1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 #include <linux/mm_inline.h> 38 39 #include <asm/page.h> 40 #include <asm/pgalloc.h> 41 #include <asm/tlb.h> 42 43 #include <linux/io.h> 44 #include <linux/hugetlb.h> 45 #include <linux/hugetlb_cgroup.h> 46 #include <linux/node.h> 47 #include <linux/page_owner.h> 48 #include "internal.h" 49 #include "hugetlb_vmemmap.h" 50 51 int hugetlb_max_hstate __read_mostly; 52 unsigned int default_hstate_idx; 53 struct hstate hstates[HUGE_MAX_HSTATE]; 54 55 #ifdef CONFIG_CMA 56 static struct cma *hugetlb_cma[MAX_NUMNODES]; 57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 59 { 60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 61 1 << order); 62 } 63 #else 64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 65 { 66 return false; 67 } 68 #endif 69 static unsigned long hugetlb_cma_size __initdata; 70 71 __initdata LIST_HEAD(huge_boot_pages); 72 73 /* for command line parsing */ 74 static struct hstate * __initdata parsed_hstate; 75 static unsigned long __initdata default_hstate_max_huge_pages; 76 static bool __initdata parsed_valid_hugepagesz = true; 77 static bool __initdata parsed_default_hugepagesz; 78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 79 80 /* 81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 82 * free_huge_pages, and surplus_huge_pages. 83 */ 84 DEFINE_SPINLOCK(hugetlb_lock); 85 86 /* 87 * Serializes faults on the same logical page. This is used to 88 * prevent spurious OOMs when the hugepage pool is fully utilized. 89 */ 90 static int num_fault_mutexes; 91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 92 93 /* Forward declaration */ 94 static int hugetlb_acct_memory(struct hstate *h, long delta); 95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 99 unsigned long start, unsigned long end); 100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 101 102 static inline bool subpool_is_free(struct hugepage_subpool *spool) 103 { 104 if (spool->count) 105 return false; 106 if (spool->max_hpages != -1) 107 return spool->used_hpages == 0; 108 if (spool->min_hpages != -1) 109 return spool->rsv_hpages == spool->min_hpages; 110 111 return true; 112 } 113 114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 115 unsigned long irq_flags) 116 { 117 spin_unlock_irqrestore(&spool->lock, irq_flags); 118 119 /* If no pages are used, and no other handles to the subpool 120 * remain, give up any reservations based on minimum size and 121 * free the subpool */ 122 if (subpool_is_free(spool)) { 123 if (spool->min_hpages != -1) 124 hugetlb_acct_memory(spool->hstate, 125 -spool->min_hpages); 126 kfree(spool); 127 } 128 } 129 130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 131 long min_hpages) 132 { 133 struct hugepage_subpool *spool; 134 135 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 136 if (!spool) 137 return NULL; 138 139 spin_lock_init(&spool->lock); 140 spool->count = 1; 141 spool->max_hpages = max_hpages; 142 spool->hstate = h; 143 spool->min_hpages = min_hpages; 144 145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 146 kfree(spool); 147 return NULL; 148 } 149 spool->rsv_hpages = min_hpages; 150 151 return spool; 152 } 153 154 void hugepage_put_subpool(struct hugepage_subpool *spool) 155 { 156 unsigned long flags; 157 158 spin_lock_irqsave(&spool->lock, flags); 159 BUG_ON(!spool->count); 160 spool->count--; 161 unlock_or_release_subpool(spool, flags); 162 } 163 164 /* 165 * Subpool accounting for allocating and reserving pages. 166 * Return -ENOMEM if there are not enough resources to satisfy the 167 * request. Otherwise, return the number of pages by which the 168 * global pools must be adjusted (upward). The returned value may 169 * only be different than the passed value (delta) in the case where 170 * a subpool minimum size must be maintained. 171 */ 172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 173 long delta) 174 { 175 long ret = delta; 176 177 if (!spool) 178 return ret; 179 180 spin_lock_irq(&spool->lock); 181 182 if (spool->max_hpages != -1) { /* maximum size accounting */ 183 if ((spool->used_hpages + delta) <= spool->max_hpages) 184 spool->used_hpages += delta; 185 else { 186 ret = -ENOMEM; 187 goto unlock_ret; 188 } 189 } 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->rsv_hpages) { 193 if (delta > spool->rsv_hpages) { 194 /* 195 * Asking for more reserves than those already taken on 196 * behalf of subpool. Return difference. 197 */ 198 ret = delta - spool->rsv_hpages; 199 spool->rsv_hpages = 0; 200 } else { 201 ret = 0; /* reserves already accounted for */ 202 spool->rsv_hpages -= delta; 203 } 204 } 205 206 unlock_ret: 207 spin_unlock_irq(&spool->lock); 208 return ret; 209 } 210 211 /* 212 * Subpool accounting for freeing and unreserving pages. 213 * Return the number of global page reservations that must be dropped. 214 * The return value may only be different than the passed value (delta) 215 * in the case where a subpool minimum size must be maintained. 216 */ 217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 218 long delta) 219 { 220 long ret = delta; 221 unsigned long flags; 222 223 if (!spool) 224 return delta; 225 226 spin_lock_irqsave(&spool->lock, flags); 227 228 if (spool->max_hpages != -1) /* maximum size accounting */ 229 spool->used_hpages -= delta; 230 231 /* minimum size accounting */ 232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 233 if (spool->rsv_hpages + delta <= spool->min_hpages) 234 ret = 0; 235 else 236 ret = spool->rsv_hpages + delta - spool->min_hpages; 237 238 spool->rsv_hpages += delta; 239 if (spool->rsv_hpages > spool->min_hpages) 240 spool->rsv_hpages = spool->min_hpages; 241 } 242 243 /* 244 * If hugetlbfs_put_super couldn't free spool due to an outstanding 245 * quota reference, free it now. 246 */ 247 unlock_or_release_subpool(spool, flags); 248 249 return ret; 250 } 251 252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 253 { 254 return HUGETLBFS_SB(inode->i_sb)->spool; 255 } 256 257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 258 { 259 return subpool_inode(file_inode(vma->vm_file)); 260 } 261 262 /* 263 * hugetlb vma_lock helper routines 264 */ 265 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 266 { 267 if (__vma_shareable_lock(vma)) { 268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 269 270 down_read(&vma_lock->rw_sema); 271 } else if (__vma_private_lock(vma)) { 272 struct resv_map *resv_map = vma_resv_map(vma); 273 274 down_read(&resv_map->rw_sema); 275 } 276 } 277 278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 279 { 280 if (__vma_shareable_lock(vma)) { 281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 282 283 up_read(&vma_lock->rw_sema); 284 } else if (__vma_private_lock(vma)) { 285 struct resv_map *resv_map = vma_resv_map(vma); 286 287 up_read(&resv_map->rw_sema); 288 } 289 } 290 291 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 292 { 293 if (__vma_shareable_lock(vma)) { 294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 295 296 down_write(&vma_lock->rw_sema); 297 } else if (__vma_private_lock(vma)) { 298 struct resv_map *resv_map = vma_resv_map(vma); 299 300 down_write(&resv_map->rw_sema); 301 } 302 } 303 304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 305 { 306 if (__vma_shareable_lock(vma)) { 307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 308 309 up_write(&vma_lock->rw_sema); 310 } else if (__vma_private_lock(vma)) { 311 struct resv_map *resv_map = vma_resv_map(vma); 312 313 up_write(&resv_map->rw_sema); 314 } 315 } 316 317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 318 { 319 320 if (__vma_shareable_lock(vma)) { 321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 322 323 return down_write_trylock(&vma_lock->rw_sema); 324 } else if (__vma_private_lock(vma)) { 325 struct resv_map *resv_map = vma_resv_map(vma); 326 327 return down_write_trylock(&resv_map->rw_sema); 328 } 329 330 return 1; 331 } 332 333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 334 { 335 if (__vma_shareable_lock(vma)) { 336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 337 338 lockdep_assert_held(&vma_lock->rw_sema); 339 } else if (__vma_private_lock(vma)) { 340 struct resv_map *resv_map = vma_resv_map(vma); 341 342 lockdep_assert_held(&resv_map->rw_sema); 343 } 344 } 345 346 void hugetlb_vma_lock_release(struct kref *kref) 347 { 348 struct hugetlb_vma_lock *vma_lock = container_of(kref, 349 struct hugetlb_vma_lock, refs); 350 351 kfree(vma_lock); 352 } 353 354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 355 { 356 struct vm_area_struct *vma = vma_lock->vma; 357 358 /* 359 * vma_lock structure may or not be released as a result of put, 360 * it certainly will no longer be attached to vma so clear pointer. 361 * Semaphore synchronizes access to vma_lock->vma field. 362 */ 363 vma_lock->vma = NULL; 364 vma->vm_private_data = NULL; 365 up_write(&vma_lock->rw_sema); 366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 367 } 368 369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 370 { 371 if (__vma_shareable_lock(vma)) { 372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 373 374 __hugetlb_vma_unlock_write_put(vma_lock); 375 } else if (__vma_private_lock(vma)) { 376 struct resv_map *resv_map = vma_resv_map(vma); 377 378 /* no free for anon vmas, but still need to unlock */ 379 up_write(&resv_map->rw_sema); 380 } 381 } 382 383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 384 { 385 /* 386 * Only present in sharable vmas. 387 */ 388 if (!vma || !__vma_shareable_lock(vma)) 389 return; 390 391 if (vma->vm_private_data) { 392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 393 394 down_write(&vma_lock->rw_sema); 395 __hugetlb_vma_unlock_write_put(vma_lock); 396 } 397 } 398 399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 400 { 401 struct hugetlb_vma_lock *vma_lock; 402 403 /* Only establish in (flags) sharable vmas */ 404 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 405 return; 406 407 /* Should never get here with non-NULL vm_private_data */ 408 if (vma->vm_private_data) 409 return; 410 411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 412 if (!vma_lock) { 413 /* 414 * If we can not allocate structure, then vma can not 415 * participate in pmd sharing. This is only a possible 416 * performance enhancement and memory saving issue. 417 * However, the lock is also used to synchronize page 418 * faults with truncation. If the lock is not present, 419 * unlikely races could leave pages in a file past i_size 420 * until the file is removed. Warn in the unlikely case of 421 * allocation failure. 422 */ 423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 424 return; 425 } 426 427 kref_init(&vma_lock->refs); 428 init_rwsem(&vma_lock->rw_sema); 429 vma_lock->vma = vma; 430 vma->vm_private_data = vma_lock; 431 } 432 433 /* Helper that removes a struct file_region from the resv_map cache and returns 434 * it for use. 435 */ 436 static struct file_region * 437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 438 { 439 struct file_region *nrg; 440 441 VM_BUG_ON(resv->region_cache_count <= 0); 442 443 resv->region_cache_count--; 444 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 445 list_del(&nrg->link); 446 447 nrg->from = from; 448 nrg->to = to; 449 450 return nrg; 451 } 452 453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 454 struct file_region *rg) 455 { 456 #ifdef CONFIG_CGROUP_HUGETLB 457 nrg->reservation_counter = rg->reservation_counter; 458 nrg->css = rg->css; 459 if (rg->css) 460 css_get(rg->css); 461 #endif 462 } 463 464 /* Helper that records hugetlb_cgroup uncharge info. */ 465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 466 struct hstate *h, 467 struct resv_map *resv, 468 struct file_region *nrg) 469 { 470 #ifdef CONFIG_CGROUP_HUGETLB 471 if (h_cg) { 472 nrg->reservation_counter = 473 &h_cg->rsvd_hugepage[hstate_index(h)]; 474 nrg->css = &h_cg->css; 475 /* 476 * The caller will hold exactly one h_cg->css reference for the 477 * whole contiguous reservation region. But this area might be 478 * scattered when there are already some file_regions reside in 479 * it. As a result, many file_regions may share only one css 480 * reference. In order to ensure that one file_region must hold 481 * exactly one h_cg->css reference, we should do css_get for 482 * each file_region and leave the reference held by caller 483 * untouched. 484 */ 485 css_get(&h_cg->css); 486 if (!resv->pages_per_hpage) 487 resv->pages_per_hpage = pages_per_huge_page(h); 488 /* pages_per_hpage should be the same for all entries in 489 * a resv_map. 490 */ 491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 492 } else { 493 nrg->reservation_counter = NULL; 494 nrg->css = NULL; 495 } 496 #endif 497 } 498 499 static void put_uncharge_info(struct file_region *rg) 500 { 501 #ifdef CONFIG_CGROUP_HUGETLB 502 if (rg->css) 503 css_put(rg->css); 504 #endif 505 } 506 507 static bool has_same_uncharge_info(struct file_region *rg, 508 struct file_region *org) 509 { 510 #ifdef CONFIG_CGROUP_HUGETLB 511 return rg->reservation_counter == org->reservation_counter && 512 rg->css == org->css; 513 514 #else 515 return true; 516 #endif 517 } 518 519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 520 { 521 struct file_region *nrg, *prg; 522 523 prg = list_prev_entry(rg, link); 524 if (&prg->link != &resv->regions && prg->to == rg->from && 525 has_same_uncharge_info(prg, rg)) { 526 prg->to = rg->to; 527 528 list_del(&rg->link); 529 put_uncharge_info(rg); 530 kfree(rg); 531 532 rg = prg; 533 } 534 535 nrg = list_next_entry(rg, link); 536 if (&nrg->link != &resv->regions && nrg->from == rg->to && 537 has_same_uncharge_info(nrg, rg)) { 538 nrg->from = rg->from; 539 540 list_del(&rg->link); 541 put_uncharge_info(rg); 542 kfree(rg); 543 } 544 } 545 546 static inline long 547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 548 long to, struct hstate *h, struct hugetlb_cgroup *cg, 549 long *regions_needed) 550 { 551 struct file_region *nrg; 552 553 if (!regions_needed) { 554 nrg = get_file_region_entry_from_cache(map, from, to); 555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 556 list_add(&nrg->link, rg); 557 coalesce_file_region(map, nrg); 558 } else 559 *regions_needed += 1; 560 561 return to - from; 562 } 563 564 /* 565 * Must be called with resv->lock held. 566 * 567 * Calling this with regions_needed != NULL will count the number of pages 568 * to be added but will not modify the linked list. And regions_needed will 569 * indicate the number of file_regions needed in the cache to carry out to add 570 * the regions for this range. 571 */ 572 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 573 struct hugetlb_cgroup *h_cg, 574 struct hstate *h, long *regions_needed) 575 { 576 long add = 0; 577 struct list_head *head = &resv->regions; 578 long last_accounted_offset = f; 579 struct file_region *iter, *trg = NULL; 580 struct list_head *rg = NULL; 581 582 if (regions_needed) 583 *regions_needed = 0; 584 585 /* In this loop, we essentially handle an entry for the range 586 * [last_accounted_offset, iter->from), at every iteration, with some 587 * bounds checking. 588 */ 589 list_for_each_entry_safe(iter, trg, head, link) { 590 /* Skip irrelevant regions that start before our range. */ 591 if (iter->from < f) { 592 /* If this region ends after the last accounted offset, 593 * then we need to update last_accounted_offset. 594 */ 595 if (iter->to > last_accounted_offset) 596 last_accounted_offset = iter->to; 597 continue; 598 } 599 600 /* When we find a region that starts beyond our range, we've 601 * finished. 602 */ 603 if (iter->from >= t) { 604 rg = iter->link.prev; 605 break; 606 } 607 608 /* Add an entry for last_accounted_offset -> iter->from, and 609 * update last_accounted_offset. 610 */ 611 if (iter->from > last_accounted_offset) 612 add += hugetlb_resv_map_add(resv, iter->link.prev, 613 last_accounted_offset, 614 iter->from, h, h_cg, 615 regions_needed); 616 617 last_accounted_offset = iter->to; 618 } 619 620 /* Handle the case where our range extends beyond 621 * last_accounted_offset. 622 */ 623 if (!rg) 624 rg = head->prev; 625 if (last_accounted_offset < t) 626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 627 t, h, h_cg, regions_needed); 628 629 return add; 630 } 631 632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 633 */ 634 static int allocate_file_region_entries(struct resv_map *resv, 635 int regions_needed) 636 __must_hold(&resv->lock) 637 { 638 LIST_HEAD(allocated_regions); 639 int to_allocate = 0, i = 0; 640 struct file_region *trg = NULL, *rg = NULL; 641 642 VM_BUG_ON(regions_needed < 0); 643 644 /* 645 * Check for sufficient descriptors in the cache to accommodate 646 * the number of in progress add operations plus regions_needed. 647 * 648 * This is a while loop because when we drop the lock, some other call 649 * to region_add or region_del may have consumed some region_entries, 650 * so we keep looping here until we finally have enough entries for 651 * (adds_in_progress + regions_needed). 652 */ 653 while (resv->region_cache_count < 654 (resv->adds_in_progress + regions_needed)) { 655 to_allocate = resv->adds_in_progress + regions_needed - 656 resv->region_cache_count; 657 658 /* At this point, we should have enough entries in the cache 659 * for all the existing adds_in_progress. We should only be 660 * needing to allocate for regions_needed. 661 */ 662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 663 664 spin_unlock(&resv->lock); 665 for (i = 0; i < to_allocate; i++) { 666 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 667 if (!trg) 668 goto out_of_memory; 669 list_add(&trg->link, &allocated_regions); 670 } 671 672 spin_lock(&resv->lock); 673 674 list_splice(&allocated_regions, &resv->region_cache); 675 resv->region_cache_count += to_allocate; 676 } 677 678 return 0; 679 680 out_of_memory: 681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 682 list_del(&rg->link); 683 kfree(rg); 684 } 685 return -ENOMEM; 686 } 687 688 /* 689 * Add the huge page range represented by [f, t) to the reserve 690 * map. Regions will be taken from the cache to fill in this range. 691 * Sufficient regions should exist in the cache due to the previous 692 * call to region_chg with the same range, but in some cases the cache will not 693 * have sufficient entries due to races with other code doing region_add or 694 * region_del. The extra needed entries will be allocated. 695 * 696 * regions_needed is the out value provided by a previous call to region_chg. 697 * 698 * Return the number of new huge pages added to the map. This number is greater 699 * than or equal to zero. If file_region entries needed to be allocated for 700 * this operation and we were not able to allocate, it returns -ENOMEM. 701 * region_add of regions of length 1 never allocate file_regions and cannot 702 * fail; region_chg will always allocate at least 1 entry and a region_add for 703 * 1 page will only require at most 1 entry. 704 */ 705 static long region_add(struct resv_map *resv, long f, long t, 706 long in_regions_needed, struct hstate *h, 707 struct hugetlb_cgroup *h_cg) 708 { 709 long add = 0, actual_regions_needed = 0; 710 711 spin_lock(&resv->lock); 712 retry: 713 714 /* Count how many regions are actually needed to execute this add. */ 715 add_reservation_in_range(resv, f, t, NULL, NULL, 716 &actual_regions_needed); 717 718 /* 719 * Check for sufficient descriptors in the cache to accommodate 720 * this add operation. Note that actual_regions_needed may be greater 721 * than in_regions_needed, as the resv_map may have been modified since 722 * the region_chg call. In this case, we need to make sure that we 723 * allocate extra entries, such that we have enough for all the 724 * existing adds_in_progress, plus the excess needed for this 725 * operation. 726 */ 727 if (actual_regions_needed > in_regions_needed && 728 resv->region_cache_count < 729 resv->adds_in_progress + 730 (actual_regions_needed - in_regions_needed)) { 731 /* region_add operation of range 1 should never need to 732 * allocate file_region entries. 733 */ 734 VM_BUG_ON(t - f <= 1); 735 736 if (allocate_file_region_entries( 737 resv, actual_regions_needed - in_regions_needed)) { 738 return -ENOMEM; 739 } 740 741 goto retry; 742 } 743 744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 745 746 resv->adds_in_progress -= in_regions_needed; 747 748 spin_unlock(&resv->lock); 749 return add; 750 } 751 752 /* 753 * Examine the existing reserve map and determine how many 754 * huge pages in the specified range [f, t) are NOT currently 755 * represented. This routine is called before a subsequent 756 * call to region_add that will actually modify the reserve 757 * map to add the specified range [f, t). region_chg does 758 * not change the number of huge pages represented by the 759 * map. A number of new file_region structures is added to the cache as a 760 * placeholder, for the subsequent region_add call to use. At least 1 761 * file_region structure is added. 762 * 763 * out_regions_needed is the number of regions added to the 764 * resv->adds_in_progress. This value needs to be provided to a follow up call 765 * to region_add or region_abort for proper accounting. 766 * 767 * Returns the number of huge pages that need to be added to the existing 768 * reservation map for the range [f, t). This number is greater or equal to 769 * zero. -ENOMEM is returned if a new file_region structure or cache entry 770 * is needed and can not be allocated. 771 */ 772 static long region_chg(struct resv_map *resv, long f, long t, 773 long *out_regions_needed) 774 { 775 long chg = 0; 776 777 spin_lock(&resv->lock); 778 779 /* Count how many hugepages in this range are NOT represented. */ 780 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 781 out_regions_needed); 782 783 if (*out_regions_needed == 0) 784 *out_regions_needed = 1; 785 786 if (allocate_file_region_entries(resv, *out_regions_needed)) 787 return -ENOMEM; 788 789 resv->adds_in_progress += *out_regions_needed; 790 791 spin_unlock(&resv->lock); 792 return chg; 793 } 794 795 /* 796 * Abort the in progress add operation. The adds_in_progress field 797 * of the resv_map keeps track of the operations in progress between 798 * calls to region_chg and region_add. Operations are sometimes 799 * aborted after the call to region_chg. In such cases, region_abort 800 * is called to decrement the adds_in_progress counter. regions_needed 801 * is the value returned by the region_chg call, it is used to decrement 802 * the adds_in_progress counter. 803 * 804 * NOTE: The range arguments [f, t) are not needed or used in this 805 * routine. They are kept to make reading the calling code easier as 806 * arguments will match the associated region_chg call. 807 */ 808 static void region_abort(struct resv_map *resv, long f, long t, 809 long regions_needed) 810 { 811 spin_lock(&resv->lock); 812 VM_BUG_ON(!resv->region_cache_count); 813 resv->adds_in_progress -= regions_needed; 814 spin_unlock(&resv->lock); 815 } 816 817 /* 818 * Delete the specified range [f, t) from the reserve map. If the 819 * t parameter is LONG_MAX, this indicates that ALL regions after f 820 * should be deleted. Locate the regions which intersect [f, t) 821 * and either trim, delete or split the existing regions. 822 * 823 * Returns the number of huge pages deleted from the reserve map. 824 * In the normal case, the return value is zero or more. In the 825 * case where a region must be split, a new region descriptor must 826 * be allocated. If the allocation fails, -ENOMEM will be returned. 827 * NOTE: If the parameter t == LONG_MAX, then we will never split 828 * a region and possibly return -ENOMEM. Callers specifying 829 * t == LONG_MAX do not need to check for -ENOMEM error. 830 */ 831 static long region_del(struct resv_map *resv, long f, long t) 832 { 833 struct list_head *head = &resv->regions; 834 struct file_region *rg, *trg; 835 struct file_region *nrg = NULL; 836 long del = 0; 837 838 retry: 839 spin_lock(&resv->lock); 840 list_for_each_entry_safe(rg, trg, head, link) { 841 /* 842 * Skip regions before the range to be deleted. file_region 843 * ranges are normally of the form [from, to). However, there 844 * may be a "placeholder" entry in the map which is of the form 845 * (from, to) with from == to. Check for placeholder entries 846 * at the beginning of the range to be deleted. 847 */ 848 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 849 continue; 850 851 if (rg->from >= t) 852 break; 853 854 if (f > rg->from && t < rg->to) { /* Must split region */ 855 /* 856 * Check for an entry in the cache before dropping 857 * lock and attempting allocation. 858 */ 859 if (!nrg && 860 resv->region_cache_count > resv->adds_in_progress) { 861 nrg = list_first_entry(&resv->region_cache, 862 struct file_region, 863 link); 864 list_del(&nrg->link); 865 resv->region_cache_count--; 866 } 867 868 if (!nrg) { 869 spin_unlock(&resv->lock); 870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 871 if (!nrg) 872 return -ENOMEM; 873 goto retry; 874 } 875 876 del += t - f; 877 hugetlb_cgroup_uncharge_file_region( 878 resv, rg, t - f, false); 879 880 /* New entry for end of split region */ 881 nrg->from = t; 882 nrg->to = rg->to; 883 884 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 885 886 INIT_LIST_HEAD(&nrg->link); 887 888 /* Original entry is trimmed */ 889 rg->to = f; 890 891 list_add(&nrg->link, &rg->link); 892 nrg = NULL; 893 break; 894 } 895 896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 897 del += rg->to - rg->from; 898 hugetlb_cgroup_uncharge_file_region(resv, rg, 899 rg->to - rg->from, true); 900 list_del(&rg->link); 901 kfree(rg); 902 continue; 903 } 904 905 if (f <= rg->from) { /* Trim beginning of region */ 906 hugetlb_cgroup_uncharge_file_region(resv, rg, 907 t - rg->from, false); 908 909 del += t - rg->from; 910 rg->from = t; 911 } else { /* Trim end of region */ 912 hugetlb_cgroup_uncharge_file_region(resv, rg, 913 rg->to - f, false); 914 915 del += rg->to - f; 916 rg->to = f; 917 } 918 } 919 920 spin_unlock(&resv->lock); 921 kfree(nrg); 922 return del; 923 } 924 925 /* 926 * A rare out of memory error was encountered which prevented removal of 927 * the reserve map region for a page. The huge page itself was free'ed 928 * and removed from the page cache. This routine will adjust the subpool 929 * usage count, and the global reserve count if needed. By incrementing 930 * these counts, the reserve map entry which could not be deleted will 931 * appear as a "reserved" entry instead of simply dangling with incorrect 932 * counts. 933 */ 934 void hugetlb_fix_reserve_counts(struct inode *inode) 935 { 936 struct hugepage_subpool *spool = subpool_inode(inode); 937 long rsv_adjust; 938 bool reserved = false; 939 940 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 941 if (rsv_adjust > 0) { 942 struct hstate *h = hstate_inode(inode); 943 944 if (!hugetlb_acct_memory(h, 1)) 945 reserved = true; 946 } else if (!rsv_adjust) { 947 reserved = true; 948 } 949 950 if (!reserved) 951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 952 } 953 954 /* 955 * Count and return the number of huge pages in the reserve map 956 * that intersect with the range [f, t). 957 */ 958 static long region_count(struct resv_map *resv, long f, long t) 959 { 960 struct list_head *head = &resv->regions; 961 struct file_region *rg; 962 long chg = 0; 963 964 spin_lock(&resv->lock); 965 /* Locate each segment we overlap with, and count that overlap. */ 966 list_for_each_entry(rg, head, link) { 967 long seg_from; 968 long seg_to; 969 970 if (rg->to <= f) 971 continue; 972 if (rg->from >= t) 973 break; 974 975 seg_from = max(rg->from, f); 976 seg_to = min(rg->to, t); 977 978 chg += seg_to - seg_from; 979 } 980 spin_unlock(&resv->lock); 981 982 return chg; 983 } 984 985 /* 986 * Convert the address within this vma to the page offset within 987 * the mapping, in pagecache page units; huge pages here. 988 */ 989 static pgoff_t vma_hugecache_offset(struct hstate *h, 990 struct vm_area_struct *vma, unsigned long address) 991 { 992 return ((address - vma->vm_start) >> huge_page_shift(h)) + 993 (vma->vm_pgoff >> huge_page_order(h)); 994 } 995 996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 997 unsigned long address) 998 { 999 return vma_hugecache_offset(hstate_vma(vma), vma, address); 1000 } 1001 EXPORT_SYMBOL_GPL(linear_hugepage_index); 1002 1003 /** 1004 * vma_kernel_pagesize - Page size granularity for this VMA. 1005 * @vma: The user mapping. 