xref: /openbmc/linux/mm/hugetlb.c (revision 7490ca1e)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28 
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32 
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40 
41 __initdata LIST_HEAD(huge_boot_pages);
42 
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47 
48 #define for_each_hstate(h) \
49 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50 
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55 
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *	down_write(&mm->mmap_sem);
66  * or
67  *	down_read(&mm->mmap_sem);
68  *	mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71 	struct list_head link;
72 	long from;
73 	long to;
74 };
75 
76 static long region_add(struct list_head *head, long f, long t)
77 {
78 	struct file_region *rg, *nrg, *trg;
79 
80 	/* Locate the region we are either in or before. */
81 	list_for_each_entry(rg, head, link)
82 		if (f <= rg->to)
83 			break;
84 
85 	/* Round our left edge to the current segment if it encloses us. */
86 	if (f > rg->from)
87 		f = rg->from;
88 
89 	/* Check for and consume any regions we now overlap with. */
90 	nrg = rg;
91 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 		if (&rg->link == head)
93 			break;
94 		if (rg->from > t)
95 			break;
96 
97 		/* If this area reaches higher then extend our area to
98 		 * include it completely.  If this is not the first area
99 		 * which we intend to reuse, free it. */
100 		if (rg->to > t)
101 			t = rg->to;
102 		if (rg != nrg) {
103 			list_del(&rg->link);
104 			kfree(rg);
105 		}
106 	}
107 	nrg->from = f;
108 	nrg->to = t;
109 	return 0;
110 }
111 
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114 	struct file_region *rg, *nrg;
115 	long chg = 0;
116 
117 	/* Locate the region we are before or in. */
118 	list_for_each_entry(rg, head, link)
119 		if (f <= rg->to)
120 			break;
121 
122 	/* If we are below the current region then a new region is required.
123 	 * Subtle, allocate a new region at the position but make it zero
124 	 * size such that we can guarantee to record the reservation. */
125 	if (&rg->link == head || t < rg->from) {
126 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 		if (!nrg)
128 			return -ENOMEM;
129 		nrg->from = f;
130 		nrg->to   = f;
131 		INIT_LIST_HEAD(&nrg->link);
132 		list_add(&nrg->link, rg->link.prev);
133 
134 		return t - f;
135 	}
136 
137 	/* Round our left edge to the current segment if it encloses us. */
138 	if (f > rg->from)
139 		f = rg->from;
140 	chg = t - f;
141 
142 	/* Check for and consume any regions we now overlap with. */
143 	list_for_each_entry(rg, rg->link.prev, link) {
144 		if (&rg->link == head)
145 			break;
146 		if (rg->from > t)
147 			return chg;
148 
149 		/* We overlap with this area, if it extends further than
150 		 * us then we must extend ourselves.  Account for its
151 		 * existing reservation. */
152 		if (rg->to > t) {
153 			chg += rg->to - t;
154 			t = rg->to;
155 		}
156 		chg -= rg->to - rg->from;
157 	}
158 	return chg;
159 }
160 
161 static long region_truncate(struct list_head *head, long end)
162 {
163 	struct file_region *rg, *trg;
164 	long chg = 0;
165 
166 	/* Locate the region we are either in or before. */
167 	list_for_each_entry(rg, head, link)
168 		if (end <= rg->to)
169 			break;
170 	if (&rg->link == head)
171 		return 0;
172 
173 	/* If we are in the middle of a region then adjust it. */
174 	if (end > rg->from) {
175 		chg = rg->to - end;
176 		rg->to = end;
177 		rg = list_entry(rg->link.next, typeof(*rg), link);
178 	}
179 
180 	/* Drop any remaining regions. */
181 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 		if (&rg->link == head)
183 			break;
184 		chg += rg->to - rg->from;
185 		list_del(&rg->link);
186 		kfree(rg);
187 	}
188 	return chg;
189 }
190 
191 static long region_count(struct list_head *head, long f, long t)
192 {
193 	struct file_region *rg;
194 	long chg = 0;
195 
196 	/* Locate each segment we overlap with, and count that overlap. */
197 	list_for_each_entry(rg, head, link) {
198 		int seg_from;
199 		int seg_to;
200 
201 		if (rg->to <= f)
202 			continue;
203 		if (rg->from >= t)
204 			break;
205 
206 		seg_from = max(rg->from, f);
207 		seg_to = min(rg->to, t);
208 
209 		chg += seg_to - seg_from;
210 	}
211 
212 	return chg;
213 }
214 
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 			struct vm_area_struct *vma, unsigned long address)
221 {
222 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 			(vma->vm_pgoff >> huge_page_order(h));
224 }
225 
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 				     unsigned long address)
228 {
229 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231 
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238 	struct hstate *hstate;
239 
240 	if (!is_vm_hugetlb_page(vma))
241 		return PAGE_SIZE;
242 
243 	hstate = hstate_vma(vma);
244 
245 	return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248 
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258 	return vma_kernel_pagesize(vma);
259 }
260 #endif
261 
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270 
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292 	return (unsigned long)vma->vm_private_data;
293 }
294 
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 							unsigned long value)
297 {
298 	vma->vm_private_data = (void *)value;
299 }
300 
301 struct resv_map {
302 	struct kref refs;
303 	struct list_head regions;
304 };
305 
306 static struct resv_map *resv_map_alloc(void)
307 {
308 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 	if (!resv_map)
310 		return NULL;
311 
312 	kref_init(&resv_map->refs);
313 	INIT_LIST_HEAD(&resv_map->regions);
314 
315 	return resv_map;
316 }
317 
318 static void resv_map_release(struct kref *ref)
319 {
320 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321 
322 	/* Clear out any active regions before we release the map. */
323 	region_truncate(&resv_map->regions, 0);
324 	kfree(resv_map);
325 }
326 
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 	if (!(vma->vm_flags & VM_MAYSHARE))
331 		return (struct resv_map *)(get_vma_private_data(vma) &
332 							~HPAGE_RESV_MASK);
333 	return NULL;
334 }
335 
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 
341 	set_vma_private_data(vma, (get_vma_private_data(vma) &
342 				HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344 
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 
350 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352 
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 
357 	return (get_vma_private_data(vma) & flag) != 0;
358 }
359 
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 			struct vm_area_struct *vma)
363 {
364 	if (vma->vm_flags & VM_NORESERVE)
365 		return;
366 
367 	if (vma->vm_flags & VM_MAYSHARE) {
368 		/* Shared mappings always use reserves */
369 		h->resv_huge_pages--;
370 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 		/*
372 		 * Only the process that called mmap() has reserves for
373 		 * private mappings.
374 		 */
375 		h->resv_huge_pages--;
376 	}
377 }
378 
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 	if (!(vma->vm_flags & VM_MAYSHARE))
384 		vma->vm_private_data = (void *)0;
385 }
386 
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390 	if (vma->vm_flags & VM_MAYSHARE)
391 		return 1;
392 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 		return 1;
394 	return 0;
395 }
396 
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399 	int i;
400 	struct hstate *h = page_hstate(src);
401 	struct page *dst_base = dst;
402 	struct page *src_base = src;
403 
404 	for (i = 0; i < pages_per_huge_page(h); ) {
405 		cond_resched();
406 		copy_highpage(dst, src);
407 
408 		i++;
409 		dst = mem_map_next(dst, dst_base, i);
410 		src = mem_map_next(src, src_base, i);
411 	}
412 }
413 
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416 	int i;
417 	struct hstate *h = page_hstate(src);
418 
419 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 		copy_gigantic_page(dst, src);
421 		return;
422 	}
423 
424 	might_sleep();
425 	for (i = 0; i < pages_per_huge_page(h); i++) {
426 		cond_resched();
427 		copy_highpage(dst + i, src + i);
428 	}
429 }
430 
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433 	int nid = page_to_nid(page);
434 	list_add(&page->lru, &h->hugepage_freelists[nid]);
435 	h->free_huge_pages++;
436 	h->free_huge_pages_node[nid]++;
437 }
438 
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441 	struct page *page;
442 
443 	if (list_empty(&h->hugepage_freelists[nid]))
444 		return NULL;
445 	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 	list_del(&page->lru);
447 	set_page_refcounted(page);
448 	h->free_huge_pages--;
449 	h->free_huge_pages_node[nid]--;
450 	return page;
451 }
452 
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 				struct vm_area_struct *vma,
455 				unsigned long address, int avoid_reserve)
456 {
457 	struct page *page = NULL;
458 	struct mempolicy *mpol;
459 	nodemask_t *nodemask;
460 	struct zonelist *zonelist;
461 	struct zone *zone;
462 	struct zoneref *z;
463 
464 	get_mems_allowed();
465 	zonelist = huge_zonelist(vma, address,
466 					htlb_alloc_mask, &mpol, &nodemask);
467 	/*
468 	 * A child process with MAP_PRIVATE mappings created by their parent
469 	 * have no page reserves. This check ensures that reservations are
470 	 * not "stolen". The child may still get SIGKILLed
471 	 */
472 	if (!vma_has_reserves(vma) &&
473 			h->free_huge_pages - h->resv_huge_pages == 0)
474 		goto err;
475 
476 	/* If reserves cannot be used, ensure enough pages are in the pool */
477 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478 		goto err;
479 
480 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 						MAX_NR_ZONES - 1, nodemask) {
482 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 			if (page) {
485 				if (!avoid_reserve)
486 					decrement_hugepage_resv_vma(h, vma);
487 				break;
488 			}
489 		}
490 	}
491 err:
492 	mpol_cond_put(mpol);
493 	put_mems_allowed();
494 	return page;
495 }
496 
497 static void update_and_free_page(struct hstate *h, struct page *page)
498 {
499 	int i;
500 
501 	VM_BUG_ON(h->order >= MAX_ORDER);
502 
503 	h->nr_huge_pages--;
504 	h->nr_huge_pages_node[page_to_nid(page)]--;
505 	for (i = 0; i < pages_per_huge_page(h); i++) {
506 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
507 				1 << PG_referenced | 1 << PG_dirty |
508 				1 << PG_active | 1 << PG_reserved |
509 				1 << PG_private | 1 << PG_writeback);
510 	}
511 	set_compound_page_dtor(page, NULL);
512 	set_page_refcounted(page);
513 	arch_release_hugepage(page);
514 	__free_pages(page, huge_page_order(h));
515 }
516 
517 struct hstate *size_to_hstate(unsigned long size)
518 {
519 	struct hstate *h;
520 
521 	for_each_hstate(h) {
522 		if (huge_page_size(h) == size)
523 			return h;
524 	}
525 	return NULL;
526 }
527 
528 static void free_huge_page(struct page *page)
529 {
530 	/*
531 	 * Can't pass hstate in here because it is called from the
532 	 * compound page destructor.
