xref: /openbmc/linux/mm/hugetlb.c (revision 6c141973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42 
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50 
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54 
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 				1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 	return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70 
71 __initdata LIST_HEAD(huge_boot_pages);
72 
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79 
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85 
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 		unsigned long start, unsigned long end);
100 
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 {
103 	if (spool->count)
104 		return false;
105 	if (spool->max_hpages != -1)
106 		return spool->used_hpages == 0;
107 	if (spool->min_hpages != -1)
108 		return spool->rsv_hpages == spool->min_hpages;
109 
110 	return true;
111 }
112 
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114 						unsigned long irq_flags)
115 {
116 	spin_unlock_irqrestore(&spool->lock, irq_flags);
117 
118 	/* If no pages are used, and no other handles to the subpool
119 	 * remain, give up any reservations based on minimum size and
120 	 * free the subpool */
121 	if (subpool_is_free(spool)) {
122 		if (spool->min_hpages != -1)
123 			hugetlb_acct_memory(spool->hstate,
124 						-spool->min_hpages);
125 		kfree(spool);
126 	}
127 }
128 
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
130 						long min_hpages)
131 {
132 	struct hugepage_subpool *spool;
133 
134 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 	if (!spool)
136 		return NULL;
137 
138 	spin_lock_init(&spool->lock);
139 	spool->count = 1;
140 	spool->max_hpages = max_hpages;
141 	spool->hstate = h;
142 	spool->min_hpages = min_hpages;
143 
144 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 		kfree(spool);
146 		return NULL;
147 	}
148 	spool->rsv_hpages = min_hpages;
149 
150 	return spool;
151 }
152 
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 {
155 	unsigned long flags;
156 
157 	spin_lock_irqsave(&spool->lock, flags);
158 	BUG_ON(!spool->count);
159 	spool->count--;
160 	unlock_or_release_subpool(spool, flags);
161 }
162 
163 /*
164  * Subpool accounting for allocating and reserving pages.
165  * Return -ENOMEM if there are not enough resources to satisfy the
166  * request.  Otherwise, return the number of pages by which the
167  * global pools must be adjusted (upward).  The returned value may
168  * only be different than the passed value (delta) in the case where
169  * a subpool minimum size must be maintained.
170  */
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
172 				      long delta)
173 {
174 	long ret = delta;
175 
176 	if (!spool)
177 		return ret;
178 
179 	spin_lock_irq(&spool->lock);
180 
181 	if (spool->max_hpages != -1) {		/* maximum size accounting */
182 		if ((spool->used_hpages + delta) <= spool->max_hpages)
183 			spool->used_hpages += delta;
184 		else {
185 			ret = -ENOMEM;
186 			goto unlock_ret;
187 		}
188 	}
189 
190 	/* minimum size accounting */
191 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
192 		if (delta > spool->rsv_hpages) {
193 			/*
194 			 * Asking for more reserves than those already taken on
195 			 * behalf of subpool.  Return difference.
196 			 */
197 			ret = delta - spool->rsv_hpages;
198 			spool->rsv_hpages = 0;
199 		} else {
200 			ret = 0;	/* reserves already accounted for */
201 			spool->rsv_hpages -= delta;
202 		}
203 	}
204 
205 unlock_ret:
206 	spin_unlock_irq(&spool->lock);
207 	return ret;
208 }
209 
210 /*
211  * Subpool accounting for freeing and unreserving pages.
212  * Return the number of global page reservations that must be dropped.
213  * The return value may only be different than the passed value (delta)
214  * in the case where a subpool minimum size must be maintained.
215  */
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
217 				       long delta)
218 {
219 	long ret = delta;
220 	unsigned long flags;
221 
222 	if (!spool)
223 		return delta;
224 
225 	spin_lock_irqsave(&spool->lock, flags);
226 
227 	if (spool->max_hpages != -1)		/* maximum size accounting */
228 		spool->used_hpages -= delta;
229 
230 	 /* minimum size accounting */
231 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232 		if (spool->rsv_hpages + delta <= spool->min_hpages)
233 			ret = 0;
234 		else
235 			ret = spool->rsv_hpages + delta - spool->min_hpages;
236 
237 		spool->rsv_hpages += delta;
238 		if (spool->rsv_hpages > spool->min_hpages)
239 			spool->rsv_hpages = spool->min_hpages;
240 	}
241 
242 	/*
243 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
244 	 * quota reference, free it now.
245 	 */
246 	unlock_or_release_subpool(spool, flags);
247 
248 	return ret;
249 }
250 
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 {
253 	return HUGETLBFS_SB(inode->i_sb)->spool;
254 }
255 
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 {
258 	return subpool_inode(file_inode(vma->vm_file));
259 }
260 
261 /*
262  * hugetlb vma_lock helper routines
263  */
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 {
266 	if (__vma_shareable_lock(vma)) {
267 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 
269 		down_read(&vma_lock->rw_sema);
270 	}
271 }
272 
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 {
275 	if (__vma_shareable_lock(vma)) {
276 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 
278 		up_read(&vma_lock->rw_sema);
279 	}
280 }
281 
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 {
284 	if (__vma_shareable_lock(vma)) {
285 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 
287 		down_write(&vma_lock->rw_sema);
288 	}
289 }
290 
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 {
293 	if (__vma_shareable_lock(vma)) {
294 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 
296 		up_write(&vma_lock->rw_sema);
297 	}
298 }
299 
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 {
302 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 
304 	if (!__vma_shareable_lock(vma))
305 		return 1;
306 
307 	return down_write_trylock(&vma_lock->rw_sema);
308 }
309 
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 {
312 	if (__vma_shareable_lock(vma)) {
313 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 
315 		lockdep_assert_held(&vma_lock->rw_sema);
316 	}
317 }
318 
319 void hugetlb_vma_lock_release(struct kref *kref)
320 {
321 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
322 			struct hugetlb_vma_lock, refs);
323 
324 	kfree(vma_lock);
325 }
326 
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 {
329 	struct vm_area_struct *vma = vma_lock->vma;
330 
331 	/*
332 	 * vma_lock structure may or not be released as a result of put,
333 	 * it certainly will no longer be attached to vma so clear pointer.
334 	 * Semaphore synchronizes access to vma_lock->vma field.
335 	 */
336 	vma_lock->vma = NULL;
337 	vma->vm_private_data = NULL;
338 	up_write(&vma_lock->rw_sema);
339 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
340 }
341 
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 {
344 	if (__vma_shareable_lock(vma)) {
345 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 
347 		__hugetlb_vma_unlock_write_put(vma_lock);
348 	}
349 }
350 
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
352 {
353 	/*
354 	 * Only present in sharable vmas.
355 	 */
356 	if (!vma || !__vma_shareable_lock(vma))
357 		return;
358 
359 	if (vma->vm_private_data) {
360 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 
362 		down_write(&vma_lock->rw_sema);
363 		__hugetlb_vma_unlock_write_put(vma_lock);
364 	}
365 }
366 
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 {
369 	struct hugetlb_vma_lock *vma_lock;
370 
371 	/* Only establish in (flags) sharable vmas */
372 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
373 		return;
374 
375 	/* Should never get here with non-NULL vm_private_data */
376 	if (vma->vm_private_data)
377 		return;
378 
379 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
380 	if (!vma_lock) {
381 		/*
382 		 * If we can not allocate structure, then vma can not
383 		 * participate in pmd sharing.  This is only a possible
384 		 * performance enhancement and memory saving issue.
385 		 * However, the lock is also used to synchronize page
386 		 * faults with truncation.  If the lock is not present,
387 		 * unlikely races could leave pages in a file past i_size
388 		 * until the file is removed.  Warn in the unlikely case of
389 		 * allocation failure.
390 		 */
391 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
392 		return;
393 	}
394 
395 	kref_init(&vma_lock->refs);
396 	init_rwsem(&vma_lock->rw_sema);
397 	vma_lock->vma = vma;
398 	vma->vm_private_data = vma_lock;
399 }
400 
401 /* Helper that removes a struct file_region from the resv_map cache and returns
402  * it for use.
403  */
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 {
407 	struct file_region *nrg;
408 
409 	VM_BUG_ON(resv->region_cache_count <= 0);
410 
411 	resv->region_cache_count--;
412 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413 	list_del(&nrg->link);
414 
415 	nrg->from = from;
416 	nrg->to = to;
417 
418 	return nrg;
419 }
420 
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422 					      struct file_region *rg)
423 {
424 #ifdef CONFIG_CGROUP_HUGETLB
425 	nrg->reservation_counter = rg->reservation_counter;
426 	nrg->css = rg->css;
427 	if (rg->css)
428 		css_get(rg->css);
429 #endif
430 }
431 
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 						struct hstate *h,
435 						struct resv_map *resv,
436 						struct file_region *nrg)
437 {
438 #ifdef CONFIG_CGROUP_HUGETLB
439 	if (h_cg) {
440 		nrg->reservation_counter =
441 			&h_cg->rsvd_hugepage[hstate_index(h)];
442 		nrg->css = &h_cg->css;
443 		/*
444 		 * The caller will hold exactly one h_cg->css reference for the
445 		 * whole contiguous reservation region. But this area might be
446 		 * scattered when there are already some file_regions reside in
447 		 * it. As a result, many file_regions may share only one css
448 		 * reference. In order to ensure that one file_region must hold
449 		 * exactly one h_cg->css reference, we should do css_get for
450 		 * each file_region and leave the reference held by caller
451 		 * untouched.
452 		 */
453 		css_get(&h_cg->css);
454 		if (!resv->pages_per_hpage)
455 			resv->pages_per_hpage = pages_per_huge_page(h);
456 		/* pages_per_hpage should be the same for all entries in
457 		 * a resv_map.
458 		 */
459 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 	} else {
461 		nrg->reservation_counter = NULL;
462 		nrg->css = NULL;
463 	}
464 #endif
465 }
466 
467 static void put_uncharge_info(struct file_region *rg)
468 {
469 #ifdef CONFIG_CGROUP_HUGETLB
470 	if (rg->css)
471 		css_put(rg->css);
472 #endif
473 }
474 
475 static bool has_same_uncharge_info(struct file_region *rg,
476 				   struct file_region *org)
477 {
478 #ifdef CONFIG_CGROUP_HUGETLB
479 	return rg->reservation_counter == org->reservation_counter &&
480 	       rg->css == org->css;
481 
482 #else
483 	return true;
484 #endif
485 }
486 
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 {
489 	struct file_region *nrg, *prg;
490 
491 	prg = list_prev_entry(rg, link);
492 	if (&prg->link != &resv->regions && prg->to == rg->from &&
493 	    has_same_uncharge_info(prg, rg)) {
494 		prg->to = rg->to;
495 
496 		list_del(&rg->link);
497 		put_uncharge_info(rg);
498 		kfree(rg);
499 
500 		rg = prg;
501 	}
502 
503 	nrg = list_next_entry(rg, link);
504 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505 	    has_same_uncharge_info(nrg, rg)) {
506 		nrg->from = rg->from;
507 
508 		list_del(&rg->link);
509 		put_uncharge_info(rg);
510 		kfree(rg);
511 	}
512 }
513 
514 static inline long
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
517 		     long *regions_needed)
518 {
519 	struct file_region *nrg;
520 
521 	if (!regions_needed) {
522 		nrg = get_file_region_entry_from_cache(map, from, to);
523 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524 		list_add(&nrg->link, rg);
525 		coalesce_file_region(map, nrg);
526 	} else
527 		*regions_needed += 1;
528 
529 	return to - from;
530 }
531 
532 /*
533  * Must be called with resv->lock held.
534  *
535  * Calling this with regions_needed != NULL will count the number of pages
536  * to be added but will not modify the linked list. And regions_needed will
537  * indicate the number of file_regions needed in the cache to carry out to add
538  * the regions for this range.
539  */
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541 				     struct hugetlb_cgroup *h_cg,
542 				     struct hstate *h, long *regions_needed)
543 {
544 	long add = 0;
545 	struct list_head *head = &resv->regions;
546 	long last_accounted_offset = f;
547 	struct file_region *iter, *trg = NULL;
548 	struct list_head *rg = NULL;
549 
550 	if (regions_needed)
551 		*regions_needed = 0;
552 
553 	/* In this loop, we essentially handle an entry for the range
554 	 * [last_accounted_offset, iter->from), at every iteration, with some
555 	 * bounds checking.
556 	 */
557 	list_for_each_entry_safe(iter, trg, head, link) {
558 		/* Skip irrelevant regions that start before our range. */
559 		if (iter->from < f) {
560 			/* If this region ends after the last accounted offset,
561 			 * then we need to update last_accounted_offset.
562 			 */
563 			if (iter->to > last_accounted_offset)
564 				last_accounted_offset = iter->to;
565 			continue;
566 		}
567 
568 		/* When we find a region that starts beyond our range, we've
569 		 * finished.
570 		 */
571 		if (iter->from >= t) {
572 			rg = iter->link.prev;
573 			break;
574 		}
575 
576 		/* Add an entry for last_accounted_offset -> iter->from, and
577 		 * update last_accounted_offset.
578 		 */
579 		if (iter->from > last_accounted_offset)
580 			add += hugetlb_resv_map_add(resv, iter->link.prev,
581 						    last_accounted_offset,
582 						    iter->from, h, h_cg,
583 						    regions_needed);
584 
585 		last_accounted_offset = iter->to;
586 	}
587 
588 	/* Handle the case where our range extends beyond
589 	 * last_accounted_offset.
590 	 */
591 	if (!rg)
592 		rg = head->prev;
593 	if (last_accounted_offset < t)
594 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595 					    t, h, h_cg, regions_needed);
596 
597 	return add;
598 }
599 
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601  */
602 static int allocate_file_region_entries(struct resv_map *resv,
603 					int regions_needed)
604 	__must_hold(&resv->lock)
605 {
606 	LIST_HEAD(allocated_regions);
607 	int to_allocate = 0, i = 0;
608 	struct file_region *trg = NULL, *rg = NULL;
609 
610 	VM_BUG_ON(regions_needed < 0);
611 
612 	/*
613 	 * Check for sufficient descriptors in the cache to accommodate
614 	 * the number of in progress add operations plus regions_needed.
615 	 *
616 	 * This is a while loop because when we drop the lock, some other call
617 	 * to region_add or region_del may have consumed some region_entries,
618 	 * so we keep looping here until we finally have enough entries for
619 	 * (adds_in_progress + regions_needed).
620 	 */
621 	while (resv->region_cache_count <
622 	       (resv->adds_in_progress + regions_needed)) {
623 		to_allocate = resv->adds_in_progress + regions_needed -
624 			      resv->region_cache_count;
625 
626 		/* At this point, we should have enough entries in the cache
627 		 * for all the existing adds_in_progress. We should only be
628 		 * needing to allocate for regions_needed.
629 		 */
630 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 
632 		spin_unlock(&resv->lock);
633 		for (i = 0; i < to_allocate; i++) {
634 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
635 			if (!trg)
636 				goto out_of_memory;
637 			list_add(&trg->link, &allocated_regions);
638 		}
639 
640 		spin_lock(&resv->lock);
641 
642 		list_splice(&allocated_regions, &resv->region_cache);
643 		resv->region_cache_count += to_allocate;
644 	}
645 
646 	return 0;
647 
648 out_of_memory:
649 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
650 		list_del(&rg->link);
651 		kfree(rg);
652 	}
653 	return -ENOMEM;
654 }
655 
656 /*
657  * Add the huge page range represented by [f, t) to the reserve
658  * map.  Regions will be taken from the cache to fill in this range.
659  * Sufficient regions should exist in the cache due to the previous
660  * call to region_chg with the same range, but in some cases the cache will not
661  * have sufficient entries due to races with other code doing region_add or
662  * region_del.  The extra needed entries will be allocated.
663  *
664  * regions_needed is the out value provided by a previous call to region_chg.
665  *
666  * Return the number of new huge pages added to the map.  This number is greater
667  * than or equal to zero.  If file_region entries needed to be allocated for
668  * this operation and we were not able to allocate, it returns -ENOMEM.
669  * region_add of regions of length 1 never allocate file_regions and cannot
670  * fail; region_chg will always allocate at least 1 entry and a region_add for
671  * 1 page will only require at most 1 entry.
672  */
673 static long region_add(struct resv_map *resv, long f, long t,
674 		       long in_regions_needed, struct hstate *h,
675 		       struct hugetlb_cgroup *h_cg)
676 {
677 	long add = 0, actual_regions_needed = 0;
678 
679 	spin_lock(&resv->lock);
680 retry:
681 
682 	/* Count how many regions are actually needed to execute this add. */
683 	add_reservation_in_range(resv, f, t, NULL, NULL,
684 				 &actual_regions_needed);
685 
686 	/*
687 	 * Check for sufficient descriptors in the cache to accommodate
688 	 * this add operation. Note that actual_regions_needed may be greater
689 	 * than in_regions_needed, as the resv_map may have been modified since
690 	 * the region_chg call. In this case, we need to make sure that we
691 	 * allocate extra entries, such that we have enough for all the
692 	 * existing adds_in_progress, plus the excess needed for this
693 	 * operation.
694 	 */
695 	if (actual_regions_needed > in_regions_needed &&
696 	    resv->region_cache_count <
697 		    resv->adds_in_progress +
698 			    (actual_regions_needed - in_regions_needed)) {
699 		/* region_add operation of range 1 should never need to
700 		 * allocate file_region entries.
701 		 */
702 		VM_BUG_ON(t - f <= 1);
703 
704 		if (allocate_file_region_entries(
705 			    resv, actual_regions_needed - in_regions_needed)) {
706 			return -ENOMEM;
707 		}
708 
709 		goto retry;
710 	}
711 
712 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 
714 	resv->adds_in_progress -= in_regions_needed;
715 
716 	spin_unlock(&resv->lock);
717 	return add;
718 }
719 
720 /*
721  * Examine the existing reserve map and determine how many
722  * huge pages in the specified range [f, t) are NOT currently
723  * represented.  This routine is called before a subsequent
724  * call to region_add that will actually modify the reserve
725  * map to add the specified range [f, t).  region_chg does
726  * not change the number of huge pages represented by the
727  * map.  A number of new file_region structures is added to the cache as a
728  * placeholder, for the subsequent region_add call to use. At least 1
729  * file_region structure is added.
730  *
731  * out_regions_needed is the number of regions added to the
732  * resv->adds_in_progress.  This value needs to be provided to a follow up call
733  * to region_add or region_abort for proper accounting.
734  *
735  * Returns the number of huge pages that need to be added to the existing
736  * reservation map for the range [f, t).  This number is greater or equal to
737  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
738  * is needed and can not be allocated.
739  */
740 static long region_chg(struct resv_map *resv, long f, long t,
741 		       long *out_regions_needed)
742 {
743 	long chg = 0;
744 
745 	spin_lock(&resv->lock);
746 
747 	/* Count how many hugepages in this range are NOT represented. */
748 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
749 				       out_regions_needed);
750 
751 	if (*out_regions_needed == 0)
752 		*out_regions_needed = 1;
753 
754 	if (allocate_file_region_entries(resv, *out_regions_needed))
755 		return -ENOMEM;
756 
757 	resv->adds_in_progress += *out_regions_needed;
758 
759 	spin_unlock(&resv->lock);
760 	return chg;
761 }
762 
763 /*
764  * Abort the in progress add operation.  The adds_in_progress field
765  * of the resv_map keeps track of the operations in progress between
766  * calls to region_chg and region_add.  Operations are sometimes
767  * aborted after the call to region_chg.  In such cases, region_abort
768  * is called to decrement the adds_in_progress counter. regions_needed
769  * is the value returned by the region_chg call, it is used to decrement
770  * the adds_in_progress counter.
771  *
772  * NOTE: The range arguments [f, t) are not needed or used in this
773  * routine.  They are kept to make reading the calling code easier as
774  * arguments will match the associated region_chg call.
775  */
776 static void region_abort(struct resv_map *resv, long f, long t,
777 			 long regions_needed)
778 {
779 	spin_lock(&resv->lock);
780 	VM_BUG_ON(!resv->region_cache_count);
781 	resv->adds_in_progress -= regions_needed;
782 	spin_unlock(&resv->lock);
783 }
784 
785 /*
786  * Delete the specified range [f, t) from the reserve map.  If the
787  * t parameter is LONG_MAX, this indicates that ALL regions after f
788  * should be deleted.  Locate the regions which intersect [f, t)
789  * and either trim, delete or split the existing regions.
790  *
791  * Returns the number of huge pages deleted from the reserve map.
792  * In the normal case, the return value is zero or more.  In the
793  * case where a region must be split, a new region descriptor must
794  * be allocated.  If the allocation fails, -ENOMEM will be returned.
795  * NOTE: If the parameter t == LONG_MAX, then we will never split
796  * a region and possibly return -ENOMEM.  Callers specifying
797  * t == LONG_MAX do not need to check for -ENOMEM error.
798  */
799 static long region_del(struct resv_map *resv, long f, long t)
800 {
801 	struct list_head *head = &resv->regions;
802 	struct file_region *rg, *trg;
803 	struct file_region *nrg = NULL;
804 	long del = 0;
805 
806 retry:
807 	spin_lock(&resv->lock);
808 	list_for_each_entry_safe(rg, trg, head, link) {
809 		/*
810 		 * Skip regions before the range to be deleted.  file_region
811 		 * ranges are normally of the form [from, to).  However, there
812 		 * may be a "placeholder" entry in the map which is of the form
813 		 * (from, to) with from == to.  Check for placeholder entries
814 		 * at the beginning of the range to be deleted.
815 		 */
816 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
817 			continue;
818 
819 		if (rg->from >= t)
820 			break;
821 
822 		if (f > rg->from && t < rg->to) { /* Must split region */
823 			/*
824 			 * Check for an entry in the cache before dropping
825 			 * lock and attempting allocation.
826 			 */
827 			if (!nrg &&
828 			    resv->region_cache_count > resv->adds_in_progress) {
829 				nrg = list_first_entry(&resv->region_cache,
830 							struct file_region,
831 							link);
832 				list_del(&nrg->link);
833 				resv->region_cache_count--;
834 			}
835 
836 			if (!nrg) {
837 				spin_unlock(&resv->lock);
838 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
839 				if (!nrg)
840 					return -ENOMEM;
841 				goto retry;
842 			}
843 
844 			del += t - f;
845 			hugetlb_cgroup_uncharge_file_region(
846 				resv, rg, t - f, false);
847 
848 			/* New entry for end of split region */
849 			nrg->from = t;
850 			nrg->to = rg->to;
851 
852 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 
854 			INIT_LIST_HEAD(&nrg->link);
855 
856 			/* Original entry is trimmed */
857 			rg->to = f;
858 
859 			list_add(&nrg->link, &rg->link);
860 			nrg = NULL;
861 			break;
862 		}
863 
864 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865 			del += rg->to - rg->from;
866 			hugetlb_cgroup_uncharge_file_region(resv, rg,
867 							    rg->to - rg->from, true);
868 			list_del(&rg->link);
869 			kfree(rg);
870 			continue;
871 		}
872 
873 		if (f <= rg->from) {	/* Trim beginning of region */
874 			hugetlb_cgroup_uncharge_file_region(resv, rg,
875 							    t - rg->from, false);
876 
877 			del += t - rg->from;
878 			rg->from = t;
879 		} else {		/* Trim end of region */
880 			hugetlb_cgroup_uncharge_file_region(resv, rg,
881 							    rg->to - f, false);
882 
883 			del += rg->to - f;
884 			rg->to = f;
885 		}
886 	}
887 
888 	spin_unlock(&resv->lock);
889 	kfree(nrg);
890 	return del;
891 }
892 
893 /*
894  * A rare out of memory error was encountered which prevented removal of
895  * the reserve map region for a page.  The huge page itself was free'ed
896  * and removed from the page cache.  This routine will adjust the subpool
897  * usage count, and the global reserve count if needed.  By incrementing
898  * these counts, the reserve map entry which could not be deleted will
899  * appear as a "reserved" entry instead of simply dangling with incorrect
900  * counts.
901  */
902 void hugetlb_fix_reserve_counts(struct inode *inode)
903 {
904 	struct hugepage_subpool *spool = subpool_inode(inode);
905 	long rsv_adjust;
906 	bool reserved = false;
907 
908 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909 	if (rsv_adjust > 0) {
910 		struct hstate *h = hstate_inode(inode);
911 
912 		if (!hugetlb_acct_memory(h, 1))
913 			reserved = true;
914 	} else if (!rsv_adjust) {
915 		reserved = true;
916 	}
917 
918 	if (!reserved)
919 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
920 }
921 
922 /*
923  * Count and return the number of huge pages in the reserve map
924  * that intersect with the range [f, t).
925  */
926 static long region_count(struct resv_map *resv, long f, long t)
927 {
928 	struct list_head *head = &resv->regions;
929 	struct file_region *rg;
930 	long chg = 0;
931 
932 	spin_lock(&resv->lock);
933 	/* Locate each segment we overlap with, and count that overlap. */
934 	list_for_each_entry(rg, head, link) {
935 		long seg_from;
936 		long seg_to;
937 
938 		if (rg->to <= f)
939 			continue;
940 		if (rg->from >= t)
941 			break;
942 
943 		seg_from = max(rg->from, f);
944 		seg_to = min(rg->to, t);
945 
946 		chg += seg_to - seg_from;
947 	}
948 	spin_unlock(&resv->lock);
949 
950 	return chg;
951 }
952 
953 /*
954  * Convert the address within this vma to the page offset within
955  * the mapping, in pagecache page units; huge pages here.
956  */
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958 			struct vm_area_struct *vma, unsigned long address)
959 {
960 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
961 			(vma->vm_pgoff >> huge_page_order(h));
962 }
963 
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965 				     unsigned long address)
966 {
967 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 }
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
970 
971 /*
972  * Return the size of the pages allocated when backing a VMA. In the majority
973  * cases this will be same size as used by the page table entries.
974  */
975 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 {
977 	if (vma->vm_ops && vma->vm_ops->pagesize)
978 		return vma->vm_ops->pagesize(vma);
979 	return PAGE_SIZE;
980 }
981 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
982 
983 /*
984  * Return the page size being used by the MMU to back a VMA. In the majority
985  * of cases, the page size used by the kernel matches the MMU size. On
986  * architectures where it differs, an architecture-specific 'strong'
987  * version of this symbol is required.
988  */
989 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 {
991 	return vma_kernel_pagesize(vma);
992 }
993 
994 /*
995  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
996  * bits of the reservation map pointer, which are always clear due to
997  * alignment.
998  */
999 #define HPAGE_RESV_OWNER    (1UL << 0)
1000 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1001 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1002 
1003 /*
1004  * These helpers are used to track how many pages are reserved for
1005  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1006  * is guaranteed to have their future faults succeed.
1007  *
1008  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1009  * the reserve counters are updated with the hugetlb_lock held. It is safe
1010  * to reset the VMA at fork() time as it is not in use yet and there is no
1011  * chance of the global counters getting corrupted as a result of the values.
1012  *
1013  * The private mapping reservation is represented in a subtly different
1014  * manner to a shared mapping.  A shared mapping has a region map associated
1015  * with the underlying file, this region map represents the backing file
1016  * pages which have ever had a reservation assigned which this persists even
1017  * after the page is instantiated.  A private mapping has a region map
1018  * associated with the original mmap which is attached to all VMAs which
1019  * reference it, this region map represents those offsets which have consumed
1020  * reservation ie. where pages have been instantiated.
1021  */
1022 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 {
1024 	return (unsigned long)vma->vm_private_data;
1025 }
1026 
1027 static void set_vma_private_data(struct vm_area_struct *vma,
1028 							unsigned long value)
1029 {
1030 	vma->vm_private_data = (void *)value;
1031 }
1032 
1033 static void
1034 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1035 					  struct hugetlb_cgroup *h_cg,
1036 					  struct hstate *h)
1037 {
1038 #ifdef CONFIG_CGROUP_HUGETLB
1039 	if (!h_cg || !h) {
1040 		resv_map->reservation_counter = NULL;
1041 		resv_map->pages_per_hpage = 0;
1042 		resv_map->css = NULL;
1043 	} else {
1044 		resv_map->reservation_counter =
1045 			&h_cg->rsvd_hugepage[hstate_index(h)];
1046 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1047 		resv_map->css = &h_cg->css;
1048 	}
1049 #endif
1050 }
1051 
1052 struct resv_map *resv_map_alloc(void)
1053 {
1054 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1055 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 
1057 	if (!resv_map || !rg) {
1058 		kfree(resv_map);
1059 		kfree(rg);
1060 		return NULL;
1061 	}
1062 
1063 	kref_init(&resv_map->refs);
1064 	spin_lock_init(&resv_map->lock);
1065 	INIT_LIST_HEAD(&resv_map->regions);
1066 
1067 	resv_map->adds_in_progress = 0;
1068 	/*
1069 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1070 	 * fields don't do cgroup accounting. On private mappings, these will be
1071 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1072 	 * reservations are to be un-charged from here.
