 	return rc;
1586 }
1587 
1588 /*
1589  * Allocates a fresh surplus page from the page allocator.
1590  */
1591 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1592 		int nid, nodemask_t *nmask)
1593 {
1594 	struct page *page = NULL;
1595 
1596 	if (hstate_is_gigantic(h))
1597 		return NULL;
1598 
1599 	spin_lock(&hugetlb_lock);
1600 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1601 		goto out_unlock;
1602 	spin_unlock(&hugetlb_lock);
1603 
1604 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1605 	if (!page)
1606 		return NULL;
1607 
1608 	spin_lock(&hugetlb_lock);
1609 	/*
1610 	 * We could have raced with the pool size change.
1611 	 * Double check that and simply deallocate the new page
1612 	 * if we would end up overcommiting the surpluses. Abuse
1613 	 * temporary page to workaround the nasty free_huge_page
1614 	 * codeflow
1615 	 */
1616 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617 		SetPageHugeTemporary(page);
1618 		spin_unlock(&hugetlb_lock);
1619 		put_page(page);
1620 		return NULL;
1621 	} else {
1622 		h->surplus_huge_pages++;
1623 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1624 	}
1625 
1626 out_unlock:
1627 	spin_unlock(&hugetlb_lock);
1628 
1629 	return page;
1630 }
1631 
1632 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1633 				     int nid, nodemask_t *nmask)
1634 {
1635 	struct page *page;
1636 
1637 	if (hstate_is_gigantic(h))
1638 		return NULL;
1639 
1640 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1641 	if (!page)
1642 		return NULL;
1643 
1644 	/*
1645 	 * We do not account these pages as surplus because they are only
1646 	 * temporary and will be released properly on the last reference
1647 	 */
1648 	SetPageHugeTemporary(page);
1649 
1650 	return page;
1651 }
1652 
1653 /*
1654  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1655  */
1656 static
1657 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1658 		struct vm_area_struct *vma, unsigned long addr)
1659 {
1660 	struct page *page;
1661 	struct mempolicy *mpol;
1662 	gfp_t gfp_mask = htlb_alloc_mask(h);
1663 	int nid;
1664 	nodemask_t *nodemask;
1665 
1666 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1667 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1668 	mpol_cond_put(mpol);
1669 
1670 	return page;
1671 }
1672 
1673 /* page migration callback function */
1674 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1675 {
1676 	gfp_t gfp_mask = htlb_alloc_mask(h);
1677 	struct page *page = NULL;
1678 
1679 	if (nid != NUMA_NO_NODE)
1680 		gfp_mask |= __GFP_THISNODE;
1681 
1682 	spin_lock(&hugetlb_lock);
1683 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1684 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1685 	spin_unlock(&hugetlb_lock);
1686 
1687 	if (!page)
1688 		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1689 
1690 	return page;
1691 }
1692 
1693 /* page migration callback function */
1694 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1695 		nodemask_t *nmask)
1696 {
1697 	gfp_t gfp_mask = htlb_alloc_mask(h);
1698 
1699 	spin_lock(&hugetlb_lock);
1700 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1701 		struct page *page;
1702 
1703 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1704 		if (page) {
1705 			spin_unlock(&hugetlb_lock);
1706 			return page;
1707 		}
1708 	}
1709 	spin_unlock(&hugetlb_lock);
1710 
1711 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1712 }
1713 
1714 /* mempolicy aware migration callback */
1715 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1716 		unsigned long address)
1717 {
1718 	struct mempolicy *mpol;
1719 	nodemask_t *nodemask;
1720 	struct page *page;
1721 	gfp_t gfp_mask;
1722 	int node;
1723 
1724 	gfp_mask = htlb_alloc_mask(h);
1725 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1726 	page = alloc_huge_page_nodemask(h, node, nodemask);
1727 	mpol_cond_put(mpol);
1728 
1729 	return page;
1730 }
1731 
1732 /*
1733  * Increase the hugetlb pool such that it can accommodate a reservation
1734  * of size 'delta'.
1735  */
1736 static int gather_surplus_pages(struct hstate *h, int delta)
1737 {
1738 	struct list_head surplus_list;
1739 	struct page *page, *tmp;
1740 	int ret, i;
1741 	int needed, allocated;
1742 	bool alloc_ok = true;
1743 
1744 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1745 	if (needed <= 0) {
1746 		h->resv_huge_pages += delta;
1747 		return 0;
1748 	}
1749 
1750 	allocated = 0;
1751 	INIT_LIST_HEAD(&surplus_list);
1752 
1753 	ret = -ENOMEM;
1754 retry:
1755 	spin_unlock(&hugetlb_lock);
1756 	for (i = 0; i < needed; i++) {
1757 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1758 				NUMA_NO_NODE, NULL);
1759 		if (!page) {
1760 			alloc_ok = false;
1761 			break;
1762 		}
1763 		list_add(&page->lru, &surplus_list);
1764 		cond_resched();
1765 	}
1766 	allocated += i;
1767 
1768 	/*
1769 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1770 	 * because either resv_huge_pages or free_huge_pages may have changed.
1771 	 */
1772 	spin_lock(&hugetlb_lock);
1773 	needed = (h->resv_huge_pages + delta) -
1774 			(h->free_huge_pages + allocated);
1775 	if (needed > 0) {
1776 		if (alloc_ok)
1777 			goto retry;
1778 		/*
1779 		 * We were not able to allocate enough pages to
1780 		 * satisfy the entire reservation so we free what
1781 		 * we've allocated so far.
1782 		 */
1783 		goto free;
1784 	}
1785 	/*
1786 	 * The surplus_list now contains _at_least_ the number of extra pages
1787 	 * needed to accommodate the reservation.  Add the appropriate number
1788 	 * of pages to the hugetlb pool and free the extras back to the buddy
1789 	 * allocator.  Commit the entire reservation here to prevent another
1790 	 * process from stealing the pages as they are added to the pool but
1791 	 * before they are reserved.
1792 	 */
1793 	needed += allocated;
1794 	h->resv_huge_pages += delta;
1795 	ret = 0;
1796 
1797 	/* Free the needed pages to the hugetlb pool */
1798 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1799 		if ((--needed) < 0)
1800 			break;
1801 		/*
1802 		 * This page is now managed by the hugetlb allocator and has
1803 		 * no users -- drop the buddy allocator's reference.
1804 		 */
1805 		put_page_testzero(page);
1806 		VM_BUG_ON_PAGE(page_count(page), page);
1807 		enqueue_huge_page(h, page);
1808 	}
1809 free:
1810 	spin_unlock(&hugetlb_lock);
1811 
1812 	/* Free unnecessary surplus pages to the buddy allocator */
1813 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1814 		put_page(page);
1815 	spin_lock(&hugetlb_lock);
1816 
1817 	return ret;
1818 }
1819 
1820 /*
1821  * This routine has two main purposes:
1822  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1823  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1824  *    to the associated reservation map.
1825  * 2) Free any unused surplus pages that may have been allocated to satisfy
1826  *    the reservation.  As many as unused_resv_pages may be freed.
1827  *
1828  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1829  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1830  * we must make sure nobody else can claim pages we are in the process of
1831  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1832  * number of huge pages we plan to free when dropping the lock.
1833  */
1834 static void return_unused_surplus_pages(struct hstate *h,
1835 					unsigned long unused_resv_pages)
1836 {
1837 	unsigned long nr_pages;
1838 
1839 	/* Cannot return gigantic pages currently */
1840 	if (hstate_is_gigantic(h))
1841 		goto out;
1842 
1843 	/*
1844 	 * Part (or even all) of the reservation could have been backed
1845 	 * by pre-allocated pages. Only free surplus pages.
1846 	 */
1847 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1848 
1849 	/*
1850 	 * We want to release as many surplus pages as possible, spread
1851 	 * evenly across all nodes with memory. Iterate across these nodes
1852 	 * until we can no longer free unreserved surplus pages. This occurs
1853 	 * when the nodes with surplus pages have no free pages.
1854 	 * free_pool_huge_page() will balance the the freed pages across the
1855 	 * on-line nodes with memory and will handle the hstate accounting.
1856 	 *
1857 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1858 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1859 	 * to cover subsequent pages we may free.
1860 	 */
1861 	while (nr_pages--) {
1862 		h->resv_huge_pages--;
1863 		unused_resv_pages--;
1864 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1865 			goto out;
1866 		cond_resched_lock(&hugetlb_lock);
1867 	}
1868 
1869 out:
1870 	/* Fully uncommit the reservation */
1871 	h->resv_huge_pages -= unused_resv_pages;
1872 }
1873 
1874 
1875 /*
1876  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1877  * are used by the huge page allocation routines to manage reservations.
1878  *
1879  * vma_needs_reservation is called to determine if the huge page at addr
1880  * within the vma has an associated reservation.  If a reservation is
1881  * needed, the value 1 is returned.  The caller is then responsible for
1882  * managing the global reservation and subpool usage counts.  After
1883  * the huge page has been allocated, vma_commit_reservation is called
1884  * to add the page to the reservation map.  If the page allocation fails,
1885  * the reservation must be ended instead of committed.  vma_end_reservation
1886  * is called in such cases.
1887  *
1888  * In the normal case, vma_commit_reservation returns the same value
1889  * as the preceding vma_needs_reservation call.  The only time this
1890  * is not the case is if a reserve map was changed between calls.  It
1891  * is the responsibility of the caller to notice the difference and
1892  * take appropriate action.
1893  *
1894  * vma_add_reservation is used in error paths where a reservation must
1895  * be restored when a newly allocated huge page must be freed.  It is
1896  * to be called after calling vma_needs_reservation to determine if a
1897  * reservation exists.
1898  */
1899 enum vma_resv_mode {
1900 	VMA_NEEDS_RESV,
1901 	VMA_COMMIT_RESV,
1902 	VMA_END_RESV,
1903 	VMA_ADD_RESV,
1904 };
1905 static long __vma_reservation_common(struct hstate *h,
1906 				struct vm_area_struct *vma, unsigned long addr,
1907 				enum vma_resv_mode mode)
1908 {
1909 	struct resv_map *resv;
1910 	pgoff_t idx;
1911 	long ret;
1912 
1913 	resv = vma_resv_map(vma);
1914 	if (!resv)
1915 		return 1;
1916 
1917 	idx = vma_hugecache_offset(h, vma, addr);
1918 	switch (mode) {
1919 	case VMA_NEEDS_RESV:
1920 		ret = region_chg(resv, idx, idx + 1);
1921 		break;
1922 	case VMA_COMMIT_RESV:
1923 		ret = region_add(resv, idx, idx + 1);
1924 		break;
1925 	case VMA_END_RESV:
1926 		region_abort(resv, idx, idx + 1);
1927 		ret = 0;
1928 		break;
1929 	case VMA_ADD_RESV:
1930 		if (vma->vm_flags & VM_MAYSHARE)
1931 			ret = region_add(resv, idx, idx + 1);
1932 		else {
1933 			region_abort(resv, idx, idx + 1);
1934 			ret = region_del(resv, idx, idx + 1);
1935 		}
1936 		break;
1937 	default:
1938 		BUG();
1939 	}
1940 
1941 	if (vma->vm_flags & VM_MAYSHARE)
1942 		return ret;
1943 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1944 		/*
1945 		 * In most cases, reserves always exist for private mappings.
1946 		 * However, a file associated with mapping could have been
1947 		 * hole punched or truncated after reserves were consumed.
1948 		 * As subsequent fault on such a range will not use reserves.
1949 		 * Subtle - The reserve map for private mappings has the
1950 		 * opposite meaning than that of shared mappings.  If NO
1951 		 * entry is in the reserve map, it means a reservation exists.
1952 		 * If an entry exists in the reserve map, it means the
1953 		 * reservation has already been consumed.  As a result, the
1954 		 * return value of this routine is the opposite of the
1955 		 * value returned from reserve map manipulation routines above.
1956 		 */
1957 		if (ret)
1958 			return 0;
1959 		else
1960 			return 1;
1961 	}
1962 	else
1963 		return ret < 0 ? ret : 0;
1964 }
1965 
1966 static long vma_needs_reservation(struct hstate *h,
1967 			struct vm_area_struct *vma, unsigned long addr)
1968 {
1969 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1970 }
1971 
1972 static long vma_commit_reservation(struct hstate *h,
1973 			struct vm_area_struct *vma, unsigned long addr)
1974 {
1975 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1976 }
1977 
1978 static void vma_end_reservation(struct hstate *h,
1979 			struct vm_area_struct *vma, unsigned long addr)
1980 {
1981 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1982 }
1983 
1984 static long vma_add_reservation(struct hstate *h,
1985 			struct vm_area_struct *vma, unsigned long addr)
1986 {
1987 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1988 }
1989 
1990 /*
1991  * This routine is called to restore a reservation on error paths.  In the
1992  * specific error paths, a huge page was allocated (via alloc_huge_page)
1993  * and is about to be freed.  If a reservation for the page existed,
1994  * alloc_huge_page would have consumed the reservation and set PagePrivate
1995  * in the newly allocated page.  When the page is freed via free_huge_page,
1996  * the global reservation count will be incremented if PagePrivate is set.
1997  * However, free_huge_page can not adjust the reserve map.  Adjust the
1998  * reserve map here to be consistent with global reserve count adjustments
1999  * to be made by free_huge_page.
2000  */
2001 static void restore_reserve_on_error(struct hstate *h,
2002 			struct vm_area_struct *vma, unsigned long address,
2003 			struct page *page)
2004 {
2005 	if (unlikely(PagePrivate(page))) {
2006 		long rc = vma_needs_reservation(h, vma, address);
2007 
2008 		if (unlikely(rc < 0)) {
2009 			/*
2010 			 * Rare out of memory condition in reserve map
2011 			 * manipulation.  Clear PagePrivate so that
2012 			 * global reserve count will not be incremented
2013 			 * by free_huge_page.  This will make it appear
2014 			 * as though the reservation for this page was
2015 			 * consumed.  This may prevent the task from
2016 			 * faulting in the page at a later time.  This
2017 			 * is better than inconsistent global huge page
2018 			 * accounting of reserve counts.
