1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 #include <linux/jhash.h> 26 27 #include <asm/page.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 31 #include <linux/io.h> 32 #include <linux/hugetlb.h> 33 #include <linux/hugetlb_cgroup.h> 34 #include <linux/node.h> 35 #include "internal.h" 36 37 int hugepages_treat_as_movable; 38 39 int hugetlb_max_hstate __read_mostly; 40 unsigned int default_hstate_idx; 41 struct hstate hstates[HUGE_MAX_HSTATE]; 42 /* 43 * Minimum page order among possible hugepage sizes, set to a proper value 44 * at boot time. 45 */ 46 static unsigned int minimum_order __read_mostly = UINT_MAX; 47 48 __initdata LIST_HEAD(huge_boot_pages); 49 50 /* for command line parsing */ 51 static struct hstate * __initdata parsed_hstate; 52 static unsigned long __initdata default_hstate_max_huge_pages; 53 static unsigned long __initdata default_hstate_size; 54 static bool __initdata parsed_valid_hugepagesz = true; 55 56 /* 57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 58 * free_huge_pages, and surplus_huge_pages. 59 */ 60 DEFINE_SPINLOCK(hugetlb_lock); 61 62 /* 63 * Serializes faults on the same logical page. This is used to 64 * prevent spurious OOMs when the hugepage pool is fully utilized. 65 */ 66 static int num_fault_mutexes; 67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 68 69 /* Forward declaration */ 70 static int hugetlb_acct_memory(struct hstate *h, long delta); 71 72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 73 { 74 bool free = (spool->count == 0) && (spool->used_hpages == 0); 75 76 spin_unlock(&spool->lock); 77 78 /* If no pages are used, and no other handles to the subpool 79 * remain, give up any reservations mased on minimum size and 80 * free the subpool */ 81 if (free) { 82 if (spool->min_hpages != -1) 83 hugetlb_acct_memory(spool->hstate, 84 -spool->min_hpages); 85 kfree(spool); 86 } 87 } 88 89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 90 long min_hpages) 91 { 92 struct hugepage_subpool *spool; 93 94 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 95 if (!spool) 96 return NULL; 97 98 spin_lock_init(&spool->lock); 99 spool->count = 1; 100 spool->max_hpages = max_hpages; 101 spool->hstate = h; 102 spool->min_hpages = min_hpages; 103 104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 105 kfree(spool); 106 return NULL; 107 } 108 spool->rsv_hpages = min_hpages; 109 110 return spool; 111 } 112 113 void hugepage_put_subpool(struct hugepage_subpool *spool) 114 { 115 spin_lock(&spool->lock); 116 BUG_ON(!spool->count); 117 spool->count--; 118 unlock_or_release_subpool(spool); 119 } 120 121 /* 122 * Subpool accounting for allocating and reserving pages. 123 * Return -ENOMEM if there are not enough resources to satisfy the 124 * the request. Otherwise, return the number of pages by which the 125 * global pools must be adjusted (upward). The returned value may 126 * only be different than the passed value (delta) in the case where 127 * a subpool minimum size must be manitained. 128 */ 129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 130 long delta) 131 { 132 long ret = delta; 133 134 if (!spool) 135 return ret; 136 137 spin_lock(&spool->lock); 138 139 if (spool->max_hpages != -1) { /* maximum size accounting */ 140 if ((spool->used_hpages + delta) <= spool->max_hpages) 141 spool->used_hpages += delta; 142 else { 143 ret = -ENOMEM; 144 goto unlock_ret; 145 } 146 } 147 148 /* minimum size accounting */ 149 if (spool->min_hpages != -1 && spool->rsv_hpages) { 150 if (delta > spool->rsv_hpages) { 151 /* 152 * Asking for more reserves than those already taken on 153 * behalf of subpool. Return difference. 154 */ 155 ret = delta - spool->rsv_hpages; 156 spool->rsv_hpages = 0; 157 } else { 158 ret = 0; /* reserves already accounted for */ 159 spool->rsv_hpages -= delta; 160 } 161 } 162 163 unlock_ret: 164 spin_unlock(&spool->lock); 165 return ret; 166 } 167 168 /* 169 * Subpool accounting for freeing and unreserving pages. 170 * Return the number of global page reservations that must be dropped. 171 * The return value may only be different than the passed value (delta) 172 * in the case where a subpool minimum size must be maintained. 173 */ 174 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 175 long delta) 176 { 177 long ret = delta; 178 179 if (!spool) 180 return delta; 181 182 spin_lock(&spool->lock); 183 184 if (spool->max_hpages != -1) /* maximum size accounting */ 185 spool->used_hpages -= delta; 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 189 if (spool->rsv_hpages + delta <= spool->min_hpages) 190 ret = 0; 191 else 192 ret = spool->rsv_hpages + delta - spool->min_hpages; 193 194 spool->rsv_hpages += delta; 195 if (spool->rsv_hpages > spool->min_hpages) 196 spool->rsv_hpages = spool->min_hpages; 197 } 198 199 /* 200 * If hugetlbfs_put_super couldn't free spool due to an outstanding 201 * quota reference, free it now. 202 */ 203 unlock_or_release_subpool(spool); 204 205 return ret; 206 } 207 208 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 209 { 210 return HUGETLBFS_SB(inode->i_sb)->spool; 211 } 212 213 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 214 { 215 return subpool_inode(file_inode(vma->vm_file)); 216 } 217 218 /* 219 * Region tracking -- allows tracking of reservations and instantiated pages 220 * across the pages in a mapping. 221 * 222 * The region data structures are embedded into a resv_map and protected 223 * by a resv_map's lock. The set of regions within the resv_map represent 224 * reservations for huge pages, or huge pages that have already been 225 * instantiated within the map. The from and to elements are huge page 226 * indicies into the associated mapping. from indicates the starting index 227 * of the region. to represents the first index past the end of the region. 228 * 229 * For example, a file region structure with from == 0 and to == 4 represents 230 * four huge pages in a mapping. It is important to note that the to element 231 * represents the first element past the end of the region. This is used in 232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 233 * 234 * Interval notation of the form [from, to) will be used to indicate that 235 * the endpoint from is inclusive and to is exclusive. 236 */ 237 struct file_region { 238 struct list_head link; 239 long from; 240 long to; 241 }; 242 243 /* 244 * Add the huge page range represented by [f, t) to the reserve 245 * map. In the normal case, existing regions will be expanded 246 * to accommodate the specified range. Sufficient regions should 247 * exist for expansion due to the previous call to region_chg 248 * with the same range. However, it is possible that region_del 249 * could have been called after region_chg and modifed the map 250 * in such a way that no region exists to be expanded. In this 251 * case, pull a region descriptor from the cache associated with 252 * the map and use that for the new range. 253 * 254 * Return the number of new huge pages added to the map. This 255 * number is greater than or equal to zero. 256 */ 257 static long region_add(struct resv_map *resv, long f, long t) 258 { 259 struct list_head *head = &resv->regions; 260 struct file_region *rg, *nrg, *trg; 261 long add = 0; 262 263 spin_lock(&resv->lock); 264 /* Locate the region we are either in or before. */ 265 list_for_each_entry(rg, head, link) 266 if (f <= rg->to) 267 break; 268 269 /* 270 * If no region exists which can be expanded to include the 271 * specified range, the list must have been modified by an 272 * interleving call to region_del(). Pull a region descriptor 273 * from the cache and use it for this range. 274 */ 275 if (&rg->link == head || t < rg->from) { 276 VM_BUG_ON(resv->region_cache_count <= 0); 277 278 resv->region_cache_count--; 279 nrg = list_first_entry(&resv->region_cache, struct file_region, 280 link); 281 list_del(&nrg->link); 282 283 nrg->from = f; 284 nrg->to = t; 285 list_add(&nrg->link, rg->link.prev); 286 287 add += t - f; 288 goto out_locked; 289 } 290 291 /* Round our left edge to the current segment if it encloses us. */ 292 if (f > rg->from) 293 f = rg->from; 294 295 /* Check for and consume any regions we now overlap with. */ 296 nrg = rg; 297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 298 if (&rg->link == head) 299 break; 300 if (rg->from > t) 301 break; 302 303 /* If this area reaches higher then extend our area to 304 * include it completely. If this is not the first area 305 * which we intend to reuse, free it. */ 306 if (rg->to > t) 307 t = rg->to; 308 if (rg != nrg) { 309 /* Decrement return value by the deleted range. 310 * Another range will span this area so that by 311 * end of routine add will be >= zero 312 */ 313 add -= (rg->to - rg->from); 314 list_del(&rg->link); 315 kfree(rg); 316 } 317 } 318 319 add += (nrg->from - f); /* Added to beginning of region */ 320 nrg->from = f; 321 add += t - nrg->to; /* Added to end of region */ 322 nrg->to = t; 323 324 out_locked: 325 resv->adds_in_progress--; 326 spin_unlock(&resv->lock); 327 VM_BUG_ON(add < 0); 328 return add; 329 } 330 331 /* 332 * Examine the existing reserve map and determine how many 333 * huge pages in the specified range [f, t) are NOT currently 334 * represented. This routine is called before a subsequent 335 * call to region_add that will actually modify the reserve 336 * map to add the specified range [f, t). region_chg does 337 * not change the number of huge pages represented by the 338 * map. However, if the existing regions in the map can not 339 * be expanded to represent the new range, a new file_region 340 * structure is added to the map as a placeholder. This is 341 * so that the subsequent region_add call will have all the 342 * regions it needs and will not fail. 343 * 344 * Upon entry, region_chg will also examine the cache of region descriptors 345 * associated with the map. If there are not enough descriptors cached, one 346 * will be allocated for the in progress add operation. 347 * 348 * Returns the number of huge pages that need to be added to the existing 349 * reservation map for the range [f, t). This number is greater or equal to 350 * zero. -ENOMEM is returned if a new file_region structure or cache entry 351 * is needed and can not be allocated. 352 */ 353 static long region_chg(struct resv_map *resv, long f, long t) 354 { 355 struct list_head *head = &resv->regions; 356 struct file_region *rg, *nrg = NULL; 357 long chg = 0; 358 359 retry: 360 spin_lock(&resv->lock); 361 retry_locked: 362 resv->adds_in_progress++; 363 364 /* 365 * Check for sufficient descriptors in the cache to accommodate 366 * the number of in progress add operations. 367 */ 368 if (resv->adds_in_progress > resv->region_cache_count) { 369 struct file_region *trg; 370 371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 372 /* Must drop lock to allocate a new descriptor. */ 373 resv->adds_in_progress--; 374 spin_unlock(&resv->lock); 375 376 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 377 if (!trg) { 378 kfree(nrg); 379 return -ENOMEM; 380 } 381 382 spin_lock(&resv->lock); 383 list_add(&trg->link, &resv->region_cache); 384 resv->region_cache_count++; 385 goto retry_locked; 386 } 387 388 /* Locate the region we are before or in. */ 389 list_for_each_entry(rg, head, link) 390 if (f <= rg->to) 391 break; 392 393 /* If we are below the current region then a new region is required. 394 * Subtle, allocate a new region at the position but make it zero 395 * size such that we can guarantee to record the reservation. */ 396 if (&rg->link == head || t < rg->from) { 397 if (!nrg) { 398 resv->adds_in_progress--; 399 spin_unlock(&resv->lock); 400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 401 if (!nrg) 402 return -ENOMEM; 403 404 nrg->from = f; 405 nrg->to = f; 406 INIT_LIST_HEAD(&nrg->link); 407 goto retry; 408 } 409 410 list_add(&nrg->link, rg->link.prev); 411 chg = t - f; 412 goto out_nrg; 413 } 414 415 /* Round our left edge to the current segment if it encloses us. */ 416 if (f > rg->from) 417 f = rg->from; 418 chg = t - f; 419 420 /* Check for and consume any regions we now overlap with. */ 421 list_for_each_entry(rg, rg->link.prev, link) { 422 if (&rg->link == head) 423 break; 424 if (rg->from > t) 425 goto out; 426 427 /* We overlap with this area, if it extends further than 428 * us then we must extend ourselves. Account for its 429 * existing reservation. */ 430 if (rg->to > t) { 431 chg += rg->to - t; 432 t = rg->to; 433 } 434 chg -= rg->to - rg->from; 435 } 436 437 out: 438 spin_unlock(&resv->lock); 439 /* We already know we raced and no longer need the new region */ 440 kfree(nrg); 441 return chg; 442 out_nrg: 443 spin_unlock(&resv->lock); 444 return chg; 445 } 446 447 /* 448 * Abort the in progress add operation. The adds_in_progress field 449 * of the resv_map keeps track of the operations in progress between 450 * calls to region_chg and region_add. Operations are sometimes 451 * aborted after the call to region_chg. In such cases, region_abort 452 * is called to decrement the adds_in_progress counter. 453 * 454 * NOTE: The range arguments [f, t) are not needed or used in this 455 * routine. They are kept to make reading the calling code easier as 456 * arguments will match the associated region_chg call. 457 */ 458 static void region_abort(struct resv_map *resv, long f, long t) 459 { 460 spin_lock(&resv->lock); 461 VM_BUG_ON(!resv->region_cache_count); 462 resv->adds_in_progress--; 463 spin_unlock(&resv->lock); 464 } 465 466 /* 467 * Delete the specified range [f, t) from the reserve map. If the 468 * t parameter is LONG_MAX, this indicates that ALL regions after f 469 * should be deleted. Locate the regions which intersect [f, t) 470 * and either trim, delete or split the existing regions. 471 * 472 * Returns the number of huge pages deleted from the reserve map. 473 * In the normal case, the return value is zero or more. In the 474 * case where a region must be split, a new region descriptor must 475 * be allocated. If the allocation fails, -ENOMEM will be returned. 476 * NOTE: If the parameter t == LONG_MAX, then we will never split 477 * a region and possibly return -ENOMEM. Callers specifying 478 * t == LONG_MAX do not need to check for -ENOMEM error. 479 */ 480 static long region_del(struct resv_map *resv, long f, long t) 481 { 482 struct list_head *head = &resv->regions; 483 struct file_region *rg, *trg; 484 struct file_region *nrg = NULL; 485 long del = 0; 486 487 retry: 488 spin_lock(&resv->lock); 489 list_for_each_entry_safe(rg, trg, head, link) { 490 /* 491 * Skip regions before the range to be deleted. file_region 492 * ranges are normally of the form [from, to). However, there 493 * may be a "placeholder" entry in the map which is of the form 494 * (from, to) with from == to. Check for placeholder entries 495 * at the beginning of the range to be deleted. 496 */ 497 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 498 continue; 499 500 if (rg->from >= t) 501 break; 502 503 if (f > rg->from && t < rg->to) { /* Must split region */ 504 /* 505 * Check for an entry in the cache before dropping 506 * lock and attempting allocation. 507 */ 508 if (!nrg && 509 resv->region_cache_count > resv->adds_in_progress) { 510 nrg = list_first_entry(&resv->region_cache, 511 struct file_region, 512 link); 513 list_del(&nrg->link); 514 resv->region_cache_count--; 515 } 516 517 if (!nrg) { 518 spin_unlock(&resv->lock); 519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 520 if (!nrg) 521 return -ENOMEM; 522 goto retry; 523 } 524 525 del += t - f; 526 527 /* New entry for end of split region */ 528 nrg->from = t; 529 nrg->to = rg->to; 530 INIT_LIST_HEAD(&nrg->link); 531 532 /* Original entry is trimmed */ 533 rg->to = f; 534 535 list_add(&nrg->link, &rg->link); 536 nrg = NULL; 537 break; 538 } 539 540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 541 del += rg->to - rg->from; 542 list_del(&rg->link); 543 kfree(rg); 544 continue; 545 } 546 547 if (f <= rg->from) { /* Trim beginning of region */ 548 del += t - rg->from; 549 rg->from = t; 550 } else { /* Trim end of region */ 551 del += rg->to - f; 552 rg->to = f; 553 } 554 } 555 556 spin_unlock(&resv->lock); 557 kfree(nrg); 558 return del; 559 } 560 561 /* 562 * A rare out of memory error was encountered which prevented removal of 563 * the reserve map region for a page. The huge page itself was free'ed 564 * and removed from the page cache. This routine will adjust the subpool 565 * usage count, and the global reserve count if needed. By incrementing 566 * these counts, the reserve map entry which could not be deleted will 567 * appear as a "reserved" entry instead of simply dangling with incorrect 568 * counts. 