xref: /openbmc/linux/mm/hugetlb.c (revision 69bfac968a06aab5927160f8736485f85c3e8ee8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48 
49 #ifdef CONFIG_CMA
50 static struct cma *hugetlb_cma[MAX_NUMNODES];
51 #endif
52 static unsigned long hugetlb_cma_size __initdata;
53 
54 /*
55  * Minimum page order among possible hugepage sizes, set to a proper value
56  * at boot time.
57  */
58 static unsigned int minimum_order __read_mostly = UINT_MAX;
59 
60 __initdata LIST_HEAD(huge_boot_pages);
61 
62 /* for command line parsing */
63 static struct hstate * __initdata parsed_hstate;
64 static unsigned long __initdata default_hstate_max_huge_pages;
65 static bool __initdata parsed_valid_hugepagesz = true;
66 static bool __initdata parsed_default_hugepagesz;
67 
68 /*
69  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70  * free_huge_pages, and surplus_huge_pages.
71  */
72 DEFINE_SPINLOCK(hugetlb_lock);
73 
74 /*
75  * Serializes faults on the same logical page.  This is used to
76  * prevent spurious OOMs when the hugepage pool is fully utilized.
77  */
78 static int num_fault_mutexes;
79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80 
81 /* Forward declaration */
82 static int hugetlb_acct_memory(struct hstate *h, long delta);
83 
84 static inline bool subpool_is_free(struct hugepage_subpool *spool)
85 {
86 	if (spool->count)
87 		return false;
88 	if (spool->max_hpages != -1)
89 		return spool->used_hpages == 0;
90 	if (spool->min_hpages != -1)
91 		return spool->rsv_hpages == spool->min_hpages;
92 
93 	return true;
94 }
95 
96 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
97 						unsigned long irq_flags)
98 {
99 	spin_unlock_irqrestore(&spool->lock, irq_flags);
100 
101 	/* If no pages are used, and no other handles to the subpool
102 	 * remain, give up any reservations based on minimum size and
103 	 * free the subpool */
104 	if (subpool_is_free(spool)) {
105 		if (spool->min_hpages != -1)
106 			hugetlb_acct_memory(spool->hstate,
107 						-spool->min_hpages);
108 		kfree(spool);
109 	}
110 }
111 
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 						long min_hpages)
114 {
115 	struct hugepage_subpool *spool;
116 
117 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 	if (!spool)
119 		return NULL;
120 
121 	spin_lock_init(&spool->lock);
122 	spool->count = 1;
123 	spool->max_hpages = max_hpages;
124 	spool->hstate = h;
125 	spool->min_hpages = min_hpages;
126 
127 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 		kfree(spool);
129 		return NULL;
130 	}
131 	spool->rsv_hpages = min_hpages;
132 
133 	return spool;
134 }
135 
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138 	unsigned long flags;
139 
140 	spin_lock_irqsave(&spool->lock, flags);
141 	BUG_ON(!spool->count);
142 	spool->count--;
143 	unlock_or_release_subpool(spool, flags);
144 }
145 
146 /*
147  * Subpool accounting for allocating and reserving pages.
148  * Return -ENOMEM if there are not enough resources to satisfy the
149  * request.  Otherwise, return the number of pages by which the
150  * global pools must be adjusted (upward).  The returned value may
151  * only be different than the passed value (delta) in the case where
152  * a subpool minimum size must be maintained.
153  */
154 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
155 				      long delta)
156 {
157 	long ret = delta;
158 
159 	if (!spool)
160 		return ret;
161 
162 	spin_lock_irq(&spool->lock);
163 
164 	if (spool->max_hpages != -1) {		/* maximum size accounting */
165 		if ((spool->used_hpages + delta) <= spool->max_hpages)
166 			spool->used_hpages += delta;
167 		else {
168 			ret = -ENOMEM;
169 			goto unlock_ret;
170 		}
171 	}
172 
173 	/* minimum size accounting */
174 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
175 		if (delta > spool->rsv_hpages) {
176 			/*
177 			 * Asking for more reserves than those already taken on
178 			 * behalf of subpool.  Return difference.
179 			 */
180 			ret = delta - spool->rsv_hpages;
181 			spool->rsv_hpages = 0;
182 		} else {
183 			ret = 0;	/* reserves already accounted for */
184 			spool->rsv_hpages -= delta;
185 		}
186 	}
187 
188 unlock_ret:
189 	spin_unlock_irq(&spool->lock);
190 	return ret;
191 }
192 
193 /*
194  * Subpool accounting for freeing and unreserving pages.
195  * Return the number of global page reservations that must be dropped.
196  * The return value may only be different than the passed value (delta)
197  * in the case where a subpool minimum size must be maintained.
198  */
199 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
200 				       long delta)
201 {
202 	long ret = delta;
203 	unsigned long flags;
204 
205 	if (!spool)
206 		return delta;
207 
208 	spin_lock_irqsave(&spool->lock, flags);
209 
210 	if (spool->max_hpages != -1)		/* maximum size accounting */
211 		spool->used_hpages -= delta;
212 
213 	 /* minimum size accounting */
214 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
215 		if (spool->rsv_hpages + delta <= spool->min_hpages)
216 			ret = 0;
217 		else
218 			ret = spool->rsv_hpages + delta - spool->min_hpages;
219 
220 		spool->rsv_hpages += delta;
221 		if (spool->rsv_hpages > spool->min_hpages)
222 			spool->rsv_hpages = spool->min_hpages;
223 	}
224 
225 	/*
226 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
227 	 * quota reference, free it now.
228 	 */
229 	unlock_or_release_subpool(spool, flags);
230 
231 	return ret;
232 }
233 
234 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
235 {
236 	return HUGETLBFS_SB(inode->i_sb)->spool;
237 }
238 
239 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
240 {
241 	return subpool_inode(file_inode(vma->vm_file));
242 }
243 
244 /* Helper that removes a struct file_region from the resv_map cache and returns
245  * it for use.
246  */
247 static struct file_region *
248 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
249 {
250 	struct file_region *nrg = NULL;
251 
252 	VM_BUG_ON(resv->region_cache_count <= 0);
253 
254 	resv->region_cache_count--;
255 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
256 	list_del(&nrg->link);
257 
258 	nrg->from = from;
259 	nrg->to = to;
260 
261 	return nrg;
262 }
263 
264 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
265 					      struct file_region *rg)
266 {
267 #ifdef CONFIG_CGROUP_HUGETLB
268 	nrg->reservation_counter = rg->reservation_counter;
269 	nrg->css = rg->css;
270 	if (rg->css)
271 		css_get(rg->css);
272 #endif
273 }
274 
275 /* Helper that records hugetlb_cgroup uncharge info. */
276 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
277 						struct hstate *h,
278 						struct resv_map *resv,
279 						struct file_region *nrg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282 	if (h_cg) {
283 		nrg->reservation_counter =
284 			&h_cg->rsvd_hugepage[hstate_index(h)];
285 		nrg->css = &h_cg->css;
286 		/*
287 		 * The caller will hold exactly one h_cg->css reference for the
288 		 * whole contiguous reservation region. But this area might be
289 		 * scattered when there are already some file_regions reside in
290 		 * it. As a result, many file_regions may share only one css
291 		 * reference. In order to ensure that one file_region must hold
292 		 * exactly one h_cg->css reference, we should do css_get for
293 		 * each file_region and leave the reference held by caller
294 		 * untouched.
295 		 */
296 		css_get(&h_cg->css);
297 		if (!resv->pages_per_hpage)
298 			resv->pages_per_hpage = pages_per_huge_page(h);
299 		/* pages_per_hpage should be the same for all entries in
300 		 * a resv_map.
301 		 */
302 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
303 	} else {
304 		nrg->reservation_counter = NULL;
305 		nrg->css = NULL;
306 	}
307 #endif
308 }
309 
310 static void put_uncharge_info(struct file_region *rg)
311 {
312 #ifdef CONFIG_CGROUP_HUGETLB
313 	if (rg->css)
314 		css_put(rg->css);
315 #endif
316 }
317 
318 static bool has_same_uncharge_info(struct file_region *rg,
319 				   struct file_region *org)
320 {
321 #ifdef CONFIG_CGROUP_HUGETLB
322 	return rg && org &&
323 	       rg->reservation_counter == org->reservation_counter &&
324 	       rg->css == org->css;
325 
326 #else
327 	return true;
328 #endif
329 }
330 
331 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
332 {
333 	struct file_region *nrg = NULL, *prg = NULL;
334 
335 	prg = list_prev_entry(rg, link);
336 	if (&prg->link != &resv->regions && prg->to == rg->from &&
337 	    has_same_uncharge_info(prg, rg)) {
338 		prg->to = rg->to;
339 
340 		list_del(&rg->link);
341 		put_uncharge_info(rg);
342 		kfree(rg);
343 
344 		rg = prg;
345 	}
346 
347 	nrg = list_next_entry(rg, link);
348 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
349 	    has_same_uncharge_info(nrg, rg)) {
350 		nrg->from = rg->from;
351 
352 		list_del(&rg->link);
353 		put_uncharge_info(rg);
354 		kfree(rg);
355 	}
356 }
357 
358 static inline long
359 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
360 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
361 		     long *regions_needed)
362 {
363 	struct file_region *nrg;
364 
365 	if (!regions_needed) {
366 		nrg = get_file_region_entry_from_cache(map, from, to);
367 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
368 		list_add(&nrg->link, rg->link.prev);
369 		coalesce_file_region(map, nrg);
370 	} else
371 		*regions_needed += 1;
372 
373 	return to - from;
374 }
375 
376 /*
377  * Must be called with resv->lock held.
378  *
379  * Calling this with regions_needed != NULL will count the number of pages
380  * to be added but will not modify the linked list. And regions_needed will
381  * indicate the number of file_regions needed in the cache to carry out to add
382  * the regions for this range.
383  */
384 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
385 				     struct hugetlb_cgroup *h_cg,
386 				     struct hstate *h, long *regions_needed)
387 {
388 	long add = 0;
389 	struct list_head *head = &resv->regions;
390 	long last_accounted_offset = f;
391 	struct file_region *rg = NULL, *trg = NULL;
392 
393 	if (regions_needed)
394 		*regions_needed = 0;
395 
396 	/* In this loop, we essentially handle an entry for the range
397 	 * [last_accounted_offset, rg->from), at every iteration, with some
398 	 * bounds checking.
399 	 */
400 	list_for_each_entry_safe(rg, trg, head, link) {
401 		/* Skip irrelevant regions that start before our range. */
402 		if (rg->from < f) {
403 			/* If this region ends after the last accounted offset,
404 			 * then we need to update last_accounted_offset.
405 			 */
406 			if (rg->to > last_accounted_offset)
407 				last_accounted_offset = rg->to;
408 			continue;
409 		}
410 
411 		/* When we find a region that starts beyond our range, we've
412 		 * finished.
413 		 */
414 		if (rg->from >= t)
415 			break;
416 
417 		/* Add an entry for last_accounted_offset -> rg->from, and
418 		 * update last_accounted_offset.
419 		 */
420 		if (rg->from > last_accounted_offset)
421 			add += hugetlb_resv_map_add(resv, rg,
422 						    last_accounted_offset,
423 						    rg->from, h, h_cg,
424 						    regions_needed);
425 
426 		last_accounted_offset = rg->to;
427 	}
428 
429 	/* Handle the case where our range extends beyond
430 	 * last_accounted_offset.
431 	 */
432 	if (last_accounted_offset < t)
433 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
434 					    t, h, h_cg, regions_needed);
435 
436 	VM_BUG_ON(add < 0);
437 	return add;
438 }
439 
440 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
441  */
442 static int allocate_file_region_entries(struct resv_map *resv,
443 					int regions_needed)
444 	__must_hold(&resv->lock)
445 {
446 	struct list_head allocated_regions;
447 	int to_allocate = 0, i = 0;
448 	struct file_region *trg = NULL, *rg = NULL;
449 
450 	VM_BUG_ON(regions_needed < 0);
451 
452 	INIT_LIST_HEAD(&allocated_regions);
453 
454 	/*
455 	 * Check for sufficient descriptors in the cache to accommodate
456 	 * the number of in progress add operations plus regions_needed.
457 	 *
458 	 * This is a while loop because when we drop the lock, some other call
459 	 * to region_add or region_del may have consumed some region_entries,
460 	 * so we keep looping here until we finally have enough entries for
461 	 * (adds_in_progress + regions_needed).
462 	 */
463 	while (resv->region_cache_count <
464 	       (resv->adds_in_progress + regions_needed)) {
465 		to_allocate = resv->adds_in_progress + regions_needed -
466 			      resv->region_cache_count;
467 
468 		/* At this point, we should have enough entries in the cache
469 		 * for all the existing adds_in_progress. We should only be
470 		 * needing to allocate for regions_needed.
471 		 */
472 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
473 
474 		spin_unlock(&resv->lock);
475 		for (i = 0; i < to_allocate; i++) {
476 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
477 			if (!trg)
478 				goto out_of_memory;
479 			list_add(&trg->link, &allocated_regions);
480 		}
481 
482 		spin_lock(&resv->lock);
483 
484 		list_splice(&allocated_regions, &resv->region_cache);
485 		resv->region_cache_count += to_allocate;
486 	}
487 
488 	return 0;
489 
490 out_of_memory:
491 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
492 		list_del(&rg->link);
493 		kfree(rg);
494 	}
495 	return -ENOMEM;
496 }
497 
498 /*
499  * Add the huge page range represented by [f, t) to the reserve
500  * map.  Regions will be taken from the cache to fill in this range.
501  * Sufficient regions should exist in the cache due to the previous
502  * call to region_chg with the same range, but in some cases the cache will not
503  * have sufficient entries due to races with other code doing region_add or
504  * region_del.  The extra needed entries will be allocated.
505  *
506  * regions_needed is the out value provided by a previous call to region_chg.
507  *
508  * Return the number of new huge pages added to the map.  This number is greater
509  * than or equal to zero.  If file_region entries needed to be allocated for
510  * this operation and we were not able to allocate, it returns -ENOMEM.
511  * region_add of regions of length 1 never allocate file_regions and cannot
512  * fail; region_chg will always allocate at least 1 entry and a region_add for
513  * 1 page will only require at most 1 entry.
514  */
515 static long region_add(struct resv_map *resv, long f, long t,
516 		       long in_regions_needed, struct hstate *h,
517 		       struct hugetlb_cgroup *h_cg)
518 {
519 	long add = 0, actual_regions_needed = 0;
520 
521 	spin_lock(&resv->lock);
522 retry:
523 
524 	/* Count how many regions are actually needed to execute this add. */
525 	add_reservation_in_range(resv, f, t, NULL, NULL,
526 				 &actual_regions_needed);
527 
528 	/*
529 	 * Check for sufficient descriptors in the cache to accommodate
530 	 * this add operation. Note that actual_regions_needed may be greater
531 	 * than in_regions_needed, as the resv_map may have been modified since
532 	 * the region_chg call. In this case, we need to make sure that we
533 	 * allocate extra entries, such that we have enough for all the
534 	 * existing adds_in_progress, plus the excess needed for this
535 	 * operation.
536 	 */
537 	if (actual_regions_needed > in_regions_needed &&
538 	    resv->region_cache_count <
539 		    resv->adds_in_progress +
540 			    (actual_regions_needed - in_regions_needed)) {
541 		/* region_add operation of range 1 should never need to
542 		 * allocate file_region entries.
543 		 */
544 		VM_BUG_ON(t - f <= 1);
545 
546 		if (allocate_file_region_entries(
547 			    resv, actual_regions_needed - in_regions_needed)) {
548 			return -ENOMEM;
549 		}
550 
551 		goto retry;
552 	}
553 
554 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
555 
556 	resv->adds_in_progress -= in_regions_needed;
557 
558 	spin_unlock(&resv->lock);
559 	return add;
560 }
561 
562 /*
563  * Examine the existing reserve map and determine how many
564  * huge pages in the specified range [f, t) are NOT currently
565  * represented.  This routine is called before a subsequent
566  * call to region_add that will actually modify the reserve
567  * map to add the specified range [f, t).  region_chg does
568  * not change the number of huge pages represented by the
569  * map.  A number of new file_region structures is added to the cache as a
570  * placeholder, for the subsequent region_add call to use. At least 1
571  * file_region structure is added.
572  *
573  * out_regions_needed is the number of regions added to the
574  * resv->adds_in_progress.  This value needs to be provided to a follow up call
575  * to region_add or region_abort for proper accounting.
576  *
577  * Returns the number of huge pages that need to be added to the existing
578  * reservation map for the range [f, t).  This number is greater or equal to
579  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
580  * is needed and can not be allocated.
581  */
582 static long region_chg(struct resv_map *resv, long f, long t,
583 		       long *out_regions_needed)
584 {
585 	long chg = 0;
586 
587 	spin_lock(&resv->lock);
588 
589 	/* Count how many hugepages in this range are NOT represented. */
590 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591 				       out_regions_needed);
592 
593 	if (*out_regions_needed == 0)
594 		*out_regions_needed = 1;
595 
596 	if (allocate_file_region_entries(resv, *out_regions_needed))
597 		return -ENOMEM;
598 
599 	resv->adds_in_progress += *out_regions_needed;
600 
601 	spin_unlock(&resv->lock);
602 	return chg;
603 }
604 
605 /*
606  * Abort the in progress add operation.  The adds_in_progress field
607  * of the resv_map keeps track of the operations in progress between
608  * calls to region_chg and region_add.  Operations are sometimes
609  * aborted after the call to region_chg.  In such cases, region_abort
610  * is called to decrement the adds_in_progress counter. regions_needed
611  * is the value returned by the region_chg call, it is used to decrement
612  * the adds_in_progress counter.
613  *
614  * NOTE: The range arguments [f, t) are not needed or used in this
615  * routine.  They are kept to make reading the calling code easier as
616  * arguments will match the associated region_chg call.
617  */
618 static void region_abort(struct resv_map *resv, long f, long t,
619 			 long regions_needed)
620 {
621 	spin_lock(&resv->lock);
622 	VM_BUG_ON(!resv->region_cache_count);
623 	resv->adds_in_progress -= regions_needed;
624 	spin_unlock(&resv->lock);
625 }
626 
627 /*
628  * Delete the specified range [f, t) from the reserve map.  If the
629  * t parameter is LONG_MAX, this indicates that ALL regions after f
630  * should be deleted.  Locate the regions which intersect [f, t)
631  * and either trim, delete or split the existing regions.
632  *
633  * Returns the number of huge pages deleted from the reserve map.
634  * In the normal case, the return value is zero or more.  In the
635  * case where a region must be split, a new region descriptor must
636  * be allocated.  If the allocation fails, -ENOMEM will be returned.
637  * NOTE: If the parameter t == LONG_MAX, then we will never split
638  * a region and possibly return -ENOMEM.  Callers specifying
639  * t == LONG_MAX do not need to check for -ENOMEM error.
640  */
641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643 	struct list_head *head = &resv->regions;
644 	struct file_region *rg, *trg;
645 	struct file_region *nrg = NULL;
646 	long del = 0;
647 
648 retry:
649 	spin_lock(&resv->lock);
650 	list_for_each_entry_safe(rg, trg, head, link) {
651 		/*
652 		 * Skip regions before the range to be deleted.  file_region
653 		 * ranges are normally of the form [from, to).  However, there
654 		 * may be a "placeholder" entry in the map which is of the form
655 		 * (from, to) with from == to.  Check for placeholder entries
656 		 * at the beginning of the range to be deleted.
657 		 */
658 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659 			continue;
660 
661 		if (rg->from >= t)
662 			break;
663 
664 		if (f > rg->from && t < rg->to) { /* Must split region */
665 			/*
666 			 * Check for an entry in the cache before dropping
667 			 * lock and attempting allocation.
668 			 */
669 			if (!nrg &&
670 			    resv->region_cache_count > resv->adds_in_progress) {
671 				nrg = list_first_entry(&resv->region_cache,
672 							struct file_region,
673 							link);
674 				list_del(&nrg->link);
675 				resv->region_cache_count--;
676 			}
677 
678 			if (!nrg) {
679 				spin_unlock(&resv->lock);
680 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 				if (!nrg)
682 					return -ENOMEM;
683 				goto retry;
684 			}
685 
686 			del += t - f;
687 			hugetlb_cgroup_uncharge_file_region(
688 				resv, rg, t - f, false);
689 
690 			/* New entry for end of split region */
691 			nrg->from = t;
692 			nrg->to = rg->to;
693 
694 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695 
696 			INIT_LIST_HEAD(&nrg->link);
697 
698 			/* Original entry is trimmed */
699 			rg->to = f;
700 
701 			list_add(&nrg->link, &rg->link);
702 			nrg = NULL;
703 			break;
704 		}
705 
706 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 			del += rg->to - rg->from;
708 			hugetlb_cgroup_uncharge_file_region(resv, rg,
709 							    rg->to - rg->from, true);
710 			list_del(&rg->link);
711 			kfree(rg);
712 			continue;
713 		}
714 
715 		if (f <= rg->from) {	/* Trim beginning of region */
716 			hugetlb_cgroup_uncharge_file_region(resv, rg,
717 							    t - rg->from, false);
718 
719 			del += t - rg->from;
720 			rg->from = t;
721 		} else {		/* Trim end of region */
722 			hugetlb_cgroup_uncharge_file_region(resv, rg,
723 							    rg->to - f, false);
724 
725 			del += rg->to - f;
726 			rg->to = f;
727 		}
728 	}
729 
730 	spin_unlock(&resv->lock);
731 	kfree(nrg);
732 	return del;
733 }
734 
735 /*
736  * A rare out of memory error was encountered which prevented removal of
737  * the reserve map region for a page.  The huge page itself was free'ed
738  * and removed from the page cache.  This routine will adjust the subpool
739  * usage count, and the global reserve count if needed.  By incrementing
740  * these counts, the reserve map entry which could not be deleted will
741  * appear as a "reserved" entry instead of simply dangling with incorrect
742  * counts.
743  */
744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746 	struct hugepage_subpool *spool = subpool_inode(inode);
747 	long rsv_adjust;
748 	bool reserved = false;
749 
750 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751 	if (rsv_adjust > 0) {
752 		struct hstate *h = hstate_inode(inode);
753 
754 		if (!hugetlb_acct_memory(h, 1))
755 			reserved = true;
756 	} else if (!rsv_adjust) {
757 		reserved = true;
758 	}
759 
760 	if (!reserved)
761 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763 
764 /*
765  * Count and return the number of huge pages in the reserve map
766  * that intersect with the range [f, t).
767  */
768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770 	struct list_head *head = &resv->regions;
771 	struct file_region *rg;
772 	long chg = 0;
773 
774 	spin_lock(&resv->lock);
775 	/* Locate each segment we overlap with, and count that overlap. */
776 	list_for_each_entry(rg, head, link) {
777 		long seg_from;
778 		long seg_to;
779 
780 		if (rg->to <= f)
781 			continue;
782 		if (rg->from >= t)
783 			break;
784 
785 		seg_from = max(rg->from, f);
786 		seg_to = min(rg->to, t);
787 
788 		chg += seg_to - seg_from;
789 	}
790 	spin_unlock(&resv->lock);
791 
792 	return chg;
793 }
794 
795 /*
796  * Convert the address within this vma to the page offset within
797  * the mapping, in pagecache page units; huge pages here.
798  */
799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800 			struct vm_area_struct *vma, unsigned long address)
801 {
802 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 			(vma->vm_pgoff >> huge_page_order(h));
804 }
805 
806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 				     unsigned long address)
808 {
809 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812 
813 /*
814  * Return the size of the pages allocated when backing a VMA. In the majority
815  * cases this will be same size as used by the page table entries.
816  */
817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819 	if (vma->vm_ops && vma->vm_ops->pagesize)
820 		return vma->vm_ops->pagesize(vma);
821 	return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824 
825 /*
826  * Return the page size being used by the MMU to back a VMA. In the majority
827  * of cases, the page size used by the kernel matches the MMU size. On
828  * architectures where it differs, an architecture-specific 'strong'
829  * version of this symbol is required.
