xref: /openbmc/linux/mm/hugetlb.c (revision 77d84ff8)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29 
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35 
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38 
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 
43 __initdata LIST_HEAD(huge_boot_pages);
44 
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49 
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55 
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59 
60 	spin_unlock(&spool->lock);
61 
62 	/* If no pages are used, and no other handles to the subpool
63 	 * remain, free the subpool the subpool remain */
64 	if (free)
65 		kfree(spool);
66 }
67 
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 	struct hugepage_subpool *spool;
71 
72 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 	if (!spool)
74 		return NULL;
75 
76 	spin_lock_init(&spool->lock);
77 	spool->count = 1;
78 	spool->max_hpages = nr_blocks;
79 	spool->used_hpages = 0;
80 
81 	return spool;
82 }
83 
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 	spin_lock(&spool->lock);
87 	BUG_ON(!spool->count);
88 	spool->count--;
89 	unlock_or_release_subpool(spool);
90 }
91 
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 				      long delta)
94 {
95 	int ret = 0;
96 
97 	if (!spool)
98 		return 0;
99 
100 	spin_lock(&spool->lock);
101 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 		spool->used_hpages += delta;
103 	} else {
104 		ret = -ENOMEM;
105 	}
106 	spin_unlock(&spool->lock);
107 
108 	return ret;
109 }
110 
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 				       long delta)
113 {
114 	if (!spool)
115 		return;
116 
117 	spin_lock(&spool->lock);
118 	spool->used_hpages -= delta;
119 	/* If hugetlbfs_put_super couldn't free spool due to
120 	* an outstanding quota reference, free it now. */
121 	unlock_or_release_subpool(spool);
122 }
123 
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 	return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128 
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 	return subpool_inode(file_inode(vma->vm_file));
132 }
133 
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *	down_write(&mm->mmap_sem);
144  * or
145  *	down_read(&mm->mmap_sem);
146  *	mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149 	struct list_head link;
150 	long from;
151 	long to;
152 };
153 
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 	struct file_region *rg, *nrg, *trg;
157 
158 	/* Locate the region we are either in or before. */
159 	list_for_each_entry(rg, head, link)
160 		if (f <= rg->to)
161 			break;
162 
163 	/* Round our left edge to the current segment if it encloses us. */
164 	if (f > rg->from)
165 		f = rg->from;
166 
167 	/* Check for and consume any regions we now overlap with. */
168 	nrg = rg;
169 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 		if (&rg->link == head)
171 			break;
172 		if (rg->from > t)
173 			break;
174 
175 		/* If this area reaches higher then extend our area to
176 		 * include it completely.  If this is not the first area
177 		 * which we intend to reuse, free it. */
178 		if (rg->to > t)
179 			t = rg->to;
180 		if (rg != nrg) {
181 			list_del(&rg->link);
182 			kfree(rg);
183 		}
184 	}
185 	nrg->from = f;
186 	nrg->to = t;
187 	return 0;
188 }
189 
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 	struct file_region *rg, *nrg;
193 	long chg = 0;
194 
195 	/* Locate the region we are before or in. */
196 	list_for_each_entry(rg, head, link)
197 		if (f <= rg->to)
198 			break;
199 
200 	/* If we are below the current region then a new region is required.
201 	 * Subtle, allocate a new region at the position but make it zero
202 	 * size such that we can guarantee to record the reservation. */
203 	if (&rg->link == head || t < rg->from) {
204 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 		if (!nrg)
206 			return -ENOMEM;
207 		nrg->from = f;
208 		nrg->to   = f;
209 		INIT_LIST_HEAD(&nrg->link);
210 		list_add(&nrg->link, rg->link.prev);
211 
212 		return t - f;
213 	}
214 
215 	/* Round our left edge to the current segment if it encloses us. */
216 	if (f > rg->from)
217 		f = rg->from;
218 	chg = t - f;
219 
220 	/* Check for and consume any regions we now overlap with. */
221 	list_for_each_entry(rg, rg->link.prev, link) {
222 		if (&rg->link == head)
223 			break;
224 		if (rg->from > t)
225 			return chg;
226 
227 		/* We overlap with this area, if it extends further than
228 		 * us then we must extend ourselves.  Account for its
229 		 * existing reservation. */
230 		if (rg->to > t) {
231 			chg += rg->to - t;
232 			t = rg->to;
233 		}
234 		chg -= rg->to - rg->from;
235 	}
236 	return chg;
237 }
238 
239 static long region_truncate(struct list_head *head, long end)
240 {
241 	struct file_region *rg, *trg;
242 	long chg = 0;
243 
244 	/* Locate the region we are either in or before. */
245 	list_for_each_entry(rg, head, link)
246 		if (end <= rg->to)
247 			break;
248 	if (&rg->link == head)
249 		return 0;
250 
251 	/* If we are in the middle of a region then adjust it. */
252 	if (end > rg->from) {
253 		chg = rg->to - end;
254 		rg->to = end;
255 		rg = list_entry(rg->link.next, typeof(*rg), link);
256 	}
257 
258 	/* Drop any remaining regions. */
259 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 		if (&rg->link == head)
261 			break;
262 		chg += rg->to - rg->from;
263 		list_del(&rg->link);
264 		kfree(rg);
265 	}
266 	return chg;
267 }
268 
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 	struct file_region *rg;
272 	long chg = 0;
273 
274 	/* Locate each segment we overlap with, and count that overlap. */
275 	list_for_each_entry(rg, head, link) {
276 		long seg_from;
277 		long seg_to;
278 
279 		if (rg->to <= f)
280 			continue;
281 		if (rg->from >= t)
282 			break;
283 
284 		seg_from = max(rg->from, f);
285 		seg_to = min(rg->to, t);
286 
287 		chg += seg_to - seg_from;
288 	}
289 
290 	return chg;
291 }
292 
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 			struct vm_area_struct *vma, unsigned long address)
299 {
300 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 			(vma->vm_pgoff >> huge_page_order(h));
302 }
303 
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 				     unsigned long address)
306 {
307 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309 
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 	struct hstate *hstate;
317 
318 	if (!is_vm_hugetlb_page(vma))
319 		return PAGE_SIZE;
320 
321 	hstate = hstate_vma(vma);
322 
323 	return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326 
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 	return vma_kernel_pagesize(vma);
337 }
338 #endif
339 
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348 
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 	return (unsigned long)vma->vm_private_data;
371 }
372 
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 							unsigned long value)
375 {
376 	vma->vm_private_data = (void *)value;
377 }
378 
379 struct resv_map {
380 	struct kref refs;
381 	struct list_head regions;
382 };
383 
384 static struct resv_map *resv_map_alloc(void)
385 {
386 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 	if (!resv_map)
388 		return NULL;
389 
390 	kref_init(&resv_map->refs);
391 	INIT_LIST_HEAD(&resv_map->regions);
392 
393 	return resv_map;
394 }
395 
396 static void resv_map_release(struct kref *ref)
397 {
398 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399 
400 	/* Clear out any active regions before we release the map. */
401 	region_truncate(&resv_map->regions, 0);
402 	kfree(resv_map);
403 }
404 
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 	if (!(vma->vm_flags & VM_MAYSHARE))
409 		return (struct resv_map *)(get_vma_private_data(vma) &
410 							~HPAGE_RESV_MASK);
411 	return NULL;
412 }
413 
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 
419 	set_vma_private_data(vma, (get_vma_private_data(vma) &
420 				HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422 
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 
428 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430 
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 
435 	return (get_vma_private_data(vma) & flag) != 0;
436 }
437 
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 	if (!(vma->vm_flags & VM_MAYSHARE))
443 		vma->vm_private_data = (void *)0;
444 }
445 
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449 	if (vma->vm_flags & VM_NORESERVE) {
450 		/*
451 		 * This address is already reserved by other process(chg == 0),
452 		 * so, we should decrement reserved count. Without decrementing,
453 		 * reserve count remains after releasing inode, because this
454 		 * allocated page will go into page cache and is regarded as
455 		 * coming from reserved pool in releasing step.  Currently, we
456 		 * don't have any other solution to deal with this situation
457 		 * properly, so add work-around here.
458 		 */
459 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 			return 1;
461 		else
462 			return 0;
463 	}
464 
465 	/* Shared mappings always use reserves */
466 	if (vma->vm_flags & VM_MAYSHARE)
467 		return 1;
468 
469 	/*
470 	 * Only the process that called mmap() has reserves for
471 	 * private mappings.
472 	 */
473 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 		return 1;
475 
476 	return 0;
477 }
478 
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
480 {
481 	int nid = page_to_nid(page);
482 	list_move(&page->lru, &h->hugepage_freelists[nid]);
483 	h->free_huge_pages++;
484 	h->free_huge_pages_node[nid]++;
485 }
486 
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488 {
489 	struct page *page;
490 
491 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 		if (!is_migrate_isolate_page(page))
493 			break;
494 	/*
495 	 * if 'non-isolated free hugepage' not found on the list,
496 	 * the allocation fails.
497 	 */
498 	if (&h->hugepage_freelists[nid] == &page->lru)
499 		return NULL;
500 	list_move(&page->lru, &h->hugepage_activelist);
501 	set_page_refcounted(page);
502 	h->free_huge_pages--;
503 	h->free_huge_pages_node[nid]--;
504 	return page;
505 }
506 
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
509 {
510 	if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 		return GFP_HIGHUSER_MOVABLE;
512 	else
513 		return GFP_HIGHUSER;
514 }
515 
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517 				struct vm_area_struct *vma,
518 				unsigned long address, int avoid_reserve,
519 				long chg)
520 {
521 	struct page *page = NULL;
522 	struct mempolicy *mpol;
523 	nodemask_t *nodemask;
524 	struct zonelist *zonelist;
525 	struct zone *zone;
526 	struct zoneref *z;
527 	unsigned int cpuset_mems_cookie;
528 
529 	/*
530 	 * A child process with MAP_PRIVATE mappings created by their parent
531 	 * have no page reserves. This check ensures that reservations are
532 	 * not "stolen". The child may still get SIGKILLed
533 	 */
534 	if (!vma_has_reserves(vma, chg) &&
535 			h->free_huge_pages - h->resv_huge_pages == 0)
536 		goto err;
537 
538 	/* If reserves cannot be used, ensure enough pages are in the pool */
539 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540 		goto err;
541 
542 retry_cpuset:
543 	cpuset_mems_cookie = get_mems_allowed();
544 	zonelist = huge_zonelist(vma, address,
545 					htlb_alloc_mask(h), &mpol, &nodemask);
546 
547 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 						MAX_NR_ZONES - 1, nodemask) {
549 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
551 			if (page) {
552 				if (avoid_reserve)
553 					break;
554 				if (!vma_has_reserves(vma, chg))
555 					break;
556 
557 				SetPagePrivate(page);
558 				h->resv_huge_pages--;
559 				break;
560 			}
561 		}
562 	}
563 
564 	mpol_cond_put(mpol);
565 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566 		goto retry_cpuset;
567 	return page;
568 
569 err:
570 	return NULL;
571 }
572 
573 static void update_and_free_page(struct hstate *h, struct page *page)
574 {
575 	int i;
576 
577 	VM_BUG_ON(h->order >= MAX_ORDER);
578 
579 	h->nr_huge_pages--;
580 	h->nr_huge_pages_node[page_to_nid(page)]--;
581 	for (i = 0; i < pages_per_huge_page(h); i++) {
582 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 				1 << PG_referenced | 1 << PG_dirty |
584 				1 << PG_active | 1 << PG_reserved |
585 				1 << PG_private | 1 << PG_writeback);
586 	}
587 	VM_BUG_ON(hugetlb_cgroup_from_page(page));
588 	set_compound_page_dtor(page, NULL);
589 	set_page_refcounted(page);
590 	arch_release_hugepage(page);
591 	__free_pages(page, huge_page_order(h));
592 }
593 
594 struct hstate *size_to_hstate(unsigned long size)
595 {
596 	struct hstate *h;
597 
598 	for_each_hstate(h) {
599 		if (huge_page_size(h) == size)
600 			return h;
601 	}
602 	return NULL;
603 }
604 
605 static void free_huge_page(struct page *page)
606 {
607 	/*
608 	 * Can't pass hstate in here because it is called from the
609 	 * compound page destructor.