569 */ 570 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve) 571 { 572 struct hugepage_subpool *spool = subpool_inode(inode); 573 long rsv_adjust; 574 575 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 576 if (restore_reserve && rsv_adjust) { 577 struct hstate *h = hstate_inode(inode); 578 579 hugetlb_acct_memory(h, 1); 580 } 581 } 582 583 /* 584 * Count and return the number of huge pages in the reserve map 585 * that intersect with the range [f, t). 586 */ 587 static long region_count(struct resv_map *resv, long f, long t) 588 { 589 struct list_head *head = &resv->regions; 590 struct file_region *rg; 591 long chg = 0; 592 593 spin_lock(&resv->lock); 594 /* Locate each segment we overlap with, and count that overlap. */ 595 list_for_each_entry(rg, head, link) { 596 long seg_from; 597 long seg_to; 598 599 if (rg->to <= f) 600 continue; 601 if (rg->from >= t) 602 break; 603 604 seg_from = max(rg->from, f); 605 seg_to = min(rg->to, t); 606 607 chg += seg_to - seg_from; 608 } 609 spin_unlock(&resv->lock); 610 611 return chg; 612 } 613 614 /* 615 * Convert the address within this vma to the page offset within 616 * the mapping, in pagecache page units; huge pages here. 617 */ 618 static pgoff_t vma_hugecache_offset(struct hstate *h, 619 struct vm_area_struct *vma, unsigned long address) 620 { 621 return ((address - vma->vm_start) >> huge_page_shift(h)) + 622 (vma->vm_pgoff >> huge_page_order(h)); 623 } 624 625 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 626 unsigned long address) 627 { 628 return vma_hugecache_offset(hstate_vma(vma), vma, address); 629 } 630 EXPORT_SYMBOL_GPL(linear_hugepage_index); 631 632 /* 633 * Return the size of the pages allocated when backing a VMA. In the majority 634 * cases this will be same size as used by the page table entries. 635 */ 636 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 637 { 638 struct hstate *hstate; 639 640 if (!is_vm_hugetlb_page(vma)) 641 return PAGE_SIZE; 642 643 hstate = hstate_vma(vma); 644 645 return 1UL << huge_page_shift(hstate); 646 } 647 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 648 649 /* 650 * Return the page size being used by the MMU to back a VMA. In the majority 651 * of cases, the page size used by the kernel matches the MMU size. On 652 * architectures where it differs, an architecture-specific version of this 653 * function is required. 654 */ 655 #ifndef vma_mmu_pagesize 656 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 657 { 658 return vma_kernel_pagesize(vma); 659 } 660 #endif 661 662 /* 663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 664 * bits of the reservation map pointer, which are always clear due to 665 * alignment. 666 */ 667 #define HPAGE_RESV_OWNER (1UL << 0) 668 #define HPAGE_RESV_UNMAPPED (1UL << 1) 669 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 670 671 /* 672 * These helpers are used to track how many pages are reserved for 673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 674 * is guaranteed to have their future faults succeed. 675 * 676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 677 * the reserve counters are updated with the hugetlb_lock held. It is safe 678 * to reset the VMA at fork() time as it is not in use yet and there is no 679 * chance of the global counters getting corrupted as a result of the values. 680 * 681 * The private mapping reservation is represented in a subtly different 682 * manner to a shared mapping. A shared mapping has a region map associated 683 * with the underlying file, this region map represents the backing file 684 * pages which have ever had a reservation assigned which this persists even 685 * after the page is instantiated. A private mapping has a region map 686 * associated with the original mmap which is attached to all VMAs which 687 * reference it, this region map represents those offsets which have consumed 688 * reservation ie. where pages have been instantiated. 689 */ 690 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 691 { 692 return (unsigned long)vma->vm_private_data; 693 } 694 695 static void set_vma_private_data(struct vm_area_struct *vma, 696 unsigned long value) 697 { 698 vma->vm_private_data = (void *)value; 699 } 700 701 struct resv_map *resv_map_alloc(void) 702 { 703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 705 706 if (!resv_map || !rg) { 707 kfree(resv_map); 708 kfree(rg); 709 return NULL; 710 } 711 712 kref_init(&resv_map->refs); 713 spin_lock_init(&resv_map->lock); 714 INIT_LIST_HEAD(&resv_map->regions); 715 716 resv_map->adds_in_progress = 0; 717 718 INIT_LIST_HEAD(&resv_map->region_cache); 719 list_add(&rg->link, &resv_map->region_cache); 720 resv_map->region_cache_count = 1; 721 722 return resv_map; 723 } 724 725 void resv_map_release(struct kref *ref) 726 { 727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 728 struct list_head *head = &resv_map->region_cache; 729 struct file_region *rg, *trg; 730 731 /* Clear out any active regions before we release the map. */ 732 region_del(resv_map, 0, LONG_MAX); 733 734 /* ... and any entries left in the cache */ 735 list_for_each_entry_safe(rg, trg, head, link) { 736 list_del(&rg->link); 737 kfree(rg); 738 } 739 740 VM_BUG_ON(resv_map->adds_in_progress); 741 742 kfree(resv_map); 743 } 744 745 static inline struct resv_map *inode_resv_map(struct inode *inode) 746 { 747 return inode->i_mapping->private_data; 748 } 749 750 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 751 { 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 753 if (vma->vm_flags & VM_MAYSHARE) { 754 struct address_space *mapping = vma->vm_file->f_mapping; 755 struct inode *inode = mapping->host; 756 757 return inode_resv_map(inode); 758 759 } else { 760 return (struct resv_map *)(get_vma_private_data(vma) & 761 ~HPAGE_RESV_MASK); 762 } 763 } 764 765 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 766 { 767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 769 770 set_vma_private_data(vma, (get_vma_private_data(vma) & 771 HPAGE_RESV_MASK) | (unsigned long)map); 772 } 773 774 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 775 { 776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 778 779 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 780 } 781 782 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 783 { 784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 785 786 return (get_vma_private_data(vma) & flag) != 0; 787 } 788 789 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 790 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 791 { 792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 793 if (!(vma->vm_flags & VM_MAYSHARE)) 794 vma->vm_private_data = (void *)0; 795 } 796 797 /* Returns true if the VMA has associated reserve pages */ 798 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 799 { 800 if (vma->vm_flags & VM_NORESERVE) { 801 /* 802 * This address is already reserved by other process(chg == 0), 803 * so, we should decrement reserved count. Without decrementing, 804 * reserve count remains after releasing inode, because this 805 * allocated page will go into page cache and is regarded as 806 * coming from reserved pool in releasing step. Currently, we 807 * don't have any other solution to deal with this situation 808 * properly, so add work-around here. 809 */ 810 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 811 return true; 812 else 813 return false; 814 } 815 816 /* Shared mappings always use reserves */ 817 if (vma->vm_flags & VM_MAYSHARE) { 818 /* 819 * We know VM_NORESERVE is not set. Therefore, there SHOULD 820 * be a region map for all pages. The only situation where 821 * there is no region map is if a hole was punched via 822 * fallocate. In this case, there really are no reverves to 823 * use. This situation is indicated if chg != 0. 824 */ 825 if (chg) 826 return false; 827 else 828 return true; 829 } 830 831 /* 832 * Only the process that called mmap() has reserves for 833 * private mappings. 834 */ 835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 836 /* 837 * Like the shared case above, a hole punch or truncate 838 * could have been performed on the private mapping. 839 * Examine the value of chg to determine if reserves 840 * actually exist or were previously consumed. 841 * Very Subtle - The value of chg comes from a previous 842 * call to vma_needs_reserves(). The reserve map for 843 * private mappings has different (opposite) semantics 844 * than that of shared mappings. vma_needs_reserves() 845 * has already taken this difference in semantics into 846 * account. Therefore, the meaning of chg is the same 847 * as in the shared case above. Code could easily be 848 * combined, but keeping it separate draws attention to 849 * subtle differences. 850 */ 851 if (chg) 852 return false; 853 else 854 return true; 855 } 856 857 return false; 858 } 859 860 static void enqueue_huge_page(struct hstate *h, struct page *page) 861 { 862 int nid = page_to_nid(page); 863 list_move(&page->lru, &h->hugepage_freelists[nid]); 864 h->free_huge_pages++; 865 h->free_huge_pages_node[nid]++; 866 } 867 868 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 869 { 870 struct page *page; 871 872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 873 if (!is_migrate_isolate_page(page)) 874 break; 875 /* 876 * if 'non-isolated free hugepage' not found on the list, 877 * the allocation fails. 878 */ 879 if (&h->hugepage_freelists[nid] == &page->lru) 880 return NULL; 881 list_move(&page->lru, &h->hugepage_activelist); 882 set_page_refcounted(page); 883 h->free_huge_pages--; 884 h->free_huge_pages_node[nid]--; 885 return page; 886 } 887 888 /* Movability of hugepages depends on migration support. */ 889 static inline gfp_t htlb_alloc_mask(struct hstate *h) 890 { 891 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 892 return GFP_HIGHUSER_MOVABLE; 893 else 894 return GFP_HIGHUSER; 895 } 896 897 static struct page *dequeue_huge_page_vma(struct hstate *h, 898 struct vm_area_struct *vma, 899 unsigned long address, int avoid_reserve, 900 long chg) 901 { 902 struct page *page = NULL; 903 struct mempolicy *mpol; 904 nodemask_t *nodemask; 905 struct zonelist *zonelist; 906 struct zone *zone; 907 struct zoneref *z; 908 unsigned int cpuset_mems_cookie; 909 910 /* 911 * A child process with MAP_PRIVATE mappings created by their parent 912 * have no page reserves. This check ensures that reservations are 913 * not "stolen". The child may still get SIGKILLed 914 */ 915 if (!vma_has_reserves(vma, chg) && 916 h->free_huge_pages - h->resv_huge_pages == 0) 917 goto err; 918 919 /* If reserves cannot be used, ensure enough pages are in the pool */ 920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 921 goto err; 922 923 retry_cpuset: 924 cpuset_mems_cookie = read_mems_allowed_begin(); 925 zonelist = huge_zonelist(vma, address, 926 htlb_alloc_mask(h), &mpol, &nodemask); 927 928 for_each_zone_zonelist_nodemask(zone, z, zonelist, 929 MAX_NR_ZONES - 1, nodemask) { 930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) { 931 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 932 if (page) { 933 if (avoid_reserve) 934 break; 935 if (!vma_has_reserves(vma, chg)) 936 break; 937 938 SetPagePrivate(page); 939 h->resv_huge_pages--; 940 break; 941 } 942 } 943 } 944 945 mpol_cond_put(mpol); 946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 947 goto retry_cpuset; 948 return page; 949 950 err: 951 return NULL; 952 } 953 954 /* 955 * common helper functions for hstate_next_node_to_{alloc|free}. 956 * We may have allocated or freed a huge page based on a different 957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 958 * be outside of *nodes_allowed. Ensure that we use an allowed 959 * node for alloc or free. 960 */ 961 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 962 { 963 nid = next_node_in(nid, *nodes_allowed); 964 VM_BUG_ON(nid >= MAX_NUMNODES); 965 966 return nid; 967 } 968 969 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 970 { 971 if (!node_isset(nid, *nodes_allowed)) 972 nid = next_node_allowed(nid, nodes_allowed); 973 return nid; 974 } 975 976 /* 977 * returns the previously saved node ["this node"] from which to 978 * allocate a persistent huge page for the pool and advance the 979 * next node from which to allocate, handling wrap at end of node 980 * mask. 981 */ 982 static int hstate_next_node_to_alloc(struct hstate *h, 983 nodemask_t *nodes_allowed) 984 { 985 int nid; 986 987 VM_BUG_ON(!nodes_allowed); 988 989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 991 992 return nid; 993 } 994 995 /* 996 * helper for free_pool_huge_page() - return the previously saved 997 * node ["this node"] from which to free a huge page. Advance the 998 * next node id whether or not we find a free huge page to free so 999 * that the next attempt to free addresses the next node. 1000 */ 1001 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1002 { 1003 int nid; 1004 1005 VM_BUG_ON(!nodes_allowed); 1006 1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1009 1010 return nid; 1011 } 1012 1013 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1014 for (nr_nodes = nodes_weight(*mask); \ 1015 nr_nodes > 0 && \ 1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1017 nr_nodes--) 1018 1019 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1020 for (nr_nodes = nodes_weight(*mask); \ 1021 nr_nodes > 0 && \ 1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1023 nr_nodes--) 1024 1025 #if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \ 1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \ 1027 defined(CONFIG_CMA)) 1028 static void destroy_compound_gigantic_page(struct page *page, 1029 unsigned int order) 1030 { 1031 int i; 1032 int nr_pages = 1 << order; 1033 struct page *p = page + 1; 1034 1035 atomic_set(compound_mapcount_ptr(page), 0); 1036 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1037 clear_compound_head(p); 1038 set_page_refcounted(p); 1039 } 1040 1041 set_compound_order(page, 0); 1042 __ClearPageHead(page); 1043 } 1044 1045 static void free_gigantic_page(struct page *page, unsigned int order) 1046 { 1047 free_contig_range(page_to_pfn(page), 1 << order); 1048 } 1049 1050 static int __alloc_gigantic_page(unsigned long start_pfn, 1051 unsigned long nr_pages) 1052 { 1053 unsigned long end_pfn = start_pfn + nr_pages; 1054 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1055 } 1056 1057 static bool pfn_range_valid_gigantic(struct zone *z, 1058 unsigned long start_pfn, unsigned long nr_pages) 1059 { 1060 unsigned long i, end_pfn = start_pfn + nr_pages; 1061 struct page *page; 1062 1063 for (i = start_pfn; i < end_pfn; i++) { 1064 if (!pfn_valid(i)) 1065 return false; 1066 1067 page = pfn_to_page(i); 1068 1069 if (page_zone(page) != z) 1070 return false; 1071 1072 if (PageReserved(page)) 1073 return false; 1074 1075 if (page_count(page) > 0) 1076 return false; 1077 1078 if (PageHuge(page)) 1079 return false; 1080 } 1081 1082 return true; 1083 } 1084 1085 static bool zone_spans_last_pfn(const struct zone *zone, 1086 unsigned long start_pfn, unsigned long nr_pages) 1087 { 1088 unsigned long last_pfn = start_pfn + nr_pages - 1; 1089 return zone_spans_pfn(zone, last_pfn); 1090 } 1091 1092 static struct page *alloc_gigantic_page(int nid, unsigned int order) 1093 { 1094 unsigned long nr_pages = 1 << order; 1095 unsigned long ret, pfn, flags; 1096 struct zone *z; 1097 1098 z = NODE_DATA(nid)->node_zones; 1099 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { 1100 spin_lock_irqsave(&z->lock, flags); 1101 1102 pfn = ALIGN(z->zone_start_pfn, nr_pages); 1103 while (zone_spans_last_pfn(z, pfn, nr_pages)) { 1104 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) { 1105 /* 1106 * We release the zone lock here because 1107 * alloc_contig_range() will also lock the zone 1108 * at some point. If there's an allocation 1109 * spinning on this lock, it may win the race 1110 * and cause alloc_contig_range() to fail... 1111 */ 1112 spin_unlock_irqrestore(&z->lock, flags); 1113 ret = __alloc_gigantic_page(pfn, nr_pages); 1114 if (!ret) 1115 return pfn_to_page(pfn); 1116 spin_lock_irqsave(&z->lock, flags); 1117 } 1118 pfn += nr_pages; 1119 } 1120 1121 spin_unlock_irqrestore(&z->lock, flags); 1122 } 1123 1124 return NULL; 1125 } 1126 1127 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1128 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1129 1130 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1131 { 1132 struct page *page; 1133 1134 page = alloc_gigantic_page(nid, huge_page_order(h)); 1135 if (page) { 1136 prep_compound_gigantic_page(page, huge_page_order(h)); 1137 prep_new_huge_page(h, page, nid); 1138 } 1139 1140 return page; 1141 } 1142 1143 static int alloc_fresh_gigantic_page(struct hstate *h, 1144 nodemask_t *nodes_allowed) 1145 { 1146 struct page *page = NULL; 1147 int nr_nodes, node; 1148 1149 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1150 page = alloc_fresh_gigantic_page_node(h, node); 1151 if (page) 1152 return 1; 1153 } 1154 1155 return 0; 1156 } 1157 1158 static inline bool gigantic_page_supported(void) { return true; } 1159 #else 1160 static inline bool gigantic_page_supported(void) { return false; } 1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1162 static inline void destroy_compound_gigantic_page(struct page *page, 1163 unsigned int order) { } 1164 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1165 nodemask_t *nodes_allowed) { return 0; } 1166 #endif 1167 1168 static void update_and_free_page(struct hstate *h, struct page *page) 1169 { 1170 int i; 1171 1172 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1173 return; 1174 1175 h->nr_huge_pages--; 1176 h->nr_huge_pages_node[page_to_nid(page)]--; 1177 for (i = 0; i < pages_per_huge_page(h); i++) { 1178 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1179 1 << PG_referenced | 1 << PG_dirty | 1180 1 << PG_active | 1 << PG_private | 1181 1 << PG_writeback); 1182 } 1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1184 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1185 set_page_refcounted(page); 1186 if (hstate_is_gigantic(h)) { 1187 destroy_compound_gigantic_page(page, huge_page_order(h)); 1188 free_gigantic_page(page, huge_page_order(h)); 1189 } else { 1190 __free_pages(page, huge_page_order(h)); 1191 } 1192 } 1193 1194 struct hstate *size_to_hstate(unsigned long size) 1195 { 1196 struct hstate *h; 1197 1198 for_each_hstate(h) { 1199 if (huge_page_size(h) == size) 1200 return h; 1201 } 1202 return NULL; 1203 } 1204 1205 /* 1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1207 * to hstate->hugepage_activelist.) 