1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 34 #include <asm/page.h> 35 #include <asm/pgalloc.h> 36 #include <asm/tlb.h> 37 38 #include <linux/io.h> 39 #include <linux/hugetlb.h> 40 #include <linux/hugetlb_cgroup.h> 41 #include <linux/node.h> 42 #include <linux/page_owner.h> 43 #include "internal.h" 44 45 int hugetlb_max_hstate __read_mostly; 46 unsigned int default_hstate_idx; 47 struct hstate hstates[HUGE_MAX_HSTATE]; 48 49 #ifdef CONFIG_CMA 50 static struct cma *hugetlb_cma[MAX_NUMNODES]; 51 #endif 52 static unsigned long hugetlb_cma_size __initdata; 53 54 /* 55 * Minimum page order among possible hugepage sizes, set to a proper value 56 * at boot time. 57 */ 58 static unsigned int minimum_order __read_mostly = UINT_MAX; 59 60 __initdata LIST_HEAD(huge_boot_pages); 61 62 /* for command line parsing */ 63 static struct hstate * __initdata parsed_hstate; 64 static unsigned long __initdata default_hstate_max_huge_pages; 65 static bool __initdata parsed_valid_hugepagesz = true; 66 static bool __initdata parsed_default_hugepagesz; 67 68 /* 69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 70 * free_huge_pages, and surplus_huge_pages. 71 */ 72 DEFINE_SPINLOCK(hugetlb_lock); 73 74 /* 75 * Serializes faults on the same logical page. This is used to 76 * prevent spurious OOMs when the hugepage pool is fully utilized. 77 */ 78 static int num_fault_mutexes; 79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 80 81 /* Forward declaration */ 82 static int hugetlb_acct_memory(struct hstate *h, long delta); 83 84 static inline bool subpool_is_free(struct hugepage_subpool *spool) 85 { 86 if (spool->count) 87 return false; 88 if (spool->max_hpages != -1) 89 return spool->used_hpages == 0; 90 if (spool->min_hpages != -1) 91 return spool->rsv_hpages == spool->min_hpages; 92 93 return true; 94 } 95 96 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 97 unsigned long irq_flags) 98 { 99 spin_unlock_irqrestore(&spool->lock, irq_flags); 100 101 /* If no pages are used, and no other handles to the subpool 102 * remain, give up any reservations based on minimum size and 103 * free the subpool */ 104 if (subpool_is_free(spool)) { 105 if (spool->min_hpages != -1) 106 hugetlb_acct_memory(spool->hstate, 107 -spool->min_hpages); 108 kfree(spool); 109 } 110 } 111 112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 113 long min_hpages) 114 { 115 struct hugepage_subpool *spool; 116 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 118 if (!spool) 119 return NULL; 120 121 spin_lock_init(&spool->lock); 122 spool->count = 1; 123 spool->max_hpages = max_hpages; 124 spool->hstate = h; 125 spool->min_hpages = min_hpages; 126 127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 128 kfree(spool); 129 return NULL; 130 } 131 spool->rsv_hpages = min_hpages; 132 133 return spool; 134 } 135 136 void hugepage_put_subpool(struct hugepage_subpool *spool) 137 { 138 unsigned long flags; 139 140 spin_lock_irqsave(&spool->lock, flags); 141 BUG_ON(!spool->count); 142 spool->count--; 143 unlock_or_release_subpool(spool, flags); 144 } 145 146 /* 147 * Subpool accounting for allocating and reserving pages. 148 * Return -ENOMEM if there are not enough resources to satisfy the 149 * request. Otherwise, return the number of pages by which the 150 * global pools must be adjusted (upward). The returned value may 151 * only be different than the passed value (delta) in the case where 152 * a subpool minimum size must be maintained. 153 */ 154 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 155 long delta) 156 { 157 long ret = delta; 158 159 if (!spool) 160 return ret; 161 162 spin_lock_irq(&spool->lock); 163 164 if (spool->max_hpages != -1) { /* maximum size accounting */ 165 if ((spool->used_hpages + delta) <= spool->max_hpages) 166 spool->used_hpages += delta; 167 else { 168 ret = -ENOMEM; 169 goto unlock_ret; 170 } 171 } 172 173 /* minimum size accounting */ 174 if (spool->min_hpages != -1 && spool->rsv_hpages) { 175 if (delta > spool->rsv_hpages) { 176 /* 177 * Asking for more reserves than those already taken on 178 * behalf of subpool. Return difference. 179 */ 180 ret = delta - spool->rsv_hpages; 181 spool->rsv_hpages = 0; 182 } else { 183 ret = 0; /* reserves already accounted for */ 184 spool->rsv_hpages -= delta; 185 } 186 } 187 188 unlock_ret: 189 spin_unlock_irq(&spool->lock); 190 return ret; 191 } 192 193 /* 194 * Subpool accounting for freeing and unreserving pages. 195 * Return the number of global page reservations that must be dropped. 196 * The return value may only be different than the passed value (delta) 197 * in the case where a subpool minimum size must be maintained. 198 */ 199 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 200 long delta) 201 { 202 long ret = delta; 203 unsigned long flags; 204 205 if (!spool) 206 return delta; 207 208 spin_lock_irqsave(&spool->lock, flags); 209 210 if (spool->max_hpages != -1) /* maximum size accounting */ 211 spool->used_hpages -= delta; 212 213 /* minimum size accounting */ 214 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 215 if (spool->rsv_hpages + delta <= spool->min_hpages) 216 ret = 0; 217 else 218 ret = spool->rsv_hpages + delta - spool->min_hpages; 219 220 spool->rsv_hpages += delta; 221 if (spool->rsv_hpages > spool->min_hpages) 222 spool->rsv_hpages = spool->min_hpages; 223 } 224 225 /* 226 * If hugetlbfs_put_super couldn't free spool due to an outstanding 227 * quota reference, free it now. 228 */ 229 unlock_or_release_subpool(spool, flags); 230 231 return ret; 232 } 233 234 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 235 { 236 return HUGETLBFS_SB(inode->i_sb)->spool; 237 } 238 239 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 240 { 241 return subpool_inode(file_inode(vma->vm_file)); 242 } 243 244 /* Helper that removes a struct file_region from the resv_map cache and returns 245 * it for use. 246 */ 247 static struct file_region * 248 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 249 { 250 struct file_region *nrg = NULL; 251 252 VM_BUG_ON(resv->region_cache_count <= 0); 253 254 resv->region_cache_count--; 255 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 256 list_del(&nrg->link); 257 258 nrg->from = from; 259 nrg->to = to; 260 261 return nrg; 262 } 263 264 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 265 struct file_region *rg) 266 { 267 #ifdef CONFIG_CGROUP_HUGETLB 268 nrg->reservation_counter = rg->reservation_counter; 269 nrg->css = rg->css; 270 if (rg->css) 271 css_get(rg->css); 272 #endif 273 } 274 275 /* Helper that records hugetlb_cgroup uncharge info. */ 276 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 277 struct hstate *h, 278 struct resv_map *resv, 279 struct file_region *nrg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 if (h_cg) { 283 nrg->reservation_counter = 284 &h_cg->rsvd_hugepage[hstate_index(h)]; 285 nrg->css = &h_cg->css; 286 /* 287 * The caller will hold exactly one h_cg->css reference for the 288 * whole contiguous reservation region. But this area might be 289 * scattered when there are already some file_regions reside in 290 * it. As a result, many file_regions may share only one css 291 * reference. In order to ensure that one file_region must hold 292 * exactly one h_cg->css reference, we should do css_get for 293 * each file_region and leave the reference held by caller 294 * untouched. 295 */ 296 css_get(&h_cg->css); 297 if (!resv->pages_per_hpage) 298 resv->pages_per_hpage = pages_per_huge_page(h); 299 /* pages_per_hpage should be the same for all entries in 300 * a resv_map. 301 */ 302 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 303 } else { 304 nrg->reservation_counter = NULL; 305 nrg->css = NULL; 306 } 307 #endif 308 } 309 310 static void put_uncharge_info(struct file_region *rg) 311 { 312 #ifdef CONFIG_CGROUP_HUGETLB 313 if (rg->css) 314 css_put(rg->css); 315 #endif 316 } 317 318 static bool has_same_uncharge_info(struct file_region *rg, 319 struct file_region *org) 320 { 321 #ifdef CONFIG_CGROUP_HUGETLB 322 return rg && org && 323 rg->reservation_counter == org->reservation_counter && 324 rg->css == org->css; 325 326 #else 327 return true; 328 #endif 329 } 330 331 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 332 { 333 struct file_region *nrg = NULL, *prg = NULL; 334 335 prg = list_prev_entry(rg, link); 336 if (&prg->link != &resv->regions && prg->to == rg->from && 337 has_same_uncharge_info(prg, rg)) { 338 prg->to = rg->to; 339 340 list_del(&rg->link); 341 put_uncharge_info(rg); 342 kfree(rg); 343 344 rg = prg; 345 } 346 347 nrg = list_next_entry(rg, link); 348 if (&nrg->link != &resv->regions && nrg->from == rg->to && 349 has_same_uncharge_info(nrg, rg)) { 350 nrg->from = rg->from; 351 352 list_del(&rg->link); 353 put_uncharge_info(rg); 354 kfree(rg); 355 } 356 } 357 358 static inline long 359 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, 360 long to, struct hstate *h, struct hugetlb_cgroup *cg, 361 long *regions_needed) 362 { 363 struct file_region *nrg; 364 365 if (!regions_needed) { 366 nrg = get_file_region_entry_from_cache(map, from, to); 367 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 368 list_add(&nrg->link, rg->link.prev); 369 coalesce_file_region(map, nrg); 370 } else 371 *regions_needed += 1; 372 373 return to - from; 374 } 375 376 /* 377 * Must be called with resv->lock held. 378 * 379 * Calling this with regions_needed != NULL will count the number of pages 380 * to be added but will not modify the linked list. And regions_needed will 381 * indicate the number of file_regions needed in the cache to carry out to add 382 * the regions for this range. 383 */ 384 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 385 struct hugetlb_cgroup *h_cg, 386 struct hstate *h, long *regions_needed) 387 { 388 long add = 0; 389 struct list_head *head = &resv->regions; 390 long last_accounted_offset = f; 391 struct file_region *rg = NULL, *trg = NULL; 392 393 if (regions_needed) 394 *regions_needed = 0; 395 396 /* In this loop, we essentially handle an entry for the range 397 * [last_accounted_offset, rg->from), at every iteration, with some 398 * bounds checking. 399 */ 400 list_for_each_entry_safe(rg, trg, head, link) { 401 /* Skip irrelevant regions that start before our range. */ 402 if (rg->from < f) { 403 /* If this region ends after the last accounted offset, 404 * then we need to update last_accounted_offset. 405 */ 406 if (rg->to > last_accounted_offset) 407 last_accounted_offset = rg->to; 408 continue; 409 } 410 411 /* When we find a region that starts beyond our range, we've 412 * finished. 413 */ 414 if (rg->from >= t) 415 break; 416 417 /* Add an entry for last_accounted_offset -> rg->from, and 418 * update last_accounted_offset. 419 */ 420 if (rg->from > last_accounted_offset) 421 add += hugetlb_resv_map_add(resv, rg, 422 last_accounted_offset, 423 rg->from, h, h_cg, 424 regions_needed); 425 426 last_accounted_offset = rg->to; 427 } 428 429 /* Handle the case where our range extends beyond 430 * last_accounted_offset. 431 */ 432 if (last_accounted_offset < t) 433 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 434 t, h, h_cg, regions_needed); 435 436 VM_BUG_ON(add < 0); 437 return add; 438 } 439 440 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 441 */ 442 static int allocate_file_region_entries(struct resv_map *resv, 443 int regions_needed) 444 __must_hold(&resv->lock) 445 { 446 struct list_head allocated_regions; 447 int to_allocate = 0, i = 0; 448 struct file_region *trg = NULL, *rg = NULL; 449 450 VM_BUG_ON(regions_needed < 0); 451 452 INIT_LIST_HEAD(&allocated_regions); 453 454 /* 455 * Check for sufficient descriptors in the cache to accommodate 456 * the number of in progress add operations plus regions_needed. 457 * 458 * This is a while loop because when we drop the lock, some other call 459 * to region_add or region_del may have consumed some region_entries, 460 * so we keep looping here until we finally have enough entries for 461 * (adds_in_progress + regions_needed). 462 */ 463 while (resv->region_cache_count < 464 (resv->adds_in_progress + regions_needed)) { 465 to_allocate = resv->adds_in_progress + regions_needed - 466 resv->region_cache_count; 467 468 /* At this point, we should have enough entries in the cache 469 * for all the existing adds_in_progress. We should only be 470 * needing to allocate for regions_needed. 471 */ 472 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 473 474 spin_unlock(&resv->lock); 475 for (i = 0; i < to_allocate; i++) { 476 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 477 if (!trg) 478 goto out_of_memory; 479 list_add(&trg->link, &allocated_regions); 480 } 481 482 spin_lock(&resv->lock); 483 484 list_splice(&allocated_regions, &resv->region_cache); 485 resv->region_cache_count += to_allocate; 486 } 487 488 return 0; 489 490 out_of_memory: 491 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 492 list_del(&rg->link); 493 kfree(rg); 494 } 495 return -ENOMEM; 496 } 497 498 /* 499 * Add the huge page range represented by [f, t) to the reserve 500 * map. Regions will be taken from the cache to fill in this range. 501 * Sufficient regions should exist in the cache due to the previous 502 * call to region_chg with the same range, but in some cases the cache will not 503 * have sufficient entries due to races with other code doing region_add or 504 * region_del. The extra needed entries will be allocated. 505 * 506 * regions_needed is the out value provided by a previous call to region_chg. 507 * 508 * Return the number of new huge pages added to the map. This number is greater 509 * than or equal to zero. If file_region entries needed to be allocated for 510 * this operation and we were not able to allocate, it returns -ENOMEM. 511 * region_add of regions of length 1 never allocate file_regions and cannot 512 * fail; region_chg will always allocate at least 1 entry and a region_add for 513 * 1 page will only require at most 1 entry. 514 */ 515 static long region_add(struct resv_map *resv, long f, long t, 516 long in_regions_needed, struct hstate *h, 517 struct hugetlb_cgroup *h_cg) 518 { 519 long add = 0, actual_regions_needed = 0; 520 521 spin_lock(&resv->lock); 522 retry: 523 524 /* Count how many regions are actually needed to execute this add. */ 525 add_reservation_in_range(resv, f, t, NULL, NULL, 526 &actual_regions_needed); 527 528 /* 529 * Check for sufficient descriptors in the cache to accommodate 530 * this add operation. Note that actual_regions_needed may be greater 531 * than in_regions_needed, as the resv_map may have been modified since 532 * the region_chg call. In this case, we need to make sure that we 533 * allocate extra entries, such that we have enough for all the 534 * existing adds_in_progress, plus the excess needed for this 535 * operation. 536 */ 537 if (actual_regions_needed > in_regions_needed && 538 resv->region_cache_count < 539 resv->adds_in_progress + 540 (actual_regions_needed - in_regions_needed)) { 541 /* region_add operation of range 1 should never need to 542 * allocate file_region entries. 543 */ 544 VM_BUG_ON(t - f <= 1); 545 546 if (allocate_file_region_entries( 547 resv, actual_regions_needed - in_regions_needed)) { 548 return -ENOMEM; 549 } 550 551 goto retry; 552 } 553 554 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 555 556 resv->adds_in_progress -= in_regions_needed; 557 558 spin_unlock(&resv->lock); 559 return add; 560 } 561 562 /* 563 * Examine the existing reserve map and determine how many 564 * huge pages in the specified range [f, t) are NOT currently 565 * represented. This routine is called before a subsequent 566 * call to region_add that will actually modify the reserve 567 * map to add the specified range [f, t). region_chg does 568 * not change the number of huge pages represented by the 569 * map. A number of new file_region structures is added to the cache as a 570 * placeholder, for the subsequent region_add call to use. At least 1 571 * file_region structure is added. 572 * 573 * out_regions_needed is the number of regions added to the 574 * resv->adds_in_progress. This value needs to be provided to a follow up call 575 * to region_add or region_abort for proper accounting. 576 * 577 * Returns the number of huge pages that need to be added to the existing 578 * reservation map for the range [f, t). This number is greater or equal to 579 * zero. -ENOMEM is returned if a new file_region structure or cache entry 580 * is needed and can not be allocated. 581 */ 582 static long region_chg(struct resv_map *resv, long f, long t, 583 long *out_regions_needed) 584 { 585 long chg = 0; 586 587 spin_lock(&resv->lock); 588 589 /* Count how many hugepages in this range are NOT represented. */ 590 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 591 out_regions_needed); 592 593 if (*out_regions_needed == 0) 594 *out_regions_needed = 1; 595 596 if (allocate_file_region_entries(resv, *out_regions_needed)) 597 return -ENOMEM; 598 599 resv->adds_in_progress += *out_regions_needed; 600 601 spin_unlock(&resv->lock); 602 return chg; 603 } 604 605 /* 606 * Abort the in progress add operation. The adds_in_progress field 607 * of the resv_map keeps track of the operations in progress between 608 * calls to region_chg and region_add. Operations are sometimes 609 * aborted after the call to region_chg. In such cases, region_abort 610 * is called to decrement the adds_in_progress counter. regions_needed 611 * is the value returned by the region_chg call, it is used to decrement 612 * the adds_in_progress counter. 613 * 614 * NOTE: The range arguments [f, t) are not needed or used in this 615 * routine. They are kept to make reading the calling code easier as 616 * arguments will match the associated region_chg call. 617 */ 618 static void region_abort(struct resv_map *resv, long f, long t, 619 long regions_needed) 620 { 621 spin_lock(&resv->lock); 622 VM_BUG_ON(!resv->region_cache_count); 623 resv->adds_in_progress -= regions_needed; 624 spin_unlock(&resv->lock); 625 } 626 627 /* 628 * Delete the specified range [f, t) from the reserve map. If the 629 * t parameter is LONG_MAX, this indicates that ALL regions after f 630 * should be deleted. Locate the regions which intersect [f, t) 631 * and either trim, delete or split the existing regions. 632 * 633 * Returns the number of huge pages deleted from the reserve map. 634 * In the normal case, the return value is zero or more. In the 635 * case where a region must be split, a new region descriptor must 636 * be allocated. If the allocation fails, -ENOMEM will be returned. 637 * NOTE: If the parameter t == LONG_MAX, then we will never split 638 * a region and possibly return -ENOMEM. Callers specifying 639 * t == LONG_MAX do not need to check for -ENOMEM error. 640 */ 641 static long region_del(struct resv_map *resv, long f, long t) 642 { 643 struct list_head *head = &resv->regions; 644 struct file_region *rg, *trg; 645 struct file_region *nrg = NULL; 646 long del = 0; 647 648 retry: 649 spin_lock(&resv->lock); 650 list_for_each_entry_safe(rg, trg, head, link) { 651 /* 652 * Skip regions before the range to be deleted. file_region 653 * ranges are normally of the form [from, to). However, there 654 * may be a "placeholder" entry in the map which is of the form 655 * (from, to) with from == to. Check for placeholder entries 656 * at the beginning of the range to be deleted. 657 */ 658 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 659 continue; 660 661 if (rg->from >= t) 662 break; 663 664 if (f > rg->from && t < rg->to) { /* Must split region */ 665 /* 666 * Check for an entry in the cache before dropping 667 * lock and attempting allocation. 668 */ 669 if (!nrg && 670 resv->region_cache_count > resv->adds_in_progress) { 671 nrg = list_first_entry(&resv->region_cache, 672 struct file_region, 673 link); 674 list_del(&nrg->link); 675 resv->region_cache_count--; 676 } 677 678 if (!nrg) { 679 spin_unlock(&resv->lock); 680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 681 if (!nrg) 682 return -ENOMEM; 683 goto retry; 684 } 685 686 del += t - f; 687 hugetlb_cgroup_uncharge_file_region( 688 resv, rg, t - f, false); 689 690 /* New entry for end of split region */ 691 nrg->from = t; 692 nrg->to = rg->to; 693 694 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 695 696 INIT_LIST_HEAD(&nrg->link); 697 698 /* Original entry is trimmed */ 699 rg->to = f; 700 701 list_add(&nrg->link, &rg->link); 702 nrg = NULL; 703 break; 704 } 705 706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 707 del += rg->to - rg->from; 708 hugetlb_cgroup_uncharge_file_region(resv, rg, 709 rg->to - rg->from, true); 710 list_del(&rg->link); 711 kfree(rg); 712 continue; 713 } 714 715 if (f <= rg->from) { /* Trim beginning of region */ 716 hugetlb_cgroup_uncharge_file_region(resv, rg, 717 t - rg->from, false); 718 719 del += t - rg->from; 720 rg->from = t; 721 } else { /* Trim end of region */ 722 hugetlb_cgroup_uncharge_file_region(resv, rg, 723 rg->to - f, false); 724 725 del += rg->to - f; 726 rg->to = f; 727 } 728 } 729 730 spin_unlock(&resv->lock); 731 kfree(nrg); 732 return del; 733 } 734 735 /* 736 * A rare out of memory error was encountered which prevented removal of 737 * the reserve map region for a page. The huge page itself was free'ed 738 * and removed from the page cache. This routine will adjust the subpool 739 * usage count, and the global reserve count if needed. By incrementing 740 * these counts, the reserve map entry which could not be deleted will 741 * appear as a "reserved" entry instead of simply dangling with incorrect 742 * counts. 743 */ 744 void hugetlb_fix_reserve_counts(struct inode *inode) 745 { 746 struct hugepage_subpool *spool = subpool_inode(inode); 747 long rsv_adjust; 748 bool reserved = false; 749 750 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 751 if (rsv_adjust > 0) { 752 struct hstate *h = hstate_inode(inode); 753 754 if (!hugetlb_acct_memory(h, 1)) 755 reserved = true; 756 } else if (!rsv_adjust) { 757 reserved = true; 758 } 759 760 if (!reserved) 761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 762 } 763 764 /* 765 * Count and return the number of huge pages in the reserve map 766 * that intersect with the range [f, t). 767 */ 768 static long region_count(struct resv_map *resv, long f, long t) 769 { 770 struct list_head *head = &resv->regions; 771 struct file_region *rg; 772 long chg = 0; 773 774 spin_lock(&resv->lock); 775 /* Locate each segment we overlap with, and count that overlap. */ 776 list_for_each_entry(rg, head, link) { 777 long seg_from; 778 long seg_to; 779 780 if (rg->to <= f) 781 continue; 782 if (rg->from >= t) 783 break; 784 785 seg_from = max(rg->from, f); 786 seg_to = min(rg->to, t); 787 788 chg += seg_to - seg_from; 789 } 790 spin_unlock(&resv->lock); 791 792 return chg; 793 } 794 795 /* 796 * Convert the address within this vma to the page offset within 797 * the mapping, in pagecache page units; huge pages here. 798 */ 799 static pgoff_t vma_hugecache_offset(struct hstate *h, 800 struct vm_area_struct *vma, unsigned long address) 801 { 802 return ((address - vma->vm_start) >> huge_page_shift(h)) + 803 (vma->vm_pgoff >> huge_page_order(h)); 804 } 805 806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 807 unsigned long address) 808 { 809 return vma_hugecache_offset(hstate_vma(vma), vma, address); 810 } 811 EXPORT_SYMBOL_GPL(linear_hugepage_index); 812 813 /* 814 * Return the size of the pages allocated when backing a VMA. In the majority 815 * cases this will be same size as used by the page table entries. 