xref: /openbmc/linux/mm/hugetlb.c (revision 6c1aa2d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 {
103 	if (spool->count)
104 		return false;
105 	if (spool->max_hpages != -1)
106 		return spool->used_hpages == 0;
107 	if (spool->min_hpages != -1)
108 		return spool->rsv_hpages == spool->min_hpages;
109 
110 	return true;
111 }
112 
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114 						unsigned long irq_flags)
115 {
116 	spin_unlock_irqrestore(&spool->lock, irq_flags);
117 
118 	/* If no pages are used, and no other handles to the subpool
119 	 * remain, give up any reservations based on minimum size and
120 	 * free the subpool */
121 	if (subpool_is_free(spool)) {
122 		if (spool->min_hpages != -1)
123 			hugetlb_acct_memory(spool->hstate,
124 						-spool->min_hpages);
125 		kfree(spool);
126 	}
127 }
128 
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
130 						long min_hpages)
131 {
132 	struct hugepage_subpool *spool;
133 
134 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 	if (!spool)
136 		return NULL;
137 
138 	spin_lock_init(&spool->lock);
139 	spool->count = 1;
140 	spool->max_hpages = max_hpages;
141 	spool->hstate = h;
142 	spool->min_hpages = min_hpages;
143 
144 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 		kfree(spool);
146 		return NULL;
147 	}
148 	spool->rsv_hpages = min_hpages;
149 
150 	return spool;
151 }
152 
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 {
155 	unsigned long flags;
156 
157 	spin_lock_irqsave(&spool->lock, flags);
158 	BUG_ON(!spool->count);
159 	spool->count--;
160 	unlock_or_release_subpool(spool, flags);
161 }
162 
163 /*
164  * Subpool accounting for allocating and reserving pages.
165  * Return -ENOMEM if there are not enough resources to satisfy the
166  * request.  Otherwise, return the number of pages by which the
167  * global pools must be adjusted (upward).  The returned value may
168  * only be different than the passed value (delta) in the case where
169  * a subpool minimum size must be maintained.
170  */
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
172 				      long delta)
173 {
174 	long ret = delta;
175 
176 	if (!spool)
177 		return ret;
178 
179 	spin_lock_irq(&spool->lock);
180 
181 	if (spool->max_hpages != -1) {		/* maximum size accounting */
182 		if ((spool->used_hpages + delta) <= spool->max_hpages)
183 			spool->used_hpages += delta;
184 		else {
185 			ret = -ENOMEM;
186 			goto unlock_ret;
187 		}
188 	}
189 
190 	/* minimum size accounting */
191 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
192 		if (delta > spool->rsv_hpages) {
193 			/*
194 			 * Asking for more reserves than those already taken on
195 			 * behalf of subpool.  Return difference.
196 			 */
197 			ret = delta - spool->rsv_hpages;
198 			spool->rsv_hpages = 0;
199 		} else {
200 			ret = 0;	/* reserves already accounted for */
201 			spool->rsv_hpages -= delta;
202 		}
203 	}
204 
205 unlock_ret:
206 	spin_unlock_irq(&spool->lock);
207 	return ret;
208 }
209 
210 /*
211  * Subpool accounting for freeing and unreserving pages.
212  * Return the number of global page reservations that must be dropped.
213  * The return value may only be different than the passed value (delta)
214  * in the case where a subpool minimum size must be maintained.
215  */
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
217 				       long delta)
218 {
219 	long ret = delta;
220 	unsigned long flags;
221 
222 	if (!spool)
223 		return delta;
224 
225 	spin_lock_irqsave(&spool->lock, flags);
226 
227 	if (spool->max_hpages != -1)		/* maximum size accounting */
228 		spool->used_hpages -= delta;
229 
230 	 /* minimum size accounting */
231 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232 		if (spool->rsv_hpages + delta <= spool->min_hpages)
233 			ret = 0;
234 		else
235 			ret = spool->rsv_hpages + delta - spool->min_hpages;
236 
237 		spool->rsv_hpages += delta;
238 		if (spool->rsv_hpages > spool->min_hpages)
239 			spool->rsv_hpages = spool->min_hpages;
240 	}
241 
242 	/*
243 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
244 	 * quota reference, free it now.
245 	 */
246 	unlock_or_release_subpool(spool, flags);
247 
248 	return ret;
249 }
250 
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 {
253 	return HUGETLBFS_SB(inode->i_sb)->spool;
254 }
255 
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 {
258 	return subpool_inode(file_inode(vma->vm_file));
259 }
260 
261 /*
262  * hugetlb vma_lock helper routines
263  */
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 {
266 	if (__vma_shareable_lock(vma)) {
267 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 
269 		down_read(&vma_lock->rw_sema);
270 	}
271 }
272 
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 {
275 	if (__vma_shareable_lock(vma)) {
276 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 
278 		up_read(&vma_lock->rw_sema);
279 	}
280 }
281 
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 {
284 	if (__vma_shareable_lock(vma)) {
285 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 
287 		down_write(&vma_lock->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		up_write(&vma_lock->rw_sema);
297 	}
298 }
299 
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 {
302 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 
304 	if (!__vma_shareable_lock(vma))
305 		return 1;
306 
307 	return down_write_trylock(&vma_lock->rw_sema);
308 }
309 
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 {
312 	if (__vma_shareable_lock(vma)) {
313 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 
315 		lockdep_assert_held(&vma_lock->rw_sema);
316 	}
317 }
318 
319 void hugetlb_vma_lock_release(struct kref *kref)
320 {
321 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
322 			struct hugetlb_vma_lock, refs);
323 
324 	kfree(vma_lock);
325 }
326 
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 {
329 	struct vm_area_struct *vma = vma_lock->vma;
330 
331 	/*
332 	 * vma_lock structure may or not be released as a result of put,
333 	 * it certainly will no longer be attached to vma so clear pointer.
334 	 * Semaphore synchronizes access to vma_lock->vma field.
335 	 */
336 	vma_lock->vma = NULL;
337 	vma->vm_private_data = NULL;
338 	up_write(&vma_lock->rw_sema);
339 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
340 }
341 
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 {
344 	if (__vma_shareable_lock(vma)) {
345 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 
347 		__hugetlb_vma_unlock_write_put(vma_lock);
348 	}
349 }
350 
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
352 {
353 	/*
354 	 * Only present in sharable vmas.
355 	 */
356 	if (!vma || !__vma_shareable_lock(vma))
357 		return;
358 
359 	if (vma->vm_private_data) {
360 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 
362 		down_write(&vma_lock->rw_sema);
363 		__hugetlb_vma_unlock_write_put(vma_lock);
364 	}
365 }
366 
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 {
369 	struct hugetlb_vma_lock *vma_lock;
370 
371 	/* Only establish in (flags) sharable vmas */
372 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
373 		return;
374 
375 	/* Should never get here with non-NULL vm_private_data */
376 	if (vma->vm_private_data)
377 		return;
378 
379 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
380 	if (!vma_lock) {
381 		/*
382 		 * If we can not allocate structure, then vma can not
383 		 * participate in pmd sharing.  This is only a possible
384 		 * performance enhancement and memory saving issue.
385 		 * However, the lock is also used to synchronize page
386 		 * faults with truncation.  If the lock is not present,
387 		 * unlikely races could leave pages in a file past i_size
388 		 * until the file is removed.  Warn in the unlikely case of
389 		 * allocation failure.
390 		 */
391 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
392 		return;
393 	}
394 
395 	kref_init(&vma_lock->refs);
396 	init_rwsem(&vma_lock->rw_sema);
397 	vma_lock->vma = vma;
398 	vma->vm_private_data = vma_lock;
399 }
400 
401 /* Helper that removes a struct file_region from the resv_map cache and returns
402  * it for use.
403  */
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 {
407 	struct file_region *nrg;
408 
409 	VM_BUG_ON(resv->region_cache_count <= 0);
410 
411 	resv->region_cache_count--;
412 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413 	list_del(&nrg->link);
414 
415 	nrg->from = from;
416 	nrg->to = to;
417 
418 	return nrg;
419 }
420 
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422 					      struct file_region *rg)
423 {
424 #ifdef CONFIG_CGROUP_HUGETLB
425 	nrg->reservation_counter = rg->reservation_counter;
426 	nrg->css = rg->css;
427 	if (rg->css)
428 		css_get(rg->css);
429 #endif
430 }
431 
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 						struct hstate *h,
435 						struct resv_map *resv,
436 						struct file_region *nrg)
437 {
438 #ifdef CONFIG_CGROUP_HUGETLB
439 	if (h_cg) {
440 		nrg->reservation_counter =
441 			&h_cg->rsvd_hugepage[hstate_index(h)];
442 		nrg->css = &h_cg->css;
443 		/*
444 		 * The caller will hold exactly one h_cg->css reference for the
445 		 * whole contiguous reservation region. But this area might be
446 		 * scattered when there are already some file_regions reside in
447 		 * it. As a result, many file_regions may share only one css
448 		 * reference. In order to ensure that one file_region must hold
449 		 * exactly one h_cg->css reference, we should do css_get for
450 		 * each file_region and leave the reference held by caller
451 		 * untouched.
452 		 */
453 		css_get(&h_cg->css);
454 		if (!resv->pages_per_hpage)
455 			resv->pages_per_hpage = pages_per_huge_page(h);
456 		/* pages_per_hpage should be the same for all entries in
457 		 * a resv_map.
458 		 */
459 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 	} else {
461 		nrg->reservation_counter = NULL;
462 		nrg->css = NULL;
463 	}
464 #endif
465 }
466 
467 static void put_uncharge_info(struct file_region *rg)
468 {
469 #ifdef CONFIG_CGROUP_HUGETLB
470 	if (rg->css)
471 		css_put(rg->css);
472 #endif
473 }
474 
475 static bool has_same_uncharge_info(struct file_region *rg,
476 				   struct file_region *org)
477 {
478 #ifdef CONFIG_CGROUP_HUGETLB
479 	return rg->reservation_counter == org->reservation_counter &&
480 	       rg->css == org->css;
481 
482 #else
483 	return true;
484 #endif
485 }
486 
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 {
489 	struct file_region *nrg, *prg;
490 
491 	prg = list_prev_entry(rg, link);
492 	if (&prg->link != &resv->regions && prg->to == rg->from &&
493 	    has_same_uncharge_info(prg, rg)) {
494 		prg->to = rg->to;
495 
496 		list_del(&rg->link);
497 		put_uncharge_info(rg);
498 		kfree(rg);
499 
500 		rg = prg;
501 	}
502 
503 	nrg = list_next_entry(rg, link);
504 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505 	    has_same_uncharge_info(nrg, rg)) {
506 		nrg->from = rg->from;
507 
508 		list_del(&rg->link);
509 		put_uncharge_info(rg);
510 		kfree(rg);
511 	}
512 }
513 
514 static inline long
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
517 		     long *regions_needed)
518 {
519 	struct file_region *nrg;
520 
521 	if (!regions_needed) {
522 		nrg = get_file_region_entry_from_cache(map, from, to);
523 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524 		list_add(&nrg->link, rg);
525 		coalesce_file_region(map, nrg);
526 	} else
527 		*regions_needed += 1;
528 
529 	return to - from;
530 }
531 
532 /*
533  * Must be called with resv->lock held.
534  *
535  * Calling this with regions_needed != NULL will count the number of pages
536  * to be added but will not modify the linked list. And regions_needed will
537  * indicate the number of file_regions needed in the cache to carry out to add
538  * the regions for this range.
539  */
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541 				     struct hugetlb_cgroup *h_cg,
542 				     struct hstate *h, long *regions_needed)
543 {
544 	long add = 0;
545 	struct list_head *head = &resv->regions;
546 	long last_accounted_offset = f;
547 	struct file_region *iter, *trg = NULL;
548 	struct list_head *rg = NULL;
549 
550 	if (regions_needed)
551 		*regions_needed = 0;
552 
553 	/* In this loop, we essentially handle an entry for the range
554 	 * [last_accounted_offset, iter->from), at every iteration, with some
555 	 * bounds checking.
556 	 */
557 	list_for_each_entry_safe(iter, trg, head, link) {
558 		/* Skip irrelevant regions that start before our range. */
559 		if (iter->from < f) {
560 			/* If this region ends after the last accounted offset,
561 			 * then we need to update last_accounted_offset.
562 			 */
563 			if (iter->to > last_accounted_offset)
564 				last_accounted_offset = iter->to;
565 			continue;
566 		}
567 
568 		/* When we find a region that starts beyond our range, we've
569 		 * finished.
570 		 */
571 		if (iter->from >= t) {
572 			rg = iter->link.prev;
573 			break;
574 		}
575 
576 		/* Add an entry for last_accounted_offset -> iter->from, and
577 		 * update last_accounted_offset.
578 		 */
579 		if (iter->from > last_accounted_offset)
580 			add += hugetlb_resv_map_add(resv, iter->link.prev,
581 						    last_accounted_offset,
582 						    iter->from, h, h_cg,
583 						    regions_needed);
584 
585 		last_accounted_offset = iter->to;
586 	}
587 
588 	/* Handle the case where our range extends beyond
589 	 * last_accounted_offset.
590 	 */
591 	if (!rg)
592 		rg = head->prev;
593 	if (last_accounted_offset < t)
594 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595 					    t, h, h_cg, regions_needed);
596 
597 	return add;
598 }
599 
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601  */
602 static int allocate_file_region_entries(struct resv_map *resv,
603 					int regions_needed)
604 	__must_hold(&resv->lock)
605 {
606 	LIST_HEAD(allocated_regions);
607 	int to_allocate = 0, i = 0;
608 	struct file_region *trg = NULL, *rg = NULL;
609 
610 	VM_BUG_ON(regions_needed < 0);
611 
612 	/*
613 	 * Check for sufficient descriptors in the cache to accommodate
614 	 * the number of in progress add operations plus regions_needed.
615 	 *
616 	 * This is a while loop because when we drop the lock, some other call
617 	 * to region_add or region_del may have consumed some region_entries,
618 	 * so we keep looping here until we finally have enough entries for
619 	 * (adds_in_progress + regions_needed).
620 	 */
621 	while (resv->region_cache_count <
622 	       (resv->adds_in_progress + regions_needed)) {
623 		to_allocate = resv->adds_in_progress + regions_needed -
624 			      resv->region_cache_count;
625 
626 		/* At this point, we should have enough entries in the cache
627 		 * for all the existing adds_in_progress. We should only be
628 		 * needing to allocate for regions_needed.
629 		 */
630 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 
632 		spin_unlock(&resv->lock);
633 		for (i = 0; i < to_allocate; i++) {
634 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
635 			if (!trg)
636 				goto out_of_memory;
637 			list_add(&trg->link, &allocated_regions);
638 		}
639 
640 		spin_lock(&resv->lock);
641 
642 		list_splice(&allocated_regions, &resv->region_cache);
643 		resv->region_cache_count += to_allocate;
644 	}
645 
646 	return 0;
647 
648 out_of_memory:
649 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
650 		list_del(&rg->link);
651 		kfree(rg);
652 	}
653 	return -ENOMEM;
654 }
655 
656 /*
657  * Add the huge page range represented by [f, t) to the reserve
658  * map.  Regions will be taken from the cache to fill in this range.
659  * Sufficient regions should exist in the cache due to the previous
660  * call to region_chg with the same range, but in some cases the cache will not
661  * have sufficient entries due to races with other code doing region_add or
662  * region_del.  The extra needed entries will be allocated.
663  *
664  * regions_needed is the out value provided by a previous call to region_chg.
665  *
666  * Return the number of new huge pages added to the map.  This number is greater
667  * than or equal to zero.  If file_region entries needed to be allocated for
668  * this operation and we were not able to allocate, it returns -ENOMEM.
669  * region_add of regions of length 1 never allocate file_regions and cannot
670  * fail; region_chg will always allocate at least 1 entry and a region_add for
671  * 1 page will only require at most 1 entry.
672  */
673 static long region_add(struct resv_map *resv, long f, long t,
674 		       long in_regions_needed, struct hstate *h,
675 		       struct hugetlb_cgroup *h_cg)
676 {
677 	long add = 0, actual_regions_needed = 0;
678 
679 	spin_lock(&resv->lock);
680 retry:
681 
682 	/* Count how many regions are actually needed to execute this add. */
683 	add_reservation_in_range(resv, f, t, NULL, NULL,
684 				 &actual_regions_needed);
685 
686 	/*
687 	 * Check for sufficient descriptors in the cache to accommodate
688 	 * this add operation. Note that actual_regions_needed may be greater
689 	 * than in_regions_needed, as the resv_map may have been modified since
690 	 * the region_chg call. In this case, we need to make sure that we
691 	 * allocate extra entries, such that we have enough for all the
692 	 * existing adds_in_progress, plus the excess needed for this
693 	 * operation.
694 	 */
695 	if (actual_regions_needed > in_regions_needed &&
696 	    resv->region_cache_count <
697 		    resv->adds_in_progress +
698 			    (actual_regions_needed - in_regions_needed)) {
699 		/* region_add operation of range 1 should never need to
700 		 * allocate file_region entries.
701 		 */
702 		VM_BUG_ON(t - f <= 1);
703 
704 		if (allocate_file_region_entries(
705 			    resv, actual_regions_needed - in_regions_needed)) {
706 			return -ENOMEM;
707 		}
708 
709 		goto retry;
710 	}
711 
712 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 
714 	resv->adds_in_progress -= in_regions_needed;
715 
716 	spin_unlock(&resv->lock);
717 	return add;
718 }
719 
720 /*
721  * Examine the existing reserve map and determine how many
722  * huge pages in the specified range [f, t) are NOT currently
723  * represented.  This routine is called before a subsequent
724  * call to region_add that will actually modify the reserve
725  * map to add the specified range [f, t).  region_chg does
726  * not change the number of huge pages represented by the
727  * map.  A number of new file_region structures is added to the cache as a
728  * placeholder, for the subsequent region_add call to use. At least 1
729  * file_region structure is added.
730  *
731  * out_regions_needed is the number of regions added to the
732  * resv->adds_in_progress.  This value needs to be provided to a follow up call
733  * to region_add or region_abort for proper accounting.
734  *
735  * Returns the number of huge pages that need to be added to the existing
736  * reservation map for the range [f, t).  This number is greater or equal to
737  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
738  * is needed and can not be allocated.
739  */
740 static long region_chg(struct resv_map *resv, long f, long t,
741 		       long *out_regions_needed)
742 {
743 	long chg = 0;
744 
745 	spin_lock(&resv->lock);
746 
747 	/* Count how many hugepages in this range are NOT represented. */
748 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
749 				       out_regions_needed);
750 
751 	if (*out_regions_needed == 0)
752 		*out_regions_needed = 1;
753 
754 	if (allocate_file_region_entries(resv, *out_regions_needed))
755 		return -ENOMEM;
756 
757 	resv->adds_in_progress += *out_regions_needed;
758 
759 	spin_unlock(&resv->lock);
760 	return chg;
761 }
762 
763 /*
764  * Abort the in progress add operation.  The adds_in_progress field
765  * of the resv_map keeps track of the operations in progress between
766  * calls to region_chg and region_add.  Operations are sometimes
767  * aborted after the call to region_chg.  In such cases, region_abort
768  * is called to decrement the adds_in_progress counter. regions_needed
769  * is the value returned by the region_chg call, it is used to decrement
770  * the adds_in_progress counter.
771  *
772  * NOTE: The range arguments [f, t) are not needed or used in this
773  * routine.  They are kept to make reading the calling code easier as
774  * arguments will match the associated region_chg call.
775  */
776 static void region_abort(struct resv_map *resv, long f, long t,
777 			 long regions_needed)
778 {
779 	spin_lock(&resv->lock);
780 	VM_BUG_ON(!resv->region_cache_count);
781 	resv->adds_in_progress -= regions_needed;
782 	spin_unlock(&resv->lock);
783 }
784 
785 /*
786  * Delete the specified range [f, t) from the reserve map.  If the
787  * t parameter is LONG_MAX, this indicates that ALL regions after f
788  * should be deleted.  Locate the regions which intersect [f, t)
789  * and either trim, delete or split the existing regions.
790  *
791  * Returns the number of huge pages deleted from the reserve map.
792  * In the normal case, the return value is zero or more.  In the
793  * case where a region must be split, a new region descriptor must
794  * be allocated.  If the allocation fails, -ENOMEM will be returned.
795  * NOTE: If the parameter t == LONG_MAX, then we will never split
796  * a region and possibly return -ENOMEM.  Callers specifying
797  * t == LONG_MAX do not need to check for -ENOMEM error.
798  */
799 static long region_del(struct resv_map *resv, long f, long t)
800 {
801 	struct list_head *head = &resv->regions;
802 	struct file_region *rg, *trg;
803 	struct file_region *nrg = NULL;
804 	long del = 0;
805 
806 retry:
807 	spin_lock(&resv->lock);
808 	list_for_each_entry_safe(rg, trg, head, link) {
809 		/*
810 		 * Skip regions before the range to be deleted.  file_region
811 		 * ranges are normally of the form [from, to).  However, there
812 		 * may be a "placeholder" entry in the map which is of the form
813 		 * (from, to) with from == to.  Check for placeholder entries
814 		 * at the beginning of the range to be deleted.
815 		 */
816 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
817 			continue;
818 
819 		if (rg->from >= t)
820 			break;
821 
822 		if (f > rg->from && t < rg->to) { /* Must split region */
823 			/*
824 			 * Check for an entry in the cache before dropping
825 			 * lock and attempting allocation.
826 			 */
827 			if (!nrg &&
828 			    resv->region_cache_count > resv->adds_in_progress) {
829 				nrg = list_first_entry(&resv->region_cache,
830 							struct file_region,
831 							link);
832 				list_del(&nrg->link);
833 				resv->region_cache_count--;
834 			}
835 
836 			if (!nrg) {
837 				spin_unlock(&resv->lock);
838 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
839 				if (!nrg)
840 					return -ENOMEM;
841 				goto retry;
842 			}
843 
844 			del += t - f;
845 			hugetlb_cgroup_uncharge_file_region(
846 				resv, rg, t - f, false);
847 
848 			/* New entry for end of split region */
849 			nrg->from = t;
850 			nrg->to = rg->to;
851 
852 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 
854 			INIT_LIST_HEAD(&nrg->link);
855 
856 			/* Original entry is trimmed */
857 			rg->to = f;
858 
859 			list_add(&nrg->link, &rg->link);
860 			nrg = NULL;
861 			break;
862 		}
863 
864 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865 			del += rg->to - rg->from;
866 			hugetlb_cgroup_uncharge_file_region(resv, rg,
867 							    rg->to - rg->from, true);
868 			list_del(&rg->link);
869 			kfree(rg);
870 			continue;
871 		}
872 
873 		if (f <= rg->from) {	/* Trim beginning of region */
874 			hugetlb_cgroup_uncharge_file_region(resv, rg,
875 							    t - rg->from, false);
876 
877 			del += t - rg->from;
878 			rg->from = t;
879 		} else {		/* Trim end of region */
880 			hugetlb_cgroup_uncharge_file_region(resv, rg,
881 							    rg->to - f, false);
882 
883 			del += rg->to - f;
884 			rg->to = f;
885 		}
886 	}
887 
888 	spin_unlock(&resv->lock);
889 	kfree(nrg);
890 	return del;
891 }
892 
893 /*
894  * A rare out of memory error was encountered which prevented removal of
895  * the reserve map region for a page.  The huge page itself was free'ed
896  * and removed from the page cache.  This routine will adjust the subpool
897  * usage count, and the global reserve count if needed.  By incrementing
898  * these counts, the reserve map entry which could not be deleted will
899  * appear as a "reserved" entry instead of simply dangling with incorrect
900  * counts.
901  */
902 void hugetlb_fix_reserve_counts(struct inode *inode)
903 {
904 	struct hugepage_subpool *spool = subpool_inode(inode);
905 	long rsv_adjust;
906 	bool reserved = false;
907 
908 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909 	if (rsv_adjust > 0) {
910 		struct hstate *h = hstate_inode(inode);
911 
912 		if (!hugetlb_acct_memory(h, 1))
913 			reserved = true;
914 	} else if (!rsv_adjust) {
915 		reserved = true;
916 	}
917 
918 	if (!reserved)
919 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
920 }
921 
922 /*
923  * Count and return the number of huge pages in the reserve map
924  * that intersect with the range [f, t).
925  */
926 static long region_count(struct resv_map *resv, long f, long t)
927 {
928 	struct list_head *head = &resv->regions;
929 	struct file_region *rg;
930 	long chg = 0;
931 
932 	spin_lock(&resv->lock);
933 	/* Locate each segment we overlap with, and count that overlap. */
934 	list_for_each_entry(rg, head, link) {
935 		long seg_from;
936 		long seg_to;
937 
938 		if (rg->to <= f)
939 			continue;
940 		if (rg->from >= t)
941 			break;
942 
943 		seg_from = max(rg->from, f);
944 		seg_to = min(rg->to, t);
945 
946 		chg += seg_to - seg_from;
947 	}
948 	spin_unlock(&resv->lock);
949 
950 	return chg;
951 }
952 
953 /*
954  * Convert the address within this vma to the page offset within
955  * the mapping, in pagecache page units; huge pages here.
956  */
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958 			struct vm_area_struct *vma, unsigned long address)
959 {
960 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
961 			(vma->vm_pgoff >> huge_page_order(h));
962 }
963 
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965 				     unsigned long address)
966 {
967 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 }
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
970 
971 /*
972  * Return the size of the pages allocated when backing a VMA. In the majority
973  * cases this will be same size as used by the page table entries.
974  */
975 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 {
977 	if (vma->vm_ops && vma->vm_ops->pagesize)
978 		return vma->vm_ops->pagesize(vma);
979 	return PAGE_SIZE;
980 }
981 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
982 
983 /*
984  * Return the page size being used by the MMU to back a VMA. In the majority
985  * of cases, the page size used by the kernel matches the MMU size. On
986  * architectures where it differs, an architecture-specific 'strong'
987  * version of this symbol is required.
988  */
989 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 {
991 	return vma_kernel_pagesize(vma);
992 }
993 
994 /*
995  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
996  * bits of the reservation map pointer, which are always clear due to
997  * alignment.
998  */
999 #define HPAGE_RESV_OWNER    (1UL << 0)
1000 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1001 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1002 
1003 /*
1004  * These helpers are used to track how many pages are reserved for
1005  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1006  * is guaranteed to have their future faults succeed.
1007  *
1008  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1009  * the reserve counters are updated with the hugetlb_lock held. It is safe
1010  * to reset the VMA at fork() time as it is not in use yet and there is no
1011  * chance of the global counters getting corrupted as a result of the values.
1012  *
1013  * The private mapping reservation is represented in a subtly different
1014  * manner to a shared mapping.  A shared mapping has a region map associated
1015  * with the underlying file, this region map represents the backing file
1016  * pages which have ever had a reservation assigned which this persists even
1017  * after the page is instantiated.  A private mapping has a region map
1018  * associated with the original mmap which is attached to all VMAs which
1019  * reference it, this region map represents those offsets which have consumed
1020  * reservation ie. where pages have been instantiated.
1021  */
1022 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 {
1024 	return (unsigned long)vma->vm_private_data;
1025 }
1026 
1027 static void set_vma_private_data(struct vm_area_struct *vma,
1028 							unsigned long value)
1029 {
1030 	vma->vm_private_data = (void *)value;
1031 }
1032 
1033 static void
1034 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1035 					  struct hugetlb_cgroup *h_cg,
1036 					  struct hstate *h)
1037 {
1038 #ifdef CONFIG_CGROUP_HUGETLB
1039 	if (!h_cg || !h) {
1040 		resv_map->reservation_counter = NULL;
1041 		resv_map->pages_per_hpage = 0;
1042 		resv_map->css = NULL;
1043 	} else {
1044 		resv_map->reservation_counter =
1045 			&h_cg->rsvd_hugepage[hstate_index(h)];
1046 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1047 		resv_map->css = &h_cg->css;
1048 	}
1049 #endif
1050 }
1051 
1052 struct resv_map *resv_map_alloc(void)
1053 {
1054 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1055 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 
1057 	if (!resv_map || !rg) {
1058 		kfree(resv_map);
1059 		kfree(rg);
1060 		return NULL;
1061 	}
1062 
1063 	kref_init(&resv_map->refs);
1064 	spin_lock_init(&resv_map->lock);
1065 	INIT_LIST_HEAD(&resv_map->regions);
1066 
1067 	resv_map->adds_in_progress = 0;
1068 	/*
1069 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1070 	 * fields don't do cgroup accounting. On private mappings, these will be
1071 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1072 	 * reservations are to be un-charged from here.