1208 * 1209 * This function can be called for tail pages, but never returns true for them. 1210 */ 1211 bool page_huge_active(struct page *page) 1212 { 1213 VM_BUG_ON_PAGE(!PageHuge(page), page); 1214 return PageHead(page) && PagePrivate(&page[1]); 1215 } 1216 1217 /* never called for tail page */ 1218 static void set_page_huge_active(struct page *page) 1219 { 1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1221 SetPagePrivate(&page[1]); 1222 } 1223 1224 static void clear_page_huge_active(struct page *page) 1225 { 1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1227 ClearPagePrivate(&page[1]); 1228 } 1229 1230 void free_huge_page(struct page *page) 1231 { 1232 /* 1233 * Can't pass hstate in here because it is called from the 1234 * compound page destructor. 1235 */ 1236 struct hstate *h = page_hstate(page); 1237 int nid = page_to_nid(page); 1238 struct hugepage_subpool *spool = 1239 (struct hugepage_subpool *)page_private(page); 1240 bool restore_reserve; 1241 1242 set_page_private(page, 0); 1243 page->mapping = NULL; 1244 VM_BUG_ON_PAGE(page_count(page), page); 1245 VM_BUG_ON_PAGE(page_mapcount(page), page); 1246 restore_reserve = PagePrivate(page); 1247 ClearPagePrivate(page); 1248 1249 /* 1250 * A return code of zero implies that the subpool will be under its 1251 * minimum size if the reservation is not restored after page is free. 1252 * Therefore, force restore_reserve operation. 1253 */ 1254 if (hugepage_subpool_put_pages(spool, 1) == 0) 1255 restore_reserve = true; 1256 1257 spin_lock(&hugetlb_lock); 1258 clear_page_huge_active(page); 1259 hugetlb_cgroup_uncharge_page(hstate_index(h), 1260 pages_per_huge_page(h), page); 1261 if (restore_reserve) 1262 h->resv_huge_pages++; 1263 1264 if (h->surplus_huge_pages_node[nid]) { 1265 /* remove the page from active list */ 1266 list_del(&page->lru); 1267 update_and_free_page(h, page); 1268 h->surplus_huge_pages--; 1269 h->surplus_huge_pages_node[nid]--; 1270 } else { 1271 arch_clear_hugepage_flags(page); 1272 enqueue_huge_page(h, page); 1273 } 1274 spin_unlock(&hugetlb_lock); 1275 } 1276 1277 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1278 { 1279 INIT_LIST_HEAD(&page->lru); 1280 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1281 spin_lock(&hugetlb_lock); 1282 set_hugetlb_cgroup(page, NULL); 1283 h->nr_huge_pages++; 1284 h->nr_huge_pages_node[nid]++; 1285 spin_unlock(&hugetlb_lock); 1286 put_page(page); /* free it into the hugepage allocator */ 1287 } 1288 1289 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1290 { 1291 int i; 1292 int nr_pages = 1 << order; 1293 struct page *p = page + 1; 1294 1295 /* we rely on prep_new_huge_page to set the destructor */ 1296 set_compound_order(page, order); 1297 __ClearPageReserved(page); 1298 __SetPageHead(page); 1299 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1300 /* 1301 * For gigantic hugepages allocated through bootmem at 1302 * boot, it's safer to be consistent with the not-gigantic 1303 * hugepages and clear the PG_reserved bit from all tail pages 1304 * too. Otherwse drivers using get_user_pages() to access tail 1305 * pages may get the reference counting wrong if they see 1306 * PG_reserved set on a tail page (despite the head page not 1307 * having PG_reserved set). Enforcing this consistency between 1308 * head and tail pages allows drivers to optimize away a check 1309 * on the head page when they need know if put_page() is needed 1310 * after get_user_pages(). 1311 */ 1312 __ClearPageReserved(p); 1313 set_page_count(p, 0); 1314 set_compound_head(p, page); 1315 } 1316 atomic_set(compound_mapcount_ptr(page), -1); 1317 } 1318 1319 /* 1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1321 * transparent huge pages. See the PageTransHuge() documentation for more 1322 * details. 1323 */ 1324 int PageHuge(struct page *page) 1325 { 1326 if (!PageCompound(page)) 1327 return 0; 1328 1329 page = compound_head(page); 1330 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1331 } 1332 EXPORT_SYMBOL_GPL(PageHuge); 1333 1334 /* 1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1336 * normal or transparent huge pages. 1337 */ 1338 int PageHeadHuge(struct page *page_head) 1339 { 1340 if (!PageHead(page_head)) 1341 return 0; 1342 1343 return get_compound_page_dtor(page_head) == free_huge_page; 1344 } 1345 1346 pgoff_t __basepage_index(struct page *page) 1347 { 1348 struct page *page_head = compound_head(page); 1349 pgoff_t index = page_index(page_head); 1350 unsigned long compound_idx; 1351 1352 if (!PageHuge(page_head)) 1353 return page_index(page); 1354 1355 if (compound_order(page_head) >= MAX_ORDER) 1356 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1357 else 1358 compound_idx = page - page_head; 1359 1360 return (index << compound_order(page_head)) + compound_idx; 1361 } 1362 1363 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1364 { 1365 struct page *page; 1366 1367 page = __alloc_pages_node(nid, 1368 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1369 __GFP_REPEAT|__GFP_NOWARN, 1370 huge_page_order(h)); 1371 if (page) { 1372 prep_new_huge_page(h, page, nid); 1373 } 1374 1375 return page; 1376 } 1377 1378 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1379 { 1380 struct page *page; 1381 int nr_nodes, node; 1382 int ret = 0; 1383 1384 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1385 page = alloc_fresh_huge_page_node(h, node); 1386 if (page) { 1387 ret = 1; 1388 break; 1389 } 1390 } 1391 1392 if (ret) 1393 count_vm_event(HTLB_BUDDY_PGALLOC); 1394 else 1395 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1396 1397 return ret; 1398 } 1399 1400 /* 1401 * Free huge page from pool from next node to free. 1402 * Attempt to keep persistent huge pages more or less 1403 * balanced over allowed nodes. 1404 * Called with hugetlb_lock locked. 1405 */ 1406 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1407 bool acct_surplus) 1408 { 1409 int nr_nodes, node; 1410 int ret = 0; 1411 1412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1413 /* 1414 * If we're returning unused surplus pages, only examine 1415 * nodes with surplus pages. 1416 */ 1417 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1418 !list_empty(&h->hugepage_freelists[node])) { 1419 struct page *page = 1420 list_entry(h->hugepage_freelists[node].next, 1421 struct page, lru); 1422 list_del(&page->lru); 1423 h->free_huge_pages--; 1424 h->free_huge_pages_node[node]--; 1425 if (acct_surplus) { 1426 h->surplus_huge_pages--; 1427 h->surplus_huge_pages_node[node]--; 1428 } 1429 update_and_free_page(h, page); 1430 ret = 1; 1431 break; 1432 } 1433 } 1434 1435 return ret; 1436 } 1437 1438 /* 1439 * Dissolve a given free hugepage into free buddy pages. This function does 1440 * nothing for in-use (including surplus) hugepages. 1441 */ 1442 static void dissolve_free_huge_page(struct page *page) 1443 { 1444 spin_lock(&hugetlb_lock); 1445 if (PageHuge(page) && !page_count(page)) { 1446 struct hstate *h = page_hstate(page); 1447 int nid = page_to_nid(page); 1448 list_del(&page->lru); 1449 h->free_huge_pages--; 1450 h->free_huge_pages_node[nid]--; 1451 update_and_free_page(h, page); 1452 } 1453 spin_unlock(&hugetlb_lock); 1454 } 1455 1456 /* 1457 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1458 * make specified memory blocks removable from the system. 1459 * Note that start_pfn should aligned with (minimum) hugepage size. 1460 */ 1461 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1462 { 1463 unsigned long pfn; 1464 1465 if (!hugepages_supported()) 1466 return; 1467 1468 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order)); 1469 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) 1470 dissolve_free_huge_page(pfn_to_page(pfn)); 1471 } 1472 1473 /* 1474 * There are 3 ways this can get called: 1475 * 1. With vma+addr: we use the VMA's memory policy 1476 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge 1477 * page from any node, and let the buddy allocator itself figure 1478 * it out. 1479 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page 1480 * strictly from 'nid' 1481 */ 1482 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1483 struct vm_area_struct *vma, unsigned long addr, int nid) 1484 { 1485 int order = huge_page_order(h); 1486 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN; 1487 unsigned int cpuset_mems_cookie; 1488 1489 /* 1490 * We need a VMA to get a memory policy. If we do not 1491 * have one, we use the 'nid' argument. 1492 * 1493 * The mempolicy stuff below has some non-inlined bits 1494 * and calls ->vm_ops. That makes it hard to optimize at 1495 * compile-time, even when NUMA is off and it does 1496 * nothing. This helps the compiler optimize it out. 1497 */ 1498 if (!IS_ENABLED(CONFIG_NUMA) || !vma) { 1499 /* 1500 * If a specific node is requested, make sure to 1501 * get memory from there, but only when a node 1502 * is explicitly specified. 1503 */ 1504 if (nid != NUMA_NO_NODE) 1505 gfp |= __GFP_THISNODE; 1506 /* 1507 * Make sure to call something that can handle 1508 * nid=NUMA_NO_NODE 1509 */ 1510 return alloc_pages_node(nid, gfp, order); 1511 } 1512 1513 /* 1514 * OK, so we have a VMA. Fetch the mempolicy and try to 1515 * allocate a huge page with it. We will only reach this 1516 * when CONFIG_NUMA=y. 1517 */ 1518 do { 1519 struct page *page; 1520 struct mempolicy *mpol; 1521 struct zonelist *zl; 1522 nodemask_t *nodemask; 1523 1524 cpuset_mems_cookie = read_mems_allowed_begin(); 1525 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask); 1526 mpol_cond_put(mpol); 1527 page = __alloc_pages_nodemask(gfp, order, zl, nodemask); 1528 if (page) 1529 return page; 1530 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1531 1532 return NULL; 1533 } 1534 1535 /* 1536 * There are two ways to allocate a huge page: 1537 * 1. When you have a VMA and an address (like a fault) 1538 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages) 1539 * 1540 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in 1541 * this case which signifies that the allocation should be done with 1542 * respect for the VMA's memory policy. 1543 * 1544 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This 1545 * implies that memory policies will not be taken in to account. 1546 */ 1547 static struct page *__alloc_buddy_huge_page(struct hstate *h, 1548 struct vm_area_struct *vma, unsigned long addr, int nid) 1549 { 1550 struct page *page; 1551 unsigned int r_nid; 1552 1553 if (hstate_is_gigantic(h)) 1554 return NULL; 1555 1556 /* 1557 * Make sure that anyone specifying 'nid' is not also specifying a VMA. 1558 * This makes sure the caller is picking _one_ of the modes with which 1559 * we can call this function, not both. 1560 */ 1561 if (vma || (addr != -1)) { 1562 VM_WARN_ON_ONCE(addr == -1); 1563 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE); 1564 } 1565 /* 1566 * Assume we will successfully allocate the surplus page to 1567 * prevent racing processes from causing the surplus to exceed 1568 * overcommit 1569 * 1570 * This however introduces a different race, where a process B 1571 * tries to grow the static hugepage pool while alloc_pages() is 1572 * called by process A. B will only examine the per-node 1573 * counters in determining if surplus huge pages can be 1574 * converted to normal huge pages in adjust_pool_surplus(). A 1575 * won't be able to increment the per-node counter, until the 1576 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1577 * no more huge pages can be converted from surplus to normal 1578 * state (and doesn't try to convert again). Thus, we have a 1579 * case where a surplus huge page exists, the pool is grown, and 1580 * the surplus huge page still exists after, even though it 1581 * should just have been converted to a normal huge page. This 1582 * does not leak memory, though, as the hugepage will be freed 1583 * once it is out of use. It also does not allow the counters to 1584 * go out of whack in adjust_pool_surplus() as we don't modify 1585 * the node values until we've gotten the hugepage and only the 1586 * per-node value is checked there. 1587 */ 1588 spin_lock(&hugetlb_lock); 1589 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1590 spin_unlock(&hugetlb_lock); 1591 return NULL; 1592 } else { 1593 h->nr_huge_pages++; 1594 h->surplus_huge_pages++; 1595 } 1596 spin_unlock(&hugetlb_lock); 1597 1598 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid); 1599 1600 spin_lock(&hugetlb_lock); 1601 if (page) { 1602 INIT_LIST_HEAD(&page->lru); 1603 r_nid = page_to_nid(page); 1604 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1605 set_hugetlb_cgroup(page, NULL); 1606 /* 1607 * We incremented the global counters already 1608 */ 1609 h->nr_huge_pages_node[r_nid]++; 1610 h->surplus_huge_pages_node[r_nid]++; 1611 __count_vm_event(HTLB_BUDDY_PGALLOC); 1612 } else { 1613 h->nr_huge_pages--; 1614 h->surplus_huge_pages--; 1615 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1616 } 1617 spin_unlock(&hugetlb_lock); 1618 1619 return page; 1620 } 1621 1622 /* 1623 * Allocate a huge page from 'nid'. Note, 'nid' may be 1624 * NUMA_NO_NODE, which means that it may be allocated 1625 * anywhere. 1626 */ 1627 static 1628 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid) 1629 { 1630 unsigned long addr = -1; 1631 1632 return __alloc_buddy_huge_page(h, NULL, addr, nid); 1633 } 1634 1635 /* 1636 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1637 */ 1638 static 1639 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1640 struct vm_area_struct *vma, unsigned long addr) 1641 { 1642 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE); 1643 } 1644 1645 /* 1646 * This allocation function is useful in the context where vma is irrelevant. 1647 * E.g. soft-offlining uses this function because it only cares physical 1648 * address of error page. 1649 */ 1650 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1651 { 1652 struct page *page = NULL; 1653 1654 spin_lock(&hugetlb_lock); 1655 if (h->free_huge_pages - h->resv_huge_pages > 0) 1656 page = dequeue_huge_page_node(h, nid); 1657 spin_unlock(&hugetlb_lock); 1658 1659 if (!page) 1660 page = __alloc_buddy_huge_page_no_mpol(h, nid); 1661 1662 return page; 1663 } 1664 1665 /* 1666 * Increase the hugetlb pool such that it can accommodate a reservation 1667 * of size 'delta'. 