1006 * 1007 * Folios in this VMA will be aligned to, and at least the size of the 1008 * number of bytes returned by this function. 1009 * 1010 * Return: The default size of the folios allocated when backing a VMA. 1011 */ 1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1013 { 1014 if (vma->vm_ops && vma->vm_ops->pagesize) 1015 return vma->vm_ops->pagesize(vma); 1016 return PAGE_SIZE; 1017 } 1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1019 1020 /* 1021 * Return the page size being used by the MMU to back a VMA. In the majority 1022 * of cases, the page size used by the kernel matches the MMU size. On 1023 * architectures where it differs, an architecture-specific 'strong' 1024 * version of this symbol is required. 1025 */ 1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1027 { 1028 return vma_kernel_pagesize(vma); 1029 } 1030 1031 /* 1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1033 * bits of the reservation map pointer, which are always clear due to 1034 * alignment. 1035 */ 1036 #define HPAGE_RESV_OWNER (1UL << 0) 1037 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1039 1040 /* 1041 * These helpers are used to track how many pages are reserved for 1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1043 * is guaranteed to have their future faults succeed. 1044 * 1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1046 * the reserve counters are updated with the hugetlb_lock held. It is safe 1047 * to reset the VMA at fork() time as it is not in use yet and there is no 1048 * chance of the global counters getting corrupted as a result of the values. 1049 * 1050 * The private mapping reservation is represented in a subtly different 1051 * manner to a shared mapping. A shared mapping has a region map associated 1052 * with the underlying file, this region map represents the backing file 1053 * pages which have ever had a reservation assigned which this persists even 1054 * after the page is instantiated. A private mapping has a region map 1055 * associated with the original mmap which is attached to all VMAs which 1056 * reference it, this region map represents those offsets which have consumed 1057 * reservation ie. where pages have been instantiated. 1058 */ 1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1060 { 1061 return (unsigned long)vma->vm_private_data; 1062 } 1063 1064 static void set_vma_private_data(struct vm_area_struct *vma, 1065 unsigned long value) 1066 { 1067 vma->vm_private_data = (void *)value; 1068 } 1069 1070 static void 1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1072 struct hugetlb_cgroup *h_cg, 1073 struct hstate *h) 1074 { 1075 #ifdef CONFIG_CGROUP_HUGETLB 1076 if (!h_cg || !h) { 1077 resv_map->reservation_counter = NULL; 1078 resv_map->pages_per_hpage = 0; 1079 resv_map->css = NULL; 1080 } else { 1081 resv_map->reservation_counter = 1082 &h_cg->rsvd_hugepage[hstate_index(h)]; 1083 resv_map->pages_per_hpage = pages_per_huge_page(h); 1084 resv_map->css = &h_cg->css; 1085 } 1086 #endif 1087 } 1088 1089 struct resv_map *resv_map_alloc(void) 1090 { 1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1093 1094 if (!resv_map || !rg) { 1095 kfree(resv_map); 1096 kfree(rg); 1097 return NULL; 1098 } 1099 1100 kref_init(&resv_map->refs); 1101 spin_lock_init(&resv_map->lock); 1102 INIT_LIST_HEAD(&resv_map->regions); 1103 init_rwsem(&resv_map->rw_sema); 1104 1105 resv_map->adds_in_progress = 0; 1106 /* 1107 * Initialize these to 0. On shared mappings, 0's here indicate these 1108 * fields don't do cgroup accounting. On private mappings, these will be 1109 * re-initialized to the proper values, to indicate that hugetlb cgroup 1110 * reservations are to be un-charged from here. 1111 */ 1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1113 1114 INIT_LIST_HEAD(&resv_map->region_cache); 1115 list_add(&rg->link, &resv_map->region_cache); 1116 resv_map->region_cache_count = 1; 1117 1118 return resv_map; 1119 } 1120 1121 void resv_map_release(struct kref *ref) 1122 { 1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1124 struct list_head *head = &resv_map->region_cache; 1125 struct file_region *rg, *trg; 1126 1127 /* Clear out any active regions before we release the map. */ 1128 region_del(resv_map, 0, LONG_MAX); 1129 1130 /* ... and any entries left in the cache */ 1131 list_for_each_entry_safe(rg, trg, head, link) { 1132 list_del(&rg->link); 1133 kfree(rg); 1134 } 1135 1136 VM_BUG_ON(resv_map->adds_in_progress); 1137 1138 kfree(resv_map); 1139 } 1140 1141 static inline struct resv_map *inode_resv_map(struct inode *inode) 1142 { 1143 /* 1144 * At inode evict time, i_mapping may not point to the original 1145 * address space within the inode. This original address space 1146 * contains the pointer to the resv_map. So, always use the 1147 * address space embedded within the inode. 1148 * The VERY common case is inode->mapping == &inode->i_data but, 1149 * this may not be true for device special inodes. 1150 */ 1151 return (struct resv_map *)(&inode->i_data)->private_data; 1152 } 1153 1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1155 { 1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1157 if (vma->vm_flags & VM_MAYSHARE) { 1158 struct address_space *mapping = vma->vm_file->f_mapping; 1159 struct inode *inode = mapping->host; 1160 1161 return inode_resv_map(inode); 1162 1163 } else { 1164 return (struct resv_map *)(get_vma_private_data(vma) & 1165 ~HPAGE_RESV_MASK); 1166 } 1167 } 1168 1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 1170 { 1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1173 1174 set_vma_private_data(vma, (unsigned long)map); 1175 } 1176 1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1178 { 1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1181 1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1183 } 1184 1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1186 { 1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1188 1189 return (get_vma_private_data(vma) & flag) != 0; 1190 } 1191 1192 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1193 { 1194 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1195 /* 1196 * Clear vm_private_data 1197 * - For shared mappings this is a per-vma semaphore that may be 1198 * allocated in a subsequent call to hugetlb_vm_op_open. 1199 * Before clearing, make sure pointer is not associated with vma 1200 * as this will leak the structure. This is the case when called 1201 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1202 * been called to allocate a new structure. 1203 * - For MAP_PRIVATE mappings, this is the reserve map which does 1204 * not apply to children. Faults generated by the children are 1205 * not guaranteed to succeed, even if read-only. 1206 */ 1207 if (vma->vm_flags & VM_MAYSHARE) { 1208 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1209 1210 if (vma_lock && vma_lock->vma != vma) 1211 vma->vm_private_data = NULL; 1212 } else 1213 vma->vm_private_data = NULL; 1214 } 1215 1216 /* 1217 * Reset and decrement one ref on hugepage private reservation. 1218 * Called with mm->mmap_lock writer semaphore held. 1219 * This function should be only used by move_vma() and operate on 1220 * same sized vma. It should never come here with last ref on the 1221 * reservation. 1222 */ 1223 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1224 { 1225 /* 1226 * Clear the old hugetlb private page reservation. 1227 * It has already been transferred to new_vma. 1228 * 1229 * During a mremap() operation of a hugetlb vma we call move_vma() 1230 * which copies vma into new_vma and unmaps vma. After the copy 1231 * operation both new_vma and vma share a reference to the resv_map 1232 * struct, and at that point vma is about to be unmapped. We don't 1233 * want to return the reservation to the pool at unmap of vma because 1234 * the reservation still lives on in new_vma, so simply decrement the 1235 * ref here and remove the resv_map reference from this vma. 1236 */ 1237 struct resv_map *reservations = vma_resv_map(vma); 1238 1239 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1240 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1241 kref_put(&reservations->refs, resv_map_release); 1242 } 1243 1244 hugetlb_dup_vma_private(vma); 1245 } 1246 1247 /* Returns true if the VMA has associated reserve pages */ 1248 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1249 { 1250 if (vma->vm_flags & VM_NORESERVE) { 1251 /* 1252 * This address is already reserved by other process(chg == 0), 1253 * so, we should decrement reserved count. Without decrementing, 1254 * reserve count remains after releasing inode, because this 1255 * allocated page will go into page cache and is regarded as 1256 * coming from reserved pool in releasing step. Currently, we 1257 * don't have any other solution to deal with this situation 1258 * properly, so add work-around here. 1259 */ 1260 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1261 return true; 1262 else 1263 return false; 1264 } 1265 1266 /* Shared mappings always use reserves */ 1267 if (vma->vm_flags & VM_MAYSHARE) { 1268 /* 1269 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1270 * be a region map for all pages. The only situation where 1271 * there is no region map is if a hole was punched via 1272 * fallocate. In this case, there really are no reserves to 1273 * use. This situation is indicated if chg != 0. 1274 */ 1275 if (chg) 1276 return false; 1277 else 1278 return true; 1279 } 1280 1281 /* 1282 * Only the process that called mmap() has reserves for 1283 * private mappings. 1284 */ 1285 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1286 /* 1287 * Like the shared case above, a hole punch or truncate 1288 * could have been performed on the private mapping. 1289 * Examine the value of chg to determine if reserves 1290 * actually exist or were previously consumed. 1291 * Very Subtle - The value of chg comes from a previous 1292 * call to vma_needs_reserves(). The reserve map for 1293 * private mappings has different (opposite) semantics 1294 * than that of shared mappings. vma_needs_reserves() 1295 * has already taken this difference in semantics into 1296 * account. Therefore, the meaning of chg is the same 1297 * as in the shared case above. Code could easily be 1298 * combined, but keeping it separate draws attention to 1299 * subtle differences. 1300 */ 1301 if (chg) 1302 return false; 1303 else 1304 return true; 1305 } 1306 1307 return false; 1308 } 1309 1310 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1311 { 1312 int nid = folio_nid(folio); 1313 1314 lockdep_assert_held(&hugetlb_lock); 1315 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1316 1317 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1318 h->free_huge_pages++; 1319 h->free_huge_pages_node[nid]++; 1320 folio_set_hugetlb_freed(folio); 1321 } 1322 1323 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1324 int nid) 1325 { 1326 struct folio *folio; 1327 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1328 1329 lockdep_assert_held(&hugetlb_lock); 1330 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1331 if (pin && !folio_is_longterm_pinnable(folio)) 1332 continue; 1333 1334 if (folio_test_hwpoison(folio)) 1335 continue; 1336 1337 list_move(&folio->lru, &h->hugepage_activelist); 1338 folio_ref_unfreeze(folio, 1); 1339 folio_clear_hugetlb_freed(folio); 1340 h->free_huge_pages--; 1341 h->free_huge_pages_node[nid]--; 1342 return folio; 1343 } 1344 1345 return NULL; 1346 } 1347 1348 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1349 int nid, nodemask_t *nmask) 1350 { 1351 unsigned int cpuset_mems_cookie; 1352 struct zonelist *zonelist; 1353 struct zone *zone; 1354 struct zoneref *z; 1355 int node = NUMA_NO_NODE; 1356 1357 zonelist = node_zonelist(nid, gfp_mask); 1358 1359 retry_cpuset: 1360 cpuset_mems_cookie = read_mems_allowed_begin(); 1361 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1362 struct folio *folio; 1363 1364 if (!cpuset_zone_allowed(zone, gfp_mask)) 1365 continue; 1366 /* 1367 * no need to ask again on the same node. Pool is node rather than 1368 * zone aware 1369 */ 1370 if (zone_to_nid(zone) == node) 1371 continue; 1372 node = zone_to_nid(zone); 1373 1374 folio = dequeue_hugetlb_folio_node_exact(h, node); 1375 if (folio) 1376 return folio; 1377 } 1378 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1379 goto retry_cpuset; 1380 1381 return NULL; 1382 } 1383 1384 static unsigned long available_huge_pages(struct hstate *h) 1385 { 1386 return h->free_huge_pages - h->resv_huge_pages; 1387 } 1388 1389 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1390 struct vm_area_struct *vma, 1391 unsigned long address, int avoid_reserve, 1392 long chg) 1393 { 1394 struct folio *folio = NULL; 1395 struct mempolicy *mpol; 1396 gfp_t gfp_mask; 1397 nodemask_t *nodemask; 1398 int nid; 1399 1400 /* 1401 * A child process with MAP_PRIVATE mappings created by their parent 1402 * have no page reserves. This check ensures that reservations are 1403 * not "stolen". The child may still get SIGKILLed 1404 */ 1405 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1406 goto err; 1407 1408 /* If reserves cannot be used, ensure enough pages are in the pool */ 1409 if (avoid_reserve && !available_huge_pages(h)) 1410 goto err; 1411 1412 gfp_mask = htlb_alloc_mask(h); 1413 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1414 1415 if (mpol_is_preferred_many(mpol)) { 1416 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1417 nid, nodemask); 1418 1419 /* Fallback to all nodes if page==NULL */ 1420 nodemask = NULL; 1421 } 1422 1423 if (!folio) 1424 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1425 nid, nodemask); 1426 1427 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { 1428 folio_set_hugetlb_restore_reserve(folio); 1429 h->resv_huge_pages--; 1430 } 1431 1432 mpol_cond_put(mpol); 1433 return folio; 1434 1435 err: 1436 return NULL; 1437 } 1438 1439 /* 1440 * common helper functions for hstate_next_node_to_{alloc|free}. 1441 * We may have allocated or freed a huge page based on a different 1442 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1443 * be outside of *nodes_allowed. Ensure that we use an allowed 1444 * node for alloc or free. 1445 */ 1446 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1447 { 1448 nid = next_node_in(nid, *nodes_allowed); 1449 VM_BUG_ON(nid >= MAX_NUMNODES); 1450 1451 return nid; 1452 } 1453 1454 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1455 { 1456 if (!node_isset(nid, *nodes_allowed)) 1457 nid = next_node_allowed(nid, nodes_allowed); 1458 return nid; 1459 } 1460 1461 /* 1462 * returns the previously saved node ["this node"] from which to 1463 * allocate a persistent huge page for the pool and advance the 1464 * next node from which to allocate, handling wrap at end of node 1465 * mask. 1466 */ 1467 static int hstate_next_node_to_alloc(struct hstate *h, 1468 nodemask_t *nodes_allowed) 1469 { 1470 int nid; 1471 1472 VM_BUG_ON(!nodes_allowed); 1473 1474 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1475 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1476 1477 return nid; 1478 } 1479 1480 /* 1481 * helper for remove_pool_huge_page() - return the previously saved 1482 * node ["this node"] from which to free a huge page. Advance the 1483 * next node id whether or not we find a free huge page to free so 1484 * that the next attempt to free addresses the next node. 1485 */ 1486 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1487 { 1488 int nid; 1489 1490 VM_BUG_ON(!nodes_allowed); 1491 1492 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1493 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1494 1495 return nid; 1496 } 1497 1498 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1499 for (nr_nodes = nodes_weight(*mask); \ 1500 nr_nodes > 0 && \ 1501 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1502 nr_nodes--) 1503 1504 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1505 for (nr_nodes = nodes_weight(*mask); \ 1506 nr_nodes > 0 && \ 1507 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1508 nr_nodes--) 1509 1510 /* used to demote non-gigantic_huge pages as well */ 1511 static void __destroy_compound_gigantic_folio(struct folio *folio, 1512 unsigned int order, bool demote) 1513 { 1514 int i; 1515 int nr_pages = 1 << order; 1516 struct page *p; 1517 1518 atomic_set(&folio->_entire_mapcount, 0); 1519 atomic_set(&folio->_nr_pages_mapped, 0); 1520 atomic_set(&folio->_pincount, 0); 1521 1522 for (i = 1; i < nr_pages; i++) { 1523 p = folio_page(folio, i); 1524 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE; 1525 p->mapping = NULL; 1526 clear_compound_head(p); 1527 if (!demote) 1528 set_page_refcounted(p); 1529 } 1530 1531 __folio_clear_head(folio); 1532 } 1533 1534 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1535 unsigned int order) 1536 { 1537 __destroy_compound_gigantic_folio(folio, order, true); 1538 } 1539 1540 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1541 static void destroy_compound_gigantic_folio(struct folio *folio, 1542 unsigned int order) 1543 { 1544 __destroy_compound_gigantic_folio(folio, order, false); 1545 } 1546 1547 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1548 { 1549 /* 1550 * If the page isn't allocated using the cma allocator, 1551 * cma_release() returns false. 1552 */ 1553 #ifdef CONFIG_CMA 1554 int nid = folio_nid(folio); 1555 1556 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1557 return; 1558 #endif 1559 1560 free_contig_range(folio_pfn(folio), 1 << order); 1561 } 1562 1563 #ifdef CONFIG_CONTIG_ALLOC 1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1565 int nid, nodemask_t *nodemask) 1566 { 1567 struct page *page; 1568 unsigned long nr_pages = pages_per_huge_page(h); 1569 if (nid == NUMA_NO_NODE) 1570 nid = numa_mem_id(); 1571 1572 #ifdef CONFIG_CMA 1573 { 1574 int node; 1575 1576 if (hugetlb_cma[nid]) { 1577 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1578 huge_page_order(h), true); 1579 if (page) 1580 return page_folio(page); 1581 } 1582 1583 if (!(gfp_mask & __GFP_THISNODE)) { 1584 for_each_node_mask(node, *nodemask) { 1585 if (node == nid || !hugetlb_cma[node]) 1586 continue; 1587 1588 page = cma_alloc(hugetlb_cma[node], nr_pages, 1589 huge_page_order(h), true); 1590 if (page) 1591 return page_folio(page); 1592 } 1593 } 1594 } 1595 #endif 1596 1597 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1598 return page ? page_folio(page) : NULL; 1599 } 1600 1601 #else /* !CONFIG_CONTIG_ALLOC */ 1602 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1603 int nid, nodemask_t *nodemask) 1604 { 1605 return NULL; 1606 } 1607 #endif /* CONFIG_CONTIG_ALLOC */ 1608 1609 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1610 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1611 int nid, nodemask_t *nodemask) 1612 { 1613 return NULL; 1614 } 1615 static inline void free_gigantic_folio(struct folio *folio, 1616 unsigned int order) { } 1617 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1618 unsigned int order) { } 1619 #endif 1620 1621 static inline void __clear_hugetlb_destructor(struct hstate *h, 1622 struct folio *folio) 1623 { 1624 lockdep_assert_held(&hugetlb_lock); 1625 1626 folio_clear_hugetlb(folio); 1627 } 1628 1629 /* 1630 * Remove hugetlb folio from lists. 1631 * If vmemmap exists for the folio, update dtor so that the folio appears 1632 * as just a compound page. Otherwise, wait until after allocating vmemmap 1633 * to update dtor. 1634 * 1635 * A reference is held on the folio, except in the case of demote. 1636 * 1637 * Must be called with hugetlb lock held. 1638 */ 1639 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1640 bool adjust_surplus, 1641 bool demote) 1642 { 1643 int nid = folio_nid(folio); 1644 1645 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1646 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1647 1648 lockdep_assert_held(&hugetlb_lock); 1649 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1650 return; 1651 1652 list_del(&folio->lru); 1653 1654 if (folio_test_hugetlb_freed(folio)) { 1655 h->free_huge_pages--; 1656 h->free_huge_pages_node[nid]--; 1657 } 1658 if (adjust_surplus) { 1659 h->surplus_huge_pages--; 1660 h->surplus_huge_pages_node[nid]--; 1661 } 1662 1663 /* 1664 * We can only clear the hugetlb destructor after allocating vmemmap 1665 * pages. Otherwise, someone (memory error handling) may try to write 1666 * to tail struct pages. 1667 */ 1668 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1669 __clear_hugetlb_destructor(h, folio); 1670 1671 /* 1672 * In the case of demote we do not ref count the page as it will soon 1673 * be turned into a page of smaller size. 1674 */ 1675 if (!demote) 1676 folio_ref_unfreeze(folio, 1); 1677 1678 h->nr_huge_pages--; 1679 h->nr_huge_pages_node[nid]--; 1680 } 1681 1682 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1683 bool adjust_surplus) 1684 { 1685 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1686 } 1687 1688 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1689 bool adjust_surplus) 1690 { 1691 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1692 } 1693 1694 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1695 bool adjust_surplus) 1696 { 1697 int zeroed; 1698 int nid = folio_nid(folio); 1699 1700 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1701 1702 lockdep_assert_held(&hugetlb_lock); 1703 1704 INIT_LIST_HEAD(&folio->lru); 1705 h->nr_huge_pages++; 1706 h->nr_huge_pages_node[nid]++; 1707 1708 if (adjust_surplus) { 1709 h->surplus_huge_pages++; 1710 h->surplus_huge_pages_node[nid]++; 1711 } 1712 1713 folio_set_hugetlb(folio); 1714 folio_change_private(folio, NULL); 1715 /* 1716 * We have to set hugetlb_vmemmap_optimized again as above 1717 * folio_change_private(folio, NULL) cleared it. 1718 */ 1719 folio_set_hugetlb_vmemmap_optimized(folio); 1720 1721 /* 1722 * This folio is about to be managed by the hugetlb allocator and 1723 * should have no users. Drop our reference, and check for others 1724 * just in case. 1725 */ 1726 zeroed = folio_put_testzero(folio); 1727 if (unlikely(!zeroed)) 1728 /* 1729 * It is VERY unlikely soneone else has taken a ref 1730 * on the folio. In this case, we simply return as 1731 * free_huge_folio() will be called when this other ref 1732 * is dropped. 1733 */ 1734 return; 1735 1736 arch_clear_hugepage_flags(&folio->page); 1737 enqueue_hugetlb_folio(h, folio); 1738 } 1739 1740 static void __update_and_free_hugetlb_folio(struct hstate *h, 1741 struct folio *folio) 1742 { 1743 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio); 1744 1745 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1746 return; 1747 1748 /* 1749 * If we don't know which subpages are hwpoisoned, we can't free 1750 * the hugepage, so it's leaked intentionally. 1751 */ 1752 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1753 return; 1754 1755 if (hugetlb_vmemmap_restore(h, &folio->page)) { 1756 spin_lock_irq(&hugetlb_lock); 1757 /* 1758 * If we cannot allocate vmemmap pages, just refuse to free the 1759 * page and put the page back on the hugetlb free list and treat 1760 * as a surplus page. 1761 */ 1762 add_hugetlb_folio(h, folio, true); 1763 spin_unlock_irq(&hugetlb_lock); 1764 return; 1765 } 1766 1767 /* 1768 * Move PageHWPoison flag from head page to the raw error pages, 1769 * which makes any healthy subpages reusable. 1770 */ 1771 if (unlikely(folio_test_hwpoison(folio))) 1772 folio_clear_hugetlb_hwpoison(folio); 1773 1774 /* 1775 * If vmemmap pages were allocated above, then we need to clear the 1776 * hugetlb destructor under the hugetlb lock. 1777 */ 1778 if (clear_dtor) { 1779 spin_lock_irq(&hugetlb_lock); 1780 __clear_hugetlb_destructor(h, folio); 1781 spin_unlock_irq(&hugetlb_lock); 1782 } 1783 1784 /* 1785 * Non-gigantic pages demoted from CMA allocated gigantic pages 1786 * need to be given back to CMA in free_gigantic_folio. 1787 */ 1788 if (hstate_is_gigantic(h) || 1789 hugetlb_cma_folio(folio, huge_page_order(h))) { 1790 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1791 free_gigantic_folio(folio, huge_page_order(h)); 1792 } else { 1793 __free_pages(&folio->page, huge_page_order(h)); 1794 } 1795 } 1796 1797 /* 1798 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1799 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1800 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1801 * the vmemmap pages. 1802 * 1803 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1804 * freed and frees them one-by-one. As the page->mapping pointer is going 1805 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1806 * structure of a lockless linked list of huge pages to be freed. 1807 */ 1808 static LLIST_HEAD(hpage_freelist); 1809 1810 static void free_hpage_workfn(struct work_struct *work) 1811 { 1812 struct llist_node *node; 1813 1814 node = llist_del_all(&hpage_freelist); 1815 1816 while (node) { 1817 struct page *page; 1818 struct hstate *h; 1819 1820 page = container_of((struct address_space **)node, 1821 struct page, mapping); 1822 node = node->next; 1823 page->mapping = NULL; 1824 /* 1825 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1826 * folio_hstate() is going to trigger because a previous call to 1827 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1828 * not use folio_hstate() directly. 1829 */ 1830 h = size_to_hstate(page_size(page)); 1831 1832 __update_and_free_hugetlb_folio(h, page_folio(page)); 1833 1834 cond_resched(); 1835 } 1836 } 1837 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1838 1839 static inline void flush_free_hpage_work(struct hstate *h) 1840 { 1841 if (hugetlb_vmemmap_optimizable(h)) 1842 flush_work(&free_hpage_work); 1843 } 1844 1845 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1846 bool atomic) 1847 { 1848 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1849 __update_and_free_hugetlb_folio(h, folio); 1850 return; 1851 } 1852 1853 /* 1854 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1855 * 1856 * Only call schedule_work() if hpage_freelist is previously 1857 * empty. Otherwise, schedule_work() had been called but the workfn 1858 * hasn't retrieved the list yet. 1859 */ 1860 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1861 schedule_work(&free_hpage_work); 1862 } 1863 1864 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1865 { 1866 struct page *page, *t_page; 1867 struct folio *folio; 1868 1869 list_for_each_entry_safe(page, t_page, list, lru) { 1870 folio = page_folio(page); 1871 update_and_free_hugetlb_folio(h, folio, false); 1872 cond_resched(); 1873 } 1874 } 1875 1876 struct hstate *size_to_hstate(unsigned long size) 1877 { 1878 struct hstate *h; 1879 1880 for_each_hstate(h) { 1881 if (huge_page_size(h) == size) 1882 return h; 1883 } 1884 return NULL; 1885 } 1886 1887 void free_huge_folio(struct folio *folio) 1888 { 1889 /* 1890 * Can't pass hstate in here because it is called from the 1891 * compound page destructor. 1892 */ 1893 struct hstate *h = folio_hstate(folio); 1894 int nid = folio_nid(folio); 1895 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1896 bool restore_reserve; 1897 unsigned long flags; 1898 1899 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1900 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1901 1902 hugetlb_set_folio_subpool(folio, NULL); 1903 if (folio_test_anon(folio)) 1904 __ClearPageAnonExclusive(&folio->page); 1905 folio->mapping = NULL; 1906 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1907 folio_clear_hugetlb_restore_reserve(folio); 1908 1909 /* 1910 * If HPageRestoreReserve was set on page, page allocation consumed a 1911 * reservation. If the page was associated with a subpool, there 1912 * would have been a page reserved in the subpool before allocation 1913 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1914 * reservation, do not call hugepage_subpool_put_pages() as this will 1915 * remove the reserved page from the subpool. 1916 */ 1917 if (!restore_reserve) { 1918 /* 1919 * A return code of zero implies that the subpool will be 1920 * under its minimum size if the reservation is not restored 1921 * after page is free. Therefore, force restore_reserve 1922 * operation. 