1073 	 */
1074 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 
1076 	INIT_LIST_HEAD(&resv_map->region_cache);
1077 	list_add(&rg->link, &resv_map->region_cache);
1078 	resv_map->region_cache_count = 1;
1079 
1080 	return resv_map;
1081 }
1082 
1083 void resv_map_release(struct kref *ref)
1084 {
1085 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1086 	struct list_head *head = &resv_map->region_cache;
1087 	struct file_region *rg, *trg;
1088 
1089 	/* Clear out any active regions before we release the map. */
1090 	region_del(resv_map, 0, LONG_MAX);
1091 
1092 	/* ... and any entries left in the cache */
1093 	list_for_each_entry_safe(rg, trg, head, link) {
1094 		list_del(&rg->link);
1095 		kfree(rg);
1096 	}
1097 
1098 	VM_BUG_ON(resv_map->adds_in_progress);
1099 
1100 	kfree(resv_map);
1101 }
1102 
1103 static inline struct resv_map *inode_resv_map(struct inode *inode)
1104 {
1105 	/*
1106 	 * At inode evict time, i_mapping may not point to the original
1107 	 * address space within the inode.  This original address space
1108 	 * contains the pointer to the resv_map.  So, always use the
1109 	 * address space embedded within the inode.
1110 	 * The VERY common case is inode->mapping == &inode->i_data but,
1111 	 * this may not be true for device special inodes.
1112 	 */
1113 	return (struct resv_map *)(&inode->i_data)->private_data;
1114 }
1115 
1116 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 {
1118 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1119 	if (vma->vm_flags & VM_MAYSHARE) {
1120 		struct address_space *mapping = vma->vm_file->f_mapping;
1121 		struct inode *inode = mapping->host;
1122 
1123 		return inode_resv_map(inode);
1124 
1125 	} else {
1126 		return (struct resv_map *)(get_vma_private_data(vma) &
1127 							~HPAGE_RESV_MASK);
1128 	}
1129 }
1130 
1131 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 {
1133 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1134 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 
1136 	set_vma_private_data(vma, (get_vma_private_data(vma) &
1137 				HPAGE_RESV_MASK) | (unsigned long)map);
1138 }
1139 
1140 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 {
1142 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1143 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 
1145 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1146 }
1147 
1148 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 {
1150 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 
1152 	return (get_vma_private_data(vma) & flag) != 0;
1153 }
1154 
1155 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 {
1157 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 	/*
1159 	 * Clear vm_private_data
1160 	 * - For shared mappings this is a per-vma semaphore that may be
1161 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1162 	 *   Before clearing, make sure pointer is not associated with vma
1163 	 *   as this will leak the structure.  This is the case when called
1164 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1165 	 *   been called to allocate a new structure.
1166 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1167 	 *   not apply to children.  Faults generated by the children are
1168 	 *   not guaranteed to succeed, even if read-only.
1169 	 */
1170 	if (vma->vm_flags & VM_MAYSHARE) {
1171 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 
1173 		if (vma_lock && vma_lock->vma != vma)
1174 			vma->vm_private_data = NULL;
1175 	} else
1176 		vma->vm_private_data = NULL;
1177 }
1178 
1179 /*
1180  * Reset and decrement one ref on hugepage private reservation.
1181  * Called with mm->mmap_lock writer semaphore held.
1182  * This function should be only used by move_vma() and operate on
1183  * same sized vma. It should never come here with last ref on the
1184  * reservation.
1185  */
1186 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1187 {
1188 	/*
1189 	 * Clear the old hugetlb private page reservation.
1190 	 * It has already been transferred to new_vma.
1191 	 *
1192 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1193 	 * which copies vma into new_vma and unmaps vma. After the copy
1194 	 * operation both new_vma and vma share a reference to the resv_map
1195 	 * struct, and at that point vma is about to be unmapped. We don't
1196 	 * want to return the reservation to the pool at unmap of vma because
1197 	 * the reservation still lives on in new_vma, so simply decrement the
1198 	 * ref here and remove the resv_map reference from this vma.
1199 	 */
1200 	struct resv_map *reservations = vma_resv_map(vma);
1201 
1202 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1203 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1204 		kref_put(&reservations->refs, resv_map_release);
1205 	}
1206 
1207 	hugetlb_dup_vma_private(vma);
1208 }
1209 
1210 /* Returns true if the VMA has associated reserve pages */
1211 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 {
1213 	if (vma->vm_flags & VM_NORESERVE) {
1214 		/*
1215 		 * This address is already reserved by other process(chg == 0),
1216 		 * so, we should decrement reserved count. Without decrementing,
1217 		 * reserve count remains after releasing inode, because this
1218 		 * allocated page will go into page cache and is regarded as
1219 		 * coming from reserved pool in releasing step.  Currently, we
1220 		 * don't have any other solution to deal with this situation
1221 		 * properly, so add work-around here.
1222 		 */
1223 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1224 			return true;
1225 		else
1226 			return false;
1227 	}
1228 
1229 	/* Shared mappings always use reserves */
1230 	if (vma->vm_flags & VM_MAYSHARE) {
1231 		/*
1232 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1233 		 * be a region map for all pages.  The only situation where
1234 		 * there is no region map is if a hole was punched via
1235 		 * fallocate.  In this case, there really are no reserves to
1236 		 * use.  This situation is indicated if chg != 0.
1237 		 */
1238 		if (chg)
1239 			return false;
1240 		else
1241 			return true;
1242 	}
1243 
1244 	/*
1245 	 * Only the process that called mmap() has reserves for
1246 	 * private mappings.
1247 	 */
1248 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 		/*
1250 		 * Like the shared case above, a hole punch or truncate
1251 		 * could have been performed on the private mapping.
1252 		 * Examine the value of chg to determine if reserves
1253 		 * actually exist or were previously consumed.
1254 		 * Very Subtle - The value of chg comes from a previous
1255 		 * call to vma_needs_reserves().  The reserve map for
1256 		 * private mappings has different (opposite) semantics
1257 		 * than that of shared mappings.  vma_needs_reserves()
1258 		 * has already taken this difference in semantics into
1259 		 * account.  Therefore, the meaning of chg is the same
1260 		 * as in the shared case above.  Code could easily be
1261 		 * combined, but keeping it separate draws attention to
1262 		 * subtle differences.
1263 		 */
1264 		if (chg)
1265 			return false;
1266 		else
1267 			return true;
1268 	}
1269 
1270 	return false;
1271 }
1272 
1273 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 {
1275 	int nid = folio_nid(folio);
1276 
1277 	lockdep_assert_held(&hugetlb_lock);
1278 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 
1280 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1281 	h->free_huge_pages++;
1282 	h->free_huge_pages_node[nid]++;
1283 	folio_set_hugetlb_freed(folio);
1284 }
1285 
1286 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1287 								int nid)
1288 {
1289 	struct folio *folio;
1290 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291 
1292 	lockdep_assert_held(&hugetlb_lock);
1293 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1294 		if (pin && !folio_is_longterm_pinnable(folio))
1295 			continue;
1296 
1297 		if (folio_test_hwpoison(folio))
1298 			continue;
1299 
1300 		list_move(&folio->lru, &h->hugepage_activelist);
1301 		folio_ref_unfreeze(folio, 1);
1302 		folio_clear_hugetlb_freed(folio);
1303 		h->free_huge_pages--;
1304 		h->free_huge_pages_node[nid]--;
1305 		return folio;
1306 	}
1307 
1308 	return NULL;
1309 }
1310 
1311 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1312 							int nid, nodemask_t *nmask)
1313 {
1314 	unsigned int cpuset_mems_cookie;
1315 	struct zonelist *zonelist;
1316 	struct zone *zone;
1317 	struct zoneref *z;
1318 	int node = NUMA_NO_NODE;
1319 
1320 	zonelist = node_zonelist(nid, gfp_mask);
1321 
1322 retry_cpuset:
1323 	cpuset_mems_cookie = read_mems_allowed_begin();
1324 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1325 		struct folio *folio;
1326 
1327 		if (!cpuset_zone_allowed(zone, gfp_mask))
1328 			continue;
1329 		/*
1330 		 * no need to ask again on the same node. Pool is node rather than
1331 		 * zone aware
1332 		 */
1333 		if (zone_to_nid(zone) == node)
1334 			continue;
1335 		node = zone_to_nid(zone);
1336 
1337 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1338 		if (folio)
1339 			return folio;
1340 	}
1341 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1342 		goto retry_cpuset;
1343 
1344 	return NULL;
1345 }
1346 
1347 static unsigned long available_huge_pages(struct hstate *h)
1348 {
1349 	return h->free_huge_pages - h->resv_huge_pages;
1350 }
1351 
1352 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1353 				struct vm_area_struct *vma,
1354 				unsigned long address, int avoid_reserve,
1355 				long chg)
1356 {
1357 	struct folio *folio = NULL;
1358 	struct mempolicy *mpol;
1359 	gfp_t gfp_mask;
1360 	nodemask_t *nodemask;
1361 	int nid;
1362 
1363 	/*
1364 	 * A child process with MAP_PRIVATE mappings created by their parent
1365 	 * have no page reserves. This check ensures that reservations are
1366 	 * not "stolen". The child may still get SIGKILLed
1367 	 */
1368 	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1369 		goto err;
1370 
1371 	/* If reserves cannot be used, ensure enough pages are in the pool */
1372 	if (avoid_reserve && !available_huge_pages(h))
1373 		goto err;
1374 
1375 	gfp_mask = htlb_alloc_mask(h);
1376 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377 
1378 	if (mpol_is_preferred_many(mpol)) {
1379 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1380 							nid, nodemask);
1381 
1382 		/* Fallback to all nodes if page==NULL */
1383 		nodemask = NULL;
1384 	}
1385 
1386 	if (!folio)
1387 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1388 							nid, nodemask);
1389 
1390 	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391 		folio_set_hugetlb_restore_reserve(folio);
1392 		h->resv_huge_pages--;
1393 	}
1394 
1395 	mpol_cond_put(mpol);
1396 	return folio;
1397 
1398 err:
1399 	return NULL;
1400 }
1401 
1402 /*
1403  * common helper functions for hstate_next_node_to_{alloc|free}.
1404  * We may have allocated or freed a huge page based on a different
1405  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406  * be outside of *nodes_allowed.  Ensure that we use an allowed
1407  * node for alloc or free.
1408  */
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 {
1411 	nid = next_node_in(nid, *nodes_allowed);
1412 	VM_BUG_ON(nid >= MAX_NUMNODES);
1413 
1414 	return nid;
1415 }
1416 
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 {
1419 	if (!node_isset(nid, *nodes_allowed))
1420 		nid = next_node_allowed(nid, nodes_allowed);
1421 	return nid;
1422 }
1423 
1424 /*
1425  * returns the previously saved node ["this node"] from which to
1426  * allocate a persistent huge page for the pool and advance the
1427  * next node from which to allocate, handling wrap at end of node
1428  * mask.
1429  */
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431 					nodemask_t *nodes_allowed)
1432 {
1433 	int nid;
1434 
1435 	VM_BUG_ON(!nodes_allowed);
1436 
1437 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1439 
1440 	return nid;
1441 }
1442 
1443 /*
1444  * helper for remove_pool_huge_page() - return the previously saved
1445  * node ["this node"] from which to free a huge page.  Advance the
1446  * next node id whether or not we find a free huge page to free so
1447  * that the next attempt to free addresses the next node.
1448  */
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1450 {
1451 	int nid;
1452 
1453 	VM_BUG_ON(!nodes_allowed);
1454 
1455 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1457 
1458 	return nid;
1459 }
1460 
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1462 	for (nr_nodes = nodes_weight(*mask);				\
1463 		nr_nodes > 0 &&						\
1464 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1465 		nr_nodes--)
1466 
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1468 	for (nr_nodes = nodes_weight(*mask);				\
1469 		nr_nodes > 0 &&						\
1470 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1471 		nr_nodes--)
1472 
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475 					unsigned int order, bool demote)
1476 {
1477 	int i;
1478 	int nr_pages = 1 << order;
1479 	struct page *p;
1480 
1481 	atomic_set(&folio->_entire_mapcount, 0);
1482 	atomic_set(&folio->_nr_pages_mapped, 0);
1483 	atomic_set(&folio->_pincount, 0);
1484 
1485 	for (i = 1; i < nr_pages; i++) {
1486 		p = folio_page(folio, i);
1487 		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1488 		p->mapping = NULL;
1489 		clear_compound_head(p);
1490 		if (!demote)
1491 			set_page_refcounted(p);
1492 	}
1493 
1494 	__folio_clear_head(folio);
1495 }
1496 
1497 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1498 					unsigned int order)
1499 {
1500 	__destroy_compound_gigantic_folio(folio, order, true);
1501 }
1502 
1503 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1504 static void destroy_compound_gigantic_folio(struct folio *folio,
1505 					unsigned int order)
1506 {
1507 	__destroy_compound_gigantic_folio(folio, order, false);
1508 }
1509 
1510 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1511 {
1512 	/*
1513 	 * If the page isn't allocated using the cma allocator,
1514 	 * cma_release() returns false.
1515 	 */
1516 #ifdef CONFIG_CMA
1517 	int nid = folio_nid(folio);
1518 
1519 	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1520 		return;
1521 #endif
1522 
1523 	free_contig_range(folio_pfn(folio), 1 << order);
1524 }
1525 
1526 #ifdef CONFIG_CONTIG_ALLOC
1527 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1528 		int nid, nodemask_t *nodemask)
1529 {
1530 	struct page *page;
1531 	unsigned long nr_pages = pages_per_huge_page(h);
1532 	if (nid == NUMA_NO_NODE)
1533 		nid = numa_mem_id();
1534 
1535 #ifdef CONFIG_CMA
1536 	{
1537 		int node;
1538 
1539 		if (hugetlb_cma[nid]) {
1540 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1541 					huge_page_order(h), true);
1542 			if (page)
1543 				return page_folio(page);
1544 		}
1545 
1546 		if (!(gfp_mask & __GFP_THISNODE)) {
1547 			for_each_node_mask(node, *nodemask) {
1548 				if (node == nid || !hugetlb_cma[node])
1549 					continue;
1550 
1551 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1552 						huge_page_order(h), true);
1553 				if (page)
1554 					return page_folio(page);
1555 			}
1556 		}
1557 	}
1558 #endif
1559 
1560 	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1561 	return page ? page_folio(page) : NULL;
1562 }
1563 
1564 #else /* !CONFIG_CONTIG_ALLOC */
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 					int nid, nodemask_t *nodemask)
1567 {
1568 	return NULL;
1569 }
1570 #endif /* CONFIG_CONTIG_ALLOC */
1571 
1572 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1573 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1574 					int nid, nodemask_t *nodemask)
1575 {
1576 	return NULL;
1577 }
1578 static inline void free_gigantic_folio(struct folio *folio,
1579 						unsigned int order) { }
1580 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1581 						unsigned int order) { }
1582 #endif
1583 
1584 static inline void __clear_hugetlb_destructor(struct hstate *h,
1585 						struct folio *folio)
1586 {
1587 	lockdep_assert_held(&hugetlb_lock);
1588 
1589 	folio_clear_hugetlb(folio);
1590 }
1591 
1592 /*
1593  * Remove hugetlb folio from lists.
1594  * If vmemmap exists for the folio, update dtor so that the folio appears
1595  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1596  * to update dtor.
1597  *
1598  * A reference is held on the folio, except in the case of demote.
1599  *
1600  * Must be called with hugetlb lock held.
1601  */
1602 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1603 							bool adjust_surplus,
1604 							bool demote)
1605 {
1606 	int nid = folio_nid(folio);
1607 
1608 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1609 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1610 
1611 	lockdep_assert_held(&hugetlb_lock);
1612 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1613 		return;
1614 
1615 	list_del(&folio->lru);
1616 
1617 	if (folio_test_hugetlb_freed(folio)) {
1618 		h->free_huge_pages--;
1619 		h->free_huge_pages_node[nid]--;
1620 	}
1621 	if (adjust_surplus) {
1622 		h->surplus_huge_pages--;
1623 		h->surplus_huge_pages_node[nid]--;
1624 	}
1625 
1626 	/*
1627 	 * We can only clear the hugetlb destructor after allocating vmemmap
1628 	 * pages.  Otherwise, someone (memory error handling) may try to write
1629 	 * to tail struct pages.
1630 	 */
1631 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1632 		__clear_hugetlb_destructor(h, folio);
1633 
1634 	 /*
1635 	  * In the case of demote we do not ref count the page as it will soon
1636 	  * be turned into a page of smaller size.
1637 	 */
1638 	if (!demote)
1639 		folio_ref_unfreeze(folio, 1);
1640 
1641 	h->nr_huge_pages--;
1642 	h->nr_huge_pages_node[nid]--;
1643 }
1644 
1645 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1646 							bool adjust_surplus)
1647 {
1648 	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1649 }
1650 
1651 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1652 							bool adjust_surplus)
1653 {
1654 	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1655 }
1656 
1657 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1658 			     bool adjust_surplus)
1659 {
1660 	int zeroed;
1661 	int nid = folio_nid(folio);
1662 
1663 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1664 
1665 	lockdep_assert_held(&hugetlb_lock);
1666 
1667 	INIT_LIST_HEAD(&folio->lru);
1668 	h->nr_huge_pages++;
1669 	h->nr_huge_pages_node[nid]++;
1670 
1671 	if (adjust_surplus) {
1672 		h->surplus_huge_pages++;
1673 		h->surplus_huge_pages_node[nid]++;
1674 	}
1675 
1676 	folio_set_hugetlb(folio);
1677 	folio_change_private(folio, NULL);
1678 	/*
1679 	 * We have to set hugetlb_vmemmap_optimized again as above
1680 	 * folio_change_private(folio, NULL) cleared it.
1681 	 */
1682 	folio_set_hugetlb_vmemmap_optimized(folio);
1683 
1684 	/*
1685 	 * This folio is about to be managed by the hugetlb allocator and
1686 	 * should have no users.  Drop our reference, and check for others
1687 	 * just in case.
1688 	 */
1689 	zeroed = folio_put_testzero(folio);
1690 	if (unlikely(!zeroed))
1691 		/*
1692 		 * It is VERY unlikely soneone else has taken a ref
1693 		 * on the folio.  In this case, we simply return as
1694 		 * free_huge_folio() will be called when this other ref
1695 		 * is dropped.
1696 		 */
1697 		return;
1698 
1699 	arch_clear_hugepage_flags(&folio->page);
1700 	enqueue_hugetlb_folio(h, folio);
1701 }
1702 
1703 static void __update_and_free_hugetlb_folio(struct hstate *h,
1704 						struct folio *folio)
1705 {
1706 	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1707 
1708 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1709 		return;
1710 
1711 	/*
1712 	 * If we don't know which subpages are hwpoisoned, we can't free
1713 	 * the hugepage, so it's leaked intentionally.
1714 	 */
1715 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1716 		return;
1717 
1718 	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1719 		spin_lock_irq(&hugetlb_lock);
1720 		/*
1721 		 * If we cannot allocate vmemmap pages, just refuse to free the
1722 		 * page and put the page back on the hugetlb free list and treat
1723 		 * as a surplus page.
1724 		 */
1725 		add_hugetlb_folio(h, folio, true);
1726 		spin_unlock_irq(&hugetlb_lock);
1727 		return;
1728 	}
1729 
1730 	/*
1731 	 * Move PageHWPoison flag from head page to the raw error pages,
1732 	 * which makes any healthy subpages reusable.
1733 	 */
1734 	if (unlikely(folio_test_hwpoison(folio)))
1735 		folio_clear_hugetlb_hwpoison(folio);
1736 
1737 	/*
1738 	 * If vmemmap pages were allocated above, then we need to clear the
1739 	 * hugetlb destructor under the hugetlb lock.
1740 	 */
1741 	if (clear_dtor) {
1742 		spin_lock_irq(&hugetlb_lock);
1743 		__clear_hugetlb_destructor(h, folio);
1744 		spin_unlock_irq(&hugetlb_lock);
1745 	}
1746 
1747 	/*
1748 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 	 * need to be given back to CMA in free_gigantic_folio.
1750 	 */
1751 	if (hstate_is_gigantic(h) ||
1752 	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 		free_gigantic_folio(folio, huge_page_order(h));
1755 	} else {
1756 		__free_pages(&folio->page, huge_page_order(h));
1757 	}
1758 }
1759 
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772 
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775 	struct llist_node *node;
1776 
1777 	node = llist_del_all(&hpage_freelist);
1778 
1779 	while (node) {
1780 		struct page *page;
1781 		struct hstate *h;
1782 
1783 		page = container_of((struct address_space **)node,
1784 				     struct page, mapping);
1785 		node = node->next;
1786 		page->mapping = NULL;
1787 		/*
1788 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1789 		 * folio_hstate() is going to trigger because a previous call to
1790 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1791 		 * not use folio_hstate() directly.
1792 		 */
1793 		h = size_to_hstate(page_size(page));
1794 
1795 		__update_and_free_hugetlb_folio(h, page_folio(page));
1796 
1797 		cond_resched();
1798 	}
1799 }
1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1801 
1802 static inline void flush_free_hpage_work(struct hstate *h)
1803 {
1804 	if (hugetlb_vmemmap_optimizable(h))
1805 		flush_work(&free_hpage_work);
1806 }
1807 
1808 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1809 				 bool atomic)
1810 {
1811 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1812 		__update_and_free_hugetlb_folio(h, folio);
1813 		return;
1814 	}
1815 
1816 	/*
1817 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1818 	 *
1819 	 * Only call schedule_work() if hpage_freelist is previously
1820 	 * empty. Otherwise, schedule_work() had been called but the workfn
1821 	 * hasn't retrieved the list yet.
1822 	 */
1823 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1824 		schedule_work(&free_hpage_work);
1825 }
1826 
1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1828 {
1829 	struct page *page, *t_page;
1830 	struct folio *folio;
1831 
1832 	list_for_each_entry_safe(page, t_page, list, lru) {
1833 		folio = page_folio(page);
1834 		update_and_free_hugetlb_folio(h, folio, false);
1835 		cond_resched();
1836 	}
1837 }
1838 
1839 struct hstate *size_to_hstate(unsigned long size)
1840 {
1841 	struct hstate *h;
1842 
1843 	for_each_hstate(h) {
1844 		if (huge_page_size(h) == size)
1845 			return h;
1846 	}
1847 	return NULL;
1848 }
1849 
1850 void free_huge_folio(struct folio *folio)
1851 {
1852 	/*
1853 	 * Can't pass hstate in here because it is called from the
1854 	 * compound page destructor.
1855 	 */
1856 	struct hstate *h = folio_hstate(folio);
1857 	int nid = folio_nid(folio);
1858 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1859 	bool restore_reserve;
1860 	unsigned long flags;
1861 
1862 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1863 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1864 
1865 	hugetlb_set_folio_subpool(folio, NULL);
1866 	if (folio_test_anon(folio))
1867 		__ClearPageAnonExclusive(&folio->page);
1868 	folio->mapping = NULL;
1869 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1870 	folio_clear_hugetlb_restore_reserve(folio);
1871 
1872 	/*
1873 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1874 	 * reservation.  If the page was associated with a subpool, there
1875 	 * would have been a page reserved in the subpool before allocation
1876 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1877 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1878 	 * remove the reserved page from the subpool.
1879 	 */
1880 	if (!restore_reserve) {
1881 		/*
1882 		 * A return code of zero implies that the subpool will be
1883 		 * under its minimum size if the reservation is not restored
1884 		 * after page is free.  Therefore, force restore_reserve
1885 		 * operation.
1886 		 */
1887 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1888 			restore_reserve = true;
1889 	}
1890 
1891 	spin_lock_irqsave(&hugetlb_lock, flags);
1892 	folio_clear_hugetlb_migratable(folio);
1893 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1894 				     pages_per_huge_page(h), folio);
1895 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1896 					  pages_per_huge_page(h), folio);
1897 	if (restore_reserve)
1898 		h->resv_huge_pages++;
1899 
1900 	if (folio_test_hugetlb_temporary(folio)) {
1901 		remove_hugetlb_folio(h, folio, false);
1902 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1903 		update_and_free_hugetlb_folio(h, folio, true);
1904 	} else if (h->surplus_huge_pages_node[nid]) {
1905 		/* remove the page from active list */
1906 		remove_hugetlb_folio(h, folio, true);
1907 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1908 		update_and_free_hugetlb_folio(h, folio, true);
1909 	} else {
1910 		arch_clear_hugepage_flags(&folio->page);
1911 		enqueue_hugetlb_folio(h, folio);
1912 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1913 	}
1914 }
1915 
1916 /*
1917  * Must be called with the hugetlb lock held
1918  */
1919 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1920 {
1921 	lockdep_assert_held(&hugetlb_lock);
1922 	h->nr_huge_pages++;
1923 	h->nr_huge_pages_node[nid]++;
1924 }
1925 
1926 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1927 {
1928 	hugetlb_vmemmap_optimize(h, &folio->page);
1929 	INIT_LIST_HEAD(&folio->lru);
1930 	folio_set_hugetlb(folio);
1931 	hugetlb_set_folio_subpool(folio, NULL);
1932 	set_hugetlb_cgroup(folio, NULL);
1933 	set_hugetlb_cgroup_rsvd(folio, NULL);
1934 }
1935 
1936 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1937 {
1938 	__prep_new_hugetlb_folio(h, folio);
1939 	spin_lock_irq(&hugetlb_lock);
1940 	__prep_account_new_huge_page(h, nid);
1941 	spin_unlock_irq(&hugetlb_lock);
1942 }
1943 
1944 static bool __prep_compound_gigantic_folio(struct folio *folio,
1945 					unsigned int order, bool demote)
1946 {
1947 	int i, j;
1948 	int nr_pages = 1 << order;
1949 	struct page *p;
1950 
1951 	__folio_clear_reserved(folio);
1952 	for (i = 0; i < nr_pages; i++) {
1953 		p = folio_page(folio, i);
1954 
1955 		/*
1956 		 * For gigantic hugepages allocated through bootmem at
1957 		 * boot, it's safer to be consistent with the not-gigantic
1958 		 * hugepages and clear the PG_reserved bit from all tail pages
1959 		 * too.  Otherwise drivers using get_user_pages() to access tail
1960 		 * pages may get the reference counting wrong if they see
1961 		 * PG_reserved set on a tail page (despite the head page not
1962 		 * having PG_reserved set).  Enforcing this consistency between
1963 		 * head and tail pages allows drivers to optimize away a check
1964 		 * on the head page when they need know if put_page() is needed
1965 		 * after get_user_pages().
1966 		 */
1967 		if (i != 0)	/* head page cleared above */
1968 			__ClearPageReserved(p);
1969 		/*
1970 		 * Subtle and very unlikely
1971 		 *
1972 		 * Gigantic 'page allocators' such as memblock or cma will
1973 		 * return a set of pages with each page ref counted.  We need
1974 		 * to turn this set of pages into a compound page with tail
1975 		 * page ref counts set to zero.  Code such as speculative page
1976 		 * cache adding could take a ref on a 'to be' tail page.
1977 		 * We need to respect any increased ref count, and only set
1978 		 * the ref count to zero if count is currently 1.  If count
1979 		 * is not 1, we return an error.  An error return indicates
1980 		 * the set of pages can not be converted to a gigantic page.
1981 		 * The caller who allocated the pages should then discard the
1982 		 * pages using the appropriate free interface.
1983 		 *
1984 		 * In the case of demote, the ref count will be zero.
1985 		 */
1986 		if (!demote) {
1987 			if (!page_ref_freeze(p, 1)) {
1988 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1989 				goto out_error;
1990 			}
1991 		} else {
1992 			VM_BUG_ON_PAGE(page_count(p), p);
1993 		}
1994 		if (i != 0)
1995 			set_compound_head(p, &folio->page);
1996 	}
1997 	__folio_set_head(folio);
1998 	/* we rely on prep_new_hugetlb_folio to set the destructor */
1999 	folio_set_order(folio, order);
2000 	atomic_set(&folio->_entire_mapcount, -1);
2001 	atomic_set(&folio->_nr_pages_mapped, 0);
2002 	atomic_set(&folio->_pincount, 0);
2003 	return true;
2004 
2005 out_error:
2006 	/* undo page modifications made above */
2007 	for (j = 0; j < i; j++) {
2008 		p = folio_page(folio, j);
2009 		if (j != 0)
2010 			clear_compound_head(p);
2011 		set_page_refcounted(p);
2012 	}
2013 	/* need to clear PG_reserved on remaining tail pages  */
2014 	for (; j < nr_pages; j++) {
2015 		p = folio_page(folio, j);
2016 		__ClearPageReserved(p);
2017 	}
2018 	return false;
2019 }
2020 
2021 static bool prep_compound_gigantic_folio(struct folio *folio,
2022 							unsigned int order)
2023 {
2024 	return __prep_compound_gigantic_folio(folio, order, false);
2025 }
2026 
2027 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2028 							unsigned int order)
2029 {
2030 	return __prep_compound_gigantic_folio(folio, order, true);
2031 }
2032 
2033 /*
2034  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2035  * transparent huge pages.  See the PageTransHuge() documentation for more
2036  * details.