816 */ 817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 818 { 819 if (vma->vm_ops && vma->vm_ops->pagesize) 820 return vma->vm_ops->pagesize(vma); 821 return PAGE_SIZE; 822 } 823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 824 825 /* 826 * Return the page size being used by the MMU to back a VMA. In the majority 827 * of cases, the page size used by the kernel matches the MMU size. On 828 * architectures where it differs, an architecture-specific 'strong' 829 * version of this symbol is required. 830 */ 831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 832 { 833 return vma_kernel_pagesize(vma); 834 } 835 836 /* 837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 838 * bits of the reservation map pointer, which are always clear due to 839 * alignment. 840 */ 841 #define HPAGE_RESV_OWNER (1UL << 0) 842 #define HPAGE_RESV_UNMAPPED (1UL << 1) 843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 844 845 /* 846 * These helpers are used to track how many pages are reserved for 847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 848 * is guaranteed to have their future faults succeed. 849 * 850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 851 * the reserve counters are updated with the hugetlb_lock held. It is safe 852 * to reset the VMA at fork() time as it is not in use yet and there is no 853 * chance of the global counters getting corrupted as a result of the values. 854 * 855 * The private mapping reservation is represented in a subtly different 856 * manner to a shared mapping. A shared mapping has a region map associated 857 * with the underlying file, this region map represents the backing file 858 * pages which have ever had a reservation assigned which this persists even 859 * after the page is instantiated. A private mapping has a region map 860 * associated with the original mmap which is attached to all VMAs which 861 * reference it, this region map represents those offsets which have consumed 862 * reservation ie. where pages have been instantiated. 863 */ 864 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 865 { 866 return (unsigned long)vma->vm_private_data; 867 } 868 869 static void set_vma_private_data(struct vm_area_struct *vma, 870 unsigned long value) 871 { 872 vma->vm_private_data = (void *)value; 873 } 874 875 static void 876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 877 struct hugetlb_cgroup *h_cg, 878 struct hstate *h) 879 { 880 #ifdef CONFIG_CGROUP_HUGETLB 881 if (!h_cg || !h) { 882 resv_map->reservation_counter = NULL; 883 resv_map->pages_per_hpage = 0; 884 resv_map->css = NULL; 885 } else { 886 resv_map->reservation_counter = 887 &h_cg->rsvd_hugepage[hstate_index(h)]; 888 resv_map->pages_per_hpage = pages_per_huge_page(h); 889 resv_map->css = &h_cg->css; 890 } 891 #endif 892 } 893 894 struct resv_map *resv_map_alloc(void) 895 { 896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 898 899 if (!resv_map || !rg) { 900 kfree(resv_map); 901 kfree(rg); 902 return NULL; 903 } 904 905 kref_init(&resv_map->refs); 906 spin_lock_init(&resv_map->lock); 907 INIT_LIST_HEAD(&resv_map->regions); 908 909 resv_map->adds_in_progress = 0; 910 /* 911 * Initialize these to 0. On shared mappings, 0's here indicate these 912 * fields don't do cgroup accounting. On private mappings, these will be 913 * re-initialized to the proper values, to indicate that hugetlb cgroup 914 * reservations are to be un-charged from here. 915 */ 916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 917 918 INIT_LIST_HEAD(&resv_map->region_cache); 919 list_add(&rg->link, &resv_map->region_cache); 920 resv_map->region_cache_count = 1; 921 922 return resv_map; 923 } 924 925 void resv_map_release(struct kref *ref) 926 { 927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 928 struct list_head *head = &resv_map->region_cache; 929 struct file_region *rg, *trg; 930 931 /* Clear out any active regions before we release the map. */ 932 region_del(resv_map, 0, LONG_MAX); 933 934 /* ... and any entries left in the cache */ 935 list_for_each_entry_safe(rg, trg, head, link) { 936 list_del(&rg->link); 937 kfree(rg); 938 } 939 940 VM_BUG_ON(resv_map->adds_in_progress); 941 942 kfree(resv_map); 943 } 944 945 static inline struct resv_map *inode_resv_map(struct inode *inode) 946 { 947 /* 948 * At inode evict time, i_mapping may not point to the original 949 * address space within the inode. This original address space 950 * contains the pointer to the resv_map. So, always use the 951 * address space embedded within the inode. 952 * The VERY common case is inode->mapping == &inode->i_data but, 953 * this may not be true for device special inodes. 954 */ 955 return (struct resv_map *)(&inode->i_data)->private_data; 956 } 957 958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 959 { 960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 961 if (vma->vm_flags & VM_MAYSHARE) { 962 struct address_space *mapping = vma->vm_file->f_mapping; 963 struct inode *inode = mapping->host; 964 965 return inode_resv_map(inode); 966 967 } else { 968 return (struct resv_map *)(get_vma_private_data(vma) & 969 ~HPAGE_RESV_MASK); 970 } 971 } 972 973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 977 978 set_vma_private_data(vma, (get_vma_private_data(vma) & 979 HPAGE_RESV_MASK) | (unsigned long)map); 980 } 981 982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 983 { 984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 986 987 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 988 } 989 990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 991 { 992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 993 994 return (get_vma_private_data(vma) & flag) != 0; 995 } 996 997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 999 { 1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1001 if (!(vma->vm_flags & VM_MAYSHARE)) 1002 vma->vm_private_data = (void *)0; 1003 } 1004 1005 /* Returns true if the VMA has associated reserve pages */ 1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1007 { 1008 if (vma->vm_flags & VM_NORESERVE) { 1009 /* 1010 * This address is already reserved by other process(chg == 0), 1011 * so, we should decrement reserved count. Without decrementing, 1012 * reserve count remains after releasing inode, because this 1013 * allocated page will go into page cache and is regarded as 1014 * coming from reserved pool in releasing step. Currently, we 1015 * don't have any other solution to deal with this situation 1016 * properly, so add work-around here. 1017 */ 1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1019 return true; 1020 else 1021 return false; 1022 } 1023 1024 /* Shared mappings always use reserves */ 1025 if (vma->vm_flags & VM_MAYSHARE) { 1026 /* 1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1028 * be a region map for all pages. The only situation where 1029 * there is no region map is if a hole was punched via 1030 * fallocate. In this case, there really are no reserves to 1031 * use. This situation is indicated if chg != 0. 1032 */ 1033 if (chg) 1034 return false; 1035 else 1036 return true; 1037 } 1038 1039 /* 1040 * Only the process that called mmap() has reserves for 1041 * private mappings. 1042 */ 1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1044 /* 1045 * Like the shared case above, a hole punch or truncate 1046 * could have been performed on the private mapping. 1047 * Examine the value of chg to determine if reserves 1048 * actually exist or were previously consumed. 1049 * Very Subtle - The value of chg comes from a previous 1050 * call to vma_needs_reserves(). The reserve map for 1051 * private mappings has different (opposite) semantics 1052 * than that of shared mappings. vma_needs_reserves() 1053 * has already taken this difference in semantics into 1054 * account. Therefore, the meaning of chg is the same 1055 * as in the shared case above. Code could easily be 1056 * combined, but keeping it separate draws attention to 1057 * subtle differences. 1058 */ 1059 if (chg) 1060 return false; 1061 else 1062 return true; 1063 } 1064 1065 return false; 1066 } 1067 1068 static void enqueue_huge_page(struct hstate *h, struct page *page) 1069 { 1070 int nid = page_to_nid(page); 1071 1072 lockdep_assert_held(&hugetlb_lock); 1073 list_move(&page->lru, &h->hugepage_freelists[nid]); 1074 h->free_huge_pages++; 1075 h->free_huge_pages_node[nid]++; 1076 SetHPageFreed(page); 1077 } 1078 1079 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1080 { 1081 struct page *page; 1082 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1083 1084 lockdep_assert_held(&hugetlb_lock); 1085 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1086 if (pin && !is_pinnable_page(page)) 1087 continue; 1088 1089 if (PageHWPoison(page)) 1090 continue; 1091 1092 list_move(&page->lru, &h->hugepage_activelist); 1093 set_page_refcounted(page); 1094 ClearHPageFreed(page); 1095 h->free_huge_pages--; 1096 h->free_huge_pages_node[nid]--; 1097 return page; 1098 } 1099 1100 return NULL; 1101 } 1102 1103 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1104 nodemask_t *nmask) 1105 { 1106 unsigned int cpuset_mems_cookie; 1107 struct zonelist *zonelist; 1108 struct zone *zone; 1109 struct zoneref *z; 1110 int node = NUMA_NO_NODE; 1111 1112 zonelist = node_zonelist(nid, gfp_mask); 1113 1114 retry_cpuset: 1115 cpuset_mems_cookie = read_mems_allowed_begin(); 1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1117 struct page *page; 1118 1119 if (!cpuset_zone_allowed(zone, gfp_mask)) 1120 continue; 1121 /* 1122 * no need to ask again on the same node. Pool is node rather than 1123 * zone aware 1124 */ 1125 if (zone_to_nid(zone) == node) 1126 continue; 1127 node = zone_to_nid(zone); 1128 1129 page = dequeue_huge_page_node_exact(h, node); 1130 if (page) 1131 return page; 1132 } 1133 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1134 goto retry_cpuset; 1135 1136 return NULL; 1137 } 1138 1139 static struct page *dequeue_huge_page_vma(struct hstate *h, 1140 struct vm_area_struct *vma, 1141 unsigned long address, int avoid_reserve, 1142 long chg) 1143 { 1144 struct page *page; 1145 struct mempolicy *mpol; 1146 gfp_t gfp_mask; 1147 nodemask_t *nodemask; 1148 int nid; 1149 1150 /* 1151 * A child process with MAP_PRIVATE mappings created by their parent 1152 * have no page reserves. This check ensures that reservations are 1153 * not "stolen". The child may still get SIGKILLed 1154 */ 1155 if (!vma_has_reserves(vma, chg) && 1156 h->free_huge_pages - h->resv_huge_pages == 0) 1157 goto err; 1158 1159 /* If reserves cannot be used, ensure enough pages are in the pool */ 1160 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 1161 goto err; 1162 1163 gfp_mask = htlb_alloc_mask(h); 1164 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1165 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1166 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1167 SetHPageRestoreReserve(page); 1168 h->resv_huge_pages--; 1169 } 1170 1171 mpol_cond_put(mpol); 1172 return page; 1173 1174 err: 1175 return NULL; 1176 } 1177 1178 /* 1179 * common helper functions for hstate_next_node_to_{alloc|free}. 1180 * We may have allocated or freed a huge page based on a different 1181 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1182 * be outside of *nodes_allowed. Ensure that we use an allowed 1183 * node for alloc or free. 1184 */ 1185 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1186 { 1187 nid = next_node_in(nid, *nodes_allowed); 1188 VM_BUG_ON(nid >= MAX_NUMNODES); 1189 1190 return nid; 1191 } 1192 1193 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1194 { 1195 if (!node_isset(nid, *nodes_allowed)) 1196 nid = next_node_allowed(nid, nodes_allowed); 1197 return nid; 1198 } 1199 1200 /* 1201 * returns the previously saved node ["this node"] from which to 1202 * allocate a persistent huge page for the pool and advance the 1203 * next node from which to allocate, handling wrap at end of node 1204 * mask. 1205 */ 1206 static int hstate_next_node_to_alloc(struct hstate *h, 1207 nodemask_t *nodes_allowed) 1208 { 1209 int nid; 1210 1211 VM_BUG_ON(!nodes_allowed); 1212 1213 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1214 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1215 1216 return nid; 1217 } 1218 1219 /* 1220 * helper for remove_pool_huge_page() - return the previously saved 1221 * node ["this node"] from which to free a huge page. Advance the 1222 * next node id whether or not we find a free huge page to free so 1223 * that the next attempt to free addresses the next node. 1224 */ 1225 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1226 { 1227 int nid; 1228 1229 VM_BUG_ON(!nodes_allowed); 1230 1231 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1232 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1233 1234 return nid; 1235 } 1236 1237 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1238 for (nr_nodes = nodes_weight(*mask); \ 1239 nr_nodes > 0 && \ 1240 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1241 nr_nodes--) 1242 1243 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1244 for (nr_nodes = nodes_weight(*mask); \ 1245 nr_nodes > 0 && \ 1246 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1247 nr_nodes--) 1248 1249 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1250 static void destroy_compound_gigantic_page(struct page *page, 1251 unsigned int order) 1252 { 1253 int i; 1254 int nr_pages = 1 << order; 1255 struct page *p = page + 1; 1256 1257 atomic_set(compound_mapcount_ptr(page), 0); 1258 atomic_set(compound_pincount_ptr(page), 0); 1259 1260 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1261 clear_compound_head(p); 1262 set_page_refcounted(p); 1263 } 1264 1265 set_compound_order(page, 0); 1266 page[1].compound_nr = 0; 1267 __ClearPageHead(page); 1268 } 1269 1270 static void free_gigantic_page(struct page *page, unsigned int order) 1271 { 1272 /* 1273 * If the page isn't allocated using the cma allocator, 1274 * cma_release() returns false. 1275 */ 1276 #ifdef CONFIG_CMA 1277 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)) 1278 return; 1279 #endif 1280 1281 free_contig_range(page_to_pfn(page), 1 << order); 1282 } 1283 1284 #ifdef CONFIG_CONTIG_ALLOC 1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1286 int nid, nodemask_t *nodemask) 1287 { 1288 unsigned long nr_pages = pages_per_huge_page(h); 1289 if (nid == NUMA_NO_NODE) 1290 nid = numa_mem_id(); 1291 1292 #ifdef CONFIG_CMA 1293 { 1294 struct page *page; 1295 int node; 1296 1297 if (hugetlb_cma[nid]) { 1298 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1299 huge_page_order(h), true); 1300 if (page) 1301 return page; 1302 } 1303 1304 if (!(gfp_mask & __GFP_THISNODE)) { 1305 for_each_node_mask(node, *nodemask) { 1306 if (node == nid || !hugetlb_cma[node]) 1307 continue; 1308 1309 page = cma_alloc(hugetlb_cma[node], nr_pages, 1310 huge_page_order(h), true); 1311 if (page) 1312 return page; 1313 } 1314 } 1315 } 1316 #endif 1317 1318 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1319 } 1320 1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1322 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1323 #else /* !CONFIG_CONTIG_ALLOC */ 1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1325 int nid, nodemask_t *nodemask) 1326 { 1327 return NULL; 1328 } 1329 #endif /* CONFIG_CONTIG_ALLOC */ 1330 1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1333 int nid, nodemask_t *nodemask) 1334 { 1335 return NULL; 1336 } 1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1338 static inline void destroy_compound_gigantic_page(struct page *page, 1339 unsigned int order) { } 1340 #endif 1341 1342 /* 1343 * Remove hugetlb page from lists, and update dtor so that page appears 1344 * as just a compound page. A reference is held on the page. 1345 * 1346 * Must be called with hugetlb lock held. 1347 */ 1348 static void remove_hugetlb_page(struct hstate *h, struct page *page, 1349 bool adjust_surplus) 1350 { 1351 int nid = page_to_nid(page); 1352 1353 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page); 1355 1356 lockdep_assert_held(&hugetlb_lock); 1357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1358 return; 1359 1360 list_del(&page->lru); 1361 1362 if (HPageFreed(page)) { 1363 h->free_huge_pages--; 1364 h->free_huge_pages_node[nid]--; 1365 } 1366 if (adjust_surplus) { 1367 h->surplus_huge_pages--; 1368 h->surplus_huge_pages_node[nid]--; 1369 } 1370 1371 set_page_refcounted(page); 1372 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1373 1374 h->nr_huge_pages--; 1375 h->nr_huge_pages_node[nid]--; 1376 } 1377 1378 static void update_and_free_page(struct hstate *h, struct page *page) 1379 { 1380 int i; 1381 struct page *subpage = page; 1382 1383 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1384 return; 1385 1386 for (i = 0; i < pages_per_huge_page(h); 1387 i++, subpage = mem_map_next(subpage, page, i)) { 1388 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1389 1 << PG_referenced | 1 << PG_dirty | 1390 1 << PG_active | 1 << PG_private | 1391 1 << PG_writeback); 1392 } 1393 if (hstate_is_gigantic(h)) { 1394 destroy_compound_gigantic_page(page, huge_page_order(h)); 1395 free_gigantic_page(page, huge_page_order(h)); 1396 } else { 1397 __free_pages(page, huge_page_order(h)); 1398 } 1399 } 1400 1401 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1402 { 1403 struct page *page, *t_page; 1404 1405 list_for_each_entry_safe(page, t_page, list, lru) { 1406 update_and_free_page(h, page); 1407 cond_resched(); 1408 } 1409 } 1410 1411 struct hstate *size_to_hstate(unsigned long size) 1412 { 1413 struct hstate *h; 1414 1415 for_each_hstate(h) { 1416 if (huge_page_size(h) == size) 1417 return h; 1418 } 1419 return NULL; 1420 } 1421 1422 void free_huge_page(struct page *page) 1423 { 1424 /* 1425 * Can't pass hstate in here because it is called from the 1426 * compound page destructor. 1427 */ 1428 struct hstate *h = page_hstate(page); 1429 int nid = page_to_nid(page); 1430 struct hugepage_subpool *spool = hugetlb_page_subpool(page); 1431 bool restore_reserve; 1432 unsigned long flags; 1433 1434 VM_BUG_ON_PAGE(page_count(page), page); 1435 VM_BUG_ON_PAGE(page_mapcount(page), page); 1436 1437 hugetlb_set_page_subpool(page, NULL); 1438 page->mapping = NULL; 1439 restore_reserve = HPageRestoreReserve(page); 1440 ClearHPageRestoreReserve(page); 1441 1442 /* 1443 * If HPageRestoreReserve was set on page, page allocation consumed a 1444 * reservation. If the page was associated with a subpool, there 1445 * would have been a page reserved in the subpool before allocation 1446 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1447 * reservation, do not call hugepage_subpool_put_pages() as this will 1448 * remove the reserved page from the subpool. 1449 */ 1450 if (!restore_reserve) { 1451 /* 1452 * A return code of zero implies that the subpool will be 1453 * under its minimum size if the reservation is not restored 1454 * after page is free. Therefore, force restore_reserve 1455 * operation. 1456 */ 1457 if (hugepage_subpool_put_pages(spool, 1) == 0) 1458 restore_reserve = true; 1459 } 1460 1461 spin_lock_irqsave(&hugetlb_lock, flags); 1462 ClearHPageMigratable(page); 1463 hugetlb_cgroup_uncharge_page(hstate_index(h), 1464 pages_per_huge_page(h), page); 1465 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 1466 pages_per_huge_page(h), page); 1467 if (restore_reserve) 1468 h->resv_huge_pages++; 1469 1470 if (HPageTemporary(page)) { 1471 remove_hugetlb_page(h, page, false); 1472 spin_unlock_irqrestore(&hugetlb_lock, flags); 1473 update_and_free_page(h, page); 1474 } else if (h->surplus_huge_pages_node[nid]) { 1475 /* remove the page from active list */ 1476 remove_hugetlb_page(h, page, true); 1477 spin_unlock_irqrestore(&hugetlb_lock, flags); 1478 update_and_free_page(h, page); 1479 } else { 1480 arch_clear_hugepage_flags(page); 1481 enqueue_huge_page(h, page); 1482 spin_unlock_irqrestore(&hugetlb_lock, flags); 1483 } 1484 } 1485 1486 /* 1487 * Must be called with the hugetlb lock held 1488 */ 1489 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1490 { 1491 lockdep_assert_held(&hugetlb_lock); 1492 h->nr_huge_pages++; 1493 h->nr_huge_pages_node[nid]++; 1494 } 1495 1496 static void __prep_new_huge_page(struct page *page) 1497 { 1498 INIT_LIST_HEAD(&page->lru); 1499 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1500 hugetlb_set_page_subpool(page, NULL); 1501 set_hugetlb_cgroup(page, NULL); 1502 set_hugetlb_cgroup_rsvd(page, NULL); 1503 } 1504 1505 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1506 { 1507 __prep_new_huge_page(page); 1508 spin_lock_irq(&hugetlb_lock); 1509 __prep_account_new_huge_page(h, nid); 1510 spin_unlock_irq(&hugetlb_lock); 1511 } 1512 1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1514 { 1515 int i; 1516 int nr_pages = 1 << order; 1517 struct page *p = page + 1; 1518 1519 /* we rely on prep_new_huge_page to set the destructor */ 1520 set_compound_order(page, order); 1521 __ClearPageReserved(page); 1522 __SetPageHead(page); 1523 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1524 /* 1525 * For gigantic hugepages allocated through bootmem at 1526 * boot, it's safer to be consistent with the not-gigantic 1527 * hugepages and clear the PG_reserved bit from all tail pages 1528 * too. Otherwise drivers using get_user_pages() to access tail 1529 * pages may get the reference counting wrong if they see 1530 * PG_reserved set on a tail page (despite the head page not 1531 * having PG_reserved set). Enforcing this consistency between 1532 * head and tail pages allows drivers to optimize away a check 1533 * on the head page when they need know if put_page() is needed 1534 * after get_user_pages(). 1535 */ 1536 __ClearPageReserved(p); 1537 set_page_count(p, 0); 1538 set_compound_head(p, page); 1539 } 1540 atomic_set(compound_mapcount_ptr(page), -1); 1541 atomic_set(compound_pincount_ptr(page), 0); 1542 } 1543 1544 /* 1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1546 * transparent huge pages. See the PageTransHuge() documentation for more 1547 * details. 1548 */ 1549 int PageHuge(struct page *page) 1550 { 1551 if (!PageCompound(page)) 1552 return 0; 1553 1554 page = compound_head(page); 1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1556 } 1557 EXPORT_SYMBOL_GPL(PageHuge); 1558 1559 /* 1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1561 * normal or transparent huge pages. 