1923 */ 1924 if (hugepage_subpool_put_pages(spool, 1) == 0) 1925 restore_reserve = true; 1926 } 1927 1928 spin_lock_irqsave(&hugetlb_lock, flags); 1929 folio_clear_hugetlb_migratable(folio); 1930 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1931 pages_per_huge_page(h), folio); 1932 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1933 pages_per_huge_page(h), folio); 1934 if (restore_reserve) 1935 h->resv_huge_pages++; 1936 1937 if (folio_test_hugetlb_temporary(folio)) { 1938 remove_hugetlb_folio(h, folio, false); 1939 spin_unlock_irqrestore(&hugetlb_lock, flags); 1940 update_and_free_hugetlb_folio(h, folio, true); 1941 } else if (h->surplus_huge_pages_node[nid]) { 1942 /* remove the page from active list */ 1943 remove_hugetlb_folio(h, folio, true); 1944 spin_unlock_irqrestore(&hugetlb_lock, flags); 1945 update_and_free_hugetlb_folio(h, folio, true); 1946 } else { 1947 arch_clear_hugepage_flags(&folio->page); 1948 enqueue_hugetlb_folio(h, folio); 1949 spin_unlock_irqrestore(&hugetlb_lock, flags); 1950 } 1951 } 1952 1953 /* 1954 * Must be called with the hugetlb lock held 1955 */ 1956 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1957 { 1958 lockdep_assert_held(&hugetlb_lock); 1959 h->nr_huge_pages++; 1960 h->nr_huge_pages_node[nid]++; 1961 } 1962 1963 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1964 { 1965 hugetlb_vmemmap_optimize(h, &folio->page); 1966 INIT_LIST_HEAD(&folio->lru); 1967 folio_set_hugetlb(folio); 1968 hugetlb_set_folio_subpool(folio, NULL); 1969 set_hugetlb_cgroup(folio, NULL); 1970 set_hugetlb_cgroup_rsvd(folio, NULL); 1971 } 1972 1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1974 { 1975 __prep_new_hugetlb_folio(h, folio); 1976 spin_lock_irq(&hugetlb_lock); 1977 __prep_account_new_huge_page(h, nid); 1978 spin_unlock_irq(&hugetlb_lock); 1979 } 1980 1981 static bool __prep_compound_gigantic_folio(struct folio *folio, 1982 unsigned int order, bool demote) 1983 { 1984 int i, j; 1985 int nr_pages = 1 << order; 1986 struct page *p; 1987 1988 __folio_clear_reserved(folio); 1989 for (i = 0; i < nr_pages; i++) { 1990 p = folio_page(folio, i); 1991 1992 /* 1993 * For gigantic hugepages allocated through bootmem at 1994 * boot, it's safer to be consistent with the not-gigantic 1995 * hugepages and clear the PG_reserved bit from all tail pages 1996 * too. Otherwise drivers using get_user_pages() to access tail 1997 * pages may get the reference counting wrong if they see 1998 * PG_reserved set on a tail page (despite the head page not 1999 * having PG_reserved set). Enforcing this consistency between 2000 * head and tail pages allows drivers to optimize away a check 2001 * on the head page when they need know if put_page() is needed 2002 * after get_user_pages(). 2003 */ 2004 if (i != 0) /* head page cleared above */ 2005 __ClearPageReserved(p); 2006 /* 2007 * Subtle and very unlikely 2008 * 2009 * Gigantic 'page allocators' such as memblock or cma will 2010 * return a set of pages with each page ref counted. We need 2011 * to turn this set of pages into a compound page with tail 2012 * page ref counts set to zero. Code such as speculative page 2013 * cache adding could take a ref on a 'to be' tail page. 2014 * We need to respect any increased ref count, and only set 2015 * the ref count to zero if count is currently 1. If count 2016 * is not 1, we return an error. An error return indicates 2017 * the set of pages can not be converted to a gigantic page. 2018 * The caller who allocated the pages should then discard the 2019 * pages using the appropriate free interface. 2020 * 2021 * In the case of demote, the ref count will be zero. 2022 */ 2023 if (!demote) { 2024 if (!page_ref_freeze(p, 1)) { 2025 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 2026 goto out_error; 2027 } 2028 } else { 2029 VM_BUG_ON_PAGE(page_count(p), p); 2030 } 2031 if (i != 0) 2032 set_compound_head(p, &folio->page); 2033 } 2034 __folio_set_head(folio); 2035 /* we rely on prep_new_hugetlb_folio to set the destructor */ 2036 folio_set_order(folio, order); 2037 atomic_set(&folio->_entire_mapcount, -1); 2038 atomic_set(&folio->_nr_pages_mapped, 0); 2039 atomic_set(&folio->_pincount, 0); 2040 return true; 2041 2042 out_error: 2043 /* undo page modifications made above */ 2044 for (j = 0; j < i; j++) { 2045 p = folio_page(folio, j); 2046 if (j != 0) 2047 clear_compound_head(p); 2048 set_page_refcounted(p); 2049 } 2050 /* need to clear PG_reserved on remaining tail pages */ 2051 for (; j < nr_pages; j++) { 2052 p = folio_page(folio, j); 2053 __ClearPageReserved(p); 2054 } 2055 return false; 2056 } 2057 2058 static bool prep_compound_gigantic_folio(struct folio *folio, 2059 unsigned int order) 2060 { 2061 return __prep_compound_gigantic_folio(folio, order, false); 2062 } 2063 2064 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 2065 unsigned int order) 2066 { 2067 return __prep_compound_gigantic_folio(folio, order, true); 2068 } 2069 2070 /* 2071 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 2072 * transparent huge pages. See the PageTransHuge() documentation for more 2073 * details. 2074 */ 2075 int PageHuge(struct page *page) 2076 { 2077 struct folio *folio; 2078 2079 if (!PageCompound(page)) 2080 return 0; 2081 folio = page_folio(page); 2082 return folio_test_hugetlb(folio); 2083 } 2084 EXPORT_SYMBOL_GPL(PageHuge); 2085 2086 /* 2087 * Find and lock address space (mapping) in write mode. 2088 * 2089 * Upon entry, the page is locked which means that page_mapping() is 2090 * stable. Due to locking order, we can only trylock_write. If we can 2091 * not get the lock, simply return NULL to caller. 2092 */ 2093 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 2094 { 2095 struct address_space *mapping = page_mapping(hpage); 2096 2097 if (!mapping) 2098 return mapping; 2099 2100 if (i_mmap_trylock_write(mapping)) 2101 return mapping; 2102 2103 return NULL; 2104 } 2105 2106 pgoff_t hugetlb_basepage_index(struct page *page) 2107 { 2108 struct page *page_head = compound_head(page); 2109 pgoff_t index = page_index(page_head); 2110 unsigned long compound_idx; 2111 2112 if (compound_order(page_head) > MAX_ORDER) 2113 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 2114 else 2115 compound_idx = page - page_head; 2116 2117 return (index << compound_order(page_head)) + compound_idx; 2118 } 2119 2120 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 2121 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2122 nodemask_t *node_alloc_noretry) 2123 { 2124 int order = huge_page_order(h); 2125 struct page *page; 2126 bool alloc_try_hard = true; 2127 bool retry = true; 2128 2129 /* 2130 * By default we always try hard to allocate the page with 2131 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 2132 * a loop (to adjust global huge page counts) and previous allocation 2133 * failed, do not continue to try hard on the same node. Use the 2134 * node_alloc_noretry bitmap to manage this state information. 2135 */ 2136 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 2137 alloc_try_hard = false; 2138 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 2139 if (alloc_try_hard) 2140 gfp_mask |= __GFP_RETRY_MAYFAIL; 2141 if (nid == NUMA_NO_NODE) 2142 nid = numa_mem_id(); 2143 retry: 2144 page = __alloc_pages(gfp_mask, order, nid, nmask); 2145 2146 /* Freeze head page */ 2147 if (page && !page_ref_freeze(page, 1)) { 2148 __free_pages(page, order); 2149 if (retry) { /* retry once */ 2150 retry = false; 2151 goto retry; 2152 } 2153 /* WOW! twice in a row. */ 2154 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 2155 page = NULL; 2156 } 2157 2158 /* 2159 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 2160 * indicates an overall state change. Clear bit so that we resume 2161 * normal 'try hard' allocations. 2162 */ 2163 if (node_alloc_noretry && page && !alloc_try_hard) 2164 node_clear(nid, *node_alloc_noretry); 2165 2166 /* 2167 * If we tried hard to get a page but failed, set bit so that 2168 * subsequent attempts will not try as hard until there is an 2169 * overall state change. 2170 */ 2171 if (node_alloc_noretry && !page && alloc_try_hard) 2172 node_set(nid, *node_alloc_noretry); 2173 2174 if (!page) { 2175 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2176 return NULL; 2177 } 2178 2179 __count_vm_event(HTLB_BUDDY_PGALLOC); 2180 return page_folio(page); 2181 } 2182 2183 /* 2184 * Common helper to allocate a fresh hugetlb page. All specific allocators 2185 * should use this function to get new hugetlb pages 2186 * 2187 * Note that returned page is 'frozen': ref count of head page and all tail 2188 * pages is zero. 2189 */ 2190 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2191 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2192 nodemask_t *node_alloc_noretry) 2193 { 2194 struct folio *folio; 2195 bool retry = false; 2196 2197 retry: 2198 if (hstate_is_gigantic(h)) 2199 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2200 else 2201 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2202 nid, nmask, node_alloc_noretry); 2203 if (!folio) 2204 return NULL; 2205 if (hstate_is_gigantic(h)) { 2206 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2207 /* 2208 * Rare failure to convert pages to compound page. 2209 * Free pages and try again - ONCE! 2210 */ 2211 free_gigantic_folio(folio, huge_page_order(h)); 2212 if (!retry) { 2213 retry = true; 2214 goto retry; 2215 } 2216 return NULL; 2217 } 2218 } 2219 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2220 2221 return folio; 2222 } 2223 2224 /* 2225 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2226 * manner. 2227 */ 2228 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2229 nodemask_t *node_alloc_noretry) 2230 { 2231 struct folio *folio; 2232 int nr_nodes, node; 2233 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2234 2235 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2236 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2237 nodes_allowed, node_alloc_noretry); 2238 if (folio) { 2239 free_huge_folio(folio); /* free it into the hugepage allocator */ 2240 return 1; 2241 } 2242 } 2243 2244 return 0; 2245 } 2246 2247 /* 2248 * Remove huge page from pool from next node to free. Attempt to keep 2249 * persistent huge pages more or less balanced over allowed nodes. 2250 * This routine only 'removes' the hugetlb page. The caller must make 2251 * an additional call to free the page to low level allocators. 2252 * Called with hugetlb_lock locked. 2253 */ 2254 static struct page *remove_pool_huge_page(struct hstate *h, 2255 nodemask_t *nodes_allowed, 2256 bool acct_surplus) 2257 { 2258 int nr_nodes, node; 2259 struct page *page = NULL; 2260 struct folio *folio; 2261 2262 lockdep_assert_held(&hugetlb_lock); 2263 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2264 /* 2265 * If we're returning unused surplus pages, only examine 2266 * nodes with surplus pages. 2267 */ 2268 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2269 !list_empty(&h->hugepage_freelists[node])) { 2270 page = list_entry(h->hugepage_freelists[node].next, 2271 struct page, lru); 2272 folio = page_folio(page); 2273 remove_hugetlb_folio(h, folio, acct_surplus); 2274 break; 2275 } 2276 } 2277 2278 return page; 2279 } 2280 2281 /* 2282 * Dissolve a given free hugepage into free buddy pages. This function does 2283 * nothing for in-use hugepages and non-hugepages. 2284 * This function returns values like below: 2285 * 2286 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2287 * when the system is under memory pressure and the feature of 2288 * freeing unused vmemmap pages associated with each hugetlb page 2289 * is enabled. 2290 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2291 * (allocated or reserved.) 2292 * 0: successfully dissolved free hugepages or the page is not a 2293 * hugepage (considered as already dissolved) 2294 */ 2295 int dissolve_free_huge_page(struct page *page) 2296 { 2297 int rc = -EBUSY; 2298 struct folio *folio = page_folio(page); 2299 2300 retry: 2301 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2302 if (!folio_test_hugetlb(folio)) 2303 return 0; 2304 2305 spin_lock_irq(&hugetlb_lock); 2306 if (!folio_test_hugetlb(folio)) { 2307 rc = 0; 2308 goto out; 2309 } 2310 2311 if (!folio_ref_count(folio)) { 2312 struct hstate *h = folio_hstate(folio); 2313 if (!available_huge_pages(h)) 2314 goto out; 2315 2316 /* 2317 * We should make sure that the page is already on the free list 2318 * when it is dissolved. 2319 */ 2320 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2321 spin_unlock_irq(&hugetlb_lock); 2322 cond_resched(); 2323 2324 /* 2325 * Theoretically, we should return -EBUSY when we 2326 * encounter this race. In fact, we have a chance 2327 * to successfully dissolve the page if we do a 2328 * retry. Because the race window is quite small. 2329 * If we seize this opportunity, it is an optimization 2330 * for increasing the success rate of dissolving page. 2331 */ 2332 goto retry; 2333 } 2334 2335 remove_hugetlb_folio(h, folio, false); 2336 h->max_huge_pages--; 2337 spin_unlock_irq(&hugetlb_lock); 2338 2339 /* 2340 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2341 * before freeing the page. update_and_free_hugtlb_folio will fail to 2342 * free the page if it can not allocate required vmemmap. We 2343 * need to adjust max_huge_pages if the page is not freed. 2344 * Attempt to allocate vmemmmap here so that we can take 2345 * appropriate action on failure. 2346 */ 2347 rc = hugetlb_vmemmap_restore(h, &folio->page); 2348 if (!rc) { 2349 update_and_free_hugetlb_folio(h, folio, false); 2350 } else { 2351 spin_lock_irq(&hugetlb_lock); 2352 add_hugetlb_folio(h, folio, false); 2353 h->max_huge_pages++; 2354 spin_unlock_irq(&hugetlb_lock); 2355 } 2356 2357 return rc; 2358 } 2359 out: 2360 spin_unlock_irq(&hugetlb_lock); 2361 return rc; 2362 } 2363 2364 /* 2365 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2366 * make specified memory blocks removable from the system. 2367 * Note that this will dissolve a free gigantic hugepage completely, if any 2368 * part of it lies within the given range. 2369 * Also note that if dissolve_free_huge_page() returns with an error, all 2370 * free hugepages that were dissolved before that error are lost. 2371 */ 2372 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2373 { 2374 unsigned long pfn; 2375 struct page *page; 2376 int rc = 0; 2377 unsigned int order; 2378 struct hstate *h; 2379 2380 if (!hugepages_supported()) 2381 return rc; 2382 2383 order = huge_page_order(&default_hstate); 2384 for_each_hstate(h) 2385 order = min(order, huge_page_order(h)); 2386 2387 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2388 page = pfn_to_page(pfn); 2389 rc = dissolve_free_huge_page(page); 2390 if (rc) 2391 break; 2392 } 2393 2394 return rc; 2395 } 2396 2397 /* 2398 * Allocates a fresh surplus page from the page allocator. 2399 */ 2400 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2401 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2402 { 2403 struct folio *folio = NULL; 2404 2405 if (hstate_is_gigantic(h)) 2406 return NULL; 2407 2408 spin_lock_irq(&hugetlb_lock); 2409 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2410 goto out_unlock; 2411 spin_unlock_irq(&hugetlb_lock); 2412 2413 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2414 if (!folio) 2415 return NULL; 2416 2417 spin_lock_irq(&hugetlb_lock); 2418 /* 2419 * We could have raced with the pool size change. 2420 * Double check that and simply deallocate the new page 2421 * if we would end up overcommiting the surpluses. Abuse 2422 * temporary page to workaround the nasty free_huge_folio 2423 * codeflow 2424 */ 2425 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2426 folio_set_hugetlb_temporary(folio); 2427 spin_unlock_irq(&hugetlb_lock); 2428 free_huge_folio(folio); 2429 return NULL; 2430 } 2431 2432 h->surplus_huge_pages++; 2433 h->surplus_huge_pages_node[folio_nid(folio)]++; 2434 2435 out_unlock: 2436 spin_unlock_irq(&hugetlb_lock); 2437 2438 return folio; 2439 } 2440 2441 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2442 int nid, nodemask_t *nmask) 2443 { 2444 struct folio *folio; 2445 2446 if (hstate_is_gigantic(h)) 2447 return NULL; 2448 2449 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2450 if (!folio) 2451 return NULL; 2452 2453 /* fresh huge pages are frozen */ 2454 folio_ref_unfreeze(folio, 1); 2455 /* 2456 * We do not account these pages as surplus because they are only 2457 * temporary and will be released properly on the last reference 2458 */ 2459 folio_set_hugetlb_temporary(folio); 2460 2461 return folio; 2462 } 2463 2464 /* 2465 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2466 */ 2467 static 2468 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2469 struct vm_area_struct *vma, unsigned long addr) 2470 { 2471 struct folio *folio = NULL; 2472 struct mempolicy *mpol; 2473 gfp_t gfp_mask = htlb_alloc_mask(h); 2474 int nid; 2475 nodemask_t *nodemask; 2476 2477 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2478 if (mpol_is_preferred_many(mpol)) { 2479 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2480 2481 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2482 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2483 2484 /* Fallback to all nodes if page==NULL */ 2485 nodemask = NULL; 2486 } 2487 2488 if (!folio) 2489 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2490 mpol_cond_put(mpol); 2491 return folio; 2492 } 2493 2494 /* folio migration callback function */ 2495 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2496 nodemask_t *nmask, gfp_t gfp_mask) 2497 { 2498 spin_lock_irq(&hugetlb_lock); 2499 if (available_huge_pages(h)) { 2500 struct folio *folio; 2501 2502 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2503 preferred_nid, nmask); 2504 if (folio) { 2505 spin_unlock_irq(&hugetlb_lock); 2506 return folio; 2507 } 2508 } 2509 spin_unlock_irq(&hugetlb_lock); 2510 2511 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2512 } 2513 2514 /* mempolicy aware migration callback */ 2515 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 2516 unsigned long address) 2517 { 2518 struct mempolicy *mpol; 2519 nodemask_t *nodemask; 2520 struct folio *folio; 2521 gfp_t gfp_mask; 2522 int node; 2523 2524 gfp_mask = htlb_alloc_mask(h); 2525 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2526 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); 2527 mpol_cond_put(mpol); 2528 2529 return folio; 2530 } 2531 2532 /* 2533 * Increase the hugetlb pool such that it can accommodate a reservation 2534 * of size 'delta'. 2535 */ 2536 static int gather_surplus_pages(struct hstate *h, long delta) 2537 __must_hold(&hugetlb_lock) 2538 { 2539 LIST_HEAD(surplus_list); 2540 struct folio *folio, *tmp; 2541 int ret; 2542 long i; 2543 long needed, allocated; 2544 bool alloc_ok = true; 2545 2546 lockdep_assert_held(&hugetlb_lock); 2547 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2548 if (needed <= 0) { 2549 h->resv_huge_pages += delta; 2550 return 0; 2551 } 2552 2553 allocated = 0; 2554 2555 ret = -ENOMEM; 2556 retry: 2557 spin_unlock_irq(&hugetlb_lock); 2558 for (i = 0; i < needed; i++) { 2559 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2560 NUMA_NO_NODE, NULL); 2561 if (!folio) { 2562 alloc_ok = false; 2563 break; 2564 } 2565 list_add(&folio->lru, &surplus_list); 2566 cond_resched(); 2567 } 2568 allocated += i; 2569 2570 /* 2571 * After retaking hugetlb_lock, we need to recalculate 'needed' 2572 * because either resv_huge_pages or free_huge_pages may have changed. 2573 */ 2574 spin_lock_irq(&hugetlb_lock); 2575 needed = (h->resv_huge_pages + delta) - 2576 (h->free_huge_pages + allocated); 2577 if (needed > 0) { 2578 if (alloc_ok) 2579 goto retry; 2580 /* 2581 * We were not able to allocate enough pages to 2582 * satisfy the entire reservation so we free what 2583 * we've allocated so far. 2584 */ 2585 goto free; 2586 } 2587 /* 2588 * The surplus_list now contains _at_least_ the number of extra pages 2589 * needed to accommodate the reservation. Add the appropriate number 2590 * of pages to the hugetlb pool and free the extras back to the buddy 2591 * allocator. Commit the entire reservation here to prevent another 2592 * process from stealing the pages as they are added to the pool but 2593 * before they are reserved. 2594 */ 2595 needed += allocated; 2596 h->resv_huge_pages += delta; 2597 ret = 0; 2598 2599 /* Free the needed pages to the hugetlb pool */ 2600 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2601 if ((--needed) < 0) 2602 break; 2603 /* Add the page to the hugetlb allocator */ 2604 enqueue_hugetlb_folio(h, folio); 2605 } 2606 free: 2607 spin_unlock_irq(&hugetlb_lock); 2608 2609 /* 2610 * Free unnecessary surplus pages to the buddy allocator. 2611 * Pages have no ref count, call free_huge_folio directly. 2612 */ 2613 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2614 free_huge_folio(folio); 2615 spin_lock_irq(&hugetlb_lock); 2616 2617 return ret; 2618 } 2619 2620 /* 2621 * This routine has two main purposes: 2622 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2623 * in unused_resv_pages. This corresponds to the prior adjustments made 2624 * to the associated reservation map. 2625 * 2) Free any unused surplus pages that may have been allocated to satisfy 2626 * the reservation. As many as unused_resv_pages may be freed. 2627 */ 2628 static void return_unused_surplus_pages(struct hstate *h, 2629 unsigned long unused_resv_pages) 2630 { 2631 unsigned long nr_pages; 2632 struct page *page; 2633 LIST_HEAD(page_list); 2634 2635 lockdep_assert_held(&hugetlb_lock); 2636 /* Uncommit the reservation */ 2637 h->resv_huge_pages -= unused_resv_pages; 2638 2639 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2640 goto out; 2641 2642 /* 2643 * Part (or even all) of the reservation could have been backed 2644 * by pre-allocated pages. Only free surplus pages. 2645 */ 2646 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2647 2648 /* 2649 * We want to release as many surplus pages as possible, spread 2650 * evenly across all nodes with memory. Iterate across these nodes 2651 * until we can no longer free unreserved surplus pages. This occurs 2652 * when the nodes with surplus pages have no free pages. 2653 * remove_pool_huge_page() will balance the freed pages across the 2654 * on-line nodes with memory and will handle the hstate accounting. 2655 */ 2656 while (nr_pages--) { 2657 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2658 if (!page) 2659 goto out; 2660 2661 list_add(&page->lru, &page_list); 2662 } 2663 2664 out: 2665 spin_unlock_irq(&hugetlb_lock); 2666 update_and_free_pages_bulk(h, &page_list); 2667 spin_lock_irq(&hugetlb_lock); 2668 } 2669 2670 2671 /* 2672 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2673 * are used by the huge page allocation routines to manage reservations. 2674 * 2675 * vma_needs_reservation is called to determine if the huge page at addr 2676 * within the vma has an associated reservation. If a reservation is 2677 * needed, the value 1 is returned. The caller is then responsible for 2678 * managing the global reservation and subpool usage counts. After 2679 * the huge page has been allocated, vma_commit_reservation is called 2680 * to add the page to the reservation map. If the page allocation fails, 2681 * the reservation must be ended instead of committed. vma_end_reservation 2682 * is called in such cases. 2683 * 2684 * In the normal case, vma_commit_reservation returns the same value 2685 * as the preceding vma_needs_reservation call. The only time this 2686 * is not the case is if a reserve map was changed between calls. It 2687 * is the responsibility of the caller to notice the difference and 2688 * take appropriate action. 2689 * 2690 * vma_add_reservation is used in error paths where a reservation must 2691 * be restored when a newly allocated huge page must be freed. It is 2692 * to be called after calling vma_needs_reservation to determine if a 2693 * reservation exists. 2694 * 2695 * vma_del_reservation is used in error paths where an entry in the reserve 2696 * map was created during huge page allocation and must be removed. It is to 2697 * be called after calling vma_needs_reservation to determine if a reservation 2698 * exists. 2699 */ 2700 enum vma_resv_mode { 2701 VMA_NEEDS_RESV, 2702 VMA_COMMIT_RESV, 2703 VMA_END_RESV, 2704 VMA_ADD_RESV, 2705 VMA_DEL_RESV, 2706 }; 2707 static long __vma_reservation_common(struct hstate *h, 2708 struct vm_area_struct *vma, unsigned long addr, 2709 enum vma_resv_mode mode) 2710 { 2711 struct resv_map *resv; 2712 pgoff_t idx; 2713 long ret; 2714 long dummy_out_regions_needed; 2715 2716 resv = vma_resv_map(vma); 2717 if (!resv) 2718 return 1; 2719 2720 idx = vma_hugecache_offset(h, vma, addr); 2721 switch (mode) { 2722 case VMA_NEEDS_RESV: 2723 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2724 /* We assume that vma_reservation_* routines always operate on 2725 * 1 page, and that adding to resv map a 1 page entry can only 2726 * ever require 1 region. 2727 */ 2728 VM_BUG_ON(dummy_out_regions_needed != 1); 2729 break; 2730 case VMA_COMMIT_RESV: 2731 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2732 /* region_add calls of range 1 should never fail. */ 2733 VM_BUG_ON(ret < 0); 2734 break; 2735 case VMA_END_RESV: 2736 region_abort(resv, idx, idx + 1, 1); 2737 ret = 0; 2738 break; 2739 case VMA_ADD_RESV: 2740 if (vma->vm_flags & VM_MAYSHARE) { 2741 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2742 /* region_add calls of range 1 should never fail. */ 2743 VM_BUG_ON(ret < 0); 2744 } else { 2745 region_abort(resv, idx, idx + 1, 1); 2746 ret = region_del(resv, idx, idx + 1); 2747 } 2748 break; 2749 case VMA_DEL_RESV: 2750 if (vma->vm_flags & VM_MAYSHARE) { 2751 region_abort(resv, idx, idx + 1, 1); 2752 ret = region_del(resv, idx, idx + 1); 2753 } else { 2754 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2755 /* region_add calls of range 1 should never fail. */ 2756 VM_BUG_ON(ret < 0); 2757 } 2758 break; 2759 default: 2760 BUG(); 2761 } 2762 2763 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2764 return ret; 2765 /* 2766 * We know private mapping must have HPAGE_RESV_OWNER set. 2767 * 2768 * In most cases, reserves always exist for private mappings. 2769 * However, a file associated with mapping could have been 2770 * hole punched or truncated after reserves were consumed. 2771 * As subsequent fault on such a range will not use reserves. 2772 * Subtle - The reserve map for private mappings has the 2773 * opposite meaning than that of shared mappings. If NO 2774 * entry is in the reserve map, it means a reservation exists. 2775 * If an entry exists in the reserve map, it means the 2776 * reservation has already been consumed. As a result, the 2777 * return value of this routine is the opposite of the 2778 * value returned from reserve map manipulation routines above. 2779 */ 2780 if (ret > 0) 2781 return 0; 2782 if (ret == 0) 2783 return 1; 2784 return ret; 2785 } 2786 2787 static long vma_needs_reservation(struct hstate *h, 2788 struct vm_area_struct *vma, unsigned long addr) 2789 { 2790 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2791 } 2792 2793 static long vma_commit_reservation(struct hstate *h, 2794 struct vm_area_struct *vma, unsigned long addr) 2795 { 2796 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2797 } 2798 2799 static void vma_end_reservation(struct hstate *h, 2800 struct vm_area_struct *vma, unsigned long addr) 2801 { 2802 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2803 } 2804 2805 static long vma_add_reservation(struct hstate *h, 2806 struct vm_area_struct *vma, unsigned long addr) 2807 { 2808 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2809 } 2810 2811 static long vma_del_reservation(struct hstate *h, 2812 struct vm_area_struct *vma, unsigned long addr) 2813 { 2814 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2815 } 2816 2817 /* 2818 * This routine is called to restore reservation information on error paths. 2819 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2820 * and the hugetlb mutex should remain held when calling this routine. 2821 * 2822 * It handles two specific cases: 2823 * 1) A reservation was in place and the folio consumed the reservation. 2824 * hugetlb_restore_reserve is set in the folio. 