830  */
831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833 	return vma_kernel_pagesize(vma);
834 }
835 
836 /*
837  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
838  * bits of the reservation map pointer, which are always clear due to
839  * alignment.
840  */
841 #define HPAGE_RESV_OWNER    (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844 
845 /*
846  * These helpers are used to track how many pages are reserved for
847  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848  * is guaranteed to have their future faults succeed.
849  *
850  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851  * the reserve counters are updated with the hugetlb_lock held. It is safe
852  * to reset the VMA at fork() time as it is not in use yet and there is no
853  * chance of the global counters getting corrupted as a result of the values.
854  *
855  * The private mapping reservation is represented in a subtly different
856  * manner to a shared mapping.  A shared mapping has a region map associated
857  * with the underlying file, this region map represents the backing file
858  * pages which have ever had a reservation assigned which this persists even
859  * after the page is instantiated.  A private mapping has a region map
860  * associated with the original mmap which is attached to all VMAs which
861  * reference it, this region map represents those offsets which have consumed
862  * reservation ie. where pages have been instantiated.
863  */
864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866 	return (unsigned long)vma->vm_private_data;
867 }
868 
869 static void set_vma_private_data(struct vm_area_struct *vma,
870 							unsigned long value)
871 {
872 	vma->vm_private_data = (void *)value;
873 }
874 
875 static void
876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 					  struct hugetlb_cgroup *h_cg,
878 					  struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881 	if (!h_cg || !h) {
882 		resv_map->reservation_counter = NULL;
883 		resv_map->pages_per_hpage = 0;
884 		resv_map->css = NULL;
885 	} else {
886 		resv_map->reservation_counter =
887 			&h_cg->rsvd_hugepage[hstate_index(h)];
888 		resv_map->pages_per_hpage = pages_per_huge_page(h);
889 		resv_map->css = &h_cg->css;
890 	}
891 #endif
892 }
893 
894 struct resv_map *resv_map_alloc(void)
895 {
896 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898 
899 	if (!resv_map || !rg) {
900 		kfree(resv_map);
901 		kfree(rg);
902 		return NULL;
903 	}
904 
905 	kref_init(&resv_map->refs);
906 	spin_lock_init(&resv_map->lock);
907 	INIT_LIST_HEAD(&resv_map->regions);
908 
909 	resv_map->adds_in_progress = 0;
910 	/*
911 	 * Initialize these to 0. On shared mappings, 0's here indicate these
912 	 * fields don't do cgroup accounting. On private mappings, these will be
913 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 	 * reservations are to be un-charged from here.
915 	 */
916 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917 
918 	INIT_LIST_HEAD(&resv_map->region_cache);
919 	list_add(&rg->link, &resv_map->region_cache);
920 	resv_map->region_cache_count = 1;
921 
922 	return resv_map;
923 }
924 
925 void resv_map_release(struct kref *ref)
926 {
927 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928 	struct list_head *head = &resv_map->region_cache;
929 	struct file_region *rg, *trg;
930 
931 	/* Clear out any active regions before we release the map. */
932 	region_del(resv_map, 0, LONG_MAX);
933 
934 	/* ... and any entries left in the cache */
935 	list_for_each_entry_safe(rg, trg, head, link) {
936 		list_del(&rg->link);
937 		kfree(rg);
938 	}
939 
940 	VM_BUG_ON(resv_map->adds_in_progress);
941 
942 	kfree(resv_map);
943 }
944 
945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947 	/*
948 	 * At inode evict time, i_mapping may not point to the original
949 	 * address space within the inode.  This original address space
950 	 * contains the pointer to the resv_map.  So, always use the
951 	 * address space embedded within the inode.
952 	 * The VERY common case is inode->mapping == &inode->i_data but,
953 	 * this may not be true for device special inodes.
954 	 */
955 	return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957 
958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 	if (vma->vm_flags & VM_MAYSHARE) {
962 		struct address_space *mapping = vma->vm_file->f_mapping;
963 		struct inode *inode = mapping->host;
964 
965 		return inode_resv_map(inode);
966 
967 	} else {
968 		return (struct resv_map *)(get_vma_private_data(vma) &
969 							~HPAGE_RESV_MASK);
970 	}
971 }
972 
973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977 
978 	set_vma_private_data(vma, (get_vma_private_data(vma) &
979 				HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981 
982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986 
987 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989 
990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993 
994 	return (get_vma_private_data(vma) & flag) != 0;
995 }
996 
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001 	if (!(vma->vm_flags & VM_MAYSHARE))
1002 		vma->vm_private_data = (void *)0;
1003 }
1004 
1005 /* Returns true if the VMA has associated reserve pages */
1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008 	if (vma->vm_flags & VM_NORESERVE) {
1009 		/*
1010 		 * This address is already reserved by other process(chg == 0),
1011 		 * so, we should decrement reserved count. Without decrementing,
1012 		 * reserve count remains after releasing inode, because this
1013 		 * allocated page will go into page cache and is regarded as
1014 		 * coming from reserved pool in releasing step.  Currently, we
1015 		 * don't have any other solution to deal with this situation
1016 		 * properly, so add work-around here.
1017 		 */
1018 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019 			return true;
1020 		else
1021 			return false;
1022 	}
1023 
1024 	/* Shared mappings always use reserves */
1025 	if (vma->vm_flags & VM_MAYSHARE) {
1026 		/*
1027 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1028 		 * be a region map for all pages.  The only situation where
1029 		 * there is no region map is if a hole was punched via
1030 		 * fallocate.  In this case, there really are no reserves to
1031 		 * use.  This situation is indicated if chg != 0.
1032 		 */
1033 		if (chg)
1034 			return false;
1035 		else
1036 			return true;
1037 	}
1038 
1039 	/*
1040 	 * Only the process that called mmap() has reserves for
1041 	 * private mappings.
1042 	 */
1043 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 		/*
1045 		 * Like the shared case above, a hole punch or truncate
1046 		 * could have been performed on the private mapping.
1047 		 * Examine the value of chg to determine if reserves
1048 		 * actually exist or were previously consumed.
1049 		 * Very Subtle - The value of chg comes from a previous
1050 		 * call to vma_needs_reserves().  The reserve map for
1051 		 * private mappings has different (opposite) semantics
1052 		 * than that of shared mappings.  vma_needs_reserves()
1053 		 * has already taken this difference in semantics into
1054 		 * account.  Therefore, the meaning of chg is the same
1055 		 * as in the shared case above.  Code could easily be
1056 		 * combined, but keeping it separate draws attention to
1057 		 * subtle differences.
1058 		 */
1059 		if (chg)
1060 			return false;
1061 		else
1062 			return true;
1063 	}
1064 
1065 	return false;
1066 }
1067 
1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070 	int nid = page_to_nid(page);
1071 
1072 	lockdep_assert_held(&hugetlb_lock);
1073 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1074 	h->free_huge_pages++;
1075 	h->free_huge_pages_node[nid]++;
1076 	SetHPageFreed(page);
1077 }
1078 
1079 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1080 {
1081 	struct page *page;
1082 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1083 
1084 	lockdep_assert_held(&hugetlb_lock);
1085 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1086 		if (pin && !is_pinnable_page(page))
1087 			continue;
1088 
1089 		if (PageHWPoison(page))
1090 			continue;
1091 
1092 		list_move(&page->lru, &h->hugepage_activelist);
1093 		set_page_refcounted(page);
1094 		ClearHPageFreed(page);
1095 		h->free_huge_pages--;
1096 		h->free_huge_pages_node[nid]--;
1097 		return page;
1098 	}
1099 
1100 	return NULL;
1101 }
1102 
1103 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1104 		nodemask_t *nmask)
1105 {
1106 	unsigned int cpuset_mems_cookie;
1107 	struct zonelist *zonelist;
1108 	struct zone *zone;
1109 	struct zoneref *z;
1110 	int node = NUMA_NO_NODE;
1111 
1112 	zonelist = node_zonelist(nid, gfp_mask);
1113 
1114 retry_cpuset:
1115 	cpuset_mems_cookie = read_mems_allowed_begin();
1116 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1117 		struct page *page;
1118 
1119 		if (!cpuset_zone_allowed(zone, gfp_mask))
1120 			continue;
1121 		/*
1122 		 * no need to ask again on the same node. Pool is node rather than
1123 		 * zone aware
1124 		 */
1125 		if (zone_to_nid(zone) == node)
1126 			continue;
1127 		node = zone_to_nid(zone);
1128 
1129 		page = dequeue_huge_page_node_exact(h, node);
1130 		if (page)
1131 			return page;
1132 	}
1133 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1134 		goto retry_cpuset;
1135 
1136 	return NULL;
1137 }
1138 
1139 static struct page *dequeue_huge_page_vma(struct hstate *h,
1140 				struct vm_area_struct *vma,
1141 				unsigned long address, int avoid_reserve,
1142 				long chg)
1143 {
1144 	struct page *page;
1145 	struct mempolicy *mpol;
1146 	gfp_t gfp_mask;
1147 	nodemask_t *nodemask;
1148 	int nid;
1149 
1150 	/*
1151 	 * A child process with MAP_PRIVATE mappings created by their parent
1152 	 * have no page reserves. This check ensures that reservations are
1153 	 * not "stolen". The child may still get SIGKILLed
1154 	 */
1155 	if (!vma_has_reserves(vma, chg) &&
1156 			h->free_huge_pages - h->resv_huge_pages == 0)
1157 		goto err;
1158 
1159 	/* If reserves cannot be used, ensure enough pages are in the pool */
1160 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1161 		goto err;
1162 
1163 	gfp_mask = htlb_alloc_mask(h);
1164 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1165 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1166 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1167 		SetHPageRestoreReserve(page);
1168 		h->resv_huge_pages--;
1169 	}
1170 
1171 	mpol_cond_put(mpol);
1172 	return page;
1173 
1174 err:
1175 	return NULL;
1176 }
1177 
1178 /*
1179  * common helper functions for hstate_next_node_to_{alloc|free}.
1180  * We may have allocated or freed a huge page based on a different
1181  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1182  * be outside of *nodes_allowed.  Ensure that we use an allowed
1183  * node for alloc or free.
1184  */
1185 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1186 {
1187 	nid = next_node_in(nid, *nodes_allowed);
1188 	VM_BUG_ON(nid >= MAX_NUMNODES);
1189 
1190 	return nid;
1191 }
1192 
1193 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1194 {
1195 	if (!node_isset(nid, *nodes_allowed))
1196 		nid = next_node_allowed(nid, nodes_allowed);
1197 	return nid;
1198 }
1199 
1200 /*
1201  * returns the previously saved node ["this node"] from which to
1202  * allocate a persistent huge page for the pool and advance the
1203  * next node from which to allocate, handling wrap at end of node
1204  * mask.
1205  */
1206 static int hstate_next_node_to_alloc(struct hstate *h,
1207 					nodemask_t *nodes_allowed)
1208 {
1209 	int nid;
1210 
1211 	VM_BUG_ON(!nodes_allowed);
1212 
1213 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1214 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1215 
1216 	return nid;
1217 }
1218 
1219 /*
1220  * helper for remove_pool_huge_page() - return the previously saved
1221  * node ["this node"] from which to free a huge page.  Advance the
1222  * next node id whether or not we find a free huge page to free so
1223  * that the next attempt to free addresses the next node.
1224  */
1225 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1226 {
1227 	int nid;
1228 
1229 	VM_BUG_ON(!nodes_allowed);
1230 
1231 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1232 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1233 
1234 	return nid;
1235 }
1236 
1237 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1238 	for (nr_nodes = nodes_weight(*mask);				\
1239 		nr_nodes > 0 &&						\
1240 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1241 		nr_nodes--)
1242 
1243 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1244 	for (nr_nodes = nodes_weight(*mask);				\
1245 		nr_nodes > 0 &&						\
1246 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1247 		nr_nodes--)
1248 
1249 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1250 static void destroy_compound_gigantic_page(struct page *page,
1251 					unsigned int order)
1252 {
1253 	int i;
1254 	int nr_pages = 1 << order;
1255 	struct page *p = page + 1;
1256 
1257 	atomic_set(compound_mapcount_ptr(page), 0);
1258 	atomic_set(compound_pincount_ptr(page), 0);
1259 
1260 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1261 		clear_compound_head(p);
1262 		set_page_refcounted(p);
1263 	}
1264 
1265 	set_compound_order(page, 0);
1266 	page[1].compound_nr = 0;
1267 	__ClearPageHead(page);
1268 }
1269 
1270 static void free_gigantic_page(struct page *page, unsigned int order)
1271 {
1272 	/*
1273 	 * If the page isn't allocated using the cma allocator,
1274 	 * cma_release() returns false.
1275 	 */
1276 #ifdef CONFIG_CMA
1277 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1278 		return;
1279 #endif
1280 
1281 	free_contig_range(page_to_pfn(page), 1 << order);
1282 }
1283 
1284 #ifdef CONFIG_CONTIG_ALLOC
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 		int nid, nodemask_t *nodemask)
1287 {
1288 	unsigned long nr_pages = pages_per_huge_page(h);
1289 	if (nid == NUMA_NO_NODE)
1290 		nid = numa_mem_id();
1291 
1292 #ifdef CONFIG_CMA
1293 	{
1294 		struct page *page;
1295 		int node;
1296 
1297 		if (hugetlb_cma[nid]) {
1298 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1299 					huge_page_order(h), true);
1300 			if (page)
1301 				return page;
1302 		}
1303 
1304 		if (!(gfp_mask & __GFP_THISNODE)) {
1305 			for_each_node_mask(node, *nodemask) {
1306 				if (node == nid || !hugetlb_cma[node])
1307 					continue;
1308 
1309 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1310 						huge_page_order(h), true);
1311 				if (page)
1312 					return page;
1313 			}
1314 		}
1315 	}
1316 #endif
1317 
1318 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1319 }
1320 
1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1322 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1323 #else /* !CONFIG_CONTIG_ALLOC */
1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325 					int nid, nodemask_t *nodemask)
1326 {
1327 	return NULL;
1328 }
1329 #endif /* CONFIG_CONTIG_ALLOC */
1330 
1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333 					int nid, nodemask_t *nodemask)
1334 {
1335 	return NULL;
1336 }
1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338 static inline void destroy_compound_gigantic_page(struct page *page,
1339 						unsigned int order) { }
1340 #endif
1341 
1342 /*
1343  * Remove hugetlb page from lists, and update dtor so that page appears
1344  * as just a compound page.  A reference is held on the page.
1345  *
1346  * Must be called with hugetlb lock held.
1347  */
1348 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349 							bool adjust_surplus)
1350 {
1351 	int nid = page_to_nid(page);
1352 
1353 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355 
1356 	lockdep_assert_held(&hugetlb_lock);
1357 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358 		return;
1359 
1360 	list_del(&page->lru);
1361 
1362 	if (HPageFreed(page)) {
1363 		h->free_huge_pages--;
1364 		h->free_huge_pages_node[nid]--;
1365 	}
1366 	if (adjust_surplus) {
1367 		h->surplus_huge_pages--;
1368 		h->surplus_huge_pages_node[nid]--;
1369 	}
1370 
1371 	set_page_refcounted(page);
1372 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373 
1374 	h->nr_huge_pages--;
1375 	h->nr_huge_pages_node[nid]--;
1376 }
1377 
1378 static void update_and_free_page(struct hstate *h, struct page *page)
1379 {
1380 	int i;
1381 	struct page *subpage = page;
1382 
1383 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1384 		return;
1385 
1386 	for (i = 0; i < pages_per_huge_page(h);
1387 	     i++, subpage = mem_map_next(subpage, page, i)) {
1388 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1389 				1 << PG_referenced | 1 << PG_dirty |
1390 				1 << PG_active | 1 << PG_private |
1391 				1 << PG_writeback);
1392 	}
1393 	if (hstate_is_gigantic(h)) {
1394 		destroy_compound_gigantic_page(page, huge_page_order(h));
1395 		free_gigantic_page(page, huge_page_order(h));
1396 	} else {
1397 		__free_pages(page, huge_page_order(h));
1398 	}
1399 }
1400 
1401 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1402 {
1403 	struct page *page, *t_page;
1404 
1405 	list_for_each_entry_safe(page, t_page, list, lru) {
1406 		update_and_free_page(h, page);
1407 		cond_resched();
1408 	}
1409 }
1410 
1411 struct hstate *size_to_hstate(unsigned long size)
1412 {
1413 	struct hstate *h;
1414 
1415 	for_each_hstate(h) {
1416 		if (huge_page_size(h) == size)
1417 			return h;
1418 	}
1419 	return NULL;
1420 }
1421 
1422 void free_huge_page(struct page *page)
1423 {
1424 	/*
1425 	 * Can't pass hstate in here because it is called from the
1426 	 * compound page destructor.
1427 	 */
1428 	struct hstate *h = page_hstate(page);
1429 	int nid = page_to_nid(page);
1430 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1431 	bool restore_reserve;
1432 	unsigned long flags;
1433 
1434 	VM_BUG_ON_PAGE(page_count(page), page);
1435 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1436 
1437 	hugetlb_set_page_subpool(page, NULL);
1438 	page->mapping = NULL;
1439 	restore_reserve = HPageRestoreReserve(page);
1440 	ClearHPageRestoreReserve(page);
1441 
1442 	/*
1443 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1444 	 * reservation.  If the page was associated with a subpool, there
1445 	 * would have been a page reserved in the subpool before allocation
1446 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1447 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1448 	 * remove the reserved page from the subpool.
1449 	 */
1450 	if (!restore_reserve) {
1451 		/*
1452 		 * A return code of zero implies that the subpool will be
1453 		 * under its minimum size if the reservation is not restored
1454 		 * after page is free.  Therefore, force restore_reserve
1455 		 * operation.
1456 		 */
1457 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1458 			restore_reserve = true;
1459 	}
1460 
1461 	spin_lock_irqsave(&hugetlb_lock, flags);
1462 	ClearHPageMigratable(page);
1463 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1464 				     pages_per_huge_page(h), page);
1465 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1466 					  pages_per_huge_page(h), page);
1467 	if (restore_reserve)
1468 		h->resv_huge_pages++;
1469 
1470 	if (HPageTemporary(page)) {
1471 		remove_hugetlb_page(h, page, false);
1472 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1473 		update_and_free_page(h, page);
1474 	} else if (h->surplus_huge_pages_node[nid]) {
1475 		/* remove the page from active list */
1476 		remove_hugetlb_page(h, page, true);
1477 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1478 		update_and_free_page(h, page);
1479 	} else {
1480 		arch_clear_hugepage_flags(page);
1481 		enqueue_huge_page(h, page);
1482 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1483 	}
1484 }
1485 
1486 /*
1487  * Must be called with the hugetlb lock held
1488  */
1489 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1490 {
1491 	lockdep_assert_held(&hugetlb_lock);
1492 	h->nr_huge_pages++;
1493 	h->nr_huge_pages_node[nid]++;
1494 }
1495 
1496 static void __prep_new_huge_page(struct page *page)
1497 {
1498 	INIT_LIST_HEAD(&page->lru);
1499 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1500 	hugetlb_set_page_subpool(page, NULL);
1501 	set_hugetlb_cgroup(page, NULL);
1502 	set_hugetlb_cgroup_rsvd(page, NULL);
1503 }
1504 
1505 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1506 {
1507 	__prep_new_huge_page(page);
1508 	spin_lock_irq(&hugetlb_lock);
1509 	__prep_account_new_huge_page(h, nid);
1510 	spin_unlock_irq(&hugetlb_lock);
1511 }
1512 
1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1514 {
1515 	int i;
1516 	int nr_pages = 1 << order;
1517 	struct page *p = page + 1;
1518 
1519 	/* we rely on prep_new_huge_page to set the destructor */
1520 	set_compound_order(page, order);
1521 	__ClearPageReserved(page);
1522 	__SetPageHead(page);
1523 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1524 		/*
1525 		 * For gigantic hugepages allocated through bootmem at
1526 		 * boot, it's safer to be consistent with the not-gigantic
1527 		 * hugepages and clear the PG_reserved bit from all tail pages
1528 		 * too.  Otherwise drivers using get_user_pages() to access tail
1529 		 * pages may get the reference counting wrong if they see
1530 		 * PG_reserved set on a tail page (despite the head page not
1531 		 * having PG_reserved set).  Enforcing this consistency between
1532 		 * head and tail pages allows drivers to optimize away a check
1533 		 * on the head page when they need know if put_page() is needed
1534 		 * after get_user_pages().
1535 		 */
1536 		__ClearPageReserved(p);
1537 		set_page_count(p, 0);
1538 		set_compound_head(p, page);
1539 	}
1540 	atomic_set(compound_mapcount_ptr(page), -1);
1541 	atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543 
1544 /*
1545  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546  * transparent huge pages.  See the PageTransHuge() documentation for more
1547  * details.
1548  */
1549 int PageHuge(struct page *page)
1550 {
1551 	if (!PageCompound(page))
1552 		return 0;
1553 
1554 	page = compound_head(page);
1555 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558 
1559 /*
1560  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561  * normal or transparent huge pages.
1562  */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565 	if (!PageHead(page_head))
1566 		return 0;
1567 
1568 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570 
1571 /*
1572  * Find and lock address space (mapping) in write mode.
1573  *
1574  * Upon entry, the page is locked which means that page_mapping() is
1575  * stable.  Due to locking order, we can only trylock_write.  If we can
1576  * not get the lock, simply return NULL to caller.
1577  */
1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579 {
1580 	struct address_space *mapping = page_mapping(hpage);
1581 
1582 	if (!mapping)
1583 		return mapping;
1584 
1585 	if (i_mmap_trylock_write(mapping))
1586 		return mapping;
1587 
1588 	return NULL;
1589 }
1590 
1591 pgoff_t __basepage_index(struct page *page)
1592 {
1593 	struct page *page_head = compound_head(page);
1594 	pgoff_t index = page_index(page_head);
1595 	unsigned long compound_idx;
1596 
1597 	if (!PageHuge(page_head))
1598 		return page_index(page);
1599 
1600 	if (compound_order(page_head) >= MAX_ORDER)
1601 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602 	else
1603 		compound_idx = page - page_head;
1604 
1605 	return (index << compound_order(page_head)) + compound_idx;
1606 }
1607 
1608 static struct page *alloc_buddy_huge_page(struct hstate *h,
1609 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610 		nodemask_t *node_alloc_noretry)
1611 {
1612 	int order = huge_page_order(h);
1613 	struct page *page;
1614 	bool alloc_try_hard = true;
1615 
1616 	/*
1617 	 * By default we always try hard to allocate the page with
1618 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1619 	 * a loop (to adjust global huge page counts) and previous allocation
1620 	 * failed, do not continue to try hard on the same node.  Use the
1621 	 * node_alloc_noretry bitmap to manage this state information.
1622 	 */
1623 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624 		alloc_try_hard = false;
1625 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626 	if (alloc_try_hard)
1627 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1628 	if (nid == NUMA_NO_NODE)
1629 		nid = numa_mem_id();
1630 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1631 	if (page)
1632 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1633 	else
1634 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1635 
1636 	/*
1637 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 	 * indicates an overall state change.  Clear bit so that we resume
1639 	 * normal 'try hard' allocations.
1640 	 */
1641 	if (node_alloc_noretry && page && !alloc_try_hard)
1642 		node_clear(nid, *node_alloc_noretry);
1643 
1644 	/*
1645 	 * If we tried hard to get a page but failed, set bit so that
1646 	 * subsequent attempts will not try as hard until there is an
1647 	 * overall state change.