610 	 */
611 	struct hstate *h = page_hstate(page);
612 	int nid = page_to_nid(page);
613 	struct hugepage_subpool *spool =
614 		(struct hugepage_subpool *)page_private(page);
615 	bool restore_reserve;
616 
617 	set_page_private(page, 0);
618 	page->mapping = NULL;
619 	BUG_ON(page_count(page));
620 	BUG_ON(page_mapcount(page));
621 	restore_reserve = PagePrivate(page);
622 	ClearPagePrivate(page);
623 
624 	spin_lock(&hugetlb_lock);
625 	hugetlb_cgroup_uncharge_page(hstate_index(h),
626 				     pages_per_huge_page(h), page);
627 	if (restore_reserve)
628 		h->resv_huge_pages++;
629 
630 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 		/* remove the page from active list */
632 		list_del(&page->lru);
633 		update_and_free_page(h, page);
634 		h->surplus_huge_pages--;
635 		h->surplus_huge_pages_node[nid]--;
636 	} else {
637 		arch_clear_hugepage_flags(page);
638 		enqueue_huge_page(h, page);
639 	}
640 	spin_unlock(&hugetlb_lock);
641 	hugepage_subpool_put_pages(spool, 1);
642 }
643 
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646 	INIT_LIST_HEAD(&page->lru);
647 	set_compound_page_dtor(page, free_huge_page);
648 	spin_lock(&hugetlb_lock);
649 	set_hugetlb_cgroup(page, NULL);
650 	h->nr_huge_pages++;
651 	h->nr_huge_pages_node[nid]++;
652 	spin_unlock(&hugetlb_lock);
653 	put_page(page); /* free it into the hugepage allocator */
654 }
655 
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657 {
658 	int i;
659 	int nr_pages = 1 << order;
660 	struct page *p = page + 1;
661 
662 	/* we rely on prep_new_huge_page to set the destructor */
663 	set_compound_order(page, order);
664 	__SetPageHead(page);
665 	__ClearPageReserved(page);
666 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667 		__SetPageTail(p);
668 		/*
669 		 * For gigantic hugepages allocated through bootmem at
670 		 * boot, it's safer to be consistent with the not-gigantic
671 		 * hugepages and clear the PG_reserved bit from all tail pages
672 		 * too.  Otherwse drivers using get_user_pages() to access tail
673 		 * pages may get the reference counting wrong if they see
674 		 * PG_reserved set on a tail page (despite the head page not
675 		 * having PG_reserved set).  Enforcing this consistency between
676 		 * head and tail pages allows drivers to optimize away a check
677 		 * on the head page when they need know if put_page() is needed
678 		 * after get_user_pages().
679 		 */
680 		__ClearPageReserved(p);
681 		set_page_count(p, 0);
682 		p->first_page = page;
683 	}
684 }
685 
686 /*
687  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688  * transparent huge pages.  See the PageTransHuge() documentation for more
689  * details.
690  */
691 int PageHuge(struct page *page)
692 {
693 	compound_page_dtor *dtor;
694 
695 	if (!PageCompound(page))
696 		return 0;
697 
698 	page = compound_head(page);
699 	dtor = get_compound_page_dtor(page);
700 
701 	return dtor == free_huge_page;
702 }
703 EXPORT_SYMBOL_GPL(PageHuge);
704 
705 /*
706  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
707  * normal or transparent huge pages.
708  */
709 int PageHeadHuge(struct page *page_head)
710 {
711 	compound_page_dtor *dtor;
712 
713 	if (!PageHead(page_head))
714 		return 0;
715 
716 	dtor = get_compound_page_dtor(page_head);
717 
718 	return dtor == free_huge_page;
719 }
720 EXPORT_SYMBOL_GPL(PageHeadHuge);
721 
722 pgoff_t __basepage_index(struct page *page)
723 {
724 	struct page *page_head = compound_head(page);
725 	pgoff_t index = page_index(page_head);
726 	unsigned long compound_idx;
727 
728 	if (!PageHuge(page_head))
729 		return page_index(page);
730 
731 	if (compound_order(page_head) >= MAX_ORDER)
732 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
733 	else
734 		compound_idx = page - page_head;
735 
736 	return (index << compound_order(page_head)) + compound_idx;
737 }
738 
739 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
740 {
741 	struct page *page;
742 
743 	if (h->order >= MAX_ORDER)
744 		return NULL;
745 
746 	page = alloc_pages_exact_node(nid,
747 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
748 						__GFP_REPEAT|__GFP_NOWARN,
749 		huge_page_order(h));
750 	if (page) {
751 		if (arch_prepare_hugepage(page)) {
752 			__free_pages(page, huge_page_order(h));
753 			return NULL;
754 		}
755 		prep_new_huge_page(h, page, nid);
756 	}
757 
758 	return page;
759 }
760 
761 /*
762  * common helper functions for hstate_next_node_to_{alloc|free}.
763  * We may have allocated or freed a huge page based on a different
764  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
765  * be outside of *nodes_allowed.  Ensure that we use an allowed
766  * node for alloc or free.
767  */
768 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
769 {
770 	nid = next_node(nid, *nodes_allowed);
771 	if (nid == MAX_NUMNODES)
772 		nid = first_node(*nodes_allowed);
773 	VM_BUG_ON(nid >= MAX_NUMNODES);
774 
775 	return nid;
776 }
777 
778 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
779 {
780 	if (!node_isset(nid, *nodes_allowed))
781 		nid = next_node_allowed(nid, nodes_allowed);
782 	return nid;
783 }
784 
785 /*
786  * returns the previously saved node ["this node"] from which to
787  * allocate a persistent huge page for the pool and advance the
788  * next node from which to allocate, handling wrap at end of node
789  * mask.
790  */
791 static int hstate_next_node_to_alloc(struct hstate *h,
792 					nodemask_t *nodes_allowed)
793 {
794 	int nid;
795 
796 	VM_BUG_ON(!nodes_allowed);
797 
798 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
799 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
800 
801 	return nid;
802 }
803 
804 /*
805  * helper for free_pool_huge_page() - return the previously saved
806  * node ["this node"] from which to free a huge page.  Advance the
807  * next node id whether or not we find a free huge page to free so
808  * that the next attempt to free addresses the next node.
809  */
810 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
811 {
812 	int nid;
813 
814 	VM_BUG_ON(!nodes_allowed);
815 
816 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
817 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
818 
819 	return nid;
820 }
821 
822 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
823 	for (nr_nodes = nodes_weight(*mask);				\
824 		nr_nodes > 0 &&						\
825 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
826 		nr_nodes--)
827 
828 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
829 	for (nr_nodes = nodes_weight(*mask);				\
830 		nr_nodes > 0 &&						\
831 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
832 		nr_nodes--)
833 
834 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
835 {
836 	struct page *page;
837 	int nr_nodes, node;
838 	int ret = 0;
839 
840 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
841 		page = alloc_fresh_huge_page_node(h, node);
842 		if (page) {
843 			ret = 1;
844 			break;
845 		}
846 	}
847 
848 	if (ret)
849 		count_vm_event(HTLB_BUDDY_PGALLOC);
850 	else
851 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
852 
853 	return ret;
854 }
855 
856 /*
857  * Free huge page from pool from next node to free.
858  * Attempt to keep persistent huge pages more or less
859  * balanced over allowed nodes.
860  * Called with hugetlb_lock locked.
861  */
862 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
863 							 bool acct_surplus)
864 {
865 	int nr_nodes, node;
866 	int ret = 0;
867 
868 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
869 		/*
870 		 * If we're returning unused surplus pages, only examine
871 		 * nodes with surplus pages.
872 		 */
873 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
874 		    !list_empty(&h->hugepage_freelists[node])) {
875 			struct page *page =
876 				list_entry(h->hugepage_freelists[node].next,
877 					  struct page, lru);
878 			list_del(&page->lru);
879 			h->free_huge_pages--;
880 			h->free_huge_pages_node[node]--;
881 			if (acct_surplus) {
882 				h->surplus_huge_pages--;
883 				h->surplus_huge_pages_node[node]--;
884 			}
885 			update_and_free_page(h, page);
886 			ret = 1;
887 			break;
888 		}
889 	}
890 
891 	return ret;
892 }
893 
894 /*
895  * Dissolve a given free hugepage into free buddy pages. This function does
896  * nothing for in-use (including surplus) hugepages.
897  */
898 static void dissolve_free_huge_page(struct page *page)
899 {
900 	spin_lock(&hugetlb_lock);
901 	if (PageHuge(page) && !page_count(page)) {
902 		struct hstate *h = page_hstate(page);
903 		int nid = page_to_nid(page);
904 		list_del(&page->lru);
905 		h->free_huge_pages--;
906 		h->free_huge_pages_node[nid]--;
907 		update_and_free_page(h, page);
908 	}
909 	spin_unlock(&hugetlb_lock);
910 }
911 
912 /*
913  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
914  * make specified memory blocks removable from the system.
915  * Note that start_pfn should aligned with (minimum) hugepage size.
916  */
917 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
918 {
919 	unsigned int order = 8 * sizeof(void *);
920 	unsigned long pfn;
921 	struct hstate *h;
922 
923 	/* Set scan step to minimum hugepage size */
924 	for_each_hstate(h)
925 		if (order > huge_page_order(h))
926 			order = huge_page_order(h);
927 	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
928 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
929 		dissolve_free_huge_page(pfn_to_page(pfn));
930 }
931 
932 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
933 {
934 	struct page *page;
935 	unsigned int r_nid;
936 
937 	if (h->order >= MAX_ORDER)
938 		return NULL;
939 
940 	/*
941 	 * Assume we will successfully allocate the surplus page to
942 	 * prevent racing processes from causing the surplus to exceed
943 	 * overcommit
944 	 *
945 	 * This however introduces a different race, where a process B
946 	 * tries to grow the static hugepage pool while alloc_pages() is
947 	 * called by process A. B will only examine the per-node
948 	 * counters in determining if surplus huge pages can be
949 	 * converted to normal huge pages in adjust_pool_surplus(). A
950 	 * won't be able to increment the per-node counter, until the
951 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
952 	 * no more huge pages can be converted from surplus to normal
953 	 * state (and doesn't try to convert again). Thus, we have a
954 	 * case where a surplus huge page exists, the pool is grown, and
955 	 * the surplus huge page still exists after, even though it
956 	 * should just have been converted to a normal huge page. This
957 	 * does not leak memory, though, as the hugepage will be freed
958 	 * once it is out of use. It also does not allow the counters to
959 	 * go out of whack in adjust_pool_surplus() as we don't modify
960 	 * the node values until we've gotten the hugepage and only the
961 	 * per-node value is checked there.
962 	 */
963 	spin_lock(&hugetlb_lock);
964 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
965 		spin_unlock(&hugetlb_lock);
966 		return NULL;
967 	} else {
968 		h->nr_huge_pages++;
969 		h->surplus_huge_pages++;
970 	}
971 	spin_unlock(&hugetlb_lock);
972 
973 	if (nid == NUMA_NO_NODE)
974 		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
975 				   __GFP_REPEAT|__GFP_NOWARN,
976 				   huge_page_order(h));
977 	else
978 		page = alloc_pages_exact_node(nid,
979 			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
980 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
981 
982 	if (page && arch_prepare_hugepage(page)) {
983 		__free_pages(page, huge_page_order(h));
984 		page = NULL;
985 	}
986 
987 	spin_lock(&hugetlb_lock);
988 	if (page) {
989 		INIT_LIST_HEAD(&page->lru);
990 		r_nid = page_to_nid(page);
991 		set_compound_page_dtor(page, free_huge_page);
992 		set_hugetlb_cgroup(page, NULL);
993 		/*
994 		 * We incremented the global counters already
995 		 */
996 		h->nr_huge_pages_node[r_nid]++;
997 		h->surplus_huge_pages_node[r_nid]++;
998 		__count_vm_event(HTLB_BUDDY_PGALLOC);
999 	} else {
1000 		h->nr_huge_pages--;
1001 		h->surplus_huge_pages--;
1002 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1003 	}
1004 	spin_unlock(&hugetlb_lock);
1005 
1006 	return page;
1007 }
1008 
1009 /*
1010  * This allocation function is useful in the context where vma is irrelevant.
1011  * E.g. soft-offlining uses this function because it only cares physical
1012  * address of error page.
1013  */
1014 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1015 {
1016 	struct page *page = NULL;
1017 
1018 	spin_lock(&hugetlb_lock);
1019 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1020 		page = dequeue_huge_page_node(h, nid);
1021 	spin_unlock(&hugetlb_lock);
1022 
1023 	if (!page)
1024 		page = alloc_buddy_huge_page(h, nid);
1025 
1026 	return page;
1027 }
1028 
1029 /*
1030  * Increase the hugetlb pool such that it can accommodate a reservation
1031  * of size 'delta'.
1032  */
1033 static int gather_surplus_pages(struct hstate *h, int delta)
1034 {
1035 	struct list_head surplus_list;
1036 	struct page *page, *tmp;
1037 	int ret, i;
1038 	int needed, allocated;
1039 	bool alloc_ok = true;
1040 
1041 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1042 	if (needed <= 0) {
1043 		h->resv_huge_pages += delta;
1044 		return 0;
1045 	}
1046 
1047 	allocated = 0;
1048 	INIT_LIST_HEAD(&surplus_list);
1049 
1050 	ret = -ENOMEM;
1051 retry:
1052 	spin_unlock(&hugetlb_lock);
1053 	for (i = 0; i < needed; i++) {
1054 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1055 		if (!page) {
1056 			alloc_ok = false;
1057 			break;
1058 		}
1059 		list_add(&page->lru, &surplus_list);
1060 	}
1061 	allocated += i;
1062 
1063 	/*
1064 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1065 	 * because either resv_huge_pages or free_huge_pages may have changed.
1066 	 */
1067 	spin_lock(&hugetlb_lock);
1068 	needed = (h->resv_huge_pages + delta) -
1069 			(h->free_huge_pages + allocated);
1070 	if (needed > 0) {
1071 		if (alloc_ok)
1072 			goto retry;
1073 		/*
1074 		 * We were not able to allocate enough pages to
1075 		 * satisfy the entire reservation so we free what
1076 		 * we've allocated so far.
