1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/mm.h> 8 #include <linux/seq_file.h> 9 #include <linux/sysctl.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/sched/signal.h> 22 #include <linux/rmap.h> 23 #include <linux/string_helpers.h> 24 #include <linux/swap.h> 25 #include <linux/swapops.h> 26 #include <linux/jhash.h> 27 28 #include <asm/page.h> 29 #include <asm/pgtable.h> 30 #include <asm/tlb.h> 31 32 #include <linux/io.h> 33 #include <linux/hugetlb.h> 34 #include <linux/hugetlb_cgroup.h> 35 #include <linux/node.h> 36 #include <linux/userfaultfd_k.h> 37 #include "internal.h" 38 39 int hugepages_treat_as_movable; 40 41 int hugetlb_max_hstate __read_mostly; 42 unsigned int default_hstate_idx; 43 struct hstate hstates[HUGE_MAX_HSTATE]; 44 /* 45 * Minimum page order among possible hugepage sizes, set to a proper value 46 * at boot time. 47 */ 48 static unsigned int minimum_order __read_mostly = UINT_MAX; 49 50 __initdata LIST_HEAD(huge_boot_pages); 51 52 /* for command line parsing */ 53 static struct hstate * __initdata parsed_hstate; 54 static unsigned long __initdata default_hstate_max_huge_pages; 55 static unsigned long __initdata default_hstate_size; 56 static bool __initdata parsed_valid_hugepagesz = true; 57 58 /* 59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 60 * free_huge_pages, and surplus_huge_pages. 61 */ 62 DEFINE_SPINLOCK(hugetlb_lock); 63 64 /* 65 * Serializes faults on the same logical page. This is used to 66 * prevent spurious OOMs when the hugepage pool is fully utilized. 67 */ 68 static int num_fault_mutexes; 69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 70 71 /* Forward declaration */ 72 static int hugetlb_acct_memory(struct hstate *h, long delta); 73 74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 75 { 76 bool free = (spool->count == 0) && (spool->used_hpages == 0); 77 78 spin_unlock(&spool->lock); 79 80 /* If no pages are used, and no other handles to the subpool 81 * remain, give up any reservations mased on minimum size and 82 * free the subpool */ 83 if (free) { 84 if (spool->min_hpages != -1) 85 hugetlb_acct_memory(spool->hstate, 86 -spool->min_hpages); 87 kfree(spool); 88 } 89 } 90 91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 92 long min_hpages) 93 { 94 struct hugepage_subpool *spool; 95 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 97 if (!spool) 98 return NULL; 99 100 spin_lock_init(&spool->lock); 101 spool->count = 1; 102 spool->max_hpages = max_hpages; 103 spool->hstate = h; 104 spool->min_hpages = min_hpages; 105 106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 107 kfree(spool); 108 return NULL; 109 } 110 spool->rsv_hpages = min_hpages; 111 112 return spool; 113 } 114 115 void hugepage_put_subpool(struct hugepage_subpool *spool) 116 { 117 spin_lock(&spool->lock); 118 BUG_ON(!spool->count); 119 spool->count--; 120 unlock_or_release_subpool(spool); 121 } 122 123 /* 124 * Subpool accounting for allocating and reserving pages. 125 * Return -ENOMEM if there are not enough resources to satisfy the 126 * the request. Otherwise, return the number of pages by which the 127 * global pools must be adjusted (upward). The returned value may 128 * only be different than the passed value (delta) in the case where 129 * a subpool minimum size must be manitained. 130 */ 131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 132 long delta) 133 { 134 long ret = delta; 135 136 if (!spool) 137 return ret; 138 139 spin_lock(&spool->lock); 140 141 if (spool->max_hpages != -1) { /* maximum size accounting */ 142 if ((spool->used_hpages + delta) <= spool->max_hpages) 143 spool->used_hpages += delta; 144 else { 145 ret = -ENOMEM; 146 goto unlock_ret; 147 } 148 } 149 150 /* minimum size accounting */ 151 if (spool->min_hpages != -1 && spool->rsv_hpages) { 152 if (delta > spool->rsv_hpages) { 153 /* 154 * Asking for more reserves than those already taken on 155 * behalf of subpool. Return difference. 156 */ 157 ret = delta - spool->rsv_hpages; 158 spool->rsv_hpages = 0; 159 } else { 160 ret = 0; /* reserves already accounted for */ 161 spool->rsv_hpages -= delta; 162 } 163 } 164 165 unlock_ret: 166 spin_unlock(&spool->lock); 167 return ret; 168 } 169 170 /* 171 * Subpool accounting for freeing and unreserving pages. 172 * Return the number of global page reservations that must be dropped. 173 * The return value may only be different than the passed value (delta) 174 * in the case where a subpool minimum size must be maintained. 175 */ 176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 177 long delta) 178 { 179 long ret = delta; 180 181 if (!spool) 182 return delta; 183 184 spin_lock(&spool->lock); 185 186 if (spool->max_hpages != -1) /* maximum size accounting */ 187 spool->used_hpages -= delta; 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 191 if (spool->rsv_hpages + delta <= spool->min_hpages) 192 ret = 0; 193 else 194 ret = spool->rsv_hpages + delta - spool->min_hpages; 195 196 spool->rsv_hpages += delta; 197 if (spool->rsv_hpages > spool->min_hpages) 198 spool->rsv_hpages = spool->min_hpages; 199 } 200 201 /* 202 * If hugetlbfs_put_super couldn't free spool due to an outstanding 203 * quota reference, free it now. 204 */ 205 unlock_or_release_subpool(spool); 206 207 return ret; 208 } 209 210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 211 { 212 return HUGETLBFS_SB(inode->i_sb)->spool; 213 } 214 215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 216 { 217 return subpool_inode(file_inode(vma->vm_file)); 218 } 219 220 /* 221 * Region tracking -- allows tracking of reservations and instantiated pages 222 * across the pages in a mapping. 223 * 224 * The region data structures are embedded into a resv_map and protected 225 * by a resv_map's lock. The set of regions within the resv_map represent 226 * reservations for huge pages, or huge pages that have already been 227 * instantiated within the map. The from and to elements are huge page 228 * indicies into the associated mapping. from indicates the starting index 229 * of the region. to represents the first index past the end of the region. 230 * 231 * For example, a file region structure with from == 0 and to == 4 represents 232 * four huge pages in a mapping. It is important to note that the to element 233 * represents the first element past the end of the region. This is used in 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 235 * 236 * Interval notation of the form [from, to) will be used to indicate that 237 * the endpoint from is inclusive and to is exclusive. 238 */ 239 struct file_region { 240 struct list_head link; 241 long from; 242 long to; 243 }; 244 245 /* 246 * Add the huge page range represented by [f, t) to the reserve 247 * map. In the normal case, existing regions will be expanded 248 * to accommodate the specified range. Sufficient regions should 249 * exist for expansion due to the previous call to region_chg 250 * with the same range. However, it is possible that region_del 251 * could have been called after region_chg and modifed the map 252 * in such a way that no region exists to be expanded. In this 253 * case, pull a region descriptor from the cache associated with 254 * the map and use that for the new range. 255 * 256 * Return the number of new huge pages added to the map. This 257 * number is greater than or equal to zero. 258 */ 259 static long region_add(struct resv_map *resv, long f, long t) 260 { 261 struct list_head *head = &resv->regions; 262 struct file_region *rg, *nrg, *trg; 263 long add = 0; 264 265 spin_lock(&resv->lock); 266 /* Locate the region we are either in or before. */ 267 list_for_each_entry(rg, head, link) 268 if (f <= rg->to) 269 break; 270 271 /* 272 * If no region exists which can be expanded to include the 273 * specified range, the list must have been modified by an 274 * interleving call to region_del(). Pull a region descriptor 275 * from the cache and use it for this range. 276 */ 277 if (&rg->link == head || t < rg->from) { 278 VM_BUG_ON(resv->region_cache_count <= 0); 279 280 resv->region_cache_count--; 281 nrg = list_first_entry(&resv->region_cache, struct file_region, 282 link); 283 list_del(&nrg->link); 284 285 nrg->from = f; 286 nrg->to = t; 287 list_add(&nrg->link, rg->link.prev); 288 289 add += t - f; 290 goto out_locked; 291 } 292 293 /* Round our left edge to the current segment if it encloses us. */ 294 if (f > rg->from) 295 f = rg->from; 296 297 /* Check for and consume any regions we now overlap with. */ 298 nrg = rg; 299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 300 if (&rg->link == head) 301 break; 302 if (rg->from > t) 303 break; 304 305 /* If this area reaches higher then extend our area to 306 * include it completely. If this is not the first area 307 * which we intend to reuse, free it. */ 308 if (rg->to > t) 309 t = rg->to; 310 if (rg != nrg) { 311 /* Decrement return value by the deleted range. 312 * Another range will span this area so that by 313 * end of routine add will be >= zero 314 */ 315 add -= (rg->to - rg->from); 316 list_del(&rg->link); 317 kfree(rg); 318 } 319 } 320 321 add += (nrg->from - f); /* Added to beginning of region */ 322 nrg->from = f; 323 add += t - nrg->to; /* Added to end of region */ 324 nrg->to = t; 325 326 out_locked: 327 resv->adds_in_progress--; 328 spin_unlock(&resv->lock); 329 VM_BUG_ON(add < 0); 330 return add; 331 } 332 333 /* 334 * Examine the existing reserve map and determine how many 335 * huge pages in the specified range [f, t) are NOT currently 336 * represented. This routine is called before a subsequent 337 * call to region_add that will actually modify the reserve 338 * map to add the specified range [f, t). region_chg does 339 * not change the number of huge pages represented by the 340 * map. However, if the existing regions in the map can not 341 * be expanded to represent the new range, a new file_region 342 * structure is added to the map as a placeholder. This is 343 * so that the subsequent region_add call will have all the 344 * regions it needs and will not fail. 345 * 346 * Upon entry, region_chg will also examine the cache of region descriptors 347 * associated with the map. If there are not enough descriptors cached, one 348 * will be allocated for the in progress add operation. 349 * 350 * Returns the number of huge pages that need to be added to the existing 351 * reservation map for the range [f, t). This number is greater or equal to 352 * zero. -ENOMEM is returned if a new file_region structure or cache entry 353 * is needed and can not be allocated. 354 */ 355 static long region_chg(struct resv_map *resv, long f, long t) 356 { 357 struct list_head *head = &resv->regions; 358 struct file_region *rg, *nrg = NULL; 359 long chg = 0; 360 361 retry: 362 spin_lock(&resv->lock); 363 retry_locked: 364 resv->adds_in_progress++; 365 366 /* 367 * Check for sufficient descriptors in the cache to accommodate 368 * the number of in progress add operations. 369 */ 370 if (resv->adds_in_progress > resv->region_cache_count) { 371 struct file_region *trg; 372 373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 374 /* Must drop lock to allocate a new descriptor. */ 375 resv->adds_in_progress--; 376 spin_unlock(&resv->lock); 377 378 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 379 if (!trg) { 380 kfree(nrg); 381 return -ENOMEM; 382 } 383 384 spin_lock(&resv->lock); 385 list_add(&trg->link, &resv->region_cache); 386 resv->region_cache_count++; 387 goto retry_locked; 388 } 389 390 /* Locate the region we are before or in. */ 391 list_for_each_entry(rg, head, link) 392 if (f <= rg->to) 393 break; 394 395 /* If we are below the current region then a new region is required. 396 * Subtle, allocate a new region at the position but make it zero 397 * size such that we can guarantee to record the reservation. */ 398 if (&rg->link == head || t < rg->from) { 399 if (!nrg) { 400 resv->adds_in_progress--; 401 spin_unlock(&resv->lock); 402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 403 if (!nrg) 404 return -ENOMEM; 405 406 nrg->from = f; 407 nrg->to = f; 408 INIT_LIST_HEAD(&nrg->link); 409 goto retry; 410 } 411 412 list_add(&nrg->link, rg->link.prev); 413 chg = t - f; 414 goto out_nrg; 415 } 416 417 /* Round our left edge to the current segment if it encloses us. */ 418 if (f > rg->from) 419 f = rg->from; 420 chg = t - f; 421 422 /* Check for and consume any regions we now overlap with. */ 423 list_for_each_entry(rg, rg->link.prev, link) { 424 if (&rg->link == head) 425 break; 426 if (rg->from > t) 427 goto out; 428 429 /* We overlap with this area, if it extends further than 430 * us then we must extend ourselves. Account for its 431 * existing reservation. */ 432 if (rg->to > t) { 433 chg += rg->to - t; 434 t = rg->to; 435 } 436 chg -= rg->to - rg->from; 437 } 438 439 out: 440 spin_unlock(&resv->lock); 441 /* We already know we raced and no longer need the new region */ 442 kfree(nrg); 443 return chg; 444 out_nrg: 445 spin_unlock(&resv->lock); 446 return chg; 447 } 448 449 /* 450 * Abort the in progress add operation. The adds_in_progress field 451 * of the resv_map keeps track of the operations in progress between 452 * calls to region_chg and region_add. Operations are sometimes 453 * aborted after the call to region_chg. In such cases, region_abort 454 * is called to decrement the adds_in_progress counter. 455 * 456 * NOTE: The range arguments [f, t) are not needed or used in this 457 * routine. They are kept to make reading the calling code easier as 458 * arguments will match the associated region_chg call. 459 */ 460 static void region_abort(struct resv_map *resv, long f, long t) 461 { 462 spin_lock(&resv->lock); 463 VM_BUG_ON(!resv->region_cache_count); 464 resv->adds_in_progress--; 465 spin_unlock(&resv->lock); 466 } 467 468 /* 469 * Delete the specified range [f, t) from the reserve map. If the 470 * t parameter is LONG_MAX, this indicates that ALL regions after f 471 * should be deleted. Locate the regions which intersect [f, t) 472 * and either trim, delete or split the existing regions. 473 * 474 * Returns the number of huge pages deleted from the reserve map. 475 * In the normal case, the return value is zero or more. In the 476 * case where a region must be split, a new region descriptor must 477 * be allocated. If the allocation fails, -ENOMEM will be returned. 478 * NOTE: If the parameter t == LONG_MAX, then we will never split 479 * a region and possibly return -ENOMEM. Callers specifying 480 * t == LONG_MAX do not need to check for -ENOMEM error. 481 */ 482 static long region_del(struct resv_map *resv, long f, long t) 483 { 484 struct list_head *head = &resv->regions; 485 struct file_region *rg, *trg; 486 struct file_region *nrg = NULL; 487 long del = 0; 488 489 retry: 490 spin_lock(&resv->lock); 491 list_for_each_entry_safe(rg, trg, head, link) { 492 /* 493 * Skip regions before the range to be deleted. file_region 494 * ranges are normally of the form [from, to). However, there 495 * may be a "placeholder" entry in the map which is of the form 496 * (from, to) with from == to. Check for placeholder entries 497 * at the beginning of the range to be deleted. 498 */ 499 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 500 continue; 501 502 if (rg->from >= t) 503 break; 504 505 if (f > rg->from && t < rg->to) { /* Must split region */ 506 /* 507 * Check for an entry in the cache before dropping 508 * lock and attempting allocation. 509 */ 510 if (!nrg && 511 resv->region_cache_count > resv->adds_in_progress) { 512 nrg = list_first_entry(&resv->region_cache, 513 struct file_region, 514 link); 515 list_del(&nrg->link); 516 resv->region_cache_count--; 517 } 518 519 if (!nrg) { 520 spin_unlock(&resv->lock); 521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 522 if (!nrg) 523 return -ENOMEM; 524 goto retry; 525 } 526 527 del += t - f; 528 529 /* New entry for end of split region */ 530 nrg->from = t; 531 nrg->to = rg->to; 532 INIT_LIST_HEAD(&nrg->link); 533 534 /* Original entry is trimmed */ 535 rg->to = f; 536 537 list_add(&nrg->link, &rg->link); 538 nrg = NULL; 539 break; 540 } 541 542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 543 del += rg->to - rg->from; 544 list_del(&rg->link); 545 kfree(rg); 546 continue; 547 } 548 549 if (f <= rg->from) { /* Trim beginning of region */ 550 del += t - rg->from; 551 rg->from = t; 552 } else { /* Trim end of region */ 553 del += rg->to - f; 554 rg->to = f; 555 } 556 } 557 558 spin_unlock(&resv->lock); 559 kfree(nrg); 560 return del; 561 } 562 563 /* 564 * A rare out of memory error was encountered which prevented removal of 565 * the reserve map region for a page. The huge page itself was free'ed 566 * and removed from the page cache. This routine will adjust the subpool 567 * usage count, and the global reserve count if needed. By incrementing 568 * these counts, the reserve map entry which could not be deleted will 569 * appear as a "reserved" entry instead of simply dangling with incorrect 570 * counts. 571 */ 572 void hugetlb_fix_reserve_counts(struct inode *inode) 573 { 574 struct hugepage_subpool *spool = subpool_inode(inode); 575 long rsv_adjust; 576 577 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 578 if (rsv_adjust) { 579 struct hstate *h = hstate_inode(inode); 580 581 hugetlb_acct_memory(h, 1); 582 } 583 } 584 585 /* 586 * Count and return the number of huge pages in the reserve map 587 * that intersect with the range [f, t). 