xref: /openbmc/linux/mm/hugetlb.c (revision 6e6faf7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38 
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46 
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50 
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
54 static bool hugetlb_cma_page(struct page *page, unsigned int order)
55 {
56 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
57 				1 << order);
58 }
59 #else
60 static bool hugetlb_cma_page(struct page *page, unsigned int order)
61 {
62 	return false;
63 }
64 #endif
65 static unsigned long hugetlb_cma_size __initdata;
66 
67 /*
68  * Minimum page order among possible hugepage sizes, set to a proper value
69  * at boot time.
70  */
71 static unsigned int minimum_order __read_mostly = UINT_MAX;
72 
73 __initdata LIST_HEAD(huge_boot_pages);
74 
75 /* for command line parsing */
76 static struct hstate * __initdata parsed_hstate;
77 static unsigned long __initdata default_hstate_max_huge_pages;
78 static bool __initdata parsed_valid_hugepagesz = true;
79 static bool __initdata parsed_default_hugepagesz;
80 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
81 
82 /*
83  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
84  * free_huge_pages, and surplus_huge_pages.
85  */
86 DEFINE_SPINLOCK(hugetlb_lock);
87 
88 /*
89  * Serializes faults on the same logical page.  This is used to
90  * prevent spurious OOMs when the hugepage pool is fully utilized.
91  */
92 static int num_fault_mutexes;
93 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
94 
95 /* Forward declaration */
96 static int hugetlb_acct_memory(struct hstate *h, long delta);
97 
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100 	if (spool->count)
101 		return false;
102 	if (spool->max_hpages != -1)
103 		return spool->used_hpages == 0;
104 	if (spool->min_hpages != -1)
105 		return spool->rsv_hpages == spool->min_hpages;
106 
107 	return true;
108 }
109 
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 						unsigned long irq_flags)
112 {
113 	spin_unlock_irqrestore(&spool->lock, irq_flags);
114 
115 	/* If no pages are used, and no other handles to the subpool
116 	 * remain, give up any reservations based on minimum size and
117 	 * free the subpool */
118 	if (subpool_is_free(spool)) {
119 		if (spool->min_hpages != -1)
120 			hugetlb_acct_memory(spool->hstate,
121 						-spool->min_hpages);
122 		kfree(spool);
123 	}
124 }
125 
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 						long min_hpages)
128 {
129 	struct hugepage_subpool *spool;
130 
131 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132 	if (!spool)
133 		return NULL;
134 
135 	spin_lock_init(&spool->lock);
136 	spool->count = 1;
137 	spool->max_hpages = max_hpages;
138 	spool->hstate = h;
139 	spool->min_hpages = min_hpages;
140 
141 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 		kfree(spool);
143 		return NULL;
144 	}
145 	spool->rsv_hpages = min_hpages;
146 
147 	return spool;
148 }
149 
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152 	unsigned long flags;
153 
154 	spin_lock_irqsave(&spool->lock, flags);
155 	BUG_ON(!spool->count);
156 	spool->count--;
157 	unlock_or_release_subpool(spool, flags);
158 }
159 
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169 				      long delta)
170 {
171 	long ret = delta;
172 
173 	if (!spool)
174 		return ret;
175 
176 	spin_lock_irq(&spool->lock);
177 
178 	if (spool->max_hpages != -1) {		/* maximum size accounting */
179 		if ((spool->used_hpages + delta) <= spool->max_hpages)
180 			spool->used_hpages += delta;
181 		else {
182 			ret = -ENOMEM;
183 			goto unlock_ret;
184 		}
185 	}
186 
187 	/* minimum size accounting */
188 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 		if (delta > spool->rsv_hpages) {
190 			/*
191 			 * Asking for more reserves than those already taken on
192 			 * behalf of subpool.  Return difference.
193 			 */
194 			ret = delta - spool->rsv_hpages;
195 			spool->rsv_hpages = 0;
196 		} else {
197 			ret = 0;	/* reserves already accounted for */
198 			spool->rsv_hpages -= delta;
199 		}
200 	}
201 
202 unlock_ret:
203 	spin_unlock_irq(&spool->lock);
204 	return ret;
205 }
206 
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214 				       long delta)
215 {
216 	long ret = delta;
217 	unsigned long flags;
218 
219 	if (!spool)
220 		return delta;
221 
222 	spin_lock_irqsave(&spool->lock, flags);
223 
224 	if (spool->max_hpages != -1)		/* maximum size accounting */
225 		spool->used_hpages -= delta;
226 
227 	 /* minimum size accounting */
228 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 		if (spool->rsv_hpages + delta <= spool->min_hpages)
230 			ret = 0;
231 		else
232 			ret = spool->rsv_hpages + delta - spool->min_hpages;
233 
234 		spool->rsv_hpages += delta;
235 		if (spool->rsv_hpages > spool->min_hpages)
236 			spool->rsv_hpages = spool->min_hpages;
237 	}
238 
239 	/*
240 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 	 * quota reference, free it now.
242 	 */
243 	unlock_or_release_subpool(spool, flags);
244 
245 	return ret;
246 }
247 
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250 	return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252 
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255 	return subpool_inode(file_inode(vma->vm_file));
256 }
257 
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264 	struct file_region *nrg = NULL;
265 
266 	VM_BUG_ON(resv->region_cache_count <= 0);
267 
268 	resv->region_cache_count--;
269 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 	list_del(&nrg->link);
271 
272 	nrg->from = from;
273 	nrg->to = to;
274 
275 	return nrg;
276 }
277 
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 					      struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282 	nrg->reservation_counter = rg->reservation_counter;
283 	nrg->css = rg->css;
284 	if (rg->css)
285 		css_get(rg->css);
286 #endif
287 }
288 
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 						struct hstate *h,
292 						struct resv_map *resv,
293 						struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296 	if (h_cg) {
297 		nrg->reservation_counter =
298 			&h_cg->rsvd_hugepage[hstate_index(h)];
299 		nrg->css = &h_cg->css;
300 		/*
301 		 * The caller will hold exactly one h_cg->css reference for the
302 		 * whole contiguous reservation region. But this area might be
303 		 * scattered when there are already some file_regions reside in
304 		 * it. As a result, many file_regions may share only one css
305 		 * reference. In order to ensure that one file_region must hold
306 		 * exactly one h_cg->css reference, we should do css_get for
307 		 * each file_region and leave the reference held by caller
308 		 * untouched.
309 		 */
310 		css_get(&h_cg->css);
311 		if (!resv->pages_per_hpage)
312 			resv->pages_per_hpage = pages_per_huge_page(h);
313 		/* pages_per_hpage should be the same for all entries in
314 		 * a resv_map.
315 		 */
316 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 	} else {
318 		nrg->reservation_counter = NULL;
319 		nrg->css = NULL;
320 	}
321 #endif
322 }
323 
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327 	if (rg->css)
328 		css_put(rg->css);
329 #endif
330 }
331 
332 static bool has_same_uncharge_info(struct file_region *rg,
333 				   struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336 	return rg->reservation_counter == org->reservation_counter &&
337 	       rg->css == org->css;
338 
339 #else
340 	return true;
341 #endif
342 }
343 
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346 	struct file_region *nrg = NULL, *prg = NULL;
347 
348 	prg = list_prev_entry(rg, link);
349 	if (&prg->link != &resv->regions && prg->to == rg->from &&
350 	    has_same_uncharge_info(prg, rg)) {
351 		prg->to = rg->to;
352 
353 		list_del(&rg->link);
354 		put_uncharge_info(rg);
355 		kfree(rg);
356 
357 		rg = prg;
358 	}
359 
360 	nrg = list_next_entry(rg, link);
361 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 	    has_same_uncharge_info(nrg, rg)) {
363 		nrg->from = rg->from;
364 
365 		list_del(&rg->link);
366 		put_uncharge_info(rg);
367 		kfree(rg);
368 	}
369 }
370 
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
373 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 		     long *regions_needed)
375 {
376 	struct file_region *nrg;
377 
378 	if (!regions_needed) {
379 		nrg = get_file_region_entry_from_cache(map, from, to);
380 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 		list_add(&nrg->link, rg->link.prev);
382 		coalesce_file_region(map, nrg);
383 	} else
384 		*regions_needed += 1;
385 
386 	return to - from;
387 }
388 
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 				     struct hugetlb_cgroup *h_cg,
399 				     struct hstate *h, long *regions_needed)
400 {
401 	long add = 0;
402 	struct list_head *head = &resv->regions;
403 	long last_accounted_offset = f;
404 	struct file_region *rg = NULL, *trg = NULL;
405 
406 	if (regions_needed)
407 		*regions_needed = 0;
408 
409 	/* In this loop, we essentially handle an entry for the range
410 	 * [last_accounted_offset, rg->from), at every iteration, with some
411 	 * bounds checking.
412 	 */
413 	list_for_each_entry_safe(rg, trg, head, link) {
414 		/* Skip irrelevant regions that start before our range. */
415 		if (rg->from < f) {
416 			/* If this region ends after the last accounted offset,
417 			 * then we need to update last_accounted_offset.
418 			 */
419 			if (rg->to > last_accounted_offset)
420 				last_accounted_offset = rg->to;
421 			continue;
422 		}
423 
424 		/* When we find a region that starts beyond our range, we've
425 		 * finished.
426 		 */
427 		if (rg->from >= t)
428 			break;
429 
430 		/* Add an entry for last_accounted_offset -> rg->from, and
431 		 * update last_accounted_offset.
432 		 */
433 		if (rg->from > last_accounted_offset)
434 			add += hugetlb_resv_map_add(resv, rg,
435 						    last_accounted_offset,
436 						    rg->from, h, h_cg,
437 						    regions_needed);
438 
439 		last_accounted_offset = rg->to;
440 	}
441 
442 	/* Handle the case where our range extends beyond
443 	 * last_accounted_offset.
444 	 */
445 	if (last_accounted_offset < t)
446 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
447 					    t, h, h_cg, regions_needed);
448 
449 	return add;
450 }
451 
452 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
453  */
454 static int allocate_file_region_entries(struct resv_map *resv,
455 					int regions_needed)
456 	__must_hold(&resv->lock)
457 {
458 	struct list_head allocated_regions;
459 	int to_allocate = 0, i = 0;
460 	struct file_region *trg = NULL, *rg = NULL;
461 
462 	VM_BUG_ON(regions_needed < 0);
463 
464 	INIT_LIST_HEAD(&allocated_regions);
465 
466 	/*
467 	 * Check for sufficient descriptors in the cache to accommodate
468 	 * the number of in progress add operations plus regions_needed.
469 	 *
470 	 * This is a while loop because when we drop the lock, some other call
471 	 * to region_add or region_del may have consumed some region_entries,
472 	 * so we keep looping here until we finally have enough entries for
473 	 * (adds_in_progress + regions_needed).
474 	 */
475 	while (resv->region_cache_count <
476 	       (resv->adds_in_progress + regions_needed)) {
477 		to_allocate = resv->adds_in_progress + regions_needed -
478 			      resv->region_cache_count;
479 
480 		/* At this point, we should have enough entries in the cache
481 		 * for all the existing adds_in_progress. We should only be
482 		 * needing to allocate for regions_needed.
483 		 */
484 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
485 
486 		spin_unlock(&resv->lock);
487 		for (i = 0; i < to_allocate; i++) {
488 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
489 			if (!trg)
490 				goto out_of_memory;
491 			list_add(&trg->link, &allocated_regions);
492 		}
493 
494 		spin_lock(&resv->lock);
495 
496 		list_splice(&allocated_regions, &resv->region_cache);
497 		resv->region_cache_count += to_allocate;
498 	}
499 
500 	return 0;
501 
502 out_of_memory:
503 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
504 		list_del(&rg->link);
505 		kfree(rg);
506 	}
507 	return -ENOMEM;
508 }
509 
510 /*
511  * Add the huge page range represented by [f, t) to the reserve
512  * map.  Regions will be taken from the cache to fill in this range.
513  * Sufficient regions should exist in the cache due to the previous
514  * call to region_chg with the same range, but in some cases the cache will not
515  * have sufficient entries due to races with other code doing region_add or
516  * region_del.  The extra needed entries will be allocated.
517  *
518  * regions_needed is the out value provided by a previous call to region_chg.
519  *
520  * Return the number of new huge pages added to the map.  This number is greater
521  * than or equal to zero.  If file_region entries needed to be allocated for
522  * this operation and we were not able to allocate, it returns -ENOMEM.
523  * region_add of regions of length 1 never allocate file_regions and cannot
524  * fail; region_chg will always allocate at least 1 entry and a region_add for
525  * 1 page will only require at most 1 entry.
526  */
527 static long region_add(struct resv_map *resv, long f, long t,
528 		       long in_regions_needed, struct hstate *h,
529 		       struct hugetlb_cgroup *h_cg)
530 {
531 	long add = 0, actual_regions_needed = 0;
532 
533 	spin_lock(&resv->lock);
534 retry:
535 
536 	/* Count how many regions are actually needed to execute this add. */
537 	add_reservation_in_range(resv, f, t, NULL, NULL,
538 				 &actual_regions_needed);
539 
540 	/*
541 	 * Check for sufficient descriptors in the cache to accommodate
542 	 * this add operation. Note that actual_regions_needed may be greater
543 	 * than in_regions_needed, as the resv_map may have been modified since
544 	 * the region_chg call. In this case, we need to make sure that we
545 	 * allocate extra entries, such that we have enough for all the
546 	 * existing adds_in_progress, plus the excess needed for this
547 	 * operation.
548 	 */
549 	if (actual_regions_needed > in_regions_needed &&
550 	    resv->region_cache_count <
551 		    resv->adds_in_progress +
552 			    (actual_regions_needed - in_regions_needed)) {
553 		/* region_add operation of range 1 should never need to
554 		 * allocate file_region entries.
555 		 */
556 		VM_BUG_ON(t - f <= 1);
557 
558 		if (allocate_file_region_entries(
559 			    resv, actual_regions_needed - in_regions_needed)) {
560 			return -ENOMEM;
561 		}
562 
563 		goto retry;
564 	}
565 
566 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
567 
568 	resv->adds_in_progress -= in_regions_needed;
569 
570 	spin_unlock(&resv->lock);
571 	return add;
572 }
573 
574 /*
575  * Examine the existing reserve map and determine how many
576  * huge pages in the specified range [f, t) are NOT currently
577  * represented.  This routine is called before a subsequent
578  * call to region_add that will actually modify the reserve
579  * map to add the specified range [f, t).  region_chg does
580  * not change the number of huge pages represented by the
581  * map.  A number of new file_region structures is added to the cache as a
582  * placeholder, for the subsequent region_add call to use. At least 1
583  * file_region structure is added.
584  *
585  * out_regions_needed is the number of regions added to the
586  * resv->adds_in_progress.  This value needs to be provided to a follow up call
587  * to region_add or region_abort for proper accounting.
588  *
589  * Returns the number of huge pages that need to be added to the existing
590  * reservation map for the range [f, t).  This number is greater or equal to
591  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
592  * is needed and can not be allocated.
593  */
594 static long region_chg(struct resv_map *resv, long f, long t,
595 		       long *out_regions_needed)
596 {
597 	long chg = 0;
598 
599 	spin_lock(&resv->lock);
600 
601 	/* Count how many hugepages in this range are NOT represented. */
602 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
603 				       out_regions_needed);
604 
605 	if (*out_regions_needed == 0)
606 		*out_regions_needed = 1;
607 
608 	if (allocate_file_region_entries(resv, *out_regions_needed))
609 		return -ENOMEM;
610 
611 	resv->adds_in_progress += *out_regions_needed;
612 
613 	spin_unlock(&resv->lock);
614 	return chg;
615 }
616 
617 /*
618  * Abort the in progress add operation.  The adds_in_progress field
619  * of the resv_map keeps track of the operations in progress between
620  * calls to region_chg and region_add.  Operations are sometimes
621  * aborted after the call to region_chg.  In such cases, region_abort
622  * is called to decrement the adds_in_progress counter. regions_needed
623  * is the value returned by the region_chg call, it is used to decrement
624  * the adds_in_progress counter.
625  *
626  * NOTE: The range arguments [f, t) are not needed or used in this
627  * routine.  They are kept to make reading the calling code easier as
628  * arguments will match the associated region_chg call.
629  */
630 static void region_abort(struct resv_map *resv, long f, long t,
631 			 long regions_needed)
632 {
633 	spin_lock(&resv->lock);
634 	VM_BUG_ON(!resv->region_cache_count);
635 	resv->adds_in_progress -= regions_needed;
636 	spin_unlock(&resv->lock);
637 }
638 
639 /*
640  * Delete the specified range [f, t) from the reserve map.  If the
641  * t parameter is LONG_MAX, this indicates that ALL regions after f
642  * should be deleted.  Locate the regions which intersect [f, t)
643  * and either trim, delete or split the existing regions.
644  *
645  * Returns the number of huge pages deleted from the reserve map.
646  * In the normal case, the return value is zero or more.  In the
647  * case where a region must be split, a new region descriptor must
648  * be allocated.  If the allocation fails, -ENOMEM will be returned.
649  * NOTE: If the parameter t == LONG_MAX, then we will never split
650  * a region and possibly return -ENOMEM.  Callers specifying
651  * t == LONG_MAX do not need to check for -ENOMEM error.
652  */
653 static long region_del(struct resv_map *resv, long f, long t)
654 {
655 	struct list_head *head = &resv->regions;
656 	struct file_region *rg, *trg;
657 	struct file_region *nrg = NULL;
658 	long del = 0;
659 
660 retry:
661 	spin_lock(&resv->lock);
662 	list_for_each_entry_safe(rg, trg, head, link) {
663 		/*
664 		 * Skip regions before the range to be deleted.  file_region
665 		 * ranges are normally of the form [from, to).  However, there
666 		 * may be a "placeholder" entry in the map which is of the form
667 		 * (from, to) with from == to.  Check for placeholder entries
668 		 * at the beginning of the range to be deleted.
669 		 */
670 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
671 			continue;
672 
673 		if (rg->from >= t)
674 			break;
675 
676 		if (f > rg->from && t < rg->to) { /* Must split region */
677 			/*
678 			 * Check for an entry in the cache before dropping
679 			 * lock and attempting allocation.
680 			 */
681 			if (!nrg &&
682 			    resv->region_cache_count > resv->adds_in_progress) {
683 				nrg = list_first_entry(&resv->region_cache,
684 							struct file_region,
685 							link);
686 				list_del(&nrg->link);
687 				resv->region_cache_count--;
688 			}
689 
690 			if (!nrg) {
691 				spin_unlock(&resv->lock);
692 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
693 				if (!nrg)
694 					return -ENOMEM;
695 				goto retry;
696 			}
697 
698 			del += t - f;
699 			hugetlb_cgroup_uncharge_file_region(
700 				resv, rg, t - f, false);
701 
702 			/* New entry for end of split region */
703 			nrg->from = t;
704 			nrg->to = rg->to;
705 
706 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
707 
708 			INIT_LIST_HEAD(&nrg->link);
709 
710 			/* Original entry is trimmed */
711 			rg->to = f;
712 
713 			list_add(&nrg->link, &rg->link);
714 			nrg = NULL;
715 			break;
716 		}
717 
718 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
719 			del += rg->to - rg->from;
720 			hugetlb_cgroup_uncharge_file_region(resv, rg,
721 							    rg->to - rg->from, true);
722 			list_del(&rg->link);
723 			kfree(rg);
724 			continue;
725 		}
726 
727 		if (f <= rg->from) {	/* Trim beginning of region */
728 			hugetlb_cgroup_uncharge_file_region(resv, rg,
729 							    t - rg->from, false);
730 
731 			del += t - rg->from;
732 			rg->from = t;
733 		} else {		/* Trim end of region */
734 			hugetlb_cgroup_uncharge_file_region(resv, rg,
735 							    rg->to - f, false);
736 
737 			del += rg->to - f;
738 			rg->to = f;
739 		}
740 	}
741 
742 	spin_unlock(&resv->lock);
743 	kfree(nrg);
744 	return del;
745 }
746 
747 /*
748  * A rare out of memory error was encountered which prevented removal of
749  * the reserve map region for a page.  The huge page itself was free'ed
750  * and removed from the page cache.  This routine will adjust the subpool
751  * usage count, and the global reserve count if needed.  By incrementing
752  * these counts, the reserve map entry which could not be deleted will
753  * appear as a "reserved" entry instead of simply dangling with incorrect
754  * counts.
755  */
756 void hugetlb_fix_reserve_counts(struct inode *inode)
757 {
758 	struct hugepage_subpool *spool = subpool_inode(inode);
759 	long rsv_adjust;
760 	bool reserved = false;
761 
762 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
763 	if (rsv_adjust > 0) {
764 		struct hstate *h = hstate_inode(inode);
765 
766 		if (!hugetlb_acct_memory(h, 1))
767 			reserved = true;
768 	} else if (!rsv_adjust) {
769 		reserved = true;
770 	}
771 
772 	if (!reserved)
773 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
774 }
775 
776 /*
777  * Count and return the number of huge pages in the reserve map
778  * that intersect with the range [f, t).
779  */
780 static long region_count(struct resv_map *resv, long f, long t)
781 {
782 	struct list_head *head = &resv->regions;
783 	struct file_region *rg;
784 	long chg = 0;
785 
786 	spin_lock(&resv->lock);
787 	/* Locate each segment we overlap with, and count that overlap. */
788 	list_for_each_entry(rg, head, link) {
789 		long seg_from;
790 		long seg_to;
791 
792 		if (rg->to <= f)
793 			continue;
794 		if (rg->from >= t)
795 			break;
796 
797 		seg_from = max(rg->from, f);
798 		seg_to = min(rg->to, t);
799 
800 		chg += seg_to - seg_from;
801 	}
802 	spin_unlock(&resv->lock);
803 
804 	return chg;
805 }
806 
807 /*
808  * Convert the address within this vma to the page offset within
809  * the mapping, in pagecache page units; huge pages here.
810  */
811 static pgoff_t vma_hugecache_offset(struct hstate *h,
812 			struct vm_area_struct *vma, unsigned long address)
813 {
814 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
815 			(vma->vm_pgoff >> huge_page_order(h));
816 }
817 
818 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
819 				     unsigned long address)
820 {
821 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
822 }
823 EXPORT_SYMBOL_GPL(linear_hugepage_index);
824 
825 /*
826  * Return the size of the pages allocated when backing a VMA. In the majority
827  * cases this will be same size as used by the page table entries.
828  */
829 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
830 {
831 	if (vma->vm_ops && vma->vm_ops->pagesize)
832 		return vma->vm_ops->pagesize(vma);
833 	return PAGE_SIZE;
834 }
835 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
836 
837 /*
838  * Return the page size being used by the MMU to back a VMA. In the majority
839  * of cases, the page size used by the kernel matches the MMU size. On
840  * architectures where it differs, an architecture-specific 'strong'
841  * version of this symbol is required.
842  */
843 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
844 {
845 	return vma_kernel_pagesize(vma);
846 }
847 
848 /*
849  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
850  * bits of the reservation map pointer, which are always clear due to
851  * alignment.
852  */
853 #define HPAGE_RESV_OWNER    (1UL << 0)
854 #define HPAGE_RESV_UNMAPPED (1UL << 1)
855 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
856 
857 /*
858  * These helpers are used to track how many pages are reserved for
859  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
860  * is guaranteed to have their future faults succeed.
861  *
862  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
863  * the reserve counters are updated with the hugetlb_lock held. It is safe
864  * to reset the VMA at fork() time as it is not in use yet and there is no
865  * chance of the global counters getting corrupted as a result of the values.
866  *
867  * The private mapping reservation is represented in a subtly different
868  * manner to a shared mapping.  A shared mapping has a region map associated
869  * with the underlying file, this region map represents the backing file
870  * pages which have ever had a reservation assigned which this persists even
871  * after the page is instantiated.  A private mapping has a region map
872  * associated with the original mmap which is attached to all VMAs which
873  * reference it, this region map represents those offsets which have consumed
874  * reservation ie. where pages have been instantiated.
875  */
876 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
877 {
878 	return (unsigned long)vma->vm_private_data;
879 }
880 
881 static void set_vma_private_data(struct vm_area_struct *vma,
882 							unsigned long value)
883 {
884 	vma->vm_private_data = (void *)value;
885 }
886 
887 static void
888 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
889 					  struct hugetlb_cgroup *h_cg,
890 					  struct hstate *h)
891 {
892 #ifdef CONFIG_CGROUP_HUGETLB
893 	if (!h_cg || !h) {
894 		resv_map->reservation_counter = NULL;
895 		resv_map->pages_per_hpage = 0;
896 		resv_map->css = NULL;
897 	} else {
898 		resv_map->reservation_counter =
899 			&h_cg->rsvd_hugepage[hstate_index(h)];
900 		resv_map->pages_per_hpage = pages_per_huge_page(h);
901 		resv_map->css = &h_cg->css;
902 	}
903 #endif
904 }
905 
906 struct resv_map *resv_map_alloc(void)
907 {
908 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
909 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
910 
911 	if (!resv_map || !rg) {
912 		kfree(resv_map);
913 		kfree(rg);
914 		return NULL;
915 	}
916 
917 	kref_init(&resv_map->refs);
918 	spin_lock_init(&resv_map->lock);
919 	INIT_LIST_HEAD(&resv_map->regions);
920 
921 	resv_map->adds_in_progress = 0;
922 	/*
923 	 * Initialize these to 0. On shared mappings, 0's here indicate these
924 	 * fields don't do cgroup accounting. On private mappings, these will be
925 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
926 	 * reservations are to be un-charged from here.
927 	 */
928 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
929 
930 	INIT_LIST_HEAD(&resv_map->region_cache);
931 	list_add(&rg->link, &resv_map->region_cache);
932 	resv_map->region_cache_count = 1;
933 
934 	return resv_map;
935 }
936 
937 void resv_map_release(struct kref *ref)
938 {
939 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
940 	struct list_head *head = &resv_map->region_cache;
941 	struct file_region *rg, *trg;
942 
943 	/* Clear out any active regions before we release the map. */
944 	region_del(resv_map, 0, LONG_MAX);
945 
946 	/* ... and any entries left in the cache */
947 	list_for_each_entry_safe(rg, trg, head, link) {
948 		list_del(&rg->link);
949 		kfree(rg);
950 	}
951 
952 	VM_BUG_ON(resv_map->adds_in_progress);
953 
954 	kfree(resv_map);
955 }
956 
957 static inline struct resv_map *inode_resv_map(struct inode *inode)
958 {
959 	/*
960 	 * At inode evict time, i_mapping may not point to the original
961 	 * address space within the inode.  This original address space
962 	 * contains the pointer to the resv_map.  So, always use the
963 	 * address space embedded within the inode.
964 	 * The VERY common case is inode->mapping == &inode->i_data but,
965 	 * this may not be true for device special inodes.