1077 		 */
1078 		goto free;
1079 	}
1080 	/*
1081 	 * The surplus_list now contains _at_least_ the number of extra pages
1082 	 * needed to accommodate the reservation.  Add the appropriate number
1083 	 * of pages to the hugetlb pool and free the extras back to the buddy
1084 	 * allocator.  Commit the entire reservation here to prevent another
1085 	 * process from stealing the pages as they are added to the pool but
1086 	 * before they are reserved.
1087 	 */
1088 	needed += allocated;
1089 	h->resv_huge_pages += delta;
1090 	ret = 0;
1091 
1092 	/* Free the needed pages to the hugetlb pool */
1093 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1094 		if ((--needed) < 0)
1095 			break;
1096 		/*
1097 		 * This page is now managed by the hugetlb allocator and has
1098 		 * no users -- drop the buddy allocator's reference.
1099 		 */
1100 		put_page_testzero(page);
1101 		VM_BUG_ON(page_count(page));
1102 		enqueue_huge_page(h, page);
1103 	}
1104 free:
1105 	spin_unlock(&hugetlb_lock);
1106 
1107 	/* Free unnecessary surplus pages to the buddy allocator */
1108 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1109 		put_page(page);
1110 	spin_lock(&hugetlb_lock);
1111 
1112 	return ret;
1113 }
1114 
1115 /*
1116  * When releasing a hugetlb pool reservation, any surplus pages that were
1117  * allocated to satisfy the reservation must be explicitly freed if they were
1118  * never used.
1119  * Called with hugetlb_lock held.
1120  */
1121 static void return_unused_surplus_pages(struct hstate *h,
1122 					unsigned long unused_resv_pages)
1123 {
1124 	unsigned long nr_pages;
1125 
1126 	/* Uncommit the reservation */
1127 	h->resv_huge_pages -= unused_resv_pages;
1128 
1129 	/* Cannot return gigantic pages currently */
1130 	if (h->order >= MAX_ORDER)
1131 		return;
1132 
1133 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1134 
1135 	/*
1136 	 * We want to release as many surplus pages as possible, spread
1137 	 * evenly across all nodes with memory. Iterate across these nodes
1138 	 * until we can no longer free unreserved surplus pages. This occurs
1139 	 * when the nodes with surplus pages have no free pages.
1140 	 * free_pool_huge_page() will balance the the freed pages across the
1141 	 * on-line nodes with memory and will handle the hstate accounting.
1142 	 */
1143 	while (nr_pages--) {
1144 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1145 			break;
1146 	}
1147 }
1148 
1149 /*
1150  * Determine if the huge page at addr within the vma has an associated
1151  * reservation.  Where it does not we will need to logically increase
1152  * reservation and actually increase subpool usage before an allocation
1153  * can occur.  Where any new reservation would be required the
1154  * reservation change is prepared, but not committed.  Once the page
1155  * has been allocated from the subpool and instantiated the change should
1156  * be committed via vma_commit_reservation.  No action is required on
1157  * failure.
1158  */
1159 static long vma_needs_reservation(struct hstate *h,
1160 			struct vm_area_struct *vma, unsigned long addr)
1161 {
1162 	struct address_space *mapping = vma->vm_file->f_mapping;
1163 	struct inode *inode = mapping->host;
1164 
1165 	if (vma->vm_flags & VM_MAYSHARE) {
1166 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167 		return region_chg(&inode->i_mapping->private_list,
1168 							idx, idx + 1);
1169 
1170 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1171 		return 1;
1172 
1173 	} else  {
1174 		long err;
1175 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1176 		struct resv_map *resv = vma_resv_map(vma);
1177 
1178 		err = region_chg(&resv->regions, idx, idx + 1);
1179 		if (err < 0)
1180 			return err;
1181 		return 0;
1182 	}
1183 }
1184 static void vma_commit_reservation(struct hstate *h,
1185 			struct vm_area_struct *vma, unsigned long addr)
1186 {
1187 	struct address_space *mapping = vma->vm_file->f_mapping;
1188 	struct inode *inode = mapping->host;
1189 
1190 	if (vma->vm_flags & VM_MAYSHARE) {
1191 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1192 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1193 
1194 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1195 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1196 		struct resv_map *resv = vma_resv_map(vma);
1197 
1198 		/* Mark this page used in the map. */
1199 		region_add(&resv->regions, idx, idx + 1);
1200 	}
1201 }
1202 
1203 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1204 				    unsigned long addr, int avoid_reserve)
1205 {
1206 	struct hugepage_subpool *spool = subpool_vma(vma);
1207 	struct hstate *h = hstate_vma(vma);
1208 	struct page *page;
1209 	long chg;
1210 	int ret, idx;
1211 	struct hugetlb_cgroup *h_cg;
1212 
1213 	idx = hstate_index(h);
1214 	/*
1215 	 * Processes that did not create the mapping will have no
1216 	 * reserves and will not have accounted against subpool
1217 	 * limit. Check that the subpool limit can be made before
1218 	 * satisfying the allocation MAP_NORESERVE mappings may also
1219 	 * need pages and subpool limit allocated allocated if no reserve
1220 	 * mapping overlaps.
1221 	 */
1222 	chg = vma_needs_reservation(h, vma, addr);
1223 	if (chg < 0)
1224 		return ERR_PTR(-ENOMEM);
1225 	if (chg || avoid_reserve)
1226 		if (hugepage_subpool_get_pages(spool, 1))
1227 			return ERR_PTR(-ENOSPC);
1228 
1229 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1230 	if (ret) {
1231 		if (chg || avoid_reserve)
1232 			hugepage_subpool_put_pages(spool, 1);
1233 		return ERR_PTR(-ENOSPC);
1234 	}
1235 	spin_lock(&hugetlb_lock);
1236 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1237 	if (!page) {
1238 		spin_unlock(&hugetlb_lock);
1239 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1240 		if (!page) {
1241 			hugetlb_cgroup_uncharge_cgroup(idx,
1242 						       pages_per_huge_page(h),
1243 						       h_cg);
1244 			if (chg || avoid_reserve)
1245 				hugepage_subpool_put_pages(spool, 1);
1246 			return ERR_PTR(-ENOSPC);
1247 		}
1248 		spin_lock(&hugetlb_lock);
1249 		list_move(&page->lru, &h->hugepage_activelist);
1250 		/* Fall through */
1251 	}
1252 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1253 	spin_unlock(&hugetlb_lock);
1254 
1255 	set_page_private(page, (unsigned long)spool);
1256 
1257 	vma_commit_reservation(h, vma, addr);
1258 	return page;
1259 }
1260 
1261 /*
1262  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1263  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1264  * where no ERR_VALUE is expected to be returned.
1265  */
1266 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1267 				unsigned long addr, int avoid_reserve)
1268 {
1269 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1270 	if (IS_ERR(page))
1271 		page = NULL;
1272 	return page;
1273 }
1274 
1275 int __weak alloc_bootmem_huge_page(struct hstate *h)
1276 {
1277 	struct huge_bootmem_page *m;
1278 	int nr_nodes, node;
1279 
1280 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1281 		void *addr;
1282 
1283 		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1284 				huge_page_size(h), huge_page_size(h), 0);
1285 
1286 		if (addr) {
1287 			/*
1288 			 * Use the beginning of the huge page to store the
1289 			 * huge_bootmem_page struct (until gather_bootmem
1290 			 * puts them into the mem_map).
1291 			 */
1292 			m = addr;
1293 			goto found;
1294 		}
1295 	}
1296 	return 0;
1297 
1298 found:
1299 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1300 	/* Put them into a private list first because mem_map is not up yet */
1301 	list_add(&m->list, &huge_boot_pages);
1302 	m->hstate = h;
1303 	return 1;
1304 }
1305 
1306 static void prep_compound_huge_page(struct page *page, int order)
1307 {
1308 	if (unlikely(order > (MAX_ORDER - 1)))
1309 		prep_compound_gigantic_page(page, order);
1310 	else
1311 		prep_compound_page(page, order);
1312 }
1313 
1314 /* Put bootmem huge pages into the standard lists after mem_map is up */
1315 static void __init gather_bootmem_prealloc(void)
1316 {
1317 	struct huge_bootmem_page *m;
1318 
1319 	list_for_each_entry(m, &huge_boot_pages, list) {
1320 		struct hstate *h = m->hstate;
1321 		struct page *page;
1322 
1323 #ifdef CONFIG_HIGHMEM
1324 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1325 		free_bootmem_late((unsigned long)m,
1326 				  sizeof(struct huge_bootmem_page));
1327 #else
1328 		page = virt_to_page(m);
1329 #endif
1330 		WARN_ON(page_count(page) != 1);
1331 		prep_compound_huge_page(page, h->order);
1332 		WARN_ON(PageReserved(page));
1333 		prep_new_huge_page(h, page, page_to_nid(page));
1334 		/*
1335 		 * If we had gigantic hugepages allocated at boot time, we need
1336 		 * to restore the 'stolen' pages to totalram_pages in order to
1337 		 * fix confusing memory reports from free(1) and another
1338 		 * side-effects, like CommitLimit going negative.
1339 		 */
1340 		if (h->order > (MAX_ORDER - 1))
1341 			adjust_managed_page_count(page, 1 << h->order);
1342 	}
1343 }
1344 
1345 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1346 {
1347 	unsigned long i;
1348 
1349 	for (i = 0; i < h->max_huge_pages; ++i) {
1350 		if (h->order >= MAX_ORDER) {
1351 			if (!alloc_bootmem_huge_page(h))
1352 				break;
1353 		} else if (!alloc_fresh_huge_page(h,
1354 					 &node_states[N_MEMORY]))
1355 			break;
1356 	}
1357 	h->max_huge_pages = i;
1358 }
1359 
1360 static void __init hugetlb_init_hstates(void)
1361 {
1362 	struct hstate *h;
1363 
1364 	for_each_hstate(h) {
1365 		/* oversize hugepages were init'ed in early boot */
1366 		if (h->order < MAX_ORDER)
1367 			hugetlb_hstate_alloc_pages(h);
1368 	}
1369 }
1370 
1371 static char * __init memfmt(char *buf, unsigned long n)
1372 {
1373 	if (n >= (1UL << 30))
1374 		sprintf(buf, "%lu GB", n >> 30);
1375 	else if (n >= (1UL << 20))
1376 		sprintf(buf, "%lu MB", n >> 20);
1377 	else
1378 		sprintf(buf, "%lu KB", n >> 10);
1379 	return buf;
1380 }
1381 
1382 static void __init report_hugepages(void)
1383 {
1384 	struct hstate *h;
1385 
1386 	for_each_hstate(h) {
1387 		char buf[32];
1388 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1389 			memfmt(buf, huge_page_size(h)),
1390 			h->free_huge_pages);
1391 	}
1392 }
1393 
1394 #ifdef CONFIG_HIGHMEM
1395 static void try_to_free_low(struct hstate *h, unsigned long count,
1396 						nodemask_t *nodes_allowed)
1397 {
1398 	int i;
1399 
1400 	if (h->order >= MAX_ORDER)
1401 		return;
1402 
1403 	for_each_node_mask(i, *nodes_allowed) {
1404 		struct page *page, *next;
1405 		struct list_head *freel = &h->hugepage_freelists[i];
1406 		list_for_each_entry_safe(page, next, freel, lru) {
1407 			if (count >= h->nr_huge_pages)
1408 				return;
1409 			if (PageHighMem(page))
1410 				continue;
1411 			list_del(&page->lru);
1412 			update_and_free_page(h, page);
1413 			h->free_huge_pages--;
1414 			h->free_huge_pages_node[page_to_nid(page)]--;
1415 		}
1416 	}
1417 }
1418 #else
1419 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1420 						nodemask_t *nodes_allowed)
1421 {
1422 }
1423 #endif
1424 
1425 /*
1426  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1427  * balanced by operating on them in a round-robin fashion.
1428  * Returns 1 if an adjustment was made.
1429  */
1430 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1431 				int delta)
1432 {
1433 	int nr_nodes, node;
1434 
1435 	VM_BUG_ON(delta != -1 && delta != 1);
1436 
1437 	if (delta < 0) {
1438 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1439 			if (h->surplus_huge_pages_node[node])
1440 				goto found;
1441 		}
1442 	} else {
1443 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1444 			if (h->surplus_huge_pages_node[node] <
1445 					h->nr_huge_pages_node[node])
1446 				goto found;
1447 		}
1448 	}
1449 	return 0;
1450 
1451 found:
1452 	h->surplus_huge_pages += delta;
1453 	h->surplus_huge_pages_node[node] += delta;
1454 	return 1;
1455 }
1456 
1457 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1458 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1459 						nodemask_t *nodes_allowed)
1460 {
1461 	unsigned long min_count, ret;
1462 
1463 	if (h->order >= MAX_ORDER)
1464 		return h->max_huge_pages;
1465 
1466 	/*
1467 	 * Increase the pool size
1468 	 * First take pages out of surplus state.  Then make up the
1469 	 * remaining difference by allocating fresh huge pages.
1470 	 *
1471 	 * We might race with alloc_buddy_huge_page() here and be unable
1472 	 * to convert a surplus huge page to a normal huge page. That is
1473 	 * not critical, though, it just means the overall size of the
1474 	 * pool might be one hugepage larger than it needs to be, but
1475 	 * within all the constraints specified by the sysctls.