1648 	 */
1649 	if (node_alloc_noretry && !page && alloc_try_hard)
1650 		node_set(nid, *node_alloc_noretry);
1651 
1652 	return page;
1653 }
1654 
1655 /*
1656  * Common helper to allocate a fresh hugetlb page. All specific allocators
1657  * should use this function to get new hugetlb pages
1658  */
1659 static struct page *alloc_fresh_huge_page(struct hstate *h,
1660 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661 		nodemask_t *node_alloc_noretry)
1662 {
1663 	struct page *page;
1664 
1665 	if (hstate_is_gigantic(h))
1666 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667 	else
1668 		page = alloc_buddy_huge_page(h, gfp_mask,
1669 				nid, nmask, node_alloc_noretry);
1670 	if (!page)
1671 		return NULL;
1672 
1673 	if (hstate_is_gigantic(h))
1674 		prep_compound_gigantic_page(page, huge_page_order(h));
1675 	prep_new_huge_page(h, page, page_to_nid(page));
1676 
1677 	return page;
1678 }
1679 
1680 /*
1681  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682  * manner.
1683  */
1684 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685 				nodemask_t *node_alloc_noretry)
1686 {
1687 	struct page *page;
1688 	int nr_nodes, node;
1689 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1690 
1691 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1692 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693 						node_alloc_noretry);
1694 		if (page)
1695 			break;
1696 	}
1697 
1698 	if (!page)
1699 		return 0;
1700 
1701 	put_page(page); /* free it into the hugepage allocator */
1702 
1703 	return 1;
1704 }
1705 
1706 /*
1707  * Remove huge page from pool from next node to free.  Attempt to keep
1708  * persistent huge pages more or less balanced over allowed nodes.
1709  * This routine only 'removes' the hugetlb page.  The caller must make
1710  * an additional call to free the page to low level allocators.
1711  * Called with hugetlb_lock locked.
1712  */
1713 static struct page *remove_pool_huge_page(struct hstate *h,
1714 						nodemask_t *nodes_allowed,
1715 						 bool acct_surplus)
1716 {
1717 	int nr_nodes, node;
1718 	struct page *page = NULL;
1719 
1720 	lockdep_assert_held(&hugetlb_lock);
1721 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1722 		/*
1723 		 * If we're returning unused surplus pages, only examine
1724 		 * nodes with surplus pages.
1725 		 */
1726 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1727 		    !list_empty(&h->hugepage_freelists[node])) {
1728 			page = list_entry(h->hugepage_freelists[node].next,
1729 					  struct page, lru);
1730 			remove_hugetlb_page(h, page, acct_surplus);
1731 			break;
1732 		}
1733 	}
1734 
1735 	return page;
1736 }
1737 
1738 /*
1739  * Dissolve a given free hugepage into free buddy pages. This function does
1740  * nothing for in-use hugepages and non-hugepages.
1741  * This function returns values like below:
1742  *
1743  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1744  *          (allocated or reserved.)
1745  *       0: successfully dissolved free hugepages or the page is not a
1746  *          hugepage (considered as already dissolved)
1747  */
1748 int dissolve_free_huge_page(struct page *page)
1749 {
1750 	int rc = -EBUSY;
1751 
1752 retry:
1753 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1754 	if (!PageHuge(page))
1755 		return 0;
1756 
1757 	spin_lock_irq(&hugetlb_lock);
1758 	if (!PageHuge(page)) {
1759 		rc = 0;
1760 		goto out;
1761 	}
1762 
1763 	if (!page_count(page)) {
1764 		struct page *head = compound_head(page);
1765 		struct hstate *h = page_hstate(head);
1766 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1767 			goto out;
1768 
1769 		/*
1770 		 * We should make sure that the page is already on the free list
1771 		 * when it is dissolved.
1772 		 */
1773 		if (unlikely(!HPageFreed(head))) {
1774 			spin_unlock_irq(&hugetlb_lock);
1775 			cond_resched();
1776 
1777 			/*
1778 			 * Theoretically, we should return -EBUSY when we
1779 			 * encounter this race. In fact, we have a chance
1780 			 * to successfully dissolve the page if we do a
1781 			 * retry. Because the race window is quite small.
1782 			 * If we seize this opportunity, it is an optimization
1783 			 * for increasing the success rate of dissolving page.
1784 			 */
1785 			goto retry;
1786 		}
1787 
1788 		/*
1789 		 * Move PageHWPoison flag from head page to the raw error page,
1790 		 * which makes any subpages rather than the error page reusable.
1791 		 */
1792 		if (PageHWPoison(head) && page != head) {
1793 			SetPageHWPoison(page);
1794 			ClearPageHWPoison(head);
1795 		}
1796 		remove_hugetlb_page(h, head, false);
1797 		h->max_huge_pages--;
1798 		spin_unlock_irq(&hugetlb_lock);
1799 		update_and_free_page(h, head);
1800 		return 0;
1801 	}
1802 out:
1803 	spin_unlock_irq(&hugetlb_lock);
1804 	return rc;
1805 }
1806 
1807 /*
1808  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1809  * make specified memory blocks removable from the system.
1810  * Note that this will dissolve a free gigantic hugepage completely, if any
1811  * part of it lies within the given range.
1812  * Also note that if dissolve_free_huge_page() returns with an error, all
1813  * free hugepages that were dissolved before that error are lost.
1814  */
1815 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1816 {
1817 	unsigned long pfn;
1818 	struct page *page;
1819 	int rc = 0;
1820 
1821 	if (!hugepages_supported())
1822 		return rc;
1823 
1824 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1825 		page = pfn_to_page(pfn);
1826 		rc = dissolve_free_huge_page(page);
1827 		if (rc)
1828 			break;
1829 	}
1830 
1831 	return rc;
1832 }
1833 
1834 /*
1835  * Allocates a fresh surplus page from the page allocator.
1836  */
1837 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1838 		int nid, nodemask_t *nmask)
1839 {
1840 	struct page *page = NULL;
1841 
1842 	if (hstate_is_gigantic(h))
1843 		return NULL;
1844 
1845 	spin_lock_irq(&hugetlb_lock);
1846 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1847 		goto out_unlock;
1848 	spin_unlock_irq(&hugetlb_lock);
1849 
1850 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1851 	if (!page)
1852 		return NULL;
1853 
1854 	spin_lock_irq(&hugetlb_lock);
1855 	/*
1856 	 * We could have raced with the pool size change.
1857 	 * Double check that and simply deallocate the new page
1858 	 * if we would end up overcommiting the surpluses. Abuse
1859 	 * temporary page to workaround the nasty free_huge_page
1860 	 * codeflow
1861 	 */
1862 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1863 		SetHPageTemporary(page);
1864 		spin_unlock_irq(&hugetlb_lock);
1865 		put_page(page);
1866 		return NULL;
1867 	} else {
1868 		h->surplus_huge_pages++;
1869 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1870 	}
1871 
1872 out_unlock:
1873 	spin_unlock_irq(&hugetlb_lock);
1874 
1875 	return page;
1876 }
1877 
1878 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1879 				     int nid, nodemask_t *nmask)
1880 {
1881 	struct page *page;
1882 
1883 	if (hstate_is_gigantic(h))
1884 		return NULL;
1885 
1886 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1887 	if (!page)
1888 		return NULL;
1889 
1890 	/*
1891 	 * We do not account these pages as surplus because they are only
1892 	 * temporary and will be released properly on the last reference
1893 	 */
1894 	SetHPageTemporary(page);
1895 
1896 	return page;
1897 }
1898 
1899 /*
1900  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1901  */
1902 static
1903 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1904 		struct vm_area_struct *vma, unsigned long addr)
1905 {
1906 	struct page *page;
1907 	struct mempolicy *mpol;
1908 	gfp_t gfp_mask = htlb_alloc_mask(h);
1909 	int nid;
1910 	nodemask_t *nodemask;
1911 
1912 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1913 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1914 	mpol_cond_put(mpol);
1915 
1916 	return page;
1917 }
1918 
1919 /* page migration callback function */
1920 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1921 		nodemask_t *nmask, gfp_t gfp_mask)
1922 {
1923 	spin_lock_irq(&hugetlb_lock);
1924 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1925 		struct page *page;
1926 
1927 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1928 		if (page) {
1929 			spin_unlock_irq(&hugetlb_lock);
1930 			return page;
1931 		}
1932 	}
1933 	spin_unlock_irq(&hugetlb_lock);
1934 
1935 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1936 }
1937 
1938 /* mempolicy aware migration callback */
1939 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1940 		unsigned long address)
1941 {
1942 	struct mempolicy *mpol;
1943 	nodemask_t *nodemask;
1944 	struct page *page;
1945 	gfp_t gfp_mask;
1946 	int node;
1947 
1948 	gfp_mask = htlb_alloc_mask(h);
1949 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1950 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1951 	mpol_cond_put(mpol);
1952 
1953 	return page;
1954 }
1955 
1956 /*
1957  * Increase the hugetlb pool such that it can accommodate a reservation
1958  * of size 'delta'.
1959  */
1960 static int gather_surplus_pages(struct hstate *h, long delta)
1961 	__must_hold(&hugetlb_lock)
1962 {
1963 	struct list_head surplus_list;
1964 	struct page *page, *tmp;
1965 	int ret;
1966 	long i;
1967 	long needed, allocated;
1968 	bool alloc_ok = true;
1969 
1970 	lockdep_assert_held(&hugetlb_lock);
1971 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1972 	if (needed <= 0) {
1973 		h->resv_huge_pages += delta;
1974 		return 0;
1975 	}
1976 
1977 	allocated = 0;
1978 	INIT_LIST_HEAD(&surplus_list);
1979 
1980 	ret = -ENOMEM;
1981 retry:
1982 	spin_unlock_irq(&hugetlb_lock);
1983 	for (i = 0; i < needed; i++) {
1984 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1985 				NUMA_NO_NODE, NULL);
1986 		if (!page) {
1987 			alloc_ok = false;
1988 			break;
1989 		}
1990 		list_add(&page->lru, &surplus_list);
1991 		cond_resched();
1992 	}
1993 	allocated += i;
1994 
1995 	/*
1996 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1997 	 * because either resv_huge_pages or free_huge_pages may have changed.
1998 	 */
1999 	spin_lock_irq(&hugetlb_lock);
2000 	needed = (h->resv_huge_pages + delta) -
2001 			(h->free_huge_pages + allocated);
2002 	if (needed > 0) {
2003 		if (alloc_ok)
2004 			goto retry;
2005 		/*
2006 		 * We were not able to allocate enough pages to
2007 		 * satisfy the entire reservation so we free what
2008 		 * we've allocated so far.
2009 		 */
2010 		goto free;
2011 	}
2012 	/*
2013 	 * The surplus_list now contains _at_least_ the number of extra pages
2014 	 * needed to accommodate the reservation.  Add the appropriate number
2015 	 * of pages to the hugetlb pool and free the extras back to the buddy
2016 	 * allocator.  Commit the entire reservation here to prevent another
2017 	 * process from stealing the pages as they are added to the pool but
2018 	 * before they are reserved.
2019 	 */
2020 	needed += allocated;
2021 	h->resv_huge_pages += delta;
2022 	ret = 0;
2023 
2024 	/* Free the needed pages to the hugetlb pool */
2025 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2026 		int zeroed;
2027 
2028 		if ((--needed) < 0)
2029 			break;
2030 		/*
2031 		 * This page is now managed by the hugetlb allocator and has
2032 		 * no users -- drop the buddy allocator's reference.
2033 		 */
2034 		zeroed = put_page_testzero(page);
2035 		VM_BUG_ON_PAGE(!zeroed, page);
2036 		enqueue_huge_page(h, page);
2037 	}
2038 free:
2039 	spin_unlock_irq(&hugetlb_lock);
2040 
2041 	/* Free unnecessary surplus pages to the buddy allocator */
2042 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2043 		put_page(page);
2044 	spin_lock_irq(&hugetlb_lock);
2045 
2046 	return ret;
2047 }
2048 
2049 /*
2050  * This routine has two main purposes:
2051  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2052  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2053  *    to the associated reservation map.
2054  * 2) Free any unused surplus pages that may have been allocated to satisfy
2055  *    the reservation.  As many as unused_resv_pages may be freed.
2056  */
2057 static void return_unused_surplus_pages(struct hstate *h,
2058 					unsigned long unused_resv_pages)
2059 {
2060 	unsigned long nr_pages;
2061 	struct page *page;
2062 	LIST_HEAD(page_list);
2063 
2064 	lockdep_assert_held(&hugetlb_lock);
2065 	/* Uncommit the reservation */
2066 	h->resv_huge_pages -= unused_resv_pages;
2067 
2068 	/* Cannot return gigantic pages currently */
2069 	if (hstate_is_gigantic(h))
2070 		goto out;
2071 
2072 	/*
2073 	 * Part (or even all) of the reservation could have been backed
2074 	 * by pre-allocated pages. Only free surplus pages.
2075 	 */
2076 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2077 
2078 	/*
2079 	 * We want to release as many surplus pages as possible, spread
2080 	 * evenly across all nodes with memory. Iterate across these nodes
2081 	 * until we can no longer free unreserved surplus pages. This occurs
2082 	 * when the nodes with surplus pages have no free pages.
2083 	 * remove_pool_huge_page() will balance the freed pages across the
2084 	 * on-line nodes with memory and will handle the hstate accounting.
2085 	 */
2086 	while (nr_pages--) {
2087 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2088 		if (!page)
2089 			goto out;
2090 
2091 		list_add(&page->lru, &page_list);
2092 	}
2093 
2094 out:
2095 	spin_unlock_irq(&hugetlb_lock);
2096 	update_and_free_pages_bulk(h, &page_list);
2097 	spin_lock_irq(&hugetlb_lock);
2098 }
2099 
2100 
2101 /*
2102  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2103  * are used by the huge page allocation routines to manage reservations.
2104  *
2105  * vma_needs_reservation is called to determine if the huge page at addr
2106  * within the vma has an associated reservation.  If a reservation is
2107  * needed, the value 1 is returned.  The caller is then responsible for
2108  * managing the global reservation and subpool usage counts.  After
2109  * the huge page has been allocated, vma_commit_reservation is called
2110  * to add the page to the reservation map.  If the page allocation fails,
2111  * the reservation must be ended instead of committed.  vma_end_reservation
2112  * is called in such cases.
2113  *
2114  * In the normal case, vma_commit_reservation returns the same value
2115  * as the preceding vma_needs_reservation call.  The only time this
2116  * is not the case is if a reserve map was changed between calls.  It
2117  * is the responsibility of the caller to notice the difference and
2118  * take appropriate action.
2119  *
2120  * vma_add_reservation is used in error paths where a reservation must
2121  * be restored when a newly allocated huge page must be freed.  It is
2122  * to be called after calling vma_needs_reservation to determine if a
2123  * reservation exists.
2124  *
2125  * vma_del_reservation is used in error paths where an entry in the reserve
2126  * map was created during huge page allocation and must be removed.  It is to
2127  * be called after calling vma_needs_reservation to determine if a reservation
2128  * exists.
2129  */
2130 enum vma_resv_mode {
2131 	VMA_NEEDS_RESV,
2132 	VMA_COMMIT_RESV,
2133 	VMA_END_RESV,
2134 	VMA_ADD_RESV,
2135 	VMA_DEL_RESV,
2136 };
2137 static long __vma_reservation_common(struct hstate *h,
2138 				struct vm_area_struct *vma, unsigned long addr,
2139 				enum vma_resv_mode mode)
2140 {
2141 	struct resv_map *resv;
2142 	pgoff_t idx;
2143 	long ret;
2144 	long dummy_out_regions_needed;
2145 
2146 	resv = vma_resv_map(vma);
2147 	if (!resv)
2148 		return 1;
2149 
2150 	idx = vma_hugecache_offset(h, vma, addr);
2151 	switch (mode) {
2152 	case VMA_NEEDS_RESV:
2153 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2154 		/* We assume that vma_reservation_* routines always operate on
2155 		 * 1 page, and that adding to resv map a 1 page entry can only
2156 		 * ever require 1 region.
2157 		 */
2158 		VM_BUG_ON(dummy_out_regions_needed != 1);
2159 		break;
2160 	case VMA_COMMIT_RESV:
2161 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2162 		/* region_add calls of range 1 should never fail. */
2163 		VM_BUG_ON(ret < 0);
2164 		break;
2165 	case VMA_END_RESV:
2166 		region_abort(resv, idx, idx + 1, 1);
2167 		ret = 0;
2168 		break;
2169 	case VMA_ADD_RESV:
2170 		if (vma->vm_flags & VM_MAYSHARE) {
2171 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2172 			/* region_add calls of range 1 should never fail. */
2173 			VM_BUG_ON(ret < 0);
2174 		} else {
2175 			region_abort(resv, idx, idx + 1, 1);
2176 			ret = region_del(resv, idx, idx + 1);
2177 		}
2178 		break;
2179 	case VMA_DEL_RESV:
2180 		if (vma->vm_flags & VM_MAYSHARE) {
2181 			region_abort(resv, idx, idx + 1, 1);
2182 			ret = region_del(resv, idx, idx + 1);
2183 		} else {
2184 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2185 			/* region_add calls of range 1 should never fail. */
2186 			VM_BUG_ON(ret < 0);
2187 		}
2188 		break;
2189 	default:
2190 		BUG();
2191 	}
2192 
2193 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2194 		return ret;
2195 	/*
2196 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2197 	 *
2198 	 * In most cases, reserves always exist for private mappings.
2199 	 * However, a file associated with mapping could have been
2200 	 * hole punched or truncated after reserves were consumed.
2201 	 * As subsequent fault on such a range will not use reserves.
2202 	 * Subtle - The reserve map for private mappings has the
2203 	 * opposite meaning than that of shared mappings.  If NO
2204 	 * entry is in the reserve map, it means a reservation exists.
2205 	 * If an entry exists in the reserve map, it means the
2206 	 * reservation has already been consumed.  As a result, the
2207 	 * return value of this routine is the opposite of the
2208 	 * value returned from reserve map manipulation routines above.
2209 	 */
2210 	if (ret > 0)
2211 		return 0;
2212 	if (ret == 0)
2213 		return 1;
2214 	return ret;
2215 }
2216 
2217 static long vma_needs_reservation(struct hstate *h,
2218 			struct vm_area_struct *vma, unsigned long addr)
2219 {
2220 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2221 }
2222 
2223 static long vma_commit_reservation(struct hstate *h,
2224 			struct vm_area_struct *vma, unsigned long addr)
2225 {
2226 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2227 }
2228 
2229 static void vma_end_reservation(struct hstate *h,
2230 			struct vm_area_struct *vma, unsigned long addr)
2231 {
2232 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2233 }
2234 
2235 static long vma_add_reservation(struct hstate *h,
2236 			struct vm_area_struct *vma, unsigned long addr)
2237 {
2238 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2239 }
2240 
2241 static long vma_del_reservation(struct hstate *h,
2242 			struct vm_area_struct *vma, unsigned long addr)
2243 {
2244 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2245 }
2246 
2247 /*
2248  * This routine is called to restore reservation information on error paths.
2249  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2250  * the hugetlb mutex should remain held when calling this routine.
2251  *
2252  * It handles two specific cases:
2253  * 1) A reservation was in place and the page consumed the reservation.
2254  *    HPageRestoreReserve is set in the page.
2255  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2256  *    not set.  However, alloc_huge_page always updates the reserve map.
2257  *
2258  * In case 1, free_huge_page later in the error path will increment the
2259  * global reserve count.  But, free_huge_page does not have enough context
2260  * to adjust the reservation map.  This case deals primarily with private
2261  * mappings.  Adjust the reserve map here to be consistent with global
2262  * reserve count adjustments to be made by free_huge_page.  Make sure the
2263  * reserve map indicates there is a reservation present.
2264  *
2265  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2266  */
2267 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2268 			unsigned long address, struct page *page)
2269 {
2270 	long rc = vma_needs_reservation(h, vma, address);
2271 
2272 	if (HPageRestoreReserve(page)) {
2273 		if (unlikely(rc < 0))
2274 			/*
2275 			 * Rare out of memory condition in reserve map
2276 			 * manipulation.  Clear HPageRestoreReserve so that
2277 			 * global reserve count will not be incremented
2278 			 * by free_huge_page.  This will make it appear
2279 			 * as though the reservation for this page was
2280 			 * consumed.  This may prevent the task from
2281 			 * faulting in the page at a later time.  This
2282 			 * is better than inconsistent global huge page
2283 			 * accounting of reserve counts.
2284 			 */
2285 			ClearHPageRestoreReserve(page);
2286 		else if (rc)
2287 			(void)vma_add_reservation(h, vma, address);
2288 		else
2289 			vma_end_reservation(h, vma, address);
2290 	} else {
2291 		if (!rc) {
2292 			/*
2293 			 * This indicates there is an entry in the reserve map
2294 			 * added by alloc_huge_page.  We know it was added
2295 			 * before the alloc_huge_page call, otherwise
2296 			 * HPageRestoreReserve would be set on the page.
2297 			 * Remove the entry so that a subsequent allocation
2298 			 * does not consume a reservation.
2299 			 */
2300 			rc = vma_del_reservation(h, vma, address);
2301 			if (rc < 0)
2302 				/*
2303 				 * VERY rare out of memory condition.  Since
2304 				 * we can not delete the entry, set
2305 				 * HPageRestoreReserve so that the reserve
2306 				 * count will be incremented when the page
2307 				 * is freed.  This reserve will be consumed
2308 				 * on a subsequent allocation.
2309 				 */
2310 				SetHPageRestoreReserve(page);
2311 		} else if (rc < 0) {
2312 			/*
2313 			 * Rare out of memory condition from
2314 			 * vma_needs_reservation call.  Memory allocation is
2315 			 * only attempted if a new entry is needed.  Therefore,
2316 			 * this implies there is not an entry in the
2317 			 * reserve map.
2318 			 *
2319 			 * For shared mappings, no entry in the map indicates
2320 			 * no reservation.  We are done.
2321 			 */
2322 			if (!(vma->vm_flags & VM_MAYSHARE))
2323 				/*
2324 				 * For private mappings, no entry indicates
2325 				 * a reservation is present.  Since we can
2326 				 * not add an entry, set SetHPageRestoreReserve
2327 				 * on the page so reserve count will be
2328 				 * incremented when freed.  This reserve will
2329 				 * be consumed on a subsequent allocation.
2330 				 */
2331 				SetHPageRestoreReserve(page);
2332 		} else
2333 			/*
2334 			 * No reservation present, do nothing
2335 			 */
2336 			 vma_end_reservation(h, vma, address);
2337 	}
2338 }
2339 
2340 /*
2341  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2342  * @h: struct hstate old page belongs to
2343  * @old_page: Old page to dissolve
2344  * @list: List to isolate the page in case we need to
2345  * Returns 0 on success, otherwise negated error.
2346  */
2347 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2348 					struct list_head *list)
2349 {
2350 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2351 	int nid = page_to_nid(old_page);
2352 	struct page *new_page;
2353 	int ret = 0;
2354 
2355 	/*
2356 	 * Before dissolving the page, we need to allocate a new one for the
2357 	 * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2358 	 * not having to deal with prep_new_huge_page() and avoids dealing of any
2359 	 * counters. This simplifies and let us do the whole thing under the
2360 	 * lock.
2361 	 */
2362 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2363 	if (!new_page)
2364 		return -ENOMEM;
2365 
2366 retry:
2367 	spin_lock_irq(&hugetlb_lock);
2368 	if (!PageHuge(old_page)) {
2369 		/*
2370 		 * Freed from under us. Drop new_page too.
2371 		 */
2372 		goto free_new;
2373 	} else if (page_count(old_page)) {
2374 		/*
2375 		 * Someone has grabbed the page, try to isolate it here.
2376 		 * Fail with -EBUSY if not possible.
2377 		 */
2378 		spin_unlock_irq(&hugetlb_lock);
2379 		if (!isolate_huge_page(old_page, list))
2380 			ret = -EBUSY;
2381 		spin_lock_irq(&hugetlb_lock);
2382 		goto free_new;
2383 	} else if (!HPageFreed(old_page)) {
2384 		/*
2385 		 * Page's refcount is 0 but it has not been enqueued in the
2386 		 * freelist yet. Race window is small, so we can succeed here if
2387 		 * we retry.