966 	 */
967 	return (struct resv_map *)(&inode->i_data)->private_data;
968 }
969 
970 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
971 {
972 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973 	if (vma->vm_flags & VM_MAYSHARE) {
974 		struct address_space *mapping = vma->vm_file->f_mapping;
975 		struct inode *inode = mapping->host;
976 
977 		return inode_resv_map(inode);
978 
979 	} else {
980 		return (struct resv_map *)(get_vma_private_data(vma) &
981 							~HPAGE_RESV_MASK);
982 	}
983 }
984 
985 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
986 {
987 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
988 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
989 
990 	set_vma_private_data(vma, (get_vma_private_data(vma) &
991 				HPAGE_RESV_MASK) | (unsigned long)map);
992 }
993 
994 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
995 {
996 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
998 
999 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1000 }
1001 
1002 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1003 {
1004 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005 
1006 	return (get_vma_private_data(vma) & flag) != 0;
1007 }
1008 
1009 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1010 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1011 {
1012 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1013 	if (!(vma->vm_flags & VM_MAYSHARE))
1014 		vma->vm_private_data = (void *)0;
1015 }
1016 
1017 /*
1018  * Reset and decrement one ref on hugepage private reservation.
1019  * Called with mm->mmap_sem writer semaphore held.
1020  * This function should be only used by move_vma() and operate on
1021  * same sized vma. It should never come here with last ref on the
1022  * reservation.
1023  */
1024 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1025 {
1026 	/*
1027 	 * Clear the old hugetlb private page reservation.
1028 	 * It has already been transferred to new_vma.
1029 	 *
1030 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1031 	 * which copies vma into new_vma and unmaps vma. After the copy
1032 	 * operation both new_vma and vma share a reference to the resv_map
1033 	 * struct, and at that point vma is about to be unmapped. We don't
1034 	 * want to return the reservation to the pool at unmap of vma because
1035 	 * the reservation still lives on in new_vma, so simply decrement the
1036 	 * ref here and remove the resv_map reference from this vma.
1037 	 */
1038 	struct resv_map *reservations = vma_resv_map(vma);
1039 
1040 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1042 		kref_put(&reservations->refs, resv_map_release);
1043 	}
1044 
1045 	reset_vma_resv_huge_pages(vma);
1046 }
1047 
1048 /* Returns true if the VMA has associated reserve pages */
1049 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1050 {
1051 	if (vma->vm_flags & VM_NORESERVE) {
1052 		/*
1053 		 * This address is already reserved by other process(chg == 0),
1054 		 * so, we should decrement reserved count. Without decrementing,
1055 		 * reserve count remains after releasing inode, because this
1056 		 * allocated page will go into page cache and is regarded as
1057 		 * coming from reserved pool in releasing step.  Currently, we
1058 		 * don't have any other solution to deal with this situation
1059 		 * properly, so add work-around here.
1060 		 */
1061 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1062 			return true;
1063 		else
1064 			return false;
1065 	}
1066 
1067 	/* Shared mappings always use reserves */
1068 	if (vma->vm_flags & VM_MAYSHARE) {
1069 		/*
1070 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1071 		 * be a region map for all pages.  The only situation where
1072 		 * there is no region map is if a hole was punched via
1073 		 * fallocate.  In this case, there really are no reserves to
1074 		 * use.  This situation is indicated if chg != 0.
1075 		 */
1076 		if (chg)
1077 			return false;
1078 		else
1079 			return true;
1080 	}
1081 
1082 	/*
1083 	 * Only the process that called mmap() has reserves for
1084 	 * private mappings.
1085 	 */
1086 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087 		/*
1088 		 * Like the shared case above, a hole punch or truncate
1089 		 * could have been performed on the private mapping.
1090 		 * Examine the value of chg to determine if reserves
1091 		 * actually exist or were previously consumed.
1092 		 * Very Subtle - The value of chg comes from a previous
1093 		 * call to vma_needs_reserves().  The reserve map for
1094 		 * private mappings has different (opposite) semantics
1095 		 * than that of shared mappings.  vma_needs_reserves()
1096 		 * has already taken this difference in semantics into
1097 		 * account.  Therefore, the meaning of chg is the same
1098 		 * as in the shared case above.  Code could easily be
1099 		 * combined, but keeping it separate draws attention to
1100 		 * subtle differences.
1101 		 */
1102 		if (chg)
1103 			return false;
1104 		else
1105 			return true;
1106 	}
1107 
1108 	return false;
1109 }
1110 
1111 static void enqueue_huge_page(struct hstate *h, struct page *page)
1112 {
1113 	int nid = page_to_nid(page);
1114 
1115 	lockdep_assert_held(&hugetlb_lock);
1116 	VM_BUG_ON_PAGE(page_count(page), page);
1117 
1118 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1119 	h->free_huge_pages++;
1120 	h->free_huge_pages_node[nid]++;
1121 	SetHPageFreed(page);
1122 }
1123 
1124 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1125 {
1126 	struct page *page;
1127 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1128 
1129 	lockdep_assert_held(&hugetlb_lock);
1130 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1131 		if (pin && !is_pinnable_page(page))
1132 			continue;
1133 
1134 		if (PageHWPoison(page))
1135 			continue;
1136 
1137 		list_move(&page->lru, &h->hugepage_activelist);
1138 		set_page_refcounted(page);
1139 		ClearHPageFreed(page);
1140 		h->free_huge_pages--;
1141 		h->free_huge_pages_node[nid]--;
1142 		return page;
1143 	}
1144 
1145 	return NULL;
1146 }
1147 
1148 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1149 		nodemask_t *nmask)
1150 {
1151 	unsigned int cpuset_mems_cookie;
1152 	struct zonelist *zonelist;
1153 	struct zone *zone;
1154 	struct zoneref *z;
1155 	int node = NUMA_NO_NODE;
1156 
1157 	zonelist = node_zonelist(nid, gfp_mask);
1158 
1159 retry_cpuset:
1160 	cpuset_mems_cookie = read_mems_allowed_begin();
1161 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1162 		struct page *page;
1163 
1164 		if (!cpuset_zone_allowed(zone, gfp_mask))
1165 			continue;
1166 		/*
1167 		 * no need to ask again on the same node. Pool is node rather than
1168 		 * zone aware
1169 		 */
1170 		if (zone_to_nid(zone) == node)
1171 			continue;
1172 		node = zone_to_nid(zone);
1173 
1174 		page = dequeue_huge_page_node_exact(h, node);
1175 		if (page)
1176 			return page;
1177 	}
1178 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1179 		goto retry_cpuset;
1180 
1181 	return NULL;
1182 }
1183 
1184 static struct page *dequeue_huge_page_vma(struct hstate *h,
1185 				struct vm_area_struct *vma,
1186 				unsigned long address, int avoid_reserve,
1187 				long chg)
1188 {
1189 	struct page *page = NULL;
1190 	struct mempolicy *mpol;
1191 	gfp_t gfp_mask;
1192 	nodemask_t *nodemask;
1193 	int nid;
1194 
1195 	/*
1196 	 * A child process with MAP_PRIVATE mappings created by their parent
1197 	 * have no page reserves. This check ensures that reservations are
1198 	 * not "stolen". The child may still get SIGKILLed
1199 	 */
1200 	if (!vma_has_reserves(vma, chg) &&
1201 			h->free_huge_pages - h->resv_huge_pages == 0)
1202 		goto err;
1203 
1204 	/* If reserves cannot be used, ensure enough pages are in the pool */
1205 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1206 		goto err;
1207 
1208 	gfp_mask = htlb_alloc_mask(h);
1209 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1210 
1211 	if (mpol_is_preferred_many(mpol)) {
1212 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1213 
1214 		/* Fallback to all nodes if page==NULL */
1215 		nodemask = NULL;
1216 	}
1217 
1218 	if (!page)
1219 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220 
1221 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1222 		SetHPageRestoreReserve(page);
1223 		h->resv_huge_pages--;
1224 	}
1225 
1226 	mpol_cond_put(mpol);
1227 	return page;
1228 
1229 err:
1230 	return NULL;
1231 }
1232 
1233 /*
1234  * common helper functions for hstate_next_node_to_{alloc|free}.
1235  * We may have allocated or freed a huge page based on a different
1236  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1237  * be outside of *nodes_allowed.  Ensure that we use an allowed
1238  * node for alloc or free.
1239  */
1240 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1241 {
1242 	nid = next_node_in(nid, *nodes_allowed);
1243 	VM_BUG_ON(nid >= MAX_NUMNODES);
1244 
1245 	return nid;
1246 }
1247 
1248 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1249 {
1250 	if (!node_isset(nid, *nodes_allowed))
1251 		nid = next_node_allowed(nid, nodes_allowed);
1252 	return nid;
1253 }
1254 
1255 /*
1256  * returns the previously saved node ["this node"] from which to
1257  * allocate a persistent huge page for the pool and advance the
1258  * next node from which to allocate, handling wrap at end of node
1259  * mask.
1260  */
1261 static int hstate_next_node_to_alloc(struct hstate *h,
1262 					nodemask_t *nodes_allowed)
1263 {
1264 	int nid;
1265 
1266 	VM_BUG_ON(!nodes_allowed);
1267 
1268 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1269 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1270 
1271 	return nid;
1272 }
1273 
1274 /*
1275  * helper for remove_pool_huge_page() - return the previously saved
1276  * node ["this node"] from which to free a huge page.  Advance the
1277  * next node id whether or not we find a free huge page to free so
1278  * that the next attempt to free addresses the next node.
1279  */
1280 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1281 {
1282 	int nid;
1283 
1284 	VM_BUG_ON(!nodes_allowed);
1285 
1286 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1287 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1288 
1289 	return nid;
1290 }
1291 
1292 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1293 	for (nr_nodes = nodes_weight(*mask);				\
1294 		nr_nodes > 0 &&						\
1295 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1296 		nr_nodes--)
1297 
1298 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1299 	for (nr_nodes = nodes_weight(*mask);				\
1300 		nr_nodes > 0 &&						\
1301 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1302 		nr_nodes--)
1303 
1304 /* used to demote non-gigantic_huge pages as well */
1305 static void __destroy_compound_gigantic_page(struct page *page,
1306 					unsigned int order, bool demote)
1307 {
1308 	int i;
1309 	int nr_pages = 1 << order;
1310 	struct page *p = page + 1;
1311 
1312 	atomic_set(compound_mapcount_ptr(page), 0);
1313 	atomic_set(compound_pincount_ptr(page), 0);
1314 
1315 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1316 		p->mapping = NULL;
1317 		clear_compound_head(p);
1318 		if (!demote)
1319 			set_page_refcounted(p);
1320 	}
1321 
1322 	set_compound_order(page, 0);
1323 	page[1].compound_nr = 0;
1324 	__ClearPageHead(page);
1325 }
1326 
1327 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1328 					unsigned int order)
1329 {
1330 	__destroy_compound_gigantic_page(page, order, true);
1331 }
1332 
1333 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1334 static void destroy_compound_gigantic_page(struct page *page,
1335 					unsigned int order)
1336 {
1337 	__destroy_compound_gigantic_page(page, order, false);
1338 }
1339 
1340 static void free_gigantic_page(struct page *page, unsigned int order)
1341 {
1342 	/*
1343 	 * If the page isn't allocated using the cma allocator,
1344 	 * cma_release() returns false.
1345 	 */
1346 #ifdef CONFIG_CMA
1347 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1348 		return;
1349 #endif
1350 
1351 	free_contig_range(page_to_pfn(page), 1 << order);
1352 }
1353 
1354 #ifdef CONFIG_CONTIG_ALLOC
1355 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1356 		int nid, nodemask_t *nodemask)
1357 {
1358 	unsigned long nr_pages = pages_per_huge_page(h);
1359 	if (nid == NUMA_NO_NODE)
1360 		nid = numa_mem_id();
1361 
1362 #ifdef CONFIG_CMA
1363 	{
1364 		struct page *page;
1365 		int node;
1366 
1367 		if (hugetlb_cma[nid]) {
1368 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1369 					huge_page_order(h), true);
1370 			if (page)
1371 				return page;
1372 		}
1373 
1374 		if (!(gfp_mask & __GFP_THISNODE)) {
1375 			for_each_node_mask(node, *nodemask) {
1376 				if (node == nid || !hugetlb_cma[node])
1377 					continue;
1378 
1379 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1380 						huge_page_order(h), true);
1381 				if (page)
1382 					return page;
1383 			}
1384 		}
1385 	}
1386 #endif
1387 
1388 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1389 }
1390 
1391 #else /* !CONFIG_CONTIG_ALLOC */
1392 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1393 					int nid, nodemask_t *nodemask)
1394 {
1395 	return NULL;
1396 }
1397 #endif /* CONFIG_CONTIG_ALLOC */
1398 
1399 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401 					int nid, nodemask_t *nodemask)
1402 {
1403 	return NULL;
1404 }
1405 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1406 static inline void destroy_compound_gigantic_page(struct page *page,
1407 						unsigned int order) { }
1408 #endif
1409 
1410 /*
1411  * Remove hugetlb page from lists, and update dtor so that page appears
1412  * as just a compound page.
1413  *
1414  * A reference is held on the page, except in the case of demote.
1415  *
1416  * Must be called with hugetlb lock held.
1417  */
1418 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1419 							bool adjust_surplus,
1420 							bool demote)
1421 {
1422 	int nid = page_to_nid(page);
1423 
1424 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1425 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1426 
1427 	lockdep_assert_held(&hugetlb_lock);
1428 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1429 		return;
1430 
1431 	list_del(&page->lru);
1432 
1433 	if (HPageFreed(page)) {
1434 		h->free_huge_pages--;
1435 		h->free_huge_pages_node[nid]--;
1436 	}
1437 	if (adjust_surplus) {
1438 		h->surplus_huge_pages--;
1439 		h->surplus_huge_pages_node[nid]--;
1440 	}
1441 
1442 	/*
1443 	 * Very subtle
1444 	 *
1445 	 * For non-gigantic pages set the destructor to the normal compound
1446 	 * page dtor.  This is needed in case someone takes an additional
1447 	 * temporary ref to the page, and freeing is delayed until they drop
1448 	 * their reference.
1449 	 *
1450 	 * For gigantic pages set the destructor to the null dtor.  This
1451 	 * destructor will never be called.  Before freeing the gigantic
1452 	 * page destroy_compound_gigantic_page will turn the compound page
1453 	 * into a simple group of pages.  After this the destructor does not
1454 	 * apply.
1455 	 *
1456 	 * This handles the case where more than one ref is held when and
1457 	 * after update_and_free_page is called.
1458 	 *
1459 	 * In the case of demote we do not ref count the page as it will soon
1460 	 * be turned into a page of smaller size.
1461 	 */
1462 	if (!demote)
1463 		set_page_refcounted(page);
1464 	if (hstate_is_gigantic(h))
1465 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1466 	else
1467 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1468 
1469 	h->nr_huge_pages--;
1470 	h->nr_huge_pages_node[nid]--;
1471 }
1472 
1473 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1474 							bool adjust_surplus)
1475 {
1476 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1477 }
1478 
1479 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1480 							bool adjust_surplus)
1481 {
1482 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1483 }
1484 
1485 static void add_hugetlb_page(struct hstate *h, struct page *page,
1486 			     bool adjust_surplus)
1487 {
1488 	int zeroed;
1489 	int nid = page_to_nid(page);
1490 
1491 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1492 
1493 	lockdep_assert_held(&hugetlb_lock);
1494 
1495 	INIT_LIST_HEAD(&page->lru);
1496 	h->nr_huge_pages++;
1497 	h->nr_huge_pages_node[nid]++;
1498 
1499 	if (adjust_surplus) {
1500 		h->surplus_huge_pages++;
1501 		h->surplus_huge_pages_node[nid]++;
1502 	}
1503 
1504 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1505 	set_page_private(page, 0);
1506 	SetHPageVmemmapOptimized(page);
1507 
1508 	/*
1509 	 * This page is about to be managed by the hugetlb allocator and
1510 	 * should have no users.  Drop our reference, and check for others
1511 	 * just in case.
1512 	 */
1513 	zeroed = put_page_testzero(page);
1514 	if (!zeroed)
1515 		/*
1516 		 * It is VERY unlikely soneone else has taken a ref on
1517 		 * the page.  In this case, we simply return as the
1518 		 * hugetlb destructor (free_huge_page) will be called
1519 		 * when this other ref is dropped.
1520 		 */
1521 		return;
1522 
1523 	arch_clear_hugepage_flags(page);
1524 	enqueue_huge_page(h, page);
1525 }
1526 
1527 static void __update_and_free_page(struct hstate *h, struct page *page)
1528 {
1529 	int i;
1530 	struct page *subpage = page;
1531 
1532 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1533 		return;
1534 
1535 	if (alloc_huge_page_vmemmap(h, page)) {
1536 		spin_lock_irq(&hugetlb_lock);
1537 		/*
1538 		 * If we cannot allocate vmemmap pages, just refuse to free the
1539 		 * page and put the page back on the hugetlb free list and treat
1540 		 * as a surplus page.
1541 		 */
1542 		add_hugetlb_page(h, page, true);
1543 		spin_unlock_irq(&hugetlb_lock);
1544 		return;
1545 	}
1546 
1547 	for (i = 0; i < pages_per_huge_page(h);
1548 	     i++, subpage = mem_map_next(subpage, page, i)) {
1549 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1550 				1 << PG_referenced | 1 << PG_dirty |
1551 				1 << PG_active | 1 << PG_private |
1552 				1 << PG_writeback);
1553 	}
1554 
1555 	/*
1556 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1557 	 * need to be given back to CMA in free_gigantic_page.
1558 	 */
1559 	if (hstate_is_gigantic(h) ||
1560 	    hugetlb_cma_page(page, huge_page_order(h))) {
1561 		destroy_compound_gigantic_page(page, huge_page_order(h));
1562 		free_gigantic_page(page, huge_page_order(h));
1563 	} else {
1564 		__free_pages(page, huge_page_order(h));
1565 	}
1566 }
1567 
1568 /*
1569  * As update_and_free_page() can be called under any context, so we cannot
1570  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1571  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1572  * the vmemmap pages.
1573  *
1574  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1575  * freed and frees them one-by-one. As the page->mapping pointer is going
1576  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1577  * structure of a lockless linked list of huge pages to be freed.
1578  */
1579 static LLIST_HEAD(hpage_freelist);
1580 
1581 static void free_hpage_workfn(struct work_struct *work)
1582 {
1583 	struct llist_node *node;
1584 
1585 	node = llist_del_all(&hpage_freelist);
1586 
1587 	while (node) {
1588 		struct page *page;
1589 		struct hstate *h;
1590 
1591 		page = container_of((struct address_space **)node,
1592 				     struct page, mapping);
1593 		node = node->next;
1594 		page->mapping = NULL;
1595 		/*
1596 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1597 		 * is going to trigger because a previous call to
1598 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1599 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1600 		 */
1601 		h = size_to_hstate(page_size(page));
1602 
1603 		__update_and_free_page(h, page);
1604 
1605 		cond_resched();
1606 	}
1607 }
1608 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1609 
1610 static inline void flush_free_hpage_work(struct hstate *h)
1611 {
1612 	if (free_vmemmap_pages_per_hpage(h))
1613 		flush_work(&free_hpage_work);
1614 }
1615 
1616 static void update_and_free_page(struct hstate *h, struct page *page,
1617 				 bool atomic)
1618 {
1619 	if (!HPageVmemmapOptimized(page) || !atomic) {
1620 		__update_and_free_page(h, page);
1621 		return;
1622 	}
1623 
1624 	/*
1625 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1626 	 *
1627 	 * Only call schedule_work() if hpage_freelist is previously
1628 	 * empty. Otherwise, schedule_work() had been called but the workfn
1629 	 * hasn't retrieved the list yet.
1630 	 */
1631 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1632 		schedule_work(&free_hpage_work);
1633 }
1634 
1635 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1636 {
1637 	struct page *page, *t_page;
1638 
1639 	list_for_each_entry_safe(page, t_page, list, lru) {
1640 		update_and_free_page(h, page, false);
1641 		cond_resched();
1642 	}
1643 }
1644 
1645 struct hstate *size_to_hstate(unsigned long size)
1646 {
1647 	struct hstate *h;
1648 
1649 	for_each_hstate(h) {
1650 		if (huge_page_size(h) == size)
1651 			return h;
1652 	}
1653 	return NULL;
1654 }
1655 
1656 void free_huge_page(struct page *page)
1657 {
1658 	/*
1659 	 * Can't pass hstate in here because it is called from the
1660 	 * compound page destructor.
1661 	 */
1662 	struct hstate *h = page_hstate(page);
1663 	int nid = page_to_nid(page);
1664 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1665 	bool restore_reserve;
1666 	unsigned long flags;
1667 
1668 	VM_BUG_ON_PAGE(page_count(page), page);
1669 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1670 
1671 	hugetlb_set_page_subpool(page, NULL);
1672 	page->mapping = NULL;
1673 	restore_reserve = HPageRestoreReserve(page);
1674 	ClearHPageRestoreReserve(page);
1675 
1676 	/*
1677 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1678 	 * reservation.  If the page was associated with a subpool, there
1679 	 * would have been a page reserved in the subpool before allocation
1680 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1681 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1682 	 * remove the reserved page from the subpool.
1683 	 */
1684 	if (!restore_reserve) {
1685 		/*
1686 		 * A return code of zero implies that the subpool will be
1687 		 * under its minimum size if the reservation is not restored
1688 		 * after page is free.  Therefore, force restore_reserve
1689 		 * operation.
1690 		 */
1691 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1692 			restore_reserve = true;
1693 	}
1694 
1695 	spin_lock_irqsave(&hugetlb_lock, flags);
1696 	ClearHPageMigratable(page);
1697 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1698 				     pages_per_huge_page(h), page);
1699 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1700 					  pages_per_huge_page(h), page);
1701 	if (restore_reserve)
1702 		h->resv_huge_pages++;
1703 
1704 	if (HPageTemporary(page)) {
1705 		remove_hugetlb_page(h, page, false);
1706 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1707 		update_and_free_page(h, page, true);
1708 	} else if (h->surplus_huge_pages_node[nid]) {
1709 		/* remove the page from active list */
1710 		remove_hugetlb_page(h, page, true);
1711 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1712 		update_and_free_page(h, page, true);
1713 	} else {
1714 		arch_clear_hugepage_flags(page);
1715 		enqueue_huge_page(h, page);
1716 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1717 	}
1718 }
1719 
1720 /*
1721  * Must be called with the hugetlb lock held
1722  */
1723 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1724 {
1725 	lockdep_assert_held(&hugetlb_lock);
1726 	h->nr_huge_pages++;
1727 	h->nr_huge_pages_node[nid]++;
1728 }
1729 
1730 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1731 {
1732 	free_huge_page_vmemmap(h, page);
1733 	INIT_LIST_HEAD(&page->lru);
1734 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1735 	hugetlb_set_page_subpool(page, NULL);
1736 	set_hugetlb_cgroup(page, NULL);
1737 	set_hugetlb_cgroup_rsvd(page, NULL);
1738 }
1739 
1740 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1741 {
1742 	__prep_new_huge_page(h, page);
1743 	spin_lock_irq(&hugetlb_lock);
1744 	__prep_account_new_huge_page(h, nid);
1745 	spin_unlock_irq(&hugetlb_lock);
1746 }
1747 
1748 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1749 								bool demote)
1750 {
1751 	int i, j;
1752 	int nr_pages = 1 << order;
1753 	struct page *p = page + 1;
1754 
1755 	/* we rely on prep_new_huge_page to set the destructor */
1756 	set_compound_order(page, order);
1757 	__ClearPageReserved(page);
1758 	__SetPageHead(page);
1759 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1760 		/*
1761 		 * For gigantic hugepages allocated through bootmem at
1762 		 * boot, it's safer to be consistent with the not-gigantic
1763 		 * hugepages and clear the PG_reserved bit from all tail pages
1764 		 * too.  Otherwise drivers using get_user_pages() to access tail
1765 		 * pages may get the reference counting wrong if they see
1766 		 * PG_reserved set on a tail page (despite the head page not
1767 		 * having PG_reserved set).  Enforcing this consistency between
1768 		 * head and tail pages allows drivers to optimize away a check
1769 		 * on the head page when they need know if put_page() is needed
1770 		 * after get_user_pages().
1771 		 */
1772 		__ClearPageReserved(p);
1773 		/*
1774 		 * Subtle and very unlikely
1775 		 *
1776 		 * Gigantic 'page allocators' such as memblock or cma will
1777 		 * return a set of pages with each page ref counted.  We need
1778 		 * to turn this set of pages into a compound page with tail
1779 		 * page ref counts set to zero.  Code such as speculative page
1780 		 * cache adding could take a ref on a 'to be' tail page.
1781 		 * We need to respect any increased ref count, and only set
1782 		 * the ref count to zero if count is currently 1.  If count
1783 		 * is not 1, we return an error.  An error return indicates
1784 		 * the set of pages can not be converted to a gigantic page.
1785 		 * The caller who allocated the pages should then discard the
1786 		 * pages using the appropriate free interface.
1787 		 *
1788 		 * In the case of demote, the ref count will be zero.
1789 		 */
1790 		if (!demote) {
1791 			if (!page_ref_freeze(p, 1)) {
1792 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1793 				goto out_error;
1794 			}
1795 		} else {
1796 			VM_BUG_ON_PAGE(page_count(p), p);
1797 		}
1798 		set_compound_head(p, page);
1799 	}
1800 	atomic_set(compound_mapcount_ptr(page), -1);
1801 	atomic_set(compound_pincount_ptr(page), 0);
1802 	return true;
1803 
1804 out_error:
1805 	/* undo tail page modifications made above */
1806 	p = page + 1;
1807 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1808 		clear_compound_head(p);
1809 		set_page_refcounted(p);
1810 	}
1811 	/* need to clear PG_reserved on remaining tail pages  */
1812 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1813 		__ClearPageReserved(p);
1814 	set_compound_order(page, 0);
1815 	page[1].compound_nr = 0;
1816 	__ClearPageHead(page);
1817 	return false;
1818 }
1819 
1820 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1821 {
1822 	return __prep_compound_gigantic_page(page, order, false);
1823 }
1824 
1825 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1826 							unsigned int order)
1827 {
1828 	return __prep_compound_gigantic_page(page, order, true);
1829 }
1830 
1831 /*
1832  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1833  * transparent huge pages.  See the PageTransHuge() documentation for more
1834  * details.
1835  */
1836 int PageHuge(struct page *page)
1837 {
1838 	if (!PageCompound(page))
1839 		return 0;
1840 
1841 	page = compound_head(page);
1842 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1843 }
1844 EXPORT_SYMBOL_GPL(PageHuge);
1845 
1846 /*
1847  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1848  * normal or transparent huge pages.
1849  */
1850 int PageHeadHuge(struct page *page_head)
1851 {
1852 	if (!PageHead(page_head))
1853 		return 0;
1854 
1855 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856 }
1857 
1858 /*
1859  * Find and lock address space (mapping) in write mode.
1860  *
1861  * Upon entry, the page is locked which means that page_mapping() is
1862  * stable.  Due to locking order, we can only trylock_write.  If we can
1863  * not get the lock, simply return NULL to caller.