1562 */ 1563 int PageHeadHuge(struct page *page_head) 1564 { 1565 if (!PageHead(page_head)) 1566 return 0; 1567 1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1569 } 1570 1571 /* 1572 * Find and lock address space (mapping) in write mode. 1573 * 1574 * Upon entry, the page is locked which means that page_mapping() is 1575 * stable. Due to locking order, we can only trylock_write. If we can 1576 * not get the lock, simply return NULL to caller. 1577 */ 1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1579 { 1580 struct address_space *mapping = page_mapping(hpage); 1581 1582 if (!mapping) 1583 return mapping; 1584 1585 if (i_mmap_trylock_write(mapping)) 1586 return mapping; 1587 1588 return NULL; 1589 } 1590 1591 pgoff_t __basepage_index(struct page *page) 1592 { 1593 struct page *page_head = compound_head(page); 1594 pgoff_t index = page_index(page_head); 1595 unsigned long compound_idx; 1596 1597 if (!PageHuge(page_head)) 1598 return page_index(page); 1599 1600 if (compound_order(page_head) >= MAX_ORDER) 1601 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1602 else 1603 compound_idx = page - page_head; 1604 1605 return (index << compound_order(page_head)) + compound_idx; 1606 } 1607 1608 static struct page *alloc_buddy_huge_page(struct hstate *h, 1609 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1610 nodemask_t *node_alloc_noretry) 1611 { 1612 int order = huge_page_order(h); 1613 struct page *page; 1614 bool alloc_try_hard = true; 1615 1616 /* 1617 * By default we always try hard to allocate the page with 1618 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1619 * a loop (to adjust global huge page counts) and previous allocation 1620 * failed, do not continue to try hard on the same node. Use the 1621 * node_alloc_noretry bitmap to manage this state information. 1622 */ 1623 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1624 alloc_try_hard = false; 1625 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1626 if (alloc_try_hard) 1627 gfp_mask |= __GFP_RETRY_MAYFAIL; 1628 if (nid == NUMA_NO_NODE) 1629 nid = numa_mem_id(); 1630 page = __alloc_pages(gfp_mask, order, nid, nmask); 1631 if (page) 1632 __count_vm_event(HTLB_BUDDY_PGALLOC); 1633 else 1634 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1635 1636 /* 1637 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1638 * indicates an overall state change. Clear bit so that we resume 1639 * normal 'try hard' allocations. 1640 */ 1641 if (node_alloc_noretry && page && !alloc_try_hard) 1642 node_clear(nid, *node_alloc_noretry); 1643 1644 /* 1645 * If we tried hard to get a page but failed, set bit so that 1646 * subsequent attempts will not try as hard until there is an 1647 * overall state change. 1648 */ 1649 if (node_alloc_noretry && !page && alloc_try_hard) 1650 node_set(nid, *node_alloc_noretry); 1651 1652 return page; 1653 } 1654 1655 /* 1656 * Common helper to allocate a fresh hugetlb page. All specific allocators 1657 * should use this function to get new hugetlb pages 1658 */ 1659 static struct page *alloc_fresh_huge_page(struct hstate *h, 1660 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1661 nodemask_t *node_alloc_noretry) 1662 { 1663 struct page *page; 1664 1665 if (hstate_is_gigantic(h)) 1666 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1667 else 1668 page = alloc_buddy_huge_page(h, gfp_mask, 1669 nid, nmask, node_alloc_noretry); 1670 if (!page) 1671 return NULL; 1672 1673 if (hstate_is_gigantic(h)) 1674 prep_compound_gigantic_page(page, huge_page_order(h)); 1675 prep_new_huge_page(h, page, page_to_nid(page)); 1676 1677 return page; 1678 } 1679 1680 /* 1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1682 * manner. 1683 */ 1684 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1685 nodemask_t *node_alloc_noretry) 1686 { 1687 struct page *page; 1688 int nr_nodes, node; 1689 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1690 1691 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1692 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed, 1693 node_alloc_noretry); 1694 if (page) 1695 break; 1696 } 1697 1698 if (!page) 1699 return 0; 1700 1701 put_page(page); /* free it into the hugepage allocator */ 1702 1703 return 1; 1704 } 1705 1706 /* 1707 * Remove huge page from pool from next node to free. Attempt to keep 1708 * persistent huge pages more or less balanced over allowed nodes. 1709 * This routine only 'removes' the hugetlb page. The caller must make 1710 * an additional call to free the page to low level allocators. 1711 * Called with hugetlb_lock locked. 1712 */ 1713 static struct page *remove_pool_huge_page(struct hstate *h, 1714 nodemask_t *nodes_allowed, 1715 bool acct_surplus) 1716 { 1717 int nr_nodes, node; 1718 struct page *page = NULL; 1719 1720 lockdep_assert_held(&hugetlb_lock); 1721 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1722 /* 1723 * If we're returning unused surplus pages, only examine 1724 * nodes with surplus pages. 1725 */ 1726 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1727 !list_empty(&h->hugepage_freelists[node])) { 1728 page = list_entry(h->hugepage_freelists[node].next, 1729 struct page, lru); 1730 remove_hugetlb_page(h, page, acct_surplus); 1731 break; 1732 } 1733 } 1734 1735 return page; 1736 } 1737 1738 /* 1739 * Dissolve a given free hugepage into free buddy pages. This function does 1740 * nothing for in-use hugepages and non-hugepages. 1741 * This function returns values like below: 1742 * 1743 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 1744 * (allocated or reserved.) 1745 * 0: successfully dissolved free hugepages or the page is not a 1746 * hugepage (considered as already dissolved) 1747 */ 1748 int dissolve_free_huge_page(struct page *page) 1749 { 1750 int rc = -EBUSY; 1751 1752 retry: 1753 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 1754 if (!PageHuge(page)) 1755 return 0; 1756 1757 spin_lock_irq(&hugetlb_lock); 1758 if (!PageHuge(page)) { 1759 rc = 0; 1760 goto out; 1761 } 1762 1763 if (!page_count(page)) { 1764 struct page *head = compound_head(page); 1765 struct hstate *h = page_hstate(head); 1766 if (h->free_huge_pages - h->resv_huge_pages == 0) 1767 goto out; 1768 1769 /* 1770 * We should make sure that the page is already on the free list 1771 * when it is dissolved. 1772 */ 1773 if (unlikely(!HPageFreed(head))) { 1774 spin_unlock_irq(&hugetlb_lock); 1775 cond_resched(); 1776 1777 /* 1778 * Theoretically, we should return -EBUSY when we 1779 * encounter this race. In fact, we have a chance 1780 * to successfully dissolve the page if we do a 1781 * retry. Because the race window is quite small. 1782 * If we seize this opportunity, it is an optimization 1783 * for increasing the success rate of dissolving page. 1784 */ 1785 goto retry; 1786 } 1787 1788 /* 1789 * Move PageHWPoison flag from head page to the raw error page, 1790 * which makes any subpages rather than the error page reusable. 1791 */ 1792 if (PageHWPoison(head) && page != head) { 1793 SetPageHWPoison(page); 1794 ClearPageHWPoison(head); 1795 } 1796 remove_hugetlb_page(h, head, false); 1797 h->max_huge_pages--; 1798 spin_unlock_irq(&hugetlb_lock); 1799 update_and_free_page(h, head); 1800 return 0; 1801 } 1802 out: 1803 spin_unlock_irq(&hugetlb_lock); 1804 return rc; 1805 } 1806 1807 /* 1808 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1809 * make specified memory blocks removable from the system. 1810 * Note that this will dissolve a free gigantic hugepage completely, if any 1811 * part of it lies within the given range. 1812 * Also note that if dissolve_free_huge_page() returns with an error, all 1813 * free hugepages that were dissolved before that error are lost. 1814 */ 1815 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1816 { 1817 unsigned long pfn; 1818 struct page *page; 1819 int rc = 0; 1820 1821 if (!hugepages_supported()) 1822 return rc; 1823 1824 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1825 page = pfn_to_page(pfn); 1826 rc = dissolve_free_huge_page(page); 1827 if (rc) 1828 break; 1829 } 1830 1831 return rc; 1832 } 1833 1834 /* 1835 * Allocates a fresh surplus page from the page allocator. 1836 */ 1837 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1838 int nid, nodemask_t *nmask) 1839 { 1840 struct page *page = NULL; 1841 1842 if (hstate_is_gigantic(h)) 1843 return NULL; 1844 1845 spin_lock_irq(&hugetlb_lock); 1846 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1847 goto out_unlock; 1848 spin_unlock_irq(&hugetlb_lock); 1849 1850 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1851 if (!page) 1852 return NULL; 1853 1854 spin_lock_irq(&hugetlb_lock); 1855 /* 1856 * We could have raced with the pool size change. 1857 * Double check that and simply deallocate the new page 1858 * if we would end up overcommiting the surpluses. Abuse 1859 * temporary page to workaround the nasty free_huge_page 1860 * codeflow 1861 */ 1862 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1863 SetHPageTemporary(page); 1864 spin_unlock_irq(&hugetlb_lock); 1865 put_page(page); 1866 return NULL; 1867 } else { 1868 h->surplus_huge_pages++; 1869 h->surplus_huge_pages_node[page_to_nid(page)]++; 1870 } 1871 1872 out_unlock: 1873 spin_unlock_irq(&hugetlb_lock); 1874 1875 return page; 1876 } 1877 1878 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1879 int nid, nodemask_t *nmask) 1880 { 1881 struct page *page; 1882 1883 if (hstate_is_gigantic(h)) 1884 return NULL; 1885 1886 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL); 1887 if (!page) 1888 return NULL; 1889 1890 /* 1891 * We do not account these pages as surplus because they are only 1892 * temporary and will be released properly on the last reference 1893 */ 1894 SetHPageTemporary(page); 1895 1896 return page; 1897 } 1898 1899 /* 1900 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1901 */ 1902 static 1903 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1904 struct vm_area_struct *vma, unsigned long addr) 1905 { 1906 struct page *page; 1907 struct mempolicy *mpol; 1908 gfp_t gfp_mask = htlb_alloc_mask(h); 1909 int nid; 1910 nodemask_t *nodemask; 1911 1912 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1913 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1914 mpol_cond_put(mpol); 1915 1916 return page; 1917 } 1918 1919 /* page migration callback function */ 1920 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1921 nodemask_t *nmask, gfp_t gfp_mask) 1922 { 1923 spin_lock_irq(&hugetlb_lock); 1924 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1925 struct page *page; 1926 1927 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1928 if (page) { 1929 spin_unlock_irq(&hugetlb_lock); 1930 return page; 1931 } 1932 } 1933 spin_unlock_irq(&hugetlb_lock); 1934 1935 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1936 } 1937 1938 /* mempolicy aware migration callback */ 1939 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1940 unsigned long address) 1941 { 1942 struct mempolicy *mpol; 1943 nodemask_t *nodemask; 1944 struct page *page; 1945 gfp_t gfp_mask; 1946 int node; 1947 1948 gfp_mask = htlb_alloc_mask(h); 1949 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1950 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 1951 mpol_cond_put(mpol); 1952 1953 return page; 1954 } 1955 1956 /* 1957 * Increase the hugetlb pool such that it can accommodate a reservation 1958 * of size 'delta'. 1959 */ 1960 static int gather_surplus_pages(struct hstate *h, long delta) 1961 __must_hold(&hugetlb_lock) 1962 { 1963 struct list_head surplus_list; 1964 struct page *page, *tmp; 1965 int ret; 1966 long i; 1967 long needed, allocated; 1968 bool alloc_ok = true; 1969 1970 lockdep_assert_held(&hugetlb_lock); 1971 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1972 if (needed <= 0) { 1973 h->resv_huge_pages += delta; 1974 return 0; 1975 } 1976 1977 allocated = 0; 1978 INIT_LIST_HEAD(&surplus_list); 1979 1980 ret = -ENOMEM; 1981 retry: 1982 spin_unlock_irq(&hugetlb_lock); 1983 for (i = 0; i < needed; i++) { 1984 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1985 NUMA_NO_NODE, NULL); 1986 if (!page) { 1987 alloc_ok = false; 1988 break; 1989 } 1990 list_add(&page->lru, &surplus_list); 1991 cond_resched(); 1992 } 1993 allocated += i; 1994 1995 /* 1996 * After retaking hugetlb_lock, we need to recalculate 'needed' 1997 * because either resv_huge_pages or free_huge_pages may have changed. 1998 */ 1999 spin_lock_irq(&hugetlb_lock); 2000 needed = (h->resv_huge_pages + delta) - 2001 (h->free_huge_pages + allocated); 2002 if (needed > 0) { 2003 if (alloc_ok) 2004 goto retry; 2005 /* 2006 * We were not able to allocate enough pages to 2007 * satisfy the entire reservation so we free what 2008 * we've allocated so far. 2009 */ 2010 goto free; 2011 } 2012 /* 2013 * The surplus_list now contains _at_least_ the number of extra pages 2014 * needed to accommodate the reservation. Add the appropriate number 2015 * of pages to the hugetlb pool and free the extras back to the buddy 2016 * allocator. Commit the entire reservation here to prevent another 2017 * process from stealing the pages as they are added to the pool but 2018 * before they are reserved. 2019 */ 2020 needed += allocated; 2021 h->resv_huge_pages += delta; 2022 ret = 0; 2023 2024 /* Free the needed pages to the hugetlb pool */ 2025 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2026 int zeroed; 2027 2028 if ((--needed) < 0) 2029 break; 2030 /* 2031 * This page is now managed by the hugetlb allocator and has 2032 * no users -- drop the buddy allocator's reference. 2033 */ 2034 zeroed = put_page_testzero(page); 2035 VM_BUG_ON_PAGE(!zeroed, page); 2036 enqueue_huge_page(h, page); 2037 } 2038 free: 2039 spin_unlock_irq(&hugetlb_lock); 2040 2041 /* Free unnecessary surplus pages to the buddy allocator */ 2042 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2043 put_page(page); 2044 spin_lock_irq(&hugetlb_lock); 2045 2046 return ret; 2047 } 2048 2049 /* 2050 * This routine has two main purposes: 2051 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2052 * in unused_resv_pages. This corresponds to the prior adjustments made 2053 * to the associated reservation map. 2054 * 2) Free any unused surplus pages that may have been allocated to satisfy 2055 * the reservation. As many as unused_resv_pages may be freed. 2056 */ 2057 static void return_unused_surplus_pages(struct hstate *h, 2058 unsigned long unused_resv_pages) 2059 { 2060 unsigned long nr_pages; 2061 struct page *page; 2062 LIST_HEAD(page_list); 2063 2064 lockdep_assert_held(&hugetlb_lock); 2065 /* Uncommit the reservation */ 2066 h->resv_huge_pages -= unused_resv_pages; 2067 2068 /* Cannot return gigantic pages currently */ 2069 if (hstate_is_gigantic(h)) 2070 goto out; 2071 2072 /* 2073 * Part (or even all) of the reservation could have been backed 2074 * by pre-allocated pages. Only free surplus pages. 2075 */ 2076 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2077 2078 /* 2079 * We want to release as many surplus pages as possible, spread 2080 * evenly across all nodes with memory. Iterate across these nodes 2081 * until we can no longer free unreserved surplus pages. This occurs 2082 * when the nodes with surplus pages have no free pages. 2083 * remove_pool_huge_page() will balance the freed pages across the 2084 * on-line nodes with memory and will handle the hstate accounting. 2085 */ 2086 while (nr_pages--) { 2087 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2088 if (!page) 2089 goto out; 2090 2091 list_add(&page->lru, &page_list); 2092 } 2093 2094 out: 2095 spin_unlock_irq(&hugetlb_lock); 2096 update_and_free_pages_bulk(h, &page_list); 2097 spin_lock_irq(&hugetlb_lock); 2098 } 2099 2100 2101 /* 2102 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2103 * are used by the huge page allocation routines to manage reservations. 2104 * 2105 * vma_needs_reservation is called to determine if the huge page at addr 2106 * within the vma has an associated reservation. If a reservation is 2107 * needed, the value 1 is returned. The caller is then responsible for 2108 * managing the global reservation and subpool usage counts. After 2109 * the huge page has been allocated, vma_commit_reservation is called 2110 * to add the page to the reservation map. If the page allocation fails, 2111 * the reservation must be ended instead of committed. vma_end_reservation 2112 * is called in such cases. 2113 * 2114 * In the normal case, vma_commit_reservation returns the same value 2115 * as the preceding vma_needs_reservation call. The only time this 2116 * is not the case is if a reserve map was changed between calls. It 2117 * is the responsibility of the caller to notice the difference and 2118 * take appropriate action. 2119 * 2120 * vma_add_reservation is used in error paths where a reservation must 2121 * be restored when a newly allocated huge page must be freed. It is 2122 * to be called after calling vma_needs_reservation to determine if a 2123 * reservation exists. 2124 * 2125 * vma_del_reservation is used in error paths where an entry in the reserve 2126 * map was created during huge page allocation and must be removed. It is to 2127 * be called after calling vma_needs_reservation to determine if a reservation 2128 * exists. 2129 */ 2130 enum vma_resv_mode { 2131 VMA_NEEDS_RESV, 2132 VMA_COMMIT_RESV, 2133 VMA_END_RESV, 2134 VMA_ADD_RESV, 2135 VMA_DEL_RESV, 2136 }; 2137 static long __vma_reservation_common(struct hstate *h, 2138 struct vm_area_struct *vma, unsigned long addr, 2139 enum vma_resv_mode mode) 2140 { 2141 struct resv_map *resv; 2142 pgoff_t idx; 2143 long ret; 2144 long dummy_out_regions_needed; 2145 2146 resv = vma_resv_map(vma); 2147 if (!resv) 2148 return 1; 2149 2150 idx = vma_hugecache_offset(h, vma, addr); 2151 switch (mode) { 2152 case VMA_NEEDS_RESV: 2153 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2154 /* We assume that vma_reservation_* routines always operate on 2155 * 1 page, and that adding to resv map a 1 page entry can only 2156 * ever require 1 region. 2157 */ 2158 VM_BUG_ON(dummy_out_regions_needed != 1); 2159 break; 2160 case VMA_COMMIT_RESV: 2161 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2162 /* region_add calls of range 1 should never fail. */ 2163 VM_BUG_ON(ret < 0); 2164 break; 2165 case VMA_END_RESV: 2166 region_abort(resv, idx, idx + 1, 1); 2167 ret = 0; 2168 break; 2169 case VMA_ADD_RESV: 2170 if (vma->vm_flags & VM_MAYSHARE) { 2171 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2172 /* region_add calls of range 1 should never fail. */ 2173 VM_BUG_ON(ret < 0); 2174 } else { 2175 region_abort(resv, idx, idx + 1, 1); 2176 ret = region_del(resv, idx, idx + 1); 2177 } 2178 break; 2179 case VMA_DEL_RESV: 2180 if (vma->vm_flags & VM_MAYSHARE) { 2181 region_abort(resv, idx, idx + 1, 1); 2182 ret = region_del(resv, idx, idx + 1); 2183 } else { 2184 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2185 /* region_add calls of range 1 should never fail. */ 2186 VM_BUG_ON(ret < 0); 2187 } 2188 break; 2189 default: 2190 BUG(); 2191 } 2192 2193 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2194 return ret; 2195 /* 2196 * We know private mapping must have HPAGE_RESV_OWNER set. 2197 * 2198 * In most cases, reserves always exist for private mappings. 2199 * However, a file associated with mapping could have been 2200 * hole punched or truncated after reserves were consumed. 2201 * As subsequent fault on such a range will not use reserves. 2202 * Subtle - The reserve map for private mappings has the 2203 * opposite meaning than that of shared mappings. If NO 2204 * entry is in the reserve map, it means a reservation exists. 2205 * If an entry exists in the reserve map, it means the 2206 * reservation has already been consumed. As a result, the 2207 * return value of this routine is the opposite of the 2208 * value returned from reserve map manipulation routines above. 2209 */ 2210 if (ret > 0) 2211 return 0; 2212 if (ret == 0) 2213 return 1; 2214 return ret; 2215 } 2216 2217 static long vma_needs_reservation(struct hstate *h, 2218 struct vm_area_struct *vma, unsigned long addr) 2219 { 2220 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2221 } 2222 2223 static long vma_commit_reservation(struct hstate *h, 2224 struct vm_area_struct *vma, unsigned long addr) 2225 { 2226 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2227 } 2228 2229 static void vma_end_reservation(struct hstate *h, 2230 struct vm_area_struct *vma, unsigned long addr) 2231 { 2232 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2233 } 2234 2235 static long vma_add_reservation(struct hstate *h, 2236 struct vm_area_struct *vma, unsigned long addr) 2237 { 2238 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2239 } 2240 2241 static long vma_del_reservation(struct hstate *h, 2242 struct vm_area_struct *vma, unsigned long addr) 2243 { 2244 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2245 } 2246 2247 /* 2248 * This routine is called to restore reservation information on error paths. 2249 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2250 * the hugetlb mutex should remain held when calling this routine. 2251 * 2252 * It handles two specific cases: 2253 * 1) A reservation was in place and the page consumed the reservation. 2254 * HPageRestoreReserve is set in the page. 2255 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2256 * not set. However, alloc_huge_page always updates the reserve map. 2257 * 2258 * In case 1, free_huge_page later in the error path will increment the 2259 * global reserve count. But, free_huge_page does not have enough context 2260 * to adjust the reservation map. This case deals primarily with private 2261 * mappings. Adjust the reserve map here to be consistent with global 2262 * reserve count adjustments to be made by free_huge_page. Make sure the 2263 * reserve map indicates there is a reservation present. 2264 * 2265 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2266 */ 2267 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2268 unsigned long address, struct page *page) 2269 { 2270 long rc = vma_needs_reservation(h, vma, address); 2271 2272 if (HPageRestoreReserve(page)) { 2273 if (unlikely(rc < 0)) 2274 /* 2275 * Rare out of memory condition in reserve map 2276 * manipulation. Clear HPageRestoreReserve so that 2277 * global reserve count will not be incremented 2278 * by free_huge_page. This will make it appear 2279 * as though the reservation for this page was 2280 * consumed. This may prevent the task from 2281 * faulting in the page at a later time. This 2282 * is better than inconsistent global huge page 2283 * accounting of reserve counts. 2284 */ 2285 ClearHPageRestoreReserve(page); 2286 else if (rc) 2287 (void)vma_add_reservation(h, vma, address); 2288 else 2289 vma_end_reservation(h, vma, address); 2290 } else { 2291 if (!rc) { 2292 /* 2293 * This indicates there is an entry in the reserve map 2294 * added by alloc_huge_page. We know it was added 2295 * before the alloc_huge_page call, otherwise 2296 * HPageRestoreReserve would be set on the page. 2297 * Remove the entry so that a subsequent allocation 2298 * does not consume a reservation. 