2388 		 */
2389 		spin_unlock_irq(&hugetlb_lock);
2390 		cond_resched();
2391 		goto retry;
2392 	} else {
2393 		/*
2394 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2395 		 * the freelist and decrease the counters. These will be
2396 		 * incremented again when calling __prep_account_new_huge_page()
2397 		 * and enqueue_huge_page() for new_page. The counters will remain
2398 		 * stable since this happens under the lock.
2399 		 */
2400 		remove_hugetlb_page(h, old_page, false);
2401 
2402 		/*
2403 		 * new_page needs to be initialized with the standard hugetlb
2404 		 * state. This is normally done by prep_new_huge_page() but
2405 		 * that takes hugetlb_lock which is already held so we need to
2406 		 * open code it here.
2407 		 * Reference count trick is needed because allocator gives us
2408 		 * referenced page but the pool requires pages with 0 refcount.
2409 		 */
2410 		__prep_new_huge_page(new_page);
2411 		__prep_account_new_huge_page(h, nid);
2412 		page_ref_dec(new_page);
2413 		enqueue_huge_page(h, new_page);
2414 
2415 		/*
2416 		 * Pages have been replaced, we can safely free the old one.
2417 		 */
2418 		spin_unlock_irq(&hugetlb_lock);
2419 		update_and_free_page(h, old_page);
2420 	}
2421 
2422 	return ret;
2423 
2424 free_new:
2425 	spin_unlock_irq(&hugetlb_lock);
2426 	__free_pages(new_page, huge_page_order(h));
2427 
2428 	return ret;
2429 }
2430 
2431 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2432 {
2433 	struct hstate *h;
2434 	struct page *head;
2435 	int ret = -EBUSY;
2436 
2437 	/*
2438 	 * The page might have been dissolved from under our feet, so make sure
2439 	 * to carefully check the state under the lock.
2440 	 * Return success when racing as if we dissolved the page ourselves.
2441 	 */
2442 	spin_lock_irq(&hugetlb_lock);
2443 	if (PageHuge(page)) {
2444 		head = compound_head(page);
2445 		h = page_hstate(head);
2446 	} else {
2447 		spin_unlock_irq(&hugetlb_lock);
2448 		return 0;
2449 	}
2450 	spin_unlock_irq(&hugetlb_lock);
2451 
2452 	/*
2453 	 * Fence off gigantic pages as there is a cyclic dependency between
2454 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2455 	 * of bailing out right away without further retrying.
2456 	 */
2457 	if (hstate_is_gigantic(h))
2458 		return -ENOMEM;
2459 
2460 	if (page_count(head) && isolate_huge_page(head, list))
2461 		ret = 0;
2462 	else if (!page_count(head))
2463 		ret = alloc_and_dissolve_huge_page(h, head, list);
2464 
2465 	return ret;
2466 }
2467 
2468 struct page *alloc_huge_page(struct vm_area_struct *vma,
2469 				    unsigned long addr, int avoid_reserve)
2470 {
2471 	struct hugepage_subpool *spool = subpool_vma(vma);
2472 	struct hstate *h = hstate_vma(vma);
2473 	struct page *page;
2474 	long map_chg, map_commit;
2475 	long gbl_chg;
2476 	int ret, idx;
2477 	struct hugetlb_cgroup *h_cg;
2478 	bool deferred_reserve;
2479 
2480 	idx = hstate_index(h);
2481 	/*
2482 	 * Examine the region/reserve map to determine if the process
2483 	 * has a reservation for the page to be allocated.  A return
2484 	 * code of zero indicates a reservation exists (no change).
2485 	 */
2486 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2487 	if (map_chg < 0)
2488 		return ERR_PTR(-ENOMEM);
2489 
2490 	/*
2491 	 * Processes that did not create the mapping will have no
2492 	 * reserves as indicated by the region/reserve map. Check
2493 	 * that the allocation will not exceed the subpool limit.
2494 	 * Allocations for MAP_NORESERVE mappings also need to be
2495 	 * checked against any subpool limit.
2496 	 */
2497 	if (map_chg || avoid_reserve) {
2498 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2499 		if (gbl_chg < 0) {
2500 			vma_end_reservation(h, vma, addr);
2501 			return ERR_PTR(-ENOSPC);
2502 		}
2503 
2504 		/*
2505 		 * Even though there was no reservation in the region/reserve
2506 		 * map, there could be reservations associated with the
2507 		 * subpool that can be used.  This would be indicated if the
2508 		 * return value of hugepage_subpool_get_pages() is zero.
2509 		 * However, if avoid_reserve is specified we still avoid even
2510 		 * the subpool reservations.
2511 		 */
2512 		if (avoid_reserve)
2513 			gbl_chg = 1;
2514 	}
2515 
2516 	/* If this allocation is not consuming a reservation, charge it now.
2517 	 */
2518 	deferred_reserve = map_chg || avoid_reserve;
2519 	if (deferred_reserve) {
2520 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2521 			idx, pages_per_huge_page(h), &h_cg);
2522 		if (ret)
2523 			goto out_subpool_put;
2524 	}
2525 
2526 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2527 	if (ret)
2528 		goto out_uncharge_cgroup_reservation;
2529 
2530 	spin_lock_irq(&hugetlb_lock);
2531 	/*
2532 	 * glb_chg is passed to indicate whether or not a page must be taken
2533 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2534 	 * a reservation exists for the allocation.
2535 	 */
2536 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2537 	if (!page) {
2538 		spin_unlock_irq(&hugetlb_lock);
2539 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2540 		if (!page)
2541 			goto out_uncharge_cgroup;
2542 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2543 			SetHPageRestoreReserve(page);
2544 			h->resv_huge_pages--;
2545 		}
2546 		spin_lock_irq(&hugetlb_lock);
2547 		list_add(&page->lru, &h->hugepage_activelist);
2548 		/* Fall through */
2549 	}
2550 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2551 	/* If allocation is not consuming a reservation, also store the
2552 	 * hugetlb_cgroup pointer on the page.
2553 	 */
2554 	if (deferred_reserve) {
2555 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2556 						  h_cg, page);
2557 	}
2558 
2559 	spin_unlock_irq(&hugetlb_lock);
2560 
2561 	hugetlb_set_page_subpool(page, spool);
2562 
2563 	map_commit = vma_commit_reservation(h, vma, addr);
2564 	if (unlikely(map_chg > map_commit)) {
2565 		/*
2566 		 * The page was added to the reservation map between
2567 		 * vma_needs_reservation and vma_commit_reservation.
2568 		 * This indicates a race with hugetlb_reserve_pages.
2569 		 * Adjust for the subpool count incremented above AND
2570 		 * in hugetlb_reserve_pages for the same page.  Also,
2571 		 * the reservation count added in hugetlb_reserve_pages
2572 		 * no longer applies.
2573 		 */
2574 		long rsv_adjust;
2575 
2576 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2577 		hugetlb_acct_memory(h, -rsv_adjust);
2578 		if (deferred_reserve)
2579 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2580 					pages_per_huge_page(h), page);
2581 	}
2582 	return page;
2583 
2584 out_uncharge_cgroup:
2585 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2586 out_uncharge_cgroup_reservation:
2587 	if (deferred_reserve)
2588 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2589 						    h_cg);
2590 out_subpool_put:
2591 	if (map_chg || avoid_reserve)
2592 		hugepage_subpool_put_pages(spool, 1);
2593 	vma_end_reservation(h, vma, addr);
2594 	return ERR_PTR(-ENOSPC);
2595 }
2596 
2597 int alloc_bootmem_huge_page(struct hstate *h)
2598 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2599 int __alloc_bootmem_huge_page(struct hstate *h)
2600 {
2601 	struct huge_bootmem_page *m;
2602 	int nr_nodes, node;
2603 
2604 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2605 		void *addr;
2606 
2607 		addr = memblock_alloc_try_nid_raw(
2608 				huge_page_size(h), huge_page_size(h),
2609 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2610 		if (addr) {
2611 			/*
2612 			 * Use the beginning of the huge page to store the
2613 			 * huge_bootmem_page struct (until gather_bootmem
2614 			 * puts them into the mem_map).
2615 			 */
2616 			m = addr;
2617 			goto found;
2618 		}
2619 	}
2620 	return 0;
2621 
2622 found:
2623 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2624 	/* Put them into a private list first because mem_map is not up yet */
2625 	INIT_LIST_HEAD(&m->list);
2626 	list_add(&m->list, &huge_boot_pages);
2627 	m->hstate = h;
2628 	return 1;
2629 }
2630 
2631 static void __init prep_compound_huge_page(struct page *page,
2632 		unsigned int order)
2633 {
2634 	if (unlikely(order > (MAX_ORDER - 1)))
2635 		prep_compound_gigantic_page(page, order);
2636 	else
2637 		prep_compound_page(page, order);
2638 }
2639 
2640 /* Put bootmem huge pages into the standard lists after mem_map is up */
2641 static void __init gather_bootmem_prealloc(void)
2642 {
2643 	struct huge_bootmem_page *m;
2644 
2645 	list_for_each_entry(m, &huge_boot_pages, list) {
2646 		struct page *page = virt_to_page(m);
2647 		struct hstate *h = m->hstate;
2648 
2649 		WARN_ON(page_count(page) != 1);
2650 		prep_compound_huge_page(page, huge_page_order(h));
2651 		WARN_ON(PageReserved(page));
2652 		prep_new_huge_page(h, page, page_to_nid(page));
2653 		put_page(page); /* free it into the hugepage allocator */
2654 
2655 		/*
2656 		 * If we had gigantic hugepages allocated at boot time, we need
2657 		 * to restore the 'stolen' pages to totalram_pages in order to
2658 		 * fix confusing memory reports from free(1) and another
2659 		 * side-effects, like CommitLimit going negative.
2660 		 */
2661 		if (hstate_is_gigantic(h))
2662 			adjust_managed_page_count(page, pages_per_huge_page(h));
2663 		cond_resched();
2664 	}
2665 }
2666 
2667 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2668 {
2669 	unsigned long i;
2670 	nodemask_t *node_alloc_noretry;
2671 
2672 	if (!hstate_is_gigantic(h)) {
2673 		/*
2674 		 * Bit mask controlling how hard we retry per-node allocations.
2675 		 * Ignore errors as lower level routines can deal with
2676 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2677 		 * time, we are likely in bigger trouble.
2678 		 */
2679 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2680 						GFP_KERNEL);
2681 	} else {
2682 		/* allocations done at boot time */
2683 		node_alloc_noretry = NULL;
2684 	}
2685 
2686 	/* bit mask controlling how hard we retry per-node allocations */
2687 	if (node_alloc_noretry)
2688 		nodes_clear(*node_alloc_noretry);
2689 
2690 	for (i = 0; i < h->max_huge_pages; ++i) {
2691 		if (hstate_is_gigantic(h)) {
2692 			if (hugetlb_cma_size) {
2693 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2694 				goto free;
2695 			}
2696 			if (!alloc_bootmem_huge_page(h))
2697 				break;
2698 		} else if (!alloc_pool_huge_page(h,
2699 					 &node_states[N_MEMORY],
2700 					 node_alloc_noretry))
2701 			break;
2702 		cond_resched();
2703 	}
2704 	if (i < h->max_huge_pages) {
2705 		char buf[32];
2706 
2707 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2708 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2709 			h->max_huge_pages, buf, i);
2710 		h->max_huge_pages = i;
2711 	}
2712 free:
2713 	kfree(node_alloc_noretry);
2714 }
2715 
2716 static void __init hugetlb_init_hstates(void)
2717 {
2718 	struct hstate *h;
2719 
2720 	for_each_hstate(h) {
2721 		if (minimum_order > huge_page_order(h))
2722 			minimum_order = huge_page_order(h);
2723 
2724 		/* oversize hugepages were init'ed in early boot */
2725 		if (!hstate_is_gigantic(h))
2726 			hugetlb_hstate_alloc_pages(h);
2727 	}
2728 	VM_BUG_ON(minimum_order == UINT_MAX);
2729 }
2730 
2731 static void __init report_hugepages(void)
2732 {
2733 	struct hstate *h;
2734 
2735 	for_each_hstate(h) {
2736 		char buf[32];
2737 
2738 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2739 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2740 			buf, h->free_huge_pages);
2741 	}
2742 }
2743 
2744 #ifdef CONFIG_HIGHMEM
2745 static void try_to_free_low(struct hstate *h, unsigned long count,
2746 						nodemask_t *nodes_allowed)
2747 {
2748 	int i;
2749 	LIST_HEAD(page_list);
2750 
2751 	lockdep_assert_held(&hugetlb_lock);
2752 	if (hstate_is_gigantic(h))
2753 		return;
2754 
2755 	/*
2756 	 * Collect pages to be freed on a list, and free after dropping lock
2757 	 */
2758 	for_each_node_mask(i, *nodes_allowed) {
2759 		struct page *page, *next;
2760 		struct list_head *freel = &h->hugepage_freelists[i];
2761 		list_for_each_entry_safe(page, next, freel, lru) {
2762 			if (count >= h->nr_huge_pages)
2763 				goto out;
2764 			if (PageHighMem(page))
2765 				continue;
2766 			remove_hugetlb_page(h, page, false);
2767 			list_add(&page->lru, &page_list);
2768 		}
2769 	}
2770 
2771 out:
2772 	spin_unlock_irq(&hugetlb_lock);
2773 	update_and_free_pages_bulk(h, &page_list);
2774 	spin_lock_irq(&hugetlb_lock);
2775 }
2776 #else
2777 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2778 						nodemask_t *nodes_allowed)
2779 {
2780 }
2781 #endif
2782 
2783 /*
2784  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2785  * balanced by operating on them in a round-robin fashion.
2786  * Returns 1 if an adjustment was made.
2787  */
2788 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2789 				int delta)
2790 {
2791 	int nr_nodes, node;
2792 
2793 	lockdep_assert_held(&hugetlb_lock);
2794 	VM_BUG_ON(delta != -1 && delta != 1);
2795 
2796 	if (delta < 0) {
2797 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2798 			if (h->surplus_huge_pages_node[node])
2799 				goto found;
2800 		}
2801 	} else {
2802 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2803 			if (h->surplus_huge_pages_node[node] <
2804 					h->nr_huge_pages_node[node])
2805 				goto found;
2806 		}
2807 	}
2808 	return 0;
2809 
2810 found:
2811 	h->surplus_huge_pages += delta;
2812 	h->surplus_huge_pages_node[node] += delta;
2813 	return 1;
2814 }
2815 
2816 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2817 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2818 			      nodemask_t *nodes_allowed)
2819 {
2820 	unsigned long min_count, ret;
2821 	struct page *page;
2822 	LIST_HEAD(page_list);
2823 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2824 
2825 	/*
2826 	 * Bit mask controlling how hard we retry per-node allocations.
2827 	 * If we can not allocate the bit mask, do not attempt to allocate
2828 	 * the requested huge pages.
2829 	 */
2830 	if (node_alloc_noretry)
2831 		nodes_clear(*node_alloc_noretry);
2832 	else
2833 		return -ENOMEM;
2834 
2835 	/*
2836 	 * resize_lock mutex prevents concurrent adjustments to number of
2837 	 * pages in hstate via the proc/sysfs interfaces.
2838 	 */
2839 	mutex_lock(&h->resize_lock);
2840 	spin_lock_irq(&hugetlb_lock);
2841 
2842 	/*
2843 	 * Check for a node specific request.
2844 	 * Changing node specific huge page count may require a corresponding
2845 	 * change to the global count.  In any case, the passed node mask
2846 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2847 	 */
2848 	if (nid != NUMA_NO_NODE) {
2849 		unsigned long old_count = count;
2850 
2851 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2852 		/*
2853 		 * User may have specified a large count value which caused the
2854 		 * above calculation to overflow.  In this case, they wanted
2855 		 * to allocate as many huge pages as possible.  Set count to
2856 		 * largest possible value to align with their intention.
2857 		 */
2858 		if (count < old_count)
2859 			count = ULONG_MAX;
2860 	}
2861 
2862 	/*
2863 	 * Gigantic pages runtime allocation depend on the capability for large
2864 	 * page range allocation.
2865 	 * If the system does not provide this feature, return an error when
2866 	 * the user tries to allocate gigantic pages but let the user free the
2867 	 * boottime allocated gigantic pages.
2868 	 */
2869 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2870 		if (count > persistent_huge_pages(h)) {
2871 			spin_unlock_irq(&hugetlb_lock);
2872 			mutex_unlock(&h->resize_lock);
2873 			NODEMASK_FREE(node_alloc_noretry);
2874 			return -EINVAL;
2875 		}
2876 		/* Fall through to decrease pool */
2877 	}
2878 
2879 	/*
2880 	 * Increase the pool size
2881 	 * First take pages out of surplus state.  Then make up the
2882 	 * remaining difference by allocating fresh huge pages.
2883 	 *
2884 	 * We might race with alloc_surplus_huge_page() here and be unable
2885 	 * to convert a surplus huge page to a normal huge page. That is
2886 	 * not critical, though, it just means the overall size of the
2887 	 * pool might be one hugepage larger than it needs to be, but
2888 	 * within all the constraints specified by the sysctls.
2889 	 */
2890 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2891 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2892 			break;
2893 	}
2894 
2895 	while (count > persistent_huge_pages(h)) {
2896 		/*
2897 		 * If this allocation races such that we no longer need the
2898 		 * page, free_huge_page will handle it by freeing the page
2899 		 * and reducing the surplus.
2900 		 */
2901 		spin_unlock_irq(&hugetlb_lock);
2902 
2903 		/* yield cpu to avoid soft lockup */
2904 		cond_resched();
2905 
2906 		ret = alloc_pool_huge_page(h, nodes_allowed,
2907 						node_alloc_noretry);
2908 		spin_lock_irq(&hugetlb_lock);
2909 		if (!ret)
2910 			goto out;
2911 
2912 		/* Bail for signals. Probably ctrl-c from user */
2913 		if (signal_pending(current))
2914 			goto out;
2915 	}
2916 
2917 	/*
2918 	 * Decrease the pool size
2919 	 * First return free pages to the buddy allocator (being careful
2920 	 * to keep enough around to satisfy reservations).  Then place
2921 	 * pages into surplus state as needed so the pool will shrink
2922 	 * to the desired size as pages become free.
2923 	 *
2924 	 * By placing pages into the surplus state independent of the
2925 	 * overcommit value, we are allowing the surplus pool size to
2926 	 * exceed overcommit. There are few sane options here. Since
2927 	 * alloc_surplus_huge_page() is checking the global counter,
2928 	 * though, we'll note that we're not allowed to exceed surplus
2929 	 * and won't grow the pool anywhere else. Not until one of the
2930 	 * sysctls are changed, or the surplus pages go out of use.
2931 	 */
2932 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2933 	min_count = max(count, min_count);
2934 	try_to_free_low(h, min_count, nodes_allowed);
2935 
2936 	/*
2937 	 * Collect pages to be removed on list without dropping lock
2938 	 */
2939 	while (min_count < persistent_huge_pages(h)) {
2940 		page = remove_pool_huge_page(h, nodes_allowed, 0);
2941 		if (!page)
2942 			break;
2943 
2944 		list_add(&page->lru, &page_list);
2945 	}
2946 	/* free the pages after dropping lock */
2947 	spin_unlock_irq(&hugetlb_lock);
2948 	update_and_free_pages_bulk(h, &page_list);
2949 	spin_lock_irq(&hugetlb_lock);
2950 
2951 	while (count < persistent_huge_pages(h)) {
2952 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2953 			break;
2954 	}
2955 out:
2956 	h->max_huge_pages = persistent_huge_pages(h);
2957 	spin_unlock_irq(&hugetlb_lock);
2958 	mutex_unlock(&h->resize_lock);
2959 
2960 	NODEMASK_FREE(node_alloc_noretry);
2961 
2962 	return 0;
2963 }
2964 
2965 #define HSTATE_ATTR_RO(_name) \
2966 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2967 
2968 #define HSTATE_ATTR(_name) \
2969 	static struct kobj_attribute _name##_attr = \
2970 		__ATTR(_name, 0644, _name##_show, _name##_store)
2971 
2972 static struct kobject *hugepages_kobj;
2973 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2974 
2975 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2976 
2977 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2978 {
2979 	int i;
2980 
2981 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2982 		if (hstate_kobjs[i] == kobj) {
2983 			if (nidp)
2984 				*nidp = NUMA_NO_NODE;
2985 			return &hstates[i];
2986 		}
2987 
2988 	return kobj_to_node_hstate(kobj, nidp);
2989 }
2990 
2991 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2992 					struct kobj_attribute *attr, char *buf)
2993 {
2994 	struct hstate *h;
2995 	unsigned long nr_huge_pages;
2996 	int nid;
2997 
2998 	h = kobj_to_hstate(kobj, &nid);
2999 	if (nid == NUMA_NO_NODE)
3000 		nr_huge_pages = h->nr_huge_pages;
3001 	else
3002 		nr_huge_pages = h->nr_huge_pages_node[nid];
3003 
3004 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3005 }
3006 
3007 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3008 					   struct hstate *h, int nid,
3009 					   unsigned long count, size_t len)
3010 {
3011 	int err;
3012 	nodemask_t nodes_allowed, *n_mask;
3013 
3014 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3015 		return -EINVAL;
3016 
3017 	if (nid == NUMA_NO_NODE) {
3018 		/*
3019 		 * global hstate attribute
3020 		 */
3021 		if (!(obey_mempolicy &&
3022 				init_nodemask_of_mempolicy(&nodes_allowed)))
3023 			n_mask = &node_states[N_MEMORY];
3024 		else
3025 			n_mask = &nodes_allowed;
3026 	} else {
3027 		/*
3028 		 * Node specific request.  count adjustment happens in
3029 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3030 		 */
3031 		init_nodemask_of_node(&nodes_allowed, nid);
3032 		n_mask = &nodes_allowed;
3033 	}
3034 
3035 	err = set_max_huge_pages(h, count, nid, n_mask);
3036 
3037 	return err ? err : len;
3038 }
3039 
3040 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3041 					 struct kobject *kobj, const char *buf,
3042 					 size_t len)
3043 {
3044 	struct hstate *h;
3045 	unsigned long count;
3046 	int nid;
3047 	int err;
3048 
3049 	err = kstrtoul(buf, 10, &count);
3050 	if (err)
3051 		return err;
3052 
3053 	h = kobj_to_hstate(kobj, &nid);
3054 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3055 }
3056 
3057 static ssize_t nr_hugepages_show(struct kobject *kobj,
3058 				       struct kobj_attribute *attr, char *buf)
3059 {
3060 	return nr_hugepages_show_common(kobj, attr, buf);
3061 }
3062 
3063 static ssize_t nr_hugepages_store(struct kobject *kobj,
3064 	       struct kobj_attribute *attr, const char *buf, size_t len)
3065 {
3066 	return nr_hugepages_store_common(false, kobj, buf, len);
3067 }
3068 HSTATE_ATTR(nr_hugepages);
3069 
3070 #ifdef CONFIG_NUMA
3071 
3072 /*
3073  * hstate attribute for optionally mempolicy-based constraint on persistent
3074  * huge page alloc/free.
