xref: /openbmc/linux/mm/hugetlb.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 static inline bool PageHugeFreed(struct page *head)
83 {
84 	return page_private(head + 4) == -1UL;
85 }
86 
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89 	set_page_private(head + 4, -1UL);
90 }
91 
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94 	set_page_private(head + 4, 0);
95 }
96 
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99 
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
103 
104 	spin_unlock(&spool->lock);
105 
106 	/* If no pages are used, and no other handles to the subpool
107 	 * remain, give up any reservations based on minimum size and
108 	 * free the subpool */
109 	if (free) {
110 		if (spool->min_hpages != -1)
111 			hugetlb_acct_memory(spool->hstate,
112 						-spool->min_hpages);
113 		kfree(spool);
114 	}
115 }
116 
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118 						long min_hpages)
119 {
120 	struct hugepage_subpool *spool;
121 
122 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 	if (!spool)
124 		return NULL;
125 
126 	spin_lock_init(&spool->lock);
127 	spool->count = 1;
128 	spool->max_hpages = max_hpages;
129 	spool->hstate = h;
130 	spool->min_hpages = min_hpages;
131 
132 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 		kfree(spool);
134 		return NULL;
135 	}
136 	spool->rsv_hpages = min_hpages;
137 
138 	return spool;
139 }
140 
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143 	spin_lock(&spool->lock);
144 	BUG_ON(!spool->count);
145 	spool->count--;
146 	unlock_or_release_subpool(spool);
147 }
148 
149 /*
150  * Subpool accounting for allocating and reserving pages.
151  * Return -ENOMEM if there are not enough resources to satisfy the
152  * request.  Otherwise, return the number of pages by which the
153  * global pools must be adjusted (upward).  The returned value may
154  * only be different than the passed value (delta) in the case where
155  * a subpool minimum size must be maintained.
156  */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158 				      long delta)
159 {
160 	long ret = delta;
161 
162 	if (!spool)
163 		return ret;
164 
165 	spin_lock(&spool->lock);
166 
167 	if (spool->max_hpages != -1) {		/* maximum size accounting */
168 		if ((spool->used_hpages + delta) <= spool->max_hpages)
169 			spool->used_hpages += delta;
170 		else {
171 			ret = -ENOMEM;
172 			goto unlock_ret;
173 		}
174 	}
175 
176 	/* minimum size accounting */
177 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
178 		if (delta > spool->rsv_hpages) {
179 			/*
180 			 * Asking for more reserves than those already taken on
181 			 * behalf of subpool.  Return difference.
182 			 */
183 			ret = delta - spool->rsv_hpages;
184 			spool->rsv_hpages = 0;
185 		} else {
186 			ret = 0;	/* reserves already accounted for */
187 			spool->rsv_hpages -= delta;
188 		}
189 	}
190 
191 unlock_ret:
192 	spin_unlock(&spool->lock);
193 	return ret;
194 }
195 
196 /*
197  * Subpool accounting for freeing and unreserving pages.
198  * Return the number of global page reservations that must be dropped.
199  * The return value may only be different than the passed value (delta)
200  * in the case where a subpool minimum size must be maintained.
201  */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203 				       long delta)
204 {
205 	long ret = delta;
206 
207 	if (!spool)
208 		return delta;
209 
210 	spin_lock(&spool->lock);
211 
212 	if (spool->max_hpages != -1)		/* maximum size accounting */
213 		spool->used_hpages -= delta;
214 
215 	 /* minimum size accounting */
216 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 		if (spool->rsv_hpages + delta <= spool->min_hpages)
218 			ret = 0;
219 		else
220 			ret = spool->rsv_hpages + delta - spool->min_hpages;
221 
222 		spool->rsv_hpages += delta;
223 		if (spool->rsv_hpages > spool->min_hpages)
224 			spool->rsv_hpages = spool->min_hpages;
225 	}
226 
227 	/*
228 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 	 * quota reference, free it now.
230 	 */
231 	unlock_or_release_subpool(spool);
232 
233 	return ret;
234 }
235 
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238 	return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240 
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243 	return subpool_inode(file_inode(vma->vm_file));
244 }
245 
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252 	struct file_region *nrg = NULL;
253 
254 	VM_BUG_ON(resv->region_cache_count <= 0);
255 
256 	resv->region_cache_count--;
257 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 	list_del(&nrg->link);
259 
260 	nrg->from = from;
261 	nrg->to = to;
262 
263 	return nrg;
264 }
265 
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 					      struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 	nrg->reservation_counter = rg->reservation_counter;
271 	nrg->css = rg->css;
272 	if (rg->css)
273 		css_get(rg->css);
274 #endif
275 }
276 
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 						struct hstate *h,
280 						struct resv_map *resv,
281 						struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 	if (h_cg) {
285 		nrg->reservation_counter =
286 			&h_cg->rsvd_hugepage[hstate_index(h)];
287 		nrg->css = &h_cg->css;
288 		if (!resv->pages_per_hpage)
289 			resv->pages_per_hpage = pages_per_huge_page(h);
290 		/* pages_per_hpage should be the same for all entries in
291 		 * a resv_map.
292 		 */
293 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
294 	} else {
295 		nrg->reservation_counter = NULL;
296 		nrg->css = NULL;
297 	}
298 #endif
299 }
300 
301 static bool has_same_uncharge_info(struct file_region *rg,
302 				   struct file_region *org)
303 {
304 #ifdef CONFIG_CGROUP_HUGETLB
305 	return rg && org &&
306 	       rg->reservation_counter == org->reservation_counter &&
307 	       rg->css == org->css;
308 
309 #else
310 	return true;
311 #endif
312 }
313 
314 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
315 {
316 	struct file_region *nrg = NULL, *prg = NULL;
317 
318 	prg = list_prev_entry(rg, link);
319 	if (&prg->link != &resv->regions && prg->to == rg->from &&
320 	    has_same_uncharge_info(prg, rg)) {
321 		prg->to = rg->to;
322 
323 		list_del(&rg->link);
324 		kfree(rg);
325 
326 		rg = prg;
327 	}
328 
329 	nrg = list_next_entry(rg, link);
330 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
331 	    has_same_uncharge_info(nrg, rg)) {
332 		nrg->from = rg->from;
333 
334 		list_del(&rg->link);
335 		kfree(rg);
336 	}
337 }
338 
339 /*
340  * Must be called with resv->lock held.
341  *
342  * Calling this with regions_needed != NULL will count the number of pages
343  * to be added but will not modify the linked list. And regions_needed will
344  * indicate the number of file_regions needed in the cache to carry out to add
345  * the regions for this range.
346  */
347 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
348 				     struct hugetlb_cgroup *h_cg,
349 				     struct hstate *h, long *regions_needed)
350 {
351 	long add = 0;
352 	struct list_head *head = &resv->regions;
353 	long last_accounted_offset = f;
354 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
355 
356 	if (regions_needed)
357 		*regions_needed = 0;
358 
359 	/* In this loop, we essentially handle an entry for the range
360 	 * [last_accounted_offset, rg->from), at every iteration, with some
361 	 * bounds checking.
362 	 */
363 	list_for_each_entry_safe(rg, trg, head, link) {
364 		/* Skip irrelevant regions that start before our range. */
365 		if (rg->from < f) {
366 			/* If this region ends after the last accounted offset,
367 			 * then we need to update last_accounted_offset.
368 			 */
369 			if (rg->to > last_accounted_offset)
370 				last_accounted_offset = rg->to;
371 			continue;
372 		}
373 
374 		/* When we find a region that starts beyond our range, we've
375 		 * finished.
376 		 */
377 		if (rg->from > t)
378 			break;
379 
380 		/* Add an entry for last_accounted_offset -> rg->from, and
381 		 * update last_accounted_offset.
382 		 */
383 		if (rg->from > last_accounted_offset) {
384 			add += rg->from - last_accounted_offset;
385 			if (!regions_needed) {
386 				nrg = get_file_region_entry_from_cache(
387 					resv, last_accounted_offset, rg->from);
388 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
389 								    resv, nrg);
390 				list_add(&nrg->link, rg->link.prev);
391 				coalesce_file_region(resv, nrg);
392 			} else
393 				*regions_needed += 1;
394 		}
395 
396 		last_accounted_offset = rg->to;
397 	}
398 
399 	/* Handle the case where our range extends beyond
400 	 * last_accounted_offset.
401 	 */
402 	if (last_accounted_offset < t) {
403 		add += t - last_accounted_offset;
404 		if (!regions_needed) {
405 			nrg = get_file_region_entry_from_cache(
406 				resv, last_accounted_offset, t);
407 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
408 			list_add(&nrg->link, rg->link.prev);
409 			coalesce_file_region(resv, nrg);
410 		} else
411 			*regions_needed += 1;
412 	}
413 
414 	VM_BUG_ON(add < 0);
415 	return add;
416 }
417 
418 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
419  */
420 static int allocate_file_region_entries(struct resv_map *resv,
421 					int regions_needed)
422 	__must_hold(&resv->lock)
423 {
424 	struct list_head allocated_regions;
425 	int to_allocate = 0, i = 0;
426 	struct file_region *trg = NULL, *rg = NULL;
427 
428 	VM_BUG_ON(regions_needed < 0);
429 
430 	INIT_LIST_HEAD(&allocated_regions);
431 
432 	/*
433 	 * Check for sufficient descriptors in the cache to accommodate
434 	 * the number of in progress add operations plus regions_needed.
435 	 *
436 	 * This is a while loop because when we drop the lock, some other call
437 	 * to region_add or region_del may have consumed some region_entries,
438 	 * so we keep looping here until we finally have enough entries for
439 	 * (adds_in_progress + regions_needed).