2019 			 */
2020 			ClearPagePrivate(page);
2021 		} else if (rc) {
2022 			rc = vma_add_reservation(h, vma, address);
2023 			if (unlikely(rc < 0))
2024 				/*
2025 				 * See above comment about rare out of
2026 				 * memory condition.
2027 				 */
2028 				ClearPagePrivate(page);
2029 		} else
2030 			vma_end_reservation(h, vma, address);
2031 	}
2032 }
2033 
2034 struct page *alloc_huge_page(struct vm_area_struct *vma,
2035 				    unsigned long addr, int avoid_reserve)
2036 {
2037 	struct hugepage_subpool *spool = subpool_vma(vma);
2038 	struct hstate *h = hstate_vma(vma);
2039 	struct page *page;
2040 	long map_chg, map_commit;
2041 	long gbl_chg;
2042 	int ret, idx;
2043 	struct hugetlb_cgroup *h_cg;
2044 
2045 	idx = hstate_index(h);
2046 	/*
2047 	 * Examine the region/reserve map to determine if the process
2048 	 * has a reservation for the page to be allocated.  A return
2049 	 * code of zero indicates a reservation exists (no change).
2050 	 */
2051 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2052 	if (map_chg < 0)
2053 		return ERR_PTR(-ENOMEM);
2054 
2055 	/*
2056 	 * Processes that did not create the mapping will have no
2057 	 * reserves as indicated by the region/reserve map. Check
2058 	 * that the allocation will not exceed the subpool limit.
2059 	 * Allocations for MAP_NORESERVE mappings also need to be
2060 	 * checked against any subpool limit.
2061 	 */
2062 	if (map_chg || avoid_reserve) {
2063 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2064 		if (gbl_chg < 0) {
2065 			vma_end_reservation(h, vma, addr);
2066 			return ERR_PTR(-ENOSPC);
2067 		}
2068 
2069 		/*
2070 		 * Even though there was no reservation in the region/reserve
2071 		 * map, there could be reservations associated with the
2072 		 * subpool that can be used.  This would be indicated if the
2073 		 * return value of hugepage_subpool_get_pages() is zero.
2074 		 * However, if avoid_reserve is specified we still avoid even
2075 		 * the subpool reservations.
2076 		 */
2077 		if (avoid_reserve)
2078 			gbl_chg = 1;
2079 	}
2080 
2081 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2082 	if (ret)
2083 		goto out_subpool_put;
2084 
2085 	spin_lock(&hugetlb_lock);
2086 	/*
2087 	 * glb_chg is passed to indicate whether or not a page must be taken
2088 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2089 	 * a reservation exists for the allocation.
2090 	 */
2091 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2092 	if (!page) {
2093 		spin_unlock(&hugetlb_lock);
2094 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2095 		if (!page)
2096 			goto out_uncharge_cgroup;
2097 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2098 			SetPagePrivate(page);
2099 			h->resv_huge_pages--;
2100 		}
2101 		spin_lock(&hugetlb_lock);
2102 		list_move(&page->lru, &h->hugepage_activelist);
2103 		/* Fall through */
2104 	}
2105 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2106 	spin_unlock(&hugetlb_lock);
2107 
2108 	set_page_private(page, (unsigned long)spool);
2109 
2110 	map_commit = vma_commit_reservation(h, vma, addr);
2111 	if (unlikely(map_chg > map_commit)) {
2112 		/*
2113 		 * The page was added to the reservation map between
2114 		 * vma_needs_reservation and vma_commit_reservation.
2115 		 * This indicates a race with hugetlb_reserve_pages.
2116 		 * Adjust for the subpool count incremented above AND
2117 		 * in hugetlb_reserve_pages for the same page.  Also,
2118 		 * the reservation count added in hugetlb_reserve_pages
2119 		 * no longer applies.
2120 		 */
2121 		long rsv_adjust;
2122 
2123 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2124 		hugetlb_acct_memory(h, -rsv_adjust);
2125 	}
2126 	return page;
2127 
2128 out_uncharge_cgroup:
2129 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2130 out_subpool_put:
2131 	if (map_chg || avoid_reserve)
2132 		hugepage_subpool_put_pages(spool, 1);
2133 	vma_end_reservation(h, vma, addr);
2134 	return ERR_PTR(-ENOSPC);
2135 }
2136 
2137 int alloc_bootmem_huge_page(struct hstate *h)
2138 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2139 int __alloc_bootmem_huge_page(struct hstate *h)
2140 {
2141 	struct huge_bootmem_page *m;
2142 	int nr_nodes, node;
2143 
2144 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2145 		void *addr;
2146 
2147 		addr = memblock_alloc_try_nid_raw(
2148 				huge_page_size(h), huge_page_size(h),
2149 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2150 		if (addr) {
2151 			/*
2152 			 * Use the beginning of the huge page to store the
2153 			 * huge_bootmem_page struct (until gather_bootmem
2154 			 * puts them into the mem_map).
2155 			 */
2156 			m = addr;
2157 			goto found;
2158 		}
2159 	}
2160 	return 0;
2161 
2162 found:
2163 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2164 	/* Put them into a private list first because mem_map is not up yet */
2165 	INIT_LIST_HEAD(&m->list);
2166 	list_add(&m->list, &huge_boot_pages);
2167 	m->hstate = h;
2168 	return 1;
2169 }
2170 
2171 static void __init prep_compound_huge_page(struct page *page,
2172 		unsigned int order)
2173 {
2174 	if (unlikely(order > (MAX_ORDER - 1)))
2175 		prep_compound_gigantic_page(page, order);
2176 	else
2177 		prep_compound_page(page, order);
2178 }
2179 
2180 /* Put bootmem huge pages into the standard lists after mem_map is up */
2181 static void __init gather_bootmem_prealloc(void)
2182 {
2183 	struct huge_bootmem_page *m;
2184 
2185 	list_for_each_entry(m, &huge_boot_pages, list) {
2186 		struct page *page = virt_to_page(m);
2187 		struct hstate *h = m->hstate;
2188 
2189 		WARN_ON(page_count(page) != 1);
2190 		prep_compound_huge_page(page, h->order);
2191 		WARN_ON(PageReserved(page));
2192 		prep_new_huge_page(h, page, page_to_nid(page));
2193 		put_page(page); /* free it into the hugepage allocator */
2194 
2195 		/*
2196 		 * If we had gigantic hugepages allocated at boot time, we need
2197 		 * to restore the 'stolen' pages to totalram_pages in order to
2198 		 * fix confusing memory reports from free(1) and another
2199 		 * side-effects, like CommitLimit going negative.
2200 		 */
2201 		if (hstate_is_gigantic(h))
2202 			adjust_managed_page_count(page, 1 << h->order);
2203 		cond_resched();
2204 	}
2205 }
2206 
2207 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2208 {
2209 	unsigned long i;
2210 
2211 	for (i = 0; i < h->max_huge_pages; ++i) {
2212 		if (hstate_is_gigantic(h)) {
2213 			if (!alloc_bootmem_huge_page(h))
2214 				break;
2215 		} else if (!alloc_pool_huge_page(h,
2216 					 &node_states[N_MEMORY]))
2217 			break;
2218 		cond_resched();
2219 	}
2220 	if (i < h->max_huge_pages) {
2221 		char buf[32];
2222 
2223 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2224 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2225 			h->max_huge_pages, buf, i);
2226 		h->max_huge_pages = i;
2227 	}
2228 }
2229 
2230 static void __init hugetlb_init_hstates(void)
2231 {
2232 	struct hstate *h;
2233 
2234 	for_each_hstate(h) {
2235 		if (minimum_order > huge_page_order(h))
2236 			minimum_order = huge_page_order(h);
2237 
2238 		/* oversize hugepages were init'ed in early boot */
2239 		if (!hstate_is_gigantic(h))
2240 			hugetlb_hstate_alloc_pages(h);
2241 	}
2242 	VM_BUG_ON(minimum_order == UINT_MAX);
2243 }
2244 
2245 static void __init report_hugepages(void)
2246 {
2247 	struct hstate *h;
2248 
2249 	for_each_hstate(h) {
2250 		char buf[32];
2251 
2252 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2253 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2254 			buf, h->free_huge_pages);
2255 	}
2256 }
2257 
2258 #ifdef CONFIG_HIGHMEM
2259 static void try_to_free_low(struct hstate *h, unsigned long count,
2260 						nodemask_t *nodes_allowed)
2261 {
2262 	int i;
2263 
2264 	if (hstate_is_gigantic(h))
2265 		return;
2266 
2267 	for_each_node_mask(i, *nodes_allowed) {
2268 		struct page *page, *next;
2269 		struct list_head *freel = &h->hugepage_freelists[i];
2270 		list_for_each_entry_safe(page, next, freel, lru) {
2271 			if (count >= h->nr_huge_pages)
2272 				return;
2273 			if (PageHighMem(page))
2274 				continue;
2275 			list_del(&page->lru);
2276 			update_and_free_page(h, page);
2277 			h->free_huge_pages--;
2278 			h->free_huge_pages_node[page_to_nid(page)]--;
2279 		}
2280 	}
2281 }
2282 #else
2283 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2284 						nodemask_t *nodes_allowed)
2285 {
2286 }
2287 #endif
2288 
2289 /*
2290  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2291  * balanced by operating on them in a round-robin fashion.
2292  * Returns 1 if an adjustment was made.
2293  */
2294 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2295 				int delta)
2296 {
2297 	int nr_nodes, node;
2298 
2299 	VM_BUG_ON(delta != -1 && delta != 1);
2300 
2301 	if (delta < 0) {
2302 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2303 			if (h->surplus_huge_pages_node[node])
2304 				goto found;
2305 		}
2306 	} else {
2307 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2308 			if (h->surplus_huge_pages_node[node] <
2309 					h->nr_huge_pages_node[node])
2310 				goto found;
2311 		}
2312 	}
2313 	return 0;
2314 
2315 found:
2316 	h->surplus_huge_pages += delta;
2317 	h->surplus_huge_pages_node[node] += delta;
2318 	return 1;
2319 }
2320 
2321 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2322 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2323 			      nodemask_t *nodes_allowed)
2324 {
2325 	unsigned long min_count, ret;
2326 
2327 	spin_lock(&hugetlb_lock);
2328 
2329 	/*
2330 	 * Check for a node specific request.
2331 	 * Changing node specific huge page count may require a corresponding
2332 	 * change to the global count.  In any case, the passed node mask
2333 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2334 	 */
2335 	if (nid != NUMA_NO_NODE) {
2336 		unsigned long old_count = count;
2337 
2338 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2339 		/*
2340 		 * User may have specified a large count value which caused the
2341 		 * above calculation to overflow.  In this case, they wanted
2342 		 * to allocate as many huge pages as possible.  Set count to
2343 		 * largest possible value to align with their intention.
2344 		 */
2345 		if (count < old_count)
2346 			count = ULONG_MAX;
2347 	}
2348 
2349 	/*
2350 	 * Gigantic pages runtime allocation depend on the capability for large
2351 	 * page range allocation.
2352 	 * If the system does not provide this feature, return an error when
2353 	 * the user tries to allocate gigantic pages but let the user free the
2354 	 * boottime allocated gigantic pages.
2355 	 */
2356 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2357 		if (count > persistent_huge_pages(h)) {
2358 			spin_unlock(&hugetlb_lock);
2359 			return -EINVAL;
2360 		}
2361 		/* Fall through to decrease pool */
2362 	}
2363 
2364 	/*
2365 	 * Increase the pool size
2366 	 * First take pages out of surplus state.  Then make up the
2367 	 * remaining difference by allocating fresh huge pages.
2368 	 *
2369 	 * We might race with alloc_surplus_huge_page() here and be unable
2370 	 * to convert a surplus huge page to a normal huge page. That is
2371 	 * not critical, though, it just means the overall size of the
2372 	 * pool might be one hugepage larger than it needs to be, but
2373 	 * within all the constraints specified by the sysctls.
2374 	 */
2375 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2376 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2377 			break;
2378 	}
2379 
2380 	while (count > persistent_huge_pages(h)) {
2381 		/*
2382 		 * If this allocation races such that we no longer need the
2383 		 * page, free_huge_page will handle it by freeing the page
2384 		 * and reducing the surplus.
2385 		 */
2386 		spin_unlock(&hugetlb_lock);
2387 
2388 		/* yield cpu to avoid soft lockup */
2389 		cond_resched();
2390 
2391 		ret = alloc_pool_huge_page(h, nodes_allowed);
2392 		spin_lock(&hugetlb_lock);
2393 		if (!ret)
2394 			goto out;
2395 
2396 		/* Bail for signals. Probably ctrl-c from user */
2397 		if (signal_pending(current))
2398 			goto out;
2399 	}
2400 
2401 	/*
2402 	 * Decrease the pool size
2403 	 * First return free pages to the buddy allocator (being careful
2404 	 * to keep enough around to satisfy reservations).  Then place
2405 	 * pages into surplus state as needed so the pool will shrink
2406 	 * to the desired size as pages become free.
2407 	 *
2408 	 * By placing pages into the surplus state independent of the
2409 	 * overcommit value, we are allowing the surplus pool size to
2410 	 * exceed overcommit. There are few sane options here. Since
2411 	 * alloc_surplus_huge_page() is checking the global counter,
2412 	 * though, we'll note that we're not allowed to exceed surplus
2413 	 * and won't grow the pool anywhere else. Not until one of the
2414 	 * sysctls are changed, or the surplus pages go out of use.