533 	 */
534 	struct hstate *h = page_hstate(page);
535 	int nid = page_to_nid(page);
536 	struct address_space *mapping;
537 
538 	mapping = (struct address_space *) page_private(page);
539 	set_page_private(page, 0);
540 	page->mapping = NULL;
541 	BUG_ON(page_count(page));
542 	BUG_ON(page_mapcount(page));
543 	INIT_LIST_HEAD(&page->lru);
544 
545 	spin_lock(&hugetlb_lock);
546 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
547 		update_and_free_page(h, page);
548 		h->surplus_huge_pages--;
549 		h->surplus_huge_pages_node[nid]--;
550 	} else {
551 		enqueue_huge_page(h, page);
552 	}
553 	spin_unlock(&hugetlb_lock);
554 	if (mapping)
555 		hugetlb_put_quota(mapping, 1);
556 }
557 
558 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 {
560 	set_compound_page_dtor(page, free_huge_page);
561 	spin_lock(&hugetlb_lock);
562 	h->nr_huge_pages++;
563 	h->nr_huge_pages_node[nid]++;
564 	spin_unlock(&hugetlb_lock);
565 	put_page(page); /* free it into the hugepage allocator */
566 }
567 
568 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 {
570 	int i;
571 	int nr_pages = 1 << order;
572 	struct page *p = page + 1;
573 
574 	/* we rely on prep_new_huge_page to set the destructor */
575 	set_compound_order(page, order);
576 	__SetPageHead(page);
577 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
578 		__SetPageTail(p);
579 		set_page_count(p, 0);
580 		p->first_page = page;
581 	}
582 }
583 
584 int PageHuge(struct page *page)
585 {
586 	compound_page_dtor *dtor;
587 
588 	if (!PageCompound(page))
589 		return 0;
590 
591 	page = compound_head(page);
592 	dtor = get_compound_page_dtor(page);
593 
594 	return dtor == free_huge_page;
595 }
596 EXPORT_SYMBOL_GPL(PageHuge);
597 
598 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
599 {
600 	struct page *page;
601 
602 	if (h->order >= MAX_ORDER)
603 		return NULL;
604 
605 	page = alloc_pages_exact_node(nid,
606 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
607 						__GFP_REPEAT|__GFP_NOWARN,
608 		huge_page_order(h));
609 	if (page) {
610 		if (arch_prepare_hugepage(page)) {
611 			__free_pages(page, huge_page_order(h));
612 			return NULL;
613 		}
614 		prep_new_huge_page(h, page, nid);
615 	}
616 
617 	return page;
618 }
619 
620 /*
621  * common helper functions for hstate_next_node_to_{alloc|free}.
622  * We may have allocated or freed a huge page based on a different
623  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624  * be outside of *nodes_allowed.  Ensure that we use an allowed
625  * node for alloc or free.
626  */
627 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628 {
629 	nid = next_node(nid, *nodes_allowed);
630 	if (nid == MAX_NUMNODES)
631 		nid = first_node(*nodes_allowed);
632 	VM_BUG_ON(nid >= MAX_NUMNODES);
633 
634 	return nid;
635 }
636 
637 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638 {
639 	if (!node_isset(nid, *nodes_allowed))
640 		nid = next_node_allowed(nid, nodes_allowed);
641 	return nid;
642 }
643 
644 /*
645  * returns the previously saved node ["this node"] from which to
646  * allocate a persistent huge page for the pool and advance the
647  * next node from which to allocate, handling wrap at end of node
648  * mask.
649  */
650 static int hstate_next_node_to_alloc(struct hstate *h,
651 					nodemask_t *nodes_allowed)
652 {
653 	int nid;
654 
655 	VM_BUG_ON(!nodes_allowed);
656 
657 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
658 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659 
660 	return nid;
661 }
662 
663 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664 {
665 	struct page *page;
666 	int start_nid;
667 	int next_nid;
668 	int ret = 0;
669 
670 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
671 	next_nid = start_nid;
672 
673 	do {
674 		page = alloc_fresh_huge_page_node(h, next_nid);
675 		if (page) {
676 			ret = 1;
677 			break;
678 		}
679 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
680 	} while (next_nid != start_nid);
681 
682 	if (ret)
683 		count_vm_event(HTLB_BUDDY_PGALLOC);
684 	else
685 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686 
687 	return ret;
688 }
689 
690 /*
691  * helper for free_pool_huge_page() - return the previously saved
692  * node ["this node"] from which to free a huge page.  Advance the
693  * next node id whether or not we find a free huge page to free so
694  * that the next attempt to free addresses the next node.
695  */
696 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697 {
698 	int nid;
699 
700 	VM_BUG_ON(!nodes_allowed);
701 
702 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
703 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704 
705 	return nid;
706 }
707 
708 /*
709  * Free huge page from pool from next node to free.
710  * Attempt to keep persistent huge pages more or less
711  * balanced over allowed nodes.
712  * Called with hugetlb_lock locked.
713  */
714 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
715 							 bool acct_surplus)
716 {
717 	int start_nid;
718 	int next_nid;
719 	int ret = 0;
720 
721 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
722 	next_nid = start_nid;
723 
724 	do {
725 		/*
726 		 * If we're returning unused surplus pages, only examine
727 		 * nodes with surplus pages.
728 		 */
729 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
730 		    !list_empty(&h->hugepage_freelists[next_nid])) {
731 			struct page *page =
732 				list_entry(h->hugepage_freelists[next_nid].next,
733 					  struct page, lru);
734 			list_del(&page->lru);
735 			h->free_huge_pages--;
736 			h->free_huge_pages_node[next_nid]--;
737 			if (acct_surplus) {
738 				h->surplus_huge_pages--;
739 				h->surplus_huge_pages_node[next_nid]--;
740 			}
741 			update_and_free_page(h, page);
742 			ret = 1;
743 			break;
744 		}
745 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
746 	} while (next_nid != start_nid);
747 
748 	return ret;
749 }
750 
751 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752 {
753 	struct page *page;
754 	unsigned int r_nid;
755 
756 	if (h->order >= MAX_ORDER)
757 		return NULL;
758 
759 	/*
760 	 * Assume we will successfully allocate the surplus page to
761 	 * prevent racing processes from causing the surplus to exceed
762 	 * overcommit
763 	 *
764 	 * This however introduces a different race, where a process B
765 	 * tries to grow the static hugepage pool while alloc_pages() is
766 	 * called by process A. B will only examine the per-node
767 	 * counters in determining if surplus huge pages can be
768 	 * converted to normal huge pages in adjust_pool_surplus(). A
769 	 * won't be able to increment the per-node counter, until the
770 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
771 	 * no more huge pages can be converted from surplus to normal
772 	 * state (and doesn't try to convert again). Thus, we have a
773 	 * case where a surplus huge page exists, the pool is grown, and
774 	 * the surplus huge page still exists after, even though it
775 	 * should just have been converted to a normal huge page. This
776 	 * does not leak memory, though, as the hugepage will be freed
777 	 * once it is out of use. It also does not allow the counters to
778 	 * go out of whack in adjust_pool_surplus() as we don't modify
779 	 * the node values until we've gotten the hugepage and only the
780 	 * per-node value is checked there.
781 	 */
782 	spin_lock(&hugetlb_lock);
783 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
784 		spin_unlock(&hugetlb_lock);
785 		return NULL;
786 	} else {
787 		h->nr_huge_pages++;
788 		h->surplus_huge_pages++;
789 	}
790 	spin_unlock(&hugetlb_lock);
791 
792 	if (nid == NUMA_NO_NODE)
793 		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
794 				   __GFP_REPEAT|__GFP_NOWARN,
795 				   huge_page_order(h));
796 	else
797 		page = alloc_pages_exact_node(nid,
798 			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
799 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800 
801 	if (page && arch_prepare_hugepage(page)) {
802 		__free_pages(page, huge_page_order(h));
803 		page = NULL;
804 	}
805 
806 	spin_lock(&hugetlb_lock);
807 	if (page) {
808 		r_nid = page_to_nid(page);
809 		set_compound_page_dtor(page, free_huge_page);
810 		/*
811 		 * We incremented the global counters already
812 		 */
813 		h->nr_huge_pages_node[r_nid]++;
814 		h->surplus_huge_pages_node[r_nid]++;
815 		__count_vm_event(HTLB_BUDDY_PGALLOC);
816 	} else {
817 		h->nr_huge_pages--;
818 		h->surplus_huge_pages--;
819 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820 	}
821 	spin_unlock(&hugetlb_lock);
822 
823 	return page;
824 }
825 
826 /*
827  * This allocation function is useful in the context where vma is irrelevant.
828  * E.g. soft-offlining uses this function because it only cares physical
829  * address of error page.
830  */
831 struct page *alloc_huge_page_node(struct hstate *h, int nid)
832 {
833 	struct page *page;
834 
835 	spin_lock(&hugetlb_lock);
836 	page = dequeue_huge_page_node(h, nid);
837 	spin_unlock(&hugetlb_lock);
838 
839 	if (!page)
840 		page = alloc_buddy_huge_page(h, nid);
841 
842 	return page;
843 }
844 
845 /*
846  * Increase the hugetlb pool such that it can accommodate a reservation
847  * of size 'delta'.
848  */
849 static int gather_surplus_pages(struct hstate *h, int delta)
850 {
851 	struct list_head surplus_list;
852 	struct page *page, *tmp;
853 	int ret, i;
854 	int needed, allocated;
855 
856 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
857 	if (needed <= 0) {
858 		h->resv_huge_pages += delta;
859 		return 0;
860 	}
861 
862 	allocated = 0;
863 	INIT_LIST_HEAD(&surplus_list);
864 
865 	ret = -ENOMEM;
866 retry:
867 	spin_unlock(&hugetlb_lock);
868 	for (i = 0; i < needed; i++) {
869 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
870 		if (!page)
871 			/*
872 			 * We were not able to allocate enough pages to
873 			 * satisfy the entire reservation so we free what
874 			 * we've allocated so far.
875 			 */
876 			goto free;
877 
878 		list_add(&page->lru, &surplus_list);
879 	}
880 	allocated += needed;
881 
882 	/*
883 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
884 	 * because either resv_huge_pages or free_huge_pages may have changed.
885 	 */
886 	spin_lock(&hugetlb_lock);
887 	needed = (h->resv_huge_pages + delta) -
888 			(h->free_huge_pages + allocated);
889 	if (needed > 0)
890 		goto retry;
891 
892 	/*
893 	 * The surplus_list now contains _at_least_ the number of extra pages
894 	 * needed to accommodate the reservation.  Add the appropriate number
895 	 * of pages to the hugetlb pool and free the extras back to the buddy
896 	 * allocator.  Commit the entire reservation here to prevent another
897 	 * process from stealing the pages as they are added to the pool but
898 	 * before they are reserved.
899 	 */
900 	needed += allocated;
901 	h->resv_huge_pages += delta;
902 	ret = 0;
903 
904 	/* Free the needed pages to the hugetlb pool */
905 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 		if ((--needed) < 0)
907 			break;
908 		list_del(&page->lru);
909 		/*
910 		 * This page is now managed by the hugetlb allocator and has
911 		 * no users -- drop the buddy allocator's reference.
912 		 */
913 		put_page_testzero(page);
914 		VM_BUG_ON(page_count(page));
915 		enqueue_huge_page(h, page);
916 	}
917 	spin_unlock(&hugetlb_lock);
918 
919 	/* Free unnecessary surplus pages to the buddy allocator */
920 free:
921 	if (!list_empty(&surplus_list)) {
922 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
923 			list_del(&page->lru);
924 			put_page(page);
925 		}
926 	}
927 	spin_lock(&hugetlb_lock);
928 
929 	return ret;
930 }
931 
932 /*
933  * When releasing a hugetlb pool reservation, any surplus pages that were
934  * allocated to satisfy the reservation must be explicitly freed if they were
935  * never used.