1476 	 */
1477 	spin_lock(&hugetlb_lock);
1478 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1479 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1480 			break;
1481 	}
1482 
1483 	while (count > persistent_huge_pages(h)) {
1484 		/*
1485 		 * If this allocation races such that we no longer need the
1486 		 * page, free_huge_page will handle it by freeing the page
1487 		 * and reducing the surplus.
1488 		 */
1489 		spin_unlock(&hugetlb_lock);
1490 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1491 		spin_lock(&hugetlb_lock);
1492 		if (!ret)
1493 			goto out;
1494 
1495 		/* Bail for signals. Probably ctrl-c from user */
1496 		if (signal_pending(current))
1497 			goto out;
1498 	}
1499 
1500 	/*
1501 	 * Decrease the pool size
1502 	 * First return free pages to the buddy allocator (being careful
1503 	 * to keep enough around to satisfy reservations).  Then place
1504 	 * pages into surplus state as needed so the pool will shrink
1505 	 * to the desired size as pages become free.
1506 	 *
1507 	 * By placing pages into the surplus state independent of the
1508 	 * overcommit value, we are allowing the surplus pool size to
1509 	 * exceed overcommit. There are few sane options here. Since
1510 	 * alloc_buddy_huge_page() is checking the global counter,
1511 	 * though, we'll note that we're not allowed to exceed surplus
1512 	 * and won't grow the pool anywhere else. Not until one of the
1513 	 * sysctls are changed, or the surplus pages go out of use.
1514 	 */
1515 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1516 	min_count = max(count, min_count);
1517 	try_to_free_low(h, min_count, nodes_allowed);
1518 	while (min_count < persistent_huge_pages(h)) {
1519 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1520 			break;
1521 	}
1522 	while (count < persistent_huge_pages(h)) {
1523 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1524 			break;
1525 	}
1526 out:
1527 	ret = persistent_huge_pages(h);
1528 	spin_unlock(&hugetlb_lock);
1529 	return ret;
1530 }
1531 
1532 #define HSTATE_ATTR_RO(_name) \
1533 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1534 
1535 #define HSTATE_ATTR(_name) \
1536 	static struct kobj_attribute _name##_attr = \
1537 		__ATTR(_name, 0644, _name##_show, _name##_store)
1538 
1539 static struct kobject *hugepages_kobj;
1540 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1541 
1542 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1543 
1544 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1545 {
1546 	int i;
1547 
1548 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1549 		if (hstate_kobjs[i] == kobj) {
1550 			if (nidp)
1551 				*nidp = NUMA_NO_NODE;
1552 			return &hstates[i];
1553 		}
1554 
1555 	return kobj_to_node_hstate(kobj, nidp);
1556 }
1557 
1558 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1559 					struct kobj_attribute *attr, char *buf)
1560 {
1561 	struct hstate *h;
1562 	unsigned long nr_huge_pages;
1563 	int nid;
1564 
1565 	h = kobj_to_hstate(kobj, &nid);
1566 	if (nid == NUMA_NO_NODE)
1567 		nr_huge_pages = h->nr_huge_pages;
1568 	else
1569 		nr_huge_pages = h->nr_huge_pages_node[nid];
1570 
1571 	return sprintf(buf, "%lu\n", nr_huge_pages);
1572 }
1573 
1574 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1575 			struct kobject *kobj, struct kobj_attribute *attr,
1576 			const char *buf, size_t len)
1577 {
1578 	int err;
1579 	int nid;
1580 	unsigned long count;
1581 	struct hstate *h;
1582 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1583 
1584 	err = kstrtoul(buf, 10, &count);
1585 	if (err)
1586 		goto out;
1587 
1588 	h = kobj_to_hstate(kobj, &nid);
1589 	if (h->order >= MAX_ORDER) {
1590 		err = -EINVAL;
1591 		goto out;
1592 	}
1593 
1594 	if (nid == NUMA_NO_NODE) {
1595 		/*
1596 		 * global hstate attribute
1597 		 */
1598 		if (!(obey_mempolicy &&
1599 				init_nodemask_of_mempolicy(nodes_allowed))) {
1600 			NODEMASK_FREE(nodes_allowed);
1601 			nodes_allowed = &node_states[N_MEMORY];
1602 		}
1603 	} else if (nodes_allowed) {
1604 		/*
1605 		 * per node hstate attribute: adjust count to global,
1606 		 * but restrict alloc/free to the specified node.
1607 		 */
1608 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1609 		init_nodemask_of_node(nodes_allowed, nid);
1610 	} else
1611 		nodes_allowed = &node_states[N_MEMORY];
1612 
1613 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1614 
1615 	if (nodes_allowed != &node_states[N_MEMORY])
1616 		NODEMASK_FREE(nodes_allowed);
1617 
1618 	return len;
1619 out:
1620 	NODEMASK_FREE(nodes_allowed);
1621 	return err;
1622 }
1623 
1624 static ssize_t nr_hugepages_show(struct kobject *kobj,
1625 				       struct kobj_attribute *attr, char *buf)
1626 {
1627 	return nr_hugepages_show_common(kobj, attr, buf);
1628 }
1629 
1630 static ssize_t nr_hugepages_store(struct kobject *kobj,
1631 	       struct kobj_attribute *attr, const char *buf, size_t len)
1632 {
1633 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1634 }
1635 HSTATE_ATTR(nr_hugepages);
1636 
1637 #ifdef CONFIG_NUMA
1638 
1639 /*
1640  * hstate attribute for optionally mempolicy-based constraint on persistent
1641  * huge page alloc/free.
1642  */
1643 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1644 				       struct kobj_attribute *attr, char *buf)
1645 {
1646 	return nr_hugepages_show_common(kobj, attr, buf);
1647 }
1648 
1649 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1650 	       struct kobj_attribute *attr, const char *buf, size_t len)
1651 {
1652 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1653 }
1654 HSTATE_ATTR(nr_hugepages_mempolicy);
1655 #endif
1656 
1657 
1658 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1659 					struct kobj_attribute *attr, char *buf)
1660 {
1661 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1662 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1663 }
1664 
1665 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1666 		struct kobj_attribute *attr, const char *buf, size_t count)
1667 {
1668 	int err;
1669 	unsigned long input;
1670 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1671 
1672 	if (h->order >= MAX_ORDER)
1673 		return -EINVAL;
1674 
1675 	err = kstrtoul(buf, 10, &input);
1676 	if (err)
1677 		return err;
1678 
1679 	spin_lock(&hugetlb_lock);
1680 	h->nr_overcommit_huge_pages = input;
1681 	spin_unlock(&hugetlb_lock);
1682 
1683 	return count;
1684 }
1685 HSTATE_ATTR(nr_overcommit_hugepages);
1686 
1687 static ssize_t free_hugepages_show(struct kobject *kobj,
1688 					struct kobj_attribute *attr, char *buf)
1689 {
1690 	struct hstate *h;
1691 	unsigned long free_huge_pages;
1692 	int nid;
1693 
1694 	h = kobj_to_hstate(kobj, &nid);
1695 	if (nid == NUMA_NO_NODE)
1696 		free_huge_pages = h->free_huge_pages;
1697 	else
1698 		free_huge_pages = h->free_huge_pages_node[nid];
1699 
1700 	return sprintf(buf, "%lu\n", free_huge_pages);
1701 }
1702 HSTATE_ATTR_RO(free_hugepages);
1703 
1704 static ssize_t resv_hugepages_show(struct kobject *kobj,
1705 					struct kobj_attribute *attr, char *buf)
1706 {
1707 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1708 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1709 }
1710 HSTATE_ATTR_RO(resv_hugepages);
1711 
1712 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1713 					struct kobj_attribute *attr, char *buf)
1714 {
1715 	struct hstate *h;
1716 	unsigned long surplus_huge_pages;
1717 	int nid;
1718 
1719 	h = kobj_to_hstate(kobj, &nid);
1720 	if (nid == NUMA_NO_NODE)
1721 		surplus_huge_pages = h->surplus_huge_pages;
1722 	else
1723 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1724 
1725 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1726 }
1727 HSTATE_ATTR_RO(surplus_hugepages);
1728 
1729 static struct attribute *hstate_attrs[] = {
1730 	&nr_hugepages_attr.attr,
1731 	&nr_overcommit_hugepages_attr.attr,
1732 	&free_hugepages_attr.attr,
1733 	&resv_hugepages_attr.attr,
1734 	&surplus_hugepages_attr.attr,
1735 #ifdef CONFIG_NUMA
1736 	&nr_hugepages_mempolicy_attr.attr,
1737 #endif
1738 	NULL,
1739 };
1740 
1741 static struct attribute_group hstate_attr_group = {
1742 	.attrs = hstate_attrs,
1743 };
1744 
1745 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1746 				    struct kobject **hstate_kobjs,
1747 				    struct attribute_group *hstate_attr_group)
1748 {
1749 	int retval;
1750 	int hi = hstate_index(h);
1751 
1752 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1753 	if (!hstate_kobjs[hi])
1754 		return -ENOMEM;
1755 
1756 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1757 	if (retval)
1758 		kobject_put(hstate_kobjs[hi]);
1759 
1760 	return retval;
1761 }
1762 
1763 static void __init hugetlb_sysfs_init(void)
1764 {
1765 	struct hstate *h;
1766 	int err;
1767 
1768 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1769 	if (!hugepages_kobj)
1770 		return;
1771 
1772 	for_each_hstate(h) {
1773 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1774 					 hstate_kobjs, &hstate_attr_group);
1775 		if (err)
1776 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1777 	}
1778 }
1779 
1780 #ifdef CONFIG_NUMA
1781 
1782 /*
1783  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1784  * with node devices in node_devices[] using a parallel array.  The array
1785  * index of a node device or _hstate == node id.
1786  * This is here to avoid any static dependency of the node device driver, in
1787  * the base kernel, on the hugetlb module.
1788  */
1789 struct node_hstate {
1790 	struct kobject		*hugepages_kobj;
1791 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1792 };
1793 struct node_hstate node_hstates[MAX_NUMNODES];
1794 
1795 /*
1796  * A subset of global hstate attributes for node devices
1797  */
1798 static struct attribute *per_node_hstate_attrs[] = {
1799 	&nr_hugepages_attr.attr,
1800 	&free_hugepages_attr.attr,
1801 	&surplus_hugepages_attr.attr,
1802 	NULL,
1803 };
1804 
1805 static struct attribute_group per_node_hstate_attr_group = {
1806 	.attrs = per_node_hstate_attrs,
1807 };
1808 
1809 /*
1810  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1811  * Returns node id via non-NULL nidp.
1812  */
1813 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1814 {
1815 	int nid;
1816 
1817 	for (nid = 0; nid < nr_node_ids; nid++) {
1818 		struct node_hstate *nhs = &node_hstates[nid];
1819 		int i;
1820 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1821 			if (nhs->hstate_kobjs[i] == kobj) {
1822 				if (nidp)
1823 					*nidp = nid;
1824 				return &hstates[i];
1825 			}
1826 	}
1827 
1828 	BUG();
1829 	return NULL;
1830 }
1831 
1832 /*
1833  * Unregister hstate attributes from a single node device.
1834  * No-op if no hstate attributes attached.
1835  */
1836 static void hugetlb_unregister_node(struct node *node)
1837 {
1838 	struct hstate *h;
1839 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1840 
1841 	if (!nhs->hugepages_kobj)
1842 		return;		/* no hstate attributes */
1843 
1844 	for_each_hstate(h) {
1845 		int idx = hstate_index(h);
1846 		if (nhs->hstate_kobjs[idx]) {
1847 			kobject_put(nhs->hstate_kobjs[idx]);
1848 			nhs->hstate_kobjs[idx] = NULL;
1849 		}
1850 	}
1851 
1852 	kobject_put(nhs->hugepages_kobj);
1853 	nhs->hugepages_kobj = NULL;
1854 }
1855 
1856 /*
1857  * hugetlb module exit:  unregister hstate attributes from node devices
1858  * that have them.
1859  */
1860 static void hugetlb_unregister_all_nodes(void)
1861 {
1862 	int nid;
1863 
1864 	/*
1865 	 * disable node device registrations.
1866 	 */
1867 	register_hugetlbfs_with_node(NULL, NULL);
1868 
1869 	/*
1870 	 * remove hstate attributes from any nodes that have them.
1871 	 */
1872 	for (nid = 0; nid < nr_node_ids; nid++)
1873 		hugetlb_unregister_node(node_devices[nid]);
1874 }
1875 
1876 /*
1877  * Register hstate attributes for a single node device.
1878  * No-op if attributes already registered.
1879  */
1880 static void hugetlb_register_node(struct node *node)
1881 {
1882 	struct hstate *h;
1883 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1884 	int err;
1885 
1886 	if (nhs->hugepages_kobj)
1887 		return;		/* already allocated */
1888 
1889 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1890 							&node->dev.kobj);
1891 	if (!nhs->hugepages_kobj)
1892 		return;
1893 
1894 	for_each_hstate(h) {
1895 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1896 						nhs->hstate_kobjs,
1897 						&per_node_hstate_attr_group);
1898 		if (err) {
1899 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1900 				h->name, node->dev.id);
1901 			hugetlb_unregister_node(node);
1902 			break;
1903 		}
1904 	}
1905 }
1906 
1907 /*
1908  * hugetlb init time:  register hstate attributes for all registered node
1909  * devices of nodes that have memory.  All on-line nodes should have
1910  * registered their associated device by this time.