2037  */
2038 int PageHuge(struct page *page)
2039 {
2040 	struct folio *folio;
2041 
2042 	if (!PageCompound(page))
2043 		return 0;
2044 	folio = page_folio(page);
2045 	return folio_test_hugetlb(folio);
2046 }
2047 EXPORT_SYMBOL_GPL(PageHuge);
2048 
2049 /*
2050  * Find and lock address space (mapping) in write mode.
2051  *
2052  * Upon entry, the page is locked which means that page_mapping() is
2053  * stable.  Due to locking order, we can only trylock_write.  If we can
2054  * not get the lock, simply return NULL to caller.
2055  */
2056 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2057 {
2058 	struct address_space *mapping = page_mapping(hpage);
2059 
2060 	if (!mapping)
2061 		return mapping;
2062 
2063 	if (i_mmap_trylock_write(mapping))
2064 		return mapping;
2065 
2066 	return NULL;
2067 }
2068 
2069 pgoff_t hugetlb_basepage_index(struct page *page)
2070 {
2071 	struct page *page_head = compound_head(page);
2072 	pgoff_t index = page_index(page_head);
2073 	unsigned long compound_idx;
2074 
2075 	if (compound_order(page_head) > MAX_ORDER)
2076 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2077 	else
2078 		compound_idx = page - page_head;
2079 
2080 	return (index << compound_order(page_head)) + compound_idx;
2081 }
2082 
2083 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2084 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2085 		nodemask_t *node_alloc_noretry)
2086 {
2087 	int order = huge_page_order(h);
2088 	struct page *page;
2089 	bool alloc_try_hard = true;
2090 	bool retry = true;
2091 
2092 	/*
2093 	 * By default we always try hard to allocate the page with
2094 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2095 	 * a loop (to adjust global huge page counts) and previous allocation
2096 	 * failed, do not continue to try hard on the same node.  Use the
2097 	 * node_alloc_noretry bitmap to manage this state information.
2098 	 */
2099 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2100 		alloc_try_hard = false;
2101 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2102 	if (alloc_try_hard)
2103 		gfp_mask |= __GFP_RETRY_MAYFAIL;
2104 	if (nid == NUMA_NO_NODE)
2105 		nid = numa_mem_id();
2106 retry:
2107 	page = __alloc_pages(gfp_mask, order, nid, nmask);
2108 
2109 	/* Freeze head page */
2110 	if (page && !page_ref_freeze(page, 1)) {
2111 		__free_pages(page, order);
2112 		if (retry) {	/* retry once */
2113 			retry = false;
2114 			goto retry;
2115 		}
2116 		/* WOW!  twice in a row. */
2117 		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2118 		page = NULL;
2119 	}
2120 
2121 	/*
2122 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2123 	 * indicates an overall state change.  Clear bit so that we resume
2124 	 * normal 'try hard' allocations.
2125 	 */
2126 	if (node_alloc_noretry && page && !alloc_try_hard)
2127 		node_clear(nid, *node_alloc_noretry);
2128 
2129 	/*
2130 	 * If we tried hard to get a page but failed, set bit so that
2131 	 * subsequent attempts will not try as hard until there is an
2132 	 * overall state change.
2133 	 */
2134 	if (node_alloc_noretry && !page && alloc_try_hard)
2135 		node_set(nid, *node_alloc_noretry);
2136 
2137 	if (!page) {
2138 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2139 		return NULL;
2140 	}
2141 
2142 	__count_vm_event(HTLB_BUDDY_PGALLOC);
2143 	return page_folio(page);
2144 }
2145 
2146 /*
2147  * Common helper to allocate a fresh hugetlb page. All specific allocators
2148  * should use this function to get new hugetlb pages
2149  *
2150  * Note that returned page is 'frozen':  ref count of head page and all tail
2151  * pages is zero.
2152  */
2153 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2154 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2155 		nodemask_t *node_alloc_noretry)
2156 {
2157 	struct folio *folio;
2158 	bool retry = false;
2159 
2160 retry:
2161 	if (hstate_is_gigantic(h))
2162 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2163 	else
2164 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2165 				nid, nmask, node_alloc_noretry);
2166 	if (!folio)
2167 		return NULL;
2168 	if (hstate_is_gigantic(h)) {
2169 		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2170 			/*
2171 			 * Rare failure to convert pages to compound page.
2172 			 * Free pages and try again - ONCE!
2173 			 */
2174 			free_gigantic_folio(folio, huge_page_order(h));
2175 			if (!retry) {
2176 				retry = true;
2177 				goto retry;
2178 			}
2179 			return NULL;
2180 		}
2181 	}
2182 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2183 
2184 	return folio;
2185 }
2186 
2187 /*
2188  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2189  * manner.
2190  */
2191 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2192 				nodemask_t *node_alloc_noretry)
2193 {
2194 	struct folio *folio;
2195 	int nr_nodes, node;
2196 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2197 
2198 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2199 		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2200 					nodes_allowed, node_alloc_noretry);
2201 		if (folio) {
2202 			free_huge_folio(folio); /* free it into the hugepage allocator */
2203 			return 1;
2204 		}
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 /*
2211  * Remove huge page from pool from next node to free.  Attempt to keep
2212  * persistent huge pages more or less balanced over allowed nodes.
2213  * This routine only 'removes' the hugetlb page.  The caller must make
2214  * an additional call to free the page to low level allocators.
2215  * Called with hugetlb_lock locked.
2216  */
2217 static struct page *remove_pool_huge_page(struct hstate *h,
2218 						nodemask_t *nodes_allowed,
2219 						 bool acct_surplus)
2220 {
2221 	int nr_nodes, node;
2222 	struct page *page = NULL;
2223 	struct folio *folio;
2224 
2225 	lockdep_assert_held(&hugetlb_lock);
2226 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2227 		/*
2228 		 * If we're returning unused surplus pages, only examine
2229 		 * nodes with surplus pages.
2230 		 */
2231 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2232 		    !list_empty(&h->hugepage_freelists[node])) {
2233 			page = list_entry(h->hugepage_freelists[node].next,
2234 					  struct page, lru);
2235 			folio = page_folio(page);
2236 			remove_hugetlb_folio(h, folio, acct_surplus);
2237 			break;
2238 		}
2239 	}
2240 
2241 	return page;
2242 }
2243 
2244 /*
2245  * Dissolve a given free hugepage into free buddy pages. This function does
2246  * nothing for in-use hugepages and non-hugepages.
2247  * This function returns values like below:
2248  *
2249  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2250  *           when the system is under memory pressure and the feature of
2251  *           freeing unused vmemmap pages associated with each hugetlb page
2252  *           is enabled.
2253  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2254  *           (allocated or reserved.)
2255  *       0:  successfully dissolved free hugepages or the page is not a
2256  *           hugepage (considered as already dissolved)
2257  */
2258 int dissolve_free_huge_page(struct page *page)
2259 {
2260 	int rc = -EBUSY;
2261 	struct folio *folio = page_folio(page);
2262 
2263 retry:
2264 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2265 	if (!folio_test_hugetlb(folio))
2266 		return 0;
2267 
2268 	spin_lock_irq(&hugetlb_lock);
2269 	if (!folio_test_hugetlb(folio)) {
2270 		rc = 0;
2271 		goto out;
2272 	}
2273 
2274 	if (!folio_ref_count(folio)) {
2275 		struct hstate *h = folio_hstate(folio);
2276 		if (!available_huge_pages(h))
2277 			goto out;
2278 
2279 		/*
2280 		 * We should make sure that the page is already on the free list
2281 		 * when it is dissolved.
2282 		 */
2283 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2284 			spin_unlock_irq(&hugetlb_lock);
2285 			cond_resched();
2286 
2287 			/*
2288 			 * Theoretically, we should return -EBUSY when we
2289 			 * encounter this race. In fact, we have a chance
2290 			 * to successfully dissolve the page if we do a
2291 			 * retry. Because the race window is quite small.
2292 			 * If we seize this opportunity, it is an optimization
2293 			 * for increasing the success rate of dissolving page.
2294 			 */
2295 			goto retry;
2296 		}
2297 
2298 		remove_hugetlb_folio(h, folio, false);
2299 		h->max_huge_pages--;
2300 		spin_unlock_irq(&hugetlb_lock);
2301 
2302 		/*
2303 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2304 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2305 		 * free the page if it can not allocate required vmemmap.  We
2306 		 * need to adjust max_huge_pages if the page is not freed.
2307 		 * Attempt to allocate vmemmmap here so that we can take
2308 		 * appropriate action on failure.
2309 		 */
2310 		rc = hugetlb_vmemmap_restore(h, &folio->page);
2311 		if (!rc) {
2312 			update_and_free_hugetlb_folio(h, folio, false);
2313 		} else {
2314 			spin_lock_irq(&hugetlb_lock);
2315 			add_hugetlb_folio(h, folio, false);
2316 			h->max_huge_pages++;
2317 			spin_unlock_irq(&hugetlb_lock);
2318 		}
2319 
2320 		return rc;
2321 	}
2322 out:
2323 	spin_unlock_irq(&hugetlb_lock);
2324 	return rc;
2325 }
2326 
2327 /*
2328  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2329  * make specified memory blocks removable from the system.
2330  * Note that this will dissolve a free gigantic hugepage completely, if any
2331  * part of it lies within the given range.
2332  * Also note that if dissolve_free_huge_page() returns with an error, all
2333  * free hugepages that were dissolved before that error are lost.
2334  */
2335 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2336 {
2337 	unsigned long pfn;
2338 	struct page *page;
2339 	int rc = 0;
2340 	unsigned int order;
2341 	struct hstate *h;
2342 
2343 	if (!hugepages_supported())
2344 		return rc;
2345 
2346 	order = huge_page_order(&default_hstate);
2347 	for_each_hstate(h)
2348 		order = min(order, huge_page_order(h));
2349 
2350 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2351 		page = pfn_to_page(pfn);
2352 		rc = dissolve_free_huge_page(page);
2353 		if (rc)
2354 			break;
2355 	}
2356 
2357 	return rc;
2358 }
2359 
2360 /*
2361  * Allocates a fresh surplus page from the page allocator.
2362  */
2363 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2364 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2365 {
2366 	struct folio *folio = NULL;
2367 
2368 	if (hstate_is_gigantic(h))
2369 		return NULL;
2370 
2371 	spin_lock_irq(&hugetlb_lock);
2372 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2373 		goto out_unlock;
2374 	spin_unlock_irq(&hugetlb_lock);
2375 
2376 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2377 	if (!folio)
2378 		return NULL;
2379 
2380 	spin_lock_irq(&hugetlb_lock);
2381 	/*
2382 	 * We could have raced with the pool size change.
2383 	 * Double check that and simply deallocate the new page
2384 	 * if we would end up overcommiting the surpluses. Abuse
2385 	 * temporary page to workaround the nasty free_huge_folio
2386 	 * codeflow
2387 	 */
2388 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2389 		folio_set_hugetlb_temporary(folio);
2390 		spin_unlock_irq(&hugetlb_lock);
2391 		free_huge_folio(folio);
2392 		return NULL;
2393 	}
2394 
2395 	h->surplus_huge_pages++;
2396 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2397 
2398 out_unlock:
2399 	spin_unlock_irq(&hugetlb_lock);
2400 
2401 	return folio;
2402 }
2403 
2404 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2405 				     int nid, nodemask_t *nmask)
2406 {
2407 	struct folio *folio;
2408 
2409 	if (hstate_is_gigantic(h))
2410 		return NULL;
2411 
2412 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2413 	if (!folio)
2414 		return NULL;
2415 
2416 	/* fresh huge pages are frozen */
2417 	folio_ref_unfreeze(folio, 1);
2418 	/*
2419 	 * We do not account these pages as surplus because they are only
2420 	 * temporary and will be released properly on the last reference
2421 	 */
2422 	folio_set_hugetlb_temporary(folio);
2423 
2424 	return folio;
2425 }
2426 
2427 /*
2428  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2429  */
2430 static
2431 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2432 		struct vm_area_struct *vma, unsigned long addr)
2433 {
2434 	struct folio *folio = NULL;
2435 	struct mempolicy *mpol;
2436 	gfp_t gfp_mask = htlb_alloc_mask(h);
2437 	int nid;
2438 	nodemask_t *nodemask;
2439 
2440 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2441 	if (mpol_is_preferred_many(mpol)) {
2442 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2443 
2444 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2445 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2446 
2447 		/* Fallback to all nodes if page==NULL */
2448 		nodemask = NULL;
2449 	}
2450 
2451 	if (!folio)
2452 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2453 	mpol_cond_put(mpol);
2454 	return folio;
2455 }
2456 
2457 /* folio migration callback function */
2458 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2459 		nodemask_t *nmask, gfp_t gfp_mask)
2460 {
2461 	spin_lock_irq(&hugetlb_lock);
2462 	if (available_huge_pages(h)) {
2463 		struct folio *folio;
2464 
2465 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2466 						preferred_nid, nmask);
2467 		if (folio) {
2468 			spin_unlock_irq(&hugetlb_lock);
2469 			return folio;
2470 		}
2471 	}
2472 	spin_unlock_irq(&hugetlb_lock);
2473 
2474 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2475 }
2476 
2477 /* mempolicy aware migration callback */
2478 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2479 		unsigned long address)
2480 {
2481 	struct mempolicy *mpol;
2482 	nodemask_t *nodemask;
2483 	struct folio *folio;
2484 	gfp_t gfp_mask;
2485 	int node;
2486 
2487 	gfp_mask = htlb_alloc_mask(h);
2488 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2489 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2490 	mpol_cond_put(mpol);
2491 
2492 	return folio;
2493 }
2494 
2495 /*
2496  * Increase the hugetlb pool such that it can accommodate a reservation
2497  * of size 'delta'.
2498  */
2499 static int gather_surplus_pages(struct hstate *h, long delta)
2500 	__must_hold(&hugetlb_lock)
2501 {
2502 	LIST_HEAD(surplus_list);
2503 	struct folio *folio, *tmp;
2504 	int ret;
2505 	long i;
2506 	long needed, allocated;
2507 	bool alloc_ok = true;
2508 
2509 	lockdep_assert_held(&hugetlb_lock);
2510 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2511 	if (needed <= 0) {
2512 		h->resv_huge_pages += delta;
2513 		return 0;
2514 	}
2515 
2516 	allocated = 0;
2517 
2518 	ret = -ENOMEM;
2519 retry:
2520 	spin_unlock_irq(&hugetlb_lock);
2521 	for (i = 0; i < needed; i++) {
2522 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2523 				NUMA_NO_NODE, NULL);
2524 		if (!folio) {
2525 			alloc_ok = false;
2526 			break;
2527 		}
2528 		list_add(&folio->lru, &surplus_list);
2529 		cond_resched();
2530 	}
2531 	allocated += i;
2532 
2533 	/*
2534 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2535 	 * because either resv_huge_pages or free_huge_pages may have changed.
2536 	 */
2537 	spin_lock_irq(&hugetlb_lock);
2538 	needed = (h->resv_huge_pages + delta) -
2539 			(h->free_huge_pages + allocated);
2540 	if (needed > 0) {
2541 		if (alloc_ok)
2542 			goto retry;
2543 		/*
2544 		 * We were not able to allocate enough pages to
2545 		 * satisfy the entire reservation so we free what
2546 		 * we've allocated so far.
2547 		 */
2548 		goto free;
2549 	}
2550 	/*
2551 	 * The surplus_list now contains _at_least_ the number of extra pages
2552 	 * needed to accommodate the reservation.  Add the appropriate number
2553 	 * of pages to the hugetlb pool and free the extras back to the buddy
2554 	 * allocator.  Commit the entire reservation here to prevent another
2555 	 * process from stealing the pages as they are added to the pool but
2556 	 * before they are reserved.
2557 	 */
2558 	needed += allocated;
2559 	h->resv_huge_pages += delta;
2560 	ret = 0;
2561 
2562 	/* Free the needed pages to the hugetlb pool */
2563 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2564 		if ((--needed) < 0)
2565 			break;
2566 		/* Add the page to the hugetlb allocator */
2567 		enqueue_hugetlb_folio(h, folio);
2568 	}
2569 free:
2570 	spin_unlock_irq(&hugetlb_lock);
2571 
2572 	/*
2573 	 * Free unnecessary surplus pages to the buddy allocator.
2574 	 * Pages have no ref count, call free_huge_folio directly.
2575 	 */
2576 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2577 		free_huge_folio(folio);
2578 	spin_lock_irq(&hugetlb_lock);
2579 
2580 	return ret;
2581 }
2582 
2583 /*
2584  * This routine has two main purposes:
2585  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2586  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2587  *    to the associated reservation map.
2588  * 2) Free any unused surplus pages that may have been allocated to satisfy
2589  *    the reservation.  As many as unused_resv_pages may be freed.
2590  */
2591 static void return_unused_surplus_pages(struct hstate *h,
2592 					unsigned long unused_resv_pages)
2593 {
2594 	unsigned long nr_pages;
2595 	struct page *page;
2596 	LIST_HEAD(page_list);
2597 
2598 	lockdep_assert_held(&hugetlb_lock);
2599 	/* Uncommit the reservation */
2600 	h->resv_huge_pages -= unused_resv_pages;
2601 
2602 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2603 		goto out;
2604 
2605 	/*
2606 	 * Part (or even all) of the reservation could have been backed
2607 	 * by pre-allocated pages. Only free surplus pages.
2608 	 */
2609 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2610 
2611 	/*
2612 	 * We want to release as many surplus pages as possible, spread
2613 	 * evenly across all nodes with memory. Iterate across these nodes
2614 	 * until we can no longer free unreserved surplus pages. This occurs
2615 	 * when the nodes with surplus pages have no free pages.
2616 	 * remove_pool_huge_page() will balance the freed pages across the
2617 	 * on-line nodes with memory and will handle the hstate accounting.
2618 	 */
2619 	while (nr_pages--) {
2620 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2621 		if (!page)
2622 			goto out;
2623 
2624 		list_add(&page->lru, &page_list);
2625 	}
2626 
2627 out:
2628 	spin_unlock_irq(&hugetlb_lock);
2629 	update_and_free_pages_bulk(h, &page_list);
2630 	spin_lock_irq(&hugetlb_lock);
2631 }
2632 
2633 
2634 /*
2635  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2636  * are used by the huge page allocation routines to manage reservations.
2637  *
2638  * vma_needs_reservation is called to determine if the huge page at addr
2639  * within the vma has an associated reservation.  If a reservation is
2640  * needed, the value 1 is returned.  The caller is then responsible for
2641  * managing the global reservation and subpool usage counts.  After
2642  * the huge page has been allocated, vma_commit_reservation is called
2643  * to add the page to the reservation map.  If the page allocation fails,
2644  * the reservation must be ended instead of committed.  vma_end_reservation
2645  * is called in such cases.
2646  *
2647  * In the normal case, vma_commit_reservation returns the same value
2648  * as the preceding vma_needs_reservation call.  The only time this
2649  * is not the case is if a reserve map was changed between calls.  It
2650  * is the responsibility of the caller to notice the difference and
2651  * take appropriate action.
2652  *
2653  * vma_add_reservation is used in error paths where a reservation must
2654  * be restored when a newly allocated huge page must be freed.  It is
2655  * to be called after calling vma_needs_reservation to determine if a
2656  * reservation exists.
2657  *
2658  * vma_del_reservation is used in error paths where an entry in the reserve
2659  * map was created during huge page allocation and must be removed.  It is to
2660  * be called after calling vma_needs_reservation to determine if a reservation
2661  * exists.
2662  */
2663 enum vma_resv_mode {
2664 	VMA_NEEDS_RESV,
2665 	VMA_COMMIT_RESV,
2666 	VMA_END_RESV,
2667 	VMA_ADD_RESV,
2668 	VMA_DEL_RESV,
2669 };
2670 static long __vma_reservation_common(struct hstate *h,
2671 				struct vm_area_struct *vma, unsigned long addr,
2672 				enum vma_resv_mode mode)
2673 {
2674 	struct resv_map *resv;
2675 	pgoff_t idx;
2676 	long ret;
2677 	long dummy_out_regions_needed;
2678 
2679 	resv = vma_resv_map(vma);
2680 	if (!resv)
2681 		return 1;
2682 
2683 	idx = vma_hugecache_offset(h, vma, addr);
2684 	switch (mode) {
2685 	case VMA_NEEDS_RESV:
2686 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2687 		/* We assume that vma_reservation_* routines always operate on
2688 		 * 1 page, and that adding to resv map a 1 page entry can only
2689 		 * ever require 1 region.
2690 		 */
2691 		VM_BUG_ON(dummy_out_regions_needed != 1);
2692 		break;
2693 	case VMA_COMMIT_RESV:
2694 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2695 		/* region_add calls of range 1 should never fail. */
2696 		VM_BUG_ON(ret < 0);
2697 		break;
2698 	case VMA_END_RESV:
2699 		region_abort(resv, idx, idx + 1, 1);
2700 		ret = 0;
2701 		break;
2702 	case VMA_ADD_RESV:
2703 		if (vma->vm_flags & VM_MAYSHARE) {
2704 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2705 			/* region_add calls of range 1 should never fail. */
2706 			VM_BUG_ON(ret < 0);
2707 		} else {
2708 			region_abort(resv, idx, idx + 1, 1);
2709 			ret = region_del(resv, idx, idx + 1);
2710 		}
2711 		break;
2712 	case VMA_DEL_RESV:
2713 		if (vma->vm_flags & VM_MAYSHARE) {
2714 			region_abort(resv, idx, idx + 1, 1);
2715 			ret = region_del(resv, idx, idx + 1);
2716 		} else {
2717 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2718 			/* region_add calls of range 1 should never fail. */
2719 			VM_BUG_ON(ret < 0);
2720 		}
2721 		break;
2722 	default:
2723 		BUG();
2724 	}
2725 
2726 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2727 		return ret;
2728 	/*
2729 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2730 	 *
2731 	 * In most cases, reserves always exist for private mappings.
2732 	 * However, a file associated with mapping could have been
2733 	 * hole punched or truncated after reserves were consumed.
2734 	 * As subsequent fault on such a range will not use reserves.
2735 	 * Subtle - The reserve map for private mappings has the
2736 	 * opposite meaning than that of shared mappings.  If NO
2737 	 * entry is in the reserve map, it means a reservation exists.
2738 	 * If an entry exists in the reserve map, it means the
2739 	 * reservation has already been consumed.  As a result, the
2740 	 * return value of this routine is the opposite of the
2741 	 * value returned from reserve map manipulation routines above.
2742 	 */
2743 	if (ret > 0)
2744 		return 0;
2745 	if (ret == 0)
2746 		return 1;
2747 	return ret;
2748 }
2749 
2750 static long vma_needs_reservation(struct hstate *h,
2751 			struct vm_area_struct *vma, unsigned long addr)
2752 {
2753 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2754 }
2755 
2756 static long vma_commit_reservation(struct hstate *h,
2757 			struct vm_area_struct *vma, unsigned long addr)
2758 {
2759 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2760 }
2761 
2762 static void vma_end_reservation(struct hstate *h,
2763 			struct vm_area_struct *vma, unsigned long addr)
2764 {
2765 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2766 }
2767 
2768 static long vma_add_reservation(struct hstate *h,
2769 			struct vm_area_struct *vma, unsigned long addr)
2770 {
2771 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2772 }
2773 
2774 static long vma_del_reservation(struct hstate *h,
2775 			struct vm_area_struct *vma, unsigned long addr)
2776 {
2777 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2778 }
2779 
2780 /*
2781  * This routine is called to restore reservation information on error paths.
2782  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2783  * and the hugetlb mutex should remain held when calling this routine.
2784  *
2785  * It handles two specific cases:
2786  * 1) A reservation was in place and the folio consumed the reservation.
2787  *    hugetlb_restore_reserve is set in the folio.
2788  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2789  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2790  *
2791  * In case 1, free_huge_folio later in the error path will increment the
2792  * global reserve count.  But, free_huge_folio does not have enough context
2793  * to adjust the reservation map.  This case deals primarily with private
2794  * mappings.  Adjust the reserve map here to be consistent with global
2795  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2796  * reserve map indicates there is a reservation present.
2797  *
2798  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2799  */
2800 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2801 			unsigned long address, struct folio *folio)
2802 {
2803 	long rc = vma_needs_reservation(h, vma, address);
2804 
2805 	if (folio_test_hugetlb_restore_reserve(folio)) {
2806 		if (unlikely(rc < 0))
2807 			/*
2808 			 * Rare out of memory condition in reserve map
2809 			 * manipulation.  Clear hugetlb_restore_reserve so
2810 			 * that global reserve count will not be incremented
2811 			 * by free_huge_folio.  This will make it appear
2812 			 * as though the reservation for this folio was
2813 			 * consumed.  This may prevent the task from
2814 			 * faulting in the folio at a later time.  This
2815 			 * is better than inconsistent global huge page
2816 			 * accounting of reserve counts.
2817 			 */
2818 			folio_clear_hugetlb_restore_reserve(folio);
2819 		else if (rc)
2820 			(void)vma_add_reservation(h, vma, address);
2821 		else
2822 			vma_end_reservation(h, vma, address);
2823 	} else {
2824 		if (!rc) {
2825 			/*
2826 			 * This indicates there is an entry in the reserve map
2827 			 * not added by alloc_hugetlb_folio.  We know it was added
2828 			 * before the alloc_hugetlb_folio call, otherwise
2829 			 * hugetlb_restore_reserve would be set on the folio.
2830 			 * Remove the entry so that a subsequent allocation
2831 			 * does not consume a reservation.
2832 			 */
2833 			rc = vma_del_reservation(h, vma, address);
2834 			if (rc < 0)
2835 				/*
2836 				 * VERY rare out of memory condition.  Since
2837 				 * we can not delete the entry, set
2838 				 * hugetlb_restore_reserve so that the reserve
2839 				 * count will be incremented when the folio
2840 				 * is freed.  This reserve will be consumed
2841 				 * on a subsequent allocation.
2842 				 */
2843 				folio_set_hugetlb_restore_reserve(folio);
2844 		} else if (rc < 0) {
2845 			/*
2846 			 * Rare out of memory condition from
2847 			 * vma_needs_reservation call.  Memory allocation is
2848 			 * only attempted if a new entry is needed.  Therefore,
2849 			 * this implies there is not an entry in the
2850 			 * reserve map.
2851 			 *
2852 			 * For shared mappings, no entry in the map indicates
2853 			 * no reservation.  We are done.
2854 			 */
2855 			if (!(vma->vm_flags & VM_MAYSHARE))
2856 				/*
2857 				 * For private mappings, no entry indicates
2858 				 * a reservation is present.  Since we can
2859 				 * not add an entry, set hugetlb_restore_reserve
2860 				 * on the folio so reserve count will be
2861 				 * incremented when freed.  This reserve will
2862 				 * be consumed on a subsequent allocation.
2863 				 */
2864 				folio_set_hugetlb_restore_reserve(folio);
2865 		} else
2866 			/*
2867 			 * No reservation present, do nothing
2868 			 */
2869 			 vma_end_reservation(h, vma, address);
2870 	}
2871 }
2872 
2873 /*
2874  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2875  * the old one
2876  * @h: struct hstate old page belongs to
2877  * @old_folio: Old folio to dissolve
2878  * @list: List to isolate the page in case we need to
2879  * Returns 0 on success, otherwise negated error.
2880  */
2881 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2882 			struct folio *old_folio, struct list_head *list)
2883 {
2884 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2885 	int nid = folio_nid(old_folio);
2886 	struct folio *new_folio;
2887 	int ret = 0;
2888 
2889 	/*
2890 	 * Before dissolving the folio, we need to allocate a new one for the
2891 	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2892 	 * by doing everything but actually updating counters and adding to
2893 	 * the pool.  This simplifies and let us do most of the processing
2894 	 * under the lock.
2895 	 */
2896 	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2897 	if (!new_folio)
2898 		return -ENOMEM;
2899 	__prep_new_hugetlb_folio(h, new_folio);
2900 
2901 retry:
2902 	spin_lock_irq(&hugetlb_lock);
2903 	if (!folio_test_hugetlb(old_folio)) {
2904 		/*
2905 		 * Freed from under us. Drop new_folio too.
2906 		 */
2907 		goto free_new;
2908 	} else if (folio_ref_count(old_folio)) {
2909 		bool isolated;
2910 
2911 		/*
2912 		 * Someone has grabbed the folio, try to isolate it here.
2913 		 * Fail with -EBUSY if not possible.