588 */ 589 static long region_count(struct resv_map *resv, long f, long t) 590 { 591 struct list_head *head = &resv->regions; 592 struct file_region *rg; 593 long chg = 0; 594 595 spin_lock(&resv->lock); 596 /* Locate each segment we overlap with, and count that overlap. */ 597 list_for_each_entry(rg, head, link) { 598 long seg_from; 599 long seg_to; 600 601 if (rg->to <= f) 602 continue; 603 if (rg->from >= t) 604 break; 605 606 seg_from = max(rg->from, f); 607 seg_to = min(rg->to, t); 608 609 chg += seg_to - seg_from; 610 } 611 spin_unlock(&resv->lock); 612 613 return chg; 614 } 615 616 /* 617 * Convert the address within this vma to the page offset within 618 * the mapping, in pagecache page units; huge pages here. 619 */ 620 static pgoff_t vma_hugecache_offset(struct hstate *h, 621 struct vm_area_struct *vma, unsigned long address) 622 { 623 return ((address - vma->vm_start) >> huge_page_shift(h)) + 624 (vma->vm_pgoff >> huge_page_order(h)); 625 } 626 627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 628 unsigned long address) 629 { 630 return vma_hugecache_offset(hstate_vma(vma), vma, address); 631 } 632 EXPORT_SYMBOL_GPL(linear_hugepage_index); 633 634 /* 635 * Return the size of the pages allocated when backing a VMA. In the majority 636 * cases this will be same size as used by the page table entries. 637 */ 638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 639 { 640 struct hstate *hstate; 641 642 if (!is_vm_hugetlb_page(vma)) 643 return PAGE_SIZE; 644 645 hstate = hstate_vma(vma); 646 647 return 1UL << huge_page_shift(hstate); 648 } 649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 650 651 /* 652 * Return the page size being used by the MMU to back a VMA. In the majority 653 * of cases, the page size used by the kernel matches the MMU size. On 654 * architectures where it differs, an architecture-specific version of this 655 * function is required. 656 */ 657 #ifndef vma_mmu_pagesize 658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 659 { 660 return vma_kernel_pagesize(vma); 661 } 662 #endif 663 664 /* 665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 666 * bits of the reservation map pointer, which are always clear due to 667 * alignment. 668 */ 669 #define HPAGE_RESV_OWNER (1UL << 0) 670 #define HPAGE_RESV_UNMAPPED (1UL << 1) 671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 672 673 /* 674 * These helpers are used to track how many pages are reserved for 675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 676 * is guaranteed to have their future faults succeed. 677 * 678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 679 * the reserve counters are updated with the hugetlb_lock held. It is safe 680 * to reset the VMA at fork() time as it is not in use yet and there is no 681 * chance of the global counters getting corrupted as a result of the values. 682 * 683 * The private mapping reservation is represented in a subtly different 684 * manner to a shared mapping. A shared mapping has a region map associated 685 * with the underlying file, this region map represents the backing file 686 * pages which have ever had a reservation assigned which this persists even 687 * after the page is instantiated. A private mapping has a region map 688 * associated with the original mmap which is attached to all VMAs which 689 * reference it, this region map represents those offsets which have consumed 690 * reservation ie. where pages have been instantiated. 691 */ 692 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 693 { 694 return (unsigned long)vma->vm_private_data; 695 } 696 697 static void set_vma_private_data(struct vm_area_struct *vma, 698 unsigned long value) 699 { 700 vma->vm_private_data = (void *)value; 701 } 702 703 struct resv_map *resv_map_alloc(void) 704 { 705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 707 708 if (!resv_map || !rg) { 709 kfree(resv_map); 710 kfree(rg); 711 return NULL; 712 } 713 714 kref_init(&resv_map->refs); 715 spin_lock_init(&resv_map->lock); 716 INIT_LIST_HEAD(&resv_map->regions); 717 718 resv_map->adds_in_progress = 0; 719 720 INIT_LIST_HEAD(&resv_map->region_cache); 721 list_add(&rg->link, &resv_map->region_cache); 722 resv_map->region_cache_count = 1; 723 724 return resv_map; 725 } 726 727 void resv_map_release(struct kref *ref) 728 { 729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 730 struct list_head *head = &resv_map->region_cache; 731 struct file_region *rg, *trg; 732 733 /* Clear out any active regions before we release the map. */ 734 region_del(resv_map, 0, LONG_MAX); 735 736 /* ... and any entries left in the cache */ 737 list_for_each_entry_safe(rg, trg, head, link) { 738 list_del(&rg->link); 739 kfree(rg); 740 } 741 742 VM_BUG_ON(resv_map->adds_in_progress); 743 744 kfree(resv_map); 745 } 746 747 static inline struct resv_map *inode_resv_map(struct inode *inode) 748 { 749 return inode->i_mapping->private_data; 750 } 751 752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 753 { 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 755 if (vma->vm_flags & VM_MAYSHARE) { 756 struct address_space *mapping = vma->vm_file->f_mapping; 757 struct inode *inode = mapping->host; 758 759 return inode_resv_map(inode); 760 761 } else { 762 return (struct resv_map *)(get_vma_private_data(vma) & 763 ~HPAGE_RESV_MASK); 764 } 765 } 766 767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 768 { 769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 771 772 set_vma_private_data(vma, (get_vma_private_data(vma) & 773 HPAGE_RESV_MASK) | (unsigned long)map); 774 } 775 776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 777 { 778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 780 781 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 782 } 783 784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 785 { 786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 787 788 return (get_vma_private_data(vma) & flag) != 0; 789 } 790 791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 793 { 794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 795 if (!(vma->vm_flags & VM_MAYSHARE)) 796 vma->vm_private_data = (void *)0; 797 } 798 799 /* Returns true if the VMA has associated reserve pages */ 800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 801 { 802 if (vma->vm_flags & VM_NORESERVE) { 803 /* 804 * This address is already reserved by other process(chg == 0), 805 * so, we should decrement reserved count. Without decrementing, 806 * reserve count remains after releasing inode, because this 807 * allocated page will go into page cache and is regarded as 808 * coming from reserved pool in releasing step. Currently, we 809 * don't have any other solution to deal with this situation 810 * properly, so add work-around here. 811 */ 812 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 813 return true; 814 else 815 return false; 816 } 817 818 /* Shared mappings always use reserves */ 819 if (vma->vm_flags & VM_MAYSHARE) { 820 /* 821 * We know VM_NORESERVE is not set. Therefore, there SHOULD 822 * be a region map for all pages. The only situation where 823 * there is no region map is if a hole was punched via 824 * fallocate. In this case, there really are no reverves to 825 * use. This situation is indicated if chg != 0. 826 */ 827 if (chg) 828 return false; 829 else 830 return true; 831 } 832 833 /* 834 * Only the process that called mmap() has reserves for 835 * private mappings. 836 */ 837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 838 /* 839 * Like the shared case above, a hole punch or truncate 840 * could have been performed on the private mapping. 841 * Examine the value of chg to determine if reserves 842 * actually exist or were previously consumed. 843 * Very Subtle - The value of chg comes from a previous 844 * call to vma_needs_reserves(). The reserve map for 845 * private mappings has different (opposite) semantics 846 * than that of shared mappings. vma_needs_reserves() 847 * has already taken this difference in semantics into 848 * account. Therefore, the meaning of chg is the same 849 * as in the shared case above. Code could easily be 850 * combined, but keeping it separate draws attention to 851 * subtle differences. 852 */ 853 if (chg) 854 return false; 855 else 856 return true; 857 } 858 859 return false; 860 } 861 862 static void enqueue_huge_page(struct hstate *h, struct page *page) 863 { 864 int nid = page_to_nid(page); 865 list_move(&page->lru, &h->hugepage_freelists[nid]); 866 h->free_huge_pages++; 867 h->free_huge_pages_node[nid]++; 868 } 869 870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 871 { 872 struct page *page; 873 874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 875 if (!PageHWPoison(page)) 876 break; 877 /* 878 * if 'non-isolated free hugepage' not found on the list, 879 * the allocation fails. 880 */ 881 if (&h->hugepage_freelists[nid] == &page->lru) 882 return NULL; 883 list_move(&page->lru, &h->hugepage_activelist); 884 set_page_refcounted(page); 885 h->free_huge_pages--; 886 h->free_huge_pages_node[nid]--; 887 return page; 888 } 889 890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 891 nodemask_t *nmask) 892 { 893 unsigned int cpuset_mems_cookie; 894 struct zonelist *zonelist; 895 struct zone *zone; 896 struct zoneref *z; 897 int node = -1; 898 899 zonelist = node_zonelist(nid, gfp_mask); 900 901 retry_cpuset: 902 cpuset_mems_cookie = read_mems_allowed_begin(); 903 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 904 struct page *page; 905 906 if (!cpuset_zone_allowed(zone, gfp_mask)) 907 continue; 908 /* 909 * no need to ask again on the same node. Pool is node rather than 910 * zone aware 911 */ 912 if (zone_to_nid(zone) == node) 913 continue; 914 node = zone_to_nid(zone); 915 916 page = dequeue_huge_page_node_exact(h, node); 917 if (page) 918 return page; 919 } 920 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 921 goto retry_cpuset; 922 923 return NULL; 924 } 925 926 /* Movability of hugepages depends on migration support. */ 927 static inline gfp_t htlb_alloc_mask(struct hstate *h) 928 { 929 if (hugepages_treat_as_movable || hugepage_migration_supported(h)) 930 return GFP_HIGHUSER_MOVABLE; 931 else 932 return GFP_HIGHUSER; 933 } 934 935 static struct page *dequeue_huge_page_vma(struct hstate *h, 936 struct vm_area_struct *vma, 937 unsigned long address, int avoid_reserve, 938 long chg) 939 { 940 struct page *page; 941 struct mempolicy *mpol; 942 gfp_t gfp_mask; 943 nodemask_t *nodemask; 944 int nid; 945 946 /* 947 * A child process with MAP_PRIVATE mappings created by their parent 948 * have no page reserves. This check ensures that reservations are 949 * not "stolen". The child may still get SIGKILLed 950 */ 951 if (!vma_has_reserves(vma, chg) && 952 h->free_huge_pages - h->resv_huge_pages == 0) 953 goto err; 954 955 /* If reserves cannot be used, ensure enough pages are in the pool */ 956 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 957 goto err; 958 959 gfp_mask = htlb_alloc_mask(h); 960 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 961 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 962 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 963 SetPagePrivate(page); 964 h->resv_huge_pages--; 965 } 966 967 mpol_cond_put(mpol); 968 return page; 969 970 err: 971 return NULL; 972 } 973 974 /* 975 * common helper functions for hstate_next_node_to_{alloc|free}. 976 * We may have allocated or freed a huge page based on a different 977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 978 * be outside of *nodes_allowed. Ensure that we use an allowed 979 * node for alloc or free. 980 */ 981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 982 { 983 nid = next_node_in(nid, *nodes_allowed); 984 VM_BUG_ON(nid >= MAX_NUMNODES); 985 986 return nid; 987 } 988 989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 990 { 991 if (!node_isset(nid, *nodes_allowed)) 992 nid = next_node_allowed(nid, nodes_allowed); 993 return nid; 994 } 995 996 /* 997 * returns the previously saved node ["this node"] from which to 998 * allocate a persistent huge page for the pool and advance the 999 * next node from which to allocate, handling wrap at end of node 1000 * mask. 1001 */ 1002 static int hstate_next_node_to_alloc(struct hstate *h, 1003 nodemask_t *nodes_allowed) 1004 { 1005 int nid; 1006 1007 VM_BUG_ON(!nodes_allowed); 1008 1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1011 1012 return nid; 1013 } 1014 1015 /* 1016 * helper for free_pool_huge_page() - return the previously saved 1017 * node ["this node"] from which to free a huge page. Advance the 1018 * next node id whether or not we find a free huge page to free so 1019 * that the next attempt to free addresses the next node. 1020 */ 1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1022 { 1023 int nid; 1024 1025 VM_BUG_ON(!nodes_allowed); 1026 1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1029 1030 return nid; 1031 } 1032 1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1034 for (nr_nodes = nodes_weight(*mask); \ 1035 nr_nodes > 0 && \ 1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1037 nr_nodes--) 1038 1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1040 for (nr_nodes = nodes_weight(*mask); \ 1041 nr_nodes > 0 && \ 1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1043 nr_nodes--) 1044 1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1046 static void destroy_compound_gigantic_page(struct page *page, 1047 unsigned int order) 1048 { 1049 int i; 1050 int nr_pages = 1 << order; 1051 struct page *p = page + 1; 1052 1053 atomic_set(compound_mapcount_ptr(page), 0); 1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1055 clear_compound_head(p); 1056 set_page_refcounted(p); 1057 } 1058 1059 set_compound_order(page, 0); 1060 __ClearPageHead(page); 1061 } 1062 1063 static void free_gigantic_page(struct page *page, unsigned int order) 1064 { 1065 free_contig_range(page_to_pfn(page), 1 << order); 1066 } 1067 1068 static int __alloc_gigantic_page(unsigned long start_pfn, 1069 unsigned long nr_pages, gfp_t gfp_mask) 1070 { 1071 unsigned long end_pfn = start_pfn + nr_pages; 1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1073 gfp_mask); 1074 } 1075 1076 static bool pfn_range_valid_gigantic(struct zone *z, 1077 unsigned long start_pfn, unsigned long nr_pages) 1078 { 1079 unsigned long i, end_pfn = start_pfn + nr_pages; 1080 struct page *page; 1081 1082 for (i = start_pfn; i < end_pfn; i++) { 1083 if (!pfn_valid(i)) 1084 return false; 1085 1086 page = pfn_to_page(i); 1087 1088 if (page_zone(page) != z) 1089 return false; 1090 1091 if (PageReserved(page)) 1092 return false; 1093 1094 if (page_count(page) > 0) 1095 return false; 1096 1097 if (PageHuge(page)) 1098 return false; 1099 } 1100 1101 return true; 1102 } 1103 1104 static bool zone_spans_last_pfn(const struct zone *zone, 1105 unsigned long start_pfn, unsigned long nr_pages) 1106 { 1107 unsigned long last_pfn = start_pfn + nr_pages - 1; 1108 return zone_spans_pfn(zone, last_pfn); 1109 } 1110 1111 static struct page *alloc_gigantic_page(int nid, struct hstate *h) 1112 { 1113 unsigned int order = huge_page_order(h); 1114 unsigned long nr_pages = 1 << order; 1115 unsigned long ret, pfn, flags; 1116 struct zonelist *zonelist; 1117 struct zone *zone; 1118 struct zoneref *z; 1119 gfp_t gfp_mask; 1120 1121 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1122 zonelist = node_zonelist(nid, gfp_mask); 1123 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) { 1124 spin_lock_irqsave(&zone->lock, flags); 1125 1126 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1127 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1128 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1129 /* 1130 * We release the zone lock here because 1131 * alloc_contig_range() will also lock the zone 1132 * at some point. If there's an allocation 1133 * spinning on this lock, it may win the race 1134 * and cause alloc_contig_range() to fail... 1135 */ 1136 spin_unlock_irqrestore(&zone->lock, flags); 1137 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1138 if (!ret) 1139 return pfn_to_page(pfn); 1140 spin_lock_irqsave(&zone->lock, flags); 1141 } 1142 pfn += nr_pages; 1143 } 1144 1145 spin_unlock_irqrestore(&zone->lock, flags); 1146 } 1147 1148 return NULL; 1149 } 1150 1151 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1152 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1153 1154 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) 1155 { 1156 struct page *page; 1157 1158 page = alloc_gigantic_page(nid, h); 1159 if (page) { 1160 prep_compound_gigantic_page(page, huge_page_order(h)); 1161 prep_new_huge_page(h, page, nid); 1162 } 1163 1164 return page; 1165 } 1166 1167 static int alloc_fresh_gigantic_page(struct hstate *h, 1168 nodemask_t *nodes_allowed) 1169 { 1170 struct page *page = NULL; 1171 int nr_nodes, node; 1172 1173 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1174 page = alloc_fresh_gigantic_page_node(h, node); 1175 if (page) 1176 return 1; 1177 } 1178 1179 return 0; 1180 } 1181 1182 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1183 static inline bool gigantic_page_supported(void) { return false; } 1184 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1185 static inline void destroy_compound_gigantic_page(struct page *page, 1186 unsigned int order) { } 1187 static inline int alloc_fresh_gigantic_page(struct hstate *h, 1188 nodemask_t *nodes_allowed) { return 0; } 1189 #endif 1190 1191 static void update_and_free_page(struct hstate *h, struct page *page) 1192 { 1193 int i; 1194 1195 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1196 return; 1197 1198 h->nr_huge_pages--; 1199 h->nr_huge_pages_node[page_to_nid(page)]--; 1200 for (i = 0; i < pages_per_huge_page(h); i++) { 1201 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1202 1 << PG_referenced | 1 << PG_dirty | 1203 1 << PG_active | 1 << PG_private | 1204 1 << PG_writeback); 1205 } 1206 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1207 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1208 set_page_refcounted(page); 1209 if (hstate_is_gigantic(h)) { 1210 destroy_compound_gigantic_page(page, huge_page_order(h)); 1211 free_gigantic_page(page, huge_page_order(h)); 1212 } else { 1213 __free_pages(page, huge_page_order(h)); 1214 } 1215 } 1216 1217 struct hstate *size_to_hstate(unsigned long size) 1218 { 1219 struct hstate *h; 1220 1221 for_each_hstate(h) { 1222 if (huge_page_size(h) == size) 1223 return h; 1224 } 1225 return NULL; 1226 } 1227 1228 /* 1229 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1230 * to hstate->hugepage_activelist.) 