936  * Called with hugetlb_lock held.
937  */
938 static void return_unused_surplus_pages(struct hstate *h,
939 					unsigned long unused_resv_pages)
940 {
941 	unsigned long nr_pages;
942 
943 	/* Uncommit the reservation */
944 	h->resv_huge_pages -= unused_resv_pages;
945 
946 	/* Cannot return gigantic pages currently */
947 	if (h->order >= MAX_ORDER)
948 		return;
949 
950 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
951 
952 	/*
953 	 * We want to release as many surplus pages as possible, spread
954 	 * evenly across all nodes with memory. Iterate across these nodes
955 	 * until we can no longer free unreserved surplus pages. This occurs
956 	 * when the nodes with surplus pages have no free pages.
957 	 * free_pool_huge_page() will balance the the freed pages across the
958 	 * on-line nodes with memory and will handle the hstate accounting.
959 	 */
960 	while (nr_pages--) {
961 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
962 			break;
963 	}
964 }
965 
966 /*
967  * Determine if the huge page at addr within the vma has an associated
968  * reservation.  Where it does not we will need to logically increase
969  * reservation and actually increase quota before an allocation can occur.
970  * Where any new reservation would be required the reservation change is
971  * prepared, but not committed.  Once the page has been quota'd allocated
972  * an instantiated the change should be committed via vma_commit_reservation.
973  * No action is required on failure.
974  */
975 static long vma_needs_reservation(struct hstate *h,
976 			struct vm_area_struct *vma, unsigned long addr)
977 {
978 	struct address_space *mapping = vma->vm_file->f_mapping;
979 	struct inode *inode = mapping->host;
980 
981 	if (vma->vm_flags & VM_MAYSHARE) {
982 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983 		return region_chg(&inode->i_mapping->private_list,
984 							idx, idx + 1);
985 
986 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
987 		return 1;
988 
989 	} else  {
990 		long err;
991 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
992 		struct resv_map *reservations = vma_resv_map(vma);
993 
994 		err = region_chg(&reservations->regions, idx, idx + 1);
995 		if (err < 0)
996 			return err;
997 		return 0;
998 	}
999 }
1000 static void vma_commit_reservation(struct hstate *h,
1001 			struct vm_area_struct *vma, unsigned long addr)
1002 {
1003 	struct address_space *mapping = vma->vm_file->f_mapping;
1004 	struct inode *inode = mapping->host;
1005 
1006 	if (vma->vm_flags & VM_MAYSHARE) {
1007 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1009 
1010 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1011 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012 		struct resv_map *reservations = vma_resv_map(vma);
1013 
1014 		/* Mark this page used in the map. */
1015 		region_add(&reservations->regions, idx, idx + 1);
1016 	}
1017 }
1018 
1019 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1020 				    unsigned long addr, int avoid_reserve)
1021 {
1022 	struct hstate *h = hstate_vma(vma);
1023 	struct page *page;
1024 	struct address_space *mapping = vma->vm_file->f_mapping;
1025 	struct inode *inode = mapping->host;
1026 	long chg;
1027 
1028 	/*
1029 	 * Processes that did not create the mapping will have no reserves and
1030 	 * will not have accounted against quota. Check that the quota can be
1031 	 * made before satisfying the allocation
1032 	 * MAP_NORESERVE mappings may also need pages and quota allocated
1033 	 * if no reserve mapping overlaps.
1034 	 */
1035 	chg = vma_needs_reservation(h, vma, addr);
1036 	if (chg < 0)
1037 		return ERR_PTR(-VM_FAULT_OOM);
1038 	if (chg)
1039 		if (hugetlb_get_quota(inode->i_mapping, chg))
1040 			return ERR_PTR(-VM_FAULT_SIGBUS);
1041 
1042 	spin_lock(&hugetlb_lock);
1043 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1044 	spin_unlock(&hugetlb_lock);
1045 
1046 	if (!page) {
1047 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1048 		if (!page) {
1049 			hugetlb_put_quota(inode->i_mapping, chg);
1050 			return ERR_PTR(-VM_FAULT_SIGBUS);
1051 		}
1052 	}
1053 
1054 	set_page_private(page, (unsigned long) mapping);
1055 
1056 	vma_commit_reservation(h, vma, addr);
1057 
1058 	return page;
1059 }
1060 
1061 int __weak alloc_bootmem_huge_page(struct hstate *h)
1062 {
1063 	struct huge_bootmem_page *m;
1064 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1065 
1066 	while (nr_nodes) {
1067 		void *addr;
1068 
1069 		addr = __alloc_bootmem_node_nopanic(
1070 				NODE_DATA(hstate_next_node_to_alloc(h,
1071 						&node_states[N_HIGH_MEMORY])),
1072 				huge_page_size(h), huge_page_size(h), 0);
1073 
1074 		if (addr) {
1075 			/*
1076 			 * Use the beginning of the huge page to store the
1077 			 * huge_bootmem_page struct (until gather_bootmem
1078 			 * puts them into the mem_map).
1079 			 */
1080 			m = addr;
1081 			goto found;
1082 		}
1083 		nr_nodes--;
1084 	}
1085 	return 0;
1086 
1087 found:
1088 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1089 	/* Put them into a private list first because mem_map is not up yet */
1090 	list_add(&m->list, &huge_boot_pages);
1091 	m->hstate = h;
1092 	return 1;
1093 }
1094 
1095 static void prep_compound_huge_page(struct page *page, int order)
1096 {
1097 	if (unlikely(order > (MAX_ORDER - 1)))
1098 		prep_compound_gigantic_page(page, order);
1099 	else
1100 		prep_compound_page(page, order);
1101 }
1102 
1103 /* Put bootmem huge pages into the standard lists after mem_map is up */
1104 static void __init gather_bootmem_prealloc(void)
1105 {
1106 	struct huge_bootmem_page *m;
1107 
1108 	list_for_each_entry(m, &huge_boot_pages, list) {
1109 		struct hstate *h = m->hstate;
1110 		struct page *page;
1111 
1112 #ifdef CONFIG_HIGHMEM
1113 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1114 		free_bootmem_late((unsigned long)m,
1115 				  sizeof(struct huge_bootmem_page));
1116 #else
1117 		page = virt_to_page(m);
1118 #endif
1119 		__ClearPageReserved(page);
1120 		WARN_ON(page_count(page) != 1);
1121 		prep_compound_huge_page(page, h->order);
1122 		prep_new_huge_page(h, page, page_to_nid(page));
1123 		/*
1124 		 * If we had gigantic hugepages allocated at boot time, we need
1125 		 * to restore the 'stolen' pages to totalram_pages in order to
1126 		 * fix confusing memory reports from free(1) and another
1127 		 * side-effects, like CommitLimit going negative.
1128 		 */
1129 		if (h->order > (MAX_ORDER - 1))
1130 			totalram_pages += 1 << h->order;
1131 	}
1132 }
1133 
1134 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1135 {
1136 	unsigned long i;
1137 
1138 	for (i = 0; i < h->max_huge_pages; ++i) {
1139 		if (h->order >= MAX_ORDER) {
1140 			if (!alloc_bootmem_huge_page(h))
1141 				break;
1142 		} else if (!alloc_fresh_huge_page(h,
1143 					 &node_states[N_HIGH_MEMORY]))
1144 			break;
1145 	}
1146 	h->max_huge_pages = i;
1147 }
1148 
1149 static void __init hugetlb_init_hstates(void)
1150 {
1151 	struct hstate *h;
1152 
1153 	for_each_hstate(h) {
1154 		/* oversize hugepages were init'ed in early boot */
1155 		if (h->order < MAX_ORDER)
1156 			hugetlb_hstate_alloc_pages(h);
1157 	}
1158 }
1159 
1160 static char * __init memfmt(char *buf, unsigned long n)
1161 {
1162 	if (n >= (1UL << 30))
1163 		sprintf(buf, "%lu GB", n >> 30);
1164 	else if (n >= (1UL << 20))
1165 		sprintf(buf, "%lu MB", n >> 20);
1166 	else
1167 		sprintf(buf, "%lu KB", n >> 10);
1168 	return buf;
1169 }
1170 
1171 static void __init report_hugepages(void)
1172 {
1173 	struct hstate *h;
1174 
1175 	for_each_hstate(h) {
1176 		char buf[32];
1177 		printk(KERN_INFO "HugeTLB registered %s page size, "
1178 				 "pre-allocated %ld pages\n",
1179 			memfmt(buf, huge_page_size(h)),
1180 			h->free_huge_pages);
1181 	}
1182 }
1183 
1184 #ifdef CONFIG_HIGHMEM
1185 static void try_to_free_low(struct hstate *h, unsigned long count,
1186 						nodemask_t *nodes_allowed)
1187 {
1188 	int i;
1189 
1190 	if (h->order >= MAX_ORDER)
1191 		return;
1192 
1193 	for_each_node_mask(i, *nodes_allowed) {
1194 		struct page *page, *next;
1195 		struct list_head *freel = &h->hugepage_freelists[i];
1196 		list_for_each_entry_safe(page, next, freel, lru) {
1197 			if (count >= h->nr_huge_pages)
1198 				return;
1199 			if (PageHighMem(page))
1200 				continue;
1201 			list_del(&page->lru);
1202 			update_and_free_page(h, page);
1203 			h->free_huge_pages--;
1204 			h->free_huge_pages_node[page_to_nid(page)]--;
1205 		}
1206 	}
1207 }
1208 #else
1209 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1210 						nodemask_t *nodes_allowed)
1211 {
1212 }
1213 #endif
1214 
1215 /*
1216  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1217  * balanced by operating on them in a round-robin fashion.
1218  * Returns 1 if an adjustment was made.
1219  */
1220 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1221 				int delta)
1222 {
1223 	int start_nid, next_nid;
1224 	int ret = 0;
1225 
1226 	VM_BUG_ON(delta != -1 && delta != 1);
1227 
1228 	if (delta < 0)
1229 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1230 	else
1231 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1232 	next_nid = start_nid;
1233 
1234 	do {
1235 		int nid = next_nid;
1236 		if (delta < 0)  {
1237 			/*
1238 			 * To shrink on this node, there must be a surplus page
1239 			 */
1240 			if (!h->surplus_huge_pages_node[nid]) {
1241 				next_nid = hstate_next_node_to_alloc(h,
1242 								nodes_allowed);
1243 				continue;
1244 			}
1245 		}
1246 		if (delta > 0) {
1247 			/*
1248 			 * Surplus cannot exceed the total number of pages
1249 			 */
1250 			if (h->surplus_huge_pages_node[nid] >=
1251 						h->nr_huge_pages_node[nid]) {
1252 				next_nid = hstate_next_node_to_free(h,
1253 								nodes_allowed);
1254 				continue;
1255 			}
1256 		}
1257 
1258 		h->surplus_huge_pages += delta;
1259 		h->surplus_huge_pages_node[nid] += delta;
1260 		ret = 1;
1261 		break;
1262 	} while (next_nid != start_nid);
1263 
1264 	return ret;
1265 }
1266 
1267 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1268 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1269 						nodemask_t *nodes_allowed)
1270 {
1271 	unsigned long min_count, ret;
1272 
1273 	if (h->order >= MAX_ORDER)
1274 		return h->max_huge_pages;
1275 
1276 	/*
1277 	 * Increase the pool size
1278 	 * First take pages out of surplus state.  Then make up the
1279 	 * remaining difference by allocating fresh huge pages.