2914 		 */
2915 		spin_unlock_irq(&hugetlb_lock);
2916 		isolated = isolate_hugetlb(old_folio, list);
2917 		ret = isolated ? 0 : -EBUSY;
2918 		spin_lock_irq(&hugetlb_lock);
2919 		goto free_new;
2920 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2921 		/*
2922 		 * Folio's refcount is 0 but it has not been enqueued in the
2923 		 * freelist yet. Race window is small, so we can succeed here if
2924 		 * we retry.
2925 		 */
2926 		spin_unlock_irq(&hugetlb_lock);
2927 		cond_resched();
2928 		goto retry;
2929 	} else {
2930 		/*
2931 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2932 		 * the freelist and decrease the counters. These will be
2933 		 * incremented again when calling __prep_account_new_huge_page()
2934 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2935 		 * remain stable since this happens under the lock.
2936 		 */
2937 		remove_hugetlb_folio(h, old_folio, false);
2938 
2939 		/*
2940 		 * Ref count on new_folio is already zero as it was dropped
2941 		 * earlier.  It can be directly added to the pool free list.
2942 		 */
2943 		__prep_account_new_huge_page(h, nid);
2944 		enqueue_hugetlb_folio(h, new_folio);
2945 
2946 		/*
2947 		 * Folio has been replaced, we can safely free the old one.
2948 		 */
2949 		spin_unlock_irq(&hugetlb_lock);
2950 		update_and_free_hugetlb_folio(h, old_folio, false);
2951 	}
2952 
2953 	return ret;
2954 
2955 free_new:
2956 	spin_unlock_irq(&hugetlb_lock);
2957 	/* Folio has a zero ref count, but needs a ref to be freed */
2958 	folio_ref_unfreeze(new_folio, 1);
2959 	update_and_free_hugetlb_folio(h, new_folio, false);
2960 
2961 	return ret;
2962 }
2963 
2964 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2965 {
2966 	struct hstate *h;
2967 	struct folio *folio = page_folio(page);
2968 	int ret = -EBUSY;
2969 
2970 	/*
2971 	 * The page might have been dissolved from under our feet, so make sure
2972 	 * to carefully check the state under the lock.
2973 	 * Return success when racing as if we dissolved the page ourselves.
2974 	 */
2975 	spin_lock_irq(&hugetlb_lock);
2976 	if (folio_test_hugetlb(folio)) {
2977 		h = folio_hstate(folio);
2978 	} else {
2979 		spin_unlock_irq(&hugetlb_lock);
2980 		return 0;
2981 	}
2982 	spin_unlock_irq(&hugetlb_lock);
2983 
2984 	/*
2985 	 * Fence off gigantic pages as there is a cyclic dependency between
2986 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2987 	 * of bailing out right away without further retrying.
2988 	 */
2989 	if (hstate_is_gigantic(h))
2990 		return -ENOMEM;
2991 
2992 	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2993 		ret = 0;
2994 	else if (!folio_ref_count(folio))
2995 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2996 
2997 	return ret;
2998 }
2999 
3000 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3001 				    unsigned long addr, int avoid_reserve)
3002 {
3003 	struct hugepage_subpool *spool = subpool_vma(vma);
3004 	struct hstate *h = hstate_vma(vma);
3005 	struct folio *folio;
3006 	long map_chg, map_commit;
3007 	long gbl_chg;
3008 	int ret, idx;
3009 	struct hugetlb_cgroup *h_cg = NULL;
3010 	bool deferred_reserve;
3011 
3012 	idx = hstate_index(h);
3013 	/*
3014 	 * Examine the region/reserve map to determine if the process
3015 	 * has a reservation for the page to be allocated.  A return
3016 	 * code of zero indicates a reservation exists (no change).
3017 	 */
3018 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3019 	if (map_chg < 0)
3020 		return ERR_PTR(-ENOMEM);
3021 
3022 	/*
3023 	 * Processes that did not create the mapping will have no
3024 	 * reserves as indicated by the region/reserve map. Check
3025 	 * that the allocation will not exceed the subpool limit.
3026 	 * Allocations for MAP_NORESERVE mappings also need to be
3027 	 * checked against any subpool limit.
3028 	 */
3029 	if (map_chg || avoid_reserve) {
3030 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3031 		if (gbl_chg < 0) {
3032 			vma_end_reservation(h, vma, addr);
3033 			return ERR_PTR(-ENOSPC);
3034 		}
3035 
3036 		/*
3037 		 * Even though there was no reservation in the region/reserve
3038 		 * map, there could be reservations associated with the
3039 		 * subpool that can be used.  This would be indicated if the
3040 		 * return value of hugepage_subpool_get_pages() is zero.
3041 		 * However, if avoid_reserve is specified we still avoid even
3042 		 * the subpool reservations.
3043 		 */
3044 		if (avoid_reserve)
3045 			gbl_chg = 1;
3046 	}
3047 
3048 	/* If this allocation is not consuming a reservation, charge it now.
3049 	 */
3050 	deferred_reserve = map_chg || avoid_reserve;
3051 	if (deferred_reserve) {
3052 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3053 			idx, pages_per_huge_page(h), &h_cg);
3054 		if (ret)
3055 			goto out_subpool_put;
3056 	}
3057 
3058 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3059 	if (ret)
3060 		goto out_uncharge_cgroup_reservation;
3061 
3062 	spin_lock_irq(&hugetlb_lock);
3063 	/*
3064 	 * glb_chg is passed to indicate whether or not a page must be taken
3065 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3066 	 * a reservation exists for the allocation.
3067 	 */
3068 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3069 	if (!folio) {
3070 		spin_unlock_irq(&hugetlb_lock);
3071 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3072 		if (!folio)
3073 			goto out_uncharge_cgroup;
3074 		spin_lock_irq(&hugetlb_lock);
3075 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3076 			folio_set_hugetlb_restore_reserve(folio);
3077 			h->resv_huge_pages--;
3078 		}
3079 		list_add(&folio->lru, &h->hugepage_activelist);
3080 		folio_ref_unfreeze(folio, 1);
3081 		/* Fall through */
3082 	}
3083 
3084 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3085 	/* If allocation is not consuming a reservation, also store the
3086 	 * hugetlb_cgroup pointer on the page.
3087 	 */
3088 	if (deferred_reserve) {
3089 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3090 						  h_cg, folio);
3091 	}
3092 
3093 	spin_unlock_irq(&hugetlb_lock);
3094 
3095 	hugetlb_set_folio_subpool(folio, spool);
3096 
3097 	map_commit = vma_commit_reservation(h, vma, addr);
3098 	if (unlikely(map_chg > map_commit)) {
3099 		/*
3100 		 * The page was added to the reservation map between
3101 		 * vma_needs_reservation and vma_commit_reservation.
3102 		 * This indicates a race with hugetlb_reserve_pages.
3103 		 * Adjust for the subpool count incremented above AND
3104 		 * in hugetlb_reserve_pages for the same page.  Also,
3105 		 * the reservation count added in hugetlb_reserve_pages
3106 		 * no longer applies.
3107 		 */
3108 		long rsv_adjust;
3109 
3110 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3111 		hugetlb_acct_memory(h, -rsv_adjust);
3112 		if (deferred_reserve)
3113 			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3114 					pages_per_huge_page(h), folio);
3115 	}
3116 	return folio;
3117 
3118 out_uncharge_cgroup:
3119 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3120 out_uncharge_cgroup_reservation:
3121 	if (deferred_reserve)
3122 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3123 						    h_cg);
3124 out_subpool_put:
3125 	if (map_chg || avoid_reserve)
3126 		hugepage_subpool_put_pages(spool, 1);
3127 	vma_end_reservation(h, vma, addr);
3128 	return ERR_PTR(-ENOSPC);
3129 }
3130 
3131 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3132 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3133 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3134 {
3135 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3136 	int nr_nodes, node;
3137 
3138 	/* do node specific alloc */
3139 	if (nid != NUMA_NO_NODE) {
3140 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3141 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3142 		if (!m)
3143 			return 0;
3144 		goto found;
3145 	}
3146 	/* allocate from next node when distributing huge pages */
3147 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3148 		m = memblock_alloc_try_nid_raw(
3149 				huge_page_size(h), huge_page_size(h),
3150 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3151 		/*
3152 		 * Use the beginning of the huge page to store the
3153 		 * huge_bootmem_page struct (until gather_bootmem
3154 		 * puts them into the mem_map).
3155 		 */
3156 		if (!m)
3157 			return 0;
3158 		goto found;
3159 	}
3160 
3161 found:
3162 	/* Put them into a private list first because mem_map is not up yet */
3163 	INIT_LIST_HEAD(&m->list);
3164 	list_add(&m->list, &huge_boot_pages);
3165 	m->hstate = h;
3166 	return 1;
3167 }
3168 
3169 /*
3170  * Put bootmem huge pages into the standard lists after mem_map is up.
3171  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3172  */
3173 static void __init gather_bootmem_prealloc(void)
3174 {
3175 	struct huge_bootmem_page *m;
3176 
3177 	list_for_each_entry(m, &huge_boot_pages, list) {
3178 		struct page *page = virt_to_page(m);
3179 		struct folio *folio = page_folio(page);
3180 		struct hstate *h = m->hstate;
3181 
3182 		VM_BUG_ON(!hstate_is_gigantic(h));
3183 		WARN_ON(folio_ref_count(folio) != 1);
3184 		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3185 			WARN_ON(folio_test_reserved(folio));
3186 			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3187 			free_huge_folio(folio); /* add to the hugepage allocator */
3188 		} else {
3189 			/* VERY unlikely inflated ref count on a tail page */
3190 			free_gigantic_folio(folio, huge_page_order(h));
3191 		}
3192 
3193 		/*
3194 		 * We need to restore the 'stolen' pages to totalram_pages
3195 		 * in order to fix confusing memory reports from free(1) and
3196 		 * other side-effects, like CommitLimit going negative.
3197 		 */
3198 		adjust_managed_page_count(page, pages_per_huge_page(h));
3199 		cond_resched();
3200 	}
3201 }
3202 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3203 {
3204 	unsigned long i;
3205 	char buf[32];
3206 
3207 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3208 		if (hstate_is_gigantic(h)) {
3209 			if (!alloc_bootmem_huge_page(h, nid))
3210 				break;
3211 		} else {
3212 			struct folio *folio;
3213 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3214 
3215 			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3216 					&node_states[N_MEMORY], NULL);
3217 			if (!folio)
3218 				break;
3219 			free_huge_folio(folio); /* free it into the hugepage allocator */
3220 		}
3221 		cond_resched();
3222 	}
3223 	if (i == h->max_huge_pages_node[nid])
3224 		return;
3225 
3226 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3227 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3228 		h->max_huge_pages_node[nid], buf, nid, i);
3229 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3230 	h->max_huge_pages_node[nid] = i;
3231 }
3232 
3233 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3234 {
3235 	unsigned long i;
3236 	nodemask_t *node_alloc_noretry;
3237 	bool node_specific_alloc = false;
3238 
3239 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3240 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3241 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3242 		return;
3243 	}
3244 
3245 	/* do node specific alloc */
3246 	for_each_online_node(i) {
3247 		if (h->max_huge_pages_node[i] > 0) {
3248 			hugetlb_hstate_alloc_pages_onenode(h, i);
3249 			node_specific_alloc = true;
3250 		}
3251 	}
3252 
3253 	if (node_specific_alloc)
3254 		return;
3255 
3256 	/* below will do all node balanced alloc */
3257 	if (!hstate_is_gigantic(h)) {
3258 		/*
3259 		 * Bit mask controlling how hard we retry per-node allocations.
3260 		 * Ignore errors as lower level routines can deal with
3261 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3262 		 * time, we are likely in bigger trouble.
3263 		 */
3264 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3265 						GFP_KERNEL);
3266 	} else {
3267 		/* allocations done at boot time */
3268 		node_alloc_noretry = NULL;
3269 	}
3270 
3271 	/* bit mask controlling how hard we retry per-node allocations */
3272 	if (node_alloc_noretry)
3273 		nodes_clear(*node_alloc_noretry);
3274 
3275 	for (i = 0; i < h->max_huge_pages; ++i) {
3276 		if (hstate_is_gigantic(h)) {
3277 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3278 				break;
3279 		} else if (!alloc_pool_huge_page(h,
3280 					 &node_states[N_MEMORY],
3281 					 node_alloc_noretry))
3282 			break;
3283 		cond_resched();
3284 	}
3285 	if (i < h->max_huge_pages) {
3286 		char buf[32];
3287 
3288 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3289 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3290 			h->max_huge_pages, buf, i);
3291 		h->max_huge_pages = i;
3292 	}
3293 	kfree(node_alloc_noretry);
3294 }
3295 
3296 static void __init hugetlb_init_hstates(void)
3297 {
3298 	struct hstate *h, *h2;
3299 
3300 	for_each_hstate(h) {
3301 		/* oversize hugepages were init'ed in early boot */
3302 		if (!hstate_is_gigantic(h))
3303 			hugetlb_hstate_alloc_pages(h);
3304 
3305 		/*
3306 		 * Set demote order for each hstate.  Note that
3307 		 * h->demote_order is initially 0.
3308 		 * - We can not demote gigantic pages if runtime freeing
3309 		 *   is not supported, so skip this.
3310 		 * - If CMA allocation is possible, we can not demote
3311 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3312 		 */
3313 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3314 			continue;
3315 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3316 			continue;
3317 		for_each_hstate(h2) {
3318 			if (h2 == h)
3319 				continue;
3320 			if (h2->order < h->order &&
3321 			    h2->order > h->demote_order)
3322 				h->demote_order = h2->order;
3323 		}
3324 	}
3325 }
3326 
3327 static void __init report_hugepages(void)
3328 {
3329 	struct hstate *h;
3330 
3331 	for_each_hstate(h) {
3332 		char buf[32];
3333 
3334 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3335 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3336 			buf, h->free_huge_pages);
3337 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3338 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3339 	}
3340 }
3341 
3342 #ifdef CONFIG_HIGHMEM
3343 static void try_to_free_low(struct hstate *h, unsigned long count,
3344 						nodemask_t *nodes_allowed)
3345 {
3346 	int i;
3347 	LIST_HEAD(page_list);
3348 
3349 	lockdep_assert_held(&hugetlb_lock);
3350 	if (hstate_is_gigantic(h))
3351 		return;
3352 
3353 	/*
3354 	 * Collect pages to be freed on a list, and free after dropping lock
3355 	 */
3356 	for_each_node_mask(i, *nodes_allowed) {
3357 		struct page *page, *next;
3358 		struct list_head *freel = &h->hugepage_freelists[i];
3359 		list_for_each_entry_safe(page, next, freel, lru) {
3360 			if (count >= h->nr_huge_pages)
3361 				goto out;
3362 			if (PageHighMem(page))
3363 				continue;
3364 			remove_hugetlb_folio(h, page_folio(page), false);
3365 			list_add(&page->lru, &page_list);
3366 		}
3367 	}
3368 
3369 out:
3370 	spin_unlock_irq(&hugetlb_lock);
3371 	update_and_free_pages_bulk(h, &page_list);
3372 	spin_lock_irq(&hugetlb_lock);
3373 }
3374 #else
3375 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3376 						nodemask_t *nodes_allowed)
3377 {
3378 }
3379 #endif
3380 
3381 /*
3382  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3383  * balanced by operating on them in a round-robin fashion.
3384  * Returns 1 if an adjustment was made.
3385  */
3386 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3387 				int delta)
3388 {
3389 	int nr_nodes, node;
3390 
3391 	lockdep_assert_held(&hugetlb_lock);
3392 	VM_BUG_ON(delta != -1 && delta != 1);
3393 
3394 	if (delta < 0) {
3395 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3396 			if (h->surplus_huge_pages_node[node])
3397 				goto found;
3398 		}
3399 	} else {
3400 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3401 			if (h->surplus_huge_pages_node[node] <
3402 					h->nr_huge_pages_node[node])
3403 				goto found;
3404 		}
3405 	}
3406 	return 0;
3407 
3408 found:
3409 	h->surplus_huge_pages += delta;
3410 	h->surplus_huge_pages_node[node] += delta;
3411 	return 1;
3412 }
3413 
3414 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3415 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3416 			      nodemask_t *nodes_allowed)
3417 {
3418 	unsigned long min_count, ret;
3419 	struct page *page;
3420 	LIST_HEAD(page_list);
3421 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3422 
3423 	/*
3424 	 * Bit mask controlling how hard we retry per-node allocations.
3425 	 * If we can not allocate the bit mask, do not attempt to allocate
3426 	 * the requested huge pages.
3427 	 */
3428 	if (node_alloc_noretry)
3429 		nodes_clear(*node_alloc_noretry);
3430 	else
3431 		return -ENOMEM;
3432 
3433 	/*
3434 	 * resize_lock mutex prevents concurrent adjustments to number of
3435 	 * pages in hstate via the proc/sysfs interfaces.
3436 	 */
3437 	mutex_lock(&h->resize_lock);
3438 	flush_free_hpage_work(h);
3439 	spin_lock_irq(&hugetlb_lock);
3440 
3441 	/*
3442 	 * Check for a node specific request.
3443 	 * Changing node specific huge page count may require a corresponding
3444 	 * change to the global count.  In any case, the passed node mask
3445 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3446 	 */
3447 	if (nid != NUMA_NO_NODE) {
3448 		unsigned long old_count = count;
3449 
3450 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3451 		/*
3452 		 * User may have specified a large count value which caused the
3453 		 * above calculation to overflow.  In this case, they wanted
3454 		 * to allocate as many huge pages as possible.  Set count to
3455 		 * largest possible value to align with their intention.
3456 		 */
3457 		if (count < old_count)
3458 			count = ULONG_MAX;
3459 	}
3460 
3461 	/*
3462 	 * Gigantic pages runtime allocation depend on the capability for large
3463 	 * page range allocation.
3464 	 * If the system does not provide this feature, return an error when
3465 	 * the user tries to allocate gigantic pages but let the user free the
3466 	 * boottime allocated gigantic pages.
3467 	 */
3468 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3469 		if (count > persistent_huge_pages(h)) {
3470 			spin_unlock_irq(&hugetlb_lock);
3471 			mutex_unlock(&h->resize_lock);
3472 			NODEMASK_FREE(node_alloc_noretry);
3473 			return -EINVAL;
3474 		}
3475 		/* Fall through to decrease pool */
3476 	}
3477 
3478 	/*
3479 	 * Increase the pool size
3480 	 * First take pages out of surplus state.  Then make up the
3481 	 * remaining difference by allocating fresh huge pages.
3482 	 *
3483 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3484 	 * to convert a surplus huge page to a normal huge page. That is
3485 	 * not critical, though, it just means the overall size of the
3486 	 * pool might be one hugepage larger than it needs to be, but
3487 	 * within all the constraints specified by the sysctls.
3488 	 */
3489 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3490 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3491 			break;
3492 	}
3493 
3494 	while (count > persistent_huge_pages(h)) {
3495 		/*
3496 		 * If this allocation races such that we no longer need the
3497 		 * page, free_huge_folio will handle it by freeing the page
3498 		 * and reducing the surplus.
3499 		 */
3500 		spin_unlock_irq(&hugetlb_lock);
3501 
3502 		/* yield cpu to avoid soft lockup */
3503 		cond_resched();
3504 
3505 		ret = alloc_pool_huge_page(h, nodes_allowed,
3506 						node_alloc_noretry);
3507 		spin_lock_irq(&hugetlb_lock);
3508 		if (!ret)
3509 			goto out;
3510 
3511 		/* Bail for signals. Probably ctrl-c from user */
3512 		if (signal_pending(current))
3513 			goto out;
3514 	}
3515 
3516 	/*
3517 	 * Decrease the pool size
3518 	 * First return free pages to the buddy allocator (being careful
3519 	 * to keep enough around to satisfy reservations).  Then place
3520 	 * pages into surplus state as needed so the pool will shrink
3521 	 * to the desired size as pages become free.
3522 	 *
3523 	 * By placing pages into the surplus state independent of the
3524 	 * overcommit value, we are allowing the surplus pool size to
3525 	 * exceed overcommit. There are few sane options here. Since
3526 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3527 	 * though, we'll note that we're not allowed to exceed surplus
3528 	 * and won't grow the pool anywhere else. Not until one of the
3529 	 * sysctls are changed, or the surplus pages go out of use.
3530 	 */
3531 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3532 	min_count = max(count, min_count);
3533 	try_to_free_low(h, min_count, nodes_allowed);
3534 
3535 	/*
3536 	 * Collect pages to be removed on list without dropping lock
3537 	 */
3538 	while (min_count < persistent_huge_pages(h)) {
3539 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3540 		if (!page)
3541 			break;
3542 
3543 		list_add(&page->lru, &page_list);
3544 	}
3545 	/* free the pages after dropping lock */
3546 	spin_unlock_irq(&hugetlb_lock);
3547 	update_and_free_pages_bulk(h, &page_list);
3548 	flush_free_hpage_work(h);
3549 	spin_lock_irq(&hugetlb_lock);
3550 
3551 	while (count < persistent_huge_pages(h)) {
3552 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3553 			break;
3554 	}
3555 out:
3556 	h->max_huge_pages = persistent_huge_pages(h);
3557 	spin_unlock_irq(&hugetlb_lock);
3558 	mutex_unlock(&h->resize_lock);
3559 
3560 	NODEMASK_FREE(node_alloc_noretry);
3561 
3562 	return 0;
3563 }
3564 
3565 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3566 {
3567 	int i, nid = folio_nid(folio);
3568 	struct hstate *target_hstate;
3569 	struct page *subpage;
3570 	struct folio *inner_folio;
3571 	int rc = 0;
3572 
3573 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3574 
3575 	remove_hugetlb_folio_for_demote(h, folio, false);
3576 	spin_unlock_irq(&hugetlb_lock);
3577 
3578 	rc = hugetlb_vmemmap_restore(h, &folio->page);
3579 	if (rc) {
3580 		/* Allocation of vmemmmap failed, we can not demote folio */
3581 		spin_lock_irq(&hugetlb_lock);
3582 		folio_ref_unfreeze(folio, 1);
3583 		add_hugetlb_folio(h, folio, false);
3584 		return rc;
3585 	}
3586 
3587 	/*
3588 	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3589 	 * sizes as it will not ref count folios.
3590 	 */
3591 	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3592 
3593 	/*
3594 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3595 	 * Without the mutex, pages added to target hstate could be marked
3596 	 * as surplus.
3597 	 *
3598 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3599 	 * use the convention of always taking larger size hstate mutex first.
3600 	 */
3601 	mutex_lock(&target_hstate->resize_lock);
3602 	for (i = 0; i < pages_per_huge_page(h);
3603 				i += pages_per_huge_page(target_hstate)) {
3604 		subpage = folio_page(folio, i);
3605 		inner_folio = page_folio(subpage);
3606 		if (hstate_is_gigantic(target_hstate))
3607 			prep_compound_gigantic_folio_for_demote(inner_folio,
3608 							target_hstate->order);
3609 		else
3610 			prep_compound_page(subpage, target_hstate->order);
3611 		folio_change_private(inner_folio, NULL);
3612 		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3613 		free_huge_folio(inner_folio);
3614 	}
3615 	mutex_unlock(&target_hstate->resize_lock);
3616 
3617 	spin_lock_irq(&hugetlb_lock);
3618 
3619 	/*
3620 	 * Not absolutely necessary, but for consistency update max_huge_pages
3621 	 * based on pool changes for the demoted page.
3622 	 */
3623 	h->max_huge_pages--;
3624 	target_hstate->max_huge_pages +=
3625 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3626 
3627 	return rc;
3628 }
3629 
3630 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3631 	__must_hold(&hugetlb_lock)
3632 {
3633 	int nr_nodes, node;
3634 	struct folio *folio;
3635 
3636 	lockdep_assert_held(&hugetlb_lock);
3637 
3638 	/* We should never get here if no demote order */
3639 	if (!h->demote_order) {
3640 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3641 		return -EINVAL;		/* internal error */
3642 	}
3643 
3644 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3645 		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3646 			if (folio_test_hwpoison(folio))
3647 				continue;
3648 			return demote_free_hugetlb_folio(h, folio);
3649 		}
3650 	}
3651 
3652 	/*
3653 	 * Only way to get here is if all pages on free lists are poisoned.
3654 	 * Return -EBUSY so that caller will not retry.
3655 	 */
3656 	return -EBUSY;
3657 }
3658 
3659 #define HSTATE_ATTR_RO(_name) \
3660 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3661 
3662 #define HSTATE_ATTR_WO(_name) \
3663 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3664 
3665 #define HSTATE_ATTR(_name) \
3666 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3667 
3668 static struct kobject *hugepages_kobj;
3669 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3670 
3671 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3672 
3673 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3674 {
3675 	int i;
3676 
3677 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3678 		if (hstate_kobjs[i] == kobj) {
3679 			if (nidp)
3680 				*nidp = NUMA_NO_NODE;
3681 			return &hstates[i];
3682 		}
3683 
3684 	return kobj_to_node_hstate(kobj, nidp);
3685 }
3686 
3687 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3688 					struct kobj_attribute *attr, char *buf)
3689 {
3690 	struct hstate *h;
3691 	unsigned long nr_huge_pages;
3692 	int nid;
3693 
3694 	h = kobj_to_hstate(kobj, &nid);
3695 	if (nid == NUMA_NO_NODE)
3696 		nr_huge_pages = h->nr_huge_pages;
3697 	else
3698 		nr_huge_pages = h->nr_huge_pages_node[nid];
3699 
3700 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3701 }
3702 
3703 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3704 					   struct hstate *h, int nid,
3705 					   unsigned long count, size_t len)
3706 {
3707 	int err;
3708 	nodemask_t nodes_allowed, *n_mask;
3709 
3710 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3711 		return -EINVAL;
3712 
3713 	if (nid == NUMA_NO_NODE) {
3714 		/*
3715 		 * global hstate attribute
3716 		 */
3717 		if (!(obey_mempolicy &&
3718 				init_nodemask_of_mempolicy(&nodes_allowed)))
3719 			n_mask = &node_states[N_MEMORY];
3720 		else
3721 			n_mask = &nodes_allowed;
3722 	} else {
3723 		/*
3724 		 * Node specific request.  count adjustment happens in
3725 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3726 		 */
3727 		init_nodemask_of_node(&nodes_allowed, nid);
3728 		n_mask = &nodes_allowed;
3729 	}
3730 
3731 	err = set_max_huge_pages(h, count, nid, n_mask);
3732 
3733 	return err ? err : len;
3734 }
3735 
3736 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3737 					 struct kobject *kobj, const char *buf,
3738 					 size_t len)
3739 {
3740 	struct hstate *h;
3741 	unsigned long count;
3742 	int nid;
3743 	int err;
3744 
3745 	err = kstrtoul(buf, 10, &count);
3746 	if (err)
3747 		return err;
3748 
3749 	h = kobj_to_hstate(kobj, &nid);
3750 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3751 }
3752 
3753 static ssize_t nr_hugepages_show(struct kobject *kobj,
3754 				       struct kobj_attribute *attr, char *buf)
3755 {
3756 	return nr_hugepages_show_common(kobj, attr, buf);
3757 }
3758 
3759 static ssize_t nr_hugepages_store(struct kobject *kobj,
3760 	       struct kobj_attribute *attr, const char *buf, size_t len)
3761 {
3762 	return nr_hugepages_store_common(false, kobj, buf, len);
3763 }
3764 HSTATE_ATTR(nr_hugepages);
3765 
3766 #ifdef CONFIG_NUMA
3767 
3768 /*
3769  * hstate attribute for optionally mempolicy-based constraint on persistent
3770  * huge page alloc/free.