1864  */
1865 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1866 {
1867 	struct address_space *mapping = page_mapping(hpage);
1868 
1869 	if (!mapping)
1870 		return mapping;
1871 
1872 	if (i_mmap_trylock_write(mapping))
1873 		return mapping;
1874 
1875 	return NULL;
1876 }
1877 
1878 pgoff_t hugetlb_basepage_index(struct page *page)
1879 {
1880 	struct page *page_head = compound_head(page);
1881 	pgoff_t index = page_index(page_head);
1882 	unsigned long compound_idx;
1883 
1884 	if (compound_order(page_head) >= MAX_ORDER)
1885 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1886 	else
1887 		compound_idx = page - page_head;
1888 
1889 	return (index << compound_order(page_head)) + compound_idx;
1890 }
1891 
1892 static struct page *alloc_buddy_huge_page(struct hstate *h,
1893 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1894 		nodemask_t *node_alloc_noretry)
1895 {
1896 	int order = huge_page_order(h);
1897 	struct page *page;
1898 	bool alloc_try_hard = true;
1899 
1900 	/*
1901 	 * By default we always try hard to allocate the page with
1902 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1903 	 * a loop (to adjust global huge page counts) and previous allocation
1904 	 * failed, do not continue to try hard on the same node.  Use the
1905 	 * node_alloc_noretry bitmap to manage this state information.
1906 	 */
1907 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1908 		alloc_try_hard = false;
1909 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1910 	if (alloc_try_hard)
1911 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1912 	if (nid == NUMA_NO_NODE)
1913 		nid = numa_mem_id();
1914 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1915 	if (page)
1916 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1917 	else
1918 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1919 
1920 	/*
1921 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1922 	 * indicates an overall state change.  Clear bit so that we resume
1923 	 * normal 'try hard' allocations.
1924 	 */
1925 	if (node_alloc_noretry && page && !alloc_try_hard)
1926 		node_clear(nid, *node_alloc_noretry);
1927 
1928 	/*
1929 	 * If we tried hard to get a page but failed, set bit so that
1930 	 * subsequent attempts will not try as hard until there is an
1931 	 * overall state change.
1932 	 */
1933 	if (node_alloc_noretry && !page && alloc_try_hard)
1934 		node_set(nid, *node_alloc_noretry);
1935 
1936 	return page;
1937 }
1938 
1939 /*
1940  * Common helper to allocate a fresh hugetlb page. All specific allocators
1941  * should use this function to get new hugetlb pages
1942  */
1943 static struct page *alloc_fresh_huge_page(struct hstate *h,
1944 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1945 		nodemask_t *node_alloc_noretry)
1946 {
1947 	struct page *page;
1948 	bool retry = false;
1949 
1950 retry:
1951 	if (hstate_is_gigantic(h))
1952 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1953 	else
1954 		page = alloc_buddy_huge_page(h, gfp_mask,
1955 				nid, nmask, node_alloc_noretry);
1956 	if (!page)
1957 		return NULL;
1958 
1959 	if (hstate_is_gigantic(h)) {
1960 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1961 			/*
1962 			 * Rare failure to convert pages to compound page.
1963 			 * Free pages and try again - ONCE!
1964 			 */
1965 			free_gigantic_page(page, huge_page_order(h));
1966 			if (!retry) {
1967 				retry = true;
1968 				goto retry;
1969 			}
1970 			return NULL;
1971 		}
1972 	}
1973 	prep_new_huge_page(h, page, page_to_nid(page));
1974 
1975 	return page;
1976 }
1977 
1978 /*
1979  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1980  * manner.
1981  */
1982 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1983 				nodemask_t *node_alloc_noretry)
1984 {
1985 	struct page *page;
1986 	int nr_nodes, node;
1987 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1988 
1989 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1990 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1991 						node_alloc_noretry);
1992 		if (page)
1993 			break;
1994 	}
1995 
1996 	if (!page)
1997 		return 0;
1998 
1999 	put_page(page); /* free it into the hugepage allocator */
2000 
2001 	return 1;
2002 }
2003 
2004 /*
2005  * Remove huge page from pool from next node to free.  Attempt to keep
2006  * persistent huge pages more or less balanced over allowed nodes.
2007  * This routine only 'removes' the hugetlb page.  The caller must make
2008  * an additional call to free the page to low level allocators.
2009  * Called with hugetlb_lock locked.
2010  */
2011 static struct page *remove_pool_huge_page(struct hstate *h,
2012 						nodemask_t *nodes_allowed,
2013 						 bool acct_surplus)
2014 {
2015 	int nr_nodes, node;
2016 	struct page *page = NULL;
2017 
2018 	lockdep_assert_held(&hugetlb_lock);
2019 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2020 		/*
2021 		 * If we're returning unused surplus pages, only examine
2022 		 * nodes with surplus pages.
2023 		 */
2024 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2025 		    !list_empty(&h->hugepage_freelists[node])) {
2026 			page = list_entry(h->hugepage_freelists[node].next,
2027 					  struct page, lru);
2028 			remove_hugetlb_page(h, page, acct_surplus);
2029 			break;
2030 		}
2031 	}
2032 
2033 	return page;
2034 }
2035 
2036 /*
2037  * Dissolve a given free hugepage into free buddy pages. This function does
2038  * nothing for in-use hugepages and non-hugepages.
2039  * This function returns values like below:
2040  *
2041  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2042  *           when the system is under memory pressure and the feature of
2043  *           freeing unused vmemmap pages associated with each hugetlb page
2044  *           is enabled.
2045  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2046  *           (allocated or reserved.)
2047  *       0:  successfully dissolved free hugepages or the page is not a
2048  *           hugepage (considered as already dissolved)
2049  */
2050 int dissolve_free_huge_page(struct page *page)
2051 {
2052 	int rc = -EBUSY;
2053 
2054 retry:
2055 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2056 	if (!PageHuge(page))
2057 		return 0;
2058 
2059 	spin_lock_irq(&hugetlb_lock);
2060 	if (!PageHuge(page)) {
2061 		rc = 0;
2062 		goto out;
2063 	}
2064 
2065 	if (!page_count(page)) {
2066 		struct page *head = compound_head(page);
2067 		struct hstate *h = page_hstate(head);
2068 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2069 			goto out;
2070 
2071 		/*
2072 		 * We should make sure that the page is already on the free list
2073 		 * when it is dissolved.
2074 		 */
2075 		if (unlikely(!HPageFreed(head))) {
2076 			spin_unlock_irq(&hugetlb_lock);
2077 			cond_resched();
2078 
2079 			/*
2080 			 * Theoretically, we should return -EBUSY when we
2081 			 * encounter this race. In fact, we have a chance
2082 			 * to successfully dissolve the page if we do a
2083 			 * retry. Because the race window is quite small.
2084 			 * If we seize this opportunity, it is an optimization
2085 			 * for increasing the success rate of dissolving page.
2086 			 */
2087 			goto retry;
2088 		}
2089 
2090 		remove_hugetlb_page(h, head, false);
2091 		h->max_huge_pages--;
2092 		spin_unlock_irq(&hugetlb_lock);
2093 
2094 		/*
2095 		 * Normally update_and_free_page will allocate required vmemmmap
2096 		 * before freeing the page.  update_and_free_page will fail to
2097 		 * free the page if it can not allocate required vmemmap.  We
2098 		 * need to adjust max_huge_pages if the page is not freed.
2099 		 * Attempt to allocate vmemmmap here so that we can take
2100 		 * appropriate action on failure.
2101 		 */
2102 		rc = alloc_huge_page_vmemmap(h, head);
2103 		if (!rc) {
2104 			/*
2105 			 * Move PageHWPoison flag from head page to the raw
2106 			 * error page, which makes any subpages rather than
2107 			 * the error page reusable.
2108 			 */
2109 			if (PageHWPoison(head) && page != head) {
2110 				SetPageHWPoison(page);
2111 				ClearPageHWPoison(head);
2112 			}
2113 			update_and_free_page(h, head, false);
2114 		} else {
2115 			spin_lock_irq(&hugetlb_lock);
2116 			add_hugetlb_page(h, head, false);
2117 			h->max_huge_pages++;
2118 			spin_unlock_irq(&hugetlb_lock);
2119 		}
2120 
2121 		return rc;
2122 	}
2123 out:
2124 	spin_unlock_irq(&hugetlb_lock);
2125 	return rc;
2126 }
2127 
2128 /*
2129  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2130  * make specified memory blocks removable from the system.
2131  * Note that this will dissolve a free gigantic hugepage completely, if any
2132  * part of it lies within the given range.
2133  * Also note that if dissolve_free_huge_page() returns with an error, all
2134  * free hugepages that were dissolved before that error are lost.
2135  */
2136 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2137 {
2138 	unsigned long pfn;
2139 	struct page *page;
2140 	int rc = 0;
2141 
2142 	if (!hugepages_supported())
2143 		return rc;
2144 
2145 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2146 		page = pfn_to_page(pfn);
2147 		rc = dissolve_free_huge_page(page);
2148 		if (rc)
2149 			break;
2150 	}
2151 
2152 	return rc;
2153 }
2154 
2155 /*
2156  * Allocates a fresh surplus page from the page allocator.
2157  */
2158 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2159 		int nid, nodemask_t *nmask, bool zero_ref)
2160 {
2161 	struct page *page = NULL;
2162 	bool retry = false;
2163 
2164 	if (hstate_is_gigantic(h))
2165 		return NULL;
2166 
2167 	spin_lock_irq(&hugetlb_lock);
2168 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2169 		goto out_unlock;
2170 	spin_unlock_irq(&hugetlb_lock);
2171 
2172 retry:
2173 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2174 	if (!page)
2175 		return NULL;
2176 
2177 	spin_lock_irq(&hugetlb_lock);
2178 	/*
2179 	 * We could have raced with the pool size change.
2180 	 * Double check that and simply deallocate the new page
2181 	 * if we would end up overcommiting the surpluses. Abuse
2182 	 * temporary page to workaround the nasty free_huge_page
2183 	 * codeflow
2184 	 */
2185 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2186 		SetHPageTemporary(page);
2187 		spin_unlock_irq(&hugetlb_lock);
2188 		put_page(page);
2189 		return NULL;
2190 	}
2191 
2192 	if (zero_ref) {
2193 		/*
2194 		 * Caller requires a page with zero ref count.
2195 		 * We will drop ref count here.  If someone else is holding
2196 		 * a ref, the page will be freed when they drop it.  Abuse
2197 		 * temporary page flag to accomplish this.
2198 		 */
2199 		SetHPageTemporary(page);
2200 		if (!put_page_testzero(page)) {
2201 			/*
2202 			 * Unexpected inflated ref count on freshly allocated
2203 			 * huge.  Retry once.
2204 			 */
2205 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2206 			spin_unlock_irq(&hugetlb_lock);
2207 			if (retry)
2208 				return NULL;
2209 
2210 			retry = true;
2211 			goto retry;
2212 		}
2213 		ClearHPageTemporary(page);
2214 	}
2215 
2216 	h->surplus_huge_pages++;
2217 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2218 
2219 out_unlock:
2220 	spin_unlock_irq(&hugetlb_lock);
2221 
2222 	return page;
2223 }
2224 
2225 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2226 				     int nid, nodemask_t *nmask)
2227 {
2228 	struct page *page;
2229 
2230 	if (hstate_is_gigantic(h))
2231 		return NULL;
2232 
2233 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2234 	if (!page)
2235 		return NULL;
2236 
2237 	/*
2238 	 * We do not account these pages as surplus because they are only
2239 	 * temporary and will be released properly on the last reference
2240 	 */
2241 	SetHPageTemporary(page);
2242 
2243 	return page;
2244 }
2245 
2246 /*
2247  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2248  */
2249 static
2250 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2251 		struct vm_area_struct *vma, unsigned long addr)
2252 {
2253 	struct page *page = NULL;
2254 	struct mempolicy *mpol;
2255 	gfp_t gfp_mask = htlb_alloc_mask(h);
2256 	int nid;
2257 	nodemask_t *nodemask;
2258 
2259 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2260 	if (mpol_is_preferred_many(mpol)) {
2261 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2262 
2263 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2264 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2265 
2266 		/* Fallback to all nodes if page==NULL */
2267 		nodemask = NULL;
2268 	}
2269 
2270 	if (!page)
2271 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2272 	mpol_cond_put(mpol);
2273 	return page;
2274 }
2275 
2276 /* page migration callback function */
2277 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2278 		nodemask_t *nmask, gfp_t gfp_mask)
2279 {
2280 	spin_lock_irq(&hugetlb_lock);
2281 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2282 		struct page *page;
2283 
2284 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2285 		if (page) {
2286 			spin_unlock_irq(&hugetlb_lock);
2287 			return page;
2288 		}
2289 	}
2290 	spin_unlock_irq(&hugetlb_lock);
2291 
2292 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2293 }
2294 
2295 /* mempolicy aware migration callback */
2296 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2297 		unsigned long address)
2298 {
2299 	struct mempolicy *mpol;
2300 	nodemask_t *nodemask;
2301 	struct page *page;
2302 	gfp_t gfp_mask;
2303 	int node;
2304 
2305 	gfp_mask = htlb_alloc_mask(h);
2306 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2307 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2308 	mpol_cond_put(mpol);
2309 
2310 	return page;
2311 }
2312 
2313 /*
2314  * Increase the hugetlb pool such that it can accommodate a reservation
2315  * of size 'delta'.
2316  */
2317 static int gather_surplus_pages(struct hstate *h, long delta)
2318 	__must_hold(&hugetlb_lock)
2319 {
2320 	struct list_head surplus_list;
2321 	struct page *page, *tmp;
2322 	int ret;
2323 	long i;
2324 	long needed, allocated;
2325 	bool alloc_ok = true;
2326 
2327 	lockdep_assert_held(&hugetlb_lock);
2328 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2329 	if (needed <= 0) {
2330 		h->resv_huge_pages += delta;
2331 		return 0;
2332 	}
2333 
2334 	allocated = 0;
2335 	INIT_LIST_HEAD(&surplus_list);
2336 
2337 	ret = -ENOMEM;
2338 retry:
2339 	spin_unlock_irq(&hugetlb_lock);
2340 	for (i = 0; i < needed; i++) {
2341 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2342 				NUMA_NO_NODE, NULL, true);
2343 		if (!page) {
2344 			alloc_ok = false;
2345 			break;
2346 		}
2347 		list_add(&page->lru, &surplus_list);
2348 		cond_resched();
2349 	}
2350 	allocated += i;
2351 
2352 	/*
2353 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2354 	 * because either resv_huge_pages or free_huge_pages may have changed.
2355 	 */
2356 	spin_lock_irq(&hugetlb_lock);
2357 	needed = (h->resv_huge_pages + delta) -
2358 			(h->free_huge_pages + allocated);
2359 	if (needed > 0) {
2360 		if (alloc_ok)
2361 			goto retry;
2362 		/*
2363 		 * We were not able to allocate enough pages to
2364 		 * satisfy the entire reservation so we free what
2365 		 * we've allocated so far.
2366 		 */
2367 		goto free;
2368 	}
2369 	/*
2370 	 * The surplus_list now contains _at_least_ the number of extra pages
2371 	 * needed to accommodate the reservation.  Add the appropriate number
2372 	 * of pages to the hugetlb pool and free the extras back to the buddy
2373 	 * allocator.  Commit the entire reservation here to prevent another
2374 	 * process from stealing the pages as they are added to the pool but
2375 	 * before they are reserved.
2376 	 */
2377 	needed += allocated;
2378 	h->resv_huge_pages += delta;
2379 	ret = 0;
2380 
2381 	/* Free the needed pages to the hugetlb pool */
2382 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2383 		if ((--needed) < 0)
2384 			break;
2385 		/* Add the page to the hugetlb allocator */
2386 		enqueue_huge_page(h, page);
2387 	}
2388 free:
2389 	spin_unlock_irq(&hugetlb_lock);
2390 
2391 	/*
2392 	 * Free unnecessary surplus pages to the buddy allocator.
2393 	 * Pages have no ref count, call free_huge_page directly.
2394 	 */
2395 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2396 		free_huge_page(page);
2397 	spin_lock_irq(&hugetlb_lock);
2398 
2399 	return ret;
2400 }
2401 
2402 /*
2403  * This routine has two main purposes:
2404  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2405  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2406  *    to the associated reservation map.
2407  * 2) Free any unused surplus pages that may have been allocated to satisfy
2408  *    the reservation.  As many as unused_resv_pages may be freed.
2409  */
2410 static void return_unused_surplus_pages(struct hstate *h,
2411 					unsigned long unused_resv_pages)
2412 {
2413 	unsigned long nr_pages;
2414 	struct page *page;
2415 	LIST_HEAD(page_list);
2416 
2417 	lockdep_assert_held(&hugetlb_lock);
2418 	/* Uncommit the reservation */
2419 	h->resv_huge_pages -= unused_resv_pages;
2420 
2421 	/* Cannot return gigantic pages currently */
2422 	if (hstate_is_gigantic(h))
2423 		goto out;
2424 
2425 	/*
2426 	 * Part (or even all) of the reservation could have been backed
2427 	 * by pre-allocated pages. Only free surplus pages.
2428 	 */
2429 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2430 
2431 	/*
2432 	 * We want to release as many surplus pages as possible, spread
2433 	 * evenly across all nodes with memory. Iterate across these nodes
2434 	 * until we can no longer free unreserved surplus pages. This occurs
2435 	 * when the nodes with surplus pages have no free pages.
2436 	 * remove_pool_huge_page() will balance the freed pages across the
2437 	 * on-line nodes with memory and will handle the hstate accounting.
2438 	 */
2439 	while (nr_pages--) {
2440 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2441 		if (!page)
2442 			goto out;
2443 
2444 		list_add(&page->lru, &page_list);
2445 	}
2446 
2447 out:
2448 	spin_unlock_irq(&hugetlb_lock);
2449 	update_and_free_pages_bulk(h, &page_list);
2450 	spin_lock_irq(&hugetlb_lock);
2451 }
2452 
2453 
2454 /*
2455  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2456  * are used by the huge page allocation routines to manage reservations.
2457  *
2458  * vma_needs_reservation is called to determine if the huge page at addr
2459  * within the vma has an associated reservation.  If a reservation is
2460  * needed, the value 1 is returned.  The caller is then responsible for
2461  * managing the global reservation and subpool usage counts.  After
2462  * the huge page has been allocated, vma_commit_reservation is called
2463  * to add the page to the reservation map.  If the page allocation fails,
2464  * the reservation must be ended instead of committed.  vma_end_reservation
2465  * is called in such cases.
2466  *
2467  * In the normal case, vma_commit_reservation returns the same value
2468  * as the preceding vma_needs_reservation call.  The only time this
2469  * is not the case is if a reserve map was changed between calls.  It
2470  * is the responsibility of the caller to notice the difference and
2471  * take appropriate action.
2472  *
2473  * vma_add_reservation is used in error paths where a reservation must
2474  * be restored when a newly allocated huge page must be freed.  It is
2475  * to be called after calling vma_needs_reservation to determine if a
2476  * reservation exists.
2477  *
2478  * vma_del_reservation is used in error paths where an entry in the reserve
2479  * map was created during huge page allocation and must be removed.  It is to
2480  * be called after calling vma_needs_reservation to determine if a reservation
2481  * exists.
2482  */
2483 enum vma_resv_mode {
2484 	VMA_NEEDS_RESV,
2485 	VMA_COMMIT_RESV,
2486 	VMA_END_RESV,
2487 	VMA_ADD_RESV,
2488 	VMA_DEL_RESV,
2489 };
2490 static long __vma_reservation_common(struct hstate *h,
2491 				struct vm_area_struct *vma, unsigned long addr,
2492 				enum vma_resv_mode mode)
2493 {
2494 	struct resv_map *resv;
2495 	pgoff_t idx;
2496 	long ret;
2497 	long dummy_out_regions_needed;
2498 
2499 	resv = vma_resv_map(vma);
2500 	if (!resv)
2501 		return 1;
2502 
2503 	idx = vma_hugecache_offset(h, vma, addr);
2504 	switch (mode) {
2505 	case VMA_NEEDS_RESV:
2506 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2507 		/* We assume that vma_reservation_* routines always operate on
2508 		 * 1 page, and that adding to resv map a 1 page entry can only
2509 		 * ever require 1 region.
2510 		 */
2511 		VM_BUG_ON(dummy_out_regions_needed != 1);
2512 		break;
2513 	case VMA_COMMIT_RESV:
2514 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2515 		/* region_add calls of range 1 should never fail. */
2516 		VM_BUG_ON(ret < 0);
2517 		break;
2518 	case VMA_END_RESV:
2519 		region_abort(resv, idx, idx + 1, 1);
2520 		ret = 0;
2521 		break;
2522 	case VMA_ADD_RESV:
2523 		if (vma->vm_flags & VM_MAYSHARE) {
2524 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2525 			/* region_add calls of range 1 should never fail. */
2526 			VM_BUG_ON(ret < 0);
2527 		} else {
2528 			region_abort(resv, idx, idx + 1, 1);
2529 			ret = region_del(resv, idx, idx + 1);
2530 		}
2531 		break;
2532 	case VMA_DEL_RESV:
2533 		if (vma->vm_flags & VM_MAYSHARE) {
2534 			region_abort(resv, idx, idx + 1, 1);
2535 			ret = region_del(resv, idx, idx + 1);
2536 		} else {
2537 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538 			/* region_add calls of range 1 should never fail. */
2539 			VM_BUG_ON(ret < 0);
2540 		}
2541 		break;
2542 	default:
2543 		BUG();
2544 	}
2545 
2546 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2547 		return ret;
2548 	/*
2549 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2550 	 *
2551 	 * In most cases, reserves always exist for private mappings.
2552 	 * However, a file associated with mapping could have been
2553 	 * hole punched or truncated after reserves were consumed.
2554 	 * As subsequent fault on such a range will not use reserves.
2555 	 * Subtle - The reserve map for private mappings has the
2556 	 * opposite meaning than that of shared mappings.  If NO
2557 	 * entry is in the reserve map, it means a reservation exists.
2558 	 * If an entry exists in the reserve map, it means the
2559 	 * reservation has already been consumed.  As a result, the
2560 	 * return value of this routine is the opposite of the
2561 	 * value returned from reserve map manipulation routines above.
2562 	 */
2563 	if (ret > 0)
2564 		return 0;
2565 	if (ret == 0)
2566 		return 1;
2567 	return ret;
2568 }
2569 
2570 static long vma_needs_reservation(struct hstate *h,
2571 			struct vm_area_struct *vma, unsigned long addr)
2572 {
2573 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2574 }
2575 
2576 static long vma_commit_reservation(struct hstate *h,
2577 			struct vm_area_struct *vma, unsigned long addr)
2578 {
2579 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2580 }
2581 
2582 static void vma_end_reservation(struct hstate *h,
2583 			struct vm_area_struct *vma, unsigned long addr)
2584 {
2585 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2586 }
2587 
2588 static long vma_add_reservation(struct hstate *h,
2589 			struct vm_area_struct *vma, unsigned long addr)
2590 {
2591 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2592 }
2593 
2594 static long vma_del_reservation(struct hstate *h,
2595 			struct vm_area_struct *vma, unsigned long addr)
2596 {
2597 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2598 }
2599 
2600 /*
2601  * This routine is called to restore reservation information on error paths.
2602  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2603  * the hugetlb mutex should remain held when calling this routine.
2604  *
2605  * It handles two specific cases:
2606  * 1) A reservation was in place and the page consumed the reservation.
2607  *    HPageRestoreReserve is set in the page.
2608  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2609  *    not set.  However, alloc_huge_page always updates the reserve map.
2610  *
2611  * In case 1, free_huge_page later in the error path will increment the
2612  * global reserve count.  But, free_huge_page does not have enough context
2613  * to adjust the reservation map.  This case deals primarily with private
2614  * mappings.  Adjust the reserve map here to be consistent with global
2615  * reserve count adjustments to be made by free_huge_page.  Make sure the
2616  * reserve map indicates there is a reservation present.
2617  *
2618  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2619  */
2620 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2621 			unsigned long address, struct page *page)
2622 {
2623 	long rc = vma_needs_reservation(h, vma, address);
2624 
2625 	if (HPageRestoreReserve(page)) {
2626 		if (unlikely(rc < 0))
2627 			/*
2628 			 * Rare out of memory condition in reserve map
2629 			 * manipulation.  Clear HPageRestoreReserve so that
2630 			 * global reserve count will not be incremented
2631 			 * by free_huge_page.  This will make it appear
2632 			 * as though the reservation for this page was
2633 			 * consumed.  This may prevent the task from
2634 			 * faulting in the page at a later time.  This
2635 			 * is better than inconsistent global huge page
2636 			 * accounting of reserve counts.
2637 			 */
2638 			ClearHPageRestoreReserve(page);
2639 		else if (rc)
2640 			(void)vma_add_reservation(h, vma, address);
2641 		else
2642 			vma_end_reservation(h, vma, address);
2643 	} else {
2644 		if (!rc) {
2645 			/*
2646 			 * This indicates there is an entry in the reserve map
2647 			 * not added by alloc_huge_page.  We know it was added
2648 			 * before the alloc_huge_page call, otherwise
2649 			 * HPageRestoreReserve would be set on the page.
2650 			 * Remove the entry so that a subsequent allocation
2651 			 * does not consume a reservation.
2652 			 */
2653 			rc = vma_del_reservation(h, vma, address);
2654 			if (rc < 0)
2655 				/*
2656 				 * VERY rare out of memory condition.  Since
2657 				 * we can not delete the entry, set
2658 				 * HPageRestoreReserve so that the reserve
2659 				 * count will be incremented when the page
2660 				 * is freed.  This reserve will be consumed
2661 				 * on a subsequent allocation.
2662 				 */
2663 				SetHPageRestoreReserve(page);
2664 		} else if (rc < 0) {
2665 			/*
2666 			 * Rare out of memory condition from
2667 			 * vma_needs_reservation call.  Memory allocation is
2668 			 * only attempted if a new entry is needed.  Therefore,
2669 			 * this implies there is not an entry in the
2670 			 * reserve map.
2671 			 *
2672 			 * For shared mappings, no entry in the map indicates
2673 			 * no reservation.  We are done.
2674 			 */
2675 			if (!(vma->vm_flags & VM_MAYSHARE))
2676 				/*
2677 				 * For private mappings, no entry indicates
2678 				 * a reservation is present.  Since we can
2679 				 * not add an entry, set SetHPageRestoreReserve
2680 				 * on the page so reserve count will be
2681 				 * incremented when freed.  This reserve will
2682 				 * be consumed on a subsequent allocation.
2683 				 */
2684 				SetHPageRestoreReserve(page);
2685 		} else
2686 			/*
2687 			 * No reservation present, do nothing
2688 			 */
2689 			 vma_end_reservation(h, vma, address);
2690 	}
2691 }
2692 
2693 /*
2694  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2695  * @h: struct hstate old page belongs to
2696  * @old_page: Old page to dissolve
2697  * @list: List to isolate the page in case we need to
2698  * Returns 0 on success, otherwise negated error.
2699  */
2700 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2701 					struct list_head *list)
2702 {
2703 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2704 	int nid = page_to_nid(old_page);
2705 	bool alloc_retry = false;
2706 	struct page *new_page;
2707 	int ret = 0;
2708 
2709 	/*
2710 	 * Before dissolving the page, we need to allocate a new one for the
2711 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2712 	 * by doing everything but actually updating counters and adding to
2713 	 * the pool.  This simplifies and let us do most of the processing
2714 	 * under the lock.
2715 	 */
2716 alloc_retry:
2717 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2718 	if (!new_page)
2719 		return -ENOMEM;
2720 	/*
2721 	 * If all goes well, this page will be directly added to the free
2722 	 * list in the pool.  For this the ref count needs to be zero.
2723 	 * Attempt to drop now, and retry once if needed.  It is VERY
2724 	 * unlikely there is another ref on the page.