2415 	 */
2416 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2417 	min_count = max(count, min_count);
2418 	try_to_free_low(h, min_count, nodes_allowed);
2419 	while (min_count < persistent_huge_pages(h)) {
2420 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2421 			break;
2422 		cond_resched_lock(&hugetlb_lock);
2423 	}
2424 	while (count < persistent_huge_pages(h)) {
2425 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2426 			break;
2427 	}
2428 out:
2429 	h->max_huge_pages = persistent_huge_pages(h);
2430 	spin_unlock(&hugetlb_lock);
2431 
2432 	return 0;
2433 }
2434 
2435 #define HSTATE_ATTR_RO(_name) \
2436 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2437 
2438 #define HSTATE_ATTR(_name) \
2439 	static struct kobj_attribute _name##_attr = \
2440 		__ATTR(_name, 0644, _name##_show, _name##_store)
2441 
2442 static struct kobject *hugepages_kobj;
2443 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2444 
2445 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2446 
2447 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2448 {
2449 	int i;
2450 
2451 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2452 		if (hstate_kobjs[i] == kobj) {
2453 			if (nidp)
2454 				*nidp = NUMA_NO_NODE;
2455 			return &hstates[i];
2456 		}
2457 
2458 	return kobj_to_node_hstate(kobj, nidp);
2459 }
2460 
2461 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2462 					struct kobj_attribute *attr, char *buf)
2463 {
2464 	struct hstate *h;
2465 	unsigned long nr_huge_pages;
2466 	int nid;
2467 
2468 	h = kobj_to_hstate(kobj, &nid);
2469 	if (nid == NUMA_NO_NODE)
2470 		nr_huge_pages = h->nr_huge_pages;
2471 	else
2472 		nr_huge_pages = h->nr_huge_pages_node[nid];
2473 
2474 	return sprintf(buf, "%lu\n", nr_huge_pages);
2475 }
2476 
2477 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2478 					   struct hstate *h, int nid,
2479 					   unsigned long count, size_t len)
2480 {
2481 	int err;
2482 	nodemask_t nodes_allowed, *n_mask;
2483 
2484 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2485 		return -EINVAL;
2486 
2487 	if (nid == NUMA_NO_NODE) {
2488 		/*
2489 		 * global hstate attribute
2490 		 */
2491 		if (!(obey_mempolicy &&
2492 				init_nodemask_of_mempolicy(&nodes_allowed)))
2493 			n_mask = &node_states[N_MEMORY];
2494 		else
2495 			n_mask = &nodes_allowed;
2496 	} else {
2497 		/*
2498 		 * Node specific request.  count adjustment happens in
2499 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2500 		 */
2501 		init_nodemask_of_node(&nodes_allowed, nid);
2502 		n_mask = &nodes_allowed;
2503 	}
2504 
2505 	err = set_max_huge_pages(h, count, nid, n_mask);
2506 
2507 	return err ? err : len;
2508 }
2509 
2510 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2511 					 struct kobject *kobj, const char *buf,
2512 					 size_t len)
2513 {
2514 	struct hstate *h;
2515 	unsigned long count;
2516 	int nid;
2517 	int err;
2518 
2519 	err = kstrtoul(buf, 10, &count);
2520 	if (err)
2521 		return err;
2522 
2523 	h = kobj_to_hstate(kobj, &nid);
2524 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2525 }
2526 
2527 static ssize_t nr_hugepages_show(struct kobject *kobj,
2528 				       struct kobj_attribute *attr, char *buf)
2529 {
2530 	return nr_hugepages_show_common(kobj, attr, buf);
2531 }
2532 
2533 static ssize_t nr_hugepages_store(struct kobject *kobj,
2534 	       struct kobj_attribute *attr, const char *buf, size_t len)
2535 {
2536 	return nr_hugepages_store_common(false, kobj, buf, len);
2537 }
2538 HSTATE_ATTR(nr_hugepages);
2539 
2540 #ifdef CONFIG_NUMA
2541 
2542 /*
2543  * hstate attribute for optionally mempolicy-based constraint on persistent
2544  * huge page alloc/free.
2545  */
2546 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2547 				       struct kobj_attribute *attr, char *buf)
2548 {
2549 	return nr_hugepages_show_common(kobj, attr, buf);
2550 }
2551 
2552 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2553 	       struct kobj_attribute *attr, const char *buf, size_t len)
2554 {
2555 	return nr_hugepages_store_common(true, kobj, buf, len);
2556 }
2557 HSTATE_ATTR(nr_hugepages_mempolicy);
2558 #endif
2559 
2560 
2561 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2562 					struct kobj_attribute *attr, char *buf)
2563 {
2564 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2565 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2566 }
2567 
2568 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2569 		struct kobj_attribute *attr, const char *buf, size_t count)
2570 {
2571 	int err;
2572 	unsigned long input;
2573 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2574 
2575 	if (hstate_is_gigantic(h))
2576 		return -EINVAL;
2577 
2578 	err = kstrtoul(buf, 10, &input);
2579 	if (err)
2580 		return err;
2581 
2582 	spin_lock(&hugetlb_lock);
2583 	h->nr_overcommit_huge_pages = input;
2584 	spin_unlock(&hugetlb_lock);
2585 
2586 	return count;
2587 }
2588 HSTATE_ATTR(nr_overcommit_hugepages);
2589 
2590 static ssize_t free_hugepages_show(struct kobject *kobj,
2591 					struct kobj_attribute *attr, char *buf)
2592 {
2593 	struct hstate *h;
2594 	unsigned long free_huge_pages;
2595 	int nid;
2596 
2597 	h = kobj_to_hstate(kobj, &nid);
2598 	if (nid == NUMA_NO_NODE)
2599 		free_huge_pages = h->free_huge_pages;
2600 	else
2601 		free_huge_pages = h->free_huge_pages_node[nid];
2602 
2603 	return sprintf(buf, "%lu\n", free_huge_pages);
2604 }
2605 HSTATE_ATTR_RO(free_hugepages);
2606 
2607 static ssize_t resv_hugepages_show(struct kobject *kobj,
2608 					struct kobj_attribute *attr, char *buf)
2609 {
2610 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2611 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2612 }
2613 HSTATE_ATTR_RO(resv_hugepages);
2614 
2615 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2616 					struct kobj_attribute *attr, char *buf)
2617 {
2618 	struct hstate *h;
2619 	unsigned long surplus_huge_pages;
2620 	int nid;
2621 
2622 	h = kobj_to_hstate(kobj, &nid);
2623 	if (nid == NUMA_NO_NODE)
2624 		surplus_huge_pages = h->surplus_huge_pages;
2625 	else
2626 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2627 
2628 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2629 }
2630 HSTATE_ATTR_RO(surplus_hugepages);
2631 
2632 static struct attribute *hstate_attrs[] = {
2633 	&nr_hugepages_attr.attr,
2634 	&nr_overcommit_hugepages_attr.attr,
2635 	&free_hugepages_attr.attr,
2636 	&resv_hugepages_attr.attr,
2637 	&surplus_hugepages_attr.attr,
2638 #ifdef CONFIG_NUMA
2639 	&nr_hugepages_mempolicy_attr.attr,
2640 #endif
2641 	NULL,
2642 };
2643 
2644 static const struct attribute_group hstate_attr_group = {
2645 	.attrs = hstate_attrs,
2646 };
2647 
2648 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2649 				    struct kobject **hstate_kobjs,
2650 				    const struct attribute_group *hstate_attr_group)
2651 {
2652 	int retval;
2653 	int hi = hstate_index(h);
2654 
2655 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2656 	if (!hstate_kobjs[hi])
2657 		return -ENOMEM;
2658 
2659 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2660 	if (retval)
2661 		kobject_put(hstate_kobjs[hi]);
2662 
2663 	return retval;
2664 }
2665 
2666 static void __init hugetlb_sysfs_init(void)
2667 {
2668 	struct hstate *h;
2669 	int err;
2670 
2671 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2672 	if (!hugepages_kobj)
2673 		return;
2674 
2675 	for_each_hstate(h) {
2676 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2677 					 hstate_kobjs, &hstate_attr_group);
2678 		if (err)
2679 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2680 	}
2681 }
2682 
2683 #ifdef CONFIG_NUMA
2684 
2685 /*
2686  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2687  * with node devices in node_devices[] using a parallel array.  The array
2688  * index of a node device or _hstate == node id.
2689  * This is here to avoid any static dependency of the node device driver, in
2690  * the base kernel, on the hugetlb module.
2691  */
2692 struct node_hstate {
2693 	struct kobject		*hugepages_kobj;
2694 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2695 };
2696 static struct node_hstate node_hstates[MAX_NUMNODES];
2697 
2698 /*
2699  * A subset of global hstate attributes for node devices
2700  */
2701 static struct attribute *per_node_hstate_attrs[] = {
2702 	&nr_hugepages_attr.attr,
2703 	&free_hugepages_attr.attr,
2704 	&surplus_hugepages_attr.attr,
2705 	NULL,
2706 };
2707 
2708 static const struct attribute_group per_node_hstate_attr_group = {
2709 	.attrs = per_node_hstate_attrs,
2710 };
2711 
2712 /*
2713  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2714  * Returns node id via non-NULL nidp.
2715  */
2716 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2717 {
2718 	int nid;
2719 
2720 	for (nid = 0; nid < nr_node_ids; nid++) {
2721 		struct node_hstate *nhs = &node_hstates[nid];
2722 		int i;
2723 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2724 			if (nhs->hstate_kobjs[i] == kobj) {
2725 				if (nidp)
2726 					*nidp = nid;
2727 				return &hstates[i];
2728 			}
2729 	}
2730 
2731 	BUG();
2732 	return NULL;
2733 }
2734 
2735 /*
2736  * Unregister hstate attributes from a single node device.
2737  * No-op if no hstate attributes attached.
2738  */
2739 static void hugetlb_unregister_node(struct node *node)
2740 {
2741 	struct hstate *h;
2742 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2743 
2744 	if (!nhs->hugepages_kobj)
2745 		return;		/* no hstate attributes */
2746 
2747 	for_each_hstate(h) {
2748 		int idx = hstate_index(h);
2749 		if (nhs->hstate_kobjs[idx]) {
2750 			kobject_put(nhs->hstate_kobjs[idx]);
2751 			nhs->hstate_kobjs[idx] = NULL;
2752 		}
2753 	}
2754 
2755 	kobject_put(nhs->hugepages_kobj);
2756 	nhs->hugepages_kobj = NULL;
2757 }
2758 
2759 
2760 /*
2761  * Register hstate attributes for a single node device.
2762  * No-op if attributes already registered.
2763  */
2764 static void hugetlb_register_node(struct node *node)
2765 {
2766 	struct hstate *h;
2767 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2768 	int err;
2769 
2770 	if (nhs->hugepages_kobj)
2771 		return;		/* already allocated */
2772 
2773 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2774 							&node->dev.kobj);
2775 	if (!nhs->hugepages_kobj)
2776 		return;
2777 
2778 	for_each_hstate(h) {
2779 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2780 						nhs->hstate_kobjs,
2781 						&per_node_hstate_attr_group);
2782 		if (err) {
2783 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2784 				h->name, node->dev.id);
2785 			hugetlb_unregister_node(node);
2786 			break;
2787 		}
2788 	}
2789 }
2790 
2791 /*
2792  * hugetlb init time:  register hstate attributes for all registered node
2793  * devices of nodes that have memory.  All on-line nodes should have
2794  * registered their associated device by this time.
2795  */
2796 static void __init hugetlb_register_all_nodes(void)
2797 {
2798 	int nid;
2799 
2800 	for_each_node_state(nid, N_MEMORY) {
2801 		struct node *node = node_devices[nid];
2802 		if (node->dev.id == nid)
2803 			hugetlb_register_node(node);
2804 	}
2805 
2806 	/*
2807 	 * Let the node device driver know we're here so it can
2808 	 * [un]register hstate attributes on node hotplug.
2809 	 */
2810 	register_hugetlbfs_with_node(hugetlb_register_node,
2811 				     hugetlb_unregister_node);
2812 }
2813 #else	/* !CONFIG_NUMA */
2814 
2815 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2816 {
2817 	BUG();
2818 	if (nidp)
2819 		*nidp = -1;
2820 	return NULL;
2821 }
2822 
2823 static void hugetlb_register_all_nodes(void) { }
2824 
2825 #endif
2826 
2827 static int __init hugetlb_init(void)
2828 {
2829 	int i;
2830 
2831 	if (!hugepages_supported())
2832 		return 0;
2833 
2834 	if (!size_to_hstate(default_hstate_size)) {
2835 		if (default_hstate_size != 0) {
2836 			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2837 			       default_hstate_size, HPAGE_SIZE);
2838 		}
2839 
2840 		default_hstate_size = HPAGE_SIZE;
2841 		if (!size_to_hstate(default_hstate_size))
2842 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2843 	}
2844 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2845 	if (default_hstate_max_huge_pages) {
2846 		if (!default_hstate.max_huge_pages)
2847 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2848 	}
2849 
2850 	hugetlb_init_hstates();
2851 	gather_bootmem_prealloc();
2852 	report_hugepages();
2853 
2854 	hugetlb_sysfs_init();
2855 	hugetlb_register_all_nodes();
2856 	hugetlb_cgroup_file_init();
2857 
2858 #ifdef CONFIG_SMP
2859 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2860 #else
2861 	num_fault_mutexes = 1;
2862 #endif
2863 	hugetlb_fault_mutex_table =
2864 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2865 			      GFP_KERNEL);
2866 	BUG_ON(!hugetlb_fault_mutex_table);
2867 
2868 	for (i = 0; i < num_fault_mutexes; i++)
2869 		mutex_init(&hugetlb_fault_mutex_table[i]);
2870 	return 0;
2871 }
2872 subsys_initcall(hugetlb_init);
2873 
2874 /* Should be called on processing a hugepagesz=... option */
2875 void __init hugetlb_bad_size(void)
2876 {
2877 	parsed_valid_hugepagesz = false;
2878 }
2879 
2880 void __init hugetlb_add_hstate(unsigned int order)
2881 {
2882 	struct hstate *h;
2883 	unsigned long i;
2884 
2885 	if (size_to_hstate(PAGE_SIZE << order)) {
2886 		pr_warn("hugepagesz= specified twice, ignoring\n");
2887 		return;
2888 	}
2889 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2890 	BUG_ON(order == 0);
2891 	h = &hstates[hugetlb_max_hstate++];
2892 	h->order = order;
2893 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2894 	h->nr_huge_pages = 0;
2895 	h->free_huge_pages = 0;
2896 	for (i = 0; i < MAX_NUMNODES; ++i)
2897 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2898 	INIT_LIST_HEAD(&h->hugepage_activelist);
2899 	h->next_nid_to_alloc = first_memory_node;
2900 	h->next_nid_to_free = first_memory_node;
2901 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2902 					huge_page_size(h)/1024);
2903 
2904 	parsed_hstate = h;
2905 }
2906 
2907 static int __init hugetlb_nrpages_setup(char *s)
2908 {
2909 	unsigned long *mhp;
2910 	static unsigned long *last_mhp;
2911 
2912 	if (!parsed_valid_hugepagesz) {
2913 		pr_warn("hugepages = %s preceded by "
2914 			"an unsupported hugepagesz, ignoring\n", s);
2915 		parsed_valid_hugepagesz = true;
2916 		return 1;
2917 	}
2918 	/*
2919 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2920 	 * so this hugepages= parameter goes to the "default hstate".