3771  */
3772 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3773 					   struct kobj_attribute *attr,
3774 					   char *buf)
3775 {
3776 	return nr_hugepages_show_common(kobj, attr, buf);
3777 }
3778 
3779 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3780 	       struct kobj_attribute *attr, const char *buf, size_t len)
3781 {
3782 	return nr_hugepages_store_common(true, kobj, buf, len);
3783 }
3784 HSTATE_ATTR(nr_hugepages_mempolicy);
3785 #endif
3786 
3787 
3788 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3789 					struct kobj_attribute *attr, char *buf)
3790 {
3791 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3792 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3793 }
3794 
3795 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3796 		struct kobj_attribute *attr, const char *buf, size_t count)
3797 {
3798 	int err;
3799 	unsigned long input;
3800 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3801 
3802 	if (hstate_is_gigantic(h))
3803 		return -EINVAL;
3804 
3805 	err = kstrtoul(buf, 10, &input);
3806 	if (err)
3807 		return err;
3808 
3809 	spin_lock_irq(&hugetlb_lock);
3810 	h->nr_overcommit_huge_pages = input;
3811 	spin_unlock_irq(&hugetlb_lock);
3812 
3813 	return count;
3814 }
3815 HSTATE_ATTR(nr_overcommit_hugepages);
3816 
3817 static ssize_t free_hugepages_show(struct kobject *kobj,
3818 					struct kobj_attribute *attr, char *buf)
3819 {
3820 	struct hstate *h;
3821 	unsigned long free_huge_pages;
3822 	int nid;
3823 
3824 	h = kobj_to_hstate(kobj, &nid);
3825 	if (nid == NUMA_NO_NODE)
3826 		free_huge_pages = h->free_huge_pages;
3827 	else
3828 		free_huge_pages = h->free_huge_pages_node[nid];
3829 
3830 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3831 }
3832 HSTATE_ATTR_RO(free_hugepages);
3833 
3834 static ssize_t resv_hugepages_show(struct kobject *kobj,
3835 					struct kobj_attribute *attr, char *buf)
3836 {
3837 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3838 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3839 }
3840 HSTATE_ATTR_RO(resv_hugepages);
3841 
3842 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3843 					struct kobj_attribute *attr, char *buf)
3844 {
3845 	struct hstate *h;
3846 	unsigned long surplus_huge_pages;
3847 	int nid;
3848 
3849 	h = kobj_to_hstate(kobj, &nid);
3850 	if (nid == NUMA_NO_NODE)
3851 		surplus_huge_pages = h->surplus_huge_pages;
3852 	else
3853 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3854 
3855 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3856 }
3857 HSTATE_ATTR_RO(surplus_hugepages);
3858 
3859 static ssize_t demote_store(struct kobject *kobj,
3860 	       struct kobj_attribute *attr, const char *buf, size_t len)
3861 {
3862 	unsigned long nr_demote;
3863 	unsigned long nr_available;
3864 	nodemask_t nodes_allowed, *n_mask;
3865 	struct hstate *h;
3866 	int err;
3867 	int nid;
3868 
3869 	err = kstrtoul(buf, 10, &nr_demote);
3870 	if (err)
3871 		return err;
3872 	h = kobj_to_hstate(kobj, &nid);
3873 
3874 	if (nid != NUMA_NO_NODE) {
3875 		init_nodemask_of_node(&nodes_allowed, nid);
3876 		n_mask = &nodes_allowed;
3877 	} else {
3878 		n_mask = &node_states[N_MEMORY];
3879 	}
3880 
3881 	/* Synchronize with other sysfs operations modifying huge pages */
3882 	mutex_lock(&h->resize_lock);
3883 	spin_lock_irq(&hugetlb_lock);
3884 
3885 	while (nr_demote) {
3886 		/*
3887 		 * Check for available pages to demote each time thorough the
3888 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3889 		 */
3890 		if (nid != NUMA_NO_NODE)
3891 			nr_available = h->free_huge_pages_node[nid];
3892 		else
3893 			nr_available = h->free_huge_pages;
3894 		nr_available -= h->resv_huge_pages;
3895 		if (!nr_available)
3896 			break;
3897 
3898 		err = demote_pool_huge_page(h, n_mask);
3899 		if (err)
3900 			break;
3901 
3902 		nr_demote--;
3903 	}
3904 
3905 	spin_unlock_irq(&hugetlb_lock);
3906 	mutex_unlock(&h->resize_lock);
3907 
3908 	if (err)
3909 		return err;
3910 	return len;
3911 }
3912 HSTATE_ATTR_WO(demote);
3913 
3914 static ssize_t demote_size_show(struct kobject *kobj,
3915 					struct kobj_attribute *attr, char *buf)
3916 {
3917 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3918 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3919 
3920 	return sysfs_emit(buf, "%lukB\n", demote_size);
3921 }
3922 
3923 static ssize_t demote_size_store(struct kobject *kobj,
3924 					struct kobj_attribute *attr,
3925 					const char *buf, size_t count)
3926 {
3927 	struct hstate *h, *demote_hstate;
3928 	unsigned long demote_size;
3929 	unsigned int demote_order;
3930 
3931 	demote_size = (unsigned long)memparse(buf, NULL);
3932 
3933 	demote_hstate = size_to_hstate(demote_size);
3934 	if (!demote_hstate)
3935 		return -EINVAL;
3936 	demote_order = demote_hstate->order;
3937 	if (demote_order < HUGETLB_PAGE_ORDER)
3938 		return -EINVAL;
3939 
3940 	/* demote order must be smaller than hstate order */
3941 	h = kobj_to_hstate(kobj, NULL);
3942 	if (demote_order >= h->order)
3943 		return -EINVAL;
3944 
3945 	/* resize_lock synchronizes access to demote size and writes */
3946 	mutex_lock(&h->resize_lock);
3947 	h->demote_order = demote_order;
3948 	mutex_unlock(&h->resize_lock);
3949 
3950 	return count;
3951 }
3952 HSTATE_ATTR(demote_size);
3953 
3954 static struct attribute *hstate_attrs[] = {
3955 	&nr_hugepages_attr.attr,
3956 	&nr_overcommit_hugepages_attr.attr,
3957 	&free_hugepages_attr.attr,
3958 	&resv_hugepages_attr.attr,
3959 	&surplus_hugepages_attr.attr,
3960 #ifdef CONFIG_NUMA
3961 	&nr_hugepages_mempolicy_attr.attr,
3962 #endif
3963 	NULL,
3964 };
3965 
3966 static const struct attribute_group hstate_attr_group = {
3967 	.attrs = hstate_attrs,
3968 };
3969 
3970 static struct attribute *hstate_demote_attrs[] = {
3971 	&demote_size_attr.attr,
3972 	&demote_attr.attr,
3973 	NULL,
3974 };
3975 
3976 static const struct attribute_group hstate_demote_attr_group = {
3977 	.attrs = hstate_demote_attrs,
3978 };
3979 
3980 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3981 				    struct kobject **hstate_kobjs,
3982 				    const struct attribute_group *hstate_attr_group)
3983 {
3984 	int retval;
3985 	int hi = hstate_index(h);
3986 
3987 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3988 	if (!hstate_kobjs[hi])
3989 		return -ENOMEM;
3990 
3991 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3992 	if (retval) {
3993 		kobject_put(hstate_kobjs[hi]);
3994 		hstate_kobjs[hi] = NULL;
3995 		return retval;
3996 	}
3997 
3998 	if (h->demote_order) {
3999 		retval = sysfs_create_group(hstate_kobjs[hi],
4000 					    &hstate_demote_attr_group);
4001 		if (retval) {
4002 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4003 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4004 			kobject_put(hstate_kobjs[hi]);
4005 			hstate_kobjs[hi] = NULL;
4006 			return retval;
4007 		}
4008 	}
4009 
4010 	return 0;
4011 }
4012 
4013 #ifdef CONFIG_NUMA
4014 static bool hugetlb_sysfs_initialized __ro_after_init;
4015 
4016 /*
4017  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4018  * with node devices in node_devices[] using a parallel array.  The array
4019  * index of a node device or _hstate == node id.
4020  * This is here to avoid any static dependency of the node device driver, in
4021  * the base kernel, on the hugetlb module.
4022  */
4023 struct node_hstate {
4024 	struct kobject		*hugepages_kobj;
4025 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4026 };
4027 static struct node_hstate node_hstates[MAX_NUMNODES];
4028 
4029 /*
4030  * A subset of global hstate attributes for node devices
4031  */
4032 static struct attribute *per_node_hstate_attrs[] = {
4033 	&nr_hugepages_attr.attr,
4034 	&free_hugepages_attr.attr,
4035 	&surplus_hugepages_attr.attr,
4036 	NULL,
4037 };
4038 
4039 static const struct attribute_group per_node_hstate_attr_group = {
4040 	.attrs = per_node_hstate_attrs,
4041 };
4042 
4043 /*
4044  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4045  * Returns node id via non-NULL nidp.
4046  */
4047 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4048 {
4049 	int nid;
4050 
4051 	for (nid = 0; nid < nr_node_ids; nid++) {
4052 		struct node_hstate *nhs = &node_hstates[nid];
4053 		int i;
4054 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4055 			if (nhs->hstate_kobjs[i] == kobj) {
4056 				if (nidp)
4057 					*nidp = nid;
4058 				return &hstates[i];
4059 			}
4060 	}
4061 
4062 	BUG();
4063 	return NULL;
4064 }
4065 
4066 /*
4067  * Unregister hstate attributes from a single node device.
4068  * No-op if no hstate attributes attached.
4069  */
4070 void hugetlb_unregister_node(struct node *node)
4071 {
4072 	struct hstate *h;
4073 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4074 
4075 	if (!nhs->hugepages_kobj)
4076 		return;		/* no hstate attributes */
4077 
4078 	for_each_hstate(h) {
4079 		int idx = hstate_index(h);
4080 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4081 
4082 		if (!hstate_kobj)
4083 			continue;
4084 		if (h->demote_order)
4085 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4086 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4087 		kobject_put(hstate_kobj);
4088 		nhs->hstate_kobjs[idx] = NULL;
4089 	}
4090 
4091 	kobject_put(nhs->hugepages_kobj);
4092 	nhs->hugepages_kobj = NULL;
4093 }
4094 
4095 
4096 /*
4097  * Register hstate attributes for a single node device.
4098  * No-op if attributes already registered.
4099  */
4100 void hugetlb_register_node(struct node *node)
4101 {
4102 	struct hstate *h;
4103 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4104 	int err;
4105 
4106 	if (!hugetlb_sysfs_initialized)
4107 		return;
4108 
4109 	if (nhs->hugepages_kobj)
4110 		return;		/* already allocated */
4111 
4112 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4113 							&node->dev.kobj);
4114 	if (!nhs->hugepages_kobj)
4115 		return;
4116 
4117 	for_each_hstate(h) {
4118 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4119 						nhs->hstate_kobjs,
4120 						&per_node_hstate_attr_group);
4121 		if (err) {
4122 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4123 				h->name, node->dev.id);
4124 			hugetlb_unregister_node(node);
4125 			break;
4126 		}
4127 	}
4128 }
4129 
4130 /*
4131  * hugetlb init time:  register hstate attributes for all registered node
4132  * devices of nodes that have memory.  All on-line nodes should have
4133  * registered their associated device by this time.
4134  */
4135 static void __init hugetlb_register_all_nodes(void)
4136 {
4137 	int nid;
4138 
4139 	for_each_online_node(nid)
4140 		hugetlb_register_node(node_devices[nid]);
4141 }
4142 #else	/* !CONFIG_NUMA */
4143 
4144 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4145 {
4146 	BUG();
4147 	if (nidp)
4148 		*nidp = -1;
4149 	return NULL;
4150 }
4151 
4152 static void hugetlb_register_all_nodes(void) { }
4153 
4154 #endif
4155 
4156 #ifdef CONFIG_CMA
4157 static void __init hugetlb_cma_check(void);
4158 #else
4159 static inline __init void hugetlb_cma_check(void)
4160 {
4161 }
4162 #endif
4163 
4164 static void __init hugetlb_sysfs_init(void)
4165 {
4166 	struct hstate *h;
4167 	int err;
4168 
4169 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4170 	if (!hugepages_kobj)
4171 		return;
4172 
4173 	for_each_hstate(h) {
4174 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4175 					 hstate_kobjs, &hstate_attr_group);
4176 		if (err)
4177 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4178 	}
4179 
4180 #ifdef CONFIG_NUMA
4181 	hugetlb_sysfs_initialized = true;
4182 #endif
4183 	hugetlb_register_all_nodes();
4184 }
4185 
4186 #ifdef CONFIG_SYSCTL
4187 static void hugetlb_sysctl_init(void);
4188 #else
4189 static inline void hugetlb_sysctl_init(void) { }
4190 #endif
4191 
4192 static int __init hugetlb_init(void)
4193 {
4194 	int i;
4195 
4196 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4197 			__NR_HPAGEFLAGS);
4198 
4199 	if (!hugepages_supported()) {
4200 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4201 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4202 		return 0;
4203 	}
4204 
4205 	/*
4206 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4207 	 * architectures depend on setup being done here.
4208 	 */
4209 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4210 	if (!parsed_default_hugepagesz) {
4211 		/*
4212 		 * If we did not parse a default huge page size, set
4213 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4214 		 * number of huge pages for this default size was implicitly
4215 		 * specified, set that here as well.
4216 		 * Note that the implicit setting will overwrite an explicit
4217 		 * setting.  A warning will be printed in this case.
4218 		 */
4219 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4220 		if (default_hstate_max_huge_pages) {
4221 			if (default_hstate.max_huge_pages) {
4222 				char buf[32];
4223 
4224 				string_get_size(huge_page_size(&default_hstate),
4225 					1, STRING_UNITS_2, buf, 32);
4226 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4227 					default_hstate.max_huge_pages, buf);
4228 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4229 					default_hstate_max_huge_pages);
4230 			}
4231 			default_hstate.max_huge_pages =
4232 				default_hstate_max_huge_pages;
4233 
4234 			for_each_online_node(i)
4235 				default_hstate.max_huge_pages_node[i] =
4236 					default_hugepages_in_node[i];
4237 		}
4238 	}
4239 
4240 	hugetlb_cma_check();
4241 	hugetlb_init_hstates();
4242 	gather_bootmem_prealloc();
4243 	report_hugepages();
4244 
4245 	hugetlb_sysfs_init();
4246 	hugetlb_cgroup_file_init();
4247 	hugetlb_sysctl_init();
4248 
4249 #ifdef CONFIG_SMP
4250 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4251 #else
4252 	num_fault_mutexes = 1;
4253 #endif
4254 	hugetlb_fault_mutex_table =
4255 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4256 			      GFP_KERNEL);
4257 	BUG_ON(!hugetlb_fault_mutex_table);
4258 
4259 	for (i = 0; i < num_fault_mutexes; i++)
4260 		mutex_init(&hugetlb_fault_mutex_table[i]);
4261 	return 0;
4262 }
4263 subsys_initcall(hugetlb_init);
4264 
4265 /* Overwritten by architectures with more huge page sizes */
4266 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4267 {
4268 	return size == HPAGE_SIZE;
4269 }
4270 
4271 void __init hugetlb_add_hstate(unsigned int order)
4272 {
4273 	struct hstate *h;
4274 	unsigned long i;
4275 
4276 	if (size_to_hstate(PAGE_SIZE << order)) {
4277 		return;
4278 	}
4279 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4280 	BUG_ON(order == 0);
4281 	h = &hstates[hugetlb_max_hstate++];
4282 	mutex_init(&h->resize_lock);
4283 	h->order = order;
4284 	h->mask = ~(huge_page_size(h) - 1);
4285 	for (i = 0; i < MAX_NUMNODES; ++i)
4286 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4287 	INIT_LIST_HEAD(&h->hugepage_activelist);
4288 	h->next_nid_to_alloc = first_memory_node;
4289 	h->next_nid_to_free = first_memory_node;
4290 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4291 					huge_page_size(h)/SZ_1K);
4292 
4293 	parsed_hstate = h;
4294 }
4295 
4296 bool __init __weak hugetlb_node_alloc_supported(void)
4297 {
4298 	return true;
4299 }
4300 
4301 static void __init hugepages_clear_pages_in_node(void)
4302 {
4303 	if (!hugetlb_max_hstate) {
4304 		default_hstate_max_huge_pages = 0;
4305 		memset(default_hugepages_in_node, 0,
4306 			sizeof(default_hugepages_in_node));
4307 	} else {
4308 		parsed_hstate->max_huge_pages = 0;
4309 		memset(parsed_hstate->max_huge_pages_node, 0,
4310 			sizeof(parsed_hstate->max_huge_pages_node));
4311 	}
4312 }
4313 
4314 /*
4315  * hugepages command line processing
4316  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4317  * specification.  If not, ignore the hugepages value.  hugepages can also
4318  * be the first huge page command line  option in which case it implicitly
4319  * specifies the number of huge pages for the default size.
4320  */
4321 static int __init hugepages_setup(char *s)
4322 {
4323 	unsigned long *mhp;
4324 	static unsigned long *last_mhp;
4325 	int node = NUMA_NO_NODE;
4326 	int count;
4327 	unsigned long tmp;
4328 	char *p = s;
4329 
4330 	if (!parsed_valid_hugepagesz) {
4331 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4332 		parsed_valid_hugepagesz = true;
4333 		return 1;
4334 	}
4335 
4336 	/*
4337 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4338 	 * yet, so this hugepages= parameter goes to the "default hstate".
4339 	 * Otherwise, it goes with the previously parsed hugepagesz or
4340 	 * default_hugepagesz.
4341 	 */
4342 	else if (!hugetlb_max_hstate)
4343 		mhp = &default_hstate_max_huge_pages;
4344 	else
4345 		mhp = &parsed_hstate->max_huge_pages;
4346 
4347 	if (mhp == last_mhp) {
4348 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4349 		return 1;
4350 	}
4351 
4352 	while (*p) {
4353 		count = 0;
4354 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4355 			goto invalid;
4356 		/* Parameter is node format */
4357 		if (p[count] == ':') {
4358 			if (!hugetlb_node_alloc_supported()) {
4359 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4360 				return 1;
4361 			}
4362 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4363 				goto invalid;
4364 			node = array_index_nospec(tmp, MAX_NUMNODES);
4365 			p += count + 1;
4366 			/* Parse hugepages */
4367 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4368 				goto invalid;
4369 			if (!hugetlb_max_hstate)
4370 				default_hugepages_in_node[node] = tmp;
4371 			else
4372 				parsed_hstate->max_huge_pages_node[node] = tmp;
4373 			*mhp += tmp;
4374 			/* Go to parse next node*/
4375 			if (p[count] == ',')
4376 				p += count + 1;
4377 			else
4378 				break;
4379 		} else {
4380 			if (p != s)
4381 				goto invalid;
4382 			*mhp = tmp;
4383 			break;
4384 		}
4385 	}
4386 
4387 	/*
4388 	 * Global state is always initialized later in hugetlb_init.
4389 	 * But we need to allocate gigantic hstates here early to still
4390 	 * use the bootmem allocator.
4391 	 */
4392 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4393 		hugetlb_hstate_alloc_pages(parsed_hstate);
4394 
4395 	last_mhp = mhp;
4396 
4397 	return 1;
4398 
4399 invalid:
4400 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4401 	hugepages_clear_pages_in_node();
4402 	return 1;
4403 }
4404 __setup("hugepages=", hugepages_setup);
4405 
4406 /*
4407  * hugepagesz command line processing
4408  * A specific huge page size can only be specified once with hugepagesz.
4409  * hugepagesz is followed by hugepages on the command line.  The global
4410  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4411  * hugepagesz argument was valid.
4412  */
4413 static int __init hugepagesz_setup(char *s)
4414 {
4415 	unsigned long size;
4416 	struct hstate *h;
4417 
4418 	parsed_valid_hugepagesz = false;
4419 	size = (unsigned long)memparse(s, NULL);
4420 
4421 	if (!arch_hugetlb_valid_size(size)) {
4422 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4423 		return 1;
4424 	}
4425 
4426 	h = size_to_hstate(size);
4427 	if (h) {
4428 		/*
4429 		 * hstate for this size already exists.  This is normally
4430 		 * an error, but is allowed if the existing hstate is the
4431 		 * default hstate.  More specifically, it is only allowed if
4432 		 * the number of huge pages for the default hstate was not
4433 		 * previously specified.
4434 		 */
4435 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4436 		    default_hstate.max_huge_pages) {
4437 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4438 			return 1;
4439 		}
4440 
4441 		/*
4442 		 * No need to call hugetlb_add_hstate() as hstate already
4443 		 * exists.  But, do set parsed_hstate so that a following
4444 		 * hugepages= parameter will be applied to this hstate.
4445 		 */
4446 		parsed_hstate = h;
4447 		parsed_valid_hugepagesz = true;
4448 		return 1;
4449 	}
4450 
4451 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4452 	parsed_valid_hugepagesz = true;
4453 	return 1;
4454 }
4455 __setup("hugepagesz=", hugepagesz_setup);
4456 
4457 /*
4458  * default_hugepagesz command line input
4459  * Only one instance of default_hugepagesz allowed on command line.
4460  */
4461 static int __init default_hugepagesz_setup(char *s)
4462 {
4463 	unsigned long size;
4464 	int i;
4465 
4466 	parsed_valid_hugepagesz = false;
4467 	if (parsed_default_hugepagesz) {
4468 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4469 		return 1;
4470 	}
4471 
4472 	size = (unsigned long)memparse(s, NULL);
4473 
4474 	if (!arch_hugetlb_valid_size(size)) {
4475 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4476 		return 1;
4477 	}
4478 
4479 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4480 	parsed_valid_hugepagesz = true;
4481 	parsed_default_hugepagesz = true;
4482 	default_hstate_idx = hstate_index(size_to_hstate(size));
4483 
4484 	/*
4485 	 * The number of default huge pages (for this size) could have been
4486 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4487 	 * then default_hstate_max_huge_pages is set.  If the default huge
4488 	 * page size is gigantic (> MAX_ORDER), then the pages must be
4489 	 * allocated here from bootmem allocator.
4490 	 */
4491 	if (default_hstate_max_huge_pages) {
4492 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4493 		for_each_online_node(i)
4494 			default_hstate.max_huge_pages_node[i] =
4495 				default_hugepages_in_node[i];
4496 		if (hstate_is_gigantic(&default_hstate))
4497 			hugetlb_hstate_alloc_pages(&default_hstate);
4498 		default_hstate_max_huge_pages = 0;
4499 	}
4500 
4501 	return 1;
4502 }
4503 __setup("default_hugepagesz=", default_hugepagesz_setup);
4504 
4505 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4506 {
4507 #ifdef CONFIG_NUMA
4508 	struct mempolicy *mpol = get_task_policy(current);
4509 
4510 	/*
4511 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4512 	 * (from policy_nodemask) specifically for hugetlb case
4513 	 */
4514 	if (mpol->mode == MPOL_BIND &&
4515 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4516 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4517 		return &mpol->nodes;
4518 #endif
4519 	return NULL;
4520 }
4521 
4522 static unsigned int allowed_mems_nr(struct hstate *h)
4523 {
4524 	int node;
4525 	unsigned int nr = 0;
4526 	nodemask_t *mbind_nodemask;
4527 	unsigned int *array = h->free_huge_pages_node;
4528 	gfp_t gfp_mask = htlb_alloc_mask(h);
4529 
4530 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4531 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4532 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4533 			nr += array[node];
4534 	}
4535 
4536 	return nr;
4537 }
4538 
4539 #ifdef CONFIG_SYSCTL
4540 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4541 					  void *buffer, size_t *length,
4542 					  loff_t *ppos, unsigned long *out)
4543 {
4544 	struct ctl_table dup_table;
4545 
4546 	/*
4547 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4548 	 * can duplicate the @table and alter the duplicate of it.
4549 	 */
4550 	dup_table = *table;
4551 	dup_table.data = out;
4552 
4553 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4554 }
4555 
4556 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4557 			 struct ctl_table *table, int write,
4558 			 void *buffer, size_t *length, loff_t *ppos)
4559 {
4560 	struct hstate *h = &default_hstate;
4561 	unsigned long tmp = h->max_huge_pages;
4562 	int ret;
4563 
4564 	if (!hugepages_supported())
4565 		return -EOPNOTSUPP;
4566 
4567 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4568 					     &tmp);
4569 	if (ret)
4570 		goto out;
4571 
4572 	if (write)
4573 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4574 						  NUMA_NO_NODE, tmp, *length);
4575 out:
4576 	return ret;
4577 }
4578 
4579 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4580 			  void *buffer, size_t *length, loff_t *ppos)
4581 {
4582 
4583 	return hugetlb_sysctl_handler_common(false, table, write,
4584 							buffer, length, ppos);
4585 }
4586 
4587 #ifdef CONFIG_NUMA
4588 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4589 			  void *buffer, size_t *length, loff_t *ppos)
4590 {
4591 	return hugetlb_sysctl_handler_common(true, table, write,
4592 							buffer, length, ppos);
4593 }
4594 #endif /* CONFIG_NUMA */
4595 
4596 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4597 		void *buffer, size_t *length, loff_t *ppos)
4598 {
4599 	struct hstate *h = &default_hstate;
4600 	unsigned long tmp;
4601 	int ret;
4602 
4603 	if (!hugepages_supported())
4604 		return -EOPNOTSUPP;
4605 
4606 	tmp = h->nr_overcommit_huge_pages;
4607 
4608 	if (write && hstate_is_gigantic(h))
4609 		return -EINVAL;
4610 
4611 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4612 					     &tmp);
4613 	if (ret)
4614 		goto out;
4615 
4616 	if (write) {
4617 		spin_lock_irq(&hugetlb_lock);
4618 		h->nr_overcommit_huge_pages = tmp;
4619 		spin_unlock_irq(&hugetlb_lock);
4620 	}
4621 out:
4622 	return ret;
4623 }
4624 
4625 static struct ctl_table hugetlb_table[] = {
4626 	{
4627 		.procname	= "nr_hugepages",
4628 		.data		= NULL,
4629 		.maxlen		= sizeof(unsigned long),
4630 		.mode		= 0644,
4631 		.proc_handler	= hugetlb_sysctl_handler,
4632 	},
4633 #ifdef CONFIG_NUMA
4634 	{
4635 		.procname       = "nr_hugepages_mempolicy",
4636 		.data           = NULL,
4637 		.maxlen         = sizeof(unsigned long),
4638 		.mode           = 0644,
4639 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4640 	},
4641 #endif
4642 	{
4643 		.procname	= "hugetlb_shm_group",
4644 		.data		= &sysctl_hugetlb_shm_group,
4645 		.maxlen		= sizeof(gid_t),
4646 		.mode		= 0644,
4647 		.proc_handler	= proc_dointvec,
4648 	},
4649 	{
4650 		.procname	= "nr_overcommit_hugepages",
4651 		.data		= NULL,
4652 		.maxlen		= sizeof(unsigned long),
4653 		.mode		= 0644,
4654 		.proc_handler	= hugetlb_overcommit_handler,
4655 	},
4656 	{ }
4657 };
4658 
4659 static void hugetlb_sysctl_init(void)
4660 {
4661 	register_sysctl_init("vm", hugetlb_table);
4662 }
4663 #endif /* CONFIG_SYSCTL */
4664 
4665 void hugetlb_report_meminfo(struct seq_file *m)
4666 {
4667 	struct hstate *h;
4668 	unsigned long total = 0;
4669 
4670 	if (!hugepages_supported())
4671 		return;
4672 
4673 	for_each_hstate(h) {
4674 		unsigned long count = h->nr_huge_pages;
4675 
4676 		total += huge_page_size(h) * count;
4677 
4678 		if (h == &default_hstate)
4679 			seq_printf(m,
4680 				   "HugePages_Total:   %5lu\n"
4681 				   "HugePages_Free:    %5lu\n"
4682 				   "HugePages_Rsvd:    %5lu\n"
4683 				   "HugePages_Surp:    %5lu\n"
4684 				   "Hugepagesize:   %8lu kB\n",
4685 				   count,
4686 				   h->free_huge_pages,
4687 				   h->resv_huge_pages,
4688 				   h->surplus_huge_pages,
4689 				   huge_page_size(h) / SZ_1K);
4690 	}
4691 
4692 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4693 }
4694 
4695 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4696 {
4697 	struct hstate *h = &default_hstate;
4698 
4699 	if (!hugepages_supported())
4700 		return 0;
4701 
4702 	return sysfs_emit_at(buf, len,
4703 			     "Node %d HugePages_Total: %5u\n"
4704 			     "Node %d HugePages_Free:  %5u\n"
4705 			     "Node %d HugePages_Surp:  %5u\n",
4706 			     nid, h->nr_huge_pages_node[nid],
4707 			     nid, h->free_huge_pages_node[nid],
4708 			     nid, h->surplus_huge_pages_node[nid]);
4709 }
4710 
4711 void hugetlb_show_meminfo_node(int nid)
4712 {
4713 	struct hstate *h;
4714 
4715 	if (!hugepages_supported())
4716 		return;
4717 
4718 	for_each_hstate(h)
4719 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4720 			nid,
4721 			h->nr_huge_pages_node[nid],
4722 			h->free_huge_pages_node[nid],
4723 			h->surplus_huge_pages_node[nid],
4724 			huge_page_size(h) / SZ_1K);
4725 }
4726 
4727 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4728 {
4729 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4730 		   K(atomic_long_read(&mm->hugetlb_usage)));
4731 }
4732 
4733 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4734 unsigned long hugetlb_total_pages(void)
4735 {
4736 	struct hstate *h;
4737 	unsigned long nr_total_pages = 0;
4738 
4739 	for_each_hstate(h)
4740 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4741 	return nr_total_pages;
4742 }
4743 
4744 static int hugetlb_acct_memory(struct hstate *h, long delta)
4745 {
4746 	int ret = -ENOMEM;
4747 
4748 	if (!delta)
4749 		return 0;
4750 
4751 	spin_lock_irq(&hugetlb_lock);
4752 	/*
4753 	 * When cpuset is configured, it breaks the strict hugetlb page
4754 	 * reservation as the accounting is done on a global variable. Such
4755 	 * reservation is completely rubbish in the presence of cpuset because
4756 	 * the reservation is not checked against page availability for the
4757 	 * current cpuset. Application can still potentially OOM'ed by kernel
4758 	 * with lack of free htlb page in cpuset that the task is in.