2725 	 *
2726 	 * If someone else has a reference to the page, it will be freed
2727 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2728 	 * this.  Retry once if there is an inflated ref count.
2729 	 */
2730 	SetHPageTemporary(new_page);
2731 	if (!put_page_testzero(new_page)) {
2732 		if (alloc_retry)
2733 			return -EBUSY;
2734 
2735 		alloc_retry = true;
2736 		goto alloc_retry;
2737 	}
2738 	ClearHPageTemporary(new_page);
2739 
2740 	__prep_new_huge_page(h, new_page);
2741 
2742 retry:
2743 	spin_lock_irq(&hugetlb_lock);
2744 	if (!PageHuge(old_page)) {
2745 		/*
2746 		 * Freed from under us. Drop new_page too.
2747 		 */
2748 		goto free_new;
2749 	} else if (page_count(old_page)) {
2750 		/*
2751 		 * Someone has grabbed the page, try to isolate it here.
2752 		 * Fail with -EBUSY if not possible.
2753 		 */
2754 		spin_unlock_irq(&hugetlb_lock);
2755 		if (!isolate_huge_page(old_page, list))
2756 			ret = -EBUSY;
2757 		spin_lock_irq(&hugetlb_lock);
2758 		goto free_new;
2759 	} else if (!HPageFreed(old_page)) {
2760 		/*
2761 		 * Page's refcount is 0 but it has not been enqueued in the
2762 		 * freelist yet. Race window is small, so we can succeed here if
2763 		 * we retry.
2764 		 */
2765 		spin_unlock_irq(&hugetlb_lock);
2766 		cond_resched();
2767 		goto retry;
2768 	} else {
2769 		/*
2770 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2771 		 * the freelist and decrease the counters. These will be
2772 		 * incremented again when calling __prep_account_new_huge_page()
2773 		 * and enqueue_huge_page() for new_page. The counters will remain
2774 		 * stable since this happens under the lock.
2775 		 */
2776 		remove_hugetlb_page(h, old_page, false);
2777 
2778 		/*
2779 		 * Ref count on new page is already zero as it was dropped
2780 		 * earlier.  It can be directly added to the pool free list.
2781 		 */
2782 		__prep_account_new_huge_page(h, nid);
2783 		enqueue_huge_page(h, new_page);
2784 
2785 		/*
2786 		 * Pages have been replaced, we can safely free the old one.
2787 		 */
2788 		spin_unlock_irq(&hugetlb_lock);
2789 		update_and_free_page(h, old_page, false);
2790 	}
2791 
2792 	return ret;
2793 
2794 free_new:
2795 	spin_unlock_irq(&hugetlb_lock);
2796 	/* Page has a zero ref count, but needs a ref to be freed */
2797 	set_page_refcounted(new_page);
2798 	update_and_free_page(h, new_page, false);
2799 
2800 	return ret;
2801 }
2802 
2803 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2804 {
2805 	struct hstate *h;
2806 	struct page *head;
2807 	int ret = -EBUSY;
2808 
2809 	/*
2810 	 * The page might have been dissolved from under our feet, so make sure
2811 	 * to carefully check the state under the lock.
2812 	 * Return success when racing as if we dissolved the page ourselves.
2813 	 */
2814 	spin_lock_irq(&hugetlb_lock);
2815 	if (PageHuge(page)) {
2816 		head = compound_head(page);
2817 		h = page_hstate(head);
2818 	} else {
2819 		spin_unlock_irq(&hugetlb_lock);
2820 		return 0;
2821 	}
2822 	spin_unlock_irq(&hugetlb_lock);
2823 
2824 	/*
2825 	 * Fence off gigantic pages as there is a cyclic dependency between
2826 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2827 	 * of bailing out right away without further retrying.
2828 	 */
2829 	if (hstate_is_gigantic(h))
2830 		return -ENOMEM;
2831 
2832 	if (page_count(head) && isolate_huge_page(head, list))
2833 		ret = 0;
2834 	else if (!page_count(head))
2835 		ret = alloc_and_dissolve_huge_page(h, head, list);
2836 
2837 	return ret;
2838 }
2839 
2840 struct page *alloc_huge_page(struct vm_area_struct *vma,
2841 				    unsigned long addr, int avoid_reserve)
2842 {
2843 	struct hugepage_subpool *spool = subpool_vma(vma);
2844 	struct hstate *h = hstate_vma(vma);
2845 	struct page *page;
2846 	long map_chg, map_commit;
2847 	long gbl_chg;
2848 	int ret, idx;
2849 	struct hugetlb_cgroup *h_cg;
2850 	bool deferred_reserve;
2851 
2852 	idx = hstate_index(h);
2853 	/*
2854 	 * Examine the region/reserve map to determine if the process
2855 	 * has a reservation for the page to be allocated.  A return
2856 	 * code of zero indicates a reservation exists (no change).
2857 	 */
2858 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2859 	if (map_chg < 0)
2860 		return ERR_PTR(-ENOMEM);
2861 
2862 	/*
2863 	 * Processes that did not create the mapping will have no
2864 	 * reserves as indicated by the region/reserve map. Check
2865 	 * that the allocation will not exceed the subpool limit.
2866 	 * Allocations for MAP_NORESERVE mappings also need to be
2867 	 * checked against any subpool limit.
2868 	 */
2869 	if (map_chg || avoid_reserve) {
2870 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2871 		if (gbl_chg < 0) {
2872 			vma_end_reservation(h, vma, addr);
2873 			return ERR_PTR(-ENOSPC);
2874 		}
2875 
2876 		/*
2877 		 * Even though there was no reservation in the region/reserve
2878 		 * map, there could be reservations associated with the
2879 		 * subpool that can be used.  This would be indicated if the
2880 		 * return value of hugepage_subpool_get_pages() is zero.
2881 		 * However, if avoid_reserve is specified we still avoid even
2882 		 * the subpool reservations.
2883 		 */
2884 		if (avoid_reserve)
2885 			gbl_chg = 1;
2886 	}
2887 
2888 	/* If this allocation is not consuming a reservation, charge it now.
2889 	 */
2890 	deferred_reserve = map_chg || avoid_reserve;
2891 	if (deferred_reserve) {
2892 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2893 			idx, pages_per_huge_page(h), &h_cg);
2894 		if (ret)
2895 			goto out_subpool_put;
2896 	}
2897 
2898 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2899 	if (ret)
2900 		goto out_uncharge_cgroup_reservation;
2901 
2902 	spin_lock_irq(&hugetlb_lock);
2903 	/*
2904 	 * glb_chg is passed to indicate whether or not a page must be taken
2905 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2906 	 * a reservation exists for the allocation.
2907 	 */
2908 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2909 	if (!page) {
2910 		spin_unlock_irq(&hugetlb_lock);
2911 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2912 		if (!page)
2913 			goto out_uncharge_cgroup;
2914 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2915 			SetHPageRestoreReserve(page);
2916 			h->resv_huge_pages--;
2917 		}
2918 		spin_lock_irq(&hugetlb_lock);
2919 		list_add(&page->lru, &h->hugepage_activelist);
2920 		/* Fall through */
2921 	}
2922 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2923 	/* If allocation is not consuming a reservation, also store the
2924 	 * hugetlb_cgroup pointer on the page.
2925 	 */
2926 	if (deferred_reserve) {
2927 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2928 						  h_cg, page);
2929 	}
2930 
2931 	spin_unlock_irq(&hugetlb_lock);
2932 
2933 	hugetlb_set_page_subpool(page, spool);
2934 
2935 	map_commit = vma_commit_reservation(h, vma, addr);
2936 	if (unlikely(map_chg > map_commit)) {
2937 		/*
2938 		 * The page was added to the reservation map between
2939 		 * vma_needs_reservation and vma_commit_reservation.
2940 		 * This indicates a race with hugetlb_reserve_pages.
2941 		 * Adjust for the subpool count incremented above AND
2942 		 * in hugetlb_reserve_pages for the same page.  Also,
2943 		 * the reservation count added in hugetlb_reserve_pages
2944 		 * no longer applies.
2945 		 */
2946 		long rsv_adjust;
2947 
2948 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2949 		hugetlb_acct_memory(h, -rsv_adjust);
2950 		if (deferred_reserve)
2951 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2952 					pages_per_huge_page(h), page);
2953 	}
2954 	return page;
2955 
2956 out_uncharge_cgroup:
2957 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2958 out_uncharge_cgroup_reservation:
2959 	if (deferred_reserve)
2960 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2961 						    h_cg);
2962 out_subpool_put:
2963 	if (map_chg || avoid_reserve)
2964 		hugepage_subpool_put_pages(spool, 1);
2965 	vma_end_reservation(h, vma, addr);
2966 	return ERR_PTR(-ENOSPC);
2967 }
2968 
2969 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2970 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2971 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2972 {
2973 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2974 	int nr_nodes, node;
2975 
2976 	if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2977 		return 0;
2978 	/* do node specific alloc */
2979 	if (nid != NUMA_NO_NODE) {
2980 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2981 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2982 		if (!m)
2983 			return 0;
2984 		goto found;
2985 	}
2986 	/* allocate from next node when distributing huge pages */
2987 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2988 		m = memblock_alloc_try_nid_raw(
2989 				huge_page_size(h), huge_page_size(h),
2990 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2991 		/*
2992 		 * Use the beginning of the huge page to store the
2993 		 * huge_bootmem_page struct (until gather_bootmem
2994 		 * puts them into the mem_map).
2995 		 */
2996 		if (!m)
2997 			return 0;
2998 		goto found;
2999 	}
3000 
3001 found:
3002 	/* Put them into a private list first because mem_map is not up yet */
3003 	INIT_LIST_HEAD(&m->list);
3004 	list_add(&m->list, &huge_boot_pages);
3005 	m->hstate = h;
3006 	return 1;
3007 }
3008 
3009 /*
3010  * Put bootmem huge pages into the standard lists after mem_map is up.
3011  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3012  */
3013 static void __init gather_bootmem_prealloc(void)
3014 {
3015 	struct huge_bootmem_page *m;
3016 
3017 	list_for_each_entry(m, &huge_boot_pages, list) {
3018 		struct page *page = virt_to_page(m);
3019 		struct hstate *h = m->hstate;
3020 
3021 		VM_BUG_ON(!hstate_is_gigantic(h));
3022 		WARN_ON(page_count(page) != 1);
3023 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3024 			WARN_ON(PageReserved(page));
3025 			prep_new_huge_page(h, page, page_to_nid(page));
3026 			put_page(page); /* add to the hugepage allocator */
3027 		} else {
3028 			/* VERY unlikely inflated ref count on a tail page */
3029 			free_gigantic_page(page, huge_page_order(h));
3030 		}
3031 
3032 		/*
3033 		 * We need to restore the 'stolen' pages to totalram_pages
3034 		 * in order to fix confusing memory reports from free(1) and
3035 		 * other side-effects, like CommitLimit going negative.
3036 		 */
3037 		adjust_managed_page_count(page, pages_per_huge_page(h));
3038 		cond_resched();
3039 	}
3040 }
3041 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3042 {
3043 	unsigned long i;
3044 	char buf[32];
3045 
3046 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3047 		if (hstate_is_gigantic(h)) {
3048 			if (!alloc_bootmem_huge_page(h, nid))
3049 				break;
3050 		} else {
3051 			struct page *page;
3052 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3053 
3054 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3055 					&node_states[N_MEMORY], NULL);
3056 			if (!page)
3057 				break;
3058 			put_page(page); /* free it into the hugepage allocator */
3059 		}
3060 		cond_resched();
3061 	}
3062 	if (i == h->max_huge_pages_node[nid])
3063 		return;
3064 
3065 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3066 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3067 		h->max_huge_pages_node[nid], buf, nid, i);
3068 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3069 	h->max_huge_pages_node[nid] = i;
3070 }
3071 
3072 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3073 {
3074 	unsigned long i;
3075 	nodemask_t *node_alloc_noretry;
3076 	bool node_specific_alloc = false;
3077 
3078 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3079 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3080 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3081 		return;
3082 	}
3083 
3084 	/* do node specific alloc */
3085 	for (i = 0; i < nr_online_nodes; i++) {
3086 		if (h->max_huge_pages_node[i] > 0) {
3087 			hugetlb_hstate_alloc_pages_onenode(h, i);
3088 			node_specific_alloc = true;
3089 		}
3090 	}
3091 
3092 	if (node_specific_alloc)
3093 		return;
3094 
3095 	/* below will do all node balanced alloc */
3096 	if (!hstate_is_gigantic(h)) {
3097 		/*
3098 		 * Bit mask controlling how hard we retry per-node allocations.
3099 		 * Ignore errors as lower level routines can deal with
3100 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3101 		 * time, we are likely in bigger trouble.
3102 		 */
3103 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3104 						GFP_KERNEL);
3105 	} else {
3106 		/* allocations done at boot time */
3107 		node_alloc_noretry = NULL;
3108 	}
3109 
3110 	/* bit mask controlling how hard we retry per-node allocations */
3111 	if (node_alloc_noretry)
3112 		nodes_clear(*node_alloc_noretry);
3113 
3114 	for (i = 0; i < h->max_huge_pages; ++i) {
3115 		if (hstate_is_gigantic(h)) {
3116 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3117 				break;
3118 		} else if (!alloc_pool_huge_page(h,
3119 					 &node_states[N_MEMORY],
3120 					 node_alloc_noretry))
3121 			break;
3122 		cond_resched();
3123 	}
3124 	if (i < h->max_huge_pages) {
3125 		char buf[32];
3126 
3127 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3128 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3129 			h->max_huge_pages, buf, i);
3130 		h->max_huge_pages = i;
3131 	}
3132 	kfree(node_alloc_noretry);
3133 }
3134 
3135 static void __init hugetlb_init_hstates(void)
3136 {
3137 	struct hstate *h, *h2;
3138 
3139 	for_each_hstate(h) {
3140 		if (minimum_order > huge_page_order(h))
3141 			minimum_order = huge_page_order(h);
3142 
3143 		/* oversize hugepages were init'ed in early boot */
3144 		if (!hstate_is_gigantic(h))
3145 			hugetlb_hstate_alloc_pages(h);
3146 
3147 		/*
3148 		 * Set demote order for each hstate.  Note that
3149 		 * h->demote_order is initially 0.
3150 		 * - We can not demote gigantic pages if runtime freeing
3151 		 *   is not supported, so skip this.
3152 		 * - If CMA allocation is possible, we can not demote
3153 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3154 		 */
3155 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3156 			continue;
3157 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3158 			continue;
3159 		for_each_hstate(h2) {
3160 			if (h2 == h)
3161 				continue;
3162 			if (h2->order < h->order &&
3163 			    h2->order > h->demote_order)
3164 				h->demote_order = h2->order;
3165 		}
3166 	}
3167 	VM_BUG_ON(minimum_order == UINT_MAX);
3168 }
3169 
3170 static void __init report_hugepages(void)
3171 {
3172 	struct hstate *h;
3173 
3174 	for_each_hstate(h) {
3175 		char buf[32];
3176 
3177 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3178 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3179 			buf, h->free_huge_pages);
3180 	}
3181 }
3182 
3183 #ifdef CONFIG_HIGHMEM
3184 static void try_to_free_low(struct hstate *h, unsigned long count,
3185 						nodemask_t *nodes_allowed)
3186 {
3187 	int i;
3188 	LIST_HEAD(page_list);
3189 
3190 	lockdep_assert_held(&hugetlb_lock);
3191 	if (hstate_is_gigantic(h))
3192 		return;
3193 
3194 	/*
3195 	 * Collect pages to be freed on a list, and free after dropping lock
3196 	 */
3197 	for_each_node_mask(i, *nodes_allowed) {
3198 		struct page *page, *next;
3199 		struct list_head *freel = &h->hugepage_freelists[i];
3200 		list_for_each_entry_safe(page, next, freel, lru) {
3201 			if (count >= h->nr_huge_pages)
3202 				goto out;
3203 			if (PageHighMem(page))
3204 				continue;
3205 			remove_hugetlb_page(h, page, false);
3206 			list_add(&page->lru, &page_list);
3207 		}
3208 	}
3209 
3210 out:
3211 	spin_unlock_irq(&hugetlb_lock);
3212 	update_and_free_pages_bulk(h, &page_list);
3213 	spin_lock_irq(&hugetlb_lock);
3214 }
3215 #else
3216 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3217 						nodemask_t *nodes_allowed)
3218 {
3219 }
3220 #endif
3221 
3222 /*
3223  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3224  * balanced by operating on them in a round-robin fashion.
3225  * Returns 1 if an adjustment was made.
3226  */
3227 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3228 				int delta)
3229 {
3230 	int nr_nodes, node;
3231 
3232 	lockdep_assert_held(&hugetlb_lock);
3233 	VM_BUG_ON(delta != -1 && delta != 1);
3234 
3235 	if (delta < 0) {
3236 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3237 			if (h->surplus_huge_pages_node[node])
3238 				goto found;
3239 		}
3240 	} else {
3241 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3242 			if (h->surplus_huge_pages_node[node] <
3243 					h->nr_huge_pages_node[node])
3244 				goto found;
3245 		}
3246 	}
3247 	return 0;
3248 
3249 found:
3250 	h->surplus_huge_pages += delta;
3251 	h->surplus_huge_pages_node[node] += delta;
3252 	return 1;
3253 }
3254 
3255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3257 			      nodemask_t *nodes_allowed)
3258 {
3259 	unsigned long min_count, ret;
3260 	struct page *page;
3261 	LIST_HEAD(page_list);
3262 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3263 
3264 	/*
3265 	 * Bit mask controlling how hard we retry per-node allocations.
3266 	 * If we can not allocate the bit mask, do not attempt to allocate
3267 	 * the requested huge pages.
3268 	 */
3269 	if (node_alloc_noretry)
3270 		nodes_clear(*node_alloc_noretry);
3271 	else
3272 		return -ENOMEM;
3273 
3274 	/*
3275 	 * resize_lock mutex prevents concurrent adjustments to number of
3276 	 * pages in hstate via the proc/sysfs interfaces.
3277 	 */
3278 	mutex_lock(&h->resize_lock);
3279 	flush_free_hpage_work(h);
3280 	spin_lock_irq(&hugetlb_lock);
3281 
3282 	/*
3283 	 * Check for a node specific request.
3284 	 * Changing node specific huge page count may require a corresponding
3285 	 * change to the global count.  In any case, the passed node mask
3286 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3287 	 */
3288 	if (nid != NUMA_NO_NODE) {
3289 		unsigned long old_count = count;
3290 
3291 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3292 		/*
3293 		 * User may have specified a large count value which caused the
3294 		 * above calculation to overflow.  In this case, they wanted
3295 		 * to allocate as many huge pages as possible.  Set count to
3296 		 * largest possible value to align with their intention.
3297 		 */
3298 		if (count < old_count)
3299 			count = ULONG_MAX;
3300 	}
3301 
3302 	/*
3303 	 * Gigantic pages runtime allocation depend on the capability for large
3304 	 * page range allocation.
3305 	 * If the system does not provide this feature, return an error when
3306 	 * the user tries to allocate gigantic pages but let the user free the
3307 	 * boottime allocated gigantic pages.
3308 	 */
3309 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3310 		if (count > persistent_huge_pages(h)) {
3311 			spin_unlock_irq(&hugetlb_lock);
3312 			mutex_unlock(&h->resize_lock);
3313 			NODEMASK_FREE(node_alloc_noretry);
3314 			return -EINVAL;
3315 		}
3316 		/* Fall through to decrease pool */
3317 	}
3318 
3319 	/*
3320 	 * Increase the pool size
3321 	 * First take pages out of surplus state.  Then make up the
3322 	 * remaining difference by allocating fresh huge pages.
3323 	 *
3324 	 * We might race with alloc_surplus_huge_page() here and be unable
3325 	 * to convert a surplus huge page to a normal huge page. That is
3326 	 * not critical, though, it just means the overall size of the
3327 	 * pool might be one hugepage larger than it needs to be, but
3328 	 * within all the constraints specified by the sysctls.
3329 	 */
3330 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3331 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3332 			break;
3333 	}
3334 
3335 	while (count > persistent_huge_pages(h)) {
3336 		/*
3337 		 * If this allocation races such that we no longer need the
3338 		 * page, free_huge_page will handle it by freeing the page
3339 		 * and reducing the surplus.
3340 		 */
3341 		spin_unlock_irq(&hugetlb_lock);
3342 
3343 		/* yield cpu to avoid soft lockup */
3344 		cond_resched();
3345 
3346 		ret = alloc_pool_huge_page(h, nodes_allowed,
3347 						node_alloc_noretry);
3348 		spin_lock_irq(&hugetlb_lock);
3349 		if (!ret)
3350 			goto out;
3351 
3352 		/* Bail for signals. Probably ctrl-c from user */
3353 		if (signal_pending(current))
3354 			goto out;
3355 	}
3356 
3357 	/*
3358 	 * Decrease the pool size
3359 	 * First return free pages to the buddy allocator (being careful
3360 	 * to keep enough around to satisfy reservations).  Then place
3361 	 * pages into surplus state as needed so the pool will shrink
3362 	 * to the desired size as pages become free.
3363 	 *
3364 	 * By placing pages into the surplus state independent of the
3365 	 * overcommit value, we are allowing the surplus pool size to
3366 	 * exceed overcommit. There are few sane options here. Since
3367 	 * alloc_surplus_huge_page() is checking the global counter,
3368 	 * though, we'll note that we're not allowed to exceed surplus
3369 	 * and won't grow the pool anywhere else. Not until one of the
3370 	 * sysctls are changed, or the surplus pages go out of use.
3371 	 */
3372 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3373 	min_count = max(count, min_count);
3374 	try_to_free_low(h, min_count, nodes_allowed);
3375 
3376 	/*
3377 	 * Collect pages to be removed on list without dropping lock
3378 	 */
3379 	while (min_count < persistent_huge_pages(h)) {
3380 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3381 		if (!page)
3382 			break;
3383 
3384 		list_add(&page->lru, &page_list);
3385 	}
3386 	/* free the pages after dropping lock */
3387 	spin_unlock_irq(&hugetlb_lock);
3388 	update_and_free_pages_bulk(h, &page_list);
3389 	flush_free_hpage_work(h);
3390 	spin_lock_irq(&hugetlb_lock);
3391 
3392 	while (count < persistent_huge_pages(h)) {
3393 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3394 			break;
3395 	}
3396 out:
3397 	h->max_huge_pages = persistent_huge_pages(h);
3398 	spin_unlock_irq(&hugetlb_lock);
3399 	mutex_unlock(&h->resize_lock);
3400 
3401 	NODEMASK_FREE(node_alloc_noretry);
3402 
3403 	return 0;
3404 }
3405 
3406 static int demote_free_huge_page(struct hstate *h, struct page *page)
3407 {
3408 	int i, nid = page_to_nid(page);
3409 	struct hstate *target_hstate;
3410 	int rc = 0;
3411 
3412 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3413 
3414 	remove_hugetlb_page_for_demote(h, page, false);
3415 	spin_unlock_irq(&hugetlb_lock);
3416 
3417 	rc = alloc_huge_page_vmemmap(h, page);
3418 	if (rc) {
3419 		/* Allocation of vmemmmap failed, we can not demote page */
3420 		spin_lock_irq(&hugetlb_lock);
3421 		set_page_refcounted(page);
3422 		add_hugetlb_page(h, page, false);
3423 		return rc;
3424 	}
3425 
3426 	/*
3427 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3428 	 * sizes as it will not ref count pages.
3429 	 */
3430 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3431 
3432 	/*
3433 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3434 	 * Without the mutex, pages added to target hstate could be marked
3435 	 * as surplus.
3436 	 *
3437 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3438 	 * use the convention of always taking larger size hstate mutex first.
3439 	 */
3440 	mutex_lock(&target_hstate->resize_lock);
3441 	for (i = 0; i < pages_per_huge_page(h);
3442 				i += pages_per_huge_page(target_hstate)) {
3443 		if (hstate_is_gigantic(target_hstate))
3444 			prep_compound_gigantic_page_for_demote(page + i,
3445 							target_hstate->order);
3446 		else
3447 			prep_compound_page(page + i, target_hstate->order);
3448 		set_page_private(page + i, 0);
3449 		set_page_refcounted(page + i);
3450 		prep_new_huge_page(target_hstate, page + i, nid);
3451 		put_page(page + i);
3452 	}
3453 	mutex_unlock(&target_hstate->resize_lock);
3454 
3455 	spin_lock_irq(&hugetlb_lock);
3456 
3457 	/*
3458 	 * Not absolutely necessary, but for consistency update max_huge_pages
3459 	 * based on pool changes for the demoted page.
3460 	 */
3461 	h->max_huge_pages--;
3462 	target_hstate->max_huge_pages += pages_per_huge_page(h);
3463 
3464 	return rc;
3465 }
3466 
3467 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3468 	__must_hold(&hugetlb_lock)
3469 {
3470 	int nr_nodes, node;
3471 	struct page *page;
3472 	int rc = 0;
3473 
3474 	lockdep_assert_held(&hugetlb_lock);
3475 
3476 	/* We should never get here if no demote order */
3477 	if (!h->demote_order) {
3478 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3479 		return -EINVAL;		/* internal error */
3480 	}
3481 
3482 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3483 		if (!list_empty(&h->hugepage_freelists[node])) {
3484 			page = list_entry(h->hugepage_freelists[node].next,
3485 					struct page, lru);
3486 			rc = demote_free_huge_page(h, page);
3487 			break;
3488 		}
3489 	}
3490 
3491 	return rc;
3492 }
3493 
3494 #define HSTATE_ATTR_RO(_name) \
3495 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3496 
3497 #define HSTATE_ATTR_WO(_name) \
3498 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3499 
3500 #define HSTATE_ATTR(_name) \
3501 	static struct kobj_attribute _name##_attr = \
3502 		__ATTR(_name, 0644, _name##_show, _name##_store)
3503 
3504 static struct kobject *hugepages_kobj;
3505 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3506 
3507 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3508 
3509 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3510 {
3511 	int i;
3512 
3513 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3514 		if (hstate_kobjs[i] == kobj) {
3515 			if (nidp)
3516 				*nidp = NUMA_NO_NODE;
3517 			return &hstates[i];
3518 		}
3519 
3520 	return kobj_to_node_hstate(kobj, nidp);
3521 }
3522 
3523 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3524 					struct kobj_attribute *attr, char *buf)
3525 {
3526 	struct hstate *h;
3527 	unsigned long nr_huge_pages;
3528 	int nid;
3529 
3530 	h = kobj_to_hstate(kobj, &nid);
3531 	if (nid == NUMA_NO_NODE)
3532 		nr_huge_pages = h->nr_huge_pages;
3533 	else
3534 		nr_huge_pages = h->nr_huge_pages_node[nid];
3535 
3536 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3537 }
3538 
3539 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3540 					   struct hstate *h, int nid,
3541 					   unsigned long count, size_t len)
3542 {
3543 	int err;
3544 	nodemask_t nodes_allowed, *n_mask;
3545 
3546 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3547 		return -EINVAL;
3548 
3549 	if (nid == NUMA_NO_NODE) {
3550 		/*
3551 		 * global hstate attribute
3552 		 */
3553 		if (!(obey_mempolicy &&
3554 				init_nodemask_of_mempolicy(&nodes_allowed)))
3555 			n_mask = &node_states[N_MEMORY];
3556 		else
3557 			n_mask = &nodes_allowed;
3558 	} else {
3559 		/*
3560 		 * Node specific request.  count adjustment happens in
3561 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3562 		 */
3563 		init_nodemask_of_node(&nodes_allowed, nid);
3564 		n_mask = &nodes_allowed;
3565 	}
3566 
3567 	err = set_max_huge_pages(h, count, nid, n_mask);
3568 
3569 	return err ? err : len;
3570 }
3571 
3572 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3573 					 struct kobject *kobj, const char *buf,
3574 					 size_t len)
3575 {
3576 	struct hstate *h;
3577 	unsigned long count;
3578 	int nid;
3579 	int err;
3580 
3581 	err = kstrtoul(buf, 10, &count);
3582 	if (err)
3583 		return err;
3584 
3585 	h = kobj_to_hstate(kobj, &nid);
3586 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3587 }
3588 
3589 static ssize_t nr_hugepages_show(struct kobject *kobj,
3590 				       struct kobj_attribute *attr, char *buf)
3591 {
3592 	return nr_hugepages_show_common(kobj, attr, buf);
3593 }
3594 
3595 static ssize_t nr_hugepages_store(struct kobject *kobj,
3596 	       struct kobj_attribute *attr, const char *buf, size_t len)
3597 {
3598 	return nr_hugepages_store_common(false, kobj, buf, len);
3599 }
3600 HSTATE_ATTR(nr_hugepages);
3601 
3602 #ifdef CONFIG_NUMA
3603 
3604 /*
3605  * hstate attribute for optionally mempolicy-based constraint on persistent
3606  * huge page alloc/free.