2921 	 */
2922 	else if (!hugetlb_max_hstate)
2923 		mhp = &default_hstate_max_huge_pages;
2924 	else
2925 		mhp = &parsed_hstate->max_huge_pages;
2926 
2927 	if (mhp == last_mhp) {
2928 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2929 		return 1;
2930 	}
2931 
2932 	if (sscanf(s, "%lu", mhp) <= 0)
2933 		*mhp = 0;
2934 
2935 	/*
2936 	 * Global state is always initialized later in hugetlb_init.
2937 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2938 	 * use the bootmem allocator.
2939 	 */
2940 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2941 		hugetlb_hstate_alloc_pages(parsed_hstate);
2942 
2943 	last_mhp = mhp;
2944 
2945 	return 1;
2946 }
2947 __setup("hugepages=", hugetlb_nrpages_setup);
2948 
2949 static int __init hugetlb_default_setup(char *s)
2950 {
2951 	default_hstate_size = memparse(s, &s);
2952 	return 1;
2953 }
2954 __setup("default_hugepagesz=", hugetlb_default_setup);
2955 
2956 static unsigned int cpuset_mems_nr(unsigned int *array)
2957 {
2958 	int node;
2959 	unsigned int nr = 0;
2960 
2961 	for_each_node_mask(node, cpuset_current_mems_allowed)
2962 		nr += array[node];
2963 
2964 	return nr;
2965 }
2966 
2967 #ifdef CONFIG_SYSCTL
2968 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2969 			 struct ctl_table *table, int write,
2970 			 void __user *buffer, size_t *length, loff_t *ppos)
2971 {
2972 	struct hstate *h = &default_hstate;
2973 	unsigned long tmp = h->max_huge_pages;
2974 	int ret;
2975 
2976 	if (!hugepages_supported())
2977 		return -EOPNOTSUPP;
2978 
2979 	table->data = &tmp;
2980 	table->maxlen = sizeof(unsigned long);
2981 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2982 	if (ret)
2983 		goto out;
2984 
2985 	if (write)
2986 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2987 						  NUMA_NO_NODE, tmp, *length);
2988 out:
2989 	return ret;
2990 }
2991 
2992 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2993 			  void __user *buffer, size_t *length, loff_t *ppos)
2994 {
2995 
2996 	return hugetlb_sysctl_handler_common(false, table, write,
2997 							buffer, length, ppos);
2998 }
2999 
3000 #ifdef CONFIG_NUMA
3001 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3002 			  void __user *buffer, size_t *length, loff_t *ppos)
3003 {
3004 	return hugetlb_sysctl_handler_common(true, table, write,
3005 							buffer, length, ppos);
3006 }
3007 #endif /* CONFIG_NUMA */
3008 
3009 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3010 			void __user *buffer,
3011 			size_t *length, loff_t *ppos)
3012 {
3013 	struct hstate *h = &default_hstate;
3014 	unsigned long tmp;
3015 	int ret;
3016 
3017 	if (!hugepages_supported())
3018 		return -EOPNOTSUPP;
3019 
3020 	tmp = h->nr_overcommit_huge_pages;
3021 
3022 	if (write && hstate_is_gigantic(h))
3023 		return -EINVAL;
3024 
3025 	table->data = &tmp;
3026 	table->maxlen = sizeof(unsigned long);
3027 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3028 	if (ret)
3029 		goto out;
3030 
3031 	if (write) {
3032 		spin_lock(&hugetlb_lock);
3033 		h->nr_overcommit_huge_pages = tmp;
3034 		spin_unlock(&hugetlb_lock);
3035 	}
3036 out:
3037 	return ret;
3038 }
3039 
3040 #endif /* CONFIG_SYSCTL */
3041 
3042 void hugetlb_report_meminfo(struct seq_file *m)
3043 {
3044 	struct hstate *h;
3045 	unsigned long total = 0;
3046 
3047 	if (!hugepages_supported())
3048 		return;
3049 
3050 	for_each_hstate(h) {
3051 		unsigned long count = h->nr_huge_pages;
3052 
3053 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3054 
3055 		if (h == &default_hstate)
3056 			seq_printf(m,
3057 				   "HugePages_Total:   %5lu\n"
3058 				   "HugePages_Free:    %5lu\n"
3059 				   "HugePages_Rsvd:    %5lu\n"
3060 				   "HugePages_Surp:    %5lu\n"
3061 				   "Hugepagesize:   %8lu kB\n",
3062 				   count,
3063 				   h->free_huge_pages,
3064 				   h->resv_huge_pages,
3065 				   h->surplus_huge_pages,
3066 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3067 	}
3068 
3069 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3070 }
3071 
3072 int hugetlb_report_node_meminfo(int nid, char *buf)
3073 {
3074 	struct hstate *h = &default_hstate;
3075 	if (!hugepages_supported())
3076 		return 0;
3077 	return sprintf(buf,
3078 		"Node %d HugePages_Total: %5u\n"
3079 		"Node %d HugePages_Free:  %5u\n"
3080 		"Node %d HugePages_Surp:  %5u\n",
3081 		nid, h->nr_huge_pages_node[nid],
3082 		nid, h->free_huge_pages_node[nid],
3083 		nid, h->surplus_huge_pages_node[nid]);
3084 }
3085 
3086 void hugetlb_show_meminfo(void)
3087 {
3088 	struct hstate *h;
3089 	int nid;
3090 
3091 	if (!hugepages_supported())
3092 		return;
3093 
3094 	for_each_node_state(nid, N_MEMORY)
3095 		for_each_hstate(h)
3096 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3097 				nid,
3098 				h->nr_huge_pages_node[nid],
3099 				h->free_huge_pages_node[nid],
3100 				h->surplus_huge_pages_node[nid],
3101 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3102 }
3103 
3104 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3105 {
3106 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3107 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3108 }
3109 
3110 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3111 unsigned long hugetlb_total_pages(void)
3112 {
3113 	struct hstate *h;
3114 	unsigned long nr_total_pages = 0;
3115 
3116 	for_each_hstate(h)
3117 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3118 	return nr_total_pages;
3119 }
3120 
3121 static int hugetlb_acct_memory(struct hstate *h, long delta)
3122 {
3123 	int ret = -ENOMEM;
3124 
3125 	spin_lock(&hugetlb_lock);
3126 	/*
3127 	 * When cpuset is configured, it breaks the strict hugetlb page
3128 	 * reservation as the accounting is done on a global variable. Such
3129 	 * reservation is completely rubbish in the presence of cpuset because
3130 	 * the reservation is not checked against page availability for the
3131 	 * current cpuset. Application can still potentially OOM'ed by kernel
3132 	 * with lack of free htlb page in cpuset that the task is in.
3133 	 * Attempt to enforce strict accounting with cpuset is almost
3134 	 * impossible (or too ugly) because cpuset is too fluid that
3135 	 * task or memory node can be dynamically moved between cpusets.
3136 	 *
3137 	 * The change of semantics for shared hugetlb mapping with cpuset is
3138 	 * undesirable. However, in order to preserve some of the semantics,
3139 	 * we fall back to check against current free page availability as
3140 	 * a best attempt and hopefully to minimize the impact of changing
3141 	 * semantics that cpuset has.
3142 	 */
3143 	if (delta > 0) {
3144 		if (gather_surplus_pages(h, delta) < 0)
3145 			goto out;
3146 
3147 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3148 			return_unused_surplus_pages(h, delta);
3149 			goto out;
3150 		}
3151 	}
3152 
3153 	ret = 0;
3154 	if (delta < 0)
3155 		return_unused_surplus_pages(h, (unsigned long) -delta);
3156 
3157 out:
3158 	spin_unlock(&hugetlb_lock);
3159 	return ret;
3160 }
3161 
3162 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3163 {
3164 	struct resv_map *resv = vma_resv_map(vma);
3165 
3166 	/*
3167 	 * This new VMA should share its siblings reservation map if present.
3168 	 * The VMA will only ever have a valid reservation map pointer where
3169 	 * it is being copied for another still existing VMA.  As that VMA
3170 	 * has a reference to the reservation map it cannot disappear until
3171 	 * after this open call completes.  It is therefore safe to take a
3172 	 * new reference here without additional locking.
3173 	 */
3174 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3175 		kref_get(&resv->refs);
3176 }
3177 
3178 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3179 {
3180 	struct hstate *h = hstate_vma(vma);
3181 	struct resv_map *resv = vma_resv_map(vma);
3182 	struct hugepage_subpool *spool = subpool_vma(vma);
3183 	unsigned long reserve, start, end;
3184 	long gbl_reserve;
3185 
3186 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3187 		return;
3188 
3189 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3190 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3191 
3192 	reserve = (end - start) - region_count(resv, start, end);
3193 
3194 	kref_put(&resv->refs, resv_map_release);
3195 
3196 	if (reserve) {
3197 		/*
3198 		 * Decrement reserve counts.  The global reserve count may be
3199 		 * adjusted if the subpool has a minimum size.
3200 		 */
3201 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3202 		hugetlb_acct_memory(h, -gbl_reserve);
3203 	}
3204 }
3205 
3206 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3207 {
3208 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3209 		return -EINVAL;
3210 	return 0;
3211 }
3212 
3213 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3214 {
3215 	struct hstate *hstate = hstate_vma(vma);
3216 
3217 	return 1UL << huge_page_shift(hstate);
3218 }
3219 
3220 /*
3221  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3222  * handle_mm_fault() to try to instantiate regular-sized pages in the
3223  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3224  * this far.
3225  */
3226 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3227 {
3228 	BUG();
3229 	return 0;
3230 }
3231 
3232 /*
3233  * When a new function is introduced to vm_operations_struct and added
3234  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3235  * This is because under System V memory model, mappings created via
3236  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3237  * their original vm_ops are overwritten with shm_vm_ops.
3238  */
3239 const struct vm_operations_struct hugetlb_vm_ops = {
3240 	.fault = hugetlb_vm_op_fault,
3241 	.open = hugetlb_vm_op_open,
3242 	.close = hugetlb_vm_op_close,
3243 	.split = hugetlb_vm_op_split,
3244 	.pagesize = hugetlb_vm_op_pagesize,
3245 };
3246 
3247 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3248 				int writable)
3249 {
3250 	pte_t entry;
3251 
3252 	if (writable) {
3253 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3254 					 vma->vm_page_prot)));
3255 	} else {
3256 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3257 					   vma->vm_page_prot));
3258 	}
3259 	entry = pte_mkyoung(entry);
3260 	entry = pte_mkhuge(entry);
3261 	entry = arch_make_huge_pte(entry, vma, page, writable);
3262 
3263 	return entry;
3264 }
3265 
3266 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3267 				   unsigned long address, pte_t *ptep)
3268 {
3269 	pte_t entry;
3270 
3271 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3272 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3273 		update_mmu_cache(vma, address, ptep);
3274 }
3275 
3276 bool is_hugetlb_entry_migration(pte_t pte)
3277 {
3278 	swp_entry_t swp;
3279 
3280 	if (huge_pte_none(pte) || pte_present(pte))
3281 		return false;
3282 	swp = pte_to_swp_entry(pte);
3283 	if (non_swap_entry(swp) && is_migration_entry(swp))
3284 		return true;
3285 	else
3286 		return false;
3287 }
3288 
3289 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3290 {
3291 	swp_entry_t swp;
3292 
3293 	if (huge_pte_none(pte) || pte_present(pte))
3294 		return 0;
3295 	swp = pte_to_swp_entry(pte);
3296 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3297 		return 1;
3298 	else
3299 		return 0;
3300 }
3301 
3302 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3303 			    struct vm_area_struct *vma)
3304 {
3305 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3306 	struct page *ptepage;
3307 	unsigned long addr;
3308 	int cow;
3309 	struct hstate *h = hstate_vma(vma);
3310 	unsigned long sz = huge_page_size(h);
3311 	struct mmu_notifier_range range;
3312 	int ret = 0;
3313 
3314 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3315 
3316 	if (cow) {
3317 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3318 					vma->vm_start,
3319 					vma->vm_end);
3320 		mmu_notifier_invalidate_range_start(&range);
3321 	}
3322 
3323 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3324 		spinlock_t *src_ptl, *dst_ptl;
3325 		src_pte = huge_pte_offset(src, addr, sz);
3326 		if (!src_pte)
3327 			continue;
3328 		dst_pte = huge_pte_alloc(dst, addr, sz);
3329 		if (!dst_pte) {
3330 			ret = -ENOMEM;
3331 			break;
3332 		}
3333 
3334 		/*
3335 		 * If the pagetables are shared don't copy or take references.
3336 		 * dst_pte == src_pte is the common case of src/dest sharing.
3337 		 *
3338 		 * However, src could have 'unshared' and dst shares with
3339 		 * another vma.  If dst_pte !none, this implies sharing.
3340 		 * Check here before taking page table lock, and once again
3341 		 * after taking the lock below.