4759 	 * Attempt to enforce strict accounting with cpuset is almost
4760 	 * impossible (or too ugly) because cpuset is too fluid that
4761 	 * task or memory node can be dynamically moved between cpusets.
4762 	 *
4763 	 * The change of semantics for shared hugetlb mapping with cpuset is
4764 	 * undesirable. However, in order to preserve some of the semantics,
4765 	 * we fall back to check against current free page availability as
4766 	 * a best attempt and hopefully to minimize the impact of changing
4767 	 * semantics that cpuset has.
4768 	 *
4769 	 * Apart from cpuset, we also have memory policy mechanism that
4770 	 * also determines from which node the kernel will allocate memory
4771 	 * in a NUMA system. So similar to cpuset, we also should consider
4772 	 * the memory policy of the current task. Similar to the description
4773 	 * above.
4774 	 */
4775 	if (delta > 0) {
4776 		if (gather_surplus_pages(h, delta) < 0)
4777 			goto out;
4778 
4779 		if (delta > allowed_mems_nr(h)) {
4780 			return_unused_surplus_pages(h, delta);
4781 			goto out;
4782 		}
4783 	}
4784 
4785 	ret = 0;
4786 	if (delta < 0)
4787 		return_unused_surplus_pages(h, (unsigned long) -delta);
4788 
4789 out:
4790 	spin_unlock_irq(&hugetlb_lock);
4791 	return ret;
4792 }
4793 
4794 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4795 {
4796 	struct resv_map *resv = vma_resv_map(vma);
4797 
4798 	/*
4799 	 * HPAGE_RESV_OWNER indicates a private mapping.
4800 	 * This new VMA should share its siblings reservation map if present.
4801 	 * The VMA will only ever have a valid reservation map pointer where
4802 	 * it is being copied for another still existing VMA.  As that VMA
4803 	 * has a reference to the reservation map it cannot disappear until
4804 	 * after this open call completes.  It is therefore safe to take a
4805 	 * new reference here without additional locking.
4806 	 */
4807 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4808 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4809 		kref_get(&resv->refs);
4810 	}
4811 
4812 	/*
4813 	 * vma_lock structure for sharable mappings is vma specific.
4814 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4815 	 * new structure.  Before clearing, make sure vma_lock is not
4816 	 * for this vma.
4817 	 */
4818 	if (vma->vm_flags & VM_MAYSHARE) {
4819 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4820 
4821 		if (vma_lock) {
4822 			if (vma_lock->vma != vma) {
4823 				vma->vm_private_data = NULL;
4824 				hugetlb_vma_lock_alloc(vma);
4825 			} else
4826 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4827 		} else
4828 			hugetlb_vma_lock_alloc(vma);
4829 	}
4830 }
4831 
4832 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4833 {
4834 	struct hstate *h = hstate_vma(vma);
4835 	struct resv_map *resv;
4836 	struct hugepage_subpool *spool = subpool_vma(vma);
4837 	unsigned long reserve, start, end;
4838 	long gbl_reserve;
4839 
4840 	hugetlb_vma_lock_free(vma);
4841 
4842 	resv = vma_resv_map(vma);
4843 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4844 		return;
4845 
4846 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4847 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4848 
4849 	reserve = (end - start) - region_count(resv, start, end);
4850 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4851 	if (reserve) {
4852 		/*
4853 		 * Decrement reserve counts.  The global reserve count may be
4854 		 * adjusted if the subpool has a minimum size.
4855 		 */
4856 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4857 		hugetlb_acct_memory(h, -gbl_reserve);
4858 	}
4859 
4860 	kref_put(&resv->refs, resv_map_release);
4861 }
4862 
4863 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4864 {
4865 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4866 		return -EINVAL;
4867 
4868 	/*
4869 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4870 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4871 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4872 	 */
4873 	if (addr & ~PUD_MASK) {
4874 		/*
4875 		 * hugetlb_vm_op_split is called right before we attempt to
4876 		 * split the VMA. We will need to unshare PMDs in the old and
4877 		 * new VMAs, so let's unshare before we split.
4878 		 */
4879 		unsigned long floor = addr & PUD_MASK;
4880 		unsigned long ceil = floor + PUD_SIZE;
4881 
4882 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4883 			hugetlb_unshare_pmds(vma, floor, ceil);
4884 	}
4885 
4886 	return 0;
4887 }
4888 
4889 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4890 {
4891 	return huge_page_size(hstate_vma(vma));
4892 }
4893 
4894 /*
4895  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4896  * handle_mm_fault() to try to instantiate regular-sized pages in the
4897  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4898  * this far.
4899  */
4900 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4901 {
4902 	BUG();
4903 	return 0;
4904 }
4905 
4906 /*
4907  * When a new function is introduced to vm_operations_struct and added
4908  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4909  * This is because under System V memory model, mappings created via
4910  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4911  * their original vm_ops are overwritten with shm_vm_ops.
4912  */
4913 const struct vm_operations_struct hugetlb_vm_ops = {
4914 	.fault = hugetlb_vm_op_fault,
4915 	.open = hugetlb_vm_op_open,
4916 	.close = hugetlb_vm_op_close,
4917 	.may_split = hugetlb_vm_op_split,
4918 	.pagesize = hugetlb_vm_op_pagesize,
4919 };
4920 
4921 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4922 				int writable)
4923 {
4924 	pte_t entry;
4925 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4926 
4927 	if (writable) {
4928 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4929 					 vma->vm_page_prot)));
4930 	} else {
4931 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4932 					   vma->vm_page_prot));
4933 	}
4934 	entry = pte_mkyoung(entry);
4935 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4936 
4937 	return entry;
4938 }
4939 
4940 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4941 				   unsigned long address, pte_t *ptep)
4942 {
4943 	pte_t entry;
4944 
4945 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4946 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4947 		update_mmu_cache(vma, address, ptep);
4948 }
4949 
4950 bool is_hugetlb_entry_migration(pte_t pte)
4951 {
4952 	swp_entry_t swp;
4953 
4954 	if (huge_pte_none(pte) || pte_present(pte))
4955 		return false;
4956 	swp = pte_to_swp_entry(pte);
4957 	if (is_migration_entry(swp))
4958 		return true;
4959 	else
4960 		return false;
4961 }
4962 
4963 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4964 {
4965 	swp_entry_t swp;
4966 
4967 	if (huge_pte_none(pte) || pte_present(pte))
4968 		return false;
4969 	swp = pte_to_swp_entry(pte);
4970 	if (is_hwpoison_entry(swp))
4971 		return true;
4972 	else
4973 		return false;
4974 }
4975 
4976 static void
4977 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4978 		      struct folio *new_folio, pte_t old)
4979 {
4980 	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
4981 
4982 	__folio_mark_uptodate(new_folio);
4983 	hugepage_add_new_anon_rmap(new_folio, vma, addr);
4984 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
4985 		newpte = huge_pte_mkuffd_wp(newpte);
4986 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
4987 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4988 	folio_set_hugetlb_migratable(new_folio);
4989 }
4990 
4991 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4992 			    struct vm_area_struct *dst_vma,
4993 			    struct vm_area_struct *src_vma)
4994 {
4995 	pte_t *src_pte, *dst_pte, entry;
4996 	struct folio *pte_folio;
4997 	unsigned long addr;
4998 	bool cow = is_cow_mapping(src_vma->vm_flags);
4999 	struct hstate *h = hstate_vma(src_vma);
5000 	unsigned long sz = huge_page_size(h);
5001 	unsigned long npages = pages_per_huge_page(h);
5002 	struct mmu_notifier_range range;
5003 	unsigned long last_addr_mask;
5004 	int ret = 0;
5005 
5006 	if (cow) {
5007 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5008 					src_vma->vm_start,
5009 					src_vma->vm_end);
5010 		mmu_notifier_invalidate_range_start(&range);
5011 		vma_assert_write_locked(src_vma);
5012 		raw_write_seqcount_begin(&src->write_protect_seq);
5013 	} else {
5014 		/*
5015 		 * For shared mappings the vma lock must be held before
5016 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5017 		 * returned ptep could go away if part of a shared pmd and
5018 		 * another thread calls huge_pmd_unshare.
5019 		 */
5020 		hugetlb_vma_lock_read(src_vma);
5021 	}
5022 
5023 	last_addr_mask = hugetlb_mask_last_page(h);
5024 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5025 		spinlock_t *src_ptl, *dst_ptl;
5026 		src_pte = hugetlb_walk(src_vma, addr, sz);
5027 		if (!src_pte) {
5028 			addr |= last_addr_mask;
5029 			continue;
5030 		}
5031 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5032 		if (!dst_pte) {
5033 			ret = -ENOMEM;
5034 			break;
5035 		}
5036 
5037 		/*
5038 		 * If the pagetables are shared don't copy or take references.
5039 		 *
5040 		 * dst_pte == src_pte is the common case of src/dest sharing.
5041 		 * However, src could have 'unshared' and dst shares with
5042 		 * another vma. So page_count of ptep page is checked instead
5043 		 * to reliably determine whether pte is shared.
5044 		 */
5045 		if (page_count(virt_to_page(dst_pte)) > 1) {
5046 			addr |= last_addr_mask;
5047 			continue;
5048 		}
5049 
5050 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5051 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5052 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5053 		entry = huge_ptep_get(src_pte);
5054 again:
5055 		if (huge_pte_none(entry)) {
5056 			/*
5057 			 * Skip if src entry none.
5058 			 */
5059 			;
5060 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5061 			if (!userfaultfd_wp(dst_vma))
5062 				entry = huge_pte_clear_uffd_wp(entry);
5063 			set_huge_pte_at(dst, addr, dst_pte, entry);
5064 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5065 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5066 			bool uffd_wp = pte_swp_uffd_wp(entry);
5067 
5068 			if (!is_readable_migration_entry(swp_entry) && cow) {
5069 				/*
5070 				 * COW mappings require pages in both
5071 				 * parent and child to be set to read.
5072 				 */
5073 				swp_entry = make_readable_migration_entry(
5074 							swp_offset(swp_entry));
5075 				entry = swp_entry_to_pte(swp_entry);
5076 				if (userfaultfd_wp(src_vma) && uffd_wp)
5077 					entry = pte_swp_mkuffd_wp(entry);
5078 				set_huge_pte_at(src, addr, src_pte, entry);
5079 			}
5080 			if (!userfaultfd_wp(dst_vma))
5081 				entry = huge_pte_clear_uffd_wp(entry);
5082 			set_huge_pte_at(dst, addr, dst_pte, entry);
5083 		} else if (unlikely(is_pte_marker(entry))) {
5084 			pte_marker marker = copy_pte_marker(
5085 				pte_to_swp_entry(entry), dst_vma);
5086 
5087 			if (marker)
5088 				set_huge_pte_at(dst, addr, dst_pte,
5089 						make_pte_marker(marker));
5090 		} else {
5091 			entry = huge_ptep_get(src_pte);
5092 			pte_folio = page_folio(pte_page(entry));
5093 			folio_get(pte_folio);
5094 
5095 			/*
5096 			 * Failing to duplicate the anon rmap is a rare case
5097 			 * where we see pinned hugetlb pages while they're
5098 			 * prone to COW. We need to do the COW earlier during
5099 			 * fork.
5100 			 *
5101 			 * When pre-allocating the page or copying data, we
5102 			 * need to be without the pgtable locks since we could
5103 			 * sleep during the process.
5104 			 */
5105 			if (!folio_test_anon(pte_folio)) {
5106 				page_dup_file_rmap(&pte_folio->page, true);
5107 			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5108 							  true, src_vma)) {
5109 				pte_t src_pte_old = entry;
5110 				struct folio *new_folio;
5111 
5112 				spin_unlock(src_ptl);
5113 				spin_unlock(dst_ptl);
5114 				/* Do not use reserve as it's private owned */
5115 				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5116 				if (IS_ERR(new_folio)) {
5117 					folio_put(pte_folio);
5118 					ret = PTR_ERR(new_folio);
5119 					break;
5120 				}
5121 				ret = copy_user_large_folio(new_folio,
5122 							    pte_folio,
5123 							    addr, dst_vma);
5124 				folio_put(pte_folio);
5125 				if (ret) {
5126 					folio_put(new_folio);
5127 					break;
5128 				}
5129 
5130 				/* Install the new hugetlb folio if src pte stable */
5131 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5132 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5133 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5134 				entry = huge_ptep_get(src_pte);
5135 				if (!pte_same(src_pte_old, entry)) {
5136 					restore_reserve_on_error(h, dst_vma, addr,
5137 								new_folio);
5138 					folio_put(new_folio);
5139 					/* huge_ptep of dst_pte won't change as in child */
5140 					goto again;
5141 				}
5142 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5143 						      new_folio, src_pte_old);
5144 				spin_unlock(src_ptl);
5145 				spin_unlock(dst_ptl);
5146 				continue;
5147 			}
5148 
5149 			if (cow) {
5150 				/*
5151 				 * No need to notify as we are downgrading page
5152 				 * table protection not changing it to point
5153 				 * to a new page.
5154 				 *
5155 				 * See Documentation/mm/mmu_notifier.rst
5156 				 */
5157 				huge_ptep_set_wrprotect(src, addr, src_pte);
5158 				entry = huge_pte_wrprotect(entry);
5159 			}
5160 
5161 			if (!userfaultfd_wp(dst_vma))
5162 				entry = huge_pte_clear_uffd_wp(entry);
5163 
5164 			set_huge_pte_at(dst, addr, dst_pte, entry);
5165 			hugetlb_count_add(npages, dst);
5166 		}
5167 		spin_unlock(src_ptl);
5168 		spin_unlock(dst_ptl);
5169 	}
5170 
5171 	if (cow) {
5172 		raw_write_seqcount_end(&src->write_protect_seq);
5173 		mmu_notifier_invalidate_range_end(&range);
5174 	} else {
5175 		hugetlb_vma_unlock_read(src_vma);
5176 	}
5177 
5178 	return ret;
5179 }
5180 
5181 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5182 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5183 {
5184 	struct hstate *h = hstate_vma(vma);
5185 	struct mm_struct *mm = vma->vm_mm;
5186 	spinlock_t *src_ptl, *dst_ptl;
5187 	pte_t pte;
5188 
5189 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5190 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5191 
5192 	/*
5193 	 * We don't have to worry about the ordering of src and dst ptlocks
5194 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5195 	 */
5196 	if (src_ptl != dst_ptl)
5197 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5198 
5199 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5200 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
5201 
5202 	if (src_ptl != dst_ptl)
5203 		spin_unlock(src_ptl);
5204 	spin_unlock(dst_ptl);
5205 }
5206 
5207 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5208 			     struct vm_area_struct *new_vma,
5209 			     unsigned long old_addr, unsigned long new_addr,
5210 			     unsigned long len)
5211 {
5212 	struct hstate *h = hstate_vma(vma);
5213 	struct address_space *mapping = vma->vm_file->f_mapping;
5214 	unsigned long sz = huge_page_size(h);
5215 	struct mm_struct *mm = vma->vm_mm;
5216 	unsigned long old_end = old_addr + len;
5217 	unsigned long last_addr_mask;
5218 	pte_t *src_pte, *dst_pte;
5219 	struct mmu_notifier_range range;
5220 	bool shared_pmd = false;
5221 
5222 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5223 				old_end);
5224 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5225 	/*
5226 	 * In case of shared PMDs, we should cover the maximum possible
5227 	 * range.
5228 	 */
5229 	flush_cache_range(vma, range.start, range.end);
5230 
5231 	mmu_notifier_invalidate_range_start(&range);
5232 	last_addr_mask = hugetlb_mask_last_page(h);
5233 	/* Prevent race with file truncation */
5234 	hugetlb_vma_lock_write(vma);
5235 	i_mmap_lock_write(mapping);
5236 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5237 		src_pte = hugetlb_walk(vma, old_addr, sz);
5238 		if (!src_pte) {
5239 			old_addr |= last_addr_mask;
5240 			new_addr |= last_addr_mask;
5241 			continue;
5242 		}
5243 		if (huge_pte_none(huge_ptep_get(src_pte)))
5244 			continue;
5245 
5246 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5247 			shared_pmd = true;
5248 			old_addr |= last_addr_mask;
5249 			new_addr |= last_addr_mask;
5250 			continue;
5251 		}
5252 
5253 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5254 		if (!dst_pte)
5255 			break;
5256 
5257 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5258 	}
5259 
5260 	if (shared_pmd)
5261 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5262 	else
5263 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5264 	mmu_notifier_invalidate_range_end(&range);
5265 	i_mmap_unlock_write(mapping);
5266 	hugetlb_vma_unlock_write(vma);
5267 
5268 	return len + old_addr - old_end;
5269 }
5270 
5271 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5272 				   unsigned long start, unsigned long end,
5273 				   struct page *ref_page, zap_flags_t zap_flags)
5274 {
5275 	struct mm_struct *mm = vma->vm_mm;
5276 	unsigned long address;
5277 	pte_t *ptep;
5278 	pte_t pte;
5279 	spinlock_t *ptl;
5280 	struct page *page;
5281 	struct hstate *h = hstate_vma(vma);
5282 	unsigned long sz = huge_page_size(h);
5283 	unsigned long last_addr_mask;
5284 	bool force_flush = false;
5285 
5286 	WARN_ON(!is_vm_hugetlb_page(vma));
5287 	BUG_ON(start & ~huge_page_mask(h));
5288 	BUG_ON(end & ~huge_page_mask(h));
5289 
5290 	/*
5291 	 * This is a hugetlb vma, all the pte entries should point
5292 	 * to huge page.
5293 	 */
5294 	tlb_change_page_size(tlb, sz);
5295 	tlb_start_vma(tlb, vma);
5296 
5297 	last_addr_mask = hugetlb_mask_last_page(h);
5298 	address = start;
5299 	for (; address < end; address += sz) {
5300 		ptep = hugetlb_walk(vma, address, sz);
5301 		if (!ptep) {
5302 			address |= last_addr_mask;
5303 			continue;
5304 		}
5305 
5306 		ptl = huge_pte_lock(h, mm, ptep);
5307 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5308 			spin_unlock(ptl);
5309 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5310 			force_flush = true;
5311 			address |= last_addr_mask;
5312 			continue;
5313 		}
5314 
5315 		pte = huge_ptep_get(ptep);
5316 		if (huge_pte_none(pte)) {
5317 			spin_unlock(ptl);
5318 			continue;
5319 		}
5320 
5321 		/*
5322 		 * Migrating hugepage or HWPoisoned hugepage is already
5323 		 * unmapped and its refcount is dropped, so just clear pte here.
5324 		 */
5325 		if (unlikely(!pte_present(pte))) {
5326 			/*
5327 			 * If the pte was wr-protected by uffd-wp in any of the
5328 			 * swap forms, meanwhile the caller does not want to
5329 			 * drop the uffd-wp bit in this zap, then replace the
5330 			 * pte with a marker.
5331 			 */
5332 			if (pte_swp_uffd_wp_any(pte) &&
5333 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5334 				set_huge_pte_at(mm, address, ptep,
5335 						make_pte_marker(PTE_MARKER_UFFD_WP));
5336 			else
5337 				huge_pte_clear(mm, address, ptep, sz);
5338 			spin_unlock(ptl);
5339 			continue;
5340 		}
5341 
5342 		page = pte_page(pte);
5343 		/*
5344 		 * If a reference page is supplied, it is because a specific
5345 		 * page is being unmapped, not a range. Ensure the page we
5346 		 * are about to unmap is the actual page of interest.
5347 		 */
5348 		if (ref_page) {
5349 			if (page != ref_page) {
5350 				spin_unlock(ptl);
5351 				continue;
5352 			}
5353 			/*
5354 			 * Mark the VMA as having unmapped its page so that
5355 			 * future faults in this VMA will fail rather than
5356 			 * looking like data was lost
5357 			 */
5358 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5359 		}
5360 
5361 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5362 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5363 		if (huge_pte_dirty(pte))
5364 			set_page_dirty(page);
5365 		/* Leave a uffd-wp pte marker if needed */
5366 		if (huge_pte_uffd_wp(pte) &&
5367 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5368 			set_huge_pte_at(mm, address, ptep,
5369 					make_pte_marker(PTE_MARKER_UFFD_WP));
5370 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5371 		page_remove_rmap(page, vma, true);
5372 
5373 		spin_unlock(ptl);
5374 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5375 		/*
5376 		 * Bail out after unmapping reference page if supplied
5377 		 */
5378 		if (ref_page)
5379 			break;
5380 	}
5381 	tlb_end_vma(tlb, vma);
5382 
5383 	/*
5384 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5385 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5386 	 * guaranteed that the last refernece would not be dropped. But we must
5387 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5388 	 * dropped and the last reference to the shared PMDs page might be
5389 	 * dropped as well.
5390 	 *
5391 	 * In theory we could defer the freeing of the PMD pages as well, but
5392 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5393 	 * detect sharing, so we cannot defer the release of the page either.
5394 	 * Instead, do flush now.
5395 	 */
5396 	if (force_flush)
5397 		tlb_flush_mmu_tlbonly(tlb);
5398 }
5399 
5400 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5401 			  struct vm_area_struct *vma, unsigned long start,
5402 			  unsigned long end, struct page *ref_page,
5403 			  zap_flags_t zap_flags)
5404 {
5405 	hugetlb_vma_lock_write(vma);
5406 	i_mmap_lock_write(vma->vm_file->f_mapping);
5407 
5408 	/* mmu notification performed in caller */
5409 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5410 
5411 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5412 		/*
5413 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5414 		 * When the vma_lock is freed, this makes the vma ineligible
5415 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5416 		 * pmd sharing.  This is important as page tables for this
5417 		 * unmapped range will be asynchrously deleted.  If the page
5418 		 * tables are shared, there will be issues when accessed by
5419 		 * someone else.
5420 		 */
5421 		__hugetlb_vma_unlock_write_free(vma);
5422 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5423 	} else {
5424 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5425 		hugetlb_vma_unlock_write(vma);
5426 	}
5427 }
5428 
5429 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5430 			  unsigned long end, struct page *ref_page,
5431 			  zap_flags_t zap_flags)
5432 {
5433 	struct mmu_notifier_range range;
5434 	struct mmu_gather tlb;
5435 
5436 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5437 				start, end);
5438 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5439 	mmu_notifier_invalidate_range_start(&range);
5440 	tlb_gather_mmu(&tlb, vma->vm_mm);
5441 
5442 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5443 
5444 	mmu_notifier_invalidate_range_end(&range);
5445 	tlb_finish_mmu(&tlb);
5446 }
5447 
5448 /*
5449  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5450  * mapping it owns the reserve page for. The intention is to unmap the page
5451  * from other VMAs and let the children be SIGKILLed if they are faulting the
5452  * same region.
5453  */
5454 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5455 			      struct page *page, unsigned long address)
5456 {
5457 	struct hstate *h = hstate_vma(vma);
5458 	struct vm_area_struct *iter_vma;
5459 	struct address_space *mapping;
5460 	pgoff_t pgoff;
5461 
5462 	/*
5463 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5464 	 * from page cache lookup which is in HPAGE_SIZE units.
5465 	 */
5466 	address = address & huge_page_mask(h);
5467 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5468 			vma->vm_pgoff;
5469 	mapping = vma->vm_file->f_mapping;
5470 
5471 	/*
5472 	 * Take the mapping lock for the duration of the table walk. As
5473 	 * this mapping should be shared between all the VMAs,
5474 	 * __unmap_hugepage_range() is called as the lock is already held
5475 	 */
5476 	i_mmap_lock_write(mapping);
5477 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5478 		/* Do not unmap the current VMA */
5479 		if (iter_vma == vma)
5480 			continue;
5481 
5482 		/*
5483 		 * Shared VMAs have their own reserves and do not affect
5484 		 * MAP_PRIVATE accounting but it is possible that a shared
5485 		 * VMA is using the same page so check and skip such VMAs.
5486 		 */
5487 		if (iter_vma->vm_flags & VM_MAYSHARE)
5488 			continue;
5489 
5490 		/*
5491 		 * Unmap the page from other VMAs without their own reserves.
5492 		 * They get marked to be SIGKILLed if they fault in these
5493 		 * areas. This is because a future no-page fault on this VMA
5494 		 * could insert a zeroed page instead of the data existing
5495 		 * from the time of fork. This would look like data corruption
5496 		 */
5497 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5498 			unmap_hugepage_range(iter_vma, address,
5499 					     address + huge_page_size(h), page, 0);
5500 	}
5501 	i_mmap_unlock_write(mapping);
5502 }
5503 
5504 /*
5505  * hugetlb_wp() should be called with page lock of the original hugepage held.
5506  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5507  * cannot race with other handlers or page migration.
5508  * Keep the pte_same checks anyway to make transition from the mutex easier.
5509  */
5510 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5511 		       unsigned long address, pte_t *ptep, unsigned int flags,
5512 		       struct folio *pagecache_folio, spinlock_t *ptl)
5513 {
5514 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5515 	pte_t pte = huge_ptep_get(ptep);
5516 	struct hstate *h = hstate_vma(vma);
5517 	struct folio *old_folio;
5518 	struct folio *new_folio;
5519 	int outside_reserve = 0;
5520 	vm_fault_t ret = 0;
5521 	unsigned long haddr = address & huge_page_mask(h);
5522 	struct mmu_notifier_range range;
5523 
5524 	/*
5525 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5526 	 * handled when the uffd-wp protection is removed.
5527 	 *
5528 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5529 	 * can trigger this, because hugetlb_fault() will always resolve
5530 	 * uffd-wp bit first.
5531 	 */
5532 	if (!unshare && huge_pte_uffd_wp(pte))
5533 		return 0;
5534 
5535 	/*
5536 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5537 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5538 	 */
5539 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5540 		return VM_FAULT_SIGSEGV;
5541 
5542 	/* Let's take out MAP_SHARED mappings first. */
5543 	if (vma->vm_flags & VM_MAYSHARE) {
5544 		set_huge_ptep_writable(vma, haddr, ptep);
5545 		return 0;
5546 	}
5547 
5548 	old_folio = page_folio(pte_page(pte));
5549 
5550 	delayacct_wpcopy_start();
5551 
5552 retry_avoidcopy:
5553 	/*
5554 	 * If no-one else is actually using this page, we're the exclusive
5555 	 * owner and can reuse this page.
5556 	 */
5557 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5558 		if (!PageAnonExclusive(&old_folio->page))
5559 			page_move_anon_rmap(&old_folio->page, vma);
5560 		if (likely(!unshare))
5561 			set_huge_ptep_writable(vma, haddr, ptep);
5562 
5563 		delayacct_wpcopy_end();
5564 		return 0;
5565 	}
5566 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5567 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5568 
5569 	/*
5570 	 * If the process that created a MAP_PRIVATE mapping is about to
5571 	 * perform a COW due to a shared page count, attempt to satisfy
5572 	 * the allocation without using the existing reserves. The pagecache
5573 	 * page is used to determine if the reserve at this address was
5574 	 * consumed or not. If reserves were used, a partial faulted mapping
5575 	 * at the time of fork() could consume its reserves on COW instead
5576 	 * of the full address range.
5577 	 */
5578 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5579 			old_folio != pagecache_folio)
5580 		outside_reserve = 1;
5581 
5582 	folio_get(old_folio);
5583 
5584 	/*
5585 	 * Drop page table lock as buddy allocator may be called. It will
5586 	 * be acquired again before returning to the caller, as expected.
5587 	 */
5588 	spin_unlock(ptl);
5589 	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5590 
5591 	if (IS_ERR(new_folio)) {
5592 		/*
5593 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5594 		 * it is due to references held by a child and an insufficient
5595 		 * huge page pool. To guarantee the original mappers
5596 		 * reliability, unmap the page from child processes. The child
5597 		 * may get SIGKILLed if it later faults.
5598 		 */
5599 		if (outside_reserve) {
5600 			struct address_space *mapping = vma->vm_file->f_mapping;
5601 			pgoff_t idx;
5602 			u32 hash;
5603 
5604 			folio_put(old_folio);
5605 			/*
5606 			 * Drop hugetlb_fault_mutex and vma_lock before
5607 			 * unmapping.  unmapping needs to hold vma_lock
5608 			 * in write mode.  Dropping vma_lock in read mode
5609 			 * here is OK as COW mappings do not interact with
5610 			 * PMD sharing.
5611 			 *
5612 			 * Reacquire both after unmap operation.
5613 			 */
5614 			idx = vma_hugecache_offset(h, vma, haddr);
5615 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5616 			hugetlb_vma_unlock_read(vma);
5617 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5618 
5619 			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5620 
5621 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5622 			hugetlb_vma_lock_read(vma);
5623 			spin_lock(ptl);
5624 			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5625 			if (likely(ptep &&
5626 				   pte_same(huge_ptep_get(ptep), pte)))
5627 				goto retry_avoidcopy;
5628 			/*
5629 			 * race occurs while re-acquiring page table
5630 			 * lock, and our job is done.