1073 	 */
1074 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 
1076 	INIT_LIST_HEAD(&resv_map->region_cache);
1077 	list_add(&rg->link, &resv_map->region_cache);
1078 	resv_map->region_cache_count = 1;
1079 
1080 	return resv_map;
1081 }
1082 
1083 void resv_map_release(struct kref *ref)
1084 {
1085 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1086 	struct list_head *head = &resv_map->region_cache;
1087 	struct file_region *rg, *trg;
1088 
1089 	/* Clear out any active regions before we release the map. */
1090 	region_del(resv_map, 0, LONG_MAX);
1091 
1092 	/* ... and any entries left in the cache */
1093 	list_for_each_entry_safe(rg, trg, head, link) {
1094 		list_del(&rg->link);
1095 		kfree(rg);
1096 	}
1097 
1098 	VM_BUG_ON(resv_map->adds_in_progress);
1099 
1100 	kfree(resv_map);
1101 }
1102 
1103 static inline struct resv_map *inode_resv_map(struct inode *inode)
1104 {
1105 	/*
1106 	 * At inode evict time, i_mapping may not point to the original
1107 	 * address space within the inode.  This original address space
1108 	 * contains the pointer to the resv_map.  So, always use the
1109 	 * address space embedded within the inode.
1110 	 * The VERY common case is inode->mapping == &inode->i_data but,
1111 	 * this may not be true for device special inodes.
1112 	 */
1113 	return (struct resv_map *)(&inode->i_data)->private_data;
1114 }
1115 
1116 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 {
1118 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1119 	if (vma->vm_flags & VM_MAYSHARE) {
1120 		struct address_space *mapping = vma->vm_file->f_mapping;
1121 		struct inode *inode = mapping->host;
1122 
1123 		return inode_resv_map(inode);
1124 
1125 	} else {
1126 		return (struct resv_map *)(get_vma_private_data(vma) &
1127 							~HPAGE_RESV_MASK);
1128 	}
1129 }
1130 
1131 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 {
1133 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1134 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 
1136 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1137 				HPAGE_RESV_MASK) | (unsigned long)map);
1138 }
1139 
1140 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 {
1142 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1143 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 
1145 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1146 }
1147 
1148 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 {
1150 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 
1152 	return (get_vma_private_data(vma) & flag) != 0;
1153 }
1154 
1155 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 {
1157 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 	/*
1159 	 * Clear vm_private_data
1160 	 * - For shared mappings this is a per-vma semaphore that may be
1161 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1162 	 *   Before clearing, make sure pointer is not associated with vma
1163 	 *   as this will leak the structure.  This is the case when called
1164 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1165 	 *   been called to allocate a new structure.
1166 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1167 	 *   not apply to children.  Faults generated by the children are
1168 	 *   not guaranteed to succeed, even if read-only.
1169 	 */
1170 	if (vma->vm_flags & VM_MAYSHARE) {
1171 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 
1173 		if (vma_lock && vma_lock->vma != vma)
1174 			vma->vm_private_data = NULL;
1175 	} else
1176 		vma->vm_private_data = NULL;
1177 }
1178 
1179 /*
1180  * Reset and decrement one ref on hugepage private reservation.
1181  * Called with mm->mmap_lock writer semaphore held.
1182  * This function should be only used by move_vma() and operate on
1183  * same sized vma. It should never come here with last ref on the
1184  * reservation.
1185  */
1186 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1187 {
1188 	/*
1189 	 * Clear the old hugetlb private page reservation.
1190 	 * It has already been transferred to new_vma.
1191 	 *
1192 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1193 	 * which copies vma into new_vma and unmaps vma. After the copy
1194 	 * operation both new_vma and vma share a reference to the resv_map
1195 	 * struct, and at that point vma is about to be unmapped. We don't
1196 	 * want to return the reservation to the pool at unmap of vma because
1197 	 * the reservation still lives on in new_vma, so simply decrement the
1198 	 * ref here and remove the resv_map reference from this vma.
1199 	 */
1200 	struct resv_map *reservations = vma_resv_map(vma);
1201 
1202 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1203 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1204 		kref_put(&reservations->refs, resv_map_release);
1205 	}
1206 
1207 	hugetlb_dup_vma_private(vma);
1208 }
1209 
1210 /* Returns true if the VMA has associated reserve pages */
1211 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 {
1213 	if (vma->vm_flags & VM_NORESERVE) {
1214 		/*
1215 		 * This address is already reserved by other process(chg == 0),
1216 		 * so, we should decrement reserved count. Without decrementing,
1217 		 * reserve count remains after releasing inode, because this
1218 		 * allocated page will go into page cache and is regarded as
1219 		 * coming from reserved pool in releasing step.  Currently, we
1220 		 * don't have any other solution to deal with this situation
1221 		 * properly, so add work-around here.
1222 		 */
1223 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1224 			return true;
1225 		else
1226 			return false;
1227 	}
1228 
1229 	/* Shared mappings always use reserves */
1230 	if (vma->vm_flags & VM_MAYSHARE) {
1231 		/*
1232 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1233 		 * be a region map for all pages.  The only situation where
1234 		 * there is no region map is if a hole was punched via
1235 		 * fallocate.  In this case, there really are no reserves to
1236 		 * use.  This situation is indicated if chg != 0.
1237 		 */
1238 		if (chg)
1239 			return false;
1240 		else
1241 			return true;
1242 	}
1243 
1244 	/*
1245 	 * Only the process that called mmap() has reserves for
1246 	 * private mappings.
1247 	 */
1248 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 		/*
1250 		 * Like the shared case above, a hole punch or truncate
1251 		 * could have been performed on the private mapping.
1252 		 * Examine the value of chg to determine if reserves
1253 		 * actually exist or were previously consumed.
1254 		 * Very Subtle - The value of chg comes from a previous
1255 		 * call to vma_needs_reserves().  The reserve map for
1256 		 * private mappings has different (opposite) semantics
1257 		 * than that of shared mappings.  vma_needs_reserves()
1258 		 * has already taken this difference in semantics into
1259 		 * account.  Therefore, the meaning of chg is the same
1260 		 * as in the shared case above.  Code could easily be
1261 		 * combined, but keeping it separate draws attention to
1262 		 * subtle differences.
1263 		 */
1264 		if (chg)
1265 			return false;
1266 		else
1267 			return true;
1268 	}
1269 
1270 	return false;
1271 }
1272 
1273 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 {
1275 	int nid = folio_nid(folio);
1276 
1277 	lockdep_assert_held(&hugetlb_lock);
1278 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 
1280 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1281 	h->free_huge_pages++;
1282 	h->free_huge_pages_node[nid]++;
1283 	folio_set_hugetlb_freed(folio);
1284 }
1285 
1286 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1287 								int nid)
1288 {
1289 	struct folio *folio;
1290 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291 
1292 	lockdep_assert_held(&hugetlb_lock);
1293 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1294 		if (pin && !folio_is_longterm_pinnable(folio))
1295 			continue;
1296 
1297 		if (folio_test_hwpoison(folio))
1298 			continue;
1299 
1300 		list_move(&folio->lru, &h->hugepage_activelist);
1301 		folio_ref_unfreeze(folio, 1);
1302 		folio_clear_hugetlb_freed(folio);
1303 		h->free_huge_pages--;
1304 		h->free_huge_pages_node[nid]--;
1305 		return folio;
1306 	}
1307 
1308 	return NULL;
1309 }
1310 
1311 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1312 							int nid, nodemask_t *nmask)
1313 {
1314 	unsigned int cpuset_mems_cookie;
1315 	struct zonelist *zonelist;
1316 	struct zone *zone;
1317 	struct zoneref *z;
1318 	int node = NUMA_NO_NODE;
1319 
1320 	zonelist = node_zonelist(nid, gfp_mask);
1321 
1322 retry_cpuset:
1323 	cpuset_mems_cookie = read_mems_allowed_begin();
1324 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1325 		struct folio *folio;
1326 
1327 		if (!cpuset_zone_allowed(zone, gfp_mask))
1328 			continue;
1329 		/*
1330 		 * no need to ask again on the same node. Pool is node rather than
1331 		 * zone aware
1332 		 */
1333 		if (zone_to_nid(zone) == node)
1334 			continue;
1335 		node = zone_to_nid(zone);
1336 
1337 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1338 		if (folio)
1339 			return folio;
1340 	}
1341 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1342 		goto retry_cpuset;
1343 
1344 	return NULL;
1345 }
1346 
1347 static unsigned long available_huge_pages(struct hstate *h)
1348 {
1349 	return h->free_huge_pages - h->resv_huge_pages;
1350 }
1351 
1352 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1353 				struct vm_area_struct *vma,
1354 				unsigned long address, int avoid_reserve,
1355 				long chg)
1356 {
1357 	struct folio *folio = NULL;
1358 	struct mempolicy *mpol;
1359 	gfp_t gfp_mask;
1360 	nodemask_t *nodemask;
1361 	int nid;
1362 
1363 	/*
1364 	 * A child process with MAP_PRIVATE mappings created by their parent
1365 	 * have no page reserves. This check ensures that reservations are
1366 	 * not "stolen". The child may still get SIGKILLed
1367 	 */
1368 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1369 		goto err;
1370 
1371 	/* If reserves cannot be used, ensure enough pages are in the pool */
1372 	if (avoid_reserve && !available_huge_pages(h))
1373 		goto err;
1374 
1375 	gfp_mask = htlb_alloc_mask(h);
1376 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377 
1378 	if (mpol_is_preferred_many(mpol)) {
1379 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1380 							nid, nodemask);
1381 
1382 		/* Fallback to all nodes if page==NULL */
1383 		nodemask = NULL;
1384 	}
1385 
1386 	if (!folio)
1387 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1388 							nid, nodemask);
1389 
1390 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391 		folio_set_hugetlb_restore_reserve(folio);
1392 		h->resv_huge_pages--;
1393 	}
1394 
1395 	mpol_cond_put(mpol);
1396 	return folio;
1397 
1398 err:
1399 	return NULL;
1400 }
1401 
1402 /*
1403  * common helper functions for hstate_next_node_to_{alloc|free}.
1404  * We may have allocated or freed a huge page based on a different
1405  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406  * be outside of *nodes_allowed.  Ensure that we use an allowed
1407  * node for alloc or free.
1408  */
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 {
1411 	nid = next_node_in(nid, *nodes_allowed);
1412 	VM_BUG_ON(nid >= MAX_NUMNODES);
1413 
1414 	return nid;
1415 }
1416 
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 {
1419 	if (!node_isset(nid, *nodes_allowed))
1420 		nid = next_node_allowed(nid, nodes_allowed);
1421 	return nid;
1422 }
1423 
1424 /*
1425  * returns the previously saved node ["this node"] from which to
1426  * allocate a persistent huge page for the pool and advance the
1427  * next node from which to allocate, handling wrap at end of node
1428  * mask.
1429  */
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431 					nodemask_t *nodes_allowed)
1432 {
1433 	int nid;
1434 
1435 	VM_BUG_ON(!nodes_allowed);
1436 
1437 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439 
1440 	return nid;
1441 }
1442 
1443 /*
1444  * helper for remove_pool_huge_page() - return the previously saved
1445  * node ["this node"] from which to free a huge page.  Advance the
1446  * next node id whether or not we find a free huge page to free so
1447  * that the next attempt to free addresses the next node.
1448  */
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450 {
1451 	int nid;
1452 
1453 	VM_BUG_ON(!nodes_allowed);
1454 
1455 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457 
1458 	return nid;
1459 }
1460 
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1462 	for (nr_nodes = nodes_weight(*mask);				\
1463 		nr_nodes > 0 &&						\
1464 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1465 		nr_nodes--)
1466 
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1468 	for (nr_nodes = nodes_weight(*mask);				\
1469 		nr_nodes > 0 &&						\
1470 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1471 		nr_nodes--)
1472 
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475 					unsigned int order, bool demote)
1476 {
1477 	int i;
1478 	int nr_pages = 1 << order;
1479 	struct page *p;
1480 
1481 	atomic_set(&folio->_entire_mapcount, 0);
1482 	atomic_set(&folio->_nr_pages_mapped, 0);
1483 	atomic_set(&folio->_pincount, 0);
1484 
1485 	for (i = 1; i < nr_pages; i++) {
1486 		p = folio_page(folio, i);
1487 		p->mapping = NULL;
1488 		clear_compound_head(p);
1489 		if (!demote)
1490 			set_page_refcounted(p);
1491 	}
1492 
1493 	__folio_clear_head(folio);
1494 }
1495 
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497 					unsigned int order)
1498 {
1499 	__destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501 
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504 					unsigned int order)
1505 {
1506 	__destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508 
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511 	/*
1512 	 * If the page isn't allocated using the cma allocator,
1513 	 * cma_release() returns false.
1514 	 */
1515 #ifdef CONFIG_CMA
1516 	int nid = folio_nid(folio);
1517 
1518 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519 		return;
1520 #endif
1521 
1522 	free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524 
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 		int nid, nodemask_t *nodemask)
1528 {
1529 	struct page *page;
1530 	unsigned long nr_pages = pages_per_huge_page(h);
1531 	if (nid == NUMA_NO_NODE)
1532 		nid = numa_mem_id();
1533 
1534 #ifdef CONFIG_CMA
1535 	{
1536 		int node;
1537 
1538 		if (hugetlb_cma[nid]) {
1539 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 					huge_page_order(h), true);
1541 			if (page)
1542 				return page_folio(page);
1543 		}
1544 
1545 		if (!(gfp_mask & __GFP_THISNODE)) {
1546 			for_each_node_mask(node, *nodemask) {
1547 				if (node == nid || !hugetlb_cma[node])
1548 					continue;
1549 
1550 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 						huge_page_order(h), true);
1552 				if (page)
1553 					return page_folio(page);
1554 			}
1555 		}
1556 	}
1557 #endif
1558 
1559 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 	return page ? page_folio(page) : NULL;
1561 }
1562 
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 					int nid, nodemask_t *nodemask)
1566 {
1567 	return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570 
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 					int nid, nodemask_t *nodemask)
1574 {
1575 	return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578 						unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 						unsigned int order) { }
1581 #endif
1582 
1583 /*
1584  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585  * as just a compound page.
1586  *
1587  * A reference is held on the folio, except in the case of demote.
1588  *
1589  * Must be called with hugetlb lock held.
1590  */
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 							bool adjust_surplus,
1593 							bool demote)
1594 {
1595 	int nid = folio_nid(folio);
1596 
1597 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599 
1600 	lockdep_assert_held(&hugetlb_lock);
1601 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602 		return;
1603 
1604 	list_del(&folio->lru);
1605 
1606 	if (folio_test_hugetlb_freed(folio)) {
1607 		h->free_huge_pages--;
1608 		h->free_huge_pages_node[nid]--;
1609 	}
1610 	if (adjust_surplus) {
1611 		h->surplus_huge_pages--;
1612 		h->surplus_huge_pages_node[nid]--;
1613 	}
1614 
1615 	/*
1616 	 * Very subtle
1617 	 *
1618 	 * For non-gigantic pages set the destructor to the normal compound
1619 	 * page dtor.  This is needed in case someone takes an additional
1620 	 * temporary ref to the page, and freeing is delayed until they drop
1621 	 * their reference.
1622 	 *
1623 	 * For gigantic pages set the destructor to the null dtor.  This
1624 	 * destructor will never be called.  Before freeing the gigantic
1625 	 * page destroy_compound_gigantic_folio will turn the folio into a
1626 	 * simple group of pages.  After this the destructor does not
1627 	 * apply.
1628 	 *
1629 	 * This handles the case where more than one ref is held when and
1630 	 * after update_and_free_hugetlb_folio is called.
1631 	 *
1632 	 * In the case of demote we do not ref count the page as it will soon
1633 	 * be turned into a page of smaller size.
1634 	 */
1635 	if (!demote)
1636 		folio_ref_unfreeze(folio, 1);
1637 	if (hstate_is_gigantic(h))
1638 		folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639 	else
1640 		folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641 
1642 	h->nr_huge_pages--;
1643 	h->nr_huge_pages_node[nid]--;
1644 }
1645 
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 							bool adjust_surplus)
1648 {
1649 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650 }
1651 
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 							bool adjust_surplus)
1654 {
1655 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656 }
1657 
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 			     bool adjust_surplus)
1660 {
1661 	int zeroed;
1662 	int nid = folio_nid(folio);
1663 
1664 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665 
1666 	lockdep_assert_held(&hugetlb_lock);
1667 
1668 	INIT_LIST_HEAD(&folio->lru);
1669 	h->nr_huge_pages++;
1670 	h->nr_huge_pages_node[nid]++;
1671 
1672 	if (adjust_surplus) {
1673 		h->surplus_huge_pages++;
1674 		h->surplus_huge_pages_node[nid]++;
1675 	}
1676 
1677 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 	folio_change_private(folio, NULL);
1679 	/*
1680 	 * We have to set hugetlb_vmemmap_optimized again as above
1681 	 * folio_change_private(folio, NULL) cleared it.
1682 	 */
1683 	folio_set_hugetlb_vmemmap_optimized(folio);
1684 
1685 	/*
1686 	 * This folio is about to be managed by the hugetlb allocator and
1687 	 * should have no users.  Drop our reference, and check for others
1688 	 * just in case.
1689 	 */
1690 	zeroed = folio_put_testzero(folio);
1691 	if (unlikely(!zeroed))
1692 		/*
1693 		 * It is VERY unlikely soneone else has taken a ref on
1694 		 * the page.  In this case, we simply return as the
1695 		 * hugetlb destructor (free_huge_page) will be called
1696 		 * when this other ref is dropped.
1697 		 */
1698 		return;
1699 
1700 	arch_clear_hugepage_flags(&folio->page);
1701 	enqueue_hugetlb_folio(h, folio);
1702 }
1703 
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 						struct folio *folio)
1706 {
1707 	int i;
1708 	struct page *subpage;
1709 
1710 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711 		return;
1712 
1713 	/*
1714 	 * If we don't know which subpages are hwpoisoned, we can't free
1715 	 * the hugepage, so it's leaked intentionally.
1716 	 */
1717 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718 		return;
1719 
1720 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 		spin_lock_irq(&hugetlb_lock);
1722 		/*
1723 		 * If we cannot allocate vmemmap pages, just refuse to free the
1724 		 * page and put the page back on the hugetlb free list and treat
1725 		 * as a surplus page.
1726 		 */
1727 		add_hugetlb_folio(h, folio, true);
1728 		spin_unlock_irq(&hugetlb_lock);
1729 		return;
1730 	}
1731 
1732 	/*
1733 	 * Move PageHWPoison flag from head page to the raw error pages,
1734 	 * which makes any healthy subpages reusable.
1735 	 */
1736 	if (unlikely(folio_test_hwpoison(folio)))
1737 		folio_clear_hugetlb_hwpoison(folio);
1738 
1739 	for (i = 0; i < pages_per_huge_page(h); i++) {
1740 		subpage = folio_page(folio, i);
1741 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 				1 << PG_referenced | 1 << PG_dirty |
1743 				1 << PG_active | 1 << PG_private |
1744 				1 << PG_writeback);
1745 	}
1746 
1747 	/*
1748 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 	 * need to be given back to CMA in free_gigantic_folio.
1750 	 */
1751 	if (hstate_is_gigantic(h) ||
1752 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 		free_gigantic_folio(folio, huge_page_order(h));
1755 	} else {
1756 		__free_pages(&folio->page, huge_page_order(h));
1757 	}
1758 }
1759 
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772 
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775 	struct llist_node *node;
1776 
1777 	node = llist_del_all(&hpage_freelist);
1778 
1779 	while (node) {
1780 		struct page *page;
1781 		struct hstate *h;
1782 
1783 		page = container_of((struct address_space **)node,
1784 				     struct page, mapping);
1785 		node = node->next;
1786 		page->mapping = NULL;
1787 		/*
1788 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1789 		 * folio_hstate() is going to trigger because a previous call to
1790 		 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 		 * (folio, NULL_COMPOUND_DTOR), so do not use folio_hstate()
1792 		 * directly.
1793 		 */
1794 		h = size_to_hstate(page_size(page));
1795 
1796 		__update_and_free_hugetlb_folio(h, page_folio(page));
1797 
1798 		cond_resched();
1799 	}
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802 
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805 	if (hugetlb_vmemmap_optimizable(h))
1806 		flush_work(&free_hpage_work);
1807 }
1808 
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810 				 bool atomic)
1811 {
1812 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 		__update_and_free_hugetlb_folio(h, folio);
1814 		return;
1815 	}
1816 
1817 	/*
1818 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 	 *
1820 	 * Only call schedule_work() if hpage_freelist is previously
1821 	 * empty. Otherwise, schedule_work() had been called but the workfn
1822 	 * hasn't retrieved the list yet.
1823 	 */
1824 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 		schedule_work(&free_hpage_work);
1826 }
1827 
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829 {
1830 	struct page *page, *t_page;
1831 	struct folio *folio;
1832 
1833 	list_for_each_entry_safe(page, t_page, list, lru) {
1834 		folio = page_folio(page);
1835 		update_and_free_hugetlb_folio(h, folio, false);
1836 		cond_resched();
1837 	}
1838 }
1839 
1840 struct hstate *size_to_hstate(unsigned long size)
1841 {
1842 	struct hstate *h;
1843 
1844 	for_each_hstate(h) {
1845 		if (huge_page_size(h) == size)
1846 			return h;
1847 	}
1848 	return NULL;
1849 }
1850 
1851 void free_huge_page(struct page *page)
1852 {
1853 	/*
1854 	 * Can't pass hstate in here because it is called from the
1855 	 * compound page destructor.
1856 	 */
1857 	struct folio *folio = page_folio(page);
1858 	struct hstate *h = folio_hstate(folio);
1859 	int nid = folio_nid(folio);
1860 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 	bool restore_reserve;
1862 	unsigned long flags;
1863 
1864 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866 
1867 	hugetlb_set_folio_subpool(folio, NULL);
1868 	if (folio_test_anon(folio))
1869 		__ClearPageAnonExclusive(&folio->page);
1870 	folio->mapping = NULL;
1871 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 	folio_clear_hugetlb_restore_reserve(folio);
1873 
1874 	/*
1875 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 	 * reservation.  If the page was associated with a subpool, there
1877 	 * would have been a page reserved in the subpool before allocation
1878 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1879 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 	 * remove the reserved page from the subpool.
1881 	 */
1882 	if (!restore_reserve) {
1883 		/*
1884 		 * A return code of zero implies that the subpool will be
1885 		 * under its minimum size if the reservation is not restored
1886 		 * after page is free.  Therefore, force restore_reserve
1887 		 * operation.
1888 		 */
1889 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 			restore_reserve = true;
1891 	}
1892 
1893 	spin_lock_irqsave(&hugetlb_lock, flags);
1894 	folio_clear_hugetlb_migratable(folio);
1895 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 				     pages_per_huge_page(h), folio);
1897 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 					  pages_per_huge_page(h), folio);
1899 	if (restore_reserve)
1900 		h->resv_huge_pages++;
1901 
1902 	if (folio_test_hugetlb_temporary(folio)) {
1903 		remove_hugetlb_folio(h, folio, false);
1904 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 		update_and_free_hugetlb_folio(h, folio, true);
1906 	} else if (h->surplus_huge_pages_node[nid]) {
1907 		/* remove the page from active list */
1908 		remove_hugetlb_folio(h, folio, true);
1909 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 		update_and_free_hugetlb_folio(h, folio, true);
1911 	} else {
1912 		arch_clear_hugepage_flags(page);
1913 		enqueue_hugetlb_folio(h, folio);
1914 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1915 	}
1916 }
1917 
1918 /*
1919  * Must be called with the hugetlb lock held
1920  */
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922 {
1923 	lockdep_assert_held(&hugetlb_lock);
1924 	h->nr_huge_pages++;
1925 	h->nr_huge_pages_node[nid]++;
1926 }
1927 
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929 {
1930 	hugetlb_vmemmap_optimize(h, &folio->page);
1931 	INIT_LIST_HEAD(&folio->lru);
1932 	folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 	hugetlb_set_folio_subpool(folio, NULL);
1934 	set_hugetlb_cgroup(folio, NULL);
1935 	set_hugetlb_cgroup_rsvd(folio, NULL);
1936 }
1937 
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939 {
1940 	__prep_new_hugetlb_folio(h, folio);
1941 	spin_lock_irq(&hugetlb_lock);
1942 	__prep_account_new_huge_page(h, nid);
1943 	spin_unlock_irq(&hugetlb_lock);
1944 }
1945 
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 					unsigned int order, bool demote)
1948 {
1949 	int i, j;
1950 	int nr_pages = 1 << order;
1951 	struct page *p;
1952 
1953 	__folio_clear_reserved(folio);
1954 	for (i = 0; i < nr_pages; i++) {
1955 		p = folio_page(folio, i);
1956 
1957 		/*
1958 		 * For gigantic hugepages allocated through bootmem at
1959 		 * boot, it's safer to be consistent with the not-gigantic
1960 		 * hugepages and clear the PG_reserved bit from all tail pages
1961 		 * too.  Otherwise drivers using get_user_pages() to access tail
1962 		 * pages may get the reference counting wrong if they see
1963 		 * PG_reserved set on a tail page (despite the head page not
1964 		 * having PG_reserved set).  Enforcing this consistency between
1965 		 * head and tail pages allows drivers to optimize away a check
1966 		 * on the head page when they need know if put_page() is needed
1967 		 * after get_user_pages().
1968 		 */
1969 		if (i != 0)	/* head page cleared above */
1970 			__ClearPageReserved(p);
1971 		/*
1972 		 * Subtle and very unlikely
1973 		 *
1974 		 * Gigantic 'page allocators' such as memblock or cma will
1975 		 * return a set of pages with each page ref counted.  We need
1976 		 * to turn this set of pages into a compound page with tail
1977 		 * page ref counts set to zero.  Code such as speculative page
1978 		 * cache adding could take a ref on a 'to be' tail page.
1979 		 * We need to respect any increased ref count, and only set
1980 		 * the ref count to zero if count is currently 1.  If count
1981 		 * is not 1, we return an error.  An error return indicates
1982 		 * the set of pages can not be converted to a gigantic page.
1983 		 * The caller who allocated the pages should then discard the
1984 		 * pages using the appropriate free interface.
1985 		 *
1986 		 * In the case of demote, the ref count will be zero.
1987 		 */
1988 		if (!demote) {
1989 			if (!page_ref_freeze(p, 1)) {
1990 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1991 				goto out_error;
1992 			}
1993 		} else {
1994 			VM_BUG_ON_PAGE(page_count(p), p);
1995 		}
1996 		if (i != 0)
1997 			set_compound_head(p, &folio->page);
1998 	}
1999 	__folio_set_head(folio);
2000 	/* we rely on prep_new_hugetlb_folio to set the destructor */
2001 	folio_set_order(folio, order);
2002 	atomic_set(&folio->_entire_mapcount, -1);
2003 	atomic_set(&folio->_nr_pages_mapped, 0);
2004 	atomic_set(&folio->_pincount, 0);
2005 	return true;
2006 
2007 out_error:
2008 	/* undo page modifications made above */
2009 	for (j = 0; j < i; j++) {
2010 		p = folio_page(folio, j);
2011 		if (j != 0)
2012 			clear_compound_head(p);
2013 		set_page_refcounted(p);
2014 	}
2015 	/* need to clear PG_reserved on remaining tail pages  */
2016 	for (; j < nr_pages; j++) {
2017 		p = folio_page(folio, j);
2018 		__ClearPageReserved(p);
2019 	}
2020 	return false;
2021 }
2022 
2023 static bool prep_compound_gigantic_folio(struct folio *folio,
2024 							unsigned int order)
2025 {
2026 	return __prep_compound_gigantic_folio(folio, order, false);
2027 }
2028 
2029 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2030 							unsigned int order)
2031 {
2032 	return __prep_compound_gigantic_folio(folio, order, true);
2033 }
2034 
2035 /*
2036  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2037  * transparent huge pages.  See the PageTransHuge() documentation for more
2038  * details.
2039  */
2040 int PageHuge(struct page *page)
2041 {
2042 	struct folio *folio;
2043 
2044 	if (!PageCompound(page))
2045 		return 0;
2046 	folio = page_folio(page);
2047 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2048 }
2049 EXPORT_SYMBOL_GPL(PageHuge);
2050 
2051 /**
2052  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2053  * @folio: The folio to test.
2054  *
2055  * Context: Any context.  Caller should have a reference on the folio to
2056  * prevent it from being turned into a tail page.
2057  * Return: True for hugetlbfs folios, false for anon folios or folios
2058  * belonging to other filesystems.