1231 * 1232 * This function can be called for tail pages, but never returns true for them. 1233 */ 1234 bool page_huge_active(struct page *page) 1235 { 1236 VM_BUG_ON_PAGE(!PageHuge(page), page); 1237 return PageHead(page) && PagePrivate(&page[1]); 1238 } 1239 1240 /* never called for tail page */ 1241 static void set_page_huge_active(struct page *page) 1242 { 1243 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1244 SetPagePrivate(&page[1]); 1245 } 1246 1247 static void clear_page_huge_active(struct page *page) 1248 { 1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1250 ClearPagePrivate(&page[1]); 1251 } 1252 1253 void free_huge_page(struct page *page) 1254 { 1255 /* 1256 * Can't pass hstate in here because it is called from the 1257 * compound page destructor. 1258 */ 1259 struct hstate *h = page_hstate(page); 1260 int nid = page_to_nid(page); 1261 struct hugepage_subpool *spool = 1262 (struct hugepage_subpool *)page_private(page); 1263 bool restore_reserve; 1264 1265 set_page_private(page, 0); 1266 page->mapping = NULL; 1267 VM_BUG_ON_PAGE(page_count(page), page); 1268 VM_BUG_ON_PAGE(page_mapcount(page), page); 1269 restore_reserve = PagePrivate(page); 1270 ClearPagePrivate(page); 1271 1272 /* 1273 * A return code of zero implies that the subpool will be under its 1274 * minimum size if the reservation is not restored after page is free. 1275 * Therefore, force restore_reserve operation. 1276 */ 1277 if (hugepage_subpool_put_pages(spool, 1) == 0) 1278 restore_reserve = true; 1279 1280 spin_lock(&hugetlb_lock); 1281 clear_page_huge_active(page); 1282 hugetlb_cgroup_uncharge_page(hstate_index(h), 1283 pages_per_huge_page(h), page); 1284 if (restore_reserve) 1285 h->resv_huge_pages++; 1286 1287 if (h->surplus_huge_pages_node[nid]) { 1288 /* remove the page from active list */ 1289 list_del(&page->lru); 1290 update_and_free_page(h, page); 1291 h->surplus_huge_pages--; 1292 h->surplus_huge_pages_node[nid]--; 1293 } else { 1294 arch_clear_hugepage_flags(page); 1295 enqueue_huge_page(h, page); 1296 } 1297 spin_unlock(&hugetlb_lock); 1298 } 1299 1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1301 { 1302 INIT_LIST_HEAD(&page->lru); 1303 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1304 spin_lock(&hugetlb_lock); 1305 set_hugetlb_cgroup(page, NULL); 1306 h->nr_huge_pages++; 1307 h->nr_huge_pages_node[nid]++; 1308 spin_unlock(&hugetlb_lock); 1309 put_page(page); /* free it into the hugepage allocator */ 1310 } 1311 1312 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1313 { 1314 int i; 1315 int nr_pages = 1 << order; 1316 struct page *p = page + 1; 1317 1318 /* we rely on prep_new_huge_page to set the destructor */ 1319 set_compound_order(page, order); 1320 __ClearPageReserved(page); 1321 __SetPageHead(page); 1322 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1323 /* 1324 * For gigantic hugepages allocated through bootmem at 1325 * boot, it's safer to be consistent with the not-gigantic 1326 * hugepages and clear the PG_reserved bit from all tail pages 1327 * too. Otherwse drivers using get_user_pages() to access tail 1328 * pages may get the reference counting wrong if they see 1329 * PG_reserved set on a tail page (despite the head page not 1330 * having PG_reserved set). Enforcing this consistency between 1331 * head and tail pages allows drivers to optimize away a check 1332 * on the head page when they need know if put_page() is needed 1333 * after get_user_pages(). 1334 */ 1335 __ClearPageReserved(p); 1336 set_page_count(p, 0); 1337 set_compound_head(p, page); 1338 } 1339 atomic_set(compound_mapcount_ptr(page), -1); 1340 } 1341 1342 /* 1343 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1344 * transparent huge pages. See the PageTransHuge() documentation for more 1345 * details. 1346 */ 1347 int PageHuge(struct page *page) 1348 { 1349 if (!PageCompound(page)) 1350 return 0; 1351 1352 page = compound_head(page); 1353 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1354 } 1355 EXPORT_SYMBOL_GPL(PageHuge); 1356 1357 /* 1358 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1359 * normal or transparent huge pages. 1360 */ 1361 int PageHeadHuge(struct page *page_head) 1362 { 1363 if (!PageHead(page_head)) 1364 return 0; 1365 1366 return get_compound_page_dtor(page_head) == free_huge_page; 1367 } 1368 1369 pgoff_t __basepage_index(struct page *page) 1370 { 1371 struct page *page_head = compound_head(page); 1372 pgoff_t index = page_index(page_head); 1373 unsigned long compound_idx; 1374 1375 if (!PageHuge(page_head)) 1376 return page_index(page); 1377 1378 if (compound_order(page_head) >= MAX_ORDER) 1379 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1380 else 1381 compound_idx = page - page_head; 1382 1383 return (index << compound_order(page_head)) + compound_idx; 1384 } 1385 1386 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 1387 { 1388 struct page *page; 1389 1390 page = __alloc_pages_node(nid, 1391 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| 1392 __GFP_RETRY_MAYFAIL|__GFP_NOWARN, 1393 huge_page_order(h)); 1394 if (page) { 1395 prep_new_huge_page(h, page, nid); 1396 } 1397 1398 return page; 1399 } 1400 1401 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1402 { 1403 struct page *page; 1404 int nr_nodes, node; 1405 int ret = 0; 1406 1407 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1408 page = alloc_fresh_huge_page_node(h, node); 1409 if (page) { 1410 ret = 1; 1411 break; 1412 } 1413 } 1414 1415 if (ret) 1416 count_vm_event(HTLB_BUDDY_PGALLOC); 1417 else 1418 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1419 1420 return ret; 1421 } 1422 1423 /* 1424 * Free huge page from pool from next node to free. 1425 * Attempt to keep persistent huge pages more or less 1426 * balanced over allowed nodes. 1427 * Called with hugetlb_lock locked. 1428 */ 1429 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1430 bool acct_surplus) 1431 { 1432 int nr_nodes, node; 1433 int ret = 0; 1434 1435 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1436 /* 1437 * If we're returning unused surplus pages, only examine 1438 * nodes with surplus pages. 1439 */ 1440 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1441 !list_empty(&h->hugepage_freelists[node])) { 1442 struct page *page = 1443 list_entry(h->hugepage_freelists[node].next, 1444 struct page, lru); 1445 list_del(&page->lru); 1446 h->free_huge_pages--; 1447 h->free_huge_pages_node[node]--; 1448 if (acct_surplus) { 1449 h->surplus_huge_pages--; 1450 h->surplus_huge_pages_node[node]--; 1451 } 1452 update_and_free_page(h, page); 1453 ret = 1; 1454 break; 1455 } 1456 } 1457 1458 return ret; 1459 } 1460 1461 /* 1462 * Dissolve a given free hugepage into free buddy pages. This function does 1463 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1464 * number of free hugepages would be reduced below the number of reserved 1465 * hugepages. 1466 */ 1467 int dissolve_free_huge_page(struct page *page) 1468 { 1469 int rc = 0; 1470 1471 spin_lock(&hugetlb_lock); 1472 if (PageHuge(page) && !page_count(page)) { 1473 struct page *head = compound_head(page); 1474 struct hstate *h = page_hstate(head); 1475 int nid = page_to_nid(head); 1476 if (h->free_huge_pages - h->resv_huge_pages == 0) { 1477 rc = -EBUSY; 1478 goto out; 1479 } 1480 /* 1481 * Move PageHWPoison flag from head page to the raw error page, 1482 * which makes any subpages rather than the error page reusable. 1483 */ 1484 if (PageHWPoison(head) && page != head) { 1485 SetPageHWPoison(page); 1486 ClearPageHWPoison(head); 1487 } 1488 list_del(&head->lru); 1489 h->free_huge_pages--; 1490 h->free_huge_pages_node[nid]--; 1491 h->max_huge_pages--; 1492 update_and_free_page(h, head); 1493 } 1494 out: 1495 spin_unlock(&hugetlb_lock); 1496 return rc; 1497 } 1498 1499 /* 1500 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1501 * make specified memory blocks removable from the system. 1502 * Note that this will dissolve a free gigantic hugepage completely, if any 1503 * part of it lies within the given range. 1504 * Also note that if dissolve_free_huge_page() returns with an error, all 1505 * free hugepages that were dissolved before that error are lost. 1506 */ 1507 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1508 { 1509 unsigned long pfn; 1510 struct page *page; 1511 int rc = 0; 1512 1513 if (!hugepages_supported()) 1514 return rc; 1515 1516 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1517 page = pfn_to_page(pfn); 1518 if (PageHuge(page) && !page_count(page)) { 1519 rc = dissolve_free_huge_page(page); 1520 if (rc) 1521 break; 1522 } 1523 } 1524 1525 return rc; 1526 } 1527 1528 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h, 1529 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1530 { 1531 int order = huge_page_order(h); 1532 1533 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1534 if (nid == NUMA_NO_NODE) 1535 nid = numa_mem_id(); 1536 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1537 } 1538 1539 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask, 1540 int nid, nodemask_t *nmask) 1541 { 1542 struct page *page; 1543 unsigned int r_nid; 1544 1545 if (hstate_is_gigantic(h)) 1546 return NULL; 1547 1548 /* 1549 * Assume we will successfully allocate the surplus page to 1550 * prevent racing processes from causing the surplus to exceed 1551 * overcommit 1552 * 1553 * This however introduces a different race, where a process B 1554 * tries to grow the static hugepage pool while alloc_pages() is 1555 * called by process A. B will only examine the per-node 1556 * counters in determining if surplus huge pages can be 1557 * converted to normal huge pages in adjust_pool_surplus(). A 1558 * won't be able to increment the per-node counter, until the 1559 * lock is dropped by B, but B doesn't drop hugetlb_lock until 1560 * no more huge pages can be converted from surplus to normal 1561 * state (and doesn't try to convert again). Thus, we have a 1562 * case where a surplus huge page exists, the pool is grown, and 1563 * the surplus huge page still exists after, even though it 1564 * should just have been converted to a normal huge page. This 1565 * does not leak memory, though, as the hugepage will be freed 1566 * once it is out of use. It also does not allow the counters to 1567 * go out of whack in adjust_pool_surplus() as we don't modify 1568 * the node values until we've gotten the hugepage and only the 1569 * per-node value is checked there. 1570 */ 1571 spin_lock(&hugetlb_lock); 1572 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1573 spin_unlock(&hugetlb_lock); 1574 return NULL; 1575 } else { 1576 h->nr_huge_pages++; 1577 h->surplus_huge_pages++; 1578 } 1579 spin_unlock(&hugetlb_lock); 1580 1581 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask); 1582 1583 spin_lock(&hugetlb_lock); 1584 if (page) { 1585 INIT_LIST_HEAD(&page->lru); 1586 r_nid = page_to_nid(page); 1587 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1588 set_hugetlb_cgroup(page, NULL); 1589 /* 1590 * We incremented the global counters already 1591 */ 1592 h->nr_huge_pages_node[r_nid]++; 1593 h->surplus_huge_pages_node[r_nid]++; 1594 __count_vm_event(HTLB_BUDDY_PGALLOC); 1595 } else { 1596 h->nr_huge_pages--; 1597 h->surplus_huge_pages--; 1598 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1599 } 1600 spin_unlock(&hugetlb_lock); 1601 1602 return page; 1603 } 1604 1605 /* 1606 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1607 */ 1608 static 1609 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h, 1610 struct vm_area_struct *vma, unsigned long addr) 1611 { 1612 struct page *page; 1613 struct mempolicy *mpol; 1614 gfp_t gfp_mask = htlb_alloc_mask(h); 1615 int nid; 1616 nodemask_t *nodemask; 1617 1618 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1619 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask); 1620 mpol_cond_put(mpol); 1621 1622 return page; 1623 } 1624 1625 /* 1626 * This allocation function is useful in the context where vma is irrelevant. 1627 * E.g. soft-offlining uses this function because it only cares physical 1628 * address of error page. 1629 */ 1630 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1631 { 1632 gfp_t gfp_mask = htlb_alloc_mask(h); 1633 struct page *page = NULL; 1634 1635 if (nid != NUMA_NO_NODE) 1636 gfp_mask |= __GFP_THISNODE; 1637 1638 spin_lock(&hugetlb_lock); 1639 if (h->free_huge_pages - h->resv_huge_pages > 0) 1640 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1641 spin_unlock(&hugetlb_lock); 1642 1643 if (!page) 1644 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL); 1645 1646 return page; 1647 } 1648 1649 1650 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1651 nodemask_t *nmask) 1652 { 1653 gfp_t gfp_mask = htlb_alloc_mask(h); 1654 1655 spin_lock(&hugetlb_lock); 1656 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1657 struct page *page; 1658 1659 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1660 if (page) { 1661 spin_unlock(&hugetlb_lock); 1662 return page; 1663 } 1664 } 1665 spin_unlock(&hugetlb_lock); 1666 1667 /* No reservations, try to overcommit */ 1668 1669 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask); 1670 } 1671 1672 /* 1673 * Increase the hugetlb pool such that it can accommodate a reservation 1674 * of size 'delta'. 1675 */ 1676 static int gather_surplus_pages(struct hstate *h, int delta) 1677 { 1678 struct list_head surplus_list; 1679 struct page *page, *tmp; 1680 int ret, i; 1681 int needed, allocated; 1682 bool alloc_ok = true; 1683 1684 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1685 if (needed <= 0) { 1686 h->resv_huge_pages += delta; 1687 return 0; 1688 } 1689 1690 allocated = 0; 1691 INIT_LIST_HEAD(&surplus_list); 1692 1693 ret = -ENOMEM; 1694 retry: 1695 spin_unlock(&hugetlb_lock); 1696 for (i = 0; i < needed; i++) { 1697 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h), 1698 NUMA_NO_NODE, NULL); 1699 if (!page) { 1700 alloc_ok = false; 1701 break; 1702 } 1703 list_add(&page->lru, &surplus_list); 1704 cond_resched(); 1705 } 1706 allocated += i; 1707 1708 /* 1709 * After retaking hugetlb_lock, we need to recalculate 'needed' 1710 * because either resv_huge_pages or free_huge_pages may have changed. 1711 */ 1712 spin_lock(&hugetlb_lock); 1713 needed = (h->resv_huge_pages + delta) - 1714 (h->free_huge_pages + allocated); 1715 if (needed > 0) { 1716 if (alloc_ok) 1717 goto retry; 1718 /* 1719 * We were not able to allocate enough pages to 1720 * satisfy the entire reservation so we free what 1721 * we've allocated so far. 1722 */ 1723 goto free; 1724 } 1725 /* 1726 * The surplus_list now contains _at_least_ the number of extra pages 1727 * needed to accommodate the reservation. Add the appropriate number 1728 * of pages to the hugetlb pool and free the extras back to the buddy 1729 * allocator. Commit the entire reservation here to prevent another 1730 * process from stealing the pages as they are added to the pool but 1731 * before they are reserved. 1732 */ 1733 needed += allocated; 1734 h->resv_huge_pages += delta; 1735 ret = 0; 1736 1737 /* Free the needed pages to the hugetlb pool */ 1738 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1739 if ((--needed) < 0) 1740 break; 1741 /* 1742 * This page is now managed by the hugetlb allocator and has 1743 * no users -- drop the buddy allocator's reference. 1744 */ 1745 put_page_testzero(page); 1746 VM_BUG_ON_PAGE(page_count(page), page); 1747 enqueue_huge_page(h, page); 1748 } 1749 free: 1750 spin_unlock(&hugetlb_lock); 1751 1752 /* Free unnecessary surplus pages to the buddy allocator */ 1753 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1754 put_page(page); 1755 spin_lock(&hugetlb_lock); 1756 1757 return ret; 1758 } 1759 1760 /* 1761 * This routine has two main purposes: 1762 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1763 * in unused_resv_pages. This corresponds to the prior adjustments made 1764 * to the associated reservation map. 1765 * 2) Free any unused surplus pages that may have been allocated to satisfy 1766 * the reservation. As many as unused_resv_pages may be freed. 1767 * 1768 * Called with hugetlb_lock held. However, the lock could be dropped (and 1769 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1770 * we must make sure nobody else can claim pages we are in the process of 1771 * freeing. Do this by ensuring resv_huge_page always is greater than the 1772 * number of huge pages we plan to free when dropping the lock. 1773 */ 1774 static void return_unused_surplus_pages(struct hstate *h, 1775 unsigned long unused_resv_pages) 1776 { 1777 unsigned long nr_pages; 1778 1779 /* Cannot return gigantic pages currently */ 1780 if (hstate_is_gigantic(h)) 1781 goto out; 1782 1783 /* 1784 * Part (or even all) of the reservation could have been backed 1785 * by pre-allocated pages. Only free surplus pages. 