1911  */
1912 static void hugetlb_register_all_nodes(void)
1913 {
1914 	int nid;
1915 
1916 	for_each_node_state(nid, N_MEMORY) {
1917 		struct node *node = node_devices[nid];
1918 		if (node->dev.id == nid)
1919 			hugetlb_register_node(node);
1920 	}
1921 
1922 	/*
1923 	 * Let the node device driver know we're here so it can
1924 	 * [un]register hstate attributes on node hotplug.
1925 	 */
1926 	register_hugetlbfs_with_node(hugetlb_register_node,
1927 				     hugetlb_unregister_node);
1928 }
1929 #else	/* !CONFIG_NUMA */
1930 
1931 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1932 {
1933 	BUG();
1934 	if (nidp)
1935 		*nidp = -1;
1936 	return NULL;
1937 }
1938 
1939 static void hugetlb_unregister_all_nodes(void) { }
1940 
1941 static void hugetlb_register_all_nodes(void) { }
1942 
1943 #endif
1944 
1945 static void __exit hugetlb_exit(void)
1946 {
1947 	struct hstate *h;
1948 
1949 	hugetlb_unregister_all_nodes();
1950 
1951 	for_each_hstate(h) {
1952 		kobject_put(hstate_kobjs[hstate_index(h)]);
1953 	}
1954 
1955 	kobject_put(hugepages_kobj);
1956 }
1957 module_exit(hugetlb_exit);
1958 
1959 static int __init hugetlb_init(void)
1960 {
1961 	/* Some platform decide whether they support huge pages at boot
1962 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1963 	 * there is no such support
1964 	 */
1965 	if (HPAGE_SHIFT == 0)
1966 		return 0;
1967 
1968 	if (!size_to_hstate(default_hstate_size)) {
1969 		default_hstate_size = HPAGE_SIZE;
1970 		if (!size_to_hstate(default_hstate_size))
1971 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1972 	}
1973 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1974 	if (default_hstate_max_huge_pages)
1975 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1976 
1977 	hugetlb_init_hstates();
1978 	gather_bootmem_prealloc();
1979 	report_hugepages();
1980 
1981 	hugetlb_sysfs_init();
1982 	hugetlb_register_all_nodes();
1983 	hugetlb_cgroup_file_init();
1984 
1985 	return 0;
1986 }
1987 module_init(hugetlb_init);
1988 
1989 /* Should be called on processing a hugepagesz=... option */
1990 void __init hugetlb_add_hstate(unsigned order)
1991 {
1992 	struct hstate *h;
1993 	unsigned long i;
1994 
1995 	if (size_to_hstate(PAGE_SIZE << order)) {
1996 		pr_warning("hugepagesz= specified twice, ignoring\n");
1997 		return;
1998 	}
1999 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2000 	BUG_ON(order == 0);
2001 	h = &hstates[hugetlb_max_hstate++];
2002 	h->order = order;
2003 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2004 	h->nr_huge_pages = 0;
2005 	h->free_huge_pages = 0;
2006 	for (i = 0; i < MAX_NUMNODES; ++i)
2007 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2008 	INIT_LIST_HEAD(&h->hugepage_activelist);
2009 	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2010 	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2011 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2012 					huge_page_size(h)/1024);
2013 
2014 	parsed_hstate = h;
2015 }
2016 
2017 static int __init hugetlb_nrpages_setup(char *s)
2018 {
2019 	unsigned long *mhp;
2020 	static unsigned long *last_mhp;
2021 
2022 	/*
2023 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2024 	 * so this hugepages= parameter goes to the "default hstate".
2025 	 */
2026 	if (!hugetlb_max_hstate)
2027 		mhp = &default_hstate_max_huge_pages;
2028 	else
2029 		mhp = &parsed_hstate->max_huge_pages;
2030 
2031 	if (mhp == last_mhp) {
2032 		pr_warning("hugepages= specified twice without "
2033 			   "interleaving hugepagesz=, ignoring\n");
2034 		return 1;
2035 	}
2036 
2037 	if (sscanf(s, "%lu", mhp) <= 0)
2038 		*mhp = 0;
2039 
2040 	/*
2041 	 * Global state is always initialized later in hugetlb_init.
2042 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2043 	 * use the bootmem allocator.
2044 	 */
2045 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2046 		hugetlb_hstate_alloc_pages(parsed_hstate);
2047 
2048 	last_mhp = mhp;
2049 
2050 	return 1;
2051 }
2052 __setup("hugepages=", hugetlb_nrpages_setup);
2053 
2054 static int __init hugetlb_default_setup(char *s)
2055 {
2056 	default_hstate_size = memparse(s, &s);
2057 	return 1;
2058 }
2059 __setup("default_hugepagesz=", hugetlb_default_setup);
2060 
2061 static unsigned int cpuset_mems_nr(unsigned int *array)
2062 {
2063 	int node;
2064 	unsigned int nr = 0;
2065 
2066 	for_each_node_mask(node, cpuset_current_mems_allowed)
2067 		nr += array[node];
2068 
2069 	return nr;
2070 }
2071 
2072 #ifdef CONFIG_SYSCTL
2073 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2074 			 struct ctl_table *table, int write,
2075 			 void __user *buffer, size_t *length, loff_t *ppos)
2076 {
2077 	struct hstate *h = &default_hstate;
2078 	unsigned long tmp;
2079 	int ret;
2080 
2081 	tmp = h->max_huge_pages;
2082 
2083 	if (write && h->order >= MAX_ORDER)
2084 		return -EINVAL;
2085 
2086 	table->data = &tmp;
2087 	table->maxlen = sizeof(unsigned long);
2088 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2089 	if (ret)
2090 		goto out;
2091 
2092 	if (write) {
2093 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2094 						GFP_KERNEL | __GFP_NORETRY);
2095 		if (!(obey_mempolicy &&
2096 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2097 			NODEMASK_FREE(nodes_allowed);
2098 			nodes_allowed = &node_states[N_MEMORY];
2099 		}
2100 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2101 
2102 		if (nodes_allowed != &node_states[N_MEMORY])
2103 			NODEMASK_FREE(nodes_allowed);
2104 	}
2105 out:
2106 	return ret;
2107 }
2108 
2109 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2110 			  void __user *buffer, size_t *length, loff_t *ppos)
2111 {
2112 
2113 	return hugetlb_sysctl_handler_common(false, table, write,
2114 							buffer, length, ppos);
2115 }
2116 
2117 #ifdef CONFIG_NUMA
2118 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2119 			  void __user *buffer, size_t *length, loff_t *ppos)
2120 {
2121 	return hugetlb_sysctl_handler_common(true, table, write,
2122 							buffer, length, ppos);
2123 }
2124 #endif /* CONFIG_NUMA */
2125 
2126 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2127 			void __user *buffer,
2128 			size_t *length, loff_t *ppos)
2129 {
2130 	struct hstate *h = &default_hstate;
2131 	unsigned long tmp;
2132 	int ret;
2133 
2134 	tmp = h->nr_overcommit_huge_pages;
2135 
2136 	if (write && h->order >= MAX_ORDER)
2137 		return -EINVAL;
2138 
2139 	table->data = &tmp;
2140 	table->maxlen = sizeof(unsigned long);
2141 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2142 	if (ret)
2143 		goto out;
2144 
2145 	if (write) {
2146 		spin_lock(&hugetlb_lock);
2147 		h->nr_overcommit_huge_pages = tmp;
2148 		spin_unlock(&hugetlb_lock);
2149 	}
2150 out:
2151 	return ret;
2152 }
2153 
2154 #endif /* CONFIG_SYSCTL */
2155 
2156 void hugetlb_report_meminfo(struct seq_file *m)
2157 {
2158 	struct hstate *h = &default_hstate;
2159 	seq_printf(m,
2160 			"HugePages_Total:   %5lu\n"
2161 			"HugePages_Free:    %5lu\n"
2162 			"HugePages_Rsvd:    %5lu\n"
2163 			"HugePages_Surp:    %5lu\n"
2164 			"Hugepagesize:   %8lu kB\n",
2165 			h->nr_huge_pages,
2166 			h->free_huge_pages,
2167 			h->resv_huge_pages,
2168 			h->surplus_huge_pages,
2169 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2170 }
2171 
2172 int hugetlb_report_node_meminfo(int nid, char *buf)
2173 {
2174 	struct hstate *h = &default_hstate;
2175 	return sprintf(buf,
2176 		"Node %d HugePages_Total: %5u\n"
2177 		"Node %d HugePages_Free:  %5u\n"
2178 		"Node %d HugePages_Surp:  %5u\n",
2179 		nid, h->nr_huge_pages_node[nid],
2180 		nid, h->free_huge_pages_node[nid],
2181 		nid, h->surplus_huge_pages_node[nid]);
2182 }
2183 
2184 void hugetlb_show_meminfo(void)
2185 {
2186 	struct hstate *h;
2187 	int nid;
2188 
2189 	for_each_node_state(nid, N_MEMORY)
2190 		for_each_hstate(h)
2191 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2192 				nid,
2193 				h->nr_huge_pages_node[nid],
2194 				h->free_huge_pages_node[nid],
2195 				h->surplus_huge_pages_node[nid],
2196 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2197 }
2198 
2199 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2200 unsigned long hugetlb_total_pages(void)
2201 {
2202 	struct hstate *h;
2203 	unsigned long nr_total_pages = 0;
2204 
2205 	for_each_hstate(h)
2206 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2207 	return nr_total_pages;
2208 }
2209 
2210 static int hugetlb_acct_memory(struct hstate *h, long delta)
2211 {
2212 	int ret = -ENOMEM;
2213 
2214 	spin_lock(&hugetlb_lock);
2215 	/*
2216 	 * When cpuset is configured, it breaks the strict hugetlb page
2217 	 * reservation as the accounting is done on a global variable. Such
2218 	 * reservation is completely rubbish in the presence of cpuset because
2219 	 * the reservation is not checked against page availability for the
2220 	 * current cpuset. Application can still potentially OOM'ed by kernel
2221 	 * with lack of free htlb page in cpuset that the task is in.
2222 	 * Attempt to enforce strict accounting with cpuset is almost
2223 	 * impossible (or too ugly) because cpuset is too fluid that
2224 	 * task or memory node can be dynamically moved between cpusets.
2225 	 *
2226 	 * The change of semantics for shared hugetlb mapping with cpuset is
2227 	 * undesirable. However, in order to preserve some of the semantics,
2228 	 * we fall back to check against current free page availability as
2229 	 * a best attempt and hopefully to minimize the impact of changing
2230 	 * semantics that cpuset has.
2231 	 */
2232 	if (delta > 0) {
2233 		if (gather_surplus_pages(h, delta) < 0)
2234 			goto out;
2235 
2236 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2237 			return_unused_surplus_pages(h, delta);
2238 			goto out;
2239 		}
2240 	}
2241 
2242 	ret = 0;
2243 	if (delta < 0)
2244 		return_unused_surplus_pages(h, (unsigned long) -delta);
2245 
2246 out:
2247 	spin_unlock(&hugetlb_lock);
2248 	return ret;
2249 }
2250 
2251 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2252 {
2253 	struct resv_map *resv = vma_resv_map(vma);
2254 
2255 	/*
2256 	 * This new VMA should share its siblings reservation map if present.
2257 	 * The VMA will only ever have a valid reservation map pointer where
2258 	 * it is being copied for another still existing VMA.  As that VMA
2259 	 * has a reference to the reservation map it cannot disappear until
2260 	 * after this open call completes.  It is therefore safe to take a
2261 	 * new reference here without additional locking.
2262 	 */
2263 	if (resv)
2264 		kref_get(&resv->refs);
2265 }
2266 
2267 static void resv_map_put(struct vm_area_struct *vma)
2268 {
2269 	struct resv_map *resv = vma_resv_map(vma);
2270 
2271 	if (!resv)
2272 		return;
2273 	kref_put(&resv->refs, resv_map_release);
2274 }
2275 
2276 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2277 {
2278 	struct hstate *h = hstate_vma(vma);
2279 	struct resv_map *resv = vma_resv_map(vma);
2280 	struct hugepage_subpool *spool = subpool_vma(vma);
2281 	unsigned long reserve;
2282 	unsigned long start;
2283 	unsigned long end;
2284 
2285 	if (resv) {
2286 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2287 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2288 
2289 		reserve = (end - start) -
2290 			region_count(&resv->regions, start, end);
2291 
2292 		resv_map_put(vma);
2293 
2294 		if (reserve) {
2295 			hugetlb_acct_memory(h, -reserve);
2296 			hugepage_subpool_put_pages(spool, reserve);
2297 		}
2298 	}
2299 }
2300 
2301 /*
2302  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2303  * handle_mm_fault() to try to instantiate regular-sized pages in the
2304  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2305  * this far.