440 	 */
441 	while (resv->region_cache_count <
442 	       (resv->adds_in_progress + regions_needed)) {
443 		to_allocate = resv->adds_in_progress + regions_needed -
444 			      resv->region_cache_count;
445 
446 		/* At this point, we should have enough entries in the cache
447 		 * for all the existings adds_in_progress. We should only be
448 		 * needing to allocate for regions_needed.
449 		 */
450 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
451 
452 		spin_unlock(&resv->lock);
453 		for (i = 0; i < to_allocate; i++) {
454 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
455 			if (!trg)
456 				goto out_of_memory;
457 			list_add(&trg->link, &allocated_regions);
458 		}
459 
460 		spin_lock(&resv->lock);
461 
462 		list_splice(&allocated_regions, &resv->region_cache);
463 		resv->region_cache_count += to_allocate;
464 	}
465 
466 	return 0;
467 
468 out_of_memory:
469 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
470 		list_del(&rg->link);
471 		kfree(rg);
472 	}
473 	return -ENOMEM;
474 }
475 
476 /*
477  * Add the huge page range represented by [f, t) to the reserve
478  * map.  Regions will be taken from the cache to fill in this range.
479  * Sufficient regions should exist in the cache due to the previous
480  * call to region_chg with the same range, but in some cases the cache will not
481  * have sufficient entries due to races with other code doing region_add or
482  * region_del.  The extra needed entries will be allocated.
483  *
484  * regions_needed is the out value provided by a previous call to region_chg.
485  *
486  * Return the number of new huge pages added to the map.  This number is greater
487  * than or equal to zero.  If file_region entries needed to be allocated for
488  * this operation and we were not able to allocate, it returns -ENOMEM.
489  * region_add of regions of length 1 never allocate file_regions and cannot
490  * fail; region_chg will always allocate at least 1 entry and a region_add for
491  * 1 page will only require at most 1 entry.
492  */
493 static long region_add(struct resv_map *resv, long f, long t,
494 		       long in_regions_needed, struct hstate *h,
495 		       struct hugetlb_cgroup *h_cg)
496 {
497 	long add = 0, actual_regions_needed = 0;
498 
499 	spin_lock(&resv->lock);
500 retry:
501 
502 	/* Count how many regions are actually needed to execute this add. */
503 	add_reservation_in_range(resv, f, t, NULL, NULL,
504 				 &actual_regions_needed);
505 
506 	/*
507 	 * Check for sufficient descriptors in the cache to accommodate
508 	 * this add operation. Note that actual_regions_needed may be greater
509 	 * than in_regions_needed, as the resv_map may have been modified since
510 	 * the region_chg call. In this case, we need to make sure that we
511 	 * allocate extra entries, such that we have enough for all the
512 	 * existing adds_in_progress, plus the excess needed for this
513 	 * operation.
514 	 */
515 	if (actual_regions_needed > in_regions_needed &&
516 	    resv->region_cache_count <
517 		    resv->adds_in_progress +
518 			    (actual_regions_needed - in_regions_needed)) {
519 		/* region_add operation of range 1 should never need to
520 		 * allocate file_region entries.
521 		 */
522 		VM_BUG_ON(t - f <= 1);
523 
524 		if (allocate_file_region_entries(
525 			    resv, actual_regions_needed - in_regions_needed)) {
526 			return -ENOMEM;
527 		}
528 
529 		goto retry;
530 	}
531 
532 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
533 
534 	resv->adds_in_progress -= in_regions_needed;
535 
536 	spin_unlock(&resv->lock);
537 	VM_BUG_ON(add < 0);
538 	return add;
539 }
540 
541 /*
542  * Examine the existing reserve map and determine how many
543  * huge pages in the specified range [f, t) are NOT currently
544  * represented.  This routine is called before a subsequent
545  * call to region_add that will actually modify the reserve
546  * map to add the specified range [f, t).  region_chg does
547  * not change the number of huge pages represented by the
548  * map.  A number of new file_region structures is added to the cache as a
549  * placeholder, for the subsequent region_add call to use. At least 1
550  * file_region structure is added.
551  *
552  * out_regions_needed is the number of regions added to the
553  * resv->adds_in_progress.  This value needs to be provided to a follow up call
554  * to region_add or region_abort for proper accounting.
555  *
556  * Returns the number of huge pages that need to be added to the existing
557  * reservation map for the range [f, t).  This number is greater or equal to
558  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
559  * is needed and can not be allocated.
560  */
561 static long region_chg(struct resv_map *resv, long f, long t,
562 		       long *out_regions_needed)
563 {
564 	long chg = 0;
565 
566 	spin_lock(&resv->lock);
567 
568 	/* Count how many hugepages in this range are NOT represented. */
569 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
570 				       out_regions_needed);
571 
572 	if (*out_regions_needed == 0)
573 		*out_regions_needed = 1;
574 
575 	if (allocate_file_region_entries(resv, *out_regions_needed))
576 		return -ENOMEM;
577 
578 	resv->adds_in_progress += *out_regions_needed;
579 
580 	spin_unlock(&resv->lock);
581 	return chg;
582 }
583 
584 /*
585  * Abort the in progress add operation.  The adds_in_progress field
586  * of the resv_map keeps track of the operations in progress between
587  * calls to region_chg and region_add.  Operations are sometimes
588  * aborted after the call to region_chg.  In such cases, region_abort
589  * is called to decrement the adds_in_progress counter. regions_needed
590  * is the value returned by the region_chg call, it is used to decrement
591  * the adds_in_progress counter.
592  *
593  * NOTE: The range arguments [f, t) are not needed or used in this
594  * routine.  They are kept to make reading the calling code easier as
595  * arguments will match the associated region_chg call.
596  */
597 static void region_abort(struct resv_map *resv, long f, long t,
598 			 long regions_needed)
599 {
600 	spin_lock(&resv->lock);
601 	VM_BUG_ON(!resv->region_cache_count);
602 	resv->adds_in_progress -= regions_needed;
603 	spin_unlock(&resv->lock);
604 }
605 
606 /*
607  * Delete the specified range [f, t) from the reserve map.  If the
608  * t parameter is LONG_MAX, this indicates that ALL regions after f
609  * should be deleted.  Locate the regions which intersect [f, t)
610  * and either trim, delete or split the existing regions.
611  *
612  * Returns the number of huge pages deleted from the reserve map.
613  * In the normal case, the return value is zero or more.  In the
614  * case where a region must be split, a new region descriptor must
615  * be allocated.  If the allocation fails, -ENOMEM will be returned.
616  * NOTE: If the parameter t == LONG_MAX, then we will never split
617  * a region and possibly return -ENOMEM.  Callers specifying
618  * t == LONG_MAX do not need to check for -ENOMEM error.
619  */
620 static long region_del(struct resv_map *resv, long f, long t)
621 {
622 	struct list_head *head = &resv->regions;
623 	struct file_region *rg, *trg;
624 	struct file_region *nrg = NULL;
625 	long del = 0;
626 
627 retry:
628 	spin_lock(&resv->lock);
629 	list_for_each_entry_safe(rg, trg, head, link) {
630 		/*
631 		 * Skip regions before the range to be deleted.  file_region
632 		 * ranges are normally of the form [from, to).  However, there
633 		 * may be a "placeholder" entry in the map which is of the form
634 		 * (from, to) with from == to.  Check for placeholder entries
635 		 * at the beginning of the range to be deleted.
636 		 */
637 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
638 			continue;
639 
640 		if (rg->from >= t)
641 			break;
642 
643 		if (f > rg->from && t < rg->to) { /* Must split region */
644 			/*
645 			 * Check for an entry in the cache before dropping
646 			 * lock and attempting allocation.
647 			 */
648 			if (!nrg &&
649 			    resv->region_cache_count > resv->adds_in_progress) {
650 				nrg = list_first_entry(&resv->region_cache,
651 							struct file_region,
652 							link);
653 				list_del(&nrg->link);
654 				resv->region_cache_count--;
655 			}
656 
657 			if (!nrg) {
658 				spin_unlock(&resv->lock);
659 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
660 				if (!nrg)
661 					return -ENOMEM;
662 				goto retry;
663 			}
664 
665 			del += t - f;
666 			hugetlb_cgroup_uncharge_file_region(
667 				resv, rg, t - f);
668 
669 			/* New entry for end of split region */
670 			nrg->from = t;
671 			nrg->to = rg->to;
672 
673 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
674 
675 			INIT_LIST_HEAD(&nrg->link);
676 
677 			/* Original entry is trimmed */
678 			rg->to = f;
679 
680 			list_add(&nrg->link, &rg->link);
681 			nrg = NULL;
682 			break;
683 		}
684 
685 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
686 			del += rg->to - rg->from;
687 			hugetlb_cgroup_uncharge_file_region(resv, rg,
688 							    rg->to - rg->from);
689 			list_del(&rg->link);
690 			kfree(rg);
691 			continue;
692 		}
693 
694 		if (f <= rg->from) {	/* Trim beginning of region */
695 			hugetlb_cgroup_uncharge_file_region(resv, rg,
696 							    t - rg->from);
697 
698 			del += t - rg->from;
699 			rg->from = t;
700 		} else {		/* Trim end of region */
701 			hugetlb_cgroup_uncharge_file_region(resv, rg,
702 							    rg->to - f);
703 
704 			del += rg->to - f;
705 			rg->to = f;
706 		}
707 	}
708 
709 	spin_unlock(&resv->lock);
710 	kfree(nrg);
711 	return del;
712 }
713 
714 /*
715  * A rare out of memory error was encountered which prevented removal of
716  * the reserve map region for a page.  The huge page itself was free'ed
717  * and removed from the page cache.  This routine will adjust the subpool
718  * usage count, and the global reserve count if needed.  By incrementing
719  * these counts, the reserve map entry which could not be deleted will
720  * appear as a "reserved" entry instead of simply dangling with incorrect
721  * counts.