2825 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2826 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2827 * 2828 * In case 1, free_huge_folio later in the error path will increment the 2829 * global reserve count. But, free_huge_folio does not have enough context 2830 * to adjust the reservation map. This case deals primarily with private 2831 * mappings. Adjust the reserve map here to be consistent with global 2832 * reserve count adjustments to be made by free_huge_folio. Make sure the 2833 * reserve map indicates there is a reservation present. 2834 * 2835 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2836 */ 2837 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2838 unsigned long address, struct folio *folio) 2839 { 2840 long rc = vma_needs_reservation(h, vma, address); 2841 2842 if (folio_test_hugetlb_restore_reserve(folio)) { 2843 if (unlikely(rc < 0)) 2844 /* 2845 * Rare out of memory condition in reserve map 2846 * manipulation. Clear hugetlb_restore_reserve so 2847 * that global reserve count will not be incremented 2848 * by free_huge_folio. This will make it appear 2849 * as though the reservation for this folio was 2850 * consumed. This may prevent the task from 2851 * faulting in the folio at a later time. This 2852 * is better than inconsistent global huge page 2853 * accounting of reserve counts. 2854 */ 2855 folio_clear_hugetlb_restore_reserve(folio); 2856 else if (rc) 2857 (void)vma_add_reservation(h, vma, address); 2858 else 2859 vma_end_reservation(h, vma, address); 2860 } else { 2861 if (!rc) { 2862 /* 2863 * This indicates there is an entry in the reserve map 2864 * not added by alloc_hugetlb_folio. We know it was added 2865 * before the alloc_hugetlb_folio call, otherwise 2866 * hugetlb_restore_reserve would be set on the folio. 2867 * Remove the entry so that a subsequent allocation 2868 * does not consume a reservation. 2869 */ 2870 rc = vma_del_reservation(h, vma, address); 2871 if (rc < 0) 2872 /* 2873 * VERY rare out of memory condition. Since 2874 * we can not delete the entry, set 2875 * hugetlb_restore_reserve so that the reserve 2876 * count will be incremented when the folio 2877 * is freed. This reserve will be consumed 2878 * on a subsequent allocation. 2879 */ 2880 folio_set_hugetlb_restore_reserve(folio); 2881 } else if (rc < 0) { 2882 /* 2883 * Rare out of memory condition from 2884 * vma_needs_reservation call. Memory allocation is 2885 * only attempted if a new entry is needed. Therefore, 2886 * this implies there is not an entry in the 2887 * reserve map. 2888 * 2889 * For shared mappings, no entry in the map indicates 2890 * no reservation. We are done. 2891 */ 2892 if (!(vma->vm_flags & VM_MAYSHARE)) 2893 /* 2894 * For private mappings, no entry indicates 2895 * a reservation is present. Since we can 2896 * not add an entry, set hugetlb_restore_reserve 2897 * on the folio so reserve count will be 2898 * incremented when freed. This reserve will 2899 * be consumed on a subsequent allocation. 2900 */ 2901 folio_set_hugetlb_restore_reserve(folio); 2902 } else 2903 /* 2904 * No reservation present, do nothing 2905 */ 2906 vma_end_reservation(h, vma, address); 2907 } 2908 } 2909 2910 /* 2911 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2912 * the old one 2913 * @h: struct hstate old page belongs to 2914 * @old_folio: Old folio to dissolve 2915 * @list: List to isolate the page in case we need to 2916 * Returns 0 on success, otherwise negated error. 2917 */ 2918 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2919 struct folio *old_folio, struct list_head *list) 2920 { 2921 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2922 int nid = folio_nid(old_folio); 2923 struct folio *new_folio; 2924 int ret = 0; 2925 2926 /* 2927 * Before dissolving the folio, we need to allocate a new one for the 2928 * pool to remain stable. Here, we allocate the folio and 'prep' it 2929 * by doing everything but actually updating counters and adding to 2930 * the pool. This simplifies and let us do most of the processing 2931 * under the lock. 2932 */ 2933 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2934 if (!new_folio) 2935 return -ENOMEM; 2936 __prep_new_hugetlb_folio(h, new_folio); 2937 2938 retry: 2939 spin_lock_irq(&hugetlb_lock); 2940 if (!folio_test_hugetlb(old_folio)) { 2941 /* 2942 * Freed from under us. Drop new_folio too. 2943 */ 2944 goto free_new; 2945 } else if (folio_ref_count(old_folio)) { 2946 bool isolated; 2947 2948 /* 2949 * Someone has grabbed the folio, try to isolate it here. 2950 * Fail with -EBUSY if not possible. 2951 */ 2952 spin_unlock_irq(&hugetlb_lock); 2953 isolated = isolate_hugetlb(old_folio, list); 2954 ret = isolated ? 0 : -EBUSY; 2955 spin_lock_irq(&hugetlb_lock); 2956 goto free_new; 2957 } else if (!folio_test_hugetlb_freed(old_folio)) { 2958 /* 2959 * Folio's refcount is 0 but it has not been enqueued in the 2960 * freelist yet. Race window is small, so we can succeed here if 2961 * we retry. 2962 */ 2963 spin_unlock_irq(&hugetlb_lock); 2964 cond_resched(); 2965 goto retry; 2966 } else { 2967 /* 2968 * Ok, old_folio is still a genuine free hugepage. Remove it from 2969 * the freelist and decrease the counters. These will be 2970 * incremented again when calling __prep_account_new_huge_page() 2971 * and enqueue_hugetlb_folio() for new_folio. The counters will 2972 * remain stable since this happens under the lock. 2973 */ 2974 remove_hugetlb_folio(h, old_folio, false); 2975 2976 /* 2977 * Ref count on new_folio is already zero as it was dropped 2978 * earlier. It can be directly added to the pool free list. 2979 */ 2980 __prep_account_new_huge_page(h, nid); 2981 enqueue_hugetlb_folio(h, new_folio); 2982 2983 /* 2984 * Folio has been replaced, we can safely free the old one. 2985 */ 2986 spin_unlock_irq(&hugetlb_lock); 2987 update_and_free_hugetlb_folio(h, old_folio, false); 2988 } 2989 2990 return ret; 2991 2992 free_new: 2993 spin_unlock_irq(&hugetlb_lock); 2994 /* Folio has a zero ref count, but needs a ref to be freed */ 2995 folio_ref_unfreeze(new_folio, 1); 2996 update_and_free_hugetlb_folio(h, new_folio, false); 2997 2998 return ret; 2999 } 3000 3001 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 3002 { 3003 struct hstate *h; 3004 struct folio *folio = page_folio(page); 3005 int ret = -EBUSY; 3006 3007 /* 3008 * The page might have been dissolved from under our feet, so make sure 3009 * to carefully check the state under the lock. 3010 * Return success when racing as if we dissolved the page ourselves. 3011 */ 3012 spin_lock_irq(&hugetlb_lock); 3013 if (folio_test_hugetlb(folio)) { 3014 h = folio_hstate(folio); 3015 } else { 3016 spin_unlock_irq(&hugetlb_lock); 3017 return 0; 3018 } 3019 spin_unlock_irq(&hugetlb_lock); 3020 3021 /* 3022 * Fence off gigantic pages as there is a cyclic dependency between 3023 * alloc_contig_range and them. Return -ENOMEM as this has the effect 3024 * of bailing out right away without further retrying. 3025 */ 3026 if (hstate_is_gigantic(h)) 3027 return -ENOMEM; 3028 3029 if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) 3030 ret = 0; 3031 else if (!folio_ref_count(folio)) 3032 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 3033 3034 return ret; 3035 } 3036 3037 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 3038 unsigned long addr, int avoid_reserve) 3039 { 3040 struct hugepage_subpool *spool = subpool_vma(vma); 3041 struct hstate *h = hstate_vma(vma); 3042 struct folio *folio; 3043 long map_chg, map_commit; 3044 long gbl_chg; 3045 int ret, idx; 3046 struct hugetlb_cgroup *h_cg = NULL; 3047 bool deferred_reserve; 3048 3049 idx = hstate_index(h); 3050 /* 3051 * Examine the region/reserve map to determine if the process 3052 * has a reservation for the page to be allocated. A return 3053 * code of zero indicates a reservation exists (no change). 3054 */ 3055 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 3056 if (map_chg < 0) 3057 return ERR_PTR(-ENOMEM); 3058 3059 /* 3060 * Processes that did not create the mapping will have no 3061 * reserves as indicated by the region/reserve map. Check 3062 * that the allocation will not exceed the subpool limit. 3063 * Allocations for MAP_NORESERVE mappings also need to be 3064 * checked against any subpool limit. 3065 */ 3066 if (map_chg || avoid_reserve) { 3067 gbl_chg = hugepage_subpool_get_pages(spool, 1); 3068 if (gbl_chg < 0) { 3069 vma_end_reservation(h, vma, addr); 3070 return ERR_PTR(-ENOSPC); 3071 } 3072 3073 /* 3074 * Even though there was no reservation in the region/reserve 3075 * map, there could be reservations associated with the 3076 * subpool that can be used. This would be indicated if the 3077 * return value of hugepage_subpool_get_pages() is zero. 3078 * However, if avoid_reserve is specified we still avoid even 3079 * the subpool reservations. 3080 */ 3081 if (avoid_reserve) 3082 gbl_chg = 1; 3083 } 3084 3085 /* If this allocation is not consuming a reservation, charge it now. 3086 */ 3087 deferred_reserve = map_chg || avoid_reserve; 3088 if (deferred_reserve) { 3089 ret = hugetlb_cgroup_charge_cgroup_rsvd( 3090 idx, pages_per_huge_page(h), &h_cg); 3091 if (ret) 3092 goto out_subpool_put; 3093 } 3094 3095 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 3096 if (ret) 3097 goto out_uncharge_cgroup_reservation; 3098 3099 spin_lock_irq(&hugetlb_lock); 3100 /* 3101 * glb_chg is passed to indicate whether or not a page must be taken 3102 * from the global free pool (global change). gbl_chg == 0 indicates 3103 * a reservation exists for the allocation. 3104 */ 3105 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); 3106 if (!folio) { 3107 spin_unlock_irq(&hugetlb_lock); 3108 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 3109 if (!folio) 3110 goto out_uncharge_cgroup; 3111 spin_lock_irq(&hugetlb_lock); 3112 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 3113 folio_set_hugetlb_restore_reserve(folio); 3114 h->resv_huge_pages--; 3115 } 3116 list_add(&folio->lru, &h->hugepage_activelist); 3117 folio_ref_unfreeze(folio, 1); 3118 /* Fall through */ 3119 } 3120 3121 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3122 /* If allocation is not consuming a reservation, also store the 3123 * hugetlb_cgroup pointer on the page. 3124 */ 3125 if (deferred_reserve) { 3126 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3127 h_cg, folio); 3128 } 3129 3130 spin_unlock_irq(&hugetlb_lock); 3131 3132 hugetlb_set_folio_subpool(folio, spool); 3133 3134 map_commit = vma_commit_reservation(h, vma, addr); 3135 if (unlikely(map_chg > map_commit)) { 3136 /* 3137 * The page was added to the reservation map between 3138 * vma_needs_reservation and vma_commit_reservation. 3139 * This indicates a race with hugetlb_reserve_pages. 3140 * Adjust for the subpool count incremented above AND 3141 * in hugetlb_reserve_pages for the same page. Also, 3142 * the reservation count added in hugetlb_reserve_pages 3143 * no longer applies. 3144 */ 3145 long rsv_adjust; 3146 3147 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3148 hugetlb_acct_memory(h, -rsv_adjust); 3149 if (deferred_reserve) 3150 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 3151 pages_per_huge_page(h), folio); 3152 } 3153 return folio; 3154 3155 out_uncharge_cgroup: 3156 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3157 out_uncharge_cgroup_reservation: 3158 if (deferred_reserve) 3159 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3160 h_cg); 3161 out_subpool_put: 3162 if (map_chg || avoid_reserve) 3163 hugepage_subpool_put_pages(spool, 1); 3164 vma_end_reservation(h, vma, addr); 3165 return ERR_PTR(-ENOSPC); 3166 } 3167 3168 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3169 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3170 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3171 { 3172 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3173 int nr_nodes, node; 3174 3175 /* do node specific alloc */ 3176 if (nid != NUMA_NO_NODE) { 3177 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3178 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3179 if (!m) 3180 return 0; 3181 goto found; 3182 } 3183 /* allocate from next node when distributing huge pages */ 3184 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3185 m = memblock_alloc_try_nid_raw( 3186 huge_page_size(h), huge_page_size(h), 3187 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3188 /* 3189 * Use the beginning of the huge page to store the 3190 * huge_bootmem_page struct (until gather_bootmem 3191 * puts them into the mem_map). 3192 */ 3193 if (!m) 3194 return 0; 3195 goto found; 3196 } 3197 3198 found: 3199 /* Put them into a private list first because mem_map is not up yet */ 3200 INIT_LIST_HEAD(&m->list); 3201 list_add(&m->list, &huge_boot_pages); 3202 m->hstate = h; 3203 return 1; 3204 } 3205 3206 /* 3207 * Put bootmem huge pages into the standard lists after mem_map is up. 3208 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3209 */ 3210 static void __init gather_bootmem_prealloc(void) 3211 { 3212 struct huge_bootmem_page *m; 3213 3214 list_for_each_entry(m, &huge_boot_pages, list) { 3215 struct page *page = virt_to_page(m); 3216 struct folio *folio = page_folio(page); 3217 struct hstate *h = m->hstate; 3218 3219 VM_BUG_ON(!hstate_is_gigantic(h)); 3220 WARN_ON(folio_ref_count(folio) != 1); 3221 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3222 WARN_ON(folio_test_reserved(folio)); 3223 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3224 free_huge_folio(folio); /* add to the hugepage allocator */ 3225 } else { 3226 /* VERY unlikely inflated ref count on a tail page */ 3227 free_gigantic_folio(folio, huge_page_order(h)); 3228 } 3229 3230 /* 3231 * We need to restore the 'stolen' pages to totalram_pages 3232 * in order to fix confusing memory reports from free(1) and 3233 * other side-effects, like CommitLimit going negative. 3234 */ 3235 adjust_managed_page_count(page, pages_per_huge_page(h)); 3236 cond_resched(); 3237 } 3238 } 3239 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3240 { 3241 unsigned long i; 3242 char buf[32]; 3243 3244 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3245 if (hstate_is_gigantic(h)) { 3246 if (!alloc_bootmem_huge_page(h, nid)) 3247 break; 3248 } else { 3249 struct folio *folio; 3250 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3251 3252 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3253 &node_states[N_MEMORY], NULL); 3254 if (!folio) 3255 break; 3256 free_huge_folio(folio); /* free it into the hugepage allocator */ 3257 } 3258 cond_resched(); 3259 } 3260 if (i == h->max_huge_pages_node[nid]) 3261 return; 3262 3263 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3264 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3265 h->max_huge_pages_node[nid], buf, nid, i); 3266 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3267 h->max_huge_pages_node[nid] = i; 3268 } 3269 3270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3271 { 3272 unsigned long i; 3273 nodemask_t *node_alloc_noretry; 3274 bool node_specific_alloc = false; 3275 3276 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3277 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3278 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3279 return; 3280 } 3281 3282 /* do node specific alloc */ 3283 for_each_online_node(i) { 3284 if (h->max_huge_pages_node[i] > 0) { 3285 hugetlb_hstate_alloc_pages_onenode(h, i); 3286 node_specific_alloc = true; 3287 } 3288 } 3289 3290 if (node_specific_alloc) 3291 return; 3292 3293 /* below will do all node balanced alloc */ 3294 if (!hstate_is_gigantic(h)) { 3295 /* 3296 * Bit mask controlling how hard we retry per-node allocations. 3297 * Ignore errors as lower level routines can deal with 3298 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3299 * time, we are likely in bigger trouble. 3300 */ 3301 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3302 GFP_KERNEL); 3303 } else { 3304 /* allocations done at boot time */ 3305 node_alloc_noretry = NULL; 3306 } 3307 3308 /* bit mask controlling how hard we retry per-node allocations */ 3309 if (node_alloc_noretry) 3310 nodes_clear(*node_alloc_noretry); 3311 3312 for (i = 0; i < h->max_huge_pages; ++i) { 3313 if (hstate_is_gigantic(h)) { 3314 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3315 break; 3316 } else if (!alloc_pool_huge_page(h, 3317 &node_states[N_MEMORY], 3318 node_alloc_noretry)) 3319 break; 3320 cond_resched(); 3321 } 3322 if (i < h->max_huge_pages) { 3323 char buf[32]; 3324 3325 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3326 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3327 h->max_huge_pages, buf, i); 3328 h->max_huge_pages = i; 3329 } 3330 kfree(node_alloc_noretry); 3331 } 3332 3333 static void __init hugetlb_init_hstates(void) 3334 { 3335 struct hstate *h, *h2; 3336 3337 for_each_hstate(h) { 3338 /* oversize hugepages were init'ed in early boot */ 3339 if (!hstate_is_gigantic(h)) 3340 hugetlb_hstate_alloc_pages(h); 3341 3342 /* 3343 * Set demote order for each hstate. Note that 3344 * h->demote_order is initially 0. 3345 * - We can not demote gigantic pages if runtime freeing 3346 * is not supported, so skip this. 3347 * - If CMA allocation is possible, we can not demote 3348 * HUGETLB_PAGE_ORDER or smaller size pages. 3349 */ 3350 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3351 continue; 3352 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3353 continue; 3354 for_each_hstate(h2) { 3355 if (h2 == h) 3356 continue; 3357 if (h2->order < h->order && 3358 h2->order > h->demote_order) 3359 h->demote_order = h2->order; 3360 } 3361 } 3362 } 3363 3364 static void __init report_hugepages(void) 3365 { 3366 struct hstate *h; 3367 3368 for_each_hstate(h) { 3369 char buf[32]; 3370 3371 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3372 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3373 buf, h->free_huge_pages); 3374 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3375 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3376 } 3377 } 3378 3379 #ifdef CONFIG_HIGHMEM 3380 static void try_to_free_low(struct hstate *h, unsigned long count, 3381 nodemask_t *nodes_allowed) 3382 { 3383 int i; 3384 LIST_HEAD(page_list); 3385 3386 lockdep_assert_held(&hugetlb_lock); 3387 if (hstate_is_gigantic(h)) 3388 return; 3389 3390 /* 3391 * Collect pages to be freed on a list, and free after dropping lock 3392 */ 3393 for_each_node_mask(i, *nodes_allowed) { 3394 struct page *page, *next; 3395 struct list_head *freel = &h->hugepage_freelists[i]; 3396 list_for_each_entry_safe(page, next, freel, lru) { 3397 if (count >= h->nr_huge_pages) 3398 goto out; 3399 if (PageHighMem(page)) 3400 continue; 3401 remove_hugetlb_folio(h, page_folio(page), false); 3402 list_add(&page->lru, &page_list); 3403 } 3404 } 3405 3406 out: 3407 spin_unlock_irq(&hugetlb_lock); 3408 update_and_free_pages_bulk(h, &page_list); 3409 spin_lock_irq(&hugetlb_lock); 3410 } 3411 #else 3412 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3413 nodemask_t *nodes_allowed) 3414 { 3415 } 3416 #endif 3417 3418 /* 3419 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3420 * balanced by operating on them in a round-robin fashion. 3421 * Returns 1 if an adjustment was made. 3422 */ 3423 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3424 int delta) 3425 { 3426 int nr_nodes, node; 3427 3428 lockdep_assert_held(&hugetlb_lock); 3429 VM_BUG_ON(delta != -1 && delta != 1); 3430 3431 if (delta < 0) { 3432 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3433 if (h->surplus_huge_pages_node[node]) 3434 goto found; 3435 } 3436 } else { 3437 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3438 if (h->surplus_huge_pages_node[node] < 3439 h->nr_huge_pages_node[node]) 3440 goto found; 3441 } 3442 } 3443 return 0; 3444 3445 found: 3446 h->surplus_huge_pages += delta; 3447 h->surplus_huge_pages_node[node] += delta; 3448 return 1; 3449 } 3450 3451 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3452 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3453 nodemask_t *nodes_allowed) 3454 { 3455 unsigned long min_count, ret; 3456 struct page *page; 3457 LIST_HEAD(page_list); 3458 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3459 3460 /* 3461 * Bit mask controlling how hard we retry per-node allocations. 3462 * If we can not allocate the bit mask, do not attempt to allocate 3463 * the requested huge pages. 3464 */ 3465 if (node_alloc_noretry) 3466 nodes_clear(*node_alloc_noretry); 3467 else 3468 return -ENOMEM; 3469 3470 /* 3471 * resize_lock mutex prevents concurrent adjustments to number of 3472 * pages in hstate via the proc/sysfs interfaces. 3473 */ 3474 mutex_lock(&h->resize_lock); 3475 flush_free_hpage_work(h); 3476 spin_lock_irq(&hugetlb_lock); 3477 3478 /* 3479 * Check for a node specific request. 3480 * Changing node specific huge page count may require a corresponding 3481 * change to the global count. In any case, the passed node mask 3482 * (nodes_allowed) will restrict alloc/free to the specified node. 3483 */ 3484 if (nid != NUMA_NO_NODE) { 3485 unsigned long old_count = count; 3486 3487 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3488 /* 3489 * User may have specified a large count value which caused the 3490 * above calculation to overflow. In this case, they wanted 3491 * to allocate as many huge pages as possible. Set count to 3492 * largest possible value to align with their intention. 3493 */ 3494 if (count < old_count) 3495 count = ULONG_MAX; 3496 } 3497 3498 /* 3499 * Gigantic pages runtime allocation depend on the capability for large 3500 * page range allocation. 3501 * If the system does not provide this feature, return an error when 3502 * the user tries to allocate gigantic pages but let the user free the 3503 * boottime allocated gigantic pages. 3504 */ 3505 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3506 if (count > persistent_huge_pages(h)) { 3507 spin_unlock_irq(&hugetlb_lock); 3508 mutex_unlock(&h->resize_lock); 3509 NODEMASK_FREE(node_alloc_noretry); 3510 return -EINVAL; 3511 } 3512 /* Fall through to decrease pool */ 3513 } 3514 3515 /* 3516 * Increase the pool size 3517 * First take pages out of surplus state. Then make up the 3518 * remaining difference by allocating fresh huge pages. 3519 * 3520 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3521 * to convert a surplus huge page to a normal huge page. That is 3522 * not critical, though, it just means the overall size of the 3523 * pool might be one hugepage larger than it needs to be, but 3524 * within all the constraints specified by the sysctls. 3525 */ 3526 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3527 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3528 break; 3529 } 3530 3531 while (count > persistent_huge_pages(h)) { 3532 /* 3533 * If this allocation races such that we no longer need the 3534 * page, free_huge_folio will handle it by freeing the page 3535 * and reducing the surplus. 3536 */ 3537 spin_unlock_irq(&hugetlb_lock); 3538 3539 /* yield cpu to avoid soft lockup */ 3540 cond_resched(); 3541 3542 ret = alloc_pool_huge_page(h, nodes_allowed, 3543 node_alloc_noretry); 3544 spin_lock_irq(&hugetlb_lock); 3545 if (!ret) 3546 goto out; 3547 3548 /* Bail for signals. Probably ctrl-c from user */ 3549 if (signal_pending(current)) 3550 goto out; 3551 } 3552 3553 /* 3554 * Decrease the pool size 3555 * First return free pages to the buddy allocator (being careful 3556 * to keep enough around to satisfy reservations). Then place 3557 * pages into surplus state as needed so the pool will shrink 3558 * to the desired size as pages become free. 3559 * 3560 * By placing pages into the surplus state independent of the 3561 * overcommit value, we are allowing the surplus pool size to 3562 * exceed overcommit. There are few sane options here. Since 3563 * alloc_surplus_hugetlb_folio() is checking the global counter, 3564 * though, we'll note that we're not allowed to exceed surplus 3565 * and won't grow the pool anywhere else. Not until one of the 3566 * sysctls are changed, or the surplus pages go out of use. 3567 */ 3568 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3569 min_count = max(count, min_count); 3570 try_to_free_low(h, min_count, nodes_allowed); 3571 3572 /* 3573 * Collect pages to be removed on list without dropping lock 3574 */ 3575 while (min_count < persistent_huge_pages(h)) { 3576 page = remove_pool_huge_page(h, nodes_allowed, 0); 3577 if (!page) 3578 break; 3579 3580 list_add(&page->lru, &page_list); 3581 } 3582 /* free the pages after dropping lock */ 3583 spin_unlock_irq(&hugetlb_lock); 3584 update_and_free_pages_bulk(h, &page_list); 3585 flush_free_hpage_work(h); 3586 spin_lock_irq(&hugetlb_lock); 3587 3588 while (count < persistent_huge_pages(h)) { 3589 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3590 break; 3591 } 3592 out: 3593 h->max_huge_pages = persistent_huge_pages(h); 3594 spin_unlock_irq(&hugetlb_lock); 3595 mutex_unlock(&h->resize_lock); 3596 3597 NODEMASK_FREE(node_alloc_noretry); 3598 3599 return 0; 3600 } 3601 3602 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) 3603 { 3604 int i, nid = folio_nid(folio); 3605 struct hstate *target_hstate; 3606 struct page *subpage; 3607 struct folio *inner_folio; 3608 int rc = 0; 3609 3610 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3611 3612 remove_hugetlb_folio_for_demote(h, folio, false); 3613 spin_unlock_irq(&hugetlb_lock); 3614 3615 rc = hugetlb_vmemmap_restore(h, &folio->page); 3616 if (rc) { 3617 /* Allocation of vmemmmap failed, we can not demote folio */ 3618 spin_lock_irq(&hugetlb_lock); 3619 folio_ref_unfreeze(folio, 1); 3620 add_hugetlb_folio(h, folio, false); 3621 return rc; 3622 } 3623 3624 /* 3625 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3626 * sizes as it will not ref count folios. 3627 */ 3628 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3629 3630 /* 3631 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3632 * Without the mutex, pages added to target hstate could be marked 3633 * as surplus. 3634 * 3635 * Note that we already hold h->resize_lock. To prevent deadlock, 3636 * use the convention of always taking larger size hstate mutex first. 3637 */ 3638 mutex_lock(&target_hstate->resize_lock); 3639 for (i = 0; i < pages_per_huge_page(h); 3640 i += pages_per_huge_page(target_hstate)) { 3641 subpage = folio_page(folio, i); 3642 inner_folio = page_folio(subpage); 3643 if (hstate_is_gigantic(target_hstate)) 3644 prep_compound_gigantic_folio_for_demote(inner_folio, 3645 target_hstate->order); 3646 else 3647 prep_compound_page(subpage, target_hstate->order); 3648 folio_change_private(inner_folio, NULL); 3649 prep_new_hugetlb_folio(target_hstate, inner_folio, nid); 3650 free_huge_folio(inner_folio); 3651 } 3652 mutex_unlock(&target_hstate->resize_lock); 3653 3654 spin_lock_irq(&hugetlb_lock); 3655 3656 /* 3657 * Not absolutely necessary, but for consistency update max_huge_pages 3658 * based on pool changes for the demoted page. 3659 */ 3660 h->max_huge_pages--; 3661 target_hstate->max_huge_pages += 3662 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3663 3664 return rc; 3665 } 3666 3667 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3668 __must_hold(&hugetlb_lock) 3669 { 3670 int nr_nodes, node; 3671 struct folio *folio; 3672 3673 lockdep_assert_held(&hugetlb_lock); 3674 3675 /* We should never get here if no demote order */ 3676 if (!h->demote_order) { 3677 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3678 return -EINVAL; /* internal error */ 3679 } 3680 3681 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3682 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { 3683 if (folio_test_hwpoison(folio)) 3684 continue; 3685 return demote_free_hugetlb_folio(h, folio); 3686 } 3687 } 3688 3689 /* 3690 * Only way to get here is if all pages on free lists are poisoned. 3691 * Return -EBUSY so that caller will not retry. 