1668 */ 1669 static int gather_surplus_pages(struct hstate *h, int delta) 1670 { 1671 struct list_head surplus_list; 1672 struct page *page, *tmp; 1673 int ret, i; 1674 int needed, allocated; 1675 bool alloc_ok = true; 1676 1677 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1678 if (needed <= 0) { 1679 h->resv_huge_pages += delta; 1680 return 0; 1681 } 1682 1683 allocated = 0; 1684 INIT_LIST_HEAD(&surplus_list); 1685 1686 ret = -ENOMEM; 1687 retry: 1688 spin_unlock(&hugetlb_lock); 1689 for (i = 0; i < needed; i++) { 1690 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE); 1691 if (!page) { 1692 alloc_ok = false; 1693 break; 1694 } 1695 list_add(&page->lru, &surplus_list); 1696 } 1697 allocated += i; 1698 1699 /* 1700 * After retaking hugetlb_lock, we need to recalculate 'needed' 1701 * because either resv_huge_pages or free_huge_pages may have changed. 1702 */ 1703 spin_lock(&hugetlb_lock); 1704 needed = (h->resv_huge_pages + delta) - 1705 (h->free_huge_pages + allocated); 1706 if (needed > 0) { 1707 if (alloc_ok) 1708 goto retry; 1709 /* 1710 * We were not able to allocate enough pages to 1711 * satisfy the entire reservation so we free what 1712 * we've allocated so far. 1713 */ 1714 goto free; 1715 } 1716 /* 1717 * The surplus_list now contains _at_least_ the number of extra pages 1718 * needed to accommodate the reservation. Add the appropriate number 1719 * of pages to the hugetlb pool and free the extras back to the buddy 1720 * allocator. Commit the entire reservation here to prevent another 1721 * process from stealing the pages as they are added to the pool but 1722 * before they are reserved. 1723 */ 1724 needed += allocated; 1725 h->resv_huge_pages += delta; 1726 ret = 0; 1727 1728 /* Free the needed pages to the hugetlb pool */ 1729 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1730 if ((--needed) < 0) 1731 break; 1732 /* 1733 * This page is now managed by the hugetlb allocator and has 1734 * no users -- drop the buddy allocator's reference. 1735 */ 1736 put_page_testzero(page); 1737 VM_BUG_ON_PAGE(page_count(page), page); 1738 enqueue_huge_page(h, page); 1739 } 1740 free: 1741 spin_unlock(&hugetlb_lock); 1742 1743 /* Free unnecessary surplus pages to the buddy allocator */ 1744 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1745 put_page(page); 1746 spin_lock(&hugetlb_lock); 1747 1748 return ret; 1749 } 1750 1751 /* 1752 * When releasing a hugetlb pool reservation, any surplus pages that were 1753 * allocated to satisfy the reservation must be explicitly freed if they were 1754 * never used. 1755 * Called with hugetlb_lock held. 1756 */ 1757 static void return_unused_surplus_pages(struct hstate *h, 1758 unsigned long unused_resv_pages) 1759 { 1760 unsigned long nr_pages; 1761 1762 /* Uncommit the reservation */ 1763 h->resv_huge_pages -= unused_resv_pages; 1764 1765 /* Cannot return gigantic pages currently */ 1766 if (hstate_is_gigantic(h)) 1767 return; 1768 1769 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1770 1771 /* 1772 * We want to release as many surplus pages as possible, spread 1773 * evenly across all nodes with memory. Iterate across these nodes 1774 * until we can no longer free unreserved surplus pages. This occurs 1775 * when the nodes with surplus pages have no free pages. 1776 * free_pool_huge_page() will balance the the freed pages across the 1777 * on-line nodes with memory and will handle the hstate accounting. 1778 */ 1779 while (nr_pages--) { 1780 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1781 break; 1782 cond_resched_lock(&hugetlb_lock); 1783 } 1784 } 1785 1786 1787 /* 1788 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1789 * are used by the huge page allocation routines to manage reservations. 1790 * 1791 * vma_needs_reservation is called to determine if the huge page at addr 1792 * within the vma has an associated reservation. If a reservation is 1793 * needed, the value 1 is returned. The caller is then responsible for 1794 * managing the global reservation and subpool usage counts. After 1795 * the huge page has been allocated, vma_commit_reservation is called 1796 * to add the page to the reservation map. If the page allocation fails, 1797 * the reservation must be ended instead of committed. vma_end_reservation 1798 * is called in such cases. 1799 * 1800 * In the normal case, vma_commit_reservation returns the same value 1801 * as the preceding vma_needs_reservation call. The only time this 1802 * is not the case is if a reserve map was changed between calls. It 1803 * is the responsibility of the caller to notice the difference and 1804 * take appropriate action. 1805 */ 1806 enum vma_resv_mode { 1807 VMA_NEEDS_RESV, 1808 VMA_COMMIT_RESV, 1809 VMA_END_RESV, 1810 }; 1811 static long __vma_reservation_common(struct hstate *h, 1812 struct vm_area_struct *vma, unsigned long addr, 1813 enum vma_resv_mode mode) 1814 { 1815 struct resv_map *resv; 1816 pgoff_t idx; 1817 long ret; 1818 1819 resv = vma_resv_map(vma); 1820 if (!resv) 1821 return 1; 1822 1823 idx = vma_hugecache_offset(h, vma, addr); 1824 switch (mode) { 1825 case VMA_NEEDS_RESV: 1826 ret = region_chg(resv, idx, idx + 1); 1827 break; 1828 case VMA_COMMIT_RESV: 1829 ret = region_add(resv, idx, idx + 1); 1830 break; 1831 case VMA_END_RESV: 1832 region_abort(resv, idx, idx + 1); 1833 ret = 0; 1834 break; 1835 default: 1836 BUG(); 1837 } 1838 1839 if (vma->vm_flags & VM_MAYSHARE) 1840 return ret; 1841 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1842 /* 1843 * In most cases, reserves always exist for private mappings. 1844 * However, a file associated with mapping could have been 1845 * hole punched or truncated after reserves were consumed. 1846 * As subsequent fault on such a range will not use reserves. 1847 * Subtle - The reserve map for private mappings has the 1848 * opposite meaning than that of shared mappings. If NO 1849 * entry is in the reserve map, it means a reservation exists. 1850 * If an entry exists in the reserve map, it means the 1851 * reservation has already been consumed. As a result, the 1852 * return value of this routine is the opposite of the 1853 * value returned from reserve map manipulation routines above. 1854 */ 1855 if (ret) 1856 return 0; 1857 else 1858 return 1; 1859 } 1860 else 1861 return ret < 0 ? ret : 0; 1862 } 1863 1864 static long vma_needs_reservation(struct hstate *h, 1865 struct vm_area_struct *vma, unsigned long addr) 1866 { 1867 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1868 } 1869 1870 static long vma_commit_reservation(struct hstate *h, 1871 struct vm_area_struct *vma, unsigned long addr) 1872 { 1873 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1874 } 1875 1876 static void vma_end_reservation(struct hstate *h, 1877 struct vm_area_struct *vma, unsigned long addr) 1878 { 1879 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1880 } 1881 1882 struct page *alloc_huge_page(struct vm_area_struct *vma, 1883 unsigned long addr, int avoid_reserve) 1884 { 1885 struct hugepage_subpool *spool = subpool_vma(vma); 1886 struct hstate *h = hstate_vma(vma); 1887 struct page *page; 1888 long map_chg, map_commit; 1889 long gbl_chg; 1890 int ret, idx; 1891 struct hugetlb_cgroup *h_cg; 1892 1893 idx = hstate_index(h); 1894 /* 1895 * Examine the region/reserve map to determine if the process 1896 * has a reservation for the page to be allocated. A return 1897 * code of zero indicates a reservation exists (no change). 1898 */ 1899 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1900 if (map_chg < 0) 1901 return ERR_PTR(-ENOMEM); 1902 1903 /* 1904 * Processes that did not create the mapping will have no 1905 * reserves as indicated by the region/reserve map. Check 1906 * that the allocation will not exceed the subpool limit. 1907 * Allocations for MAP_NORESERVE mappings also need to be 1908 * checked against any subpool limit. 1909 */ 1910 if (map_chg || avoid_reserve) { 1911 gbl_chg = hugepage_subpool_get_pages(spool, 1); 1912 if (gbl_chg < 0) { 1913 vma_end_reservation(h, vma, addr); 1914 return ERR_PTR(-ENOSPC); 1915 } 1916 1917 /* 1918 * Even though there was no reservation in the region/reserve 1919 * map, there could be reservations associated with the 1920 * subpool that can be used. This would be indicated if the 1921 * return value of hugepage_subpool_get_pages() is zero. 1922 * However, if avoid_reserve is specified we still avoid even 1923 * the subpool reservations. 1924 */ 1925 if (avoid_reserve) 1926 gbl_chg = 1; 1927 } 1928 1929 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1930 if (ret) 1931 goto out_subpool_put; 1932 1933 spin_lock(&hugetlb_lock); 1934 /* 1935 * glb_chg is passed to indicate whether or not a page must be taken 1936 * from the global free pool (global change). gbl_chg == 0 indicates 1937 * a reservation exists for the allocation. 1938 */ 1939 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 1940 if (!page) { 1941 spin_unlock(&hugetlb_lock); 1942 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 1943 if (!page) 1944 goto out_uncharge_cgroup; 1945 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 1946 SetPagePrivate(page); 1947 h->resv_huge_pages--; 1948 } 1949 spin_lock(&hugetlb_lock); 1950 list_move(&page->lru, &h->hugepage_activelist); 1951 /* Fall through */ 1952 } 1953 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 1954 spin_unlock(&hugetlb_lock); 1955 1956 set_page_private(page, (unsigned long)spool); 1957 1958 map_commit = vma_commit_reservation(h, vma, addr); 1959 if (unlikely(map_chg > map_commit)) { 1960 /* 1961 * The page was added to the reservation map between 1962 * vma_needs_reservation and vma_commit_reservation. 1963 * This indicates a race with hugetlb_reserve_pages. 1964 * Adjust for the subpool count incremented above AND 1965 * in hugetlb_reserve_pages for the same page. Also, 1966 * the reservation count added in hugetlb_reserve_pages 1967 * no longer applies. 1968 */ 1969 long rsv_adjust; 1970 1971 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 1972 hugetlb_acct_memory(h, -rsv_adjust); 1973 } 1974 return page; 1975 1976 out_uncharge_cgroup: 1977 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 1978 out_subpool_put: 1979 if (map_chg || avoid_reserve) 1980 hugepage_subpool_put_pages(spool, 1); 1981 vma_end_reservation(h, vma, addr); 1982 return ERR_PTR(-ENOSPC); 1983 } 1984 1985 /* 1986 * alloc_huge_page()'s wrapper which simply returns the page if allocation 1987 * succeeds, otherwise NULL. This function is called from new_vma_page(), 1988 * where no ERR_VALUE is expected to be returned. 1989 */ 1990 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 1991 unsigned long addr, int avoid_reserve) 1992 { 1993 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 1994 if (IS_ERR(page)) 1995 page = NULL; 1996 return page; 1997 } 1998 1999 int __weak alloc_bootmem_huge_page(struct hstate *h) 2000 { 2001 struct huge_bootmem_page *m; 2002 int nr_nodes, node; 2003 2004 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2005 void *addr; 2006 2007 addr = memblock_virt_alloc_try_nid_nopanic( 2008 huge_page_size(h), huge_page_size(h), 2009 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2010 if (addr) { 2011 /* 2012 * Use the beginning of the huge page to store the 2013 * huge_bootmem_page struct (until gather_bootmem 2014 * puts them into the mem_map). 2015 */ 2016 m = addr; 2017 goto found; 2018 } 2019 } 2020 return 0; 2021 2022 found: 2023 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2024 /* Put them into a private list first because mem_map is not up yet */ 2025 list_add(&m->list, &huge_boot_pages); 2026 m->hstate = h; 2027 return 1; 2028 } 2029 2030 static void __init prep_compound_huge_page(struct page *page, 2031 unsigned int order) 2032 { 2033 if (unlikely(order > (MAX_ORDER - 1))) 2034 prep_compound_gigantic_page(page, order); 2035 else 2036 prep_compound_page(page, order); 2037 } 2038 2039 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2040 static void __init gather_bootmem_prealloc(void) 2041 { 2042 struct huge_bootmem_page *m; 2043 2044 list_for_each_entry(m, &huge_boot_pages, list) { 2045 struct hstate *h = m->hstate; 2046 struct page *page; 2047 2048 #ifdef CONFIG_HIGHMEM 2049 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2050 memblock_free_late(__pa(m), 2051 sizeof(struct huge_bootmem_page)); 2052 #else 2053 page = virt_to_page(m); 2054 #endif 2055 WARN_ON(page_count(page) != 1); 2056 prep_compound_huge_page(page, h->order); 2057 WARN_ON(PageReserved(page)); 2058 prep_new_huge_page(h, page, page_to_nid(page)); 2059 /* 2060 * If we had gigantic hugepages allocated at boot time, we need 2061 * to restore the 'stolen' pages to totalram_pages in order to 2062 * fix confusing memory reports from free(1) and another 2063 * side-effects, like CommitLimit going negative. 2064 */ 2065 if (hstate_is_gigantic(h)) 2066 adjust_managed_page_count(page, 1 << h->order); 2067 } 2068 } 2069 2070 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2071 { 2072 unsigned long i; 2073 2074 for (i = 0; i < h->max_huge_pages; ++i) { 2075 if (hstate_is_gigantic(h)) { 2076 if (!alloc_bootmem_huge_page(h)) 2077 break; 2078 } else if (!alloc_fresh_huge_page(h, 2079 &node_states[N_MEMORY])) 2080 break; 2081 } 2082 h->max_huge_pages = i; 2083 } 2084 2085 static void __init hugetlb_init_hstates(void) 2086 { 2087 struct hstate *h; 2088 2089 for_each_hstate(h) { 2090 if (minimum_order > huge_page_order(h)) 2091 minimum_order = huge_page_order(h); 2092 2093 /* oversize hugepages were init'ed in early boot */ 2094 if (!hstate_is_gigantic(h)) 2095 hugetlb_hstate_alloc_pages(h); 2096 } 2097 VM_BUG_ON(minimum_order == UINT_MAX); 2098 } 2099 2100 static char * __init memfmt(char *buf, unsigned long n) 2101 { 2102 if (n >= (1UL << 30)) 2103 sprintf(buf, "%lu GB", n >> 30); 2104 else if (n >= (1UL << 20)) 2105 sprintf(buf, "%lu MB", n >> 20); 2106 else 2107 sprintf(buf, "%lu KB", n >> 10); 2108 return buf; 2109 } 2110 2111 static void __init report_hugepages(void) 2112 { 2113 struct hstate *h; 2114 2115 for_each_hstate(h) { 2116 char buf[32]; 2117 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2118 memfmt(buf, huge_page_size(h)), 2119 h->free_huge_pages); 2120 } 2121 } 2122 2123 #ifdef CONFIG_HIGHMEM 2124 static void try_to_free_low(struct hstate *h, unsigned long count, 2125 nodemask_t *nodes_allowed) 2126 { 2127 int i; 2128 2129 if (hstate_is_gigantic(h)) 2130 return; 2131 2132 for_each_node_mask(i, *nodes_allowed) { 2133 struct page *page, *next; 2134 struct list_head *freel = &h->hugepage_freelists[i]; 2135 list_for_each_entry_safe(page, next, freel, lru) { 2136 if (count >= h->nr_huge_pages) 2137 return; 2138 if (PageHighMem(page)) 2139 continue; 2140 list_del(&page->lru); 2141 update_and_free_page(h, page); 2142 h->free_huge_pages--; 2143 h->free_huge_pages_node[page_to_nid(page)]--; 2144 } 2145 } 2146 } 2147 #else 2148 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2149 nodemask_t *nodes_allowed) 2150 { 2151 } 2152 #endif 2153 2154 /* 2155 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2156 * balanced by operating on them in a round-robin fashion. 2157 * Returns 1 if an adjustment was made. 2158 */ 2159 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2160 int delta) 2161 { 2162 int nr_nodes, node; 2163 2164 VM_BUG_ON(delta != -1 && delta != 1); 2165 2166 if (delta < 0) { 2167 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2168 if (h->surplus_huge_pages_node[node]) 2169 goto found; 2170 } 2171 } else { 2172 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2173 if (h->surplus_huge_pages_node[node] < 2174 h->nr_huge_pages_node[node]) 2175 goto found; 2176 } 2177 } 2178 return 0; 2179 2180 found: 2181 h->surplus_huge_pages += delta; 2182 h->surplus_huge_pages_node[node] += delta; 2183 return 1; 2184 } 2185 2186 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2187 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2188 nodemask_t *nodes_allowed) 2189 { 2190 unsigned long min_count, ret; 2191 2192 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2193 return h->max_huge_pages; 2194 2195 /* 2196 * Increase the pool size 2197 * First take pages out of surplus state. Then make up the 2198 * remaining difference by allocating fresh huge pages. 2199 * 2200 * We might race with __alloc_buddy_huge_page() here and be unable 2201 * to convert a surplus huge page to a normal huge page. That is 2202 * not critical, though, it just means the overall size of the 2203 * pool might be one hugepage larger than it needs to be, but 2204 * within all the constraints specified by the sysctls. 