2299 */ 2300 rc = vma_del_reservation(h, vma, address); 2301 if (rc < 0) 2302 /* 2303 * VERY rare out of memory condition. Since 2304 * we can not delete the entry, set 2305 * HPageRestoreReserve so that the reserve 2306 * count will be incremented when the page 2307 * is freed. This reserve will be consumed 2308 * on a subsequent allocation. 2309 */ 2310 SetHPageRestoreReserve(page); 2311 } else if (rc < 0) { 2312 /* 2313 * Rare out of memory condition from 2314 * vma_needs_reservation call. Memory allocation is 2315 * only attempted if a new entry is needed. Therefore, 2316 * this implies there is not an entry in the 2317 * reserve map. 2318 * 2319 * For shared mappings, no entry in the map indicates 2320 * no reservation. We are done. 2321 */ 2322 if (!(vma->vm_flags & VM_MAYSHARE)) 2323 /* 2324 * For private mappings, no entry indicates 2325 * a reservation is present. Since we can 2326 * not add an entry, set SetHPageRestoreReserve 2327 * on the page so reserve count will be 2328 * incremented when freed. This reserve will 2329 * be consumed on a subsequent allocation. 2330 */ 2331 SetHPageRestoreReserve(page); 2332 } else 2333 /* 2334 * No reservation present, do nothing 2335 */ 2336 vma_end_reservation(h, vma, address); 2337 } 2338 } 2339 2340 /* 2341 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one 2342 * @h: struct hstate old page belongs to 2343 * @old_page: Old page to dissolve 2344 * @list: List to isolate the page in case we need to 2345 * Returns 0 on success, otherwise negated error. 2346 */ 2347 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page, 2348 struct list_head *list) 2349 { 2350 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2351 int nid = page_to_nid(old_page); 2352 struct page *new_page; 2353 int ret = 0; 2354 2355 /* 2356 * Before dissolving the page, we need to allocate a new one for the 2357 * pool to remain stable. Using alloc_buddy_huge_page() allows us to 2358 * not having to deal with prep_new_huge_page() and avoids dealing of any 2359 * counters. This simplifies and let us do the whole thing under the 2360 * lock. 2361 */ 2362 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL); 2363 if (!new_page) 2364 return -ENOMEM; 2365 2366 retry: 2367 spin_lock_irq(&hugetlb_lock); 2368 if (!PageHuge(old_page)) { 2369 /* 2370 * Freed from under us. Drop new_page too. 2371 */ 2372 goto free_new; 2373 } else if (page_count(old_page)) { 2374 /* 2375 * Someone has grabbed the page, try to isolate it here. 2376 * Fail with -EBUSY if not possible. 2377 */ 2378 spin_unlock_irq(&hugetlb_lock); 2379 if (!isolate_huge_page(old_page, list)) 2380 ret = -EBUSY; 2381 spin_lock_irq(&hugetlb_lock); 2382 goto free_new; 2383 } else if (!HPageFreed(old_page)) { 2384 /* 2385 * Page's refcount is 0 but it has not been enqueued in the 2386 * freelist yet. Race window is small, so we can succeed here if 2387 * we retry. 2388 */ 2389 spin_unlock_irq(&hugetlb_lock); 2390 cond_resched(); 2391 goto retry; 2392 } else { 2393 /* 2394 * Ok, old_page is still a genuine free hugepage. Remove it from 2395 * the freelist and decrease the counters. These will be 2396 * incremented again when calling __prep_account_new_huge_page() 2397 * and enqueue_huge_page() for new_page. The counters will remain 2398 * stable since this happens under the lock. 2399 */ 2400 remove_hugetlb_page(h, old_page, false); 2401 2402 /* 2403 * new_page needs to be initialized with the standard hugetlb 2404 * state. This is normally done by prep_new_huge_page() but 2405 * that takes hugetlb_lock which is already held so we need to 2406 * open code it here. 2407 * Reference count trick is needed because allocator gives us 2408 * referenced page but the pool requires pages with 0 refcount. 2409 */ 2410 __prep_new_huge_page(new_page); 2411 __prep_account_new_huge_page(h, nid); 2412 page_ref_dec(new_page); 2413 enqueue_huge_page(h, new_page); 2414 2415 /* 2416 * Pages have been replaced, we can safely free the old one. 2417 */ 2418 spin_unlock_irq(&hugetlb_lock); 2419 update_and_free_page(h, old_page); 2420 } 2421 2422 return ret; 2423 2424 free_new: 2425 spin_unlock_irq(&hugetlb_lock); 2426 __free_pages(new_page, huge_page_order(h)); 2427 2428 return ret; 2429 } 2430 2431 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2432 { 2433 struct hstate *h; 2434 struct page *head; 2435 int ret = -EBUSY; 2436 2437 /* 2438 * The page might have been dissolved from under our feet, so make sure 2439 * to carefully check the state under the lock. 2440 * Return success when racing as if we dissolved the page ourselves. 2441 */ 2442 spin_lock_irq(&hugetlb_lock); 2443 if (PageHuge(page)) { 2444 head = compound_head(page); 2445 h = page_hstate(head); 2446 } else { 2447 spin_unlock_irq(&hugetlb_lock); 2448 return 0; 2449 } 2450 spin_unlock_irq(&hugetlb_lock); 2451 2452 /* 2453 * Fence off gigantic pages as there is a cyclic dependency between 2454 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2455 * of bailing out right away without further retrying. 2456 */ 2457 if (hstate_is_gigantic(h)) 2458 return -ENOMEM; 2459 2460 if (page_count(head) && isolate_huge_page(head, list)) 2461 ret = 0; 2462 else if (!page_count(head)) 2463 ret = alloc_and_dissolve_huge_page(h, head, list); 2464 2465 return ret; 2466 } 2467 2468 struct page *alloc_huge_page(struct vm_area_struct *vma, 2469 unsigned long addr, int avoid_reserve) 2470 { 2471 struct hugepage_subpool *spool = subpool_vma(vma); 2472 struct hstate *h = hstate_vma(vma); 2473 struct page *page; 2474 long map_chg, map_commit; 2475 long gbl_chg; 2476 int ret, idx; 2477 struct hugetlb_cgroup *h_cg; 2478 bool deferred_reserve; 2479 2480 idx = hstate_index(h); 2481 /* 2482 * Examine the region/reserve map to determine if the process 2483 * has a reservation for the page to be allocated. A return 2484 * code of zero indicates a reservation exists (no change). 2485 */ 2486 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2487 if (map_chg < 0) 2488 return ERR_PTR(-ENOMEM); 2489 2490 /* 2491 * Processes that did not create the mapping will have no 2492 * reserves as indicated by the region/reserve map. Check 2493 * that the allocation will not exceed the subpool limit. 2494 * Allocations for MAP_NORESERVE mappings also need to be 2495 * checked against any subpool limit. 2496 */ 2497 if (map_chg || avoid_reserve) { 2498 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2499 if (gbl_chg < 0) { 2500 vma_end_reservation(h, vma, addr); 2501 return ERR_PTR(-ENOSPC); 2502 } 2503 2504 /* 2505 * Even though there was no reservation in the region/reserve 2506 * map, there could be reservations associated with the 2507 * subpool that can be used. This would be indicated if the 2508 * return value of hugepage_subpool_get_pages() is zero. 2509 * However, if avoid_reserve is specified we still avoid even 2510 * the subpool reservations. 2511 */ 2512 if (avoid_reserve) 2513 gbl_chg = 1; 2514 } 2515 2516 /* If this allocation is not consuming a reservation, charge it now. 2517 */ 2518 deferred_reserve = map_chg || avoid_reserve; 2519 if (deferred_reserve) { 2520 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2521 idx, pages_per_huge_page(h), &h_cg); 2522 if (ret) 2523 goto out_subpool_put; 2524 } 2525 2526 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2527 if (ret) 2528 goto out_uncharge_cgroup_reservation; 2529 2530 spin_lock_irq(&hugetlb_lock); 2531 /* 2532 * glb_chg is passed to indicate whether or not a page must be taken 2533 * from the global free pool (global change). gbl_chg == 0 indicates 2534 * a reservation exists for the allocation. 2535 */ 2536 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2537 if (!page) { 2538 spin_unlock_irq(&hugetlb_lock); 2539 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2540 if (!page) 2541 goto out_uncharge_cgroup; 2542 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2543 SetHPageRestoreReserve(page); 2544 h->resv_huge_pages--; 2545 } 2546 spin_lock_irq(&hugetlb_lock); 2547 list_add(&page->lru, &h->hugepage_activelist); 2548 /* Fall through */ 2549 } 2550 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2551 /* If allocation is not consuming a reservation, also store the 2552 * hugetlb_cgroup pointer on the page. 2553 */ 2554 if (deferred_reserve) { 2555 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2556 h_cg, page); 2557 } 2558 2559 spin_unlock_irq(&hugetlb_lock); 2560 2561 hugetlb_set_page_subpool(page, spool); 2562 2563 map_commit = vma_commit_reservation(h, vma, addr); 2564 if (unlikely(map_chg > map_commit)) { 2565 /* 2566 * The page was added to the reservation map between 2567 * vma_needs_reservation and vma_commit_reservation. 2568 * This indicates a race with hugetlb_reserve_pages. 2569 * Adjust for the subpool count incremented above AND 2570 * in hugetlb_reserve_pages for the same page. Also, 2571 * the reservation count added in hugetlb_reserve_pages 2572 * no longer applies. 2573 */ 2574 long rsv_adjust; 2575 2576 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2577 hugetlb_acct_memory(h, -rsv_adjust); 2578 if (deferred_reserve) 2579 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), 2580 pages_per_huge_page(h), page); 2581 } 2582 return page; 2583 2584 out_uncharge_cgroup: 2585 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2586 out_uncharge_cgroup_reservation: 2587 if (deferred_reserve) 2588 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2589 h_cg); 2590 out_subpool_put: 2591 if (map_chg || avoid_reserve) 2592 hugepage_subpool_put_pages(spool, 1); 2593 vma_end_reservation(h, vma, addr); 2594 return ERR_PTR(-ENOSPC); 2595 } 2596 2597 int alloc_bootmem_huge_page(struct hstate *h) 2598 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2599 int __alloc_bootmem_huge_page(struct hstate *h) 2600 { 2601 struct huge_bootmem_page *m; 2602 int nr_nodes, node; 2603 2604 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2605 void *addr; 2606 2607 addr = memblock_alloc_try_nid_raw( 2608 huge_page_size(h), huge_page_size(h), 2609 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2610 if (addr) { 2611 /* 2612 * Use the beginning of the huge page to store the 2613 * huge_bootmem_page struct (until gather_bootmem 2614 * puts them into the mem_map). 2615 */ 2616 m = addr; 2617 goto found; 2618 } 2619 } 2620 return 0; 2621 2622 found: 2623 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2624 /* Put them into a private list first because mem_map is not up yet */ 2625 INIT_LIST_HEAD(&m->list); 2626 list_add(&m->list, &huge_boot_pages); 2627 m->hstate = h; 2628 return 1; 2629 } 2630 2631 static void __init prep_compound_huge_page(struct page *page, 2632 unsigned int order) 2633 { 2634 if (unlikely(order > (MAX_ORDER - 1))) 2635 prep_compound_gigantic_page(page, order); 2636 else 2637 prep_compound_page(page, order); 2638 } 2639 2640 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2641 static void __init gather_bootmem_prealloc(void) 2642 { 2643 struct huge_bootmem_page *m; 2644 2645 list_for_each_entry(m, &huge_boot_pages, list) { 2646 struct page *page = virt_to_page(m); 2647 struct hstate *h = m->hstate; 2648 2649 WARN_ON(page_count(page) != 1); 2650 prep_compound_huge_page(page, huge_page_order(h)); 2651 WARN_ON(PageReserved(page)); 2652 prep_new_huge_page(h, page, page_to_nid(page)); 2653 put_page(page); /* free it into the hugepage allocator */ 2654 2655 /* 2656 * If we had gigantic hugepages allocated at boot time, we need 2657 * to restore the 'stolen' pages to totalram_pages in order to 2658 * fix confusing memory reports from free(1) and another 2659 * side-effects, like CommitLimit going negative. 2660 */ 2661 if (hstate_is_gigantic(h)) 2662 adjust_managed_page_count(page, pages_per_huge_page(h)); 2663 cond_resched(); 2664 } 2665 } 2666 2667 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2668 { 2669 unsigned long i; 2670 nodemask_t *node_alloc_noretry; 2671 2672 if (!hstate_is_gigantic(h)) { 2673 /* 2674 * Bit mask controlling how hard we retry per-node allocations. 2675 * Ignore errors as lower level routines can deal with 2676 * node_alloc_noretry == NULL. If this kmalloc fails at boot 2677 * time, we are likely in bigger trouble. 2678 */ 2679 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 2680 GFP_KERNEL); 2681 } else { 2682 /* allocations done at boot time */ 2683 node_alloc_noretry = NULL; 2684 } 2685 2686 /* bit mask controlling how hard we retry per-node allocations */ 2687 if (node_alloc_noretry) 2688 nodes_clear(*node_alloc_noretry); 2689 2690 for (i = 0; i < h->max_huge_pages; ++i) { 2691 if (hstate_is_gigantic(h)) { 2692 if (hugetlb_cma_size) { 2693 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 2694 goto free; 2695 } 2696 if (!alloc_bootmem_huge_page(h)) 2697 break; 2698 } else if (!alloc_pool_huge_page(h, 2699 &node_states[N_MEMORY], 2700 node_alloc_noretry)) 2701 break; 2702 cond_resched(); 2703 } 2704 if (i < h->max_huge_pages) { 2705 char buf[32]; 2706 2707 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2708 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2709 h->max_huge_pages, buf, i); 2710 h->max_huge_pages = i; 2711 } 2712 free: 2713 kfree(node_alloc_noretry); 2714 } 2715 2716 static void __init hugetlb_init_hstates(void) 2717 { 2718 struct hstate *h; 2719 2720 for_each_hstate(h) { 2721 if (minimum_order > huge_page_order(h)) 2722 minimum_order = huge_page_order(h); 2723 2724 /* oversize hugepages were init'ed in early boot */ 2725 if (!hstate_is_gigantic(h)) 2726 hugetlb_hstate_alloc_pages(h); 2727 } 2728 VM_BUG_ON(minimum_order == UINT_MAX); 2729 } 2730 2731 static void __init report_hugepages(void) 2732 { 2733 struct hstate *h; 2734 2735 for_each_hstate(h) { 2736 char buf[32]; 2737 2738 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2739 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2740 buf, h->free_huge_pages); 2741 } 2742 } 2743 2744 #ifdef CONFIG_HIGHMEM 2745 static void try_to_free_low(struct hstate *h, unsigned long count, 2746 nodemask_t *nodes_allowed) 2747 { 2748 int i; 2749 LIST_HEAD(page_list); 2750 2751 lockdep_assert_held(&hugetlb_lock); 2752 if (hstate_is_gigantic(h)) 2753 return; 2754 2755 /* 2756 * Collect pages to be freed on a list, and free after dropping lock 2757 */ 2758 for_each_node_mask(i, *nodes_allowed) { 2759 struct page *page, *next; 2760 struct list_head *freel = &h->hugepage_freelists[i]; 2761 list_for_each_entry_safe(page, next, freel, lru) { 2762 if (count >= h->nr_huge_pages) 2763 goto out; 2764 if (PageHighMem(page)) 2765 continue; 2766 remove_hugetlb_page(h, page, false); 2767 list_add(&page->lru, &page_list); 2768 } 2769 } 2770 2771 out: 2772 spin_unlock_irq(&hugetlb_lock); 2773 update_and_free_pages_bulk(h, &page_list); 2774 spin_lock_irq(&hugetlb_lock); 2775 } 2776 #else 2777 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2778 nodemask_t *nodes_allowed) 2779 { 2780 } 2781 #endif 2782 2783 /* 2784 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2785 * balanced by operating on them in a round-robin fashion. 2786 * Returns 1 if an adjustment was made. 2787 */ 2788 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2789 int delta) 2790 { 2791 int nr_nodes, node; 2792 2793 lockdep_assert_held(&hugetlb_lock); 2794 VM_BUG_ON(delta != -1 && delta != 1); 2795 2796 if (delta < 0) { 2797 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2798 if (h->surplus_huge_pages_node[node]) 2799 goto found; 2800 } 2801 } else { 2802 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2803 if (h->surplus_huge_pages_node[node] < 2804 h->nr_huge_pages_node[node]) 2805 goto found; 2806 } 2807 } 2808 return 0; 2809 2810 found: 2811 h->surplus_huge_pages += delta; 2812 h->surplus_huge_pages_node[node] += delta; 2813 return 1; 2814 } 2815 2816 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2817 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2818 nodemask_t *nodes_allowed) 2819 { 2820 unsigned long min_count, ret; 2821 struct page *page; 2822 LIST_HEAD(page_list); 2823 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 2824 2825 /* 2826 * Bit mask controlling how hard we retry per-node allocations. 2827 * If we can not allocate the bit mask, do not attempt to allocate 2828 * the requested huge pages. 2829 */ 2830 if (node_alloc_noretry) 2831 nodes_clear(*node_alloc_noretry); 2832 else 2833 return -ENOMEM; 2834 2835 /* 2836 * resize_lock mutex prevents concurrent adjustments to number of 2837 * pages in hstate via the proc/sysfs interfaces. 2838 */ 2839 mutex_lock(&h->resize_lock); 2840 spin_lock_irq(&hugetlb_lock); 2841 2842 /* 2843 * Check for a node specific request. 2844 * Changing node specific huge page count may require a corresponding 2845 * change to the global count. In any case, the passed node mask 2846 * (nodes_allowed) will restrict alloc/free to the specified node. 2847 */ 2848 if (nid != NUMA_NO_NODE) { 2849 unsigned long old_count = count; 2850 2851 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2852 /* 2853 * User may have specified a large count value which caused the 2854 * above calculation to overflow. In this case, they wanted 2855 * to allocate as many huge pages as possible. Set count to 2856 * largest possible value to align with their intention. 2857 */ 2858 if (count < old_count) 2859 count = ULONG_MAX; 2860 } 2861 2862 /* 2863 * Gigantic pages runtime allocation depend on the capability for large 2864 * page range allocation. 2865 * If the system does not provide this feature, return an error when 2866 * the user tries to allocate gigantic pages but let the user free the 2867 * boottime allocated gigantic pages. 2868 */ 2869 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2870 if (count > persistent_huge_pages(h)) { 2871 spin_unlock_irq(&hugetlb_lock); 2872 mutex_unlock(&h->resize_lock); 2873 NODEMASK_FREE(node_alloc_noretry); 2874 return -EINVAL; 2875 } 2876 /* Fall through to decrease pool */ 2877 } 2878 2879 /* 2880 * Increase the pool size 2881 * First take pages out of surplus state. Then make up the 2882 * remaining difference by allocating fresh huge pages. 2883 * 2884 * We might race with alloc_surplus_huge_page() here and be unable 2885 * to convert a surplus huge page to a normal huge page. That is 2886 * not critical, though, it just means the overall size of the 2887 * pool might be one hugepage larger than it needs to be, but 2888 * within all the constraints specified by the sysctls. 2889 */ 2890 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2891 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2892 break; 2893 } 2894 2895 while (count > persistent_huge_pages(h)) { 2896 /* 2897 * If this allocation races such that we no longer need the 2898 * page, free_huge_page will handle it by freeing the page 2899 * and reducing the surplus. 2900 */ 2901 spin_unlock_irq(&hugetlb_lock); 2902 2903 /* yield cpu to avoid soft lockup */ 2904 cond_resched(); 2905 2906 ret = alloc_pool_huge_page(h, nodes_allowed, 2907 node_alloc_noretry); 2908 spin_lock_irq(&hugetlb_lock); 2909 if (!ret) 2910 goto out; 2911 2912 /* Bail for signals. Probably ctrl-c from user */ 2913 if (signal_pending(current)) 2914 goto out; 2915 } 2916 2917 /* 2918 * Decrease the pool size 2919 * First return free pages to the buddy allocator (being careful 2920 * to keep enough around to satisfy reservations). Then place 2921 * pages into surplus state as needed so the pool will shrink 2922 * to the desired size as pages become free. 2923 * 2924 * By placing pages into the surplus state independent of the 2925 * overcommit value, we are allowing the surplus pool size to 2926 * exceed overcommit. There are few sane options here. Since 2927 * alloc_surplus_huge_page() is checking the global counter, 2928 * though, we'll note that we're not allowed to exceed surplus 2929 * and won't grow the pool anywhere else. Not until one of the 2930 * sysctls are changed, or the surplus pages go out of use. 2931 */ 2932 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2933 min_count = max(count, min_count); 2934 try_to_free_low(h, min_count, nodes_allowed); 2935 2936 /* 2937 * Collect pages to be removed on list without dropping lock 2938 */ 2939 while (min_count < persistent_huge_pages(h)) { 2940 page = remove_pool_huge_page(h, nodes_allowed, 0); 2941 if (!page) 2942 break; 2943 2944 list_add(&page->lru, &page_list); 2945 } 2946 /* free the pages after dropping lock */ 2947 spin_unlock_irq(&hugetlb_lock); 2948 update_and_free_pages_bulk(h, &page_list); 2949 spin_lock_irq(&hugetlb_lock); 2950 2951 while (count < persistent_huge_pages(h)) { 2952 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2953 break; 2954 } 2955 out: 2956 h->max_huge_pages = persistent_huge_pages(h); 2957 spin_unlock_irq(&hugetlb_lock); 2958 mutex_unlock(&h->resize_lock); 2959 2960 NODEMASK_FREE(node_alloc_noretry); 2961 2962 return 0; 2963 } 2964 2965 #define HSTATE_ATTR_RO(_name) \ 2966 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2967 2968 #define HSTATE_ATTR(_name) \ 2969 static struct kobj_attribute _name##_attr = \ 2970 __ATTR(_name, 0644, _name##_show, _name##_store) 2971 2972 static struct kobject *hugepages_kobj; 2973 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2974 2975 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2976 2977 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2978 { 2979 int i; 2980 2981 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2982 if (hstate_kobjs[i] == kobj) { 2983 if (nidp) 2984 *nidp = NUMA_NO_NODE; 2985 return &hstates[i]; 2986 } 2987 2988 return kobj_to_node_hstate(kobj, nidp); 2989 } 2990 2991 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2992 struct kobj_attribute *attr, char *buf) 2993 { 2994 struct hstate *h; 2995 unsigned long nr_huge_pages; 2996 int nid; 2997 2998 h = kobj_to_hstate(kobj, &nid); 2999 if (nid == NUMA_NO_NODE) 3000 nr_huge_pages = h->nr_huge_pages; 3001 else 3002 nr_huge_pages = h->nr_huge_pages_node[nid]; 3003 3004 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3005 } 3006 3007 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3008 struct hstate *h, int nid, 3009 unsigned long count, size_t len) 3010 { 3011 int err; 3012 nodemask_t nodes_allowed, *n_mask; 3013 3014 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3015 return -EINVAL; 3016 3017 if (nid == NUMA_NO_NODE) { 3018 /* 3019 * global hstate attribute 3020 */ 3021 if (!