3692 */ 3693 return -EBUSY; 3694 } 3695 3696 #define HSTATE_ATTR_RO(_name) \ 3697 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3698 3699 #define HSTATE_ATTR_WO(_name) \ 3700 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3701 3702 #define HSTATE_ATTR(_name) \ 3703 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3704 3705 static struct kobject *hugepages_kobj; 3706 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3707 3708 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3709 3710 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3711 { 3712 int i; 3713 3714 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3715 if (hstate_kobjs[i] == kobj) { 3716 if (nidp) 3717 *nidp = NUMA_NO_NODE; 3718 return &hstates[i]; 3719 } 3720 3721 return kobj_to_node_hstate(kobj, nidp); 3722 } 3723 3724 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3725 struct kobj_attribute *attr, char *buf) 3726 { 3727 struct hstate *h; 3728 unsigned long nr_huge_pages; 3729 int nid; 3730 3731 h = kobj_to_hstate(kobj, &nid); 3732 if (nid == NUMA_NO_NODE) 3733 nr_huge_pages = h->nr_huge_pages; 3734 else 3735 nr_huge_pages = h->nr_huge_pages_node[nid]; 3736 3737 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3738 } 3739 3740 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3741 struct hstate *h, int nid, 3742 unsigned long count, size_t len) 3743 { 3744 int err; 3745 nodemask_t nodes_allowed, *n_mask; 3746 3747 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3748 return -EINVAL; 3749 3750 if (nid == NUMA_NO_NODE) { 3751 /* 3752 * global hstate attribute 3753 */ 3754 if (!(obey_mempolicy && 3755 init_nodemask_of_mempolicy(&nodes_allowed))) 3756 n_mask = &node_states[N_MEMORY]; 3757 else 3758 n_mask = &nodes_allowed; 3759 } else { 3760 /* 3761 * Node specific request. count adjustment happens in 3762 * set_max_huge_pages() after acquiring hugetlb_lock. 3763 */ 3764 init_nodemask_of_node(&nodes_allowed, nid); 3765 n_mask = &nodes_allowed; 3766 } 3767 3768 err = set_max_huge_pages(h, count, nid, n_mask); 3769 3770 return err ? err : len; 3771 } 3772 3773 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3774 struct kobject *kobj, const char *buf, 3775 size_t len) 3776 { 3777 struct hstate *h; 3778 unsigned long count; 3779 int nid; 3780 int err; 3781 3782 err = kstrtoul(buf, 10, &count); 3783 if (err) 3784 return err; 3785 3786 h = kobj_to_hstate(kobj, &nid); 3787 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3788 } 3789 3790 static ssize_t nr_hugepages_show(struct kobject *kobj, 3791 struct kobj_attribute *attr, char *buf) 3792 { 3793 return nr_hugepages_show_common(kobj, attr, buf); 3794 } 3795 3796 static ssize_t nr_hugepages_store(struct kobject *kobj, 3797 struct kobj_attribute *attr, const char *buf, size_t len) 3798 { 3799 return nr_hugepages_store_common(false, kobj, buf, len); 3800 } 3801 HSTATE_ATTR(nr_hugepages); 3802 3803 #ifdef CONFIG_NUMA 3804 3805 /* 3806 * hstate attribute for optionally mempolicy-based constraint on persistent 3807 * huge page alloc/free. 3808 */ 3809 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3810 struct kobj_attribute *attr, 3811 char *buf) 3812 { 3813 return nr_hugepages_show_common(kobj, attr, buf); 3814 } 3815 3816 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3817 struct kobj_attribute *attr, const char *buf, size_t len) 3818 { 3819 return nr_hugepages_store_common(true, kobj, buf, len); 3820 } 3821 HSTATE_ATTR(nr_hugepages_mempolicy); 3822 #endif 3823 3824 3825 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3826 struct kobj_attribute *attr, char *buf) 3827 { 3828 struct hstate *h = kobj_to_hstate(kobj, NULL); 3829 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3830 } 3831 3832 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3833 struct kobj_attribute *attr, const char *buf, size_t count) 3834 { 3835 int err; 3836 unsigned long input; 3837 struct hstate *h = kobj_to_hstate(kobj, NULL); 3838 3839 if (hstate_is_gigantic(h)) 3840 return -EINVAL; 3841 3842 err = kstrtoul(buf, 10, &input); 3843 if (err) 3844 return err; 3845 3846 spin_lock_irq(&hugetlb_lock); 3847 h->nr_overcommit_huge_pages = input; 3848 spin_unlock_irq(&hugetlb_lock); 3849 3850 return count; 3851 } 3852 HSTATE_ATTR(nr_overcommit_hugepages); 3853 3854 static ssize_t free_hugepages_show(struct kobject *kobj, 3855 struct kobj_attribute *attr, char *buf) 3856 { 3857 struct hstate *h; 3858 unsigned long free_huge_pages; 3859 int nid; 3860 3861 h = kobj_to_hstate(kobj, &nid); 3862 if (nid == NUMA_NO_NODE) 3863 free_huge_pages = h->free_huge_pages; 3864 else 3865 free_huge_pages = h->free_huge_pages_node[nid]; 3866 3867 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3868 } 3869 HSTATE_ATTR_RO(free_hugepages); 3870 3871 static ssize_t resv_hugepages_show(struct kobject *kobj, 3872 struct kobj_attribute *attr, char *buf) 3873 { 3874 struct hstate *h = kobj_to_hstate(kobj, NULL); 3875 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3876 } 3877 HSTATE_ATTR_RO(resv_hugepages); 3878 3879 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3880 struct kobj_attribute *attr, char *buf) 3881 { 3882 struct hstate *h; 3883 unsigned long surplus_huge_pages; 3884 int nid; 3885 3886 h = kobj_to_hstate(kobj, &nid); 3887 if (nid == NUMA_NO_NODE) 3888 surplus_huge_pages = h->surplus_huge_pages; 3889 else 3890 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3891 3892 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3893 } 3894 HSTATE_ATTR_RO(surplus_hugepages); 3895 3896 static ssize_t demote_store(struct kobject *kobj, 3897 struct kobj_attribute *attr, const char *buf, size_t len) 3898 { 3899 unsigned long nr_demote; 3900 unsigned long nr_available; 3901 nodemask_t nodes_allowed, *n_mask; 3902 struct hstate *h; 3903 int err; 3904 int nid; 3905 3906 err = kstrtoul(buf, 10, &nr_demote); 3907 if (err) 3908 return err; 3909 h = kobj_to_hstate(kobj, &nid); 3910 3911 if (nid != NUMA_NO_NODE) { 3912 init_nodemask_of_node(&nodes_allowed, nid); 3913 n_mask = &nodes_allowed; 3914 } else { 3915 n_mask = &node_states[N_MEMORY]; 3916 } 3917 3918 /* Synchronize with other sysfs operations modifying huge pages */ 3919 mutex_lock(&h->resize_lock); 3920 spin_lock_irq(&hugetlb_lock); 3921 3922 while (nr_demote) { 3923 /* 3924 * Check for available pages to demote each time thorough the 3925 * loop as demote_pool_huge_page will drop hugetlb_lock. 3926 */ 3927 if (nid != NUMA_NO_NODE) 3928 nr_available = h->free_huge_pages_node[nid]; 3929 else 3930 nr_available = h->free_huge_pages; 3931 nr_available -= h->resv_huge_pages; 3932 if (!nr_available) 3933 break; 3934 3935 err = demote_pool_huge_page(h, n_mask); 3936 if (err) 3937 break; 3938 3939 nr_demote--; 3940 } 3941 3942 spin_unlock_irq(&hugetlb_lock); 3943 mutex_unlock(&h->resize_lock); 3944 3945 if (err) 3946 return err; 3947 return len; 3948 } 3949 HSTATE_ATTR_WO(demote); 3950 3951 static ssize_t demote_size_show(struct kobject *kobj, 3952 struct kobj_attribute *attr, char *buf) 3953 { 3954 struct hstate *h = kobj_to_hstate(kobj, NULL); 3955 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3956 3957 return sysfs_emit(buf, "%lukB\n", demote_size); 3958 } 3959 3960 static ssize_t demote_size_store(struct kobject *kobj, 3961 struct kobj_attribute *attr, 3962 const char *buf, size_t count) 3963 { 3964 struct hstate *h, *demote_hstate; 3965 unsigned long demote_size; 3966 unsigned int demote_order; 3967 3968 demote_size = (unsigned long)memparse(buf, NULL); 3969 3970 demote_hstate = size_to_hstate(demote_size); 3971 if (!demote_hstate) 3972 return -EINVAL; 3973 demote_order = demote_hstate->order; 3974 if (demote_order < HUGETLB_PAGE_ORDER) 3975 return -EINVAL; 3976 3977 /* demote order must be smaller than hstate order */ 3978 h = kobj_to_hstate(kobj, NULL); 3979 if (demote_order >= h->order) 3980 return -EINVAL; 3981 3982 /* resize_lock synchronizes access to demote size and writes */ 3983 mutex_lock(&h->resize_lock); 3984 h->demote_order = demote_order; 3985 mutex_unlock(&h->resize_lock); 3986 3987 return count; 3988 } 3989 HSTATE_ATTR(demote_size); 3990 3991 static struct attribute *hstate_attrs[] = { 3992 &nr_hugepages_attr.attr, 3993 &nr_overcommit_hugepages_attr.attr, 3994 &free_hugepages_attr.attr, 3995 &resv_hugepages_attr.attr, 3996 &surplus_hugepages_attr.attr, 3997 #ifdef CONFIG_NUMA 3998 &nr_hugepages_mempolicy_attr.attr, 3999 #endif 4000 NULL, 4001 }; 4002 4003 static const struct attribute_group hstate_attr_group = { 4004 .attrs = hstate_attrs, 4005 }; 4006 4007 static struct attribute *hstate_demote_attrs[] = { 4008 &demote_size_attr.attr, 4009 &demote_attr.attr, 4010 NULL, 4011 }; 4012 4013 static const struct attribute_group hstate_demote_attr_group = { 4014 .attrs = hstate_demote_attrs, 4015 }; 4016 4017 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 4018 struct kobject **hstate_kobjs, 4019 const struct attribute_group *hstate_attr_group) 4020 { 4021 int retval; 4022 int hi = hstate_index(h); 4023 4024 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 4025 if (!hstate_kobjs[hi]) 4026 return -ENOMEM; 4027 4028 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 4029 if (retval) { 4030 kobject_put(hstate_kobjs[hi]); 4031 hstate_kobjs[hi] = NULL; 4032 return retval; 4033 } 4034 4035 if (h->demote_order) { 4036 retval = sysfs_create_group(hstate_kobjs[hi], 4037 &hstate_demote_attr_group); 4038 if (retval) { 4039 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 4040 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 4041 kobject_put(hstate_kobjs[hi]); 4042 hstate_kobjs[hi] = NULL; 4043 return retval; 4044 } 4045 } 4046 4047 return 0; 4048 } 4049 4050 #ifdef CONFIG_NUMA 4051 static bool hugetlb_sysfs_initialized __ro_after_init; 4052 4053 /* 4054 * node_hstate/s - associate per node hstate attributes, via their kobjects, 4055 * with node devices in node_devices[] using a parallel array. The array 4056 * index of a node device or _hstate == node id. 4057 * This is here to avoid any static dependency of the node device driver, in 4058 * the base kernel, on the hugetlb module. 4059 */ 4060 struct node_hstate { 4061 struct kobject *hugepages_kobj; 4062 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 4063 }; 4064 static struct node_hstate node_hstates[MAX_NUMNODES]; 4065 4066 /* 4067 * A subset of global hstate attributes for node devices 4068 */ 4069 static struct attribute *per_node_hstate_attrs[] = { 4070 &nr_hugepages_attr.attr, 4071 &free_hugepages_attr.attr, 4072 &surplus_hugepages_attr.attr, 4073 NULL, 4074 }; 4075 4076 static const struct attribute_group per_node_hstate_attr_group = { 4077 .attrs = per_node_hstate_attrs, 4078 }; 4079 4080 /* 4081 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 4082 * Returns node id via non-NULL nidp. 4083 */ 4084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4085 { 4086 int nid; 4087 4088 for (nid = 0; nid < nr_node_ids; nid++) { 4089 struct node_hstate *nhs = &node_hstates[nid]; 4090 int i; 4091 for (i = 0; i < HUGE_MAX_HSTATE; i++) 4092 if (nhs->hstate_kobjs[i] == kobj) { 4093 if (nidp) 4094 *nidp = nid; 4095 return &hstates[i]; 4096 } 4097 } 4098 4099 BUG(); 4100 return NULL; 4101 } 4102 4103 /* 4104 * Unregister hstate attributes from a single node device. 4105 * No-op if no hstate attributes attached. 4106 */ 4107 void hugetlb_unregister_node(struct node *node) 4108 { 4109 struct hstate *h; 4110 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4111 4112 if (!nhs->hugepages_kobj) 4113 return; /* no hstate attributes */ 4114 4115 for_each_hstate(h) { 4116 int idx = hstate_index(h); 4117 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 4118 4119 if (!hstate_kobj) 4120 continue; 4121 if (h->demote_order) 4122 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 4123 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 4124 kobject_put(hstate_kobj); 4125 nhs->hstate_kobjs[idx] = NULL; 4126 } 4127 4128 kobject_put(nhs->hugepages_kobj); 4129 nhs->hugepages_kobj = NULL; 4130 } 4131 4132 4133 /* 4134 * Register hstate attributes for a single node device. 4135 * No-op if attributes already registered. 4136 */ 4137 void hugetlb_register_node(struct node *node) 4138 { 4139 struct hstate *h; 4140 struct node_hstate *nhs = &node_hstates[node->dev.id]; 4141 int err; 4142 4143 if (!hugetlb_sysfs_initialized) 4144 return; 4145 4146 if (nhs->hugepages_kobj) 4147 return; /* already allocated */ 4148 4149 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 4150 &node->dev.kobj); 4151 if (!nhs->hugepages_kobj) 4152 return; 4153 4154 for_each_hstate(h) { 4155 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 4156 nhs->hstate_kobjs, 4157 &per_node_hstate_attr_group); 4158 if (err) { 4159 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 4160 h->name, node->dev.id); 4161 hugetlb_unregister_node(node); 4162 break; 4163 } 4164 } 4165 } 4166 4167 /* 4168 * hugetlb init time: register hstate attributes for all registered node 4169 * devices of nodes that have memory. All on-line nodes should have 4170 * registered their associated device by this time. 4171 */ 4172 static void __init hugetlb_register_all_nodes(void) 4173 { 4174 int nid; 4175 4176 for_each_online_node(nid) 4177 hugetlb_register_node(node_devices[nid]); 4178 } 4179 #else /* !CONFIG_NUMA */ 4180 4181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4182 { 4183 BUG(); 4184 if (nidp) 4185 *nidp = -1; 4186 return NULL; 4187 } 4188 4189 static void hugetlb_register_all_nodes(void) { } 4190 4191 #endif 4192 4193 #ifdef CONFIG_CMA 4194 static void __init hugetlb_cma_check(void); 4195 #else 4196 static inline __init void hugetlb_cma_check(void) 4197 { 4198 } 4199 #endif 4200 4201 static void __init hugetlb_sysfs_init(void) 4202 { 4203 struct hstate *h; 4204 int err; 4205 4206 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4207 if (!hugepages_kobj) 4208 return; 4209 4210 for_each_hstate(h) { 4211 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4212 hstate_kobjs, &hstate_attr_group); 4213 if (err) 4214 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4215 } 4216 4217 #ifdef CONFIG_NUMA 4218 hugetlb_sysfs_initialized = true; 4219 #endif 4220 hugetlb_register_all_nodes(); 4221 } 4222 4223 #ifdef CONFIG_SYSCTL 4224 static void hugetlb_sysctl_init(void); 4225 #else 4226 static inline void hugetlb_sysctl_init(void) { } 4227 #endif 4228 4229 static int __init hugetlb_init(void) 4230 { 4231 int i; 4232 4233 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4234 __NR_HPAGEFLAGS); 4235 4236 if (!hugepages_supported()) { 4237 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4238 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4239 return 0; 4240 } 4241 4242 /* 4243 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4244 * architectures depend on setup being done here. 4245 */ 4246 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4247 if (!parsed_default_hugepagesz) { 4248 /* 4249 * If we did not parse a default huge page size, set 4250 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4251 * number of huge pages for this default size was implicitly 4252 * specified, set that here as well. 4253 * Note that the implicit setting will overwrite an explicit 4254 * setting. A warning will be printed in this case. 4255 */ 4256 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4257 if (default_hstate_max_huge_pages) { 4258 if (default_hstate.max_huge_pages) { 4259 char buf[32]; 4260 4261 string_get_size(huge_page_size(&default_hstate), 4262 1, STRING_UNITS_2, buf, 32); 4263 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4264 default_hstate.max_huge_pages, buf); 4265 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4266 default_hstate_max_huge_pages); 4267 } 4268 default_hstate.max_huge_pages = 4269 default_hstate_max_huge_pages; 4270 4271 for_each_online_node(i) 4272 default_hstate.max_huge_pages_node[i] = 4273 default_hugepages_in_node[i]; 4274 } 4275 } 4276 4277 hugetlb_cma_check(); 4278 hugetlb_init_hstates(); 4279 gather_bootmem_prealloc(); 4280 report_hugepages(); 4281 4282 hugetlb_sysfs_init(); 4283 hugetlb_cgroup_file_init(); 4284 hugetlb_sysctl_init(); 4285 4286 #ifdef CONFIG_SMP 4287 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4288 #else 4289 num_fault_mutexes = 1; 4290 #endif 4291 hugetlb_fault_mutex_table = 4292 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4293 GFP_KERNEL); 4294 BUG_ON(!hugetlb_fault_mutex_table); 4295 4296 for (i = 0; i < num_fault_mutexes; i++) 4297 mutex_init(&hugetlb_fault_mutex_table[i]); 4298 return 0; 4299 } 4300 subsys_initcall(hugetlb_init); 4301 4302 /* Overwritten by architectures with more huge page sizes */ 4303 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4304 { 4305 return size == HPAGE_SIZE; 4306 } 4307 4308 void __init hugetlb_add_hstate(unsigned int order) 4309 { 4310 struct hstate *h; 4311 unsigned long i; 4312 4313 if (size_to_hstate(PAGE_SIZE << order)) { 4314 return; 4315 } 4316 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4317 BUG_ON(order == 0); 4318 h = &hstates[hugetlb_max_hstate++]; 4319 mutex_init(&h->resize_lock); 4320 h->order = order; 4321 h->mask = ~(huge_page_size(h) - 1); 4322 for (i = 0; i < MAX_NUMNODES; ++i) 4323 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4324 INIT_LIST_HEAD(&h->hugepage_activelist); 4325 h->next_nid_to_alloc = first_memory_node; 4326 h->next_nid_to_free = first_memory_node; 4327 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4328 huge_page_size(h)/SZ_1K); 4329 4330 parsed_hstate = h; 4331 } 4332 4333 bool __init __weak hugetlb_node_alloc_supported(void) 4334 { 4335 return true; 4336 } 4337 4338 static void __init hugepages_clear_pages_in_node(void) 4339 { 4340 if (!hugetlb_max_hstate) { 4341 default_hstate_max_huge_pages = 0; 4342 memset(default_hugepages_in_node, 0, 4343 sizeof(default_hugepages_in_node)); 4344 } else { 4345 parsed_hstate->max_huge_pages = 0; 4346 memset(parsed_hstate->max_huge_pages_node, 0, 4347 sizeof(parsed_hstate->max_huge_pages_node)); 4348 } 4349 } 4350 4351 /* 4352 * hugepages command line processing 4353 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4354 * specification. If not, ignore the hugepages value. hugepages can also 4355 * be the first huge page command line option in which case it implicitly 4356 * specifies the number of huge pages for the default size. 4357 */ 4358 static int __init hugepages_setup(char *s) 4359 { 4360 unsigned long *mhp; 4361 static unsigned long *last_mhp; 4362 int node = NUMA_NO_NODE; 4363 int count; 4364 unsigned long tmp; 4365 char *p = s; 4366 4367 if (!parsed_valid_hugepagesz) { 4368 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4369 parsed_valid_hugepagesz = true; 4370 return 1; 4371 } 4372 4373 /* 4374 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4375 * yet, so this hugepages= parameter goes to the "default hstate". 4376 * Otherwise, it goes with the previously parsed hugepagesz or 4377 * default_hugepagesz. 4378 */ 4379 else if (!hugetlb_max_hstate) 4380 mhp = &default_hstate_max_huge_pages; 4381 else 4382 mhp = &parsed_hstate->max_huge_pages; 4383 4384 if (mhp == last_mhp) { 4385 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4386 return 1; 4387 } 4388 4389 while (*p) { 4390 count = 0; 4391 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4392 goto invalid; 4393 /* Parameter is node format */ 4394 if (p[count] == ':') { 4395 if (!hugetlb_node_alloc_supported()) { 4396 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4397 return 1; 4398 } 4399 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4400 goto invalid; 4401 node = array_index_nospec(tmp, MAX_NUMNODES); 4402 p += count + 1; 4403 /* Parse hugepages */ 4404 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4405 goto invalid; 4406 if (!hugetlb_max_hstate) 4407 default_hugepages_in_node[node] = tmp; 4408 else 4409 parsed_hstate->max_huge_pages_node[node] = tmp; 4410 *mhp += tmp; 4411 /* Go to parse next node*/ 4412 if (p[count] == ',') 4413 p += count + 1; 4414 else 4415 break; 4416 } else { 4417 if (p != s) 4418 goto invalid; 4419 *mhp = tmp; 4420 break; 4421 } 4422 } 4423 4424 /* 4425 * Global state is always initialized later in hugetlb_init. 4426 * But we need to allocate gigantic hstates here early to still 4427 * use the bootmem allocator. 4428 */ 4429 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4430 hugetlb_hstate_alloc_pages(parsed_hstate); 4431 4432 last_mhp = mhp; 4433 4434 return 1; 4435 4436 invalid: 4437 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4438 hugepages_clear_pages_in_node(); 4439 return 1; 4440 } 4441 __setup("hugepages=", hugepages_setup); 4442 4443 /* 4444 * hugepagesz command line processing 4445 * A specific huge page size can only be specified once with hugepagesz. 4446 * hugepagesz is followed by hugepages on the command line. The global 4447 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4448 * hugepagesz argument was valid. 4449 */ 4450 static int __init hugepagesz_setup(char *s) 4451 { 4452 unsigned long size; 4453 struct hstate *h; 4454 4455 parsed_valid_hugepagesz = false; 4456 size = (unsigned long)memparse(s, NULL); 4457 4458 if (!arch_hugetlb_valid_size(size)) { 4459 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4460 return 1; 4461 } 4462 4463 h = size_to_hstate(size); 4464 if (h) { 4465 /* 4466 * hstate for this size already exists. This is normally 4467 * an error, but is allowed if the existing hstate is the 4468 * default hstate. More specifically, it is only allowed if 4469 * the number of huge pages for the default hstate was not 4470 * previously specified. 4471 */ 4472 if (!parsed_default_hugepagesz || h != &default_hstate || 4473 default_hstate.max_huge_pages) { 4474 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4475 return 1; 4476 } 4477 4478 /* 4479 * No need to call hugetlb_add_hstate() as hstate already 4480 * exists. But, do set parsed_hstate so that a following 4481 * hugepages= parameter will be applied to this hstate. 4482 */ 4483 parsed_hstate = h; 4484 parsed_valid_hugepagesz = true; 4485 return 1; 4486 } 4487 4488 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4489 parsed_valid_hugepagesz = true; 4490 return 1; 4491 } 4492 __setup("hugepagesz=", hugepagesz_setup); 4493 4494 /* 4495 * default_hugepagesz command line input 4496 * Only one instance of default_hugepagesz allowed on command line. 4497 */ 4498 static int __init default_hugepagesz_setup(char *s) 4499 { 4500 unsigned long size; 4501 int i; 4502 4503 parsed_valid_hugepagesz = false; 4504 if (parsed_default_hugepagesz) { 4505 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4506 return 1; 4507 } 4508 4509 size = (unsigned long)memparse(s, NULL); 4510 4511 if (!arch_hugetlb_valid_size(size)) { 4512 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4513 return 1; 4514 } 4515 4516 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4517 parsed_valid_hugepagesz = true; 4518 parsed_default_hugepagesz = true; 4519 default_hstate_idx = hstate_index(size_to_hstate(size)); 4520 4521 /* 4522 * The number of default huge pages (for this size) could have been 4523 * specified as the first hugetlb parameter: hugepages=X. If so, 4524 * then default_hstate_max_huge_pages is set. If the default huge 4525 * page size is gigantic (> MAX_ORDER), then the pages must be 4526 * allocated here from bootmem allocator. 4527 */ 4528 if (default_hstate_max_huge_pages) { 4529 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4530 for_each_online_node(i) 4531 default_hstate.max_huge_pages_node[i] = 4532 default_hugepages_in_node[i]; 4533 if (hstate_is_gigantic(&default_hstate)) 4534 hugetlb_hstate_alloc_pages(&default_hstate); 4535 default_hstate_max_huge_pages = 0; 4536 } 4537 4538 return 1; 4539 } 4540 __setup("default_hugepagesz=", default_hugepagesz_setup); 4541 4542 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4543 { 4544 #ifdef CONFIG_NUMA 4545 struct mempolicy *mpol = get_task_policy(current); 4546 4547 /* 4548 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4549 * (from policy_nodemask) specifically for hugetlb case 4550 */ 4551 if (mpol->mode == MPOL_BIND && 4552 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4553 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4554 return &mpol->nodes; 4555 #endif 4556 return NULL; 4557 } 4558 4559 static unsigned int allowed_mems_nr(struct hstate *h) 4560 { 4561 int node; 4562 unsigned int nr = 0; 4563 nodemask_t *mbind_nodemask; 4564 unsigned int *array = h->free_huge_pages_node; 4565 gfp_t gfp_mask = htlb_alloc_mask(h); 4566 4567 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4568 for_each_node_mask(node, cpuset_current_mems_allowed) { 4569 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4570 nr += array[node]; 4571 } 4572 4573 return nr; 4574 } 4575 4576 #ifdef CONFIG_SYSCTL 4577 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4578 void *buffer, size_t *length, 4579 loff_t *ppos, unsigned long *out) 4580 { 4581 struct ctl_table dup_table; 4582 4583 /* 4584 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4585 * can duplicate the @table and alter the duplicate of it. 4586 */ 4587 dup_table = *table; 4588 dup_table.data = out; 4589 4590 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4591 } 4592 4593 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4594 struct ctl_table *table, int write, 4595 void *buffer, size_t *length, loff_t *ppos) 4596 { 4597 struct hstate *h = &default_hstate; 4598 unsigned long tmp = h->max_huge_pages; 4599 int ret; 4600 4601 if (!hugepages_supported()) 4602 return -EOPNOTSUPP; 4603 4604 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4605 &tmp); 4606 if (ret) 4607 goto out; 4608 4609 if (write) 4610 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4611 NUMA_NO_NODE, tmp, *length); 4612 out: 4613 return ret; 4614 } 4615 4616 static int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4617 void *buffer, size_t *length, loff_t *ppos) 4618 { 4619 4620 return hugetlb_sysctl_handler_common(false, table, write, 4621 buffer, length, ppos); 4622 } 4623 4624 #ifdef CONFIG_NUMA 4625 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4626 void *buffer, size_t *length, loff_t *ppos) 4627 { 4628 return hugetlb_sysctl_handler_common(true, table, write, 4629 buffer, length, ppos); 4630 } 4631 #endif /* CONFIG_NUMA */ 4632 4633 static int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4634 void *buffer, size_t *length, loff_t *ppos) 4635 { 4636 struct hstate *h = &default_hstate; 4637 unsigned long tmp; 4638 int ret; 4639 4640 if (!hugepages_supported()) 4641 return -EOPNOTSUPP; 4642 4643 tmp = h->nr_overcommit_huge_pages; 4644 4645 if (write && hstate_is_gigantic(h)) 4646 return -EINVAL; 4647 4648 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4649 &tmp); 4650 if (ret) 4651 goto out; 4652 4653 if (write) { 4654 spin_lock_irq(&hugetlb_lock); 4655 h->nr_overcommit_huge_pages = tmp; 4656 spin_unlock_irq(&hugetlb_lock); 4657 } 4658 out: 4659 return ret; 4660 } 4661 4662 static struct ctl_table hugetlb_table[] = { 4663 { 4664 .procname = "nr_hugepages", 4665 .data = NULL, 4666 .maxlen = sizeof(unsigned long), 4667 .mode = 0644, 4668 .proc_handler = hugetlb_sysctl_handler, 4669 }, 4670 #ifdef CONFIG_NUMA 4671 { 4672 .procname = "nr_hugepages_mempolicy", 4673 .data = NULL, 4674 .maxlen = sizeof(unsigned long), 4675 .mode = 0644, 4676 .proc_handler = &hugetlb_mempolicy_sysctl_handler, 4677 }, 4678 #endif 4679 { 4680 .procname = "hugetlb_shm_group", 4681 .data = &sysctl_hugetlb_shm_group, 4682 .maxlen = sizeof(gid_t), 4683 .mode = 0644, 4684 .proc_handler = proc_dointvec, 4685 }, 4686 { 4687 .procname = "nr_overcommit_hugepages", 4688 .data = NULL, 4689 .maxlen = sizeof(unsigned long), 4690 .mode = 0644, 4691 .proc_handler = hugetlb_overcommit_handler, 4692 }, 4693 { } 4694 }; 4695 4696 static void hugetlb_sysctl_init(void) 4697 { 4698 register_sysctl_init("vm", hugetlb_table); 4699 } 4700 #endif /* CONFIG_SYSCTL */ 4701 4702 void hugetlb_report_meminfo(struct seq_file *m) 4703 { 4704 struct hstate *h; 4705 unsigned long total = 0; 4706 4707 if (!hugepages_supported()) 4708 return; 4709 4710 for_each_hstate(h) { 4711 unsigned long count = h->nr_huge_pages; 4712 4713 total += huge_page_size(h) * count; 4714 4715 if (h == &default_hstate) 4716 seq_printf(m, 4717 "HugePages_Total: %5lu\n" 4718 "HugePages_Free: %5lu\n" 4719 "HugePages_Rsvd: %5lu\n" 4720 "HugePages_Surp: %5lu\n" 4721 "Hugepagesize: %8lu kB\n", 4722 count, 4723 h->free_huge_pages, 4724 h->resv_huge_pages, 4725 h->surplus_huge_pages, 4726 huge_page_size(h) / SZ_1K); 4727 } 4728 4729 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4730 } 4731 4732 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4733 { 4734 struct hstate *h = &default_hstate; 4735 4736 if (!hugepages_supported()) 4737 return 0; 4738 4739 return sysfs_emit_at(buf, len, 4740 "Node %d HugePages_Total: %5u\n" 4741 "Node %d HugePages_Free: %5u\n" 4742 "Node %d HugePages_Surp: %5u\n", 4743 nid, h->nr_huge_pages_node[nid], 4744 nid, h->free_huge_pages_node[nid], 4745 nid, h->surplus_huge_pages_node[nid]); 4746 } 4747 4748 void hugetlb_show_meminfo_node(int nid) 4749 { 4750 struct hstate *h; 4751 4752 if (!hugepages_supported()) 4753 return; 4754 4755 for_each_hstate(h) 4756 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4757 nid, 4758 h->nr_huge_pages_node[nid], 4759 h->free_huge_pages_node[nid], 4760 h->surplus_huge_pages_node[nid], 4761 huge_page_size(h) / SZ_1K); 4762 } 4763 4764 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4765 { 4766 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4767 K(atomic_long_read(&mm->hugetlb_usage))); 4768 } 4769 4770 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4771 unsigned long hugetlb_total_pages(void) 4772 { 4773 struct hstate *h; 4774 unsigned long nr_total_pages = 0; 4775 4776 for_each_hstate(h) 4777 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4778 return nr_total_pages; 4779 } 4780 4781 static int hugetlb_acct_memory(struct hstate *h, long delta) 4782 { 4783 int ret = -ENOMEM; 4784 4785 if (!delta) 4786 return 0; 4787 4788 spin_lock_irq(&hugetlb_lock); 4789 /* 4790 * When cpuset is configured, it breaks the strict hugetlb page 4791 * reservation as the accounting is done on a global variable. Such 4792 * reservation is completely rubbish in the presence of cpuset because 4793 * the reservation is not checked against page availability for the 4794 * current cpuset. Application can still potentially OOM'ed by kernel 4795 * with lack of free htlb page in cpuset that the task is in. 4796 * Attempt to enforce strict accounting with cpuset is almost 4797 * impossible (or too ugly) because cpuset is too fluid that 4798 * task or memory node can be dynamically moved between cpusets. 