2205 */ 2206 spin_lock(&hugetlb_lock); 2207 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2208 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2209 break; 2210 } 2211 2212 while (count > persistent_huge_pages(h)) { 2213 /* 2214 * If this allocation races such that we no longer need the 2215 * page, free_huge_page will handle it by freeing the page 2216 * and reducing the surplus. 2217 */ 2218 spin_unlock(&hugetlb_lock); 2219 if (hstate_is_gigantic(h)) 2220 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2221 else 2222 ret = alloc_fresh_huge_page(h, nodes_allowed); 2223 spin_lock(&hugetlb_lock); 2224 if (!ret) 2225 goto out; 2226 2227 /* Bail for signals. Probably ctrl-c from user */ 2228 if (signal_pending(current)) 2229 goto out; 2230 } 2231 2232 /* 2233 * Decrease the pool size 2234 * First return free pages to the buddy allocator (being careful 2235 * to keep enough around to satisfy reservations). Then place 2236 * pages into surplus state as needed so the pool will shrink 2237 * to the desired size as pages become free. 2238 * 2239 * By placing pages into the surplus state independent of the 2240 * overcommit value, we are allowing the surplus pool size to 2241 * exceed overcommit. There are few sane options here. Since 2242 * __alloc_buddy_huge_page() is checking the global counter, 2243 * though, we'll note that we're not allowed to exceed surplus 2244 * and won't grow the pool anywhere else. Not until one of the 2245 * sysctls are changed, or the surplus pages go out of use. 2246 */ 2247 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2248 min_count = max(count, min_count); 2249 try_to_free_low(h, min_count, nodes_allowed); 2250 while (min_count < persistent_huge_pages(h)) { 2251 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2252 break; 2253 cond_resched_lock(&hugetlb_lock); 2254 } 2255 while (count < persistent_huge_pages(h)) { 2256 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2257 break; 2258 } 2259 out: 2260 ret = persistent_huge_pages(h); 2261 spin_unlock(&hugetlb_lock); 2262 return ret; 2263 } 2264 2265 #define HSTATE_ATTR_RO(_name) \ 2266 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2267 2268 #define HSTATE_ATTR(_name) \ 2269 static struct kobj_attribute _name##_attr = \ 2270 __ATTR(_name, 0644, _name##_show, _name##_store) 2271 2272 static struct kobject *hugepages_kobj; 2273 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2274 2275 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2276 2277 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2278 { 2279 int i; 2280 2281 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2282 if (hstate_kobjs[i] == kobj) { 2283 if (nidp) 2284 *nidp = NUMA_NO_NODE; 2285 return &hstates[i]; 2286 } 2287 2288 return kobj_to_node_hstate(kobj, nidp); 2289 } 2290 2291 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2292 struct kobj_attribute *attr, char *buf) 2293 { 2294 struct hstate *h; 2295 unsigned long nr_huge_pages; 2296 int nid; 2297 2298 h = kobj_to_hstate(kobj, &nid); 2299 if (nid == NUMA_NO_NODE) 2300 nr_huge_pages = h->nr_huge_pages; 2301 else 2302 nr_huge_pages = h->nr_huge_pages_node[nid]; 2303 2304 return sprintf(buf, "%lu\n", nr_huge_pages); 2305 } 2306 2307 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2308 struct hstate *h, int nid, 2309 unsigned long count, size_t len) 2310 { 2311 int err; 2312 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2313 2314 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2315 err = -EINVAL; 2316 goto out; 2317 } 2318 2319 if (nid == NUMA_NO_NODE) { 2320 /* 2321 * global hstate attribute 2322 */ 2323 if (!(obey_mempolicy && 2324 init_nodemask_of_mempolicy(nodes_allowed))) { 2325 NODEMASK_FREE(nodes_allowed); 2326 nodes_allowed = &node_states[N_MEMORY]; 2327 } 2328 } else if (nodes_allowed) { 2329 /* 2330 * per node hstate attribute: adjust count to global, 2331 * but restrict alloc/free to the specified node. 2332 */ 2333 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2334 init_nodemask_of_node(nodes_allowed, nid); 2335 } else 2336 nodes_allowed = &node_states[N_MEMORY]; 2337 2338 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2339 2340 if (nodes_allowed != &node_states[N_MEMORY]) 2341 NODEMASK_FREE(nodes_allowed); 2342 2343 return len; 2344 out: 2345 NODEMASK_FREE(nodes_allowed); 2346 return err; 2347 } 2348 2349 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2350 struct kobject *kobj, const char *buf, 2351 size_t len) 2352 { 2353 struct hstate *h; 2354 unsigned long count; 2355 int nid; 2356 int err; 2357 2358 err = kstrtoul(buf, 10, &count); 2359 if (err) 2360 return err; 2361 2362 h = kobj_to_hstate(kobj, &nid); 2363 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2364 } 2365 2366 static ssize_t nr_hugepages_show(struct kobject *kobj, 2367 struct kobj_attribute *attr, char *buf) 2368 { 2369 return nr_hugepages_show_common(kobj, attr, buf); 2370 } 2371 2372 static ssize_t nr_hugepages_store(struct kobject *kobj, 2373 struct kobj_attribute *attr, const char *buf, size_t len) 2374 { 2375 return nr_hugepages_store_common(false, kobj, buf, len); 2376 } 2377 HSTATE_ATTR(nr_hugepages); 2378 2379 #ifdef CONFIG_NUMA 2380 2381 /* 2382 * hstate attribute for optionally mempolicy-based constraint on persistent 2383 * huge page alloc/free. 2384 */ 2385 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2386 struct kobj_attribute *attr, char *buf) 2387 { 2388 return nr_hugepages_show_common(kobj, attr, buf); 2389 } 2390 2391 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2392 struct kobj_attribute *attr, const char *buf, size_t len) 2393 { 2394 return nr_hugepages_store_common(true, kobj, buf, len); 2395 } 2396 HSTATE_ATTR(nr_hugepages_mempolicy); 2397 #endif 2398 2399 2400 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2401 struct kobj_attribute *attr, char *buf) 2402 { 2403 struct hstate *h = kobj_to_hstate(kobj, NULL); 2404 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2405 } 2406 2407 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2408 struct kobj_attribute *attr, const char *buf, size_t count) 2409 { 2410 int err; 2411 unsigned long input; 2412 struct hstate *h = kobj_to_hstate(kobj, NULL); 2413 2414 if (hstate_is_gigantic(h)) 2415 return -EINVAL; 2416 2417 err = kstrtoul(buf, 10, &input); 2418 if (err) 2419 return err; 2420 2421 spin_lock(&hugetlb_lock); 2422 h->nr_overcommit_huge_pages = input; 2423 spin_unlock(&hugetlb_lock); 2424 2425 return count; 2426 } 2427 HSTATE_ATTR(nr_overcommit_hugepages); 2428 2429 static ssize_t free_hugepages_show(struct kobject *kobj, 2430 struct kobj_attribute *attr, char *buf) 2431 { 2432 struct hstate *h; 2433 unsigned long free_huge_pages; 2434 int nid; 2435 2436 h = kobj_to_hstate(kobj, &nid); 2437 if (nid == NUMA_NO_NODE) 2438 free_huge_pages = h->free_huge_pages; 2439 else 2440 free_huge_pages = h->free_huge_pages_node[nid]; 2441 2442 return sprintf(buf, "%lu\n", free_huge_pages); 2443 } 2444 HSTATE_ATTR_RO(free_hugepages); 2445 2446 static ssize_t resv_hugepages_show(struct kobject *kobj, 2447 struct kobj_attribute *attr, char *buf) 2448 { 2449 struct hstate *h = kobj_to_hstate(kobj, NULL); 2450 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2451 } 2452 HSTATE_ATTR_RO(resv_hugepages); 2453 2454 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2455 struct kobj_attribute *attr, char *buf) 2456 { 2457 struct hstate *h; 2458 unsigned long surplus_huge_pages; 2459 int nid; 2460 2461 h = kobj_to_hstate(kobj, &nid); 2462 if (nid == NUMA_NO_NODE) 2463 surplus_huge_pages = h->surplus_huge_pages; 2464 else 2465 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2466 2467 return sprintf(buf, "%lu\n", surplus_huge_pages); 2468 } 2469 HSTATE_ATTR_RO(surplus_hugepages); 2470 2471 static struct attribute *hstate_attrs[] = { 2472 &nr_hugepages_attr.attr, 2473 &nr_overcommit_hugepages_attr.attr, 2474 &free_hugepages_attr.attr, 2475 &resv_hugepages_attr.attr, 2476 &surplus_hugepages_attr.attr, 2477 #ifdef CONFIG_NUMA 2478 &nr_hugepages_mempolicy_attr.attr, 2479 #endif 2480 NULL, 2481 }; 2482 2483 static struct attribute_group hstate_attr_group = { 2484 .attrs = hstate_attrs, 2485 }; 2486 2487 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2488 struct kobject **hstate_kobjs, 2489 struct attribute_group *hstate_attr_group) 2490 { 2491 int retval; 2492 int hi = hstate_index(h); 2493 2494 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2495 if (!hstate_kobjs[hi]) 2496 return -ENOMEM; 2497 2498 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2499 if (retval) 2500 kobject_put(hstate_kobjs[hi]); 2501 2502 return retval; 2503 } 2504 2505 static void __init hugetlb_sysfs_init(void) 2506 { 2507 struct hstate *h; 2508 int err; 2509 2510 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2511 if (!hugepages_kobj) 2512 return; 2513 2514 for_each_hstate(h) { 2515 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2516 hstate_kobjs, &hstate_attr_group); 2517 if (err) 2518 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2519 } 2520 } 2521 2522 #ifdef CONFIG_NUMA 2523 2524 /* 2525 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2526 * with node devices in node_devices[] using a parallel array. The array 2527 * index of a node device or _hstate == node id. 2528 * This is here to avoid any static dependency of the node device driver, in 2529 * the base kernel, on the hugetlb module. 2530 */ 2531 struct node_hstate { 2532 struct kobject *hugepages_kobj; 2533 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2534 }; 2535 static struct node_hstate node_hstates[MAX_NUMNODES]; 2536 2537 /* 2538 * A subset of global hstate attributes for node devices 2539 */ 2540 static struct attribute *per_node_hstate_attrs[] = { 2541 &nr_hugepages_attr.attr, 2542 &free_hugepages_attr.attr, 2543 &surplus_hugepages_attr.attr, 2544 NULL, 2545 }; 2546 2547 static struct attribute_group per_node_hstate_attr_group = { 2548 .attrs = per_node_hstate_attrs, 2549 }; 2550 2551 /* 2552 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2553 * Returns node id via non-NULL nidp. 2554 */ 2555 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2556 { 2557 int nid; 2558 2559 for (nid = 0; nid < nr_node_ids; nid++) { 2560 struct node_hstate *nhs = &node_hstates[nid]; 2561 int i; 2562 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2563 if (nhs->hstate_kobjs[i] == kobj) { 2564 if (nidp) 2565 *nidp = nid; 2566 return &hstates[i]; 2567 } 2568 } 2569 2570 BUG(); 2571 return NULL; 2572 } 2573 2574 /* 2575 * Unregister hstate attributes from a single node device. 2576 * No-op if no hstate attributes attached. 2577 */ 2578 static void hugetlb_unregister_node(struct node *node) 2579 { 2580 struct hstate *h; 2581 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2582 2583 if (!nhs->hugepages_kobj) 2584 return; /* no hstate attributes */ 2585 2586 for_each_hstate(h) { 2587 int idx = hstate_index(h); 2588 if (nhs->hstate_kobjs[idx]) { 2589 kobject_put(nhs->hstate_kobjs[idx]); 2590 nhs->hstate_kobjs[idx] = NULL; 2591 } 2592 } 2593 2594 kobject_put(nhs->hugepages_kobj); 2595 nhs->hugepages_kobj = NULL; 2596 } 2597 2598 2599 /* 2600 * Register hstate attributes for a single node device. 2601 * No-op if attributes already registered. 2602 */ 2603 static void hugetlb_register_node(struct node *node) 2604 { 2605 struct hstate *h; 2606 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2607 int err; 2608 2609 if (nhs->hugepages_kobj) 2610 return; /* already allocated */ 2611 2612 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2613 &node->dev.kobj); 2614 if (!nhs->hugepages_kobj) 2615 return; 2616 2617 for_each_hstate(h) { 2618 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2619 nhs->hstate_kobjs, 2620 &per_node_hstate_attr_group); 2621 if (err) { 2622 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2623 h->name, node->dev.id); 2624 hugetlb_unregister_node(node); 2625 break; 2626 } 2627 } 2628 } 2629 2630 /* 2631 * hugetlb init time: register hstate attributes for all registered node 2632 * devices of nodes that have memory. All on-line nodes should have 2633 * registered their associated device by this time. 2634 */ 2635 static void __init hugetlb_register_all_nodes(void) 2636 { 2637 int nid; 2638 2639 for_each_node_state(nid, N_MEMORY) { 2640 struct node *node = node_devices[nid]; 2641 if (node->dev.id == nid) 2642 hugetlb_register_node(node); 2643 } 2644 2645 /* 2646 * Let the node device driver know we're here so it can 2647 * [un]register hstate attributes on node hotplug. 2648 */ 2649 register_hugetlbfs_with_node(hugetlb_register_node, 2650 hugetlb_unregister_node); 2651 } 2652 #else /* !CONFIG_NUMA */ 2653 2654 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2655 { 2656 BUG(); 2657 if (nidp) 2658 *nidp = -1; 2659 return NULL; 2660 } 2661 2662 static void hugetlb_register_all_nodes(void) { } 2663 2664 #endif 2665 2666 static int __init hugetlb_init(void) 2667 { 2668 int i; 2669 2670 if (!hugepages_supported()) 2671 return 0; 2672 2673 if (!size_to_hstate(default_hstate_size)) { 2674 default_hstate_size = HPAGE_SIZE; 2675 if (!size_to_hstate(default_hstate_size)) 2676 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2677 } 2678 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2679 if (default_hstate_max_huge_pages) { 2680 if (!default_hstate.max_huge_pages) 2681 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2682 } 2683 2684 hugetlb_init_hstates(); 2685 gather_bootmem_prealloc(); 2686 report_hugepages(); 2687 2688 hugetlb_sysfs_init(); 2689 hugetlb_register_all_nodes(); 2690 hugetlb_cgroup_file_init(); 2691 2692 #ifdef CONFIG_SMP 2693 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2694 #else 2695 num_fault_mutexes = 1; 2696 #endif 2697 hugetlb_fault_mutex_table = 2698 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2699 BUG_ON(!hugetlb_fault_mutex_table); 2700 2701 for (i = 0; i < num_fault_mutexes; i++) 2702 mutex_init(&hugetlb_fault_mutex_table[i]); 2703 return 0; 2704 } 2705 subsys_initcall(hugetlb_init); 2706 2707 /* Should be called on processing a hugepagesz=... option */ 2708 void __init hugetlb_bad_size(void) 2709 { 2710 parsed_valid_hugepagesz = false; 2711 } 2712 2713 void __init hugetlb_add_hstate(unsigned int order) 2714 { 2715 struct hstate *h; 2716 unsigned long i; 2717 2718 if (size_to_hstate(PAGE_SIZE << order)) { 2719 pr_warn("hugepagesz= specified twice, ignoring\n"); 2720 return; 2721 } 2722 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2723 BUG_ON(order == 0); 2724 h = &hstates[hugetlb_max_hstate++]; 2725 h->order = order; 2726 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2727 h->nr_huge_pages = 0; 2728 h->free_huge_pages = 0; 2729 for (i = 0; i < MAX_NUMNODES; ++i) 2730 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2731 INIT_LIST_HEAD(&h->hugepage_activelist); 2732 h->next_nid_to_alloc = first_memory_node; 2733 h->next_nid_to_free = first_memory_node; 2734 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2735 huge_page_size(h)/1024); 2736 2737 parsed_hstate = h; 2738 } 2739 2740 static int __init hugetlb_nrpages_setup(char *s) 2741 { 2742 unsigned long *mhp; 2743 static unsigned long *last_mhp; 2744 2745 if (!parsed_valid_hugepagesz) { 2746 pr_warn("hugepages = %s preceded by " 2747 "an unsupported hugepagesz, ignoring\n", s); 2748 parsed_valid_hugepagesz = true; 2749 return 1; 2750 } 2751 /* 2752 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2753 * so this hugepages= parameter goes to the "default hstate". 2754 */ 2755 else if (!hugetlb_max_hstate) 2756 mhp = &default_hstate_max_huge_pages; 2757 else 2758 mhp = &parsed_hstate->max_huge_pages; 2759 2760 if (mhp == last_mhp) { 2761 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2762 return 1; 2763 } 2764 2765 if (sscanf(s, "%lu", mhp) <= 0) 2766 *mhp = 0; 2767 2768 /* 2769 * Global state is always initialized later in hugetlb_init. 2770 * But we need to allocate >= MAX_ORDER hstates here early to still 2771 * use the bootmem allocator. 