2059  */
2060 bool folio_test_hugetlb(struct folio *folio)
2061 {
2062 	if (!folio_test_large(folio))
2063 		return false;
2064 
2065 	return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2066 }
2067 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2068 
2069 /*
2070  * Find and lock address space (mapping) in write mode.
2071  *
2072  * Upon entry, the page is locked which means that page_mapping() is
2073  * stable.  Due to locking order, we can only trylock_write.  If we can
2074  * not get the lock, simply return NULL to caller.
2075  */
2076 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2077 {
2078 	struct address_space *mapping = page_mapping(hpage);
2079 
2080 	if (!mapping)
2081 		return mapping;
2082 
2083 	if (i_mmap_trylock_write(mapping))
2084 		return mapping;
2085 
2086 	return NULL;
2087 }
2088 
2089 pgoff_t hugetlb_basepage_index(struct page *page)
2090 {
2091 	struct page *page_head = compound_head(page);
2092 	pgoff_t index = page_index(page_head);
2093 	unsigned long compound_idx;
2094 
2095 	if (compound_order(page_head) > MAX_ORDER)
2096 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2097 	else
2098 		compound_idx = page - page_head;
2099 
2100 	return (index << compound_order(page_head)) + compound_idx;
2101 }
2102 
2103 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2104 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2105 		nodemask_t *node_alloc_noretry)
2106 {
2107 	int order = huge_page_order(h);
2108 	struct page *page;
2109 	bool alloc_try_hard = true;
2110 	bool retry = true;
2111 
2112 	/*
2113 	 * By default we always try hard to allocate the page with
2114 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2115 	 * a loop (to adjust global huge page counts) and previous allocation
2116 	 * failed, do not continue to try hard on the same node.  Use the
2117 	 * node_alloc_noretry bitmap to manage this state information.
2118 	 */
2119 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2120 		alloc_try_hard = false;
2121 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2122 	if (alloc_try_hard)
2123 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2124 	if (nid == NUMA_NO_NODE)
2125 		nid = numa_mem_id();
2126 retry:
2127 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2128 
2129 	/* Freeze head page */
2130 	if (page && !page_ref_freeze(page, 1)) {
2131 		__free_pages(page, order);
2132 		if (retry) {	/* retry once */
2133 			retry = false;
2134 			goto retry;
2135 		}
2136 		/* WOW!  twice in a row. */
2137 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2138 		page = NULL;
2139 	}
2140 
2141 	/*
2142 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2143 	 * indicates an overall state change.  Clear bit so that we resume
2144 	 * normal 'try hard' allocations.
2145 	 */
2146 	if (node_alloc_noretry && page && !alloc_try_hard)
2147 		node_clear(nid, *node_alloc_noretry);
2148 
2149 	/*
2150 	 * If we tried hard to get a page but failed, set bit so that
2151 	 * subsequent attempts will not try as hard until there is an
2152 	 * overall state change.
2153 	 */
2154 	if (node_alloc_noretry && !page && alloc_try_hard)
2155 		node_set(nid, *node_alloc_noretry);
2156 
2157 	if (!page) {
2158 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2159 		return NULL;
2160 	}
2161 
2162 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2163 	return page_folio(page);
2164 }
2165 
2166 /*
2167  * Common helper to allocate a fresh hugetlb page. All specific allocators
2168  * should use this function to get new hugetlb pages
2169  *
2170  * Note that returned page is 'frozen':  ref count of head page and all tail
2171  * pages is zero.
2172  */
2173 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2174 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2175 		nodemask_t *node_alloc_noretry)
2176 {
2177 	struct folio *folio;
2178 	bool retry = false;
2179 
2180 retry:
2181 	if (hstate_is_gigantic(h))
2182 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2183 	else
2184 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2185 				nid, nmask, node_alloc_noretry);
2186 	if (!folio)
2187 		return NULL;
2188 	if (hstate_is_gigantic(h)) {
2189 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2190 			/*
2191 			 * Rare failure to convert pages to compound page.
2192 			 * Free pages and try again - ONCE!
2193 			 */
2194 			free_gigantic_folio(folio, huge_page_order(h));
2195 			if (!retry) {
2196 				retry = true;
2197 				goto retry;
2198 			}
2199 			return NULL;
2200 		}
2201 	}
2202 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2203 
2204 	return folio;
2205 }
2206 
2207 /*
2208  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2209  * manner.
2210  */
2211 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2212 				nodemask_t *node_alloc_noretry)
2213 {
2214 	struct folio *folio;
2215 	int nr_nodes, node;
2216 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2217 
2218 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2219 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2220 					nodes_allowed, node_alloc_noretry);
2221 		if (folio) {
2222 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
2223 			return 1;
2224 		}
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 /*
2231  * Remove huge page from pool from next node to free.  Attempt to keep
2232  * persistent huge pages more or less balanced over allowed nodes.
2233  * This routine only 'removes' the hugetlb page.  The caller must make
2234  * an additional call to free the page to low level allocators.
2235  * Called with hugetlb_lock locked.
2236  */
2237 static struct page *remove_pool_huge_page(struct hstate *h,
2238 						nodemask_t *nodes_allowed,
2239 						 bool acct_surplus)
2240 {
2241 	int nr_nodes, node;
2242 	struct page *page = NULL;
2243 	struct folio *folio;
2244 
2245 	lockdep_assert_held(&hugetlb_lock);
2246 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2247 		/*
2248 		 * If we're returning unused surplus pages, only examine
2249 		 * nodes with surplus pages.
2250 		 */
2251 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2252 		    !list_empty(&h->hugepage_freelists[node])) {
2253 			page = list_entry(h->hugepage_freelists[node].next,
2254 					  struct page, lru);
2255 			folio = page_folio(page);
2256 			remove_hugetlb_folio(h, folio, acct_surplus);
2257 			break;
2258 		}
2259 	}
2260 
2261 	return page;
2262 }
2263 
2264 /*
2265  * Dissolve a given free hugepage into free buddy pages. This function does
2266  * nothing for in-use hugepages and non-hugepages.
2267  * This function returns values like below:
2268  *
2269  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2270  *           when the system is under memory pressure and the feature of
2271  *           freeing unused vmemmap pages associated with each hugetlb page
2272  *           is enabled.
2273  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2274  *           (allocated or reserved.)
2275  *       0:  successfully dissolved free hugepages or the page is not a
2276  *           hugepage (considered as already dissolved)
2277  */
2278 int dissolve_free_huge_page(struct page *page)
2279 {
2280 	int rc = -EBUSY;
2281 	struct folio *folio = page_folio(page);
2282 
2283 retry:
2284 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2285 	if (!folio_test_hugetlb(folio))
2286 		return 0;
2287 
2288 	spin_lock_irq(&hugetlb_lock);
2289 	if (!folio_test_hugetlb(folio)) {
2290 		rc = 0;
2291 		goto out;
2292 	}
2293 
2294 	if (!folio_ref_count(folio)) {
2295 		struct hstate *h = folio_hstate(folio);
2296 		if (!available_huge_pages(h))
2297 			goto out;
2298 
2299 		/*
2300 		 * We should make sure that the page is already on the free list
2301 		 * when it is dissolved.
2302 		 */
2303 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2304 			spin_unlock_irq(&hugetlb_lock);
2305 			cond_resched();
2306 
2307 			/*
2308 			 * Theoretically, we should return -EBUSY when we
2309 			 * encounter this race. In fact, we have a chance
2310 			 * to successfully dissolve the page if we do a
2311 			 * retry. Because the race window is quite small.
2312 			 * If we seize this opportunity, it is an optimization
2313 			 * for increasing the success rate of dissolving page.
2314 			 */
2315 			goto retry;
2316 		}
2317 
2318 		remove_hugetlb_folio(h, folio, false);
2319 		h->max_huge_pages--;
2320 		spin_unlock_irq(&hugetlb_lock);
2321 
2322 		/*
2323 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2324 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2325 		 * free the page if it can not allocate required vmemmap.  We
2326 		 * need to adjust max_huge_pages if the page is not freed.
2327 		 * Attempt to allocate vmemmmap here so that we can take
2328 		 * appropriate action on failure.
2329 		 */
2330 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2331 		if (!rc) {
2332 			update_and_free_hugetlb_folio(h, folio, false);
2333 		} else {
2334 			spin_lock_irq(&hugetlb_lock);
2335 			add_hugetlb_folio(h, folio, false);
2336 			h->max_huge_pages++;
2337 			spin_unlock_irq(&hugetlb_lock);
2338 		}
2339 
2340 		return rc;
2341 	}
2342 out:
2343 	spin_unlock_irq(&hugetlb_lock);
2344 	return rc;
2345 }
2346 
2347 /*
2348  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2349  * make specified memory blocks removable from the system.
2350  * Note that this will dissolve a free gigantic hugepage completely, if any
2351  * part of it lies within the given range.
2352  * Also note that if dissolve_free_huge_page() returns with an error, all
2353  * free hugepages that were dissolved before that error are lost.
2354  */
2355 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2356 {
2357 	unsigned long pfn;
2358 	struct page *page;
2359 	int rc = 0;
2360 	unsigned int order;
2361 	struct hstate *h;
2362 
2363 	if (!hugepages_supported())
2364 		return rc;
2365 
2366 	order = huge_page_order(&default_hstate);
2367 	for_each_hstate(h)
2368 		order = min(order, huge_page_order(h));
2369 
2370 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2371 		page = pfn_to_page(pfn);
2372 		rc = dissolve_free_huge_page(page);
2373 		if (rc)
2374 			break;
2375 	}
2376 
2377 	return rc;
2378 }
2379 
2380 /*
2381  * Allocates a fresh surplus page from the page allocator.
2382  */
2383 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2384 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2385 {
2386 	struct folio *folio = NULL;
2387 
2388 	if (hstate_is_gigantic(h))
2389 		return NULL;
2390 
2391 	spin_lock_irq(&hugetlb_lock);
2392 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2393 		goto out_unlock;
2394 	spin_unlock_irq(&hugetlb_lock);
2395 
2396 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2397 	if (!folio)
2398 		return NULL;
2399 
2400 	spin_lock_irq(&hugetlb_lock);
2401 	/*
2402 	 * We could have raced with the pool size change.
2403 	 * Double check that and simply deallocate the new page
2404 	 * if we would end up overcommiting the surpluses. Abuse
2405 	 * temporary page to workaround the nasty free_huge_page
2406 	 * codeflow
2407 	 */
2408 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2409 		folio_set_hugetlb_temporary(folio);
2410 		spin_unlock_irq(&hugetlb_lock);
2411 		free_huge_page(&folio->page);
2412 		return NULL;
2413 	}
2414 
2415 	h->surplus_huge_pages++;
2416 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2417 
2418 out_unlock:
2419 	spin_unlock_irq(&hugetlb_lock);
2420 
2421 	return folio;
2422 }
2423 
2424 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2425 				     int nid, nodemask_t *nmask)
2426 {
2427 	struct folio *folio;
2428 
2429 	if (hstate_is_gigantic(h))
2430 		return NULL;
2431 
2432 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2433 	if (!folio)
2434 		return NULL;
2435 
2436 	/* fresh huge pages are frozen */
2437 	folio_ref_unfreeze(folio, 1);
2438 	/*
2439 	 * We do not account these pages as surplus because they are only
2440 	 * temporary and will be released properly on the last reference
2441 	 */
2442 	folio_set_hugetlb_temporary(folio);
2443 
2444 	return folio;
2445 }
2446 
2447 /*
2448  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2449  */
2450 static
2451 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2452 		struct vm_area_struct *vma, unsigned long addr)
2453 {
2454 	struct folio *folio = NULL;
2455 	struct mempolicy *mpol;
2456 	gfp_t gfp_mask = htlb_alloc_mask(h);
2457 	int nid;
2458 	nodemask_t *nodemask;
2459 
2460 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2461 	if (mpol_is_preferred_many(mpol)) {
2462 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2463 
2464 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2465 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2466 
2467 		/* Fallback to all nodes if page==NULL */
2468 		nodemask = NULL;
2469 	}
2470 
2471 	if (!folio)
2472 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2473 	mpol_cond_put(mpol);
2474 	return folio;
2475 }
2476 
2477 /* folio migration callback function */
2478 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2479 		nodemask_t *nmask, gfp_t gfp_mask)
2480 {
2481 	spin_lock_irq(&hugetlb_lock);
2482 	if (available_huge_pages(h)) {
2483 		struct folio *folio;
2484 
2485 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2486 						preferred_nid, nmask);
2487 		if (folio) {
2488 			spin_unlock_irq(&hugetlb_lock);
2489 			return folio;
2490 		}
2491 	}
2492 	spin_unlock_irq(&hugetlb_lock);
2493 
2494 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2495 }
2496 
2497 /* mempolicy aware migration callback */
2498 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2499 		unsigned long address)
2500 {
2501 	struct mempolicy *mpol;
2502 	nodemask_t *nodemask;
2503 	struct folio *folio;
2504 	gfp_t gfp_mask;
2505 	int node;
2506 
2507 	gfp_mask = htlb_alloc_mask(h);
2508 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2509 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2510 	mpol_cond_put(mpol);
2511 
2512 	return folio;
2513 }
2514 
2515 /*
2516  * Increase the hugetlb pool such that it can accommodate a reservation
2517  * of size 'delta'.
2518  */
2519 static int gather_surplus_pages(struct hstate *h, long delta)
2520 	__must_hold(&hugetlb_lock)
2521 {
2522 	LIST_HEAD(surplus_list);
2523 	struct folio *folio;
2524 	struct page *page, *tmp;
2525 	int ret;
2526 	long i;
2527 	long needed, allocated;
2528 	bool alloc_ok = true;
2529 
2530 	lockdep_assert_held(&hugetlb_lock);
2531 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2532 	if (needed <= 0) {
2533 		h->resv_huge_pages += delta;
2534 		return 0;
2535 	}
2536 
2537 	allocated = 0;
2538 
2539 	ret = -ENOMEM;
2540 retry:
2541 	spin_unlock_irq(&hugetlb_lock);
2542 	for (i = 0; i < needed; i++) {
2543 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2544 				NUMA_NO_NODE, NULL);
2545 		if (!folio) {
2546 			alloc_ok = false;
2547 			break;
2548 		}
2549 		list_add(&folio->lru, &surplus_list);
2550 		cond_resched();
2551 	}
2552 	allocated += i;
2553 
2554 	/*
2555 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2556 	 * because either resv_huge_pages or free_huge_pages may have changed.
2557 	 */
2558 	spin_lock_irq(&hugetlb_lock);
2559 	needed = (h->resv_huge_pages + delta) -
2560 			(h->free_huge_pages + allocated);
2561 	if (needed > 0) {
2562 		if (alloc_ok)
2563 			goto retry;
2564 		/*
2565 		 * We were not able to allocate enough pages to
2566 		 * satisfy the entire reservation so we free what
2567 		 * we've allocated so far.
2568 		 */
2569 		goto free;
2570 	}
2571 	/*
2572 	 * The surplus_list now contains _at_least_ the number of extra pages
2573 	 * needed to accommodate the reservation.  Add the appropriate number
2574 	 * of pages to the hugetlb pool and free the extras back to the buddy
2575 	 * allocator.  Commit the entire reservation here to prevent another
2576 	 * process from stealing the pages as they are added to the pool but
2577 	 * before they are reserved.
2578 	 */
2579 	needed += allocated;
2580 	h->resv_huge_pages += delta;
2581 	ret = 0;
2582 
2583 	/* Free the needed pages to the hugetlb pool */
2584 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2585 		if ((--needed) < 0)
2586 			break;
2587 		/* Add the page to the hugetlb allocator */
2588 		enqueue_hugetlb_folio(h, page_folio(page));
2589 	}
2590 free:
2591 	spin_unlock_irq(&hugetlb_lock);
2592 
2593 	/*
2594 	 * Free unnecessary surplus pages to the buddy allocator.
2595 	 * Pages have no ref count, call free_huge_page directly.
2596 	 */
2597 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2598 		free_huge_page(page);
2599 	spin_lock_irq(&hugetlb_lock);
2600 
2601 	return ret;
2602 }
2603 
2604 /*
2605  * This routine has two main purposes:
2606  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2607  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2608  *    to the associated reservation map.
2609  * 2) Free any unused surplus pages that may have been allocated to satisfy
2610  *    the reservation.  As many as unused_resv_pages may be freed.
2611  */
2612 static void return_unused_surplus_pages(struct hstate *h,
2613 					unsigned long unused_resv_pages)
2614 {
2615 	unsigned long nr_pages;
2616 	struct page *page;
2617 	LIST_HEAD(page_list);
2618 
2619 	lockdep_assert_held(&hugetlb_lock);
2620 	/* Uncommit the reservation */
2621 	h->resv_huge_pages -= unused_resv_pages;
2622 
2623 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2624 		goto out;
2625 
2626 	/*
2627 	 * Part (or even all) of the reservation could have been backed
2628 	 * by pre-allocated pages. Only free surplus pages.
2629 	 */
2630 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2631 
2632 	/*
2633 	 * We want to release as many surplus pages as possible, spread
2634 	 * evenly across all nodes with memory. Iterate across these nodes
2635 	 * until we can no longer free unreserved surplus pages. This occurs
2636 	 * when the nodes with surplus pages have no free pages.
2637 	 * remove_pool_huge_page() will balance the freed pages across the
2638 	 * on-line nodes with memory and will handle the hstate accounting.
2639 	 */
2640 	while (nr_pages--) {
2641 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2642 		if (!page)
2643 			goto out;
2644 
2645 		list_add(&page->lru, &page_list);
2646 	}
2647 
2648 out:
2649 	spin_unlock_irq(&hugetlb_lock);
2650 	update_and_free_pages_bulk(h, &page_list);
2651 	spin_lock_irq(&hugetlb_lock);
2652 }
2653 
2654 
2655 /*
2656  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2657  * are used by the huge page allocation routines to manage reservations.
2658  *
2659  * vma_needs_reservation is called to determine if the huge page at addr
2660  * within the vma has an associated reservation.  If a reservation is
2661  * needed, the value 1 is returned.  The caller is then responsible for
2662  * managing the global reservation and subpool usage counts.  After
2663  * the huge page has been allocated, vma_commit_reservation is called
2664  * to add the page to the reservation map.  If the page allocation fails,
2665  * the reservation must be ended instead of committed.  vma_end_reservation
2666  * is called in such cases.
2667  *
2668  * In the normal case, vma_commit_reservation returns the same value
2669  * as the preceding vma_needs_reservation call.  The only time this
2670  * is not the case is if a reserve map was changed between calls.  It
2671  * is the responsibility of the caller to notice the difference and
2672  * take appropriate action.
2673  *
2674  * vma_add_reservation is used in error paths where a reservation must
2675  * be restored when a newly allocated huge page must be freed.  It is
2676  * to be called after calling vma_needs_reservation to determine if a
2677  * reservation exists.
2678  *
2679  * vma_del_reservation is used in error paths where an entry in the reserve
2680  * map was created during huge page allocation and must be removed.  It is to
2681  * be called after calling vma_needs_reservation to determine if a reservation
2682  * exists.
2683  */
2684 enum vma_resv_mode {
2685 	VMA_NEEDS_RESV,
2686 	VMA_COMMIT_RESV,
2687 	VMA_END_RESV,
2688 	VMA_ADD_RESV,
2689 	VMA_DEL_RESV,
2690 };
2691 static long __vma_reservation_common(struct hstate *h,
2692 				struct vm_area_struct *vma, unsigned long addr,
2693 				enum vma_resv_mode mode)
2694 {
2695 	struct resv_map *resv;
2696 	pgoff_t idx;
2697 	long ret;
2698 	long dummy_out_regions_needed;
2699 
2700 	resv = vma_resv_map(vma);
2701 	if (!resv)
2702 		return 1;
2703 
2704 	idx = vma_hugecache_offset(h, vma, addr);
2705 	switch (mode) {
2706 	case VMA_NEEDS_RESV:
2707 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2708 		/* We assume that vma_reservation_* routines always operate on
2709 		 * 1 page, and that adding to resv map a 1 page entry can only
2710 		 * ever require 1 region.
2711 		 */
2712 		VM_BUG_ON(dummy_out_regions_needed != 1);
2713 		break;
2714 	case VMA_COMMIT_RESV:
2715 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2716 		/* region_add calls of range 1 should never fail. */
2717 		VM_BUG_ON(ret < 0);
2718 		break;
2719 	case VMA_END_RESV:
2720 		region_abort(resv, idx, idx + 1, 1);
2721 		ret = 0;
2722 		break;
2723 	case VMA_ADD_RESV:
2724 		if (vma->vm_flags & VM_MAYSHARE) {
2725 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2726 			/* region_add calls of range 1 should never fail. */
2727 			VM_BUG_ON(ret < 0);
2728 		} else {
2729 			region_abort(resv, idx, idx + 1, 1);
2730 			ret = region_del(resv, idx, idx + 1);
2731 		}
2732 		break;
2733 	case VMA_DEL_RESV:
2734 		if (vma->vm_flags & VM_MAYSHARE) {
2735 			region_abort(resv, idx, idx + 1, 1);
2736 			ret = region_del(resv, idx, idx + 1);
2737 		} else {
2738 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739 			/* region_add calls of range 1 should never fail. */
2740 			VM_BUG_ON(ret < 0);
2741 		}
2742 		break;
2743 	default:
2744 		BUG();
2745 	}
2746 
2747 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2748 		return ret;
2749 	/*
2750 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2751 	 *
2752 	 * In most cases, reserves always exist for private mappings.
2753 	 * However, a file associated with mapping could have been
2754 	 * hole punched or truncated after reserves were consumed.
2755 	 * As subsequent fault on such a range will not use reserves.
2756 	 * Subtle - The reserve map for private mappings has the
2757 	 * opposite meaning than that of shared mappings.  If NO
2758 	 * entry is in the reserve map, it means a reservation exists.
2759 	 * If an entry exists in the reserve map, it means the
2760 	 * reservation has already been consumed.  As a result, the
2761 	 * return value of this routine is the opposite of the
2762 	 * value returned from reserve map manipulation routines above.
2763 	 */
2764 	if (ret > 0)
2765 		return 0;
2766 	if (ret == 0)
2767 		return 1;
2768 	return ret;
2769 }
2770 
2771 static long vma_needs_reservation(struct hstate *h,
2772 			struct vm_area_struct *vma, unsigned long addr)
2773 {
2774 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2775 }
2776 
2777 static long vma_commit_reservation(struct hstate *h,
2778 			struct vm_area_struct *vma, unsigned long addr)
2779 {
2780 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2781 }
2782 
2783 static void vma_end_reservation(struct hstate *h,
2784 			struct vm_area_struct *vma, unsigned long addr)
2785 {
2786 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2787 }
2788 
2789 static long vma_add_reservation(struct hstate *h,
2790 			struct vm_area_struct *vma, unsigned long addr)
2791 {
2792 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2793 }
2794 
2795 static long vma_del_reservation(struct hstate *h,
2796 			struct vm_area_struct *vma, unsigned long addr)
2797 {
2798 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2799 }
2800 
2801 /*
2802  * This routine is called to restore reservation information on error paths.
2803  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2804  * and the hugetlb mutex should remain held when calling this routine.
2805  *
2806  * It handles two specific cases:
2807  * 1) A reservation was in place and the folio consumed the reservation.
2808  *    hugetlb_restore_reserve is set in the folio.
2809  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2810  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2811  *
2812  * In case 1, free_huge_page later in the error path will increment the
2813  * global reserve count.  But, free_huge_page does not have enough context
2814  * to adjust the reservation map.  This case deals primarily with private
2815  * mappings.  Adjust the reserve map here to be consistent with global
2816  * reserve count adjustments to be made by free_huge_page.  Make sure the
2817  * reserve map indicates there is a reservation present.
2818  *
2819  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2820  */
2821 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2822 			unsigned long address, struct folio *folio)
2823 {
2824 	long rc = vma_needs_reservation(h, vma, address);
2825 
2826 	if (folio_test_hugetlb_restore_reserve(folio)) {
2827 		if (unlikely(rc < 0))
2828 			/*
2829 			 * Rare out of memory condition in reserve map
2830 			 * manipulation.  Clear hugetlb_restore_reserve so
2831 			 * that global reserve count will not be incremented
2832 			 * by free_huge_page.  This will make it appear
2833 			 * as though the reservation for this folio was
2834 			 * consumed.  This may prevent the task from
2835 			 * faulting in the folio at a later time.  This
2836 			 * is better than inconsistent global huge page
2837 			 * accounting of reserve counts.
2838 			 */
2839 			folio_clear_hugetlb_restore_reserve(folio);
2840 		else if (rc)
2841 			(void)vma_add_reservation(h, vma, address);
2842 		else
2843 			vma_end_reservation(h, vma, address);
2844 	} else {
2845 		if (!rc) {
2846 			/*
2847 			 * This indicates there is an entry in the reserve map
2848 			 * not added by alloc_hugetlb_folio.  We know it was added
2849 			 * before the alloc_hugetlb_folio call, otherwise
2850 			 * hugetlb_restore_reserve would be set on the folio.
2851 			 * Remove the entry so that a subsequent allocation
2852 			 * does not consume a reservation.
2853 			 */
2854 			rc = vma_del_reservation(h, vma, address);
2855 			if (rc < 0)
2856 				/*
2857 				 * VERY rare out of memory condition.  Since
2858 				 * we can not delete the entry, set
2859 				 * hugetlb_restore_reserve so that the reserve
2860 				 * count will be incremented when the folio
2861 				 * is freed.  This reserve will be consumed
2862 				 * on a subsequent allocation.
2863 				 */
2864 				folio_set_hugetlb_restore_reserve(folio);
2865 		} else if (rc < 0) {
2866 			/*
2867 			 * Rare out of memory condition from
2868 			 * vma_needs_reservation call.  Memory allocation is
2869 			 * only attempted if a new entry is needed.  Therefore,
2870 			 * this implies there is not an entry in the
2871 			 * reserve map.
2872 			 *
2873 			 * For shared mappings, no entry in the map indicates
2874 			 * no reservation.  We are done.
2875 			 */
2876 			if (!(vma->vm_flags & VM_MAYSHARE))
2877 				/*
2878 				 * For private mappings, no entry indicates
2879 				 * a reservation is present.  Since we can
2880 				 * not add an entry, set hugetlb_restore_reserve
2881 				 * on the folio so reserve count will be
2882 				 * incremented when freed.  This reserve will
2883 				 * be consumed on a subsequent allocation.
2884 				 */
2885 				folio_set_hugetlb_restore_reserve(folio);
2886 		} else
2887 			/*
2888 			 * No reservation present, do nothing
2889 			 */
2890 			 vma_end_reservation(h, vma, address);
2891 	}
2892 }
2893 
2894 /*
2895  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2896  * the old one
2897  * @h: struct hstate old page belongs to
2898  * @old_folio: Old folio to dissolve
2899  * @list: List to isolate the page in case we need to
2900  * Returns 0 on success, otherwise negated error.
2901  */
2902 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2903 			struct folio *old_folio, struct list_head *list)
2904 {
2905 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2906 	int nid = folio_nid(old_folio);
2907 	struct folio *new_folio;
2908 	int ret = 0;
2909 
2910 	/*
2911 	 * Before dissolving the folio, we need to allocate a new one for the
2912 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2913 	 * by doing everything but actually updating counters and adding to
2914 	 * the pool.  This simplifies and let us do most of the processing
2915 	 * under the lock.
2916 	 */
2917 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2918 	if (!new_folio)
2919 		return -ENOMEM;
2920 	__prep_new_hugetlb_folio(h, new_folio);
2921 
2922 retry:
2923 	spin_lock_irq(&hugetlb_lock);
2924 	if (!folio_test_hugetlb(old_folio)) {
2925 		/*
2926 		 * Freed from under us. Drop new_folio too.
2927 		 */
2928 		goto free_new;
2929 	} else if (folio_ref_count(old_folio)) {
2930 		bool isolated;
2931 
2932 		/*
2933 		 * Someone has grabbed the folio, try to isolate it here.
2934 		 * Fail with -EBUSY if not possible.
2935 		 */
2936 		spin_unlock_irq(&hugetlb_lock);
2937 		isolated = isolate_hugetlb(old_folio, list);
2938 		ret = isolated ? 0 : -EBUSY;
2939 		spin_lock_irq(&hugetlb_lock);
2940 		goto free_new;
2941 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2942 		/*
2943 		 * Folio's refcount is 0 but it has not been enqueued in the
2944 		 * freelist yet. Race window is small, so we can succeed here if
2945 		 * we retry.