1280 	 *
1281 	 * We might race with alloc_buddy_huge_page() here and be unable
1282 	 * to convert a surplus huge page to a normal huge page. That is
1283 	 * not critical, though, it just means the overall size of the
1284 	 * pool might be one hugepage larger than it needs to be, but
1285 	 * within all the constraints specified by the sysctls.
1286 	 */
1287 	spin_lock(&hugetlb_lock);
1288 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1289 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1290 			break;
1291 	}
1292 
1293 	while (count > persistent_huge_pages(h)) {
1294 		/*
1295 		 * If this allocation races such that we no longer need the
1296 		 * page, free_huge_page will handle it by freeing the page
1297 		 * and reducing the surplus.
1298 		 */
1299 		spin_unlock(&hugetlb_lock);
1300 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1301 		spin_lock(&hugetlb_lock);
1302 		if (!ret)
1303 			goto out;
1304 
1305 		/* Bail for signals. Probably ctrl-c from user */
1306 		if (signal_pending(current))
1307 			goto out;
1308 	}
1309 
1310 	/*
1311 	 * Decrease the pool size
1312 	 * First return free pages to the buddy allocator (being careful
1313 	 * to keep enough around to satisfy reservations).  Then place
1314 	 * pages into surplus state as needed so the pool will shrink
1315 	 * to the desired size as pages become free.
1316 	 *
1317 	 * By placing pages into the surplus state independent of the
1318 	 * overcommit value, we are allowing the surplus pool size to
1319 	 * exceed overcommit. There are few sane options here. Since
1320 	 * alloc_buddy_huge_page() is checking the global counter,
1321 	 * though, we'll note that we're not allowed to exceed surplus
1322 	 * and won't grow the pool anywhere else. Not until one of the
1323 	 * sysctls are changed, or the surplus pages go out of use.
1324 	 */
1325 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1326 	min_count = max(count, min_count);
1327 	try_to_free_low(h, min_count, nodes_allowed);
1328 	while (min_count < persistent_huge_pages(h)) {
1329 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1330 			break;
1331 	}
1332 	while (count < persistent_huge_pages(h)) {
1333 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1334 			break;
1335 	}
1336 out:
1337 	ret = persistent_huge_pages(h);
1338 	spin_unlock(&hugetlb_lock);
1339 	return ret;
1340 }
1341 
1342 #define HSTATE_ATTR_RO(_name) \
1343 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1344 
1345 #define HSTATE_ATTR(_name) \
1346 	static struct kobj_attribute _name##_attr = \
1347 		__ATTR(_name, 0644, _name##_show, _name##_store)
1348 
1349 static struct kobject *hugepages_kobj;
1350 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1351 
1352 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1353 
1354 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1355 {
1356 	int i;
1357 
1358 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1359 		if (hstate_kobjs[i] == kobj) {
1360 			if (nidp)
1361 				*nidp = NUMA_NO_NODE;
1362 			return &hstates[i];
1363 		}
1364 
1365 	return kobj_to_node_hstate(kobj, nidp);
1366 }
1367 
1368 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1369 					struct kobj_attribute *attr, char *buf)
1370 {
1371 	struct hstate *h;
1372 	unsigned long nr_huge_pages;
1373 	int nid;
1374 
1375 	h = kobj_to_hstate(kobj, &nid);
1376 	if (nid == NUMA_NO_NODE)
1377 		nr_huge_pages = h->nr_huge_pages;
1378 	else
1379 		nr_huge_pages = h->nr_huge_pages_node[nid];
1380 
1381 	return sprintf(buf, "%lu\n", nr_huge_pages);
1382 }
1383 
1384 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1385 			struct kobject *kobj, struct kobj_attribute *attr,
1386 			const char *buf, size_t len)
1387 {
1388 	int err;
1389 	int nid;
1390 	unsigned long count;
1391 	struct hstate *h;
1392 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1393 
1394 	err = strict_strtoul(buf, 10, &count);
1395 	if (err)
1396 		goto out;
1397 
1398 	h = kobj_to_hstate(kobj, &nid);
1399 	if (h->order >= MAX_ORDER) {
1400 		err = -EINVAL;
1401 		goto out;
1402 	}
1403 
1404 	if (nid == NUMA_NO_NODE) {
1405 		/*
1406 		 * global hstate attribute
1407 		 */
1408 		if (!(obey_mempolicy &&
1409 				init_nodemask_of_mempolicy(nodes_allowed))) {
1410 			NODEMASK_FREE(nodes_allowed);
1411 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1412 		}
1413 	} else if (nodes_allowed) {
1414 		/*
1415 		 * per node hstate attribute: adjust count to global,
1416 		 * but restrict alloc/free to the specified node.
1417 		 */
1418 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1419 		init_nodemask_of_node(nodes_allowed, nid);
1420 	} else
1421 		nodes_allowed = &node_states[N_HIGH_MEMORY];
1422 
1423 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1424 
1425 	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1426 		NODEMASK_FREE(nodes_allowed);
1427 
1428 	return len;
1429 out:
1430 	NODEMASK_FREE(nodes_allowed);
1431 	return err;
1432 }
1433 
1434 static ssize_t nr_hugepages_show(struct kobject *kobj,
1435 				       struct kobj_attribute *attr, char *buf)
1436 {
1437 	return nr_hugepages_show_common(kobj, attr, buf);
1438 }
1439 
1440 static ssize_t nr_hugepages_store(struct kobject *kobj,
1441 	       struct kobj_attribute *attr, const char *buf, size_t len)
1442 {
1443 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1444 }
1445 HSTATE_ATTR(nr_hugepages);
1446 
1447 #ifdef CONFIG_NUMA
1448 
1449 /*
1450  * hstate attribute for optionally mempolicy-based constraint on persistent
1451  * huge page alloc/free.
1452  */
1453 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1454 				       struct kobj_attribute *attr, char *buf)
1455 {
1456 	return nr_hugepages_show_common(kobj, attr, buf);
1457 }
1458 
1459 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1460 	       struct kobj_attribute *attr, const char *buf, size_t len)
1461 {
1462 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1463 }
1464 HSTATE_ATTR(nr_hugepages_mempolicy);
1465 #endif
1466 
1467 
1468 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1469 					struct kobj_attribute *attr, char *buf)
1470 {
1471 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1472 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1473 }
1474 
1475 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1476 		struct kobj_attribute *attr, const char *buf, size_t count)
1477 {
1478 	int err;
1479 	unsigned long input;
1480 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1481 
1482 	if (h->order >= MAX_ORDER)
1483 		return -EINVAL;
1484 
1485 	err = strict_strtoul(buf, 10, &input);
1486 	if (err)
1487 		return err;
1488 
1489 	spin_lock(&hugetlb_lock);
1490 	h->nr_overcommit_huge_pages = input;
1491 	spin_unlock(&hugetlb_lock);
1492 
1493 	return count;
1494 }
1495 HSTATE_ATTR(nr_overcommit_hugepages);
1496 
1497 static ssize_t free_hugepages_show(struct kobject *kobj,
1498 					struct kobj_attribute *attr, char *buf)
1499 {
1500 	struct hstate *h;
1501 	unsigned long free_huge_pages;
1502 	int nid;
1503 
1504 	h = kobj_to_hstate(kobj, &nid);
1505 	if (nid == NUMA_NO_NODE)
1506 		free_huge_pages = h->free_huge_pages;
1507 	else
1508 		free_huge_pages = h->free_huge_pages_node[nid];
1509 
1510 	return sprintf(buf, "%lu\n", free_huge_pages);
1511 }
1512 HSTATE_ATTR_RO(free_hugepages);
1513 
1514 static ssize_t resv_hugepages_show(struct kobject *kobj,
1515 					struct kobj_attribute *attr, char *buf)
1516 {
1517 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1518 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1519 }
1520 HSTATE_ATTR_RO(resv_hugepages);
1521 
1522 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1523 					struct kobj_attribute *attr, char *buf)
1524 {
1525 	struct hstate *h;
1526 	unsigned long surplus_huge_pages;
1527 	int nid;
1528 
1529 	h = kobj_to_hstate(kobj, &nid);
1530 	if (nid == NUMA_NO_NODE)
1531 		surplus_huge_pages = h->surplus_huge_pages;
1532 	else
1533 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1534 
1535 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1536 }
1537 HSTATE_ATTR_RO(surplus_hugepages);
1538 
1539 static struct attribute *hstate_attrs[] = {
1540 	&nr_hugepages_attr.attr,
1541 	&nr_overcommit_hugepages_attr.attr,
1542 	&free_hugepages_attr.attr,
1543 	&resv_hugepages_attr.attr,
1544 	&surplus_hugepages_attr.attr,
1545 #ifdef CONFIG_NUMA
1546 	&nr_hugepages_mempolicy_attr.attr,
1547 #endif
1548 	NULL,
1549 };
1550 
1551 static struct attribute_group hstate_attr_group = {
1552 	.attrs = hstate_attrs,
1553 };
1554 
1555 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1556 				    struct kobject **hstate_kobjs,
1557 				    struct attribute_group *hstate_attr_group)
1558 {
1559 	int retval;
1560 	int hi = h - hstates;
1561 
1562 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1563 	if (!hstate_kobjs[hi])
1564 		return -ENOMEM;
1565 
1566 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1567 	if (retval)
1568 		kobject_put(hstate_kobjs[hi]);
1569 
1570 	return retval;
1571 }
1572 
1573 static void __init hugetlb_sysfs_init(void)
1574 {
1575 	struct hstate *h;
1576 	int err;
1577 
1578 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1579 	if (!hugepages_kobj)
1580 		return;
1581 
1582 	for_each_hstate(h) {
1583 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1584 					 hstate_kobjs, &hstate_attr_group);
1585 		if (err)
1586 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1587 								h->name);
1588 	}
1589 }
1590 
1591 #ifdef CONFIG_NUMA
1592 
1593 /*
1594  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1595  * with node devices in node_devices[] using a parallel array.  The array
1596  * index of a node device or _hstate == node id.
1597  * This is here to avoid any static dependency of the node device driver, in
1598  * the base kernel, on the hugetlb module.
1599  */
1600 struct node_hstate {
1601 	struct kobject		*hugepages_kobj;
1602 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1603 };
1604 struct node_hstate node_hstates[MAX_NUMNODES];
1605 
1606 /*
1607  * A subset of global hstate attributes for node devices
1608  */
1609 static struct attribute *per_node_hstate_attrs[] = {
1610 	&nr_hugepages_attr.attr,
1611 	&free_hugepages_attr.attr,
1612 	&surplus_hugepages_attr.attr,
1613 	NULL,
1614 };
1615 
1616 static struct attribute_group per_node_hstate_attr_group = {
1617 	.attrs = per_node_hstate_attrs,
1618 };
1619 
1620 /*
1621  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1622  * Returns node id via non-NULL nidp.