1786 */ 1787 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1788 1789 /* 1790 * We want to release as many surplus pages as possible, spread 1791 * evenly across all nodes with memory. Iterate across these nodes 1792 * until we can no longer free unreserved surplus pages. This occurs 1793 * when the nodes with surplus pages have no free pages. 1794 * free_pool_huge_page() will balance the the freed pages across the 1795 * on-line nodes with memory and will handle the hstate accounting. 1796 * 1797 * Note that we decrement resv_huge_pages as we free the pages. If 1798 * we drop the lock, resv_huge_pages will still be sufficiently large 1799 * to cover subsequent pages we may free. 1800 */ 1801 while (nr_pages--) { 1802 h->resv_huge_pages--; 1803 unused_resv_pages--; 1804 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1805 goto out; 1806 cond_resched_lock(&hugetlb_lock); 1807 } 1808 1809 out: 1810 /* Fully uncommit the reservation */ 1811 h->resv_huge_pages -= unused_resv_pages; 1812 } 1813 1814 1815 /* 1816 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1817 * are used by the huge page allocation routines to manage reservations. 1818 * 1819 * vma_needs_reservation is called to determine if the huge page at addr 1820 * within the vma has an associated reservation. If a reservation is 1821 * needed, the value 1 is returned. The caller is then responsible for 1822 * managing the global reservation and subpool usage counts. After 1823 * the huge page has been allocated, vma_commit_reservation is called 1824 * to add the page to the reservation map. If the page allocation fails, 1825 * the reservation must be ended instead of committed. vma_end_reservation 1826 * is called in such cases. 1827 * 1828 * In the normal case, vma_commit_reservation returns the same value 1829 * as the preceding vma_needs_reservation call. The only time this 1830 * is not the case is if a reserve map was changed between calls. It 1831 * is the responsibility of the caller to notice the difference and 1832 * take appropriate action. 1833 * 1834 * vma_add_reservation is used in error paths where a reservation must 1835 * be restored when a newly allocated huge page must be freed. It is 1836 * to be called after calling vma_needs_reservation to determine if a 1837 * reservation exists. 1838 */ 1839 enum vma_resv_mode { 1840 VMA_NEEDS_RESV, 1841 VMA_COMMIT_RESV, 1842 VMA_END_RESV, 1843 VMA_ADD_RESV, 1844 }; 1845 static long __vma_reservation_common(struct hstate *h, 1846 struct vm_area_struct *vma, unsigned long addr, 1847 enum vma_resv_mode mode) 1848 { 1849 struct resv_map *resv; 1850 pgoff_t idx; 1851 long ret; 1852 1853 resv = vma_resv_map(vma); 1854 if (!resv) 1855 return 1; 1856 1857 idx = vma_hugecache_offset(h, vma, addr); 1858 switch (mode) { 1859 case VMA_NEEDS_RESV: 1860 ret = region_chg(resv, idx, idx + 1); 1861 break; 1862 case VMA_COMMIT_RESV: 1863 ret = region_add(resv, idx, idx + 1); 1864 break; 1865 case VMA_END_RESV: 1866 region_abort(resv, idx, idx + 1); 1867 ret = 0; 1868 break; 1869 case VMA_ADD_RESV: 1870 if (vma->vm_flags & VM_MAYSHARE) 1871 ret = region_add(resv, idx, idx + 1); 1872 else { 1873 region_abort(resv, idx, idx + 1); 1874 ret = region_del(resv, idx, idx + 1); 1875 } 1876 break; 1877 default: 1878 BUG(); 1879 } 1880 1881 if (vma->vm_flags & VM_MAYSHARE) 1882 return ret; 1883 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1884 /* 1885 * In most cases, reserves always exist for private mappings. 1886 * However, a file associated with mapping could have been 1887 * hole punched or truncated after reserves were consumed. 1888 * As subsequent fault on such a range will not use reserves. 1889 * Subtle - The reserve map for private mappings has the 1890 * opposite meaning than that of shared mappings. If NO 1891 * entry is in the reserve map, it means a reservation exists. 1892 * If an entry exists in the reserve map, it means the 1893 * reservation has already been consumed. As a result, the 1894 * return value of this routine is the opposite of the 1895 * value returned from reserve map manipulation routines above. 1896 */ 1897 if (ret) 1898 return 0; 1899 else 1900 return 1; 1901 } 1902 else 1903 return ret < 0 ? ret : 0; 1904 } 1905 1906 static long vma_needs_reservation(struct hstate *h, 1907 struct vm_area_struct *vma, unsigned long addr) 1908 { 1909 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1910 } 1911 1912 static long vma_commit_reservation(struct hstate *h, 1913 struct vm_area_struct *vma, unsigned long addr) 1914 { 1915 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1916 } 1917 1918 static void vma_end_reservation(struct hstate *h, 1919 struct vm_area_struct *vma, unsigned long addr) 1920 { 1921 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1922 } 1923 1924 static long vma_add_reservation(struct hstate *h, 1925 struct vm_area_struct *vma, unsigned long addr) 1926 { 1927 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1928 } 1929 1930 /* 1931 * This routine is called to restore a reservation on error paths. In the 1932 * specific error paths, a huge page was allocated (via alloc_huge_page) 1933 * and is about to be freed. If a reservation for the page existed, 1934 * alloc_huge_page would have consumed the reservation and set PagePrivate 1935 * in the newly allocated page. When the page is freed via free_huge_page, 1936 * the global reservation count will be incremented if PagePrivate is set. 1937 * However, free_huge_page can not adjust the reserve map. Adjust the 1938 * reserve map here to be consistent with global reserve count adjustments 1939 * to be made by free_huge_page. 1940 */ 1941 static void restore_reserve_on_error(struct hstate *h, 1942 struct vm_area_struct *vma, unsigned long address, 1943 struct page *page) 1944 { 1945 if (unlikely(PagePrivate(page))) { 1946 long rc = vma_needs_reservation(h, vma, address); 1947 1948 if (unlikely(rc < 0)) { 1949 /* 1950 * Rare out of memory condition in reserve map 1951 * manipulation. Clear PagePrivate so that 1952 * global reserve count will not be incremented 1953 * by free_huge_page. This will make it appear 1954 * as though the reservation for this page was 1955 * consumed. This may prevent the task from 1956 * faulting in the page at a later time. This 1957 * is better than inconsistent global huge page 1958 * accounting of reserve counts. 1959 */ 1960 ClearPagePrivate(page); 1961 } else if (rc) { 1962 rc = vma_add_reservation(h, vma, address); 1963 if (unlikely(rc < 0)) 1964 /* 1965 * See above comment about rare out of 1966 * memory condition. 1967 */ 1968 ClearPagePrivate(page); 1969 } else 1970 vma_end_reservation(h, vma, address); 1971 } 1972 } 1973 1974 struct page *alloc_huge_page(struct vm_area_struct *vma, 1975 unsigned long addr, int avoid_reserve) 1976 { 1977 struct hugepage_subpool *spool = subpool_vma(vma); 1978 struct hstate *h = hstate_vma(vma); 1979 struct page *page; 1980 long map_chg, map_commit; 1981 long gbl_chg; 1982 int ret, idx; 1983 struct hugetlb_cgroup *h_cg; 1984 1985 idx = hstate_index(h); 1986 /* 1987 * Examine the region/reserve map to determine if the process 1988 * has a reservation for the page to be allocated. A return 1989 * code of zero indicates a reservation exists (no change). 1990 */ 1991 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 1992 if (map_chg < 0) 1993 return ERR_PTR(-ENOMEM); 1994 1995 /* 1996 * Processes that did not create the mapping will have no 1997 * reserves as indicated by the region/reserve map. Check 1998 * that the allocation will not exceed the subpool limit. 1999 * Allocations for MAP_NORESERVE mappings also need to be 2000 * checked against any subpool limit. 2001 */ 2002 if (map_chg || avoid_reserve) { 2003 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2004 if (gbl_chg < 0) { 2005 vma_end_reservation(h, vma, addr); 2006 return ERR_PTR(-ENOSPC); 2007 } 2008 2009 /* 2010 * Even though there was no reservation in the region/reserve 2011 * map, there could be reservations associated with the 2012 * subpool that can be used. This would be indicated if the 2013 * return value of hugepage_subpool_get_pages() is zero. 2014 * However, if avoid_reserve is specified we still avoid even 2015 * the subpool reservations. 2016 */ 2017 if (avoid_reserve) 2018 gbl_chg = 1; 2019 } 2020 2021 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2022 if (ret) 2023 goto out_subpool_put; 2024 2025 spin_lock(&hugetlb_lock); 2026 /* 2027 * glb_chg is passed to indicate whether or not a page must be taken 2028 * from the global free pool (global change). gbl_chg == 0 indicates 2029 * a reservation exists for the allocation. 2030 */ 2031 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2032 if (!page) { 2033 spin_unlock(&hugetlb_lock); 2034 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr); 2035 if (!page) 2036 goto out_uncharge_cgroup; 2037 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2038 SetPagePrivate(page); 2039 h->resv_huge_pages--; 2040 } 2041 spin_lock(&hugetlb_lock); 2042 list_move(&page->lru, &h->hugepage_activelist); 2043 /* Fall through */ 2044 } 2045 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2046 spin_unlock(&hugetlb_lock); 2047 2048 set_page_private(page, (unsigned long)spool); 2049 2050 map_commit = vma_commit_reservation(h, vma, addr); 2051 if (unlikely(map_chg > map_commit)) { 2052 /* 2053 * The page was added to the reservation map between 2054 * vma_needs_reservation and vma_commit_reservation. 2055 * This indicates a race with hugetlb_reserve_pages. 2056 * Adjust for the subpool count incremented above AND 2057 * in hugetlb_reserve_pages for the same page. Also, 2058 * the reservation count added in hugetlb_reserve_pages 2059 * no longer applies. 2060 */ 2061 long rsv_adjust; 2062 2063 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2064 hugetlb_acct_memory(h, -rsv_adjust); 2065 } 2066 return page; 2067 2068 out_uncharge_cgroup: 2069 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2070 out_subpool_put: 2071 if (map_chg || avoid_reserve) 2072 hugepage_subpool_put_pages(spool, 1); 2073 vma_end_reservation(h, vma, addr); 2074 return ERR_PTR(-ENOSPC); 2075 } 2076 2077 /* 2078 * alloc_huge_page()'s wrapper which simply returns the page if allocation 2079 * succeeds, otherwise NULL. This function is called from new_vma_page(), 2080 * where no ERR_VALUE is expected to be returned. 2081 */ 2082 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, 2083 unsigned long addr, int avoid_reserve) 2084 { 2085 struct page *page = alloc_huge_page(vma, addr, avoid_reserve); 2086 if (IS_ERR(page)) 2087 page = NULL; 2088 return page; 2089 } 2090 2091 int alloc_bootmem_huge_page(struct hstate *h) 2092 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2093 int __alloc_bootmem_huge_page(struct hstate *h) 2094 { 2095 struct huge_bootmem_page *m; 2096 int nr_nodes, node; 2097 2098 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2099 void *addr; 2100 2101 addr = memblock_virt_alloc_try_nid_nopanic( 2102 huge_page_size(h), huge_page_size(h), 2103 0, BOOTMEM_ALLOC_ACCESSIBLE, node); 2104 if (addr) { 2105 /* 2106 * Use the beginning of the huge page to store the 2107 * huge_bootmem_page struct (until gather_bootmem 2108 * puts them into the mem_map). 2109 */ 2110 m = addr; 2111 goto found; 2112 } 2113 } 2114 return 0; 2115 2116 found: 2117 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2118 /* Put them into a private list first because mem_map is not up yet */ 2119 list_add(&m->list, &huge_boot_pages); 2120 m->hstate = h; 2121 return 1; 2122 } 2123 2124 static void __init prep_compound_huge_page(struct page *page, 2125 unsigned int order) 2126 { 2127 if (unlikely(order > (MAX_ORDER - 1))) 2128 prep_compound_gigantic_page(page, order); 2129 else 2130 prep_compound_page(page, order); 2131 } 2132 2133 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2134 static void __init gather_bootmem_prealloc(void) 2135 { 2136 struct huge_bootmem_page *m; 2137 2138 list_for_each_entry(m, &huge_boot_pages, list) { 2139 struct hstate *h = m->hstate; 2140 struct page *page; 2141 2142 #ifdef CONFIG_HIGHMEM 2143 page = pfn_to_page(m->phys >> PAGE_SHIFT); 2144 memblock_free_late(__pa(m), 2145 sizeof(struct huge_bootmem_page)); 2146 #else 2147 page = virt_to_page(m); 2148 #endif 2149 WARN_ON(page_count(page) != 1); 2150 prep_compound_huge_page(page, h->order); 2151 WARN_ON(PageReserved(page)); 2152 prep_new_huge_page(h, page, page_to_nid(page)); 2153 /* 2154 * If we had gigantic hugepages allocated at boot time, we need 2155 * to restore the 'stolen' pages to totalram_pages in order to 2156 * fix confusing memory reports from free(1) and another 2157 * side-effects, like CommitLimit going negative. 2158 */ 2159 if (hstate_is_gigantic(h)) 2160 adjust_managed_page_count(page, 1 << h->order); 2161 } 2162 } 2163 2164 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2165 { 2166 unsigned long i; 2167 2168 for (i = 0; i < h->max_huge_pages; ++i) { 2169 if (hstate_is_gigantic(h)) { 2170 if (!alloc_bootmem_huge_page(h)) 2171 break; 2172 } else if (!alloc_fresh_huge_page(h, 2173 &node_states[N_MEMORY])) 2174 break; 2175 cond_resched(); 2176 } 2177 if (i < h->max_huge_pages) { 2178 char buf[32]; 2179 2180 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2182 h->max_huge_pages, buf, i); 2183 h->max_huge_pages = i; 2184 } 2185 } 2186 2187 static void __init hugetlb_init_hstates(void) 2188 { 2189 struct hstate *h; 2190 2191 for_each_hstate(h) { 2192 if (minimum_order > huge_page_order(h)) 2193 minimum_order = huge_page_order(h); 2194 2195 /* oversize hugepages were init'ed in early boot */ 2196 if (!hstate_is_gigantic(h)) 2197 hugetlb_hstate_alloc_pages(h); 2198 } 2199 VM_BUG_ON(minimum_order == UINT_MAX); 2200 } 2201 2202 static void __init report_hugepages(void) 2203 { 2204 struct hstate *h; 2205 2206 for_each_hstate(h) { 2207 char buf[32]; 2208 2209 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2211 buf, h->free_huge_pages); 2212 } 2213 } 2214 2215 #ifdef CONFIG_HIGHMEM 2216 static void try_to_free_low(struct hstate *h, unsigned long count, 2217 nodemask_t *nodes_allowed) 2218 { 2219 int i; 2220 2221 if (hstate_is_gigantic(h)) 2222 return; 2223 2224 for_each_node_mask(i, *nodes_allowed) { 2225 struct page *page, *next; 2226 struct list_head *freel = &h->hugepage_freelists[i]; 2227 list_for_each_entry_safe(page, next, freel, lru) { 2228 if (count >= h->nr_huge_pages) 2229 return; 2230 if (PageHighMem(page)) 2231 continue; 2232 list_del(&page->lru); 2233 update_and_free_page(h, page); 2234 h->free_huge_pages--; 2235 h->free_huge_pages_node[page_to_nid(page)]--; 2236 } 2237 } 2238 } 2239 #else 2240 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2241 nodemask_t *nodes_allowed) 2242 { 2243 } 2244 #endif 2245 2246 /* 2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2248 * balanced by operating on them in a round-robin fashion. 2249 * Returns 1 if an adjustment was made. 2250 */ 2251 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2252 int delta) 2253 { 2254 int nr_nodes, node; 2255 2256 VM_BUG_ON(delta != -1 && delta != 1); 2257 2258 if (delta < 0) { 2259 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2260 if (h->surplus_huge_pages_node[node]) 2261 goto found; 2262 } 2263 } else { 2264 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2265 if (h->surplus_huge_pages_node[node] < 2266 h->nr_huge_pages_node[node]) 2267 goto found; 2268 } 2269 } 2270 return 0; 2271 2272 found: 2273 h->surplus_huge_pages += delta; 2274 h->surplus_huge_pages_node[node] += delta; 2275 return 1; 2276 } 2277 2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2280 nodemask_t *nodes_allowed) 2281 { 2282 unsigned long min_count, ret; 2283 2284 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2285 return h->max_huge_pages; 2286 2287 /* 2288 * Increase the pool size 2289 * First take pages out of surplus state. Then make up the 2290 * remaining difference by allocating fresh huge pages. 2291 * 2292 * We might race with __alloc_buddy_huge_page() here and be unable 2293 * to convert a surplus huge page to a normal huge page. That is 2294 * not critical, though, it just means the overall size of the 2295 * pool might be one hugepage larger than it needs to be, but 2296 * within all the constraints specified by the sysctls. 2297 */ 2298 spin_lock(&hugetlb_lock); 2299 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2300 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2301 break; 2302 } 2303 2304 while (count > persistent_huge_pages(h)) { 2305 /* 2306 * If this allocation races such that we no longer need the 2307 * page, free_huge_page will handle it by freeing the page 2308 * and reducing the surplus. 