2946 		 */
2947 		spin_unlock_irq(&hugetlb_lock);
2948 		cond_resched();
2949 		goto retry;
2950 	} else {
2951 		/*
2952 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2953 		 * the freelist and decrease the counters. These will be
2954 		 * incremented again when calling __prep_account_new_huge_page()
2955 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2956 		 * remain stable since this happens under the lock.
2957 		 */
2958 		remove_hugetlb_folio(h, old_folio, false);
2959 
2960 		/*
2961 		 * Ref count on new_folio is already zero as it was dropped
2962 		 * earlier.  It can be directly added to the pool free list.
2963 		 */
2964 		__prep_account_new_huge_page(h, nid);
2965 		enqueue_hugetlb_folio(h, new_folio);
2966 
2967 		/*
2968 		 * Folio has been replaced, we can safely free the old one.
2969 		 */
2970 		spin_unlock_irq(&hugetlb_lock);
2971 		update_and_free_hugetlb_folio(h, old_folio, false);
2972 	}
2973 
2974 	return ret;
2975 
2976 free_new:
2977 	spin_unlock_irq(&hugetlb_lock);
2978 	/* Folio has a zero ref count, but needs a ref to be freed */
2979 	folio_ref_unfreeze(new_folio, 1);
2980 	update_and_free_hugetlb_folio(h, new_folio, false);
2981 
2982 	return ret;
2983 }
2984 
2985 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2986 {
2987 	struct hstate *h;
2988 	struct folio *folio = page_folio(page);
2989 	int ret = -EBUSY;
2990 
2991 	/*
2992 	 * The page might have been dissolved from under our feet, so make sure
2993 	 * to carefully check the state under the lock.
2994 	 * Return success when racing as if we dissolved the page ourselves.
2995 	 */
2996 	spin_lock_irq(&hugetlb_lock);
2997 	if (folio_test_hugetlb(folio)) {
2998 		h = folio_hstate(folio);
2999 	} else {
3000 		spin_unlock_irq(&hugetlb_lock);
3001 		return 0;
3002 	}
3003 	spin_unlock_irq(&hugetlb_lock);
3004 
3005 	/*
3006 	 * Fence off gigantic pages as there is a cyclic dependency between
3007 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3008 	 * of bailing out right away without further retrying.
3009 	 */
3010 	if (hstate_is_gigantic(h))
3011 		return -ENOMEM;
3012 
3013 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3014 		ret = 0;
3015 	else if (!folio_ref_count(folio))
3016 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3017 
3018 	return ret;
3019 }
3020 
3021 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3022 				    unsigned long addr, int avoid_reserve)
3023 {
3024 	struct hugepage_subpool *spool = subpool_vma(vma);
3025 	struct hstate *h = hstate_vma(vma);
3026 	struct folio *folio;
3027 	long map_chg, map_commit;
3028 	long gbl_chg;
3029 	int ret, idx;
3030 	struct hugetlb_cgroup *h_cg = NULL;
3031 	bool deferred_reserve;
3032 
3033 	idx = hstate_index(h);
3034 	/*
3035 	 * Examine the region/reserve map to determine if the process
3036 	 * has a reservation for the page to be allocated.  A return
3037 	 * code of zero indicates a reservation exists (no change).
3038 	 */
3039 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3040 	if (map_chg < 0)
3041 		return ERR_PTR(-ENOMEM);
3042 
3043 	/*
3044 	 * Processes that did not create the mapping will have no
3045 	 * reserves as indicated by the region/reserve map. Check
3046 	 * that the allocation will not exceed the subpool limit.
3047 	 * Allocations for MAP_NORESERVE mappings also need to be
3048 	 * checked against any subpool limit.
3049 	 */
3050 	if (map_chg || avoid_reserve) {
3051 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3052 		if (gbl_chg < 0) {
3053 			vma_end_reservation(h, vma, addr);
3054 			return ERR_PTR(-ENOSPC);
3055 		}
3056 
3057 		/*
3058 		 * Even though there was no reservation in the region/reserve
3059 		 * map, there could be reservations associated with the
3060 		 * subpool that can be used.  This would be indicated if the
3061 		 * return value of hugepage_subpool_get_pages() is zero.
3062 		 * However, if avoid_reserve is specified we still avoid even
3063 		 * the subpool reservations.
3064 		 */
3065 		if (avoid_reserve)
3066 			gbl_chg = 1;
3067 	}
3068 
3069 	/* If this allocation is not consuming a reservation, charge it now.
3070 	 */
3071 	deferred_reserve = map_chg || avoid_reserve;
3072 	if (deferred_reserve) {
3073 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3074 			idx, pages_per_huge_page(h), &h_cg);
3075 		if (ret)
3076 			goto out_subpool_put;
3077 	}
3078 
3079 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3080 	if (ret)
3081 		goto out_uncharge_cgroup_reservation;
3082 
3083 	spin_lock_irq(&hugetlb_lock);
3084 	/*
3085 	 * glb_chg is passed to indicate whether or not a page must be taken
3086 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3087 	 * a reservation exists for the allocation.
3088 	 */
3089 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3090 	if (!folio) {
3091 		spin_unlock_irq(&hugetlb_lock);
3092 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3093 		if (!folio)
3094 			goto out_uncharge_cgroup;
3095 		spin_lock_irq(&hugetlb_lock);
3096 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3097 			folio_set_hugetlb_restore_reserve(folio);
3098 			h->resv_huge_pages--;
3099 		}
3100 		list_add(&folio->lru, &h->hugepage_activelist);
3101 		folio_ref_unfreeze(folio, 1);
3102 		/* Fall through */
3103 	}
3104 
3105 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3106 	/* If allocation is not consuming a reservation, also store the
3107 	 * hugetlb_cgroup pointer on the page.
3108 	 */
3109 	if (deferred_reserve) {
3110 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3111 						  h_cg, folio);
3112 	}
3113 
3114 	spin_unlock_irq(&hugetlb_lock);
3115 
3116 	hugetlb_set_folio_subpool(folio, spool);
3117 
3118 	map_commit = vma_commit_reservation(h, vma, addr);
3119 	if (unlikely(map_chg > map_commit)) {
3120 		/*
3121 		 * The page was added to the reservation map between
3122 		 * vma_needs_reservation and vma_commit_reservation.
3123 		 * This indicates a race with hugetlb_reserve_pages.
3124 		 * Adjust for the subpool count incremented above AND
3125 		 * in hugetlb_reserve_pages for the same page.  Also,
3126 		 * the reservation count added in hugetlb_reserve_pages
3127 		 * no longer applies.
3128 		 */
3129 		long rsv_adjust;
3130 
3131 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3132 		hugetlb_acct_memory(h, -rsv_adjust);
3133 		if (deferred_reserve)
3134 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3135 					pages_per_huge_page(h), folio);
3136 	}
3137 	return folio;
3138 
3139 out_uncharge_cgroup:
3140 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3141 out_uncharge_cgroup_reservation:
3142 	if (deferred_reserve)
3143 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3144 						    h_cg);
3145 out_subpool_put:
3146 	if (map_chg || avoid_reserve)
3147 		hugepage_subpool_put_pages(spool, 1);
3148 	vma_end_reservation(h, vma, addr);
3149 	return ERR_PTR(-ENOSPC);
3150 }
3151 
3152 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3153 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3154 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3155 {
3156 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3157 	int nr_nodes, node;
3158 
3159 	/* do node specific alloc */
3160 	if (nid != NUMA_NO_NODE) {
3161 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3162 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3163 		if (!m)
3164 			return 0;
3165 		goto found;
3166 	}
3167 	/* allocate from next node when distributing huge pages */
3168 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3169 		m = memblock_alloc_try_nid_raw(
3170 				huge_page_size(h), huge_page_size(h),
3171 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3172 		/*
3173 		 * Use the beginning of the huge page to store the
3174 		 * huge_bootmem_page struct (until gather_bootmem
3175 		 * puts them into the mem_map).
3176 		 */
3177 		if (!m)
3178 			return 0;
3179 		goto found;
3180 	}
3181 
3182 found:
3183 	/* Put them into a private list first because mem_map is not up yet */
3184 	INIT_LIST_HEAD(&m->list);
3185 	list_add(&m->list, &huge_boot_pages);
3186 	m->hstate = h;
3187 	return 1;
3188 }
3189 
3190 /*
3191  * Put bootmem huge pages into the standard lists after mem_map is up.
3192  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3193  */
3194 static void __init gather_bootmem_prealloc(void)
3195 {
3196 	struct huge_bootmem_page *m;
3197 
3198 	list_for_each_entry(m, &huge_boot_pages, list) {
3199 		struct page *page = virt_to_page(m);
3200 		struct folio *folio = page_folio(page);
3201 		struct hstate *h = m->hstate;
3202 
3203 		VM_BUG_ON(!hstate_is_gigantic(h));
3204 		WARN_ON(folio_ref_count(folio) != 1);
3205 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3206 			WARN_ON(folio_test_reserved(folio));
3207 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3208 			free_huge_page(page); /* add to the hugepage allocator */
3209 		} else {
3210 			/* VERY unlikely inflated ref count on a tail page */
3211 			free_gigantic_folio(folio, huge_page_order(h));
3212 		}
3213 
3214 		/*
3215 		 * We need to restore the 'stolen' pages to totalram_pages
3216 		 * in order to fix confusing memory reports from free(1) and
3217 		 * other side-effects, like CommitLimit going negative.
3218 		 */
3219 		adjust_managed_page_count(page, pages_per_huge_page(h));
3220 		cond_resched();
3221 	}
3222 }
3223 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3224 {
3225 	unsigned long i;
3226 	char buf[32];
3227 
3228 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3229 		if (hstate_is_gigantic(h)) {
3230 			if (!alloc_bootmem_huge_page(h, nid))
3231 				break;
3232 		} else {
3233 			struct folio *folio;
3234 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3235 
3236 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3237 					&node_states[N_MEMORY], NULL);
3238 			if (!folio)
3239 				break;
3240 			free_huge_page(&folio->page); /* free it into the hugepage allocator */
3241 		}
3242 		cond_resched();
3243 	}
3244 	if (i == h->max_huge_pages_node[nid])
3245 		return;
3246 
3247 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3248 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3249 		h->max_huge_pages_node[nid], buf, nid, i);
3250 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3251 	h->max_huge_pages_node[nid] = i;
3252 }
3253 
3254 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3255 {
3256 	unsigned long i;
3257 	nodemask_t *node_alloc_noretry;
3258 	bool node_specific_alloc = false;
3259 
3260 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3261 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3262 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3263 		return;
3264 	}
3265 
3266 	/* do node specific alloc */
3267 	for_each_online_node(i) {
3268 		if (h->max_huge_pages_node[i] > 0) {
3269 			hugetlb_hstate_alloc_pages_onenode(h, i);
3270 			node_specific_alloc = true;
3271 		}
3272 	}
3273 
3274 	if (node_specific_alloc)
3275 		return;
3276 
3277 	/* below will do all node balanced alloc */
3278 	if (!hstate_is_gigantic(h)) {
3279 		/*
3280 		 * Bit mask controlling how hard we retry per-node allocations.
3281 		 * Ignore errors as lower level routines can deal with
3282 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3283 		 * time, we are likely in bigger trouble.
3284 		 */
3285 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3286 						GFP_KERNEL);
3287 	} else {
3288 		/* allocations done at boot time */
3289 		node_alloc_noretry = NULL;
3290 	}
3291 
3292 	/* bit mask controlling how hard we retry per-node allocations */
3293 	if (node_alloc_noretry)
3294 		nodes_clear(*node_alloc_noretry);
3295 
3296 	for (i = 0; i < h->max_huge_pages; ++i) {
3297 		if (hstate_is_gigantic(h)) {
3298 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3299 				break;
3300 		} else if (!alloc_pool_huge_page(h,
3301 					 &node_states[N_MEMORY],
3302 					 node_alloc_noretry))
3303 			break;
3304 		cond_resched();
3305 	}
3306 	if (i < h->max_huge_pages) {
3307 		char buf[32];
3308 
3309 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3310 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3311 			h->max_huge_pages, buf, i);
3312 		h->max_huge_pages = i;
3313 	}
3314 	kfree(node_alloc_noretry);
3315 }
3316 
3317 static void __init hugetlb_init_hstates(void)
3318 {
3319 	struct hstate *h, *h2;
3320 
3321 	for_each_hstate(h) {
3322 		/* oversize hugepages were init'ed in early boot */
3323 		if (!hstate_is_gigantic(h))
3324 			hugetlb_hstate_alloc_pages(h);
3325 
3326 		/*
3327 		 * Set demote order for each hstate.  Note that
3328 		 * h->demote_order is initially 0.
3329 		 * - We can not demote gigantic pages if runtime freeing
3330 		 *   is not supported, so skip this.
3331 		 * - If CMA allocation is possible, we can not demote
3332 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3333 		 */
3334 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3335 			continue;
3336 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3337 			continue;
3338 		for_each_hstate(h2) {
3339 			if (h2 == h)
3340 				continue;
3341 			if (h2->order < h->order &&
3342 			    h2->order > h->demote_order)
3343 				h->demote_order = h2->order;
3344 		}
3345 	}
3346 }
3347 
3348 static void __init report_hugepages(void)
3349 {
3350 	struct hstate *h;
3351 
3352 	for_each_hstate(h) {
3353 		char buf[32];
3354 
3355 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3356 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3357 			buf, h->free_huge_pages);
3358 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3359 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3360 	}
3361 }
3362 
3363 #ifdef CONFIG_HIGHMEM
3364 static void try_to_free_low(struct hstate *h, unsigned long count,
3365 						nodemask_t *nodes_allowed)
3366 {
3367 	int i;
3368 	LIST_HEAD(page_list);
3369 
3370 	lockdep_assert_held(&hugetlb_lock);
3371 	if (hstate_is_gigantic(h))
3372 		return;
3373 
3374 	/*
3375 	 * Collect pages to be freed on a list, and free after dropping lock
3376 	 */
3377 	for_each_node_mask(i, *nodes_allowed) {
3378 		struct page *page, *next;
3379 		struct list_head *freel = &h->hugepage_freelists[i];
3380 		list_for_each_entry_safe(page, next, freel, lru) {
3381 			if (count >= h->nr_huge_pages)
3382 				goto out;
3383 			if (PageHighMem(page))
3384 				continue;
3385 			remove_hugetlb_folio(h, page_folio(page), false);
3386 			list_add(&page->lru, &page_list);
3387 		}
3388 	}
3389 
3390 out:
3391 	spin_unlock_irq(&hugetlb_lock);
3392 	update_and_free_pages_bulk(h, &page_list);
3393 	spin_lock_irq(&hugetlb_lock);
3394 }
3395 #else
3396 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3397 						nodemask_t *nodes_allowed)
3398 {
3399 }
3400 #endif
3401 
3402 /*
3403  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3404  * balanced by operating on them in a round-robin fashion.
3405  * Returns 1 if an adjustment was made.
3406  */
3407 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3408 				int delta)
3409 {
3410 	int nr_nodes, node;
3411 
3412 	lockdep_assert_held(&hugetlb_lock);
3413 	VM_BUG_ON(delta != -1 && delta != 1);
3414 
3415 	if (delta < 0) {
3416 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3417 			if (h->surplus_huge_pages_node[node])
3418 				goto found;
3419 		}
3420 	} else {
3421 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3422 			if (h->surplus_huge_pages_node[node] <
3423 					h->nr_huge_pages_node[node])
3424 				goto found;
3425 		}
3426 	}
3427 	return 0;
3428 
3429 found:
3430 	h->surplus_huge_pages += delta;
3431 	h->surplus_huge_pages_node[node] += delta;
3432 	return 1;
3433 }
3434 
3435 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3436 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3437 			      nodemask_t *nodes_allowed)
3438 {
3439 	unsigned long min_count, ret;
3440 	struct page *page;
3441 	LIST_HEAD(page_list);
3442 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3443 
3444 	/*
3445 	 * Bit mask controlling how hard we retry per-node allocations.
3446 	 * If we can not allocate the bit mask, do not attempt to allocate
3447 	 * the requested huge pages.
3448 	 */
3449 	if (node_alloc_noretry)
3450 		nodes_clear(*node_alloc_noretry);
3451 	else
3452 		return -ENOMEM;
3453 
3454 	/*
3455 	 * resize_lock mutex prevents concurrent adjustments to number of
3456 	 * pages in hstate via the proc/sysfs interfaces.
3457 	 */
3458 	mutex_lock(&h->resize_lock);
3459 	flush_free_hpage_work(h);
3460 	spin_lock_irq(&hugetlb_lock);
3461 
3462 	/*
3463 	 * Check for a node specific request.
3464 	 * Changing node specific huge page count may require a corresponding
3465 	 * change to the global count.  In any case, the passed node mask
3466 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3467 	 */
3468 	if (nid != NUMA_NO_NODE) {
3469 		unsigned long old_count = count;
3470 
3471 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3472 		/*
3473 		 * User may have specified a large count value which caused the
3474 		 * above calculation to overflow.  In this case, they wanted
3475 		 * to allocate as many huge pages as possible.  Set count to
3476 		 * largest possible value to align with their intention.
3477 		 */
3478 		if (count < old_count)
3479 			count = ULONG_MAX;
3480 	}
3481 
3482 	/*
3483 	 * Gigantic pages runtime allocation depend on the capability for large
3484 	 * page range allocation.
3485 	 * If the system does not provide this feature, return an error when
3486 	 * the user tries to allocate gigantic pages but let the user free the
3487 	 * boottime allocated gigantic pages.
3488 	 */
3489 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3490 		if (count > persistent_huge_pages(h)) {
3491 			spin_unlock_irq(&hugetlb_lock);
3492 			mutex_unlock(&h->resize_lock);
3493 			NODEMASK_FREE(node_alloc_noretry);
3494 			return -EINVAL;
3495 		}
3496 		/* Fall through to decrease pool */
3497 	}
3498 
3499 	/*
3500 	 * Increase the pool size
3501 	 * First take pages out of surplus state.  Then make up the
3502 	 * remaining difference by allocating fresh huge pages.
3503 	 *
3504 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3505 	 * to convert a surplus huge page to a normal huge page. That is
3506 	 * not critical, though, it just means the overall size of the
3507 	 * pool might be one hugepage larger than it needs to be, but
3508 	 * within all the constraints specified by the sysctls.
3509 	 */
3510 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3511 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3512 			break;
3513 	}
3514 
3515 	while (count > persistent_huge_pages(h)) {
3516 		/*
3517 		 * If this allocation races such that we no longer need the
3518 		 * page, free_huge_page will handle it by freeing the page
3519 		 * and reducing the surplus.
3520 		 */
3521 		spin_unlock_irq(&hugetlb_lock);
3522 
3523 		/* yield cpu to avoid soft lockup */
3524 		cond_resched();
3525 
3526 		ret = alloc_pool_huge_page(h, nodes_allowed,
3527 						node_alloc_noretry);
3528 		spin_lock_irq(&hugetlb_lock);
3529 		if (!ret)
3530 			goto out;
3531 
3532 		/* Bail for signals. Probably ctrl-c from user */
3533 		if (signal_pending(current))
3534 			goto out;
3535 	}
3536 
3537 	/*
3538 	 * Decrease the pool size
3539 	 * First return free pages to the buddy allocator (being careful
3540 	 * to keep enough around to satisfy reservations).  Then place
3541 	 * pages into surplus state as needed so the pool will shrink
3542 	 * to the desired size as pages become free.
3543 	 *
3544 	 * By placing pages into the surplus state independent of the
3545 	 * overcommit value, we are allowing the surplus pool size to
3546 	 * exceed overcommit. There are few sane options here. Since
3547 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3548 	 * though, we'll note that we're not allowed to exceed surplus
3549 	 * and won't grow the pool anywhere else. Not until one of the
3550 	 * sysctls are changed, or the surplus pages go out of use.
3551 	 */
3552 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3553 	min_count = max(count, min_count);
3554 	try_to_free_low(h, min_count, nodes_allowed);
3555 
3556 	/*
3557 	 * Collect pages to be removed on list without dropping lock
3558 	 */
3559 	while (min_count < persistent_huge_pages(h)) {
3560 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3561 		if (!page)
3562 			break;
3563 
3564 		list_add(&page->lru, &page_list);
3565 	}
3566 	/* free the pages after dropping lock */
3567 	spin_unlock_irq(&hugetlb_lock);
3568 	update_and_free_pages_bulk(h, &page_list);
3569 	flush_free_hpage_work(h);
3570 	spin_lock_irq(&hugetlb_lock);
3571 
3572 	while (count < persistent_huge_pages(h)) {
3573 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3574 			break;
3575 	}
3576 out:
3577 	h->max_huge_pages = persistent_huge_pages(h);
3578 	spin_unlock_irq(&hugetlb_lock);
3579 	mutex_unlock(&h->resize_lock);
3580 
3581 	NODEMASK_FREE(node_alloc_noretry);
3582 
3583 	return 0;
3584 }
3585 
3586 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3587 {
3588 	int i, nid = folio_nid(folio);
3589 	struct hstate *target_hstate;
3590 	struct page *subpage;
3591 	struct folio *inner_folio;
3592 	int rc = 0;
3593 
3594 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3595 
3596 	remove_hugetlb_folio_for_demote(h, folio, false);
3597 	spin_unlock_irq(&hugetlb_lock);
3598 
3599 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3600 	if (rc) {
3601 		/* Allocation of vmemmmap failed, we can not demote folio */
3602 		spin_lock_irq(&hugetlb_lock);
3603 		folio_ref_unfreeze(folio, 1);
3604 		add_hugetlb_folio(h, folio, false);
3605 		return rc;
3606 	}
3607 
3608 	/*
3609 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3610 	 * sizes as it will not ref count folios.
3611 	 */
3612 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3613 
3614 	/*
3615 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3616 	 * Without the mutex, pages added to target hstate could be marked
3617 	 * as surplus.
3618 	 *
3619 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3620 	 * use the convention of always taking larger size hstate mutex first.
3621 	 */
3622 	mutex_lock(&target_hstate->resize_lock);
3623 	for (i = 0; i < pages_per_huge_page(h);
3624 				i += pages_per_huge_page(target_hstate)) {
3625 		subpage = folio_page(folio, i);
3626 		inner_folio = page_folio(subpage);
3627 		if (hstate_is_gigantic(target_hstate))
3628 			prep_compound_gigantic_folio_for_demote(inner_folio,
3629 							target_hstate->order);
3630 		else
3631 			prep_compound_page(subpage, target_hstate->order);
3632 		folio_change_private(inner_folio, NULL);
3633 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3634 		free_huge_page(subpage);
3635 	}
3636 	mutex_unlock(&target_hstate->resize_lock);
3637 
3638 	spin_lock_irq(&hugetlb_lock);
3639 
3640 	/*
3641 	 * Not absolutely necessary, but for consistency update max_huge_pages
3642 	 * based on pool changes for the demoted page.
3643 	 */
3644 	h->max_huge_pages--;
3645 	target_hstate->max_huge_pages +=
3646 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3647 
3648 	return rc;
3649 }
3650 
3651 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3652 	__must_hold(&hugetlb_lock)
3653 {
3654 	int nr_nodes, node;
3655 	struct folio *folio;
3656 
3657 	lockdep_assert_held(&hugetlb_lock);
3658 
3659 	/* We should never get here if no demote order */
3660 	if (!h->demote_order) {
3661 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3662 		return -EINVAL;		/* internal error */
3663 	}
3664 
3665 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3666 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3667 			if (folio_test_hwpoison(folio))
3668 				continue;
3669 			return demote_free_hugetlb_folio(h, folio);
3670 		}
3671 	}
3672 
3673 	/*
3674 	 * Only way to get here is if all pages on free lists are poisoned.
3675 	 * Return -EBUSY so that caller will not retry.
3676 	 */
3677 	return -EBUSY;
3678 }
3679 
3680 #define HSTATE_ATTR_RO(_name) \
3681 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3682 
3683 #define HSTATE_ATTR_WO(_name) \
3684 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3685 
3686 #define HSTATE_ATTR(_name) \
3687 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3688 
3689 static struct kobject *hugepages_kobj;
3690 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3691 
3692 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3693 
3694 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3695 {
3696 	int i;
3697 
3698 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3699 		if (hstate_kobjs[i] == kobj) {
3700 			if (nidp)
3701 				*nidp = NUMA_NO_NODE;
3702 			return &hstates[i];
3703 		}
3704 
3705 	return kobj_to_node_hstate(kobj, nidp);
3706 }
3707 
3708 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3709 					struct kobj_attribute *attr, char *buf)
3710 {
3711 	struct hstate *h;
3712 	unsigned long nr_huge_pages;
3713 	int nid;
3714 
3715 	h = kobj_to_hstate(kobj, &nid);
3716 	if (nid == NUMA_NO_NODE)
3717 		nr_huge_pages = h->nr_huge_pages;
3718 	else
3719 		nr_huge_pages = h->nr_huge_pages_node[nid];
3720 
3721 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3722 }
3723 
3724 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3725 					   struct hstate *h, int nid,
3726 					   unsigned long count, size_t len)
3727 {
3728 	int err;
3729 	nodemask_t nodes_allowed, *n_mask;
3730 
3731 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3732 		return -EINVAL;
3733 
3734 	if (nid == NUMA_NO_NODE) {
3735 		/*
3736 		 * global hstate attribute
3737 		 */
3738 		if (!(obey_mempolicy &&
3739 				init_nodemask_of_mempolicy(&nodes_allowed)))
3740 			n_mask = &node_states[N_MEMORY];
3741 		else
3742 			n_mask = &nodes_allowed;
3743 	} else {
3744 		/*
3745 		 * Node specific request.  count adjustment happens in
3746 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3747 		 */
3748 		init_nodemask_of_node(&nodes_allowed, nid);
3749 		n_mask = &nodes_allowed;
3750 	}
3751 
3752 	err = set_max_huge_pages(h, count, nid, n_mask);
3753 
3754 	return err ? err : len;
3755 }
3756 
3757 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3758 					 struct kobject *kobj, const char *buf,
3759 					 size_t len)
3760 {
3761 	struct hstate *h;
3762 	unsigned long count;
3763 	int nid;
3764 	int err;
3765 
3766 	err = kstrtoul(buf, 10, &count);
3767 	if (err)
3768 		return err;
3769 
3770 	h = kobj_to_hstate(kobj, &nid);
3771 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3772 }
3773 
3774 static ssize_t nr_hugepages_show(struct kobject *kobj,
3775 				       struct kobj_attribute *attr, char *buf)
3776 {
3777 	return nr_hugepages_show_common(kobj, attr, buf);
3778 }
3779 
3780 static ssize_t nr_hugepages_store(struct kobject *kobj,
3781 	       struct kobj_attribute *attr, const char *buf, size_t len)
3782 {
3783 	return nr_hugepages_store_common(false, kobj, buf, len);
3784 }
3785 HSTATE_ATTR(nr_hugepages);
3786 
3787 #ifdef CONFIG_NUMA
3788 
3789 /*
3790  * hstate attribute for optionally mempolicy-based constraint on persistent
3791  * huge page alloc/free.