2772 */ 2773 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2774 hugetlb_hstate_alloc_pages(parsed_hstate); 2775 2776 last_mhp = mhp; 2777 2778 return 1; 2779 } 2780 __setup("hugepages=", hugetlb_nrpages_setup); 2781 2782 static int __init hugetlb_default_setup(char *s) 2783 { 2784 default_hstate_size = memparse(s, &s); 2785 return 1; 2786 } 2787 __setup("default_hugepagesz=", hugetlb_default_setup); 2788 2789 static unsigned int cpuset_mems_nr(unsigned int *array) 2790 { 2791 int node; 2792 unsigned int nr = 0; 2793 2794 for_each_node_mask(node, cpuset_current_mems_allowed) 2795 nr += array[node]; 2796 2797 return nr; 2798 } 2799 2800 #ifdef CONFIG_SYSCTL 2801 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2802 struct ctl_table *table, int write, 2803 void __user *buffer, size_t *length, loff_t *ppos) 2804 { 2805 struct hstate *h = &default_hstate; 2806 unsigned long tmp = h->max_huge_pages; 2807 int ret; 2808 2809 if (!hugepages_supported()) 2810 return -EOPNOTSUPP; 2811 2812 table->data = &tmp; 2813 table->maxlen = sizeof(unsigned long); 2814 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2815 if (ret) 2816 goto out; 2817 2818 if (write) 2819 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2820 NUMA_NO_NODE, tmp, *length); 2821 out: 2822 return ret; 2823 } 2824 2825 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2826 void __user *buffer, size_t *length, loff_t *ppos) 2827 { 2828 2829 return hugetlb_sysctl_handler_common(false, table, write, 2830 buffer, length, ppos); 2831 } 2832 2833 #ifdef CONFIG_NUMA 2834 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2835 void __user *buffer, size_t *length, loff_t *ppos) 2836 { 2837 return hugetlb_sysctl_handler_common(true, table, write, 2838 buffer, length, ppos); 2839 } 2840 #endif /* CONFIG_NUMA */ 2841 2842 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2843 void __user *buffer, 2844 size_t *length, loff_t *ppos) 2845 { 2846 struct hstate *h = &default_hstate; 2847 unsigned long tmp; 2848 int ret; 2849 2850 if (!hugepages_supported()) 2851 return -EOPNOTSUPP; 2852 2853 tmp = h->nr_overcommit_huge_pages; 2854 2855 if (write && hstate_is_gigantic(h)) 2856 return -EINVAL; 2857 2858 table->data = &tmp; 2859 table->maxlen = sizeof(unsigned long); 2860 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2861 if (ret) 2862 goto out; 2863 2864 if (write) { 2865 spin_lock(&hugetlb_lock); 2866 h->nr_overcommit_huge_pages = tmp; 2867 spin_unlock(&hugetlb_lock); 2868 } 2869 out: 2870 return ret; 2871 } 2872 2873 #endif /* CONFIG_SYSCTL */ 2874 2875 void hugetlb_report_meminfo(struct seq_file *m) 2876 { 2877 struct hstate *h = &default_hstate; 2878 if (!hugepages_supported()) 2879 return; 2880 seq_printf(m, 2881 "HugePages_Total: %5lu\n" 2882 "HugePages_Free: %5lu\n" 2883 "HugePages_Rsvd: %5lu\n" 2884 "HugePages_Surp: %5lu\n" 2885 "Hugepagesize: %8lu kB\n", 2886 h->nr_huge_pages, 2887 h->free_huge_pages, 2888 h->resv_huge_pages, 2889 h->surplus_huge_pages, 2890 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2891 } 2892 2893 int hugetlb_report_node_meminfo(int nid, char *buf) 2894 { 2895 struct hstate *h = &default_hstate; 2896 if (!hugepages_supported()) 2897 return 0; 2898 return sprintf(buf, 2899 "Node %d HugePages_Total: %5u\n" 2900 "Node %d HugePages_Free: %5u\n" 2901 "Node %d HugePages_Surp: %5u\n", 2902 nid, h->nr_huge_pages_node[nid], 2903 nid, h->free_huge_pages_node[nid], 2904 nid, h->surplus_huge_pages_node[nid]); 2905 } 2906 2907 void hugetlb_show_meminfo(void) 2908 { 2909 struct hstate *h; 2910 int nid; 2911 2912 if (!hugepages_supported()) 2913 return; 2914 2915 for_each_node_state(nid, N_MEMORY) 2916 for_each_hstate(h) 2917 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2918 nid, 2919 h->nr_huge_pages_node[nid], 2920 h->free_huge_pages_node[nid], 2921 h->surplus_huge_pages_node[nid], 2922 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2923 } 2924 2925 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 2926 { 2927 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 2928 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 2929 } 2930 2931 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2932 unsigned long hugetlb_total_pages(void) 2933 { 2934 struct hstate *h; 2935 unsigned long nr_total_pages = 0; 2936 2937 for_each_hstate(h) 2938 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2939 return nr_total_pages; 2940 } 2941 2942 static int hugetlb_acct_memory(struct hstate *h, long delta) 2943 { 2944 int ret = -ENOMEM; 2945 2946 spin_lock(&hugetlb_lock); 2947 /* 2948 * When cpuset is configured, it breaks the strict hugetlb page 2949 * reservation as the accounting is done on a global variable. Such 2950 * reservation is completely rubbish in the presence of cpuset because 2951 * the reservation is not checked against page availability for the 2952 * current cpuset. Application can still potentially OOM'ed by kernel 2953 * with lack of free htlb page in cpuset that the task is in. 2954 * Attempt to enforce strict accounting with cpuset is almost 2955 * impossible (or too ugly) because cpuset is too fluid that 2956 * task or memory node can be dynamically moved between cpusets. 2957 * 2958 * The change of semantics for shared hugetlb mapping with cpuset is 2959 * undesirable. However, in order to preserve some of the semantics, 2960 * we fall back to check against current free page availability as 2961 * a best attempt and hopefully to minimize the impact of changing 2962 * semantics that cpuset has. 2963 */ 2964 if (delta > 0) { 2965 if (gather_surplus_pages(h, delta) < 0) 2966 goto out; 2967 2968 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2969 return_unused_surplus_pages(h, delta); 2970 goto out; 2971 } 2972 } 2973 2974 ret = 0; 2975 if (delta < 0) 2976 return_unused_surplus_pages(h, (unsigned long) -delta); 2977 2978 out: 2979 spin_unlock(&hugetlb_lock); 2980 return ret; 2981 } 2982 2983 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2984 { 2985 struct resv_map *resv = vma_resv_map(vma); 2986 2987 /* 2988 * This new VMA should share its siblings reservation map if present. 2989 * The VMA will only ever have a valid reservation map pointer where 2990 * it is being copied for another still existing VMA. As that VMA 2991 * has a reference to the reservation map it cannot disappear until 2992 * after this open call completes. It is therefore safe to take a 2993 * new reference here without additional locking. 2994 */ 2995 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 2996 kref_get(&resv->refs); 2997 } 2998 2999 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3000 { 3001 struct hstate *h = hstate_vma(vma); 3002 struct resv_map *resv = vma_resv_map(vma); 3003 struct hugepage_subpool *spool = subpool_vma(vma); 3004 unsigned long reserve, start, end; 3005 long gbl_reserve; 3006 3007 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3008 return; 3009 3010 start = vma_hugecache_offset(h, vma, vma->vm_start); 3011 end = vma_hugecache_offset(h, vma, vma->vm_end); 3012 3013 reserve = (end - start) - region_count(resv, start, end); 3014 3015 kref_put(&resv->refs, resv_map_release); 3016 3017 if (reserve) { 3018 /* 3019 * Decrement reserve counts. The global reserve count may be 3020 * adjusted if the subpool has a minimum size. 3021 */ 3022 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3023 hugetlb_acct_memory(h, -gbl_reserve); 3024 } 3025 } 3026 3027 /* 3028 * We cannot handle pagefaults against hugetlb pages at all. They cause 3029 * handle_mm_fault() to try to instantiate regular-sized pages in the 3030 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3031 * this far. 3032 */ 3033 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3034 { 3035 BUG(); 3036 return 0; 3037 } 3038 3039 const struct vm_operations_struct hugetlb_vm_ops = { 3040 .fault = hugetlb_vm_op_fault, 3041 .open = hugetlb_vm_op_open, 3042 .close = hugetlb_vm_op_close, 3043 }; 3044 3045 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3046 int writable) 3047 { 3048 pte_t entry; 3049 3050 if (writable) { 3051 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3052 vma->vm_page_prot))); 3053 } else { 3054 entry = huge_pte_wrprotect(mk_huge_pte(page, 3055 vma->vm_page_prot)); 3056 } 3057 entry = pte_mkyoung(entry); 3058 entry = pte_mkhuge(entry); 3059 entry = arch_make_huge_pte(entry, vma, page, writable); 3060 3061 return entry; 3062 } 3063 3064 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3065 unsigned long address, pte_t *ptep) 3066 { 3067 pte_t entry; 3068 3069 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3070 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3071 update_mmu_cache(vma, address, ptep); 3072 } 3073 3074 static int is_hugetlb_entry_migration(pte_t pte) 3075 { 3076 swp_entry_t swp; 3077 3078 if (huge_pte_none(pte) || pte_present(pte)) 3079 return 0; 3080 swp = pte_to_swp_entry(pte); 3081 if (non_swap_entry(swp) && is_migration_entry(swp)) 3082 return 1; 3083 else 3084 return 0; 3085 } 3086 3087 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3088 { 3089 swp_entry_t swp; 3090 3091 if (huge_pte_none(pte) || pte_present(pte)) 3092 return 0; 3093 swp = pte_to_swp_entry(pte); 3094 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3095 return 1; 3096 else 3097 return 0; 3098 } 3099 3100 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3101 struct vm_area_struct *vma) 3102 { 3103 pte_t *src_pte, *dst_pte, entry; 3104 struct page *ptepage; 3105 unsigned long addr; 3106 int cow; 3107 struct hstate *h = hstate_vma(vma); 3108 unsigned long sz = huge_page_size(h); 3109 unsigned long mmun_start; /* For mmu_notifiers */ 3110 unsigned long mmun_end; /* For mmu_notifiers */ 3111 int ret = 0; 3112 3113 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3114 3115 mmun_start = vma->vm_start; 3116 mmun_end = vma->vm_end; 3117 if (cow) 3118 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3119 3120 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3121 spinlock_t *src_ptl, *dst_ptl; 3122 src_pte = huge_pte_offset(src, addr); 3123 if (!src_pte) 3124 continue; 3125 dst_pte = huge_pte_alloc(dst, addr, sz); 3126 if (!dst_pte) { 3127 ret = -ENOMEM; 3128 break; 3129 } 3130 3131 /* If the pagetables are shared don't copy or take references */ 3132 if (dst_pte == src_pte) 3133 continue; 3134 3135 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3136 src_ptl = huge_pte_lockptr(h, src, src_pte); 3137 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3138 entry = huge_ptep_get(src_pte); 3139 if (huge_pte_none(entry)) { /* skip none entry */ 3140 ; 3141 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3142 is_hugetlb_entry_hwpoisoned(entry))) { 3143 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3144 3145 if (is_write_migration_entry(swp_entry) && cow) { 3146 /* 3147 * COW mappings require pages in both 3148 * parent and child to be set to read. 3149 */ 3150 make_migration_entry_read(&swp_entry); 3151 entry = swp_entry_to_pte(swp_entry); 3152 set_huge_pte_at(src, addr, src_pte, entry); 3153 } 3154 set_huge_pte_at(dst, addr, dst_pte, entry); 3155 } else { 3156 if (cow) { 3157 huge_ptep_set_wrprotect(src, addr, src_pte); 3158 mmu_notifier_invalidate_range(src, mmun_start, 3159 mmun_end); 3160 } 3161 entry = huge_ptep_get(src_pte); 3162 ptepage = pte_page(entry); 3163 get_page(ptepage); 3164 page_dup_rmap(ptepage, true); 3165 set_huge_pte_at(dst, addr, dst_pte, entry); 3166 hugetlb_count_add(pages_per_huge_page(h), dst); 3167 } 3168 spin_unlock(src_ptl); 3169 spin_unlock(dst_ptl); 3170 } 3171 3172 if (cow) 3173 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3174 3175 return ret; 3176 } 3177 3178 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3179 unsigned long start, unsigned long end, 3180 struct page *ref_page) 3181 { 3182 struct mm_struct *mm = vma->vm_mm; 3183 unsigned long address; 3184 pte_t *ptep; 3185 pte_t pte; 3186 spinlock_t *ptl; 3187 struct page *page; 3188 struct hstate *h = hstate_vma(vma); 3189 unsigned long sz = huge_page_size(h); 3190 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3191 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3192 3193 WARN_ON(!is_vm_hugetlb_page(vma)); 3194 BUG_ON(start & ~huge_page_mask(h)); 3195 BUG_ON(end & ~huge_page_mask(h)); 3196 3197 tlb_start_vma(tlb, vma); 3198 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3199 address = start; 3200 for (; address < end; address += sz) { 3201 ptep = huge_pte_offset(mm, address); 3202 if (!ptep) 3203 continue; 3204 3205 ptl = huge_pte_lock(h, mm, ptep); 3206 if (huge_pmd_unshare(mm, &address, ptep)) { 3207 spin_unlock(ptl); 3208 continue; 3209 } 3210 3211 pte = huge_ptep_get(ptep); 3212 if (huge_pte_none(pte)) { 3213 spin_unlock(ptl); 3214 continue; 3215 } 3216 3217 /* 3218 * Migrating hugepage or HWPoisoned hugepage is already 3219 * unmapped and its refcount is dropped, so just clear pte here. 3220 */ 3221 if (unlikely(!pte_present(pte))) { 3222 huge_pte_clear(mm, address, ptep); 3223 spin_unlock(ptl); 3224 continue; 3225 } 3226 3227 page = pte_page(pte); 3228 /* 3229 * If a reference page is supplied, it is because a specific 3230 * page is being unmapped, not a range. Ensure the page we 3231 * are about to unmap is the actual page of interest. 3232 */ 3233 if (ref_page) { 3234 if (page != ref_page) { 3235 spin_unlock(ptl); 3236 continue; 3237 } 3238 /* 3239 * Mark the VMA as having unmapped its page so that 3240 * future faults in this VMA will fail rather than 3241 * looking like data was lost 3242 */ 3243 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3244 } 3245 3246 pte = huge_ptep_get_and_clear(mm, address, ptep); 3247 tlb_remove_tlb_entry(tlb, ptep, address); 3248 if (huge_pte_dirty(pte)) 3249 set_page_dirty(page); 3250 3251 hugetlb_count_sub(pages_per_huge_page(h), mm); 3252 page_remove_rmap(page, true); 3253 3254 spin_unlock(ptl); 3255 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3256 /* 3257 * Bail out after unmapping reference page if supplied 3258 */ 3259 if (ref_page) 3260 break; 3261 } 3262 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3263 tlb_end_vma(tlb, vma); 3264 } 3265 3266 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3267 struct vm_area_struct *vma, unsigned long start, 3268 unsigned long end, struct page *ref_page) 3269 { 3270 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3271 3272 /* 3273 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3274 * test will fail on a vma being torn down, and not grab a page table 3275 * on its way out. We're lucky that the flag has such an appropriate 3276 * name, and can in fact be safely cleared here. We could clear it 3277 * before the __unmap_hugepage_range above, but all that's necessary 3278 * is to clear it before releasing the i_mmap_rwsem. This works 3279 * because in the context this is called, the VMA is about to be 3280 * destroyed and the i_mmap_rwsem is held. 3281 */ 3282 vma->vm_flags &= ~VM_MAYSHARE; 3283 } 3284 3285 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3286 unsigned long end, struct page *ref_page) 3287 { 3288 struct mm_struct *mm; 3289 struct mmu_gather tlb; 3290 3291 mm = vma->vm_mm; 3292 3293 tlb_gather_mmu(&tlb, mm, start, end); 3294 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3295 tlb_finish_mmu(&tlb, start, end); 3296 } 3297 3298 /* 3299 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3300 * mappping it owns the reserve page for. The intention is to unmap the page 3301 * from other VMAs and let the children be SIGKILLed if they are faulting the 3302 * same region. 3303 */ 3304 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3305 struct page *page, unsigned long address) 3306 { 3307 struct hstate *h = hstate_vma(vma); 3308 struct vm_area_struct *iter_vma; 3309 struct address_space *mapping; 3310 pgoff_t pgoff; 3311 3312 /* 3313 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3314 * from page cache lookup which is in HPAGE_SIZE units. 3315 */ 3316 address = address & huge_page_mask(h); 3317 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3318 vma->vm_pgoff; 3319 mapping = vma->vm_file->f_mapping; 3320 3321 /* 3322 * Take the mapping lock for the duration of the table walk. As 3323 * this mapping should be shared between all the VMAs, 3324 * __unmap_hugepage_range() is called as the lock is already held 3325 */ 3326 i_mmap_lock_write(mapping); 3327 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3328 /* Do not unmap the current VMA */ 3329 if (iter_vma == vma) 3330 continue; 3331 3332 /* 3333 * Shared VMAs have their own reserves and do not affect 3334 * MAP_PRIVATE accounting but it is possible that a shared 3335 * VMA is using the same page so check and skip such VMAs. 3336 */ 3337 if (iter_vma->vm_flags & VM_MAYSHARE) 3338 continue; 3339 3340 /* 3341 * Unmap the page from other VMAs without their own reserves. 