3075  */
3076 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3077 					   struct kobj_attribute *attr,
3078 					   char *buf)
3079 {
3080 	return nr_hugepages_show_common(kobj, attr, buf);
3081 }
3082 
3083 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3084 	       struct kobj_attribute *attr, const char *buf, size_t len)
3085 {
3086 	return nr_hugepages_store_common(true, kobj, buf, len);
3087 }
3088 HSTATE_ATTR(nr_hugepages_mempolicy);
3089 #endif
3090 
3091 
3092 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3093 					struct kobj_attribute *attr, char *buf)
3094 {
3095 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3096 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3097 }
3098 
3099 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3100 		struct kobj_attribute *attr, const char *buf, size_t count)
3101 {
3102 	int err;
3103 	unsigned long input;
3104 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3105 
3106 	if (hstate_is_gigantic(h))
3107 		return -EINVAL;
3108 
3109 	err = kstrtoul(buf, 10, &input);
3110 	if (err)
3111 		return err;
3112 
3113 	spin_lock_irq(&hugetlb_lock);
3114 	h->nr_overcommit_huge_pages = input;
3115 	spin_unlock_irq(&hugetlb_lock);
3116 
3117 	return count;
3118 }
3119 HSTATE_ATTR(nr_overcommit_hugepages);
3120 
3121 static ssize_t free_hugepages_show(struct kobject *kobj,
3122 					struct kobj_attribute *attr, char *buf)
3123 {
3124 	struct hstate *h;
3125 	unsigned long free_huge_pages;
3126 	int nid;
3127 
3128 	h = kobj_to_hstate(kobj, &nid);
3129 	if (nid == NUMA_NO_NODE)
3130 		free_huge_pages = h->free_huge_pages;
3131 	else
3132 		free_huge_pages = h->free_huge_pages_node[nid];
3133 
3134 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3135 }
3136 HSTATE_ATTR_RO(free_hugepages);
3137 
3138 static ssize_t resv_hugepages_show(struct kobject *kobj,
3139 					struct kobj_attribute *attr, char *buf)
3140 {
3141 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3142 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3143 }
3144 HSTATE_ATTR_RO(resv_hugepages);
3145 
3146 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3147 					struct kobj_attribute *attr, char *buf)
3148 {
3149 	struct hstate *h;
3150 	unsigned long surplus_huge_pages;
3151 	int nid;
3152 
3153 	h = kobj_to_hstate(kobj, &nid);
3154 	if (nid == NUMA_NO_NODE)
3155 		surplus_huge_pages = h->surplus_huge_pages;
3156 	else
3157 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3158 
3159 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3160 }
3161 HSTATE_ATTR_RO(surplus_hugepages);
3162 
3163 static struct attribute *hstate_attrs[] = {
3164 	&nr_hugepages_attr.attr,
3165 	&nr_overcommit_hugepages_attr.attr,
3166 	&free_hugepages_attr.attr,
3167 	&resv_hugepages_attr.attr,
3168 	&surplus_hugepages_attr.attr,
3169 #ifdef CONFIG_NUMA
3170 	&nr_hugepages_mempolicy_attr.attr,
3171 #endif
3172 	NULL,
3173 };
3174 
3175 static const struct attribute_group hstate_attr_group = {
3176 	.attrs = hstate_attrs,
3177 };
3178 
3179 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3180 				    struct kobject **hstate_kobjs,
3181 				    const struct attribute_group *hstate_attr_group)
3182 {
3183 	int retval;
3184 	int hi = hstate_index(h);
3185 
3186 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3187 	if (!hstate_kobjs[hi])
3188 		return -ENOMEM;
3189 
3190 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3191 	if (retval) {
3192 		kobject_put(hstate_kobjs[hi]);
3193 		hstate_kobjs[hi] = NULL;
3194 	}
3195 
3196 	return retval;
3197 }
3198 
3199 static void __init hugetlb_sysfs_init(void)
3200 {
3201 	struct hstate *h;
3202 	int err;
3203 
3204 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3205 	if (!hugepages_kobj)
3206 		return;
3207 
3208 	for_each_hstate(h) {
3209 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3210 					 hstate_kobjs, &hstate_attr_group);
3211 		if (err)
3212 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3213 	}
3214 }
3215 
3216 #ifdef CONFIG_NUMA
3217 
3218 /*
3219  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3220  * with node devices in node_devices[] using a parallel array.  The array
3221  * index of a node device or _hstate == node id.
3222  * This is here to avoid any static dependency of the node device driver, in
3223  * the base kernel, on the hugetlb module.
3224  */
3225 struct node_hstate {
3226 	struct kobject		*hugepages_kobj;
3227 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3228 };
3229 static struct node_hstate node_hstates[MAX_NUMNODES];
3230 
3231 /*
3232  * A subset of global hstate attributes for node devices
3233  */
3234 static struct attribute *per_node_hstate_attrs[] = {
3235 	&nr_hugepages_attr.attr,
3236 	&free_hugepages_attr.attr,
3237 	&surplus_hugepages_attr.attr,
3238 	NULL,
3239 };
3240 
3241 static const struct attribute_group per_node_hstate_attr_group = {
3242 	.attrs = per_node_hstate_attrs,
3243 };
3244 
3245 /*
3246  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3247  * Returns node id via non-NULL nidp.
3248  */
3249 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3250 {
3251 	int nid;
3252 
3253 	for (nid = 0; nid < nr_node_ids; nid++) {
3254 		struct node_hstate *nhs = &node_hstates[nid];
3255 		int i;
3256 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3257 			if (nhs->hstate_kobjs[i] == kobj) {
3258 				if (nidp)
3259 					*nidp = nid;
3260 				return &hstates[i];
3261 			}
3262 	}
3263 
3264 	BUG();
3265 	return NULL;
3266 }
3267 
3268 /*
3269  * Unregister hstate attributes from a single node device.
3270  * No-op if no hstate attributes attached.
3271  */
3272 static void hugetlb_unregister_node(struct node *node)
3273 {
3274 	struct hstate *h;
3275 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3276 
3277 	if (!nhs->hugepages_kobj)
3278 		return;		/* no hstate attributes */
3279 
3280 	for_each_hstate(h) {
3281 		int idx = hstate_index(h);
3282 		if (nhs->hstate_kobjs[idx]) {
3283 			kobject_put(nhs->hstate_kobjs[idx]);
3284 			nhs->hstate_kobjs[idx] = NULL;
3285 		}
3286 	}
3287 
3288 	kobject_put(nhs->hugepages_kobj);
3289 	nhs->hugepages_kobj = NULL;
3290 }
3291 
3292 
3293 /*
3294  * Register hstate attributes for a single node device.
3295  * No-op if attributes already registered.
3296  */
3297 static void hugetlb_register_node(struct node *node)
3298 {
3299 	struct hstate *h;
3300 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3301 	int err;
3302 
3303 	if (nhs->hugepages_kobj)
3304 		return;		/* already allocated */
3305 
3306 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3307 							&node->dev.kobj);
3308 	if (!nhs->hugepages_kobj)
3309 		return;
3310 
3311 	for_each_hstate(h) {
3312 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3313 						nhs->hstate_kobjs,
3314 						&per_node_hstate_attr_group);
3315 		if (err) {
3316 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3317 				h->name, node->dev.id);
3318 			hugetlb_unregister_node(node);
3319 			break;
3320 		}
3321 	}
3322 }
3323 
3324 /*
3325  * hugetlb init time:  register hstate attributes for all registered node
3326  * devices of nodes that have memory.  All on-line nodes should have
3327  * registered their associated device by this time.
3328  */
3329 static void __init hugetlb_register_all_nodes(void)
3330 {
3331 	int nid;
3332 
3333 	for_each_node_state(nid, N_MEMORY) {
3334 		struct node *node = node_devices[nid];
3335 		if (node->dev.id == nid)
3336 			hugetlb_register_node(node);
3337 	}
3338 
3339 	/*
3340 	 * Let the node device driver know we're here so it can
3341 	 * [un]register hstate attributes on node hotplug.
3342 	 */
3343 	register_hugetlbfs_with_node(hugetlb_register_node,
3344 				     hugetlb_unregister_node);
3345 }
3346 #else	/* !CONFIG_NUMA */
3347 
3348 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3349 {
3350 	BUG();
3351 	if (nidp)
3352 		*nidp = -1;
3353 	return NULL;
3354 }
3355 
3356 static void hugetlb_register_all_nodes(void) { }
3357 
3358 #endif
3359 
3360 static int __init hugetlb_init(void)
3361 {
3362 	int i;
3363 
3364 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3365 			__NR_HPAGEFLAGS);
3366 
3367 	if (!hugepages_supported()) {
3368 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3369 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3370 		return 0;
3371 	}
3372 
3373 	/*
3374 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3375 	 * architectures depend on setup being done here.
3376 	 */
3377 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3378 	if (!parsed_default_hugepagesz) {
3379 		/*
3380 		 * If we did not parse a default huge page size, set
3381 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3382 		 * number of huge pages for this default size was implicitly
3383 		 * specified, set that here as well.
3384 		 * Note that the implicit setting will overwrite an explicit
3385 		 * setting.  A warning will be printed in this case.
3386 		 */
3387 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3388 		if (default_hstate_max_huge_pages) {
3389 			if (default_hstate.max_huge_pages) {
3390 				char buf[32];
3391 
3392 				string_get_size(huge_page_size(&default_hstate),
3393 					1, STRING_UNITS_2, buf, 32);
3394 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3395 					default_hstate.max_huge_pages, buf);
3396 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3397 					default_hstate_max_huge_pages);
3398 			}
3399 			default_hstate.max_huge_pages =
3400 				default_hstate_max_huge_pages;
3401 		}
3402 	}
3403 
3404 	hugetlb_cma_check();
3405 	hugetlb_init_hstates();
3406 	gather_bootmem_prealloc();
3407 	report_hugepages();
3408 
3409 	hugetlb_sysfs_init();
3410 	hugetlb_register_all_nodes();
3411 	hugetlb_cgroup_file_init();
3412 
3413 #ifdef CONFIG_SMP
3414 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3415 #else
3416 	num_fault_mutexes = 1;
3417 #endif
3418 	hugetlb_fault_mutex_table =
3419 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3420 			      GFP_KERNEL);
3421 	BUG_ON(!hugetlb_fault_mutex_table);
3422 
3423 	for (i = 0; i < num_fault_mutexes; i++)
3424 		mutex_init(&hugetlb_fault_mutex_table[i]);
3425 	return 0;
3426 }
3427 subsys_initcall(hugetlb_init);
3428 
3429 /* Overwritten by architectures with more huge page sizes */
3430 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3431 {
3432 	return size == HPAGE_SIZE;
3433 }
3434 
3435 void __init hugetlb_add_hstate(unsigned int order)
3436 {
3437 	struct hstate *h;
3438 	unsigned long i;
3439 
3440 	if (size_to_hstate(PAGE_SIZE << order)) {
3441 		return;
3442 	}
3443 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3444 	BUG_ON(order == 0);
3445 	h = &hstates[hugetlb_max_hstate++];
3446 	mutex_init(&h->resize_lock);
3447 	h->order = order;
3448 	h->mask = ~(huge_page_size(h) - 1);
3449 	for (i = 0; i < MAX_NUMNODES; ++i)
3450 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3451 	INIT_LIST_HEAD(&h->hugepage_activelist);
3452 	h->next_nid_to_alloc = first_memory_node;
3453 	h->next_nid_to_free = first_memory_node;
3454 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3455 					huge_page_size(h)/1024);
3456 
3457 	parsed_hstate = h;
3458 }
3459 
3460 /*
3461  * hugepages command line processing
3462  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3463  * specification.  If not, ignore the hugepages value.  hugepages can also
3464  * be the first huge page command line  option in which case it implicitly
3465  * specifies the number of huge pages for the default size.
3466  */
3467 static int __init hugepages_setup(char *s)
3468 {
3469 	unsigned long *mhp;
3470 	static unsigned long *last_mhp;
3471 
3472 	if (!parsed_valid_hugepagesz) {
3473 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3474 		parsed_valid_hugepagesz = true;
3475 		return 0;
3476 	}
3477 
3478 	/*
3479 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3480 	 * yet, so this hugepages= parameter goes to the "default hstate".
3481 	 * Otherwise, it goes with the previously parsed hugepagesz or
3482 	 * default_hugepagesz.
3483 	 */
3484 	else if (!hugetlb_max_hstate)
3485 		mhp = &default_hstate_max_huge_pages;
3486 	else
3487 		mhp = &parsed_hstate->max_huge_pages;
3488 
3489 	if (mhp == last_mhp) {
3490 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3491 		return 0;
3492 	}
3493 
3494 	if (sscanf(s, "%lu", mhp) <= 0)
3495 		*mhp = 0;
3496 
3497 	/*
3498 	 * Global state is always initialized later in hugetlb_init.
3499 	 * But we need to allocate gigantic hstates here early to still
3500 	 * use the bootmem allocator.
3501 	 */
3502 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3503 		hugetlb_hstate_alloc_pages(parsed_hstate);
3504 
3505 	last_mhp = mhp;
3506 
3507 	return 1;
3508 }
3509 __setup("hugepages=", hugepages_setup);
3510 
3511 /*
3512  * hugepagesz command line processing
3513  * A specific huge page size can only be specified once with hugepagesz.
3514  * hugepagesz is followed by hugepages on the command line.  The global
3515  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3516  * hugepagesz argument was valid.
3517  */
3518 static int __init hugepagesz_setup(char *s)
3519 {
3520 	unsigned long size;
3521 	struct hstate *h;
3522 
3523 	parsed_valid_hugepagesz = false;
3524 	size = (unsigned long)memparse(s, NULL);
3525 
3526 	if (!arch_hugetlb_valid_size(size)) {
3527 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3528 		return 0;
3529 	}
3530 
3531 	h = size_to_hstate(size);
3532 	if (h) {
3533 		/*
3534 		 * hstate for this size already exists.  This is normally
3535 		 * an error, but is allowed if the existing hstate is the
3536 		 * default hstate.  More specifically, it is only allowed if
3537 		 * the number of huge pages for the default hstate was not
3538 		 * previously specified.
3539 		 */
3540 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3541 		    default_hstate.max_huge_pages) {
3542 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3543 			return 0;
3544 		}
3545 
3546 		/*
3547 		 * No need to call hugetlb_add_hstate() as hstate already
3548 		 * exists.  But, do set parsed_hstate so that a following
3549 		 * hugepages= parameter will be applied to this hstate.
3550 		 */
3551 		parsed_hstate = h;
3552 		parsed_valid_hugepagesz = true;
3553 		return 1;
3554 	}
3555 
3556 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3557 	parsed_valid_hugepagesz = true;
3558 	return 1;
3559 }
3560 __setup("hugepagesz=", hugepagesz_setup);
3561 
3562 /*
3563  * default_hugepagesz command line input
3564  * Only one instance of default_hugepagesz allowed on command line.
3565  */
3566 static int __init default_hugepagesz_setup(char *s)
3567 {
3568 	unsigned long size;
3569 
3570 	parsed_valid_hugepagesz = false;
3571 	if (parsed_default_hugepagesz) {
3572 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3573 		return 0;
3574 	}
3575 
3576 	size = (unsigned long)memparse(s, NULL);
3577 
3578 	if (!arch_hugetlb_valid_size(size)) {
3579 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3580 		return 0;
3581 	}
3582 
3583 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3584 	parsed_valid_hugepagesz = true;
3585 	parsed_default_hugepagesz = true;
3586 	default_hstate_idx = hstate_index(size_to_hstate(size));
3587 
3588 	/*
3589 	 * The number of default huge pages (for this size) could have been
3590 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3591 	 * then default_hstate_max_huge_pages is set.  If the default huge
3592 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3593 	 * allocated here from bootmem allocator.
3594 	 */
3595 	if (default_hstate_max_huge_pages) {
3596 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3597 		if (hstate_is_gigantic(&default_hstate))
3598 			hugetlb_hstate_alloc_pages(&default_hstate);
3599 		default_hstate_max_huge_pages = 0;
3600 	}
3601 
3602 	return 1;
3603 }
3604 __setup("default_hugepagesz=", default_hugepagesz_setup);
3605 
3606 static unsigned int allowed_mems_nr(struct hstate *h)
3607 {
3608 	int node;
3609 	unsigned int nr = 0;
3610 	nodemask_t *mpol_allowed;
3611 	unsigned int *array = h->free_huge_pages_node;
3612 	gfp_t gfp_mask = htlb_alloc_mask(h);
3613 
3614 	mpol_allowed = policy_nodemask_current(gfp_mask);
3615 
3616 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3617 		if (!mpol_allowed || node_isset(node, *mpol_allowed))
3618 			nr += array[node];
3619 	}
3620 
3621 	return nr;
3622 }
3623 
3624 #ifdef CONFIG_SYSCTL
3625 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3626 					  void *buffer, size_t *length,
3627 					  loff_t *ppos, unsigned long *out)
3628 {
3629 	struct ctl_table dup_table;
3630 
3631 	/*
3632 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3633 	 * can duplicate the @table and alter the duplicate of it.
3634 	 */
3635 	dup_table = *table;
3636 	dup_table.data = out;
3637 
3638 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3639 }
3640 
3641 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3642 			 struct ctl_table *table, int write,
3643 			 void *buffer, size_t *length, loff_t *ppos)
3644 {
3645 	struct hstate *h = &default_hstate;
3646 	unsigned long tmp = h->max_huge_pages;
3647 	int ret;
3648 
3649 	if (!hugepages_supported())
3650 		return -EOPNOTSUPP;
3651 
3652 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3653 					     &tmp);
3654 	if (ret)
3655 		goto out;
3656 
3657 	if (write)
3658 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3659 						  NUMA_NO_NODE, tmp, *length);
3660 out:
3661 	return ret;
3662 }
3663 
3664 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3665 			  void *buffer, size_t *length, loff_t *ppos)
3666 {
3667 
3668 	return hugetlb_sysctl_handler_common(false, table, write,
3669 							buffer, length, ppos);
3670 }
3671 
3672 #ifdef CONFIG_NUMA
3673 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3674 			  void *buffer, size_t *length, loff_t *ppos)
3675 {
3676 	return hugetlb_sysctl_handler_common(true, table, write,
3677 							buffer, length, ppos);
3678 }
3679 #endif /* CONFIG_NUMA */
3680 
3681 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3682 		void *buffer, size_t *length, loff_t *ppos)
3683 {
3684 	struct hstate *h = &default_hstate;
3685 	unsigned long tmp;
3686 	int ret;
3687 
3688 	if (!hugepages_supported())
3689 		return -EOPNOTSUPP;
3690 
3691 	tmp = h->nr_overcommit_huge_pages;
3692 
3693 	if (write && hstate_is_gigantic(h))
3694 		return -EINVAL;
3695 
3696 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3697 					     &tmp);
3698 	if (ret)
3699 		goto out;
3700 
3701 	if (write) {
3702 		spin_lock_irq(&hugetlb_lock);
3703 		h->nr_overcommit_huge_pages = tmp;
3704 		spin_unlock_irq(&hugetlb_lock);
3705 	}
3706 out:
3707 	return ret;
3708 }
3709 
3710 #endif /* CONFIG_SYSCTL */
3711 
3712 void hugetlb_report_meminfo(struct seq_file *m)
3713 {
3714 	struct hstate *h;
3715 	unsigned long total = 0;
3716 
3717 	if (!hugepages_supported())
3718 		return;
3719 
3720 	for_each_hstate(h) {
3721 		unsigned long count = h->nr_huge_pages;
3722 
3723 		total += huge_page_size(h) * count;
3724 
3725 		if (h == &default_hstate)
3726 			seq_printf(m,
3727 				   "HugePages_Total:   %5lu\n"
3728 				   "HugePages_Free:    %5lu\n"
3729 				   "HugePages_Rsvd:    %5lu\n"
3730 				   "HugePages_Surp:    %5lu\n"
3731 				   "Hugepagesize:   %8lu kB\n",
3732 				   count,
3733 				   h->free_huge_pages,
3734 				   h->resv_huge_pages,
3735 				   h->surplus_huge_pages,
3736 				   huge_page_size(h) / SZ_1K);
3737 	}
3738 
3739 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3740 }
3741 
3742 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3743 {
3744 	struct hstate *h = &default_hstate;
3745 
3746 	if (!hugepages_supported())
3747 		return 0;
3748 
3749 	return sysfs_emit_at(buf, len,
3750 			     "Node %d HugePages_Total: %5u\n"
3751 			     "Node %d HugePages_Free:  %5u\n"
3752 			     "Node %d HugePages_Surp:  %5u\n",
3753 			     nid, h->nr_huge_pages_node[nid],
3754 			     nid, h->free_huge_pages_node[nid],
3755 			     nid, h->surplus_huge_pages_node[nid]);
3756 }
3757 
3758 void hugetlb_show_meminfo(void)
3759 {
3760 	struct hstate *h;
3761 	int nid;
3762 
3763 	if (!hugepages_supported())
3764 		return;
3765 
3766 	for_each_node_state(nid, N_MEMORY)
3767 		for_each_hstate(h)
3768 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3769 				nid,
3770 				h->nr_huge_pages_node[nid],
3771 				h->free_huge_pages_node[nid],
3772 				h->surplus_huge_pages_node[nid],
3773 				huge_page_size(h) / SZ_1K);
3774 }
3775 
3776 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3777 {
3778 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3779 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3780 }
3781 
3782 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3783 unsigned long hugetlb_total_pages(void)
3784 {
3785 	struct hstate *h;
3786 	unsigned long nr_total_pages = 0;
3787 
3788 	for_each_hstate(h)
3789 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3790 	return nr_total_pages;
3791 }
3792 
3793 static int hugetlb_acct_memory(struct hstate *h, long delta)
3794 {
3795 	int ret = -ENOMEM;
3796 
3797 	if (!delta)
3798 		return 0;
3799 
3800 	spin_lock_irq(&hugetlb_lock);
3801 	/*
3802 	 * When cpuset is configured, it breaks the strict hugetlb page
3803 	 * reservation as the accounting is done on a global variable. Such
3804 	 * reservation is completely rubbish in the presence of cpuset because
3805 	 * the reservation is not checked against page availability for the
3806 	 * current cpuset. Application can still potentially OOM'ed by kernel
3807 	 * with lack of free htlb page in cpuset that the task is in.
3808 	 * Attempt to enforce strict accounting with cpuset is almost
3809 	 * impossible (or too ugly) because cpuset is too fluid that
3810 	 * task or memory node can be dynamically moved between cpusets.
3811 	 *
3812 	 * The change of semantics for shared hugetlb mapping with cpuset is
3813 	 * undesirable. However, in order to preserve some of the semantics,
3814 	 * we fall back to check against current free page availability as
3815 	 * a best attempt and hopefully to minimize the impact of changing
3816 	 * semantics that cpuset has.
3817 	 *
3818 	 * Apart from cpuset, we also have memory policy mechanism that
3819 	 * also determines from which node the kernel will allocate memory
3820 	 * in a NUMA system. So similar to cpuset, we also should consider
3821 	 * the memory policy of the current task. Similar to the description
3822 	 * above.
3823 	 */
3824 	if (delta > 0) {
3825 		if (gather_surplus_pages(h, delta) < 0)
3826 			goto out;
3827 
3828 		if (delta > allowed_mems_nr(h)) {
3829 			return_unused_surplus_pages(h, delta);
3830 			goto out;
3831 		}
3832 	}
3833 
3834 	ret = 0;
3835 	if (delta < 0)
3836 		return_unused_surplus_pages(h, (unsigned long) -delta);
3837 
3838 out:
3839 	spin_unlock_irq(&hugetlb_lock);
3840 	return ret;
3841 }
3842 
3843 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3844 {
3845 	struct resv_map *resv = vma_resv_map(vma);
3846 
3847 	/*
3848 	 * This new VMA should share its siblings reservation map if present.
3849 	 * The VMA will only ever have a valid reservation map pointer where
3850 	 * it is being copied for another still existing VMA.  As that VMA
3851 	 * has a reference to the reservation map it cannot disappear until
3852 	 * after this open call completes.  It is therefore safe to take a
3853 	 * new reference here without additional locking.
3854 	 */
3855 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3856 		kref_get(&resv->refs);
3857 }
3858 
3859 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3860 {
3861 	struct hstate *h = hstate_vma(vma);
3862 	struct resv_map *resv = vma_resv_map(vma);
3863 	struct hugepage_subpool *spool = subpool_vma(vma);
3864 	unsigned long reserve, start, end;
3865 	long gbl_reserve;
3866 
3867 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3868 		return;
3869 
3870 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3871 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3872 
3873 	reserve = (end - start) - region_count(resv, start, end);
3874 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3875 	if (reserve) {
3876 		/*
3877 		 * Decrement reserve counts.  The global reserve count may be
3878 		 * adjusted if the subpool has a minimum size.