(obey_mempolicy && 3022 init_nodemask_of_mempolicy(&nodes_allowed))) 3023 n_mask = &node_states[N_MEMORY]; 3024 else 3025 n_mask = &nodes_allowed; 3026 } else { 3027 /* 3028 * Node specific request. count adjustment happens in 3029 * set_max_huge_pages() after acquiring hugetlb_lock. 3030 */ 3031 init_nodemask_of_node(&nodes_allowed, nid); 3032 n_mask = &nodes_allowed; 3033 } 3034 3035 err = set_max_huge_pages(h, count, nid, n_mask); 3036 3037 return err ? err : len; 3038 } 3039 3040 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3041 struct kobject *kobj, const char *buf, 3042 size_t len) 3043 { 3044 struct hstate *h; 3045 unsigned long count; 3046 int nid; 3047 int err; 3048 3049 err = kstrtoul(buf, 10, &count); 3050 if (err) 3051 return err; 3052 3053 h = kobj_to_hstate(kobj, &nid); 3054 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3055 } 3056 3057 static ssize_t nr_hugepages_show(struct kobject *kobj, 3058 struct kobj_attribute *attr, char *buf) 3059 { 3060 return nr_hugepages_show_common(kobj, attr, buf); 3061 } 3062 3063 static ssize_t nr_hugepages_store(struct kobject *kobj, 3064 struct kobj_attribute *attr, const char *buf, size_t len) 3065 { 3066 return nr_hugepages_store_common(false, kobj, buf, len); 3067 } 3068 HSTATE_ATTR(nr_hugepages); 3069 3070 #ifdef CONFIG_NUMA 3071 3072 /* 3073 * hstate attribute for optionally mempolicy-based constraint on persistent 3074 * huge page alloc/free. 3075 */ 3076 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3077 struct kobj_attribute *attr, 3078 char *buf) 3079 { 3080 return nr_hugepages_show_common(kobj, attr, buf); 3081 } 3082 3083 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3084 struct kobj_attribute *attr, const char *buf, size_t len) 3085 { 3086 return nr_hugepages_store_common(true, kobj, buf, len); 3087 } 3088 HSTATE_ATTR(nr_hugepages_mempolicy); 3089 #endif 3090 3091 3092 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3093 struct kobj_attribute *attr, char *buf) 3094 { 3095 struct hstate *h = kobj_to_hstate(kobj, NULL); 3096 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3097 } 3098 3099 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3100 struct kobj_attribute *attr, const char *buf, size_t count) 3101 { 3102 int err; 3103 unsigned long input; 3104 struct hstate *h = kobj_to_hstate(kobj, NULL); 3105 3106 if (hstate_is_gigantic(h)) 3107 return -EINVAL; 3108 3109 err = kstrtoul(buf, 10, &input); 3110 if (err) 3111 return err; 3112 3113 spin_lock_irq(&hugetlb_lock); 3114 h->nr_overcommit_huge_pages = input; 3115 spin_unlock_irq(&hugetlb_lock); 3116 3117 return count; 3118 } 3119 HSTATE_ATTR(nr_overcommit_hugepages); 3120 3121 static ssize_t free_hugepages_show(struct kobject *kobj, 3122 struct kobj_attribute *attr, char *buf) 3123 { 3124 struct hstate *h; 3125 unsigned long free_huge_pages; 3126 int nid; 3127 3128 h = kobj_to_hstate(kobj, &nid); 3129 if (nid == NUMA_NO_NODE) 3130 free_huge_pages = h->free_huge_pages; 3131 else 3132 free_huge_pages = h->free_huge_pages_node[nid]; 3133 3134 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3135 } 3136 HSTATE_ATTR_RO(free_hugepages); 3137 3138 static ssize_t resv_hugepages_show(struct kobject *kobj, 3139 struct kobj_attribute *attr, char *buf) 3140 { 3141 struct hstate *h = kobj_to_hstate(kobj, NULL); 3142 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3143 } 3144 HSTATE_ATTR_RO(resv_hugepages); 3145 3146 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3147 struct kobj_attribute *attr, char *buf) 3148 { 3149 struct hstate *h; 3150 unsigned long surplus_huge_pages; 3151 int nid; 3152 3153 h = kobj_to_hstate(kobj, &nid); 3154 if (nid == NUMA_NO_NODE) 3155 surplus_huge_pages = h->surplus_huge_pages; 3156 else 3157 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3158 3159 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3160 } 3161 HSTATE_ATTR_RO(surplus_hugepages); 3162 3163 static struct attribute *hstate_attrs[] = { 3164 &nr_hugepages_attr.attr, 3165 &nr_overcommit_hugepages_attr.attr, 3166 &free_hugepages_attr.attr, 3167 &resv_hugepages_attr.attr, 3168 &surplus_hugepages_attr.attr, 3169 #ifdef CONFIG_NUMA 3170 &nr_hugepages_mempolicy_attr.attr, 3171 #endif 3172 NULL, 3173 }; 3174 3175 static const struct attribute_group hstate_attr_group = { 3176 .attrs = hstate_attrs, 3177 }; 3178 3179 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3180 struct kobject **hstate_kobjs, 3181 const struct attribute_group *hstate_attr_group) 3182 { 3183 int retval; 3184 int hi = hstate_index(h); 3185 3186 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3187 if (!hstate_kobjs[hi]) 3188 return -ENOMEM; 3189 3190 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3191 if (retval) { 3192 kobject_put(hstate_kobjs[hi]); 3193 hstate_kobjs[hi] = NULL; 3194 } 3195 3196 return retval; 3197 } 3198 3199 static void __init hugetlb_sysfs_init(void) 3200 { 3201 struct hstate *h; 3202 int err; 3203 3204 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 3205 if (!hugepages_kobj) 3206 return; 3207 3208 for_each_hstate(h) { 3209 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 3210 hstate_kobjs, &hstate_attr_group); 3211 if (err) 3212 pr_err("HugeTLB: Unable to add hstate %s", h->name); 3213 } 3214 } 3215 3216 #ifdef CONFIG_NUMA 3217 3218 /* 3219 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3220 * with node devices in node_devices[] using a parallel array. The array 3221 * index of a node device or _hstate == node id. 3222 * This is here to avoid any static dependency of the node device driver, in 3223 * the base kernel, on the hugetlb module. 3224 */ 3225 struct node_hstate { 3226 struct kobject *hugepages_kobj; 3227 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3228 }; 3229 static struct node_hstate node_hstates[MAX_NUMNODES]; 3230 3231 /* 3232 * A subset of global hstate attributes for node devices 3233 */ 3234 static struct attribute *per_node_hstate_attrs[] = { 3235 &nr_hugepages_attr.attr, 3236 &free_hugepages_attr.attr, 3237 &surplus_hugepages_attr.attr, 3238 NULL, 3239 }; 3240 3241 static const struct attribute_group per_node_hstate_attr_group = { 3242 .attrs = per_node_hstate_attrs, 3243 }; 3244 3245 /* 3246 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3247 * Returns node id via non-NULL nidp. 3248 */ 3249 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3250 { 3251 int nid; 3252 3253 for (nid = 0; nid < nr_node_ids; nid++) { 3254 struct node_hstate *nhs = &node_hstates[nid]; 3255 int i; 3256 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3257 if (nhs->hstate_kobjs[i] == kobj) { 3258 if (nidp) 3259 *nidp = nid; 3260 return &hstates[i]; 3261 } 3262 } 3263 3264 BUG(); 3265 return NULL; 3266 } 3267 3268 /* 3269 * Unregister hstate attributes from a single node device. 3270 * No-op if no hstate attributes attached. 3271 */ 3272 static void hugetlb_unregister_node(struct node *node) 3273 { 3274 struct hstate *h; 3275 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3276 3277 if (!nhs->hugepages_kobj) 3278 return; /* no hstate attributes */ 3279 3280 for_each_hstate(h) { 3281 int idx = hstate_index(h); 3282 if (nhs->hstate_kobjs[idx]) { 3283 kobject_put(nhs->hstate_kobjs[idx]); 3284 nhs->hstate_kobjs[idx] = NULL; 3285 } 3286 } 3287 3288 kobject_put(nhs->hugepages_kobj); 3289 nhs->hugepages_kobj = NULL; 3290 } 3291 3292 3293 /* 3294 * Register hstate attributes for a single node device. 3295 * No-op if attributes already registered. 3296 */ 3297 static void hugetlb_register_node(struct node *node) 3298 { 3299 struct hstate *h; 3300 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3301 int err; 3302 3303 if (nhs->hugepages_kobj) 3304 return; /* already allocated */ 3305 3306 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3307 &node->dev.kobj); 3308 if (!nhs->hugepages_kobj) 3309 return; 3310 3311 for_each_hstate(h) { 3312 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3313 nhs->hstate_kobjs, 3314 &per_node_hstate_attr_group); 3315 if (err) { 3316 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3317 h->name, node->dev.id); 3318 hugetlb_unregister_node(node); 3319 break; 3320 } 3321 } 3322 } 3323 3324 /* 3325 * hugetlb init time: register hstate attributes for all registered node 3326 * devices of nodes that have memory. All on-line nodes should have 3327 * registered their associated device by this time. 3328 */ 3329 static void __init hugetlb_register_all_nodes(void) 3330 { 3331 int nid; 3332 3333 for_each_node_state(nid, N_MEMORY) { 3334 struct node *node = node_devices[nid]; 3335 if (node->dev.id == nid) 3336 hugetlb_register_node(node); 3337 } 3338 3339 /* 3340 * Let the node device driver know we're here so it can 3341 * [un]register hstate attributes on node hotplug. 3342 */ 3343 register_hugetlbfs_with_node(hugetlb_register_node, 3344 hugetlb_unregister_node); 3345 } 3346 #else /* !CONFIG_NUMA */ 3347 3348 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3349 { 3350 BUG(); 3351 if (nidp) 3352 *nidp = -1; 3353 return NULL; 3354 } 3355 3356 static void hugetlb_register_all_nodes(void) { } 3357 3358 #endif 3359 3360 static int __init hugetlb_init(void) 3361 { 3362 int i; 3363 3364 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 3365 __NR_HPAGEFLAGS); 3366 3367 if (!hugepages_supported()) { 3368 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 3369 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 3370 return 0; 3371 } 3372 3373 /* 3374 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 3375 * architectures depend on setup being done here. 3376 */ 3377 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 3378 if (!parsed_default_hugepagesz) { 3379 /* 3380 * If we did not parse a default huge page size, set 3381 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 3382 * number of huge pages for this default size was implicitly 3383 * specified, set that here as well. 3384 * Note that the implicit setting will overwrite an explicit 3385 * setting. A warning will be printed in this case. 3386 */ 3387 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 3388 if (default_hstate_max_huge_pages) { 3389 if (default_hstate.max_huge_pages) { 3390 char buf[32]; 3391 3392 string_get_size(huge_page_size(&default_hstate), 3393 1, STRING_UNITS_2, buf, 32); 3394 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 3395 default_hstate.max_huge_pages, buf); 3396 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 3397 default_hstate_max_huge_pages); 3398 } 3399 default_hstate.max_huge_pages = 3400 default_hstate_max_huge_pages; 3401 } 3402 } 3403 3404 hugetlb_cma_check(); 3405 hugetlb_init_hstates(); 3406 gather_bootmem_prealloc(); 3407 report_hugepages(); 3408 3409 hugetlb_sysfs_init(); 3410 hugetlb_register_all_nodes(); 3411 hugetlb_cgroup_file_init(); 3412 3413 #ifdef CONFIG_SMP 3414 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 3415 #else 3416 num_fault_mutexes = 1; 3417 #endif 3418 hugetlb_fault_mutex_table = 3419 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 3420 GFP_KERNEL); 3421 BUG_ON(!hugetlb_fault_mutex_table); 3422 3423 for (i = 0; i < num_fault_mutexes; i++) 3424 mutex_init(&hugetlb_fault_mutex_table[i]); 3425 return 0; 3426 } 3427 subsys_initcall(hugetlb_init); 3428 3429 /* Overwritten by architectures with more huge page sizes */ 3430 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 3431 { 3432 return size == HPAGE_SIZE; 3433 } 3434 3435 void __init hugetlb_add_hstate(unsigned int order) 3436 { 3437 struct hstate *h; 3438 unsigned long i; 3439 3440 if (size_to_hstate(PAGE_SIZE << order)) { 3441 return; 3442 } 3443 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 3444 BUG_ON(order == 0); 3445 h = &hstates[hugetlb_max_hstate++]; 3446 mutex_init(&h->resize_lock); 3447 h->order = order; 3448 h->mask = ~(huge_page_size(h) - 1); 3449 for (i = 0; i < MAX_NUMNODES; ++i) 3450 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 3451 INIT_LIST_HEAD(&h->hugepage_activelist); 3452 h->next_nid_to_alloc = first_memory_node; 3453 h->next_nid_to_free = first_memory_node; 3454 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 3455 huge_page_size(h)/1024); 3456 3457 parsed_hstate = h; 3458 } 3459 3460 /* 3461 * hugepages command line processing 3462 * hugepages normally follows a valid hugepagsz or default_hugepagsz 3463 * specification. If not, ignore the hugepages value. hugepages can also 3464 * be the first huge page command line option in which case it implicitly 3465 * specifies the number of huge pages for the default size. 3466 */ 3467 static int __init hugepages_setup(char *s) 3468 { 3469 unsigned long *mhp; 3470 static unsigned long *last_mhp; 3471 3472 if (!parsed_valid_hugepagesz) { 3473 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 3474 parsed_valid_hugepagesz = true; 3475 return 0; 3476 } 3477 3478 /* 3479 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 3480 * yet, so this hugepages= parameter goes to the "default hstate". 3481 * Otherwise, it goes with the previously parsed hugepagesz or 3482 * default_hugepagesz. 3483 */ 3484 else if (!hugetlb_max_hstate) 3485 mhp = &default_hstate_max_huge_pages; 3486 else 3487 mhp = &parsed_hstate->max_huge_pages; 3488 3489 if (mhp == last_mhp) { 3490 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 3491 return 0; 3492 } 3493 3494 if (sscanf(s, "%lu", mhp) <= 0) 3495 *mhp = 0; 3496 3497 /* 3498 * Global state is always initialized later in hugetlb_init. 3499 * But we need to allocate gigantic hstates here early to still 3500 * use the bootmem allocator. 3501 */ 3502 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 3503 hugetlb_hstate_alloc_pages(parsed_hstate); 3504 3505 last_mhp = mhp; 3506 3507 return 1; 3508 } 3509 __setup("hugepages=", hugepages_setup); 3510 3511 /* 3512 * hugepagesz command line processing 3513 * A specific huge page size can only be specified once with hugepagesz. 3514 * hugepagesz is followed by hugepages on the command line. The global 3515 * variable 'parsed_valid_hugepagesz' is used to determine if prior 3516 * hugepagesz argument was valid. 3517 */ 3518 static int __init hugepagesz_setup(char *s) 3519 { 3520 unsigned long size; 3521 struct hstate *h; 3522 3523 parsed_valid_hugepagesz = false; 3524 size = (unsigned long)memparse(s, NULL); 3525 3526 if (!arch_hugetlb_valid_size(size)) { 3527 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 3528 return 0; 3529 } 3530 3531 h = size_to_hstate(size); 3532 if (h) { 3533 /* 3534 * hstate for this size already exists. This is normally 3535 * an error, but is allowed if the existing hstate is the 3536 * default hstate. More specifically, it is only allowed if 3537 * the number of huge pages for the default hstate was not 3538 * previously specified. 3539 */ 3540 if (!parsed_default_hugepagesz || h != &default_hstate || 3541 default_hstate.max_huge_pages) { 3542 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 3543 return 0; 3544 } 3545 3546 /* 3547 * No need to call hugetlb_add_hstate() as hstate already 3548 * exists. But, do set parsed_hstate so that a following 3549 * hugepages= parameter will be applied to this hstate. 3550 */ 3551 parsed_hstate = h; 3552 parsed_valid_hugepagesz = true; 3553 return 1; 3554 } 3555 3556 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3557 parsed_valid_hugepagesz = true; 3558 return 1; 3559 } 3560 __setup("hugepagesz=", hugepagesz_setup); 3561 3562 /* 3563 * default_hugepagesz command line input 3564 * Only one instance of default_hugepagesz allowed on command line. 3565 */ 3566 static int __init default_hugepagesz_setup(char *s) 3567 { 3568 unsigned long size; 3569 3570 parsed_valid_hugepagesz = false; 3571 if (parsed_default_hugepagesz) { 3572 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 3573 return 0; 3574 } 3575 3576 size = (unsigned long)memparse(s, NULL); 3577 3578 if (!arch_hugetlb_valid_size(size)) { 3579 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 3580 return 0; 3581 } 3582 3583 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 3584 parsed_valid_hugepagesz = true; 3585 parsed_default_hugepagesz = true; 3586 default_hstate_idx = hstate_index(size_to_hstate(size)); 3587 3588 /* 3589 * The number of default huge pages (for this size) could have been 3590 * specified as the first hugetlb parameter: hugepages=X. If so, 3591 * then default_hstate_max_huge_pages is set. If the default huge 3592 * page size is gigantic (>= MAX_ORDER), then the pages must be 3593 * allocated here from bootmem allocator. 3594 */ 3595 if (default_hstate_max_huge_pages) { 3596 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 3597 if (hstate_is_gigantic(&default_hstate)) 3598 hugetlb_hstate_alloc_pages(&default_hstate); 3599 default_hstate_max_huge_pages = 0; 3600 } 3601 3602 return 1; 3603 } 3604 __setup("default_hugepagesz=", default_hugepagesz_setup); 3605 3606 static unsigned int allowed_mems_nr(struct hstate *h) 3607 { 3608 int node; 3609 unsigned int nr = 0; 3610 nodemask_t *mpol_allowed; 3611 unsigned int *array = h->free_huge_pages_node; 3612 gfp_t gfp_mask = htlb_alloc_mask(h); 3613 3614 mpol_allowed = policy_nodemask_current(gfp_mask); 3615 3616 for_each_node_mask(node, cpuset_current_mems_allowed) { 3617 if (!mpol_allowed || node_isset(node, *mpol_allowed)) 3618 nr += array[node]; 3619 } 3620 3621 return nr; 3622 } 3623 3624 #ifdef CONFIG_SYSCTL 3625 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 3626 void *buffer, size_t *length, 3627 loff_t *ppos, unsigned long *out) 3628 { 3629 struct ctl_table dup_table; 3630 3631 /* 3632 * In order to avoid races with __do_proc_doulongvec_minmax(), we 3633 * can duplicate the @table and alter the duplicate of it. 3634 */ 3635 dup_table = *table; 3636 dup_table.data = out; 3637 3638 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 3639 } 3640 3641 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 3642 struct ctl_table *table, int write, 3643 void *buffer, size_t *length, loff_t *ppos) 3644 { 3645 struct hstate *h = &default_hstate; 3646 unsigned long tmp = h->max_huge_pages; 3647 int ret; 3648 3649 if (!hugepages_supported()) 3650 return -EOPNOTSUPP; 3651 3652 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3653 &tmp); 3654 if (ret) 3655 goto out; 3656 3657 if (write) 3658 ret = __nr_hugepages_store_common(obey_mempolicy, h, 3659 NUMA_NO_NODE, tmp, *length); 3660 out: 3661 return ret; 3662 } 3663 3664 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 3665 void *buffer, size_t *length, loff_t *ppos) 3666 { 3667 3668 return hugetlb_sysctl_handler_common(false, table, write, 3669 buffer, length, ppos); 3670 } 3671 3672 #ifdef CONFIG_NUMA 3673 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 3674 void *buffer, size_t *length, loff_t *ppos) 3675 { 3676 return hugetlb_sysctl_handler_common(true, table, write, 3677 buffer, length, ppos); 3678 } 3679 #endif /* CONFIG_NUMA */ 3680 3681 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 3682 void *buffer, size_t *length, loff_t *ppos) 3683 { 3684 struct hstate *h = &default_hstate; 3685 unsigned long tmp; 3686 int ret; 3687 3688 if (!hugepages_supported()) 3689 return -EOPNOTSUPP; 3690 3691 tmp = h->nr_overcommit_huge_pages; 3692 3693 if (write && hstate_is_gigantic(h)) 3694 return -EINVAL; 3695 3696 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 3697 &tmp); 3698 if (ret) 3699 goto out; 3700 3701 if (write) { 3702 spin_lock_irq(&hugetlb_lock); 3703 h->nr_overcommit_huge_pages = tmp; 3704 spin_unlock_irq(&hugetlb_lock); 3705 } 3706 out: 3707 return ret; 3708 } 3709 3710 #endif /* CONFIG_SYSCTL */ 3711 3712 void hugetlb_report_meminfo(struct seq_file *m) 3713 { 3714 struct hstate *h; 3715 unsigned long total = 0; 3716 3717 if (!hugepages_supported()) 3718 return; 3719 3720 for_each_hstate(h) { 3721 unsigned long count = h->nr_huge_pages; 3722 3723 total += huge_page_size(h) * count; 3724 3725 if (h == &default_hstate) 3726 seq_printf(m, 3727 "HugePages_Total: %5lu\n" 3728 "HugePages_Free: %5lu\n" 3729 "HugePages_Rsvd: %5lu\n" 3730 "HugePages_Surp: %5lu\n" 3731 "Hugepagesize: %8lu kB\n", 3732 count, 3733 h->free_huge_pages, 3734 h->resv_huge_pages, 3735 h->surplus_huge_pages, 3736 huge_page_size(h) / SZ_1K); 3737 } 3738 3739 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 3740 } 3741 3742 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 3743 { 3744 struct hstate *h = &default_hstate; 3745 3746 if (!hugepages_supported()) 3747 return 0; 3748 3749 return sysfs_emit_at(buf, len, 3750 "Node %d HugePages_Total: %5u\n" 3751 "Node %d HugePages_Free: %5u\n" 3752 "Node %d HugePages_Surp: %5u\n", 3753 nid, h->nr_huge_pages_node[nid], 3754 nid, h->free_huge_pages_node[nid], 3755 nid, h->surplus_huge_pages_node[nid]); 3756 } 3757 3758 void hugetlb_show_meminfo(void) 3759 { 3760 struct hstate *h; 3761 int nid; 3762 3763 if (!hugepages_supported()) 3764 return; 3765 3766 for_each_node_state(nid, N_MEMORY) 3767 for_each_hstate(h) 3768 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3769 nid, 3770 h->nr_huge_pages_node[nid], 3771 h->free_huge_pages_node[nid], 3772 h->surplus_huge_pages_node[nid], 3773 huge_page_size(h) / SZ_1K); 3774 } 3775 3776 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3777 { 3778 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3779 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3780 } 3781 3782 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3783 unsigned long hugetlb_total_pages(void) 3784 { 3785 struct hstate *h; 3786 unsigned long nr_total_pages = 0; 3787 3788 for_each_hstate(h) 3789 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3790 return nr_total_pages; 3791 } 3792 3793 static int hugetlb_acct_memory(struct hstate *h, long delta) 3794 { 3795 int ret = -ENOMEM; 3796 3797 if (!delta) 3798 return 0; 3799 3800 spin_lock_irq(&hugetlb_lock); 3801 /* 3802 * When cpuset is configured, it breaks the strict hugetlb page 3803 * reservation as the accounting is done on a global variable. Such 3804 * reservation is completely rubbish in the presence of cpuset because 3805 * the reservation is not checked against page availability for the 3806 * current cpuset. Application can still potentially OOM'ed by kernel 3807 * with lack of free htlb page in cpuset that the task is in. 3808 * Attempt to enforce strict accounting with cpuset is almost 3809 * impossible (or too ugly) because cpuset is too fluid that 3810 * task or memory node can be dynamically moved between cpusets. 3811 * 3812 * The change of semantics for shared hugetlb mapping with cpuset is 3813 * undesirable. However, in order to preserve some of the semantics, 3814 * we fall back to check against current free page availability as 3815 * a best attempt and hopefully to minimize the impact of changing 3816 * semantics that cpuset has. 3817 * 3818 * Apart from cpuset, we also have memory policy mechanism that 3819 * also determines from which node the kernel will allocate memory 3820 * in a NUMA system. So similar to cpuset, we also should consider 3821 * the memory policy of the current task. Similar to the description 3822 * above. 3823 */ 3824 if (delta > 0) { 3825 if (gather_surplus_pages(h, delta) < 0) 3826 goto out; 3827 3828 if (delta > allowed_mems_nr(h)) { 3829 return_unused_surplus_pages(h, delta); 3830 goto out; 3831 } 3832 } 3833 3834 ret = 0; 3835 if (delta < 0) 3836 return_unused_surplus_pages(h, (unsigned long) -delta); 3837 3838 out: 3839 spin_unlock_irq(&hugetlb_lock); 3840 return ret; 3841 } 3842 3843 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3844 { 3845 struct resv_map *resv = vma_resv_map(vma); 3846 3847 /* 3848 * This new VMA should share its siblings reservation map if present. 3849 * The VMA will only ever have a valid reservation map pointer where 3850 * it is being copied for another still existing VMA. As that VMA 3851 * has a reference to the reservation map it cannot disappear until 3852 * after this open call completes. It is therefore safe to take a 3853 * new reference here without additional locking. 