722  */
723 void hugetlb_fix_reserve_counts(struct inode *inode)
724 {
725 	struct hugepage_subpool *spool = subpool_inode(inode);
726 	long rsv_adjust;
727 
728 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
729 	if (rsv_adjust) {
730 		struct hstate *h = hstate_inode(inode);
731 
732 		hugetlb_acct_memory(h, 1);
733 	}
734 }
735 
736 /*
737  * Count and return the number of huge pages in the reserve map
738  * that intersect with the range [f, t).
739  */
740 static long region_count(struct resv_map *resv, long f, long t)
741 {
742 	struct list_head *head = &resv->regions;
743 	struct file_region *rg;
744 	long chg = 0;
745 
746 	spin_lock(&resv->lock);
747 	/* Locate each segment we overlap with, and count that overlap. */
748 	list_for_each_entry(rg, head, link) {
749 		long seg_from;
750 		long seg_to;
751 
752 		if (rg->to <= f)
753 			continue;
754 		if (rg->from >= t)
755 			break;
756 
757 		seg_from = max(rg->from, f);
758 		seg_to = min(rg->to, t);
759 
760 		chg += seg_to - seg_from;
761 	}
762 	spin_unlock(&resv->lock);
763 
764 	return chg;
765 }
766 
767 /*
768  * Convert the address within this vma to the page offset within
769  * the mapping, in pagecache page units; huge pages here.
770  */
771 static pgoff_t vma_hugecache_offset(struct hstate *h,
772 			struct vm_area_struct *vma, unsigned long address)
773 {
774 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
775 			(vma->vm_pgoff >> huge_page_order(h));
776 }
777 
778 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
779 				     unsigned long address)
780 {
781 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
782 }
783 EXPORT_SYMBOL_GPL(linear_hugepage_index);
784 
785 /*
786  * Return the size of the pages allocated when backing a VMA. In the majority
787  * cases this will be same size as used by the page table entries.
788  */
789 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
790 {
791 	if (vma->vm_ops && vma->vm_ops->pagesize)
792 		return vma->vm_ops->pagesize(vma);
793 	return PAGE_SIZE;
794 }
795 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
796 
797 /*
798  * Return the page size being used by the MMU to back a VMA. In the majority
799  * of cases, the page size used by the kernel matches the MMU size. On
800  * architectures where it differs, an architecture-specific 'strong'
801  * version of this symbol is required.
802  */
803 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
804 {
805 	return vma_kernel_pagesize(vma);
806 }
807 
808 /*
809  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
810  * bits of the reservation map pointer, which are always clear due to
811  * alignment.
812  */
813 #define HPAGE_RESV_OWNER    (1UL << 0)
814 #define HPAGE_RESV_UNMAPPED (1UL << 1)
815 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
816 
817 /*
818  * These helpers are used to track how many pages are reserved for
819  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
820  * is guaranteed to have their future faults succeed.
821  *
822  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
823  * the reserve counters are updated with the hugetlb_lock held. It is safe
824  * to reset the VMA at fork() time as it is not in use yet and there is no
825  * chance of the global counters getting corrupted as a result of the values.
826  *
827  * The private mapping reservation is represented in a subtly different
828  * manner to a shared mapping.  A shared mapping has a region map associated
829  * with the underlying file, this region map represents the backing file
830  * pages which have ever had a reservation assigned which this persists even
831  * after the page is instantiated.  A private mapping has a region map
832  * associated with the original mmap which is attached to all VMAs which
833  * reference it, this region map represents those offsets which have consumed
834  * reservation ie. where pages have been instantiated.
835  */
836 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
837 {
838 	return (unsigned long)vma->vm_private_data;
839 }
840 
841 static void set_vma_private_data(struct vm_area_struct *vma,
842 							unsigned long value)
843 {
844 	vma->vm_private_data = (void *)value;
845 }
846 
847 static void
848 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
849 					  struct hugetlb_cgroup *h_cg,
850 					  struct hstate *h)
851 {
852 #ifdef CONFIG_CGROUP_HUGETLB
853 	if (!h_cg || !h) {
854 		resv_map->reservation_counter = NULL;
855 		resv_map->pages_per_hpage = 0;
856 		resv_map->css = NULL;
857 	} else {
858 		resv_map->reservation_counter =
859 			&h_cg->rsvd_hugepage[hstate_index(h)];
860 		resv_map->pages_per_hpage = pages_per_huge_page(h);
861 		resv_map->css = &h_cg->css;
862 	}
863 #endif
864 }
865 
866 struct resv_map *resv_map_alloc(void)
867 {
868 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
869 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
870 
871 	if (!resv_map || !rg) {
872 		kfree(resv_map);
873 		kfree(rg);
874 		return NULL;
875 	}
876 
877 	kref_init(&resv_map->refs);
878 	spin_lock_init(&resv_map->lock);
879 	INIT_LIST_HEAD(&resv_map->regions);
880 
881 	resv_map->adds_in_progress = 0;
882 	/*
883 	 * Initialize these to 0. On shared mappings, 0's here indicate these
884 	 * fields don't do cgroup accounting. On private mappings, these will be
885 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
886 	 * reservations are to be un-charged from here.
887 	 */
888 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
889 
890 	INIT_LIST_HEAD(&resv_map->region_cache);
891 	list_add(&rg->link, &resv_map->region_cache);
892 	resv_map->region_cache_count = 1;
893 
894 	return resv_map;
895 }
896 
897 void resv_map_release(struct kref *ref)
898 {
899 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
900 	struct list_head *head = &resv_map->region_cache;
901 	struct file_region *rg, *trg;
902 
903 	/* Clear out any active regions before we release the map. */
904 	region_del(resv_map, 0, LONG_MAX);
905 
906 	/* ... and any entries left in the cache */
907 	list_for_each_entry_safe(rg, trg, head, link) {
908 		list_del(&rg->link);
909 		kfree(rg);
910 	}
911 
912 	VM_BUG_ON(resv_map->adds_in_progress);
913 
914 	kfree(resv_map);
915 }
916 
917 static inline struct resv_map *inode_resv_map(struct inode *inode)
918 {
919 	/*
920 	 * At inode evict time, i_mapping may not point to the original
921 	 * address space within the inode.  This original address space
922 	 * contains the pointer to the resv_map.  So, always use the
923 	 * address space embedded within the inode.
924 	 * The VERY common case is inode->mapping == &inode->i_data but,
925 	 * this may not be true for device special inodes.
926 	 */
927 	return (struct resv_map *)(&inode->i_data)->private_data;
928 }
929 
930 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
931 {
932 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 	if (vma->vm_flags & VM_MAYSHARE) {
934 		struct address_space *mapping = vma->vm_file->f_mapping;
935 		struct inode *inode = mapping->host;
936 
937 		return inode_resv_map(inode);
938 
939 	} else {
940 		return (struct resv_map *)(get_vma_private_data(vma) &
941 							~HPAGE_RESV_MASK);
942 	}
943 }
944 
945 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
946 {
947 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
948 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949 
950 	set_vma_private_data(vma, (get_vma_private_data(vma) &
951 				HPAGE_RESV_MASK) | (unsigned long)map);
952 }
953 
954 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
955 {
956 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
957 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
958 
959 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
960 }
961 
962 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
963 {
964 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965 
966 	return (get_vma_private_data(vma) & flag) != 0;
967 }
968 
969 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
970 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
971 {
972 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973 	if (!(vma->vm_flags & VM_MAYSHARE))
974 		vma->vm_private_data = (void *)0;
975 }
976 
977 /* Returns true if the VMA has associated reserve pages */
978 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
979 {
980 	if (vma->vm_flags & VM_NORESERVE) {
981 		/*
982 		 * This address is already reserved by other process(chg == 0),
983 		 * so, we should decrement reserved count. Without decrementing,
984 		 * reserve count remains after releasing inode, because this
985 		 * allocated page will go into page cache and is regarded as
986 		 * coming from reserved pool in releasing step.  Currently, we
987 		 * don't have any other solution to deal with this situation
988 		 * properly, so add work-around here.
989 		 */
990 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
991 			return true;
992 		else
993 			return false;
994 	}
995 
996 	/* Shared mappings always use reserves */
997 	if (vma->vm_flags & VM_MAYSHARE) {
998 		/*
999 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1000 		 * be a region map for all pages.  The only situation where
1001 		 * there is no region map is if a hole was punched via
1002 		 * fallocate.  In this case, there really are no reserves to
1003 		 * use.  This situation is indicated if chg != 0.
1004 		 */
1005 		if (chg)
1006 			return false;
1007 		else
1008 			return true;
1009 	}
1010 
1011 	/*
1012 	 * Only the process that called mmap() has reserves for
1013 	 * private mappings.
1014 	 */
1015 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1016 		/*
1017 		 * Like the shared case above, a hole punch or truncate
1018 		 * could have been performed on the private mapping.
1019 		 * Examine the value of chg to determine if reserves
1020 		 * actually exist or were previously consumed.
1021 		 * Very Subtle - The value of chg comes from a previous
1022 		 * call to vma_needs_reserves().  The reserve map for
1023 		 * private mappings has different (opposite) semantics
1024 		 * than that of shared mappings.  vma_needs_reserves()
1025 		 * has already taken this difference in semantics into
1026 		 * account.  Therefore, the meaning of chg is the same
1027 		 * as in the shared case above.  Code could easily be
1028 		 * combined, but keeping it separate draws attention to
1029 		 * subtle differences.