3607  */
3608 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3609 					   struct kobj_attribute *attr,
3610 					   char *buf)
3611 {
3612 	return nr_hugepages_show_common(kobj, attr, buf);
3613 }
3614 
3615 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3616 	       struct kobj_attribute *attr, const char *buf, size_t len)
3617 {
3618 	return nr_hugepages_store_common(true, kobj, buf, len);
3619 }
3620 HSTATE_ATTR(nr_hugepages_mempolicy);
3621 #endif
3622 
3623 
3624 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3625 					struct kobj_attribute *attr, char *buf)
3626 {
3627 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3628 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3629 }
3630 
3631 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3632 		struct kobj_attribute *attr, const char *buf, size_t count)
3633 {
3634 	int err;
3635 	unsigned long input;
3636 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3637 
3638 	if (hstate_is_gigantic(h))
3639 		return -EINVAL;
3640 
3641 	err = kstrtoul(buf, 10, &input);
3642 	if (err)
3643 		return err;
3644 
3645 	spin_lock_irq(&hugetlb_lock);
3646 	h->nr_overcommit_huge_pages = input;
3647 	spin_unlock_irq(&hugetlb_lock);
3648 
3649 	return count;
3650 }
3651 HSTATE_ATTR(nr_overcommit_hugepages);
3652 
3653 static ssize_t free_hugepages_show(struct kobject *kobj,
3654 					struct kobj_attribute *attr, char *buf)
3655 {
3656 	struct hstate *h;
3657 	unsigned long free_huge_pages;
3658 	int nid;
3659 
3660 	h = kobj_to_hstate(kobj, &nid);
3661 	if (nid == NUMA_NO_NODE)
3662 		free_huge_pages = h->free_huge_pages;
3663 	else
3664 		free_huge_pages = h->free_huge_pages_node[nid];
3665 
3666 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3667 }
3668 HSTATE_ATTR_RO(free_hugepages);
3669 
3670 static ssize_t resv_hugepages_show(struct kobject *kobj,
3671 					struct kobj_attribute *attr, char *buf)
3672 {
3673 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3674 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3675 }
3676 HSTATE_ATTR_RO(resv_hugepages);
3677 
3678 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3679 					struct kobj_attribute *attr, char *buf)
3680 {
3681 	struct hstate *h;
3682 	unsigned long surplus_huge_pages;
3683 	int nid;
3684 
3685 	h = kobj_to_hstate(kobj, &nid);
3686 	if (nid == NUMA_NO_NODE)
3687 		surplus_huge_pages = h->surplus_huge_pages;
3688 	else
3689 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3690 
3691 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3692 }
3693 HSTATE_ATTR_RO(surplus_hugepages);
3694 
3695 static ssize_t demote_store(struct kobject *kobj,
3696 	       struct kobj_attribute *attr, const char *buf, size_t len)
3697 {
3698 	unsigned long nr_demote;
3699 	unsigned long nr_available;
3700 	nodemask_t nodes_allowed, *n_mask;
3701 	struct hstate *h;
3702 	int err = 0;
3703 	int nid;
3704 
3705 	err = kstrtoul(buf, 10, &nr_demote);
3706 	if (err)
3707 		return err;
3708 	h = kobj_to_hstate(kobj, &nid);
3709 
3710 	if (nid != NUMA_NO_NODE) {
3711 		init_nodemask_of_node(&nodes_allowed, nid);
3712 		n_mask = &nodes_allowed;
3713 	} else {
3714 		n_mask = &node_states[N_MEMORY];
3715 	}
3716 
3717 	/* Synchronize with other sysfs operations modifying huge pages */
3718 	mutex_lock(&h->resize_lock);
3719 	spin_lock_irq(&hugetlb_lock);
3720 
3721 	while (nr_demote) {
3722 		/*
3723 		 * Check for available pages to demote each time thorough the
3724 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3725 		 */
3726 		if (nid != NUMA_NO_NODE)
3727 			nr_available = h->free_huge_pages_node[nid];
3728 		else
3729 			nr_available = h->free_huge_pages;
3730 		nr_available -= h->resv_huge_pages;
3731 		if (!nr_available)
3732 			break;
3733 
3734 		err = demote_pool_huge_page(h, n_mask);
3735 		if (err)
3736 			break;
3737 
3738 		nr_demote--;
3739 	}
3740 
3741 	spin_unlock_irq(&hugetlb_lock);
3742 	mutex_unlock(&h->resize_lock);
3743 
3744 	if (err)
3745 		return err;
3746 	return len;
3747 }
3748 HSTATE_ATTR_WO(demote);
3749 
3750 static ssize_t demote_size_show(struct kobject *kobj,
3751 					struct kobj_attribute *attr, char *buf)
3752 {
3753 	int nid;
3754 	struct hstate *h = kobj_to_hstate(kobj, &nid);
3755 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3756 
3757 	return sysfs_emit(buf, "%lukB\n", demote_size);
3758 }
3759 
3760 static ssize_t demote_size_store(struct kobject *kobj,
3761 					struct kobj_attribute *attr,
3762 					const char *buf, size_t count)
3763 {
3764 	struct hstate *h, *demote_hstate;
3765 	unsigned long demote_size;
3766 	unsigned int demote_order;
3767 	int nid;
3768 
3769 	demote_size = (unsigned long)memparse(buf, NULL);
3770 
3771 	demote_hstate = size_to_hstate(demote_size);
3772 	if (!demote_hstate)
3773 		return -EINVAL;
3774 	demote_order = demote_hstate->order;
3775 	if (demote_order < HUGETLB_PAGE_ORDER)
3776 		return -EINVAL;
3777 
3778 	/* demote order must be smaller than hstate order */
3779 	h = kobj_to_hstate(kobj, &nid);
3780 	if (demote_order >= h->order)
3781 		return -EINVAL;
3782 
3783 	/* resize_lock synchronizes access to demote size and writes */
3784 	mutex_lock(&h->resize_lock);
3785 	h->demote_order = demote_order;
3786 	mutex_unlock(&h->resize_lock);
3787 
3788 	return count;
3789 }
3790 HSTATE_ATTR(demote_size);
3791 
3792 static struct attribute *hstate_attrs[] = {
3793 	&nr_hugepages_attr.attr,
3794 	&nr_overcommit_hugepages_attr.attr,
3795 	&free_hugepages_attr.attr,
3796 	&resv_hugepages_attr.attr,
3797 	&surplus_hugepages_attr.attr,
3798 #ifdef CONFIG_NUMA
3799 	&nr_hugepages_mempolicy_attr.attr,
3800 #endif
3801 	NULL,
3802 };
3803 
3804 static const struct attribute_group hstate_attr_group = {
3805 	.attrs = hstate_attrs,
3806 };
3807 
3808 static struct attribute *hstate_demote_attrs[] = {
3809 	&demote_size_attr.attr,
3810 	&demote_attr.attr,
3811 	NULL,
3812 };
3813 
3814 static const struct attribute_group hstate_demote_attr_group = {
3815 	.attrs = hstate_demote_attrs,
3816 };
3817 
3818 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3819 				    struct kobject **hstate_kobjs,
3820 				    const struct attribute_group *hstate_attr_group)
3821 {
3822 	int retval;
3823 	int hi = hstate_index(h);
3824 
3825 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3826 	if (!hstate_kobjs[hi])
3827 		return -ENOMEM;
3828 
3829 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3830 	if (retval) {
3831 		kobject_put(hstate_kobjs[hi]);
3832 		hstate_kobjs[hi] = NULL;
3833 	}
3834 
3835 	if (h->demote_order) {
3836 		if (sysfs_create_group(hstate_kobjs[hi],
3837 					&hstate_demote_attr_group))
3838 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3839 	}
3840 
3841 	return retval;
3842 }
3843 
3844 static void __init hugetlb_sysfs_init(void)
3845 {
3846 	struct hstate *h;
3847 	int err;
3848 
3849 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3850 	if (!hugepages_kobj)
3851 		return;
3852 
3853 	for_each_hstate(h) {
3854 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3855 					 hstate_kobjs, &hstate_attr_group);
3856 		if (err)
3857 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3858 	}
3859 }
3860 
3861 #ifdef CONFIG_NUMA
3862 
3863 /*
3864  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3865  * with node devices in node_devices[] using a parallel array.  The array
3866  * index of a node device or _hstate == node id.
3867  * This is here to avoid any static dependency of the node device driver, in
3868  * the base kernel, on the hugetlb module.
3869  */
3870 struct node_hstate {
3871 	struct kobject		*hugepages_kobj;
3872 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3873 };
3874 static struct node_hstate node_hstates[MAX_NUMNODES];
3875 
3876 /*
3877  * A subset of global hstate attributes for node devices
3878  */
3879 static struct attribute *per_node_hstate_attrs[] = {
3880 	&nr_hugepages_attr.attr,
3881 	&free_hugepages_attr.attr,
3882 	&surplus_hugepages_attr.attr,
3883 	NULL,
3884 };
3885 
3886 static const struct attribute_group per_node_hstate_attr_group = {
3887 	.attrs = per_node_hstate_attrs,
3888 };
3889 
3890 /*
3891  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3892  * Returns node id via non-NULL nidp.
3893  */
3894 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3895 {
3896 	int nid;
3897 
3898 	for (nid = 0; nid < nr_node_ids; nid++) {
3899 		struct node_hstate *nhs = &node_hstates[nid];
3900 		int i;
3901 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3902 			if (nhs->hstate_kobjs[i] == kobj) {
3903 				if (nidp)
3904 					*nidp = nid;
3905 				return &hstates[i];
3906 			}
3907 	}
3908 
3909 	BUG();
3910 	return NULL;
3911 }
3912 
3913 /*
3914  * Unregister hstate attributes from a single node device.
3915  * No-op if no hstate attributes attached.
3916  */
3917 static void hugetlb_unregister_node(struct node *node)
3918 {
3919 	struct hstate *h;
3920 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3921 
3922 	if (!nhs->hugepages_kobj)
3923 		return;		/* no hstate attributes */
3924 
3925 	for_each_hstate(h) {
3926 		int idx = hstate_index(h);
3927 		if (nhs->hstate_kobjs[idx]) {
3928 			kobject_put(nhs->hstate_kobjs[idx]);
3929 			nhs->hstate_kobjs[idx] = NULL;
3930 		}
3931 	}
3932 
3933 	kobject_put(nhs->hugepages_kobj);
3934 	nhs->hugepages_kobj = NULL;
3935 }
3936 
3937 
3938 /*
3939  * Register hstate attributes for a single node device.
3940  * No-op if attributes already registered.
3941  */
3942 static void hugetlb_register_node(struct node *node)
3943 {
3944 	struct hstate *h;
3945 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3946 	int err;
3947 
3948 	if (nhs->hugepages_kobj)
3949 		return;		/* already allocated */
3950 
3951 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3952 							&node->dev.kobj);
3953 	if (!nhs->hugepages_kobj)
3954 		return;
3955 
3956 	for_each_hstate(h) {
3957 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3958 						nhs->hstate_kobjs,
3959 						&per_node_hstate_attr_group);
3960 		if (err) {
3961 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3962 				h->name, node->dev.id);
3963 			hugetlb_unregister_node(node);
3964 			break;
3965 		}
3966 	}
3967 }
3968 
3969 /*
3970  * hugetlb init time:  register hstate attributes for all registered node
3971  * devices of nodes that have memory.  All on-line nodes should have
3972  * registered their associated device by this time.
3973  */
3974 static void __init hugetlb_register_all_nodes(void)
3975 {
3976 	int nid;
3977 
3978 	for_each_node_state(nid, N_MEMORY) {
3979 		struct node *node = node_devices[nid];
3980 		if (node->dev.id == nid)
3981 			hugetlb_register_node(node);
3982 	}
3983 
3984 	/*
3985 	 * Let the node device driver know we're here so it can
3986 	 * [un]register hstate attributes on node hotplug.
3987 	 */
3988 	register_hugetlbfs_with_node(hugetlb_register_node,
3989 				     hugetlb_unregister_node);
3990 }
3991 #else	/* !CONFIG_NUMA */
3992 
3993 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3994 {
3995 	BUG();
3996 	if (nidp)
3997 		*nidp = -1;
3998 	return NULL;
3999 }
4000 
4001 static void hugetlb_register_all_nodes(void) { }
4002 
4003 #endif
4004 
4005 static int __init hugetlb_init(void)
4006 {
4007 	int i;
4008 
4009 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4010 			__NR_HPAGEFLAGS);
4011 
4012 	if (!hugepages_supported()) {
4013 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4014 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4015 		return 0;
4016 	}
4017 
4018 	/*
4019 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4020 	 * architectures depend on setup being done here.
4021 	 */
4022 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4023 	if (!parsed_default_hugepagesz) {
4024 		/*
4025 		 * If we did not parse a default huge page size, set
4026 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4027 		 * number of huge pages for this default size was implicitly
4028 		 * specified, set that here as well.
4029 		 * Note that the implicit setting will overwrite an explicit
4030 		 * setting.  A warning will be printed in this case.
4031 		 */
4032 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4033 		if (default_hstate_max_huge_pages) {
4034 			if (default_hstate.max_huge_pages) {
4035 				char buf[32];
4036 
4037 				string_get_size(huge_page_size(&default_hstate),
4038 					1, STRING_UNITS_2, buf, 32);
4039 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4040 					default_hstate.max_huge_pages, buf);
4041 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4042 					default_hstate_max_huge_pages);
4043 			}
4044 			default_hstate.max_huge_pages =
4045 				default_hstate_max_huge_pages;
4046 
4047 			for (i = 0; i < nr_online_nodes; i++)
4048 				default_hstate.max_huge_pages_node[i] =
4049 					default_hugepages_in_node[i];
4050 		}
4051 	}
4052 
4053 	hugetlb_cma_check();
4054 	hugetlb_init_hstates();
4055 	gather_bootmem_prealloc();
4056 	report_hugepages();
4057 
4058 	hugetlb_sysfs_init();
4059 	hugetlb_register_all_nodes();
4060 	hugetlb_cgroup_file_init();
4061 
4062 #ifdef CONFIG_SMP
4063 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4064 #else
4065 	num_fault_mutexes = 1;
4066 #endif
4067 	hugetlb_fault_mutex_table =
4068 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4069 			      GFP_KERNEL);
4070 	BUG_ON(!hugetlb_fault_mutex_table);
4071 
4072 	for (i = 0; i < num_fault_mutexes; i++)
4073 		mutex_init(&hugetlb_fault_mutex_table[i]);
4074 	return 0;
4075 }
4076 subsys_initcall(hugetlb_init);
4077 
4078 /* Overwritten by architectures with more huge page sizes */
4079 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4080 {
4081 	return size == HPAGE_SIZE;
4082 }
4083 
4084 void __init hugetlb_add_hstate(unsigned int order)
4085 {
4086 	struct hstate *h;
4087 	unsigned long i;
4088 
4089 	if (size_to_hstate(PAGE_SIZE << order)) {
4090 		return;
4091 	}
4092 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4093 	BUG_ON(order == 0);
4094 	h = &hstates[hugetlb_max_hstate++];
4095 	mutex_init(&h->resize_lock);
4096 	h->order = order;
4097 	h->mask = ~(huge_page_size(h) - 1);
4098 	for (i = 0; i < MAX_NUMNODES; ++i)
4099 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4100 	INIT_LIST_HEAD(&h->hugepage_activelist);
4101 	h->next_nid_to_alloc = first_memory_node;
4102 	h->next_nid_to_free = first_memory_node;
4103 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4104 					huge_page_size(h)/1024);
4105 	hugetlb_vmemmap_init(h);
4106 
4107 	parsed_hstate = h;
4108 }
4109 
4110 bool __init __weak hugetlb_node_alloc_supported(void)
4111 {
4112 	return true;
4113 }
4114 /*
4115  * hugepages command line processing
4116  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4117  * specification.  If not, ignore the hugepages value.  hugepages can also
4118  * be the first huge page command line  option in which case it implicitly
4119  * specifies the number of huge pages for the default size.
4120  */
4121 static int __init hugepages_setup(char *s)
4122 {
4123 	unsigned long *mhp;
4124 	static unsigned long *last_mhp;
4125 	int node = NUMA_NO_NODE;
4126 	int count;
4127 	unsigned long tmp;
4128 	char *p = s;
4129 
4130 	if (!parsed_valid_hugepagesz) {
4131 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4132 		parsed_valid_hugepagesz = true;
4133 		return 0;
4134 	}
4135 
4136 	/*
4137 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4138 	 * yet, so this hugepages= parameter goes to the "default hstate".
4139 	 * Otherwise, it goes with the previously parsed hugepagesz or
4140 	 * default_hugepagesz.
4141 	 */
4142 	else if (!hugetlb_max_hstate)
4143 		mhp = &default_hstate_max_huge_pages;
4144 	else
4145 		mhp = &parsed_hstate->max_huge_pages;
4146 
4147 	if (mhp == last_mhp) {
4148 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4149 		return 0;
4150 	}
4151 
4152 	while (*p) {
4153 		count = 0;
4154 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4155 			goto invalid;
4156 		/* Parameter is node format */
4157 		if (p[count] == ':') {
4158 			if (!hugetlb_node_alloc_supported()) {
4159 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4160 				return 0;
4161 			}
4162 			if (tmp >= nr_online_nodes)
4163 				goto invalid;
4164 			node = tmp;
4165 			p += count + 1;
4166 			/* Parse hugepages */
4167 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4168 				goto invalid;
4169 			if (!hugetlb_max_hstate)
4170 				default_hugepages_in_node[node] = tmp;
4171 			else
4172 				parsed_hstate->max_huge_pages_node[node] = tmp;
4173 			*mhp += tmp;
4174 			/* Go to parse next node*/
4175 			if (p[count] == ',')
4176 				p += count + 1;
4177 			else
4178 				break;
4179 		} else {
4180 			if (p != s)
4181 				goto invalid;
4182 			*mhp = tmp;
4183 			break;
4184 		}
4185 	}
4186 
4187 	/*
4188 	 * Global state is always initialized later in hugetlb_init.
4189 	 * But we need to allocate gigantic hstates here early to still
4190 	 * use the bootmem allocator.
4191 	 */
4192 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4193 		hugetlb_hstate_alloc_pages(parsed_hstate);
4194 
4195 	last_mhp = mhp;
4196 
4197 	return 1;
4198 
4199 invalid:
4200 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4201 	return 0;
4202 }
4203 __setup("hugepages=", hugepages_setup);
4204 
4205 /*
4206  * hugepagesz command line processing
4207  * A specific huge page size can only be specified once with hugepagesz.
4208  * hugepagesz is followed by hugepages on the command line.  The global
4209  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4210  * hugepagesz argument was valid.
4211  */
4212 static int __init hugepagesz_setup(char *s)
4213 {
4214 	unsigned long size;
4215 	struct hstate *h;
4216 
4217 	parsed_valid_hugepagesz = false;
4218 	size = (unsigned long)memparse(s, NULL);
4219 
4220 	if (!arch_hugetlb_valid_size(size)) {
4221 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4222 		return 0;
4223 	}
4224 
4225 	h = size_to_hstate(size);
4226 	if (h) {
4227 		/*
4228 		 * hstate for this size already exists.  This is normally
4229 		 * an error, but is allowed if the existing hstate is the
4230 		 * default hstate.  More specifically, it is only allowed if
4231 		 * the number of huge pages for the default hstate was not
4232 		 * previously specified.
4233 		 */
4234 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4235 		    default_hstate.max_huge_pages) {
4236 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4237 			return 0;
4238 		}
4239 
4240 		/*
4241 		 * No need to call hugetlb_add_hstate() as hstate already
4242 		 * exists.  But, do set parsed_hstate so that a following
4243 		 * hugepages= parameter will be applied to this hstate.
4244 		 */
4245 		parsed_hstate = h;
4246 		parsed_valid_hugepagesz = true;
4247 		return 1;
4248 	}
4249 
4250 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4251 	parsed_valid_hugepagesz = true;
4252 	return 1;
4253 }
4254 __setup("hugepagesz=", hugepagesz_setup);
4255 
4256 /*
4257  * default_hugepagesz command line input
4258  * Only one instance of default_hugepagesz allowed on command line.
4259  */
4260 static int __init default_hugepagesz_setup(char *s)
4261 {
4262 	unsigned long size;
4263 	int i;
4264 
4265 	parsed_valid_hugepagesz = false;
4266 	if (parsed_default_hugepagesz) {
4267 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4268 		return 0;
4269 	}
4270 
4271 	size = (unsigned long)memparse(s, NULL);
4272 
4273 	if (!arch_hugetlb_valid_size(size)) {
4274 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4275 		return 0;
4276 	}
4277 
4278 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279 	parsed_valid_hugepagesz = true;
4280 	parsed_default_hugepagesz = true;
4281 	default_hstate_idx = hstate_index(size_to_hstate(size));
4282 
4283 	/*
4284 	 * The number of default huge pages (for this size) could have been
4285 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4286 	 * then default_hstate_max_huge_pages is set.  If the default huge
4287 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4288 	 * allocated here from bootmem allocator.
4289 	 */
4290 	if (default_hstate_max_huge_pages) {
4291 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4292 		for (i = 0; i < nr_online_nodes; i++)
4293 			default_hstate.max_huge_pages_node[i] =
4294 				default_hugepages_in_node[i];
4295 		if (hstate_is_gigantic(&default_hstate))
4296 			hugetlb_hstate_alloc_pages(&default_hstate);
4297 		default_hstate_max_huge_pages = 0;
4298 	}
4299 
4300 	return 1;
4301 }
4302 __setup("default_hugepagesz=", default_hugepagesz_setup);
4303 
4304 static unsigned int allowed_mems_nr(struct hstate *h)
4305 {
4306 	int node;
4307 	unsigned int nr = 0;
4308 	nodemask_t *mpol_allowed;
4309 	unsigned int *array = h->free_huge_pages_node;
4310 	gfp_t gfp_mask = htlb_alloc_mask(h);
4311 
4312 	mpol_allowed = policy_nodemask_current(gfp_mask);
4313 
4314 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4315 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4316 			nr += array[node];
4317 	}
4318 
4319 	return nr;
4320 }
4321 
4322 #ifdef CONFIG_SYSCTL
4323 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4324 					  void *buffer, size_t *length,
4325 					  loff_t *ppos, unsigned long *out)
4326 {
4327 	struct ctl_table dup_table;
4328 
4329 	/*
4330 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4331 	 * can duplicate the @table and alter the duplicate of it.
4332 	 */
4333 	dup_table = *table;
4334 	dup_table.data = out;
4335 
4336 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4337 }
4338 
4339 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4340 			 struct ctl_table *table, int write,
4341 			 void *buffer, size_t *length, loff_t *ppos)
4342 {
4343 	struct hstate *h = &default_hstate;
4344 	unsigned long tmp = h->max_huge_pages;
4345 	int ret;
4346 
4347 	if (!hugepages_supported())
4348 		return -EOPNOTSUPP;
4349 
4350 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4351 					     &tmp);
4352 	if (ret)
4353 		goto out;
4354 
4355 	if (write)
4356 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4357 						  NUMA_NO_NODE, tmp, *length);
4358 out:
4359 	return ret;
4360 }
4361 
4362 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4363 			  void *buffer, size_t *length, loff_t *ppos)
4364 {
4365 
4366 	return hugetlb_sysctl_handler_common(false, table, write,
4367 							buffer, length, ppos);
4368 }
4369 
4370 #ifdef CONFIG_NUMA
4371 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4372 			  void *buffer, size_t *length, loff_t *ppos)
4373 {
4374 	return hugetlb_sysctl_handler_common(true, table, write,
4375 							buffer, length, ppos);
4376 }
4377 #endif /* CONFIG_NUMA */
4378 
4379 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4380 		void *buffer, size_t *length, loff_t *ppos)
4381 {
4382 	struct hstate *h = &default_hstate;
4383 	unsigned long tmp;
4384 	int ret;
4385 
4386 	if (!hugepages_supported())
4387 		return -EOPNOTSUPP;
4388 
4389 	tmp = h->nr_overcommit_huge_pages;
4390 
4391 	if (write && hstate_is_gigantic(h))
4392 		return -EINVAL;
4393 
4394 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4395 					     &tmp);
4396 	if (ret)
4397 		goto out;
4398 
4399 	if (write) {
4400 		spin_lock_irq(&hugetlb_lock);
4401 		h->nr_overcommit_huge_pages = tmp;
4402 		spin_unlock_irq(&hugetlb_lock);
4403 	}
4404 out:
4405 	return ret;
4406 }
4407 
4408 #endif /* CONFIG_SYSCTL */
4409 
4410 void hugetlb_report_meminfo(struct seq_file *m)
4411 {
4412 	struct hstate *h;
4413 	unsigned long total = 0;
4414 
4415 	if (!hugepages_supported())
4416 		return;
4417 
4418 	for_each_hstate(h) {
4419 		unsigned long count = h->nr_huge_pages;
4420 
4421 		total += huge_page_size(h) * count;
4422 
4423 		if (h == &default_hstate)
4424 			seq_printf(m,
4425 				   "HugePages_Total:   %5lu\n"
4426 				   "HugePages_Free:    %5lu\n"
4427 				   "HugePages_Rsvd:    %5lu\n"
4428 				   "HugePages_Surp:    %5lu\n"
4429 				   "Hugepagesize:   %8lu kB\n",
4430 				   count,
4431 				   h->free_huge_pages,
4432 				   h->resv_huge_pages,
4433 				   h->surplus_huge_pages,
4434 				   huge_page_size(h) / SZ_1K);
4435 	}
4436 
4437 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4438 }
4439 
4440 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4441 {
4442 	struct hstate *h = &default_hstate;
4443 
4444 	if (!hugepages_supported())
4445 		return 0;
4446 
4447 	return sysfs_emit_at(buf, len,
4448 			     "Node %d HugePages_Total: %5u\n"
4449 			     "Node %d HugePages_Free:  %5u\n"
4450 			     "Node %d HugePages_Surp:  %5u\n",
4451 			     nid, h->nr_huge_pages_node[nid],
4452 			     nid, h->free_huge_pages_node[nid],
4453 			     nid, h->surplus_huge_pages_node[nid]);
4454 }
4455 
4456 void hugetlb_show_meminfo(void)
4457 {
4458 	struct hstate *h;
4459 	int nid;
4460 
4461 	if (!hugepages_supported())
4462 		return;
4463 
4464 	for_each_node_state(nid, N_MEMORY)
4465 		for_each_hstate(h)
4466 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4467 				nid,
4468 				h->nr_huge_pages_node[nid],
4469 				h->free_huge_pages_node[nid],
4470 				h->surplus_huge_pages_node[nid],
4471 				huge_page_size(h) / SZ_1K);
4472 }
4473 
4474 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4475 {
4476 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4477 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4478 }
4479 
4480 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4481 unsigned long hugetlb_total_pages(void)
4482 {
4483 	struct hstate *h;
4484 	unsigned long nr_total_pages = 0;
4485 
4486 	for_each_hstate(h)
4487 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4488 	return nr_total_pages;
4489 }
4490 
4491 static int hugetlb_acct_memory(struct hstate *h, long delta)
4492 {
4493 	int ret = -ENOMEM;
4494 
4495 	if (!delta)
4496 		return 0;
4497 
4498 	spin_lock_irq(&hugetlb_lock);
4499 	/*
4500 	 * When cpuset is configured, it breaks the strict hugetlb page
4501 	 * reservation as the accounting is done on a global variable. Such
4502 	 * reservation is completely rubbish in the presence of cpuset because
4503 	 * the reservation is not checked against page availability for the
4504 	 * current cpuset. Application can still potentially OOM'ed by kernel
4505 	 * with lack of free htlb page in cpuset that the task is in.