3854 */ 3855 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3856 kref_get(&resv->refs); 3857 } 3858 3859 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3860 { 3861 struct hstate *h = hstate_vma(vma); 3862 struct resv_map *resv = vma_resv_map(vma); 3863 struct hugepage_subpool *spool = subpool_vma(vma); 3864 unsigned long reserve, start, end; 3865 long gbl_reserve; 3866 3867 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3868 return; 3869 3870 start = vma_hugecache_offset(h, vma, vma->vm_start); 3871 end = vma_hugecache_offset(h, vma, vma->vm_end); 3872 3873 reserve = (end - start) - region_count(resv, start, end); 3874 hugetlb_cgroup_uncharge_counter(resv, start, end); 3875 if (reserve) { 3876 /* 3877 * Decrement reserve counts. The global reserve count may be 3878 * adjusted if the subpool has a minimum size. 3879 */ 3880 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3881 hugetlb_acct_memory(h, -gbl_reserve); 3882 } 3883 3884 kref_put(&resv->refs, resv_map_release); 3885 } 3886 3887 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3888 { 3889 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3890 return -EINVAL; 3891 return 0; 3892 } 3893 3894 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3895 { 3896 return huge_page_size(hstate_vma(vma)); 3897 } 3898 3899 /* 3900 * We cannot handle pagefaults against hugetlb pages at all. They cause 3901 * handle_mm_fault() to try to instantiate regular-sized pages in the 3902 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3903 * this far. 3904 */ 3905 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3906 { 3907 BUG(); 3908 return 0; 3909 } 3910 3911 /* 3912 * When a new function is introduced to vm_operations_struct and added 3913 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3914 * This is because under System V memory model, mappings created via 3915 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3916 * their original vm_ops are overwritten with shm_vm_ops. 3917 */ 3918 const struct vm_operations_struct hugetlb_vm_ops = { 3919 .fault = hugetlb_vm_op_fault, 3920 .open = hugetlb_vm_op_open, 3921 .close = hugetlb_vm_op_close, 3922 .may_split = hugetlb_vm_op_split, 3923 .pagesize = hugetlb_vm_op_pagesize, 3924 }; 3925 3926 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3927 int writable) 3928 { 3929 pte_t entry; 3930 3931 if (writable) { 3932 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3933 vma->vm_page_prot))); 3934 } else { 3935 entry = huge_pte_wrprotect(mk_huge_pte(page, 3936 vma->vm_page_prot)); 3937 } 3938 entry = pte_mkyoung(entry); 3939 entry = pte_mkhuge(entry); 3940 entry = arch_make_huge_pte(entry, vma, page, writable); 3941 3942 return entry; 3943 } 3944 3945 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3946 unsigned long address, pte_t *ptep) 3947 { 3948 pte_t entry; 3949 3950 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3951 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3952 update_mmu_cache(vma, address, ptep); 3953 } 3954 3955 bool is_hugetlb_entry_migration(pte_t pte) 3956 { 3957 swp_entry_t swp; 3958 3959 if (huge_pte_none(pte) || pte_present(pte)) 3960 return false; 3961 swp = pte_to_swp_entry(pte); 3962 if (is_migration_entry(swp)) 3963 return true; 3964 else 3965 return false; 3966 } 3967 3968 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 3969 { 3970 swp_entry_t swp; 3971 3972 if (huge_pte_none(pte) || pte_present(pte)) 3973 return false; 3974 swp = pte_to_swp_entry(pte); 3975 if (is_hwpoison_entry(swp)) 3976 return true; 3977 else 3978 return false; 3979 } 3980 3981 static void 3982 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 3983 struct page *new_page) 3984 { 3985 __SetPageUptodate(new_page); 3986 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 3987 hugepage_add_new_anon_rmap(new_page, vma, addr); 3988 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 3989 ClearHPageRestoreReserve(new_page); 3990 SetHPageMigratable(new_page); 3991 } 3992 3993 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3994 struct vm_area_struct *vma) 3995 { 3996 pte_t *src_pte, *dst_pte, entry, dst_entry; 3997 struct page *ptepage; 3998 unsigned long addr; 3999 bool cow = is_cow_mapping(vma->vm_flags); 4000 struct hstate *h = hstate_vma(vma); 4001 unsigned long sz = huge_page_size(h); 4002 unsigned long npages = pages_per_huge_page(h); 4003 struct address_space *mapping = vma->vm_file->f_mapping; 4004 struct mmu_notifier_range range; 4005 int ret = 0; 4006 4007 if (cow) { 4008 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 4009 vma->vm_start, 4010 vma->vm_end); 4011 mmu_notifier_invalidate_range_start(&range); 4012 } else { 4013 /* 4014 * For shared mappings i_mmap_rwsem must be held to call 4015 * huge_pte_alloc, otherwise the returned ptep could go 4016 * away if part of a shared pmd and another thread calls 4017 * huge_pmd_unshare. 4018 */ 4019 i_mmap_lock_read(mapping); 4020 } 4021 4022 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 4023 spinlock_t *src_ptl, *dst_ptl; 4024 src_pte = huge_pte_offset(src, addr, sz); 4025 if (!src_pte) 4026 continue; 4027 dst_pte = huge_pte_alloc(dst, vma, addr, sz); 4028 if (!dst_pte) { 4029 ret = -ENOMEM; 4030 break; 4031 } 4032 4033 /* 4034 * If the pagetables are shared don't copy or take references. 4035 * dst_pte == src_pte is the common case of src/dest sharing. 4036 * 4037 * However, src could have 'unshared' and dst shares with 4038 * another vma. If dst_pte !none, this implies sharing. 4039 * Check here before taking page table lock, and once again 4040 * after taking the lock below. 4041 */ 4042 dst_entry = huge_ptep_get(dst_pte); 4043 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 4044 continue; 4045 4046 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4047 src_ptl = huge_pte_lockptr(h, src, src_pte); 4048 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4049 entry = huge_ptep_get(src_pte); 4050 dst_entry = huge_ptep_get(dst_pte); 4051 again: 4052 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 4053 /* 4054 * Skip if src entry none. Also, skip in the 4055 * unlikely case dst entry !none as this implies 4056 * sharing with another vma. 4057 */ 4058 ; 4059 } else if (unlikely(is_hugetlb_entry_migration(entry) || 4060 is_hugetlb_entry_hwpoisoned(entry))) { 4061 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4062 4063 if (is_write_migration_entry(swp_entry) && cow) { 4064 /* 4065 * COW mappings require pages in both 4066 * parent and child to be set to read. 4067 */ 4068 make_migration_entry_read(&swp_entry); 4069 entry = swp_entry_to_pte(swp_entry); 4070 set_huge_swap_pte_at(src, addr, src_pte, 4071 entry, sz); 4072 } 4073 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 4074 } else { 4075 entry = huge_ptep_get(src_pte); 4076 ptepage = pte_page(entry); 4077 get_page(ptepage); 4078 4079 /* 4080 * This is a rare case where we see pinned hugetlb 4081 * pages while they're prone to COW. We need to do the 4082 * COW earlier during fork. 4083 * 4084 * When pre-allocating the page or copying data, we 4085 * need to be without the pgtable locks since we could 4086 * sleep during the process. 4087 */ 4088 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { 4089 pte_t src_pte_old = entry; 4090 struct page *new; 4091 4092 spin_unlock(src_ptl); 4093 spin_unlock(dst_ptl); 4094 /* Do not use reserve as it's private owned */ 4095 new = alloc_huge_page(vma, addr, 1); 4096 if (IS_ERR(new)) { 4097 put_page(ptepage); 4098 ret = PTR_ERR(new); 4099 break; 4100 } 4101 copy_user_huge_page(new, ptepage, addr, vma, 4102 npages); 4103 put_page(ptepage); 4104 4105 /* Install the new huge page if src pte stable */ 4106 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4107 src_ptl = huge_pte_lockptr(h, src, src_pte); 4108 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4109 entry = huge_ptep_get(src_pte); 4110 if (!pte_same(src_pte_old, entry)) { 4111 restore_reserve_on_error(h, vma, addr, 4112 new); 4113 put_page(new); 4114 /* dst_entry won't change as in child */ 4115 goto again; 4116 } 4117 hugetlb_install_page(vma, dst_pte, addr, new); 4118 spin_unlock(src_ptl); 4119 spin_unlock(dst_ptl); 4120 continue; 4121 } 4122 4123 if (cow) { 4124 /* 4125 * No need to notify as we are downgrading page 4126 * table protection not changing it to point 4127 * to a new page. 4128 * 4129 * See Documentation/vm/mmu_notifier.rst 4130 */ 4131 huge_ptep_set_wrprotect(src, addr, src_pte); 4132 entry = huge_pte_wrprotect(entry); 4133 } 4134 4135 page_dup_rmap(ptepage, true); 4136 set_huge_pte_at(dst, addr, dst_pte, entry); 4137 hugetlb_count_add(npages, dst); 4138 } 4139 spin_unlock(src_ptl); 4140 spin_unlock(dst_ptl); 4141 } 4142 4143 if (cow) 4144 mmu_notifier_invalidate_range_end(&range); 4145 else 4146 i_mmap_unlock_read(mapping); 4147 4148 return ret; 4149 } 4150 4151 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 4152 unsigned long start, unsigned long end, 4153 struct page *ref_page) 4154 { 4155 struct mm_struct *mm = vma->vm_mm; 4156 unsigned long address; 4157 pte_t *ptep; 4158 pte_t pte; 4159 spinlock_t *ptl; 4160 struct page *page; 4161 struct hstate *h = hstate_vma(vma); 4162 unsigned long sz = huge_page_size(h); 4163 struct mmu_notifier_range range; 4164 4165 WARN_ON(!is_vm_hugetlb_page(vma)); 4166 BUG_ON(start & ~huge_page_mask(h)); 4167 BUG_ON(end & ~huge_page_mask(h)); 4168 4169 /* 4170 * This is a hugetlb vma, all the pte entries should point 4171 * to huge page. 4172 */ 4173 tlb_change_page_size(tlb, sz); 4174 tlb_start_vma(tlb, vma); 4175 4176 /* 4177 * If sharing possible, alert mmu notifiers of worst case. 4178 */ 4179 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 4180 end); 4181 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4182 mmu_notifier_invalidate_range_start(&range); 4183 address = start; 4184 for (; address < end; address += sz) { 4185 ptep = huge_pte_offset(mm, address, sz); 4186 if (!ptep) 4187 continue; 4188 4189 ptl = huge_pte_lock(h, mm, ptep); 4190 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 4191 spin_unlock(ptl); 4192 /* 4193 * We just unmapped a page of PMDs by clearing a PUD. 4194 * The caller's TLB flush range should cover this area. 4195 */ 4196 continue; 4197 } 4198 4199 pte = huge_ptep_get(ptep); 4200 if (huge_pte_none(pte)) { 4201 spin_unlock(ptl); 4202 continue; 4203 } 4204 4205 /* 4206 * Migrating hugepage or HWPoisoned hugepage is already 4207 * unmapped and its refcount is dropped, so just clear pte here. 4208 */ 4209 if (unlikely(!pte_present(pte))) { 4210 huge_pte_clear(mm, address, ptep, sz); 4211 spin_unlock(ptl); 4212 continue; 4213 } 4214 4215 page = pte_page(pte); 4216 /* 4217 * If a reference page is supplied, it is because a specific 4218 * page is being unmapped, not a range. Ensure the page we 4219 * are about to unmap is the actual page of interest. 4220 */ 4221 if (ref_page) { 4222 if (page != ref_page) { 4223 spin_unlock(ptl); 4224 continue; 4225 } 4226 /* 4227 * Mark the VMA as having unmapped its page so that 4228 * future faults in this VMA will fail rather than 4229 * looking like data was lost 4230 */ 4231 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 4232 } 4233 4234 pte = huge_ptep_get_and_clear(mm, address, ptep); 4235 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 4236 if (huge_pte_dirty(pte)) 4237 set_page_dirty(page); 4238 4239 hugetlb_count_sub(pages_per_huge_page(h), mm); 4240 page_remove_rmap(page, true); 4241 4242 spin_unlock(ptl); 4243 tlb_remove_page_size(tlb, page, huge_page_size(h)); 4244 /* 4245 * Bail out after unmapping reference page if supplied 4246 */ 4247 if (ref_page) 4248 break; 4249 } 4250 mmu_notifier_invalidate_range_end(&range); 4251 tlb_end_vma(tlb, vma); 4252 } 4253 4254 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 4255 struct vm_area_struct *vma, unsigned long start, 4256 unsigned long end, struct page *ref_page) 4257 { 4258 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 4259 4260 /* 4261 * Clear this flag so that x86's huge_pmd_share page_table_shareable 4262 * test will fail on a vma being torn down, and not grab a page table 4263 * on its way out. We're lucky that the flag has such an appropriate 4264 * name, and can in fact be safely cleared here. We could clear it 4265 * before the __unmap_hugepage_range above, but all that's necessary 4266 * is to clear it before releasing the i_mmap_rwsem. This works 4267 * because in the context this is called, the VMA is about to be 4268 * destroyed and the i_mmap_rwsem is held. 4269 */ 4270 vma->vm_flags &= ~VM_MAYSHARE; 4271 } 4272 4273 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 4274 unsigned long end, struct page *ref_page) 4275 { 4276 struct mmu_gather tlb; 4277 4278 tlb_gather_mmu(&tlb, vma->vm_mm); 4279 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 4280 tlb_finish_mmu(&tlb); 4281 } 4282 4283 /* 4284 * This is called when the original mapper is failing to COW a MAP_PRIVATE 4285 * mapping it owns the reserve page for. The intention is to unmap the page 4286 * from other VMAs and let the children be SIGKILLed if they are faulting the 4287 * same region. 4288 */ 4289 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 4290 struct page *page, unsigned long address) 4291 { 4292 struct hstate *h = hstate_vma(vma); 4293 struct vm_area_struct *iter_vma; 4294 struct address_space *mapping; 4295 pgoff_t pgoff; 4296 4297 /* 4298 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 4299 * from page cache lookup which is in HPAGE_SIZE units. 4300 */ 4301 address = address & huge_page_mask(h); 4302 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 4303 vma->vm_pgoff; 4304 mapping = vma->vm_file->f_mapping; 4305 4306 /* 4307 * Take the mapping lock for the duration of the table walk. As 4308 * this mapping should be shared between all the VMAs, 4309 * __unmap_hugepage_range() is called as the lock is already held 4310 */ 4311 i_mmap_lock_write(mapping); 4312 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 4313 /* Do not unmap the current VMA */ 4314 if (iter_vma == vma) 4315 continue; 4316 4317 /* 4318 * Shared VMAs have their own reserves and do not affect 4319 * MAP_PRIVATE accounting but it is possible that a shared 4320 * VMA is using the same page so check and skip such VMAs. 4321 */ 4322 if (iter_vma->vm_flags & VM_MAYSHARE) 4323 continue; 4324 4325 /* 4326 * Unmap the page from other VMAs without their own reserves. 4327 * They get marked to be SIGKILLed if they fault in these 4328 * areas. This is because a future no-page fault on this VMA 4329 * could insert a zeroed page instead of the data existing 4330 * from the time of fork. This would look like data corruption 4331 */ 4332 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 4333 unmap_hugepage_range(iter_vma, address, 4334 address + huge_page_size(h), page); 4335 } 4336 i_mmap_unlock_write(mapping); 4337 } 4338 4339 /* 4340 * Hugetlb_cow() should be called with page lock of the original hugepage held. 4341 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 4342 * cannot race with other handlers or page migration. 4343 * Keep the pte_same checks anyway to make transition from the mutex easier. 4344 */ 4345 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 4346 unsigned long address, pte_t *ptep, 4347 struct page *pagecache_page, spinlock_t *ptl) 4348 { 4349 pte_t pte; 4350 struct hstate *h = hstate_vma(vma); 4351 struct page *old_page, *new_page; 4352 int outside_reserve = 0; 4353 vm_fault_t ret = 0; 4354 unsigned long haddr = address & huge_page_mask(h); 4355 struct mmu_notifier_range range; 4356 4357 pte = huge_ptep_get(ptep); 4358 old_page = pte_page(pte); 4359 4360 retry_avoidcopy: 4361 /* If no-one else is actually using this page, avoid the copy 4362 * and just make the page writable */ 4363 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 4364 page_move_anon_rmap(old_page, vma); 4365 set_huge_ptep_writable(vma, haddr, ptep); 4366 return 0; 4367 } 4368 4369 /* 4370 * If the process that created a MAP_PRIVATE mapping is about to 4371 * perform a COW due to a shared page count, attempt to satisfy 4372 * the allocation without using the existing reserves. The pagecache 4373 * page is used to determine if the reserve at this address was 4374 * consumed or not. If reserves were used, a partial faulted mapping 4375 * at the time of fork() could consume its reserves on COW instead 4376 * of the full address range. 4377 */ 4378 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 4379 old_page != pagecache_page) 4380 outside_reserve = 1; 4381 4382 get_page(old_page); 4383 4384 /* 4385 * Drop page table lock as buddy allocator may be called. It will 4386 * be acquired again before returning to the caller, as expected. 4387 */ 4388 spin_unlock(ptl); 4389 new_page = alloc_huge_page(vma, haddr, outside_reserve); 4390 4391 if (IS_ERR(new_page)) { 4392 /* 4393 * If a process owning a MAP_PRIVATE mapping fails to COW, 4394 * it is due to references held by a child and an insufficient 4395 * huge page pool. To guarantee the original mappers 4396 * reliability, unmap the page from child processes. The child 4397 * may get SIGKILLed if it later faults. 4398 */ 4399 if (outside_reserve) { 4400 struct address_space *mapping = vma->vm_file->f_mapping; 4401 pgoff_t idx; 4402 u32 hash; 4403 4404 put_page(old_page); 4405 BUG_ON(huge_pte_none(pte)); 4406 /* 4407 * Drop hugetlb_fault_mutex and i_mmap_rwsem before 4408 * unmapping. unmapping needs to hold i_mmap_rwsem 4409 * in write mode. Dropping i_mmap_rwsem in read mode 4410 * here is OK as COW mappings do not interact with 4411 * PMD sharing. 4412 * 4413 * Reacquire both after unmap operation. 4414 */ 4415 idx = vma_hugecache_offset(h, vma, haddr); 4416 hash = hugetlb_fault_mutex_hash(mapping, idx); 4417 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4418 i_mmap_unlock_read(mapping); 4419 4420 unmap_ref_private(mm, vma, old_page, haddr); 4421 4422 i_mmap_lock_read(mapping); 4423 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4424 spin_lock(ptl); 4425 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4426 if (likely(ptep && 4427 pte_same(huge_ptep_get(ptep), pte))) 4428 goto retry_avoidcopy; 4429 /* 4430 * race occurs while re-acquiring page table 4431 * lock, and our job is done. 4432 */ 4433 return 0; 4434 } 4435 4436 ret = vmf_error(PTR_ERR(new_page)); 4437 goto out_release_old; 4438 } 4439 4440 /* 4441 * When the original hugepage is shared one, it does not have 4442 * anon_vma prepared. 4443 */ 4444 if (unlikely(anon_vma_prepare(vma))) { 4445 ret = VM_FAULT_OOM; 4446 goto out_release_all; 4447 } 4448 4449 copy_user_huge_page(new_page, old_page, address, vma, 4450 pages_per_huge_page(h)); 4451 __SetPageUptodate(new_page); 4452 4453 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 4454 haddr + huge_page_size(h)); 4455 mmu_notifier_invalidate_range_start(&range); 4456 4457 /* 4458 * Retake the page table lock to check for racing updates 4459 * before the page tables are altered 4460 */ 4461 spin_lock(ptl); 4462 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4463 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 4464 ClearHPageRestoreReserve(new_page); 4465 4466 /* Break COW */ 4467 huge_ptep_clear_flush(vma, haddr, ptep); 4468 mmu_notifier_invalidate_range(mm, range.start, range.end); 4469 set_huge_pte_at(mm, haddr, ptep, 4470 make_huge_pte(vma, new_page, 1)); 4471 page_remove_rmap(old_page, true); 4472 hugepage_add_new_anon_rmap(new_page, vma, haddr); 4473 SetHPageMigratable(new_page); 4474 /* Make the old page be freed below */ 4475 new_page = old_page; 4476 } 4477 spin_unlock(ptl); 4478 mmu_notifier_invalidate_range_end(&range); 4479 out_release_all: 4480 restore_reserve_on_error(h, vma, haddr, new_page); 4481 put_page(new_page); 4482 out_release_old: 4483 put_page(old_page); 4484 4485 spin_lock(ptl); /* Caller expects lock to be held */ 4486 return ret; 4487 } 4488 4489 /* Return the pagecache page at a given address within a VMA */ 4490 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 4491 struct vm_area_struct *vma, unsigned long address) 4492 { 4493 struct address_space *mapping; 4494 pgoff_t idx; 4495 4496 mapping = vma->vm_file->f_mapping; 4497 idx = vma_hugecache_offset(h, vma, address); 4498 4499 return find_lock_page(mapping, idx); 4500 } 4501 4502 /* 4503 * Return whether there is a pagecache page to back given address within VMA. 4504 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 4505 */ 4506 static bool hugetlbfs_pagecache_present(struct hstate *h, 4507 struct vm_area_struct *vma, unsigned long address) 4508 { 4509 struct address_space *mapping; 4510 pgoff_t idx; 4511 struct page *page; 4512 4513 mapping = vma->vm_file->f_mapping; 4514 idx = vma_hugecache_offset(h, vma, address); 4515 4516 page = find_get_page(mapping, idx); 4517 if (page) 4518 put_page(page); 4519 return page != NULL; 4520 } 4521 4522 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 4523 pgoff_t idx) 4524 { 4525 struct inode *inode = mapping->host; 4526 struct hstate *h = hstate_inode(inode); 4527 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 4528 4529 if (err) 4530 return err; 4531 ClearHPageRestoreReserve(page); 4532 4533 /* 4534 * set page dirty so that it will not be removed from cache/file 4535 * by non-hugetlbfs specific code paths. 4536 */ 4537 set_page_dirty(page); 4538 4539 spin_lock(&inode->i_lock); 4540 inode->i_blocks += blocks_per_huge_page(h); 4541 spin_unlock(&inode->i_lock); 4542 return 0; 4543 } 4544 4545 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 4546 struct address_space *mapping, 4547 pgoff_t idx, 4548 unsigned int flags, 4549 unsigned long haddr, 4550 unsigned long reason) 4551 { 4552 vm_fault_t ret; 4553 u32 hash; 4554 struct vm_fault vmf = { 4555 .vma = vma, 4556 .address = haddr, 4557 .flags = flags, 4558 4559 /* 4560 * Hard to debug if it ends up being 4561 * used by a callee that assumes 4562 * something about the other 4563 * uninitialized fields... same as in 4564 * memory.c 4565 */ 4566 }; 4567 4568 /* 4569 * hugetlb_fault_mutex and i_mmap_rwsem must be 4570 * dropped before handling userfault. Reacquire 4571 * after handling fault to make calling code simpler. 4572 */ 4573 hash = hugetlb_fault_mutex_hash(mapping, idx); 4574 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4575 i_mmap_unlock_read(mapping); 4576 ret = handle_userfault(&vmf, reason); 4577 i_mmap_lock_read(mapping); 4578 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4579 4580 return ret; 4581 } 4582 4583 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 4584 struct vm_area_struct *vma, 4585 struct address_space *mapping, pgoff_t idx, 4586 unsigned long address, pte_t *ptep, unsigned int flags) 4587 { 4588 struct hstate *h = hstate_vma(vma); 4589 vm_fault_t ret = VM_FAULT_SIGBUS; 4590 int anon_rmap = 0; 4591 unsigned long size; 4592 struct page *page; 4593 pte_t new_pte; 4594 spinlock_t *ptl; 4595 unsigned long haddr = address & huge_page_mask(h); 4596 bool new_page = false; 4597 4598 /* 4599 * Currently, we are forced to kill the process in the event the 4600 * original mapper has unmapped pages from the child due to a failed 4601 * COW. Warn that such a situation has occurred as it may not be obvious 4602 */ 4603 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 4604 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 4605 current->pid); 4606 return ret; 4607 } 4608 4609 /* 4610 * We can not race with truncation due to holding i_mmap_rwsem. 