2309 */ 2310 spin_unlock(&hugetlb_lock); 2311 2312 /* yield cpu to avoid soft lockup */ 2313 cond_resched(); 2314 2315 if (hstate_is_gigantic(h)) 2316 ret = alloc_fresh_gigantic_page(h, nodes_allowed); 2317 else 2318 ret = alloc_fresh_huge_page(h, nodes_allowed); 2319 spin_lock(&hugetlb_lock); 2320 if (!ret) 2321 goto out; 2322 2323 /* Bail for signals. Probably ctrl-c from user */ 2324 if (signal_pending(current)) 2325 goto out; 2326 } 2327 2328 /* 2329 * Decrease the pool size 2330 * First return free pages to the buddy allocator (being careful 2331 * to keep enough around to satisfy reservations). Then place 2332 * pages into surplus state as needed so the pool will shrink 2333 * to the desired size as pages become free. 2334 * 2335 * By placing pages into the surplus state independent of the 2336 * overcommit value, we are allowing the surplus pool size to 2337 * exceed overcommit. There are few sane options here. Since 2338 * __alloc_buddy_huge_page() is checking the global counter, 2339 * though, we'll note that we're not allowed to exceed surplus 2340 * and won't grow the pool anywhere else. Not until one of the 2341 * sysctls are changed, or the surplus pages go out of use. 2342 */ 2343 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2344 min_count = max(count, min_count); 2345 try_to_free_low(h, min_count, nodes_allowed); 2346 while (min_count < persistent_huge_pages(h)) { 2347 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2348 break; 2349 cond_resched_lock(&hugetlb_lock); 2350 } 2351 while (count < persistent_huge_pages(h)) { 2352 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2353 break; 2354 } 2355 out: 2356 ret = persistent_huge_pages(h); 2357 spin_unlock(&hugetlb_lock); 2358 return ret; 2359 } 2360 2361 #define HSTATE_ATTR_RO(_name) \ 2362 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2363 2364 #define HSTATE_ATTR(_name) \ 2365 static struct kobj_attribute _name##_attr = \ 2366 __ATTR(_name, 0644, _name##_show, _name##_store) 2367 2368 static struct kobject *hugepages_kobj; 2369 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2370 2371 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2372 2373 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2374 { 2375 int i; 2376 2377 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2378 if (hstate_kobjs[i] == kobj) { 2379 if (nidp) 2380 *nidp = NUMA_NO_NODE; 2381 return &hstates[i]; 2382 } 2383 2384 return kobj_to_node_hstate(kobj, nidp); 2385 } 2386 2387 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2388 struct kobj_attribute *attr, char *buf) 2389 { 2390 struct hstate *h; 2391 unsigned long nr_huge_pages; 2392 int nid; 2393 2394 h = kobj_to_hstate(kobj, &nid); 2395 if (nid == NUMA_NO_NODE) 2396 nr_huge_pages = h->nr_huge_pages; 2397 else 2398 nr_huge_pages = h->nr_huge_pages_node[nid]; 2399 2400 return sprintf(buf, "%lu\n", nr_huge_pages); 2401 } 2402 2403 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2404 struct hstate *h, int nid, 2405 unsigned long count, size_t len) 2406 { 2407 int err; 2408 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2409 2410 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2411 err = -EINVAL; 2412 goto out; 2413 } 2414 2415 if (nid == NUMA_NO_NODE) { 2416 /* 2417 * global hstate attribute 2418 */ 2419 if (!(obey_mempolicy && 2420 init_nodemask_of_mempolicy(nodes_allowed))) { 2421 NODEMASK_FREE(nodes_allowed); 2422 nodes_allowed = &node_states[N_MEMORY]; 2423 } 2424 } else if (nodes_allowed) { 2425 /* 2426 * per node hstate attribute: adjust count to global, 2427 * but restrict alloc/free to the specified node. 2428 */ 2429 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2430 init_nodemask_of_node(nodes_allowed, nid); 2431 } else 2432 nodes_allowed = &node_states[N_MEMORY]; 2433 2434 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2435 2436 if (nodes_allowed != &node_states[N_MEMORY]) 2437 NODEMASK_FREE(nodes_allowed); 2438 2439 return len; 2440 out: 2441 NODEMASK_FREE(nodes_allowed); 2442 return err; 2443 } 2444 2445 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2446 struct kobject *kobj, const char *buf, 2447 size_t len) 2448 { 2449 struct hstate *h; 2450 unsigned long count; 2451 int nid; 2452 int err; 2453 2454 err = kstrtoul(buf, 10, &count); 2455 if (err) 2456 return err; 2457 2458 h = kobj_to_hstate(kobj, &nid); 2459 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2460 } 2461 2462 static ssize_t nr_hugepages_show(struct kobject *kobj, 2463 struct kobj_attribute *attr, char *buf) 2464 { 2465 return nr_hugepages_show_common(kobj, attr, buf); 2466 } 2467 2468 static ssize_t nr_hugepages_store(struct kobject *kobj, 2469 struct kobj_attribute *attr, const char *buf, size_t len) 2470 { 2471 return nr_hugepages_store_common(false, kobj, buf, len); 2472 } 2473 HSTATE_ATTR(nr_hugepages); 2474 2475 #ifdef CONFIG_NUMA 2476 2477 /* 2478 * hstate attribute for optionally mempolicy-based constraint on persistent 2479 * huge page alloc/free. 2480 */ 2481 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2482 struct kobj_attribute *attr, char *buf) 2483 { 2484 return nr_hugepages_show_common(kobj, attr, buf); 2485 } 2486 2487 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2488 struct kobj_attribute *attr, const char *buf, size_t len) 2489 { 2490 return nr_hugepages_store_common(true, kobj, buf, len); 2491 } 2492 HSTATE_ATTR(nr_hugepages_mempolicy); 2493 #endif 2494 2495 2496 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2497 struct kobj_attribute *attr, char *buf) 2498 { 2499 struct hstate *h = kobj_to_hstate(kobj, NULL); 2500 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2501 } 2502 2503 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2504 struct kobj_attribute *attr, const char *buf, size_t count) 2505 { 2506 int err; 2507 unsigned long input; 2508 struct hstate *h = kobj_to_hstate(kobj, NULL); 2509 2510 if (hstate_is_gigantic(h)) 2511 return -EINVAL; 2512 2513 err = kstrtoul(buf, 10, &input); 2514 if (err) 2515 return err; 2516 2517 spin_lock(&hugetlb_lock); 2518 h->nr_overcommit_huge_pages = input; 2519 spin_unlock(&hugetlb_lock); 2520 2521 return count; 2522 } 2523 HSTATE_ATTR(nr_overcommit_hugepages); 2524 2525 static ssize_t free_hugepages_show(struct kobject *kobj, 2526 struct kobj_attribute *attr, char *buf) 2527 { 2528 struct hstate *h; 2529 unsigned long free_huge_pages; 2530 int nid; 2531 2532 h = kobj_to_hstate(kobj, &nid); 2533 if (nid == NUMA_NO_NODE) 2534 free_huge_pages = h->free_huge_pages; 2535 else 2536 free_huge_pages = h->free_huge_pages_node[nid]; 2537 2538 return sprintf(buf, "%lu\n", free_huge_pages); 2539 } 2540 HSTATE_ATTR_RO(free_hugepages); 2541 2542 static ssize_t resv_hugepages_show(struct kobject *kobj, 2543 struct kobj_attribute *attr, char *buf) 2544 { 2545 struct hstate *h = kobj_to_hstate(kobj, NULL); 2546 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2547 } 2548 HSTATE_ATTR_RO(resv_hugepages); 2549 2550 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2551 struct kobj_attribute *attr, char *buf) 2552 { 2553 struct hstate *h; 2554 unsigned long surplus_huge_pages; 2555 int nid; 2556 2557 h = kobj_to_hstate(kobj, &nid); 2558 if (nid == NUMA_NO_NODE) 2559 surplus_huge_pages = h->surplus_huge_pages; 2560 else 2561 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2562 2563 return sprintf(buf, "%lu\n", surplus_huge_pages); 2564 } 2565 HSTATE_ATTR_RO(surplus_hugepages); 2566 2567 static struct attribute *hstate_attrs[] = { 2568 &nr_hugepages_attr.attr, 2569 &nr_overcommit_hugepages_attr.attr, 2570 &free_hugepages_attr.attr, 2571 &resv_hugepages_attr.attr, 2572 &surplus_hugepages_attr.attr, 2573 #ifdef CONFIG_NUMA 2574 &nr_hugepages_mempolicy_attr.attr, 2575 #endif 2576 NULL, 2577 }; 2578 2579 static const struct attribute_group hstate_attr_group = { 2580 .attrs = hstate_attrs, 2581 }; 2582 2583 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2584 struct kobject **hstate_kobjs, 2585 const struct attribute_group *hstate_attr_group) 2586 { 2587 int retval; 2588 int hi = hstate_index(h); 2589 2590 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2591 if (!hstate_kobjs[hi]) 2592 return -ENOMEM; 2593 2594 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2595 if (retval) 2596 kobject_put(hstate_kobjs[hi]); 2597 2598 return retval; 2599 } 2600 2601 static void __init hugetlb_sysfs_init(void) 2602 { 2603 struct hstate *h; 2604 int err; 2605 2606 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2607 if (!hugepages_kobj) 2608 return; 2609 2610 for_each_hstate(h) { 2611 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2612 hstate_kobjs, &hstate_attr_group); 2613 if (err) 2614 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2615 } 2616 } 2617 2618 #ifdef CONFIG_NUMA 2619 2620 /* 2621 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2622 * with node devices in node_devices[] using a parallel array. The array 2623 * index of a node device or _hstate == node id. 2624 * This is here to avoid any static dependency of the node device driver, in 2625 * the base kernel, on the hugetlb module. 2626 */ 2627 struct node_hstate { 2628 struct kobject *hugepages_kobj; 2629 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2630 }; 2631 static struct node_hstate node_hstates[MAX_NUMNODES]; 2632 2633 /* 2634 * A subset of global hstate attributes for node devices 2635 */ 2636 static struct attribute *per_node_hstate_attrs[] = { 2637 &nr_hugepages_attr.attr, 2638 &free_hugepages_attr.attr, 2639 &surplus_hugepages_attr.attr, 2640 NULL, 2641 }; 2642 2643 static const struct attribute_group per_node_hstate_attr_group = { 2644 .attrs = per_node_hstate_attrs, 2645 }; 2646 2647 /* 2648 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2649 * Returns node id via non-NULL nidp. 2650 */ 2651 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2652 { 2653 int nid; 2654 2655 for (nid = 0; nid < nr_node_ids; nid++) { 2656 struct node_hstate *nhs = &node_hstates[nid]; 2657 int i; 2658 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2659 if (nhs->hstate_kobjs[i] == kobj) { 2660 if (nidp) 2661 *nidp = nid; 2662 return &hstates[i]; 2663 } 2664 } 2665 2666 BUG(); 2667 return NULL; 2668 } 2669 2670 /* 2671 * Unregister hstate attributes from a single node device. 2672 * No-op if no hstate attributes attached. 2673 */ 2674 static void hugetlb_unregister_node(struct node *node) 2675 { 2676 struct hstate *h; 2677 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2678 2679 if (!nhs->hugepages_kobj) 2680 return; /* no hstate attributes */ 2681 2682 for_each_hstate(h) { 2683 int idx = hstate_index(h); 2684 if (nhs->hstate_kobjs[idx]) { 2685 kobject_put(nhs->hstate_kobjs[idx]); 2686 nhs->hstate_kobjs[idx] = NULL; 2687 } 2688 } 2689 2690 kobject_put(nhs->hugepages_kobj); 2691 nhs->hugepages_kobj = NULL; 2692 } 2693 2694 2695 /* 2696 * Register hstate attributes for a single node device. 2697 * No-op if attributes already registered. 2698 */ 2699 static void hugetlb_register_node(struct node *node) 2700 { 2701 struct hstate *h; 2702 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2703 int err; 2704 2705 if (nhs->hugepages_kobj) 2706 return; /* already allocated */ 2707 2708 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2709 &node->dev.kobj); 2710 if (!nhs->hugepages_kobj) 2711 return; 2712 2713 for_each_hstate(h) { 2714 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2715 nhs->hstate_kobjs, 2716 &per_node_hstate_attr_group); 2717 if (err) { 2718 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2719 h->name, node->dev.id); 2720 hugetlb_unregister_node(node); 2721 break; 2722 } 2723 } 2724 } 2725 2726 /* 2727 * hugetlb init time: register hstate attributes for all registered node 2728 * devices of nodes that have memory. All on-line nodes should have 2729 * registered their associated device by this time. 2730 */ 2731 static void __init hugetlb_register_all_nodes(void) 2732 { 2733 int nid; 2734 2735 for_each_node_state(nid, N_MEMORY) { 2736 struct node *node = node_devices[nid]; 2737 if (node->dev.id == nid) 2738 hugetlb_register_node(node); 2739 } 2740 2741 /* 2742 * Let the node device driver know we're here so it can 2743 * [un]register hstate attributes on node hotplug. 2744 */ 2745 register_hugetlbfs_with_node(hugetlb_register_node, 2746 hugetlb_unregister_node); 2747 } 2748 #else /* !CONFIG_NUMA */ 2749 2750 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2751 { 2752 BUG(); 2753 if (nidp) 2754 *nidp = -1; 2755 return NULL; 2756 } 2757 2758 static void hugetlb_register_all_nodes(void) { } 2759 2760 #endif 2761 2762 static int __init hugetlb_init(void) 2763 { 2764 int i; 2765 2766 if (!hugepages_supported()) 2767 return 0; 2768 2769 if (!size_to_hstate(default_hstate_size)) { 2770 if (default_hstate_size != 0) { 2771 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2772 default_hstate_size, HPAGE_SIZE); 2773 } 2774 2775 default_hstate_size = HPAGE_SIZE; 2776 if (!size_to_hstate(default_hstate_size)) 2777 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2778 } 2779 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2780 if (default_hstate_max_huge_pages) { 2781 if (!default_hstate.max_huge_pages) 2782 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2783 } 2784 2785 hugetlb_init_hstates(); 2786 gather_bootmem_prealloc(); 2787 report_hugepages(); 2788 2789 hugetlb_sysfs_init(); 2790 hugetlb_register_all_nodes(); 2791 hugetlb_cgroup_file_init(); 2792 2793 #ifdef CONFIG_SMP 2794 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2795 #else 2796 num_fault_mutexes = 1; 2797 #endif 2798 hugetlb_fault_mutex_table = 2799 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); 2800 BUG_ON(!hugetlb_fault_mutex_table); 2801 2802 for (i = 0; i < num_fault_mutexes; i++) 2803 mutex_init(&hugetlb_fault_mutex_table[i]); 2804 return 0; 2805 } 2806 subsys_initcall(hugetlb_init); 2807 2808 /* Should be called on processing a hugepagesz=... option */ 2809 void __init hugetlb_bad_size(void) 2810 { 2811 parsed_valid_hugepagesz = false; 2812 } 2813 2814 void __init hugetlb_add_hstate(unsigned int order) 2815 { 2816 struct hstate *h; 2817 unsigned long i; 2818 2819 if (size_to_hstate(PAGE_SIZE << order)) { 2820 pr_warn("hugepagesz= specified twice, ignoring\n"); 2821 return; 2822 } 2823 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2824 BUG_ON(order == 0); 2825 h = &hstates[hugetlb_max_hstate++]; 2826 h->order = order; 2827 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2828 h->nr_huge_pages = 0; 2829 h->free_huge_pages = 0; 2830 for (i = 0; i < MAX_NUMNODES; ++i) 2831 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2832 INIT_LIST_HEAD(&h->hugepage_activelist); 2833 h->next_nid_to_alloc = first_memory_node; 2834 h->next_nid_to_free = first_memory_node; 2835 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2836 huge_page_size(h)/1024); 2837 2838 parsed_hstate = h; 2839 } 2840 2841 static int __init hugetlb_nrpages_setup(char *s) 2842 { 2843 unsigned long *mhp; 2844 static unsigned long *last_mhp; 2845 2846 if (!parsed_valid_hugepagesz) { 2847 pr_warn("hugepages = %s preceded by " 2848 "an unsupported hugepagesz, ignoring\n", s); 2849 parsed_valid_hugepagesz = true; 2850 return 1; 2851 } 2852 /* 2853 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2854 * so this hugepages= parameter goes to the "default hstate". 2855 */ 2856 else if (!hugetlb_max_hstate) 2857 mhp = &default_hstate_max_huge_pages; 2858 else 2859 mhp = &parsed_hstate->max_huge_pages; 2860 2861 if (mhp == last_mhp) { 2862 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2863 return 1; 2864 } 2865 2866 if (sscanf(s, "%lu", mhp) <= 0) 2867 *mhp = 0; 2868 2869 /* 2870 * Global state is always initialized later in hugetlb_init. 2871 * But we need to allocate >= MAX_ORDER hstates here early to still 2872 * use the bootmem allocator. 2873 */ 2874 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2875 hugetlb_hstate_alloc_pages(parsed_hstate); 2876 2877 last_mhp = mhp; 2878 2879 return 1; 2880 } 2881 __setup("hugepages=", hugetlb_nrpages_setup); 2882 2883 static int __init hugetlb_default_setup(char *s) 2884 { 2885 default_hstate_size = memparse(s, &s); 2886 return 1; 2887 } 2888 __setup("default_hugepagesz=", hugetlb_default_setup); 2889 2890 static unsigned int cpuset_mems_nr(unsigned int *array) 2891 { 2892 int node; 2893 unsigned int nr = 0; 2894 2895 for_each_node_mask(node, cpuset_current_mems_allowed) 2896 nr += array[node]; 2897 2898 return nr; 2899 } 2900 2901 #ifdef CONFIG_SYSCTL 2902 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2903 struct ctl_table *table, int write, 2904 void __user *buffer, size_t *length, loff_t *ppos) 2905 { 2906 struct hstate *h = &default_hstate; 2907 unsigned long tmp = h->max_huge_pages; 2908 int ret; 2909 2910 if (!hugepages_supported()) 2911 return -EOPNOTSUPP; 2912 2913 table->data = &tmp; 2914 table->maxlen = sizeof(unsigned long); 2915 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2916 if (ret) 2917 goto out; 2918 2919 if (write) 2920 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2921 NUMA_NO_NODE, tmp, *length); 2922 out: 2923 return ret; 2924 } 2925 2926 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2927 void __user *buffer, size_t *length, loff_t *ppos) 2928 { 2929 2930 return hugetlb_sysctl_handler_common(false, table, write, 2931 buffer, length, ppos); 2932 } 2933 2934 #ifdef CONFIG_NUMA 2935 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2936 void __user *buffer, size_t *length, loff_t *ppos) 2937 { 2938 return hugetlb_sysctl_handler_common(true, table, write, 2939 buffer, length, ppos); 2940 } 2941 #endif /* CONFIG_NUMA */ 2942 2943 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2944 void __user *buffer, 2945 size_t *length, loff_t *ppos) 2946 { 2947 struct hstate *h = &default_hstate; 2948 unsigned long tmp; 2949 int ret; 2950 2951 if (!hugepages_supported()) 2952 return -EOPNOTSUPP; 2953 2954 tmp = h->nr_overcommit_huge_pages; 2955 2956 if (write && hstate_is_gigantic(h)) 2957 return -EINVAL; 2958 2959 table->data = &tmp; 2960 table->maxlen = sizeof(unsigned long); 2961 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2962 if (ret) 2963 goto out; 2964 2965 if (write) { 2966 spin_lock(&hugetlb_lock); 2967 h->nr_overcommit_huge_pages = tmp; 2968 spin_unlock(&hugetlb_lock); 2969 } 2970 out: 2971 return ret; 2972 } 2973 2974 #endif /* CONFIG_SYSCTL */ 2975 2976 void hugetlb_report_meminfo(struct seq_file *m) 2977 { 2978 struct hstate *h = &default_hstate; 2979 if (!hugepages_supported()) 2980 return; 2981 seq_printf(m, 2982 "HugePages_Total: %5lu\n" 2983 "HugePages_Free: %5lu\n" 2984 "HugePages_Rsvd: %5lu\n" 2985 "HugePages_Surp: %5lu\n" 2986 "Hugepagesize: %8lu kB\n", 2987 h->nr_huge_pages, 2988 h->free_huge_pages, 2989 h->resv_huge_pages, 2990 h->surplus_huge_pages, 2991 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2992 } 2993 2994 int hugetlb_report_node_meminfo(int nid, char *buf) 2995 { 2996 struct hstate *h = &default_hstate; 2997 if (!hugepages_supported()) 2998 return 0; 2999 return sprintf(buf, 3000 "Node %d HugePages_Total: %5u\n" 3001 "Node %d HugePages_Free: %5u\n" 3002 "Node %d HugePages_Surp: %5u\n", 3003 nid, h->nr_huge_pages_node[nid], 3004 nid, h->free_huge_pages_node[nid], 3005 nid, h->surplus_huge_pages_node[nid]); 3006 } 3007 3008 void hugetlb_show_meminfo(void) 3009 { 3010 struct hstate *h; 3011 int nid; 3012 3013 if (!hugepages_supported()) 3014 return; 3015 3016 for_each_node_state(nid, N_MEMORY) 3017 for_each_hstate(h) 3018 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3019 nid, 3020 h->nr_huge_pages_node[nid], 3021 h->free_huge_pages_node[nid], 3022 h->surplus_huge_pages_node[nid], 3023 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3024 } 3025 3026 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3027 { 3028 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3029 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3030 } 3031 3032 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3033 unsigned long hugetlb_total_pages(void) 3034 { 3035 struct hstate *h; 3036 unsigned long nr_total_pages = 0; 3037 3038 for_each_hstate(h) 3039 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3040 return nr_total_pages; 3041 } 3042 3043 static int hugetlb_acct_memory(struct hstate *h, long delta) 3044 { 3045 int ret = -ENOMEM; 3046 3047 spin_lock(&hugetlb_lock); 3048 /* 3049 * When cpuset is configured, it breaks the strict hugetlb page 3050 * reservation as the accounting is done on a global variable. Such 3051 * reservation is completely rubbish in the presence of cpuset because 3052 * the reservation is not checked against page availability for the 3053 * current cpuset. Application can still potentially OOM'ed by kernel 3054 * with lack of free htlb page in cpuset that the task is in. 3055 * Attempt to enforce strict accounting with cpuset is almost 3056 * impossible (or too ugly) because cpuset is too fluid that 3057 * task or memory node can be dynamically moved between cpusets. 