2306  */
2307 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2308 {
2309 	BUG();
2310 	return 0;
2311 }
2312 
2313 const struct vm_operations_struct hugetlb_vm_ops = {
2314 	.fault = hugetlb_vm_op_fault,
2315 	.open = hugetlb_vm_op_open,
2316 	.close = hugetlb_vm_op_close,
2317 };
2318 
2319 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2320 				int writable)
2321 {
2322 	pte_t entry;
2323 
2324 	if (writable) {
2325 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2326 					 vma->vm_page_prot)));
2327 	} else {
2328 		entry = huge_pte_wrprotect(mk_huge_pte(page,
2329 					   vma->vm_page_prot));
2330 	}
2331 	entry = pte_mkyoung(entry);
2332 	entry = pte_mkhuge(entry);
2333 	entry = arch_make_huge_pte(entry, vma, page, writable);
2334 
2335 	return entry;
2336 }
2337 
2338 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2339 				   unsigned long address, pte_t *ptep)
2340 {
2341 	pte_t entry;
2342 
2343 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2344 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2345 		update_mmu_cache(vma, address, ptep);
2346 }
2347 
2348 
2349 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2350 			    struct vm_area_struct *vma)
2351 {
2352 	pte_t *src_pte, *dst_pte, entry;
2353 	struct page *ptepage;
2354 	unsigned long addr;
2355 	int cow;
2356 	struct hstate *h = hstate_vma(vma);
2357 	unsigned long sz = huge_page_size(h);
2358 
2359 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2360 
2361 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2362 		spinlock_t *src_ptl, *dst_ptl;
2363 		src_pte = huge_pte_offset(src, addr);
2364 		if (!src_pte)
2365 			continue;
2366 		dst_pte = huge_pte_alloc(dst, addr, sz);
2367 		if (!dst_pte)
2368 			goto nomem;
2369 
2370 		/* If the pagetables are shared don't copy or take references */
2371 		if (dst_pte == src_pte)
2372 			continue;
2373 
2374 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2375 		src_ptl = huge_pte_lockptr(h, src, src_pte);
2376 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2377 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2378 			if (cow)
2379 				huge_ptep_set_wrprotect(src, addr, src_pte);
2380 			entry = huge_ptep_get(src_pte);
2381 			ptepage = pte_page(entry);
2382 			get_page(ptepage);
2383 			page_dup_rmap(ptepage);
2384 			set_huge_pte_at(dst, addr, dst_pte, entry);
2385 		}
2386 		spin_unlock(src_ptl);
2387 		spin_unlock(dst_ptl);
2388 	}
2389 	return 0;
2390 
2391 nomem:
2392 	return -ENOMEM;
2393 }
2394 
2395 static int is_hugetlb_entry_migration(pte_t pte)
2396 {
2397 	swp_entry_t swp;
2398 
2399 	if (huge_pte_none(pte) || pte_present(pte))
2400 		return 0;
2401 	swp = pte_to_swp_entry(pte);
2402 	if (non_swap_entry(swp) && is_migration_entry(swp))
2403 		return 1;
2404 	else
2405 		return 0;
2406 }
2407 
2408 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2409 {
2410 	swp_entry_t swp;
2411 
2412 	if (huge_pte_none(pte) || pte_present(pte))
2413 		return 0;
2414 	swp = pte_to_swp_entry(pte);
2415 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2416 		return 1;
2417 	else
2418 		return 0;
2419 }
2420 
2421 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2422 			    unsigned long start, unsigned long end,
2423 			    struct page *ref_page)
2424 {
2425 	int force_flush = 0;
2426 	struct mm_struct *mm = vma->vm_mm;
2427 	unsigned long address;
2428 	pte_t *ptep;
2429 	pte_t pte;
2430 	spinlock_t *ptl;
2431 	struct page *page;
2432 	struct hstate *h = hstate_vma(vma);
2433 	unsigned long sz = huge_page_size(h);
2434 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2435 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2436 
2437 	WARN_ON(!is_vm_hugetlb_page(vma));
2438 	BUG_ON(start & ~huge_page_mask(h));
2439 	BUG_ON(end & ~huge_page_mask(h));
2440 
2441 	tlb_start_vma(tlb, vma);
2442 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2443 again:
2444 	for (address = start; address < end; address += sz) {
2445 		ptep = huge_pte_offset(mm, address);
2446 		if (!ptep)
2447 			continue;
2448 
2449 		ptl = huge_pte_lock(h, mm, ptep);
2450 		if (huge_pmd_unshare(mm, &address, ptep))
2451 			goto unlock;
2452 
2453 		pte = huge_ptep_get(ptep);
2454 		if (huge_pte_none(pte))
2455 			goto unlock;
2456 
2457 		/*
2458 		 * HWPoisoned hugepage is already unmapped and dropped reference
2459 		 */
2460 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2461 			huge_pte_clear(mm, address, ptep);
2462 			goto unlock;
2463 		}
2464 
2465 		page = pte_page(pte);
2466 		/*
2467 		 * If a reference page is supplied, it is because a specific
2468 		 * page is being unmapped, not a range. Ensure the page we
2469 		 * are about to unmap is the actual page of interest.
2470 		 */
2471 		if (ref_page) {
2472 			if (page != ref_page)
2473 				goto unlock;
2474 
2475 			/*
2476 			 * Mark the VMA as having unmapped its page so that
2477 			 * future faults in this VMA will fail rather than
2478 			 * looking like data was lost
2479 			 */
2480 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2481 		}
2482 
2483 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2484 		tlb_remove_tlb_entry(tlb, ptep, address);
2485 		if (huge_pte_dirty(pte))
2486 			set_page_dirty(page);
2487 
2488 		page_remove_rmap(page);
2489 		force_flush = !__tlb_remove_page(tlb, page);
2490 		if (force_flush) {
2491 			spin_unlock(ptl);
2492 			break;
2493 		}
2494 		/* Bail out after unmapping reference page if supplied */
2495 		if (ref_page) {
2496 			spin_unlock(ptl);
2497 			break;
2498 		}
2499 unlock:
2500 		spin_unlock(ptl);
2501 	}
2502 	/*
2503 	 * mmu_gather ran out of room to batch pages, we break out of
2504 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2505 	 * and page-free while holding it.
2506 	 */
2507 	if (force_flush) {
2508 		force_flush = 0;
2509 		tlb_flush_mmu(tlb);
2510 		if (address < end && !ref_page)
2511 			goto again;
2512 	}
2513 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2514 	tlb_end_vma(tlb, vma);
2515 }
2516 
2517 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2518 			  struct vm_area_struct *vma, unsigned long start,
2519 			  unsigned long end, struct page *ref_page)
2520 {
2521 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2522 
2523 	/*
2524 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2525 	 * test will fail on a vma being torn down, and not grab a page table
2526 	 * on its way out.  We're lucky that the flag has such an appropriate
2527 	 * name, and can in fact be safely cleared here. We could clear it
2528 	 * before the __unmap_hugepage_range above, but all that's necessary
2529 	 * is to clear it before releasing the i_mmap_mutex. This works
2530 	 * because in the context this is called, the VMA is about to be
2531 	 * destroyed and the i_mmap_mutex is held.
2532 	 */
2533 	vma->vm_flags &= ~VM_MAYSHARE;
2534 }
2535 
2536 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2537 			  unsigned long end, struct page *ref_page)
2538 {
2539 	struct mm_struct *mm;
2540 	struct mmu_gather tlb;
2541 
2542 	mm = vma->vm_mm;
2543 
2544 	tlb_gather_mmu(&tlb, mm, start, end);
2545 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2546 	tlb_finish_mmu(&tlb, start, end);
2547 }
2548 
2549 /*
2550  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2551  * mappping it owns the reserve page for. The intention is to unmap the page
2552  * from other VMAs and let the children be SIGKILLed if they are faulting the
2553  * same region.
2554  */
2555 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2556 				struct page *page, unsigned long address)
2557 {
2558 	struct hstate *h = hstate_vma(vma);
2559 	struct vm_area_struct *iter_vma;
2560 	struct address_space *mapping;
2561 	pgoff_t pgoff;
2562 
2563 	/*
2564 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2565 	 * from page cache lookup which is in HPAGE_SIZE units.
2566 	 */
2567 	address = address & huge_page_mask(h);
2568 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2569 			vma->vm_pgoff;
2570 	mapping = file_inode(vma->vm_file)->i_mapping;
2571 
2572 	/*
2573 	 * Take the mapping lock for the duration of the table walk. As
2574 	 * this mapping should be shared between all the VMAs,
2575 	 * __unmap_hugepage_range() is called as the lock is already held
2576 	 */
2577 	mutex_lock(&mapping->i_mmap_mutex);
2578 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2579 		/* Do not unmap the current VMA */
2580 		if (iter_vma == vma)
2581 			continue;
2582 
2583 		/*
2584 		 * Unmap the page from other VMAs without their own reserves.
2585 		 * They get marked to be SIGKILLed if they fault in these
2586 		 * areas. This is because a future no-page fault on this VMA
2587 		 * could insert a zeroed page instead of the data existing
2588 		 * from the time of fork. This would look like data corruption
2589 		 */
2590 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2591 			unmap_hugepage_range(iter_vma, address,
2592 					     address + huge_page_size(h), page);
2593 	}
2594 	mutex_unlock(&mapping->i_mmap_mutex);
2595 
2596 	return 1;
2597 }
2598 
2599 /*
2600  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2601  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2602  * cannot race with other handlers or page migration.
2603  * Keep the pte_same checks anyway to make transition from the mutex easier.
2604  */
2605 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2606 			unsigned long address, pte_t *ptep, pte_t pte,
2607 			struct page *pagecache_page, spinlock_t *ptl)
2608 {
2609 	struct hstate *h = hstate_vma(vma);
2610 	struct page *old_page, *new_page;
2611 	int outside_reserve = 0;
2612 	unsigned long mmun_start;	/* For mmu_notifiers */
2613 	unsigned long mmun_end;		/* For mmu_notifiers */
2614 
2615 	old_page = pte_page(pte);
2616 
2617 retry_avoidcopy:
2618 	/* If no-one else is actually using this page, avoid the copy
2619 	 * and just make the page writable */
2620 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2621 		page_move_anon_rmap(old_page, vma, address);
2622 		set_huge_ptep_writable(vma, address, ptep);
2623 		return 0;
2624 	}
2625 
2626 	/*
2627 	 * If the process that created a MAP_PRIVATE mapping is about to
2628 	 * perform a COW due to a shared page count, attempt to satisfy
2629 	 * the allocation without using the existing reserves. The pagecache
2630 	 * page is used to determine if the reserve at this address was
2631 	 * consumed or not. If reserves were used, a partial faulted mapping
2632 	 * at the time of fork() could consume its reserves on COW instead
2633 	 * of the full address range.
2634 	 */
2635 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2636 			old_page != pagecache_page)
2637 		outside_reserve = 1;
2638 
2639 	page_cache_get(old_page);
2640 
2641 	/* Drop page table lock as buddy allocator may be called */
2642 	spin_unlock(ptl);
2643 	new_page = alloc_huge_page(vma, address, outside_reserve);
2644 
2645 	if (IS_ERR(new_page)) {
2646 		long err = PTR_ERR(new_page);
2647 		page_cache_release(old_page);
2648 
2649 		/*
2650 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2651 		 * it is due to references held by a child and an insufficient
2652 		 * huge page pool. To guarantee the original mappers
2653 		 * reliability, unmap the page from child processes. The child
2654 		 * may get SIGKILLed if it later faults.
2655 		 */
2656 		if (outside_reserve) {
2657 			BUG_ON(huge_pte_none(pte));
2658 			if (unmap_ref_private(mm, vma, old_page, address)) {
2659 				BUG_ON(huge_pte_none(pte));
2660 				spin_lock(ptl);
2661 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2662 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2663 					goto retry_avoidcopy;
2664 				/*
2665 				 * race occurs while re-acquiring page table
2666 				 * lock, and our job is done.
2667 				 */
2668 				return 0;
2669 			}
2670 			WARN_ON_ONCE(1);
2671 		}
2672 
2673 		/* Caller expects lock to be held */
2674 		spin_lock(ptl);
2675 		if (err == -ENOMEM)
2676 			return VM_FAULT_OOM;
2677 		else
2678 			return VM_FAULT_SIGBUS;
2679 	}
2680 
2681 	/*
2682 	 * When the original hugepage is shared one, it does not have
2683 	 * anon_vma prepared.
2684 	 */
2685 	if (unlikely(anon_vma_prepare(vma))) {
2686 		page_cache_release(new_page);
2687 		page_cache_release(old_page);
2688 		/* Caller expects lock to be held */
2689 		spin_lock(ptl);
2690 		return VM_FAULT_OOM;
2691 	}
2692 
2693 	copy_user_huge_page(new_page, old_page, address, vma,
2694 			    pages_per_huge_page(h));
2695 	__SetPageUptodate(new_page);
2696 
2697 	mmun_start = address & huge_page_mask(h);
2698 	mmun_end = mmun_start + huge_page_size(h);
2699 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2700 	/*
2701 	 * Retake the page table lock to check for racing updates
2702 	 * before the page tables are altered
2703 	 */
2704 	spin_lock(ptl);
2705 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2706 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2707 		ClearPagePrivate(new_page);
2708 
2709 		/* Break COW */
2710 		huge_ptep_clear_flush(vma, address, ptep);
2711 		set_huge_pte_at(mm, address, ptep,
2712 				make_huge_pte(vma, new_page, 1));
2713 		page_remove_rmap(old_page);
2714 		hugepage_add_new_anon_rmap(new_page, vma, address);
2715 		/* Make the old page be freed below */
2716 		new_page = old_page;
2717 	}
2718 	spin_unlock(ptl);
2719 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720 	page_cache_release(new_page);
2721 	page_cache_release(old_page);
2722 
2723 	/* Caller expects lock to be held */
2724 	spin_lock(ptl);
2725 	return 0;
2726 }
2727 
2728 /* Return the pagecache page at a given address within a VMA */
2729 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2730 			struct vm_area_struct *vma, unsigned long address)
2731 {
2732 	struct address_space *mapping;
2733 	pgoff_t idx;
2734 
2735 	mapping = vma->vm_file->f_mapping;
2736 	idx = vma_hugecache_offset(h, vma, address);
2737 
2738 	return find_lock_page(mapping, idx);
2739 }
2740 
2741 /*
2742  * Return whether there is a pagecache page to back given address within VMA.