1623  */
1624 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1625 {
1626 	int nid;
1627 
1628 	for (nid = 0; nid < nr_node_ids; nid++) {
1629 		struct node_hstate *nhs = &node_hstates[nid];
1630 		int i;
1631 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1632 			if (nhs->hstate_kobjs[i] == kobj) {
1633 				if (nidp)
1634 					*nidp = nid;
1635 				return &hstates[i];
1636 			}
1637 	}
1638 
1639 	BUG();
1640 	return NULL;
1641 }
1642 
1643 /*
1644  * Unregister hstate attributes from a single node device.
1645  * No-op if no hstate attributes attached.
1646  */
1647 void hugetlb_unregister_node(struct node *node)
1648 {
1649 	struct hstate *h;
1650 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1651 
1652 	if (!nhs->hugepages_kobj)
1653 		return;		/* no hstate attributes */
1654 
1655 	for_each_hstate(h)
1656 		if (nhs->hstate_kobjs[h - hstates]) {
1657 			kobject_put(nhs->hstate_kobjs[h - hstates]);
1658 			nhs->hstate_kobjs[h - hstates] = NULL;
1659 		}
1660 
1661 	kobject_put(nhs->hugepages_kobj);
1662 	nhs->hugepages_kobj = NULL;
1663 }
1664 
1665 /*
1666  * hugetlb module exit:  unregister hstate attributes from node devices
1667  * that have them.
1668  */
1669 static void hugetlb_unregister_all_nodes(void)
1670 {
1671 	int nid;
1672 
1673 	/*
1674 	 * disable node device registrations.
1675 	 */
1676 	register_hugetlbfs_with_node(NULL, NULL);
1677 
1678 	/*
1679 	 * remove hstate attributes from any nodes that have them.
1680 	 */
1681 	for (nid = 0; nid < nr_node_ids; nid++)
1682 		hugetlb_unregister_node(&node_devices[nid]);
1683 }
1684 
1685 /*
1686  * Register hstate attributes for a single node device.
1687  * No-op if attributes already registered.
1688  */
1689 void hugetlb_register_node(struct node *node)
1690 {
1691 	struct hstate *h;
1692 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1693 	int err;
1694 
1695 	if (nhs->hugepages_kobj)
1696 		return;		/* already allocated */
1697 
1698 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1699 							&node->dev.kobj);
1700 	if (!nhs->hugepages_kobj)
1701 		return;
1702 
1703 	for_each_hstate(h) {
1704 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1705 						nhs->hstate_kobjs,
1706 						&per_node_hstate_attr_group);
1707 		if (err) {
1708 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1709 					" for node %d\n",
1710 						h->name, node->dev.id);
1711 			hugetlb_unregister_node(node);
1712 			break;
1713 		}
1714 	}
1715 }
1716 
1717 /*
1718  * hugetlb init time:  register hstate attributes for all registered node
1719  * devices of nodes that have memory.  All on-line nodes should have
1720  * registered their associated device by this time.
1721  */
1722 static void hugetlb_register_all_nodes(void)
1723 {
1724 	int nid;
1725 
1726 	for_each_node_state(nid, N_HIGH_MEMORY) {
1727 		struct node *node = &node_devices[nid];
1728 		if (node->dev.id == nid)
1729 			hugetlb_register_node(node);
1730 	}
1731 
1732 	/*
1733 	 * Let the node device driver know we're here so it can
1734 	 * [un]register hstate attributes on node hotplug.
1735 	 */
1736 	register_hugetlbfs_with_node(hugetlb_register_node,
1737 				     hugetlb_unregister_node);
1738 }
1739 #else	/* !CONFIG_NUMA */
1740 
1741 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1742 {
1743 	BUG();
1744 	if (nidp)
1745 		*nidp = -1;
1746 	return NULL;
1747 }
1748 
1749 static void hugetlb_unregister_all_nodes(void) { }
1750 
1751 static void hugetlb_register_all_nodes(void) { }
1752 
1753 #endif
1754 
1755 static void __exit hugetlb_exit(void)
1756 {
1757 	struct hstate *h;
1758 
1759 	hugetlb_unregister_all_nodes();
1760 
1761 	for_each_hstate(h) {
1762 		kobject_put(hstate_kobjs[h - hstates]);
1763 	}
1764 
1765 	kobject_put(hugepages_kobj);
1766 }
1767 module_exit(hugetlb_exit);
1768 
1769 static int __init hugetlb_init(void)
1770 {
1771 	/* Some platform decide whether they support huge pages at boot
1772 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1773 	 * there is no such support
1774 	 */
1775 	if (HPAGE_SHIFT == 0)
1776 		return 0;
1777 
1778 	if (!size_to_hstate(default_hstate_size)) {
1779 		default_hstate_size = HPAGE_SIZE;
1780 		if (!size_to_hstate(default_hstate_size))
1781 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1782 	}
1783 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1784 	if (default_hstate_max_huge_pages)
1785 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1786 
1787 	hugetlb_init_hstates();
1788 
1789 	gather_bootmem_prealloc();
1790 
1791 	report_hugepages();
1792 
1793 	hugetlb_sysfs_init();
1794 
1795 	hugetlb_register_all_nodes();
1796 
1797 	return 0;
1798 }
1799 module_init(hugetlb_init);
1800 
1801 /* Should be called on processing a hugepagesz=... option */
1802 void __init hugetlb_add_hstate(unsigned order)
1803 {
1804 	struct hstate *h;
1805 	unsigned long i;
1806 
1807 	if (size_to_hstate(PAGE_SIZE << order)) {
1808 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1809 		return;
1810 	}
1811 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1812 	BUG_ON(order == 0);
1813 	h = &hstates[max_hstate++];
1814 	h->order = order;
1815 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1816 	h->nr_huge_pages = 0;
1817 	h->free_huge_pages = 0;
1818 	for (i = 0; i < MAX_NUMNODES; ++i)
1819 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1820 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1821 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1822 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1823 					huge_page_size(h)/1024);
1824 
1825 	parsed_hstate = h;
1826 }
1827 
1828 static int __init hugetlb_nrpages_setup(char *s)
1829 {
1830 	unsigned long *mhp;
1831 	static unsigned long *last_mhp;
1832 
1833 	/*
1834 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1835 	 * so this hugepages= parameter goes to the "default hstate".
1836 	 */
1837 	if (!max_hstate)
1838 		mhp = &default_hstate_max_huge_pages;
1839 	else
1840 		mhp = &parsed_hstate->max_huge_pages;
1841 
1842 	if (mhp == last_mhp) {
1843 		printk(KERN_WARNING "hugepages= specified twice without "
1844 			"interleaving hugepagesz=, ignoring\n");
1845 		return 1;
1846 	}
1847 
1848 	if (sscanf(s, "%lu", mhp) <= 0)
1849 		*mhp = 0;
1850 
1851 	/*
1852 	 * Global state is always initialized later in hugetlb_init.
1853 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1854 	 * use the bootmem allocator.
1855 	 */
1856 	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1857 		hugetlb_hstate_alloc_pages(parsed_hstate);
1858 
1859 	last_mhp = mhp;
1860 
1861 	return 1;
1862 }
1863 __setup("hugepages=", hugetlb_nrpages_setup);
1864 
1865 static int __init hugetlb_default_setup(char *s)
1866 {
1867 	default_hstate_size = memparse(s, &s);
1868 	return 1;
1869 }
1870 __setup("default_hugepagesz=", hugetlb_default_setup);
1871 
1872 static unsigned int cpuset_mems_nr(unsigned int *array)
1873 {
1874 	int node;
1875 	unsigned int nr = 0;
1876 
1877 	for_each_node_mask(node, cpuset_current_mems_allowed)
1878 		nr += array[node];
1879 
1880 	return nr;
1881 }
1882 
1883 #ifdef CONFIG_SYSCTL
1884 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1885 			 struct ctl_table *table, int write,
1886 			 void __user *buffer, size_t *length, loff_t *ppos)
1887 {
1888 	struct hstate *h = &default_hstate;
1889 	unsigned long tmp;
1890 	int ret;
1891 
1892 	tmp = h->max_huge_pages;
1893 
1894 	if (write && h->order >= MAX_ORDER)
1895 		return -EINVAL;
1896 
1897 	table->data = &tmp;
1898 	table->maxlen = sizeof(unsigned long);
1899 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1900 	if (ret)
1901 		goto out;
1902 
1903 	if (write) {
1904 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1905 						GFP_KERNEL | __GFP_NORETRY);
1906 		if (!(obey_mempolicy &&
1907 			       init_nodemask_of_mempolicy(nodes_allowed))) {
1908 			NODEMASK_FREE(nodes_allowed);
1909 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1910 		}
1911 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1912 
1913 		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1914 			NODEMASK_FREE(nodes_allowed);
1915 	}
1916 out:
1917 	return ret;
1918 }
1919 
1920 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1921 			  void __user *buffer, size_t *length, loff_t *ppos)
1922 {
1923 
1924 	return hugetlb_sysctl_handler_common(false, table, write,
1925 							buffer, length, ppos);
1926 }
1927 
1928 #ifdef CONFIG_NUMA
1929 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1930 			  void __user *buffer, size_t *length, loff_t *ppos)
1931 {
1932 	return hugetlb_sysctl_handler_common(true, table, write,
1933 							buffer, length, ppos);
1934 }
1935 #endif /* CONFIG_NUMA */
1936 
1937 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1938 			void __user *buffer,
1939 			size_t *length, loff_t *ppos)
1940 {
1941 	proc_dointvec(table, write, buffer, length, ppos);
1942 	if (hugepages_treat_as_movable)
1943 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1944 	else
1945 		htlb_alloc_mask = GFP_HIGHUSER;
1946 	return 0;
1947 }
1948 
1949 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1950 			void __user *buffer,
1951 			size_t *length, loff_t *ppos)
1952 {
1953 	struct hstate *h = &default_hstate;
1954 	unsigned long tmp;
1955 	int ret;
1956 
1957 	tmp = h->nr_overcommit_huge_pages;
1958 
1959 	if (write && h->order >= MAX_ORDER)
1960 		return -EINVAL;
1961 
1962 	table->data = &tmp;
1963 	table->maxlen = sizeof(unsigned long);
1964 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1965 	if (ret)
1966 		goto out;
1967 
1968 	if (write) {
1969 		spin_lock(&hugetlb_lock);
1970 		h->nr_overcommit_huge_pages = tmp;
1971 		spin_unlock(&hugetlb_lock);
1972 	}
1973 out:
1974 	return ret;
1975 }
1976 
1977 #endif /* CONFIG_SYSCTL */
1978 
1979 void hugetlb_report_meminfo(struct seq_file *m)
1980 {
1981 	struct hstate *h = &default_hstate;
1982 	seq_printf(m,
1983 			"HugePages_Total:   %5lu\n"
1984 			"HugePages_Free:    %5lu\n"
1985 			"HugePages_Rsvd:    %5lu\n"
1986 			"HugePages_Surp:    %5lu\n"
1987 			"Hugepagesize:   %8lu kB\n",
1988 			h->nr_huge_pages,
1989 			h->free_huge_pages,
1990 			h->resv_huge_pages,
1991 			h->surplus_huge_pages,
1992 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1993 }
1994 
1995 int hugetlb_report_node_meminfo(int nid, char *buf)
1996 {
1997 	struct hstate *h = &default_hstate;
1998 	return sprintf(buf,
1999 		"Node %d HugePages_Total: %5u\n"
2000 		"Node %d HugePages_Free:  %5u\n"
2001 		"Node %d HugePages_Surp:  %5u\n",
2002 		nid, h->nr_huge_pages_node[nid],
2003 		nid, h->free_huge_pages_node[nid],
2004 		nid, h->surplus_huge_pages_node[nid]);
2005 }
2006 
2007 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2008 unsigned long hugetlb_total_pages(void)
2009 {
2010 	struct hstate *h = &default_hstate;
2011 	return h->nr_huge_pages * pages_per_huge_page(h);
2012 }
2013 
2014 static int hugetlb_acct_memory(struct hstate *h, long delta)
2015 {
2016 	int ret = -ENOMEM;
2017 
2018 	spin_lock(&hugetlb_lock);
2019 	/*
2020 	 * When cpuset is configured, it breaks the strict hugetlb page
2021 	 * reservation as the accounting is done on a global variable. Such
2022 	 * reservation is completely rubbish in the presence of cpuset because
2023 	 * the reservation is not checked against page availability for the
2024 	 * current cpuset. Application can still potentially OOM'ed by kernel
2025 	 * with lack of free htlb page in cpuset that the task is in.