5631 			 */
5632 			delayacct_wpcopy_end();
5633 			return 0;
5634 		}
5635 
5636 		ret = vmf_error(PTR_ERR(new_folio));
5637 		goto out_release_old;
5638 	}
5639 
5640 	/*
5641 	 * When the original hugepage is shared one, it does not have
5642 	 * anon_vma prepared.
5643 	 */
5644 	if (unlikely(anon_vma_prepare(vma))) {
5645 		ret = VM_FAULT_OOM;
5646 		goto out_release_all;
5647 	}
5648 
5649 	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5650 		ret = VM_FAULT_HWPOISON_LARGE;
5651 		goto out_release_all;
5652 	}
5653 	__folio_mark_uptodate(new_folio);
5654 
5655 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5656 				haddr + huge_page_size(h));
5657 	mmu_notifier_invalidate_range_start(&range);
5658 
5659 	/*
5660 	 * Retake the page table lock to check for racing updates
5661 	 * before the page tables are altered
5662 	 */
5663 	spin_lock(ptl);
5664 	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5665 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5666 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5667 
5668 		/* Break COW or unshare */
5669 		huge_ptep_clear_flush(vma, haddr, ptep);
5670 		page_remove_rmap(&old_folio->page, vma, true);
5671 		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5672 		if (huge_pte_uffd_wp(pte))
5673 			newpte = huge_pte_mkuffd_wp(newpte);
5674 		set_huge_pte_at(mm, haddr, ptep, newpte);
5675 		folio_set_hugetlb_migratable(new_folio);
5676 		/* Make the old page be freed below */
5677 		new_folio = old_folio;
5678 	}
5679 	spin_unlock(ptl);
5680 	mmu_notifier_invalidate_range_end(&range);
5681 out_release_all:
5682 	/*
5683 	 * No restore in case of successful pagetable update (Break COW or
5684 	 * unshare)
5685 	 */
5686 	if (new_folio != old_folio)
5687 		restore_reserve_on_error(h, vma, haddr, new_folio);
5688 	folio_put(new_folio);
5689 out_release_old:
5690 	folio_put(old_folio);
5691 
5692 	spin_lock(ptl); /* Caller expects lock to be held */
5693 
5694 	delayacct_wpcopy_end();
5695 	return ret;
5696 }
5697 
5698 /*
5699  * Return whether there is a pagecache page to back given address within VMA.
5700  */
5701 static bool hugetlbfs_pagecache_present(struct hstate *h,
5702 			struct vm_area_struct *vma, unsigned long address)
5703 {
5704 	struct address_space *mapping = vma->vm_file->f_mapping;
5705 	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5706 	struct folio *folio;
5707 
5708 	folio = filemap_get_folio(mapping, idx);
5709 	if (IS_ERR(folio))
5710 		return false;
5711 	folio_put(folio);
5712 	return true;
5713 }
5714 
5715 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5716 			   pgoff_t idx)
5717 {
5718 	struct inode *inode = mapping->host;
5719 	struct hstate *h = hstate_inode(inode);
5720 	int err;
5721 
5722 	__folio_set_locked(folio);
5723 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5724 
5725 	if (unlikely(err)) {
5726 		__folio_clear_locked(folio);
5727 		return err;
5728 	}
5729 	folio_clear_hugetlb_restore_reserve(folio);
5730 
5731 	/*
5732 	 * mark folio dirty so that it will not be removed from cache/file
5733 	 * by non-hugetlbfs specific code paths.
5734 	 */
5735 	folio_mark_dirty(folio);
5736 
5737 	spin_lock(&inode->i_lock);
5738 	inode->i_blocks += blocks_per_huge_page(h);
5739 	spin_unlock(&inode->i_lock);
5740 	return 0;
5741 }
5742 
5743 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5744 						  struct address_space *mapping,
5745 						  pgoff_t idx,
5746 						  unsigned int flags,
5747 						  unsigned long haddr,
5748 						  unsigned long addr,
5749 						  unsigned long reason)
5750 {
5751 	u32 hash;
5752 	struct vm_fault vmf = {
5753 		.vma = vma,
5754 		.address = haddr,
5755 		.real_address = addr,
5756 		.flags = flags,
5757 
5758 		/*
5759 		 * Hard to debug if it ends up being
5760 		 * used by a callee that assumes
5761 		 * something about the other
5762 		 * uninitialized fields... same as in
5763 		 * memory.c
5764 		 */
5765 	};
5766 
5767 	/*
5768 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5769 	 * userfault. Also mmap_lock could be dropped due to handling
5770 	 * userfault, any vma operation should be careful from here.
5771 	 */
5772 	hugetlb_vma_unlock_read(vma);
5773 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5774 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5775 	return handle_userfault(&vmf, reason);
5776 }
5777 
5778 /*
5779  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5780  * false if pte changed or is changing.
5781  */
5782 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5783 			       pte_t *ptep, pte_t old_pte)
5784 {
5785 	spinlock_t *ptl;
5786 	bool same;
5787 
5788 	ptl = huge_pte_lock(h, mm, ptep);
5789 	same = pte_same(huge_ptep_get(ptep), old_pte);
5790 	spin_unlock(ptl);
5791 
5792 	return same;
5793 }
5794 
5795 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5796 			struct vm_area_struct *vma,
5797 			struct address_space *mapping, pgoff_t idx,
5798 			unsigned long address, pte_t *ptep,
5799 			pte_t old_pte, unsigned int flags)
5800 {
5801 	struct hstate *h = hstate_vma(vma);
5802 	vm_fault_t ret = VM_FAULT_SIGBUS;
5803 	int anon_rmap = 0;
5804 	unsigned long size;
5805 	struct folio *folio;
5806 	pte_t new_pte;
5807 	spinlock_t *ptl;
5808 	unsigned long haddr = address & huge_page_mask(h);
5809 	bool new_folio, new_pagecache_folio = false;
5810 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5811 
5812 	/*
5813 	 * Currently, we are forced to kill the process in the event the
5814 	 * original mapper has unmapped pages from the child due to a failed
5815 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5816 	 * be obvious.
5817 	 */
5818 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5819 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5820 			   current->pid);
5821 		goto out;
5822 	}
5823 
5824 	/*
5825 	 * Use page lock to guard against racing truncation
5826 	 * before we get page_table_lock.
5827 	 */
5828 	new_folio = false;
5829 	folio = filemap_lock_folio(mapping, idx);
5830 	if (IS_ERR(folio)) {
5831 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5832 		if (idx >= size)
5833 			goto out;
5834 		/* Check for page in userfault range */
5835 		if (userfaultfd_missing(vma)) {
5836 			/*
5837 			 * Since hugetlb_no_page() was examining pte
5838 			 * without pgtable lock, we need to re-test under
5839 			 * lock because the pte may not be stable and could
5840 			 * have changed from under us.  Try to detect
5841 			 * either changed or during-changing ptes and retry
5842 			 * properly when needed.
5843 			 *
5844 			 * Note that userfaultfd is actually fine with
5845 			 * false positives (e.g. caused by pte changed),
5846 			 * but not wrong logical events (e.g. caused by
5847 			 * reading a pte during changing).  The latter can
5848 			 * confuse the userspace, so the strictness is very
5849 			 * much preferred.  E.g., MISSING event should
5850 			 * never happen on the page after UFFDIO_COPY has
5851 			 * correctly installed the page and returned.
5852 			 */
5853 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5854 				ret = 0;
5855 				goto out;
5856 			}
5857 
5858 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5859 							haddr, address,
5860 							VM_UFFD_MISSING);
5861 		}
5862 
5863 		folio = alloc_hugetlb_folio(vma, haddr, 0);
5864 		if (IS_ERR(folio)) {
5865 			/*
5866 			 * Returning error will result in faulting task being
5867 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5868 			 * tasks from racing to fault in the same page which
5869 			 * could result in false unable to allocate errors.
5870 			 * Page migration does not take the fault mutex, but
5871 			 * does a clear then write of pte's under page table
5872 			 * lock.  Page fault code could race with migration,
5873 			 * notice the clear pte and try to allocate a page
5874 			 * here.  Before returning error, get ptl and make
5875 			 * sure there really is no pte entry.
5876 			 */
5877 			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5878 				ret = vmf_error(PTR_ERR(folio));
5879 			else
5880 				ret = 0;
5881 			goto out;
5882 		}
5883 		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5884 		__folio_mark_uptodate(folio);
5885 		new_folio = true;
5886 
5887 		if (vma->vm_flags & VM_MAYSHARE) {
5888 			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5889 			if (err) {
5890 				/*
5891 				 * err can't be -EEXIST which implies someone
5892 				 * else consumed the reservation since hugetlb
5893 				 * fault mutex is held when add a hugetlb page
5894 				 * to the page cache. So it's safe to call
5895 				 * restore_reserve_on_error() here.
5896 				 */
5897 				restore_reserve_on_error(h, vma, haddr, folio);
5898 				folio_put(folio);
5899 				goto out;
5900 			}
5901 			new_pagecache_folio = true;
5902 		} else {
5903 			folio_lock(folio);
5904 			if (unlikely(anon_vma_prepare(vma))) {
5905 				ret = VM_FAULT_OOM;
5906 				goto backout_unlocked;
5907 			}
5908 			anon_rmap = 1;
5909 		}
5910 	} else {
5911 		/*
5912 		 * If memory error occurs between mmap() and fault, some process
5913 		 * don't have hwpoisoned swap entry for errored virtual address.
5914 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5915 		 */
5916 		if (unlikely(folio_test_hwpoison(folio))) {
5917 			ret = VM_FAULT_HWPOISON_LARGE |
5918 				VM_FAULT_SET_HINDEX(hstate_index(h));
5919 			goto backout_unlocked;
5920 		}
5921 
5922 		/* Check for page in userfault range. */
5923 		if (userfaultfd_minor(vma)) {
5924 			folio_unlock(folio);
5925 			folio_put(folio);
5926 			/* See comment in userfaultfd_missing() block above */
5927 			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5928 				ret = 0;
5929 				goto out;
5930 			}
5931 			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5932 							haddr, address,
5933 							VM_UFFD_MINOR);
5934 		}
5935 	}
5936 
5937 	/*
5938 	 * If we are going to COW a private mapping later, we examine the
5939 	 * pending reservations for this page now. This will ensure that
5940 	 * any allocations necessary to record that reservation occur outside
5941 	 * the spinlock.
5942 	 */
5943 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5944 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5945 			ret = VM_FAULT_OOM;
5946 			goto backout_unlocked;
5947 		}
5948 		/* Just decrements count, does not deallocate */
5949 		vma_end_reservation(h, vma, haddr);
5950 	}
5951 
5952 	ptl = huge_pte_lock(h, mm, ptep);
5953 	ret = 0;
5954 	/* If pte changed from under us, retry */
5955 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5956 		goto backout;
5957 
5958 	if (anon_rmap)
5959 		hugepage_add_new_anon_rmap(folio, vma, haddr);
5960 	else
5961 		page_dup_file_rmap(&folio->page, true);
5962 	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5963 				&& (vma->vm_flags & VM_SHARED)));
5964 	/*
5965 	 * If this pte was previously wr-protected, keep it wr-protected even
5966 	 * if populated.
5967 	 */
5968 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5969 		new_pte = huge_pte_mkuffd_wp(new_pte);
5970 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5971 
5972 	hugetlb_count_add(pages_per_huge_page(h), mm);
5973 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5974 		/* Optimization, do the COW without a second fault */
5975 		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5976 	}
5977 
5978 	spin_unlock(ptl);
5979 
5980 	/*
5981 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
5982 	 * found in the pagecache may not have hugetlb_migratable if they have
5983 	 * been isolated for migration.
5984 	 */
5985 	if (new_folio)
5986 		folio_set_hugetlb_migratable(folio);
5987 
5988 	folio_unlock(folio);
5989 out:
5990 	hugetlb_vma_unlock_read(vma);
5991 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5992 	return ret;
5993 
5994 backout:
5995 	spin_unlock(ptl);
5996 backout_unlocked:
5997 	if (new_folio && !new_pagecache_folio)
5998 		restore_reserve_on_error(h, vma, haddr, folio);
5999 
6000 	folio_unlock(folio);
6001 	folio_put(folio);
6002 	goto out;
6003 }
6004 
6005 #ifdef CONFIG_SMP
6006 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6007 {
6008 	unsigned long key[2];
6009 	u32 hash;
6010 
6011 	key[0] = (unsigned long) mapping;
6012 	key[1] = idx;
6013 
6014 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6015 
6016 	return hash & (num_fault_mutexes - 1);
6017 }
6018 #else
6019 /*
6020  * For uniprocessor systems we always use a single mutex, so just
6021  * return 0 and avoid the hashing overhead.
6022  */
6023 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6024 {
6025 	return 0;
6026 }
6027 #endif
6028 
6029 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6030 			unsigned long address, unsigned int flags)
6031 {
6032 	pte_t *ptep, entry;
6033 	spinlock_t *ptl;
6034 	vm_fault_t ret;
6035 	u32 hash;
6036 	pgoff_t idx;
6037 	struct folio *folio = NULL;
6038 	struct folio *pagecache_folio = NULL;
6039 	struct hstate *h = hstate_vma(vma);
6040 	struct address_space *mapping;
6041 	int need_wait_lock = 0;
6042 	unsigned long haddr = address & huge_page_mask(h);
6043 
6044 	/* TODO: Handle faults under the VMA lock */
6045 	if (flags & FAULT_FLAG_VMA_LOCK) {
6046 		vma_end_read(vma);
6047 		return VM_FAULT_RETRY;
6048 	}
6049 
6050 	/*
6051 	 * Serialize hugepage allocation and instantiation, so that we don't
6052 	 * get spurious allocation failures if two CPUs race to instantiate
6053 	 * the same page in the page cache.
6054 	 */
6055 	mapping = vma->vm_file->f_mapping;
6056 	idx = vma_hugecache_offset(h, vma, haddr);
6057 	hash = hugetlb_fault_mutex_hash(mapping, idx);
6058 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6059 
6060 	/*
6061 	 * Acquire vma lock before calling huge_pte_alloc and hold
6062 	 * until finished with ptep.  This prevents huge_pmd_unshare from
6063 	 * being called elsewhere and making the ptep no longer valid.
6064 	 */
6065 	hugetlb_vma_lock_read(vma);
6066 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6067 	if (!ptep) {
6068 		hugetlb_vma_unlock_read(vma);
6069 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6070 		return VM_FAULT_OOM;
6071 	}
6072 
6073 	entry = huge_ptep_get(ptep);
6074 	if (huge_pte_none_mostly(entry)) {
6075 		if (is_pte_marker(entry)) {
6076 			pte_marker marker =
6077 				pte_marker_get(pte_to_swp_entry(entry));
6078 
6079 			if (marker & PTE_MARKER_POISONED) {
6080 				ret = VM_FAULT_HWPOISON_LARGE;
6081 				goto out_mutex;
6082 			}
6083 		}
6084 
6085 		/*
6086 		 * Other PTE markers should be handled the same way as none PTE.
6087 		 *
6088 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6089 		 * mutex internally, which make us return immediately.
6090 		 */
6091 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6092 				      entry, flags);
6093 	}
6094 
6095 	ret = 0;
6096 
6097 	/*
6098 	 * entry could be a migration/hwpoison entry at this point, so this
6099 	 * check prevents the kernel from going below assuming that we have
6100 	 * an active hugepage in pagecache. This goto expects the 2nd page
6101 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6102 	 * properly handle it.
6103 	 */
6104 	if (!pte_present(entry)) {
6105 		if (unlikely(is_hugetlb_entry_migration(entry))) {
6106 			/*
6107 			 * Release the hugetlb fault lock now, but retain
6108 			 * the vma lock, because it is needed to guard the
6109 			 * huge_pte_lockptr() later in
6110 			 * migration_entry_wait_huge(). The vma lock will
6111 			 * be released there.
6112 			 */
6113 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6114 			migration_entry_wait_huge(vma, ptep);
6115 			return 0;
6116 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6117 			ret = VM_FAULT_HWPOISON_LARGE |
6118 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6119 		goto out_mutex;
6120 	}
6121 
6122 	/*
6123 	 * If we are going to COW/unshare the mapping later, we examine the
6124 	 * pending reservations for this page now. This will ensure that any
6125 	 * allocations necessary to record that reservation occur outside the
6126 	 * spinlock. Also lookup the pagecache page now as it is used to
6127 	 * determine if a reservation has been consumed.
6128 	 */
6129 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6130 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6131 		if (vma_needs_reservation(h, vma, haddr) < 0) {
6132 			ret = VM_FAULT_OOM;
6133 			goto out_mutex;
6134 		}
6135 		/* Just decrements count, does not deallocate */
6136 		vma_end_reservation(h, vma, haddr);
6137 
6138 		pagecache_folio = filemap_lock_folio(mapping, idx);
6139 		if (IS_ERR(pagecache_folio))
6140 			pagecache_folio = NULL;
6141 	}
6142 
6143 	ptl = huge_pte_lock(h, mm, ptep);
6144 
6145 	/* Check for a racing update before calling hugetlb_wp() */
6146 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6147 		goto out_ptl;
6148 
6149 	/* Handle userfault-wp first, before trying to lock more pages */
6150 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6151 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6152 		struct vm_fault vmf = {
6153 			.vma = vma,
6154 			.address = haddr,
6155 			.real_address = address,
6156 			.flags = flags,
6157 		};
6158 
6159 		spin_unlock(ptl);
6160 		if (pagecache_folio) {
6161 			folio_unlock(pagecache_folio);
6162 			folio_put(pagecache_folio);
6163 		}
6164 		hugetlb_vma_unlock_read(vma);
6165 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6166 		return handle_userfault(&vmf, VM_UFFD_WP);
6167 	}
6168 
6169 	/*
6170 	 * hugetlb_wp() requires page locks of pte_page(entry) and
6171 	 * pagecache_folio, so here we need take the former one
6172 	 * when folio != pagecache_folio or !pagecache_folio.
6173 	 */
6174 	folio = page_folio(pte_page(entry));
6175 	if (folio != pagecache_folio)
6176 		if (!folio_trylock(folio)) {
6177 			need_wait_lock = 1;
6178 			goto out_ptl;
6179 		}
6180 
6181 	folio_get(folio);
6182 
6183 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6184 		if (!huge_pte_write(entry)) {
6185 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6186 					 pagecache_folio, ptl);
6187 			goto out_put_page;
6188 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6189 			entry = huge_pte_mkdirty(entry);
6190 		}
6191 	}
6192 	entry = pte_mkyoung(entry);
6193 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6194 						flags & FAULT_FLAG_WRITE))
6195 		update_mmu_cache(vma, haddr, ptep);
6196 out_put_page:
6197 	if (folio != pagecache_folio)
6198 		folio_unlock(folio);
6199 	folio_put(folio);
6200 out_ptl:
6201 	spin_unlock(ptl);
6202 
6203 	if (pagecache_folio) {
6204 		folio_unlock(pagecache_folio);
6205 		folio_put(pagecache_folio);
6206 	}
6207 out_mutex:
6208 	hugetlb_vma_unlock_read(vma);
6209 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6210 	/*
6211 	 * Generally it's safe to hold refcount during waiting page lock. But
6212 	 * here we just wait to defer the next page fault to avoid busy loop and
6213 	 * the page is not used after unlocked before returning from the current
6214 	 * page fault. So we are safe from accessing freed page, even if we wait
6215 	 * here without taking refcount.
6216 	 */
6217 	if (need_wait_lock)
6218 		folio_wait_locked(folio);
6219 	return ret;
6220 }
6221 
6222 #ifdef CONFIG_USERFAULTFD
6223 /*
6224  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6225  * with modifications for hugetlb pages.
6226  */
6227 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6228 			     struct vm_area_struct *dst_vma,
6229 			     unsigned long dst_addr,
6230 			     unsigned long src_addr,
6231 			     uffd_flags_t flags,
6232 			     struct folio **foliop)
6233 {
6234 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6235 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6236 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6237 	struct hstate *h = hstate_vma(dst_vma);
6238 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6239 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6240 	unsigned long size;
6241 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6242 	pte_t _dst_pte;
6243 	spinlock_t *ptl;
6244 	int ret = -ENOMEM;
6245 	struct folio *folio;
6246 	int writable;
6247 	bool folio_in_pagecache = false;
6248 
6249 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6250 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6251 
6252 		/* Don't overwrite any existing PTEs (even markers) */
6253 		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6254 			spin_unlock(ptl);
6255 			return -EEXIST;
6256 		}
6257 
6258 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6259 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6260 
6261 		/* No need to invalidate - it was non-present before */
6262 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6263 
6264 		spin_unlock(ptl);
6265 		return 0;
6266 	}
6267 
6268 	if (is_continue) {
6269 		ret = -EFAULT;
6270 		folio = filemap_lock_folio(mapping, idx);
6271 		if (IS_ERR(folio))
6272 			goto out;
6273 		folio_in_pagecache = true;
6274 	} else if (!*foliop) {
6275 		/* If a folio already exists, then it's UFFDIO_COPY for
6276 		 * a non-missing case. Return -EEXIST.
6277 		 */
6278 		if (vm_shared &&
6279 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6280 			ret = -EEXIST;
6281 			goto out;
6282 		}
6283 
6284 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6285 		if (IS_ERR(folio)) {
6286 			ret = -ENOMEM;
6287 			goto out;
6288 		}
6289 
6290 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6291 					   false);
6292 
6293 		/* fallback to copy_from_user outside mmap_lock */
6294 		if (unlikely(ret)) {
6295 			ret = -ENOENT;
6296 			/* Free the allocated folio which may have
6297 			 * consumed a reservation.
6298 			 */
6299 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6300 			folio_put(folio);
6301 
6302 			/* Allocate a temporary folio to hold the copied
6303 			 * contents.
6304 			 */
6305 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6306 			if (!folio) {
6307 				ret = -ENOMEM;
6308 				goto out;
6309 			}
6310 			*foliop = folio;
6311 			/* Set the outparam foliop and return to the caller to
6312 			 * copy the contents outside the lock. Don't free the
6313 			 * folio.
6314 			 */
6315 			goto out;
6316 		}
6317 	} else {
6318 		if (vm_shared &&
6319 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6320 			folio_put(*foliop);
6321 			ret = -EEXIST;
6322 			*foliop = NULL;
6323 			goto out;
6324 		}
6325 
6326 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6327 		if (IS_ERR(folio)) {
6328 			folio_put(*foliop);
6329 			ret = -ENOMEM;
6330 			*foliop = NULL;
6331 			goto out;
6332 		}
6333 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6334 		folio_put(*foliop);
6335 		*foliop = NULL;
6336 		if (ret) {
6337 			folio_put(folio);
6338 			goto out;
6339 		}
6340 	}
6341 
6342 	/*
6343 	 * The memory barrier inside __folio_mark_uptodate makes sure that
6344 	 * preceding stores to the page contents become visible before
6345 	 * the set_pte_at() write.
6346 	 */
6347 	__folio_mark_uptodate(folio);
6348 
6349 	/* Add shared, newly allocated pages to the page cache. */
6350 	if (vm_shared && !is_continue) {
6351 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6352 		ret = -EFAULT;
6353 		if (idx >= size)
6354 			goto out_release_nounlock;
6355 
6356 		/*
6357 		 * Serialization between remove_inode_hugepages() and
6358 		 * hugetlb_add_to_page_cache() below happens through the
6359 		 * hugetlb_fault_mutex_table that here must be hold by
6360 		 * the caller.
6361 		 */
6362 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6363 		if (ret)
6364 			goto out_release_nounlock;
6365 		folio_in_pagecache = true;
6366 	}
6367 
6368 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6369 
6370 	ret = -EIO;
6371 	if (folio_test_hwpoison(folio))
6372 		goto out_release_unlock;
6373 
6374 	/*
6375 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6376 	 * registered, we firstly wr-protect a none pte which has no page cache
6377 	 * page backing it, then access the page.
6378 	 */
6379 	ret = -EEXIST;
6380 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6381 		goto out_release_unlock;
6382 
6383 	if (folio_in_pagecache)
6384 		page_dup_file_rmap(&folio->page, true);
6385 	else
6386 		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6387 
6388 	/*
6389 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6390 	 * with wp flag set, don't set pte write bit.
6391 	 */
6392 	if (wp_enabled || (is_continue && !vm_shared))
6393 		writable = 0;
6394 	else
6395 		writable = dst_vma->vm_flags & VM_WRITE;
6396 
6397 	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6398 	/*
6399 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6400 	 * extremely important for hugetlbfs for now since swapping is not
6401 	 * supported, but we should still be clear in that this page cannot be
6402 	 * thrown away at will, even if write bit not set.
6403 	 */
6404 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6405 	_dst_pte = pte_mkyoung(_dst_pte);
6406 
6407 	if (wp_enabled)
6408 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6409 
6410 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6411 
6412 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6413 
6414 	/* No need to invalidate - it was non-present before */
6415 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6416 
6417 	spin_unlock(ptl);
6418 	if (!is_continue)
6419 		folio_set_hugetlb_migratable(folio);
6420 	if (vm_shared || is_continue)
6421 		folio_unlock(folio);
6422 	ret = 0;
6423 out:
6424 	return ret;
6425 out_release_unlock:
6426 	spin_unlock(ptl);
6427 	if (vm_shared || is_continue)
6428 		folio_unlock(folio);
6429 out_release_nounlock:
6430 	if (!folio_in_pagecache)
6431 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6432 	folio_put(folio);
6433 	goto out;
6434 }
6435 #endif /* CONFIG_USERFAULTFD */
6436 
6437 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6438 				      unsigned long address, unsigned int flags,
6439 				      unsigned int *page_mask)
6440 {
6441 	struct hstate *h = hstate_vma(vma);
6442 	struct mm_struct *mm = vma->vm_mm;
6443 	unsigned long haddr = address & huge_page_mask(h);
6444 	struct page *page = NULL;
6445 	spinlock_t *ptl;
6446 	pte_t *pte, entry;
6447 	int ret;
6448 
6449 	hugetlb_vma_lock_read(vma);
6450 	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6451 	if (!pte)
6452 		goto out_unlock;
6453 
6454 	ptl = huge_pte_lock(h, mm, pte);
6455 	entry = huge_ptep_get(pte);
6456 	if (pte_present(entry)) {
6457 		page = pte_page(entry);
6458 
6459 		if (!huge_pte_write(entry)) {
6460 			if (flags & FOLL_WRITE) {
6461 				page = NULL;
6462 				goto out;
6463 			}
6464 
6465 			if (gup_must_unshare(vma, flags, page)) {
6466 				/* Tell the caller to do unsharing */
6467 				page = ERR_PTR(-EMLINK);
6468 				goto out;
6469 			}
6470 		}
6471 
6472 		page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6473 
6474 		/*
6475 		 * Note that page may be a sub-page, and with vmemmap
6476 		 * optimizations the page struct may be read only.
6477 		 * try_grab_page() will increase the ref count on the
6478 		 * head page, so this will be OK.
6479 		 *
6480 		 * try_grab_page() should always be able to get the page here,
6481 		 * because we hold the ptl lock and have verified pte_present().
6482 		 */
6483 		ret = try_grab_page(page, flags);
6484 
6485 		if (WARN_ON_ONCE(ret)) {
6486 			page = ERR_PTR(ret);
6487 			goto out;
6488 		}
6489 
6490 		*page_mask = (1U << huge_page_order(h)) - 1;
6491 	}
6492 out:
6493 	spin_unlock(ptl);
6494 out_unlock:
6495 	hugetlb_vma_unlock_read(vma);
6496 
6497 	/*
6498 	 * Fixup retval for dump requests: if pagecache doesn't exist,
6499 	 * don't try to allocate a new page but just skip it.
6500 	 */
6501 	if (!page && (flags & FOLL_DUMP) &&
6502 	    !hugetlbfs_pagecache_present(h, vma, address))
6503 		page = ERR_PTR(-EFAULT);
6504 
6505 	return page;
6506 }
6507 
6508 long hugetlb_change_protection(struct vm_area_struct *vma,
6509 		unsigned long address, unsigned long end,
6510 		pgprot_t newprot, unsigned long cp_flags)
6511 {
6512 	struct mm_struct *mm = vma->vm_mm;
6513 	unsigned long start = address;
6514 	pte_t *ptep;
6515 	pte_t pte;
6516 	struct hstate *h = hstate_vma(vma);
6517 	long pages = 0, psize = huge_page_size(h);
6518 	bool shared_pmd = false;
6519 	struct mmu_notifier_range range;
6520 	unsigned long last_addr_mask;
6521 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6522 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6523 
6524 	/*
6525 	 * In the case of shared PMDs, the area to flush could be beyond
6526 	 * start/end.  Set range.start/range.end to cover the maximum possible
6527 	 * range if PMD sharing is possible.