2743  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2744  */
2745 static bool hugetlbfs_pagecache_present(struct hstate *h,
2746 			struct vm_area_struct *vma, unsigned long address)
2747 {
2748 	struct address_space *mapping;
2749 	pgoff_t idx;
2750 	struct page *page;
2751 
2752 	mapping = vma->vm_file->f_mapping;
2753 	idx = vma_hugecache_offset(h, vma, address);
2754 
2755 	page = find_get_page(mapping, idx);
2756 	if (page)
2757 		put_page(page);
2758 	return page != NULL;
2759 }
2760 
2761 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2762 			unsigned long address, pte_t *ptep, unsigned int flags)
2763 {
2764 	struct hstate *h = hstate_vma(vma);
2765 	int ret = VM_FAULT_SIGBUS;
2766 	int anon_rmap = 0;
2767 	pgoff_t idx;
2768 	unsigned long size;
2769 	struct page *page;
2770 	struct address_space *mapping;
2771 	pte_t new_pte;
2772 	spinlock_t *ptl;
2773 
2774 	/*
2775 	 * Currently, we are forced to kill the process in the event the
2776 	 * original mapper has unmapped pages from the child due to a failed
2777 	 * COW. Warn that such a situation has occurred as it may not be obvious
2778 	 */
2779 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2780 		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2781 			   current->pid);
2782 		return ret;
2783 	}
2784 
2785 	mapping = vma->vm_file->f_mapping;
2786 	idx = vma_hugecache_offset(h, vma, address);
2787 
2788 	/*
2789 	 * Use page lock to guard against racing truncation
2790 	 * before we get page_table_lock.
2791 	 */
2792 retry:
2793 	page = find_lock_page(mapping, idx);
2794 	if (!page) {
2795 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2796 		if (idx >= size)
2797 			goto out;
2798 		page = alloc_huge_page(vma, address, 0);
2799 		if (IS_ERR(page)) {
2800 			ret = PTR_ERR(page);
2801 			if (ret == -ENOMEM)
2802 				ret = VM_FAULT_OOM;
2803 			else
2804 				ret = VM_FAULT_SIGBUS;
2805 			goto out;
2806 		}
2807 		clear_huge_page(page, address, pages_per_huge_page(h));
2808 		__SetPageUptodate(page);
2809 
2810 		if (vma->vm_flags & VM_MAYSHARE) {
2811 			int err;
2812 			struct inode *inode = mapping->host;
2813 
2814 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2815 			if (err) {
2816 				put_page(page);
2817 				if (err == -EEXIST)
2818 					goto retry;
2819 				goto out;
2820 			}
2821 			ClearPagePrivate(page);
2822 
2823 			spin_lock(&inode->i_lock);
2824 			inode->i_blocks += blocks_per_huge_page(h);
2825 			spin_unlock(&inode->i_lock);
2826 		} else {
2827 			lock_page(page);
2828 			if (unlikely(anon_vma_prepare(vma))) {
2829 				ret = VM_FAULT_OOM;
2830 				goto backout_unlocked;
2831 			}
2832 			anon_rmap = 1;
2833 		}
2834 	} else {
2835 		/*
2836 		 * If memory error occurs between mmap() and fault, some process
2837 		 * don't have hwpoisoned swap entry for errored virtual address.
2838 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2839 		 */
2840 		if (unlikely(PageHWPoison(page))) {
2841 			ret = VM_FAULT_HWPOISON |
2842 				VM_FAULT_SET_HINDEX(hstate_index(h));
2843 			goto backout_unlocked;
2844 		}
2845 	}
2846 
2847 	/*
2848 	 * If we are going to COW a private mapping later, we examine the
2849 	 * pending reservations for this page now. This will ensure that
2850 	 * any allocations necessary to record that reservation occur outside
2851 	 * the spinlock.
2852 	 */
2853 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2854 		if (vma_needs_reservation(h, vma, address) < 0) {
2855 			ret = VM_FAULT_OOM;
2856 			goto backout_unlocked;
2857 		}
2858 
2859 	ptl = huge_pte_lockptr(h, mm, ptep);
2860 	spin_lock(ptl);
2861 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2862 	if (idx >= size)
2863 		goto backout;
2864 
2865 	ret = 0;
2866 	if (!huge_pte_none(huge_ptep_get(ptep)))
2867 		goto backout;
2868 
2869 	if (anon_rmap) {
2870 		ClearPagePrivate(page);
2871 		hugepage_add_new_anon_rmap(page, vma, address);
2872 	}
2873 	else
2874 		page_dup_rmap(page);
2875 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2876 				&& (vma->vm_flags & VM_SHARED)));
2877 	set_huge_pte_at(mm, address, ptep, new_pte);
2878 
2879 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2880 		/* Optimization, do the COW without a second fault */
2881 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2882 	}
2883 
2884 	spin_unlock(ptl);
2885 	unlock_page(page);
2886 out:
2887 	return ret;
2888 
2889 backout:
2890 	spin_unlock(ptl);
2891 backout_unlocked:
2892 	unlock_page(page);
2893 	put_page(page);
2894 	goto out;
2895 }
2896 
2897 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2898 			unsigned long address, unsigned int flags)
2899 {
2900 	pte_t *ptep;
2901 	pte_t entry;
2902 	spinlock_t *ptl;
2903 	int ret;
2904 	struct page *page = NULL;
2905 	struct page *pagecache_page = NULL;
2906 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2907 	struct hstate *h = hstate_vma(vma);
2908 
2909 	address &= huge_page_mask(h);
2910 
2911 	ptep = huge_pte_offset(mm, address);
2912 	if (ptep) {
2913 		entry = huge_ptep_get(ptep);
2914 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2915 			migration_entry_wait_huge(vma, mm, ptep);
2916 			return 0;
2917 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2918 			return VM_FAULT_HWPOISON_LARGE |
2919 				VM_FAULT_SET_HINDEX(hstate_index(h));
2920 	}
2921 
2922 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2923 	if (!ptep)
2924 		return VM_FAULT_OOM;
2925 
2926 	/*
2927 	 * Serialize hugepage allocation and instantiation, so that we don't
2928 	 * get spurious allocation failures if two CPUs race to instantiate
2929 	 * the same page in the page cache.
2930 	 */
2931 	mutex_lock(&hugetlb_instantiation_mutex);
2932 	entry = huge_ptep_get(ptep);
2933 	if (huge_pte_none(entry)) {
2934 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2935 		goto out_mutex;
2936 	}
2937 
2938 	ret = 0;
2939 
2940 	/*
2941 	 * If we are going to COW the mapping later, we examine the pending
2942 	 * reservations for this page now. This will ensure that any
2943 	 * allocations necessary to record that reservation occur outside the
2944 	 * spinlock. For private mappings, we also lookup the pagecache
2945 	 * page now as it is used to determine if a reservation has been
2946 	 * consumed.
2947 	 */
2948 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2949 		if (vma_needs_reservation(h, vma, address) < 0) {
2950 			ret = VM_FAULT_OOM;
2951 			goto out_mutex;
2952 		}
2953 
2954 		if (!(vma->vm_flags & VM_MAYSHARE))
2955 			pagecache_page = hugetlbfs_pagecache_page(h,
2956 								vma, address);
2957 	}
2958 
2959 	/*
2960 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2961 	 * pagecache_page, so here we need take the former one
2962 	 * when page != pagecache_page or !pagecache_page.
2963 	 * Note that locking order is always pagecache_page -> page,
2964 	 * so no worry about deadlock.
2965 	 */
2966 	page = pte_page(entry);
2967 	get_page(page);
2968 	if (page != pagecache_page)
2969 		lock_page(page);
2970 
2971 	ptl = huge_pte_lockptr(h, mm, ptep);
2972 	spin_lock(ptl);
2973 	/* Check for a racing update before calling hugetlb_cow */
2974 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2975 		goto out_ptl;
2976 
2977 
2978 	if (flags & FAULT_FLAG_WRITE) {
2979 		if (!huge_pte_write(entry)) {
2980 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2981 					pagecache_page, ptl);
2982 			goto out_ptl;
2983 		}
2984 		entry = huge_pte_mkdirty(entry);
2985 	}
2986 	entry = pte_mkyoung(entry);
2987 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2988 						flags & FAULT_FLAG_WRITE))
2989 		update_mmu_cache(vma, address, ptep);
2990 
2991 out_ptl:
2992 	spin_unlock(ptl);
2993 
2994 	if (pagecache_page) {
2995 		unlock_page(pagecache_page);
2996 		put_page(pagecache_page);
2997 	}
2998 	if (page != pagecache_page)
2999 		unlock_page(page);
3000 	put_page(page);
3001 
3002 out_mutex:
3003 	mutex_unlock(&hugetlb_instantiation_mutex);
3004 
3005 	return ret;
3006 }
3007 
3008 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3009 			 struct page **pages, struct vm_area_struct **vmas,
3010 			 unsigned long *position, unsigned long *nr_pages,
3011 			 long i, unsigned int flags)
3012 {
3013 	unsigned long pfn_offset;
3014 	unsigned long vaddr = *position;
3015 	unsigned long remainder = *nr_pages;
3016 	struct hstate *h = hstate_vma(vma);
3017 
3018 	while (vaddr < vma->vm_end && remainder) {
3019 		pte_t *pte;
3020 		spinlock_t *ptl = NULL;
3021 		int absent;
3022 		struct page *page;
3023 
3024 		/*
3025 		 * Some archs (sparc64, sh*) have multiple pte_ts to
3026 		 * each hugepage.  We have to make sure we get the
3027 		 * first, for the page indexing below to work.
3028 		 *
3029 		 * Note that page table lock is not held when pte is null.
3030 		 */
3031 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3032 		if (pte)
3033 			ptl = huge_pte_lock(h, mm, pte);
3034 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3035 
3036 		/*
3037 		 * When coredumping, it suits get_dump_page if we just return
3038 		 * an error where there's an empty slot with no huge pagecache
3039 		 * to back it.  This way, we avoid allocating a hugepage, and
3040 		 * the sparse dumpfile avoids allocating disk blocks, but its
3041 		 * huge holes still show up with zeroes where they need to be.
3042 		 */
3043 		if (absent && (flags & FOLL_DUMP) &&
3044 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3045 			if (pte)
3046 				spin_unlock(ptl);
3047 			remainder = 0;
3048 			break;
3049 		}
3050 
3051 		/*
3052 		 * We need call hugetlb_fault for both hugepages under migration
3053 		 * (in which case hugetlb_fault waits for the migration,) and
3054 		 * hwpoisoned hugepages (in which case we need to prevent the
3055 		 * caller from accessing to them.) In order to do this, we use
3056 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3057 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3058 		 * both cases, and because we can't follow correct pages
3059 		 * directly from any kind of swap entries.
3060 		 */
3061 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3062 		    ((flags & FOLL_WRITE) &&
3063 		      !huge_pte_write(huge_ptep_get(pte)))) {
3064 			int ret;
3065 
3066 			if (pte)
3067 				spin_unlock(ptl);
3068 			ret = hugetlb_fault(mm, vma, vaddr,
3069 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3070 			if (!(ret & VM_FAULT_ERROR))
3071 				continue;
3072 
3073 			remainder = 0;
3074 			break;
3075 		}
3076 
3077 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3078 		page = pte_page(huge_ptep_get(pte));
3079 same_page:
3080 		if (pages) {
3081 			pages[i] = mem_map_offset(page, pfn_offset);
3082 			get_page(pages[i]);
3083 		}
3084 
3085 		if (vmas)
3086 			vmas[i] = vma;
3087 
3088 		vaddr += PAGE_SIZE;
3089 		++pfn_offset;
3090 		--remainder;
3091 		++i;
3092 		if (vaddr < vma->vm_end && remainder &&
3093 				pfn_offset < pages_per_huge_page(h)) {
3094 			/*
3095 			 * We use pfn_offset to avoid touching the pageframes
3096 			 * of this compound page.