1030 		 */
1031 		if (chg)
1032 			return false;
1033 		else
1034 			return true;
1035 	}
1036 
1037 	return false;
1038 }
1039 
1040 static void enqueue_huge_page(struct hstate *h, struct page *page)
1041 {
1042 	int nid = page_to_nid(page);
1043 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1044 	h->free_huge_pages++;
1045 	h->free_huge_pages_node[nid]++;
1046 	SetPageHugeFreed(page);
1047 }
1048 
1049 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1050 {
1051 	struct page *page;
1052 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1053 
1054 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1055 		if (nocma && is_migrate_cma_page(page))
1056 			continue;
1057 
1058 		if (PageHWPoison(page))
1059 			continue;
1060 
1061 		list_move(&page->lru, &h->hugepage_activelist);
1062 		set_page_refcounted(page);
1063 		ClearPageHugeFreed(page);
1064 		h->free_huge_pages--;
1065 		h->free_huge_pages_node[nid]--;
1066 		return page;
1067 	}
1068 
1069 	return NULL;
1070 }
1071 
1072 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1073 		nodemask_t *nmask)
1074 {
1075 	unsigned int cpuset_mems_cookie;
1076 	struct zonelist *zonelist;
1077 	struct zone *zone;
1078 	struct zoneref *z;
1079 	int node = NUMA_NO_NODE;
1080 
1081 	zonelist = node_zonelist(nid, gfp_mask);
1082 
1083 retry_cpuset:
1084 	cpuset_mems_cookie = read_mems_allowed_begin();
1085 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1086 		struct page *page;
1087 
1088 		if (!cpuset_zone_allowed(zone, gfp_mask))
1089 			continue;
1090 		/*
1091 		 * no need to ask again on the same node. Pool is node rather than
1092 		 * zone aware
1093 		 */
1094 		if (zone_to_nid(zone) == node)
1095 			continue;
1096 		node = zone_to_nid(zone);
1097 
1098 		page = dequeue_huge_page_node_exact(h, node);
1099 		if (page)
1100 			return page;
1101 	}
1102 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1103 		goto retry_cpuset;
1104 
1105 	return NULL;
1106 }
1107 
1108 static struct page *dequeue_huge_page_vma(struct hstate *h,
1109 				struct vm_area_struct *vma,
1110 				unsigned long address, int avoid_reserve,
1111 				long chg)
1112 {
1113 	struct page *page;
1114 	struct mempolicy *mpol;
1115 	gfp_t gfp_mask;
1116 	nodemask_t *nodemask;
1117 	int nid;
1118 
1119 	/*
1120 	 * A child process with MAP_PRIVATE mappings created by their parent
1121 	 * have no page reserves. This check ensures that reservations are
1122 	 * not "stolen". The child may still get SIGKILLed
1123 	 */
1124 	if (!vma_has_reserves(vma, chg) &&
1125 			h->free_huge_pages - h->resv_huge_pages == 0)
1126 		goto err;
1127 
1128 	/* If reserves cannot be used, ensure enough pages are in the pool */
1129 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1130 		goto err;
1131 
1132 	gfp_mask = htlb_alloc_mask(h);
1133 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1134 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1135 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1136 		SetPagePrivate(page);
1137 		h->resv_huge_pages--;
1138 	}
1139 
1140 	mpol_cond_put(mpol);
1141 	return page;
1142 
1143 err:
1144 	return NULL;
1145 }
1146 
1147 /*
1148  * common helper functions for hstate_next_node_to_{alloc|free}.
1149  * We may have allocated or freed a huge page based on a different
1150  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1151  * be outside of *nodes_allowed.  Ensure that we use an allowed
1152  * node for alloc or free.
1153  */
1154 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1155 {
1156 	nid = next_node_in(nid, *nodes_allowed);
1157 	VM_BUG_ON(nid >= MAX_NUMNODES);
1158 
1159 	return nid;
1160 }
1161 
1162 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1163 {
1164 	if (!node_isset(nid, *nodes_allowed))
1165 		nid = next_node_allowed(nid, nodes_allowed);
1166 	return nid;
1167 }
1168 
1169 /*
1170  * returns the previously saved node ["this node"] from which to
1171  * allocate a persistent huge page for the pool and advance the
1172  * next node from which to allocate, handling wrap at end of node
1173  * mask.
1174  */
1175 static int hstate_next_node_to_alloc(struct hstate *h,
1176 					nodemask_t *nodes_allowed)
1177 {
1178 	int nid;
1179 
1180 	VM_BUG_ON(!nodes_allowed);
1181 
1182 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1183 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1184 
1185 	return nid;
1186 }
1187 
1188 /*
1189  * helper for free_pool_huge_page() - return the previously saved
1190  * node ["this node"] from which to free a huge page.  Advance the
1191  * next node id whether or not we find a free huge page to free so
1192  * that the next attempt to free addresses the next node.
1193  */
1194 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1195 {
1196 	int nid;
1197 
1198 	VM_BUG_ON(!nodes_allowed);
1199 
1200 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1201 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1202 
1203 	return nid;
1204 }
1205 
1206 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1207 	for (nr_nodes = nodes_weight(*mask);				\
1208 		nr_nodes > 0 &&						\
1209 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1210 		nr_nodes--)
1211 
1212 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1213 	for (nr_nodes = nodes_weight(*mask);				\
1214 		nr_nodes > 0 &&						\
1215 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1216 		nr_nodes--)
1217 
1218 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1219 static void destroy_compound_gigantic_page(struct page *page,
1220 					unsigned int order)
1221 {
1222 	int i;
1223 	int nr_pages = 1 << order;
1224 	struct page *p = page + 1;
1225 
1226 	atomic_set(compound_mapcount_ptr(page), 0);
1227 	if (hpage_pincount_available(page))
1228 		atomic_set(compound_pincount_ptr(page), 0);
1229 
1230 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1231 		clear_compound_head(p);
1232 		set_page_refcounted(p);
1233 	}
1234 
1235 	set_compound_order(page, 0);
1236 	page[1].compound_nr = 0;
1237 	__ClearPageHead(page);
1238 }
1239 
1240 static void free_gigantic_page(struct page *page, unsigned int order)
1241 {
1242 	/*
1243 	 * If the page isn't allocated using the cma allocator,
1244 	 * cma_release() returns false.
1245 	 */
1246 #ifdef CONFIG_CMA
1247 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1248 		return;
1249 #endif
1250 
1251 	free_contig_range(page_to_pfn(page), 1 << order);
1252 }
1253 
1254 #ifdef CONFIG_CONTIG_ALLOC
1255 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1256 		int nid, nodemask_t *nodemask)
1257 {
1258 	unsigned long nr_pages = 1UL << huge_page_order(h);
1259 	if (nid == NUMA_NO_NODE)
1260 		nid = numa_mem_id();
1261 
1262 #ifdef CONFIG_CMA
1263 	{
1264 		struct page *page;
1265 		int node;
1266 
1267 		if (hugetlb_cma[nid]) {
1268 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1269 					huge_page_order(h), true);
1270 			if (page)
1271 				return page;
1272 		}
1273 
1274 		if (!(gfp_mask & __GFP_THISNODE)) {
1275 			for_each_node_mask(node, *nodemask) {
1276 				if (node == nid || !hugetlb_cma[node])
1277 					continue;
1278 
1279 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1280 						huge_page_order(h), true);
1281 				if (page)
1282 					return page;
1283 			}
1284 		}
1285 	}
1286 #endif
1287 
1288 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1289 }
1290 
1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1293 #else /* !CONFIG_CONTIG_ALLOC */
1294 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1295 					int nid, nodemask_t *nodemask)
1296 {
1297 	return NULL;
1298 }
1299 #endif /* CONFIG_CONTIG_ALLOC */
1300 
1301 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1302 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1303 					int nid, nodemask_t *nodemask)
1304 {
1305 	return NULL;
1306 }
1307 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1308 static inline void destroy_compound_gigantic_page(struct page *page,
1309 						unsigned int order) { }
1310 #endif
1311 
1312 static void update_and_free_page(struct hstate *h, struct page *page)
1313 {
1314 	int i;
1315 
1316 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1317 		return;
1318 
1319 	h->nr_huge_pages--;
1320 	h->nr_huge_pages_node[page_to_nid(page)]--;
1321 	for (i = 0; i < pages_per_huge_page(h); i++) {
1322 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1323 				1 << PG_referenced | 1 << PG_dirty |
1324 				1 << PG_active | 1 << PG_private |
1325 				1 << PG_writeback);
1326 	}
1327 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1328 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1329 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1330 	set_page_refcounted(page);
1331 	if (hstate_is_gigantic(h)) {
1332 		/*
1333 		 * Temporarily drop the hugetlb_lock, because
1334 		 * we might block in free_gigantic_page().
1335 		 */
1336 		spin_unlock(&hugetlb_lock);
1337 		destroy_compound_gigantic_page(page, huge_page_order(h));
1338 		free_gigantic_page(page, huge_page_order(h));
1339 		spin_lock(&hugetlb_lock);
1340 	} else {
1341 		__free_pages(page, huge_page_order(h));
1342 	}
1343 }
1344 
1345 struct hstate *size_to_hstate(unsigned long size)
1346 {
1347 	struct hstate *h;
1348 
1349 	for_each_hstate(h) {
1350 		if (huge_page_size(h) == size)
1351 			return h;
1352 	}
1353 	return NULL;
1354 }
1355 
1356 /*
1357  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1358  * to hstate->hugepage_activelist.)
1359  *
1360  * This function can be called for tail pages, but never returns true for them.