4506 	 * Attempt to enforce strict accounting with cpuset is almost
4507 	 * impossible (or too ugly) because cpuset is too fluid that
4508 	 * task or memory node can be dynamically moved between cpusets.
4509 	 *
4510 	 * The change of semantics for shared hugetlb mapping with cpuset is
4511 	 * undesirable. However, in order to preserve some of the semantics,
4512 	 * we fall back to check against current free page availability as
4513 	 * a best attempt and hopefully to minimize the impact of changing
4514 	 * semantics that cpuset has.
4515 	 *
4516 	 * Apart from cpuset, we also have memory policy mechanism that
4517 	 * also determines from which node the kernel will allocate memory
4518 	 * in a NUMA system. So similar to cpuset, we also should consider
4519 	 * the memory policy of the current task. Similar to the description
4520 	 * above.
4521 	 */
4522 	if (delta > 0) {
4523 		if (gather_surplus_pages(h, delta) < 0)
4524 			goto out;
4525 
4526 		if (delta > allowed_mems_nr(h)) {
4527 			return_unused_surplus_pages(h, delta);
4528 			goto out;
4529 		}
4530 	}
4531 
4532 	ret = 0;
4533 	if (delta < 0)
4534 		return_unused_surplus_pages(h, (unsigned long) -delta);
4535 
4536 out:
4537 	spin_unlock_irq(&hugetlb_lock);
4538 	return ret;
4539 }
4540 
4541 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4542 {
4543 	struct resv_map *resv = vma_resv_map(vma);
4544 
4545 	/*
4546 	 * This new VMA should share its siblings reservation map if present.
4547 	 * The VMA will only ever have a valid reservation map pointer where
4548 	 * it is being copied for another still existing VMA.  As that VMA
4549 	 * has a reference to the reservation map it cannot disappear until
4550 	 * after this open call completes.  It is therefore safe to take a
4551 	 * new reference here without additional locking.
4552 	 */
4553 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4554 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4555 		kref_get(&resv->refs);
4556 	}
4557 }
4558 
4559 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4560 {
4561 	struct hstate *h = hstate_vma(vma);
4562 	struct resv_map *resv = vma_resv_map(vma);
4563 	struct hugepage_subpool *spool = subpool_vma(vma);
4564 	unsigned long reserve, start, end;
4565 	long gbl_reserve;
4566 
4567 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4568 		return;
4569 
4570 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4571 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4572 
4573 	reserve = (end - start) - region_count(resv, start, end);
4574 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4575 	if (reserve) {
4576 		/*
4577 		 * Decrement reserve counts.  The global reserve count may be
4578 		 * adjusted if the subpool has a minimum size.
4579 		 */
4580 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4581 		hugetlb_acct_memory(h, -gbl_reserve);
4582 	}
4583 
4584 	kref_put(&resv->refs, resv_map_release);
4585 }
4586 
4587 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4588 {
4589 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4590 		return -EINVAL;
4591 	return 0;
4592 }
4593 
4594 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4595 {
4596 	return huge_page_size(hstate_vma(vma));
4597 }
4598 
4599 /*
4600  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4601  * handle_mm_fault() to try to instantiate regular-sized pages in the
4602  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4603  * this far.
4604  */
4605 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4606 {
4607 	BUG();
4608 	return 0;
4609 }
4610 
4611 /*
4612  * When a new function is introduced to vm_operations_struct and added
4613  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4614  * This is because under System V memory model, mappings created via
4615  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4616  * their original vm_ops are overwritten with shm_vm_ops.
4617  */
4618 const struct vm_operations_struct hugetlb_vm_ops = {
4619 	.fault = hugetlb_vm_op_fault,
4620 	.open = hugetlb_vm_op_open,
4621 	.close = hugetlb_vm_op_close,
4622 	.may_split = hugetlb_vm_op_split,
4623 	.pagesize = hugetlb_vm_op_pagesize,
4624 };
4625 
4626 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4627 				int writable)
4628 {
4629 	pte_t entry;
4630 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4631 
4632 	if (writable) {
4633 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4634 					 vma->vm_page_prot)));
4635 	} else {
4636 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4637 					   vma->vm_page_prot));
4638 	}
4639 	entry = pte_mkyoung(entry);
4640 	entry = pte_mkhuge(entry);
4641 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4642 
4643 	return entry;
4644 }
4645 
4646 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4647 				   unsigned long address, pte_t *ptep)
4648 {
4649 	pte_t entry;
4650 
4651 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4652 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4653 		update_mmu_cache(vma, address, ptep);
4654 }
4655 
4656 bool is_hugetlb_entry_migration(pte_t pte)
4657 {
4658 	swp_entry_t swp;
4659 
4660 	if (huge_pte_none(pte) || pte_present(pte))
4661 		return false;
4662 	swp = pte_to_swp_entry(pte);
4663 	if (is_migration_entry(swp))
4664 		return true;
4665 	else
4666 		return false;
4667 }
4668 
4669 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4670 {
4671 	swp_entry_t swp;
4672 
4673 	if (huge_pte_none(pte) || pte_present(pte))
4674 		return false;
4675 	swp = pte_to_swp_entry(pte);
4676 	if (is_hwpoison_entry(swp))
4677 		return true;
4678 	else
4679 		return false;
4680 }
4681 
4682 static void
4683 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4684 		     struct page *new_page)
4685 {
4686 	__SetPageUptodate(new_page);
4687 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4688 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4689 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4690 	ClearHPageRestoreReserve(new_page);
4691 	SetHPageMigratable(new_page);
4692 }
4693 
4694 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4695 			    struct vm_area_struct *vma)
4696 {
4697 	pte_t *src_pte, *dst_pte, entry, dst_entry;
4698 	struct page *ptepage;
4699 	unsigned long addr;
4700 	bool cow = is_cow_mapping(vma->vm_flags);
4701 	struct hstate *h = hstate_vma(vma);
4702 	unsigned long sz = huge_page_size(h);
4703 	unsigned long npages = pages_per_huge_page(h);
4704 	struct address_space *mapping = vma->vm_file->f_mapping;
4705 	struct mmu_notifier_range range;
4706 	int ret = 0;
4707 
4708 	if (cow) {
4709 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4710 					vma->vm_start,
4711 					vma->vm_end);
4712 		mmu_notifier_invalidate_range_start(&range);
4713 	} else {
4714 		/*
4715 		 * For shared mappings i_mmap_rwsem must be held to call
4716 		 * huge_pte_alloc, otherwise the returned ptep could go
4717 		 * away if part of a shared pmd and another thread calls
4718 		 * huge_pmd_unshare.
4719 		 */
4720 		i_mmap_lock_read(mapping);
4721 	}
4722 
4723 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4724 		spinlock_t *src_ptl, *dst_ptl;
4725 		src_pte = huge_pte_offset(src, addr, sz);
4726 		if (!src_pte)
4727 			continue;
4728 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4729 		if (!dst_pte) {
4730 			ret = -ENOMEM;
4731 			break;
4732 		}
4733 
4734 		/*
4735 		 * If the pagetables are shared don't copy or take references.
4736 		 * dst_pte == src_pte is the common case of src/dest sharing.
4737 		 *
4738 		 * However, src could have 'unshared' and dst shares with
4739 		 * another vma.  If dst_pte !none, this implies sharing.
4740 		 * Check here before taking page table lock, and once again
4741 		 * after taking the lock below.
4742 		 */
4743 		dst_entry = huge_ptep_get(dst_pte);
4744 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4745 			continue;
4746 
4747 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4748 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4749 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4750 		entry = huge_ptep_get(src_pte);
4751 		dst_entry = huge_ptep_get(dst_pte);
4752 again:
4753 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4754 			/*
4755 			 * Skip if src entry none.  Also, skip in the
4756 			 * unlikely case dst entry !none as this implies
4757 			 * sharing with another vma.
4758 			 */
4759 			;
4760 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4761 				    is_hugetlb_entry_hwpoisoned(entry))) {
4762 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4763 
4764 			if (is_writable_migration_entry(swp_entry) && cow) {
4765 				/*
4766 				 * COW mappings require pages in both
4767 				 * parent and child to be set to read.
4768 				 */
4769 				swp_entry = make_readable_migration_entry(
4770 							swp_offset(swp_entry));
4771 				entry = swp_entry_to_pte(swp_entry);
4772 				set_huge_swap_pte_at(src, addr, src_pte,
4773 						     entry, sz);
4774 			}
4775 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4776 		} else {
4777 			entry = huge_ptep_get(src_pte);
4778 			ptepage = pte_page(entry);
4779 			get_page(ptepage);
4780 
4781 			/*
4782 			 * This is a rare case where we see pinned hugetlb
4783 			 * pages while they're prone to COW.  We need to do the
4784 			 * COW earlier during fork.
4785 			 *
4786 			 * When pre-allocating the page or copying data, we
4787 			 * need to be without the pgtable locks since we could
4788 			 * sleep during the process.
4789 			 */
4790 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4791 				pte_t src_pte_old = entry;
4792 				struct page *new;
4793 
4794 				spin_unlock(src_ptl);
4795 				spin_unlock(dst_ptl);
4796 				/* Do not use reserve as it's private owned */
4797 				new = alloc_huge_page(vma, addr, 1);
4798 				if (IS_ERR(new)) {
4799 					put_page(ptepage);
4800 					ret = PTR_ERR(new);
4801 					break;
4802 				}
4803 				copy_user_huge_page(new, ptepage, addr, vma,
4804 						    npages);
4805 				put_page(ptepage);
4806 
4807 				/* Install the new huge page if src pte stable */
4808 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4809 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4810 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4811 				entry = huge_ptep_get(src_pte);
4812 				if (!pte_same(src_pte_old, entry)) {
4813 					restore_reserve_on_error(h, vma, addr,
4814 								new);
4815 					put_page(new);
4816 					/* dst_entry won't change as in child */
4817 					goto again;
4818 				}
4819 				hugetlb_install_page(vma, dst_pte, addr, new);
4820 				spin_unlock(src_ptl);
4821 				spin_unlock(dst_ptl);
4822 				continue;
4823 			}
4824 
4825 			if (cow) {
4826 				/*
4827 				 * No need to notify as we are downgrading page
4828 				 * table protection not changing it to point
4829 				 * to a new page.
4830 				 *
4831 				 * See Documentation/vm/mmu_notifier.rst
4832 				 */
4833 				huge_ptep_set_wrprotect(src, addr, src_pte);
4834 				entry = huge_pte_wrprotect(entry);
4835 			}
4836 
4837 			page_dup_rmap(ptepage, true);
4838 			set_huge_pte_at(dst, addr, dst_pte, entry);
4839 			hugetlb_count_add(npages, dst);
4840 		}
4841 		spin_unlock(src_ptl);
4842 		spin_unlock(dst_ptl);
4843 	}
4844 
4845 	if (cow)
4846 		mmu_notifier_invalidate_range_end(&range);
4847 	else
4848 		i_mmap_unlock_read(mapping);
4849 
4850 	return ret;
4851 }
4852 
4853 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4854 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4855 {
4856 	struct hstate *h = hstate_vma(vma);
4857 	struct mm_struct *mm = vma->vm_mm;
4858 	spinlock_t *src_ptl, *dst_ptl;
4859 	pte_t pte;
4860 
4861 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4862 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4863 
4864 	/*
4865 	 * We don't have to worry about the ordering of src and dst ptlocks
4866 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4867 	 */
4868 	if (src_ptl != dst_ptl)
4869 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4870 
4871 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4872 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4873 
4874 	if (src_ptl != dst_ptl)
4875 		spin_unlock(src_ptl);
4876 	spin_unlock(dst_ptl);
4877 }
4878 
4879 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4880 			     struct vm_area_struct *new_vma,
4881 			     unsigned long old_addr, unsigned long new_addr,
4882 			     unsigned long len)
4883 {
4884 	struct hstate *h = hstate_vma(vma);
4885 	struct address_space *mapping = vma->vm_file->f_mapping;
4886 	unsigned long sz = huge_page_size(h);
4887 	struct mm_struct *mm = vma->vm_mm;
4888 	unsigned long old_end = old_addr + len;
4889 	unsigned long old_addr_copy;
4890 	pte_t *src_pte, *dst_pte;
4891 	struct mmu_notifier_range range;
4892 
4893 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4894 				old_end);
4895 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4896 	mmu_notifier_invalidate_range_start(&range);
4897 	/* Prevent race with file truncation */
4898 	i_mmap_lock_write(mapping);
4899 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4900 		src_pte = huge_pte_offset(mm, old_addr, sz);
4901 		if (!src_pte)
4902 			continue;
4903 		if (huge_pte_none(huge_ptep_get(src_pte)))
4904 			continue;
4905 
4906 		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
4907 		 * arg may be modified. Pass a copy instead to preserve the
4908 		 * value in old_addr.
4909 		 */
4910 		old_addr_copy = old_addr;
4911 
4912 		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4913 			continue;
4914 
4915 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4916 		if (!dst_pte)
4917 			break;
4918 
4919 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4920 	}
4921 	flush_tlb_range(vma, old_end - len, old_end);
4922 	mmu_notifier_invalidate_range_end(&range);
4923 	i_mmap_unlock_write(mapping);
4924 
4925 	return len + old_addr - old_end;
4926 }
4927 
4928 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4929 				   unsigned long start, unsigned long end,
4930 				   struct page *ref_page)
4931 {
4932 	struct mm_struct *mm = vma->vm_mm;
4933 	unsigned long address;
4934 	pte_t *ptep;
4935 	pte_t pte;
4936 	spinlock_t *ptl;
4937 	struct page *page;
4938 	struct hstate *h = hstate_vma(vma);
4939 	unsigned long sz = huge_page_size(h);
4940 	struct mmu_notifier_range range;
4941 	bool force_flush = false;
4942 
4943 	WARN_ON(!is_vm_hugetlb_page(vma));
4944 	BUG_ON(start & ~huge_page_mask(h));
4945 	BUG_ON(end & ~huge_page_mask(h));
4946 
4947 	/*
4948 	 * This is a hugetlb vma, all the pte entries should point
4949 	 * to huge page.
4950 	 */
4951 	tlb_change_page_size(tlb, sz);
4952 	tlb_start_vma(tlb, vma);
4953 
4954 	/*
4955 	 * If sharing possible, alert mmu notifiers of worst case.
4956 	 */
4957 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4958 				end);
4959 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4960 	mmu_notifier_invalidate_range_start(&range);
4961 	address = start;
4962 	for (; address < end; address += sz) {
4963 		ptep = huge_pte_offset(mm, address, sz);
4964 		if (!ptep)
4965 			continue;
4966 
4967 		ptl = huge_pte_lock(h, mm, ptep);
4968 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4969 			spin_unlock(ptl);
4970 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4971 			force_flush = true;
4972 			continue;
4973 		}
4974 
4975 		pte = huge_ptep_get(ptep);
4976 		if (huge_pte_none(pte)) {
4977 			spin_unlock(ptl);
4978 			continue;
4979 		}
4980 
4981 		/*
4982 		 * Migrating hugepage or HWPoisoned hugepage is already
4983 		 * unmapped and its refcount is dropped, so just clear pte here.
4984 		 */
4985 		if (unlikely(!pte_present(pte))) {
4986 			huge_pte_clear(mm, address, ptep, sz);
4987 			spin_unlock(ptl);
4988 			continue;
4989 		}
4990 
4991 		page = pte_page(pte);
4992 		/*
4993 		 * If a reference page is supplied, it is because a specific
4994 		 * page is being unmapped, not a range. Ensure the page we
4995 		 * are about to unmap is the actual page of interest.
4996 		 */
4997 		if (ref_page) {
4998 			if (page != ref_page) {
4999 				spin_unlock(ptl);
5000 				continue;
5001 			}
5002 			/*
5003 			 * Mark the VMA as having unmapped its page so that
5004 			 * future faults in this VMA will fail rather than
5005 			 * looking like data was lost
5006 			 */
5007 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5008 		}
5009 
5010 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5011 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5012 		if (huge_pte_dirty(pte))
5013 			set_page_dirty(page);
5014 
5015 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5016 		page_remove_rmap(page, true);
5017 
5018 		spin_unlock(ptl);
5019 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5020 		/*
5021 		 * Bail out after unmapping reference page if supplied
5022 		 */
5023 		if (ref_page)
5024 			break;
5025 	}
5026 	mmu_notifier_invalidate_range_end(&range);
5027 	tlb_end_vma(tlb, vma);
5028 
5029 	/*
5030 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5031 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5032 	 * guaranteed that the last refernece would not be dropped. But we must
5033 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5034 	 * dropped and the last reference to the shared PMDs page might be
5035 	 * dropped as well.
5036 	 *
5037 	 * In theory we could defer the freeing of the PMD pages as well, but
5038 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5039 	 * detect sharing, so we cannot defer the release of the page either.
5040 	 * Instead, do flush now.
5041 	 */
5042 	if (force_flush)
5043 		tlb_flush_mmu_tlbonly(tlb);
5044 }
5045 
5046 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5047 			  struct vm_area_struct *vma, unsigned long start,
5048 			  unsigned long end, struct page *ref_page)
5049 {
5050 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
5051 
5052 	/*
5053 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5054 	 * test will fail on a vma being torn down, and not grab a page table
5055 	 * on its way out.  We're lucky that the flag has such an appropriate
5056 	 * name, and can in fact be safely cleared here. We could clear it
5057 	 * before the __unmap_hugepage_range above, but all that's necessary
5058 	 * is to clear it before releasing the i_mmap_rwsem. This works
5059 	 * because in the context this is called, the VMA is about to be
5060 	 * destroyed and the i_mmap_rwsem is held.
5061 	 */
5062 	vma->vm_flags &= ~VM_MAYSHARE;
5063 }
5064 
5065 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5066 			  unsigned long end, struct page *ref_page)
5067 {
5068 	struct mmu_gather tlb;
5069 
5070 	tlb_gather_mmu(&tlb, vma->vm_mm);
5071 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5072 	tlb_finish_mmu(&tlb);
5073 }
5074 
5075 /*
5076  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5077  * mapping it owns the reserve page for. The intention is to unmap the page
5078  * from other VMAs and let the children be SIGKILLed if they are faulting the
5079  * same region.
5080  */
5081 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5082 			      struct page *page, unsigned long address)
5083 {
5084 	struct hstate *h = hstate_vma(vma);
5085 	struct vm_area_struct *iter_vma;
5086 	struct address_space *mapping;
5087 	pgoff_t pgoff;
5088 
5089 	/*
5090 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5091 	 * from page cache lookup which is in HPAGE_SIZE units.
5092 	 */
5093 	address = address & huge_page_mask(h);
5094 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5095 			vma->vm_pgoff;
5096 	mapping = vma->vm_file->f_mapping;
5097 
5098 	/*
5099 	 * Take the mapping lock for the duration of the table walk. As
5100 	 * this mapping should be shared between all the VMAs,
5101 	 * __unmap_hugepage_range() is called as the lock is already held
5102 	 */
5103 	i_mmap_lock_write(mapping);
5104 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5105 		/* Do not unmap the current VMA */
5106 		if (iter_vma == vma)
5107 			continue;
5108 
5109 		/*
5110 		 * Shared VMAs have their own reserves and do not affect
5111 		 * MAP_PRIVATE accounting but it is possible that a shared
5112 		 * VMA is using the same page so check and skip such VMAs.
5113 		 */
5114 		if (iter_vma->vm_flags & VM_MAYSHARE)
5115 			continue;
5116 
5117 		/*
5118 		 * Unmap the page from other VMAs without their own reserves.
5119 		 * They get marked to be SIGKILLed if they fault in these
5120 		 * areas. This is because a future no-page fault on this VMA
5121 		 * could insert a zeroed page instead of the data existing
5122 		 * from the time of fork. This would look like data corruption
5123 		 */
5124 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5125 			unmap_hugepage_range(iter_vma, address,
5126 					     address + huge_page_size(h), page);
5127 	}
5128 	i_mmap_unlock_write(mapping);
5129 }
5130 
5131 /*
5132  * Hugetlb_cow() should be called with page lock of the original hugepage held.
5133  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5134  * cannot race with other handlers or page migration.
5135  * Keep the pte_same checks anyway to make transition from the mutex easier.
5136  */
5137 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5138 		       unsigned long address, pte_t *ptep,
5139 		       struct page *pagecache_page, spinlock_t *ptl)
5140 {
5141 	pte_t pte;
5142 	struct hstate *h = hstate_vma(vma);
5143 	struct page *old_page, *new_page;
5144 	int outside_reserve = 0;
5145 	vm_fault_t ret = 0;
5146 	unsigned long haddr = address & huge_page_mask(h);
5147 	struct mmu_notifier_range range;
5148 
5149 	pte = huge_ptep_get(ptep);
5150 	old_page = pte_page(pte);
5151 
5152 retry_avoidcopy:
5153 	/* If no-one else is actually using this page, avoid the copy
5154 	 * and just make the page writable */
5155 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5156 		page_move_anon_rmap(old_page, vma);
5157 		set_huge_ptep_writable(vma, haddr, ptep);
5158 		return 0;
5159 	}
5160 
5161 	/*
5162 	 * If the process that created a MAP_PRIVATE mapping is about to
5163 	 * perform a COW due to a shared page count, attempt to satisfy
5164 	 * the allocation without using the existing reserves. The pagecache
5165 	 * page is used to determine if the reserve at this address was
5166 	 * consumed or not. If reserves were used, a partial faulted mapping
5167 	 * at the time of fork() could consume its reserves on COW instead
5168 	 * of the full address range.
5169 	 */
5170 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5171 			old_page != pagecache_page)
5172 		outside_reserve = 1;
5173 
5174 	get_page(old_page);
5175 
5176 	/*
5177 	 * Drop page table lock as buddy allocator may be called. It will
5178 	 * be acquired again before returning to the caller, as expected.
5179 	 */
5180 	spin_unlock(ptl);
5181 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5182 
5183 	if (IS_ERR(new_page)) {
5184 		/*
5185 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5186 		 * it is due to references held by a child and an insufficient
5187 		 * huge page pool. To guarantee the original mappers
5188 		 * reliability, unmap the page from child processes. The child
5189 		 * may get SIGKILLed if it later faults.
5190 		 */
5191 		if (outside_reserve) {
5192 			struct address_space *mapping = vma->vm_file->f_mapping;
5193 			pgoff_t idx;
5194 			u32 hash;
5195 
5196 			put_page(old_page);
5197 			BUG_ON(huge_pte_none(pte));
5198 			/*
5199 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5200 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5201 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5202 			 * here is OK as COW mappings do not interact with
5203 			 * PMD sharing.
5204 			 *
5205 			 * Reacquire both after unmap operation.
5206 			 */
5207 			idx = vma_hugecache_offset(h, vma, haddr);
5208 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5209 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5210 			i_mmap_unlock_read(mapping);
5211 
5212 			unmap_ref_private(mm, vma, old_page, haddr);
5213 
5214 			i_mmap_lock_read(mapping);
5215 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5216 			spin_lock(ptl);
5217 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5218 			if (likely(ptep &&
5219 				   pte_same(huge_ptep_get(ptep), pte)))
5220 				goto retry_avoidcopy;
5221 			/*
5222 			 * race occurs while re-acquiring page table
5223 			 * lock, and our job is done.
5224 			 */
5225 			return 0;
5226 		}
5227 
5228 		ret = vmf_error(PTR_ERR(new_page));
5229 		goto out_release_old;
5230 	}
5231 
5232 	/*
5233 	 * When the original hugepage is shared one, it does not have
5234 	 * anon_vma prepared.
5235 	 */
5236 	if (unlikely(anon_vma_prepare(vma))) {
5237 		ret = VM_FAULT_OOM;
5238 		goto out_release_all;
5239 	}
5240 
5241 	copy_user_huge_page(new_page, old_page, address, vma,
5242 			    pages_per_huge_page(h));
5243 	__SetPageUptodate(new_page);
5244 
5245 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5246 				haddr + huge_page_size(h));
5247 	mmu_notifier_invalidate_range_start(&range);
5248 
5249 	/*
5250 	 * Retake the page table lock to check for racing updates
5251 	 * before the page tables are altered
5252 	 */
5253 	spin_lock(ptl);
5254 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5255 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5256 		ClearHPageRestoreReserve(new_page);
5257 
5258 		/* Break COW */
5259 		huge_ptep_clear_flush(vma, haddr, ptep);
5260 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5261 		page_remove_rmap(old_page, true);
5262 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5263 		set_huge_pte_at(mm, haddr, ptep,
5264 				make_huge_pte(vma, new_page, 1));
5265 		SetHPageMigratable(new_page);
5266 		/* Make the old page be freed below */
5267 		new_page = old_page;
5268 	}
5269 	spin_unlock(ptl);
5270 	mmu_notifier_invalidate_range_end(&range);
5271 out_release_all:
5272 	/* No restore in case of successful pagetable update (Break COW) */
5273 	if (new_page != old_page)
5274 		restore_reserve_on_error(h, vma, haddr, new_page);
5275 	put_page(new_page);
5276 out_release_old:
5277 	put_page(old_page);
5278 
5279 	spin_lock(ptl); /* Caller expects lock to be held */
5280 	return ret;
5281 }
5282 
5283 /* Return the pagecache page at a given address within a VMA */
5284 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5285 			struct vm_area_struct *vma, unsigned long address)
5286 {
5287 	struct address_space *mapping;
5288 	pgoff_t idx;
5289 
5290 	mapping = vma->vm_file->f_mapping;
5291 	idx = vma_hugecache_offset(h, vma, address);
5292 
5293 	return find_lock_page(mapping, idx);
5294 }
5295 
5296 /*
5297  * Return whether there is a pagecache page to back given address within VMA.