3058 * 3059 * The change of semantics for shared hugetlb mapping with cpuset is 3060 * undesirable. However, in order to preserve some of the semantics, 3061 * we fall back to check against current free page availability as 3062 * a best attempt and hopefully to minimize the impact of changing 3063 * semantics that cpuset has. 3064 */ 3065 if (delta > 0) { 3066 if (gather_surplus_pages(h, delta) < 0) 3067 goto out; 3068 3069 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3070 return_unused_surplus_pages(h, delta); 3071 goto out; 3072 } 3073 } 3074 3075 ret = 0; 3076 if (delta < 0) 3077 return_unused_surplus_pages(h, (unsigned long) -delta); 3078 3079 out: 3080 spin_unlock(&hugetlb_lock); 3081 return ret; 3082 } 3083 3084 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3085 { 3086 struct resv_map *resv = vma_resv_map(vma); 3087 3088 /* 3089 * This new VMA should share its siblings reservation map if present. 3090 * The VMA will only ever have a valid reservation map pointer where 3091 * it is being copied for another still existing VMA. As that VMA 3092 * has a reference to the reservation map it cannot disappear until 3093 * after this open call completes. It is therefore safe to take a 3094 * new reference here without additional locking. 3095 */ 3096 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3097 kref_get(&resv->refs); 3098 } 3099 3100 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3101 { 3102 struct hstate *h = hstate_vma(vma); 3103 struct resv_map *resv = vma_resv_map(vma); 3104 struct hugepage_subpool *spool = subpool_vma(vma); 3105 unsigned long reserve, start, end; 3106 long gbl_reserve; 3107 3108 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3109 return; 3110 3111 start = vma_hugecache_offset(h, vma, vma->vm_start); 3112 end = vma_hugecache_offset(h, vma, vma->vm_end); 3113 3114 reserve = (end - start) - region_count(resv, start, end); 3115 3116 kref_put(&resv->refs, resv_map_release); 3117 3118 if (reserve) { 3119 /* 3120 * Decrement reserve counts. The global reserve count may be 3121 * adjusted if the subpool has a minimum size. 3122 */ 3123 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3124 hugetlb_acct_memory(h, -gbl_reserve); 3125 } 3126 } 3127 3128 /* 3129 * We cannot handle pagefaults against hugetlb pages at all. They cause 3130 * handle_mm_fault() to try to instantiate regular-sized pages in the 3131 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3132 * this far. 3133 */ 3134 static int hugetlb_vm_op_fault(struct vm_fault *vmf) 3135 { 3136 BUG(); 3137 return 0; 3138 } 3139 3140 const struct vm_operations_struct hugetlb_vm_ops = { 3141 .fault = hugetlb_vm_op_fault, 3142 .open = hugetlb_vm_op_open, 3143 .close = hugetlb_vm_op_close, 3144 }; 3145 3146 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3147 int writable) 3148 { 3149 pte_t entry; 3150 3151 if (writable) { 3152 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3153 vma->vm_page_prot))); 3154 } else { 3155 entry = huge_pte_wrprotect(mk_huge_pte(page, 3156 vma->vm_page_prot)); 3157 } 3158 entry = pte_mkyoung(entry); 3159 entry = pte_mkhuge(entry); 3160 entry = arch_make_huge_pte(entry, vma, page, writable); 3161 3162 return entry; 3163 } 3164 3165 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3166 unsigned long address, pte_t *ptep) 3167 { 3168 pte_t entry; 3169 3170 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3171 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3172 update_mmu_cache(vma, address, ptep); 3173 } 3174 3175 bool is_hugetlb_entry_migration(pte_t pte) 3176 { 3177 swp_entry_t swp; 3178 3179 if (huge_pte_none(pte) || pte_present(pte)) 3180 return false; 3181 swp = pte_to_swp_entry(pte); 3182 if (non_swap_entry(swp) && is_migration_entry(swp)) 3183 return true; 3184 else 3185 return false; 3186 } 3187 3188 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3189 { 3190 swp_entry_t swp; 3191 3192 if (huge_pte_none(pte) || pte_present(pte)) 3193 return 0; 3194 swp = pte_to_swp_entry(pte); 3195 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3196 return 1; 3197 else 3198 return 0; 3199 } 3200 3201 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3202 struct vm_area_struct *vma) 3203 { 3204 pte_t *src_pte, *dst_pte, entry; 3205 struct page *ptepage; 3206 unsigned long addr; 3207 int cow; 3208 struct hstate *h = hstate_vma(vma); 3209 unsigned long sz = huge_page_size(h); 3210 unsigned long mmun_start; /* For mmu_notifiers */ 3211 unsigned long mmun_end; /* For mmu_notifiers */ 3212 int ret = 0; 3213 3214 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3215 3216 mmun_start = vma->vm_start; 3217 mmun_end = vma->vm_end; 3218 if (cow) 3219 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); 3220 3221 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3222 spinlock_t *src_ptl, *dst_ptl; 3223 src_pte = huge_pte_offset(src, addr, sz); 3224 if (!src_pte) 3225 continue; 3226 dst_pte = huge_pte_alloc(dst, addr, sz); 3227 if (!dst_pte) { 3228 ret = -ENOMEM; 3229 break; 3230 } 3231 3232 /* If the pagetables are shared don't copy or take references */ 3233 if (dst_pte == src_pte) 3234 continue; 3235 3236 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3237 src_ptl = huge_pte_lockptr(h, src, src_pte); 3238 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3239 entry = huge_ptep_get(src_pte); 3240 if (huge_pte_none(entry)) { /* skip none entry */ 3241 ; 3242 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3243 is_hugetlb_entry_hwpoisoned(entry))) { 3244 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3245 3246 if (is_write_migration_entry(swp_entry) && cow) { 3247 /* 3248 * COW mappings require pages in both 3249 * parent and child to be set to read. 3250 */ 3251 make_migration_entry_read(&swp_entry); 3252 entry = swp_entry_to_pte(swp_entry); 3253 set_huge_swap_pte_at(src, addr, src_pte, 3254 entry, sz); 3255 } 3256 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3257 } else { 3258 if (cow) { 3259 huge_ptep_set_wrprotect(src, addr, src_pte); 3260 mmu_notifier_invalidate_range(src, mmun_start, 3261 mmun_end); 3262 } 3263 entry = huge_ptep_get(src_pte); 3264 ptepage = pte_page(entry); 3265 get_page(ptepage); 3266 page_dup_rmap(ptepage, true); 3267 set_huge_pte_at(dst, addr, dst_pte, entry); 3268 hugetlb_count_add(pages_per_huge_page(h), dst); 3269 } 3270 spin_unlock(src_ptl); 3271 spin_unlock(dst_ptl); 3272 } 3273 3274 if (cow) 3275 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); 3276 3277 return ret; 3278 } 3279 3280 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3281 unsigned long start, unsigned long end, 3282 struct page *ref_page) 3283 { 3284 struct mm_struct *mm = vma->vm_mm; 3285 unsigned long address; 3286 pte_t *ptep; 3287 pte_t pte; 3288 spinlock_t *ptl; 3289 struct page *page; 3290 struct hstate *h = hstate_vma(vma); 3291 unsigned long sz = huge_page_size(h); 3292 const unsigned long mmun_start = start; /* For mmu_notifiers */ 3293 const unsigned long mmun_end = end; /* For mmu_notifiers */ 3294 3295 WARN_ON(!is_vm_hugetlb_page(vma)); 3296 BUG_ON(start & ~huge_page_mask(h)); 3297 BUG_ON(end & ~huge_page_mask(h)); 3298 3299 /* 3300 * This is a hugetlb vma, all the pte entries should point 3301 * to huge page. 3302 */ 3303 tlb_remove_check_page_size_change(tlb, sz); 3304 tlb_start_vma(tlb, vma); 3305 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3306 address = start; 3307 for (; address < end; address += sz) { 3308 ptep = huge_pte_offset(mm, address, sz); 3309 if (!ptep) 3310 continue; 3311 3312 ptl = huge_pte_lock(h, mm, ptep); 3313 if (huge_pmd_unshare(mm, &address, ptep)) { 3314 spin_unlock(ptl); 3315 continue; 3316 } 3317 3318 pte = huge_ptep_get(ptep); 3319 if (huge_pte_none(pte)) { 3320 spin_unlock(ptl); 3321 continue; 3322 } 3323 3324 /* 3325 * Migrating hugepage or HWPoisoned hugepage is already 3326 * unmapped and its refcount is dropped, so just clear pte here. 3327 */ 3328 if (unlikely(!pte_present(pte))) { 3329 huge_pte_clear(mm, address, ptep, sz); 3330 spin_unlock(ptl); 3331 continue; 3332 } 3333 3334 page = pte_page(pte); 3335 /* 3336 * If a reference page is supplied, it is because a specific 3337 * page is being unmapped, not a range. Ensure the page we 3338 * are about to unmap is the actual page of interest. 3339 */ 3340 if (ref_page) { 3341 if (page != ref_page) { 3342 spin_unlock(ptl); 3343 continue; 3344 } 3345 /* 3346 * Mark the VMA as having unmapped its page so that 3347 * future faults in this VMA will fail rather than 3348 * looking like data was lost 3349 */ 3350 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3351 } 3352 3353 pte = huge_ptep_get_and_clear(mm, address, ptep); 3354 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3355 if (huge_pte_dirty(pte)) 3356 set_page_dirty(page); 3357 3358 hugetlb_count_sub(pages_per_huge_page(h), mm); 3359 page_remove_rmap(page, true); 3360 3361 spin_unlock(ptl); 3362 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3363 /* 3364 * Bail out after unmapping reference page if supplied 3365 */ 3366 if (ref_page) 3367 break; 3368 } 3369 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3370 tlb_end_vma(tlb, vma); 3371 } 3372 3373 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3374 struct vm_area_struct *vma, unsigned long start, 3375 unsigned long end, struct page *ref_page) 3376 { 3377 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3378 3379 /* 3380 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3381 * test will fail on a vma being torn down, and not grab a page table 3382 * on its way out. We're lucky that the flag has such an appropriate 3383 * name, and can in fact be safely cleared here. We could clear it 3384 * before the __unmap_hugepage_range above, but all that's necessary 3385 * is to clear it before releasing the i_mmap_rwsem. This works 3386 * because in the context this is called, the VMA is about to be 3387 * destroyed and the i_mmap_rwsem is held. 3388 */ 3389 vma->vm_flags &= ~VM_MAYSHARE; 3390 } 3391 3392 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3393 unsigned long end, struct page *ref_page) 3394 { 3395 struct mm_struct *mm; 3396 struct mmu_gather tlb; 3397 3398 mm = vma->vm_mm; 3399 3400 tlb_gather_mmu(&tlb, mm, start, end); 3401 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3402 tlb_finish_mmu(&tlb, start, end); 3403 } 3404 3405 /* 3406 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3407 * mappping it owns the reserve page for. The intention is to unmap the page 3408 * from other VMAs and let the children be SIGKILLed if they are faulting the 3409 * same region. 3410 */ 3411 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3412 struct page *page, unsigned long address) 3413 { 3414 struct hstate *h = hstate_vma(vma); 3415 struct vm_area_struct *iter_vma; 3416 struct address_space *mapping; 3417 pgoff_t pgoff; 3418 3419 /* 3420 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3421 * from page cache lookup which is in HPAGE_SIZE units. 3422 */ 3423 address = address & huge_page_mask(h); 3424 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3425 vma->vm_pgoff; 3426 mapping = vma->vm_file->f_mapping; 3427 3428 /* 3429 * Take the mapping lock for the duration of the table walk. As 3430 * this mapping should be shared between all the VMAs, 3431 * __unmap_hugepage_range() is called as the lock is already held 3432 */ 3433 i_mmap_lock_write(mapping); 3434 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3435 /* Do not unmap the current VMA */ 3436 if (iter_vma == vma) 3437 continue; 3438 3439 /* 3440 * Shared VMAs have their own reserves and do not affect 3441 * MAP_PRIVATE accounting but it is possible that a shared 3442 * VMA is using the same page so check and skip such VMAs. 3443 */ 3444 if (iter_vma->vm_flags & VM_MAYSHARE) 3445 continue; 3446 3447 /* 3448 * Unmap the page from other VMAs without their own reserves. 3449 * They get marked to be SIGKILLed if they fault in these 3450 * areas. This is because a future no-page fault on this VMA 3451 * could insert a zeroed page instead of the data existing 3452 * from the time of fork. This would look like data corruption 3453 */ 3454 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3455 unmap_hugepage_range(iter_vma, address, 3456 address + huge_page_size(h), page); 3457 } 3458 i_mmap_unlock_write(mapping); 3459 } 3460 3461 /* 3462 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3463 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3464 * cannot race with other handlers or page migration. 3465 * Keep the pte_same checks anyway to make transition from the mutex easier. 3466 */ 3467 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3468 unsigned long address, pte_t *ptep, 3469 struct page *pagecache_page, spinlock_t *ptl) 3470 { 3471 pte_t pte; 3472 struct hstate *h = hstate_vma(vma); 3473 struct page *old_page, *new_page; 3474 int ret = 0, outside_reserve = 0; 3475 unsigned long mmun_start; /* For mmu_notifiers */ 3476 unsigned long mmun_end; /* For mmu_notifiers */ 3477 3478 pte = huge_ptep_get(ptep); 3479 old_page = pte_page(pte); 3480 3481 retry_avoidcopy: 3482 /* If no-one else is actually using this page, avoid the copy 3483 * and just make the page writable */ 3484 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3485 page_move_anon_rmap(old_page, vma); 3486 set_huge_ptep_writable(vma, address, ptep); 3487 return 0; 3488 } 3489 3490 /* 3491 * If the process that created a MAP_PRIVATE mapping is about to 3492 * perform a COW due to a shared page count, attempt to satisfy 3493 * the allocation without using the existing reserves. The pagecache 3494 * page is used to determine if the reserve at this address was 3495 * consumed or not. If reserves were used, a partial faulted mapping 3496 * at the time of fork() could consume its reserves on COW instead 3497 * of the full address range. 3498 */ 3499 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3500 old_page != pagecache_page) 3501 outside_reserve = 1; 3502 3503 get_page(old_page); 3504 3505 /* 3506 * Drop page table lock as buddy allocator may be called. It will 3507 * be acquired again before returning to the caller, as expected. 3508 */ 3509 spin_unlock(ptl); 3510 new_page = alloc_huge_page(vma, address, outside_reserve); 3511 3512 if (IS_ERR(new_page)) { 3513 /* 3514 * If a process owning a MAP_PRIVATE mapping fails to COW, 3515 * it is due to references held by a child and an insufficient 3516 * huge page pool. To guarantee the original mappers 3517 * reliability, unmap the page from child processes. The child 3518 * may get SIGKILLed if it later faults. 3519 */ 3520 if (outside_reserve) { 3521 put_page(old_page); 3522 BUG_ON(huge_pte_none(pte)); 3523 unmap_ref_private(mm, vma, old_page, address); 3524 BUG_ON(huge_pte_none(pte)); 3525 spin_lock(ptl); 3526 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3527 huge_page_size(h)); 3528 if (likely(ptep && 3529 pte_same(huge_ptep_get(ptep), pte))) 3530 goto retry_avoidcopy; 3531 /* 3532 * race occurs while re-acquiring page table 3533 * lock, and our job is done. 3534 */ 3535 return 0; 3536 } 3537 3538 ret = (PTR_ERR(new_page) == -ENOMEM) ? 3539 VM_FAULT_OOM : VM_FAULT_SIGBUS; 3540 goto out_release_old; 3541 } 3542 3543 /* 3544 * When the original hugepage is shared one, it does not have 3545 * anon_vma prepared. 