3879 		 */
3880 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3881 		hugetlb_acct_memory(h, -gbl_reserve);
3882 	}
3883 
3884 	kref_put(&resv->refs, resv_map_release);
3885 }
3886 
3887 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3888 {
3889 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3890 		return -EINVAL;
3891 	return 0;
3892 }
3893 
3894 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3895 {
3896 	return huge_page_size(hstate_vma(vma));
3897 }
3898 
3899 /*
3900  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3901  * handle_mm_fault() to try to instantiate regular-sized pages in the
3902  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3903  * this far.
3904  */
3905 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3906 {
3907 	BUG();
3908 	return 0;
3909 }
3910 
3911 /*
3912  * When a new function is introduced to vm_operations_struct and added
3913  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3914  * This is because under System V memory model, mappings created via
3915  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3916  * their original vm_ops are overwritten with shm_vm_ops.
3917  */
3918 const struct vm_operations_struct hugetlb_vm_ops = {
3919 	.fault = hugetlb_vm_op_fault,
3920 	.open = hugetlb_vm_op_open,
3921 	.close = hugetlb_vm_op_close,
3922 	.may_split = hugetlb_vm_op_split,
3923 	.pagesize = hugetlb_vm_op_pagesize,
3924 };
3925 
3926 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3927 				int writable)
3928 {
3929 	pte_t entry;
3930 
3931 	if (writable) {
3932 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3933 					 vma->vm_page_prot)));
3934 	} else {
3935 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3936 					   vma->vm_page_prot));
3937 	}
3938 	entry = pte_mkyoung(entry);
3939 	entry = pte_mkhuge(entry);
3940 	entry = arch_make_huge_pte(entry, vma, page, writable);
3941 
3942 	return entry;
3943 }
3944 
3945 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3946 				   unsigned long address, pte_t *ptep)
3947 {
3948 	pte_t entry;
3949 
3950 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3951 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3952 		update_mmu_cache(vma, address, ptep);
3953 }
3954 
3955 bool is_hugetlb_entry_migration(pte_t pte)
3956 {
3957 	swp_entry_t swp;
3958 
3959 	if (huge_pte_none(pte) || pte_present(pte))
3960 		return false;
3961 	swp = pte_to_swp_entry(pte);
3962 	if (is_migration_entry(swp))
3963 		return true;
3964 	else
3965 		return false;
3966 }
3967 
3968 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3969 {
3970 	swp_entry_t swp;
3971 
3972 	if (huge_pte_none(pte) || pte_present(pte))
3973 		return false;
3974 	swp = pte_to_swp_entry(pte);
3975 	if (is_hwpoison_entry(swp))
3976 		return true;
3977 	else
3978 		return false;
3979 }
3980 
3981 static void
3982 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3983 		     struct page *new_page)
3984 {
3985 	__SetPageUptodate(new_page);
3986 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3987 	hugepage_add_new_anon_rmap(new_page, vma, addr);
3988 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3989 	ClearHPageRestoreReserve(new_page);
3990 	SetHPageMigratable(new_page);
3991 }
3992 
3993 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3994 			    struct vm_area_struct *vma)
3995 {
3996 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3997 	struct page *ptepage;
3998 	unsigned long addr;
3999 	bool cow = is_cow_mapping(vma->vm_flags);
4000 	struct hstate *h = hstate_vma(vma);
4001 	unsigned long sz = huge_page_size(h);
4002 	unsigned long npages = pages_per_huge_page(h);
4003 	struct address_space *mapping = vma->vm_file->f_mapping;
4004 	struct mmu_notifier_range range;
4005 	int ret = 0;
4006 
4007 	if (cow) {
4008 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4009 					vma->vm_start,
4010 					vma->vm_end);
4011 		mmu_notifier_invalidate_range_start(&range);
4012 	} else {
4013 		/*
4014 		 * For shared mappings i_mmap_rwsem must be held to call
4015 		 * huge_pte_alloc, otherwise the returned ptep could go
4016 		 * away if part of a shared pmd and another thread calls
4017 		 * huge_pmd_unshare.
4018 		 */
4019 		i_mmap_lock_read(mapping);
4020 	}
4021 
4022 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4023 		spinlock_t *src_ptl, *dst_ptl;
4024 		src_pte = huge_pte_offset(src, addr, sz);
4025 		if (!src_pte)
4026 			continue;
4027 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4028 		if (!dst_pte) {
4029 			ret = -ENOMEM;
4030 			break;
4031 		}
4032 
4033 		/*
4034 		 * If the pagetables are shared don't copy or take references.
4035 		 * dst_pte == src_pte is the common case of src/dest sharing.
4036 		 *
4037 		 * However, src could have 'unshared' and dst shares with
4038 		 * another vma.  If dst_pte !none, this implies sharing.
4039 		 * Check here before taking page table lock, and once again
4040 		 * after taking the lock below.
4041 		 */
4042 		dst_entry = huge_ptep_get(dst_pte);
4043 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4044 			continue;
4045 
4046 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4047 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4048 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4049 		entry = huge_ptep_get(src_pte);
4050 		dst_entry = huge_ptep_get(dst_pte);
4051 again:
4052 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4053 			/*
4054 			 * Skip if src entry none.  Also, skip in the
4055 			 * unlikely case dst entry !none as this implies
4056 			 * sharing with another vma.
4057 			 */
4058 			;
4059 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
4060 				    is_hugetlb_entry_hwpoisoned(entry))) {
4061 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4062 
4063 			if (is_write_migration_entry(swp_entry) && cow) {
4064 				/*
4065 				 * COW mappings require pages in both
4066 				 * parent and child to be set to read.
4067 				 */
4068 				make_migration_entry_read(&swp_entry);
4069 				entry = swp_entry_to_pte(swp_entry);
4070 				set_huge_swap_pte_at(src, addr, src_pte,
4071 						     entry, sz);
4072 			}
4073 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4074 		} else {
4075 			entry = huge_ptep_get(src_pte);
4076 			ptepage = pte_page(entry);
4077 			get_page(ptepage);
4078 
4079 			/*
4080 			 * This is a rare case where we see pinned hugetlb
4081 			 * pages while they're prone to COW.  We need to do the
4082 			 * COW earlier during fork.
4083 			 *
4084 			 * When pre-allocating the page or copying data, we
4085 			 * need to be without the pgtable locks since we could
4086 			 * sleep during the process.
4087 			 */
4088 			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4089 				pte_t src_pte_old = entry;
4090 				struct page *new;
4091 
4092 				spin_unlock(src_ptl);
4093 				spin_unlock(dst_ptl);
4094 				/* Do not use reserve as it's private owned */
4095 				new = alloc_huge_page(vma, addr, 1);
4096 				if (IS_ERR(new)) {
4097 					put_page(ptepage);
4098 					ret = PTR_ERR(new);
4099 					break;
4100 				}
4101 				copy_user_huge_page(new, ptepage, addr, vma,
4102 						    npages);
4103 				put_page(ptepage);
4104 
4105 				/* Install the new huge page if src pte stable */
4106 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4107 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4108 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4109 				entry = huge_ptep_get(src_pte);
4110 				if (!pte_same(src_pte_old, entry)) {
4111 					restore_reserve_on_error(h, vma, addr,
4112 								new);
4113 					put_page(new);
4114 					/* dst_entry won't change as in child */
4115 					goto again;
4116 				}
4117 				hugetlb_install_page(vma, dst_pte, addr, new);
4118 				spin_unlock(src_ptl);
4119 				spin_unlock(dst_ptl);
4120 				continue;
4121 			}
4122 
4123 			if (cow) {
4124 				/*
4125 				 * No need to notify as we are downgrading page
4126 				 * table protection not changing it to point
4127 				 * to a new page.
4128 				 *
4129 				 * See Documentation/vm/mmu_notifier.rst
4130 				 */
4131 				huge_ptep_set_wrprotect(src, addr, src_pte);
4132 				entry = huge_pte_wrprotect(entry);
4133 			}
4134 
4135 			page_dup_rmap(ptepage, true);
4136 			set_huge_pte_at(dst, addr, dst_pte, entry);
4137 			hugetlb_count_add(npages, dst);
4138 		}
4139 		spin_unlock(src_ptl);
4140 		spin_unlock(dst_ptl);
4141 	}
4142 
4143 	if (cow)
4144 		mmu_notifier_invalidate_range_end(&range);
4145 	else
4146 		i_mmap_unlock_read(mapping);
4147 
4148 	return ret;
4149 }
4150 
4151 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4152 			    unsigned long start, unsigned long end,
4153 			    struct page *ref_page)
4154 {
4155 	struct mm_struct *mm = vma->vm_mm;
4156 	unsigned long address;
4157 	pte_t *ptep;
4158 	pte_t pte;
4159 	spinlock_t *ptl;
4160 	struct page *page;
4161 	struct hstate *h = hstate_vma(vma);
4162 	unsigned long sz = huge_page_size(h);
4163 	struct mmu_notifier_range range;
4164 
4165 	WARN_ON(!is_vm_hugetlb_page(vma));
4166 	BUG_ON(start & ~huge_page_mask(h));
4167 	BUG_ON(end & ~huge_page_mask(h));
4168 
4169 	/*
4170 	 * This is a hugetlb vma, all the pte entries should point
4171 	 * to huge page.
4172 	 */
4173 	tlb_change_page_size(tlb, sz);
4174 	tlb_start_vma(tlb, vma);
4175 
4176 	/*
4177 	 * If sharing possible, alert mmu notifiers of worst case.
4178 	 */
4179 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4180 				end);
4181 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4182 	mmu_notifier_invalidate_range_start(&range);
4183 	address = start;
4184 	for (; address < end; address += sz) {
4185 		ptep = huge_pte_offset(mm, address, sz);
4186 		if (!ptep)
4187 			continue;
4188 
4189 		ptl = huge_pte_lock(h, mm, ptep);
4190 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4191 			spin_unlock(ptl);
4192 			/*
4193 			 * We just unmapped a page of PMDs by clearing a PUD.
4194 			 * The caller's TLB flush range should cover this area.
4195 			 */
4196 			continue;
4197 		}
4198 
4199 		pte = huge_ptep_get(ptep);
4200 		if (huge_pte_none(pte)) {
4201 			spin_unlock(ptl);
4202 			continue;
4203 		}
4204 
4205 		/*
4206 		 * Migrating hugepage or HWPoisoned hugepage is already
4207 		 * unmapped and its refcount is dropped, so just clear pte here.
4208 		 */
4209 		if (unlikely(!pte_present(pte))) {
4210 			huge_pte_clear(mm, address, ptep, sz);
4211 			spin_unlock(ptl);
4212 			continue;
4213 		}
4214 
4215 		page = pte_page(pte);
4216 		/*
4217 		 * If a reference page is supplied, it is because a specific
4218 		 * page is being unmapped, not a range. Ensure the page we
4219 		 * are about to unmap is the actual page of interest.
4220 		 */
4221 		if (ref_page) {
4222 			if (page != ref_page) {
4223 				spin_unlock(ptl);
4224 				continue;
4225 			}
4226 			/*
4227 			 * Mark the VMA as having unmapped its page so that
4228 			 * future faults in this VMA will fail rather than
4229 			 * looking like data was lost
4230 			 */
4231 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4232 		}
4233 
4234 		pte = huge_ptep_get_and_clear(mm, address, ptep);
4235 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4236 		if (huge_pte_dirty(pte))
4237 			set_page_dirty(page);
4238 
4239 		hugetlb_count_sub(pages_per_huge_page(h), mm);
4240 		page_remove_rmap(page, true);
4241 
4242 		spin_unlock(ptl);
4243 		tlb_remove_page_size(tlb, page, huge_page_size(h));
4244 		/*
4245 		 * Bail out after unmapping reference page if supplied
4246 		 */
4247 		if (ref_page)
4248 			break;
4249 	}
4250 	mmu_notifier_invalidate_range_end(&range);
4251 	tlb_end_vma(tlb, vma);
4252 }
4253 
4254 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4255 			  struct vm_area_struct *vma, unsigned long start,
4256 			  unsigned long end, struct page *ref_page)
4257 {
4258 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4259 
4260 	/*
4261 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4262 	 * test will fail on a vma being torn down, and not grab a page table
4263 	 * on its way out.  We're lucky that the flag has such an appropriate
4264 	 * name, and can in fact be safely cleared here. We could clear it
4265 	 * before the __unmap_hugepage_range above, but all that's necessary
4266 	 * is to clear it before releasing the i_mmap_rwsem. This works
4267 	 * because in the context this is called, the VMA is about to be
4268 	 * destroyed and the i_mmap_rwsem is held.
4269 	 */
4270 	vma->vm_flags &= ~VM_MAYSHARE;
4271 }
4272 
4273 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4274 			  unsigned long end, struct page *ref_page)
4275 {
4276 	struct mmu_gather tlb;
4277 
4278 	tlb_gather_mmu(&tlb, vma->vm_mm);
4279 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4280 	tlb_finish_mmu(&tlb);
4281 }
4282 
4283 /*
4284  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4285  * mapping it owns the reserve page for. The intention is to unmap the page
4286  * from other VMAs and let the children be SIGKILLed if they are faulting the
4287  * same region.
4288  */
4289 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4290 			      struct page *page, unsigned long address)
4291 {
4292 	struct hstate *h = hstate_vma(vma);
4293 	struct vm_area_struct *iter_vma;
4294 	struct address_space *mapping;
4295 	pgoff_t pgoff;
4296 
4297 	/*
4298 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4299 	 * from page cache lookup which is in HPAGE_SIZE units.
4300 	 */
4301 	address = address & huge_page_mask(h);
4302 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4303 			vma->vm_pgoff;
4304 	mapping = vma->vm_file->f_mapping;
4305 
4306 	/*
4307 	 * Take the mapping lock for the duration of the table walk. As
4308 	 * this mapping should be shared between all the VMAs,
4309 	 * __unmap_hugepage_range() is called as the lock is already held
4310 	 */
4311 	i_mmap_lock_write(mapping);
4312 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4313 		/* Do not unmap the current VMA */
4314 		if (iter_vma == vma)
4315 			continue;
4316 
4317 		/*
4318 		 * Shared VMAs have their own reserves and do not affect
4319 		 * MAP_PRIVATE accounting but it is possible that a shared
4320 		 * VMA is using the same page so check and skip such VMAs.
4321 		 */
4322 		if (iter_vma->vm_flags & VM_MAYSHARE)
4323 			continue;
4324 
4325 		/*
4326 		 * Unmap the page from other VMAs without their own reserves.
4327 		 * They get marked to be SIGKILLed if they fault in these
4328 		 * areas. This is because a future no-page fault on this VMA
4329 		 * could insert a zeroed page instead of the data existing
4330 		 * from the time of fork. This would look like data corruption
4331 		 */
4332 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4333 			unmap_hugepage_range(iter_vma, address,
4334 					     address + huge_page_size(h), page);
4335 	}
4336 	i_mmap_unlock_write(mapping);
4337 }
4338 
4339 /*
4340  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4341  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4342  * cannot race with other handlers or page migration.
4343  * Keep the pte_same checks anyway to make transition from the mutex easier.
4344  */
4345 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4346 		       unsigned long address, pte_t *ptep,
4347 		       struct page *pagecache_page, spinlock_t *ptl)
4348 {
4349 	pte_t pte;
4350 	struct hstate *h = hstate_vma(vma);
4351 	struct page *old_page, *new_page;
4352 	int outside_reserve = 0;
4353 	vm_fault_t ret = 0;
4354 	unsigned long haddr = address & huge_page_mask(h);
4355 	struct mmu_notifier_range range;
4356 
4357 	pte = huge_ptep_get(ptep);
4358 	old_page = pte_page(pte);
4359 
4360 retry_avoidcopy:
4361 	/* If no-one else is actually using this page, avoid the copy
4362 	 * and just make the page writable */
4363 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4364 		page_move_anon_rmap(old_page, vma);
4365 		set_huge_ptep_writable(vma, haddr, ptep);
4366 		return 0;
4367 	}
4368 
4369 	/*
4370 	 * If the process that created a MAP_PRIVATE mapping is about to
4371 	 * perform a COW due to a shared page count, attempt to satisfy
4372 	 * the allocation without using the existing reserves. The pagecache
4373 	 * page is used to determine if the reserve at this address was
4374 	 * consumed or not. If reserves were used, a partial faulted mapping
4375 	 * at the time of fork() could consume its reserves on COW instead
4376 	 * of the full address range.
4377 	 */
4378 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4379 			old_page != pagecache_page)
4380 		outside_reserve = 1;
4381 
4382 	get_page(old_page);
4383 
4384 	/*
4385 	 * Drop page table lock as buddy allocator may be called. It will
4386 	 * be acquired again before returning to the caller, as expected.
4387 	 */
4388 	spin_unlock(ptl);
4389 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4390 
4391 	if (IS_ERR(new_page)) {
4392 		/*
4393 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4394 		 * it is due to references held by a child and an insufficient
4395 		 * huge page pool. To guarantee the original mappers
4396 		 * reliability, unmap the page from child processes. The child
4397 		 * may get SIGKILLed if it later faults.
4398 		 */
4399 		if (outside_reserve) {
4400 			struct address_space *mapping = vma->vm_file->f_mapping;
4401 			pgoff_t idx;
4402 			u32 hash;
4403 
4404 			put_page(old_page);
4405 			BUG_ON(huge_pte_none(pte));
4406 			/*
4407 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4408 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4409 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4410 			 * here is OK as COW mappings do not interact with
4411 			 * PMD sharing.
4412 			 *
4413 			 * Reacquire both after unmap operation.
4414 			 */
4415 			idx = vma_hugecache_offset(h, vma, haddr);
4416 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4417 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4418 			i_mmap_unlock_read(mapping);
4419 
4420 			unmap_ref_private(mm, vma, old_page, haddr);
4421 
4422 			i_mmap_lock_read(mapping);
4423 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4424 			spin_lock(ptl);
4425 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4426 			if (likely(ptep &&
4427 				   pte_same(huge_ptep_get(ptep), pte)))
4428 				goto retry_avoidcopy;
4429 			/*
4430 			 * race occurs while re-acquiring page table
4431 			 * lock, and our job is done.
4432 			 */
4433 			return 0;
4434 		}
4435 
4436 		ret = vmf_error(PTR_ERR(new_page));
4437 		goto out_release_old;
4438 	}
4439 
4440 	/*
4441 	 * When the original hugepage is shared one, it does not have
4442 	 * anon_vma prepared.
4443 	 */
4444 	if (unlikely(anon_vma_prepare(vma))) {
4445 		ret = VM_FAULT_OOM;
4446 		goto out_release_all;
4447 	}
4448 
4449 	copy_user_huge_page(new_page, old_page, address, vma,
4450 			    pages_per_huge_page(h));
4451 	__SetPageUptodate(new_page);
4452 
4453 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4454 				haddr + huge_page_size(h));
4455 	mmu_notifier_invalidate_range_start(&range);
4456 
4457 	/*
4458 	 * Retake the page table lock to check for racing updates
4459 	 * before the page tables are altered
4460 	 */
4461 	spin_lock(ptl);
4462 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4463 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4464 		ClearHPageRestoreReserve(new_page);
4465 
4466 		/* Break COW */
4467 		huge_ptep_clear_flush(vma, haddr, ptep);
4468 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4469 		set_huge_pte_at(mm, haddr, ptep,
4470 				make_huge_pte(vma, new_page, 1));
4471 		page_remove_rmap(old_page, true);
4472 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4473 		SetHPageMigratable(new_page);
4474 		/* Make the old page be freed below */
4475 		new_page = old_page;
4476 	}
4477 	spin_unlock(ptl);
4478 	mmu_notifier_invalidate_range_end(&range);
4479 out_release_all:
4480 	restore_reserve_on_error(h, vma, haddr, new_page);
4481 	put_page(new_page);
4482 out_release_old:
4483 	put_page(old_page);
4484 
4485 	spin_lock(ptl); /* Caller expects lock to be held */
4486 	return ret;
4487 }
4488 
4489 /* Return the pagecache page at a given address within a VMA */
4490 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4491 			struct vm_area_struct *vma, unsigned long address)
4492 {
4493 	struct address_space *mapping;
4494 	pgoff_t idx;
4495 
4496 	mapping = vma->vm_file->f_mapping;
4497 	idx = vma_hugecache_offset(h, vma, address);
4498 
4499 	return find_lock_page(mapping, idx);
4500 }
4501 
4502 /*
4503  * Return whether there is a pagecache page to back given address within VMA.
4504  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4505  */
4506 static bool hugetlbfs_pagecache_present(struct hstate *h,
4507 			struct vm_area_struct *vma, unsigned long address)
4508 {
4509 	struct address_space *mapping;
4510 	pgoff_t idx;
4511 	struct page *page;
4512 
4513 	mapping = vma->vm_file->f_mapping;
4514 	idx = vma_hugecache_offset(h, vma, address);
4515 
4516 	page = find_get_page(mapping, idx);
4517 	if (page)
4518 		put_page(page);
4519 	return page != NULL;
4520 }
4521 
4522 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4523 			   pgoff_t idx)
4524 {
4525 	struct inode *inode = mapping->host;
4526 	struct hstate *h = hstate_inode(inode);
4527 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4528 
4529 	if (err)
4530 		return err;
4531 	ClearHPageRestoreReserve(page);
4532 
4533 	/*
4534 	 * set page dirty so that it will not be removed from cache/file
4535 	 * by non-hugetlbfs specific code paths.
4536 	 */
4537 	set_page_dirty(page);
4538 
4539 	spin_lock(&inode->i_lock);
4540 	inode->i_blocks += blocks_per_huge_page(h);
4541 	spin_unlock(&inode->i_lock);
4542 	return 0;
4543 }
4544 
4545 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4546 						  struct address_space *mapping,
4547 						  pgoff_t idx,
4548 						  unsigned int flags,
4549 						  unsigned long haddr,
4550 						  unsigned long reason)
4551 {
4552 	vm_fault_t ret;
4553 	u32 hash;
4554 	struct vm_fault vmf = {
4555 		.vma = vma,
4556 		.address = haddr,
4557 		.flags = flags,
4558 
4559 		/*
4560 		 * Hard to debug if it ends up being
4561 		 * used by a callee that assumes
4562 		 * something about the other
4563 		 * uninitialized fields... same as in
4564 		 * memory.c
4565 		 */
4566 	};
4567 
4568 	/*
4569 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
4570 	 * dropped before handling userfault.  Reacquire
4571 	 * after handling fault to make calling code simpler.
4572 	 */
4573 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4574 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4575 	i_mmap_unlock_read(mapping);
4576 	ret = handle_userfault(&vmf, reason);
4577 	i_mmap_lock_read(mapping);
4578 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4579 
4580 	return ret;
4581 }
4582 
4583 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4584 			struct vm_area_struct *vma,
4585 			struct address_space *mapping, pgoff_t idx,
4586 			unsigned long address, pte_t *ptep, unsigned int flags)
4587 {
4588 	struct hstate *h = hstate_vma(vma);
4589 	vm_fault_t ret = VM_FAULT_SIGBUS;
4590 	int anon_rmap = 0;
4591 	unsigned long size;
4592 	struct page *page;
4593 	pte_t new_pte;
4594 	spinlock_t *ptl;
4595 	unsigned long haddr = address & huge_page_mask(h);
4596 	bool new_page = false;
4597 
4598 	/*
4599 	 * Currently, we are forced to kill the process in the event the
4600 	 * original mapper has unmapped pages from the child due to a failed
4601 	 * COW. Warn that such a situation has occurred as it may not be obvious
4602 	 */
4603 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4604 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4605 			   current->pid);
4606 		return ret;
4607 	}
4608 
4609 	/*
4610 	 * We can not race with truncation due to holding i_mmap_rwsem.
4611 	 * i_size is modified when holding i_mmap_rwsem, so check here
4612 	 * once for faults beyond end of file.