2026 	 * Attempt to enforce strict accounting with cpuset is almost
2027 	 * impossible (or too ugly) because cpuset is too fluid that
2028 	 * task or memory node can be dynamically moved between cpusets.
2029 	 *
2030 	 * The change of semantics for shared hugetlb mapping with cpuset is
2031 	 * undesirable. However, in order to preserve some of the semantics,
2032 	 * we fall back to check against current free page availability as
2033 	 * a best attempt and hopefully to minimize the impact of changing
2034 	 * semantics that cpuset has.
2035 	 */
2036 	if (delta > 0) {
2037 		if (gather_surplus_pages(h, delta) < 0)
2038 			goto out;
2039 
2040 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2041 			return_unused_surplus_pages(h, delta);
2042 			goto out;
2043 		}
2044 	}
2045 
2046 	ret = 0;
2047 	if (delta < 0)
2048 		return_unused_surplus_pages(h, (unsigned long) -delta);
2049 
2050 out:
2051 	spin_unlock(&hugetlb_lock);
2052 	return ret;
2053 }
2054 
2055 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2056 {
2057 	struct resv_map *reservations = vma_resv_map(vma);
2058 
2059 	/*
2060 	 * This new VMA should share its siblings reservation map if present.
2061 	 * The VMA will only ever have a valid reservation map pointer where
2062 	 * it is being copied for another still existing VMA.  As that VMA
2063 	 * has a reference to the reservation map it cannot disappear until
2064 	 * after this open call completes.  It is therefore safe to take a
2065 	 * new reference here without additional locking.
2066 	 */
2067 	if (reservations)
2068 		kref_get(&reservations->refs);
2069 }
2070 
2071 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2072 {
2073 	struct hstate *h = hstate_vma(vma);
2074 	struct resv_map *reservations = vma_resv_map(vma);
2075 	unsigned long reserve;
2076 	unsigned long start;
2077 	unsigned long end;
2078 
2079 	if (reservations) {
2080 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2081 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2082 
2083 		reserve = (end - start) -
2084 			region_count(&reservations->regions, start, end);
2085 
2086 		kref_put(&reservations->refs, resv_map_release);
2087 
2088 		if (reserve) {
2089 			hugetlb_acct_memory(h, -reserve);
2090 			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2091 		}
2092 	}
2093 }
2094 
2095 /*
2096  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2097  * handle_mm_fault() to try to instantiate regular-sized pages in the
2098  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2099  * this far.
2100  */
2101 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2102 {
2103 	BUG();
2104 	return 0;
2105 }
2106 
2107 const struct vm_operations_struct hugetlb_vm_ops = {
2108 	.fault = hugetlb_vm_op_fault,
2109 	.open = hugetlb_vm_op_open,
2110 	.close = hugetlb_vm_op_close,
2111 };
2112 
2113 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2114 				int writable)
2115 {
2116 	pte_t entry;
2117 
2118 	if (writable) {
2119 		entry =
2120 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2121 	} else {
2122 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2123 	}
2124 	entry = pte_mkyoung(entry);
2125 	entry = pte_mkhuge(entry);
2126 
2127 	return entry;
2128 }
2129 
2130 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2131 				   unsigned long address, pte_t *ptep)
2132 {
2133 	pte_t entry;
2134 
2135 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2136 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2137 		update_mmu_cache(vma, address, ptep);
2138 }
2139 
2140 
2141 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2142 			    struct vm_area_struct *vma)
2143 {
2144 	pte_t *src_pte, *dst_pte, entry;
2145 	struct page *ptepage;
2146 	unsigned long addr;
2147 	int cow;
2148 	struct hstate *h = hstate_vma(vma);
2149 	unsigned long sz = huge_page_size(h);
2150 
2151 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2152 
2153 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2154 		src_pte = huge_pte_offset(src, addr);
2155 		if (!src_pte)
2156 			continue;
2157 		dst_pte = huge_pte_alloc(dst, addr, sz);
2158 		if (!dst_pte)
2159 			goto nomem;
2160 
2161 		/* If the pagetables are shared don't copy or take references */
2162 		if (dst_pte == src_pte)
2163 			continue;
2164 
2165 		spin_lock(&dst->page_table_lock);
2166 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2167 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2168 			if (cow)
2169 				huge_ptep_set_wrprotect(src, addr, src_pte);
2170 			entry = huge_ptep_get(src_pte);
2171 			ptepage = pte_page(entry);
2172 			get_page(ptepage);
2173 			page_dup_rmap(ptepage);
2174 			set_huge_pte_at(dst, addr, dst_pte, entry);
2175 		}
2176 		spin_unlock(&src->page_table_lock);
2177 		spin_unlock(&dst->page_table_lock);
2178 	}
2179 	return 0;
2180 
2181 nomem:
2182 	return -ENOMEM;
2183 }
2184 
2185 static int is_hugetlb_entry_migration(pte_t pte)
2186 {
2187 	swp_entry_t swp;
2188 
2189 	if (huge_pte_none(pte) || pte_present(pte))
2190 		return 0;
2191 	swp = pte_to_swp_entry(pte);
2192 	if (non_swap_entry(swp) && is_migration_entry(swp))
2193 		return 1;
2194 	else
2195 		return 0;
2196 }
2197 
2198 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2199 {
2200 	swp_entry_t swp;
2201 
2202 	if (huge_pte_none(pte) || pte_present(pte))
2203 		return 0;
2204 	swp = pte_to_swp_entry(pte);
2205 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2206 		return 1;
2207 	else
2208 		return 0;
2209 }
2210 
2211 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2212 			    unsigned long end, struct page *ref_page)
2213 {
2214 	struct mm_struct *mm = vma->vm_mm;
2215 	unsigned long address;
2216 	pte_t *ptep;
2217 	pte_t pte;
2218 	struct page *page;
2219 	struct page *tmp;
2220 	struct hstate *h = hstate_vma(vma);
2221 	unsigned long sz = huge_page_size(h);
2222 
2223 	/*
2224 	 * A page gathering list, protected by per file i_mmap_mutex. The
2225 	 * lock is used to avoid list corruption from multiple unmapping
2226 	 * of the same page since we are using page->lru.
2227 	 */
2228 	LIST_HEAD(page_list);
2229 
2230 	WARN_ON(!is_vm_hugetlb_page(vma));
2231 	BUG_ON(start & ~huge_page_mask(h));
2232 	BUG_ON(end & ~huge_page_mask(h));
2233 
2234 	mmu_notifier_invalidate_range_start(mm, start, end);
2235 	spin_lock(&mm->page_table_lock);
2236 	for (address = start; address < end; address += sz) {
2237 		ptep = huge_pte_offset(mm, address);
2238 		if (!ptep)
2239 			continue;
2240 
2241 		if (huge_pmd_unshare(mm, &address, ptep))
2242 			continue;
2243 
2244 		/*
2245 		 * If a reference page is supplied, it is because a specific
2246 		 * page is being unmapped, not a range. Ensure the page we
2247 		 * are about to unmap is the actual page of interest.
2248 		 */
2249 		if (ref_page) {
2250 			pte = huge_ptep_get(ptep);
2251 			if (huge_pte_none(pte))
2252 				continue;
2253 			page = pte_page(pte);
2254 			if (page != ref_page)
2255 				continue;
2256 
2257 			/*
2258 			 * Mark the VMA as having unmapped its page so that
2259 			 * future faults in this VMA will fail rather than
2260 			 * looking like data was lost
2261 			 */
2262 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2263 		}
2264 
2265 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2266 		if (huge_pte_none(pte))
2267 			continue;
2268 
2269 		/*
2270 		 * HWPoisoned hugepage is already unmapped and dropped reference
2271 		 */
2272 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2273 			continue;
2274 
2275 		page = pte_page(pte);
2276 		if (pte_dirty(pte))
2277 			set_page_dirty(page);
2278 		list_add(&page->lru, &page_list);
2279 	}
2280 	spin_unlock(&mm->page_table_lock);
2281 	flush_tlb_range(vma, start, end);
2282 	mmu_notifier_invalidate_range_end(mm, start, end);
2283 	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2284 		page_remove_rmap(page);
2285 		list_del(&page->lru);
2286 		put_page(page);
2287 	}
2288 }
2289 
2290 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2291 			  unsigned long end, struct page *ref_page)
2292 {
2293 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2294 	__unmap_hugepage_range(vma, start, end, ref_page);
2295 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2296 }
2297 
2298 /*
2299  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2300  * mappping it owns the reserve page for. The intention is to unmap the page
2301  * from other VMAs and let the children be SIGKILLed if they are faulting the
2302  * same region.
2303  */
2304 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2305 				struct page *page, unsigned long address)
2306 {
2307 	struct hstate *h = hstate_vma(vma);
2308 	struct vm_area_struct *iter_vma;
2309 	struct address_space *mapping;
2310 	struct prio_tree_iter iter;
2311 	pgoff_t pgoff;
2312 
2313 	/*
2314 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2315 	 * from page cache lookup which is in HPAGE_SIZE units.
2316 	 */
2317 	address = address & huge_page_mask(h);
2318 	pgoff = vma_hugecache_offset(h, vma, address);
2319 	mapping = (struct address_space *)page_private(page);
2320 
2321 	/*
2322 	 * Take the mapping lock for the duration of the table walk. As
2323 	 * this mapping should be shared between all the VMAs,
2324 	 * __unmap_hugepage_range() is called as the lock is already held
2325 	 */
2326 	mutex_lock(&mapping->i_mmap_mutex);
2327 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2328 		/* Do not unmap the current VMA */
2329 		if (iter_vma == vma)
2330 			continue;
2331 
2332 		/*
2333 		 * Unmap the page from other VMAs without their own reserves.