3097 			 */
3098 			goto same_page;
3099 		}
3100 		spin_unlock(ptl);
3101 	}
3102 	*nr_pages = remainder;
3103 	*position = vaddr;
3104 
3105 	return i ? i : -EFAULT;
3106 }
3107 
3108 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3109 		unsigned long address, unsigned long end, pgprot_t newprot)
3110 {
3111 	struct mm_struct *mm = vma->vm_mm;
3112 	unsigned long start = address;
3113 	pte_t *ptep;
3114 	pte_t pte;
3115 	struct hstate *h = hstate_vma(vma);
3116 	unsigned long pages = 0;
3117 
3118 	BUG_ON(address >= end);
3119 	flush_cache_range(vma, address, end);
3120 
3121 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3122 	for (; address < end; address += huge_page_size(h)) {
3123 		spinlock_t *ptl;
3124 		ptep = huge_pte_offset(mm, address);
3125 		if (!ptep)
3126 			continue;
3127 		ptl = huge_pte_lock(h, mm, ptep);
3128 		if (huge_pmd_unshare(mm, &address, ptep)) {
3129 			pages++;
3130 			spin_unlock(ptl);
3131 			continue;
3132 		}
3133 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3134 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3135 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3136 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3137 			set_huge_pte_at(mm, address, ptep, pte);
3138 			pages++;
3139 		}
3140 		spin_unlock(ptl);
3141 	}
3142 	/*
3143 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3144 	 * may have cleared our pud entry and done put_page on the page table:
3145 	 * once we release i_mmap_mutex, another task can do the final put_page
3146 	 * and that page table be reused and filled with junk.
3147 	 */
3148 	flush_tlb_range(vma, start, end);
3149 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3150 
3151 	return pages << h->order;
3152 }
3153 
3154 int hugetlb_reserve_pages(struct inode *inode,
3155 					long from, long to,
3156 					struct vm_area_struct *vma,
3157 					vm_flags_t vm_flags)
3158 {
3159 	long ret, chg;
3160 	struct hstate *h = hstate_inode(inode);
3161 	struct hugepage_subpool *spool = subpool_inode(inode);
3162 
3163 	/*
3164 	 * Only apply hugepage reservation if asked. At fault time, an
3165 	 * attempt will be made for VM_NORESERVE to allocate a page
3166 	 * without using reserves
3167 	 */
3168 	if (vm_flags & VM_NORESERVE)
3169 		return 0;
3170 
3171 	/*
3172 	 * Shared mappings base their reservation on the number of pages that
3173 	 * are already allocated on behalf of the file. Private mappings need
3174 	 * to reserve the full area even if read-only as mprotect() may be
3175 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3176 	 */
3177 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3178 		chg = region_chg(&inode->i_mapping->private_list, from, to);
3179 	else {
3180 		struct resv_map *resv_map = resv_map_alloc();
3181 		if (!resv_map)
3182 			return -ENOMEM;
3183 
3184 		chg = to - from;
3185 
3186 		set_vma_resv_map(vma, resv_map);
3187 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3188 	}
3189 
3190 	if (chg < 0) {
3191 		ret = chg;
3192 		goto out_err;
3193 	}
3194 
3195 	/* There must be enough pages in the subpool for the mapping */
3196 	if (hugepage_subpool_get_pages(spool, chg)) {
3197 		ret = -ENOSPC;
3198 		goto out_err;
3199 	}
3200 
3201 	/*
3202 	 * Check enough hugepages are available for the reservation.
3203 	 * Hand the pages back to the subpool if there are not
3204 	 */
3205 	ret = hugetlb_acct_memory(h, chg);
3206 	if (ret < 0) {
3207 		hugepage_subpool_put_pages(spool, chg);
3208 		goto out_err;
3209 	}
3210 
3211 	/*
3212 	 * Account for the reservations made. Shared mappings record regions
3213 	 * that have reservations as they are shared by multiple VMAs.
3214 	 * When the last VMA disappears, the region map says how much
3215 	 * the reservation was and the page cache tells how much of
3216 	 * the reservation was consumed. Private mappings are per-VMA and
3217 	 * only the consumed reservations are tracked. When the VMA
3218 	 * disappears, the original reservation is the VMA size and the
3219 	 * consumed reservations are stored in the map. Hence, nothing
3220 	 * else has to be done for private mappings here
3221 	 */
3222 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3223 		region_add(&inode->i_mapping->private_list, from, to);
3224 	return 0;
3225 out_err:
3226 	if (vma)
3227 		resv_map_put(vma);
3228 	return ret;
3229 }
3230 
3231 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3232 {
3233 	struct hstate *h = hstate_inode(inode);
3234 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3235 	struct hugepage_subpool *spool = subpool_inode(inode);
3236 
3237 	spin_lock(&inode->i_lock);
3238 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3239 	spin_unlock(&inode->i_lock);
3240 
3241 	hugepage_subpool_put_pages(spool, (chg - freed));
3242 	hugetlb_acct_memory(h, -(chg - freed));
3243 }
3244 
3245 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3246 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3247 				struct vm_area_struct *vma,
3248 				unsigned long addr, pgoff_t idx)
3249 {
3250 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3251 				svma->vm_start;
3252 	unsigned long sbase = saddr & PUD_MASK;
3253 	unsigned long s_end = sbase + PUD_SIZE;
3254 
3255 	/* Allow segments to share if only one is marked locked */
3256 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3257 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3258 
3259 	/*
3260 	 * match the virtual addresses, permission and the alignment of the
3261 	 * page table page.
3262 	 */
3263 	if (pmd_index(addr) != pmd_index(saddr) ||
3264 	    vm_flags != svm_flags ||
3265 	    sbase < svma->vm_start || svma->vm_end < s_end)
3266 		return 0;
3267 
3268 	return saddr;
3269 }
3270 
3271 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3272 {
3273 	unsigned long base = addr & PUD_MASK;
3274 	unsigned long end = base + PUD_SIZE;
3275 
3276 	/*
3277 	 * check on proper vm_flags and page table alignment
3278 	 */
3279 	if (vma->vm_flags & VM_MAYSHARE &&
3280 	    vma->vm_start <= base && end <= vma->vm_end)
3281 		return 1;
3282 	return 0;
3283 }
3284 
3285 /*
3286  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3287  * and returns the corresponding pte. While this is not necessary for the
3288  * !shared pmd case because we can allocate the pmd later as well, it makes the
3289  * code much cleaner. pmd allocation is essential for the shared case because
3290  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3291  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3292  * bad pmd for sharing.
3293  */
3294 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3295 {
3296 	struct vm_area_struct *vma = find_vma(mm, addr);
3297 	struct address_space *mapping = vma->vm_file->f_mapping;
3298 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3299 			vma->vm_pgoff;
3300 	struct vm_area_struct *svma;
3301 	unsigned long saddr;
3302 	pte_t *spte = NULL;
3303 	pte_t *pte;
3304 	spinlock_t *ptl;
3305 
3306 	if (!vma_shareable(vma, addr))
3307 		return (pte_t *)pmd_alloc(mm, pud, addr);
3308 
3309 	mutex_lock(&mapping->i_mmap_mutex);
3310 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3311 		if (svma == vma)
3312 			continue;
3313 
3314 		saddr = page_table_shareable(svma, vma, addr, idx);
3315 		if (saddr) {
3316 			spte = huge_pte_offset(svma->vm_mm, saddr);
3317 			if (spte) {
3318 				get_page(virt_to_page(spte));
3319 				break;
3320 			}
3321 		}
3322 	}
3323 
3324 	if (!spte)
3325 		goto out;
3326 
3327 	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3328 	spin_lock(ptl);
3329 	if (pud_none(*pud))
3330 		pud_populate(mm, pud,
3331 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3332 	else
3333 		put_page(virt_to_page(spte));
3334 	spin_unlock(ptl);
3335 out:
3336 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3337 	mutex_unlock(&mapping->i_mmap_mutex);
3338 	return pte;
3339 }
3340 
3341 /*
3342  * unmap huge page backed by shared pte.
3343  *
3344  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3345  * indicated by page_count > 1, unmap is achieved by clearing pud and
3346  * decrementing the ref count. If count == 1, the pte page is not shared.
3347  *
3348  * called with page table lock held.
3349  *
3350  * returns: 1 successfully unmapped a shared pte page
3351  *	    0 the underlying pte page is not shared, or it is the last user
3352  */
3353 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3354 {
3355 	pgd_t *pgd = pgd_offset(mm, *addr);
3356 	pud_t *pud = pud_offset(pgd, *addr);
3357 
3358 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3359 	if (page_count(virt_to_page(ptep)) == 1)
3360 		return 0;
3361 
3362 	pud_clear(pud);
3363 	put_page(virt_to_page(ptep));
3364 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3365 	return 1;
3366 }
3367 #define want_pmd_share()	(1)
3368 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3369 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3370 {
3371 	return NULL;
3372 }
3373 #define want_pmd_share()	(0)
3374 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3375 
3376 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3377 pte_t *huge_pte_alloc(struct mm_struct *mm,
3378 			unsigned long addr, unsigned long sz)
3379 {
3380 	pgd_t *pgd;
3381 	pud_t *pud;
3382 	pte_t *pte = NULL;
3383 
3384 	pgd = pgd_offset(mm, addr);
3385 	pud = pud_alloc(mm, pgd, addr);
3386 	if (pud) {
3387 		if (sz == PUD_SIZE) {
3388 			pte = (pte_t *)pud;
3389 		} else {
3390 			BUG_ON(sz != PMD_SIZE);
3391 			if (want_pmd_share() && pud_none(*pud))
3392 				pte = huge_pmd_share(mm, addr, pud);
3393 			else
3394 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3395 		}
3396 	}
3397 	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3398 
3399 	return pte;
3400 }
3401 
3402 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3403 {
3404 	pgd_t *pgd;
3405 	pud_t *pud;
3406 	pmd_t *pmd = NULL;
3407 
3408 	pgd = pgd_offset(mm, addr);
3409 	if (pgd_present(*pgd)) {
3410 		pud = pud_offset(pgd, addr);
3411 		if (pud_present(*pud)) {
3412 			if (pud_huge(*pud))
3413 				return (pte_t *)pud;
3414 			pmd = pmd_offset(pud, addr);
3415 		}
3416 	}
3417 	return (pte_t *) pmd;
3418 }
3419 
3420 struct page *
3421 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3422 		pmd_t *pmd, int write)
3423 {
3424 	struct page *page;
3425 
3426 	page = pte_page(*(pte_t *)pmd);
3427 	if (page)
3428 		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3429 	return page;
3430 }
3431 
3432 struct page *
3433 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3434 		pud_t *pud, int write)
3435 {
3436 	struct page *page;
3437 
3438 	page = pte_page(*(pte_t *)pud);
3439 	if (page)
3440 		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3441 	return page;
3442 }
3443 
3444 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3445 
3446 /* Can be overriden by architectures */
3447 __attribute__((weak)) struct page *
3448 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3449 	       pud_t *pud, int write)
3450 {
3451 	BUG();
3452 	return NULL;
3453 }
3454 
3455 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3456 
3457 #ifdef CONFIG_MEMORY_FAILURE
3458 
3459 /* Should be called in hugetlb_lock */
3460 static int is_hugepage_on_freelist(struct page *hpage)
3461 {
3462 	struct page *page;
3463 	struct page *tmp;
3464 	struct hstate *h = page_hstate(hpage);
3465 	int nid = page_to_nid(hpage);
3466 
3467 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3468 		if (page == hpage)
3469 			return 1;
3470 	return 0;
3471 }
3472 
3473 /*
3474  * This function is called from memory failure code.
3475  * Assume the caller holds page lock of the head page.
3476  */
3477 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3478 {
3479 	struct hstate *h = page_hstate(hpage);
3480 	int nid = page_to_nid(hpage);
3481 	int ret = -EBUSY;
3482 
3483 	spin_lock(&hugetlb_lock);
3484 	if (is_hugepage_on_freelist(hpage)) {
3485 		/*
3486 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3487 		 * but dangling hpage->lru can trigger list-debug warnings
3488 		 * (this happens when we call unpoison_memory() on it),
3489 		 * so let it point to itself with list_del_init().
3490 		 */
3491 		list_del_init(&hpage->lru);
3492 		set_page_refcounted(hpage);
3493 		h->free_huge_pages--;
3494 		h->free_huge_pages_node[nid]--;
3495 		ret = 0;
3496 	}
3497 	spin_unlock(&hugetlb_lock);
3498 	return ret;
3499 }
3500 #endif
3501 
3502 bool isolate_huge_page(struct page *page, struct list_head *list)
3503 {
3504 	VM_BUG_ON(!PageHead(page));
3505 	if (!get_page_unless_zero(page))
3506 		return false;
3507 	spin_lock(&hugetlb_lock);
3508 	list_move_tail(&page->lru, list);
3509 	spin_unlock(&hugetlb_lock);
3510 	return true;
3511 }
3512 
3513 void putback_active_hugepage(struct page *page)
3514 {
3515 	VM_BUG_ON(!PageHead(page));
3516 	spin_lock(&hugetlb_lock);
3517 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3518 	spin_unlock(&hugetlb_lock);
3519 	put_page(page);
3520 }
3521 
3522 bool is_hugepage_active(struct page *page)
3523 {
3524 	VM_BUG_ON(!PageHuge(page));
3525 	/*
3526 	 * This function can be called for a tail page because the caller,
3527 	 * scan_movable_pages, scans through a given pfn-range which typically
3528 	 * covers one memory block. In systems using gigantic hugepage (1GB
3529 	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3530 	 * support migrating such large hugepages for now, so return false
3531 	 * when called for tail pages.
3532 	 */
3533 	if (PageTail(page))
3534 		return false;
3535 	/*
3536 	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3537 	 * so we should return false for them.
3538 	 */
3539 	if (unlikely(PageHWPoison(page)))
3540 		return false;
3541 	return page_count(page) > 0;
3542 }
3543