3792  */
3793 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3794 					   struct kobj_attribute *attr,
3795 					   char *buf)
3796 {
3797 	return nr_hugepages_show_common(kobj, attr, buf);
3798 }
3799 
3800 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3801 	       struct kobj_attribute *attr, const char *buf, size_t len)
3802 {
3803 	return nr_hugepages_store_common(true, kobj, buf, len);
3804 }
3805 HSTATE_ATTR(nr_hugepages_mempolicy);
3806 #endif
3807 
3808 
3809 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3810 					struct kobj_attribute *attr, char *buf)
3811 {
3812 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3813 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3814 }
3815 
3816 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3817 		struct kobj_attribute *attr, const char *buf, size_t count)
3818 {
3819 	int err;
3820 	unsigned long input;
3821 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3822 
3823 	if (hstate_is_gigantic(h))
3824 		return -EINVAL;
3825 
3826 	err = kstrtoul(buf, 10, &input);
3827 	if (err)
3828 		return err;
3829 
3830 	spin_lock_irq(&hugetlb_lock);
3831 	h->nr_overcommit_huge_pages = input;
3832 	spin_unlock_irq(&hugetlb_lock);
3833 
3834 	return count;
3835 }
3836 HSTATE_ATTR(nr_overcommit_hugepages);
3837 
3838 static ssize_t free_hugepages_show(struct kobject *kobj,
3839 					struct kobj_attribute *attr, char *buf)
3840 {
3841 	struct hstate *h;
3842 	unsigned long free_huge_pages;
3843 	int nid;
3844 
3845 	h = kobj_to_hstate(kobj, &nid);
3846 	if (nid == NUMA_NO_NODE)
3847 		free_huge_pages = h->free_huge_pages;
3848 	else
3849 		free_huge_pages = h->free_huge_pages_node[nid];
3850 
3851 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3852 }
3853 HSTATE_ATTR_RO(free_hugepages);
3854 
3855 static ssize_t resv_hugepages_show(struct kobject *kobj,
3856 					struct kobj_attribute *attr, char *buf)
3857 {
3858 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3859 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3860 }
3861 HSTATE_ATTR_RO(resv_hugepages);
3862 
3863 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3864 					struct kobj_attribute *attr, char *buf)
3865 {
3866 	struct hstate *h;
3867 	unsigned long surplus_huge_pages;
3868 	int nid;
3869 
3870 	h = kobj_to_hstate(kobj, &nid);
3871 	if (nid == NUMA_NO_NODE)
3872 		surplus_huge_pages = h->surplus_huge_pages;
3873 	else
3874 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3875 
3876 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3877 }
3878 HSTATE_ATTR_RO(surplus_hugepages);
3879 
3880 static ssize_t demote_store(struct kobject *kobj,
3881 	       struct kobj_attribute *attr, const char *buf, size_t len)
3882 {
3883 	unsigned long nr_demote;
3884 	unsigned long nr_available;
3885 	nodemask_t nodes_allowed, *n_mask;
3886 	struct hstate *h;
3887 	int err;
3888 	int nid;
3889 
3890 	err = kstrtoul(buf, 10, &nr_demote);
3891 	if (err)
3892 		return err;
3893 	h = kobj_to_hstate(kobj, &nid);
3894 
3895 	if (nid != NUMA_NO_NODE) {
3896 		init_nodemask_of_node(&nodes_allowed, nid);
3897 		n_mask = &nodes_allowed;
3898 	} else {
3899 		n_mask = &node_states[N_MEMORY];
3900 	}
3901 
3902 	/* Synchronize with other sysfs operations modifying huge pages */
3903 	mutex_lock(&h->resize_lock);
3904 	spin_lock_irq(&hugetlb_lock);
3905 
3906 	while (nr_demote) {
3907 		/*
3908 		 * Check for available pages to demote each time thorough the
3909 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3910 		 */
3911 		if (nid != NUMA_NO_NODE)
3912 			nr_available = h->free_huge_pages_node[nid];
3913 		else
3914 			nr_available = h->free_huge_pages;
3915 		nr_available -= h->resv_huge_pages;
3916 		if (!nr_available)
3917 			break;
3918 
3919 		err = demote_pool_huge_page(h, n_mask);
3920 		if (err)
3921 			break;
3922 
3923 		nr_demote--;
3924 	}
3925 
3926 	spin_unlock_irq(&hugetlb_lock);
3927 	mutex_unlock(&h->resize_lock);
3928 
3929 	if (err)
3930 		return err;
3931 	return len;
3932 }
3933 HSTATE_ATTR_WO(demote);
3934 
3935 static ssize_t demote_size_show(struct kobject *kobj,
3936 					struct kobj_attribute *attr, char *buf)
3937 {
3938 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3939 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3940 
3941 	return sysfs_emit(buf, "%lukB\n", demote_size);
3942 }
3943 
3944 static ssize_t demote_size_store(struct kobject *kobj,
3945 					struct kobj_attribute *attr,
3946 					const char *buf, size_t count)
3947 {
3948 	struct hstate *h, *demote_hstate;
3949 	unsigned long demote_size;
3950 	unsigned int demote_order;
3951 
3952 	demote_size = (unsigned long)memparse(buf, NULL);
3953 
3954 	demote_hstate = size_to_hstate(demote_size);
3955 	if (!demote_hstate)
3956 		return -EINVAL;
3957 	demote_order = demote_hstate->order;
3958 	if (demote_order < HUGETLB_PAGE_ORDER)
3959 		return -EINVAL;
3960 
3961 	/* demote order must be smaller than hstate order */
3962 	h = kobj_to_hstate(kobj, NULL);
3963 	if (demote_order >= h->order)
3964 		return -EINVAL;
3965 
3966 	/* resize_lock synchronizes access to demote size and writes */
3967 	mutex_lock(&h->resize_lock);
3968 	h->demote_order = demote_order;
3969 	mutex_unlock(&h->resize_lock);
3970 
3971 	return count;
3972 }
3973 HSTATE_ATTR(demote_size);
3974 
3975 static struct attribute *hstate_attrs[] = {
3976 	&nr_hugepages_attr.attr,
3977 	&nr_overcommit_hugepages_attr.attr,
3978 	&free_hugepages_attr.attr,
3979 	&resv_hugepages_attr.attr,
3980 	&surplus_hugepages_attr.attr,
3981 #ifdef CONFIG_NUMA
3982 	&nr_hugepages_mempolicy_attr.attr,
3983 #endif
3984 	NULL,
3985 };
3986 
3987 static const struct attribute_group hstate_attr_group = {
3988 	.attrs = hstate_attrs,
3989 };
3990 
3991 static struct attribute *hstate_demote_attrs[] = {
3992 	&demote_size_attr.attr,
3993 	&demote_attr.attr,
3994 	NULL,
3995 };
3996 
3997 static const struct attribute_group hstate_demote_attr_group = {
3998 	.attrs = hstate_demote_attrs,
3999 };
4000 
4001 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4002 				    struct kobject **hstate_kobjs,
4003 				    const struct attribute_group *hstate_attr_group)
4004 {
4005 	int retval;
4006 	int hi = hstate_index(h);
4007 
4008 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4009 	if (!hstate_kobjs[hi])
4010 		return -ENOMEM;
4011 
4012 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4013 	if (retval) {
4014 		kobject_put(hstate_kobjs[hi]);
4015 		hstate_kobjs[hi] = NULL;
4016 		return retval;
4017 	}
4018 
4019 	if (h->demote_order) {
4020 		retval = sysfs_create_group(hstate_kobjs[hi],
4021 					    &hstate_demote_attr_group);
4022 		if (retval) {
4023 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4024 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4025 			kobject_put(hstate_kobjs[hi]);
4026 			hstate_kobjs[hi] = NULL;
4027 			return retval;
4028 		}
4029 	}
4030 
4031 	return 0;
4032 }
4033 
4034 #ifdef CONFIG_NUMA
4035 static bool hugetlb_sysfs_initialized __ro_after_init;
4036 
4037 /*
4038  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4039  * with node devices in node_devices[] using a parallel array.  The array
4040  * index of a node device or _hstate == node id.
4041  * This is here to avoid any static dependency of the node device driver, in
4042  * the base kernel, on the hugetlb module.
4043  */
4044 struct node_hstate {
4045 	struct kobject		*hugepages_kobj;
4046 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4047 };
4048 static struct node_hstate node_hstates[MAX_NUMNODES];
4049 
4050 /*
4051  * A subset of global hstate attributes for node devices
4052  */
4053 static struct attribute *per_node_hstate_attrs[] = {
4054 	&nr_hugepages_attr.attr,
4055 	&free_hugepages_attr.attr,
4056 	&surplus_hugepages_attr.attr,
4057 	NULL,
4058 };
4059 
4060 static const struct attribute_group per_node_hstate_attr_group = {
4061 	.attrs = per_node_hstate_attrs,
4062 };
4063 
4064 /*
4065  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4066  * Returns node id via non-NULL nidp.
4067  */
4068 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4069 {
4070 	int nid;
4071 
4072 	for (nid = 0; nid < nr_node_ids; nid++) {
4073 		struct node_hstate *nhs = &node_hstates[nid];
4074 		int i;
4075 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4076 			if (nhs->hstate_kobjs[i] == kobj) {
4077 				if (nidp)
4078 					*nidp = nid;
4079 				return &hstates[i];
4080 			}
4081 	}
4082 
4083 	BUG();
4084 	return NULL;
4085 }
4086 
4087 /*
4088  * Unregister hstate attributes from a single node device.
4089  * No-op if no hstate attributes attached.
4090  */
4091 void hugetlb_unregister_node(struct node *node)
4092 {
4093 	struct hstate *h;
4094 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4095 
4096 	if (!nhs->hugepages_kobj)
4097 		return;		/* no hstate attributes */
4098 
4099 	for_each_hstate(h) {
4100 		int idx = hstate_index(h);
4101 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4102 
4103 		if (!hstate_kobj)
4104 			continue;
4105 		if (h->demote_order)
4106 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4107 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4108 		kobject_put(hstate_kobj);
4109 		nhs->hstate_kobjs[idx] = NULL;
4110 	}
4111 
4112 	kobject_put(nhs->hugepages_kobj);
4113 	nhs->hugepages_kobj = NULL;
4114 }
4115 
4116 
4117 /*
4118  * Register hstate attributes for a single node device.
4119  * No-op if attributes already registered.
4120  */
4121 void hugetlb_register_node(struct node *node)
4122 {
4123 	struct hstate *h;
4124 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4125 	int err;
4126 
4127 	if (!hugetlb_sysfs_initialized)
4128 		return;
4129 
4130 	if (nhs->hugepages_kobj)
4131 		return;		/* already allocated */
4132 
4133 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4134 							&node->dev.kobj);
4135 	if (!nhs->hugepages_kobj)
4136 		return;
4137 
4138 	for_each_hstate(h) {
4139 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4140 						nhs->hstate_kobjs,
4141 						&per_node_hstate_attr_group);
4142 		if (err) {
4143 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4144 				h->name, node->dev.id);
4145 			hugetlb_unregister_node(node);
4146 			break;
4147 		}
4148 	}
4149 }
4150 
4151 /*
4152  * hugetlb init time:  register hstate attributes for all registered node
4153  * devices of nodes that have memory.  All on-line nodes should have
4154  * registered their associated device by this time.
4155  */
4156 static void __init hugetlb_register_all_nodes(void)
4157 {
4158 	int nid;
4159 
4160 	for_each_online_node(nid)
4161 		hugetlb_register_node(node_devices[nid]);
4162 }
4163 #else	/* !CONFIG_NUMA */
4164 
4165 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4166 {
4167 	BUG();
4168 	if (nidp)
4169 		*nidp = -1;
4170 	return NULL;
4171 }
4172 
4173 static void hugetlb_register_all_nodes(void) { }
4174 
4175 #endif
4176 
4177 #ifdef CONFIG_CMA
4178 static void __init hugetlb_cma_check(void);
4179 #else
4180 static inline __init void hugetlb_cma_check(void)
4181 {
4182 }
4183 #endif
4184 
4185 static void __init hugetlb_sysfs_init(void)
4186 {
4187 	struct hstate *h;
4188 	int err;
4189 
4190 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4191 	if (!hugepages_kobj)
4192 		return;
4193 
4194 	for_each_hstate(h) {
4195 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4196 					 hstate_kobjs, &hstate_attr_group);
4197 		if (err)
4198 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4199 	}
4200 
4201 #ifdef CONFIG_NUMA
4202 	hugetlb_sysfs_initialized = true;
4203 #endif
4204 	hugetlb_register_all_nodes();
4205 }
4206 
4207 #ifdef CONFIG_SYSCTL
4208 static void hugetlb_sysctl_init(void);
4209 #else
4210 static inline void hugetlb_sysctl_init(void) { }
4211 #endif
4212 
4213 static int __init hugetlb_init(void)
4214 {
4215 	int i;
4216 
4217 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4218 			__NR_HPAGEFLAGS);
4219 
4220 	if (!hugepages_supported()) {
4221 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4222 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4223 		return 0;
4224 	}
4225 
4226 	/*
4227 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4228 	 * architectures depend on setup being done here.
4229 	 */
4230 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4231 	if (!parsed_default_hugepagesz) {
4232 		/*
4233 		 * If we did not parse a default huge page size, set
4234 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4235 		 * number of huge pages for this default size was implicitly
4236 		 * specified, set that here as well.
4237 		 * Note that the implicit setting will overwrite an explicit
4238 		 * setting.  A warning will be printed in this case.
4239 		 */
4240 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4241 		if (default_hstate_max_huge_pages) {
4242 			if (default_hstate.max_huge_pages) {
4243 				char buf[32];
4244 
4245 				string_get_size(huge_page_size(&default_hstate),
4246 					1, STRING_UNITS_2, buf, 32);
4247 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4248 					default_hstate.max_huge_pages, buf);
4249 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4250 					default_hstate_max_huge_pages);
4251 			}
4252 			default_hstate.max_huge_pages =
4253 				default_hstate_max_huge_pages;
4254 
4255 			for_each_online_node(i)
4256 				default_hstate.max_huge_pages_node[i] =
4257 					default_hugepages_in_node[i];
4258 		}
4259 	}
4260 
4261 	hugetlb_cma_check();
4262 	hugetlb_init_hstates();
4263 	gather_bootmem_prealloc();
4264 	report_hugepages();
4265 
4266 	hugetlb_sysfs_init();
4267 	hugetlb_cgroup_file_init();
4268 	hugetlb_sysctl_init();
4269 
4270 #ifdef CONFIG_SMP
4271 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4272 #else
4273 	num_fault_mutexes = 1;
4274 #endif
4275 	hugetlb_fault_mutex_table =
4276 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4277 			      GFP_KERNEL);
4278 	BUG_ON(!hugetlb_fault_mutex_table);
4279 
4280 	for (i = 0; i < num_fault_mutexes; i++)
4281 		mutex_init(&hugetlb_fault_mutex_table[i]);
4282 	return 0;
4283 }
4284 subsys_initcall(hugetlb_init);
4285 
4286 /* Overwritten by architectures with more huge page sizes */
4287 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4288 {
4289 	return size == HPAGE_SIZE;
4290 }
4291 
4292 void __init hugetlb_add_hstate(unsigned int order)
4293 {
4294 	struct hstate *h;
4295 	unsigned long i;
4296 
4297 	if (size_to_hstate(PAGE_SIZE << order)) {
4298 		return;
4299 	}
4300 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4301 	BUG_ON(order == 0);
4302 	h = &hstates[hugetlb_max_hstate++];
4303 	mutex_init(&h->resize_lock);
4304 	h->order = order;
4305 	h->mask = ~(huge_page_size(h) - 1);
4306 	for (i = 0; i < MAX_NUMNODES; ++i)
4307 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4308 	INIT_LIST_HEAD(&h->hugepage_activelist);
4309 	h->next_nid_to_alloc = first_memory_node;
4310 	h->next_nid_to_free = first_memory_node;
4311 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4312 					huge_page_size(h)/SZ_1K);
4313 
4314 	parsed_hstate = h;
4315 }
4316 
4317 bool __init __weak hugetlb_node_alloc_supported(void)
4318 {
4319 	return true;
4320 }
4321 
4322 static void __init hugepages_clear_pages_in_node(void)
4323 {
4324 	if (!hugetlb_max_hstate) {
4325 		default_hstate_max_huge_pages = 0;
4326 		memset(default_hugepages_in_node, 0,
4327 			sizeof(default_hugepages_in_node));
4328 	} else {
4329 		parsed_hstate->max_huge_pages = 0;
4330 		memset(parsed_hstate->max_huge_pages_node, 0,
4331 			sizeof(parsed_hstate->max_huge_pages_node));
4332 	}
4333 }
4334 
4335 /*
4336  * hugepages command line processing
4337  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4338  * specification.  If not, ignore the hugepages value.  hugepages can also
4339  * be the first huge page command line  option in which case it implicitly
4340  * specifies the number of huge pages for the default size.
4341  */
4342 static int __init hugepages_setup(char *s)
4343 {
4344 	unsigned long *mhp;
4345 	static unsigned long *last_mhp;
4346 	int node = NUMA_NO_NODE;
4347 	int count;
4348 	unsigned long tmp;
4349 	char *p = s;
4350 
4351 	if (!parsed_valid_hugepagesz) {
4352 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4353 		parsed_valid_hugepagesz = true;
4354 		return 1;
4355 	}
4356 
4357 	/*
4358 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4359 	 * yet, so this hugepages= parameter goes to the "default hstate".
4360 	 * Otherwise, it goes with the previously parsed hugepagesz or
4361 	 * default_hugepagesz.
4362 	 */
4363 	else if (!hugetlb_max_hstate)
4364 		mhp = &default_hstate_max_huge_pages;
4365 	else
4366 		mhp = &parsed_hstate->max_huge_pages;
4367 
4368 	if (mhp == last_mhp) {
4369 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4370 		return 1;
4371 	}
4372 
4373 	while (*p) {
4374 		count = 0;
4375 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4376 			goto invalid;
4377 		/* Parameter is node format */
4378 		if (p[count] == ':') {
4379 			if (!hugetlb_node_alloc_supported()) {
4380 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4381 				return 1;
4382 			}
4383 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4384 				goto invalid;
4385 			node = array_index_nospec(tmp, MAX_NUMNODES);
4386 			p += count + 1;
4387 			/* Parse hugepages */
4388 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4389 				goto invalid;
4390 			if (!hugetlb_max_hstate)
4391 				default_hugepages_in_node[node] = tmp;
4392 			else
4393 				parsed_hstate->max_huge_pages_node[node] = tmp;
4394 			*mhp += tmp;
4395 			/* Go to parse next node*/
4396 			if (p[count] == ',')
4397 				p += count + 1;
4398 			else
4399 				break;
4400 		} else {
4401 			if (p != s)
4402 				goto invalid;
4403 			*mhp = tmp;
4404 			break;
4405 		}
4406 	}
4407 
4408 	/*
4409 	 * Global state is always initialized later in hugetlb_init.
4410 	 * But we need to allocate gigantic hstates here early to still
4411 	 * use the bootmem allocator.
4412 	 */
4413 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4414 		hugetlb_hstate_alloc_pages(parsed_hstate);
4415 
4416 	last_mhp = mhp;
4417 
4418 	return 1;
4419 
4420 invalid:
4421 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4422 	hugepages_clear_pages_in_node();
4423 	return 1;
4424 }
4425 __setup("hugepages=", hugepages_setup);
4426 
4427 /*
4428  * hugepagesz command line processing
4429  * A specific huge page size can only be specified once with hugepagesz.
4430  * hugepagesz is followed by hugepages on the command line.  The global
4431  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4432  * hugepagesz argument was valid.
4433  */
4434 static int __init hugepagesz_setup(char *s)
4435 {
4436 	unsigned long size;
4437 	struct hstate *h;
4438 
4439 	parsed_valid_hugepagesz = false;
4440 	size = (unsigned long)memparse(s, NULL);
4441 
4442 	if (!arch_hugetlb_valid_size(size)) {
4443 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4444 		return 1;
4445 	}
4446 
4447 	h = size_to_hstate(size);
4448 	if (h) {
4449 		/*
4450 		 * hstate for this size already exists.  This is normally
4451 		 * an error, but is allowed if the existing hstate is the
4452 		 * default hstate.  More specifically, it is only allowed if
4453 		 * the number of huge pages for the default hstate was not
4454 		 * previously specified.
4455 		 */
4456 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4457 		    default_hstate.max_huge_pages) {
4458 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4459 			return 1;
4460 		}
4461 
4462 		/*
4463 		 * No need to call hugetlb_add_hstate() as hstate already
4464 		 * exists.  But, do set parsed_hstate so that a following
4465 		 * hugepages= parameter will be applied to this hstate.
4466 		 */
4467 		parsed_hstate = h;
4468 		parsed_valid_hugepagesz = true;
4469 		return 1;
4470 	}
4471 
4472 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4473 	parsed_valid_hugepagesz = true;
4474 	return 1;
4475 }
4476 __setup("hugepagesz=", hugepagesz_setup);
4477 
4478 /*
4479  * default_hugepagesz command line input
4480  * Only one instance of default_hugepagesz allowed on command line.
4481  */
4482 static int __init default_hugepagesz_setup(char *s)
4483 {
4484 	unsigned long size;
4485 	int i;
4486 
4487 	parsed_valid_hugepagesz = false;
4488 	if (parsed_default_hugepagesz) {
4489 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4490 		return 1;
4491 	}
4492 
4493 	size = (unsigned long)memparse(s, NULL);
4494 
4495 	if (!arch_hugetlb_valid_size(size)) {
4496 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4497 		return 1;
4498 	}
4499 
4500 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4501 	parsed_valid_hugepagesz = true;
4502 	parsed_default_hugepagesz = true;
4503 	default_hstate_idx = hstate_index(size_to_hstate(size));
4504 
4505 	/*
4506 	 * The number of default huge pages (for this size) could have been
4507 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4508 	 * then default_hstate_max_huge_pages is set.  If the default huge
4509 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4510 	 * allocated here from bootmem allocator.
4511 	 */
4512 	if (default_hstate_max_huge_pages) {
4513 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4514 		for_each_online_node(i)
4515 			default_hstate.max_huge_pages_node[i] =
4516 				default_hugepages_in_node[i];
4517 		if (hstate_is_gigantic(&default_hstate))
4518 			hugetlb_hstate_alloc_pages(&default_hstate);
4519 		default_hstate_max_huge_pages = 0;
4520 	}
4521 
4522 	return 1;
4523 }
4524 __setup("default_hugepagesz=", default_hugepagesz_setup);
4525 
4526 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4527 {
4528 #ifdef CONFIG_NUMA
4529 	struct mempolicy *mpol = get_task_policy(current);
4530 
4531 	/*
4532 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4533 	 * (from policy_nodemask) specifically for hugetlb case
4534 	 */
4535 	if (mpol->mode == MPOL_BIND &&
4536 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4537 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4538 		return &mpol->nodes;
4539 #endif
4540 	return NULL;
4541 }
4542 
4543 static unsigned int allowed_mems_nr(struct hstate *h)
4544 {
4545 	int node;
4546 	unsigned int nr = 0;
4547 	nodemask_t *mbind_nodemask;
4548 	unsigned int *array = h->free_huge_pages_node;
4549 	gfp_t gfp_mask = htlb_alloc_mask(h);
4550 
4551 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4552 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4553 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4554 			nr += array[node];
4555 	}
4556 
4557 	return nr;
4558 }
4559 
4560 #ifdef CONFIG_SYSCTL
4561 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4562 					  void *buffer, size_t *length,
4563 					  loff_t *ppos, unsigned long *out)
4564 {
4565 	struct ctl_table dup_table;
4566 
4567 	/*
4568 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4569 	 * can duplicate the @table and alter the duplicate of it.
4570 	 */
4571 	dup_table = *table;
4572 	dup_table.data = out;
4573 
4574 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4575 }
4576 
4577 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4578 			 struct ctl_table *table, int write,
4579 			 void *buffer, size_t *length, loff_t *ppos)
4580 {
4581 	struct hstate *h = &default_hstate;
4582 	unsigned long tmp = h->max_huge_pages;
4583 	int ret;
4584 
4585 	if (!hugepages_supported())
4586 		return -EOPNOTSUPP;
4587 
4588 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4589 					     &tmp);
4590 	if (ret)
4591 		goto out;
4592 
4593 	if (write)
4594 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4595 						  NUMA_NO_NODE, tmp, *length);
4596 out:
4597 	return ret;
4598 }
4599 
4600 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4601 			  void *buffer, size_t *length, loff_t *ppos)
4602 {
4603 
4604 	return hugetlb_sysctl_handler_common(false, table, write,
4605 							buffer, length, ppos);
4606 }
4607 
4608 #ifdef CONFIG_NUMA
4609 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4610 			  void *buffer, size_t *length, loff_t *ppos)
4611 {
4612 	return hugetlb_sysctl_handler_common(true, table, write,
4613 							buffer, length, ppos);
4614 }
4615 #endif /* CONFIG_NUMA */
4616 
4617 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4618 		void *buffer, size_t *length, loff_t *ppos)
4619 {
4620 	struct hstate *h = &default_hstate;
4621 	unsigned long tmp;
4622 	int ret;
4623 
4624 	if (!hugepages_supported())
4625 		return -EOPNOTSUPP;
4626 
4627 	tmp = h->nr_overcommit_huge_pages;
4628 
4629 	if (write && hstate_is_gigantic(h))
4630 		return -EINVAL;
4631 
4632 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4633 					     &tmp);
4634 	if (ret)
4635 		goto out;
4636 
4637 	if (write) {
4638 		spin_lock_irq(&hugetlb_lock);
4639 		h->nr_overcommit_huge_pages = tmp;
4640 		spin_unlock_irq(&hugetlb_lock);
4641 	}
4642 out:
4643 	return ret;
4644 }
4645 
4646 static struct ctl_table hugetlb_table[] = {
4647 	{
4648 		.procname	= "nr_hugepages",
4649 		.data		= NULL,
4650 		.maxlen		= sizeof(unsigned long),
4651 		.mode		= 0644,
4652 		.proc_handler	= hugetlb_sysctl_handler,
4653 	},
4654 #ifdef CONFIG_NUMA
4655 	{
4656 		.procname       = "nr_hugepages_mempolicy",
4657 		.data           = NULL,
4658 		.maxlen         = sizeof(unsigned long),
4659 		.mode           = 0644,
4660 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4661 	},
4662 #endif
4663 	{
4664 		.procname	= "hugetlb_shm_group",
4665 		.data		= &sysctl_hugetlb_shm_group,
4666 		.maxlen		= sizeof(gid_t),
4667 		.mode		= 0644,
4668 		.proc_handler	= proc_dointvec,
4669 	},
4670 	{
4671 		.procname	= "nr_overcommit_hugepages",
4672 		.data		= NULL,
4673 		.maxlen		= sizeof(unsigned long),
4674 		.mode		= 0644,
4675 		.proc_handler	= hugetlb_overcommit_handler,
4676 	},
4677 	{ }
4678 };
4679 
4680 static void hugetlb_sysctl_init(void)
4681 {
4682 	register_sysctl_init("vm", hugetlb_table);
4683 }
4684 #endif /* CONFIG_SYSCTL */
4685 
4686 void hugetlb_report_meminfo(struct seq_file *m)
4687 {
4688 	struct hstate *h;
4689 	unsigned long total = 0;
4690 
4691 	if (!hugepages_supported())
4692 		return;
4693 
4694 	for_each_hstate(h) {
4695 		unsigned long count = h->nr_huge_pages;
4696 
4697 		total += huge_page_size(h) * count;
4698 
4699 		if (h == &default_hstate)
4700 			seq_printf(m,
4701 				   "HugePages_Total:   %5lu\n"
4702 				   "HugePages_Free:    %5lu\n"
4703 				   "HugePages_Rsvd:    %5lu\n"
4704 				   "HugePages_Surp:    %5lu\n"
4705 				   "Hugepagesize:   %8lu kB\n",
4706 				   count,
4707 				   h->free_huge_pages,
4708 				   h->resv_huge_pages,
4709 				   h->surplus_huge_pages,
4710 				   huge_page_size(h) / SZ_1K);
4711 	}
4712 
4713 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4714 }
4715 
4716 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4717 {
4718 	struct hstate *h = &default_hstate;
4719 
4720 	if (!hugepages_supported())
4721 		return 0;
4722 
4723 	return sysfs_emit_at(buf, len,
4724 			     "Node %d HugePages_Total: %5u\n"
4725 			     "Node %d HugePages_Free:  %5u\n"
4726 			     "Node %d HugePages_Surp:  %5u\n",
4727 			     nid, h->nr_huge_pages_node[nid],
4728 			     nid, h->free_huge_pages_node[nid],
4729 			     nid, h->surplus_huge_pages_node[nid]);
4730 }
4731 
4732 void hugetlb_show_meminfo_node(int nid)
4733 {
4734 	struct hstate *h;
4735 
4736 	if (!hugepages_supported())
4737 		return;
4738 
4739 	for_each_hstate(h)
4740 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4741 			nid,
4742 			h->nr_huge_pages_node[nid],
4743 			h->free_huge_pages_node[nid],
4744 			h->surplus_huge_pages_node[nid],
4745 			huge_page_size(h) / SZ_1K);
4746 }
4747 
4748 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4749 {
4750 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4751 		   K(atomic_long_read(&mm->hugetlb_usage)));
4752 }
4753 
4754 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4755 unsigned long hugetlb_total_pages(void)
4756 {
4757 	struct hstate *h;
4758 	unsigned long nr_total_pages = 0;
4759 
4760 	for_each_hstate(h)
4761 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4762 	return nr_total_pages;
4763 }
4764 
4765 static int hugetlb_acct_memory(struct hstate *h, long delta)
4766 {
4767 	int ret = -ENOMEM;
4768 
4769 	if (!delta)
4770 		return 0;
4771 
4772 	spin_lock_irq(&hugetlb_lock);
4773 	/*
4774 	 * When cpuset is configured, it breaks the strict hugetlb page
4775 	 * reservation as the accounting is done on a global variable. Such
4776 	 * reservation is completely rubbish in the presence of cpuset because
4777 	 * the reservation is not checked against page availability for the
4778 	 * current cpuset. Application can still potentially OOM'ed by kernel
4779 	 * with lack of free htlb page in cpuset that the task is in.