2334 		 * They get marked to be SIGKILLed if they fault in these
2335 		 * areas. This is because a future no-page fault on this VMA
2336 		 * could insert a zeroed page instead of the data existing
2337 		 * from the time of fork. This would look like data corruption
2338 		 */
2339 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2340 			__unmap_hugepage_range(iter_vma,
2341 				address, address + huge_page_size(h),
2342 				page);
2343 	}
2344 	mutex_unlock(&mapping->i_mmap_mutex);
2345 
2346 	return 1;
2347 }
2348 
2349 /*
2350  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2351  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2352  * cannot race with other handlers or page migration.
2353  * Keep the pte_same checks anyway to make transition from the mutex easier.
2354  */
2355 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2356 			unsigned long address, pte_t *ptep, pte_t pte,
2357 			struct page *pagecache_page)
2358 {
2359 	struct hstate *h = hstate_vma(vma);
2360 	struct page *old_page, *new_page;
2361 	int avoidcopy;
2362 	int outside_reserve = 0;
2363 
2364 	old_page = pte_page(pte);
2365 
2366 retry_avoidcopy:
2367 	/* If no-one else is actually using this page, avoid the copy
2368 	 * and just make the page writable */
2369 	avoidcopy = (page_mapcount(old_page) == 1);
2370 	if (avoidcopy) {
2371 		if (PageAnon(old_page))
2372 			page_move_anon_rmap(old_page, vma, address);
2373 		set_huge_ptep_writable(vma, address, ptep);
2374 		return 0;
2375 	}
2376 
2377 	/*
2378 	 * If the process that created a MAP_PRIVATE mapping is about to
2379 	 * perform a COW due to a shared page count, attempt to satisfy
2380 	 * the allocation without using the existing reserves. The pagecache
2381 	 * page is used to determine if the reserve at this address was
2382 	 * consumed or not. If reserves were used, a partial faulted mapping
2383 	 * at the time of fork() could consume its reserves on COW instead
2384 	 * of the full address range.
2385 	 */
2386 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2387 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2388 			old_page != pagecache_page)
2389 		outside_reserve = 1;
2390 
2391 	page_cache_get(old_page);
2392 
2393 	/* Drop page_table_lock as buddy allocator may be called */
2394 	spin_unlock(&mm->page_table_lock);
2395 	new_page = alloc_huge_page(vma, address, outside_reserve);
2396 
2397 	if (IS_ERR(new_page)) {
2398 		page_cache_release(old_page);
2399 
2400 		/*
2401 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2402 		 * it is due to references held by a child and an insufficient
2403 		 * huge page pool. To guarantee the original mappers
2404 		 * reliability, unmap the page from child processes. The child
2405 		 * may get SIGKILLed if it later faults.
2406 		 */
2407 		if (outside_reserve) {
2408 			BUG_ON(huge_pte_none(pte));
2409 			if (unmap_ref_private(mm, vma, old_page, address)) {
2410 				BUG_ON(page_count(old_page) != 1);
2411 				BUG_ON(huge_pte_none(pte));
2412 				spin_lock(&mm->page_table_lock);
2413 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2414 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2415 					goto retry_avoidcopy;
2416 				/*
2417 				 * race occurs while re-acquiring page_table_lock, and
2418 				 * our job is done.
2419 				 */
2420 				return 0;
2421 			}
2422 			WARN_ON_ONCE(1);
2423 		}
2424 
2425 		/* Caller expects lock to be held */
2426 		spin_lock(&mm->page_table_lock);
2427 		return -PTR_ERR(new_page);
2428 	}
2429 
2430 	/*
2431 	 * When the original hugepage is shared one, it does not have
2432 	 * anon_vma prepared.
2433 	 */
2434 	if (unlikely(anon_vma_prepare(vma))) {
2435 		page_cache_release(new_page);
2436 		page_cache_release(old_page);
2437 		/* Caller expects lock to be held */
2438 		spin_lock(&mm->page_table_lock);
2439 		return VM_FAULT_OOM;
2440 	}
2441 
2442 	copy_user_huge_page(new_page, old_page, address, vma,
2443 			    pages_per_huge_page(h));
2444 	__SetPageUptodate(new_page);
2445 
2446 	/*
2447 	 * Retake the page_table_lock to check for racing updates
2448 	 * before the page tables are altered
2449 	 */
2450 	spin_lock(&mm->page_table_lock);
2451 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2452 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2453 		/* Break COW */
2454 		mmu_notifier_invalidate_range_start(mm,
2455 			address & huge_page_mask(h),
2456 			(address & huge_page_mask(h)) + huge_page_size(h));
2457 		huge_ptep_clear_flush(vma, address, ptep);
2458 		set_huge_pte_at(mm, address, ptep,
2459 				make_huge_pte(vma, new_page, 1));
2460 		page_remove_rmap(old_page);
2461 		hugepage_add_new_anon_rmap(new_page, vma, address);
2462 		/* Make the old page be freed below */
2463 		new_page = old_page;
2464 		mmu_notifier_invalidate_range_end(mm,
2465 			address & huge_page_mask(h),
2466 			(address & huge_page_mask(h)) + huge_page_size(h));
2467 	}
2468 	page_cache_release(new_page);
2469 	page_cache_release(old_page);
2470 	return 0;
2471 }
2472 
2473 /* Return the pagecache page at a given address within a VMA */
2474 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2475 			struct vm_area_struct *vma, unsigned long address)
2476 {
2477 	struct address_space *mapping;
2478 	pgoff_t idx;
2479 
2480 	mapping = vma->vm_file->f_mapping;
2481 	idx = vma_hugecache_offset(h, vma, address);
2482 
2483 	return find_lock_page(mapping, idx);
2484 }
2485 
2486 /*
2487  * Return whether there is a pagecache page to back given address within VMA.
2488  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2489  */
2490 static bool hugetlbfs_pagecache_present(struct hstate *h,
2491 			struct vm_area_struct *vma, unsigned long address)
2492 {
2493 	struct address_space *mapping;
2494 	pgoff_t idx;
2495 	struct page *page;
2496 
2497 	mapping = vma->vm_file->f_mapping;
2498 	idx = vma_hugecache_offset(h, vma, address);
2499 
2500 	page = find_get_page(mapping, idx);
2501 	if (page)
2502 		put_page(page);
2503 	return page != NULL;
2504 }
2505 
2506 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2507 			unsigned long address, pte_t *ptep, unsigned int flags)
2508 {
2509 	struct hstate *h = hstate_vma(vma);
2510 	int ret = VM_FAULT_SIGBUS;
2511 	int anon_rmap = 0;
2512 	pgoff_t idx;
2513 	unsigned long size;
2514 	struct page *page;
2515 	struct address_space *mapping;
2516 	pte_t new_pte;
2517 
2518 	/*
2519 	 * Currently, we are forced to kill the process in the event the
2520 	 * original mapper has unmapped pages from the child due to a failed
2521 	 * COW. Warn that such a situation has occurred as it may not be obvious
2522 	 */
2523 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2524 		printk(KERN_WARNING
2525 			"PID %d killed due to inadequate hugepage pool\n",
2526 			current->pid);
2527 		return ret;
2528 	}
2529 
2530 	mapping = vma->vm_file->f_mapping;
2531 	idx = vma_hugecache_offset(h, vma, address);
2532 
2533 	/*
2534 	 * Use page lock to guard against racing truncation
2535 	 * before we get page_table_lock.
2536 	 */
2537 retry:
2538 	page = find_lock_page(mapping, idx);
2539 	if (!page) {
2540 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2541 		if (idx >= size)
2542 			goto out;
2543 		page = alloc_huge_page(vma, address, 0);
2544 		if (IS_ERR(page)) {
2545 			ret = -PTR_ERR(page);
2546 			goto out;
2547 		}
2548 		clear_huge_page(page, address, pages_per_huge_page(h));
2549 		__SetPageUptodate(page);
2550 
2551 		if (vma->vm_flags & VM_MAYSHARE) {
2552 			int err;
2553 			struct inode *inode = mapping->host;
2554 
2555 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2556 			if (err) {
2557 				put_page(page);
2558 				if (err == -EEXIST)
2559 					goto retry;
2560 				goto out;
2561 			}
2562 
2563 			spin_lock(&inode->i_lock);
2564 			inode->i_blocks += blocks_per_huge_page(h);
2565 			spin_unlock(&inode->i_lock);
2566 		} else {
2567 			lock_page(page);
2568 			if (unlikely(anon_vma_prepare(vma))) {
2569 				ret = VM_FAULT_OOM;
2570 				goto backout_unlocked;
2571 			}
2572 			anon_rmap = 1;
2573 		}
2574 	} else {
2575 		/*
2576 		 * If memory error occurs between mmap() and fault, some process
2577 		 * don't have hwpoisoned swap entry for errored virtual address.
2578 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2579 		 */
2580 		if (unlikely(PageHWPoison(page))) {
2581 			ret = VM_FAULT_HWPOISON |
2582 			      VM_FAULT_SET_HINDEX(h - hstates);
2583 			goto backout_unlocked;
2584 		}
2585 	}
2586 
2587 	/*
2588 	 * If we are going to COW a private mapping later, we examine the
2589 	 * pending reservations for this page now. This will ensure that
2590 	 * any allocations necessary to record that reservation occur outside
2591 	 * the spinlock.
2592 	 */
2593 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2594 		if (vma_needs_reservation(h, vma, address) < 0) {
2595 			ret = VM_FAULT_OOM;
2596 			goto backout_unlocked;
2597 		}
2598 
2599 	spin_lock(&mm->page_table_lock);
2600 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2601 	if (idx >= size)
2602 		goto backout;
2603 
2604 	ret = 0;
2605 	if (!huge_pte_none(huge_ptep_get(ptep)))
2606 		goto backout;
2607 
2608 	if (anon_rmap)
2609 		hugepage_add_new_anon_rmap(page, vma, address);
2610 	else
2611 		page_dup_rmap(page);
2612 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2613 				&& (vma->vm_flags & VM_SHARED)));
2614 	set_huge_pte_at(mm, address, ptep, new_pte);
2615 
2616 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2617 		/* Optimization, do the COW without a second fault */
2618 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2619 	}
2620 
2621 	spin_unlock(&mm->page_table_lock);
2622 	unlock_page(page);
2623 out:
2624 	return ret;
2625 
2626 backout:
2627 	spin_unlock(&mm->page_table_lock);
2628 backout_unlocked:
2629 	unlock_page(page);
2630 	put_page(page);
2631 	goto out;
2632 }
2633 
2634 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2635 			unsigned long address, unsigned int flags)
2636 {
2637 	pte_t *ptep;
2638 	pte_t entry;
2639 	int ret;
2640 	struct page *page = NULL;
2641 	struct page *pagecache_page = NULL;
2642 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2643 	struct hstate *h = hstate_vma(vma);
2644 
2645 	address &= huge_page_mask(h);
2646 
2647 	ptep = huge_pte_offset(mm, address);
2648 	if (ptep) {
2649 		entry = huge_ptep_get(ptep);
2650 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2651 			migration_entry_wait(mm, (pmd_t *)ptep, address);
2652 			return 0;
2653 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2654 			return VM_FAULT_HWPOISON_LARGE |
2655 			       VM_FAULT_SET_HINDEX(h - hstates);
2656 	}
2657 
2658 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2659 	if (!ptep)
2660 		return VM_FAULT_OOM;
2661 
2662 	/*
2663 	 * Serialize hugepage allocation and instantiation, so that we don't
2664 	 * get spurious allocation failures if two CPUs race to instantiate
2665 	 * the same page in the page cache.