1361  */
1362 bool page_huge_active(struct page *page)
1363 {
1364 	return PageHeadHuge(page) && PagePrivate(&page[1]);
1365 }
1366 
1367 /* never called for tail page */
1368 void set_page_huge_active(struct page *page)
1369 {
1370 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1371 	SetPagePrivate(&page[1]);
1372 }
1373 
1374 static void clear_page_huge_active(struct page *page)
1375 {
1376 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1377 	ClearPagePrivate(&page[1]);
1378 }
1379 
1380 /*
1381  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1382  * code
1383  */
1384 static inline bool PageHugeTemporary(struct page *page)
1385 {
1386 	if (!PageHuge(page))
1387 		return false;
1388 
1389 	return (unsigned long)page[2].mapping == -1U;
1390 }
1391 
1392 static inline void SetPageHugeTemporary(struct page *page)
1393 {
1394 	page[2].mapping = (void *)-1U;
1395 }
1396 
1397 static inline void ClearPageHugeTemporary(struct page *page)
1398 {
1399 	page[2].mapping = NULL;
1400 }
1401 
1402 static void __free_huge_page(struct page *page)
1403 {
1404 	/*
1405 	 * Can't pass hstate in here because it is called from the
1406 	 * compound page destructor.
1407 	 */
1408 	struct hstate *h = page_hstate(page);
1409 	int nid = page_to_nid(page);
1410 	struct hugepage_subpool *spool =
1411 		(struct hugepage_subpool *)page_private(page);
1412 	bool restore_reserve;
1413 
1414 	VM_BUG_ON_PAGE(page_count(page), page);
1415 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1416 
1417 	set_page_private(page, 0);
1418 	page->mapping = NULL;
1419 	restore_reserve = PagePrivate(page);
1420 	ClearPagePrivate(page);
1421 
1422 	/*
1423 	 * If PagePrivate() was set on page, page allocation consumed a
1424 	 * reservation.  If the page was associated with a subpool, there
1425 	 * would have been a page reserved in the subpool before allocation
1426 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1427 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1428 	 * remove the reserved page from the subpool.
1429 	 */
1430 	if (!restore_reserve) {
1431 		/*
1432 		 * A return code of zero implies that the subpool will be
1433 		 * under its minimum size if the reservation is not restored
1434 		 * after page is free.  Therefore, force restore_reserve
1435 		 * operation.
1436 		 */
1437 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1438 			restore_reserve = true;
1439 	}
1440 
1441 	spin_lock(&hugetlb_lock);
1442 	clear_page_huge_active(page);
1443 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1444 				     pages_per_huge_page(h), page);
1445 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1446 					  pages_per_huge_page(h), page);
1447 	if (restore_reserve)
1448 		h->resv_huge_pages++;
1449 
1450 	if (PageHugeTemporary(page)) {
1451 		list_del(&page->lru);
1452 		ClearPageHugeTemporary(page);
1453 		update_and_free_page(h, page);
1454 	} else if (h->surplus_huge_pages_node[nid]) {
1455 		/* remove the page from active list */
1456 		list_del(&page->lru);
1457 		update_and_free_page(h, page);
1458 		h->surplus_huge_pages--;
1459 		h->surplus_huge_pages_node[nid]--;
1460 	} else {
1461 		arch_clear_hugepage_flags(page);
1462 		enqueue_huge_page(h, page);
1463 	}
1464 	spin_unlock(&hugetlb_lock);
1465 }
1466 
1467 /*
1468  * As free_huge_page() can be called from a non-task context, we have
1469  * to defer the actual freeing in a workqueue to prevent potential
1470  * hugetlb_lock deadlock.
1471  *
1472  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1473  * be freed and frees them one-by-one. As the page->mapping pointer is
1474  * going to be cleared in __free_huge_page() anyway, it is reused as the
1475  * llist_node structure of a lockless linked list of huge pages to be freed.
1476  */
1477 static LLIST_HEAD(hpage_freelist);
1478 
1479 static void free_hpage_workfn(struct work_struct *work)
1480 {
1481 	struct llist_node *node;
1482 	struct page *page;
1483 
1484 	node = llist_del_all(&hpage_freelist);
1485 
1486 	while (node) {
1487 		page = container_of((struct address_space **)node,
1488 				     struct page, mapping);
1489 		node = node->next;
1490 		__free_huge_page(page);
1491 	}
1492 }
1493 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1494 
1495 void free_huge_page(struct page *page)
1496 {
1497 	/*
1498 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1499 	 */
1500 	if (!in_task()) {
1501 		/*
1502 		 * Only call schedule_work() if hpage_freelist is previously
1503 		 * empty. Otherwise, schedule_work() had been called but the
1504 		 * workfn hasn't retrieved the list yet.
1505 		 */
1506 		if (llist_add((struct llist_node *)&page->mapping,
1507 			      &hpage_freelist))
1508 			schedule_work(&free_hpage_work);
1509 		return;
1510 	}
1511 
1512 	__free_huge_page(page);
1513 }
1514 
1515 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1516 {
1517 	INIT_LIST_HEAD(&page->lru);
1518 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1519 	set_hugetlb_cgroup(page, NULL);
1520 	set_hugetlb_cgroup_rsvd(page, NULL);
1521 	spin_lock(&hugetlb_lock);
1522 	h->nr_huge_pages++;
1523 	h->nr_huge_pages_node[nid]++;
1524 	ClearPageHugeFreed(page);
1525 	spin_unlock(&hugetlb_lock);
1526 }
1527 
1528 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1529 {
1530 	int i;
1531 	int nr_pages = 1 << order;
1532 	struct page *p = page + 1;
1533 
1534 	/* we rely on prep_new_huge_page to set the destructor */
1535 	set_compound_order(page, order);
1536 	__ClearPageReserved(page);
1537 	__SetPageHead(page);
1538 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1539 		/*
1540 		 * For gigantic hugepages allocated through bootmem at
1541 		 * boot, it's safer to be consistent with the not-gigantic
1542 		 * hugepages and clear the PG_reserved bit from all tail pages
1543 		 * too.  Otherwise drivers using get_user_pages() to access tail
1544 		 * pages may get the reference counting wrong if they see
1545 		 * PG_reserved set on a tail page (despite the head page not
1546 		 * having PG_reserved set).  Enforcing this consistency between
1547 		 * head and tail pages allows drivers to optimize away a check
1548 		 * on the head page when they need know if put_page() is needed
1549 		 * after get_user_pages().
1550 		 */
1551 		__ClearPageReserved(p);
1552 		set_page_count(p, 0);
1553 		set_compound_head(p, page);
1554 	}
1555 	atomic_set(compound_mapcount_ptr(page), -1);
1556 
1557 	if (hpage_pincount_available(page))
1558 		atomic_set(compound_pincount_ptr(page), 0);
1559 }
1560 
1561 /*
1562  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1563  * transparent huge pages.  See the PageTransHuge() documentation for more
1564  * details.
1565  */
1566 int PageHuge(struct page *page)
1567 {
1568 	if (!PageCompound(page))
1569 		return 0;
1570 
1571 	page = compound_head(page);
1572 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1573 }
1574 EXPORT_SYMBOL_GPL(PageHuge);
1575 
1576 /*
1577  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1578  * normal or transparent huge pages.
1579  */
1580 int PageHeadHuge(struct page *page_head)
1581 {
1582 	if (!PageHead(page_head))
1583 		return 0;
1584 
1585 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1586 }
1587 
1588 /*
1589  * Find and lock address space (mapping) in write mode.
1590  *
1591  * Upon entry, the page is locked which means that page_mapping() is
1592  * stable.  Due to locking order, we can only trylock_write.  If we can
1593  * not get the lock, simply return NULL to caller.
1594  */
1595 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1596 {
1597 	struct address_space *mapping = page_mapping(hpage);
1598 
1599 	if (!mapping)
1600 		return mapping;
1601 
1602 	if (i_mmap_trylock_write(mapping))
1603 		return mapping;
1604 
1605 	return NULL;
1606 }
1607 
1608 pgoff_t __basepage_index(struct page *page)
1609 {
1610 	struct page *page_head = compound_head(page);
1611 	pgoff_t index = page_index(page_head);
1612 	unsigned long compound_idx;
1613 
1614 	if (!PageHuge(page_head))
1615 		return page_index(page);
1616 
1617 	if (compound_order(page_head) >= MAX_ORDER)
1618 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1619 	else
1620 		compound_idx = page - page_head;
1621 
1622 	return (index << compound_order(page_head)) + compound_idx;
1623 }
1624 
1625 static struct page *alloc_buddy_huge_page(struct hstate *h,
1626 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1627 		nodemask_t *node_alloc_noretry)
1628 {
1629 	int order = huge_page_order(h);
1630 	struct page *page;
1631 	bool alloc_try_hard = true;
1632 
1633 	/*
1634 	 * By default we always try hard to allocate the page with
1635 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1636 	 * a loop (to adjust global huge page counts) and previous allocation
1637 	 * failed, do not continue to try hard on the same node.  Use the
1638 	 * node_alloc_noretry bitmap to manage this state information.
1639 	 */
1640 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1641 		alloc_try_hard = false;
1642 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1643 	if (alloc_try_hard)
1644 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1645 	if (nid == NUMA_NO_NODE)
1646 		nid = numa_mem_id();
1647 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1648 	if (page)
1649 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1650 	else
1651 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1652 
1653 	/*
1654 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1655 	 * indicates an overall state change.  Clear bit so that we resume
1656 	 * normal 'try hard' allocations.