4611 * i_size is modified when holding i_mmap_rwsem, so check here 4612 * once for faults beyond end of file. 4613 */ 4614 size = i_size_read(mapping->host) >> huge_page_shift(h); 4615 if (idx >= size) 4616 goto out; 4617 4618 retry: 4619 page = find_lock_page(mapping, idx); 4620 if (!page) { 4621 /* Check for page in userfault range */ 4622 if (userfaultfd_missing(vma)) { 4623 ret = hugetlb_handle_userfault(vma, mapping, idx, 4624 flags, haddr, 4625 VM_UFFD_MISSING); 4626 goto out; 4627 } 4628 4629 page = alloc_huge_page(vma, haddr, 0); 4630 if (IS_ERR(page)) { 4631 /* 4632 * Returning error will result in faulting task being 4633 * sent SIGBUS. The hugetlb fault mutex prevents two 4634 * tasks from racing to fault in the same page which 4635 * could result in false unable to allocate errors. 4636 * Page migration does not take the fault mutex, but 4637 * does a clear then write of pte's under page table 4638 * lock. Page fault code could race with migration, 4639 * notice the clear pte and try to allocate a page 4640 * here. Before returning error, get ptl and make 4641 * sure there really is no pte entry. 4642 */ 4643 ptl = huge_pte_lock(h, mm, ptep); 4644 ret = 0; 4645 if (huge_pte_none(huge_ptep_get(ptep))) 4646 ret = vmf_error(PTR_ERR(page)); 4647 spin_unlock(ptl); 4648 goto out; 4649 } 4650 clear_huge_page(page, address, pages_per_huge_page(h)); 4651 __SetPageUptodate(page); 4652 new_page = true; 4653 4654 if (vma->vm_flags & VM_MAYSHARE) { 4655 int err = huge_add_to_page_cache(page, mapping, idx); 4656 if (err) { 4657 put_page(page); 4658 if (err == -EEXIST) 4659 goto retry; 4660 goto out; 4661 } 4662 } else { 4663 lock_page(page); 4664 if (unlikely(anon_vma_prepare(vma))) { 4665 ret = VM_FAULT_OOM; 4666 goto backout_unlocked; 4667 } 4668 anon_rmap = 1; 4669 } 4670 } else { 4671 /* 4672 * If memory error occurs between mmap() and fault, some process 4673 * don't have hwpoisoned swap entry for errored virtual address. 4674 * So we need to block hugepage fault by PG_hwpoison bit check. 4675 */ 4676 if (unlikely(PageHWPoison(page))) { 4677 ret = VM_FAULT_HWPOISON_LARGE | 4678 VM_FAULT_SET_HINDEX(hstate_index(h)); 4679 goto backout_unlocked; 4680 } 4681 4682 /* Check for page in userfault range. */ 4683 if (userfaultfd_minor(vma)) { 4684 unlock_page(page); 4685 put_page(page); 4686 ret = hugetlb_handle_userfault(vma, mapping, idx, 4687 flags, haddr, 4688 VM_UFFD_MINOR); 4689 goto out; 4690 } 4691 } 4692 4693 /* 4694 * If we are going to COW a private mapping later, we examine the 4695 * pending reservations for this page now. This will ensure that 4696 * any allocations necessary to record that reservation occur outside 4697 * the spinlock. 4698 */ 4699 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4700 if (vma_needs_reservation(h, vma, haddr) < 0) { 4701 ret = VM_FAULT_OOM; 4702 goto backout_unlocked; 4703 } 4704 /* Just decrements count, does not deallocate */ 4705 vma_end_reservation(h, vma, haddr); 4706 } 4707 4708 ptl = huge_pte_lock(h, mm, ptep); 4709 ret = 0; 4710 if (!huge_pte_none(huge_ptep_get(ptep))) 4711 goto backout; 4712 4713 if (anon_rmap) { 4714 ClearHPageRestoreReserve(page); 4715 hugepage_add_new_anon_rmap(page, vma, haddr); 4716 } else 4717 page_dup_rmap(page, true); 4718 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 4719 && (vma->vm_flags & VM_SHARED))); 4720 set_huge_pte_at(mm, haddr, ptep, new_pte); 4721 4722 hugetlb_count_add(pages_per_huge_page(h), mm); 4723 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 4724 /* Optimization, do the COW without a second fault */ 4725 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 4726 } 4727 4728 spin_unlock(ptl); 4729 4730 /* 4731 * Only set HPageMigratable in newly allocated pages. Existing pages 4732 * found in the pagecache may not have HPageMigratableset if they have 4733 * been isolated for migration. 4734 */ 4735 if (new_page) 4736 SetHPageMigratable(page); 4737 4738 unlock_page(page); 4739 out: 4740 return ret; 4741 4742 backout: 4743 spin_unlock(ptl); 4744 backout_unlocked: 4745 unlock_page(page); 4746 restore_reserve_on_error(h, vma, haddr, page); 4747 put_page(page); 4748 goto out; 4749 } 4750 4751 #ifdef CONFIG_SMP 4752 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4753 { 4754 unsigned long key[2]; 4755 u32 hash; 4756 4757 key[0] = (unsigned long) mapping; 4758 key[1] = idx; 4759 4760 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 4761 4762 return hash & (num_fault_mutexes - 1); 4763 } 4764 #else 4765 /* 4766 * For uniprocessor systems we always use a single mutex, so just 4767 * return 0 and avoid the hashing overhead. 4768 */ 4769 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 4770 { 4771 return 0; 4772 } 4773 #endif 4774 4775 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 4776 unsigned long address, unsigned int flags) 4777 { 4778 pte_t *ptep, entry; 4779 spinlock_t *ptl; 4780 vm_fault_t ret; 4781 u32 hash; 4782 pgoff_t idx; 4783 struct page *page = NULL; 4784 struct page *pagecache_page = NULL; 4785 struct hstate *h = hstate_vma(vma); 4786 struct address_space *mapping; 4787 int need_wait_lock = 0; 4788 unsigned long haddr = address & huge_page_mask(h); 4789 4790 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 4791 if (ptep) { 4792 /* 4793 * Since we hold no locks, ptep could be stale. That is 4794 * OK as we are only making decisions based on content and 4795 * not actually modifying content here. 4796 */ 4797 entry = huge_ptep_get(ptep); 4798 if (unlikely(is_hugetlb_entry_migration(entry))) { 4799 migration_entry_wait_huge(vma, mm, ptep); 4800 return 0; 4801 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 4802 return VM_FAULT_HWPOISON_LARGE | 4803 VM_FAULT_SET_HINDEX(hstate_index(h)); 4804 } 4805 4806 /* 4807 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold 4808 * until finished with ptep. This serves two purposes: 4809 * 1) It prevents huge_pmd_unshare from being called elsewhere 4810 * and making the ptep no longer valid. 4811 * 2) It synchronizes us with i_size modifications during truncation. 4812 * 4813 * ptep could have already be assigned via huge_pte_offset. That 4814 * is OK, as huge_pte_alloc will return the same value unless 4815 * something has changed. 4816 */ 4817 mapping = vma->vm_file->f_mapping; 4818 i_mmap_lock_read(mapping); 4819 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 4820 if (!ptep) { 4821 i_mmap_unlock_read(mapping); 4822 return VM_FAULT_OOM; 4823 } 4824 4825 /* 4826 * Serialize hugepage allocation and instantiation, so that we don't 4827 * get spurious allocation failures if two CPUs race to instantiate 4828 * the same page in the page cache. 4829 */ 4830 idx = vma_hugecache_offset(h, vma, haddr); 4831 hash = hugetlb_fault_mutex_hash(mapping, idx); 4832 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4833 4834 entry = huge_ptep_get(ptep); 4835 if (huge_pte_none(entry)) { 4836 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4837 goto out_mutex; 4838 } 4839 4840 ret = 0; 4841 4842 /* 4843 * entry could be a migration/hwpoison entry at this point, so this 4844 * check prevents the kernel from going below assuming that we have 4845 * an active hugepage in pagecache. This goto expects the 2nd page 4846 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 4847 * properly handle it. 4848 */ 4849 if (!pte_present(entry)) 4850 goto out_mutex; 4851 4852 /* 4853 * If we are going to COW the mapping later, we examine the pending 4854 * reservations for this page now. This will ensure that any 4855 * allocations necessary to record that reservation occur outside the 4856 * spinlock. For private mappings, we also lookup the pagecache 4857 * page now as it is used to determine if a reservation has been 4858 * consumed. 4859 */ 4860 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4861 if (vma_needs_reservation(h, vma, haddr) < 0) { 4862 ret = VM_FAULT_OOM; 4863 goto out_mutex; 4864 } 4865 /* Just decrements count, does not deallocate */ 4866 vma_end_reservation(h, vma, haddr); 4867 4868 if (!(vma->vm_flags & VM_MAYSHARE)) 4869 pagecache_page = hugetlbfs_pagecache_page(h, 4870 vma, haddr); 4871 } 4872 4873 ptl = huge_pte_lock(h, mm, ptep); 4874 4875 /* Check for a racing update before calling hugetlb_cow */ 4876 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4877 goto out_ptl; 4878 4879 /* 4880 * hugetlb_cow() requires page locks of pte_page(entry) and 4881 * pagecache_page, so here we need take the former one 4882 * when page != pagecache_page or !pagecache_page. 4883 */ 4884 page = pte_page(entry); 4885 if (page != pagecache_page) 4886 if (!trylock_page(page)) { 4887 need_wait_lock = 1; 4888 goto out_ptl; 4889 } 4890 4891 get_page(page); 4892 4893 if (flags & FAULT_FLAG_WRITE) { 4894 if (!huge_pte_write(entry)) { 4895 ret = hugetlb_cow(mm, vma, address, ptep, 4896 pagecache_page, ptl); 4897 goto out_put_page; 4898 } 4899 entry = huge_pte_mkdirty(entry); 4900 } 4901 entry = pte_mkyoung(entry); 4902 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4903 flags & FAULT_FLAG_WRITE)) 4904 update_mmu_cache(vma, haddr, ptep); 4905 out_put_page: 4906 if (page != pagecache_page) 4907 unlock_page(page); 4908 put_page(page); 4909 out_ptl: 4910 spin_unlock(ptl); 4911 4912 if (pagecache_page) { 4913 unlock_page(pagecache_page); 4914 put_page(pagecache_page); 4915 } 4916 out_mutex: 4917 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4918 i_mmap_unlock_read(mapping); 4919 /* 4920 * Generally it's safe to hold refcount during waiting page lock. But 4921 * here we just wait to defer the next page fault to avoid busy loop and 4922 * the page is not used after unlocked before returning from the current 4923 * page fault. So we are safe from accessing freed page, even if we wait 4924 * here without taking refcount. 4925 */ 4926 if (need_wait_lock) 4927 wait_on_page_locked(page); 4928 return ret; 4929 } 4930 4931 #ifdef CONFIG_USERFAULTFD 4932 /* 4933 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4934 * modifications for huge pages. 4935 */ 4936 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4937 pte_t *dst_pte, 4938 struct vm_area_struct *dst_vma, 4939 unsigned long dst_addr, 4940 unsigned long src_addr, 4941 enum mcopy_atomic_mode mode, 4942 struct page **pagep) 4943 { 4944 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 4945 struct address_space *mapping; 4946 pgoff_t idx; 4947 unsigned long size; 4948 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4949 struct hstate *h = hstate_vma(dst_vma); 4950 pte_t _dst_pte; 4951 spinlock_t *ptl; 4952 int ret; 4953 struct page *page; 4954 int writable; 4955 4956 mapping = dst_vma->vm_file->f_mapping; 4957 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4958 4959 if (is_continue) { 4960 ret = -EFAULT; 4961 page = find_lock_page(mapping, idx); 4962 if (!page) 4963 goto out; 4964 } else if (!*pagep) { 4965 /* If a page already exists, then it's UFFDIO_COPY for 4966 * a non-missing case. Return -EEXIST. 4967 */ 4968 if (vm_shared && 4969 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 4970 ret = -EEXIST; 4971 goto out; 4972 } 4973 4974 page = alloc_huge_page(dst_vma, dst_addr, 0); 4975 if (IS_ERR(page)) { 4976 ret = -ENOMEM; 4977 goto out; 4978 } 4979 4980 ret = copy_huge_page_from_user(page, 4981 (const void __user *) src_addr, 4982 pages_per_huge_page(h), false); 4983 4984 /* fallback to copy_from_user outside mmap_lock */ 4985 if (unlikely(ret)) { 4986 ret = -ENOENT; 4987 *pagep = page; 4988 /* don't free the page */ 4989 goto out; 4990 } 4991 } else { 4992 page = *pagep; 4993 *pagep = NULL; 4994 } 4995 4996 /* 4997 * The memory barrier inside __SetPageUptodate makes sure that 4998 * preceding stores to the page contents become visible before 4999 * the set_pte_at() write. 5000 */ 5001 __SetPageUptodate(page); 5002 5003 /* Add shared, newly allocated pages to the page cache. */ 5004 if (vm_shared && !is_continue) { 5005 size = i_size_read(mapping->host) >> huge_page_shift(h); 5006 ret = -EFAULT; 5007 if (idx >= size) 5008 goto out_release_nounlock; 5009 5010 /* 5011 * Serialization between remove_inode_hugepages() and 5012 * huge_add_to_page_cache() below happens through the 5013 * hugetlb_fault_mutex_table that here must be hold by 5014 * the caller. 5015 */ 5016 ret = huge_add_to_page_cache(page, mapping, idx); 5017 if (ret) 5018 goto out_release_nounlock; 5019 } 5020 5021 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 5022 spin_lock(ptl); 5023 5024 /* 5025 * Recheck the i_size after holding PT lock to make sure not 5026 * to leave any page mapped (as page_mapped()) beyond the end 5027 * of the i_size (remove_inode_hugepages() is strict about 5028 * enforcing that). If we bail out here, we'll also leave a 5029 * page in the radix tree in the vm_shared case beyond the end 5030 * of the i_size, but remove_inode_hugepages() will take care 5031 * of it as soon as we drop the hugetlb_fault_mutex_table. 5032 */ 5033 size = i_size_read(mapping->host) >> huge_page_shift(h); 5034 ret = -EFAULT; 5035 if (idx >= size) 5036 goto out_release_unlock; 5037 5038 ret = -EEXIST; 5039 if (!huge_pte_none(huge_ptep_get(dst_pte))) 5040 goto out_release_unlock; 5041 5042 if (vm_shared) { 5043 page_dup_rmap(page, true); 5044 } else { 5045 ClearHPageRestoreReserve(page); 5046 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 5047 } 5048 5049 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */ 5050 if (is_continue && !vm_shared) 5051 writable = 0; 5052 else 5053 writable = dst_vma->vm_flags & VM_WRITE; 5054 5055 _dst_pte = make_huge_pte(dst_vma, page, writable); 5056 if (writable) 5057 _dst_pte = huge_pte_mkdirty(_dst_pte); 5058 _dst_pte = pte_mkyoung(_dst_pte); 5059 5060 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 5061 5062 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 5063 dst_vma->vm_flags & VM_WRITE); 5064 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 5065 5066 /* No need to invalidate - it was non-present before */ 5067 update_mmu_cache(dst_vma, dst_addr, dst_pte); 5068 5069 spin_unlock(ptl); 5070 if (!is_continue) 5071 SetHPageMigratable(page); 5072 if (vm_shared || is_continue) 5073 unlock_page(page); 5074 ret = 0; 5075 out: 5076 return ret; 5077 out_release_unlock: 5078 spin_unlock(ptl); 5079 if (vm_shared || is_continue) 5080 unlock_page(page); 5081 out_release_nounlock: 5082 restore_reserve_on_error(h, dst_vma, dst_addr, page); 5083 put_page(page); 5084 goto out; 5085 } 5086 #endif /* CONFIG_USERFAULTFD */ 5087 5088 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 5089 int refs, struct page **pages, 5090 struct vm_area_struct **vmas) 5091 { 5092 int nr; 5093 5094 for (nr = 0; nr < refs; nr++) { 5095 if (likely(pages)) 5096 pages[nr] = mem_map_offset(page, nr); 5097 if (vmas) 5098 vmas[nr] = vma; 5099 } 5100 } 5101 5102 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 5103 struct page **pages, struct vm_area_struct **vmas, 5104 unsigned long *position, unsigned long *nr_pages, 5105 long i, unsigned int flags, int *locked) 5106 { 5107 unsigned long pfn_offset; 5108 unsigned long vaddr = *position; 5109 unsigned long remainder = *nr_pages; 5110 struct hstate *h = hstate_vma(vma); 5111 int err = -EFAULT, refs; 5112 5113 while (vaddr < vma->vm_end && remainder) { 5114 pte_t *pte; 5115 spinlock_t *ptl = NULL; 5116 int absent; 5117 struct page *page; 5118 5119 /* 5120 * If we have a pending SIGKILL, don't keep faulting pages and 5121 * potentially allocating memory. 5122 */ 5123 if (fatal_signal_pending(current)) { 5124 remainder = 0; 5125 break; 5126 } 5127 5128 /* 5129 * Some archs (sparc64, sh*) have multiple pte_ts to 5130 * each hugepage. We have to make sure we get the 5131 * first, for the page indexing below to work. 5132 * 5133 * Note that page table lock is not held when pte is null. 5134 */ 5135 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 5136 huge_page_size(h)); 5137 if (pte) 5138 ptl = huge_pte_lock(h, mm, pte); 5139 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 5140 5141 /* 5142 * When coredumping, it suits get_dump_page if we just return 5143 * an error where there's an empty slot with no huge pagecache 5144 * to back it. This way, we avoid allocating a hugepage, and 5145 * the sparse dumpfile avoids allocating disk blocks, but its 5146 * huge holes still show up with zeroes where they need to be. 5147 */ 5148 if (absent && (flags & FOLL_DUMP) && 5149 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 5150 if (pte) 5151 spin_unlock(ptl); 5152 remainder = 0; 5153 break; 5154 } 5155 5156 /* 5157 * We need call hugetlb_fault for both hugepages under migration 5158 * (in which case hugetlb_fault waits for the migration,) and 5159 * hwpoisoned hugepages (in which case we need to prevent the 5160 * caller from accessing to them.) In order to do this, we use 5161 * here is_swap_pte instead of is_hugetlb_entry_migration and 5162 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 5163 * both cases, and because we can't follow correct pages 5164 * directly from any kind of swap entries. 5165 */ 5166 if (absent || is_swap_pte(huge_ptep_get(pte)) || 5167 ((flags & FOLL_WRITE) && 5168 !huge_pte_write(huge_ptep_get(pte)))) { 5169 vm_fault_t ret; 5170 unsigned int fault_flags = 0; 5171 5172 if (pte) 5173 spin_unlock(ptl); 5174 if (flags & FOLL_WRITE) 5175 fault_flags |= FAULT_FLAG_WRITE; 5176 if (locked) 5177 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5178 FAULT_FLAG_KILLABLE; 5179 if (flags & FOLL_NOWAIT) 5180 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 5181 FAULT_FLAG_RETRY_NOWAIT; 5182 if (flags & FOLL_TRIED) { 5183 /* 5184 * Note: FAULT_FLAG_ALLOW_RETRY and 5185 * FAULT_FLAG_TRIED can co-exist 5186 */ 5187 fault_flags |= FAULT_FLAG_TRIED; 5188 } 5189 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 5190 if (ret & VM_FAULT_ERROR) { 5191 err = vm_fault_to_errno(ret, flags); 5192 remainder = 0; 5193 break; 5194 } 5195 if (ret & VM_FAULT_RETRY) { 5196 if (locked && 5197 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 5198 *locked = 0; 5199 *nr_pages = 0; 5200 /* 5201 * VM_FAULT_RETRY must not return an 5202 * error, it will return zero 5203 * instead. 5204 * 5205 * No need to update "position" as the 5206 * caller will not check it after 5207 * *nr_pages is set to 0. 5208 */ 5209 return i; 5210 } 5211 continue; 5212 } 5213 5214 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 5215 page = pte_page(huge_ptep_get(pte)); 5216 5217 /* 5218 * If subpage information not requested, update counters 5219 * and skip the same_page loop below. 5220 */ 5221 if (!pages && !vmas && !pfn_offset && 5222 (vaddr + huge_page_size(h) < vma->vm_end) && 5223 (remainder >= pages_per_huge_page(h))) { 5224 vaddr += huge_page_size(h); 5225 remainder -= pages_per_huge_page(h); 5226 i += pages_per_huge_page(h); 5227 spin_unlock(ptl); 5228 continue; 5229 } 5230 5231 refs = min3(pages_per_huge_page(h) - pfn_offset, 5232 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder); 5233 5234 if (pages || vmas) 5235 record_subpages_vmas(mem_map_offset(page, pfn_offset), 5236 vma, refs, 5237 likely(pages) ? pages + i : NULL, 5238 vmas ? vmas + i : NULL); 5239 5240 if (pages) { 5241 /* 5242 * try_grab_compound_head() should always succeed here, 5243 * because: a) we hold the ptl lock, and b) we've just 5244 * checked that the huge page is present in the page 5245 * tables. If the huge page is present, then the tail 5246 * pages must also be present. The ptl prevents the 5247 * head page and tail pages from being rearranged in 5248 * any way. So this page must be available at this 5249 * point, unless the page refcount overflowed: 5250 */ 5251 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], 5252 refs, 5253 flags))) { 5254 spin_unlock(ptl); 5255 remainder = 0; 5256 err = -ENOMEM; 5257 break; 5258 } 5259 } 5260 5261 vaddr += (refs << PAGE_SHIFT); 5262 remainder -= refs; 5263 i += refs; 5264 5265 spin_unlock(ptl); 5266 } 5267 *nr_pages = remainder; 5268 /* 5269 * setting position is actually required only if remainder is 5270 * not zero but it's faster not to add a "if (remainder)" 5271 * branch. 5272 */ 5273 *position = vaddr; 5274 5275 return i ? i : err; 5276 } 5277 5278 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 5279 unsigned long address, unsigned long end, pgprot_t newprot) 5280 { 5281 struct mm_struct *mm = vma->vm_mm; 5282 unsigned long start = address; 5283 pte_t *ptep; 5284 pte_t pte; 5285 struct hstate *h = hstate_vma(vma); 5286 unsigned long pages = 0; 5287 bool shared_pmd = false; 5288 struct mmu_notifier_range range; 5289 5290 /* 5291 * In the case of shared PMDs, the area to flush could be beyond 5292 * start/end. Set range.start/range.end to cover the maximum possible 5293 * range if PMD sharing is possible. 5294 */ 5295 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 5296 0, vma, mm, start, end); 5297 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5298 5299 BUG_ON(address >= end); 5300 flush_cache_range(vma, range.start, range.end); 5301 5302 mmu_notifier_invalidate_range_start(&range); 5303 i_mmap_lock_write(vma->vm_file->f_mapping); 5304 for (; address < end; address += huge_page_size(h)) { 5305 spinlock_t *ptl; 5306 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 5307 if (!ptep) 5308 continue; 5309 ptl = huge_pte_lock(h, mm, ptep); 5310 if (huge_pmd_unshare(mm, vma, &address, ptep)) { 5311 pages++; 5312 spin_unlock(ptl); 5313 shared_pmd = true; 5314 continue; 5315 } 5316 pte = huge_ptep_get(ptep); 5317 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 5318 spin_unlock(ptl); 5319 continue; 5320 } 5321 if (unlikely(is_hugetlb_entry_migration(pte))) { 5322 swp_entry_t entry = pte_to_swp_entry(pte); 5323 5324 if (is_write_migration_entry(entry)) { 5325 pte_t newpte; 5326 5327 make_migration_entry_read(&entry); 5328 newpte = swp_entry_to_pte(entry); 5329 set_huge_swap_pte_at(mm, address, ptep, 5330 newpte, huge_page_size(h)); 5331 pages++; 5332 } 5333 spin_unlock(ptl); 5334 continue; 5335 } 5336 if (!huge_pte_none(pte)) { 5337 pte_t old_pte; 5338 5339 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 5340 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 5341 pte = arch_make_huge_pte(pte, vma, NULL, 0); 5342 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 5343 pages++; 5344 } 5345 spin_unlock(ptl); 5346 } 5347 /* 5348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 5349 * may have cleared our pud entry and done put_page on the page table: 5350 * once we release i_mmap_rwsem, another task can do the final put_page 5351 * and that page table be reused and filled with junk. If we actually 5352 * did unshare a page of pmds, flush the range corresponding to the pud. 5353 */ 5354 if (shared_pmd) 5355 flush_hugetlb_tlb_range(vma, range.start, range.end); 5356 else 5357 flush_hugetlb_tlb_range(vma, start, end); 5358 /* 5359 * No need to call mmu_notifier_invalidate_range() we are downgrading 5360 * page table protection not changing it to point to a new page. 5361 * 5362 * See Documentation/vm/mmu_notifier.rst 5363 */ 5364 i_mmap_unlock_write(vma->vm_file->f_mapping); 5365 mmu_notifier_invalidate_range_end(&range); 5366 5367 return pages << h->order; 5368 } 5369 5370 /* Return true if reservation was successful, false otherwise. */ 5371 bool hugetlb_reserve_pages(struct inode *inode, 5372 long from, long to, 5373 struct vm_area_struct *vma, 5374 vm_flags_t vm_flags) 5375 { 5376 long chg, add = -1; 5377 struct hstate *h = hstate_inode(inode); 5378 struct hugepage_subpool *spool = subpool_inode(inode); 5379 struct resv_map *resv_map; 5380 struct hugetlb_cgroup *h_cg = NULL; 5381 long gbl_reserve, regions_needed = 0; 5382 5383 /* This should never happen */ 5384 if (from > to) { 5385 VM_WARN(1, "%s called with a negative range\n", __func__); 5386 return false; 5387 } 5388 5389 /* 5390 * Only apply hugepage reservation if asked. At fault time, an 5391 * attempt will be made for VM_NORESERVE to allocate a page 5392 * without using reserves 5393 */ 5394 if (vm_flags & VM_NORESERVE) 5395 return true; 5396 5397 /* 5398 * Shared mappings base their reservation on the number of pages that 5399 * are already allocated on behalf of the file. Private mappings need 5400 * to reserve the full area even if read-only as mprotect() may be 5401 * called to make the mapping read-write. Assume !vma is a shm mapping 5402 */ 5403 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5404 /* 5405 * resv_map can not be NULL as hugetlb_reserve_pages is only 5406 * called for inodes for which resv_maps were created (see 5407 * hugetlbfs_get_inode). 