3342 		 */
3343 		dst_entry = huge_ptep_get(dst_pte);
3344 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3345 			continue;
3346 
3347 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3348 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3349 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3350 		entry = huge_ptep_get(src_pte);
3351 		dst_entry = huge_ptep_get(dst_pte);
3352 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3353 			/*
3354 			 * Skip if src entry none.  Also, skip in the
3355 			 * unlikely case dst entry !none as this implies
3356 			 * sharing with another vma.
3357 			 */
3358 			;
3359 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3360 				    is_hugetlb_entry_hwpoisoned(entry))) {
3361 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3362 
3363 			if (is_write_migration_entry(swp_entry) && cow) {
3364 				/*
3365 				 * COW mappings require pages in both
3366 				 * parent and child to be set to read.
3367 				 */
3368 				make_migration_entry_read(&swp_entry);
3369 				entry = swp_entry_to_pte(swp_entry);
3370 				set_huge_swap_pte_at(src, addr, src_pte,
3371 						     entry, sz);
3372 			}
3373 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3374 		} else {
3375 			if (cow) {
3376 				/*
3377 				 * No need to notify as we are downgrading page
3378 				 * table protection not changing it to point
3379 				 * to a new page.
3380 				 *
3381 				 * See Documentation/vm/mmu_notifier.rst
3382 				 */
3383 				huge_ptep_set_wrprotect(src, addr, src_pte);
3384 			}
3385 			entry = huge_ptep_get(src_pte);
3386 			ptepage = pte_page(entry);
3387 			get_page(ptepage);
3388 			page_dup_rmap(ptepage, true);
3389 			set_huge_pte_at(dst, addr, dst_pte, entry);
3390 			hugetlb_count_add(pages_per_huge_page(h), dst);
3391 		}
3392 		spin_unlock(src_ptl);
3393 		spin_unlock(dst_ptl);
3394 	}
3395 
3396 	if (cow)
3397 		mmu_notifier_invalidate_range_end(&range);
3398 
3399 	return ret;
3400 }
3401 
3402 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3403 			    unsigned long start, unsigned long end,
3404 			    struct page *ref_page)
3405 {
3406 	struct mm_struct *mm = vma->vm_mm;
3407 	unsigned long address;
3408 	pte_t *ptep;
3409 	pte_t pte;
3410 	spinlock_t *ptl;
3411 	struct page *page;
3412 	struct hstate *h = hstate_vma(vma);
3413 	unsigned long sz = huge_page_size(h);
3414 	struct mmu_notifier_range range;
3415 
3416 	WARN_ON(!is_vm_hugetlb_page(vma));
3417 	BUG_ON(start & ~huge_page_mask(h));
3418 	BUG_ON(end & ~huge_page_mask(h));
3419 
3420 	/*
3421 	 * This is a hugetlb vma, all the pte entries should point
3422 	 * to huge page.
3423 	 */
3424 	tlb_change_page_size(tlb, sz);
3425 	tlb_start_vma(tlb, vma);
3426 
3427 	/*
3428 	 * If sharing possible, alert mmu notifiers of worst case.
3429 	 */
3430 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3431 				end);
3432 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3433 	mmu_notifier_invalidate_range_start(&range);
3434 	address = start;
3435 	for (; address < end; address += sz) {
3436 		ptep = huge_pte_offset(mm, address, sz);
3437 		if (!ptep)
3438 			continue;
3439 
3440 		ptl = huge_pte_lock(h, mm, ptep);
3441 		if (huge_pmd_unshare(mm, &address, ptep)) {
3442 			spin_unlock(ptl);
3443 			/*
3444 			 * We just unmapped a page of PMDs by clearing a PUD.
3445 			 * The caller's TLB flush range should cover this area.
3446 			 */
3447 			continue;
3448 		}
3449 
3450 		pte = huge_ptep_get(ptep);
3451 		if (huge_pte_none(pte)) {
3452 			spin_unlock(ptl);
3453 			continue;
3454 		}
3455 
3456 		/*
3457 		 * Migrating hugepage or HWPoisoned hugepage is already
3458 		 * unmapped and its refcount is dropped, so just clear pte here.
3459 		 */
3460 		if (unlikely(!pte_present(pte))) {
3461 			huge_pte_clear(mm, address, ptep, sz);
3462 			spin_unlock(ptl);
3463 			continue;
3464 		}
3465 
3466 		page = pte_page(pte);
3467 		/*
3468 		 * If a reference page is supplied, it is because a specific
3469 		 * page is being unmapped, not a range. Ensure the page we
3470 		 * are about to unmap is the actual page of interest.
3471 		 */
3472 		if (ref_page) {
3473 			if (page != ref_page) {
3474 				spin_unlock(ptl);
3475 				continue;
3476 			}
3477 			/*
3478 			 * Mark the VMA as having unmapped its page so that
3479 			 * future faults in this VMA will fail rather than
3480 			 * looking like data was lost
3481 			 */
3482 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3483 		}
3484 
3485 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3486 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3487 		if (huge_pte_dirty(pte))
3488 			set_page_dirty(page);
3489 
3490 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3491 		page_remove_rmap(page, true);
3492 
3493 		spin_unlock(ptl);
3494 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3495 		/*
3496 		 * Bail out after unmapping reference page if supplied
3497 		 */
3498 		if (ref_page)
3499 			break;
3500 	}
3501 	mmu_notifier_invalidate_range_end(&range);
3502 	tlb_end_vma(tlb, vma);
3503 }
3504 
3505 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3506 			  struct vm_area_struct *vma, unsigned long start,
3507 			  unsigned long end, struct page *ref_page)
3508 {
3509 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3510 
3511 	/*
3512 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3513 	 * test will fail on a vma being torn down, and not grab a page table
3514 	 * on its way out.  We're lucky that the flag has such an appropriate
3515 	 * name, and can in fact be safely cleared here. We could clear it
3516 	 * before the __unmap_hugepage_range above, but all that's necessary
3517 	 * is to clear it before releasing the i_mmap_rwsem. This works
3518 	 * because in the context this is called, the VMA is about to be
3519 	 * destroyed and the i_mmap_rwsem is held.
3520 	 */
3521 	vma->vm_flags &= ~VM_MAYSHARE;
3522 }
3523 
3524 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3525 			  unsigned long end, struct page *ref_page)
3526 {
3527 	struct mm_struct *mm;
3528 	struct mmu_gather tlb;
3529 	unsigned long tlb_start = start;
3530 	unsigned long tlb_end = end;
3531 
3532 	/*
3533 	 * If shared PMDs were possibly used within this vma range, adjust
3534 	 * start/end for worst case tlb flushing.
3535 	 * Note that we can not be sure if PMDs are shared until we try to
3536 	 * unmap pages.  However, we want to make sure TLB flushing covers
3537 	 * the largest possible range.
3538 	 */
3539 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3540 
3541 	mm = vma->vm_mm;
3542 
3543 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3544 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3545 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3546 }
3547 
3548 /*
3549  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3550  * mappping it owns the reserve page for. The intention is to unmap the page
3551  * from other VMAs and let the children be SIGKILLed if they are faulting the
3552  * same region.
3553  */
3554 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3555 			      struct page *page, unsigned long address)
3556 {
3557 	struct hstate *h = hstate_vma(vma);
3558 	struct vm_area_struct *iter_vma;
3559 	struct address_space *mapping;
3560 	pgoff_t pgoff;
3561 
3562 	/*
3563 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3564 	 * from page cache lookup which is in HPAGE_SIZE units.
3565 	 */
3566 	address = address & huge_page_mask(h);
3567 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3568 			vma->vm_pgoff;
3569 	mapping = vma->vm_file->f_mapping;
3570 
3571 	/*
3572 	 * Take the mapping lock for the duration of the table walk. As
3573 	 * this mapping should be shared between all the VMAs,
3574 	 * __unmap_hugepage_range() is called as the lock is already held
3575 	 */
3576 	i_mmap_lock_write(mapping);
3577 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3578 		/* Do not unmap the current VMA */
3579 		if (iter_vma == vma)
3580 			continue;
3581 
3582 		/*
3583 		 * Shared VMAs have their own reserves and do not affect
3584 		 * MAP_PRIVATE accounting but it is possible that a shared
3585 		 * VMA is using the same page so check and skip such VMAs.
3586 		 */
3587 		if (iter_vma->vm_flags & VM_MAYSHARE)
3588 			continue;
3589 
3590 		/*
3591 		 * Unmap the page from other VMAs without their own reserves.
3592 		 * They get marked to be SIGKILLed if they fault in these
3593 		 * areas. This is because a future no-page fault on this VMA
3594 		 * could insert a zeroed page instead of the data existing
3595 		 * from the time of fork. This would look like data corruption
3596 		 */
3597 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3598 			unmap_hugepage_range(iter_vma, address,
3599 					     address + huge_page_size(h), page);
3600 	}
3601 	i_mmap_unlock_write(mapping);
3602 }
3603 
3604 /*
3605  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3606  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3607  * cannot race with other handlers or page migration.
3608  * Keep the pte_same checks anyway to make transition from the mutex easier.
3609  */
3610 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3611 		       unsigned long address, pte_t *ptep,
3612 		       struct page *pagecache_page, spinlock_t *ptl)
3613 {
3614 	pte_t pte;
3615 	struct hstate *h = hstate_vma(vma);
3616 	struct page *old_page, *new_page;
3617 	int outside_reserve = 0;
3618 	vm_fault_t ret = 0;
3619 	unsigned long haddr = address & huge_page_mask(h);
3620 	struct mmu_notifier_range range;
3621 
3622 	pte = huge_ptep_get(ptep);
3623 	old_page = pte_page(pte);
3624 
3625 retry_avoidcopy:
3626 	/* If no-one else is actually using this page, avoid the copy
3627 	 * and just make the page writable */
3628 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3629 		page_move_anon_rmap(old_page, vma);
3630 		set_huge_ptep_writable(vma, haddr, ptep);
3631 		return 0;
3632 	}
3633 
3634 	/*
3635 	 * If the process that created a MAP_PRIVATE mapping is about to
3636 	 * perform a COW due to a shared page count, attempt to satisfy
3637 	 * the allocation without using the existing reserves. The pagecache
3638 	 * page is used to determine if the reserve at this address was
3639 	 * consumed or not. If reserves were used, a partial faulted mapping
3640 	 * at the time of fork() could consume its reserves on COW instead
3641 	 * of the full address range.
3642 	 */
3643 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3644 			old_page != pagecache_page)
3645 		outside_reserve = 1;
3646 
3647 	get_page(old_page);
3648 
3649 	/*
3650 	 * Drop page table lock as buddy allocator may be called. It will
3651 	 * be acquired again before returning to the caller, as expected.
3652 	 */
3653 	spin_unlock(ptl);
3654 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3655 
3656 	if (IS_ERR(new_page)) {
3657 		/*
3658 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3659 		 * it is due to references held by a child and an insufficient
3660 		 * huge page pool. To guarantee the original mappers
3661 		 * reliability, unmap the page from child processes. The child
3662 		 * may get SIGKILLed if it later faults.
3663 		 */
3664 		if (outside_reserve) {
3665 			put_page(old_page);
3666 			BUG_ON(huge_pte_none(pte));
3667 			unmap_ref_private(mm, vma, old_page, haddr);
3668 			BUG_ON(huge_pte_none(pte));
3669 			spin_lock(ptl);
3670 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3671 			if (likely(ptep &&
3672 				   pte_same(huge_ptep_get(ptep), pte)))
3673 				goto retry_avoidcopy;
3674 			/*
3675 			 * race occurs while re-acquiring page table
3676 			 * lock, and our job is done.
3677 			 */
3678 			return 0;
3679 		}
3680 
3681 		ret = vmf_error(PTR_ERR(new_page));
3682 		goto out_release_old;
3683 	}
3684 
3685 	/*
3686 	 * When the original hugepage is shared one, it does not have
3687 	 * anon_vma prepared.
3688 	 */
3689 	if (unlikely(anon_vma_prepare(vma))) {
3690 		ret = VM_FAULT_OOM;
3691 		goto out_release_all;
3692 	}
3693 
3694 	copy_user_huge_page(new_page, old_page, address, vma,
3695 			    pages_per_huge_page(h));
3696 	__SetPageUptodate(new_page);
3697 
3698 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3699 				haddr + huge_page_size(h));
3700 	mmu_notifier_invalidate_range_start(&range);
3701 
3702 	/*
3703 	 * Retake the page table lock to check for racing updates
3704 	 * before the page tables are altered
3705 	 */
3706 	spin_lock(ptl);
3707 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3708 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3709 		ClearPagePrivate(new_page);
3710 
3711 		/* Break COW */
3712 		huge_ptep_clear_flush(vma, haddr, ptep);
3713 		mmu_notifier_invalidate_range(mm, range.start, range.end);
3714 		set_huge_pte_at(mm, haddr, ptep,
3715 				make_huge_pte(vma, new_page, 1));
3716 		page_remove_rmap(old_page, true);
3717 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3718 		set_page_huge_active(new_page);
3719 		/* Make the old page be freed below */
3720 		new_page = old_page;
3721 	}
3722 	spin_unlock(ptl);
3723 	mmu_notifier_invalidate_range_end(&range);
3724 out_release_all:
3725 	restore_reserve_on_error(h, vma, haddr, new_page);
3726 	put_page(new_page);
3727 out_release_old:
3728 	put_page(old_page);
3729 
3730 	spin_lock(ptl); /* Caller expects lock to be held */
3731 	return ret;
3732 }
3733 
3734 /* Return the pagecache page at a given address within a VMA */
3735 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3736 			struct vm_area_struct *vma, unsigned long address)
3737 {
3738 	struct address_space *mapping;
3739 	pgoff_t idx;
3740 
3741 	mapping = vma->vm_file->f_mapping;
3742 	idx = vma_hugecache_offset(h, vma, address);
3743 
3744 	return find_lock_page(mapping, idx);
3745 }
3746 
3747 /*
3748  * Return whether there is a pagecache page to back given address within VMA.