4799 * 4800 * The change of semantics for shared hugetlb mapping with cpuset is 4801 * undesirable. However, in order to preserve some of the semantics, 4802 * we fall back to check against current free page availability as 4803 * a best attempt and hopefully to minimize the impact of changing 4804 * semantics that cpuset has. 4805 * 4806 * Apart from cpuset, we also have memory policy mechanism that 4807 * also determines from which node the kernel will allocate memory 4808 * in a NUMA system. So similar to cpuset, we also should consider 4809 * the memory policy of the current task. Similar to the description 4810 * above. 4811 */ 4812 if (delta > 0) { 4813 if (gather_surplus_pages(h, delta) < 0) 4814 goto out; 4815 4816 if (delta > allowed_mems_nr(h)) { 4817 return_unused_surplus_pages(h, delta); 4818 goto out; 4819 } 4820 } 4821 4822 ret = 0; 4823 if (delta < 0) 4824 return_unused_surplus_pages(h, (unsigned long) -delta); 4825 4826 out: 4827 spin_unlock_irq(&hugetlb_lock); 4828 return ret; 4829 } 4830 4831 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4832 { 4833 struct resv_map *resv = vma_resv_map(vma); 4834 4835 /* 4836 * HPAGE_RESV_OWNER indicates a private mapping. 4837 * This new VMA should share its siblings reservation map if present. 4838 * The VMA will only ever have a valid reservation map pointer where 4839 * it is being copied for another still existing VMA. As that VMA 4840 * has a reference to the reservation map it cannot disappear until 4841 * after this open call completes. It is therefore safe to take a 4842 * new reference here without additional locking. 4843 */ 4844 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4845 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4846 kref_get(&resv->refs); 4847 } 4848 4849 /* 4850 * vma_lock structure for sharable mappings is vma specific. 4851 * Clear old pointer (if copied via vm_area_dup) and allocate 4852 * new structure. Before clearing, make sure vma_lock is not 4853 * for this vma. 4854 */ 4855 if (vma->vm_flags & VM_MAYSHARE) { 4856 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4857 4858 if (vma_lock) { 4859 if (vma_lock->vma != vma) { 4860 vma->vm_private_data = NULL; 4861 hugetlb_vma_lock_alloc(vma); 4862 } else 4863 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4864 } else 4865 hugetlb_vma_lock_alloc(vma); 4866 } 4867 } 4868 4869 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4870 { 4871 struct hstate *h = hstate_vma(vma); 4872 struct resv_map *resv; 4873 struct hugepage_subpool *spool = subpool_vma(vma); 4874 unsigned long reserve, start, end; 4875 long gbl_reserve; 4876 4877 hugetlb_vma_lock_free(vma); 4878 4879 resv = vma_resv_map(vma); 4880 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4881 return; 4882 4883 start = vma_hugecache_offset(h, vma, vma->vm_start); 4884 end = vma_hugecache_offset(h, vma, vma->vm_end); 4885 4886 reserve = (end - start) - region_count(resv, start, end); 4887 hugetlb_cgroup_uncharge_counter(resv, start, end); 4888 if (reserve) { 4889 /* 4890 * Decrement reserve counts. The global reserve count may be 4891 * adjusted if the subpool has a minimum size. 4892 */ 4893 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4894 hugetlb_acct_memory(h, -gbl_reserve); 4895 } 4896 4897 kref_put(&resv->refs, resv_map_release); 4898 } 4899 4900 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4901 { 4902 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4903 return -EINVAL; 4904 4905 /* 4906 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4907 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4908 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4909 */ 4910 if (addr & ~PUD_MASK) { 4911 /* 4912 * hugetlb_vm_op_split is called right before we attempt to 4913 * split the VMA. We will need to unshare PMDs in the old and 4914 * new VMAs, so let's unshare before we split. 4915 */ 4916 unsigned long floor = addr & PUD_MASK; 4917 unsigned long ceil = floor + PUD_SIZE; 4918 4919 if (floor >= vma->vm_start && ceil <= vma->vm_end) 4920 hugetlb_unshare_pmds(vma, floor, ceil); 4921 } 4922 4923 return 0; 4924 } 4925 4926 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4927 { 4928 return huge_page_size(hstate_vma(vma)); 4929 } 4930 4931 /* 4932 * We cannot handle pagefaults against hugetlb pages at all. They cause 4933 * handle_mm_fault() to try to instantiate regular-sized pages in the 4934 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4935 * this far. 4936 */ 4937 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4938 { 4939 BUG(); 4940 return 0; 4941 } 4942 4943 /* 4944 * When a new function is introduced to vm_operations_struct and added 4945 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4946 * This is because under System V memory model, mappings created via 4947 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4948 * their original vm_ops are overwritten with shm_vm_ops. 4949 */ 4950 const struct vm_operations_struct hugetlb_vm_ops = { 4951 .fault = hugetlb_vm_op_fault, 4952 .open = hugetlb_vm_op_open, 4953 .close = hugetlb_vm_op_close, 4954 .may_split = hugetlb_vm_op_split, 4955 .pagesize = hugetlb_vm_op_pagesize, 4956 }; 4957 4958 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4959 int writable) 4960 { 4961 pte_t entry; 4962 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4963 4964 if (writable) { 4965 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4966 vma->vm_page_prot))); 4967 } else { 4968 entry = huge_pte_wrprotect(mk_huge_pte(page, 4969 vma->vm_page_prot)); 4970 } 4971 entry = pte_mkyoung(entry); 4972 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4973 4974 return entry; 4975 } 4976 4977 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4978 unsigned long address, pte_t *ptep) 4979 { 4980 pte_t entry; 4981 4982 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4983 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4984 update_mmu_cache(vma, address, ptep); 4985 } 4986 4987 bool is_hugetlb_entry_migration(pte_t pte) 4988 { 4989 swp_entry_t swp; 4990 4991 if (huge_pte_none(pte) || pte_present(pte)) 4992 return false; 4993 swp = pte_to_swp_entry(pte); 4994 if (is_migration_entry(swp)) 4995 return true; 4996 else 4997 return false; 4998 } 4999 5000 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 5001 { 5002 swp_entry_t swp; 5003 5004 if (huge_pte_none(pte) || pte_present(pte)) 5005 return false; 5006 swp = pte_to_swp_entry(pte); 5007 if (is_hwpoison_entry(swp)) 5008 return true; 5009 else 5010 return false; 5011 } 5012 5013 static void 5014 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 5015 struct folio *new_folio, pte_t old, unsigned long sz) 5016 { 5017 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1); 5018 5019 __folio_mark_uptodate(new_folio); 5020 hugepage_add_new_anon_rmap(new_folio, vma, addr); 5021 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 5022 newpte = huge_pte_mkuffd_wp(newpte); 5023 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 5024 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 5025 folio_set_hugetlb_migratable(new_folio); 5026 } 5027 5028 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 5029 struct vm_area_struct *dst_vma, 5030 struct vm_area_struct *src_vma) 5031 { 5032 pte_t *src_pte, *dst_pte, entry; 5033 struct folio *pte_folio; 5034 unsigned long addr; 5035 bool cow = is_cow_mapping(src_vma->vm_flags); 5036 struct hstate *h = hstate_vma(src_vma); 5037 unsigned long sz = huge_page_size(h); 5038 unsigned long npages = pages_per_huge_page(h); 5039 struct mmu_notifier_range range; 5040 unsigned long last_addr_mask; 5041 int ret = 0; 5042 5043 if (cow) { 5044 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 5045 src_vma->vm_start, 5046 src_vma->vm_end); 5047 mmu_notifier_invalidate_range_start(&range); 5048 vma_assert_write_locked(src_vma); 5049 raw_write_seqcount_begin(&src->write_protect_seq); 5050 } else { 5051 /* 5052 * For shared mappings the vma lock must be held before 5053 * calling hugetlb_walk() in the src vma. Otherwise, the 5054 * returned ptep could go away if part of a shared pmd and 5055 * another thread calls huge_pmd_unshare. 5056 */ 5057 hugetlb_vma_lock_read(src_vma); 5058 } 5059 5060 last_addr_mask = hugetlb_mask_last_page(h); 5061 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 5062 spinlock_t *src_ptl, *dst_ptl; 5063 src_pte = hugetlb_walk(src_vma, addr, sz); 5064 if (!src_pte) { 5065 addr |= last_addr_mask; 5066 continue; 5067 } 5068 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 5069 if (!dst_pte) { 5070 ret = -ENOMEM; 5071 break; 5072 } 5073 5074 /* 5075 * If the pagetables are shared don't copy or take references. 5076 * 5077 * dst_pte == src_pte is the common case of src/dest sharing. 5078 * However, src could have 'unshared' and dst shares with 5079 * another vma. So page_count of ptep page is checked instead 5080 * to reliably determine whether pte is shared. 5081 */ 5082 if (page_count(virt_to_page(dst_pte)) > 1) { 5083 addr |= last_addr_mask; 5084 continue; 5085 } 5086 5087 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5088 src_ptl = huge_pte_lockptr(h, src, src_pte); 5089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5090 entry = huge_ptep_get(src_pte); 5091 again: 5092 if (huge_pte_none(entry)) { 5093 /* 5094 * Skip if src entry none. 5095 */ 5096 ; 5097 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 5098 if (!userfaultfd_wp(dst_vma)) 5099 entry = huge_pte_clear_uffd_wp(entry); 5100 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5101 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 5102 swp_entry_t swp_entry = pte_to_swp_entry(entry); 5103 bool uffd_wp = pte_swp_uffd_wp(entry); 5104 5105 if (!is_readable_migration_entry(swp_entry) && cow) { 5106 /* 5107 * COW mappings require pages in both 5108 * parent and child to be set to read. 5109 */ 5110 swp_entry = make_readable_migration_entry( 5111 swp_offset(swp_entry)); 5112 entry = swp_entry_to_pte(swp_entry); 5113 if (userfaultfd_wp(src_vma) && uffd_wp) 5114 entry = pte_swp_mkuffd_wp(entry); 5115 set_huge_pte_at(src, addr, src_pte, entry, sz); 5116 } 5117 if (!userfaultfd_wp(dst_vma)) 5118 entry = huge_pte_clear_uffd_wp(entry); 5119 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5120 } else if (unlikely(is_pte_marker(entry))) { 5121 pte_marker marker = copy_pte_marker( 5122 pte_to_swp_entry(entry), dst_vma); 5123 5124 if (marker) 5125 set_huge_pte_at(dst, addr, dst_pte, 5126 make_pte_marker(marker), sz); 5127 } else { 5128 entry = huge_ptep_get(src_pte); 5129 pte_folio = page_folio(pte_page(entry)); 5130 folio_get(pte_folio); 5131 5132 /* 5133 * Failing to duplicate the anon rmap is a rare case 5134 * where we see pinned hugetlb pages while they're 5135 * prone to COW. We need to do the COW earlier during 5136 * fork. 5137 * 5138 * When pre-allocating the page or copying data, we 5139 * need to be without the pgtable locks since we could 5140 * sleep during the process. 5141 */ 5142 if (!folio_test_anon(pte_folio)) { 5143 page_dup_file_rmap(&pte_folio->page, true); 5144 } else if (page_try_dup_anon_rmap(&pte_folio->page, 5145 true, src_vma)) { 5146 pte_t src_pte_old = entry; 5147 struct folio *new_folio; 5148 5149 spin_unlock(src_ptl); 5150 spin_unlock(dst_ptl); 5151 /* Do not use reserve as it's private owned */ 5152 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); 5153 if (IS_ERR(new_folio)) { 5154 folio_put(pte_folio); 5155 ret = PTR_ERR(new_folio); 5156 break; 5157 } 5158 ret = copy_user_large_folio(new_folio, 5159 pte_folio, 5160 addr, dst_vma); 5161 folio_put(pte_folio); 5162 if (ret) { 5163 folio_put(new_folio); 5164 break; 5165 } 5166 5167 /* Install the new hugetlb folio if src pte stable */ 5168 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5169 src_ptl = huge_pte_lockptr(h, src, src_pte); 5170 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5171 entry = huge_ptep_get(src_pte); 5172 if (!pte_same(src_pte_old, entry)) { 5173 restore_reserve_on_error(h, dst_vma, addr, 5174 new_folio); 5175 folio_put(new_folio); 5176 /* huge_ptep of dst_pte won't change as in child */ 5177 goto again; 5178 } 5179 hugetlb_install_folio(dst_vma, dst_pte, addr, 5180 new_folio, src_pte_old, sz); 5181 spin_unlock(src_ptl); 5182 spin_unlock(dst_ptl); 5183 continue; 5184 } 5185 5186 if (cow) { 5187 /* 5188 * No need to notify as we are downgrading page 5189 * table protection not changing it to point 5190 * to a new page. 5191 * 5192 * See Documentation/mm/mmu_notifier.rst 5193 */ 5194 huge_ptep_set_wrprotect(src, addr, src_pte); 5195 entry = huge_pte_wrprotect(entry); 5196 } 5197 5198 if (!userfaultfd_wp(dst_vma)) 5199 entry = huge_pte_clear_uffd_wp(entry); 5200 5201 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5202 hugetlb_count_add(npages, dst); 5203 } 5204 spin_unlock(src_ptl); 5205 spin_unlock(dst_ptl); 5206 } 5207 5208 if (cow) { 5209 raw_write_seqcount_end(&src->write_protect_seq); 5210 mmu_notifier_invalidate_range_end(&range); 5211 } else { 5212 hugetlb_vma_unlock_read(src_vma); 5213 } 5214 5215 return ret; 5216 } 5217 5218 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5219 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5220 unsigned long sz) 5221 { 5222 struct hstate *h = hstate_vma(vma); 5223 struct mm_struct *mm = vma->vm_mm; 5224 spinlock_t *src_ptl, *dst_ptl; 5225 pte_t pte; 5226 5227 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5228 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5229 5230 /* 5231 * We don't have to worry about the ordering of src and dst ptlocks 5232 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5233 */ 5234 if (src_ptl != dst_ptl) 5235 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5236 5237 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 5238 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5239 5240 if (src_ptl != dst_ptl) 5241 spin_unlock(src_ptl); 5242 spin_unlock(dst_ptl); 5243 } 5244 5245 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5246 struct vm_area_struct *new_vma, 5247 unsigned long old_addr, unsigned long new_addr, 5248 unsigned long len) 5249 { 5250 struct hstate *h = hstate_vma(vma); 5251 struct address_space *mapping = vma->vm_file->f_mapping; 5252 unsigned long sz = huge_page_size(h); 5253 struct mm_struct *mm = vma->vm_mm; 5254 unsigned long old_end = old_addr + len; 5255 unsigned long last_addr_mask; 5256 pte_t *src_pte, *dst_pte; 5257 struct mmu_notifier_range range; 5258 bool shared_pmd = false; 5259 5260 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5261 old_end); 5262 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5263 /* 5264 * In case of shared PMDs, we should cover the maximum possible 5265 * range. 5266 */ 5267 flush_cache_range(vma, range.start, range.end); 5268 5269 mmu_notifier_invalidate_range_start(&range); 5270 last_addr_mask = hugetlb_mask_last_page(h); 5271 /* Prevent race with file truncation */ 5272 hugetlb_vma_lock_write(vma); 5273 i_mmap_lock_write(mapping); 5274 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5275 src_pte = hugetlb_walk(vma, old_addr, sz); 5276 if (!src_pte) { 5277 old_addr |= last_addr_mask; 5278 new_addr |= last_addr_mask; 5279 continue; 5280 } 5281 if (huge_pte_none(huge_ptep_get(src_pte))) 5282 continue; 5283 5284 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5285 shared_pmd = true; 5286 old_addr |= last_addr_mask; 5287 new_addr |= last_addr_mask; 5288 continue; 5289 } 5290 5291 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5292 if (!dst_pte) 5293 break; 5294 5295 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5296 } 5297 5298 if (shared_pmd) 5299 flush_hugetlb_tlb_range(vma, range.start, range.end); 5300 else 5301 flush_hugetlb_tlb_range(vma, old_end - len, old_end); 5302 mmu_notifier_invalidate_range_end(&range); 5303 i_mmap_unlock_write(mapping); 5304 hugetlb_vma_unlock_write(vma); 5305 5306 return len + old_addr - old_end; 5307 } 5308 5309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5310 unsigned long start, unsigned long end, 5311 struct page *ref_page, zap_flags_t zap_flags) 5312 { 5313 struct mm_struct *mm = vma->vm_mm; 5314 unsigned long address; 5315 pte_t *ptep; 5316 pte_t pte; 5317 spinlock_t *ptl; 5318 struct page *page; 5319 struct hstate *h = hstate_vma(vma); 5320 unsigned long sz = huge_page_size(h); 5321 unsigned long last_addr_mask; 5322 bool force_flush = false; 5323 5324 WARN_ON(!is_vm_hugetlb_page(vma)); 5325 BUG_ON(start & ~huge_page_mask(h)); 5326 BUG_ON(end & ~huge_page_mask(h)); 5327 5328 /* 5329 * This is a hugetlb vma, all the pte entries should point 5330 * to huge page. 5331 */ 5332 tlb_change_page_size(tlb, sz); 5333 tlb_start_vma(tlb, vma); 5334 5335 last_addr_mask = hugetlb_mask_last_page(h); 5336 address = start; 5337 for (; address < end; address += sz) { 5338 ptep = hugetlb_walk(vma, address, sz); 5339 if (!ptep) { 5340 address |= last_addr_mask; 5341 continue; 5342 } 5343 5344 ptl = huge_pte_lock(h, mm, ptep); 5345 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5346 spin_unlock(ptl); 5347 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5348 force_flush = true; 5349 address |= last_addr_mask; 5350 continue; 5351 } 5352 5353 pte = huge_ptep_get(ptep); 5354 if (huge_pte_none(pte)) { 5355 spin_unlock(ptl); 5356 continue; 5357 } 5358 5359 /* 5360 * Migrating hugepage or HWPoisoned hugepage is already 5361 * unmapped and its refcount is dropped, so just clear pte here. 5362 */ 5363 if (unlikely(!pte_present(pte))) { 5364 /* 5365 * If the pte was wr-protected by uffd-wp in any of the 5366 * swap forms, meanwhile the caller does not want to 5367 * drop the uffd-wp bit in this zap, then replace the 5368 * pte with a marker. 5369 */ 5370 if (pte_swp_uffd_wp_any(pte) && 5371 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5372 set_huge_pte_at(mm, address, ptep, 5373 make_pte_marker(PTE_MARKER_UFFD_WP), 5374 sz); 5375 else 5376 huge_pte_clear(mm, address, ptep, sz); 5377 spin_unlock(ptl); 5378 continue; 5379 } 5380 5381 page = pte_page(pte); 5382 /* 5383 * If a reference page is supplied, it is because a specific 5384 * page is being unmapped, not a range. Ensure the page we 5385 * are about to unmap is the actual page of interest. 5386 */ 5387 if (ref_page) { 5388 if (page != ref_page) { 5389 spin_unlock(ptl); 5390 continue; 5391 } 5392 /* 5393 * Mark the VMA as having unmapped its page so that 5394 * future faults in this VMA will fail rather than 5395 * looking like data was lost 5396 */ 5397 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5398 } 5399 5400 pte = huge_ptep_get_and_clear(mm, address, ptep); 5401 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5402 if (huge_pte_dirty(pte)) 5403 set_page_dirty(page); 5404 /* Leave a uffd-wp pte marker if needed */ 5405 if (huge_pte_uffd_wp(pte) && 5406 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5407 set_huge_pte_at(mm, address, ptep, 5408 make_pte_marker(PTE_MARKER_UFFD_WP), 5409 sz); 5410 hugetlb_count_sub(pages_per_huge_page(h), mm); 5411 page_remove_rmap(page, vma, true); 5412 5413 spin_unlock(ptl); 5414 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5415 /* 5416 * Bail out after unmapping reference page if supplied 5417 */ 5418 if (ref_page) 5419 break; 5420 } 5421 tlb_end_vma(tlb, vma); 5422 5423 /* 5424 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5425 * could defer the flush until now, since by holding i_mmap_rwsem we 5426 * guaranteed that the last refernece would not be dropped. But we must 5427 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5428 * dropped and the last reference to the shared PMDs page might be 5429 * dropped as well. 5430 * 5431 * In theory we could defer the freeing of the PMD pages as well, but 5432 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5433 * detect sharing, so we cannot defer the release of the page either. 5434 * Instead, do flush now. 5435 */ 5436 if (force_flush) 5437 tlb_flush_mmu_tlbonly(tlb); 5438 } 5439 5440 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5441 unsigned long *start, unsigned long *end) 5442 { 5443 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5444 return; 5445 5446 adjust_range_if_pmd_sharing_possible(vma, start, end); 5447 hugetlb_vma_lock_write(vma); 5448 if (vma->vm_file) 5449 i_mmap_lock_write(vma->vm_file->f_mapping); 5450 } 5451 5452 void __hugetlb_zap_end(struct vm_area_struct *vma, 5453 struct zap_details *details) 5454 { 5455 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5456 5457 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5458 return; 5459 5460 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5461 /* 5462 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5463 * When the vma_lock is freed, this makes the vma ineligible 5464 * for pmd sharing. And, i_mmap_rwsem is required to set up 5465 * pmd sharing. This is important as page tables for this 5466 * unmapped range will be asynchrously deleted. If the page 5467 * tables are shared, there will be issues when accessed by 5468 * someone else. 5469 */ 5470 __hugetlb_vma_unlock_write_free(vma); 5471 } else { 5472 hugetlb_vma_unlock_write(vma); 5473 } 5474 5475 if (vma->vm_file) 5476 i_mmap_unlock_write(vma->vm_file->f_mapping); 5477 } 5478 5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5480 unsigned long end, struct page *ref_page, 5481 zap_flags_t zap_flags) 5482 { 5483 struct mmu_notifier_range range; 5484 struct mmu_gather tlb; 5485 5486 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5487 start, end); 5488 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5489 mmu_notifier_invalidate_range_start(&range); 5490 tlb_gather_mmu(&tlb, vma->vm_mm); 5491 5492 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5493 5494 mmu_notifier_invalidate_range_end(&range); 5495 tlb_finish_mmu(&tlb); 5496 } 5497 5498 /* 5499 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5500 * mapping it owns the reserve page for. The intention is to unmap the page 5501 * from other VMAs and let the children be SIGKILLed if they are faulting the 5502 * same region. 5503 */ 5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5505 struct page *page, unsigned long address) 5506 { 5507 struct hstate *h = hstate_vma(vma); 5508 struct vm_area_struct *iter_vma; 5509 struct address_space *mapping; 5510 pgoff_t pgoff; 5511 5512 /* 5513 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5514 * from page cache lookup which is in HPAGE_SIZE units. 5515 */ 5516 address = address & huge_page_mask(h); 5517 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5518 vma->vm_pgoff; 5519 mapping = vma->vm_file->f_mapping; 5520 5521 /* 5522 * Take the mapping lock for the duration of the table walk. As 5523 * this mapping should be shared between all the VMAs, 5524 * __unmap_hugepage_range() is called as the lock is already held 5525 */ 5526 i_mmap_lock_write(mapping); 5527 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5528 /* Do not unmap the current VMA */ 5529 if (iter_vma == vma) 5530 continue; 5531 5532 /* 5533 * Shared VMAs have their own reserves and do not affect 5534 * MAP_PRIVATE accounting but it is possible that a shared 5535 * VMA is using the same page so check and skip such VMAs. 5536 */ 5537 if (iter_vma->vm_flags & VM_MAYSHARE) 5538 continue; 5539 5540 /* 5541 * Unmap the page from other VMAs without their own reserves. 5542 * They get marked to be SIGKILLed if they fault in these 5543 * areas. This is because a future no-page fault on this VMA 5544 * could insert a zeroed page instead of the data existing 5545 * from the time of fork. This would look like data corruption 5546 */ 5547 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5548 unmap_hugepage_range(iter_vma, address, 5549 address + huge_page_size(h), page, 0); 5550 } 5551 i_mmap_unlock_write(mapping); 5552 } 5553 5554 /* 5555 * hugetlb_wp() should be called with page lock of the original hugepage held. 5556 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5557 * cannot race with other handlers or page migration. 5558 * Keep the pte_same checks anyway to make transition from the mutex easier. 5559 */ 5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5561 unsigned long address, pte_t *ptep, unsigned int flags, 5562 struct folio *pagecache_folio, spinlock_t *ptl) 5563 { 5564 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5565 pte_t pte = huge_ptep_get(ptep); 5566 struct hstate *h = hstate_vma(vma); 5567 struct folio *old_folio; 5568 struct folio *new_folio; 5569 int outside_reserve = 0; 5570 vm_fault_t ret = 0; 5571 unsigned long haddr = address & huge_page_mask(h); 5572 struct mmu_notifier_range range; 5573 5574 /* 5575 * Never handle CoW for uffd-wp protected pages. It should be only 5576 * handled when the uffd-wp protection is removed. 5577 * 5578 * Note that only the CoW optimization path (in hugetlb_no_page()) 5579 * can trigger this, because hugetlb_fault() will always resolve 5580 * uffd-wp bit first. 5581 */ 5582 if (!unshare && huge_pte_uffd_wp(pte)) 5583 return 0; 5584 5585 /* 5586 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5587 * PTE mapped R/O such as maybe_mkwrite() would do. 5588 */ 5589 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5590 return VM_FAULT_SIGSEGV; 5591 5592 /* Let's take out MAP_SHARED mappings first. */ 5593 if (vma->vm_flags & VM_MAYSHARE) { 5594 set_huge_ptep_writable(vma, haddr, ptep); 5595 return 0; 5596 } 5597 5598 old_folio = page_folio(pte_page(pte)); 5599 5600 delayacct_wpcopy_start(); 5601 5602 retry_avoidcopy: 5603 /* 5604 * If no-one else is actually using this page, we're the exclusive 5605 * owner and can reuse this page. 5606 */ 5607 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5608 if (!PageAnonExclusive(&old_folio->page)) 5609 page_move_anon_rmap(&old_folio->page, vma); 5610 if (likely(!unshare)) 5611 set_huge_ptep_writable(vma, haddr, ptep); 5612 5613 delayacct_wpcopy_end(); 5614 return 0; 5615 } 5616 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5617 PageAnonExclusive(&old_folio->page), &old_folio->page); 5618 5619 /* 5620 * If the process that created a MAP_PRIVATE mapping is about to 5621 * perform a COW due to a shared page count, attempt to satisfy 5622 * the allocation without using the existing reserves. The pagecache 5623 * page is used to determine if the reserve at this address was 5624 * consumed or not. If reserves were used, a partial faulted mapping 5625 * at the time of fork() could consume its reserves on COW instead 5626 * of the full address range. 