1657 	 */
1658 	if (node_alloc_noretry && page && !alloc_try_hard)
1659 		node_clear(nid, *node_alloc_noretry);
1660 
1661 	/*
1662 	 * If we tried hard to get a page but failed, set bit so that
1663 	 * subsequent attempts will not try as hard until there is an
1664 	 * overall state change.
1665 	 */
1666 	if (node_alloc_noretry && !page && alloc_try_hard)
1667 		node_set(nid, *node_alloc_noretry);
1668 
1669 	return page;
1670 }
1671 
1672 /*
1673  * Common helper to allocate a fresh hugetlb page. All specific allocators
1674  * should use this function to get new hugetlb pages
1675  */
1676 static struct page *alloc_fresh_huge_page(struct hstate *h,
1677 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1678 		nodemask_t *node_alloc_noretry)
1679 {
1680 	struct page *page;
1681 
1682 	if (hstate_is_gigantic(h))
1683 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1684 	else
1685 		page = alloc_buddy_huge_page(h, gfp_mask,
1686 				nid, nmask, node_alloc_noretry);
1687 	if (!page)
1688 		return NULL;
1689 
1690 	if (hstate_is_gigantic(h))
1691 		prep_compound_gigantic_page(page, huge_page_order(h));
1692 	prep_new_huge_page(h, page, page_to_nid(page));
1693 
1694 	return page;
1695 }
1696 
1697 /*
1698  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1699  * manner.
1700  */
1701 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1702 				nodemask_t *node_alloc_noretry)
1703 {
1704 	struct page *page;
1705 	int nr_nodes, node;
1706 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1707 
1708 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1709 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1710 						node_alloc_noretry);
1711 		if (page)
1712 			break;
1713 	}
1714 
1715 	if (!page)
1716 		return 0;
1717 
1718 	put_page(page); /* free it into the hugepage allocator */
1719 
1720 	return 1;
1721 }
1722 
1723 /*
1724  * Free huge page from pool from next node to free.
1725  * Attempt to keep persistent huge pages more or less
1726  * balanced over allowed nodes.
1727  * Called with hugetlb_lock locked.
1728  */
1729 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1730 							 bool acct_surplus)
1731 {
1732 	int nr_nodes, node;
1733 	int ret = 0;
1734 
1735 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1736 		/*
1737 		 * If we're returning unused surplus pages, only examine
1738 		 * nodes with surplus pages.
1739 		 */
1740 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1741 		    !list_empty(&h->hugepage_freelists[node])) {
1742 			struct page *page =
1743 				list_entry(h->hugepage_freelists[node].next,
1744 					  struct page, lru);
1745 			list_del(&page->lru);
1746 			h->free_huge_pages--;
1747 			h->free_huge_pages_node[node]--;
1748 			if (acct_surplus) {
1749 				h->surplus_huge_pages--;
1750 				h->surplus_huge_pages_node[node]--;
1751 			}
1752 			update_and_free_page(h, page);
1753 			ret = 1;
1754 			break;
1755 		}
1756 	}
1757 
1758 	return ret;
1759 }
1760 
1761 /*
1762  * Dissolve a given free hugepage into free buddy pages. This function does
1763  * nothing for in-use hugepages and non-hugepages.
1764  * This function returns values like below:
1765  *
1766  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1767  *          (allocated or reserved.)
1768  *       0: successfully dissolved free hugepages or the page is not a
1769  *          hugepage (considered as already dissolved)
1770  */
1771 int dissolve_free_huge_page(struct page *page)
1772 {
1773 	int rc = -EBUSY;
1774 
1775 retry:
1776 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1777 	if (!PageHuge(page))
1778 		return 0;
1779 
1780 	spin_lock(&hugetlb_lock);
1781 	if (!PageHuge(page)) {
1782 		rc = 0;
1783 		goto out;
1784 	}
1785 
1786 	if (!page_count(page)) {
1787 		struct page *head = compound_head(page);
1788 		struct hstate *h = page_hstate(head);
1789 		int nid = page_to_nid(head);
1790 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1791 			goto out;
1792 
1793 		/*
1794 		 * We should make sure that the page is already on the free list
1795 		 * when it is dissolved.
1796 		 */
1797 		if (unlikely(!PageHugeFreed(head))) {
1798 			spin_unlock(&hugetlb_lock);
1799 			cond_resched();
1800 
1801 			/*
1802 			 * Theoretically, we should return -EBUSY when we
1803 			 * encounter this race. In fact, we have a chance
1804 			 * to successfully dissolve the page if we do a
1805 			 * retry. Because the race window is quite small.
1806 			 * If we seize this opportunity, it is an optimization
1807 			 * for increasing the success rate of dissolving page.
1808 			 */
1809 			goto retry;
1810 		}
1811 
1812 		/*
1813 		 * Move PageHWPoison flag from head page to the raw error page,
1814 		 * which makes any subpages rather than the error page reusable.
1815 		 */
1816 		if (PageHWPoison(head) && page != head) {
1817 			SetPageHWPoison(page);
1818 			ClearPageHWPoison(head);
1819 		}
1820 		list_del(&head->lru);
1821 		h->free_huge_pages--;
1822 		h->free_huge_pages_node[nid]--;
1823 		h->max_huge_pages--;
1824 		update_and_free_page(h, head);
1825 		rc = 0;
1826 	}
1827 out:
1828 	spin_unlock(&hugetlb_lock);
1829 	return rc;
1830 }
1831 
1832 /*
1833  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1834  * make specified memory blocks removable from the system.
1835  * Note that this will dissolve a free gigantic hugepage completely, if any
1836  * part of it lies within the given range.
1837  * Also note that if dissolve_free_huge_page() returns with an error, all
1838  * free hugepages that were dissolved before that error are lost.
1839  */
1840 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1841 {
1842 	unsigned long pfn;
1843 	struct page *page;
1844 	int rc = 0;
1845 
1846 	if (!hugepages_supported())
1847 		return rc;
1848 
1849 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1850 		page = pfn_to_page(pfn);
1851 		rc = dissolve_free_huge_page(page);
1852 		if (rc)
1853 			break;
1854 	}
1855 
1856 	return rc;
1857 }
1858 
1859 /*
1860  * Allocates a fresh surplus page from the page allocator.
1861  */
1862 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1863 		int nid, nodemask_t *nmask)
1864 {
1865 	struct page *page = NULL;
1866 
1867 	if (hstate_is_gigantic(h))
1868 		return NULL;
1869 
1870 	spin_lock(&hugetlb_lock);
1871 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1872 		goto out_unlock;
1873 	spin_unlock(&hugetlb_lock);
1874 
1875 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1876 	if (!page)
1877 		return NULL;
1878 
1879 	spin_lock(&hugetlb_lock);
1880 	/*
1881 	 * We could have raced with the pool size change.
1882 	 * Double check that and simply deallocate the new page
1883 	 * if we would end up overcommiting the surpluses. Abuse
1884 	 * temporary page to workaround the nasty free_huge_page
1885 	 * codeflow
1886 	 */
1887 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1888 		SetPageHugeTemporary(page);
1889 		spin_unlock(&hugetlb_lock);
1890 		put_page(page);
1891 		return NULL;
1892 	} else {
1893 		h->surplus_huge_pages++;
1894 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1895 	}
1896 
1897 out_unlock:
1898 	spin_unlock(&hugetlb_lock);
1899 
1900 	return page;
1901 }
1902 
1903 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1904 				     int nid, nodemask_t *nmask)
1905 {
1906 	struct page *page;
1907 
1908 	if (hstate_is_gigantic(h))
1909 		return NULL;
1910 
1911 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1912 	if (!page)
1913 		return NULL;
1914 
1915 	/*
1916 	 * We do not account these pages as surplus because they are only
1917 	 * temporary and will be released properly on the last reference
1918 	 */
1919 	SetPageHugeTemporary(page);
1920 
1921 	return page;
1922 }
1923 
1924 /*
1925  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1926  */
1927 static
1928 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1929 		struct vm_area_struct *vma, unsigned long addr)
1930 {
1931 	struct page *page;
1932 	struct mempolicy *mpol;
1933 	gfp_t gfp_mask = htlb_alloc_mask(h);
1934 	int nid;
1935 	nodemask_t *nodemask;
1936 
1937 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1938 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1939 	mpol_cond_put(mpol);
1940 
1941 	return page;
1942 }
1943 
1944 /* page migration callback function */
1945 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1946 		nodemask_t *nmask, gfp_t gfp_mask)
1947 {
1948 	spin_lock(&hugetlb_lock);
1949 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1950 		struct page *page;
1951 
1952 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1953 		if (page) {
1954 			spin_unlock(&hugetlb_lock);
1955 			return page;
1956 		}
1957 	}
1958 	spin_unlock(&hugetlb_lock);
1959 
1960 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1961 }
1962 
1963 /* mempolicy aware migration callback */
1964 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1965 		unsigned long address)
1966 {
1967 	struct mempolicy *mpol;
1968 	nodemask_t *nodemask;
1969 	struct page *page;
1970 	gfp_t gfp_mask;
1971 	int node;
1972 
1973 	gfp_mask = htlb_alloc_mask(h);
1974 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1975 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1976 	mpol_cond_put(mpol);
1977 
1978 	return page;
1979 }
1980 
1981 /*
1982  * Increase the hugetlb pool such that it can accommodate a reservation
1983  * of size 'delta'.