5298  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5299  */
5300 static bool hugetlbfs_pagecache_present(struct hstate *h,
5301 			struct vm_area_struct *vma, unsigned long address)
5302 {
5303 	struct address_space *mapping;
5304 	pgoff_t idx;
5305 	struct page *page;
5306 
5307 	mapping = vma->vm_file->f_mapping;
5308 	idx = vma_hugecache_offset(h, vma, address);
5309 
5310 	page = find_get_page(mapping, idx);
5311 	if (page)
5312 		put_page(page);
5313 	return page != NULL;
5314 }
5315 
5316 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5317 			   pgoff_t idx)
5318 {
5319 	struct inode *inode = mapping->host;
5320 	struct hstate *h = hstate_inode(inode);
5321 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5322 
5323 	if (err)
5324 		return err;
5325 	ClearHPageRestoreReserve(page);
5326 
5327 	/*
5328 	 * set page dirty so that it will not be removed from cache/file
5329 	 * by non-hugetlbfs specific code paths.
5330 	 */
5331 	set_page_dirty(page);
5332 
5333 	spin_lock(&inode->i_lock);
5334 	inode->i_blocks += blocks_per_huge_page(h);
5335 	spin_unlock(&inode->i_lock);
5336 	return 0;
5337 }
5338 
5339 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5340 						  struct address_space *mapping,
5341 						  pgoff_t idx,
5342 						  unsigned int flags,
5343 						  unsigned long haddr,
5344 						  unsigned long reason)
5345 {
5346 	vm_fault_t ret;
5347 	u32 hash;
5348 	struct vm_fault vmf = {
5349 		.vma = vma,
5350 		.address = haddr,
5351 		.flags = flags,
5352 
5353 		/*
5354 		 * Hard to debug if it ends up being
5355 		 * used by a callee that assumes
5356 		 * something about the other
5357 		 * uninitialized fields... same as in
5358 		 * memory.c
5359 		 */
5360 	};
5361 
5362 	/*
5363 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5364 	 * dropped before handling userfault.  Reacquire
5365 	 * after handling fault to make calling code simpler.
5366 	 */
5367 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5368 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5369 	i_mmap_unlock_read(mapping);
5370 	ret = handle_userfault(&vmf, reason);
5371 	i_mmap_lock_read(mapping);
5372 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5373 
5374 	return ret;
5375 }
5376 
5377 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5378 			struct vm_area_struct *vma,
5379 			struct address_space *mapping, pgoff_t idx,
5380 			unsigned long address, pte_t *ptep, unsigned int flags)
5381 {
5382 	struct hstate *h = hstate_vma(vma);
5383 	vm_fault_t ret = VM_FAULT_SIGBUS;
5384 	int anon_rmap = 0;
5385 	unsigned long size;
5386 	struct page *page;
5387 	pte_t new_pte;
5388 	spinlock_t *ptl;
5389 	unsigned long haddr = address & huge_page_mask(h);
5390 	bool new_page, new_pagecache_page = false;
5391 
5392 	/*
5393 	 * Currently, we are forced to kill the process in the event the
5394 	 * original mapper has unmapped pages from the child due to a failed
5395 	 * COW. Warn that such a situation has occurred as it may not be obvious
5396 	 */
5397 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5398 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5399 			   current->pid);
5400 		return ret;
5401 	}
5402 
5403 	/*
5404 	 * We can not race with truncation due to holding i_mmap_rwsem.
5405 	 * i_size is modified when holding i_mmap_rwsem, so check here
5406 	 * once for faults beyond end of file.
5407 	 */
5408 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5409 	if (idx >= size)
5410 		goto out;
5411 
5412 retry:
5413 	new_page = false;
5414 	page = find_lock_page(mapping, idx);
5415 	if (!page) {
5416 		/* Check for page in userfault range */
5417 		if (userfaultfd_missing(vma)) {
5418 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5419 						       flags, haddr,
5420 						       VM_UFFD_MISSING);
5421 			goto out;
5422 		}
5423 
5424 		page = alloc_huge_page(vma, haddr, 0);
5425 		if (IS_ERR(page)) {
5426 			/*
5427 			 * Returning error will result in faulting task being
5428 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5429 			 * tasks from racing to fault in the same page which
5430 			 * could result in false unable to allocate errors.
5431 			 * Page migration does not take the fault mutex, but
5432 			 * does a clear then write of pte's under page table
5433 			 * lock.  Page fault code could race with migration,
5434 			 * notice the clear pte and try to allocate a page
5435 			 * here.  Before returning error, get ptl and make
5436 			 * sure there really is no pte entry.
5437 			 */
5438 			ptl = huge_pte_lock(h, mm, ptep);
5439 			ret = 0;
5440 			if (huge_pte_none(huge_ptep_get(ptep)))
5441 				ret = vmf_error(PTR_ERR(page));
5442 			spin_unlock(ptl);
5443 			goto out;
5444 		}
5445 		clear_huge_page(page, address, pages_per_huge_page(h));
5446 		__SetPageUptodate(page);
5447 		new_page = true;
5448 
5449 		if (vma->vm_flags & VM_MAYSHARE) {
5450 			int err = huge_add_to_page_cache(page, mapping, idx);
5451 			if (err) {
5452 				put_page(page);
5453 				if (err == -EEXIST)
5454 					goto retry;
5455 				goto out;
5456 			}
5457 			new_pagecache_page = true;
5458 		} else {
5459 			lock_page(page);
5460 			if (unlikely(anon_vma_prepare(vma))) {
5461 				ret = VM_FAULT_OOM;
5462 				goto backout_unlocked;
5463 			}
5464 			anon_rmap = 1;
5465 		}
5466 	} else {
5467 		/*
5468 		 * If memory error occurs between mmap() and fault, some process
5469 		 * don't have hwpoisoned swap entry for errored virtual address.
5470 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5471 		 */
5472 		if (unlikely(PageHWPoison(page))) {
5473 			ret = VM_FAULT_HWPOISON_LARGE |
5474 				VM_FAULT_SET_HINDEX(hstate_index(h));
5475 			goto backout_unlocked;
5476 		}
5477 
5478 		/* Check for page in userfault range. */
5479 		if (userfaultfd_minor(vma)) {
5480 			unlock_page(page);
5481 			put_page(page);
5482 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5483 						       flags, haddr,
5484 						       VM_UFFD_MINOR);
5485 			goto out;
5486 		}
5487 	}
5488 
5489 	/*
5490 	 * If we are going to COW a private mapping later, we examine the
5491 	 * pending reservations for this page now. This will ensure that
5492 	 * any allocations necessary to record that reservation occur outside
5493 	 * the spinlock.
5494 	 */
5495 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5496 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5497 			ret = VM_FAULT_OOM;
5498 			goto backout_unlocked;
5499 		}
5500 		/* Just decrements count, does not deallocate */
5501 		vma_end_reservation(h, vma, haddr);
5502 	}
5503 
5504 	ptl = huge_pte_lock(h, mm, ptep);
5505 	ret = 0;
5506 	if (!huge_pte_none(huge_ptep_get(ptep)))
5507 		goto backout;
5508 
5509 	if (anon_rmap) {
5510 		ClearHPageRestoreReserve(page);
5511 		hugepage_add_new_anon_rmap(page, vma, haddr);
5512 	} else
5513 		page_dup_rmap(page, true);
5514 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5515 				&& (vma->vm_flags & VM_SHARED)));
5516 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5517 
5518 	hugetlb_count_add(pages_per_huge_page(h), mm);
5519 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5520 		/* Optimization, do the COW without a second fault */
5521 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5522 	}
5523 
5524 	spin_unlock(ptl);
5525 
5526 	/*
5527 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5528 	 * found in the pagecache may not have HPageMigratableset if they have
5529 	 * been isolated for migration.
5530 	 */
5531 	if (new_page)
5532 		SetHPageMigratable(page);
5533 
5534 	unlock_page(page);
5535 out:
5536 	return ret;
5537 
5538 backout:
5539 	spin_unlock(ptl);
5540 backout_unlocked:
5541 	unlock_page(page);
5542 	/* restore reserve for newly allocated pages not in page cache */
5543 	if (new_page && !new_pagecache_page)
5544 		restore_reserve_on_error(h, vma, haddr, page);
5545 	put_page(page);
5546 	goto out;
5547 }
5548 
5549 #ifdef CONFIG_SMP
5550 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5551 {
5552 	unsigned long key[2];
5553 	u32 hash;
5554 
5555 	key[0] = (unsigned long) mapping;
5556 	key[1] = idx;
5557 
5558 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5559 
5560 	return hash & (num_fault_mutexes - 1);
5561 }
5562 #else
5563 /*
5564  * For uniprocessor systems we always use a single mutex, so just
5565  * return 0 and avoid the hashing overhead.
5566  */
5567 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5568 {
5569 	return 0;
5570 }
5571 #endif
5572 
5573 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5574 			unsigned long address, unsigned int flags)
5575 {
5576 	pte_t *ptep, entry;
5577 	spinlock_t *ptl;
5578 	vm_fault_t ret;
5579 	u32 hash;
5580 	pgoff_t idx;
5581 	struct page *page = NULL;
5582 	struct page *pagecache_page = NULL;
5583 	struct hstate *h = hstate_vma(vma);
5584 	struct address_space *mapping;
5585 	int need_wait_lock = 0;
5586 	unsigned long haddr = address & huge_page_mask(h);
5587 
5588 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5589 	if (ptep) {
5590 		/*
5591 		 * Since we hold no locks, ptep could be stale.  That is
5592 		 * OK as we are only making decisions based on content and
5593 		 * not actually modifying content here.
5594 		 */
5595 		entry = huge_ptep_get(ptep);
5596 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5597 			migration_entry_wait_huge(vma, mm, ptep);
5598 			return 0;
5599 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5600 			return VM_FAULT_HWPOISON_LARGE |
5601 				VM_FAULT_SET_HINDEX(hstate_index(h));
5602 	}
5603 
5604 	/*
5605 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5606 	 * until finished with ptep.  This serves two purposes:
5607 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5608 	 *    and making the ptep no longer valid.
5609 	 * 2) It synchronizes us with i_size modifications during truncation.
5610 	 *
5611 	 * ptep could have already be assigned via huge_pte_offset.  That
5612 	 * is OK, as huge_pte_alloc will return the same value unless
5613 	 * something has changed.
5614 	 */
5615 	mapping = vma->vm_file->f_mapping;
5616 	i_mmap_lock_read(mapping);
5617 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5618 	if (!ptep) {
5619 		i_mmap_unlock_read(mapping);
5620 		return VM_FAULT_OOM;
5621 	}
5622 
5623 	/*
5624 	 * Serialize hugepage allocation and instantiation, so that we don't
5625 	 * get spurious allocation failures if two CPUs race to instantiate
5626 	 * the same page in the page cache.
5627 	 */
5628 	idx = vma_hugecache_offset(h, vma, haddr);
5629 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5630 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5631 
5632 	entry = huge_ptep_get(ptep);
5633 	if (huge_pte_none(entry)) {
5634 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5635 		goto out_mutex;
5636 	}
5637 
5638 	ret = 0;
5639 
5640 	/*
5641 	 * entry could be a migration/hwpoison entry at this point, so this
5642 	 * check prevents the kernel from going below assuming that we have
5643 	 * an active hugepage in pagecache. This goto expects the 2nd page
5644 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5645 	 * properly handle it.
5646 	 */
5647 	if (!pte_present(entry))
5648 		goto out_mutex;
5649 
5650 	/*
5651 	 * If we are going to COW the mapping later, we examine the pending
5652 	 * reservations for this page now. This will ensure that any
5653 	 * allocations necessary to record that reservation occur outside the
5654 	 * spinlock. For private mappings, we also lookup the pagecache
5655 	 * page now as it is used to determine if a reservation has been
5656 	 * consumed.
5657 	 */
5658 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5659 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5660 			ret = VM_FAULT_OOM;
5661 			goto out_mutex;
5662 		}
5663 		/* Just decrements count, does not deallocate */
5664 		vma_end_reservation(h, vma, haddr);
5665 
5666 		if (!(vma->vm_flags & VM_MAYSHARE))
5667 			pagecache_page = hugetlbfs_pagecache_page(h,
5668 								vma, haddr);
5669 	}
5670 
5671 	ptl = huge_pte_lock(h, mm, ptep);
5672 
5673 	/* Check for a racing update before calling hugetlb_cow */
5674 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5675 		goto out_ptl;
5676 
5677 	/*
5678 	 * hugetlb_cow() requires page locks of pte_page(entry) and
5679 	 * pagecache_page, so here we need take the former one
5680 	 * when page != pagecache_page or !pagecache_page.
5681 	 */
5682 	page = pte_page(entry);
5683 	if (page != pagecache_page)
5684 		if (!trylock_page(page)) {
5685 			need_wait_lock = 1;
5686 			goto out_ptl;
5687 		}
5688 
5689 	get_page(page);
5690 
5691 	if (flags & FAULT_FLAG_WRITE) {
5692 		if (!huge_pte_write(entry)) {
5693 			ret = hugetlb_cow(mm, vma, address, ptep,
5694 					  pagecache_page, ptl);
5695 			goto out_put_page;
5696 		}
5697 		entry = huge_pte_mkdirty(entry);
5698 	}
5699 	entry = pte_mkyoung(entry);
5700 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5701 						flags & FAULT_FLAG_WRITE))
5702 		update_mmu_cache(vma, haddr, ptep);
5703 out_put_page:
5704 	if (page != pagecache_page)
5705 		unlock_page(page);
5706 	put_page(page);
5707 out_ptl:
5708 	spin_unlock(ptl);
5709 
5710 	if (pagecache_page) {
5711 		unlock_page(pagecache_page);
5712 		put_page(pagecache_page);
5713 	}
5714 out_mutex:
5715 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5716 	i_mmap_unlock_read(mapping);
5717 	/*
5718 	 * Generally it's safe to hold refcount during waiting page lock. But
5719 	 * here we just wait to defer the next page fault to avoid busy loop and
5720 	 * the page is not used after unlocked before returning from the current
5721 	 * page fault. So we are safe from accessing freed page, even if we wait
5722 	 * here without taking refcount.
5723 	 */
5724 	if (need_wait_lock)
5725 		wait_on_page_locked(page);
5726 	return ret;
5727 }
5728 
5729 #ifdef CONFIG_USERFAULTFD
5730 /*
5731  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5732  * modifications for huge pages.
5733  */
5734 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5735 			    pte_t *dst_pte,
5736 			    struct vm_area_struct *dst_vma,
5737 			    unsigned long dst_addr,
5738 			    unsigned long src_addr,
5739 			    enum mcopy_atomic_mode mode,
5740 			    struct page **pagep)
5741 {
5742 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5743 	struct hstate *h = hstate_vma(dst_vma);
5744 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5745 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5746 	unsigned long size;
5747 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5748 	pte_t _dst_pte;
5749 	spinlock_t *ptl;
5750 	int ret = -ENOMEM;
5751 	struct page *page;
5752 	int writable;
5753 	bool page_in_pagecache = false;
5754 
5755 	if (is_continue) {
5756 		ret = -EFAULT;
5757 		page = find_lock_page(mapping, idx);
5758 		if (!page)
5759 			goto out;
5760 		page_in_pagecache = true;
5761 	} else if (!*pagep) {
5762 		/* If a page already exists, then it's UFFDIO_COPY for
5763 		 * a non-missing case. Return -EEXIST.
5764 		 */
5765 		if (vm_shared &&
5766 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5767 			ret = -EEXIST;
5768 			goto out;
5769 		}
5770 
5771 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5772 		if (IS_ERR(page)) {
5773 			ret = -ENOMEM;
5774 			goto out;
5775 		}
5776 
5777 		ret = copy_huge_page_from_user(page,
5778 						(const void __user *) src_addr,
5779 						pages_per_huge_page(h), false);
5780 
5781 		/* fallback to copy_from_user outside mmap_lock */
5782 		if (unlikely(ret)) {
5783 			ret = -ENOENT;
5784 			/* Free the allocated page which may have
5785 			 * consumed a reservation.
5786 			 */
5787 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5788 			put_page(page);
5789 
5790 			/* Allocate a temporary page to hold the copied
5791 			 * contents.
5792 			 */
5793 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5794 			if (!page) {
5795 				ret = -ENOMEM;
5796 				goto out;
5797 			}
5798 			*pagep = page;
5799 			/* Set the outparam pagep and return to the caller to
5800 			 * copy the contents outside the lock. Don't free the
5801 			 * page.
5802 			 */
5803 			goto out;
5804 		}
5805 	} else {
5806 		if (vm_shared &&
5807 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5808 			put_page(*pagep);
5809 			ret = -EEXIST;
5810 			*pagep = NULL;
5811 			goto out;
5812 		}
5813 
5814 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5815 		if (IS_ERR(page)) {
5816 			ret = -ENOMEM;
5817 			*pagep = NULL;
5818 			goto out;
5819 		}
5820 		folio_copy(page_folio(page), page_folio(*pagep));
5821 		put_page(*pagep);
5822 		*pagep = NULL;
5823 	}
5824 
5825 	/*
5826 	 * The memory barrier inside __SetPageUptodate makes sure that
5827 	 * preceding stores to the page contents become visible before
5828 	 * the set_pte_at() write.
5829 	 */
5830 	__SetPageUptodate(page);
5831 
5832 	/* Add shared, newly allocated pages to the page cache. */
5833 	if (vm_shared && !is_continue) {
5834 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5835 		ret = -EFAULT;
5836 		if (idx >= size)
5837 			goto out_release_nounlock;
5838 
5839 		/*
5840 		 * Serialization between remove_inode_hugepages() and
5841 		 * huge_add_to_page_cache() below happens through the
5842 		 * hugetlb_fault_mutex_table that here must be hold by
5843 		 * the caller.
5844 		 */
5845 		ret = huge_add_to_page_cache(page, mapping, idx);
5846 		if (ret)
5847 			goto out_release_nounlock;
5848 		page_in_pagecache = true;
5849 	}
5850 
5851 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5852 	spin_lock(ptl);
5853 
5854 	/*
5855 	 * Recheck the i_size after holding PT lock to make sure not
5856 	 * to leave any page mapped (as page_mapped()) beyond the end
5857 	 * of the i_size (remove_inode_hugepages() is strict about
5858 	 * enforcing that). If we bail out here, we'll also leave a
5859 	 * page in the radix tree in the vm_shared case beyond the end
5860 	 * of the i_size, but remove_inode_hugepages() will take care
5861 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5862 	 */
5863 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5864 	ret = -EFAULT;
5865 	if (idx >= size)
5866 		goto out_release_unlock;
5867 
5868 	ret = -EEXIST;
5869 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5870 		goto out_release_unlock;
5871 
5872 	if (vm_shared) {
5873 		page_dup_rmap(page, true);
5874 	} else {
5875 		ClearHPageRestoreReserve(page);
5876 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5877 	}
5878 
5879 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5880 	if (is_continue && !vm_shared)
5881 		writable = 0;
5882 	else
5883 		writable = dst_vma->vm_flags & VM_WRITE;
5884 
5885 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5886 	if (writable)
5887 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5888 	_dst_pte = pte_mkyoung(_dst_pte);
5889 
5890 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5891 
5892 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5893 					dst_vma->vm_flags & VM_WRITE);
5894 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5895 
5896 	/* No need to invalidate - it was non-present before */
5897 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5898 
5899 	spin_unlock(ptl);
5900 	if (!is_continue)
5901 		SetHPageMigratable(page);
5902 	if (vm_shared || is_continue)
5903 		unlock_page(page);
5904 	ret = 0;
5905 out:
5906 	return ret;
5907 out_release_unlock:
5908 	spin_unlock(ptl);
5909 	if (vm_shared || is_continue)
5910 		unlock_page(page);
5911 out_release_nounlock:
5912 	if (!page_in_pagecache)
5913 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5914 	put_page(page);
5915 	goto out;
5916 }
5917 #endif /* CONFIG_USERFAULTFD */
5918 
5919 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5920 				 int refs, struct page **pages,
5921 				 struct vm_area_struct **vmas)
5922 {
5923 	int nr;
5924 
5925 	for (nr = 0; nr < refs; nr++) {
5926 		if (likely(pages))
5927 			pages[nr] = mem_map_offset(page, nr);
5928 		if (vmas)
5929 			vmas[nr] = vma;
5930 	}
5931 }
5932 
5933 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5934 			 struct page **pages, struct vm_area_struct **vmas,
5935 			 unsigned long *position, unsigned long *nr_pages,
5936 			 long i, unsigned int flags, int *locked)
5937 {
5938 	unsigned long pfn_offset;
5939 	unsigned long vaddr = *position;
5940 	unsigned long remainder = *nr_pages;
5941 	struct hstate *h = hstate_vma(vma);
5942 	int err = -EFAULT, refs;
5943 
5944 	while (vaddr < vma->vm_end && remainder) {
5945 		pte_t *pte;
5946 		spinlock_t *ptl = NULL;
5947 		int absent;
5948 		struct page *page;
5949 
5950 		/*
5951 		 * If we have a pending SIGKILL, don't keep faulting pages and
5952 		 * potentially allocating memory.
5953 		 */
5954 		if (fatal_signal_pending(current)) {
5955 			remainder = 0;
5956 			break;
5957 		}
5958 
5959 		/*
5960 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5961 		 * each hugepage.  We have to make sure we get the
5962 		 * first, for the page indexing below to work.
5963 		 *
5964 		 * Note that page table lock is not held when pte is null.
5965 		 */
5966 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5967 				      huge_page_size(h));
5968 		if (pte)
5969 			ptl = huge_pte_lock(h, mm, pte);
5970 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5971 
5972 		/*
5973 		 * When coredumping, it suits get_dump_page if we just return
5974 		 * an error where there's an empty slot with no huge pagecache
5975 		 * to back it.  This way, we avoid allocating a hugepage, and
5976 		 * the sparse dumpfile avoids allocating disk blocks, but its
5977 		 * huge holes still show up with zeroes where they need to be.
5978 		 */
5979 		if (absent && (flags & FOLL_DUMP) &&
5980 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5981 			if (pte)
5982 				spin_unlock(ptl);
5983 			remainder = 0;
5984 			break;
5985 		}
5986 
5987 		/*
5988 		 * We need call hugetlb_fault for both hugepages under migration
5989 		 * (in which case hugetlb_fault waits for the migration,) and
5990 		 * hwpoisoned hugepages (in which case we need to prevent the
5991 		 * caller from accessing to them.) In order to do this, we use
5992 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5993 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5994 		 * both cases, and because we can't follow correct pages
5995 		 * directly from any kind of swap entries.
5996 		 */
5997 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5998 		    ((flags & FOLL_WRITE) &&
5999 		      !huge_pte_write(huge_ptep_get(pte)))) {
6000 			vm_fault_t ret;
6001 			unsigned int fault_flags = 0;
6002 
6003 			if (pte)
6004 				spin_unlock(ptl);
6005 			if (flags & FOLL_WRITE)
6006 				fault_flags |= FAULT_FLAG_WRITE;
6007 			if (locked)
6008 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6009 					FAULT_FLAG_KILLABLE;
6010 			if (flags & FOLL_NOWAIT)
6011 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6012 					FAULT_FLAG_RETRY_NOWAIT;
6013 			if (flags & FOLL_TRIED) {
6014 				/*
6015 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6016 				 * FAULT_FLAG_TRIED can co-exist
6017 				 */
6018 				fault_flags |= FAULT_FLAG_TRIED;
6019 			}
6020 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6021 			if (ret & VM_FAULT_ERROR) {
6022 				err = vm_fault_to_errno(ret, flags);
6023 				remainder = 0;
6024 				break;
6025 			}
6026 			if (ret & VM_FAULT_RETRY) {
6027 				if (locked &&
6028 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6029 					*locked = 0;
6030 				*nr_pages = 0;
6031 				/*
6032 				 * VM_FAULT_RETRY must not return an
6033 				 * error, it will return zero
6034 				 * instead.
6035 				 *
6036 				 * No need to update "position" as the
6037 				 * caller will not check it after
6038 				 * *nr_pages is set to 0.
6039 				 */
6040 				return i;
6041 			}
6042 			continue;
6043 		}
6044 
6045 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6046 		page = pte_page(huge_ptep_get(pte));
6047 
6048 		/*
6049 		 * If subpage information not requested, update counters
6050 		 * and skip the same_page loop below.
6051 		 */
6052 		if (!pages && !vmas && !pfn_offset &&
6053 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6054 		    (remainder >= pages_per_huge_page(h))) {
6055 			vaddr += huge_page_size(h);
6056 			remainder -= pages_per_huge_page(h);
6057 			i += pages_per_huge_page(h);
6058 			spin_unlock(ptl);
6059 			continue;
6060 		}
6061 
6062 		/* vaddr may not be aligned to PAGE_SIZE */
6063 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6064 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6065 
6066 		if (pages || vmas)
6067 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6068 					     vma, refs,
6069 					     likely(pages) ? pages + i : NULL,
6070 					     vmas ? vmas + i : NULL);
6071 
6072 		if (pages) {
6073 			/*
6074 			 * try_grab_compound_head() should always succeed here,
6075 			 * because: a) we hold the ptl lock, and b) we've just
6076 			 * checked that the huge page is present in the page
6077 			 * tables. If the huge page is present, then the tail
6078 			 * pages must also be present. The ptl prevents the
6079 			 * head page and tail pages from being rearranged in
6080 			 * any way. So this page must be available at this
6081 			 * point, unless the page refcount overflowed:
6082 			 */
6083 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
6084 								 refs,
6085 								 flags))) {
6086 				spin_unlock(ptl);
6087 				remainder = 0;
6088 				err = -ENOMEM;
6089 				break;
6090 			}
6091 		}
6092 
6093 		vaddr += (refs << PAGE_SHIFT);
6094 		remainder -= refs;
6095 		i += refs;
6096 
6097 		spin_unlock(ptl);
6098 	}
6099 	*nr_pages = remainder;
6100 	/*
6101 	 * setting position is actually required only if remainder is
6102 	 * not zero but it's faster not to add a "if (remainder)"
6103 	 * branch.
6104 	 */
6105 	*position = vaddr;
6106 
6107 	return i ? i : err;
6108 }
6109 
6110 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6111 		unsigned long address, unsigned long end, pgprot_t newprot)
6112 {
6113 	struct mm_struct *mm = vma->vm_mm;
6114 	unsigned long start = address;
6115 	pte_t *ptep;
6116 	pte_t pte;
6117 	struct hstate *h = hstate_vma(vma);
6118 	unsigned long pages = 0;
6119 	bool shared_pmd = false;
6120 	struct mmu_notifier_range range;
6121 
6122 	/*
6123 	 * In the case of shared PMDs, the area to flush could be beyond
6124 	 * start/end.  Set range.start/range.end to cover the maximum possible
6125 	 * range if PMD sharing is possible.