5627 */ 5628 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5629 old_folio != pagecache_folio) 5630 outside_reserve = 1; 5631 5632 folio_get(old_folio); 5633 5634 /* 5635 * Drop page table lock as buddy allocator may be called. It will 5636 * be acquired again before returning to the caller, as expected. 5637 */ 5638 spin_unlock(ptl); 5639 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); 5640 5641 if (IS_ERR(new_folio)) { 5642 /* 5643 * If a process owning a MAP_PRIVATE mapping fails to COW, 5644 * it is due to references held by a child and an insufficient 5645 * huge page pool. To guarantee the original mappers 5646 * reliability, unmap the page from child processes. The child 5647 * may get SIGKILLed if it later faults. 5648 */ 5649 if (outside_reserve) { 5650 struct address_space *mapping = vma->vm_file->f_mapping; 5651 pgoff_t idx; 5652 u32 hash; 5653 5654 folio_put(old_folio); 5655 /* 5656 * Drop hugetlb_fault_mutex and vma_lock before 5657 * unmapping. unmapping needs to hold vma_lock 5658 * in write mode. Dropping vma_lock in read mode 5659 * here is OK as COW mappings do not interact with 5660 * PMD sharing. 5661 * 5662 * Reacquire both after unmap operation. 5663 */ 5664 idx = vma_hugecache_offset(h, vma, haddr); 5665 hash = hugetlb_fault_mutex_hash(mapping, idx); 5666 hugetlb_vma_unlock_read(vma); 5667 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5668 5669 unmap_ref_private(mm, vma, &old_folio->page, haddr); 5670 5671 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5672 hugetlb_vma_lock_read(vma); 5673 spin_lock(ptl); 5674 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5675 if (likely(ptep && 5676 pte_same(huge_ptep_get(ptep), pte))) 5677 goto retry_avoidcopy; 5678 /* 5679 * race occurs while re-acquiring page table 5680 * lock, and our job is done. 5681 */ 5682 delayacct_wpcopy_end(); 5683 return 0; 5684 } 5685 5686 ret = vmf_error(PTR_ERR(new_folio)); 5687 goto out_release_old; 5688 } 5689 5690 /* 5691 * When the original hugepage is shared one, it does not have 5692 * anon_vma prepared. 5693 */ 5694 if (unlikely(anon_vma_prepare(vma))) { 5695 ret = VM_FAULT_OOM; 5696 goto out_release_all; 5697 } 5698 5699 if (copy_user_large_folio(new_folio, old_folio, address, vma)) { 5700 ret = VM_FAULT_HWPOISON_LARGE; 5701 goto out_release_all; 5702 } 5703 __folio_mark_uptodate(new_folio); 5704 5705 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, 5706 haddr + huge_page_size(h)); 5707 mmu_notifier_invalidate_range_start(&range); 5708 5709 /* 5710 * Retake the page table lock to check for racing updates 5711 * before the page tables are altered 5712 */ 5713 spin_lock(ptl); 5714 ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); 5715 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5716 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare); 5717 5718 /* Break COW or unshare */ 5719 huge_ptep_clear_flush(vma, haddr, ptep); 5720 page_remove_rmap(&old_folio->page, vma, true); 5721 hugepage_add_new_anon_rmap(new_folio, vma, haddr); 5722 if (huge_pte_uffd_wp(pte)) 5723 newpte = huge_pte_mkuffd_wp(newpte); 5724 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h)); 5725 folio_set_hugetlb_migratable(new_folio); 5726 /* Make the old page be freed below */ 5727 new_folio = old_folio; 5728 } 5729 spin_unlock(ptl); 5730 mmu_notifier_invalidate_range_end(&range); 5731 out_release_all: 5732 /* 5733 * No restore in case of successful pagetable update (Break COW or 5734 * unshare) 5735 */ 5736 if (new_folio != old_folio) 5737 restore_reserve_on_error(h, vma, haddr, new_folio); 5738 folio_put(new_folio); 5739 out_release_old: 5740 folio_put(old_folio); 5741 5742 spin_lock(ptl); /* Caller expects lock to be held */ 5743 5744 delayacct_wpcopy_end(); 5745 return ret; 5746 } 5747 5748 /* 5749 * Return whether there is a pagecache page to back given address within VMA. 5750 */ 5751 static bool hugetlbfs_pagecache_present(struct hstate *h, 5752 struct vm_area_struct *vma, unsigned long address) 5753 { 5754 struct address_space *mapping = vma->vm_file->f_mapping; 5755 pgoff_t idx = vma_hugecache_offset(h, vma, address); 5756 struct folio *folio; 5757 5758 folio = filemap_get_folio(mapping, idx); 5759 if (IS_ERR(folio)) 5760 return false; 5761 folio_put(folio); 5762 return true; 5763 } 5764 5765 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5766 pgoff_t idx) 5767 { 5768 struct inode *inode = mapping->host; 5769 struct hstate *h = hstate_inode(inode); 5770 int err; 5771 5772 __folio_set_locked(folio); 5773 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5774 5775 if (unlikely(err)) { 5776 __folio_clear_locked(folio); 5777 return err; 5778 } 5779 folio_clear_hugetlb_restore_reserve(folio); 5780 5781 /* 5782 * mark folio dirty so that it will not be removed from cache/file 5783 * by non-hugetlbfs specific code paths. 5784 */ 5785 folio_mark_dirty(folio); 5786 5787 spin_lock(&inode->i_lock); 5788 inode->i_blocks += blocks_per_huge_page(h); 5789 spin_unlock(&inode->i_lock); 5790 return 0; 5791 } 5792 5793 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5794 struct address_space *mapping, 5795 pgoff_t idx, 5796 unsigned int flags, 5797 unsigned long haddr, 5798 unsigned long addr, 5799 unsigned long reason) 5800 { 5801 u32 hash; 5802 struct vm_fault vmf = { 5803 .vma = vma, 5804 .address = haddr, 5805 .real_address = addr, 5806 .flags = flags, 5807 5808 /* 5809 * Hard to debug if it ends up being 5810 * used by a callee that assumes 5811 * something about the other 5812 * uninitialized fields... same as in 5813 * memory.c 5814 */ 5815 }; 5816 5817 /* 5818 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5819 * userfault. Also mmap_lock could be dropped due to handling 5820 * userfault, any vma operation should be careful from here. 5821 */ 5822 hugetlb_vma_unlock_read(vma); 5823 hash = hugetlb_fault_mutex_hash(mapping, idx); 5824 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5825 return handle_userfault(&vmf, reason); 5826 } 5827 5828 /* 5829 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5830 * false if pte changed or is changing. 5831 */ 5832 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5833 pte_t *ptep, pte_t old_pte) 5834 { 5835 spinlock_t *ptl; 5836 bool same; 5837 5838 ptl = huge_pte_lock(h, mm, ptep); 5839 same = pte_same(huge_ptep_get(ptep), old_pte); 5840 spin_unlock(ptl); 5841 5842 return same; 5843 } 5844 5845 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5846 struct vm_area_struct *vma, 5847 struct address_space *mapping, pgoff_t idx, 5848 unsigned long address, pte_t *ptep, 5849 pte_t old_pte, unsigned int flags) 5850 { 5851 struct hstate *h = hstate_vma(vma); 5852 vm_fault_t ret = VM_FAULT_SIGBUS; 5853 int anon_rmap = 0; 5854 unsigned long size; 5855 struct folio *folio; 5856 pte_t new_pte; 5857 spinlock_t *ptl; 5858 unsigned long haddr = address & huge_page_mask(h); 5859 bool new_folio, new_pagecache_folio = false; 5860 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5861 5862 /* 5863 * Currently, we are forced to kill the process in the event the 5864 * original mapper has unmapped pages from the child due to a failed 5865 * COW/unsharing. Warn that such a situation has occurred as it may not 5866 * be obvious. 5867 */ 5868 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5869 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5870 current->pid); 5871 goto out; 5872 } 5873 5874 /* 5875 * Use page lock to guard against racing truncation 5876 * before we get page_table_lock. 5877 */ 5878 new_folio = false; 5879 folio = filemap_lock_folio(mapping, idx); 5880 if (IS_ERR(folio)) { 5881 size = i_size_read(mapping->host) >> huge_page_shift(h); 5882 if (idx >= size) 5883 goto out; 5884 /* Check for page in userfault range */ 5885 if (userfaultfd_missing(vma)) { 5886 /* 5887 * Since hugetlb_no_page() was examining pte 5888 * without pgtable lock, we need to re-test under 5889 * lock because the pte may not be stable and could 5890 * have changed from under us. Try to detect 5891 * either changed or during-changing ptes and retry 5892 * properly when needed. 5893 * 5894 * Note that userfaultfd is actually fine with 5895 * false positives (e.g. caused by pte changed), 5896 * but not wrong logical events (e.g. caused by 5897 * reading a pte during changing). The latter can 5898 * confuse the userspace, so the strictness is very 5899 * much preferred. E.g., MISSING event should 5900 * never happen on the page after UFFDIO_COPY has 5901 * correctly installed the page and returned. 5902 */ 5903 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5904 ret = 0; 5905 goto out; 5906 } 5907 5908 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5909 haddr, address, 5910 VM_UFFD_MISSING); 5911 } 5912 5913 folio = alloc_hugetlb_folio(vma, haddr, 0); 5914 if (IS_ERR(folio)) { 5915 /* 5916 * Returning error will result in faulting task being 5917 * sent SIGBUS. The hugetlb fault mutex prevents two 5918 * tasks from racing to fault in the same page which 5919 * could result in false unable to allocate errors. 5920 * Page migration does not take the fault mutex, but 5921 * does a clear then write of pte's under page table 5922 * lock. Page fault code could race with migration, 5923 * notice the clear pte and try to allocate a page 5924 * here. Before returning error, get ptl and make 5925 * sure there really is no pte entry. 5926 */ 5927 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5928 ret = vmf_error(PTR_ERR(folio)); 5929 else 5930 ret = 0; 5931 goto out; 5932 } 5933 clear_huge_page(&folio->page, address, pages_per_huge_page(h)); 5934 __folio_mark_uptodate(folio); 5935 new_folio = true; 5936 5937 if (vma->vm_flags & VM_MAYSHARE) { 5938 int err = hugetlb_add_to_page_cache(folio, mapping, idx); 5939 if (err) { 5940 /* 5941 * err can't be -EEXIST which implies someone 5942 * else consumed the reservation since hugetlb 5943 * fault mutex is held when add a hugetlb page 5944 * to the page cache. So it's safe to call 5945 * restore_reserve_on_error() here. 5946 */ 5947 restore_reserve_on_error(h, vma, haddr, folio); 5948 folio_put(folio); 5949 goto out; 5950 } 5951 new_pagecache_folio = true; 5952 } else { 5953 folio_lock(folio); 5954 if (unlikely(anon_vma_prepare(vma))) { 5955 ret = VM_FAULT_OOM; 5956 goto backout_unlocked; 5957 } 5958 anon_rmap = 1; 5959 } 5960 } else { 5961 /* 5962 * If memory error occurs between mmap() and fault, some process 5963 * don't have hwpoisoned swap entry for errored virtual address. 5964 * So we need to block hugepage fault by PG_hwpoison bit check. 5965 */ 5966 if (unlikely(folio_test_hwpoison(folio))) { 5967 ret = VM_FAULT_HWPOISON_LARGE | 5968 VM_FAULT_SET_HINDEX(hstate_index(h)); 5969 goto backout_unlocked; 5970 } 5971 5972 /* Check for page in userfault range. */ 5973 if (userfaultfd_minor(vma)) { 5974 folio_unlock(folio); 5975 folio_put(folio); 5976 /* See comment in userfaultfd_missing() block above */ 5977 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5978 ret = 0; 5979 goto out; 5980 } 5981 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5982 haddr, address, 5983 VM_UFFD_MINOR); 5984 } 5985 } 5986 5987 /* 5988 * If we are going to COW a private mapping later, we examine the 5989 * pending reservations for this page now. This will ensure that 5990 * any allocations necessary to record that reservation occur outside 5991 * the spinlock. 5992 */ 5993 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5994 if (vma_needs_reservation(h, vma, haddr) < 0) { 5995 ret = VM_FAULT_OOM; 5996 goto backout_unlocked; 5997 } 5998 /* Just decrements count, does not deallocate */ 5999 vma_end_reservation(h, vma, haddr); 6000 } 6001 6002 ptl = huge_pte_lock(h, mm, ptep); 6003 ret = 0; 6004 /* If pte changed from under us, retry */ 6005 if (!pte_same(huge_ptep_get(ptep), old_pte)) 6006 goto backout; 6007 6008 if (anon_rmap) 6009 hugepage_add_new_anon_rmap(folio, vma, haddr); 6010 else 6011 page_dup_file_rmap(&folio->page, true); 6012 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) 6013 && (vma->vm_flags & VM_SHARED))); 6014 /* 6015 * If this pte was previously wr-protected, keep it wr-protected even 6016 * if populated. 6017 */ 6018 if (unlikely(pte_marker_uffd_wp(old_pte))) 6019 new_pte = huge_pte_mkuffd_wp(new_pte); 6020 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h)); 6021 6022 hugetlb_count_add(pages_per_huge_page(h), mm); 6023 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 6024 /* Optimization, do the COW without a second fault */ 6025 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); 6026 } 6027 6028 spin_unlock(ptl); 6029 6030 /* 6031 * Only set hugetlb_migratable in newly allocated pages. Existing pages 6032 * found in the pagecache may not have hugetlb_migratable if they have 6033 * been isolated for migration. 6034 */ 6035 if (new_folio) 6036 folio_set_hugetlb_migratable(folio); 6037 6038 folio_unlock(folio); 6039 out: 6040 hugetlb_vma_unlock_read(vma); 6041 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6042 return ret; 6043 6044 backout: 6045 spin_unlock(ptl); 6046 backout_unlocked: 6047 if (new_folio && !new_pagecache_folio) 6048 restore_reserve_on_error(h, vma, haddr, folio); 6049 6050 folio_unlock(folio); 6051 folio_put(folio); 6052 goto out; 6053 } 6054 6055 #ifdef CONFIG_SMP 6056 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6057 { 6058 unsigned long key[2]; 6059 u32 hash; 6060 6061 key[0] = (unsigned long) mapping; 6062 key[1] = idx; 6063 6064 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 6065 6066 return hash & (num_fault_mutexes - 1); 6067 } 6068 #else 6069 /* 6070 * For uniprocessor systems we always use a single mutex, so just 6071 * return 0 and avoid the hashing overhead. 6072 */ 6073 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 6074 { 6075 return 0; 6076 } 6077 #endif 6078 6079 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 6080 unsigned long address, unsigned int flags) 6081 { 6082 pte_t *ptep, entry; 6083 spinlock_t *ptl; 6084 vm_fault_t ret; 6085 u32 hash; 6086 pgoff_t idx; 6087 struct folio *folio = NULL; 6088 struct folio *pagecache_folio = NULL; 6089 struct hstate *h = hstate_vma(vma); 6090 struct address_space *mapping; 6091 int need_wait_lock = 0; 6092 unsigned long haddr = address & huge_page_mask(h); 6093 6094 /* TODO: Handle faults under the VMA lock */ 6095 if (flags & FAULT_FLAG_VMA_LOCK) { 6096 vma_end_read(vma); 6097 return VM_FAULT_RETRY; 6098 } 6099 6100 /* 6101 * Serialize hugepage allocation and instantiation, so that we don't 6102 * get spurious allocation failures if two CPUs race to instantiate 6103 * the same page in the page cache. 6104 */ 6105 mapping = vma->vm_file->f_mapping; 6106 idx = vma_hugecache_offset(h, vma, haddr); 6107 hash = hugetlb_fault_mutex_hash(mapping, idx); 6108 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6109 6110 /* 6111 * Acquire vma lock before calling huge_pte_alloc and hold 6112 * until finished with ptep. This prevents huge_pmd_unshare from 6113 * being called elsewhere and making the ptep no longer valid. 6114 */ 6115 hugetlb_vma_lock_read(vma); 6116 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 6117 if (!ptep) { 6118 hugetlb_vma_unlock_read(vma); 6119 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6120 return VM_FAULT_OOM; 6121 } 6122 6123 entry = huge_ptep_get(ptep); 6124 if (huge_pte_none_mostly(entry)) { 6125 if (is_pte_marker(entry)) { 6126 pte_marker marker = 6127 pte_marker_get(pte_to_swp_entry(entry)); 6128 6129 if (marker & PTE_MARKER_POISONED) { 6130 ret = VM_FAULT_HWPOISON_LARGE; 6131 goto out_mutex; 6132 } 6133 } 6134 6135 /* 6136 * Other PTE markers should be handled the same way as none PTE. 6137 * 6138 * hugetlb_no_page will drop vma lock and hugetlb fault 6139 * mutex internally, which make us return immediately. 6140 */ 6141 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 6142 entry, flags); 6143 } 6144 6145 ret = 0; 6146 6147 /* 6148 * entry could be a migration/hwpoison entry at this point, so this 6149 * check prevents the kernel from going below assuming that we have 6150 * an active hugepage in pagecache. This goto expects the 2nd page 6151 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 6152 * properly handle it. 6153 */ 6154 if (!pte_present(entry)) { 6155 if (unlikely(is_hugetlb_entry_migration(entry))) { 6156 /* 6157 * Release the hugetlb fault lock now, but retain 6158 * the vma lock, because it is needed to guard the 6159 * huge_pte_lockptr() later in 6160 * migration_entry_wait_huge(). The vma lock will 6161 * be released there. 6162 */ 6163 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6164 migration_entry_wait_huge(vma, ptep); 6165 return 0; 6166 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 6167 ret = VM_FAULT_HWPOISON_LARGE | 6168 VM_FAULT_SET_HINDEX(hstate_index(h)); 6169 goto out_mutex; 6170 } 6171 6172 /* 6173 * If we are going to COW/unshare the mapping later, we examine the 6174 * pending reservations for this page now. This will ensure that any 6175 * allocations necessary to record that reservation occur outside the 6176 * spinlock. Also lookup the pagecache page now as it is used to 6177 * determine if a reservation has been consumed. 6178 */ 6179 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6180 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 6181 if (vma_needs_reservation(h, vma, haddr) < 0) { 6182 ret = VM_FAULT_OOM; 6183 goto out_mutex; 6184 } 6185 /* Just decrements count, does not deallocate */ 6186 vma_end_reservation(h, vma, haddr); 6187 6188 pagecache_folio = filemap_lock_folio(mapping, idx); 6189 if (IS_ERR(pagecache_folio)) 6190 pagecache_folio = NULL; 6191 } 6192 6193 ptl = huge_pte_lock(h, mm, ptep); 6194 6195 /* Check for a racing update before calling hugetlb_wp() */ 6196 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 6197 goto out_ptl; 6198 6199 /* Handle userfault-wp first, before trying to lock more pages */ 6200 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 6201 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 6202 struct vm_fault vmf = { 6203 .vma = vma, 6204 .address = haddr, 6205 .real_address = address, 6206 .flags = flags, 6207 }; 6208 6209 spin_unlock(ptl); 6210 if (pagecache_folio) { 6211 folio_unlock(pagecache_folio); 6212 folio_put(pagecache_folio); 6213 } 6214 hugetlb_vma_unlock_read(vma); 6215 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6216 return handle_userfault(&vmf, VM_UFFD_WP); 6217 } 6218 6219 /* 6220 * hugetlb_wp() requires page locks of pte_page(entry) and 6221 * pagecache_folio, so here we need take the former one 6222 * when folio != pagecache_folio or !pagecache_folio. 6223 */ 6224 folio = page_folio(pte_page(entry)); 6225 if (folio != pagecache_folio) 6226 if (!folio_trylock(folio)) { 6227 need_wait_lock = 1; 6228 goto out_ptl; 6229 } 6230 6231 folio_get(folio); 6232 6233 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6234 if (!huge_pte_write(entry)) { 6235 ret = hugetlb_wp(mm, vma, address, ptep, flags, 6236 pagecache_folio, ptl); 6237 goto out_put_page; 6238 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6239 entry = huge_pte_mkdirty(entry); 6240 } 6241 } 6242 entry = pte_mkyoung(entry); 6243 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 6244 flags & FAULT_FLAG_WRITE)) 6245 update_mmu_cache(vma, haddr, ptep); 6246 out_put_page: 6247 if (folio != pagecache_folio) 6248 folio_unlock(folio); 6249 folio_put(folio); 6250 out_ptl: 6251 spin_unlock(ptl); 6252 6253 if (pagecache_folio) { 6254 folio_unlock(pagecache_folio); 6255 folio_put(pagecache_folio); 6256 } 6257 out_mutex: 6258 hugetlb_vma_unlock_read(vma); 6259 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6260 /* 6261 * Generally it's safe to hold refcount during waiting page lock. But 6262 * here we just wait to defer the next page fault to avoid busy loop and 6263 * the page is not used after unlocked before returning from the current 6264 * page fault. So we are safe from accessing freed page, even if we wait 6265 * here without taking refcount. 6266 */ 6267 if (need_wait_lock) 6268 folio_wait_locked(folio); 6269 return ret; 6270 } 6271 6272 #ifdef CONFIG_USERFAULTFD 6273 /* 6274 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6275 * with modifications for hugetlb pages. 6276 */ 6277 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6278 struct vm_area_struct *dst_vma, 6279 unsigned long dst_addr, 6280 unsigned long src_addr, 6281 uffd_flags_t flags, 6282 struct folio **foliop) 6283 { 6284 struct mm_struct *dst_mm = dst_vma->vm_mm; 6285 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6286 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6287 struct hstate *h = hstate_vma(dst_vma); 6288 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6289 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6290 unsigned long size; 6291 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6292 pte_t _dst_pte; 6293 spinlock_t *ptl; 6294 int ret = -ENOMEM; 6295 struct folio *folio; 6296 int writable; 6297 bool folio_in_pagecache = false; 6298 6299 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6300 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6301 6302 /* Don't overwrite any existing PTEs (even markers) */ 6303 if (!huge_pte_none(huge_ptep_get(dst_pte))) { 6304 spin_unlock(ptl); 6305 return -EEXIST; 6306 } 6307 6308 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6309 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, 6310 huge_page_size(h)); 6311 6312 /* No need to invalidate - it was non-present before */ 6313 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6314 6315 spin_unlock(ptl); 6316 return 0; 6317 } 6318 6319 if (is_continue) { 6320 ret = -EFAULT; 6321 folio = filemap_lock_folio(mapping, idx); 6322 if (IS_ERR(folio)) 6323 goto out; 6324 folio_in_pagecache = true; 6325 } else if (!*foliop) { 6326 /* If a folio already exists, then it's UFFDIO_COPY for 6327 * a non-missing case. Return -EEXIST. 6328 */ 6329 if (vm_shared && 6330 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6331 ret = -EEXIST; 6332 goto out; 6333 } 6334 6335 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6336 if (IS_ERR(folio)) { 6337 ret = -ENOMEM; 6338 goto out; 6339 } 6340 6341 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6342 false); 6343 6344 /* fallback to copy_from_user outside mmap_lock */ 6345 if (unlikely(ret)) { 6346 ret = -ENOENT; 6347 /* Free the allocated folio which may have 6348 * consumed a reservation. 6349 */ 6350 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6351 folio_put(folio); 6352 6353 /* Allocate a temporary folio to hold the copied 6354 * contents. 6355 */ 6356 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6357 if (!folio) { 6358 ret = -ENOMEM; 6359 goto out; 6360 } 6361 *foliop = folio; 6362 /* Set the outparam foliop and return to the caller to 6363 * copy the contents outside the lock. Don't free the 6364 * folio. 6365 */ 6366 goto out; 6367 } 6368 } else { 6369 if (vm_shared && 6370 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6371 folio_put(*foliop); 6372 ret = -EEXIST; 6373 *foliop = NULL; 6374 goto out; 6375 } 6376 6377 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); 6378 if (IS_ERR(folio)) { 6379 folio_put(*foliop); 6380 ret = -ENOMEM; 6381 *foliop = NULL; 6382 goto out; 6383 } 6384 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6385 folio_put(*foliop); 6386 *foliop = NULL; 6387 if (ret) { 6388 folio_put(folio); 6389 goto out; 6390 } 6391 } 6392 6393 /* 6394 * The memory barrier inside __folio_mark_uptodate makes sure that 6395 * preceding stores to the page contents become visible before 6396 * the set_pte_at() write. 6397 */ 6398 __folio_mark_uptodate(folio); 6399 6400 /* Add shared, newly allocated pages to the page cache. */ 6401 if (vm_shared && !is_continue) { 6402 size = i_size_read(mapping->host) >> huge_page_shift(h); 6403 ret = -EFAULT; 6404 if (idx >= size) 6405 goto out_release_nounlock; 6406 6407 /* 6408 * Serialization between remove_inode_hugepages() and 6409 * hugetlb_add_to_page_cache() below happens through the 6410 * hugetlb_fault_mutex_table that here must be hold by 6411 * the caller. 6412 */ 6413 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6414 if (ret) 6415 goto out_release_nounlock; 6416 folio_in_pagecache = true; 6417 } 6418 6419 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6420 6421 ret = -EIO; 6422 if (folio_test_hwpoison(folio)) 6423 goto out_release_unlock; 6424 6425 /* 6426 * We allow to overwrite a pte marker: consider when both MISSING|WP 6427 * registered, we firstly wr-protect a none pte which has no page cache 6428 * page backing it, then access the page. 6429 */ 6430 ret = -EEXIST; 6431 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6432 goto out_release_unlock; 6433 6434 if (folio_in_pagecache) 6435 page_dup_file_rmap(&folio->page, true); 6436 else 6437 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); 6438 6439 /* 6440 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6441 * with wp flag set, don't set pte write bit. 6442 */ 6443 if (wp_enabled || (is_continue && !vm_shared)) 6444 writable = 0; 6445 else 6446 writable = dst_vma->vm_flags & VM_WRITE; 6447 6448 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); 6449 /* 6450 * Always mark UFFDIO_COPY page dirty; note that this may not be 6451 * extremely important for hugetlbfs for now since swapping is not 6452 * supported, but we should still be clear in that this page cannot be 6453 * thrown away at will, even if write bit not set. 6454 */ 6455 _dst_pte = huge_pte_mkdirty(_dst_pte); 6456 _dst_pte = pte_mkyoung(_dst_pte); 6457 6458 if (wp_enabled) 6459 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6460 6461 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h)); 6462 6463 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6464 6465 /* No need to invalidate - it was non-present before */ 6466 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6467 6468 spin_unlock(ptl); 6469 if (!is_continue) 6470 folio_set_hugetlb_migratable(folio); 6471 if (vm_shared || is_continue) 6472 folio_unlock(folio); 6473 ret = 0; 6474 out: 6475 return ret; 6476 out_release_unlock: 6477 spin_unlock(ptl); 6478 if (vm_shared || is_continue) 6479 folio_unlock(folio); 6480 out_release_nounlock: 6481 if (!folio_in_pagecache) 6482 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6483 folio_put(folio); 6484 goto out; 6485 } 6486 #endif /* CONFIG_USERFAULTFD */ 6487 6488 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6489 unsigned long address, unsigned int flags, 6490 unsigned int *page_mask) 6491 { 6492 struct hstate *h = hstate_vma(vma); 6493 struct mm_struct *mm = vma->vm_mm; 6494 unsigned long haddr = address & huge_page_mask(h); 6495 struct page *page = NULL; 6496 spinlock_t *ptl; 6497 pte_t *pte, entry; 6498 int ret; 6499 6500 hugetlb_vma_lock_read(vma); 6501 pte = hugetlb_walk(vma, haddr, huge_page_size(h)); 6502 if (!pte) 6503 goto out_unlock; 6504 6505 ptl = huge_pte_lock(h, mm, pte); 6506 entry = huge_ptep_get(pte); 6507 if (pte_present(entry)) { 6508 page = pte_page(entry); 6509 6510 if (!huge_pte_write(entry)) { 6511 if (flags & FOLL_WRITE) { 6512 page = NULL; 6513 goto out; 6514 } 6515 6516 if (gup_must_unshare(vma, flags, page)) { 6517 /* Tell the caller to do unsharing */ 6518 page = ERR_PTR(-EMLINK); 6519 goto out; 6520 } 6521 } 6522 6523 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6524 6525 /* 6526 * Note that page may be a sub-page, and with vmemmap 6527 * optimizations the page struct may be read only. 6528 * try_grab_page() will increase the ref count on the 6529 * head page, so this will be OK. 6530 * 6531 * try_grab_page() should always be able to get the page here, 6532 * because we hold the ptl lock and have verified pte_present(). 6533 */ 6534 ret = try_grab_page(page, flags); 6535 6536 if (WARN_ON_ONCE(ret)) { 6537 page = ERR_PTR(ret); 6538 goto out; 6539 } 6540 6541 *page_mask = (1U << huge_page_order(h)) - 1; 6542 } 6543 out: 6544 spin_unlock(ptl); 6545 out_unlock: 6546 hugetlb_vma_unlock_read(vma); 6547 6548 /* 6549 * Fixup retval for dump requests: if pagecache doesn't exist, 6550 * don't try to allocate a new page but just skip it. 6551 */ 6552 if (!page && (flags & FOLL_DUMP) && 6553 !hugetlbfs_pagecache_present(h, vma, address)) 6554 page = ERR_PTR(-EFAULT); 6555 6556 return page; 6557 } 6558 6559 long hugetlb_change_protection(struct vm_area_struct *vma, 6560 unsigned long address, unsigned long end, 6561 pgprot_t newprot, unsigned long cp_flags) 6562 { 6563 struct mm_struct *mm = vma->vm_mm; 6564 unsigned long start = address; 6565 pte_t *ptep; 6566 pte_t pte; 6567 struct hstate *h = hstate_vma(vma); 6568 long pages = 0, psize = huge_page_size(h); 6569 bool shared_pmd = false; 6570 struct mmu_notifier_range range; 6571 unsigned long last_addr_mask; 6572 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6573 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6574 6575 /* 6576 * In the case of shared PMDs, the area to flush could be beyond 6577 * start/end. Set range.start/range.end to cover the maximum possible 6578 * range if PMD sharing is possible. 