5408 */ 5409 resv_map = inode_resv_map(inode); 5410 5411 chg = region_chg(resv_map, from, to, ®ions_needed); 5412 5413 } else { 5414 /* Private mapping. */ 5415 resv_map = resv_map_alloc(); 5416 if (!resv_map) 5417 return false; 5418 5419 chg = to - from; 5420 5421 set_vma_resv_map(vma, resv_map); 5422 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 5423 } 5424 5425 if (chg < 0) 5426 goto out_err; 5427 5428 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 5429 chg * pages_per_huge_page(h), &h_cg) < 0) 5430 goto out_err; 5431 5432 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 5433 /* For private mappings, the hugetlb_cgroup uncharge info hangs 5434 * of the resv_map. 5435 */ 5436 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 5437 } 5438 5439 /* 5440 * There must be enough pages in the subpool for the mapping. If 5441 * the subpool has a minimum size, there may be some global 5442 * reservations already in place (gbl_reserve). 5443 */ 5444 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 5445 if (gbl_reserve < 0) 5446 goto out_uncharge_cgroup; 5447 5448 /* 5449 * Check enough hugepages are available for the reservation. 5450 * Hand the pages back to the subpool if there are not 5451 */ 5452 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 5453 goto out_put_pages; 5454 5455 /* 5456 * Account for the reservations made. Shared mappings record regions 5457 * that have reservations as they are shared by multiple VMAs. 5458 * When the last VMA disappears, the region map says how much 5459 * the reservation was and the page cache tells how much of 5460 * the reservation was consumed. Private mappings are per-VMA and 5461 * only the consumed reservations are tracked. When the VMA 5462 * disappears, the original reservation is the VMA size and the 5463 * consumed reservations are stored in the map. Hence, nothing 5464 * else has to be done for private mappings here 5465 */ 5466 if (!vma || vma->vm_flags & VM_MAYSHARE) { 5467 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 5468 5469 if (unlikely(add < 0)) { 5470 hugetlb_acct_memory(h, -gbl_reserve); 5471 goto out_put_pages; 5472 } else if (unlikely(chg > add)) { 5473 /* 5474 * pages in this range were added to the reserve 5475 * map between region_chg and region_add. This 5476 * indicates a race with alloc_huge_page. Adjust 5477 * the subpool and reserve counts modified above 5478 * based on the difference. 5479 */ 5480 long rsv_adjust; 5481 5482 /* 5483 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 5484 * reference to h_cg->css. See comment below for detail. 5485 */ 5486 hugetlb_cgroup_uncharge_cgroup_rsvd( 5487 hstate_index(h), 5488 (chg - add) * pages_per_huge_page(h), h_cg); 5489 5490 rsv_adjust = hugepage_subpool_put_pages(spool, 5491 chg - add); 5492 hugetlb_acct_memory(h, -rsv_adjust); 5493 } else if (h_cg) { 5494 /* 5495 * The file_regions will hold their own reference to 5496 * h_cg->css. So we should release the reference held 5497 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 5498 * done. 5499 */ 5500 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 5501 } 5502 } 5503 return true; 5504 5505 out_put_pages: 5506 /* put back original number of pages, chg */ 5507 (void)hugepage_subpool_put_pages(spool, chg); 5508 out_uncharge_cgroup: 5509 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 5510 chg * pages_per_huge_page(h), h_cg); 5511 out_err: 5512 if (!vma || vma->vm_flags & VM_MAYSHARE) 5513 /* Only call region_abort if the region_chg succeeded but the 5514 * region_add failed or didn't run. 5515 */ 5516 if (chg >= 0 && add < 0) 5517 region_abort(resv_map, from, to, regions_needed); 5518 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 5519 kref_put(&resv_map->refs, resv_map_release); 5520 return false; 5521 } 5522 5523 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 5524 long freed) 5525 { 5526 struct hstate *h = hstate_inode(inode); 5527 struct resv_map *resv_map = inode_resv_map(inode); 5528 long chg = 0; 5529 struct hugepage_subpool *spool = subpool_inode(inode); 5530 long gbl_reserve; 5531 5532 /* 5533 * Since this routine can be called in the evict inode path for all 5534 * hugetlbfs inodes, resv_map could be NULL. 5535 */ 5536 if (resv_map) { 5537 chg = region_del(resv_map, start, end); 5538 /* 5539 * region_del() can fail in the rare case where a region 5540 * must be split and another region descriptor can not be 5541 * allocated. If end == LONG_MAX, it will not fail. 5542 */ 5543 if (chg < 0) 5544 return chg; 5545 } 5546 5547 spin_lock(&inode->i_lock); 5548 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 5549 spin_unlock(&inode->i_lock); 5550 5551 /* 5552 * If the subpool has a minimum size, the number of global 5553 * reservations to be released may be adjusted. 5554 * 5555 * Note that !resv_map implies freed == 0. So (chg - freed) 5556 * won't go negative. 5557 */ 5558 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 5559 hugetlb_acct_memory(h, -gbl_reserve); 5560 5561 return 0; 5562 } 5563 5564 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 5565 static unsigned long page_table_shareable(struct vm_area_struct *svma, 5566 struct vm_area_struct *vma, 5567 unsigned long addr, pgoff_t idx) 5568 { 5569 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 5570 svma->vm_start; 5571 unsigned long sbase = saddr & PUD_MASK; 5572 unsigned long s_end = sbase + PUD_SIZE; 5573 5574 /* Allow segments to share if only one is marked locked */ 5575 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 5576 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 5577 5578 /* 5579 * match the virtual addresses, permission and the alignment of the 5580 * page table page. 5581 */ 5582 if (pmd_index(addr) != pmd_index(saddr) || 5583 vm_flags != svm_flags || 5584 !range_in_vma(svma, sbase, s_end)) 5585 return 0; 5586 5587 return saddr; 5588 } 5589 5590 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 5591 { 5592 unsigned long base = addr & PUD_MASK; 5593 unsigned long end = base + PUD_SIZE; 5594 5595 /* 5596 * check on proper vm_flags and page table alignment 5597 */ 5598 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 5599 return true; 5600 return false; 5601 } 5602 5603 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 5604 { 5605 #ifdef CONFIG_USERFAULTFD 5606 if (uffd_disable_huge_pmd_share(vma)) 5607 return false; 5608 #endif 5609 return vma_shareable(vma, addr); 5610 } 5611 5612 /* 5613 * Determine if start,end range within vma could be mapped by shared pmd. 5614 * If yes, adjust start and end to cover range associated with possible 5615 * shared pmd mappings. 5616 */ 5617 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5618 unsigned long *start, unsigned long *end) 5619 { 5620 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 5621 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 5622 5623 /* 5624 * vma needs to span at least one aligned PUD size, and the range 5625 * must be at least partially within in. 5626 */ 5627 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 5628 (*end <= v_start) || (*start >= v_end)) 5629 return; 5630 5631 /* Extend the range to be PUD aligned for a worst case scenario */ 5632 if (*start > v_start) 5633 *start = ALIGN_DOWN(*start, PUD_SIZE); 5634 5635 if (*end < v_end) 5636 *end = ALIGN(*end, PUD_SIZE); 5637 } 5638 5639 /* 5640 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 5641 * and returns the corresponding pte. While this is not necessary for the 5642 * !shared pmd case because we can allocate the pmd later as well, it makes the 5643 * code much cleaner. 5644 * 5645 * This routine must be called with i_mmap_rwsem held in at least read mode if 5646 * sharing is possible. For hugetlbfs, this prevents removal of any page 5647 * table entries associated with the address space. This is important as we 5648 * are setting up sharing based on existing page table entries (mappings). 5649 * 5650 * NOTE: This routine is only called from huge_pte_alloc. Some callers of 5651 * huge_pte_alloc know that sharing is not possible and do not take 5652 * i_mmap_rwsem as a performance optimization. This is handled by the 5653 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is 5654 * only required for subsequent processing. 5655 */ 5656 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 5657 unsigned long addr, pud_t *pud) 5658 { 5659 struct address_space *mapping = vma->vm_file->f_mapping; 5660 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 5661 vma->vm_pgoff; 5662 struct vm_area_struct *svma; 5663 unsigned long saddr; 5664 pte_t *spte = NULL; 5665 pte_t *pte; 5666 spinlock_t *ptl; 5667 5668 i_mmap_assert_locked(mapping); 5669 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 5670 if (svma == vma) 5671 continue; 5672 5673 saddr = page_table_shareable(svma, vma, addr, idx); 5674 if (saddr) { 5675 spte = huge_pte_offset(svma->vm_mm, saddr, 5676 vma_mmu_pagesize(svma)); 5677 if (spte) { 5678 get_page(virt_to_page(spte)); 5679 break; 5680 } 5681 } 5682 } 5683 5684 if (!spte) 5685 goto out; 5686 5687 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 5688 if (pud_none(*pud)) { 5689 pud_populate(mm, pud, 5690 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 5691 mm_inc_nr_pmds(mm); 5692 } else { 5693 put_page(virt_to_page(spte)); 5694 } 5695 spin_unlock(ptl); 5696 out: 5697 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5698 return pte; 5699 } 5700 5701 /* 5702 * unmap huge page backed by shared pte. 5703 * 5704 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 5705 * indicated by page_count > 1, unmap is achieved by clearing pud and 5706 * decrementing the ref count. If count == 1, the pte page is not shared. 5707 * 5708 * Called with page table lock held and i_mmap_rwsem held in write mode. 5709 * 5710 * returns: 1 successfully unmapped a shared pte page 5711 * 0 the underlying pte page is not shared, or it is the last user 5712 */ 5713 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5714 unsigned long *addr, pte_t *ptep) 5715 { 5716 pgd_t *pgd = pgd_offset(mm, *addr); 5717 p4d_t *p4d = p4d_offset(pgd, *addr); 5718 pud_t *pud = pud_offset(p4d, *addr); 5719 5720 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 5721 BUG_ON(page_count(virt_to_page(ptep)) == 0); 5722 if (page_count(virt_to_page(ptep)) == 1) 5723 return 0; 5724 5725 pud_clear(pud); 5726 put_page(virt_to_page(ptep)); 5727 mm_dec_nr_pmds(mm); 5728 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 5729 return 1; 5730 } 5731 5732 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5733 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 5734 unsigned long addr, pud_t *pud) 5735 { 5736 return NULL; 5737 } 5738 5739 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 5740 unsigned long *addr, pte_t *ptep) 5741 { 5742 return 0; 5743 } 5744 5745 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 5746 unsigned long *start, unsigned long *end) 5747 { 5748 } 5749 5750 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 5751 { 5752 return false; 5753 } 5754 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 5755 5756 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 5757 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 5758 unsigned long addr, unsigned long sz) 5759 { 5760 pgd_t *pgd; 5761 p4d_t *p4d; 5762 pud_t *pud; 5763 pte_t *pte = NULL; 5764 5765 pgd = pgd_offset(mm, addr); 5766 p4d = p4d_alloc(mm, pgd, addr); 5767 if (!p4d) 5768 return NULL; 5769 pud = pud_alloc(mm, p4d, addr); 5770 if (pud) { 5771 if (sz == PUD_SIZE) { 5772 pte = (pte_t *)pud; 5773 } else { 5774 BUG_ON(sz != PMD_SIZE); 5775 if (want_pmd_share(vma, addr) && pud_none(*pud)) 5776 pte = huge_pmd_share(mm, vma, addr, pud); 5777 else 5778 pte = (pte_t *)pmd_alloc(mm, pud, addr); 5779 } 5780 } 5781 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 5782 5783 return pte; 5784 } 5785 5786 /* 5787 * huge_pte_offset() - Walk the page table to resolve the hugepage 5788 * entry at address @addr 5789 * 5790 * Return: Pointer to page table entry (PUD or PMD) for 5791 * address @addr, or NULL if a !p*d_present() entry is encountered and the 5792 * size @sz doesn't match the hugepage size at this level of the page 5793 * table. 5794 */ 5795 pte_t *huge_pte_offset(struct mm_struct *mm, 5796 unsigned long addr, unsigned long sz) 5797 { 5798 pgd_t *pgd; 5799 p4d_t *p4d; 5800 pud_t *pud; 5801 pmd_t *pmd; 5802 5803 pgd = pgd_offset(mm, addr); 5804 if (!pgd_present(*pgd)) 5805 return NULL; 5806 p4d = p4d_offset(pgd, addr); 5807 if (!p4d_present(*p4d)) 5808 return NULL; 5809 5810 pud = pud_offset(p4d, addr); 5811 if (sz == PUD_SIZE) 5812 /* must be pud huge, non-present or none */ 5813 return (pte_t *)pud; 5814 if (!pud_present(*pud)) 5815 return NULL; 5816 /* must have a valid entry and size to go further */ 5817 5818 pmd = pmd_offset(pud, addr); 5819 /* must be pmd huge, non-present or none */ 5820 return (pte_t *)pmd; 5821 } 5822 5823 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 5824 5825 /* 5826 * These functions are overwritable if your architecture needs its own 5827 * behavior. 5828 */ 5829 struct page * __weak 5830 follow_huge_addr(struct mm_struct *mm, unsigned long address, 5831 int write) 5832 { 5833 return ERR_PTR(-EINVAL); 5834 } 5835 5836 struct page * __weak 5837 follow_huge_pd(struct vm_area_struct *vma, 5838 unsigned long address, hugepd_t hpd, int flags, int pdshift) 5839 { 5840 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 5841 return NULL; 5842 } 5843 5844 struct page * __weak 5845 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 5846 pmd_t *pmd, int flags) 5847 { 5848 struct page *page = NULL; 5849 spinlock_t *ptl; 5850 pte_t pte; 5851 5852 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 5853 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 5854 (FOLL_PIN | FOLL_GET))) 5855 return NULL; 5856 5857 retry: 5858 ptl = pmd_lockptr(mm, pmd); 5859 spin_lock(ptl); 5860 /* 5861 * make sure that the address range covered by this pmd is not 5862 * unmapped from other threads. 5863 */ 5864 if (!pmd_huge(*pmd)) 5865 goto out; 5866 pte = huge_ptep_get((pte_t *)pmd); 5867 if (pte_present(pte)) { 5868 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 5869 /* 5870 * try_grab_page() should always succeed here, because: a) we 5871 * hold the pmd (ptl) lock, and b) we've just checked that the 5872 * huge pmd (head) page is present in the page tables. The ptl 5873 * prevents the head page and tail pages from being rearranged 5874 * in any way. So this page must be available at this point, 5875 * unless the page refcount overflowed: 5876 */ 5877 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 5878 page = NULL; 5879 goto out; 5880 } 5881 } else { 5882 if (is_hugetlb_entry_migration(pte)) { 5883 spin_unlock(ptl); 5884 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 5885 goto retry; 5886 } 5887 /* 5888 * hwpoisoned entry is treated as no_page_table in 5889 * follow_page_mask(). 5890 */ 5891 } 5892 out: 5893 spin_unlock(ptl); 5894 return page; 5895 } 5896 5897 struct page * __weak 5898 follow_huge_pud(struct mm_struct *mm, unsigned long address, 5899 pud_t *pud, int flags) 5900 { 5901 if (flags & (FOLL_GET | FOLL_PIN)) 5902 return NULL; 5903 5904 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 5905 } 5906 5907 struct page * __weak 5908 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 5909 { 5910 if (flags & (FOLL_GET | FOLL_PIN)) 5911 return NULL; 5912 5913 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 5914 } 5915 5916 bool isolate_huge_page(struct page *page, struct list_head *list) 5917 { 5918 bool ret = true; 5919 5920 spin_lock_irq(&hugetlb_lock); 5921 if (!PageHeadHuge(page) || 5922 !HPageMigratable(page) || 5923 !get_page_unless_zero(page)) { 5924 ret = false; 5925 goto unlock; 5926 } 5927 ClearHPageMigratable(page); 5928 list_move_tail(&page->lru, list); 5929 unlock: 5930 spin_unlock_irq(&hugetlb_lock); 5931 return ret; 5932 } 5933 5934 int get_hwpoison_huge_page(struct page *page, bool *hugetlb) 5935 { 5936 int ret = 0; 5937 5938 *hugetlb = false; 5939 spin_lock_irq(&hugetlb_lock); 5940 if (PageHeadHuge(page)) { 5941 *hugetlb = true; 5942 if (HPageFreed(page) || HPageMigratable(page)) 5943 ret = get_page_unless_zero(page); 5944 } 5945 spin_unlock_irq(&hugetlb_lock); 5946 return ret; 5947 } 5948 5949 void putback_active_hugepage(struct page *page) 5950 { 5951 spin_lock_irq(&hugetlb_lock); 5952 SetHPageMigratable(page); 5953 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 5954 spin_unlock_irq(&hugetlb_lock); 5955 put_page(page); 5956 } 5957 5958 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5959 { 5960 struct hstate *h = page_hstate(oldpage); 5961 5962 hugetlb_cgroup_migrate(oldpage, newpage); 5963 set_page_owner_migrate_reason(newpage, reason); 5964 5965 /* 5966 * transfer temporary state of the new huge page. This is 5967 * reverse to other transitions because the newpage is going to 5968 * be final while the old one will be freed so it takes over 5969 * the temporary status. 5970 * 5971 * Also note that we have to transfer the per-node surplus state 5972 * here as well otherwise the global surplus count will not match 5973 * the per-node's. 5974 */ 5975 if (HPageTemporary(newpage)) { 5976 int old_nid = page_to_nid(oldpage); 5977 int new_nid = page_to_nid(newpage); 5978 5979 SetHPageTemporary(oldpage); 5980 ClearHPageTemporary(newpage); 5981 5982 /* 5983 * There is no need to transfer the per-node surplus state 5984 * when we do not cross the node. 5985 */ 5986 if (new_nid == old_nid) 5987 return; 5988 spin_lock_irq(&hugetlb_lock); 5989 if (h->surplus_huge_pages_node[old_nid]) { 5990 h->surplus_huge_pages_node[old_nid]--; 5991 h->surplus_huge_pages_node[new_nid]++; 5992 } 5993 spin_unlock_irq(&hugetlb_lock); 5994 } 5995 } 5996 5997 /* 5998 * This function will unconditionally remove all the shared pmd pgtable entries 5999 * within the specific vma for a hugetlbfs memory range. 6000 */ 6001 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 6002 { 6003 struct hstate *h = hstate_vma(vma); 6004 unsigned long sz = huge_page_size(h); 6005 struct mm_struct *mm = vma->vm_mm; 6006 struct mmu_notifier_range range; 6007 unsigned long address, start, end; 6008 spinlock_t *ptl; 6009 pte_t *ptep; 6010 6011 if (!(vma->vm_flags & VM_MAYSHARE)) 6012 return; 6013 6014 start = ALIGN(vma->vm_start, PUD_SIZE); 6015 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6016 6017 if (start >= end) 6018 return; 6019 6020 /* 6021 * No need to call adjust_range_if_pmd_sharing_possible(), because 6022 * we have already done the PUD_SIZE alignment. 6023 */ 6024 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 6025 start, end); 6026 mmu_notifier_invalidate_range_start(&range); 6027 i_mmap_lock_write(vma->vm_file->f_mapping); 6028 for (address = start; address < end; address += PUD_SIZE) { 6029 unsigned long tmp = address; 6030 6031 ptep = huge_pte_offset(mm, address, sz); 6032 if (!ptep) 6033 continue; 6034 ptl = huge_pte_lock(h, mm, ptep); 6035 /* We don't want 'address' to be changed */ 6036 huge_pmd_unshare(mm, vma, &tmp, ptep); 6037 spin_unlock(ptl); 6038 } 6039 flush_hugetlb_tlb_range(vma, start, end); 6040 i_mmap_unlock_write(vma->vm_file->f_mapping); 6041 /* 6042 * No need to call mmu_notifier_invalidate_range(), see 6043 * Documentation/vm/mmu_notifier.rst. 6044 */ 6045 mmu_notifier_invalidate_range_end(&range); 6046 } 6047 6048 #ifdef CONFIG_CMA 6049 static bool cma_reserve_called __initdata; 6050 6051 static int __init cmdline_parse_hugetlb_cma(char *p) 6052 { 6053 hugetlb_cma_size = memparse(p, &p); 6054 return 0; 6055 } 6056 6057 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 6058 6059 void __init hugetlb_cma_reserve(int order) 6060 { 6061 unsigned long size, reserved, per_node; 6062 int nid; 6063 6064 cma_reserve_called = true; 6065 6066 if (!hugetlb_cma_size) 6067 return; 6068 6069 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 6070 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 6071 (PAGE_SIZE << order) / SZ_1M); 6072 return; 6073 } 6074 6075 /* 6076 * If 3 GB area is requested on a machine with 4 numa nodes, 6077 * let's allocate 1 GB on first three nodes and ignore the last one. 6078 */ 6079 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 6080 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 6081 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 6082 6083 reserved = 0; 6084 for_each_node_state(nid, N_ONLINE) { 6085 int res; 6086 char name[CMA_MAX_NAME]; 6087 6088 size = min(per_node, hugetlb_cma_size - reserved); 6089 size = round_up(size, PAGE_SIZE << order); 6090 6091 snprintf(name, sizeof(name), "hugetlb%d", nid); 6092 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order, 6093 0, false, name, 6094 &hugetlb_cma[nid], nid); 6095 if (res) { 6096 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 6097 res, nid); 6098 continue; 6099 } 6100 6101 reserved += size; 6102 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 6103 size / SZ_1M, nid); 6104 6105 if (reserved >= hugetlb_cma_size) 6106 break; 6107 } 6108 } 6109 6110 void __init hugetlb_cma_check(void) 6111 { 6112 if (!hugetlb_cma_size || cma_reserve_called) 6113 return; 6114 6115 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 6116 } 6117 6118 #endif /* CONFIG_CMA */ 6119