3546 */ 3547 if (unlikely(anon_vma_prepare(vma))) { 3548 ret = VM_FAULT_OOM; 3549 goto out_release_all; 3550 } 3551 3552 copy_user_huge_page(new_page, old_page, address, vma, 3553 pages_per_huge_page(h)); 3554 __SetPageUptodate(new_page); 3555 set_page_huge_active(new_page); 3556 3557 mmun_start = address & huge_page_mask(h); 3558 mmun_end = mmun_start + huge_page_size(h); 3559 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 3560 3561 /* 3562 * Retake the page table lock to check for racing updates 3563 * before the page tables are altered 3564 */ 3565 spin_lock(ptl); 3566 ptep = huge_pte_offset(mm, address & huge_page_mask(h), 3567 huge_page_size(h)); 3568 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3569 ClearPagePrivate(new_page); 3570 3571 /* Break COW */ 3572 huge_ptep_clear_flush(vma, address, ptep); 3573 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 3574 set_huge_pte_at(mm, address, ptep, 3575 make_huge_pte(vma, new_page, 1)); 3576 page_remove_rmap(old_page, true); 3577 hugepage_add_new_anon_rmap(new_page, vma, address); 3578 /* Make the old page be freed below */ 3579 new_page = old_page; 3580 } 3581 spin_unlock(ptl); 3582 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 3583 out_release_all: 3584 restore_reserve_on_error(h, vma, address, new_page); 3585 put_page(new_page); 3586 out_release_old: 3587 put_page(old_page); 3588 3589 spin_lock(ptl); /* Caller expects lock to be held */ 3590 return ret; 3591 } 3592 3593 /* Return the pagecache page at a given address within a VMA */ 3594 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3595 struct vm_area_struct *vma, unsigned long address) 3596 { 3597 struct address_space *mapping; 3598 pgoff_t idx; 3599 3600 mapping = vma->vm_file->f_mapping; 3601 idx = vma_hugecache_offset(h, vma, address); 3602 3603 return find_lock_page(mapping, idx); 3604 } 3605 3606 /* 3607 * Return whether there is a pagecache page to back given address within VMA. 3608 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3609 */ 3610 static bool hugetlbfs_pagecache_present(struct hstate *h, 3611 struct vm_area_struct *vma, unsigned long address) 3612 { 3613 struct address_space *mapping; 3614 pgoff_t idx; 3615 struct page *page; 3616 3617 mapping = vma->vm_file->f_mapping; 3618 idx = vma_hugecache_offset(h, vma, address); 3619 3620 page = find_get_page(mapping, idx); 3621 if (page) 3622 put_page(page); 3623 return page != NULL; 3624 } 3625 3626 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3627 pgoff_t idx) 3628 { 3629 struct inode *inode = mapping->host; 3630 struct hstate *h = hstate_inode(inode); 3631 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3632 3633 if (err) 3634 return err; 3635 ClearPagePrivate(page); 3636 3637 spin_lock(&inode->i_lock); 3638 inode->i_blocks += blocks_per_huge_page(h); 3639 spin_unlock(&inode->i_lock); 3640 return 0; 3641 } 3642 3643 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 3644 struct address_space *mapping, pgoff_t idx, 3645 unsigned long address, pte_t *ptep, unsigned int flags) 3646 { 3647 struct hstate *h = hstate_vma(vma); 3648 int ret = VM_FAULT_SIGBUS; 3649 int anon_rmap = 0; 3650 unsigned long size; 3651 struct page *page; 3652 pte_t new_pte; 3653 spinlock_t *ptl; 3654 3655 /* 3656 * Currently, we are forced to kill the process in the event the 3657 * original mapper has unmapped pages from the child due to a failed 3658 * COW. Warn that such a situation has occurred as it may not be obvious 3659 */ 3660 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3661 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3662 current->pid); 3663 return ret; 3664 } 3665 3666 /* 3667 * Use page lock to guard against racing truncation 3668 * before we get page_table_lock. 3669 */ 3670 retry: 3671 page = find_lock_page(mapping, idx); 3672 if (!page) { 3673 size = i_size_read(mapping->host) >> huge_page_shift(h); 3674 if (idx >= size) 3675 goto out; 3676 3677 /* 3678 * Check for page in userfault range 3679 */ 3680 if (userfaultfd_missing(vma)) { 3681 u32 hash; 3682 struct vm_fault vmf = { 3683 .vma = vma, 3684 .address = address, 3685 .flags = flags, 3686 /* 3687 * Hard to debug if it ends up being 3688 * used by a callee that assumes 3689 * something about the other 3690 * uninitialized fields... same as in 3691 * memory.c 3692 */ 3693 }; 3694 3695 /* 3696 * hugetlb_fault_mutex must be dropped before 3697 * handling userfault. Reacquire after handling 3698 * fault to make calling code simpler. 3699 */ 3700 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3701 idx, address); 3702 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3703 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3704 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3705 goto out; 3706 } 3707 3708 page = alloc_huge_page(vma, address, 0); 3709 if (IS_ERR(page)) { 3710 ret = PTR_ERR(page); 3711 if (ret == -ENOMEM) 3712 ret = VM_FAULT_OOM; 3713 else 3714 ret = VM_FAULT_SIGBUS; 3715 goto out; 3716 } 3717 clear_huge_page(page, address, pages_per_huge_page(h)); 3718 __SetPageUptodate(page); 3719 set_page_huge_active(page); 3720 3721 if (vma->vm_flags & VM_MAYSHARE) { 3722 int err = huge_add_to_page_cache(page, mapping, idx); 3723 if (err) { 3724 put_page(page); 3725 if (err == -EEXIST) 3726 goto retry; 3727 goto out; 3728 } 3729 } else { 3730 lock_page(page); 3731 if (unlikely(anon_vma_prepare(vma))) { 3732 ret = VM_FAULT_OOM; 3733 goto backout_unlocked; 3734 } 3735 anon_rmap = 1; 3736 } 3737 } else { 3738 /* 3739 * If memory error occurs between mmap() and fault, some process 3740 * don't have hwpoisoned swap entry for errored virtual address. 3741 * So we need to block hugepage fault by PG_hwpoison bit check. 3742 */ 3743 if (unlikely(PageHWPoison(page))) { 3744 ret = VM_FAULT_HWPOISON | 3745 VM_FAULT_SET_HINDEX(hstate_index(h)); 3746 goto backout_unlocked; 3747 } 3748 } 3749 3750 /* 3751 * If we are going to COW a private mapping later, we examine the 3752 * pending reservations for this page now. This will ensure that 3753 * any allocations necessary to record that reservation occur outside 3754 * the spinlock. 3755 */ 3756 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3757 if (vma_needs_reservation(h, vma, address) < 0) { 3758 ret = VM_FAULT_OOM; 3759 goto backout_unlocked; 3760 } 3761 /* Just decrements count, does not deallocate */ 3762 vma_end_reservation(h, vma, address); 3763 } 3764 3765 ptl = huge_pte_lock(h, mm, ptep); 3766 size = i_size_read(mapping->host) >> huge_page_shift(h); 3767 if (idx >= size) 3768 goto backout; 3769 3770 ret = 0; 3771 if (!huge_pte_none(huge_ptep_get(ptep))) 3772 goto backout; 3773 3774 if (anon_rmap) { 3775 ClearPagePrivate(page); 3776 hugepage_add_new_anon_rmap(page, vma, address); 3777 } else 3778 page_dup_rmap(page, true); 3779 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3780 && (vma->vm_flags & VM_SHARED))); 3781 set_huge_pte_at(mm, address, ptep, new_pte); 3782 3783 hugetlb_count_add(pages_per_huge_page(h), mm); 3784 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3785 /* Optimization, do the COW without a second fault */ 3786 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3787 } 3788 3789 spin_unlock(ptl); 3790 unlock_page(page); 3791 out: 3792 return ret; 3793 3794 backout: 3795 spin_unlock(ptl); 3796 backout_unlocked: 3797 unlock_page(page); 3798 restore_reserve_on_error(h, vma, address, page); 3799 put_page(page); 3800 goto out; 3801 } 3802 3803 #ifdef CONFIG_SMP 3804 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3805 struct vm_area_struct *vma, 3806 struct address_space *mapping, 3807 pgoff_t idx, unsigned long address) 3808 { 3809 unsigned long key[2]; 3810 u32 hash; 3811 3812 if (vma->vm_flags & VM_SHARED) { 3813 key[0] = (unsigned long) mapping; 3814 key[1] = idx; 3815 } else { 3816 key[0] = (unsigned long) mm; 3817 key[1] = address >> huge_page_shift(h); 3818 } 3819 3820 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3821 3822 return hash & (num_fault_mutexes - 1); 3823 } 3824 #else 3825 /* 3826 * For uniprocesor systems we always use a single mutex, so just 3827 * return 0 and avoid the hashing overhead. 3828 */ 3829 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3830 struct vm_area_struct *vma, 3831 struct address_space *mapping, 3832 pgoff_t idx, unsigned long address) 3833 { 3834 return 0; 3835 } 3836 #endif 3837 3838 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3839 unsigned long address, unsigned int flags) 3840 { 3841 pte_t *ptep, entry; 3842 spinlock_t *ptl; 3843 int ret; 3844 u32 hash; 3845 pgoff_t idx; 3846 struct page *page = NULL; 3847 struct page *pagecache_page = NULL; 3848 struct hstate *h = hstate_vma(vma); 3849 struct address_space *mapping; 3850 int need_wait_lock = 0; 3851 3852 address &= huge_page_mask(h); 3853 3854 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 3855 if (ptep) { 3856 entry = huge_ptep_get(ptep); 3857 if (unlikely(is_hugetlb_entry_migration(entry))) { 3858 migration_entry_wait_huge(vma, mm, ptep); 3859 return 0; 3860 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3861 return VM_FAULT_HWPOISON_LARGE | 3862 VM_FAULT_SET_HINDEX(hstate_index(h)); 3863 } else { 3864 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 3865 if (!ptep) 3866 return VM_FAULT_OOM; 3867 } 3868 3869 mapping = vma->vm_file->f_mapping; 3870 idx = vma_hugecache_offset(h, vma, address); 3871 3872 /* 3873 * Serialize hugepage allocation and instantiation, so that we don't 3874 * get spurious allocation failures if two CPUs race to instantiate 3875 * the same page in the page cache. 3876 */ 3877 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); 3878 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3879 3880 entry = huge_ptep_get(ptep); 3881 if (huge_pte_none(entry)) { 3882 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3883 goto out_mutex; 3884 } 3885 3886 ret = 0; 3887 3888 /* 3889 * entry could be a migration/hwpoison entry at this point, so this 3890 * check prevents the kernel from going below assuming that we have 3891 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3892 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3893 * handle it. 3894 */ 3895 if (!pte_present(entry)) 3896 goto out_mutex; 3897 3898 /* 3899 * If we are going to COW the mapping later, we examine the pending 3900 * reservations for this page now. This will ensure that any 3901 * allocations necessary to record that reservation occur outside the 3902 * spinlock. For private mappings, we also lookup the pagecache 3903 * page now as it is used to determine if a reservation has been 3904 * consumed. 3905 */ 3906 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3907 if (vma_needs_reservation(h, vma, address) < 0) { 3908 ret = VM_FAULT_OOM; 3909 goto out_mutex; 3910 } 3911 /* Just decrements count, does not deallocate */ 3912 vma_end_reservation(h, vma, address); 3913 3914 if (!(vma->vm_flags & VM_MAYSHARE)) 3915 pagecache_page = hugetlbfs_pagecache_page(h, 3916 vma, address); 3917 } 3918 3919 ptl = huge_pte_lock(h, mm, ptep); 3920 3921 /* Check for a racing update before calling hugetlb_cow */ 3922 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 3923 goto out_ptl; 3924 3925 /* 3926 * hugetlb_cow() requires page locks of pte_page(entry) and 3927 * pagecache_page, so here we need take the former one 3928 * when page != pagecache_page or !pagecache_page. 3929 */ 3930 page = pte_page(entry); 3931 if (page != pagecache_page) 3932 if (!trylock_page(page)) { 3933 need_wait_lock = 1; 3934 goto out_ptl; 3935 } 3936 3937 get_page(page); 3938 3939 if (flags & FAULT_FLAG_WRITE) { 3940 if (!huge_pte_write(entry)) { 3941 ret = hugetlb_cow(mm, vma, address, ptep, 3942 pagecache_page, ptl); 3943 goto out_put_page; 3944 } 3945 entry = huge_pte_mkdirty(entry); 3946 } 3947 entry = pte_mkyoung(entry); 3948 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3949 flags & FAULT_FLAG_WRITE)) 3950 update_mmu_cache(vma, address, ptep); 3951 out_put_page: 3952 if (page != pagecache_page) 3953 unlock_page(page); 3954 put_page(page); 3955 out_ptl: 3956 spin_unlock(ptl); 3957 3958 if (pagecache_page) { 3959 unlock_page(pagecache_page); 3960 put_page(pagecache_page); 3961 } 3962 out_mutex: 3963 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3964 /* 3965 * Generally it's safe to hold refcount during waiting page lock. But 3966 * here we just wait to defer the next page fault to avoid busy loop and 3967 * the page is not used after unlocked before returning from the current 3968 * page fault. So we are safe from accessing freed page, even if we wait 3969 * here without taking refcount. 3970 */ 3971 if (need_wait_lock) 3972 wait_on_page_locked(page); 3973 return ret; 3974 } 3975 3976 /* 3977 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 3978 * modifications for huge pages. 3979 */ 3980 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 3981 pte_t *dst_pte, 3982 struct vm_area_struct *dst_vma, 3983 unsigned long dst_addr, 3984 unsigned long src_addr, 3985 struct page **pagep) 3986 { 3987 int vm_shared = dst_vma->vm_flags & VM_SHARED; 3988 struct hstate *h = hstate_vma(dst_vma); 3989 pte_t _dst_pte; 3990 spinlock_t *ptl; 3991 int ret; 3992 struct page *page; 3993 3994 if (!*pagep) { 3995 ret = -ENOMEM; 3996 page = alloc_huge_page(dst_vma, dst_addr, 0); 3997 if (IS_ERR(page)) 3998 goto out; 3999 4000 ret = copy_huge_page_from_user(page, 4001 (const void __user *) src_addr, 4002 pages_per_huge_page(h), false); 4003 4004 /* fallback to copy_from_user outside mmap_sem */ 4005 if (unlikely(ret)) { 4006 ret = -EFAULT; 4007 *pagep = page; 4008 /* don't free the page */ 4009 goto out; 4010 } 4011 } else { 4012 page = *pagep; 4013 *pagep = NULL; 4014 } 4015 4016 /* 4017 * The memory barrier inside __SetPageUptodate makes sure that 4018 * preceding stores to the page contents become visible before 4019 * the set_pte_at() write. 4020 */ 4021 __SetPageUptodate(page); 4022 set_page_huge_active(page); 4023 4024 /* 4025 * If shared, add to page cache 4026 */ 4027 if (vm_shared) { 4028 struct address_space *mapping = dst_vma->vm_file->f_mapping; 4029 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4030 4031 ret = huge_add_to_page_cache(page, mapping, idx); 4032 if (ret) 4033 goto out_release_nounlock; 4034 } 4035 4036 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4037 spin_lock(ptl); 4038 4039 ret = -EEXIST; 4040 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4041 goto out_release_unlock; 4042 4043 if (vm_shared) { 4044 page_dup_rmap(page, true); 4045 } else { 4046 ClearPagePrivate(page); 4047 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4048 } 4049 4050 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4051 if (dst_vma->vm_flags & VM_WRITE) 4052 _dst_pte = huge_pte_mkdirty(_dst_pte); 4053 _dst_pte = pte_mkyoung(_dst_pte); 4054 4055 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4056 4057 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4058 dst_vma->vm_flags & VM_WRITE); 4059 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4060 4061 /* No need to invalidate - it was non-present before */ 4062 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4063 4064 spin_unlock(ptl); 4065 if (vm_shared) 4066 unlock_page(page); 4067 ret = 0; 4068 out: 4069 return ret; 4070 out_release_unlock: 4071 spin_unlock(ptl); 4072 if (vm_shared) 4073 unlock_page(page); 4074 out_release_nounlock: 4075 put_page(page); 4076 goto out; 4077 } 4078 4079 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4080 struct page **pages, struct vm_area_struct **vmas, 4081 unsigned long *position, unsigned long *nr_pages, 4082 long i, unsigned int flags, int *nonblocking) 4083 { 4084 unsigned long pfn_offset; 4085 unsigned long vaddr = *position; 4086 unsigned long remainder = *nr_pages; 4087 struct hstate *h = hstate_vma(vma); 4088 int err = -EFAULT; 4089 4090 while (vaddr < vma->vm_end && remainder) { 4091 pte_t *pte; 4092 spinlock_t *ptl = NULL; 4093 int absent; 4094 struct page *page; 4095 4096 /* 4097 * If we have a pending SIGKILL, don't keep faulting pages and 4098 * potentially allocating memory. 4099 */ 4100 if (unlikely(fatal_signal_pending(current))) { 4101 remainder = 0; 4102 break; 4103 } 4104 4105 /* 4106 * Some archs (sparc64, sh*) have multiple pte_ts to 4107 * each hugepage. We have to make sure we get the 4108 * first, for the page indexing below to work. 4109 * 4110 * Note that page table lock is not held when pte is null. 4111 */ 4112 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4113 huge_page_size(h)); 4114 if (pte) 4115 ptl = huge_pte_lock(h, mm, pte); 4116 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4117 4118 /* 4119 * When coredumping, it suits get_dump_page if we just return 4120 * an error where there's an empty slot with no huge pagecache 4121 * to back it. This way, we avoid allocating a hugepage, and 4122 * the sparse dumpfile avoids allocating disk blocks, but its 4123 * huge holes still show up with zeroes where they need to be. 4124 */ 4125 if (absent && (flags & FOLL_DUMP) && 4126 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4127 if (pte) 4128 spin_unlock(ptl); 4129 remainder = 0; 4130 break; 4131 } 4132 4133 /* 4134 * We need call hugetlb_fault for both hugepages under migration 4135 * (in which case hugetlb_fault waits for the migration,) and 4136 * hwpoisoned hugepages (in which case we need to prevent the 4137 * caller from accessing to them.) In order to do this, we use 4138 * here is_swap_pte instead of is_hugetlb_entry_migration and 4139 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4140 * both cases, and because we can't follow correct pages 4141 * directly from any kind of swap entries. 