3749  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3750  */
3751 static bool hugetlbfs_pagecache_present(struct hstate *h,
3752 			struct vm_area_struct *vma, unsigned long address)
3753 {
3754 	struct address_space *mapping;
3755 	pgoff_t idx;
3756 	struct page *page;
3757 
3758 	mapping = vma->vm_file->f_mapping;
3759 	idx = vma_hugecache_offset(h, vma, address);
3760 
3761 	page = find_get_page(mapping, idx);
3762 	if (page)
3763 		put_page(page);
3764 	return page != NULL;
3765 }
3766 
3767 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3768 			   pgoff_t idx)
3769 {
3770 	struct inode *inode = mapping->host;
3771 	struct hstate *h = hstate_inode(inode);
3772 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3773 
3774 	if (err)
3775 		return err;
3776 	ClearPagePrivate(page);
3777 
3778 	/*
3779 	 * set page dirty so that it will not be removed from cache/file
3780 	 * by non-hugetlbfs specific code paths.
3781 	 */
3782 	set_page_dirty(page);
3783 
3784 	spin_lock(&inode->i_lock);
3785 	inode->i_blocks += blocks_per_huge_page(h);
3786 	spin_unlock(&inode->i_lock);
3787 	return 0;
3788 }
3789 
3790 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3791 			struct vm_area_struct *vma,
3792 			struct address_space *mapping, pgoff_t idx,
3793 			unsigned long address, pte_t *ptep, unsigned int flags)
3794 {
3795 	struct hstate *h = hstate_vma(vma);
3796 	vm_fault_t ret = VM_FAULT_SIGBUS;
3797 	int anon_rmap = 0;
3798 	unsigned long size;
3799 	struct page *page;
3800 	pte_t new_pte;
3801 	spinlock_t *ptl;
3802 	unsigned long haddr = address & huge_page_mask(h);
3803 	bool new_page = false;
3804 
3805 	/*
3806 	 * Currently, we are forced to kill the process in the event the
3807 	 * original mapper has unmapped pages from the child due to a failed
3808 	 * COW. Warn that such a situation has occurred as it may not be obvious
3809 	 */
3810 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3811 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3812 			   current->pid);
3813 		return ret;
3814 	}
3815 
3816 	/*
3817 	 * Use page lock to guard against racing truncation
3818 	 * before we get page_table_lock.
3819 	 */
3820 retry:
3821 	page = find_lock_page(mapping, idx);
3822 	if (!page) {
3823 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3824 		if (idx >= size)
3825 			goto out;
3826 
3827 		/*
3828 		 * Check for page in userfault range
3829 		 */
3830 		if (userfaultfd_missing(vma)) {
3831 			u32 hash;
3832 			struct vm_fault vmf = {
3833 				.vma = vma,
3834 				.address = haddr,
3835 				.flags = flags,
3836 				/*
3837 				 * Hard to debug if it ends up being
3838 				 * used by a callee that assumes
3839 				 * something about the other
3840 				 * uninitialized fields... same as in
3841 				 * memory.c
3842 				 */
3843 			};
3844 
3845 			/*
3846 			 * hugetlb_fault_mutex must be dropped before
3847 			 * handling userfault.  Reacquire after handling
3848 			 * fault to make calling code simpler.
3849 			 */
3850 			hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3851 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3852 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3853 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3854 			goto out;
3855 		}
3856 
3857 		page = alloc_huge_page(vma, haddr, 0);
3858 		if (IS_ERR(page)) {
3859 			/*
3860 			 * Returning error will result in faulting task being
3861 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
3862 			 * tasks from racing to fault in the same page which
3863 			 * could result in false unable to allocate errors.
3864 			 * Page migration does not take the fault mutex, but
3865 			 * does a clear then write of pte's under page table
3866 			 * lock.  Page fault code could race with migration,
3867 			 * notice the clear pte and try to allocate a page
3868 			 * here.  Before returning error, get ptl and make
3869 			 * sure there really is no pte entry.
3870 			 */
3871 			ptl = huge_pte_lock(h, mm, ptep);
3872 			if (!huge_pte_none(huge_ptep_get(ptep))) {
3873 				ret = 0;
3874 				spin_unlock(ptl);
3875 				goto out;
3876 			}
3877 			spin_unlock(ptl);
3878 			ret = vmf_error(PTR_ERR(page));
3879 			goto out;
3880 		}
3881 		clear_huge_page(page, address, pages_per_huge_page(h));
3882 		__SetPageUptodate(page);
3883 		new_page = true;
3884 
3885 		if (vma->vm_flags & VM_MAYSHARE) {
3886 			int err = huge_add_to_page_cache(page, mapping, idx);
3887 			if (err) {
3888 				put_page(page);
3889 				if (err == -EEXIST)
3890 					goto retry;
3891 				goto out;
3892 			}
3893 		} else {
3894 			lock_page(page);
3895 			if (unlikely(anon_vma_prepare(vma))) {
3896 				ret = VM_FAULT_OOM;
3897 				goto backout_unlocked;
3898 			}
3899 			anon_rmap = 1;
3900 		}
3901 	} else {
3902 		/*
3903 		 * If memory error occurs between mmap() and fault, some process
3904 		 * don't have hwpoisoned swap entry for errored virtual address.
3905 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3906 		 */
3907 		if (unlikely(PageHWPoison(page))) {
3908 			ret = VM_FAULT_HWPOISON |
3909 				VM_FAULT_SET_HINDEX(hstate_index(h));
3910 			goto backout_unlocked;
3911 		}
3912 	}
3913 
3914 	/*
3915 	 * If we are going to COW a private mapping later, we examine the
3916 	 * pending reservations for this page now. This will ensure that
3917 	 * any allocations necessary to record that reservation occur outside
3918 	 * the spinlock.
3919 	 */
3920 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3921 		if (vma_needs_reservation(h, vma, haddr) < 0) {
3922 			ret = VM_FAULT_OOM;
3923 			goto backout_unlocked;
3924 		}
3925 		/* Just decrements count, does not deallocate */
3926 		vma_end_reservation(h, vma, haddr);
3927 	}
3928 
3929 	ptl = huge_pte_lock(h, mm, ptep);
3930 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3931 	if (idx >= size)
3932 		goto backout;
3933 
3934 	ret = 0;
3935 	if (!huge_pte_none(huge_ptep_get(ptep)))
3936 		goto backout;
3937 
3938 	if (anon_rmap) {
3939 		ClearPagePrivate(page);
3940 		hugepage_add_new_anon_rmap(page, vma, haddr);
3941 	} else
3942 		page_dup_rmap(page, true);
3943 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3944 				&& (vma->vm_flags & VM_SHARED)));
3945 	set_huge_pte_at(mm, haddr, ptep, new_pte);
3946 
3947 	hugetlb_count_add(pages_per_huge_page(h), mm);
3948 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3949 		/* Optimization, do the COW without a second fault */
3950 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3951 	}
3952 
3953 	spin_unlock(ptl);
3954 
3955 	/*
3956 	 * Only make newly allocated pages active.  Existing pages found
3957 	 * in the pagecache could be !page_huge_active() if they have been
3958 	 * isolated for migration.
3959 	 */
3960 	if (new_page)
3961 		set_page_huge_active(page);
3962 
3963 	unlock_page(page);
3964 out:
3965 	return ret;
3966 
3967 backout:
3968 	spin_unlock(ptl);
3969 backout_unlocked:
3970 	unlock_page(page);
3971 	restore_reserve_on_error(h, vma, haddr, page);
3972 	put_page(page);
3973 	goto out;
3974 }
3975 
3976 #ifdef CONFIG_SMP
3977 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3978 			    pgoff_t idx, unsigned long address)
3979 {
3980 	unsigned long key[2];
3981 	u32 hash;
3982 
3983 	key[0] = (unsigned long) mapping;
3984 	key[1] = idx;
3985 
3986 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3987 
3988 	return hash & (num_fault_mutexes - 1);
3989 }
3990 #else
3991 /*
3992  * For uniprocesor systems we always use a single mutex, so just
3993  * return 0 and avoid the hashing overhead.
3994  */
3995 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3996 			    pgoff_t idx, unsigned long address)
3997 {
3998 	return 0;
3999 }
4000 #endif
4001 
4002 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4003 			unsigned long address, unsigned int flags)
4004 {
4005 	pte_t *ptep, entry;
4006 	spinlock_t *ptl;
4007 	vm_fault_t ret;
4008 	u32 hash;
4009 	pgoff_t idx;
4010 	struct page *page = NULL;
4011 	struct page *pagecache_page = NULL;
4012 	struct hstate *h = hstate_vma(vma);
4013 	struct address_space *mapping;
4014 	int need_wait_lock = 0;
4015 	unsigned long haddr = address & huge_page_mask(h);
4016 
4017 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4018 	if (ptep) {
4019 		entry = huge_ptep_get(ptep);
4020 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4021 			migration_entry_wait_huge(vma, mm, ptep);
4022 			return 0;
4023 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4024 			return VM_FAULT_HWPOISON_LARGE |
4025 				VM_FAULT_SET_HINDEX(hstate_index(h));
4026 	} else {
4027 		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4028 		if (!ptep)
4029 			return VM_FAULT_OOM;
4030 	}
4031 
4032 	mapping = vma->vm_file->f_mapping;
4033 	idx = vma_hugecache_offset(h, vma, haddr);
4034 
4035 	/*
4036 	 * Serialize hugepage allocation and instantiation, so that we don't
4037 	 * get spurious allocation failures if two CPUs race to instantiate
4038 	 * the same page in the page cache.
4039 	 */
4040 	hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4041 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4042 
4043 	entry = huge_ptep_get(ptep);
4044 	if (huge_pte_none(entry)) {
4045 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4046 		goto out_mutex;
4047 	}
4048 
4049 	ret = 0;
4050 
4051 	/*
4052 	 * entry could be a migration/hwpoison entry at this point, so this
4053 	 * check prevents the kernel from going below assuming that we have
4054 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4055 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4056 	 * handle it.
4057 	 */
4058 	if (!pte_present(entry))
4059 		goto out_mutex;
4060 
4061 	/*
4062 	 * If we are going to COW the mapping later, we examine the pending
4063 	 * reservations for this page now. This will ensure that any
4064 	 * allocations necessary to record that reservation occur outside the
4065 	 * spinlock. For private mappings, we also lookup the pagecache
4066 	 * page now as it is used to determine if a reservation has been
4067 	 * consumed.
4068 	 */
4069 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4070 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4071 			ret = VM_FAULT_OOM;
4072 			goto out_mutex;
4073 		}
4074 		/* Just decrements count, does not deallocate */
4075 		vma_end_reservation(h, vma, haddr);
4076 
4077 		if (!(vma->vm_flags & VM_MAYSHARE))
4078 			pagecache_page = hugetlbfs_pagecache_page(h,
4079 								vma, haddr);
4080 	}
4081 
4082 	ptl = huge_pte_lock(h, mm, ptep);
4083 
4084 	/* Check for a racing update before calling hugetlb_cow */
4085 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4086 		goto out_ptl;
4087 
4088 	/*
4089 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4090 	 * pagecache_page, so here we need take the former one
4091 	 * when page != pagecache_page or !pagecache_page.
4092 	 */
4093 	page = pte_page(entry);
4094 	if (page != pagecache_page)
4095 		if (!trylock_page(page)) {
4096 			need_wait_lock = 1;
4097 			goto out_ptl;
4098 		}
4099 
4100 	get_page(page);
4101 
4102 	if (flags & FAULT_FLAG_WRITE) {
4103 		if (!huge_pte_write(entry)) {
4104 			ret = hugetlb_cow(mm, vma, address, ptep,
4105 					  pagecache_page, ptl);
4106 			goto out_put_page;
4107 		}
4108 		entry = huge_pte_mkdirty(entry);
4109 	}
4110 	entry = pte_mkyoung(entry);
4111 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4112 						flags & FAULT_FLAG_WRITE))
4113 		update_mmu_cache(vma, haddr, ptep);
4114 out_put_page:
4115 	if (page != pagecache_page)
4116 		unlock_page(page);
4117 	put_page(page);
4118 out_ptl:
4119 	spin_unlock(ptl);
4120 
4121 	if (pagecache_page) {
4122 		unlock_page(pagecache_page);
4123 		put_page(pagecache_page);
4124 	}
4125 out_mutex:
4126 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4127 	/*
4128 	 * Generally it's safe to hold refcount during waiting page lock. But
4129 	 * here we just wait to defer the next page fault to avoid busy loop and
4130 	 * the page is not used after unlocked before returning from the current
4131 	 * page fault. So we are safe from accessing freed page, even if we wait
4132 	 * here without taking refcount.
4133 	 */
4134 	if (need_wait_lock)
4135 		wait_on_page_locked(page);
4136 	return ret;
4137 }
4138 
4139 /*
4140  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4141  * modifications for huge pages.
4142  */
4143 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4144 			    pte_t *dst_pte,
4145 			    struct vm_area_struct *dst_vma,
4146 			    unsigned long dst_addr,
4147 			    unsigned long src_addr,
4148 			    struct page **pagep)
4149 {
4150 	struct address_space *mapping;
4151 	pgoff_t idx;
4152 	unsigned long size;
4153 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4154 	struct hstate *h = hstate_vma(dst_vma);
4155 	pte_t _dst_pte;
4156 	spinlock_t *ptl;
4157 	int ret;
4158 	struct page *page;
4159 
4160 	if (!*pagep) {
4161 		ret = -ENOMEM;
4162 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4163 		if (IS_ERR(page))
4164 			goto out;
4165 
4166 		ret = copy_huge_page_from_user(page,
4167 						(const void __user *) src_addr,
4168 						pages_per_huge_page(h), false);
4169 
4170 		/* fallback to copy_from_user outside mmap_sem */
4171 		if (unlikely(ret)) {
4172 			ret = -ENOENT;
4173 			*pagep = page;
4174 			/* don't free the page */
4175 			goto out;
4176 		}
4177 	} else {
4178 		page = *pagep;
4179 		*pagep = NULL;
4180 	}
4181 
4182 	/*
4183 	 * The memory barrier inside __SetPageUptodate makes sure that
4184 	 * preceding stores to the page contents become visible before
4185 	 * the set_pte_at() write.