1984  */
1985 static int gather_surplus_pages(struct hstate *h, long delta)
1986 	__must_hold(&hugetlb_lock)
1987 {
1988 	struct list_head surplus_list;
1989 	struct page *page, *tmp;
1990 	int ret;
1991 	long i;
1992 	long needed, allocated;
1993 	bool alloc_ok = true;
1994 
1995 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1996 	if (needed <= 0) {
1997 		h->resv_huge_pages += delta;
1998 		return 0;
1999 	}
2000 
2001 	allocated = 0;
2002 	INIT_LIST_HEAD(&surplus_list);
2003 
2004 	ret = -ENOMEM;
2005 retry:
2006 	spin_unlock(&hugetlb_lock);
2007 	for (i = 0; i < needed; i++) {
2008 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2009 				NUMA_NO_NODE, NULL);
2010 		if (!page) {
2011 			alloc_ok = false;
2012 			break;
2013 		}
2014 		list_add(&page->lru, &surplus_list);
2015 		cond_resched();
2016 	}
2017 	allocated += i;
2018 
2019 	/*
2020 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2021 	 * because either resv_huge_pages or free_huge_pages may have changed.
2022 	 */
2023 	spin_lock(&hugetlb_lock);
2024 	needed = (h->resv_huge_pages + delta) -
2025 			(h->free_huge_pages + allocated);
2026 	if (needed > 0) {
2027 		if (alloc_ok)
2028 			goto retry;
2029 		/*
2030 		 * We were not able to allocate enough pages to
2031 		 * satisfy the entire reservation so we free what
2032 		 * we've allocated so far.
2033 		 */
2034 		goto free;
2035 	}
2036 	/*
2037 	 * The surplus_list now contains _at_least_ the number of extra pages
2038 	 * needed to accommodate the reservation.  Add the appropriate number
2039 	 * of pages to the hugetlb pool and free the extras back to the buddy
2040 	 * allocator.  Commit the entire reservation here to prevent another
2041 	 * process from stealing the pages as they are added to the pool but
2042 	 * before they are reserved.
2043 	 */
2044 	needed += allocated;
2045 	h->resv_huge_pages += delta;
2046 	ret = 0;
2047 
2048 	/* Free the needed pages to the hugetlb pool */
2049 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2050 		int zeroed;
2051 
2052 		if ((--needed) < 0)
2053 			break;
2054 		/*
2055 		 * This page is now managed by the hugetlb allocator and has
2056 		 * no users -- drop the buddy allocator's reference.
2057 		 */
2058 		zeroed = put_page_testzero(page);
2059 		VM_BUG_ON_PAGE(!zeroed, page);
2060 		enqueue_huge_page(h, page);
2061 	}
2062 free:
2063 	spin_unlock(&hugetlb_lock);
2064 
2065 	/* Free unnecessary surplus pages to the buddy allocator */
2066 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2067 		put_page(page);
2068 	spin_lock(&hugetlb_lock);
2069 
2070 	return ret;
2071 }
2072 
2073 /*
2074  * This routine has two main purposes:
2075  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2076  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2077  *    to the associated reservation map.
2078  * 2) Free any unused surplus pages that may have been allocated to satisfy
2079  *    the reservation.  As many as unused_resv_pages may be freed.
2080  *
2081  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2082  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2083  * we must make sure nobody else can claim pages we are in the process of
2084  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2085  * number of huge pages we plan to free when dropping the lock.
2086  */
2087 static void return_unused_surplus_pages(struct hstate *h,
2088 					unsigned long unused_resv_pages)
2089 {
2090 	unsigned long nr_pages;
2091 
2092 	/* Cannot return gigantic pages currently */
2093 	if (hstate_is_gigantic(h))
2094 		goto out;
2095 
2096 	/*
2097 	 * Part (or even all) of the reservation could have been backed
2098 	 * by pre-allocated pages. Only free surplus pages.
2099 	 */
2100 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2101 
2102 	/*
2103 	 * We want to release as many surplus pages as possible, spread
2104 	 * evenly across all nodes with memory. Iterate across these nodes
2105 	 * until we can no longer free unreserved surplus pages. This occurs
2106 	 * when the nodes with surplus pages have no free pages.
2107 	 * free_pool_huge_page() will balance the freed pages across the
2108 	 * on-line nodes with memory and will handle the hstate accounting.
2109 	 *
2110 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2111 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2112 	 * to cover subsequent pages we may free.
2113 	 */
2114 	while (nr_pages--) {
2115 		h->resv_huge_pages--;
2116 		unused_resv_pages--;
2117 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2118 			goto out;
2119 		cond_resched_lock(&hugetlb_lock);
2120 	}
2121 
2122 out:
2123 	/* Fully uncommit the reservation */
2124 	h->resv_huge_pages -= unused_resv_pages;
2125 }
2126 
2127 
2128 /*
2129  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2130  * are used by the huge page allocation routines to manage reservations.
2131  *
2132  * vma_needs_reservation is called to determine if the huge page at addr
2133  * within the vma has an associated reservation.  If a reservation is
2134  * needed, the value 1 is returned.  The caller is then responsible for
2135  * managing the global reservation and subpool usage counts.  After
2136  * the huge page has been allocated, vma_commit_reservation is called
2137  * to add the page to the reservation map.  If the page allocation fails,
2138  * the reservation must be ended instead of committed.  vma_end_reservation
2139  * is called in such cases.
2140  *
2141  * In the normal case, vma_commit_reservation returns the same value
2142  * as the preceding vma_needs_reservation call.  The only time this
2143  * is not the case is if a reserve map was changed between calls.  It
2144  * is the responsibility of the caller to notice the difference and
2145  * take appropriate action.
2146  *
2147  * vma_add_reservation is used in error paths where a reservation must
2148  * be restored when a newly allocated huge page must be freed.  It is
2149  * to be called after calling vma_needs_reservation to determine if a
2150  * reservation exists.
2151  */
2152 enum vma_resv_mode {
2153 	VMA_NEEDS_RESV,
2154 	VMA_COMMIT_RESV,
2155 	VMA_END_RESV,
2156 	VMA_ADD_RESV,
2157 };
2158 static long __vma_reservation_common(struct hstate *h,
2159 				struct vm_area_struct *vma, unsigned long addr,
2160 				enum vma_resv_mode mode)
2161 {
2162 	struct resv_map *resv;
2163 	pgoff_t idx;
2164 	long ret;
2165 	long dummy_out_regions_needed;
2166 
2167 	resv = vma_resv_map(vma);
2168 	if (!resv)
2169 		return 1;
2170 
2171 	idx = vma_hugecache_offset(h, vma, addr);
2172 	switch (mode) {
2173 	case VMA_NEEDS_RESV:
2174 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2175 		/* We assume that vma_reservation_* routines always operate on
2176 		 * 1 page, and that adding to resv map a 1 page entry can only
2177 		 * ever require 1 region.
2178 		 */
2179 		VM_BUG_ON(dummy_out_regions_needed != 1);
2180 		break;
2181 	case VMA_COMMIT_RESV:
2182 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2183 		/* region_add calls of range 1 should never fail. */
2184 		VM_BUG_ON(ret < 0);
2185 		break;
2186 	case VMA_END_RESV:
2187 		region_abort(resv, idx, idx + 1, 1);
2188 		ret = 0;
2189 		break;
2190 	case VMA_ADD_RESV:
2191 		if (vma->vm_flags & VM_MAYSHARE) {
2192 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2193 			/* region_add calls of range 1 should never fail. */
2194 			VM_BUG_ON(ret < 0);
2195 		} else {
2196 			region_abort(resv, idx, idx + 1, 1);
2197 			ret = region_del(resv, idx, idx + 1);
2198 		}
2199 		break;
2200 	default:
2201 		BUG();
2202 	}
2203 
2204 	if (vma->vm_flags & VM_MAYSHARE)
2205 		return ret;
2206 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2207 		/*
2208 		 * In most cases, reserves always exist for private mappings.
2209 		 * However, a file associated with mapping could have been
2210 		 * hole punched or truncated after reserves were consumed.
2211 		 * As subsequent fault on such a range will not use reserves.
2212 		 * Subtle - The reserve map for private mappings has the
2213 		 * opposite meaning than that of shared mappings.  If NO
2214 		 * entry is in the reserve map, it means a reservation exists.
2215 		 * If an entry exists in the reserve map, it means the
2216 		 * reservation has already been consumed.  As a result, the
2217 		 * return value of this routine is the opposite of the
2218 		 * value returned from reserve map manipulation routines above.
2219 		 */
2220 		if (ret)
2221 			return 0;
2222 		else
2223 			return 1;
2224 	}
2225 	else
2226 		return ret < 0 ? ret : 0;
2227 }
2228 
2229 static long vma_needs_reservation(struct hstate *h,
2230 			struct vm_area_struct *vma, unsigned long addr)
2231 {
2232 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2233 }
2234 
2235 static long vma_commit_reservation(struct hstate *h,
2236 			struct vm_area_struct *vma, unsigned long addr)
2237 {
2238 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2239 }
2240 
2241 static void vma_end_reservation(struct hstate *h,
2242 			struct vm_area_struct *vma, unsigned long addr)
2243 {
2244 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2245 }
2246 
2247 static long vma_add_reservation(struct hstate *h,
2248 			struct vm_area_struct *vma, unsigned long addr)
2249 {
2250 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2251 }
2252 
2253 /*
2254  * This routine is called to restore a reservation on error paths.  In the
2255  * specific error paths, a huge page was allocated (via alloc_huge_page)
2256  * and is about to be freed.  If a reservation for the page existed,
2257  * alloc_huge_page would have consumed the reservation and set PagePrivate
2258  * in the newly allocated page.  When the page is freed via free_huge_page,
2259  * the global reservation count will be incremented if PagePrivate is set.
2260  * However, free_huge_page can not adjust the reserve map.  Adjust the
2261  * reserve map here to be consistent with global reserve count adjustments
2262  * to be made by free_huge_page.