6579 */ 6580 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6581 0, mm, start, end); 6582 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6583 6584 BUG_ON(address >= end); 6585 flush_cache_range(vma, range.start, range.end); 6586 6587 mmu_notifier_invalidate_range_start(&range); 6588 hugetlb_vma_lock_write(vma); 6589 i_mmap_lock_write(vma->vm_file->f_mapping); 6590 last_addr_mask = hugetlb_mask_last_page(h); 6591 for (; address < end; address += psize) { 6592 spinlock_t *ptl; 6593 ptep = hugetlb_walk(vma, address, psize); 6594 if (!ptep) { 6595 if (!uffd_wp) { 6596 address |= last_addr_mask; 6597 continue; 6598 } 6599 /* 6600 * Userfaultfd wr-protect requires pgtable 6601 * pre-allocations to install pte markers. 6602 */ 6603 ptep = huge_pte_alloc(mm, vma, address, psize); 6604 if (!ptep) { 6605 pages = -ENOMEM; 6606 break; 6607 } 6608 } 6609 ptl = huge_pte_lock(h, mm, ptep); 6610 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6611 /* 6612 * When uffd-wp is enabled on the vma, unshare 6613 * shouldn't happen at all. Warn about it if it 6614 * happened due to some reason. 6615 */ 6616 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6617 pages++; 6618 spin_unlock(ptl); 6619 shared_pmd = true; 6620 address |= last_addr_mask; 6621 continue; 6622 } 6623 pte = huge_ptep_get(ptep); 6624 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6625 /* Nothing to do. */ 6626 } else if (unlikely(is_hugetlb_entry_migration(pte))) { 6627 swp_entry_t entry = pte_to_swp_entry(pte); 6628 struct page *page = pfn_swap_entry_to_page(entry); 6629 pte_t newpte = pte; 6630 6631 if (is_writable_migration_entry(entry)) { 6632 if (PageAnon(page)) 6633 entry = make_readable_exclusive_migration_entry( 6634 swp_offset(entry)); 6635 else 6636 entry = make_readable_migration_entry( 6637 swp_offset(entry)); 6638 newpte = swp_entry_to_pte(entry); 6639 pages++; 6640 } 6641 6642 if (uffd_wp) 6643 newpte = pte_swp_mkuffd_wp(newpte); 6644 else if (uffd_wp_resolve) 6645 newpte = pte_swp_clear_uffd_wp(newpte); 6646 if (!pte_same(pte, newpte)) 6647 set_huge_pte_at(mm, address, ptep, newpte, psize); 6648 } else if (unlikely(is_pte_marker(pte))) { 6649 /* No other markers apply for now. */ 6650 WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); 6651 if (uffd_wp_resolve) 6652 /* Safe to modify directly (non-present->none). */ 6653 huge_pte_clear(mm, address, ptep, psize); 6654 } else if (!huge_pte_none(pte)) { 6655 pte_t old_pte; 6656 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6657 6658 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6659 pte = huge_pte_modify(old_pte, newprot); 6660 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6661 if (uffd_wp) 6662 pte = huge_pte_mkuffd_wp(pte); 6663 else if (uffd_wp_resolve) 6664 pte = huge_pte_clear_uffd_wp(pte); 6665 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6666 pages++; 6667 } else { 6668 /* None pte */ 6669 if (unlikely(uffd_wp)) 6670 /* Safe to modify directly (none->non-present). */ 6671 set_huge_pte_at(mm, address, ptep, 6672 make_pte_marker(PTE_MARKER_UFFD_WP), 6673 psize); 6674 } 6675 spin_unlock(ptl); 6676 } 6677 /* 6678 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6679 * may have cleared our pud entry and done put_page on the page table: 6680 * once we release i_mmap_rwsem, another task can do the final put_page 6681 * and that page table be reused and filled with junk. If we actually 6682 * did unshare a page of pmds, flush the range corresponding to the pud. 6683 */ 6684 if (shared_pmd) 6685 flush_hugetlb_tlb_range(vma, range.start, range.end); 6686 else 6687 flush_hugetlb_tlb_range(vma, start, end); 6688 /* 6689 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6690 * downgrading page table protection not changing it to point to a new 6691 * page. 6692 * 6693 * See Documentation/mm/mmu_notifier.rst 6694 */ 6695 i_mmap_unlock_write(vma->vm_file->f_mapping); 6696 hugetlb_vma_unlock_write(vma); 6697 mmu_notifier_invalidate_range_end(&range); 6698 6699 return pages > 0 ? (pages << h->order) : pages; 6700 } 6701 6702 /* Return true if reservation was successful, false otherwise. */ 6703 bool hugetlb_reserve_pages(struct inode *inode, 6704 long from, long to, 6705 struct vm_area_struct *vma, 6706 vm_flags_t vm_flags) 6707 { 6708 long chg = -1, add = -1; 6709 struct hstate *h = hstate_inode(inode); 6710 struct hugepage_subpool *spool = subpool_inode(inode); 6711 struct resv_map *resv_map; 6712 struct hugetlb_cgroup *h_cg = NULL; 6713 long gbl_reserve, regions_needed = 0; 6714 6715 /* This should never happen */ 6716 if (from > to) { 6717 VM_WARN(1, "%s called with a negative range\n", __func__); 6718 return false; 6719 } 6720 6721 /* 6722 * vma specific semaphore used for pmd sharing and fault/truncation 6723 * synchronization 6724 */ 6725 hugetlb_vma_lock_alloc(vma); 6726 6727 /* 6728 * Only apply hugepage reservation if asked. At fault time, an 6729 * attempt will be made for VM_NORESERVE to allocate a page 6730 * without using reserves 6731 */ 6732 if (vm_flags & VM_NORESERVE) 6733 return true; 6734 6735 /* 6736 * Shared mappings base their reservation on the number of pages that 6737 * are already allocated on behalf of the file. Private mappings need 6738 * to reserve the full area even if read-only as mprotect() may be 6739 * called to make the mapping read-write. Assume !vma is a shm mapping 6740 */ 6741 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6742 /* 6743 * resv_map can not be NULL as hugetlb_reserve_pages is only 6744 * called for inodes for which resv_maps were created (see 6745 * hugetlbfs_get_inode). 6746 */ 6747 resv_map = inode_resv_map(inode); 6748 6749 chg = region_chg(resv_map, from, to, ®ions_needed); 6750 } else { 6751 /* Private mapping. */ 6752 resv_map = resv_map_alloc(); 6753 if (!resv_map) 6754 goto out_err; 6755 6756 chg = to - from; 6757 6758 set_vma_resv_map(vma, resv_map); 6759 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6760 } 6761 6762 if (chg < 0) 6763 goto out_err; 6764 6765 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6766 chg * pages_per_huge_page(h), &h_cg) < 0) 6767 goto out_err; 6768 6769 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6770 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6771 * of the resv_map. 6772 */ 6773 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6774 } 6775 6776 /* 6777 * There must be enough pages in the subpool for the mapping. If 6778 * the subpool has a minimum size, there may be some global 6779 * reservations already in place (gbl_reserve). 6780 */ 6781 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6782 if (gbl_reserve < 0) 6783 goto out_uncharge_cgroup; 6784 6785 /* 6786 * Check enough hugepages are available for the reservation. 6787 * Hand the pages back to the subpool if there are not 6788 */ 6789 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6790 goto out_put_pages; 6791 6792 /* 6793 * Account for the reservations made. Shared mappings record regions 6794 * that have reservations as they are shared by multiple VMAs. 6795 * When the last VMA disappears, the region map says how much 6796 * the reservation was and the page cache tells how much of 6797 * the reservation was consumed. Private mappings are per-VMA and 6798 * only the consumed reservations are tracked. When the VMA 6799 * disappears, the original reservation is the VMA size and the 6800 * consumed reservations are stored in the map. Hence, nothing 6801 * else has to be done for private mappings here 6802 */ 6803 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6804 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6805 6806 if (unlikely(add < 0)) { 6807 hugetlb_acct_memory(h, -gbl_reserve); 6808 goto out_put_pages; 6809 } else if (unlikely(chg > add)) { 6810 /* 6811 * pages in this range were added to the reserve 6812 * map between region_chg and region_add. This 6813 * indicates a race with alloc_hugetlb_folio. Adjust 6814 * the subpool and reserve counts modified above 6815 * based on the difference. 6816 */ 6817 long rsv_adjust; 6818 6819 /* 6820 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6821 * reference to h_cg->css. See comment below for detail. 6822 */ 6823 hugetlb_cgroup_uncharge_cgroup_rsvd( 6824 hstate_index(h), 6825 (chg - add) * pages_per_huge_page(h), h_cg); 6826 6827 rsv_adjust = hugepage_subpool_put_pages(spool, 6828 chg - add); 6829 hugetlb_acct_memory(h, -rsv_adjust); 6830 } else if (h_cg) { 6831 /* 6832 * The file_regions will hold their own reference to 6833 * h_cg->css. So we should release the reference held 6834 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6835 * done. 6836 */ 6837 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6838 } 6839 } 6840 return true; 6841 6842 out_put_pages: 6843 /* put back original number of pages, chg */ 6844 (void)hugepage_subpool_put_pages(spool, chg); 6845 out_uncharge_cgroup: 6846 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6847 chg * pages_per_huge_page(h), h_cg); 6848 out_err: 6849 hugetlb_vma_lock_free(vma); 6850 if (!vma || vma->vm_flags & VM_MAYSHARE) 6851 /* Only call region_abort if the region_chg succeeded but the 6852 * region_add failed or didn't run. 6853 */ 6854 if (chg >= 0 && add < 0) 6855 region_abort(resv_map, from, to, regions_needed); 6856 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 6857 kref_put(&resv_map->refs, resv_map_release); 6858 set_vma_resv_map(vma, NULL); 6859 } 6860 return false; 6861 } 6862 6863 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6864 long freed) 6865 { 6866 struct hstate *h = hstate_inode(inode); 6867 struct resv_map *resv_map = inode_resv_map(inode); 6868 long chg = 0; 6869 struct hugepage_subpool *spool = subpool_inode(inode); 6870 long gbl_reserve; 6871 6872 /* 6873 * Since this routine can be called in the evict inode path for all 6874 * hugetlbfs inodes, resv_map could be NULL. 6875 */ 6876 if (resv_map) { 6877 chg = region_del(resv_map, start, end); 6878 /* 6879 * region_del() can fail in the rare case where a region 6880 * must be split and another region descriptor can not be 6881 * allocated. If end == LONG_MAX, it will not fail. 6882 */ 6883 if (chg < 0) 6884 return chg; 6885 } 6886 6887 spin_lock(&inode->i_lock); 6888 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6889 spin_unlock(&inode->i_lock); 6890 6891 /* 6892 * If the subpool has a minimum size, the number of global 6893 * reservations to be released may be adjusted. 6894 * 6895 * Note that !resv_map implies freed == 0. So (chg - freed) 6896 * won't go negative. 6897 */ 6898 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6899 hugetlb_acct_memory(h, -gbl_reserve); 6900 6901 return 0; 6902 } 6903 6904 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6905 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6906 struct vm_area_struct *vma, 6907 unsigned long addr, pgoff_t idx) 6908 { 6909 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6910 svma->vm_start; 6911 unsigned long sbase = saddr & PUD_MASK; 6912 unsigned long s_end = sbase + PUD_SIZE; 6913 6914 /* Allow segments to share if only one is marked locked */ 6915 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6916 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6917 6918 /* 6919 * match the virtual addresses, permission and the alignment of the 6920 * page table page. 6921 * 6922 * Also, vma_lock (vm_private_data) is required for sharing. 6923 */ 6924 if (pmd_index(addr) != pmd_index(saddr) || 6925 vm_flags != svm_flags || 6926 !range_in_vma(svma, sbase, s_end) || 6927 !svma->vm_private_data) 6928 return 0; 6929 6930 return saddr; 6931 } 6932 6933 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6934 { 6935 unsigned long start = addr & PUD_MASK; 6936 unsigned long end = start + PUD_SIZE; 6937 6938 #ifdef CONFIG_USERFAULTFD 6939 if (uffd_disable_huge_pmd_share(vma)) 6940 return false; 6941 #endif 6942 /* 6943 * check on proper vm_flags and page table alignment 6944 */ 6945 if (!(vma->vm_flags & VM_MAYSHARE)) 6946 return false; 6947 if (!vma->vm_private_data) /* vma lock required for sharing */ 6948 return false; 6949 if (!range_in_vma(vma, start, end)) 6950 return false; 6951 return true; 6952 } 6953 6954 /* 6955 * Determine if start,end range within vma could be mapped by shared pmd. 6956 * If yes, adjust start and end to cover range associated with possible 6957 * shared pmd mappings. 6958 */ 6959 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6960 unsigned long *start, unsigned long *end) 6961 { 6962 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6963 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6964 6965 /* 6966 * vma needs to span at least one aligned PUD size, and the range 6967 * must be at least partially within in. 6968 */ 6969 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6970 (*end <= v_start) || (*start >= v_end)) 6971 return; 6972 6973 /* Extend the range to be PUD aligned for a worst case scenario */ 6974 if (*start > v_start) 6975 *start = ALIGN_DOWN(*start, PUD_SIZE); 6976 6977 if (*end < v_end) 6978 *end = ALIGN(*end, PUD_SIZE); 6979 } 6980 6981 /* 6982 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6983 * and returns the corresponding pte. While this is not necessary for the 6984 * !shared pmd case because we can allocate the pmd later as well, it makes the 6985 * code much cleaner. pmd allocation is essential for the shared case because 6986 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6987 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6988 * bad pmd for sharing. 6989 */ 6990 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6991 unsigned long addr, pud_t *pud) 6992 { 6993 struct address_space *mapping = vma->vm_file->f_mapping; 6994 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6995 vma->vm_pgoff; 6996 struct vm_area_struct *svma; 6997 unsigned long saddr; 6998 pte_t *spte = NULL; 6999 pte_t *pte; 7000 7001 i_mmap_lock_read(mapping); 7002 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7003 if (svma == vma) 7004 continue; 7005 7006 saddr = page_table_shareable(svma, vma, addr, idx); 7007 if (saddr) { 7008 spte = hugetlb_walk(svma, saddr, 7009 vma_mmu_pagesize(svma)); 7010 if (spte) { 7011 get_page(virt_to_page(spte)); 7012 break; 7013 } 7014 } 7015 } 7016 7017 if (!spte) 7018 goto out; 7019 7020 spin_lock(&mm->page_table_lock); 7021 if (pud_none(*pud)) { 7022 pud_populate(mm, pud, 7023 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7024 mm_inc_nr_pmds(mm); 7025 } else { 7026 put_page(virt_to_page(spte)); 7027 } 7028 spin_unlock(&mm->page_table_lock); 7029 out: 7030 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7031 i_mmap_unlock_read(mapping); 7032 return pte; 7033 } 7034 7035 /* 7036 * unmap huge page backed by shared pte. 7037 * 7038 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7039 * indicated by page_count > 1, unmap is achieved by clearing pud and 7040 * decrementing the ref count. If count == 1, the pte page is not shared. 7041 * 7042 * Called with page table lock held. 7043 * 7044 * returns: 1 successfully unmapped a shared pte page 7045 * 0 the underlying pte page is not shared, or it is the last user 7046 */ 7047 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7048 unsigned long addr, pte_t *ptep) 7049 { 7050 pgd_t *pgd = pgd_offset(mm, addr); 7051 p4d_t *p4d = p4d_offset(pgd, addr); 7052 pud_t *pud = pud_offset(p4d, addr); 7053 7054 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7055 hugetlb_vma_assert_locked(vma); 7056 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7057 if (page_count(virt_to_page(ptep)) == 1) 7058 return 0; 7059 7060 pud_clear(pud); 7061 put_page(virt_to_page(ptep)); 7062 mm_dec_nr_pmds(mm); 7063 return 1; 7064 } 7065 7066 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7067 7068 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7069 unsigned long addr, pud_t *pud) 7070 { 7071 return NULL; 7072 } 7073 7074 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7075 unsigned long addr, pte_t *ptep) 7076 { 7077 return 0; 7078 } 7079 7080 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7081 unsigned long *start, unsigned long *end) 7082 { 7083 } 7084 7085 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7086 { 7087 return false; 7088 } 7089 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7090 7091 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7092 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7093 unsigned long addr, unsigned long sz) 7094 { 7095 pgd_t *pgd; 7096 p4d_t *p4d; 7097 pud_t *pud; 7098 pte_t *pte = NULL; 7099 7100 pgd = pgd_offset(mm, addr); 7101 p4d = p4d_alloc(mm, pgd, addr); 7102 if (!p4d) 7103 return NULL; 7104 pud = pud_alloc(mm, p4d, addr); 7105 if (pud) { 7106 if (sz == PUD_SIZE) { 7107 pte = (pte_t *)pud; 7108 } else { 7109 BUG_ON(sz != PMD_SIZE); 7110 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7111 pte = huge_pmd_share(mm, vma, addr, pud); 7112 else 7113 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7114 } 7115 } 7116 7117 if (pte) { 7118 pte_t pteval = ptep_get_lockless(pte); 7119 7120 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7121 } 7122 7123 return pte; 7124 } 7125 7126 /* 7127 * huge_pte_offset() - Walk the page table to resolve the hugepage 7128 * entry at address @addr 7129 * 7130 * Return: Pointer to page table entry (PUD or PMD) for 7131 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7132 * size @sz doesn't match the hugepage size at this level of the page 7133 * table. 7134 */ 7135 pte_t *huge_pte_offset(struct mm_struct *mm, 7136 unsigned long addr, unsigned long sz) 7137 { 7138 pgd_t *pgd; 7139 p4d_t *p4d; 7140 pud_t *pud; 7141 pmd_t *pmd; 7142 7143 pgd = pgd_offset(mm, addr); 7144 if (!pgd_present(*pgd)) 7145 return NULL; 7146 p4d = p4d_offset(pgd, addr); 7147 if (!p4d_present(*p4d)) 7148 return NULL; 7149 7150 pud = pud_offset(p4d, addr); 7151 if (sz == PUD_SIZE) 7152 /* must be pud huge, non-present or none */ 7153 return (pte_t *)pud; 7154 if (!pud_present(*pud)) 7155 return NULL; 7156 /* must have a valid entry and size to go further */ 7157 7158 pmd = pmd_offset(pud, addr); 7159 /* must be pmd huge, non-present or none */ 7160 return (pte_t *)pmd; 7161 } 7162 7163 /* 7164 * Return a mask that can be used to update an address to the last huge 7165 * page in a page table page mapping size. Used to skip non-present 7166 * page table entries when linearly scanning address ranges. Architectures 7167 * with unique huge page to page table relationships can define their own 7168 * version of this routine. 7169 */ 7170 unsigned long hugetlb_mask_last_page(struct hstate *h) 7171 { 7172 unsigned long hp_size = huge_page_size(h); 7173 7174 if (hp_size == PUD_SIZE) 7175 return P4D_SIZE - PUD_SIZE; 7176 else if (hp_size == PMD_SIZE) 7177 return PUD_SIZE - PMD_SIZE; 7178 else 7179 return 0UL; 7180 } 7181 7182 #else 7183 7184 /* See description above. Architectures can provide their own version. */ 7185 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7186 { 7187 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7188 if (huge_page_size(h) == PMD_SIZE) 7189 return PUD_SIZE - PMD_SIZE; 7190 #endif 7191 return 0UL; 7192 } 7193 7194 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7195 7196 /* 7197 * These functions are overwritable if your architecture needs its own 7198 * behavior. 7199 */ 7200 bool isolate_hugetlb(struct folio *folio, struct list_head *list) 7201 { 7202 bool ret = true; 7203 7204 spin_lock_irq(&hugetlb_lock); 7205 if (!folio_test_hugetlb(folio) || 7206 !folio_test_hugetlb_migratable(folio) || 7207 !folio_try_get(folio)) { 7208 ret = false; 7209 goto unlock; 7210 } 7211 folio_clear_hugetlb_migratable(folio); 7212 list_move_tail(&folio->lru, list); 7213 unlock: 7214 spin_unlock_irq(&hugetlb_lock); 7215 return ret; 7216 } 7217 7218 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7219 { 7220 int ret = 0; 7221 7222 *hugetlb = false; 7223 spin_lock_irq(&hugetlb_lock); 7224 if (folio_test_hugetlb(folio)) { 7225 *hugetlb = true; 7226 if (folio_test_hugetlb_freed(folio)) 7227 ret = 0; 7228 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7229 ret = folio_try_get(folio); 7230 else 7231 ret = -EBUSY; 7232 } 7233 spin_unlock_irq(&hugetlb_lock); 7234 return ret; 7235 } 7236 7237 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7238 bool *migratable_cleared) 7239 { 7240 int ret; 7241 7242 spin_lock_irq(&hugetlb_lock); 7243 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7244 spin_unlock_irq(&hugetlb_lock); 7245 return ret; 7246 } 7247 7248 void folio_putback_active_hugetlb(struct folio *folio) 7249 { 7250 spin_lock_irq(&hugetlb_lock); 7251 folio_set_hugetlb_migratable(folio); 7252 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7253 spin_unlock_irq(&hugetlb_lock); 7254 folio_put(folio); 7255 } 7256 7257 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7258 { 7259 struct hstate *h = folio_hstate(old_folio); 7260 7261 hugetlb_cgroup_migrate(old_folio, new_folio); 7262 set_page_owner_migrate_reason(&new_folio->page, reason); 7263 7264 /* 7265 * transfer temporary state of the new hugetlb folio. This is 7266 * reverse to other transitions because the newpage is going to 7267 * be final while the old one will be freed so it takes over 7268 * the temporary status. 7269 * 7270 * Also note that we have to transfer the per-node surplus state 7271 * here as well otherwise the global surplus count will not match 7272 * the per-node's. 7273 */ 7274 if (folio_test_hugetlb_temporary(new_folio)) { 7275 int old_nid = folio_nid(old_folio); 7276 int new_nid = folio_nid(new_folio); 7277 7278 folio_set_hugetlb_temporary(old_folio); 7279 folio_clear_hugetlb_temporary(new_folio); 7280 7281 7282 /* 7283 * There is no need to transfer the per-node surplus state 7284 * when we do not cross the node. 7285 */ 7286 if (new_nid == old_nid) 7287 return; 7288 spin_lock_irq(&hugetlb_lock); 7289 if (h->surplus_huge_pages_node[old_nid]) { 7290 h->surplus_huge_pages_node[old_nid]--; 7291 h->surplus_huge_pages_node[new_nid]++; 7292 } 7293 spin_unlock_irq(&hugetlb_lock); 7294 } 7295 } 7296 7297 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7298 unsigned long start, 7299 unsigned long end) 7300 { 7301 struct hstate *h = hstate_vma(vma); 7302 unsigned long sz = huge_page_size(h); 7303 struct mm_struct *mm = vma->vm_mm; 7304 struct mmu_notifier_range range; 7305 unsigned long address; 7306 spinlock_t *ptl; 7307 pte_t *ptep; 7308 7309 if (!(vma->vm_flags & VM_MAYSHARE)) 7310 return; 7311 7312 if (start >= end) 7313 return; 7314 7315 flush_cache_range(vma, start, end); 7316 /* 7317 * No need to call adjust_range_if_pmd_sharing_possible(), because 7318 * we have already done the PUD_SIZE alignment. 7319 */ 7320 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7321 start, end); 7322 mmu_notifier_invalidate_range_start(&range); 7323 hugetlb_vma_lock_write(vma); 7324 i_mmap_lock_write(vma->vm_file->f_mapping); 7325 for (address = start; address < end; address += PUD_SIZE) { 7326 ptep = hugetlb_walk(vma, address, sz); 7327 if (!ptep) 7328 continue; 7329 ptl = huge_pte_lock(h, mm, ptep); 7330 huge_pmd_unshare(mm, vma, address, ptep); 7331 spin_unlock(ptl); 7332 } 7333 flush_hugetlb_tlb_range(vma, start, end); 7334 i_mmap_unlock_write(vma->vm_file->f_mapping); 7335 hugetlb_vma_unlock_write(vma); 7336 /* 7337 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7338 * Documentation/mm/mmu_notifier.rst. 7339 */ 7340 mmu_notifier_invalidate_range_end(&range); 7341 } 7342 7343 /* 7344 * This function will unconditionally remove all the shared pmd pgtable entries 7345 * within the specific vma for a hugetlbfs memory range. 7346 */ 7347 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7348 { 7349 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7350 ALIGN_DOWN(vma->vm_end, PUD_SIZE)); 7351 } 7352 7353 #ifdef CONFIG_CMA 7354 static bool cma_reserve_called __initdata; 7355 7356 static int __init cmdline_parse_hugetlb_cma(char *p) 7357 { 7358 int nid, count = 0; 7359 unsigned long tmp; 7360 char *s = p; 7361 7362 while (*s) { 7363 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7364 break; 7365 7366 if (s[count] == ':') { 7367 if (tmp >= MAX_NUMNODES) 7368 break; 7369 nid = array_index_nospec(tmp, MAX_NUMNODES); 7370 7371 s += count + 1; 7372 tmp = memparse(s, &s); 7373 hugetlb_cma_size_in_node[nid] = tmp; 7374 hugetlb_cma_size += tmp; 7375 7376 /* 7377 * Skip the separator if have one, otherwise 7378 * break the parsing. 7379 */ 7380 if (*s == ',') 7381 s++; 7382 else 7383 break; 7384 } else { 7385 hugetlb_cma_size = memparse(p, &p); 7386 break; 7387 } 7388 } 7389 7390 return 0; 7391 } 7392 7393 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7394 7395 void __init hugetlb_cma_reserve(int order) 7396 { 7397 unsigned long size, reserved, per_node; 7398 bool node_specific_cma_alloc = false; 7399 int nid; 7400 7401 cma_reserve_called = true; 7402 7403 if (!hugetlb_cma_size) 7404 return; 7405 7406 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7407 if (hugetlb_cma_size_in_node[nid] == 0) 7408 continue; 7409 7410 if (!node_online(nid)) { 7411 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7412 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7413 hugetlb_cma_size_in_node[nid] = 0; 7414 continue; 7415 } 7416 7417 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7418 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7419 nid, (PAGE_SIZE << order) / SZ_1M); 7420 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7421 hugetlb_cma_size_in_node[nid] = 0; 7422 } else { 7423 node_specific_cma_alloc = true; 7424 } 7425 } 7426 7427 /* Validate the CMA size again in case some invalid nodes specified. */ 7428 if (!hugetlb_cma_size) 7429 return; 7430 7431 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7432 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7433 (PAGE_SIZE << order) / SZ_1M); 7434 hugetlb_cma_size = 0; 7435 return; 7436 } 7437 7438 if (!node_specific_cma_alloc) { 7439 /* 7440 * If 3 GB area is requested on a machine with 4 numa nodes, 7441 * let's allocate 1 GB on first three nodes and ignore the last one. 7442 */ 7443 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7444 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7445 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7446 } 7447 7448 reserved = 0; 7449 for_each_online_node(nid) { 7450 int res; 7451 char name[CMA_MAX_NAME]; 7452 7453 if (node_specific_cma_alloc) { 7454 if (hugetlb_cma_size_in_node[nid] == 0) 7455 continue; 7456 7457 size = hugetlb_cma_size_in_node[nid]; 7458 } else { 7459 size = min(per_node, hugetlb_cma_size - reserved); 7460 } 7461 7462 size = round_up(size, PAGE_SIZE << order); 7463 7464 snprintf(name, sizeof(name), "hugetlb%d", nid); 7465 /* 7466 * Note that 'order per bit' is based on smallest size that 7467 * may be returned to CMA allocator in the case of 7468 * huge page demotion. 7469 */ 7470 res = cma_declare_contiguous_nid(0, size, 0, 7471 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7472 0, false, name, 7473 &hugetlb_cma[nid], nid); 7474 if (res) { 7475 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7476 res, nid); 7477 continue; 7478 } 7479 7480 reserved += size; 7481 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7482 size / SZ_1M, nid); 7483 7484 if (reserved >= hugetlb_cma_size) 7485 break; 7486 } 7487 7488 if (!reserved) 7489 /* 7490 * hugetlb_cma_size is used to determine if allocations from 7491 * cma are possible. Set to zero if no cma regions are set up. 7492 */ 7493 hugetlb_cma_size = 0; 7494 } 7495 7496 static void __init hugetlb_cma_check(void) 7497 { 7498 if (!hugetlb_cma_size || cma_reserve_called) 7499 return; 7500 7501 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7502 } 7503 7504 #endif /* CONFIG_CMA */ 7505