3342 * They get marked to be SIGKILLed if they fault in these 3343 * areas. This is because a future no-page fault on this VMA 3344 * could insert a zeroed page instead of the data existing 3345 * from the time of fork. This would look like data corruption 3346 */ 3347 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3348 unmap_hugepage_range(iter_vma, address, 3349 address + huge_page_size(h), page); 3350 } 3351 i_mmap_unlock_write(mapping); 3352 } 3353 3354 /* 3355 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3356 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3357 * cannot race with other handlers or page migration. 3358 * Keep the pte_same checks anyway to make transition from the mutex easier. 3359 */ 3360 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3361 unsigned long address, pte_t *ptep, pte_t pte, 3362 struct page *pagecache_page, spinlock_t *ptl) 3363 { 3364 struct hstate *h = hstate_vma(vma); 3365 struct page *old_page, *new_page; 3366 int ret = 0, outside_reserve = 0; 3367 unsigned long mmun_start; /* For mmu_notifiers */ 3368 unsigned long mmun_end; /* For mmu_notifiers */ 3369 3370 old_page = pte_page(pte); 3371 3372 retry_avoidcopy: 3373 /* If no-one else is actually using this page, avoid the copy 3374 * and just make the page writable */ 3375 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3376 page_move_anon_rmap(old_page, vma); 3377 set_huge_ptep_writable(vma, address, ptep); 3378 return 0; 3379 } 3380 3381 /* 3382 * If the process that created a MAP_PRIVATE mapping is about to 3383 * perform a COW due to a shared page count, attempt to satisfy 3384 * the allocation without using the existing reserves. The pagecache 3385 * page is used to determine if the reserve at this address was 3386 * consumed or not. If reserves were used, a partial faulted mapping 3387 * at the time of fork() could consume its reserves on COW instead 3388 * of the full address range. 3389 */ 3390 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3391 old_page != pagecache_page) 3392 outside_reserve = 1; 3393 3394 get_page(old_page); 3395 3396 /* 3397 * Drop page table lock as buddy allocator may be called. It will 3398 * be acquired again before returning to the caller, as expected. 3399 */ 3400 spin_unlock(ptl); 3401 new_page = alloc_huge_page(vma, address, outside_reserve); 3402 3403 if (IS_ERR(new_page)) { 3404 /* 3405 * If a process owning a MAP_PRIVATE mapping fails to COW, 3406 * it is due to references held by a child and an insufficient 3407 * huge page pool. To guarantee the original mappers 3408 * reliability, unmap the page from child processes. The child 3409 * may get SIGKILLed if it later faults. 3410 */ 3411 if (outside_reserve) { 3412 put_page(old_page); 3413 BUG_ON(huge_pte_none(pte)); 3414 unmap_ref_private(mm, vma, old_page, address); 3415 BUG_ON(huge_pte_none(pte)); 3416 spin_lock(ptl); 3417 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3418 if (likely(ptep && 3419 pte_same(huge_ptep_get(ptep), pte))) 3420 goto retry_avoidcopy; 3421 /* 3422 * race occurs while re-acquiring page table 3423 * lock, and our job is done. 3424 */ 3425 return 0; 3426 } 3427 3428 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3429 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3430 goto out_release_old; 3431 } 3432 3433 /* 3434 * When the original hugepage is shared one, it does not have 3435 * anon_vma prepared. 3436 */ 3437 if (unlikely(anon_vma_prepare(vma))) { 3438 ret = VM_FAULT_OOM; 3439 goto out_release_all; 3440 } 3441 3442 copy_user_huge_page(new_page, old_page, address, vma, 3443 pages_per_huge_page(h)); 3444 __SetPageUptodate(new_page); 3445 set_page_huge_active(new_page); 3446 3447 mmun_start = address & huge_page_mask(h); 3448 mmun_end = mmun_start + huge_page_size(h); 3449 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3450 3451 /* 3452 * Retake the page table lock to check for racing updates 3453 * before the page tables are altered 3454 */ 3455 spin_lock(ptl); 3456 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 3457 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3458 ClearPagePrivate(new_page); 3459 3460 /* Break COW */ 3461 huge_ptep_clear_flush(vma, address, ptep); 3462 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3463 set_huge_pte_at(mm, address, ptep, 3464 make_huge_pte(vma, new_page, 1)); 3465 page_remove_rmap(old_page, true); 3466 hugepage_add_new_anon_rmap(new_page, vma, address); 3467 /* Make the old page be freed below */ 3468 new_page = old_page; 3469 } 3470 spin_unlock(ptl); 3471 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3472 out_release_all: 3473 put_page(new_page); 3474 out_release_old: 3475 put_page(old_page); 3476 3477 spin_lock(ptl); /* Caller expects lock to be held */ 3478 return ret; 3479 } 3480 3481 /* Return the pagecache page at a given address within a VMA */ 3482 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3483 struct vm_area_struct *vma, unsigned long address) 3484 { 3485 struct address_space *mapping; 3486 pgoff_t idx; 3487 3488 mapping = vma->vm_file->f_mapping; 3489 idx = vma_hugecache_offset(h, vma, address); 3490 3491 return find_lock_page(mapping, idx); 3492 } 3493 3494 /* 3495 * Return whether there is a pagecache page to back given address within VMA. 3496 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3497 */ 3498 static bool hugetlbfs_pagecache_present(struct hstate *h, 3499 struct vm_area_struct *vma, unsigned long address) 3500 { 3501 struct address_space *mapping; 3502 pgoff_t idx; 3503 struct page *page; 3504 3505 mapping = vma->vm_file->f_mapping; 3506 idx = vma_hugecache_offset(h, vma, address); 3507 3508 page = find_get_page(mapping, idx); 3509 if (page) 3510 put_page(page); 3511 return page != NULL; 3512 } 3513 3514 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3515 pgoff_t idx) 3516 { 3517 struct inode *inode = mapping->host; 3518 struct hstate *h = hstate_inode(inode); 3519 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3520 3521 if (err) 3522 return err; 3523 ClearPagePrivate(page); 3524 3525 spin_lock(&inode->i_lock); 3526 inode->i_blocks += blocks_per_huge_page(h); 3527 spin_unlock(&inode->i_lock); 3528 return 0; 3529 } 3530 3531 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3532 struct address_space *mapping, pgoff_t idx, 3533 unsigned long address, pte_t *ptep, unsigned int flags) 3534 { 3535 struct hstate *h = hstate_vma(vma); 3536 int ret = VM_FAULT_SIGBUS; 3537 int anon_rmap = 0; 3538 unsigned long size; 3539 struct page *page; 3540 pte_t new_pte; 3541 spinlock_t *ptl; 3542 3543 /* 3544 * Currently, we are forced to kill the process in the event the 3545 * original mapper has unmapped pages from the child due to a failed 3546 * COW. Warn that such a situation has occurred as it may not be obvious 3547 */ 3548 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3549 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3550 current->pid); 3551 return ret; 3552 } 3553 3554 /* 3555 * Use page lock to guard against racing truncation 3556 * before we get page_table_lock. 3557 */ 3558 retry: 3559 page = find_lock_page(mapping, idx); 3560 if (!page) { 3561 size = i_size_read(mapping->host) >> huge_page_shift(h); 3562 if (idx >= size) 3563 goto out; 3564 page = alloc_huge_page(vma, address, 0); 3565 if (IS_ERR(page)) { 3566 ret = PTR_ERR(page); 3567 if (ret == -ENOMEM) 3568 ret = VM_FAULT_OOM; 3569 else 3570 ret = VM_FAULT_SIGBUS; 3571 goto out; 3572 } 3573 clear_huge_page(page, address, pages_per_huge_page(h)); 3574 __SetPageUptodate(page); 3575 set_page_huge_active(page); 3576 3577 if (vma->vm_flags & VM_MAYSHARE) { 3578 int err = huge_add_to_page_cache(page, mapping, idx); 3579 if (err) { 3580 put_page(page); 3581 if (err == -EEXIST) 3582 goto retry; 3583 goto out; 3584 } 3585 } else { 3586 lock_page(page); 3587 if (unlikely(anon_vma_prepare(vma))) { 3588 ret = VM_FAULT_OOM; 3589 goto backout_unlocked; 3590 } 3591 anon_rmap = 1; 3592 } 3593 } else { 3594 /* 3595 * If memory error occurs between mmap() and fault, some process 3596 * don't have hwpoisoned swap entry for errored virtual address. 3597 * So we need to block hugepage fault by PG_hwpoison bit check. 3598 */ 3599 if (unlikely(PageHWPoison(page))) { 3600 ret = VM_FAULT_HWPOISON | 3601 VM_FAULT_SET_HINDEX(hstate_index(h)); 3602 goto backout_unlocked; 3603 } 3604 } 3605 3606 /* 3607 * If we are going to COW a private mapping later, we examine the 3608 * pending reservations for this page now. This will ensure that 3609 * any allocations necessary to record that reservation occur outside 3610 * the spinlock. 3611 */ 3612 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3613 if (vma_needs_reservation(h, vma, address) < 0) { 3614 ret = VM_FAULT_OOM; 3615 goto backout_unlocked; 3616 } 3617 /* Just decrements count, does not deallocate */ 3618 vma_end_reservation(h, vma, address); 3619 } 3620 3621 ptl = huge_pte_lockptr(h, mm, ptep); 3622 spin_lock(ptl); 3623 size = i_size_read(mapping->host) >> huge_page_shift(h); 3624 if (idx >= size) 3625 goto backout; 3626 3627 ret = 0; 3628 if (!huge_pte_none(huge_ptep_get(ptep))) 3629 goto backout; 3630 3631 if (anon_rmap) { 3632 ClearPagePrivate(page); 3633 hugepage_add_new_anon_rmap(page, vma, address); 3634 } else 3635 page_dup_rmap(page, true); 3636 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3637 && (vma->vm_flags & VM_SHARED))); 3638 set_huge_pte_at(mm, address, ptep, new_pte); 3639 3640 hugetlb_count_add(pages_per_huge_page(h), mm); 3641 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3642 /* Optimization, do the COW without a second fault */ 3643 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); 3644 } 3645 3646 spin_unlock(ptl); 3647 unlock_page(page); 3648 out: 3649 return ret; 3650 3651 backout: 3652 spin_unlock(ptl); 3653 backout_unlocked: 3654 unlock_page(page); 3655 put_page(page); 3656 goto out; 3657 } 3658 3659 #ifdef CONFIG_SMP 3660 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3661 struct vm_area_struct *vma, 3662 struct address_space *mapping, 3663 pgoff_t idx, unsigned long address) 3664 { 3665 unsigned long key[2]; 3666 u32 hash; 3667 3668 if (vma->vm_flags & VM_SHARED) { 3669 key[0] = (unsigned long) mapping; 3670 key[1] = idx; 3671 } else { 3672 key[0] = (unsigned long) mm; 3673 key[1] = address >> huge_page_shift(h); 3674 } 3675 3676 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3677 3678 return hash & (num_fault_mutexes - 1); 3679 } 3680 #else 3681 /* 3682 * For uniprocesor systems we always use a single mutex, so just 3683 * return 0 and avoid the hashing overhead. 3684 */ 3685 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3686 struct vm_area_struct *vma, 3687 struct address_space *mapping, 3688 pgoff_t idx, unsigned long address) 3689 { 3690 return 0; 3691 } 3692 #endif 3693 3694 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3695 unsigned long address, unsigned int flags) 3696 { 3697 pte_t *ptep, entry; 3698 spinlock_t *ptl; 3699 int ret; 3700 u32 hash; 3701 pgoff_t idx; 3702 struct page *page = NULL; 3703 struct page *pagecache_page = NULL; 3704 struct hstate *h = hstate_vma(vma); 3705 struct address_space *mapping; 3706 int need_wait_lock = 0; 3707 3708 address &= huge_page_mask(h); 3709 3710 ptep = huge_pte_offset(mm, address); 3711 if (ptep) { 3712 entry = huge_ptep_get(ptep); 3713 if (unlikely(is_hugetlb_entry_migration(entry))) { 3714 migration_entry_wait_huge(vma, mm, ptep); 3715 return 0; 3716 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3717 return VM_FAULT_HWPOISON_LARGE | 3718 VM_FAULT_SET_HINDEX(hstate_index(h)); 3719 } else { 3720 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3721 if (!ptep) 3722 return VM_FAULT_OOM; 3723 } 3724 3725 mapping = vma->vm_file->f_mapping; 3726 idx = vma_hugecache_offset(h, vma, address); 3727 3728 /* 3729 * Serialize hugepage allocation and instantiation, so that we don't 3730 * get spurious allocation failures if two CPUs race to instantiate 3731 * the same page in the page cache. 3732 */ 3733 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3734 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3735 3736 entry = huge_ptep_get(ptep); 3737 if (huge_pte_none(entry)) { 3738 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3739 goto out_mutex; 3740 } 3741 3742 ret = 0; 3743 3744 /* 3745 * entry could be a migration/hwpoison entry at this point, so this 3746 * check prevents the kernel from going below assuming that we have 3747 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3748 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3749 * handle it. 3750 */ 3751 if (!pte_present(entry)) 3752 goto out_mutex; 3753 3754 /* 3755 * If we are going to COW the mapping later, we examine the pending 3756 * reservations for this page now. This will ensure that any 3757 * allocations necessary to record that reservation occur outside the 3758 * spinlock. For private mappings, we also lookup the pagecache 3759 * page now as it is used to determine if a reservation has been 3760 * consumed. 3761 */ 3762 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3763 if (vma_needs_reservation(h, vma, address) < 0) { 3764 ret = VM_FAULT_OOM; 3765 goto out_mutex; 3766 } 3767 /* Just decrements count, does not deallocate */ 3768 vma_end_reservation(h, vma, address); 3769 3770 if (!(vma->vm_flags & VM_MAYSHARE)) 3771 pagecache_page = hugetlbfs_pagecache_page(h, 3772 vma, address); 3773 } 3774 3775 ptl = huge_pte_lock(h, mm, ptep); 3776 3777 /* Check for a racing update before calling hugetlb_cow */ 3778 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3779 goto out_ptl; 3780 3781 /* 3782 * hugetlb_cow() requires page locks of pte_page(entry) and 3783 * pagecache_page, so here we need take the former one 3784 * when page != pagecache_page or !pagecache_page. 3785 */ 3786 page = pte_page(entry); 3787 if (page != pagecache_page) 3788 if (!trylock_page(page)) { 3789 need_wait_lock = 1; 3790 goto out_ptl; 3791 } 3792 3793 get_page(page); 3794 3795 if (flags & FAULT_FLAG_WRITE) { 3796 if (!huge_pte_write(entry)) { 3797 ret = hugetlb_cow(mm, vma, address, ptep, entry, 3798 pagecache_page, ptl); 3799 goto out_put_page; 3800 } 3801 entry = huge_pte_mkdirty(entry); 3802 } 3803 entry = pte_mkyoung(entry); 3804 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3805 flags & FAULT_FLAG_WRITE)) 3806 update_mmu_cache(vma, address, ptep); 3807 out_put_page: 3808 if (page != pagecache_page) 3809 unlock_page(page); 3810 put_page(page); 3811 out_ptl: 3812 spin_unlock(ptl); 3813 3814 if (pagecache_page) { 3815 unlock_page(pagecache_page); 3816 put_page(pagecache_page); 3817 } 3818 out_mutex: 3819 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3820 /* 3821 * Generally it's safe to hold refcount during waiting page lock. But 3822 * here we just wait to defer the next page fault to avoid busy loop and 3823 * the page is not used after unlocked before returning from the current 3824 * page fault. So we are safe from accessing freed page, even if we wait 3825 * here without taking refcount. 3826 */ 3827 if (need_wait_lock) 3828 wait_on_page_locked(page); 3829 return ret; 3830 } 3831 3832 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3833 struct page **pages, struct vm_area_struct **vmas, 3834 unsigned long *position, unsigned long *nr_pages, 3835 long i, unsigned int flags) 3836 { 3837 unsigned long pfn_offset; 3838 unsigned long vaddr = *position; 3839 unsigned long remainder = *nr_pages; 3840 struct hstate *h = hstate_vma(vma); 3841 3842 while (vaddr < vma->vm_end && remainder) { 3843 pte_t *pte; 3844 spinlock_t *ptl = NULL; 3845 int absent; 3846 struct page *page; 3847 3848 /* 3849 * If we have a pending SIGKILL, don't keep faulting pages and 3850 * potentially allocating memory. 3851 */ 3852 if (unlikely(fatal_signal_pending(current))) { 3853 remainder = 0; 3854 break; 3855 } 3856 3857 /* 3858 * Some archs (sparc64, sh*) have multiple pte_ts to 3859 * each hugepage. We have to make sure we get the 3860 * first, for the page indexing below to work. 3861 * 3862 * Note that page table lock is not held when pte is null. 3863 */ 3864 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3865 if (pte) 3866 ptl = huge_pte_lock(h, mm, pte); 3867 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3868 3869 /* 3870 * When coredumping, it suits get_dump_page if we just return 3871 * an error where there's an empty slot with no huge pagecache 3872 * to back it. This way, we avoid allocating a hugepage, and 3873 * the sparse dumpfile avoids allocating disk blocks, but its 3874 * huge holes still show up with zeroes where they need to be. 3875 */ 3876 if (absent && (flags & FOLL_DUMP) && 3877 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3878 if (pte) 3879 spin_unlock(ptl); 3880 remainder = 0; 3881 break; 3882 } 3883 3884 /* 3885 * We need call hugetlb_fault for both hugepages under migration 3886 * (in which case hugetlb_fault waits for the migration,) and 3887 * hwpoisoned hugepages (in which case we need to prevent the 3888 * caller from accessing to them.) In order to do this, we use 3889 * here is_swap_pte instead of is_hugetlb_entry_migration and 3890 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3891 * both cases, and because we can't follow correct pages 3892 * directly from any kind of swap entries. 