4186 	 */
4187 	__SetPageUptodate(page);
4188 
4189 	mapping = dst_vma->vm_file->f_mapping;
4190 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4191 
4192 	/*
4193 	 * If shared, add to page cache
4194 	 */
4195 	if (vm_shared) {
4196 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4197 		ret = -EFAULT;
4198 		if (idx >= size)
4199 			goto out_release_nounlock;
4200 
4201 		/*
4202 		 * Serialization between remove_inode_hugepages() and
4203 		 * huge_add_to_page_cache() below happens through the
4204 		 * hugetlb_fault_mutex_table that here must be hold by
4205 		 * the caller.
4206 		 */
4207 		ret = huge_add_to_page_cache(page, mapping, idx);
4208 		if (ret)
4209 			goto out_release_nounlock;
4210 	}
4211 
4212 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4213 	spin_lock(ptl);
4214 
4215 	/*
4216 	 * Recheck the i_size after holding PT lock to make sure not
4217 	 * to leave any page mapped (as page_mapped()) beyond the end
4218 	 * of the i_size (remove_inode_hugepages() is strict about
4219 	 * enforcing that). If we bail out here, we'll also leave a
4220 	 * page in the radix tree in the vm_shared case beyond the end
4221 	 * of the i_size, but remove_inode_hugepages() will take care
4222 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4223 	 */
4224 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4225 	ret = -EFAULT;
4226 	if (idx >= size)
4227 		goto out_release_unlock;
4228 
4229 	ret = -EEXIST;
4230 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4231 		goto out_release_unlock;
4232 
4233 	if (vm_shared) {
4234 		page_dup_rmap(page, true);
4235 	} else {
4236 		ClearPagePrivate(page);
4237 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4238 	}
4239 
4240 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4241 	if (dst_vma->vm_flags & VM_WRITE)
4242 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4243 	_dst_pte = pte_mkyoung(_dst_pte);
4244 
4245 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4246 
4247 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4248 					dst_vma->vm_flags & VM_WRITE);
4249 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4250 
4251 	/* No need to invalidate - it was non-present before */
4252 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4253 
4254 	spin_unlock(ptl);
4255 	set_page_huge_active(page);
4256 	if (vm_shared)
4257 		unlock_page(page);
4258 	ret = 0;
4259 out:
4260 	return ret;
4261 out_release_unlock:
4262 	spin_unlock(ptl);
4263 	if (vm_shared)
4264 		unlock_page(page);
4265 out_release_nounlock:
4266 	put_page(page);
4267 	goto out;
4268 }
4269 
4270 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4271 			 struct page **pages, struct vm_area_struct **vmas,
4272 			 unsigned long *position, unsigned long *nr_pages,
4273 			 long i, unsigned int flags, int *nonblocking)
4274 {
4275 	unsigned long pfn_offset;
4276 	unsigned long vaddr = *position;
4277 	unsigned long remainder = *nr_pages;
4278 	struct hstate *h = hstate_vma(vma);
4279 	int err = -EFAULT;
4280 
4281 	while (vaddr < vma->vm_end && remainder) {
4282 		pte_t *pte;
4283 		spinlock_t *ptl = NULL;
4284 		int absent;
4285 		struct page *page;
4286 
4287 		/*
4288 		 * If we have a pending SIGKILL, don't keep faulting pages and
4289 		 * potentially allocating memory.
4290 		 */
4291 		if (fatal_signal_pending(current)) {
4292 			remainder = 0;
4293 			break;
4294 		}
4295 
4296 		/*
4297 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4298 		 * each hugepage.  We have to make sure we get the
4299 		 * first, for the page indexing below to work.
4300 		 *
4301 		 * Note that page table lock is not held when pte is null.
4302 		 */
4303 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4304 				      huge_page_size(h));
4305 		if (pte)
4306 			ptl = huge_pte_lock(h, mm, pte);
4307 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4308 
4309 		/*
4310 		 * When coredumping, it suits get_dump_page if we just return
4311 		 * an error where there's an empty slot with no huge pagecache
4312 		 * to back it.  This way, we avoid allocating a hugepage, and
4313 		 * the sparse dumpfile avoids allocating disk blocks, but its
4314 		 * huge holes still show up with zeroes where they need to be.
4315 		 */
4316 		if (absent && (flags & FOLL_DUMP) &&
4317 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4318 			if (pte)
4319 				spin_unlock(ptl);
4320 			remainder = 0;
4321 			break;
4322 		}
4323 
4324 		/*
4325 		 * We need call hugetlb_fault for both hugepages under migration
4326 		 * (in which case hugetlb_fault waits for the migration,) and
4327 		 * hwpoisoned hugepages (in which case we need to prevent the
4328 		 * caller from accessing to them.) In order to do this, we use
4329 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4330 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4331 		 * both cases, and because we can't follow correct pages
4332 		 * directly from any kind of swap entries.
4333 		 */
4334 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4335 		    ((flags & FOLL_WRITE) &&
4336 		      !huge_pte_write(huge_ptep_get(pte)))) {
4337 			vm_fault_t ret;
4338 			unsigned int fault_flags = 0;
4339 
4340 			if (pte)
4341 				spin_unlock(ptl);
4342 			if (flags & FOLL_WRITE)
4343 				fault_flags |= FAULT_FLAG_WRITE;
4344 			if (nonblocking)
4345 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4346 			if (flags & FOLL_NOWAIT)
4347 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4348 					FAULT_FLAG_RETRY_NOWAIT;
4349 			if (flags & FOLL_TRIED) {
4350 				VM_WARN_ON_ONCE(fault_flags &
4351 						FAULT_FLAG_ALLOW_RETRY);
4352 				fault_flags |= FAULT_FLAG_TRIED;
4353 			}
4354 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4355 			if (ret & VM_FAULT_ERROR) {
4356 				err = vm_fault_to_errno(ret, flags);
4357 				remainder = 0;
4358 				break;
4359 			}
4360 			if (ret & VM_FAULT_RETRY) {
4361 				if (nonblocking &&
4362 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4363 					*nonblocking = 0;
4364 				*nr_pages = 0;
4365 				/*
4366 				 * VM_FAULT_RETRY must not return an
4367 				 * error, it will return zero
4368 				 * instead.
4369 				 *
4370 				 * No need to update "position" as the
4371 				 * caller will not check it after
4372 				 * *nr_pages is set to 0.
4373 				 */
4374 				return i;
4375 			}
4376 			continue;
4377 		}
4378 
4379 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4380 		page = pte_page(huge_ptep_get(pte));
4381 
4382 		/*
4383 		 * Instead of doing 'try_get_page()' below in the same_page
4384 		 * loop, just check the count once here.
4385 		 */
4386 		if (unlikely(page_count(page) <= 0)) {
4387 			if (pages) {
4388 				spin_unlock(ptl);
4389 				remainder = 0;
4390 				err = -ENOMEM;
4391 				break;
4392 			}
4393 		}
4394 same_page:
4395 		if (pages) {
4396 			pages[i] = mem_map_offset(page, pfn_offset);
4397 			get_page(pages[i]);
4398 		}
4399 
4400 		if (vmas)
4401 			vmas[i] = vma;
4402 
4403 		vaddr += PAGE_SIZE;
4404 		++pfn_offset;
4405 		--remainder;
4406 		++i;
4407 		if (vaddr < vma->vm_end && remainder &&
4408 				pfn_offset < pages_per_huge_page(h)) {
4409 			/*
4410 			 * We use pfn_offset to avoid touching the pageframes
4411 			 * of this compound page.
4412 			 */
4413 			goto same_page;
4414 		}
4415 		spin_unlock(ptl);
4416 	}
4417 	*nr_pages = remainder;
4418 	/*
4419 	 * setting position is actually required only if remainder is
4420 	 * not zero but it's faster not to add a "if (remainder)"
4421 	 * branch.
4422 	 */
4423 	*position = vaddr;
4424 
4425 	return i ? i : err;
4426 }
4427 
4428 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4429 /*
4430  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4431  * implement this.
4432  */
4433 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4434 #endif
4435 
4436 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4437 		unsigned long address, unsigned long end, pgprot_t newprot)
4438 {
4439 	struct mm_struct *mm = vma->vm_mm;
4440 	unsigned long start = address;
4441 	pte_t *ptep;
4442 	pte_t pte;
4443 	struct hstate *h = hstate_vma(vma);
4444 	unsigned long pages = 0;
4445 	bool shared_pmd = false;
4446 	struct mmu_notifier_range range;
4447 
4448 	/*
4449 	 * In the case of shared PMDs, the area to flush could be beyond
4450 	 * start/end.  Set range.start/range.end to cover the maximum possible
4451 	 * range if PMD sharing is possible.
4452 	 */
4453 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4454 				0, vma, mm, start, end);
4455 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4456 
4457 	BUG_ON(address >= end);
4458 	flush_cache_range(vma, range.start, range.end);
4459 
4460 	mmu_notifier_invalidate_range_start(&range);
4461 	i_mmap_lock_write(vma->vm_file->f_mapping);
4462 	for (; address < end; address += huge_page_size(h)) {
4463 		spinlock_t *ptl;
4464 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4465 		if (!ptep)
4466 			continue;
4467 		ptl = huge_pte_lock(h, mm, ptep);
4468 		if (huge_pmd_unshare(mm, &address, ptep)) {
4469 			pages++;
4470 			spin_unlock(ptl);
4471 			shared_pmd = true;
4472 			continue;
4473 		}
4474 		pte = huge_ptep_get(ptep);
4475 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4476 			spin_unlock(ptl);
4477 			continue;
4478 		}
4479 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4480 			swp_entry_t entry = pte_to_swp_entry(pte);
4481 
4482 			if (is_write_migration_entry(entry)) {
4483 				pte_t newpte;
4484 
4485 				make_migration_entry_read(&entry);
4486 				newpte = swp_entry_to_pte(entry);
4487 				set_huge_swap_pte_at(mm, address, ptep,
4488 						     newpte, huge_page_size(h));
4489 				pages++;
4490 			}
4491 			spin_unlock(ptl);
4492 			continue;
4493 		}
4494 		if (!huge_pte_none(pte)) {
4495 			pte_t old_pte;
4496 
4497 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4498 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4499 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4500 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4501 			pages++;
4502 		}
4503 		spin_unlock(ptl);
4504 	}
4505 	/*
4506 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4507 	 * may have cleared our pud entry and done put_page on the page table:
4508 	 * once we release i_mmap_rwsem, another task can do the final put_page
4509 	 * and that page table be reused and filled with junk.  If we actually
4510 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4511 	 */
4512 	if (shared_pmd)
4513 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4514 	else
4515 		flush_hugetlb_tlb_range(vma, start, end);
4516 	/*
4517 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4518 	 * page table protection not changing it to point to a new page.
4519 	 *
4520 	 * See Documentation/vm/mmu_notifier.rst
4521 	 */
4522 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4523 	mmu_notifier_invalidate_range_end(&range);
4524 
4525 	return pages << h->order;
4526 }
4527 
4528 int hugetlb_reserve_pages(struct inode *inode,
4529 					long from, long to,
4530 					struct vm_area_struct *vma,
4531 					vm_flags_t vm_flags)
4532 {
4533 	long ret, chg;
4534 	struct hstate *h = hstate_inode(inode);
4535 	struct hugepage_subpool *spool = subpool_inode(inode);
4536 	struct resv_map *resv_map;
4537 	long gbl_reserve;
4538 
4539 	/* This should never happen */
4540 	if (from > to) {
4541 		VM_WARN(1, "%s called with a negative range\n", __func__);
4542 		return -EINVAL;
4543 	}
4544 
4545 	/*
4546 	 * Only apply hugepage reservation if asked. At fault time, an
4547 	 * attempt will be made for VM_NORESERVE to allocate a page
4548 	 * without using reserves
4549 	 */
4550 	if (vm_flags & VM_NORESERVE)
4551 		return 0;
4552 
4553 	/*
4554 	 * Shared mappings base their reservation on the number of pages that
4555 	 * are already allocated on behalf of the file. Private mappings need
4556 	 * to reserve the full area even if read-only as mprotect() may be
4557 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4558 	 */
4559 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4560 		/*
4561 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
4562 		 * called for inodes for which resv_maps were created (see
4563 		 * hugetlbfs_get_inode).
4564 		 */
4565 		resv_map = inode_resv_map(inode);
4566 
4567 		chg = region_chg(resv_map, from, to);
4568 
4569 	} else {
4570 		resv_map = resv_map_alloc();
4571 		if (!resv_map)
4572 			return -ENOMEM;
4573 
4574 		chg = to - from;
4575 
4576 		set_vma_resv_map(vma, resv_map);
4577 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4578 	}
4579 
4580 	if (chg < 0) {
4581 		ret = chg;
4582 		goto out_err;
4583 	}
4584 
4585 	/*
4586 	 * There must be enough pages in the subpool for the mapping. If
4587 	 * the subpool has a minimum size, there may be some global
4588 	 * reservations already in place (gbl_reserve).
4589 	 */
4590 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4591 	if (gbl_reserve < 0) {
4592 		ret = -ENOSPC;
4593 		goto out_err;
4594 	}
4595 
4596 	/*
4597 	 * Check enough hugepages are available for the reservation.
4598 	 * Hand the pages back to the subpool if there are not
4599 	 */
4600 	ret = hugetlb_acct_memory(h, gbl_reserve);
4601 	if (ret < 0) {
4602 		/* put back original number of pages, chg */
4603 		(void)hugepage_subpool_put_pages(spool, chg);
4604 		goto out_err;
4605 	}
4606 
4607 	/*
4608 	 * Account for the reservations made. Shared mappings record regions
4609 	 * that have reservations as they are shared by multiple VMAs.