4780 	 * Attempt to enforce strict accounting with cpuset is almost
4781 	 * impossible (or too ugly) because cpuset is too fluid that
4782 	 * task or memory node can be dynamically moved between cpusets.
4783 	 *
4784 	 * The change of semantics for shared hugetlb mapping with cpuset is
4785 	 * undesirable. However, in order to preserve some of the semantics,
4786 	 * we fall back to check against current free page availability as
4787 	 * a best attempt and hopefully to minimize the impact of changing
4788 	 * semantics that cpuset has.
4789 	 *
4790 	 * Apart from cpuset, we also have memory policy mechanism that
4791 	 * also determines from which node the kernel will allocate memory
4792 	 * in a NUMA system. So similar to cpuset, we also should consider
4793 	 * the memory policy of the current task. Similar to the description
4794 	 * above.
4795 	 */
4796 	if (delta > 0) {
4797 		if (gather_surplus_pages(h, delta) < 0)
4798 			goto out;
4799 
4800 		if (delta > allowed_mems_nr(h)) {
4801 			return_unused_surplus_pages(h, delta);
4802 			goto out;
4803 		}
4804 	}
4805 
4806 	ret = 0;
4807 	if (delta < 0)
4808 		return_unused_surplus_pages(h, (unsigned long) -delta);
4809 
4810 out:
4811 	spin_unlock_irq(&hugetlb_lock);
4812 	return ret;
4813 }
4814 
4815 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4816 {
4817 	struct resv_map *resv = vma_resv_map(vma);
4818 
4819 	/*
4820 	 * HPAGE_RESV_OWNER indicates a private mapping.
4821 	 * This new VMA should share its siblings reservation map if present.
4822 	 * The VMA will only ever have a valid reservation map pointer where
4823 	 * it is being copied for another still existing VMA.  As that VMA
4824 	 * has a reference to the reservation map it cannot disappear until
4825 	 * after this open call completes.  It is therefore safe to take a
4826 	 * new reference here without additional locking.
4827 	 */
4828 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4829 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4830 		kref_get(&resv->refs);
4831 	}
4832 
4833 	/*
4834 	 * vma_lock structure for sharable mappings is vma specific.
4835 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4836 	 * new structure.  Before clearing, make sure vma_lock is not
4837 	 * for this vma.
4838 	 */
4839 	if (vma->vm_flags & VM_MAYSHARE) {
4840 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4841 
4842 		if (vma_lock) {
4843 			if (vma_lock->vma != vma) {
4844 				vma->vm_private_data = NULL;
4845 				hugetlb_vma_lock_alloc(vma);
4846 			} else
4847 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4848 		} else
4849 			hugetlb_vma_lock_alloc(vma);
4850 	}
4851 }
4852 
4853 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4854 {
4855 	struct hstate *h = hstate_vma(vma);
4856 	struct resv_map *resv;
4857 	struct hugepage_subpool *spool = subpool_vma(vma);
4858 	unsigned long reserve, start, end;
4859 	long gbl_reserve;
4860 
4861 	hugetlb_vma_lock_free(vma);
4862 
4863 	resv = vma_resv_map(vma);
4864 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4865 		return;
4866 
4867 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4868 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4869 
4870 	reserve = (end - start) - region_count(resv, start, end);
4871 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4872 	if (reserve) {
4873 		/*
4874 		 * Decrement reserve counts.  The global reserve count may be
4875 		 * adjusted if the subpool has a minimum size.
4876 		 */
4877 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4878 		hugetlb_acct_memory(h, -gbl_reserve);
4879 	}
4880 
4881 	kref_put(&resv->refs, resv_map_release);
4882 }
4883 
4884 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4885 {
4886 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4887 		return -EINVAL;
4888 
4889 	/*
4890 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4891 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4892 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4893 	 */
4894 	if (addr & ~PUD_MASK) {
4895 		/*
4896 		 * hugetlb_vm_op_split is called right before we attempt to
4897 		 * split the VMA. We will need to unshare PMDs in the old and
4898 		 * new VMAs, so let's unshare before we split.
4899 		 */
4900 		unsigned long floor = addr & PUD_MASK;
4901 		unsigned long ceil = floor + PUD_SIZE;
4902 
4903 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4904 			hugetlb_unshare_pmds(vma, floor, ceil);
4905 	}
4906 
4907 	return 0;
4908 }
4909 
4910 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4911 {
4912 	return huge_page_size(hstate_vma(vma));
4913 }
4914 
4915 /*
4916  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4917  * handle_mm_fault() to try to instantiate regular-sized pages in the
4918  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4919  * this far.
4920  */
4921 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4922 {
4923 	BUG();
4924 	return 0;
4925 }
4926 
4927 /*
4928  * When a new function is introduced to vm_operations_struct and added
4929  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4930  * This is because under System V memory model, mappings created via
4931  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4932  * their original vm_ops are overwritten with shm_vm_ops.
4933  */
4934 const struct vm_operations_struct hugetlb_vm_ops = {
4935 	.fault = hugetlb_vm_op_fault,
4936 	.open = hugetlb_vm_op_open,
4937 	.close = hugetlb_vm_op_close,
4938 	.may_split = hugetlb_vm_op_split,
4939 	.pagesize = hugetlb_vm_op_pagesize,
4940 };
4941 
4942 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4943 				int writable)
4944 {
4945 	pte_t entry;
4946 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4947 
4948 	if (writable) {
4949 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4950 					 vma->vm_page_prot)));
4951 	} else {
4952 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4953 					   vma->vm_page_prot));
4954 	}
4955 	entry = pte_mkyoung(entry);
4956 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4957 
4958 	return entry;
4959 }
4960 
4961 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4962 				   unsigned long address, pte_t *ptep)
4963 {
4964 	pte_t entry;
4965 
4966 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4967 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4968 		update_mmu_cache(vma, address, ptep);
4969 }
4970 
4971 bool is_hugetlb_entry_migration(pte_t pte)
4972 {
4973 	swp_entry_t swp;
4974 
4975 	if (huge_pte_none(pte) || pte_present(pte))
4976 		return false;
4977 	swp = pte_to_swp_entry(pte);
4978 	if (is_migration_entry(swp))
4979 		return true;
4980 	else
4981 		return false;
4982 }
4983 
4984 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4985 {
4986 	swp_entry_t swp;
4987 
4988 	if (huge_pte_none(pte) || pte_present(pte))
4989 		return false;
4990 	swp = pte_to_swp_entry(pte);
4991 	if (is_hwpoison_entry(swp))
4992 		return true;
4993 	else
4994 		return false;
4995 }
4996 
4997 static void
4998 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4999 		      struct folio *new_folio, pte_t old)
5000 {
5001 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5002 
5003 	__folio_mark_uptodate(new_folio);
5004 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5005 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5006 		newpte = huge_pte_mkuffd_wp(newpte);
5007 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5008 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5009 	folio_set_hugetlb_migratable(new_folio);
5010 }
5011 
5012 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5013 			    struct vm_area_struct *dst_vma,
5014 			    struct vm_area_struct *src_vma)
5015 {
5016 	pte_t *src_pte, *dst_pte, entry;
5017 	struct folio *pte_folio;
5018 	unsigned long addr;
5019 	bool cow = is_cow_mapping(src_vma->vm_flags);
5020 	struct hstate *h = hstate_vma(src_vma);
5021 	unsigned long sz = huge_page_size(h);
5022 	unsigned long npages = pages_per_huge_page(h);
5023 	struct mmu_notifier_range range;
5024 	unsigned long last_addr_mask;
5025 	int ret = 0;
5026 
5027 	if (cow) {
5028 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5029 					src_vma->vm_start,
5030 					src_vma->vm_end);
5031 		mmu_notifier_invalidate_range_start(&range);
5032 		mmap_assert_write_locked(src);
5033 		raw_write_seqcount_begin(&src->write_protect_seq);
5034 	} else {
5035 		/*
5036 		 * For shared mappings the vma lock must be held before
5037 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5038 		 * returned ptep could go away if part of a shared pmd and
5039 		 * another thread calls huge_pmd_unshare.
5040 		 */
5041 		hugetlb_vma_lock_read(src_vma);
5042 	}
5043 
5044 	last_addr_mask = hugetlb_mask_last_page(h);
5045 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5046 		spinlock_t *src_ptl, *dst_ptl;
5047 		src_pte = hugetlb_walk(src_vma, addr, sz);
5048 		if (!src_pte) {
5049 			addr |= last_addr_mask;
5050 			continue;
5051 		}
5052 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5053 		if (!dst_pte) {
5054 			ret = -ENOMEM;
5055 			break;
5056 		}
5057 
5058 		/*
5059 		 * If the pagetables are shared don't copy or take references.
5060 		 *
5061 		 * dst_pte == src_pte is the common case of src/dest sharing.
5062 		 * However, src could have 'unshared' and dst shares with
5063 		 * another vma. So page_count of ptep page is checked instead
5064 		 * to reliably determine whether pte is shared.
5065 		 */
5066 		if (page_count(virt_to_page(dst_pte)) > 1) {
5067 			addr |= last_addr_mask;
5068 			continue;
5069 		}
5070 
5071 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5072 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5073 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5074 		entry = huge_ptep_get(src_pte);
5075 again:
5076 		if (huge_pte_none(entry)) {
5077 			/*
5078 			 * Skip if src entry none.
5079 			 */
5080 			;
5081 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5082 			if (!userfaultfd_wp(dst_vma))
5083 				entry = huge_pte_clear_uffd_wp(entry);
5084 			set_huge_pte_at(dst, addr, dst_pte, entry);
5085 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5086 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5087 			bool uffd_wp = pte_swp_uffd_wp(entry);
5088 
5089 			if (!is_readable_migration_entry(swp_entry) && cow) {
5090 				/*
5091 				 * COW mappings require pages in both
5092 				 * parent and child to be set to read.
5093 				 */
5094 				swp_entry = make_readable_migration_entry(
5095 							swp_offset(swp_entry));
5096 				entry = swp_entry_to_pte(swp_entry);
5097 				if (userfaultfd_wp(src_vma) && uffd_wp)
5098 					entry = pte_swp_mkuffd_wp(entry);
5099 				set_huge_pte_at(src, addr, src_pte, entry);
5100 			}
5101 			if (!userfaultfd_wp(dst_vma))
5102 				entry = huge_pte_clear_uffd_wp(entry);
5103 			set_huge_pte_at(dst, addr, dst_pte, entry);
5104 		} else if (unlikely(is_pte_marker(entry))) {
5105 			pte_marker marker = copy_pte_marker(
5106 				pte_to_swp_entry(entry), dst_vma);
5107 
5108 			if (marker)
5109 				set_huge_pte_at(dst, addr, dst_pte,
5110 						make_pte_marker(marker));
5111 		} else {
5112 			entry = huge_ptep_get(src_pte);
5113 			pte_folio = page_folio(pte_page(entry));
5114 			folio_get(pte_folio);
5115 
5116 			/*
5117 			 * Failing to duplicate the anon rmap is a rare case
5118 			 * where we see pinned hugetlb pages while they're
5119 			 * prone to COW. We need to do the COW earlier during
5120 			 * fork.
5121 			 *
5122 			 * When pre-allocating the page or copying data, we
5123 			 * need to be without the pgtable locks since we could
5124 			 * sleep during the process.
5125 			 */
5126 			if (!folio_test_anon(pte_folio)) {
5127 				page_dup_file_rmap(&pte_folio->page, true);
5128 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5129 							  true, src_vma)) {
5130 				pte_t src_pte_old = entry;
5131 				struct folio *new_folio;
5132 
5133 				spin_unlock(src_ptl);
5134 				spin_unlock(dst_ptl);
5135 				/* Do not use reserve as it's private owned */
5136 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5137 				if (IS_ERR(new_folio)) {
5138 					folio_put(pte_folio);
5139 					ret = PTR_ERR(new_folio);
5140 					break;
5141 				}
5142 				ret = copy_user_large_folio(new_folio,
5143 							    pte_folio,
5144 							    addr, dst_vma);
5145 				folio_put(pte_folio);
5146 				if (ret) {
5147 					folio_put(new_folio);
5148 					break;
5149 				}
5150 
5151 				/* Install the new hugetlb folio if src pte stable */
5152 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5153 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5154 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5155 				entry = huge_ptep_get(src_pte);
5156 				if (!pte_same(src_pte_old, entry)) {
5157 					restore_reserve_on_error(h, dst_vma, addr,
5158 								new_folio);
5159 					folio_put(new_folio);
5160 					/* huge_ptep of dst_pte won't change as in child */
5161 					goto again;
5162 				}
5163 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5164 						      new_folio, src_pte_old);
5165 				spin_unlock(src_ptl);
5166 				spin_unlock(dst_ptl);
5167 				continue;
5168 			}
5169 
5170 			if (cow) {
5171 				/*
5172 				 * No need to notify as we are downgrading page
5173 				 * table protection not changing it to point
5174 				 * to a new page.
5175 				 *
5176 				 * See Documentation/mm/mmu_notifier.rst
5177 				 */
5178 				huge_ptep_set_wrprotect(src, addr, src_pte);
5179 				entry = huge_pte_wrprotect(entry);
5180 			}
5181 
5182 			if (!userfaultfd_wp(dst_vma))
5183 				entry = huge_pte_clear_uffd_wp(entry);
5184 
5185 			set_huge_pte_at(dst, addr, dst_pte, entry);
5186 			hugetlb_count_add(npages, dst);
5187 		}
5188 		spin_unlock(src_ptl);
5189 		spin_unlock(dst_ptl);
5190 	}
5191 
5192 	if (cow) {
5193 		raw_write_seqcount_end(&src->write_protect_seq);
5194 		mmu_notifier_invalidate_range_end(&range);
5195 	} else {
5196 		hugetlb_vma_unlock_read(src_vma);
5197 	}
5198 
5199 	return ret;
5200 }
5201 
5202 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5203 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5204 {
5205 	struct hstate *h = hstate_vma(vma);
5206 	struct mm_struct *mm = vma->vm_mm;
5207 	spinlock_t *src_ptl, *dst_ptl;
5208 	pte_t pte;
5209 
5210 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5211 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5212 
5213 	/*
5214 	 * We don't have to worry about the ordering of src and dst ptlocks
5215 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5216 	 */
5217 	if (src_ptl != dst_ptl)
5218 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5219 
5220 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5221 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5222 
5223 	if (src_ptl != dst_ptl)
5224 		spin_unlock(src_ptl);
5225 	spin_unlock(dst_ptl);
5226 }
5227 
5228 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5229 			     struct vm_area_struct *new_vma,
5230 			     unsigned long old_addr, unsigned long new_addr,
5231 			     unsigned long len)
5232 {
5233 	struct hstate *h = hstate_vma(vma);
5234 	struct address_space *mapping = vma->vm_file->f_mapping;
5235 	unsigned long sz = huge_page_size(h);
5236 	struct mm_struct *mm = vma->vm_mm;
5237 	unsigned long old_end = old_addr + len;
5238 	unsigned long last_addr_mask;
5239 	pte_t *src_pte, *dst_pte;
5240 	struct mmu_notifier_range range;
5241 	bool shared_pmd = false;
5242 
5243 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5244 				old_end);
5245 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5246 	/*
5247 	 * In case of shared PMDs, we should cover the maximum possible
5248 	 * range.
5249 	 */
5250 	flush_cache_range(vma, range.start, range.end);
5251 
5252 	mmu_notifier_invalidate_range_start(&range);
5253 	last_addr_mask = hugetlb_mask_last_page(h);
5254 	/* Prevent race with file truncation */
5255 	hugetlb_vma_lock_write(vma);
5256 	i_mmap_lock_write(mapping);
5257 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5258 		src_pte = hugetlb_walk(vma, old_addr, sz);
5259 		if (!src_pte) {
5260 			old_addr |= last_addr_mask;
5261 			new_addr |= last_addr_mask;
5262 			continue;
5263 		}
5264 		if (huge_pte_none(huge_ptep_get(src_pte)))
5265 			continue;
5266 
5267 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5268 			shared_pmd = true;
5269 			old_addr |= last_addr_mask;
5270 			new_addr |= last_addr_mask;
5271 			continue;
5272 		}
5273 
5274 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5275 		if (!dst_pte)
5276 			break;
5277 
5278 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5279 	}
5280 
5281 	if (shared_pmd)
5282 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5283 	else
5284 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5285 	mmu_notifier_invalidate_range_end(&range);
5286 	i_mmap_unlock_write(mapping);
5287 	hugetlb_vma_unlock_write(vma);
5288 
5289 	return len + old_addr - old_end;
5290 }
5291 
5292 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5293 				   unsigned long start, unsigned long end,
5294 				   struct page *ref_page, zap_flags_t zap_flags)
5295 {
5296 	struct mm_struct *mm = vma->vm_mm;
5297 	unsigned long address;
5298 	pte_t *ptep;
5299 	pte_t pte;
5300 	spinlock_t *ptl;
5301 	struct page *page;
5302 	struct hstate *h = hstate_vma(vma);
5303 	unsigned long sz = huge_page_size(h);
5304 	unsigned long last_addr_mask;
5305 	bool force_flush = false;
5306 
5307 	WARN_ON(!is_vm_hugetlb_page(vma));
5308 	BUG_ON(start & ~huge_page_mask(h));
5309 	BUG_ON(end & ~huge_page_mask(h));
5310 
5311 	/*
5312 	 * This is a hugetlb vma, all the pte entries should point
5313 	 * to huge page.
5314 	 */
5315 	tlb_change_page_size(tlb, sz);
5316 	tlb_start_vma(tlb, vma);
5317 
5318 	last_addr_mask = hugetlb_mask_last_page(h);
5319 	address = start;
5320 	for (; address < end; address += sz) {
5321 		ptep = hugetlb_walk(vma, address, sz);
5322 		if (!ptep) {
5323 			address |= last_addr_mask;
5324 			continue;
5325 		}
5326 
5327 		ptl = huge_pte_lock(h, mm, ptep);
5328 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5329 			spin_unlock(ptl);
5330 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5331 			force_flush = true;
5332 			address |= last_addr_mask;
5333 			continue;
5334 		}
5335 
5336 		pte = huge_ptep_get(ptep);
5337 		if (huge_pte_none(pte)) {
5338 			spin_unlock(ptl);
5339 			continue;
5340 		}
5341 
5342 		/*
5343 		 * Migrating hugepage or HWPoisoned hugepage is already
5344 		 * unmapped and its refcount is dropped, so just clear pte here.
5345 		 */
5346 		if (unlikely(!pte_present(pte))) {
5347 			/*
5348 			 * If the pte was wr-protected by uffd-wp in any of the
5349 			 * swap forms, meanwhile the caller does not want to
5350 			 * drop the uffd-wp bit in this zap, then replace the
5351 			 * pte with a marker.
5352 			 */
5353 			if (pte_swp_uffd_wp_any(pte) &&
5354 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5355 				set_huge_pte_at(mm, address, ptep,
5356 						make_pte_marker(PTE_MARKER_UFFD_WP));
5357 			else
5358 				huge_pte_clear(mm, address, ptep, sz);
5359 			spin_unlock(ptl);
5360 			continue;
5361 		}
5362 
5363 		page = pte_page(pte);
5364 		/*
5365 		 * If a reference page is supplied, it is because a specific
5366 		 * page is being unmapped, not a range. Ensure the page we
5367 		 * are about to unmap is the actual page of interest.
5368 		 */
5369 		if (ref_page) {
5370 			if (page != ref_page) {
5371 				spin_unlock(ptl);
5372 				continue;
5373 			}
5374 			/*
5375 			 * Mark the VMA as having unmapped its page so that
5376 			 * future faults in this VMA will fail rather than
5377 			 * looking like data was lost
5378 			 */
5379 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5380 		}
5381 
5382 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5383 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5384 		if (huge_pte_dirty(pte))
5385 			set_page_dirty(page);
5386 		/* Leave a uffd-wp pte marker if needed */
5387 		if (huge_pte_uffd_wp(pte) &&
5388 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5389 			set_huge_pte_at(mm, address, ptep,
5390 					make_pte_marker(PTE_MARKER_UFFD_WP));
5391 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5392 		page_remove_rmap(page, vma, true);
5393 
5394 		spin_unlock(ptl);
5395 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5396 		/*
5397 		 * Bail out after unmapping reference page if supplied
5398 		 */
5399 		if (ref_page)
5400 			break;
5401 	}
5402 	tlb_end_vma(tlb, vma);
5403 
5404 	/*
5405 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5406 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5407 	 * guaranteed that the last refernece would not be dropped. But we must
5408 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5409 	 * dropped and the last reference to the shared PMDs page might be
5410 	 * dropped as well.
5411 	 *
5412 	 * In theory we could defer the freeing of the PMD pages as well, but
5413 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5414 	 * detect sharing, so we cannot defer the release of the page either.
5415 	 * Instead, do flush now.
5416 	 */
5417 	if (force_flush)
5418 		tlb_flush_mmu_tlbonly(tlb);
5419 }
5420 
5421 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5422 			  struct vm_area_struct *vma, unsigned long start,
5423 			  unsigned long end, struct page *ref_page,
5424 			  zap_flags_t zap_flags)
5425 {
5426 	hugetlb_vma_lock_write(vma);
5427 	i_mmap_lock_write(vma->vm_file->f_mapping);
5428 
5429 	/* mmu notification performed in caller */
5430 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5431 
5432 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5433 		/*
5434 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5435 		 * When the vma_lock is freed, this makes the vma ineligible
5436 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5437 		 * pmd sharing.  This is important as page tables for this
5438 		 * unmapped range will be asynchrously deleted.  If the page
5439 		 * tables are shared, there will be issues when accessed by
5440 		 * someone else.
5441 		 */
5442 		__hugetlb_vma_unlock_write_free(vma);
5443 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5444 	} else {
5445 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5446 		hugetlb_vma_unlock_write(vma);
5447 	}
5448 }
5449 
5450 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5451 			  unsigned long end, struct page *ref_page,
5452 			  zap_flags_t zap_flags)
5453 {
5454 	struct mmu_notifier_range range;
5455 	struct mmu_gather tlb;
5456 
5457 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5458 				start, end);
5459 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5460 	mmu_notifier_invalidate_range_start(&range);
5461 	tlb_gather_mmu(&tlb, vma->vm_mm);
5462 
5463 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5464 
5465 	mmu_notifier_invalidate_range_end(&range);
5466 	tlb_finish_mmu(&tlb);
5467 }
5468 
5469 /*
5470  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5471  * mapping it owns the reserve page for. The intention is to unmap the page
5472  * from other VMAs and let the children be SIGKILLed if they are faulting the
5473  * same region.
5474  */
5475 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5476 			      struct page *page, unsigned long address)
5477 {
5478 	struct hstate *h = hstate_vma(vma);
5479 	struct vm_area_struct *iter_vma;
5480 	struct address_space *mapping;
5481 	pgoff_t pgoff;
5482 
5483 	/*
5484 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5485 	 * from page cache lookup which is in HPAGE_SIZE units.
5486 	 */
5487 	address = address & huge_page_mask(h);
5488 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5489 			vma->vm_pgoff;
5490 	mapping = vma->vm_file->f_mapping;
5491 
5492 	/*
5493 	 * Take the mapping lock for the duration of the table walk. As
5494 	 * this mapping should be shared between all the VMAs,
5495 	 * __unmap_hugepage_range() is called as the lock is already held
5496 	 */
5497 	i_mmap_lock_write(mapping);
5498 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5499 		/* Do not unmap the current VMA */
5500 		if (iter_vma == vma)
5501 			continue;
5502 
5503 		/*
5504 		 * Shared VMAs have their own reserves and do not affect
5505 		 * MAP_PRIVATE accounting but it is possible that a shared
5506 		 * VMA is using the same page so check and skip such VMAs.
5507 		 */
5508 		if (iter_vma->vm_flags & VM_MAYSHARE)
5509 			continue;
5510 
5511 		/*
5512 		 * Unmap the page from other VMAs without their own reserves.
5513 		 * They get marked to be SIGKILLed if they fault in these
5514 		 * areas. This is because a future no-page fault on this VMA
5515 		 * could insert a zeroed page instead of the data existing
5516 		 * from the time of fork. This would look like data corruption
5517 		 */
5518 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5519 			unmap_hugepage_range(iter_vma, address,
5520 					     address + huge_page_size(h), page, 0);
5521 	}
5522 	i_mmap_unlock_write(mapping);
5523 }
5524 
5525 /*
5526  * hugetlb_wp() should be called with page lock of the original hugepage held.
5527  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5528  * cannot race with other handlers or page migration.
5529  * Keep the pte_same checks anyway to make transition from the mutex easier.
5530  */
5531 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5532 		       unsigned long address, pte_t *ptep, unsigned int flags,
5533 		       struct folio *pagecache_folio, spinlock_t *ptl)
5534 {
5535 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5536 	pte_t pte = huge_ptep_get(ptep);
5537 	struct hstate *h = hstate_vma(vma);
5538 	struct folio *old_folio;
5539 	struct folio *new_folio;
5540 	int outside_reserve = 0;
5541 	vm_fault_t ret = 0;
5542 	unsigned long haddr = address & huge_page_mask(h);
5543 	struct mmu_notifier_range range;
5544 
5545 	/*
5546 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5547 	 * handled when the uffd-wp protection is removed.
5548 	 *
5549 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5550 	 * can trigger this, because hugetlb_fault() will always resolve
5551 	 * uffd-wp bit first.
5552 	 */
5553 	if (!unshare && huge_pte_uffd_wp(pte))
5554 		return 0;
5555 
5556 	/*
5557 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5558 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5559 	 */
5560 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5561 		return VM_FAULT_SIGSEGV;
5562 
5563 	/* Let's take out MAP_SHARED mappings first. */
5564 	if (vma->vm_flags & VM_MAYSHARE) {
5565 		set_huge_ptep_writable(vma, haddr, ptep);
5566 		return 0;
5567 	}
5568 
5569 	old_folio = page_folio(pte_page(pte));
5570 
5571 	delayacct_wpcopy_start();
5572 
5573 retry_avoidcopy:
5574 	/*
5575 	 * If no-one else is actually using this page, we're the exclusive
5576 	 * owner and can reuse this page.
5577 	 */
5578 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5579 		if (!PageAnonExclusive(&old_folio->page))
5580 			page_move_anon_rmap(&old_folio->page, vma);
5581 		if (likely(!unshare))
5582 			set_huge_ptep_writable(vma, haddr, ptep);
5583 
5584 		delayacct_wpcopy_end();
5585 		return 0;
5586 	}
5587 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5588 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5589 
5590 	/*
5591 	 * If the process that created a MAP_PRIVATE mapping is about to
5592 	 * perform a COW due to a shared page count, attempt to satisfy
5593 	 * the allocation without using the existing reserves. The pagecache
5594 	 * page is used to determine if the reserve at this address was
5595 	 * consumed or not. If reserves were used, a partial faulted mapping
5596 	 * at the time of fork() could consume its reserves on COW instead
5597 	 * of the full address range.
5598 	 */
5599 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5600 			old_folio != pagecache_folio)
5601 		outside_reserve = 1;
5602 
5603 	folio_get(old_folio);
5604 
5605 	/*
5606 	 * Drop page table lock as buddy allocator may be called. It will
5607 	 * be acquired again before returning to the caller, as expected.
5608 	 */
5609 	spin_unlock(ptl);
5610 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5611 
5612 	if (IS_ERR(new_folio)) {
5613 		/*
5614 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5615 		 * it is due to references held by a child and an insufficient
5616 		 * huge page pool. To guarantee the original mappers
5617 		 * reliability, unmap the page from child processes. The child
5618 		 * may get SIGKILLed if it later faults.
5619 		 */
5620 		if (outside_reserve) {
5621 			struct address_space *mapping = vma->vm_file->f_mapping;
5622 			pgoff_t idx;
5623 			u32 hash;
5624 
5625 			folio_put(old_folio);
5626 			/*
5627 			 * Drop hugetlb_fault_mutex and vma_lock before
5628 			 * unmapping.  unmapping needs to hold vma_lock
5629 			 * in write mode.  Dropping vma_lock in read mode
5630 			 * here is OK as COW mappings do not interact with
5631 			 * PMD sharing.
5632 			 *
5633 			 * Reacquire both after unmap operation.
5634 			 */
5635 			idx = vma_hugecache_offset(h, vma, haddr);
5636 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5637 			hugetlb_vma_unlock_read(vma);
5638 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5639 
5640 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5641 
5642 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5643 			hugetlb_vma_lock_read(vma);
5644 			spin_lock(ptl);
5645 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5646 			if (likely(ptep &&
5647 				   pte_same(huge_ptep_get(ptep), pte)))
5648 				goto retry_avoidcopy;
5649 			/*
5650 			 * race occurs while re-acquiring page table
5651 			 * lock, and our job is done.