6126 	 */
6127 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6128 				0, vma, mm, start, end);
6129 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6130 
6131 	BUG_ON(address >= end);
6132 	flush_cache_range(vma, range.start, range.end);
6133 
6134 	mmu_notifier_invalidate_range_start(&range);
6135 	i_mmap_lock_write(vma->vm_file->f_mapping);
6136 	for (; address < end; address += huge_page_size(h)) {
6137 		spinlock_t *ptl;
6138 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6139 		if (!ptep)
6140 			continue;
6141 		ptl = huge_pte_lock(h, mm, ptep);
6142 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6143 			pages++;
6144 			spin_unlock(ptl);
6145 			shared_pmd = true;
6146 			continue;
6147 		}
6148 		pte = huge_ptep_get(ptep);
6149 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6150 			spin_unlock(ptl);
6151 			continue;
6152 		}
6153 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6154 			swp_entry_t entry = pte_to_swp_entry(pte);
6155 
6156 			if (is_writable_migration_entry(entry)) {
6157 				pte_t newpte;
6158 
6159 				entry = make_readable_migration_entry(
6160 							swp_offset(entry));
6161 				newpte = swp_entry_to_pte(entry);
6162 				set_huge_swap_pte_at(mm, address, ptep,
6163 						     newpte, huge_page_size(h));
6164 				pages++;
6165 			}
6166 			spin_unlock(ptl);
6167 			continue;
6168 		}
6169 		if (!huge_pte_none(pte)) {
6170 			pte_t old_pte;
6171 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6172 
6173 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6174 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
6175 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6176 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6177 			pages++;
6178 		}
6179 		spin_unlock(ptl);
6180 	}
6181 	/*
6182 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6183 	 * may have cleared our pud entry and done put_page on the page table:
6184 	 * once we release i_mmap_rwsem, another task can do the final put_page
6185 	 * and that page table be reused and filled with junk.  If we actually
6186 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6187 	 */
6188 	if (shared_pmd)
6189 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6190 	else
6191 		flush_hugetlb_tlb_range(vma, start, end);
6192 	/*
6193 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6194 	 * page table protection not changing it to point to a new page.
6195 	 *
6196 	 * See Documentation/vm/mmu_notifier.rst
6197 	 */
6198 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6199 	mmu_notifier_invalidate_range_end(&range);
6200 
6201 	return pages << h->order;
6202 }
6203 
6204 /* Return true if reservation was successful, false otherwise.  */
6205 bool hugetlb_reserve_pages(struct inode *inode,
6206 					long from, long to,
6207 					struct vm_area_struct *vma,
6208 					vm_flags_t vm_flags)
6209 {
6210 	long chg, add = -1;
6211 	struct hstate *h = hstate_inode(inode);
6212 	struct hugepage_subpool *spool = subpool_inode(inode);
6213 	struct resv_map *resv_map;
6214 	struct hugetlb_cgroup *h_cg = NULL;
6215 	long gbl_reserve, regions_needed = 0;
6216 
6217 	/* This should never happen */
6218 	if (from > to) {
6219 		VM_WARN(1, "%s called with a negative range\n", __func__);
6220 		return false;
6221 	}
6222 
6223 	/*
6224 	 * Only apply hugepage reservation if asked. At fault time, an
6225 	 * attempt will be made for VM_NORESERVE to allocate a page
6226 	 * without using reserves
6227 	 */
6228 	if (vm_flags & VM_NORESERVE)
6229 		return true;
6230 
6231 	/*
6232 	 * Shared mappings base their reservation on the number of pages that
6233 	 * are already allocated on behalf of the file. Private mappings need
6234 	 * to reserve the full area even if read-only as mprotect() may be
6235 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6236 	 */
6237 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6238 		/*
6239 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6240 		 * called for inodes for which resv_maps were created (see
6241 		 * hugetlbfs_get_inode).
6242 		 */
6243 		resv_map = inode_resv_map(inode);
6244 
6245 		chg = region_chg(resv_map, from, to, &regions_needed);
6246 
6247 	} else {
6248 		/* Private mapping. */
6249 		resv_map = resv_map_alloc();
6250 		if (!resv_map)
6251 			return false;
6252 
6253 		chg = to - from;
6254 
6255 		set_vma_resv_map(vma, resv_map);
6256 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6257 	}
6258 
6259 	if (chg < 0)
6260 		goto out_err;
6261 
6262 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6263 				chg * pages_per_huge_page(h), &h_cg) < 0)
6264 		goto out_err;
6265 
6266 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6267 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6268 		 * of the resv_map.
6269 		 */
6270 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6271 	}
6272 
6273 	/*
6274 	 * There must be enough pages in the subpool for the mapping. If
6275 	 * the subpool has a minimum size, there may be some global
6276 	 * reservations already in place (gbl_reserve).
6277 	 */
6278 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6279 	if (gbl_reserve < 0)
6280 		goto out_uncharge_cgroup;
6281 
6282 	/*
6283 	 * Check enough hugepages are available for the reservation.
6284 	 * Hand the pages back to the subpool if there are not
6285 	 */
6286 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6287 		goto out_put_pages;
6288 
6289 	/*
6290 	 * Account for the reservations made. Shared mappings record regions
6291 	 * that have reservations as they are shared by multiple VMAs.
6292 	 * When the last VMA disappears, the region map says how much
6293 	 * the reservation was and the page cache tells how much of
6294 	 * the reservation was consumed. Private mappings are per-VMA and
6295 	 * only the consumed reservations are tracked. When the VMA
6296 	 * disappears, the original reservation is the VMA size and the
6297 	 * consumed reservations are stored in the map. Hence, nothing
6298 	 * else has to be done for private mappings here
6299 	 */
6300 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6301 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6302 
6303 		if (unlikely(add < 0)) {
6304 			hugetlb_acct_memory(h, -gbl_reserve);
6305 			goto out_put_pages;
6306 		} else if (unlikely(chg > add)) {
6307 			/*
6308 			 * pages in this range were added to the reserve
6309 			 * map between region_chg and region_add.  This
6310 			 * indicates a race with alloc_huge_page.  Adjust
6311 			 * the subpool and reserve counts modified above
6312 			 * based on the difference.
6313 			 */
6314 			long rsv_adjust;
6315 
6316 			/*
6317 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6318 			 * reference to h_cg->css. See comment below for detail.
6319 			 */
6320 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6321 				hstate_index(h),
6322 				(chg - add) * pages_per_huge_page(h), h_cg);
6323 
6324 			rsv_adjust = hugepage_subpool_put_pages(spool,
6325 								chg - add);
6326 			hugetlb_acct_memory(h, -rsv_adjust);
6327 		} else if (h_cg) {
6328 			/*
6329 			 * The file_regions will hold their own reference to
6330 			 * h_cg->css. So we should release the reference held
6331 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6332 			 * done.
6333 			 */
6334 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6335 		}
6336 	}
6337 	return true;
6338 
6339 out_put_pages:
6340 	/* put back original number of pages, chg */
6341 	(void)hugepage_subpool_put_pages(spool, chg);
6342 out_uncharge_cgroup:
6343 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6344 					    chg * pages_per_huge_page(h), h_cg);
6345 out_err:
6346 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6347 		/* Only call region_abort if the region_chg succeeded but the
6348 		 * region_add failed or didn't run.
6349 		 */
6350 		if (chg >= 0 && add < 0)
6351 			region_abort(resv_map, from, to, regions_needed);
6352 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6353 		kref_put(&resv_map->refs, resv_map_release);
6354 	return false;
6355 }
6356 
6357 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6358 								long freed)
6359 {
6360 	struct hstate *h = hstate_inode(inode);
6361 	struct resv_map *resv_map = inode_resv_map(inode);
6362 	long chg = 0;
6363 	struct hugepage_subpool *spool = subpool_inode(inode);
6364 	long gbl_reserve;
6365 
6366 	/*
6367 	 * Since this routine can be called in the evict inode path for all
6368 	 * hugetlbfs inodes, resv_map could be NULL.
6369 	 */
6370 	if (resv_map) {
6371 		chg = region_del(resv_map, start, end);
6372 		/*
6373 		 * region_del() can fail in the rare case where a region
6374 		 * must be split and another region descriptor can not be
6375 		 * allocated.  If end == LONG_MAX, it will not fail.
6376 		 */
6377 		if (chg < 0)
6378 			return chg;
6379 	}
6380 
6381 	spin_lock(&inode->i_lock);
6382 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6383 	spin_unlock(&inode->i_lock);
6384 
6385 	/*
6386 	 * If the subpool has a minimum size, the number of global
6387 	 * reservations to be released may be adjusted.
6388 	 *
6389 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6390 	 * won't go negative.
6391 	 */
6392 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6393 	hugetlb_acct_memory(h, -gbl_reserve);
6394 
6395 	return 0;
6396 }
6397 
6398 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6399 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6400 				struct vm_area_struct *vma,
6401 				unsigned long addr, pgoff_t idx)
6402 {
6403 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6404 				svma->vm_start;
6405 	unsigned long sbase = saddr & PUD_MASK;
6406 	unsigned long s_end = sbase + PUD_SIZE;
6407 
6408 	/* Allow segments to share if only one is marked locked */
6409 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6410 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6411 
6412 	/*
6413 	 * match the virtual addresses, permission and the alignment of the
6414 	 * page table page.
6415 	 */
6416 	if (pmd_index(addr) != pmd_index(saddr) ||
6417 	    vm_flags != svm_flags ||
6418 	    !range_in_vma(svma, sbase, s_end))
6419 		return 0;
6420 
6421 	return saddr;
6422 }
6423 
6424 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6425 {
6426 	unsigned long base = addr & PUD_MASK;
6427 	unsigned long end = base + PUD_SIZE;
6428 
6429 	/*
6430 	 * check on proper vm_flags and page table alignment
6431 	 */
6432 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6433 		return true;
6434 	return false;
6435 }
6436 
6437 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6438 {
6439 #ifdef CONFIG_USERFAULTFD
6440 	if (uffd_disable_huge_pmd_share(vma))
6441 		return false;
6442 #endif
6443 	return vma_shareable(vma, addr);
6444 }
6445 
6446 /*
6447  * Determine if start,end range within vma could be mapped by shared pmd.
6448  * If yes, adjust start and end to cover range associated with possible
6449  * shared pmd mappings.
6450  */
6451 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6452 				unsigned long *start, unsigned long *end)
6453 {
6454 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6455 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6456 
6457 	/*
6458 	 * vma needs to span at least one aligned PUD size, and the range
6459 	 * must be at least partially within in.
6460 	 */
6461 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6462 		(*end <= v_start) || (*start >= v_end))
6463 		return;
6464 
6465 	/* Extend the range to be PUD aligned for a worst case scenario */
6466 	if (*start > v_start)
6467 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6468 
6469 	if (*end < v_end)
6470 		*end = ALIGN(*end, PUD_SIZE);
6471 }
6472 
6473 /*
6474  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6475  * and returns the corresponding pte. While this is not necessary for the
6476  * !shared pmd case because we can allocate the pmd later as well, it makes the
6477  * code much cleaner.
6478  *
6479  * This routine must be called with i_mmap_rwsem held in at least read mode if
6480  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6481  * table entries associated with the address space.  This is important as we
6482  * are setting up sharing based on existing page table entries (mappings).
6483  */
6484 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6485 		      unsigned long addr, pud_t *pud)
6486 {
6487 	struct address_space *mapping = vma->vm_file->f_mapping;
6488 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6489 			vma->vm_pgoff;
6490 	struct vm_area_struct *svma;
6491 	unsigned long saddr;
6492 	pte_t *spte = NULL;
6493 	pte_t *pte;
6494 	spinlock_t *ptl;
6495 
6496 	i_mmap_assert_locked(mapping);
6497 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6498 		if (svma == vma)
6499 			continue;
6500 
6501 		saddr = page_table_shareable(svma, vma, addr, idx);
6502 		if (saddr) {
6503 			spte = huge_pte_offset(svma->vm_mm, saddr,
6504 					       vma_mmu_pagesize(svma));
6505 			if (spte) {
6506 				get_page(virt_to_page(spte));
6507 				break;
6508 			}
6509 		}
6510 	}
6511 
6512 	if (!spte)
6513 		goto out;
6514 
6515 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6516 	if (pud_none(*pud)) {
6517 		pud_populate(mm, pud,
6518 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6519 		mm_inc_nr_pmds(mm);
6520 	} else {
6521 		put_page(virt_to_page(spte));
6522 	}
6523 	spin_unlock(ptl);
6524 out:
6525 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6526 	return pte;
6527 }
6528 
6529 /*
6530  * unmap huge page backed by shared pte.
6531  *
6532  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6533  * indicated by page_count > 1, unmap is achieved by clearing pud and
6534  * decrementing the ref count. If count == 1, the pte page is not shared.
6535  *
6536  * Called with page table lock held and i_mmap_rwsem held in write mode.
6537  *
6538  * returns: 1 successfully unmapped a shared pte page
6539  *	    0 the underlying pte page is not shared, or it is the last user
6540  */
6541 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6542 					unsigned long *addr, pte_t *ptep)
6543 {
6544 	pgd_t *pgd = pgd_offset(mm, *addr);
6545 	p4d_t *p4d = p4d_offset(pgd, *addr);
6546 	pud_t *pud = pud_offset(p4d, *addr);
6547 
6548 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6549 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6550 	if (page_count(virt_to_page(ptep)) == 1)
6551 		return 0;
6552 
6553 	pud_clear(pud);
6554 	put_page(virt_to_page(ptep));
6555 	mm_dec_nr_pmds(mm);
6556 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6557 	return 1;
6558 }
6559 
6560 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6561 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6562 		      unsigned long addr, pud_t *pud)
6563 {
6564 	return NULL;
6565 }
6566 
6567 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6568 				unsigned long *addr, pte_t *ptep)
6569 {
6570 	return 0;
6571 }
6572 
6573 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6574 				unsigned long *start, unsigned long *end)
6575 {
6576 }
6577 
6578 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6579 {
6580 	return false;
6581 }
6582 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6583 
6584 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6585 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6586 			unsigned long addr, unsigned long sz)
6587 {
6588 	pgd_t *pgd;
6589 	p4d_t *p4d;
6590 	pud_t *pud;
6591 	pte_t *pte = NULL;
6592 
6593 	pgd = pgd_offset(mm, addr);
6594 	p4d = p4d_alloc(mm, pgd, addr);
6595 	if (!p4d)
6596 		return NULL;
6597 	pud = pud_alloc(mm, p4d, addr);
6598 	if (pud) {
6599 		if (sz == PUD_SIZE) {
6600 			pte = (pte_t *)pud;
6601 		} else {
6602 			BUG_ON(sz != PMD_SIZE);
6603 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6604 				pte = huge_pmd_share(mm, vma, addr, pud);
6605 			else
6606 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6607 		}
6608 	}
6609 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6610 
6611 	return pte;
6612 }
6613 
6614 /*
6615  * huge_pte_offset() - Walk the page table to resolve the hugepage
6616  * entry at address @addr
6617  *
6618  * Return: Pointer to page table entry (PUD or PMD) for
6619  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6620  * size @sz doesn't match the hugepage size at this level of the page
6621  * table.
6622  */
6623 pte_t *huge_pte_offset(struct mm_struct *mm,
6624 		       unsigned long addr, unsigned long sz)
6625 {
6626 	pgd_t *pgd;
6627 	p4d_t *p4d;
6628 	pud_t *pud;
6629 	pmd_t *pmd;
6630 
6631 	pgd = pgd_offset(mm, addr);
6632 	if (!pgd_present(*pgd))
6633 		return NULL;
6634 	p4d = p4d_offset(pgd, addr);
6635 	if (!p4d_present(*p4d))
6636 		return NULL;
6637 
6638 	pud = pud_offset(p4d, addr);
6639 	if (sz == PUD_SIZE)
6640 		/* must be pud huge, non-present or none */
6641 		return (pte_t *)pud;
6642 	if (!pud_present(*pud))
6643 		return NULL;
6644 	/* must have a valid entry and size to go further */
6645 
6646 	pmd = pmd_offset(pud, addr);
6647 	/* must be pmd huge, non-present or none */
6648 	return (pte_t *)pmd;
6649 }
6650 
6651 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6652 
6653 /*
6654  * These functions are overwritable if your architecture needs its own
6655  * behavior.
6656  */
6657 struct page * __weak
6658 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6659 			      int write)
6660 {
6661 	return ERR_PTR(-EINVAL);
6662 }
6663 
6664 struct page * __weak
6665 follow_huge_pd(struct vm_area_struct *vma,
6666 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6667 {
6668 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6669 	return NULL;
6670 }
6671 
6672 struct page * __weak
6673 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6674 		pmd_t *pmd, int flags)
6675 {
6676 	struct page *page = NULL;
6677 	spinlock_t *ptl;
6678 	pte_t pte;
6679 
6680 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
6681 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6682 			 (FOLL_PIN | FOLL_GET)))
6683 		return NULL;
6684 
6685 retry:
6686 	ptl = pmd_lockptr(mm, pmd);
6687 	spin_lock(ptl);
6688 	/*
6689 	 * make sure that the address range covered by this pmd is not
6690 	 * unmapped from other threads.
6691 	 */
6692 	if (!pmd_huge(*pmd))
6693 		goto out;
6694 	pte = huge_ptep_get((pte_t *)pmd);
6695 	if (pte_present(pte)) {
6696 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6697 		/*
6698 		 * try_grab_page() should always succeed here, because: a) we
6699 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6700 		 * huge pmd (head) page is present in the page tables. The ptl
6701 		 * prevents the head page and tail pages from being rearranged
6702 		 * in any way. So this page must be available at this point,
6703 		 * unless the page refcount overflowed:
6704 		 */
6705 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6706 			page = NULL;
6707 			goto out;
6708 		}
6709 	} else {
6710 		if (is_hugetlb_entry_migration(pte)) {
6711 			spin_unlock(ptl);
6712 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
6713 			goto retry;
6714 		}
6715 		/*
6716 		 * hwpoisoned entry is treated as no_page_table in
6717 		 * follow_page_mask().
6718 		 */
6719 	}
6720 out:
6721 	spin_unlock(ptl);
6722 	return page;
6723 }
6724 
6725 struct page * __weak
6726 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6727 		pud_t *pud, int flags)
6728 {
6729 	if (flags & (FOLL_GET | FOLL_PIN))
6730 		return NULL;
6731 
6732 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6733 }
6734 
6735 struct page * __weak
6736 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6737 {
6738 	if (flags & (FOLL_GET | FOLL_PIN))
6739 		return NULL;
6740 
6741 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6742 }
6743 
6744 bool isolate_huge_page(struct page *page, struct list_head *list)
6745 {
6746 	bool ret = true;
6747 
6748 	spin_lock_irq(&hugetlb_lock);
6749 	if (!PageHeadHuge(page) ||
6750 	    !HPageMigratable(page) ||
6751 	    !get_page_unless_zero(page)) {
6752 		ret = false;
6753 		goto unlock;
6754 	}
6755 	ClearHPageMigratable(page);
6756 	list_move_tail(&page->lru, list);
6757 unlock:
6758 	spin_unlock_irq(&hugetlb_lock);
6759 	return ret;
6760 }
6761 
6762 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6763 {
6764 	int ret = 0;
6765 
6766 	*hugetlb = false;
6767 	spin_lock_irq(&hugetlb_lock);
6768 	if (PageHeadHuge(page)) {
6769 		*hugetlb = true;
6770 		if (HPageFreed(page) || HPageMigratable(page))
6771 			ret = get_page_unless_zero(page);
6772 		else
6773 			ret = -EBUSY;
6774 	}
6775 	spin_unlock_irq(&hugetlb_lock);
6776 	return ret;
6777 }
6778 
6779 void putback_active_hugepage(struct page *page)
6780 {
6781 	spin_lock_irq(&hugetlb_lock);
6782 	SetHPageMigratable(page);
6783 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6784 	spin_unlock_irq(&hugetlb_lock);
6785 	put_page(page);
6786 }
6787 
6788 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6789 {
6790 	struct hstate *h = page_hstate(oldpage);
6791 
6792 	hugetlb_cgroup_migrate(oldpage, newpage);
6793 	set_page_owner_migrate_reason(newpage, reason);
6794 
6795 	/*
6796 	 * transfer temporary state of the new huge page. This is
6797 	 * reverse to other transitions because the newpage is going to
6798 	 * be final while the old one will be freed so it takes over
6799 	 * the temporary status.
6800 	 *
6801 	 * Also note that we have to transfer the per-node surplus state
6802 	 * here as well otherwise the global surplus count will not match
6803 	 * the per-node's.
6804 	 */
6805 	if (HPageTemporary(newpage)) {
6806 		int old_nid = page_to_nid(oldpage);
6807 		int new_nid = page_to_nid(newpage);
6808 
6809 		SetHPageTemporary(oldpage);
6810 		ClearHPageTemporary(newpage);
6811 
6812 		/*
6813 		 * There is no need to transfer the per-node surplus state
6814 		 * when we do not cross the node.
6815 		 */
6816 		if (new_nid == old_nid)
6817 			return;
6818 		spin_lock_irq(&hugetlb_lock);
6819 		if (h->surplus_huge_pages_node[old_nid]) {
6820 			h->surplus_huge_pages_node[old_nid]--;
6821 			h->surplus_huge_pages_node[new_nid]++;
6822 		}
6823 		spin_unlock_irq(&hugetlb_lock);
6824 	}
6825 }
6826 
6827 /*
6828  * This function will unconditionally remove all the shared pmd pgtable entries
6829  * within the specific vma for a hugetlbfs memory range.
6830  */
6831 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6832 {
6833 	struct hstate *h = hstate_vma(vma);
6834 	unsigned long sz = huge_page_size(h);
6835 	struct mm_struct *mm = vma->vm_mm;
6836 	struct mmu_notifier_range range;
6837 	unsigned long address, start, end;
6838 	spinlock_t *ptl;
6839 	pte_t *ptep;
6840 
6841 	if (!(vma->vm_flags & VM_MAYSHARE))
6842 		return;
6843 
6844 	start = ALIGN(vma->vm_start, PUD_SIZE);
6845 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6846 
6847 	if (start >= end)
6848 		return;
6849 
6850 	/*
6851 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6852 	 * we have already done the PUD_SIZE alignment.
6853 	 */
6854 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6855 				start, end);
6856 	mmu_notifier_invalidate_range_start(&range);
6857 	i_mmap_lock_write(vma->vm_file->f_mapping);
6858 	for (address = start; address < end; address += PUD_SIZE) {
6859 		unsigned long tmp = address;
6860 
6861 		ptep = huge_pte_offset(mm, address, sz);
6862 		if (!ptep)
6863 			continue;
6864 		ptl = huge_pte_lock(h, mm, ptep);
6865 		/* We don't want 'address' to be changed */
6866 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6867 		spin_unlock(ptl);
6868 	}
6869 	flush_hugetlb_tlb_range(vma, start, end);
6870 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6871 	/*
6872 	 * No need to call mmu_notifier_invalidate_range(), see
6873 	 * Documentation/vm/mmu_notifier.rst.
6874 	 */
6875 	mmu_notifier_invalidate_range_end(&range);
6876 }
6877 
6878 #ifdef CONFIG_CMA
6879 static bool cma_reserve_called __initdata;
6880 
6881 static int __init cmdline_parse_hugetlb_cma(char *p)
6882 {
6883 	int nid, count = 0;
6884 	unsigned long tmp;
6885 	char *s = p;
6886 
6887 	while (*s) {
6888 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6889 			break;
6890 
6891 		if (s[count] == ':') {
6892 			nid = tmp;
6893 			if (nid < 0 || nid >= MAX_NUMNODES)
6894 				break;
6895 
6896 			s += count + 1;
6897 			tmp = memparse(s, &s);
6898 			hugetlb_cma_size_in_node[nid] = tmp;
6899 			hugetlb_cma_size += tmp;
6900 
6901 			/*
6902 			 * Skip the separator if have one, otherwise
6903 			 * break the parsing.
6904 			 */
6905 			if (*s == ',')
6906 				s++;
6907 			else
6908 				break;
6909 		} else {
6910 			hugetlb_cma_size = memparse(p, &p);
6911 			break;
6912 		}
6913 	}
6914 
6915 	return 0;
6916 }
6917 
6918 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6919 
6920 void __init hugetlb_cma_reserve(int order)
6921 {
6922 	unsigned long size, reserved, per_node;
6923 	bool node_specific_cma_alloc = false;
6924 	int nid;
6925 
6926 	cma_reserve_called = true;
6927 
6928 	if (!hugetlb_cma_size)
6929 		return;
6930 
6931 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
6932 		if (hugetlb_cma_size_in_node[nid] == 0)
6933 			continue;
6934 
6935 		if (!node_state(nid, N_ONLINE)) {
6936 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6937 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6938 			hugetlb_cma_size_in_node[nid] = 0;
6939 			continue;
6940 		}
6941 
6942 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6943 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6944 				nid, (PAGE_SIZE << order) / SZ_1M);
6945 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6946 			hugetlb_cma_size_in_node[nid] = 0;
6947 		} else {
6948 			node_specific_cma_alloc = true;
6949 		}
6950 	}
6951 
6952 	/* Validate the CMA size again in case some invalid nodes specified. */
6953 	if (!hugetlb_cma_size)
6954 		return;
6955 
6956 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6957 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6958 			(PAGE_SIZE << order) / SZ_1M);
6959 		hugetlb_cma_size = 0;
6960 		return;
6961 	}
6962 
6963 	if (!node_specific_cma_alloc) {
6964 		/*
6965 		 * If 3 GB area is requested on a machine with 4 numa nodes,
6966 		 * let's allocate 1 GB on first three nodes and ignore the last one.
6967 		 */
6968 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6969 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6970 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6971 	}
6972 
6973 	reserved = 0;
6974 	for_each_node_state(nid, N_ONLINE) {
6975 		int res;
6976 		char name[CMA_MAX_NAME];
6977 
6978 		if (node_specific_cma_alloc) {
6979 			if (hugetlb_cma_size_in_node[nid] == 0)
6980 				continue;
6981 
6982 			size = hugetlb_cma_size_in_node[nid];
6983 		} else {
6984 			size = min(per_node, hugetlb_cma_size - reserved);
6985 		}
6986 
6987 		size = round_up(size, PAGE_SIZE << order);
6988 
6989 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6990 		/*
6991 		 * Note that 'order per bit' is based on smallest size that
6992 		 * may be returned to CMA allocator in the case of
6993 		 * huge page demotion.
6994 		 */
6995 		res = cma_declare_contiguous_nid(0, size, 0,
6996 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
6997 						 0, false, name,
6998 						 &hugetlb_cma[nid], nid);
6999 		if (res) {
7000 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7001 				res, nid);
7002 			continue;
7003 		}
7004 
7005 		reserved += size;
7006 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7007 			size / SZ_1M, nid);
7008 
7009 		if (reserved >= hugetlb_cma_size)
7010 			break;
7011 	}
7012 
7013 	if (!reserved)
7014 		/*
7015 		 * hugetlb_cma_size is used to determine if allocations from
7016 		 * cma are possible.  Set to zero if no cma regions are set up.
7017 		 */
7018 		hugetlb_cma_size = 0;
7019 }
7020 
7021 void __init hugetlb_cma_check(void)
7022 {
7023 	if (!hugetlb_cma_size || cma_reserve_called)
7024 		return;
7025 
7026 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7027 }
7028 
7029 #endif /* CONFIG_CMA */
7030