4610 	 * When the last VMA disappears, the region map says how much
4611 	 * the reservation was and the page cache tells how much of
4612 	 * the reservation was consumed. Private mappings are per-VMA and
4613 	 * only the consumed reservations are tracked. When the VMA
4614 	 * disappears, the original reservation is the VMA size and the
4615 	 * consumed reservations are stored in the map. Hence, nothing
4616 	 * else has to be done for private mappings here
4617 	 */
4618 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4619 		long add = region_add(resv_map, from, to);
4620 
4621 		if (unlikely(chg > add)) {
4622 			/*
4623 			 * pages in this range were added to the reserve
4624 			 * map between region_chg and region_add.  This
4625 			 * indicates a race with alloc_huge_page.  Adjust
4626 			 * the subpool and reserve counts modified above
4627 			 * based on the difference.
4628 			 */
4629 			long rsv_adjust;
4630 
4631 			rsv_adjust = hugepage_subpool_put_pages(spool,
4632 								chg - add);
4633 			hugetlb_acct_memory(h, -rsv_adjust);
4634 		}
4635 	}
4636 	return 0;
4637 out_err:
4638 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4639 		/* Don't call region_abort if region_chg failed */
4640 		if (chg >= 0)
4641 			region_abort(resv_map, from, to);
4642 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4643 		kref_put(&resv_map->refs, resv_map_release);
4644 	return ret;
4645 }
4646 
4647 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4648 								long freed)
4649 {
4650 	struct hstate *h = hstate_inode(inode);
4651 	struct resv_map *resv_map = inode_resv_map(inode);
4652 	long chg = 0;
4653 	struct hugepage_subpool *spool = subpool_inode(inode);
4654 	long gbl_reserve;
4655 
4656 	/*
4657 	 * Since this routine can be called in the evict inode path for all
4658 	 * hugetlbfs inodes, resv_map could be NULL.
4659 	 */
4660 	if (resv_map) {
4661 		chg = region_del(resv_map, start, end);
4662 		/*
4663 		 * region_del() can fail in the rare case where a region
4664 		 * must be split and another region descriptor can not be
4665 		 * allocated.  If end == LONG_MAX, it will not fail.
4666 		 */
4667 		if (chg < 0)
4668 			return chg;
4669 	}
4670 
4671 	spin_lock(&inode->i_lock);
4672 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4673 	spin_unlock(&inode->i_lock);
4674 
4675 	/*
4676 	 * If the subpool has a minimum size, the number of global
4677 	 * reservations to be released may be adjusted.
4678 	 */
4679 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4680 	hugetlb_acct_memory(h, -gbl_reserve);
4681 
4682 	return 0;
4683 }
4684 
4685 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4686 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4687 				struct vm_area_struct *vma,
4688 				unsigned long addr, pgoff_t idx)
4689 {
4690 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4691 				svma->vm_start;
4692 	unsigned long sbase = saddr & PUD_MASK;
4693 	unsigned long s_end = sbase + PUD_SIZE;
4694 
4695 	/* Allow segments to share if only one is marked locked */
4696 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4697 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4698 
4699 	/*
4700 	 * match the virtual addresses, permission and the alignment of the
4701 	 * page table page.
4702 	 */
4703 	if (pmd_index(addr) != pmd_index(saddr) ||
4704 	    vm_flags != svm_flags ||
4705 	    sbase < svma->vm_start || svma->vm_end < s_end)
4706 		return 0;
4707 
4708 	return saddr;
4709 }
4710 
4711 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4712 {
4713 	unsigned long base = addr & PUD_MASK;
4714 	unsigned long end = base + PUD_SIZE;
4715 
4716 	/*
4717 	 * check on proper vm_flags and page table alignment
4718 	 */
4719 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4720 		return true;
4721 	return false;
4722 }
4723 
4724 /*
4725  * Determine if start,end range within vma could be mapped by shared pmd.
4726  * If yes, adjust start and end to cover range associated with possible
4727  * shared pmd mappings.
4728  */
4729 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4730 				unsigned long *start, unsigned long *end)
4731 {
4732 	unsigned long check_addr = *start;
4733 
4734 	if (!(vma->vm_flags & VM_MAYSHARE))
4735 		return;
4736 
4737 	for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4738 		unsigned long a_start = check_addr & PUD_MASK;
4739 		unsigned long a_end = a_start + PUD_SIZE;
4740 
4741 		/*
4742 		 * If sharing is possible, adjust start/end if necessary.
4743 		 */
4744 		if (range_in_vma(vma, a_start, a_end)) {
4745 			if (a_start < *start)
4746 				*start = a_start;
4747 			if (a_end > *end)
4748 				*end = a_end;
4749 		}
4750 	}
4751 }
4752 
4753 /*
4754  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4755  * and returns the corresponding pte. While this is not necessary for the
4756  * !shared pmd case because we can allocate the pmd later as well, it makes the
4757  * code much cleaner. pmd allocation is essential for the shared case because
4758  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4759  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4760  * bad pmd for sharing.
4761  */
4762 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4763 {
4764 	struct vm_area_struct *vma = find_vma(mm, addr);
4765 	struct address_space *mapping = vma->vm_file->f_mapping;
4766 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4767 			vma->vm_pgoff;
4768 	struct vm_area_struct *svma;
4769 	unsigned long saddr;
4770 	pte_t *spte = NULL;
4771 	pte_t *pte;
4772 	spinlock_t *ptl;
4773 
4774 	if (!vma_shareable(vma, addr))
4775 		return (pte_t *)pmd_alloc(mm, pud, addr);
4776 
4777 	i_mmap_lock_write(mapping);
4778 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4779 		if (svma == vma)
4780 			continue;
4781 
4782 		saddr = page_table_shareable(svma, vma, addr, idx);
4783 		if (saddr) {
4784 			spte = huge_pte_offset(svma->vm_mm, saddr,
4785 					       vma_mmu_pagesize(svma));
4786 			if (spte) {
4787 				get_page(virt_to_page(spte));
4788 				break;
4789 			}
4790 		}
4791 	}
4792 
4793 	if (!spte)
4794 		goto out;
4795 
4796 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4797 	if (pud_none(*pud)) {
4798 		pud_populate(mm, pud,
4799 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4800 		mm_inc_nr_pmds(mm);
4801 	} else {
4802 		put_page(virt_to_page(spte));
4803 	}
4804 	spin_unlock(ptl);
4805 out:
4806 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4807 	i_mmap_unlock_write(mapping);
4808 	return pte;
4809 }
4810 
4811 /*
4812  * unmap huge page backed by shared pte.
4813  *
4814  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4815  * indicated by page_count > 1, unmap is achieved by clearing pud and
4816  * decrementing the ref count. If count == 1, the pte page is not shared.
4817  *
4818  * called with page table lock held.
4819  *
4820  * returns: 1 successfully unmapped a shared pte page
4821  *	    0 the underlying pte page is not shared, or it is the last user
4822  */
4823 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4824 {
4825 	pgd_t *pgd = pgd_offset(mm, *addr);
4826 	p4d_t *p4d = p4d_offset(pgd, *addr);
4827 	pud_t *pud = pud_offset(p4d, *addr);
4828 
4829 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4830 	if (page_count(virt_to_page(ptep)) == 1)
4831 		return 0;
4832 
4833 	pud_clear(pud);
4834 	put_page(virt_to_page(ptep));
4835 	mm_dec_nr_pmds(mm);
4836 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4837 	return 1;
4838 }
4839 #define want_pmd_share()	(1)
4840 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4841 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4842 {
4843 	return NULL;
4844 }
4845 
4846 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4847 {
4848 	return 0;
4849 }
4850 
4851 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4852 				unsigned long *start, unsigned long *end)
4853 {
4854 }
4855 #define want_pmd_share()	(0)
4856 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4857 
4858 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4859 pte_t *huge_pte_alloc(struct mm_struct *mm,
4860 			unsigned long addr, unsigned long sz)
4861 {
4862 	pgd_t *pgd;
4863 	p4d_t *p4d;
4864 	pud_t *pud;
4865 	pte_t *pte = NULL;
4866 
4867 	pgd = pgd_offset(mm, addr);
4868 	p4d = p4d_alloc(mm, pgd, addr);
4869 	if (!p4d)
4870 		return NULL;
4871 	pud = pud_alloc(mm, p4d, addr);
4872 	if (pud) {
4873 		if (sz == PUD_SIZE) {
4874 			pte = (pte_t *)pud;
4875 		} else {
4876 			BUG_ON(sz != PMD_SIZE);
4877 			if (want_pmd_share() && pud_none(*pud))
4878 				pte = huge_pmd_share(mm, addr, pud);
4879 			else
4880 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4881 		}
4882 	}
4883 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4884 
4885 	return pte;
4886 }
4887 
4888 /*
4889  * huge_pte_offset() - Walk the page table to resolve the hugepage
4890  * entry at address @addr
4891  *
4892  * Return: Pointer to page table or swap entry (PUD or PMD) for
4893  * address @addr, or NULL if a p*d_none() entry is encountered and the
4894  * size @sz doesn't match the hugepage size at this level of the page
4895  * table.
4896  */
4897 pte_t *huge_pte_offset(struct mm_struct *mm,
4898 		       unsigned long addr, unsigned long sz)
4899 {
4900 	pgd_t *pgd;
4901 	p4d_t *p4d;
4902 	pud_t *pud;
4903 	pmd_t *pmd;
4904 
4905 	pgd = pgd_offset(mm, addr);
4906 	if (!pgd_present(*pgd))
4907 		return NULL;
4908 	p4d = p4d_offset(pgd, addr);
4909 	if (!p4d_present(*p4d))
4910 		return NULL;
4911 
4912 	pud = pud_offset(p4d, addr);
4913 	if (sz != PUD_SIZE && pud_none(*pud))
4914 		return NULL;
4915 	/* hugepage or swap? */
4916 	if (pud_huge(*pud) || !pud_present(*pud))
4917 		return (pte_t *)pud;
4918 
4919 	pmd = pmd_offset(pud, addr);
4920 	if (sz != PMD_SIZE && pmd_none(*pmd))
4921 		return NULL;
4922 	/* hugepage or swap? */
4923 	if (pmd_huge(*pmd) || !pmd_present(*pmd))
4924 		return (pte_t *)pmd;
4925 
4926 	return NULL;
4927 }
4928 
4929 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4930 
4931 /*
4932  * These functions are overwritable if your architecture needs its own
4933  * behavior.
4934  */
4935 struct page * __weak
4936 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4937 			      int write)
4938 {
4939 	return ERR_PTR(-EINVAL);
4940 }
4941 
4942 struct page * __weak
4943 follow_huge_pd(struct vm_area_struct *vma,
4944 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
4945 {
4946 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4947 	return NULL;
4948 }
4949 
4950 struct page * __weak
4951 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4952 		pmd_t *pmd, int flags)
4953 {
4954 	struct page *page = NULL;
4955 	spinlock_t *ptl;
4956 	pte_t pte;
4957 retry:
4958 	ptl = pmd_lockptr(mm, pmd);
4959 	spin_lock(ptl);
4960 	/*
4961 	 * make sure that the address range covered by this pmd is not
4962 	 * unmapped from other threads.
4963 	 */
4964 	if (!pmd_huge(*pmd))
4965 		goto out;
4966 	pte = huge_ptep_get((pte_t *)pmd);
4967 	if (pte_present(pte)) {
4968 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4969 		if (flags & FOLL_GET)
4970 			get_page(page);
4971 	} else {
4972 		if (is_hugetlb_entry_migration(pte)) {
4973 			spin_unlock(ptl);
4974 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4975 			goto retry;
4976 		}
4977 		/*
4978 		 * hwpoisoned entry is treated as no_page_table in
4979 		 * follow_page_mask().
4980 		 */
4981 	}
4982 out:
4983 	spin_unlock(ptl);
4984 	return page;
4985 }
4986 
4987 struct page * __weak
4988 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4989 		pud_t *pud, int flags)
4990 {
4991 	if (flags & FOLL_GET)
4992 		return NULL;
4993 
4994 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4995 }
4996 
4997 struct page * __weak
4998 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4999 {
5000 	if (flags & FOLL_GET)
5001 		return NULL;
5002 
5003 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5004 }
5005 
5006 bool isolate_huge_page(struct page *page, struct list_head *list)
5007 {
5008 	bool ret = true;
5009 
5010 	VM_BUG_ON_PAGE(!PageHead(page), page);
5011 	spin_lock(&hugetlb_lock);
5012 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5013 		ret = false;
5014 		goto unlock;
5015 	}
5016 	clear_page_huge_active(page);
5017 	list_move_tail(&page->lru, list);
5018 unlock:
5019 	spin_unlock(&hugetlb_lock);
5020 	return ret;
5021 }
5022 
5023 void putback_active_hugepage(struct page *page)
5024 {
5025 	VM_BUG_ON_PAGE(!PageHead(page), page);
5026 	spin_lock(&hugetlb_lock);
5027 	set_page_huge_active(page);
5028 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5029 	spin_unlock(&hugetlb_lock);
5030 	put_page(page);
5031 }
5032 
5033 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5034 {
5035 	struct hstate *h = page_hstate(oldpage);
5036 
5037 	hugetlb_cgroup_migrate(oldpage, newpage);
5038 	set_page_owner_migrate_reason(newpage, reason);
5039 
5040 	/*
5041 	 * transfer temporary state of the new huge page. This is
5042 	 * reverse to other transitions because the newpage is going to
5043 	 * be final while the old one will be freed so it takes over
5044 	 * the temporary status.
5045 	 *
5046 	 * Also note that we have to transfer the per-node surplus state
5047 	 * here as well otherwise the global surplus count will not match
5048 	 * the per-node's.
5049 	 */
5050 	if (PageHugeTemporary(newpage)) {
5051 		int old_nid = page_to_nid(oldpage);
5052 		int new_nid = page_to_nid(newpage);
5053 
5054 		SetPageHugeTemporary(oldpage);
5055 		ClearPageHugeTemporary(newpage);
5056 
5057 		spin_lock(&hugetlb_lock);
5058 		if (h->surplus_huge_pages_node[old_nid]) {
5059 			h->surplus_huge_pages_node[old_nid]--;
5060 			h->surplus_huge_pages_node[new_nid]++;
5061 		}
5062 		spin_unlock(&hugetlb_lock);
5063 	}
5064 }
5065