5652 			 */
5653 			delayacct_wpcopy_end();
5654 			return 0;
5655 		}
5656 
5657 		ret = vmf_error(PTR_ERR(new_folio));
5658 		goto out_release_old;
5659 	}
5660 
5661 	/*
5662 	 * When the original hugepage is shared one, it does not have
5663 	 * anon_vma prepared.
5664 	 */
5665 	if (unlikely(anon_vma_prepare(vma))) {
5666 		ret = VM_FAULT_OOM;
5667 		goto out_release_all;
5668 	}
5669 
5670 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5671 		ret = VM_FAULT_HWPOISON_LARGE;
5672 		goto out_release_all;
5673 	}
5674 	__folio_mark_uptodate(new_folio);
5675 
5676 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5677 				haddr + huge_page_size(h));
5678 	mmu_notifier_invalidate_range_start(&range);
5679 
5680 	/*
5681 	 * Retake the page table lock to check for racing updates
5682 	 * before the page tables are altered
5683 	 */
5684 	spin_lock(ptl);
5685 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5686 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5687 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5688 
5689 		/* Break COW or unshare */
5690 		huge_ptep_clear_flush(vma, haddr, ptep);
5691 		page_remove_rmap(&old_folio->page, vma, true);
5692 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5693 		if (huge_pte_uffd_wp(pte))
5694 			newpte = huge_pte_mkuffd_wp(newpte);
5695 		set_huge_pte_at(mm, haddr, ptep, newpte);
5696 		folio_set_hugetlb_migratable(new_folio);
5697 		/* Make the old page be freed below */
5698 		new_folio = old_folio;
5699 	}
5700 	spin_unlock(ptl);
5701 	mmu_notifier_invalidate_range_end(&range);
5702 out_release_all:
5703 	/*
5704 	 * No restore in case of successful pagetable update (Break COW or
5705 	 * unshare)
5706 	 */
5707 	if (new_folio != old_folio)
5708 		restore_reserve_on_error(h, vma, haddr, new_folio);
5709 	folio_put(new_folio);
5710 out_release_old:
5711 	folio_put(old_folio);
5712 
5713 	spin_lock(ptl); /* Caller expects lock to be held */
5714 
5715 	delayacct_wpcopy_end();
5716 	return ret;
5717 }
5718 
5719 /*
5720  * Return whether there is a pagecache page to back given address within VMA.
5721  */
5722 static bool hugetlbfs_pagecache_present(struct hstate *h,
5723 			struct vm_area_struct *vma, unsigned long address)
5724 {
5725 	struct address_space *mapping = vma->vm_file->f_mapping;
5726 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5727 	struct folio *folio;
5728 
5729 	folio = filemap_get_folio(mapping, idx);
5730 	if (IS_ERR(folio))
5731 		return false;
5732 	folio_put(folio);
5733 	return true;
5734 }
5735 
5736 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5737 			   pgoff_t idx)
5738 {
5739 	struct inode *inode = mapping->host;
5740 	struct hstate *h = hstate_inode(inode);
5741 	int err;
5742 
5743 	__folio_set_locked(folio);
5744 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5745 
5746 	if (unlikely(err)) {
5747 		__folio_clear_locked(folio);
5748 		return err;
5749 	}
5750 	folio_clear_hugetlb_restore_reserve(folio);
5751 
5752 	/*
5753 	 * mark folio dirty so that it will not be removed from cache/file
5754 	 * by non-hugetlbfs specific code paths.
5755 	 */
5756 	folio_mark_dirty(folio);
5757 
5758 	spin_lock(&inode->i_lock);
5759 	inode->i_blocks += blocks_per_huge_page(h);
5760 	spin_unlock(&inode->i_lock);
5761 	return 0;
5762 }
5763 
5764 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5765 						  struct address_space *mapping,
5766 						  pgoff_t idx,
5767 						  unsigned int flags,
5768 						  unsigned long haddr,
5769 						  unsigned long addr,
5770 						  unsigned long reason)
5771 {
5772 	u32 hash;
5773 	struct vm_fault vmf = {
5774 		.vma = vma,
5775 		.address = haddr,
5776 		.real_address = addr,
5777 		.flags = flags,
5778 
5779 		/*
5780 		 * Hard to debug if it ends up being
5781 		 * used by a callee that assumes
5782 		 * something about the other
5783 		 * uninitialized fields... same as in
5784 		 * memory.c
5785 		 */
5786 	};
5787 
5788 	/*
5789 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5790 	 * userfault. Also mmap_lock could be dropped due to handling
5791 	 * userfault, any vma operation should be careful from here.
5792 	 */
5793 	hugetlb_vma_unlock_read(vma);
5794 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5795 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5796 	return handle_userfault(&vmf, reason);
5797 }
5798 
5799 /*
5800  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5801  * false if pte changed or is changing.
5802  */
5803 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5804 			       pte_t *ptep, pte_t old_pte)
5805 {
5806 	spinlock_t *ptl;
5807 	bool same;
5808 
5809 	ptl = huge_pte_lock(h, mm, ptep);
5810 	same = pte_same(huge_ptep_get(ptep), old_pte);
5811 	spin_unlock(ptl);
5812 
5813 	return same;
5814 }
5815 
5816 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5817 			struct vm_area_struct *vma,
5818 			struct address_space *mapping, pgoff_t idx,
5819 			unsigned long address, pte_t *ptep,
5820 			pte_t old_pte, unsigned int flags)
5821 {
5822 	struct hstate *h = hstate_vma(vma);
5823 	vm_fault_t ret = VM_FAULT_SIGBUS;
5824 	int anon_rmap = 0;
5825 	unsigned long size;
5826 	struct folio *folio;
5827 	pte_t new_pte;
5828 	spinlock_t *ptl;
5829 	unsigned long haddr = address & huge_page_mask(h);
5830 	bool new_folio, new_pagecache_folio = false;
5831 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5832 
5833 	/*
5834 	 * Currently, we are forced to kill the process in the event the
5835 	 * original mapper has unmapped pages from the child due to a failed
5836 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5837 	 * be obvious.
5838 	 */
5839 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5840 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5841 			   current->pid);
5842 		goto out;
5843 	}
5844 
5845 	/*
5846 	 * Use page lock to guard against racing truncation
5847 	 * before we get page_table_lock.
5848 	 */
5849 	new_folio = false;
5850 	folio = filemap_lock_folio(mapping, idx);
5851 	if (IS_ERR(folio)) {
5852 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5853 		if (idx >= size)
5854 			goto out;
5855 		/* Check for page in userfault range */
5856 		if (userfaultfd_missing(vma)) {
5857 			/*
5858 			 * Since hugetlb_no_page() was examining pte
5859 			 * without pgtable lock, we need to re-test under
5860 			 * lock because the pte may not be stable and could
5861 			 * have changed from under us.  Try to detect
5862 			 * either changed or during-changing ptes and retry
5863 			 * properly when needed.
5864 			 *
5865 			 * Note that userfaultfd is actually fine with
5866 			 * false positives (e.g. caused by pte changed),
5867 			 * but not wrong logical events (e.g. caused by
5868 			 * reading a pte during changing).  The latter can
5869 			 * confuse the userspace, so the strictness is very
5870 			 * much preferred.  E.g., MISSING event should
5871 			 * never happen on the page after UFFDIO_COPY has
5872 			 * correctly installed the page and returned.
5873 			 */
5874 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5875 				ret = 0;
5876 				goto out;
5877 			}
5878 
5879 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5880 							haddr, address,
5881 							VM_UFFD_MISSING);
5882 		}
5883 
5884 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5885 		if (IS_ERR(folio)) {
5886 			/*
5887 			 * Returning error will result in faulting task being
5888 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5889 			 * tasks from racing to fault in the same page which
5890 			 * could result in false unable to allocate errors.
5891 			 * Page migration does not take the fault mutex, but
5892 			 * does a clear then write of pte's under page table
5893 			 * lock.  Page fault code could race with migration,
5894 			 * notice the clear pte and try to allocate a page
5895 			 * here.  Before returning error, get ptl and make
5896 			 * sure there really is no pte entry.
5897 			 */
5898 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5899 				ret = vmf_error(PTR_ERR(folio));
5900 			else
5901 				ret = 0;
5902 			goto out;
5903 		}
5904 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5905 		__folio_mark_uptodate(folio);
5906 		new_folio = true;
5907 
5908 		if (vma->vm_flags & VM_MAYSHARE) {
5909 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5910 			if (err) {
5911 				/*
5912 				 * err can't be -EEXIST which implies someone
5913 				 * else consumed the reservation since hugetlb
5914 				 * fault mutex is held when add a hugetlb page
5915 				 * to the page cache. So it's safe to call
5916 				 * restore_reserve_on_error() here.
5917 				 */
5918 				restore_reserve_on_error(h, vma, haddr, folio);
5919 				folio_put(folio);
5920 				goto out;
5921 			}
5922 			new_pagecache_folio = true;
5923 		} else {
5924 			folio_lock(folio);
5925 			if (unlikely(anon_vma_prepare(vma))) {
5926 				ret = VM_FAULT_OOM;
5927 				goto backout_unlocked;
5928 			}
5929 			anon_rmap = 1;
5930 		}
5931 	} else {
5932 		/*
5933 		 * If memory error occurs between mmap() and fault, some process
5934 		 * don't have hwpoisoned swap entry for errored virtual address.
5935 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5936 		 */
5937 		if (unlikely(folio_test_hwpoison(folio))) {
5938 			ret = VM_FAULT_HWPOISON_LARGE |
5939 				VM_FAULT_SET_HINDEX(hstate_index(h));
5940 			goto backout_unlocked;
5941 		}
5942 
5943 		/* Check for page in userfault range. */
5944 		if (userfaultfd_minor(vma)) {
5945 			folio_unlock(folio);
5946 			folio_put(folio);
5947 			/* See comment in userfaultfd_missing() block above */
5948 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5949 				ret = 0;
5950 				goto out;
5951 			}
5952 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5953 							haddr, address,
5954 							VM_UFFD_MINOR);
5955 		}
5956 	}
5957 
5958 	/*
5959 	 * If we are going to COW a private mapping later, we examine the
5960 	 * pending reservations for this page now. This will ensure that
5961 	 * any allocations necessary to record that reservation occur outside
5962 	 * the spinlock.
5963 	 */
5964 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5965 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5966 			ret = VM_FAULT_OOM;
5967 			goto backout_unlocked;
5968 		}
5969 		/* Just decrements count, does not deallocate */
5970 		vma_end_reservation(h, vma, haddr);
5971 	}
5972 
5973 	ptl = huge_pte_lock(h, mm, ptep);
5974 	ret = 0;
5975 	/* If pte changed from under us, retry */
5976 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5977 		goto backout;
5978 
5979 	if (anon_rmap)
5980 		hugepage_add_new_anon_rmap(folio, vma, haddr);
5981 	else
5982 		page_dup_file_rmap(&folio->page, true);
5983 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5984 				&& (vma->vm_flags & VM_SHARED)));
5985 	/*
5986 	 * If this pte was previously wr-protected, keep it wr-protected even
5987 	 * if populated.
5988 	 */
5989 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5990 		new_pte = huge_pte_mkuffd_wp(new_pte);
5991 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5992 
5993 	hugetlb_count_add(pages_per_huge_page(h), mm);
5994 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5995 		/* Optimization, do the COW without a second fault */
5996 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5997 	}
5998 
5999 	spin_unlock(ptl);
6000 
6001 	/*
6002 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6003 	 * found in the pagecache may not have hugetlb_migratable if they have
6004 	 * been isolated for migration.
6005 	 */
6006 	if (new_folio)
6007 		folio_set_hugetlb_migratable(folio);
6008 
6009 	folio_unlock(folio);
6010 out:
6011 	hugetlb_vma_unlock_read(vma);
6012 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013 	return ret;
6014 
6015 backout:
6016 	spin_unlock(ptl);
6017 backout_unlocked:
6018 	if (new_folio && !new_pagecache_folio)
6019 		restore_reserve_on_error(h, vma, haddr, folio);
6020 
6021 	folio_unlock(folio);
6022 	folio_put(folio);
6023 	goto out;
6024 }
6025 
6026 #ifdef CONFIG_SMP
6027 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6028 {
6029 	unsigned long key[2];
6030 	u32 hash;
6031 
6032 	key[0] = (unsigned long) mapping;
6033 	key[1] = idx;
6034 
6035 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6036 
6037 	return hash & (num_fault_mutexes - 1);
6038 }
6039 #else
6040 /*
6041  * For uniprocessor systems we always use a single mutex, so just
6042  * return 0 and avoid the hashing overhead.
6043  */
6044 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6045 {
6046 	return 0;
6047 }
6048 #endif
6049 
6050 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6051 			unsigned long address, unsigned int flags)
6052 {
6053 	pte_t *ptep, entry;
6054 	spinlock_t *ptl;
6055 	vm_fault_t ret;
6056 	u32 hash;
6057 	pgoff_t idx;
6058 	struct folio *folio = NULL;
6059 	struct folio *pagecache_folio = NULL;
6060 	struct hstate *h = hstate_vma(vma);
6061 	struct address_space *mapping;
6062 	int need_wait_lock = 0;
6063 	unsigned long haddr = address & huge_page_mask(h);
6064 
6065 	/* TODO: Handle faults under the VMA lock */
6066 	if (flags & FAULT_FLAG_VMA_LOCK) {
6067 		vma_end_read(vma);
6068 		return VM_FAULT_RETRY;
6069 	}
6070 
6071 	/*
6072 	 * Serialize hugepage allocation and instantiation, so that we don't
6073 	 * get spurious allocation failures if two CPUs race to instantiate
6074 	 * the same page in the page cache.
6075 	 */
6076 	mapping = vma->vm_file->f_mapping;
6077 	idx = vma_hugecache_offset(h, vma, haddr);
6078 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6079 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6080 
6081 	/*
6082 	 * Acquire vma lock before calling huge_pte_alloc and hold
6083 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6084 	 * being called elsewhere and making the ptep no longer valid.
6085 	 */
6086 	hugetlb_vma_lock_read(vma);
6087 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6088 	if (!ptep) {
6089 		hugetlb_vma_unlock_read(vma);
6090 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6091 		return VM_FAULT_OOM;
6092 	}
6093 
6094 	entry = huge_ptep_get(ptep);
6095 	if (huge_pte_none_mostly(entry)) {
6096 		if (is_pte_marker(entry)) {
6097 			pte_marker marker =
6098 				pte_marker_get(pte_to_swp_entry(entry));
6099 
6100 			if (marker & PTE_MARKER_POISONED) {
6101 				ret = VM_FAULT_HWPOISON_LARGE;
6102 				goto out_mutex;
6103 			}
6104 		}
6105 
6106 		/*
6107 		 * Other PTE markers should be handled the same way as none PTE.
6108 		 *
6109 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6110 		 * mutex internally, which make us return immediately.
6111 		 */
6112 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6113 				      entry, flags);
6114 	}
6115 
6116 	ret = 0;
6117 
6118 	/*
6119 	 * entry could be a migration/hwpoison entry at this point, so this
6120 	 * check prevents the kernel from going below assuming that we have
6121 	 * an active hugepage in pagecache. This goto expects the 2nd page
6122 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6123 	 * properly handle it.
6124 	 */
6125 	if (!pte_present(entry)) {
6126 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6127 			/*
6128 			 * Release the hugetlb fault lock now, but retain
6129 			 * the vma lock, because it is needed to guard the
6130 			 * huge_pte_lockptr() later in
6131 			 * migration_entry_wait_huge(). The vma lock will
6132 			 * be released there.
6133 			 */
6134 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6135 			migration_entry_wait_huge(vma, ptep);
6136 			return 0;
6137 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6138 			ret = VM_FAULT_HWPOISON_LARGE |
6139 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6140 		goto out_mutex;
6141 	}
6142 
6143 	/*
6144 	 * If we are going to COW/unshare the mapping later, we examine the
6145 	 * pending reservations for this page now. This will ensure that any
6146 	 * allocations necessary to record that reservation occur outside the
6147 	 * spinlock. Also lookup the pagecache page now as it is used to
6148 	 * determine if a reservation has been consumed.
6149 	 */
6150 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6151 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6152 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6153 			ret = VM_FAULT_OOM;
6154 			goto out_mutex;
6155 		}
6156 		/* Just decrements count, does not deallocate */
6157 		vma_end_reservation(h, vma, haddr);
6158 
6159 		pagecache_folio = filemap_lock_folio(mapping, idx);
6160 		if (IS_ERR(pagecache_folio))
6161 			pagecache_folio = NULL;
6162 	}
6163 
6164 	ptl = huge_pte_lock(h, mm, ptep);
6165 
6166 	/* Check for a racing update before calling hugetlb_wp() */
6167 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6168 		goto out_ptl;
6169 
6170 	/* Handle userfault-wp first, before trying to lock more pages */
6171 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6172 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6173 		struct vm_fault vmf = {
6174 			.vma = vma,
6175 			.address = haddr,
6176 			.real_address = address,
6177 			.flags = flags,
6178 		};
6179 
6180 		spin_unlock(ptl);
6181 		if (pagecache_folio) {
6182 			folio_unlock(pagecache_folio);
6183 			folio_put(pagecache_folio);
6184 		}
6185 		hugetlb_vma_unlock_read(vma);
6186 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6187 		return handle_userfault(&vmf, VM_UFFD_WP);
6188 	}
6189 
6190 	/*
6191 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6192 	 * pagecache_folio, so here we need take the former one
6193 	 * when folio != pagecache_folio or !pagecache_folio.
6194 	 */
6195 	folio = page_folio(pte_page(entry));
6196 	if (folio != pagecache_folio)
6197 		if (!folio_trylock(folio)) {
6198 			need_wait_lock = 1;
6199 			goto out_ptl;
6200 		}
6201 
6202 	folio_get(folio);
6203 
6204 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6205 		if (!huge_pte_write(entry)) {
6206 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6207 					 pagecache_folio, ptl);
6208 			goto out_put_page;
6209 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6210 			entry = huge_pte_mkdirty(entry);
6211 		}
6212 	}
6213 	entry = pte_mkyoung(entry);
6214 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6215 						flags & FAULT_FLAG_WRITE))
6216 		update_mmu_cache(vma, haddr, ptep);
6217 out_put_page:
6218 	if (folio != pagecache_folio)
6219 		folio_unlock(folio);
6220 	folio_put(folio);
6221 out_ptl:
6222 	spin_unlock(ptl);
6223 
6224 	if (pagecache_folio) {
6225 		folio_unlock(pagecache_folio);
6226 		folio_put(pagecache_folio);
6227 	}
6228 out_mutex:
6229 	hugetlb_vma_unlock_read(vma);
6230 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6231 	/*
6232 	 * Generally it's safe to hold refcount during waiting page lock. But
6233 	 * here we just wait to defer the next page fault to avoid busy loop and
6234 	 * the page is not used after unlocked before returning from the current
6235 	 * page fault. So we are safe from accessing freed page, even if we wait
6236 	 * here without taking refcount.
6237 	 */
6238 	if (need_wait_lock)
6239 		folio_wait_locked(folio);
6240 	return ret;
6241 }
6242 
6243 #ifdef CONFIG_USERFAULTFD
6244 /*
6245  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6246  * with modifications for hugetlb pages.
6247  */
6248 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6249 			     struct vm_area_struct *dst_vma,
6250 			     unsigned long dst_addr,
6251 			     unsigned long src_addr,
6252 			     uffd_flags_t flags,
6253 			     struct folio **foliop)
6254 {
6255 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6256 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6257 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6258 	struct hstate *h = hstate_vma(dst_vma);
6259 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6260 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6261 	unsigned long size;
6262 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6263 	pte_t _dst_pte;
6264 	spinlock_t *ptl;
6265 	int ret = -ENOMEM;
6266 	struct folio *folio;
6267 	int writable;
6268 	bool folio_in_pagecache = false;
6269 
6270 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6271 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6272 
6273 		/* Don't overwrite any existing PTEs (even markers) */
6274 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6275 			spin_unlock(ptl);
6276 			return -EEXIST;
6277 		}
6278 
6279 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6280 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6281 
6282 		/* No need to invalidate - it was non-present before */
6283 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6284 
6285 		spin_unlock(ptl);
6286 		return 0;
6287 	}
6288 
6289 	if (is_continue) {
6290 		ret = -EFAULT;
6291 		folio = filemap_lock_folio(mapping, idx);
6292 		if (IS_ERR(folio))
6293 			goto out;
6294 		folio_in_pagecache = true;
6295 	} else if (!*foliop) {
6296 		/* If a folio already exists, then it's UFFDIO_COPY for
6297 		 * a non-missing case. Return -EEXIST.
6298 		 */
6299 		if (vm_shared &&
6300 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6301 			ret = -EEXIST;
6302 			goto out;
6303 		}
6304 
6305 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6306 		if (IS_ERR(folio)) {
6307 			ret = -ENOMEM;
6308 			goto out;
6309 		}
6310 
6311 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6312 					   false);
6313 
6314 		/* fallback to copy_from_user outside mmap_lock */
6315 		if (unlikely(ret)) {
6316 			ret = -ENOENT;
6317 			/* Free the allocated folio which may have
6318 			 * consumed a reservation.
6319 			 */
6320 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6321 			folio_put(folio);
6322 
6323 			/* Allocate a temporary folio to hold the copied
6324 			 * contents.
6325 			 */
6326 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6327 			if (!folio) {
6328 				ret = -ENOMEM;
6329 				goto out;
6330 			}
6331 			*foliop = folio;
6332 			/* Set the outparam foliop and return to the caller to
6333 			 * copy the contents outside the lock. Don't free the
6334 			 * folio.
6335 			 */
6336 			goto out;
6337 		}
6338 	} else {
6339 		if (vm_shared &&
6340 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6341 			folio_put(*foliop);
6342 			ret = -EEXIST;
6343 			*foliop = NULL;
6344 			goto out;
6345 		}
6346 
6347 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6348 		if (IS_ERR(folio)) {
6349 			folio_put(*foliop);
6350 			ret = -ENOMEM;
6351 			*foliop = NULL;
6352 			goto out;
6353 		}
6354 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6355 		folio_put(*foliop);
6356 		*foliop = NULL;
6357 		if (ret) {
6358 			folio_put(folio);
6359 			goto out;
6360 		}
6361 	}
6362 
6363 	/*
6364 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6365 	 * preceding stores to the page contents become visible before
6366 	 * the set_pte_at() write.
6367 	 */
6368 	__folio_mark_uptodate(folio);
6369 
6370 	/* Add shared, newly allocated pages to the page cache. */
6371 	if (vm_shared && !is_continue) {
6372 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6373 		ret = -EFAULT;
6374 		if (idx >= size)
6375 			goto out_release_nounlock;
6376 
6377 		/*
6378 		 * Serialization between remove_inode_hugepages() and
6379 		 * hugetlb_add_to_page_cache() below happens through the
6380 		 * hugetlb_fault_mutex_table that here must be hold by
6381 		 * the caller.
6382 		 */
6383 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6384 		if (ret)
6385 			goto out_release_nounlock;
6386 		folio_in_pagecache = true;
6387 	}
6388 
6389 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6390 
6391 	ret = -EIO;
6392 	if (folio_test_hwpoison(folio))
6393 		goto out_release_unlock;
6394 
6395 	/*
6396 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6397 	 * registered, we firstly wr-protect a none pte which has no page cache
6398 	 * page backing it, then access the page.
6399 	 */
6400 	ret = -EEXIST;
6401 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6402 		goto out_release_unlock;
6403 
6404 	if (folio_in_pagecache)
6405 		page_dup_file_rmap(&folio->page, true);
6406 	else
6407 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6408 
6409 	/*
6410 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6411 	 * with wp flag set, don't set pte write bit.
6412 	 */
6413 	if (wp_enabled || (is_continue && !vm_shared))
6414 		writable = 0;
6415 	else
6416 		writable = dst_vma->vm_flags & VM_WRITE;
6417 
6418 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6419 	/*
6420 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6421 	 * extremely important for hugetlbfs for now since swapping is not
6422 	 * supported, but we should still be clear in that this page cannot be
6423 	 * thrown away at will, even if write bit not set.
6424 	 */
6425 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6426 	_dst_pte = pte_mkyoung(_dst_pte);
6427 
6428 	if (wp_enabled)
6429 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6430 
6431 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6432 
6433 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6434 
6435 	/* No need to invalidate - it was non-present before */
6436 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6437 
6438 	spin_unlock(ptl);
6439 	if (!is_continue)
6440 		folio_set_hugetlb_migratable(folio);
6441 	if (vm_shared || is_continue)
6442 		folio_unlock(folio);
6443 	ret = 0;
6444 out:
6445 	return ret;
6446 out_release_unlock:
6447 	spin_unlock(ptl);
6448 	if (vm_shared || is_continue)
6449 		folio_unlock(folio);
6450 out_release_nounlock:
6451 	if (!folio_in_pagecache)
6452 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6453 	folio_put(folio);
6454 	goto out;
6455 }
6456 #endif /* CONFIG_USERFAULTFD */
6457 
6458 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6459 				      unsigned long address, unsigned int flags,
6460 				      unsigned int *page_mask)
6461 {
6462 	struct hstate *h = hstate_vma(vma);
6463 	struct mm_struct *mm = vma->vm_mm;
6464 	unsigned long haddr = address & huge_page_mask(h);
6465 	struct page *page = NULL;
6466 	spinlock_t *ptl;
6467 	pte_t *pte, entry;
6468 	int ret;
6469 
6470 	hugetlb_vma_lock_read(vma);
6471 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6472 	if (!pte)
6473 		goto out_unlock;
6474 
6475 	ptl = huge_pte_lock(h, mm, pte);
6476 	entry = huge_ptep_get(pte);
6477 	if (pte_present(entry)) {
6478 		page = pte_page(entry);
6479 
6480 		if (!huge_pte_write(entry)) {
6481 			if (flags & FOLL_WRITE) {
6482 				page = NULL;
6483 				goto out;
6484 			}
6485 
6486 			if (gup_must_unshare(vma, flags, page)) {
6487 				/* Tell the caller to do unsharing */
6488 				page = ERR_PTR(-EMLINK);
6489 				goto out;
6490 			}
6491 		}
6492 
6493 		page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6494 
6495 		/*
6496 		 * Note that page may be a sub-page, and with vmemmap
6497 		 * optimizations the page struct may be read only.
6498 		 * try_grab_page() will increase the ref count on the
6499 		 * head page, so this will be OK.
6500 		 *
6501 		 * try_grab_page() should always be able to get the page here,
6502 		 * because we hold the ptl lock and have verified pte_present().
6503 		 */
6504 		ret = try_grab_page(page, flags);
6505 
6506 		if (WARN_ON_ONCE(ret)) {
6507 			page = ERR_PTR(ret);
6508 			goto out;
6509 		}
6510 
6511 		*page_mask = (1U << huge_page_order(h)) - 1;
6512 	}
6513 out:
6514 	spin_unlock(ptl);
6515 out_unlock:
6516 	hugetlb_vma_unlock_read(vma);
6517 
6518 	/*
6519 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6520 	 * don't try to allocate a new page but just skip it.
6521 	 */
6522 	if (!page && (flags & FOLL_DUMP) &&
6523 	    !hugetlbfs_pagecache_present(h, vma, address))
6524 		page = ERR_PTR(-EFAULT);
6525 
6526 	return page;
6527 }
6528 
6529 long hugetlb_change_protection(struct vm_area_struct *vma,
6530 		unsigned long address, unsigned long end,
6531 		pgprot_t newprot, unsigned long cp_flags)
6532 {
6533 	struct mm_struct *mm = vma->vm_mm;
6534 	unsigned long start = address;
6535 	pte_t *ptep;
6536 	pte_t pte;
6537 	struct hstate *h = hstate_vma(vma);
6538 	long pages = 0, psize = huge_page_size(h);
6539 	bool shared_pmd = false;
6540 	struct mmu_notifier_range range;
6541 	unsigned long last_addr_mask;
6542 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6543 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6544 
6545 	/*
6546 	 * In the case of shared PMDs, the area to flush could be beyond
6547 	 * start/end.  Set range.start/range.end to cover the maximum possible
6548 	 * range if PMD sharing is possible.