4142 */ 4143 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4144 ((flags & FOLL_WRITE) && 4145 !huge_pte_write(huge_ptep_get(pte)))) { 4146 int ret; 4147 unsigned int fault_flags = 0; 4148 4149 if (pte) 4150 spin_unlock(ptl); 4151 if (flags & FOLL_WRITE) 4152 fault_flags |= FAULT_FLAG_WRITE; 4153 if (nonblocking) 4154 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4155 if (flags & FOLL_NOWAIT) 4156 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4157 FAULT_FLAG_RETRY_NOWAIT; 4158 if (flags & FOLL_TRIED) { 4159 VM_WARN_ON_ONCE(fault_flags & 4160 FAULT_FLAG_ALLOW_RETRY); 4161 fault_flags |= FAULT_FLAG_TRIED; 4162 } 4163 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4164 if (ret & VM_FAULT_ERROR) { 4165 err = vm_fault_to_errno(ret, flags); 4166 remainder = 0; 4167 break; 4168 } 4169 if (ret & VM_FAULT_RETRY) { 4170 if (nonblocking) 4171 *nonblocking = 0; 4172 *nr_pages = 0; 4173 /* 4174 * VM_FAULT_RETRY must not return an 4175 * error, it will return zero 4176 * instead. 4177 * 4178 * No need to update "position" as the 4179 * caller will not check it after 4180 * *nr_pages is set to 0. 4181 */ 4182 return i; 4183 } 4184 continue; 4185 } 4186 4187 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4188 page = pte_page(huge_ptep_get(pte)); 4189 same_page: 4190 if (pages) { 4191 pages[i] = mem_map_offset(page, pfn_offset); 4192 get_page(pages[i]); 4193 } 4194 4195 if (vmas) 4196 vmas[i] = vma; 4197 4198 vaddr += PAGE_SIZE; 4199 ++pfn_offset; 4200 --remainder; 4201 ++i; 4202 if (vaddr < vma->vm_end && remainder && 4203 pfn_offset < pages_per_huge_page(h)) { 4204 /* 4205 * We use pfn_offset to avoid touching the pageframes 4206 * of this compound page. 4207 */ 4208 goto same_page; 4209 } 4210 spin_unlock(ptl); 4211 } 4212 *nr_pages = remainder; 4213 /* 4214 * setting position is actually required only if remainder is 4215 * not zero but it's faster not to add a "if (remainder)" 4216 * branch. 4217 */ 4218 *position = vaddr; 4219 4220 return i ? i : err; 4221 } 4222 4223 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4224 /* 4225 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4226 * implement this. 4227 */ 4228 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4229 #endif 4230 4231 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4232 unsigned long address, unsigned long end, pgprot_t newprot) 4233 { 4234 struct mm_struct *mm = vma->vm_mm; 4235 unsigned long start = address; 4236 pte_t *ptep; 4237 pte_t pte; 4238 struct hstate *h = hstate_vma(vma); 4239 unsigned long pages = 0; 4240 4241 BUG_ON(address >= end); 4242 flush_cache_range(vma, address, end); 4243 4244 mmu_notifier_invalidate_range_start(mm, start, end); 4245 i_mmap_lock_write(vma->vm_file->f_mapping); 4246 for (; address < end; address += huge_page_size(h)) { 4247 spinlock_t *ptl; 4248 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4249 if (!ptep) 4250 continue; 4251 ptl = huge_pte_lock(h, mm, ptep); 4252 if (huge_pmd_unshare(mm, &address, ptep)) { 4253 pages++; 4254 spin_unlock(ptl); 4255 continue; 4256 } 4257 pte = huge_ptep_get(ptep); 4258 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4259 spin_unlock(ptl); 4260 continue; 4261 } 4262 if (unlikely(is_hugetlb_entry_migration(pte))) { 4263 swp_entry_t entry = pte_to_swp_entry(pte); 4264 4265 if (is_write_migration_entry(entry)) { 4266 pte_t newpte; 4267 4268 make_migration_entry_read(&entry); 4269 newpte = swp_entry_to_pte(entry); 4270 set_huge_swap_pte_at(mm, address, ptep, 4271 newpte, huge_page_size(h)); 4272 pages++; 4273 } 4274 spin_unlock(ptl); 4275 continue; 4276 } 4277 if (!huge_pte_none(pte)) { 4278 pte = huge_ptep_get_and_clear(mm, address, ptep); 4279 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4280 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4281 set_huge_pte_at(mm, address, ptep, pte); 4282 pages++; 4283 } 4284 spin_unlock(ptl); 4285 } 4286 /* 4287 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4288 * may have cleared our pud entry and done put_page on the page table: 4289 * once we release i_mmap_rwsem, another task can do the final put_page 4290 * and that page table be reused and filled with junk. 4291 */ 4292 flush_hugetlb_tlb_range(vma, start, end); 4293 mmu_notifier_invalidate_range(mm, start, end); 4294 i_mmap_unlock_write(vma->vm_file->f_mapping); 4295 mmu_notifier_invalidate_range_end(mm, start, end); 4296 4297 return pages << h->order; 4298 } 4299 4300 int hugetlb_reserve_pages(struct inode *inode, 4301 long from, long to, 4302 struct vm_area_struct *vma, 4303 vm_flags_t vm_flags) 4304 { 4305 long ret, chg; 4306 struct hstate *h = hstate_inode(inode); 4307 struct hugepage_subpool *spool = subpool_inode(inode); 4308 struct resv_map *resv_map; 4309 long gbl_reserve; 4310 4311 /* 4312 * Only apply hugepage reservation if asked. At fault time, an 4313 * attempt will be made for VM_NORESERVE to allocate a page 4314 * without using reserves 4315 */ 4316 if (vm_flags & VM_NORESERVE) 4317 return 0; 4318 4319 /* 4320 * Shared mappings base their reservation on the number of pages that 4321 * are already allocated on behalf of the file. Private mappings need 4322 * to reserve the full area even if read-only as mprotect() may be 4323 * called to make the mapping read-write. Assume !vma is a shm mapping 4324 */ 4325 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4326 resv_map = inode_resv_map(inode); 4327 4328 chg = region_chg(resv_map, from, to); 4329 4330 } else { 4331 resv_map = resv_map_alloc(); 4332 if (!resv_map) 4333 return -ENOMEM; 4334 4335 chg = to - from; 4336 4337 set_vma_resv_map(vma, resv_map); 4338 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4339 } 4340 4341 if (chg < 0) { 4342 ret = chg; 4343 goto out_err; 4344 } 4345 4346 /* 4347 * There must be enough pages in the subpool for the mapping. If 4348 * the subpool has a minimum size, there may be some global 4349 * reservations already in place (gbl_reserve). 4350 */ 4351 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4352 if (gbl_reserve < 0) { 4353 ret = -ENOSPC; 4354 goto out_err; 4355 } 4356 4357 /* 4358 * Check enough hugepages are available for the reservation. 4359 * Hand the pages back to the subpool if there are not 4360 */ 4361 ret = hugetlb_acct_memory(h, gbl_reserve); 4362 if (ret < 0) { 4363 /* put back original number of pages, chg */ 4364 (void)hugepage_subpool_put_pages(spool, chg); 4365 goto out_err; 4366 } 4367 4368 /* 4369 * Account for the reservations made. Shared mappings record regions 4370 * that have reservations as they are shared by multiple VMAs. 4371 * When the last VMA disappears, the region map says how much 4372 * the reservation was and the page cache tells how much of 4373 * the reservation was consumed. Private mappings are per-VMA and 4374 * only the consumed reservations are tracked. When the VMA 4375 * disappears, the original reservation is the VMA size and the 4376 * consumed reservations are stored in the map. Hence, nothing 4377 * else has to be done for private mappings here 4378 */ 4379 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4380 long add = region_add(resv_map, from, to); 4381 4382 if (unlikely(chg > add)) { 4383 /* 4384 * pages in this range were added to the reserve 4385 * map between region_chg and region_add. This 4386 * indicates a race with alloc_huge_page. Adjust 4387 * the subpool and reserve counts modified above 4388 * based on the difference. 4389 */ 4390 long rsv_adjust; 4391 4392 rsv_adjust = hugepage_subpool_put_pages(spool, 4393 chg - add); 4394 hugetlb_acct_memory(h, -rsv_adjust); 4395 } 4396 } 4397 return 0; 4398 out_err: 4399 if (!vma || vma->vm_flags & VM_MAYSHARE) 4400 /* Don't call region_abort if region_chg failed */ 4401 if (chg >= 0) 4402 region_abort(resv_map, from, to); 4403 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4404 kref_put(&resv_map->refs, resv_map_release); 4405 return ret; 4406 } 4407 4408 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4409 long freed) 4410 { 4411 struct hstate *h = hstate_inode(inode); 4412 struct resv_map *resv_map = inode_resv_map(inode); 4413 long chg = 0; 4414 struct hugepage_subpool *spool = subpool_inode(inode); 4415 long gbl_reserve; 4416 4417 if (resv_map) { 4418 chg = region_del(resv_map, start, end); 4419 /* 4420 * region_del() can fail in the rare case where a region 4421 * must be split and another region descriptor can not be 4422 * allocated. If end == LONG_MAX, it will not fail. 4423 */ 4424 if (chg < 0) 4425 return chg; 4426 } 4427 4428 spin_lock(&inode->i_lock); 4429 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4430 spin_unlock(&inode->i_lock); 4431 4432 /* 4433 * If the subpool has a minimum size, the number of global 4434 * reservations to be released may be adjusted. 4435 */ 4436 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4437 hugetlb_acct_memory(h, -gbl_reserve); 4438 4439 return 0; 4440 } 4441 4442 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4443 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4444 struct vm_area_struct *vma, 4445 unsigned long addr, pgoff_t idx) 4446 { 4447 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4448 svma->vm_start; 4449 unsigned long sbase = saddr & PUD_MASK; 4450 unsigned long s_end = sbase + PUD_SIZE; 4451 4452 /* Allow segments to share if only one is marked locked */ 4453 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4454 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4455 4456 /* 4457 * match the virtual addresses, permission and the alignment of the 4458 * page table page. 4459 */ 4460 if (pmd_index(addr) != pmd_index(saddr) || 4461 vm_flags != svm_flags || 4462 sbase < svma->vm_start || svma->vm_end < s_end) 4463 return 0; 4464 4465 return saddr; 4466 } 4467 4468 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4469 { 4470 unsigned long base = addr & PUD_MASK; 4471 unsigned long end = base + PUD_SIZE; 4472 4473 /* 4474 * check on proper vm_flags and page table alignment 4475 */ 4476 if (vma->vm_flags & VM_MAYSHARE && 4477 vma->vm_start <= base && end <= vma->vm_end) 4478 return true; 4479 return false; 4480 } 4481 4482 /* 4483 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4484 * and returns the corresponding pte. While this is not necessary for the 4485 * !shared pmd case because we can allocate the pmd later as well, it makes the 4486 * code much cleaner. pmd allocation is essential for the shared case because 4487 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4488 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4489 * bad pmd for sharing. 4490 */ 4491 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4492 { 4493 struct vm_area_struct *vma = find_vma(mm, addr); 4494 struct address_space *mapping = vma->vm_file->f_mapping; 4495 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4496 vma->vm_pgoff; 4497 struct vm_area_struct *svma; 4498 unsigned long saddr; 4499 pte_t *spte = NULL; 4500 pte_t *pte; 4501 spinlock_t *ptl; 4502 4503 if (!vma_shareable(vma, addr)) 4504 return (pte_t *)pmd_alloc(mm, pud, addr); 4505 4506 i_mmap_lock_write(mapping); 4507 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4508 if (svma == vma) 4509 continue; 4510 4511 saddr = page_table_shareable(svma, vma, addr, idx); 4512 if (saddr) { 4513 spte = huge_pte_offset(svma->vm_mm, saddr, 4514 vma_mmu_pagesize(svma)); 4515 if (spte) { 4516 get_page(virt_to_page(spte)); 4517 break; 4518 } 4519 } 4520 } 4521 4522 if (!spte) 4523 goto out; 4524 4525 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4526 if (pud_none(*pud)) { 4527 pud_populate(mm, pud, 4528 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4529 mm_inc_nr_pmds(mm); 4530 } else { 4531 put_page(virt_to_page(spte)); 4532 } 4533 spin_unlock(ptl); 4534 out: 4535 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4536 i_mmap_unlock_write(mapping); 4537 return pte; 4538 } 4539 4540 /* 4541 * unmap huge page backed by shared pte. 4542 * 4543 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4544 * indicated by page_count > 1, unmap is achieved by clearing pud and 4545 * decrementing the ref count. If count == 1, the pte page is not shared. 4546 * 4547 * called with page table lock held. 4548 * 4549 * returns: 1 successfully unmapped a shared pte page 4550 * 0 the underlying pte page is not shared, or it is the last user 4551 */ 4552 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4553 { 4554 pgd_t *pgd = pgd_offset(mm, *addr); 4555 p4d_t *p4d = p4d_offset(pgd, *addr); 4556 pud_t *pud = pud_offset(p4d, *addr); 4557 4558 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4559 if (page_count(virt_to_page(ptep)) == 1) 4560 return 0; 4561 4562 pud_clear(pud); 4563 put_page(virt_to_page(ptep)); 4564 mm_dec_nr_pmds(mm); 4565 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4566 return 1; 4567 } 4568 #define want_pmd_share() (1) 4569 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4570 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4571 { 4572 return NULL; 4573 } 4574 4575 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4576 { 4577 return 0; 4578 } 4579 #define want_pmd_share() (0) 4580 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4581 4582 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4583 pte_t *huge_pte_alloc(struct mm_struct *mm, 4584 unsigned long addr, unsigned long sz) 4585 { 4586 pgd_t *pgd; 4587 p4d_t *p4d; 4588 pud_t *pud; 4589 pte_t *pte = NULL; 4590 4591 pgd = pgd_offset(mm, addr); 4592 p4d = p4d_offset(pgd, addr); 4593 pud = pud_alloc(mm, p4d, addr); 4594 if (pud) { 4595 if (sz == PUD_SIZE) { 4596 pte = (pte_t *)pud; 4597 } else { 4598 BUG_ON(sz != PMD_SIZE); 4599 if (want_pmd_share() && pud_none(*pud)) 4600 pte = huge_pmd_share(mm, addr, pud); 4601 else 4602 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4603 } 4604 } 4605 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4606 4607 return pte; 4608 } 4609 4610 /* 4611 * huge_pte_offset() - Walk the page table to resolve the hugepage 4612 * entry at address @addr 4613 * 4614 * Return: Pointer to page table or swap entry (PUD or PMD) for 4615 * address @addr, or NULL if a p*d_none() entry is encountered and the 4616 * size @sz doesn't match the hugepage size at this level of the page 4617 * table. 4618 */ 4619 pte_t *huge_pte_offset(struct mm_struct *mm, 4620 unsigned long addr, unsigned long sz) 4621 { 4622 pgd_t *pgd; 4623 p4d_t *p4d; 4624 pud_t *pud; 4625 pmd_t *pmd; 4626 4627 pgd = pgd_offset(mm, addr); 4628 if (!pgd_present(*pgd)) 4629 return NULL; 4630 p4d = p4d_offset(pgd, addr); 4631 if (!p4d_present(*p4d)) 4632 return NULL; 4633 4634 pud = pud_offset(p4d, addr); 4635 if (sz != PUD_SIZE && pud_none(*pud)) 4636 return NULL; 4637 /* hugepage or swap? */ 4638 if (pud_huge(*pud) || !pud_present(*pud)) 4639 return (pte_t *)pud; 4640 4641 pmd = pmd_offset(pud, addr); 4642 if (sz != PMD_SIZE && pmd_none(*pmd)) 4643 return NULL; 4644 /* hugepage or swap? */ 4645 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4646 return (pte_t *)pmd; 4647 4648 return NULL; 4649 } 4650 4651 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4652 4653 /* 4654 * These functions are overwritable if your architecture needs its own 4655 * behavior. 4656 */ 4657 struct page * __weak 4658 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4659 int write) 4660 { 4661 return ERR_PTR(-EINVAL); 4662 } 4663 4664 struct page * __weak 4665 follow_huge_pd(struct vm_area_struct *vma, 4666 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4667 { 4668 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4669 return NULL; 4670 } 4671 4672 struct page * __weak 4673 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4674 pmd_t *pmd, int flags) 4675 { 4676 struct page *page = NULL; 4677 spinlock_t *ptl; 4678 pte_t pte; 4679 retry: 4680 ptl = pmd_lockptr(mm, pmd); 4681 spin_lock(ptl); 4682 /* 4683 * make sure that the address range covered by this pmd is not 4684 * unmapped from other threads. 4685 */ 4686 if (!pmd_huge(*pmd)) 4687 goto out; 4688 pte = huge_ptep_get((pte_t *)pmd); 4689 if (pte_present(pte)) { 4690 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4691 if (flags & FOLL_GET) 4692 get_page(page); 4693 } else { 4694 if (is_hugetlb_entry_migration(pte)) { 4695 spin_unlock(ptl); 4696 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4697 goto retry; 4698 } 4699 /* 4700 * hwpoisoned entry is treated as no_page_table in 4701 * follow_page_mask(). 4702 */ 4703 } 4704 out: 4705 spin_unlock(ptl); 4706 return page; 4707 } 4708 4709 struct page * __weak 4710 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4711 pud_t *pud, int flags) 4712 { 4713 if (flags & FOLL_GET) 4714 return NULL; 4715 4716 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4717 } 4718 4719 struct page * __weak 4720 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4721 { 4722 if (flags & FOLL_GET) 4723 return NULL; 4724 4725 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4726 } 4727 4728 bool isolate_huge_page(struct page *page, struct list_head *list) 4729 { 4730 bool ret = true; 4731 4732 VM_BUG_ON_PAGE(!PageHead(page), page); 4733 spin_lock(&hugetlb_lock); 4734 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4735 ret = false; 4736 goto unlock; 4737 } 4738 clear_page_huge_active(page); 4739 list_move_tail(&page->lru, list); 4740 unlock: 4741 spin_unlock(&hugetlb_lock); 4742 return ret; 4743 } 4744 4745 void putback_active_hugepage(struct page *page) 4746 { 4747 VM_BUG_ON_PAGE(!PageHead(page), page); 4748 spin_lock(&hugetlb_lock); 4749 set_page_huge_active(page); 4750 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4751 spin_unlock(&hugetlb_lock); 4752 put_page(page); 4753 } 4754