6528 	 */
6529 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6530 				0, mm, start, end);
6531 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6532 
6533 	BUG_ON(address >= end);
6534 	flush_cache_range(vma, range.start, range.end);
6535 
6536 	mmu_notifier_invalidate_range_start(&range);
6537 	hugetlb_vma_lock_write(vma);
6538 	i_mmap_lock_write(vma->vm_file->f_mapping);
6539 	last_addr_mask = hugetlb_mask_last_page(h);
6540 	for (; address < end; address += psize) {
6541 		spinlock_t *ptl;
6542 		ptep = hugetlb_walk(vma, address, psize);
6543 		if (!ptep) {
6544 			if (!uffd_wp) {
6545 				address |= last_addr_mask;
6546 				continue;
6547 			}
6548 			/*
6549 			 * Userfaultfd wr-protect requires pgtable
6550 			 * pre-allocations to install pte markers.
6551 			 */
6552 			ptep = huge_pte_alloc(mm, vma, address, psize);
6553 			if (!ptep) {
6554 				pages = -ENOMEM;
6555 				break;
6556 			}
6557 		}
6558 		ptl = huge_pte_lock(h, mm, ptep);
6559 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6560 			/*
6561 			 * When uffd-wp is enabled on the vma, unshare
6562 			 * shouldn't happen at all.  Warn about it if it
6563 			 * happened due to some reason.
6564 			 */
6565 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6566 			pages++;
6567 			spin_unlock(ptl);
6568 			shared_pmd = true;
6569 			address |= last_addr_mask;
6570 			continue;
6571 		}
6572 		pte = huge_ptep_get(ptep);
6573 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6574 			/* Nothing to do. */
6575 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6576 			swp_entry_t entry = pte_to_swp_entry(pte);
6577 			struct page *page = pfn_swap_entry_to_page(entry);
6578 			pte_t newpte = pte;
6579 
6580 			if (is_writable_migration_entry(entry)) {
6581 				if (PageAnon(page))
6582 					entry = make_readable_exclusive_migration_entry(
6583 								swp_offset(entry));
6584 				else
6585 					entry = make_readable_migration_entry(
6586 								swp_offset(entry));
6587 				newpte = swp_entry_to_pte(entry);
6588 				pages++;
6589 			}
6590 
6591 			if (uffd_wp)
6592 				newpte = pte_swp_mkuffd_wp(newpte);
6593 			else if (uffd_wp_resolve)
6594 				newpte = pte_swp_clear_uffd_wp(newpte);
6595 			if (!pte_same(pte, newpte))
6596 				set_huge_pte_at(mm, address, ptep, newpte);
6597 		} else if (unlikely(is_pte_marker(pte))) {
6598 			/* No other markers apply for now. */
6599 			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6600 			if (uffd_wp_resolve)
6601 				/* Safe to modify directly (non-present->none). */
6602 				huge_pte_clear(mm, address, ptep, psize);
6603 		} else if (!huge_pte_none(pte)) {
6604 			pte_t old_pte;
6605 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6606 
6607 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6608 			pte = huge_pte_modify(old_pte, newprot);
6609 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6610 			if (uffd_wp)
6611 				pte = huge_pte_mkuffd_wp(pte);
6612 			else if (uffd_wp_resolve)
6613 				pte = huge_pte_clear_uffd_wp(pte);
6614 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6615 			pages++;
6616 		} else {
6617 			/* None pte */
6618 			if (unlikely(uffd_wp))
6619 				/* Safe to modify directly (none->non-present). */
6620 				set_huge_pte_at(mm, address, ptep,
6621 						make_pte_marker(PTE_MARKER_UFFD_WP));
6622 		}
6623 		spin_unlock(ptl);
6624 	}
6625 	/*
6626 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6627 	 * may have cleared our pud entry and done put_page on the page table:
6628 	 * once we release i_mmap_rwsem, another task can do the final put_page
6629 	 * and that page table be reused and filled with junk.  If we actually
6630 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6631 	 */
6632 	if (shared_pmd)
6633 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6634 	else
6635 		flush_hugetlb_tlb_range(vma, start, end);
6636 	/*
6637 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6638 	 * downgrading page table protection not changing it to point to a new
6639 	 * page.
6640 	 *
6641 	 * See Documentation/mm/mmu_notifier.rst
6642 	 */
6643 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6644 	hugetlb_vma_unlock_write(vma);
6645 	mmu_notifier_invalidate_range_end(&range);
6646 
6647 	return pages > 0 ? (pages << h->order) : pages;
6648 }
6649 
6650 /* Return true if reservation was successful, false otherwise.  */
6651 bool hugetlb_reserve_pages(struct inode *inode,
6652 					long from, long to,
6653 					struct vm_area_struct *vma,
6654 					vm_flags_t vm_flags)
6655 {
6656 	long chg = -1, add = -1;
6657 	struct hstate *h = hstate_inode(inode);
6658 	struct hugepage_subpool *spool = subpool_inode(inode);
6659 	struct resv_map *resv_map;
6660 	struct hugetlb_cgroup *h_cg = NULL;
6661 	long gbl_reserve, regions_needed = 0;
6662 
6663 	/* This should never happen */
6664 	if (from > to) {
6665 		VM_WARN(1, "%s called with a negative range\n", __func__);
6666 		return false;
6667 	}
6668 
6669 	/*
6670 	 * vma specific semaphore used for pmd sharing and fault/truncation
6671 	 * synchronization
6672 	 */
6673 	hugetlb_vma_lock_alloc(vma);
6674 
6675 	/*
6676 	 * Only apply hugepage reservation if asked. At fault time, an
6677 	 * attempt will be made for VM_NORESERVE to allocate a page
6678 	 * without using reserves
6679 	 */
6680 	if (vm_flags & VM_NORESERVE)
6681 		return true;
6682 
6683 	/*
6684 	 * Shared mappings base their reservation on the number of pages that
6685 	 * are already allocated on behalf of the file. Private mappings need
6686 	 * to reserve the full area even if read-only as mprotect() may be
6687 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6688 	 */
6689 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6690 		/*
6691 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6692 		 * called for inodes for which resv_maps were created (see
6693 		 * hugetlbfs_get_inode).
6694 		 */
6695 		resv_map = inode_resv_map(inode);
6696 
6697 		chg = region_chg(resv_map, from, to, &regions_needed);
6698 	} else {
6699 		/* Private mapping. */
6700 		resv_map = resv_map_alloc();
6701 		if (!resv_map)
6702 			goto out_err;
6703 
6704 		chg = to - from;
6705 
6706 		set_vma_resv_map(vma, resv_map);
6707 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6708 	}
6709 
6710 	if (chg < 0)
6711 		goto out_err;
6712 
6713 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6714 				chg * pages_per_huge_page(h), &h_cg) < 0)
6715 		goto out_err;
6716 
6717 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6718 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6719 		 * of the resv_map.
6720 		 */
6721 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6722 	}
6723 
6724 	/*
6725 	 * There must be enough pages in the subpool for the mapping. If
6726 	 * the subpool has a minimum size, there may be some global
6727 	 * reservations already in place (gbl_reserve).
6728 	 */
6729 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6730 	if (gbl_reserve < 0)
6731 		goto out_uncharge_cgroup;
6732 
6733 	/*
6734 	 * Check enough hugepages are available for the reservation.
6735 	 * Hand the pages back to the subpool if there are not
6736 	 */
6737 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6738 		goto out_put_pages;
6739 
6740 	/*
6741 	 * Account for the reservations made. Shared mappings record regions
6742 	 * that have reservations as they are shared by multiple VMAs.
6743 	 * When the last VMA disappears, the region map says how much
6744 	 * the reservation was and the page cache tells how much of
6745 	 * the reservation was consumed. Private mappings are per-VMA and
6746 	 * only the consumed reservations are tracked. When the VMA
6747 	 * disappears, the original reservation is the VMA size and the
6748 	 * consumed reservations are stored in the map. Hence, nothing
6749 	 * else has to be done for private mappings here
6750 	 */
6751 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6752 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6753 
6754 		if (unlikely(add < 0)) {
6755 			hugetlb_acct_memory(h, -gbl_reserve);
6756 			goto out_put_pages;
6757 		} else if (unlikely(chg > add)) {
6758 			/*
6759 			 * pages in this range were added to the reserve
6760 			 * map between region_chg and region_add.  This
6761 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6762 			 * the subpool and reserve counts modified above
6763 			 * based on the difference.
6764 			 */
6765 			long rsv_adjust;
6766 
6767 			/*
6768 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6769 			 * reference to h_cg->css. See comment below for detail.
6770 			 */
6771 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6772 				hstate_index(h),
6773 				(chg - add) * pages_per_huge_page(h), h_cg);
6774 
6775 			rsv_adjust = hugepage_subpool_put_pages(spool,
6776 								chg - add);
6777 			hugetlb_acct_memory(h, -rsv_adjust);
6778 		} else if (h_cg) {
6779 			/*
6780 			 * The file_regions will hold their own reference to
6781 			 * h_cg->css. So we should release the reference held
6782 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6783 			 * done.
6784 			 */
6785 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6786 		}
6787 	}
6788 	return true;
6789 
6790 out_put_pages:
6791 	/* put back original number of pages, chg */
6792 	(void)hugepage_subpool_put_pages(spool, chg);
6793 out_uncharge_cgroup:
6794 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6795 					    chg * pages_per_huge_page(h), h_cg);
6796 out_err:
6797 	hugetlb_vma_lock_free(vma);
6798 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6799 		/* Only call region_abort if the region_chg succeeded but the
6800 		 * region_add failed or didn't run.
6801 		 */
6802 		if (chg >= 0 && add < 0)
6803 			region_abort(resv_map, from, to, regions_needed);
6804 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6805 		kref_put(&resv_map->refs, resv_map_release);
6806 	return false;
6807 }
6808 
6809 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6810 								long freed)
6811 {
6812 	struct hstate *h = hstate_inode(inode);
6813 	struct resv_map *resv_map = inode_resv_map(inode);
6814 	long chg = 0;
6815 	struct hugepage_subpool *spool = subpool_inode(inode);
6816 	long gbl_reserve;
6817 
6818 	/*
6819 	 * Since this routine can be called in the evict inode path for all
6820 	 * hugetlbfs inodes, resv_map could be NULL.
6821 	 */
6822 	if (resv_map) {
6823 		chg = region_del(resv_map, start, end);
6824 		/*
6825 		 * region_del() can fail in the rare case where a region
6826 		 * must be split and another region descriptor can not be
6827 		 * allocated.  If end == LONG_MAX, it will not fail.
6828 		 */
6829 		if (chg < 0)
6830 			return chg;
6831 	}
6832 
6833 	spin_lock(&inode->i_lock);
6834 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6835 	spin_unlock(&inode->i_lock);
6836 
6837 	/*
6838 	 * If the subpool has a minimum size, the number of global
6839 	 * reservations to be released may be adjusted.
6840 	 *
6841 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6842 	 * won't go negative.
6843 	 */
6844 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6845 	hugetlb_acct_memory(h, -gbl_reserve);
6846 
6847 	return 0;
6848 }
6849 
6850 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6851 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6852 				struct vm_area_struct *vma,
6853 				unsigned long addr, pgoff_t idx)
6854 {
6855 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6856 				svma->vm_start;
6857 	unsigned long sbase = saddr & PUD_MASK;
6858 	unsigned long s_end = sbase + PUD_SIZE;
6859 
6860 	/* Allow segments to share if only one is marked locked */
6861 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6862 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6863 
6864 	/*
6865 	 * match the virtual addresses, permission and the alignment of the
6866 	 * page table page.
6867 	 *
6868 	 * Also, vma_lock (vm_private_data) is required for sharing.
6869 	 */
6870 	if (pmd_index(addr) != pmd_index(saddr) ||
6871 	    vm_flags != svm_flags ||
6872 	    !range_in_vma(svma, sbase, s_end) ||
6873 	    !svma->vm_private_data)
6874 		return 0;
6875 
6876 	return saddr;
6877 }
6878 
6879 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6880 {
6881 	unsigned long start = addr & PUD_MASK;
6882 	unsigned long end = start + PUD_SIZE;
6883 
6884 #ifdef CONFIG_USERFAULTFD
6885 	if (uffd_disable_huge_pmd_share(vma))
6886 		return false;
6887 #endif
6888 	/*
6889 	 * check on proper vm_flags and page table alignment
6890 	 */
6891 	if (!(vma->vm_flags & VM_MAYSHARE))
6892 		return false;
6893 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6894 		return false;
6895 	if (!range_in_vma(vma, start, end))
6896 		return false;
6897 	return true;
6898 }
6899 
6900 /*
6901  * Determine if start,end range within vma could be mapped by shared pmd.
6902  * If yes, adjust start and end to cover range associated with possible
6903  * shared pmd mappings.
6904  */
6905 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6906 				unsigned long *start, unsigned long *end)
6907 {
6908 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6909 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6910 
6911 	/*
6912 	 * vma needs to span at least one aligned PUD size, and the range
6913 	 * must be at least partially within in.
6914 	 */
6915 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6916 		(*end <= v_start) || (*start >= v_end))
6917 		return;
6918 
6919 	/* Extend the range to be PUD aligned for a worst case scenario */
6920 	if (*start > v_start)
6921 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6922 
6923 	if (*end < v_end)
6924 		*end = ALIGN(*end, PUD_SIZE);
6925 }
6926 
6927 /*
6928  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6929  * and returns the corresponding pte. While this is not necessary for the
6930  * !shared pmd case because we can allocate the pmd later as well, it makes the
6931  * code much cleaner. pmd allocation is essential for the shared case because
6932  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6933  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6934  * bad pmd for sharing.
6935  */
6936 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6937 		      unsigned long addr, pud_t *pud)
6938 {
6939 	struct address_space *mapping = vma->vm_file->f_mapping;
6940 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6941 			vma->vm_pgoff;
6942 	struct vm_area_struct *svma;
6943 	unsigned long saddr;
6944 	pte_t *spte = NULL;
6945 	pte_t *pte;
6946 
6947 	i_mmap_lock_read(mapping);
6948 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6949 		if (svma == vma)
6950 			continue;
6951 
6952 		saddr = page_table_shareable(svma, vma, addr, idx);
6953 		if (saddr) {
6954 			spte = hugetlb_walk(svma, saddr,
6955 					    vma_mmu_pagesize(svma));
6956 			if (spte) {
6957 				get_page(virt_to_page(spte));
6958 				break;
6959 			}
6960 		}
6961 	}
6962 
6963 	if (!spte)
6964 		goto out;
6965 
6966 	spin_lock(&mm->page_table_lock);
6967 	if (pud_none(*pud)) {
6968 		pud_populate(mm, pud,
6969 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6970 		mm_inc_nr_pmds(mm);
6971 	} else {
6972 		put_page(virt_to_page(spte));
6973 	}
6974 	spin_unlock(&mm->page_table_lock);
6975 out:
6976 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6977 	i_mmap_unlock_read(mapping);
6978 	return pte;
6979 }
6980 
6981 /*
6982  * unmap huge page backed by shared pte.
6983  *
6984  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6985  * indicated by page_count > 1, unmap is achieved by clearing pud and
6986  * decrementing the ref count. If count == 1, the pte page is not shared.
6987  *
6988  * Called with page table lock held.
6989  *
6990  * returns: 1 successfully unmapped a shared pte page
6991  *	    0 the underlying pte page is not shared, or it is the last user
6992  */
6993 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6994 					unsigned long addr, pte_t *ptep)
6995 {
6996 	pgd_t *pgd = pgd_offset(mm, addr);
6997 	p4d_t *p4d = p4d_offset(pgd, addr);
6998 	pud_t *pud = pud_offset(p4d, addr);
6999 
7000 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7001 	hugetlb_vma_assert_locked(vma);
7002 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7003 	if (page_count(virt_to_page(ptep)) == 1)
7004 		return 0;
7005 
7006 	pud_clear(pud);
7007 	put_page(virt_to_page(ptep));
7008 	mm_dec_nr_pmds(mm);
7009 	return 1;
7010 }
7011 
7012 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7013 
7014 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7015 		      unsigned long addr, pud_t *pud)
7016 {
7017 	return NULL;
7018 }
7019 
7020 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7021 				unsigned long addr, pte_t *ptep)
7022 {
7023 	return 0;
7024 }
7025 
7026 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7027 				unsigned long *start, unsigned long *end)
7028 {
7029 }
7030 
7031 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7032 {
7033 	return false;
7034 }
7035 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7036 
7037 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7038 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7039 			unsigned long addr, unsigned long sz)
7040 {
7041 	pgd_t *pgd;
7042 	p4d_t *p4d;
7043 	pud_t *pud;
7044 	pte_t *pte = NULL;
7045 
7046 	pgd = pgd_offset(mm, addr);
7047 	p4d = p4d_alloc(mm, pgd, addr);
7048 	if (!p4d)
7049 		return NULL;
7050 	pud = pud_alloc(mm, p4d, addr);
7051 	if (pud) {
7052 		if (sz == PUD_SIZE) {
7053 			pte = (pte_t *)pud;
7054 		} else {
7055 			BUG_ON(sz != PMD_SIZE);
7056 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7057 				pte = huge_pmd_share(mm, vma, addr, pud);
7058 			else
7059 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7060 		}
7061 	}
7062 
7063 	if (pte) {
7064 		pte_t pteval = ptep_get_lockless(pte);
7065 
7066 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7067 	}
7068 
7069 	return pte;
7070 }
7071 
7072 /*
7073  * huge_pte_offset() - Walk the page table to resolve the hugepage
7074  * entry at address @addr
7075  *
7076  * Return: Pointer to page table entry (PUD or PMD) for
7077  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7078  * size @sz doesn't match the hugepage size at this level of the page
7079  * table.
7080  */
7081 pte_t *huge_pte_offset(struct mm_struct *mm,
7082 		       unsigned long addr, unsigned long sz)
7083 {
7084 	pgd_t *pgd;
7085 	p4d_t *p4d;
7086 	pud_t *pud;
7087 	pmd_t *pmd;
7088 
7089 	pgd = pgd_offset(mm, addr);
7090 	if (!pgd_present(*pgd))
7091 		return NULL;
7092 	p4d = p4d_offset(pgd, addr);
7093 	if (!p4d_present(*p4d))
7094 		return NULL;
7095 
7096 	pud = pud_offset(p4d, addr);
7097 	if (sz == PUD_SIZE)
7098 		/* must be pud huge, non-present or none */
7099 		return (pte_t *)pud;
7100 	if (!pud_present(*pud))
7101 		return NULL;
7102 	/* must have a valid entry and size to go further */
7103 
7104 	pmd = pmd_offset(pud, addr);
7105 	/* must be pmd huge, non-present or none */
7106 	return (pte_t *)pmd;
7107 }
7108 
7109 /*
7110  * Return a mask that can be used to update an address to the last huge
7111  * page in a page table page mapping size.  Used to skip non-present
7112  * page table entries when linearly scanning address ranges.  Architectures
7113  * with unique huge page to page table relationships can define their own
7114  * version of this routine.
7115  */
7116 unsigned long hugetlb_mask_last_page(struct hstate *h)
7117 {
7118 	unsigned long hp_size = huge_page_size(h);
7119 
7120 	if (hp_size == PUD_SIZE)
7121 		return P4D_SIZE - PUD_SIZE;
7122 	else if (hp_size == PMD_SIZE)
7123 		return PUD_SIZE - PMD_SIZE;
7124 	else
7125 		return 0UL;
7126 }
7127 
7128 #else
7129 
7130 /* See description above.  Architectures can provide their own version. */
7131 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7132 {
7133 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7134 	if (huge_page_size(h) == PMD_SIZE)
7135 		return PUD_SIZE - PMD_SIZE;
7136 #endif
7137 	return 0UL;
7138 }
7139 
7140 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7141 
7142 /*
7143  * These functions are overwritable if your architecture needs its own
7144  * behavior.
7145  */
7146 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7147 {
7148 	bool ret = true;
7149 
7150 	spin_lock_irq(&hugetlb_lock);
7151 	if (!folio_test_hugetlb(folio) ||
7152 	    !folio_test_hugetlb_migratable(folio) ||
7153 	    !folio_try_get(folio)) {
7154 		ret = false;
7155 		goto unlock;
7156 	}
7157 	folio_clear_hugetlb_migratable(folio);
7158 	list_move_tail(&folio->lru, list);
7159 unlock:
7160 	spin_unlock_irq(&hugetlb_lock);
7161 	return ret;
7162 }
7163 
7164 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7165 {
7166 	int ret = 0;
7167 
7168 	*hugetlb = false;
7169 	spin_lock_irq(&hugetlb_lock);
7170 	if (folio_test_hugetlb(folio)) {
7171 		*hugetlb = true;
7172 		if (folio_test_hugetlb_freed(folio))
7173 			ret = 0;
7174 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7175 			ret = folio_try_get(folio);
7176 		else
7177 			ret = -EBUSY;
7178 	}
7179 	spin_unlock_irq(&hugetlb_lock);
7180 	return ret;
7181 }
7182 
7183 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7184 				bool *migratable_cleared)
7185 {
7186 	int ret;
7187 
7188 	spin_lock_irq(&hugetlb_lock);
7189 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7190 	spin_unlock_irq(&hugetlb_lock);
7191 	return ret;
7192 }
7193 
7194 void folio_putback_active_hugetlb(struct folio *folio)
7195 {
7196 	spin_lock_irq(&hugetlb_lock);
7197 	folio_set_hugetlb_migratable(folio);
7198 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7199 	spin_unlock_irq(&hugetlb_lock);
7200 	folio_put(folio);
7201 }
7202 
7203 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7204 {
7205 	struct hstate *h = folio_hstate(old_folio);
7206 
7207 	hugetlb_cgroup_migrate(old_folio, new_folio);
7208 	set_page_owner_migrate_reason(&new_folio->page, reason);
7209 
7210 	/*
7211 	 * transfer temporary state of the new hugetlb folio. This is
7212 	 * reverse to other transitions because the newpage is going to
7213 	 * be final while the old one will be freed so it takes over
7214 	 * the temporary status.
7215 	 *
7216 	 * Also note that we have to transfer the per-node surplus state
7217 	 * here as well otherwise the global surplus count will not match
7218 	 * the per-node's.
7219 	 */
7220 	if (folio_test_hugetlb_temporary(new_folio)) {
7221 		int old_nid = folio_nid(old_folio);
7222 		int new_nid = folio_nid(new_folio);
7223 
7224 		folio_set_hugetlb_temporary(old_folio);
7225 		folio_clear_hugetlb_temporary(new_folio);
7226 
7227 
7228 		/*
7229 		 * There is no need to transfer the per-node surplus state
7230 		 * when we do not cross the node.
7231 		 */
7232 		if (new_nid == old_nid)
7233 			return;
7234 		spin_lock_irq(&hugetlb_lock);
7235 		if (h->surplus_huge_pages_node[old_nid]) {
7236 			h->surplus_huge_pages_node[old_nid]--;
7237 			h->surplus_huge_pages_node[new_nid]++;
7238 		}
7239 		spin_unlock_irq(&hugetlb_lock);
7240 	}
7241 }
7242 
7243 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7244 				   unsigned long start,
7245 				   unsigned long end)
7246 {
7247 	struct hstate *h = hstate_vma(vma);
7248 	unsigned long sz = huge_page_size(h);
7249 	struct mm_struct *mm = vma->vm_mm;
7250 	struct mmu_notifier_range range;
7251 	unsigned long address;
7252 	spinlock_t *ptl;
7253 	pte_t *ptep;
7254 
7255 	if (!(vma->vm_flags & VM_MAYSHARE))
7256 		return;
7257 
7258 	if (start >= end)
7259 		return;
7260 
7261 	flush_cache_range(vma, start, end);
7262 	/*
7263 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7264 	 * we have already done the PUD_SIZE alignment.
7265 	 */
7266 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7267 				start, end);
7268 	mmu_notifier_invalidate_range_start(&range);
7269 	hugetlb_vma_lock_write(vma);
7270 	i_mmap_lock_write(vma->vm_file->f_mapping);
7271 	for (address = start; address < end; address += PUD_SIZE) {
7272 		ptep = hugetlb_walk(vma, address, sz);
7273 		if (!ptep)
7274 			continue;
7275 		ptl = huge_pte_lock(h, mm, ptep);
7276 		huge_pmd_unshare(mm, vma, address, ptep);
7277 		spin_unlock(ptl);
7278 	}
7279 	flush_hugetlb_tlb_range(vma, start, end);
7280 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7281 	hugetlb_vma_unlock_write(vma);
7282 	/*
7283 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7284 	 * Documentation/mm/mmu_notifier.rst.
7285 	 */
7286 	mmu_notifier_invalidate_range_end(&range);
7287 }
7288 
7289 /*
7290  * This function will unconditionally remove all the shared pmd pgtable entries
7291  * within the specific vma for a hugetlbfs memory range.
7292  */
7293 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7294 {
7295 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7296 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7297 }
7298 
7299 #ifdef CONFIG_CMA
7300 static bool cma_reserve_called __initdata;
7301 
7302 static int __init cmdline_parse_hugetlb_cma(char *p)
7303 {
7304 	int nid, count = 0;
7305 	unsigned long tmp;
7306 	char *s = p;
7307 
7308 	while (*s) {
7309 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7310 			break;
7311 
7312 		if (s[count] == ':') {
7313 			if (tmp >= MAX_NUMNODES)
7314 				break;
7315 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7316 
7317 			s += count + 1;
7318 			tmp = memparse(s, &s);
7319 			hugetlb_cma_size_in_node[nid] = tmp;
7320 			hugetlb_cma_size += tmp;
7321 
7322 			/*
7323 			 * Skip the separator if have one, otherwise
7324 			 * break the parsing.
7325 			 */
7326 			if (*s == ',')
7327 				s++;
7328 			else
7329 				break;
7330 		} else {
7331 			hugetlb_cma_size = memparse(p, &p);
7332 			break;
7333 		}
7334 	}
7335 
7336 	return 0;
7337 }
7338 
7339 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7340 
7341 void __init hugetlb_cma_reserve(int order)
7342 {
7343 	unsigned long size, reserved, per_node;
7344 	bool node_specific_cma_alloc = false;
7345 	int nid;
7346 
7347 	cma_reserve_called = true;
7348 
7349 	if (!hugetlb_cma_size)
7350 		return;
7351 
7352 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7353 		if (hugetlb_cma_size_in_node[nid] == 0)
7354 			continue;
7355 
7356 		if (!node_online(nid)) {
7357 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7358 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7359 			hugetlb_cma_size_in_node[nid] = 0;
7360 			continue;
7361 		}
7362 
7363 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7364 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7365 				nid, (PAGE_SIZE << order) / SZ_1M);
7366 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7367 			hugetlb_cma_size_in_node[nid] = 0;
7368 		} else {
7369 			node_specific_cma_alloc = true;
7370 		}
7371 	}
7372 
7373 	/* Validate the CMA size again in case some invalid nodes specified. */
7374 	if (!hugetlb_cma_size)
7375 		return;
7376 
7377 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7378 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7379 			(PAGE_SIZE << order) / SZ_1M);
7380 		hugetlb_cma_size = 0;
7381 		return;
7382 	}
7383 
7384 	if (!node_specific_cma_alloc) {
7385 		/*
7386 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7387 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7388 		 */
7389 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7390 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7391 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7392 	}
7393 
7394 	reserved = 0;
7395 	for_each_online_node(nid) {
7396 		int res;
7397 		char name[CMA_MAX_NAME];
7398 
7399 		if (node_specific_cma_alloc) {
7400 			if (hugetlb_cma_size_in_node[nid] == 0)
7401 				continue;
7402 
7403 			size = hugetlb_cma_size_in_node[nid];
7404 		} else {
7405 			size = min(per_node, hugetlb_cma_size - reserved);
7406 		}
7407 
7408 		size = round_up(size, PAGE_SIZE << order);
7409 
7410 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7411 		/*
7412 		 * Note that 'order per bit' is based on smallest size that
7413 		 * may be returned to CMA allocator in the case of
7414 		 * huge page demotion.
7415 		 */
7416 		res = cma_declare_contiguous_nid(0, size, 0,
7417 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7418 						 0, false, name,
7419 						 &hugetlb_cma[nid], nid);
7420 		if (res) {
7421 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7422 				res, nid);
7423 			continue;
7424 		}
7425 
7426 		reserved += size;
7427 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7428 			size / SZ_1M, nid);
7429 
7430 		if (reserved >= hugetlb_cma_size)
7431 			break;
7432 	}
7433 
7434 	if (!reserved)
7435 		/*
7436 		 * hugetlb_cma_size is used to determine if allocations from
7437 		 * cma are possible.  Set to zero if no cma regions are set up.
7438 		 */
7439 		hugetlb_cma_size = 0;
7440 }
7441 
7442 static void __init hugetlb_cma_check(void)
7443 {
7444 	if (!hugetlb_cma_size || cma_reserve_called)
7445 		return;
7446 
7447 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7448 }
7449 
7450 #endif /* CONFIG_CMA */
7451