6549 	 */
6550 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6551 				0, mm, start, end);
6552 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6553 
6554 	BUG_ON(address >= end);
6555 	flush_cache_range(vma, range.start, range.end);
6556 
6557 	mmu_notifier_invalidate_range_start(&range);
6558 	hugetlb_vma_lock_write(vma);
6559 	i_mmap_lock_write(vma->vm_file->f_mapping);
6560 	last_addr_mask = hugetlb_mask_last_page(h);
6561 	for (; address < end; address += psize) {
6562 		spinlock_t *ptl;
6563 		ptep = hugetlb_walk(vma, address, psize);
6564 		if (!ptep) {
6565 			if (!uffd_wp) {
6566 				address |= last_addr_mask;
6567 				continue;
6568 			}
6569 			/*
6570 			 * Userfaultfd wr-protect requires pgtable
6571 			 * pre-allocations to install pte markers.
6572 			 */
6573 			ptep = huge_pte_alloc(mm, vma, address, psize);
6574 			if (!ptep) {
6575 				pages = -ENOMEM;
6576 				break;
6577 			}
6578 		}
6579 		ptl = huge_pte_lock(h, mm, ptep);
6580 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6581 			/*
6582 			 * When uffd-wp is enabled on the vma, unshare
6583 			 * shouldn't happen at all.  Warn about it if it
6584 			 * happened due to some reason.
6585 			 */
6586 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6587 			pages++;
6588 			spin_unlock(ptl);
6589 			shared_pmd = true;
6590 			address |= last_addr_mask;
6591 			continue;
6592 		}
6593 		pte = huge_ptep_get(ptep);
6594 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6595 			/* Nothing to do. */
6596 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6597 			swp_entry_t entry = pte_to_swp_entry(pte);
6598 			struct page *page = pfn_swap_entry_to_page(entry);
6599 			pte_t newpte = pte;
6600 
6601 			if (is_writable_migration_entry(entry)) {
6602 				if (PageAnon(page))
6603 					entry = make_readable_exclusive_migration_entry(
6604 								swp_offset(entry));
6605 				else
6606 					entry = make_readable_migration_entry(
6607 								swp_offset(entry));
6608 				newpte = swp_entry_to_pte(entry);
6609 				pages++;
6610 			}
6611 
6612 			if (uffd_wp)
6613 				newpte = pte_swp_mkuffd_wp(newpte);
6614 			else if (uffd_wp_resolve)
6615 				newpte = pte_swp_clear_uffd_wp(newpte);
6616 			if (!pte_same(pte, newpte))
6617 				set_huge_pte_at(mm, address, ptep, newpte);
6618 		} else if (unlikely(is_pte_marker(pte))) {
6619 			/* No other markers apply for now. */
6620 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6621 			if (uffd_wp_resolve)
6622 				/* Safe to modify directly (non-present->none). */
6623 				huge_pte_clear(mm, address, ptep, psize);
6624 		} else if (!huge_pte_none(pte)) {
6625 			pte_t old_pte;
6626 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6627 
6628 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6629 			pte = huge_pte_modify(old_pte, newprot);
6630 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6631 			if (uffd_wp)
6632 				pte = huge_pte_mkuffd_wp(pte);
6633 			else if (uffd_wp_resolve)
6634 				pte = huge_pte_clear_uffd_wp(pte);
6635 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6636 			pages++;
6637 		} else {
6638 			/* None pte */
6639 			if (unlikely(uffd_wp))
6640 				/* Safe to modify directly (none->non-present). */
6641 				set_huge_pte_at(mm, address, ptep,
6642 						make_pte_marker(PTE_MARKER_UFFD_WP));
6643 		}
6644 		spin_unlock(ptl);
6645 	}
6646 	/*
6647 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6648 	 * may have cleared our pud entry and done put_page on the page table:
6649 	 * once we release i_mmap_rwsem, another task can do the final put_page
6650 	 * and that page table be reused and filled with junk.  If we actually
6651 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6652 	 */
6653 	if (shared_pmd)
6654 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6655 	else
6656 		flush_hugetlb_tlb_range(vma, start, end);
6657 	/*
6658 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6659 	 * downgrading page table protection not changing it to point to a new
6660 	 * page.
6661 	 *
6662 	 * See Documentation/mm/mmu_notifier.rst
6663 	 */
6664 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6665 	hugetlb_vma_unlock_write(vma);
6666 	mmu_notifier_invalidate_range_end(&range);
6667 
6668 	return pages > 0 ? (pages << h->order) : pages;
6669 }
6670 
6671 /* Return true if reservation was successful, false otherwise.  */
6672 bool hugetlb_reserve_pages(struct inode *inode,
6673 					long from, long to,
6674 					struct vm_area_struct *vma,
6675 					vm_flags_t vm_flags)
6676 {
6677 	long chg = -1, add = -1;
6678 	struct hstate *h = hstate_inode(inode);
6679 	struct hugepage_subpool *spool = subpool_inode(inode);
6680 	struct resv_map *resv_map;
6681 	struct hugetlb_cgroup *h_cg = NULL;
6682 	long gbl_reserve, regions_needed = 0;
6683 
6684 	/* This should never happen */
6685 	if (from > to) {
6686 		VM_WARN(1, "%s called with a negative range\n", __func__);
6687 		return false;
6688 	}
6689 
6690 	/*
6691 	 * vma specific semaphore used for pmd sharing and fault/truncation
6692 	 * synchronization
6693 	 */
6694 	hugetlb_vma_lock_alloc(vma);
6695 
6696 	/*
6697 	 * Only apply hugepage reservation if asked. At fault time, an
6698 	 * attempt will be made for VM_NORESERVE to allocate a page
6699 	 * without using reserves
6700 	 */
6701 	if (vm_flags & VM_NORESERVE)
6702 		return true;
6703 
6704 	/*
6705 	 * Shared mappings base their reservation on the number of pages that
6706 	 * are already allocated on behalf of the file. Private mappings need
6707 	 * to reserve the full area even if read-only as mprotect() may be
6708 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6709 	 */
6710 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6711 		/*
6712 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6713 		 * called for inodes for which resv_maps were created (see
6714 		 * hugetlbfs_get_inode).
6715 		 */
6716 		resv_map = inode_resv_map(inode);
6717 
6718 		chg = region_chg(resv_map, from, to, &regions_needed);
6719 	} else {
6720 		/* Private mapping. */
6721 		resv_map = resv_map_alloc();
6722 		if (!resv_map)
6723 			goto out_err;
6724 
6725 		chg = to - from;
6726 
6727 		set_vma_resv_map(vma, resv_map);
6728 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6729 	}
6730 
6731 	if (chg < 0)
6732 		goto out_err;
6733 
6734 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6735 				chg * pages_per_huge_page(h), &h_cg) < 0)
6736 		goto out_err;
6737 
6738 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6739 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6740 		 * of the resv_map.
6741 		 */
6742 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6743 	}
6744 
6745 	/*
6746 	 * There must be enough pages in the subpool for the mapping. If
6747 	 * the subpool has a minimum size, there may be some global
6748 	 * reservations already in place (gbl_reserve).
6749 	 */
6750 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6751 	if (gbl_reserve < 0)
6752 		goto out_uncharge_cgroup;
6753 
6754 	/*
6755 	 * Check enough hugepages are available for the reservation.
6756 	 * Hand the pages back to the subpool if there are not
6757 	 */
6758 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6759 		goto out_put_pages;
6760 
6761 	/*
6762 	 * Account for the reservations made. Shared mappings record regions
6763 	 * that have reservations as they are shared by multiple VMAs.
6764 	 * When the last VMA disappears, the region map says how much
6765 	 * the reservation was and the page cache tells how much of
6766 	 * the reservation was consumed. Private mappings are per-VMA and
6767 	 * only the consumed reservations are tracked. When the VMA
6768 	 * disappears, the original reservation is the VMA size and the
6769 	 * consumed reservations are stored in the map. Hence, nothing
6770 	 * else has to be done for private mappings here
6771 	 */
6772 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6773 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6774 
6775 		if (unlikely(add < 0)) {
6776 			hugetlb_acct_memory(h, -gbl_reserve);
6777 			goto out_put_pages;
6778 		} else if (unlikely(chg > add)) {
6779 			/*
6780 			 * pages in this range were added to the reserve
6781 			 * map between region_chg and region_add.  This
6782 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6783 			 * the subpool and reserve counts modified above
6784 			 * based on the difference.
6785 			 */
6786 			long rsv_adjust;
6787 
6788 			/*
6789 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6790 			 * reference to h_cg->css. See comment below for detail.
6791 			 */
6792 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6793 				hstate_index(h),
6794 				(chg - add) * pages_per_huge_page(h), h_cg);
6795 
6796 			rsv_adjust = hugepage_subpool_put_pages(spool,
6797 								chg - add);
6798 			hugetlb_acct_memory(h, -rsv_adjust);
6799 		} else if (h_cg) {
6800 			/*
6801 			 * The file_regions will hold their own reference to
6802 			 * h_cg->css. So we should release the reference held
6803 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6804 			 * done.
6805 			 */
6806 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6807 		}
6808 	}
6809 	return true;
6810 
6811 out_put_pages:
6812 	/* put back original number of pages, chg */
6813 	(void)hugepage_subpool_put_pages(spool, chg);
6814 out_uncharge_cgroup:
6815 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6816 					    chg * pages_per_huge_page(h), h_cg);
6817 out_err:
6818 	hugetlb_vma_lock_free(vma);
6819 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6820 		/* Only call region_abort if the region_chg succeeded but the
6821 		 * region_add failed or didn't run.
6822 		 */
6823 		if (chg >= 0 && add < 0)
6824 			region_abort(resv_map, from, to, regions_needed);
6825 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6826 		kref_put(&resv_map->refs, resv_map_release);
6827 	return false;
6828 }
6829 
6830 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6831 								long freed)
6832 {
6833 	struct hstate *h = hstate_inode(inode);
6834 	struct resv_map *resv_map = inode_resv_map(inode);
6835 	long chg = 0;
6836 	struct hugepage_subpool *spool = subpool_inode(inode);
6837 	long gbl_reserve;
6838 
6839 	/*
6840 	 * Since this routine can be called in the evict inode path for all
6841 	 * hugetlbfs inodes, resv_map could be NULL.
6842 	 */
6843 	if (resv_map) {
6844 		chg = region_del(resv_map, start, end);
6845 		/*
6846 		 * region_del() can fail in the rare case where a region
6847 		 * must be split and another region descriptor can not be
6848 		 * allocated.  If end == LONG_MAX, it will not fail.
6849 		 */
6850 		if (chg < 0)
6851 			return chg;
6852 	}
6853 
6854 	spin_lock(&inode->i_lock);
6855 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6856 	spin_unlock(&inode->i_lock);
6857 
6858 	/*
6859 	 * If the subpool has a minimum size, the number of global
6860 	 * reservations to be released may be adjusted.
6861 	 *
6862 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6863 	 * won't go negative.
6864 	 */
6865 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6866 	hugetlb_acct_memory(h, -gbl_reserve);
6867 
6868 	return 0;
6869 }
6870 
6871 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6872 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6873 				struct vm_area_struct *vma,
6874 				unsigned long addr, pgoff_t idx)
6875 {
6876 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6877 				svma->vm_start;
6878 	unsigned long sbase = saddr & PUD_MASK;
6879 	unsigned long s_end = sbase + PUD_SIZE;
6880 
6881 	/* Allow segments to share if only one is marked locked */
6882 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6883 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6884 
6885 	/*
6886 	 * match the virtual addresses, permission and the alignment of the
6887 	 * page table page.
6888 	 *
6889 	 * Also, vma_lock (vm_private_data) is required for sharing.
6890 	 */
6891 	if (pmd_index(addr) != pmd_index(saddr) ||
6892 	    vm_flags != svm_flags ||
6893 	    !range_in_vma(svma, sbase, s_end) ||
6894 	    !svma->vm_private_data)
6895 		return 0;
6896 
6897 	return saddr;
6898 }
6899 
6900 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6901 {
6902 	unsigned long start = addr & PUD_MASK;
6903 	unsigned long end = start + PUD_SIZE;
6904 
6905 #ifdef CONFIG_USERFAULTFD
6906 	if (uffd_disable_huge_pmd_share(vma))
6907 		return false;
6908 #endif
6909 	/*
6910 	 * check on proper vm_flags and page table alignment
6911 	 */
6912 	if (!(vma->vm_flags & VM_MAYSHARE))
6913 		return false;
6914 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6915 		return false;
6916 	if (!range_in_vma(vma, start, end))
6917 		return false;
6918 	return true;
6919 }
6920 
6921 /*
6922  * Determine if start,end range within vma could be mapped by shared pmd.
6923  * If yes, adjust start and end to cover range associated with possible
6924  * shared pmd mappings.
6925  */
6926 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6927 				unsigned long *start, unsigned long *end)
6928 {
6929 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6930 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6931 
6932 	/*
6933 	 * vma needs to span at least one aligned PUD size, and the range
6934 	 * must be at least partially within in.
6935 	 */
6936 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6937 		(*end <= v_start) || (*start >= v_end))
6938 		return;
6939 
6940 	/* Extend the range to be PUD aligned for a worst case scenario */
6941 	if (*start > v_start)
6942 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6943 
6944 	if (*end < v_end)
6945 		*end = ALIGN(*end, PUD_SIZE);
6946 }
6947 
6948 /*
6949  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6950  * and returns the corresponding pte. While this is not necessary for the
6951  * !shared pmd case because we can allocate the pmd later as well, it makes the
6952  * code much cleaner. pmd allocation is essential for the shared case because
6953  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6954  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6955  * bad pmd for sharing.
6956  */
6957 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6958 		      unsigned long addr, pud_t *pud)
6959 {
6960 	struct address_space *mapping = vma->vm_file->f_mapping;
6961 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6962 			vma->vm_pgoff;
6963 	struct vm_area_struct *svma;
6964 	unsigned long saddr;
6965 	pte_t *spte = NULL;
6966 	pte_t *pte;
6967 
6968 	i_mmap_lock_read(mapping);
6969 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6970 		if (svma == vma)
6971 			continue;
6972 
6973 		saddr = page_table_shareable(svma, vma, addr, idx);
6974 		if (saddr) {
6975 			spte = hugetlb_walk(svma, saddr,
6976 					    vma_mmu_pagesize(svma));
6977 			if (spte) {
6978 				get_page(virt_to_page(spte));
6979 				break;
6980 			}
6981 		}
6982 	}
6983 
6984 	if (!spte)
6985 		goto out;
6986 
6987 	spin_lock(&mm->page_table_lock);
6988 	if (pud_none(*pud)) {
6989 		pud_populate(mm, pud,
6990 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6991 		mm_inc_nr_pmds(mm);
6992 	} else {
6993 		put_page(virt_to_page(spte));
6994 	}
6995 	spin_unlock(&mm->page_table_lock);
6996 out:
6997 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6998 	i_mmap_unlock_read(mapping);
6999 	return pte;
7000 }
7001 
7002 /*
7003  * unmap huge page backed by shared pte.
7004  *
7005  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7006  * indicated by page_count > 1, unmap is achieved by clearing pud and
7007  * decrementing the ref count. If count == 1, the pte page is not shared.
7008  *
7009  * Called with page table lock held.
7010  *
7011  * returns: 1 successfully unmapped a shared pte page
7012  *	    0 the underlying pte page is not shared, or it is the last user
7013  */
7014 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7015 					unsigned long addr, pte_t *ptep)
7016 {
7017 	pgd_t *pgd = pgd_offset(mm, addr);
7018 	p4d_t *p4d = p4d_offset(pgd, addr);
7019 	pud_t *pud = pud_offset(p4d, addr);
7020 
7021 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7022 	hugetlb_vma_assert_locked(vma);
7023 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7024 	if (page_count(virt_to_page(ptep)) == 1)
7025 		return 0;
7026 
7027 	pud_clear(pud);
7028 	put_page(virt_to_page(ptep));
7029 	mm_dec_nr_pmds(mm);
7030 	return 1;
7031 }
7032 
7033 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7034 
7035 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7036 		      unsigned long addr, pud_t *pud)
7037 {
7038 	return NULL;
7039 }
7040 
7041 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7042 				unsigned long addr, pte_t *ptep)
7043 {
7044 	return 0;
7045 }
7046 
7047 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7048 				unsigned long *start, unsigned long *end)
7049 {
7050 }
7051 
7052 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7053 {
7054 	return false;
7055 }
7056 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7057 
7058 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7059 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7060 			unsigned long addr, unsigned long sz)
7061 {
7062 	pgd_t *pgd;
7063 	p4d_t *p4d;
7064 	pud_t *pud;
7065 	pte_t *pte = NULL;
7066 
7067 	pgd = pgd_offset(mm, addr);
7068 	p4d = p4d_alloc(mm, pgd, addr);
7069 	if (!p4d)
7070 		return NULL;
7071 	pud = pud_alloc(mm, p4d, addr);
7072 	if (pud) {
7073 		if (sz == PUD_SIZE) {
7074 			pte = (pte_t *)pud;
7075 		} else {
7076 			BUG_ON(sz != PMD_SIZE);
7077 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7078 				pte = huge_pmd_share(mm, vma, addr, pud);
7079 			else
7080 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7081 		}
7082 	}
7083 
7084 	if (pte) {
7085 		pte_t pteval = ptep_get_lockless(pte);
7086 
7087 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7088 	}
7089 
7090 	return pte;
7091 }
7092 
7093 /*
7094  * huge_pte_offset() - Walk the page table to resolve the hugepage
7095  * entry at address @addr
7096  *
7097  * Return: Pointer to page table entry (PUD or PMD) for
7098  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7099  * size @sz doesn't match the hugepage size at this level of the page
7100  * table.
7101  */
7102 pte_t *huge_pte_offset(struct mm_struct *mm,
7103 		       unsigned long addr, unsigned long sz)
7104 {
7105 	pgd_t *pgd;
7106 	p4d_t *p4d;
7107 	pud_t *pud;
7108 	pmd_t *pmd;
7109 
7110 	pgd = pgd_offset(mm, addr);
7111 	if (!pgd_present(*pgd))
7112 		return NULL;
7113 	p4d = p4d_offset(pgd, addr);
7114 	if (!p4d_present(*p4d))
7115 		return NULL;
7116 
7117 	pud = pud_offset(p4d, addr);
7118 	if (sz == PUD_SIZE)
7119 		/* must be pud huge, non-present or none */
7120 		return (pte_t *)pud;
7121 	if (!pud_present(*pud))
7122 		return NULL;
7123 	/* must have a valid entry and size to go further */
7124 
7125 	pmd = pmd_offset(pud, addr);
7126 	/* must be pmd huge, non-present or none */
7127 	return (pte_t *)pmd;
7128 }
7129 
7130 /*
7131  * Return a mask that can be used to update an address to the last huge
7132  * page in a page table page mapping size.  Used to skip non-present
7133  * page table entries when linearly scanning address ranges.  Architectures
7134  * with unique huge page to page table relationships can define their own
7135  * version of this routine.
7136  */
7137 unsigned long hugetlb_mask_last_page(struct hstate *h)
7138 {
7139 	unsigned long hp_size = huge_page_size(h);
7140 
7141 	if (hp_size == PUD_SIZE)
7142 		return P4D_SIZE - PUD_SIZE;
7143 	else if (hp_size == PMD_SIZE)
7144 		return PUD_SIZE - PMD_SIZE;
7145 	else
7146 		return 0UL;
7147 }
7148 
7149 #else
7150 
7151 /* See description above.  Architectures can provide their own version. */
7152 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7153 {
7154 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7155 	if (huge_page_size(h) == PMD_SIZE)
7156 		return PUD_SIZE - PMD_SIZE;
7157 #endif
7158 	return 0UL;
7159 }
7160 
7161 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7162 
7163 /*
7164  * These functions are overwritable if your architecture needs its own
7165  * behavior.
7166  */
7167 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7168 {
7169 	bool ret = true;
7170 
7171 	spin_lock_irq(&hugetlb_lock);
7172 	if (!folio_test_hugetlb(folio) ||
7173 	    !folio_test_hugetlb_migratable(folio) ||
7174 	    !folio_try_get(folio)) {
7175 		ret = false;
7176 		goto unlock;
7177 	}
7178 	folio_clear_hugetlb_migratable(folio);
7179 	list_move_tail(&folio->lru, list);
7180 unlock:
7181 	spin_unlock_irq(&hugetlb_lock);
7182 	return ret;
7183 }
7184 
7185 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7186 {
7187 	int ret = 0;
7188 
7189 	*hugetlb = false;
7190 	spin_lock_irq(&hugetlb_lock);
7191 	if (folio_test_hugetlb(folio)) {
7192 		*hugetlb = true;
7193 		if (folio_test_hugetlb_freed(folio))
7194 			ret = 0;
7195 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7196 			ret = folio_try_get(folio);
7197 		else
7198 			ret = -EBUSY;
7199 	}
7200 	spin_unlock_irq(&hugetlb_lock);
7201 	return ret;
7202 }
7203 
7204 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7205 				bool *migratable_cleared)
7206 {
7207 	int ret;
7208 
7209 	spin_lock_irq(&hugetlb_lock);
7210 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7211 	spin_unlock_irq(&hugetlb_lock);
7212 	return ret;
7213 }
7214 
7215 void folio_putback_active_hugetlb(struct folio *folio)
7216 {
7217 	spin_lock_irq(&hugetlb_lock);
7218 	folio_set_hugetlb_migratable(folio);
7219 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7220 	spin_unlock_irq(&hugetlb_lock);
7221 	folio_put(folio);
7222 }
7223 
7224 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7225 {
7226 	struct hstate *h = folio_hstate(old_folio);
7227 
7228 	hugetlb_cgroup_migrate(old_folio, new_folio);
7229 	set_page_owner_migrate_reason(&new_folio->page, reason);
7230 
7231 	/*
7232 	 * transfer temporary state of the new hugetlb folio. This is
7233 	 * reverse to other transitions because the newpage is going to
7234 	 * be final while the old one will be freed so it takes over
7235 	 * the temporary status.
7236 	 *
7237 	 * Also note that we have to transfer the per-node surplus state
7238 	 * here as well otherwise the global surplus count will not match
7239 	 * the per-node's.
7240 	 */
7241 	if (folio_test_hugetlb_temporary(new_folio)) {
7242 		int old_nid = folio_nid(old_folio);
7243 		int new_nid = folio_nid(new_folio);
7244 
7245 		folio_set_hugetlb_temporary(old_folio);
7246 		folio_clear_hugetlb_temporary(new_folio);
7247 
7248 
7249 		/*
7250 		 * There is no need to transfer the per-node surplus state
7251 		 * when we do not cross the node.
7252 		 */
7253 		if (new_nid == old_nid)
7254 			return;
7255 		spin_lock_irq(&hugetlb_lock);
7256 		if (h->surplus_huge_pages_node[old_nid]) {
7257 			h->surplus_huge_pages_node[old_nid]--;
7258 			h->surplus_huge_pages_node[new_nid]++;
7259 		}
7260 		spin_unlock_irq(&hugetlb_lock);
7261 	}
7262 }
7263 
7264 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7265 				   unsigned long start,
7266 				   unsigned long end)
7267 {
7268 	struct hstate *h = hstate_vma(vma);
7269 	unsigned long sz = huge_page_size(h);
7270 	struct mm_struct *mm = vma->vm_mm;
7271 	struct mmu_notifier_range range;
7272 	unsigned long address;
7273 	spinlock_t *ptl;
7274 	pte_t *ptep;
7275 
7276 	if (!(vma->vm_flags & VM_MAYSHARE))
7277 		return;
7278 
7279 	if (start >= end)
7280 		return;
7281 
7282 	flush_cache_range(vma, start, end);
7283 	/*
7284 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7285 	 * we have already done the PUD_SIZE alignment.
7286 	 */
7287 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7288 				start, end);
7289 	mmu_notifier_invalidate_range_start(&range);
7290 	hugetlb_vma_lock_write(vma);
7291 	i_mmap_lock_write(vma->vm_file->f_mapping);
7292 	for (address = start; address < end; address += PUD_SIZE) {
7293 		ptep = hugetlb_walk(vma, address, sz);
7294 		if (!ptep)
7295 			continue;
7296 		ptl = huge_pte_lock(h, mm, ptep);
7297 		huge_pmd_unshare(mm, vma, address, ptep);
7298 		spin_unlock(ptl);
7299 	}
7300 	flush_hugetlb_tlb_range(vma, start, end);
7301 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7302 	hugetlb_vma_unlock_write(vma);
7303 	/*
7304 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7305 	 * Documentation/mm/mmu_notifier.rst.
7306 	 */
7307 	mmu_notifier_invalidate_range_end(&range);
7308 }
7309 
7310 /*
7311  * This function will unconditionally remove all the shared pmd pgtable entries
7312  * within the specific vma for a hugetlbfs memory range.
7313  */
7314 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7315 {
7316 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7317 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7318 }
7319 
7320 #ifdef CONFIG_CMA
7321 static bool cma_reserve_called __initdata;
7322 
7323 static int __init cmdline_parse_hugetlb_cma(char *p)
7324 {
7325 	int nid, count = 0;
7326 	unsigned long tmp;
7327 	char *s = p;
7328 
7329 	while (*s) {
7330 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7331 			break;
7332 
7333 		if (s[count] == ':') {
7334 			if (tmp >= MAX_NUMNODES)
7335 				break;
7336 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7337 
7338 			s += count + 1;
7339 			tmp = memparse(s, &s);
7340 			hugetlb_cma_size_in_node[nid] = tmp;
7341 			hugetlb_cma_size += tmp;
7342 
7343 			/*
7344 			 * Skip the separator if have one, otherwise
7345 			 * break the parsing.
7346 			 */
7347 			if (*s == ',')
7348 				s++;
7349 			else
7350 				break;
7351 		} else {
7352 			hugetlb_cma_size = memparse(p, &p);
7353 			break;
7354 		}
7355 	}
7356 
7357 	return 0;
7358 }
7359 
7360 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7361 
7362 void __init hugetlb_cma_reserve(int order)
7363 {
7364 	unsigned long size, reserved, per_node;
7365 	bool node_specific_cma_alloc = false;
7366 	int nid;
7367 
7368 	cma_reserve_called = true;
7369 
7370 	if (!hugetlb_cma_size)
7371 		return;
7372 
7373 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7374 		if (hugetlb_cma_size_in_node[nid] == 0)
7375 			continue;
7376 
7377 		if (!node_online(nid)) {
7378 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7379 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7380 			hugetlb_cma_size_in_node[nid] = 0;
7381 			continue;
7382 		}
7383 
7384 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7385 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7386 				nid, (PAGE_SIZE << order) / SZ_1M);
7387 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7388 			hugetlb_cma_size_in_node[nid] = 0;
7389 		} else {
7390 			node_specific_cma_alloc = true;
7391 		}
7392 	}
7393 
7394 	/* Validate the CMA size again in case some invalid nodes specified. */
7395 	if (!hugetlb_cma_size)
7396 		return;
7397 
7398 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7399 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7400 			(PAGE_SIZE << order) / SZ_1M);
7401 		hugetlb_cma_size = 0;
7402 		return;
7403 	}
7404 
7405 	if (!node_specific_cma_alloc) {
7406 		/*
7407 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7408 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7409 		 */
7410 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7411 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7412 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7413 	}
7414 
7415 	reserved = 0;
7416 	for_each_online_node(nid) {
7417 		int res;
7418 		char name[CMA_MAX_NAME];
7419 
7420 		if (node_specific_cma_alloc) {
7421 			if (hugetlb_cma_size_in_node[nid] == 0)
7422 				continue;
7423 
7424 			size = hugetlb_cma_size_in_node[nid];
7425 		} else {
7426 			size = min(per_node, hugetlb_cma_size - reserved);
7427 		}
7428 
7429 		size = round_up(size, PAGE_SIZE << order);
7430 
7431 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7432 		/*
7433 		 * Note that 'order per bit' is based on smallest size that
7434 		 * may be returned to CMA allocator in the case of
7435 		 * huge page demotion.
7436 		 */
7437 		res = cma_declare_contiguous_nid(0, size, 0,
7438 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7439 						 0, false, name,
7440 						 &hugetlb_cma[nid], nid);
7441 		if (res) {
7442 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7443 				res, nid);
7444 			continue;
7445 		}
7446 
7447 		reserved += size;
7448 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7449 			size / SZ_1M, nid);
7450 
7451 		if (reserved >= hugetlb_cma_size)
7452 			break;
7453 	}
7454 
7455 	if (!reserved)
7456 		/*
7457 		 * hugetlb_cma_size is used to determine if allocations from
7458 		 * cma are possible.  Set to zero if no cma regions are set up.
7459 		 */
7460 		hugetlb_cma_size = 0;
7461 }
7462 
7463 static void __init hugetlb_cma_check(void)
7464 {
7465 	if (!hugetlb_cma_size || cma_reserve_called)
7466 		return;
7467 
7468 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7469 }
7470 
7471 #endif /* CONFIG_CMA */
7472