4613 	 */
4614 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4615 	if (idx >= size)
4616 		goto out;
4617 
4618 retry:
4619 	page = find_lock_page(mapping, idx);
4620 	if (!page) {
4621 		/* Check for page in userfault range */
4622 		if (userfaultfd_missing(vma)) {
4623 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4624 						       flags, haddr,
4625 						       VM_UFFD_MISSING);
4626 			goto out;
4627 		}
4628 
4629 		page = alloc_huge_page(vma, haddr, 0);
4630 		if (IS_ERR(page)) {
4631 			/*
4632 			 * Returning error will result in faulting task being
4633 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4634 			 * tasks from racing to fault in the same page which
4635 			 * could result in false unable to allocate errors.
4636 			 * Page migration does not take the fault mutex, but
4637 			 * does a clear then write of pte's under page table
4638 			 * lock.  Page fault code could race with migration,
4639 			 * notice the clear pte and try to allocate a page
4640 			 * here.  Before returning error, get ptl and make
4641 			 * sure there really is no pte entry.
4642 			 */
4643 			ptl = huge_pte_lock(h, mm, ptep);
4644 			ret = 0;
4645 			if (huge_pte_none(huge_ptep_get(ptep)))
4646 				ret = vmf_error(PTR_ERR(page));
4647 			spin_unlock(ptl);
4648 			goto out;
4649 		}
4650 		clear_huge_page(page, address, pages_per_huge_page(h));
4651 		__SetPageUptodate(page);
4652 		new_page = true;
4653 
4654 		if (vma->vm_flags & VM_MAYSHARE) {
4655 			int err = huge_add_to_page_cache(page, mapping, idx);
4656 			if (err) {
4657 				put_page(page);
4658 				if (err == -EEXIST)
4659 					goto retry;
4660 				goto out;
4661 			}
4662 		} else {
4663 			lock_page(page);
4664 			if (unlikely(anon_vma_prepare(vma))) {
4665 				ret = VM_FAULT_OOM;
4666 				goto backout_unlocked;
4667 			}
4668 			anon_rmap = 1;
4669 		}
4670 	} else {
4671 		/*
4672 		 * If memory error occurs between mmap() and fault, some process
4673 		 * don't have hwpoisoned swap entry for errored virtual address.
4674 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4675 		 */
4676 		if (unlikely(PageHWPoison(page))) {
4677 			ret = VM_FAULT_HWPOISON_LARGE |
4678 				VM_FAULT_SET_HINDEX(hstate_index(h));
4679 			goto backout_unlocked;
4680 		}
4681 
4682 		/* Check for page in userfault range. */
4683 		if (userfaultfd_minor(vma)) {
4684 			unlock_page(page);
4685 			put_page(page);
4686 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4687 						       flags, haddr,
4688 						       VM_UFFD_MINOR);
4689 			goto out;
4690 		}
4691 	}
4692 
4693 	/*
4694 	 * If we are going to COW a private mapping later, we examine the
4695 	 * pending reservations for this page now. This will ensure that
4696 	 * any allocations necessary to record that reservation occur outside
4697 	 * the spinlock.
4698 	 */
4699 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4700 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4701 			ret = VM_FAULT_OOM;
4702 			goto backout_unlocked;
4703 		}
4704 		/* Just decrements count, does not deallocate */
4705 		vma_end_reservation(h, vma, haddr);
4706 	}
4707 
4708 	ptl = huge_pte_lock(h, mm, ptep);
4709 	ret = 0;
4710 	if (!huge_pte_none(huge_ptep_get(ptep)))
4711 		goto backout;
4712 
4713 	if (anon_rmap) {
4714 		ClearHPageRestoreReserve(page);
4715 		hugepage_add_new_anon_rmap(page, vma, haddr);
4716 	} else
4717 		page_dup_rmap(page, true);
4718 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4719 				&& (vma->vm_flags & VM_SHARED)));
4720 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4721 
4722 	hugetlb_count_add(pages_per_huge_page(h), mm);
4723 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4724 		/* Optimization, do the COW without a second fault */
4725 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4726 	}
4727 
4728 	spin_unlock(ptl);
4729 
4730 	/*
4731 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
4732 	 * found in the pagecache may not have HPageMigratableset if they have
4733 	 * been isolated for migration.
4734 	 */
4735 	if (new_page)
4736 		SetHPageMigratable(page);
4737 
4738 	unlock_page(page);
4739 out:
4740 	return ret;
4741 
4742 backout:
4743 	spin_unlock(ptl);
4744 backout_unlocked:
4745 	unlock_page(page);
4746 	restore_reserve_on_error(h, vma, haddr, page);
4747 	put_page(page);
4748 	goto out;
4749 }
4750 
4751 #ifdef CONFIG_SMP
4752 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4753 {
4754 	unsigned long key[2];
4755 	u32 hash;
4756 
4757 	key[0] = (unsigned long) mapping;
4758 	key[1] = idx;
4759 
4760 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4761 
4762 	return hash & (num_fault_mutexes - 1);
4763 }
4764 #else
4765 /*
4766  * For uniprocessor systems we always use a single mutex, so just
4767  * return 0 and avoid the hashing overhead.
4768  */
4769 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4770 {
4771 	return 0;
4772 }
4773 #endif
4774 
4775 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4776 			unsigned long address, unsigned int flags)
4777 {
4778 	pte_t *ptep, entry;
4779 	spinlock_t *ptl;
4780 	vm_fault_t ret;
4781 	u32 hash;
4782 	pgoff_t idx;
4783 	struct page *page = NULL;
4784 	struct page *pagecache_page = NULL;
4785 	struct hstate *h = hstate_vma(vma);
4786 	struct address_space *mapping;
4787 	int need_wait_lock = 0;
4788 	unsigned long haddr = address & huge_page_mask(h);
4789 
4790 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4791 	if (ptep) {
4792 		/*
4793 		 * Since we hold no locks, ptep could be stale.  That is
4794 		 * OK as we are only making decisions based on content and
4795 		 * not actually modifying content here.
4796 		 */
4797 		entry = huge_ptep_get(ptep);
4798 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4799 			migration_entry_wait_huge(vma, mm, ptep);
4800 			return 0;
4801 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4802 			return VM_FAULT_HWPOISON_LARGE |
4803 				VM_FAULT_SET_HINDEX(hstate_index(h));
4804 	}
4805 
4806 	/*
4807 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4808 	 * until finished with ptep.  This serves two purposes:
4809 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4810 	 *    and making the ptep no longer valid.
4811 	 * 2) It synchronizes us with i_size modifications during truncation.
4812 	 *
4813 	 * ptep could have already be assigned via huge_pte_offset.  That
4814 	 * is OK, as huge_pte_alloc will return the same value unless
4815 	 * something has changed.
4816 	 */
4817 	mapping = vma->vm_file->f_mapping;
4818 	i_mmap_lock_read(mapping);
4819 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4820 	if (!ptep) {
4821 		i_mmap_unlock_read(mapping);
4822 		return VM_FAULT_OOM;
4823 	}
4824 
4825 	/*
4826 	 * Serialize hugepage allocation and instantiation, so that we don't
4827 	 * get spurious allocation failures if two CPUs race to instantiate
4828 	 * the same page in the page cache.
4829 	 */
4830 	idx = vma_hugecache_offset(h, vma, haddr);
4831 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4832 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4833 
4834 	entry = huge_ptep_get(ptep);
4835 	if (huge_pte_none(entry)) {
4836 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4837 		goto out_mutex;
4838 	}
4839 
4840 	ret = 0;
4841 
4842 	/*
4843 	 * entry could be a migration/hwpoison entry at this point, so this
4844 	 * check prevents the kernel from going below assuming that we have
4845 	 * an active hugepage in pagecache. This goto expects the 2nd page
4846 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4847 	 * properly handle it.
4848 	 */
4849 	if (!pte_present(entry))
4850 		goto out_mutex;
4851 
4852 	/*
4853 	 * If we are going to COW the mapping later, we examine the pending
4854 	 * reservations for this page now. This will ensure that any
4855 	 * allocations necessary to record that reservation occur outside the
4856 	 * spinlock. For private mappings, we also lookup the pagecache
4857 	 * page now as it is used to determine if a reservation has been
4858 	 * consumed.
4859 	 */
4860 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4861 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4862 			ret = VM_FAULT_OOM;
4863 			goto out_mutex;
4864 		}
4865 		/* Just decrements count, does not deallocate */
4866 		vma_end_reservation(h, vma, haddr);
4867 
4868 		if (!(vma->vm_flags & VM_MAYSHARE))
4869 			pagecache_page = hugetlbfs_pagecache_page(h,
4870 								vma, haddr);
4871 	}
4872 
4873 	ptl = huge_pte_lock(h, mm, ptep);
4874 
4875 	/* Check for a racing update before calling hugetlb_cow */
4876 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4877 		goto out_ptl;
4878 
4879 	/*
4880 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4881 	 * pagecache_page, so here we need take the former one
4882 	 * when page != pagecache_page or !pagecache_page.
4883 	 */
4884 	page = pte_page(entry);
4885 	if (page != pagecache_page)
4886 		if (!trylock_page(page)) {
4887 			need_wait_lock = 1;
4888 			goto out_ptl;
4889 		}
4890 
4891 	get_page(page);
4892 
4893 	if (flags & FAULT_FLAG_WRITE) {
4894 		if (!huge_pte_write(entry)) {
4895 			ret = hugetlb_cow(mm, vma, address, ptep,
4896 					  pagecache_page, ptl);
4897 			goto out_put_page;
4898 		}
4899 		entry = huge_pte_mkdirty(entry);
4900 	}
4901 	entry = pte_mkyoung(entry);
4902 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4903 						flags & FAULT_FLAG_WRITE))
4904 		update_mmu_cache(vma, haddr, ptep);
4905 out_put_page:
4906 	if (page != pagecache_page)
4907 		unlock_page(page);
4908 	put_page(page);
4909 out_ptl:
4910 	spin_unlock(ptl);
4911 
4912 	if (pagecache_page) {
4913 		unlock_page(pagecache_page);
4914 		put_page(pagecache_page);
4915 	}
4916 out_mutex:
4917 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4918 	i_mmap_unlock_read(mapping);
4919 	/*
4920 	 * Generally it's safe to hold refcount during waiting page lock. But
4921 	 * here we just wait to defer the next page fault to avoid busy loop and
4922 	 * the page is not used after unlocked before returning from the current
4923 	 * page fault. So we are safe from accessing freed page, even if we wait
4924 	 * here without taking refcount.
4925 	 */
4926 	if (need_wait_lock)
4927 		wait_on_page_locked(page);
4928 	return ret;
4929 }
4930 
4931 #ifdef CONFIG_USERFAULTFD
4932 /*
4933  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4934  * modifications for huge pages.
4935  */
4936 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4937 			    pte_t *dst_pte,
4938 			    struct vm_area_struct *dst_vma,
4939 			    unsigned long dst_addr,
4940 			    unsigned long src_addr,
4941 			    enum mcopy_atomic_mode mode,
4942 			    struct page **pagep)
4943 {
4944 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4945 	struct address_space *mapping;
4946 	pgoff_t idx;
4947 	unsigned long size;
4948 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4949 	struct hstate *h = hstate_vma(dst_vma);
4950 	pte_t _dst_pte;
4951 	spinlock_t *ptl;
4952 	int ret;
4953 	struct page *page;
4954 	int writable;
4955 
4956 	mapping = dst_vma->vm_file->f_mapping;
4957 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4958 
4959 	if (is_continue) {
4960 		ret = -EFAULT;
4961 		page = find_lock_page(mapping, idx);
4962 		if (!page)
4963 			goto out;
4964 	} else if (!*pagep) {
4965 		/* If a page already exists, then it's UFFDIO_COPY for
4966 		 * a non-missing case. Return -EEXIST.
4967 		 */
4968 		if (vm_shared &&
4969 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4970 			ret = -EEXIST;
4971 			goto out;
4972 		}
4973 
4974 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4975 		if (IS_ERR(page)) {
4976 			ret = -ENOMEM;
4977 			goto out;
4978 		}
4979 
4980 		ret = copy_huge_page_from_user(page,
4981 						(const void __user *) src_addr,
4982 						pages_per_huge_page(h), false);
4983 
4984 		/* fallback to copy_from_user outside mmap_lock */
4985 		if (unlikely(ret)) {
4986 			ret = -ENOENT;
4987 			*pagep = page;
4988 			/* don't free the page */
4989 			goto out;
4990 		}
4991 	} else {
4992 		page = *pagep;
4993 		*pagep = NULL;
4994 	}
4995 
4996 	/*
4997 	 * The memory barrier inside __SetPageUptodate makes sure that
4998 	 * preceding stores to the page contents become visible before
4999 	 * the set_pte_at() write.
5000 	 */
5001 	__SetPageUptodate(page);
5002 
5003 	/* Add shared, newly allocated pages to the page cache. */
5004 	if (vm_shared && !is_continue) {
5005 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5006 		ret = -EFAULT;
5007 		if (idx >= size)
5008 			goto out_release_nounlock;
5009 
5010 		/*
5011 		 * Serialization between remove_inode_hugepages() and
5012 		 * huge_add_to_page_cache() below happens through the
5013 		 * hugetlb_fault_mutex_table that here must be hold by
5014 		 * the caller.
5015 		 */
5016 		ret = huge_add_to_page_cache(page, mapping, idx);
5017 		if (ret)
5018 			goto out_release_nounlock;
5019 	}
5020 
5021 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5022 	spin_lock(ptl);
5023 
5024 	/*
5025 	 * Recheck the i_size after holding PT lock to make sure not
5026 	 * to leave any page mapped (as page_mapped()) beyond the end
5027 	 * of the i_size (remove_inode_hugepages() is strict about
5028 	 * enforcing that). If we bail out here, we'll also leave a
5029 	 * page in the radix tree in the vm_shared case beyond the end
5030 	 * of the i_size, but remove_inode_hugepages() will take care
5031 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
5032 	 */
5033 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5034 	ret = -EFAULT;
5035 	if (idx >= size)
5036 		goto out_release_unlock;
5037 
5038 	ret = -EEXIST;
5039 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
5040 		goto out_release_unlock;
5041 
5042 	if (vm_shared) {
5043 		page_dup_rmap(page, true);
5044 	} else {
5045 		ClearHPageRestoreReserve(page);
5046 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5047 	}
5048 
5049 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5050 	if (is_continue && !vm_shared)
5051 		writable = 0;
5052 	else
5053 		writable = dst_vma->vm_flags & VM_WRITE;
5054 
5055 	_dst_pte = make_huge_pte(dst_vma, page, writable);
5056 	if (writable)
5057 		_dst_pte = huge_pte_mkdirty(_dst_pte);
5058 	_dst_pte = pte_mkyoung(_dst_pte);
5059 
5060 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5061 
5062 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5063 					dst_vma->vm_flags & VM_WRITE);
5064 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5065 
5066 	/* No need to invalidate - it was non-present before */
5067 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
5068 
5069 	spin_unlock(ptl);
5070 	if (!is_continue)
5071 		SetHPageMigratable(page);
5072 	if (vm_shared || is_continue)
5073 		unlock_page(page);
5074 	ret = 0;
5075 out:
5076 	return ret;
5077 out_release_unlock:
5078 	spin_unlock(ptl);
5079 	if (vm_shared || is_continue)
5080 		unlock_page(page);
5081 out_release_nounlock:
5082 	restore_reserve_on_error(h, dst_vma, dst_addr, page);
5083 	put_page(page);
5084 	goto out;
5085 }
5086 #endif /* CONFIG_USERFAULTFD */
5087 
5088 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5089 				 int refs, struct page **pages,
5090 				 struct vm_area_struct **vmas)
5091 {
5092 	int nr;
5093 
5094 	for (nr = 0; nr < refs; nr++) {
5095 		if (likely(pages))
5096 			pages[nr] = mem_map_offset(page, nr);
5097 		if (vmas)
5098 			vmas[nr] = vma;
5099 	}
5100 }
5101 
5102 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5103 			 struct page **pages, struct vm_area_struct **vmas,
5104 			 unsigned long *position, unsigned long *nr_pages,
5105 			 long i, unsigned int flags, int *locked)
5106 {
5107 	unsigned long pfn_offset;
5108 	unsigned long vaddr = *position;
5109 	unsigned long remainder = *nr_pages;
5110 	struct hstate *h = hstate_vma(vma);
5111 	int err = -EFAULT, refs;
5112 
5113 	while (vaddr < vma->vm_end && remainder) {
5114 		pte_t *pte;
5115 		spinlock_t *ptl = NULL;
5116 		int absent;
5117 		struct page *page;
5118 
5119 		/*
5120 		 * If we have a pending SIGKILL, don't keep faulting pages and
5121 		 * potentially allocating memory.
5122 		 */
5123 		if (fatal_signal_pending(current)) {
5124 			remainder = 0;
5125 			break;
5126 		}
5127 
5128 		/*
5129 		 * Some archs (sparc64, sh*) have multiple pte_ts to
5130 		 * each hugepage.  We have to make sure we get the
5131 		 * first, for the page indexing below to work.
5132 		 *
5133 		 * Note that page table lock is not held when pte is null.
5134 		 */
5135 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5136 				      huge_page_size(h));
5137 		if (pte)
5138 			ptl = huge_pte_lock(h, mm, pte);
5139 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
5140 
5141 		/*
5142 		 * When coredumping, it suits get_dump_page if we just return
5143 		 * an error where there's an empty slot with no huge pagecache
5144 		 * to back it.  This way, we avoid allocating a hugepage, and
5145 		 * the sparse dumpfile avoids allocating disk blocks, but its
5146 		 * huge holes still show up with zeroes where they need to be.
5147 		 */
5148 		if (absent && (flags & FOLL_DUMP) &&
5149 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5150 			if (pte)
5151 				spin_unlock(ptl);
5152 			remainder = 0;
5153 			break;
5154 		}
5155 
5156 		/*
5157 		 * We need call hugetlb_fault for both hugepages under migration
5158 		 * (in which case hugetlb_fault waits for the migration,) and
5159 		 * hwpoisoned hugepages (in which case we need to prevent the
5160 		 * caller from accessing to them.) In order to do this, we use
5161 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
5162 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5163 		 * both cases, and because we can't follow correct pages
5164 		 * directly from any kind of swap entries.
5165 		 */
5166 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5167 		    ((flags & FOLL_WRITE) &&
5168 		      !huge_pte_write(huge_ptep_get(pte)))) {
5169 			vm_fault_t ret;
5170 			unsigned int fault_flags = 0;
5171 
5172 			if (pte)
5173 				spin_unlock(ptl);
5174 			if (flags & FOLL_WRITE)
5175 				fault_flags |= FAULT_FLAG_WRITE;
5176 			if (locked)
5177 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5178 					FAULT_FLAG_KILLABLE;
5179 			if (flags & FOLL_NOWAIT)
5180 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5181 					FAULT_FLAG_RETRY_NOWAIT;
5182 			if (flags & FOLL_TRIED) {
5183 				/*
5184 				 * Note: FAULT_FLAG_ALLOW_RETRY and
5185 				 * FAULT_FLAG_TRIED can co-exist
5186 				 */
5187 				fault_flags |= FAULT_FLAG_TRIED;
5188 			}
5189 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5190 			if (ret & VM_FAULT_ERROR) {
5191 				err = vm_fault_to_errno(ret, flags);
5192 				remainder = 0;
5193 				break;
5194 			}
5195 			if (ret & VM_FAULT_RETRY) {
5196 				if (locked &&
5197 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5198 					*locked = 0;
5199 				*nr_pages = 0;
5200 				/*
5201 				 * VM_FAULT_RETRY must not return an
5202 				 * error, it will return zero
5203 				 * instead.
5204 				 *
5205 				 * No need to update "position" as the
5206 				 * caller will not check it after
5207 				 * *nr_pages is set to 0.
5208 				 */
5209 				return i;
5210 			}
5211 			continue;
5212 		}
5213 
5214 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5215 		page = pte_page(huge_ptep_get(pte));
5216 
5217 		/*
5218 		 * If subpage information not requested, update counters
5219 		 * and skip the same_page loop below.
5220 		 */
5221 		if (!pages && !vmas && !pfn_offset &&
5222 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
5223 		    (remainder >= pages_per_huge_page(h))) {
5224 			vaddr += huge_page_size(h);
5225 			remainder -= pages_per_huge_page(h);
5226 			i += pages_per_huge_page(h);
5227 			spin_unlock(ptl);
5228 			continue;
5229 		}
5230 
5231 		refs = min3(pages_per_huge_page(h) - pfn_offset,
5232 			    (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5233 
5234 		if (pages || vmas)
5235 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
5236 					     vma, refs,
5237 					     likely(pages) ? pages + i : NULL,
5238 					     vmas ? vmas + i : NULL);
5239 
5240 		if (pages) {
5241 			/*
5242 			 * try_grab_compound_head() should always succeed here,
5243 			 * because: a) we hold the ptl lock, and b) we've just
5244 			 * checked that the huge page is present in the page
5245 			 * tables. If the huge page is present, then the tail
5246 			 * pages must also be present. The ptl prevents the
5247 			 * head page and tail pages from being rearranged in
5248 			 * any way. So this page must be available at this
5249 			 * point, unless the page refcount overflowed:
5250 			 */
5251 			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5252 								 refs,
5253 								 flags))) {
5254 				spin_unlock(ptl);
5255 				remainder = 0;
5256 				err = -ENOMEM;
5257 				break;
5258 			}
5259 		}
5260 
5261 		vaddr += (refs << PAGE_SHIFT);
5262 		remainder -= refs;
5263 		i += refs;
5264 
5265 		spin_unlock(ptl);
5266 	}
5267 	*nr_pages = remainder;
5268 	/*
5269 	 * setting position is actually required only if remainder is
5270 	 * not zero but it's faster not to add a "if (remainder)"
5271 	 * branch.
5272 	 */
5273 	*position = vaddr;
5274 
5275 	return i ? i : err;
5276 }
5277 
5278 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5279 		unsigned long address, unsigned long end, pgprot_t newprot)
5280 {
5281 	struct mm_struct *mm = vma->vm_mm;
5282 	unsigned long start = address;
5283 	pte_t *ptep;
5284 	pte_t pte;
5285 	struct hstate *h = hstate_vma(vma);
5286 	unsigned long pages = 0;
5287 	bool shared_pmd = false;
5288 	struct mmu_notifier_range range;
5289 
5290 	/*
5291 	 * In the case of shared PMDs, the area to flush could be beyond
5292 	 * start/end.  Set range.start/range.end to cover the maximum possible
5293 	 * range if PMD sharing is possible.
5294 	 */
5295 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5296 				0, vma, mm, start, end);
5297 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5298 
5299 	BUG_ON(address >= end);
5300 	flush_cache_range(vma, range.start, range.end);
5301 
5302 	mmu_notifier_invalidate_range_start(&range);
5303 	i_mmap_lock_write(vma->vm_file->f_mapping);
5304 	for (; address < end; address += huge_page_size(h)) {
5305 		spinlock_t *ptl;
5306 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5307 		if (!ptep)
5308 			continue;
5309 		ptl = huge_pte_lock(h, mm, ptep);
5310 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5311 			pages++;
5312 			spin_unlock(ptl);
5313 			shared_pmd = true;
5314 			continue;
5315 		}
5316 		pte = huge_ptep_get(ptep);
5317 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5318 			spin_unlock(ptl);
5319 			continue;
5320 		}
5321 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5322 			swp_entry_t entry = pte_to_swp_entry(pte);
5323 
5324 			if (is_write_migration_entry(entry)) {
5325 				pte_t newpte;
5326 
5327 				make_migration_entry_read(&entry);
5328 				newpte = swp_entry_to_pte(entry);
5329 				set_huge_swap_pte_at(mm, address, ptep,
5330 						     newpte, huge_page_size(h));
5331 				pages++;
5332 			}
5333 			spin_unlock(ptl);
5334 			continue;
5335 		}
5336 		if (!huge_pte_none(pte)) {
5337 			pte_t old_pte;
5338 
5339 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5340 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5341 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5342 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5343 			pages++;
5344 		}
5345 		spin_unlock(ptl);
5346 	}
5347 	/*
5348 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5349 	 * may have cleared our pud entry and done put_page on the page table:
5350 	 * once we release i_mmap_rwsem, another task can do the final put_page
5351 	 * and that page table be reused and filled with junk.  If we actually
5352 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5353 	 */
5354 	if (shared_pmd)
5355 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5356 	else
5357 		flush_hugetlb_tlb_range(vma, start, end);
5358 	/*
5359 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5360 	 * page table protection not changing it to point to a new page.