3893 */ 3894 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3895 ((flags & FOLL_WRITE) && 3896 !huge_pte_write(huge_ptep_get(pte)))) { 3897 int ret; 3898 3899 if (pte) 3900 spin_unlock(ptl); 3901 ret = hugetlb_fault(mm, vma, vaddr, 3902 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3903 if (!(ret & VM_FAULT_ERROR)) 3904 continue; 3905 3906 remainder = 0; 3907 break; 3908 } 3909 3910 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3911 page = pte_page(huge_ptep_get(pte)); 3912 same_page: 3913 if (pages) { 3914 pages[i] = mem_map_offset(page, pfn_offset); 3915 get_page(pages[i]); 3916 } 3917 3918 if (vmas) 3919 vmas[i] = vma; 3920 3921 vaddr += PAGE_SIZE; 3922 ++pfn_offset; 3923 --remainder; 3924 ++i; 3925 if (vaddr < vma->vm_end && remainder && 3926 pfn_offset < pages_per_huge_page(h)) { 3927 /* 3928 * We use pfn_offset to avoid touching the pageframes 3929 * of this compound page. 3930 */ 3931 goto same_page; 3932 } 3933 spin_unlock(ptl); 3934 } 3935 *nr_pages = remainder; 3936 *position = vaddr; 3937 3938 return i ? i : -EFAULT; 3939 } 3940 3941 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3942 unsigned long address, unsigned long end, pgprot_t newprot) 3943 { 3944 struct mm_struct *mm = vma->vm_mm; 3945 unsigned long start = address; 3946 pte_t *ptep; 3947 pte_t pte; 3948 struct hstate *h = hstate_vma(vma); 3949 unsigned long pages = 0; 3950 3951 BUG_ON(address >= end); 3952 flush_cache_range(vma, address, end); 3953 3954 mmu_notifier_invalidate_range_start(mm, start, end); 3955 i_mmap_lock_write(vma->vm_file->f_mapping); 3956 for (; address < end; address += huge_page_size(h)) { 3957 spinlock_t *ptl; 3958 ptep = huge_pte_offset(mm, address); 3959 if (!ptep) 3960 continue; 3961 ptl = huge_pte_lock(h, mm, ptep); 3962 if (huge_pmd_unshare(mm, &address, ptep)) { 3963 pages++; 3964 spin_unlock(ptl); 3965 continue; 3966 } 3967 pte = huge_ptep_get(ptep); 3968 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 3969 spin_unlock(ptl); 3970 continue; 3971 } 3972 if (unlikely(is_hugetlb_entry_migration(pte))) { 3973 swp_entry_t entry = pte_to_swp_entry(pte); 3974 3975 if (is_write_migration_entry(entry)) { 3976 pte_t newpte; 3977 3978 make_migration_entry_read(&entry); 3979 newpte = swp_entry_to_pte(entry); 3980 set_huge_pte_at(mm, address, ptep, newpte); 3981 pages++; 3982 } 3983 spin_unlock(ptl); 3984 continue; 3985 } 3986 if (!huge_pte_none(pte)) { 3987 pte = huge_ptep_get_and_clear(mm, address, ptep); 3988 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3989 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3990 set_huge_pte_at(mm, address, ptep, pte); 3991 pages++; 3992 } 3993 spin_unlock(ptl); 3994 } 3995 /* 3996 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 3997 * may have cleared our pud entry and done put_page on the page table: 3998 * once we release i_mmap_rwsem, another task can do the final put_page 3999 * and that page table be reused and filled with junk. 4000 */ 4001 flush_tlb_range(vma, start, end); 4002 mmu_notifier_invalidate_range(mm, start, end); 4003 i_mmap_unlock_write(vma->vm_file->f_mapping); 4004 mmu_notifier_invalidate_range_end(mm, start, end); 4005 4006 return pages << h->order; 4007 } 4008 4009 int hugetlb_reserve_pages(struct inode *inode, 4010 long from, long to, 4011 struct vm_area_struct *vma, 4012 vm_flags_t vm_flags) 4013 { 4014 long ret, chg; 4015 struct hstate *h = hstate_inode(inode); 4016 struct hugepage_subpool *spool = subpool_inode(inode); 4017 struct resv_map *resv_map; 4018 long gbl_reserve; 4019 4020 /* 4021 * Only apply hugepage reservation if asked. At fault time, an 4022 * attempt will be made for VM_NORESERVE to allocate a page 4023 * without using reserves 4024 */ 4025 if (vm_flags & VM_NORESERVE) 4026 return 0; 4027 4028 /* 4029 * Shared mappings base their reservation on the number of pages that 4030 * are already allocated on behalf of the file. Private mappings need 4031 * to reserve the full area even if read-only as mprotect() may be 4032 * called to make the mapping read-write. Assume !vma is a shm mapping 4033 */ 4034 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4035 resv_map = inode_resv_map(inode); 4036 4037 chg = region_chg(resv_map, from, to); 4038 4039 } else { 4040 resv_map = resv_map_alloc(); 4041 if (!resv_map) 4042 return -ENOMEM; 4043 4044 chg = to - from; 4045 4046 set_vma_resv_map(vma, resv_map); 4047 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4048 } 4049 4050 if (chg < 0) { 4051 ret = chg; 4052 goto out_err; 4053 } 4054 4055 /* 4056 * There must be enough pages in the subpool for the mapping. If 4057 * the subpool has a minimum size, there may be some global 4058 * reservations already in place (gbl_reserve). 4059 */ 4060 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4061 if (gbl_reserve < 0) { 4062 ret = -ENOSPC; 4063 goto out_err; 4064 } 4065 4066 /* 4067 * Check enough hugepages are available for the reservation. 4068 * Hand the pages back to the subpool if there are not 4069 */ 4070 ret = hugetlb_acct_memory(h, gbl_reserve); 4071 if (ret < 0) { 4072 /* put back original number of pages, chg */ 4073 (void)hugepage_subpool_put_pages(spool, chg); 4074 goto out_err; 4075 } 4076 4077 /* 4078 * Account for the reservations made. Shared mappings record regions 4079 * that have reservations as they are shared by multiple VMAs. 4080 * When the last VMA disappears, the region map says how much 4081 * the reservation was and the page cache tells how much of 4082 * the reservation was consumed. Private mappings are per-VMA and 4083 * only the consumed reservations are tracked. When the VMA 4084 * disappears, the original reservation is the VMA size and the 4085 * consumed reservations are stored in the map. Hence, nothing 4086 * else has to be done for private mappings here 4087 */ 4088 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4089 long add = region_add(resv_map, from, to); 4090 4091 if (unlikely(chg > add)) { 4092 /* 4093 * pages in this range were added to the reserve 4094 * map between region_chg and region_add. This 4095 * indicates a race with alloc_huge_page. Adjust 4096 * the subpool and reserve counts modified above 4097 * based on the difference. 4098 */ 4099 long rsv_adjust; 4100 4101 rsv_adjust = hugepage_subpool_put_pages(spool, 4102 chg - add); 4103 hugetlb_acct_memory(h, -rsv_adjust); 4104 } 4105 } 4106 return 0; 4107 out_err: 4108 if (!vma || vma->vm_flags & VM_MAYSHARE) 4109 region_abort(resv_map, from, to); 4110 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4111 kref_put(&resv_map->refs, resv_map_release); 4112 return ret; 4113 } 4114 4115 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4116 long freed) 4117 { 4118 struct hstate *h = hstate_inode(inode); 4119 struct resv_map *resv_map = inode_resv_map(inode); 4120 long chg = 0; 4121 struct hugepage_subpool *spool = subpool_inode(inode); 4122 long gbl_reserve; 4123 4124 if (resv_map) { 4125 chg = region_del(resv_map, start, end); 4126 /* 4127 * region_del() can fail in the rare case where a region 4128 * must be split and another region descriptor can not be 4129 * allocated. If end == LONG_MAX, it will not fail. 4130 */ 4131 if (chg < 0) 4132 return chg; 4133 } 4134 4135 spin_lock(&inode->i_lock); 4136 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4137 spin_unlock(&inode->i_lock); 4138 4139 /* 4140 * If the subpool has a minimum size, the number of global 4141 * reservations to be released may be adjusted. 4142 */ 4143 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4144 hugetlb_acct_memory(h, -gbl_reserve); 4145 4146 return 0; 4147 } 4148 4149 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4150 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4151 struct vm_area_struct *vma, 4152 unsigned long addr, pgoff_t idx) 4153 { 4154 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4155 svma->vm_start; 4156 unsigned long sbase = saddr & PUD_MASK; 4157 unsigned long s_end = sbase + PUD_SIZE; 4158 4159 /* Allow segments to share if only one is marked locked */ 4160 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4161 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4162 4163 /* 4164 * match the virtual addresses, permission and the alignment of the 4165 * page table page. 4166 */ 4167 if (pmd_index(addr) != pmd_index(saddr) || 4168 vm_flags != svm_flags || 4169 sbase < svma->vm_start || svma->vm_end < s_end) 4170 return 0; 4171 4172 return saddr; 4173 } 4174 4175 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4176 { 4177 unsigned long base = addr & PUD_MASK; 4178 unsigned long end = base + PUD_SIZE; 4179 4180 /* 4181 * check on proper vm_flags and page table alignment 4182 */ 4183 if (vma->vm_flags & VM_MAYSHARE && 4184 vma->vm_start <= base && end <= vma->vm_end) 4185 return true; 4186 return false; 4187 } 4188 4189 /* 4190 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4191 * and returns the corresponding pte. While this is not necessary for the 4192 * !shared pmd case because we can allocate the pmd later as well, it makes the 4193 * code much cleaner. pmd allocation is essential for the shared case because 4194 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4195 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4196 * bad pmd for sharing. 4197 */ 4198 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4199 { 4200 struct vm_area_struct *vma = find_vma(mm, addr); 4201 struct address_space *mapping = vma->vm_file->f_mapping; 4202 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4203 vma->vm_pgoff; 4204 struct vm_area_struct *svma; 4205 unsigned long saddr; 4206 pte_t *spte = NULL; 4207 pte_t *pte; 4208 spinlock_t *ptl; 4209 4210 if (!vma_shareable(vma, addr)) 4211 return (pte_t *)pmd_alloc(mm, pud, addr); 4212 4213 i_mmap_lock_write(mapping); 4214 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4215 if (svma == vma) 4216 continue; 4217 4218 saddr = page_table_shareable(svma, vma, addr, idx); 4219 if (saddr) { 4220 spte = huge_pte_offset(svma->vm_mm, saddr); 4221 if (spte) { 4222 get_page(virt_to_page(spte)); 4223 break; 4224 } 4225 } 4226 } 4227 4228 if (!spte) 4229 goto out; 4230 4231 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); 4232 spin_lock(ptl); 4233 if (pud_none(*pud)) { 4234 pud_populate(mm, pud, 4235 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4236 mm_inc_nr_pmds(mm); 4237 } else { 4238 put_page(virt_to_page(spte)); 4239 } 4240 spin_unlock(ptl); 4241 out: 4242 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4243 i_mmap_unlock_write(mapping); 4244 return pte; 4245 } 4246 4247 /* 4248 * unmap huge page backed by shared pte. 4249 * 4250 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4251 * indicated by page_count > 1, unmap is achieved by clearing pud and 4252 * decrementing the ref count. If count == 1, the pte page is not shared. 4253 * 4254 * called with page table lock held. 4255 * 4256 * returns: 1 successfully unmapped a shared pte page 4257 * 0 the underlying pte page is not shared, or it is the last user 4258 */ 4259 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4260 { 4261 pgd_t *pgd = pgd_offset(mm, *addr); 4262 pud_t *pud = pud_offset(pgd, *addr); 4263 4264 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4265 if (page_count(virt_to_page(ptep)) == 1) 4266 return 0; 4267 4268 pud_clear(pud); 4269 put_page(virt_to_page(ptep)); 4270 mm_dec_nr_pmds(mm); 4271 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4272 return 1; 4273 } 4274 #define want_pmd_share() (1) 4275 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4276 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4277 { 4278 return NULL; 4279 } 4280 4281 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4282 { 4283 return 0; 4284 } 4285 #define want_pmd_share() (0) 4286 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4287 4288 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4289 pte_t *huge_pte_alloc(struct mm_struct *mm, 4290 unsigned long addr, unsigned long sz) 4291 { 4292 pgd_t *pgd; 4293 pud_t *pud; 4294 pte_t *pte = NULL; 4295 4296 pgd = pgd_offset(mm, addr); 4297 pud = pud_alloc(mm, pgd, addr); 4298 if (pud) { 4299 if (sz == PUD_SIZE) { 4300 pte = (pte_t *)pud; 4301 } else { 4302 BUG_ON(sz != PMD_SIZE); 4303 if (want_pmd_share() && pud_none(*pud)) 4304 pte = huge_pmd_share(mm, addr, pud); 4305 else 4306 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4307 } 4308 } 4309 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); 4310 4311 return pte; 4312 } 4313 4314 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 4315 { 4316 pgd_t *pgd; 4317 pud_t *pud; 4318 pmd_t *pmd = NULL; 4319 4320 pgd = pgd_offset(mm, addr); 4321 if (pgd_present(*pgd)) { 4322 pud = pud_offset(pgd, addr); 4323 if (pud_present(*pud)) { 4324 if (pud_huge(*pud)) 4325 return (pte_t *)pud; 4326 pmd = pmd_offset(pud, addr); 4327 } 4328 } 4329 return (pte_t *) pmd; 4330 } 4331 4332 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4333 4334 /* 4335 * These functions are overwritable if your architecture needs its own 4336 * behavior. 4337 */ 4338 struct page * __weak 4339 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4340 int write) 4341 { 4342 return ERR_PTR(-EINVAL); 4343 } 4344 4345 struct page * __weak 4346 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4347 pmd_t *pmd, int flags) 4348 { 4349 struct page *page = NULL; 4350 spinlock_t *ptl; 4351 retry: 4352 ptl = pmd_lockptr(mm, pmd); 4353 spin_lock(ptl); 4354 /* 4355 * make sure that the address range covered by this pmd is not 4356 * unmapped from other threads. 4357 */ 4358 if (!pmd_huge(*pmd)) 4359 goto out; 4360 if (pmd_present(*pmd)) { 4361 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4362 if (flags & FOLL_GET) 4363 get_page(page); 4364 } else { 4365 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) { 4366 spin_unlock(ptl); 4367 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4368 goto retry; 4369 } 4370 /* 4371 * hwpoisoned entry is treated as no_page_table in 4372 * follow_page_mask(). 4373 */ 4374 } 4375 out: 4376 spin_unlock(ptl); 4377 return page; 4378 } 4379 4380 struct page * __weak 4381 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4382 pud_t *pud, int flags) 4383 { 4384 if (flags & FOLL_GET) 4385 return NULL; 4386 4387 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4388 } 4389 4390 #ifdef CONFIG_MEMORY_FAILURE 4391 4392 /* 4393 * This function is called from memory failure code. 4394 */ 4395 int dequeue_hwpoisoned_huge_page(struct page *hpage) 4396 { 4397 struct hstate *h = page_hstate(hpage); 4398 int nid = page_to_nid(hpage); 4399 int ret = -EBUSY; 4400 4401 spin_lock(&hugetlb_lock); 4402 /* 4403 * Just checking !page_huge_active is not enough, because that could be 4404 * an isolated/hwpoisoned hugepage (which have >0 refcount). 4405 */ 4406 if (!page_huge_active(hpage) && !page_count(hpage)) { 4407 /* 4408 * Hwpoisoned hugepage isn't linked to activelist or freelist, 4409 * but dangling hpage->lru can trigger list-debug warnings 4410 * (this happens when we call unpoison_memory() on it), 4411 * so let it point to itself with list_del_init(). 4412 */ 4413 list_del_init(&hpage->lru); 4414 set_page_refcounted(hpage); 4415 h->free_huge_pages--; 4416 h->free_huge_pages_node[nid]--; 4417 ret = 0; 4418 } 4419 spin_unlock(&hugetlb_lock); 4420 return ret; 4421 } 4422 #endif 4423 4424 bool isolate_huge_page(struct page *page, struct list_head *list) 4425 { 4426 bool ret = true; 4427 4428 VM_BUG_ON_PAGE(!PageHead(page), page); 4429 spin_lock(&hugetlb_lock); 4430 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4431 ret = false; 4432 goto unlock; 4433 } 4434 clear_page_huge_active(page); 4435 list_move_tail(&page->lru, list); 4436 unlock: 4437 spin_unlock(&hugetlb_lock); 4438 return ret; 4439 } 4440 4441 void putback_active_hugepage(struct page *page) 4442 { 4443 VM_BUG_ON_PAGE(!PageHead(page), page); 4444 spin_lock(&hugetlb_lock); 4445 set_page_huge_active(page); 4446 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4447 spin_unlock(&hugetlb_lock); 4448 put_page(page); 4449 } 4450