2666 	 */
2667 	mutex_lock(&hugetlb_instantiation_mutex);
2668 	entry = huge_ptep_get(ptep);
2669 	if (huge_pte_none(entry)) {
2670 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2671 		goto out_mutex;
2672 	}
2673 
2674 	ret = 0;
2675 
2676 	/*
2677 	 * If we are going to COW the mapping later, we examine the pending
2678 	 * reservations for this page now. This will ensure that any
2679 	 * allocations necessary to record that reservation occur outside the
2680 	 * spinlock. For private mappings, we also lookup the pagecache
2681 	 * page now as it is used to determine if a reservation has been
2682 	 * consumed.
2683 	 */
2684 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2685 		if (vma_needs_reservation(h, vma, address) < 0) {
2686 			ret = VM_FAULT_OOM;
2687 			goto out_mutex;
2688 		}
2689 
2690 		if (!(vma->vm_flags & VM_MAYSHARE))
2691 			pagecache_page = hugetlbfs_pagecache_page(h,
2692 								vma, address);
2693 	}
2694 
2695 	/*
2696 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2697 	 * pagecache_page, so here we need take the former one
2698 	 * when page != pagecache_page or !pagecache_page.
2699 	 * Note that locking order is always pagecache_page -> page,
2700 	 * so no worry about deadlock.
2701 	 */
2702 	page = pte_page(entry);
2703 	if (page != pagecache_page)
2704 		lock_page(page);
2705 
2706 	spin_lock(&mm->page_table_lock);
2707 	/* Check for a racing update before calling hugetlb_cow */
2708 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2709 		goto out_page_table_lock;
2710 
2711 
2712 	if (flags & FAULT_FLAG_WRITE) {
2713 		if (!pte_write(entry)) {
2714 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2715 							pagecache_page);
2716 			goto out_page_table_lock;
2717 		}
2718 		entry = pte_mkdirty(entry);
2719 	}
2720 	entry = pte_mkyoung(entry);
2721 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2722 						flags & FAULT_FLAG_WRITE))
2723 		update_mmu_cache(vma, address, ptep);
2724 
2725 out_page_table_lock:
2726 	spin_unlock(&mm->page_table_lock);
2727 
2728 	if (pagecache_page) {
2729 		unlock_page(pagecache_page);
2730 		put_page(pagecache_page);
2731 	}
2732 	if (page != pagecache_page)
2733 		unlock_page(page);
2734 
2735 out_mutex:
2736 	mutex_unlock(&hugetlb_instantiation_mutex);
2737 
2738 	return ret;
2739 }
2740 
2741 /* Can be overriden by architectures */
2742 __attribute__((weak)) struct page *
2743 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2744 	       pud_t *pud, int write)
2745 {
2746 	BUG();
2747 	return NULL;
2748 }
2749 
2750 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2751 			struct page **pages, struct vm_area_struct **vmas,
2752 			unsigned long *position, int *length, int i,
2753 			unsigned int flags)
2754 {
2755 	unsigned long pfn_offset;
2756 	unsigned long vaddr = *position;
2757 	int remainder = *length;
2758 	struct hstate *h = hstate_vma(vma);
2759 
2760 	spin_lock(&mm->page_table_lock);
2761 	while (vaddr < vma->vm_end && remainder) {
2762 		pte_t *pte;
2763 		int absent;
2764 		struct page *page;
2765 
2766 		/*
2767 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2768 		 * each hugepage.  We have to make sure we get the
2769 		 * first, for the page indexing below to work.
2770 		 */
2771 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2772 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2773 
2774 		/*
2775 		 * When coredumping, it suits get_dump_page if we just return
2776 		 * an error where there's an empty slot with no huge pagecache
2777 		 * to back it.  This way, we avoid allocating a hugepage, and
2778 		 * the sparse dumpfile avoids allocating disk blocks, but its
2779 		 * huge holes still show up with zeroes where they need to be.
2780 		 */
2781 		if (absent && (flags & FOLL_DUMP) &&
2782 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2783 			remainder = 0;
2784 			break;
2785 		}
2786 
2787 		if (absent ||
2788 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2789 			int ret;
2790 
2791 			spin_unlock(&mm->page_table_lock);
2792 			ret = hugetlb_fault(mm, vma, vaddr,
2793 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2794 			spin_lock(&mm->page_table_lock);
2795 			if (!(ret & VM_FAULT_ERROR))
2796 				continue;
2797 
2798 			remainder = 0;
2799 			break;
2800 		}
2801 
2802 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2803 		page = pte_page(huge_ptep_get(pte));
2804 same_page:
2805 		if (pages) {
2806 			pages[i] = mem_map_offset(page, pfn_offset);
2807 			get_page(pages[i]);
2808 		}
2809 
2810 		if (vmas)
2811 			vmas[i] = vma;
2812 
2813 		vaddr += PAGE_SIZE;
2814 		++pfn_offset;
2815 		--remainder;
2816 		++i;
2817 		if (vaddr < vma->vm_end && remainder &&
2818 				pfn_offset < pages_per_huge_page(h)) {
2819 			/*
2820 			 * We use pfn_offset to avoid touching the pageframes
2821 			 * of this compound page.
2822 			 */
2823 			goto same_page;
2824 		}
2825 	}
2826 	spin_unlock(&mm->page_table_lock);
2827 	*length = remainder;
2828 	*position = vaddr;
2829 
2830 	return i ? i : -EFAULT;
2831 }
2832 
2833 void hugetlb_change_protection(struct vm_area_struct *vma,
2834 		unsigned long address, unsigned long end, pgprot_t newprot)
2835 {
2836 	struct mm_struct *mm = vma->vm_mm;
2837 	unsigned long start = address;
2838 	pte_t *ptep;
2839 	pte_t pte;
2840 	struct hstate *h = hstate_vma(vma);
2841 
2842 	BUG_ON(address >= end);
2843 	flush_cache_range(vma, address, end);
2844 
2845 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2846 	spin_lock(&mm->page_table_lock);
2847 	for (; address < end; address += huge_page_size(h)) {
2848 		ptep = huge_pte_offset(mm, address);
2849 		if (!ptep)
2850 			continue;
2851 		if (huge_pmd_unshare(mm, &address, ptep))
2852 			continue;
2853 		if (!huge_pte_none(huge_ptep_get(ptep))) {
2854 			pte = huge_ptep_get_and_clear(mm, address, ptep);
2855 			pte = pte_mkhuge(pte_modify(pte, newprot));
2856 			set_huge_pte_at(mm, address, ptep, pte);
2857 		}
2858 	}
2859 	spin_unlock(&mm->page_table_lock);
2860 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2861 
2862 	flush_tlb_range(vma, start, end);
2863 }
2864 
2865 int hugetlb_reserve_pages(struct inode *inode,
2866 					long from, long to,
2867 					struct vm_area_struct *vma,
2868 					vm_flags_t vm_flags)
2869 {
2870 	long ret, chg;
2871 	struct hstate *h = hstate_inode(inode);
2872 
2873 	/*
2874 	 * Only apply hugepage reservation if asked. At fault time, an
2875 	 * attempt will be made for VM_NORESERVE to allocate a page
2876 	 * and filesystem quota without using reserves
2877 	 */
2878 	if (vm_flags & VM_NORESERVE)
2879 		return 0;
2880 
2881 	/*
2882 	 * Shared mappings base their reservation on the number of pages that
2883 	 * are already allocated on behalf of the file. Private mappings need
2884 	 * to reserve the full area even if read-only as mprotect() may be
2885 	 * called to make the mapping read-write. Assume !vma is a shm mapping
2886 	 */
2887 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2888 		chg = region_chg(&inode->i_mapping->private_list, from, to);
2889 	else {
2890 		struct resv_map *resv_map = resv_map_alloc();
2891 		if (!resv_map)
2892 			return -ENOMEM;
2893 
2894 		chg = to - from;
2895 
2896 		set_vma_resv_map(vma, resv_map);
2897 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2898 	}
2899 
2900 	if (chg < 0)
2901 		return chg;
2902 
2903 	/* There must be enough filesystem quota for the mapping */
2904 	if (hugetlb_get_quota(inode->i_mapping, chg))
2905 		return -ENOSPC;
2906 
2907 	/*
2908 	 * Check enough hugepages are available for the reservation.
2909 	 * Hand back the quota if there are not
2910 	 */
2911 	ret = hugetlb_acct_memory(h, chg);
2912 	if (ret < 0) {
2913 		hugetlb_put_quota(inode->i_mapping, chg);
2914 		return ret;
2915 	}
2916 
2917 	/*
2918 	 * Account for the reservations made. Shared mappings record regions
2919 	 * that have reservations as they are shared by multiple VMAs.
2920 	 * When the last VMA disappears, the region map says how much
2921 	 * the reservation was and the page cache tells how much of
2922 	 * the reservation was consumed. Private mappings are per-VMA and
2923 	 * only the consumed reservations are tracked. When the VMA
2924 	 * disappears, the original reservation is the VMA size and the
2925 	 * consumed reservations are stored in the map. Hence, nothing
2926 	 * else has to be done for private mappings here
2927 	 */
2928 	if (!vma || vma->vm_flags & VM_MAYSHARE)
2929 		region_add(&inode->i_mapping->private_list, from, to);
2930 	return 0;
2931 }
2932 
2933 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2934 {
2935 	struct hstate *h = hstate_inode(inode);
2936 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
2937 
2938 	spin_lock(&inode->i_lock);
2939 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2940 	spin_unlock(&inode->i_lock);
2941 
2942 	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2943 	hugetlb_acct_memory(h, -(chg - freed));
2944 }
2945 
2946 #ifdef CONFIG_MEMORY_FAILURE
2947 
2948 /* Should be called in hugetlb_lock */
2949 static int is_hugepage_on_freelist(struct page *hpage)
2950 {
2951 	struct page *page;
2952 	struct page *tmp;
2953 	struct hstate *h = page_hstate(hpage);
2954 	int nid = page_to_nid(hpage);
2955 
2956 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2957 		if (page == hpage)
2958 			return 1;
2959 	return 0;
2960 }
2961 
2962 /*
2963  * This function is called from memory failure code.
2964  * Assume the caller holds page lock of the head page.
2965  */
2966 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2967 {
2968 	struct hstate *h = page_hstate(hpage);
2969 	int nid = page_to_nid(hpage);
2970 	int ret = -EBUSY;
2971 
2972 	spin_lock(&hugetlb_lock);
2973 	if (is_hugepage_on_freelist(hpage)) {
2974 		list_del(&hpage->lru);
2975 		set_page_refcounted(hpage);
2976 		h->free_huge_pages--;
2977 		h->free_huge_pages_node[nid]--;
2978 		ret = 0;
2979 	}
2980 	spin_unlock(&hugetlb_lock);
2981 	return ret;
2982 }
2983 #endif
2984