5361 	 *
5362 	 * See Documentation/vm/mmu_notifier.rst
5363 	 */
5364 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5365 	mmu_notifier_invalidate_range_end(&range);
5366 
5367 	return pages << h->order;
5368 }
5369 
5370 /* Return true if reservation was successful, false otherwise.  */
5371 bool hugetlb_reserve_pages(struct inode *inode,
5372 					long from, long to,
5373 					struct vm_area_struct *vma,
5374 					vm_flags_t vm_flags)
5375 {
5376 	long chg, add = -1;
5377 	struct hstate *h = hstate_inode(inode);
5378 	struct hugepage_subpool *spool = subpool_inode(inode);
5379 	struct resv_map *resv_map;
5380 	struct hugetlb_cgroup *h_cg = NULL;
5381 	long gbl_reserve, regions_needed = 0;
5382 
5383 	/* This should never happen */
5384 	if (from > to) {
5385 		VM_WARN(1, "%s called with a negative range\n", __func__);
5386 		return false;
5387 	}
5388 
5389 	/*
5390 	 * Only apply hugepage reservation if asked. At fault time, an
5391 	 * attempt will be made for VM_NORESERVE to allocate a page
5392 	 * without using reserves
5393 	 */
5394 	if (vm_flags & VM_NORESERVE)
5395 		return true;
5396 
5397 	/*
5398 	 * Shared mappings base their reservation on the number of pages that
5399 	 * are already allocated on behalf of the file. Private mappings need
5400 	 * to reserve the full area even if read-only as mprotect() may be
5401 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5402 	 */
5403 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5404 		/*
5405 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5406 		 * called for inodes for which resv_maps were created (see
5407 		 * hugetlbfs_get_inode).
5408 		 */
5409 		resv_map = inode_resv_map(inode);
5410 
5411 		chg = region_chg(resv_map, from, to, &regions_needed);
5412 
5413 	} else {
5414 		/* Private mapping. */
5415 		resv_map = resv_map_alloc();
5416 		if (!resv_map)
5417 			return false;
5418 
5419 		chg = to - from;
5420 
5421 		set_vma_resv_map(vma, resv_map);
5422 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5423 	}
5424 
5425 	if (chg < 0)
5426 		goto out_err;
5427 
5428 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5429 				chg * pages_per_huge_page(h), &h_cg) < 0)
5430 		goto out_err;
5431 
5432 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5433 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5434 		 * of the resv_map.
5435 		 */
5436 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5437 	}
5438 
5439 	/*
5440 	 * There must be enough pages in the subpool for the mapping. If
5441 	 * the subpool has a minimum size, there may be some global
5442 	 * reservations already in place (gbl_reserve).
5443 	 */
5444 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5445 	if (gbl_reserve < 0)
5446 		goto out_uncharge_cgroup;
5447 
5448 	/*
5449 	 * Check enough hugepages are available for the reservation.
5450 	 * Hand the pages back to the subpool if there are not
5451 	 */
5452 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5453 		goto out_put_pages;
5454 
5455 	/*
5456 	 * Account for the reservations made. Shared mappings record regions
5457 	 * that have reservations as they are shared by multiple VMAs.
5458 	 * When the last VMA disappears, the region map says how much
5459 	 * the reservation was and the page cache tells how much of
5460 	 * the reservation was consumed. Private mappings are per-VMA and
5461 	 * only the consumed reservations are tracked. When the VMA
5462 	 * disappears, the original reservation is the VMA size and the
5463 	 * consumed reservations are stored in the map. Hence, nothing
5464 	 * else has to be done for private mappings here
5465 	 */
5466 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5467 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5468 
5469 		if (unlikely(add < 0)) {
5470 			hugetlb_acct_memory(h, -gbl_reserve);
5471 			goto out_put_pages;
5472 		} else if (unlikely(chg > add)) {
5473 			/*
5474 			 * pages in this range were added to the reserve
5475 			 * map between region_chg and region_add.  This
5476 			 * indicates a race with alloc_huge_page.  Adjust
5477 			 * the subpool and reserve counts modified above
5478 			 * based on the difference.
5479 			 */
5480 			long rsv_adjust;
5481 
5482 			/*
5483 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5484 			 * reference to h_cg->css. See comment below for detail.
5485 			 */
5486 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5487 				hstate_index(h),
5488 				(chg - add) * pages_per_huge_page(h), h_cg);
5489 
5490 			rsv_adjust = hugepage_subpool_put_pages(spool,
5491 								chg - add);
5492 			hugetlb_acct_memory(h, -rsv_adjust);
5493 		} else if (h_cg) {
5494 			/*
5495 			 * The file_regions will hold their own reference to
5496 			 * h_cg->css. So we should release the reference held
5497 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5498 			 * done.
5499 			 */
5500 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5501 		}
5502 	}
5503 	return true;
5504 
5505 out_put_pages:
5506 	/* put back original number of pages, chg */
5507 	(void)hugepage_subpool_put_pages(spool, chg);
5508 out_uncharge_cgroup:
5509 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5510 					    chg * pages_per_huge_page(h), h_cg);
5511 out_err:
5512 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5513 		/* Only call region_abort if the region_chg succeeded but the
5514 		 * region_add failed or didn't run.
5515 		 */
5516 		if (chg >= 0 && add < 0)
5517 			region_abort(resv_map, from, to, regions_needed);
5518 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5519 		kref_put(&resv_map->refs, resv_map_release);
5520 	return false;
5521 }
5522 
5523 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5524 								long freed)
5525 {
5526 	struct hstate *h = hstate_inode(inode);
5527 	struct resv_map *resv_map = inode_resv_map(inode);
5528 	long chg = 0;
5529 	struct hugepage_subpool *spool = subpool_inode(inode);
5530 	long gbl_reserve;
5531 
5532 	/*
5533 	 * Since this routine can be called in the evict inode path for all
5534 	 * hugetlbfs inodes, resv_map could be NULL.
5535 	 */
5536 	if (resv_map) {
5537 		chg = region_del(resv_map, start, end);
5538 		/*
5539 		 * region_del() can fail in the rare case where a region
5540 		 * must be split and another region descriptor can not be
5541 		 * allocated.  If end == LONG_MAX, it will not fail.
5542 		 */
5543 		if (chg < 0)
5544 			return chg;
5545 	}
5546 
5547 	spin_lock(&inode->i_lock);
5548 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5549 	spin_unlock(&inode->i_lock);
5550 
5551 	/*
5552 	 * If the subpool has a minimum size, the number of global
5553 	 * reservations to be released may be adjusted.
5554 	 *
5555 	 * Note that !resv_map implies freed == 0. So (chg - freed)
5556 	 * won't go negative.
5557 	 */
5558 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5559 	hugetlb_acct_memory(h, -gbl_reserve);
5560 
5561 	return 0;
5562 }
5563 
5564 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5565 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5566 				struct vm_area_struct *vma,
5567 				unsigned long addr, pgoff_t idx)
5568 {
5569 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5570 				svma->vm_start;
5571 	unsigned long sbase = saddr & PUD_MASK;
5572 	unsigned long s_end = sbase + PUD_SIZE;
5573 
5574 	/* Allow segments to share if only one is marked locked */
5575 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5576 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5577 
5578 	/*
5579 	 * match the virtual addresses, permission and the alignment of the
5580 	 * page table page.
5581 	 */
5582 	if (pmd_index(addr) != pmd_index(saddr) ||
5583 	    vm_flags != svm_flags ||
5584 	    !range_in_vma(svma, sbase, s_end))
5585 		return 0;
5586 
5587 	return saddr;
5588 }
5589 
5590 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5591 {
5592 	unsigned long base = addr & PUD_MASK;
5593 	unsigned long end = base + PUD_SIZE;
5594 
5595 	/*
5596 	 * check on proper vm_flags and page table alignment
5597 	 */
5598 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5599 		return true;
5600 	return false;
5601 }
5602 
5603 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5604 {
5605 #ifdef CONFIG_USERFAULTFD
5606 	if (uffd_disable_huge_pmd_share(vma))
5607 		return false;
5608 #endif
5609 	return vma_shareable(vma, addr);
5610 }
5611 
5612 /*
5613  * Determine if start,end range within vma could be mapped by shared pmd.
5614  * If yes, adjust start and end to cover range associated with possible
5615  * shared pmd mappings.
5616  */
5617 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5618 				unsigned long *start, unsigned long *end)
5619 {
5620 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5621 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5622 
5623 	/*
5624 	 * vma needs to span at least one aligned PUD size, and the range
5625 	 * must be at least partially within in.
5626 	 */
5627 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5628 		(*end <= v_start) || (*start >= v_end))
5629 		return;
5630 
5631 	/* Extend the range to be PUD aligned for a worst case scenario */
5632 	if (*start > v_start)
5633 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5634 
5635 	if (*end < v_end)
5636 		*end = ALIGN(*end, PUD_SIZE);
5637 }
5638 
5639 /*
5640  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5641  * and returns the corresponding pte. While this is not necessary for the
5642  * !shared pmd case because we can allocate the pmd later as well, it makes the
5643  * code much cleaner.
5644  *
5645  * This routine must be called with i_mmap_rwsem held in at least read mode if
5646  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5647  * table entries associated with the address space.  This is important as we
5648  * are setting up sharing based on existing page table entries (mappings).
5649  *
5650  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5651  * huge_pte_alloc know that sharing is not possible and do not take
5652  * i_mmap_rwsem as a performance optimization.  This is handled by the
5653  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5654  * only required for subsequent processing.
5655  */
5656 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5657 		      unsigned long addr, pud_t *pud)
5658 {
5659 	struct address_space *mapping = vma->vm_file->f_mapping;
5660 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5661 			vma->vm_pgoff;
5662 	struct vm_area_struct *svma;
5663 	unsigned long saddr;
5664 	pte_t *spte = NULL;
5665 	pte_t *pte;
5666 	spinlock_t *ptl;
5667 
5668 	i_mmap_assert_locked(mapping);
5669 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5670 		if (svma == vma)
5671 			continue;
5672 
5673 		saddr = page_table_shareable(svma, vma, addr, idx);
5674 		if (saddr) {
5675 			spte = huge_pte_offset(svma->vm_mm, saddr,
5676 					       vma_mmu_pagesize(svma));
5677 			if (spte) {
5678 				get_page(virt_to_page(spte));
5679 				break;
5680 			}
5681 		}
5682 	}
5683 
5684 	if (!spte)
5685 		goto out;
5686 
5687 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5688 	if (pud_none(*pud)) {
5689 		pud_populate(mm, pud,
5690 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5691 		mm_inc_nr_pmds(mm);
5692 	} else {
5693 		put_page(virt_to_page(spte));
5694 	}
5695 	spin_unlock(ptl);
5696 out:
5697 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5698 	return pte;
5699 }
5700 
5701 /*
5702  * unmap huge page backed by shared pte.
5703  *
5704  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5705  * indicated by page_count > 1, unmap is achieved by clearing pud and
5706  * decrementing the ref count. If count == 1, the pte page is not shared.
5707  *
5708  * Called with page table lock held and i_mmap_rwsem held in write mode.
5709  *
5710  * returns: 1 successfully unmapped a shared pte page
5711  *	    0 the underlying pte page is not shared, or it is the last user
5712  */
5713 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5714 					unsigned long *addr, pte_t *ptep)
5715 {
5716 	pgd_t *pgd = pgd_offset(mm, *addr);
5717 	p4d_t *p4d = p4d_offset(pgd, *addr);
5718 	pud_t *pud = pud_offset(p4d, *addr);
5719 
5720 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5721 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5722 	if (page_count(virt_to_page(ptep)) == 1)
5723 		return 0;
5724 
5725 	pud_clear(pud);
5726 	put_page(virt_to_page(ptep));
5727 	mm_dec_nr_pmds(mm);
5728 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5729 	return 1;
5730 }
5731 
5732 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5733 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5734 		      unsigned long addr, pud_t *pud)
5735 {
5736 	return NULL;
5737 }
5738 
5739 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5740 				unsigned long *addr, pte_t *ptep)
5741 {
5742 	return 0;
5743 }
5744 
5745 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5746 				unsigned long *start, unsigned long *end)
5747 {
5748 }
5749 
5750 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5751 {
5752 	return false;
5753 }
5754 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5755 
5756 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5757 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5758 			unsigned long addr, unsigned long sz)
5759 {
5760 	pgd_t *pgd;
5761 	p4d_t *p4d;
5762 	pud_t *pud;
5763 	pte_t *pte = NULL;
5764 
5765 	pgd = pgd_offset(mm, addr);
5766 	p4d = p4d_alloc(mm, pgd, addr);
5767 	if (!p4d)
5768 		return NULL;
5769 	pud = pud_alloc(mm, p4d, addr);
5770 	if (pud) {
5771 		if (sz == PUD_SIZE) {
5772 			pte = (pte_t *)pud;
5773 		} else {
5774 			BUG_ON(sz != PMD_SIZE);
5775 			if (want_pmd_share(vma, addr) && pud_none(*pud))
5776 				pte = huge_pmd_share(mm, vma, addr, pud);
5777 			else
5778 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5779 		}
5780 	}
5781 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5782 
5783 	return pte;
5784 }
5785 
5786 /*
5787  * huge_pte_offset() - Walk the page table to resolve the hugepage
5788  * entry at address @addr
5789  *
5790  * Return: Pointer to page table entry (PUD or PMD) for
5791  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5792  * size @sz doesn't match the hugepage size at this level of the page
5793  * table.
5794  */
5795 pte_t *huge_pte_offset(struct mm_struct *mm,
5796 		       unsigned long addr, unsigned long sz)
5797 {
5798 	pgd_t *pgd;
5799 	p4d_t *p4d;
5800 	pud_t *pud;
5801 	pmd_t *pmd;
5802 
5803 	pgd = pgd_offset(mm, addr);
5804 	if (!pgd_present(*pgd))
5805 		return NULL;
5806 	p4d = p4d_offset(pgd, addr);
5807 	if (!p4d_present(*p4d))
5808 		return NULL;
5809 
5810 	pud = pud_offset(p4d, addr);
5811 	if (sz == PUD_SIZE)
5812 		/* must be pud huge, non-present or none */
5813 		return (pte_t *)pud;
5814 	if (!pud_present(*pud))
5815 		return NULL;
5816 	/* must have a valid entry and size to go further */
5817 
5818 	pmd = pmd_offset(pud, addr);
5819 	/* must be pmd huge, non-present or none */
5820 	return (pte_t *)pmd;
5821 }
5822 
5823 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5824 
5825 /*
5826  * These functions are overwritable if your architecture needs its own
5827  * behavior.
5828  */
5829 struct page * __weak
5830 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5831 			      int write)
5832 {
5833 	return ERR_PTR(-EINVAL);
5834 }
5835 
5836 struct page * __weak
5837 follow_huge_pd(struct vm_area_struct *vma,
5838 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5839 {
5840 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5841 	return NULL;
5842 }
5843 
5844 struct page * __weak
5845 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5846 		pmd_t *pmd, int flags)
5847 {
5848 	struct page *page = NULL;
5849 	spinlock_t *ptl;
5850 	pte_t pte;
5851 
5852 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5853 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5854 			 (FOLL_PIN | FOLL_GET)))
5855 		return NULL;
5856 
5857 retry:
5858 	ptl = pmd_lockptr(mm, pmd);
5859 	spin_lock(ptl);
5860 	/*
5861 	 * make sure that the address range covered by this pmd is not
5862 	 * unmapped from other threads.
5863 	 */
5864 	if (!pmd_huge(*pmd))
5865 		goto out;
5866 	pte = huge_ptep_get((pte_t *)pmd);
5867 	if (pte_present(pte)) {
5868 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5869 		/*
5870 		 * try_grab_page() should always succeed here, because: a) we
5871 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5872 		 * huge pmd (head) page is present in the page tables. The ptl
5873 		 * prevents the head page and tail pages from being rearranged
5874 		 * in any way. So this page must be available at this point,
5875 		 * unless the page refcount overflowed:
5876 		 */
5877 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5878 			page = NULL;
5879 			goto out;
5880 		}
5881 	} else {
5882 		if (is_hugetlb_entry_migration(pte)) {
5883 			spin_unlock(ptl);
5884 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5885 			goto retry;
5886 		}
5887 		/*
5888 		 * hwpoisoned entry is treated as no_page_table in
5889 		 * follow_page_mask().
5890 		 */
5891 	}
5892 out:
5893 	spin_unlock(ptl);
5894 	return page;
5895 }
5896 
5897 struct page * __weak
5898 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5899 		pud_t *pud, int flags)
5900 {
5901 	if (flags & (FOLL_GET | FOLL_PIN))
5902 		return NULL;
5903 
5904 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5905 }
5906 
5907 struct page * __weak
5908 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5909 {
5910 	if (flags & (FOLL_GET | FOLL_PIN))
5911 		return NULL;
5912 
5913 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5914 }
5915 
5916 bool isolate_huge_page(struct page *page, struct list_head *list)
5917 {
5918 	bool ret = true;
5919 
5920 	spin_lock_irq(&hugetlb_lock);
5921 	if (!PageHeadHuge(page) ||
5922 	    !HPageMigratable(page) ||
5923 	    !get_page_unless_zero(page)) {
5924 		ret = false;
5925 		goto unlock;
5926 	}
5927 	ClearHPageMigratable(page);
5928 	list_move_tail(&page->lru, list);
5929 unlock:
5930 	spin_unlock_irq(&hugetlb_lock);
5931 	return ret;
5932 }
5933 
5934 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
5935 {
5936 	int ret = 0;
5937 
5938 	*hugetlb = false;
5939 	spin_lock_irq(&hugetlb_lock);
5940 	if (PageHeadHuge(page)) {
5941 		*hugetlb = true;
5942 		if (HPageFreed(page) || HPageMigratable(page))
5943 			ret = get_page_unless_zero(page);
5944 	}
5945 	spin_unlock_irq(&hugetlb_lock);
5946 	return ret;
5947 }
5948 
5949 void putback_active_hugepage(struct page *page)
5950 {
5951 	spin_lock_irq(&hugetlb_lock);
5952 	SetHPageMigratable(page);
5953 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5954 	spin_unlock_irq(&hugetlb_lock);
5955 	put_page(page);
5956 }
5957 
5958 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5959 {
5960 	struct hstate *h = page_hstate(oldpage);
5961 
5962 	hugetlb_cgroup_migrate(oldpage, newpage);
5963 	set_page_owner_migrate_reason(newpage, reason);
5964 
5965 	/*
5966 	 * transfer temporary state of the new huge page. This is
5967 	 * reverse to other transitions because the newpage is going to
5968 	 * be final while the old one will be freed so it takes over
5969 	 * the temporary status.
5970 	 *
5971 	 * Also note that we have to transfer the per-node surplus state
5972 	 * here as well otherwise the global surplus count will not match
5973 	 * the per-node's.
5974 	 */
5975 	if (HPageTemporary(newpage)) {
5976 		int old_nid = page_to_nid(oldpage);
5977 		int new_nid = page_to_nid(newpage);
5978 
5979 		SetHPageTemporary(oldpage);
5980 		ClearHPageTemporary(newpage);
5981 
5982 		/*
5983 		 * There is no need to transfer the per-node surplus state
5984 		 * when we do not cross the node.
5985 		 */
5986 		if (new_nid == old_nid)
5987 			return;
5988 		spin_lock_irq(&hugetlb_lock);
5989 		if (h->surplus_huge_pages_node[old_nid]) {
5990 			h->surplus_huge_pages_node[old_nid]--;
5991 			h->surplus_huge_pages_node[new_nid]++;
5992 		}
5993 		spin_unlock_irq(&hugetlb_lock);
5994 	}
5995 }
5996 
5997 /*
5998  * This function will unconditionally remove all the shared pmd pgtable entries
5999  * within the specific vma for a hugetlbfs memory range.
6000  */
6001 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6002 {
6003 	struct hstate *h = hstate_vma(vma);
6004 	unsigned long sz = huge_page_size(h);
6005 	struct mm_struct *mm = vma->vm_mm;
6006 	struct mmu_notifier_range range;
6007 	unsigned long address, start, end;
6008 	spinlock_t *ptl;
6009 	pte_t *ptep;
6010 
6011 	if (!(vma->vm_flags & VM_MAYSHARE))
6012 		return;
6013 
6014 	start = ALIGN(vma->vm_start, PUD_SIZE);
6015 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6016 
6017 	if (start >= end)
6018 		return;
6019 
6020 	/*
6021 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
6022 	 * we have already done the PUD_SIZE alignment.
6023 	 */
6024 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6025 				start, end);
6026 	mmu_notifier_invalidate_range_start(&range);
6027 	i_mmap_lock_write(vma->vm_file->f_mapping);
6028 	for (address = start; address < end; address += PUD_SIZE) {
6029 		unsigned long tmp = address;
6030 
6031 		ptep = huge_pte_offset(mm, address, sz);
6032 		if (!ptep)
6033 			continue;
6034 		ptl = huge_pte_lock(h, mm, ptep);
6035 		/* We don't want 'address' to be changed */
6036 		huge_pmd_unshare(mm, vma, &tmp, ptep);
6037 		spin_unlock(ptl);
6038 	}
6039 	flush_hugetlb_tlb_range(vma, start, end);
6040 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6041 	/*
6042 	 * No need to call mmu_notifier_invalidate_range(), see
6043 	 * Documentation/vm/mmu_notifier.rst.
6044 	 */
6045 	mmu_notifier_invalidate_range_end(&range);
6046 }
6047 
6048 #ifdef CONFIG_CMA
6049 static bool cma_reserve_called __initdata;
6050 
6051 static int __init cmdline_parse_hugetlb_cma(char *p)
6052 {
6053 	hugetlb_cma_size = memparse(p, &p);
6054 	return 0;
6055 }
6056 
6057 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6058 
6059 void __init hugetlb_cma_reserve(int order)
6060 {
6061 	unsigned long size, reserved, per_node;
6062 	int nid;
6063 
6064 	cma_reserve_called = true;
6065 
6066 	if (!hugetlb_cma_size)
6067 		return;
6068 
6069 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6070 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6071 			(PAGE_SIZE << order) / SZ_1M);
6072 		return;
6073 	}
6074 
6075 	/*
6076 	 * If 3 GB area is requested on a machine with 4 numa nodes,
6077 	 * let's allocate 1 GB on first three nodes and ignore the last one.
6078 	 */
6079 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6080 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6081 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6082 
6083 	reserved = 0;
6084 	for_each_node_state(nid, N_ONLINE) {
6085 		int res;
6086 		char name[CMA_MAX_NAME];
6087 
6088 		size = min(per_node, hugetlb_cma_size - reserved);
6089 		size = round_up(size, PAGE_SIZE << order);
6090 
6091 		snprintf(name, sizeof(name), "hugetlb%d", nid);
6092 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6093 						 0, false, name,
6094 						 &hugetlb_cma[nid], nid);
6095 		if (res) {
6096 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6097 				res, nid);
6098 			continue;
6099 		}
6100 
6101 		reserved += size;
6102 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6103 			size / SZ_1M, nid);
6104 
6105 		if (reserved >= hugetlb_cma_size)
6106 			break;
6107 	}
6108 }
6109 
6110 void __init hugetlb_cma_check(void)
6111 {
6112 	if (!hugetlb_cma_size || cma_reserve_called)
6113 		return;
6114 
6115 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6116 }
6117 
6118 #endif /* CONFIG_CMA */
6119