2263  */
2264 static void restore_reserve_on_error(struct hstate *h,
2265 			struct vm_area_struct *vma, unsigned long address,
2266 			struct page *page)
2267 {
2268 	if (unlikely(PagePrivate(page))) {
2269 		long rc = vma_needs_reservation(h, vma, address);
2270 
2271 		if (unlikely(rc < 0)) {
2272 			/*
2273 			 * Rare out of memory condition in reserve map
2274 			 * manipulation.  Clear PagePrivate so that
2275 			 * global reserve count will not be incremented
2276 			 * by free_huge_page.  This will make it appear
2277 			 * as though the reservation for this page was
2278 			 * consumed.  This may prevent the task from
2279 			 * faulting in the page at a later time.  This
2280 			 * is better than inconsistent global huge page
2281 			 * accounting of reserve counts.
2282 			 */
2283 			ClearPagePrivate(page);
2284 		} else if (rc) {
2285 			rc = vma_add_reservation(h, vma, address);
2286 			if (unlikely(rc < 0))
2287 				/*
2288 				 * See above comment about rare out of
2289 				 * memory condition.
2290 				 */
2291 				ClearPagePrivate(page);
2292 		} else
2293 			vma_end_reservation(h, vma, address);
2294 	}
2295 }
2296 
2297 struct page *alloc_huge_page(struct vm_area_struct *vma,
2298 				    unsigned long addr, int avoid_reserve)
2299 {
2300 	struct hugepage_subpool *spool = subpool_vma(vma);
2301 	struct hstate *h = hstate_vma(vma);
2302 	struct page *page;
2303 	long map_chg, map_commit;
2304 	long gbl_chg;
2305 	int ret, idx;
2306 	struct hugetlb_cgroup *h_cg;
2307 	bool deferred_reserve;
2308 
2309 	idx = hstate_index(h);
2310 	/*
2311 	 * Examine the region/reserve map to determine if the process
2312 	 * has a reservation for the page to be allocated.  A return
2313 	 * code of zero indicates a reservation exists (no change).
2314 	 */
2315 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2316 	if (map_chg < 0)
2317 		return ERR_PTR(-ENOMEM);
2318 
2319 	/*
2320 	 * Processes that did not create the mapping will have no
2321 	 * reserves as indicated by the region/reserve map. Check
2322 	 * that the allocation will not exceed the subpool limit.
2323 	 * Allocations for MAP_NORESERVE mappings also need to be
2324 	 * checked against any subpool limit.
2325 	 */
2326 	if (map_chg || avoid_reserve) {
2327 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2328 		if (gbl_chg < 0) {
2329 			vma_end_reservation(h, vma, addr);
2330 			return ERR_PTR(-ENOSPC);
2331 		}
2332 
2333 		/*
2334 		 * Even though there was no reservation in the region/reserve
2335 		 * map, there could be reservations associated with the
2336 		 * subpool that can be used.  This would be indicated if the
2337 		 * return value of hugepage_subpool_get_pages() is zero.
2338 		 * However, if avoid_reserve is specified we still avoid even
2339 		 * the subpool reservations.
2340 		 */
2341 		if (avoid_reserve)
2342 			gbl_chg = 1;
2343 	}
2344 
2345 	/* If this allocation is not consuming a reservation, charge it now.
2346 	 */
2347 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2348 	if (deferred_reserve) {
2349 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2350 			idx, pages_per_huge_page(h), &h_cg);
2351 		if (ret)
2352 			goto out_subpool_put;
2353 	}
2354 
2355 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2356 	if (ret)
2357 		goto out_uncharge_cgroup_reservation;
2358 
2359 	spin_lock(&hugetlb_lock);
2360 	/*
2361 	 * glb_chg is passed to indicate whether or not a page must be taken
2362 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2363 	 * a reservation exists for the allocation.
2364 	 */
2365 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2366 	if (!page) {
2367 		spin_unlock(&hugetlb_lock);
2368 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2369 		if (!page)
2370 			goto out_uncharge_cgroup;
2371 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2372 			SetPagePrivate(page);
2373 			h->resv_huge_pages--;
2374 		}
2375 		spin_lock(&hugetlb_lock);
2376 		list_add(&page->lru, &h->hugepage_activelist);
2377 		/* Fall through */
2378 	}
2379 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2380 	/* If allocation is not consuming a reservation, also store the
2381 	 * hugetlb_cgroup pointer on the page.
2382 	 */
2383 	if (deferred_reserve) {
2384 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2385 						  h_cg, page);
2386 	}
2387 
2388 	spin_unlock(&hugetlb_lock);
2389 
2390 	set_page_private(page, (unsigned long)spool);
2391 
2392 	map_commit = vma_commit_reservation(h, vma, addr);
2393 	if (unlikely(map_chg > map_commit)) {
2394 		/*
2395 		 * The page was added to the reservation map between
2396 		 * vma_needs_reservation and vma_commit_reservation.
2397 		 * This indicates a race with hugetlb_reserve_pages.
2398 		 * Adjust for the subpool count incremented above AND
2399 		 * in hugetlb_reserve_pages for the same page.  Also,
2400 		 * the reservation count added in hugetlb_reserve_pages
2401 		 * no longer applies.
2402 		 */
2403 		long rsv_adjust;
2404 
2405 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2406 		hugetlb_acct_memory(h, -rsv_adjust);
2407 		if (deferred_reserve)
2408 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2409 					pages_per_huge_page(h), page);
2410 	}
2411 	return page;
2412 
2413 out_uncharge_cgroup:
2414 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2415 out_uncharge_cgroup_reservation:
2416 	if (deferred_reserve)
2417 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2418 						    h_cg);
2419 out_subpool_put:
2420 	if (map_chg || avoid_reserve)
2421 		hugepage_subpool_put_pages(spool, 1);
2422 	vma_end_reservation(h, vma, addr);
2423 	return ERR_PTR(-ENOSPC);
2424 }
2425 
2426 int alloc_bootmem_huge_page(struct hstate *h)
2427 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2428 int __alloc_bootmem_huge_page(struct hstate *h)
2429 {
2430 	struct huge_bootmem_page *m;
2431 	int nr_nodes, node;
2432 
2433 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2434 		void *addr;
2435 
2436 		addr = memblock_alloc_try_nid_raw(
2437 				huge_page_size(h), huge_page_size(h),
2438 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2439 		if (addr) {
2440 			/*
2441 			 * Use the beginning of the huge page to store the
2442 			 * huge_bootmem_page struct (until gather_bootmem
2443 			 * puts them into the mem_map).
2444 			 */
2445 			m = addr;
2446 			goto found;
2447 		}
2448 	}
2449 	return 0;
2450 
2451 found:
2452 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2453 	/* Put them into a private list first because mem_map is not up yet */
2454 	INIT_LIST_HEAD(&m->list);
2455 	list_add(&m->list, &huge_boot_pages);
2456 	m->hstate = h;
2457 	return 1;
2458 }
2459 
2460 static void __init prep_compound_huge_page(struct page *page,
2461 		unsigned int order)
2462 {
2463 	if (unlikely(order > (MAX_ORDER - 1)))
2464 		prep_compound_gigantic_page(page, order);
2465 	else
2466 		prep_compound_page(page, order);
2467 }
2468 
2469 /* Put bootmem huge pages into the standard lists after mem_map is up */
2470 static void __init gather_bootmem_prealloc(void)
2471 {
2472 	struct huge_bootmem_page *m;
2473 
2474 	list_for_each_entry(m, &huge_boot_pages, list) {
2475 		struct page *page = virt_to_page(m);
2476 		struct hstate *h = m->hstate;
2477 
2478 		WARN_ON(page_count(page) != 1);
2479 		prep_compound_huge_page(page, h->order);
2480 		WARN_ON(PageReserved(page));
2481 		prep_new_huge_page(h, page, page_to_nid(page));
2482 		put_page(page); /* free it into the hugepage allocator */
2483 
2484 		/*
2485 		 * If we had gigantic hugepages allocated at boot time, we need
2486 		 * to restore the 'stolen' pages to totalram_pages in order to
2487 		 * fix confusing memory reports from free(1) and another
2488 		 * side-effects, like CommitLimit going negative.
2489 		 */
2490 		if (hstate_is_gigantic(h))
2491 			adjust_managed_page_count(page, 1 << h->order);
2492 		cond_resched();
2493 	}
2494 }
2495 
2496 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2497 {
2498 	unsigned long i;
2499 	nodemask_t *node_alloc_noretry;
2500 
2501 	if (!hstate_is_gigantic(h)) {
2502 		/*
2503 		 * Bit mask controlling how hard we retry per-node allocations.
2504 		 * Ignore errors as lower level routines can deal with
2505 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2506 		 * time, we are likely in bigger trouble.
2507 		 */
2508 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2509 						GFP_KERNEL);
2510 	} else {
2511 		/* allocations done at boot time */
2512 		node_alloc_noretry = NULL;
2513 	}
2514 
2515 	/* bit mask controlling how hard we retry per-node allocations */
2516 	if (node_alloc_noretry)
2517 		nodes_clear(*node_alloc_noretry);
2518 
2519 	for (i = 0; i < h->max_huge_pages; ++i) {
2520 		if (hstate_is_gigantic(h)) {
2521 			if (hugetlb_cma_size) {
2522 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2523 				break;
2524 			}
2525 			if (!alloc_bootmem_huge_page(h))
2526 				break;
2527 		} else if (!alloc_pool_huge_page(h,
2528 					 &node_states[N_MEMORY],
2529 					 node_alloc_noretry))
2530 			break;
2531 		cond_resched();
2532 	}
2533 	if (i < h->max_huge_pages) {
2534 		char buf[32];
2535 
2536 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2537 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2538 			h->max_huge_pages, buf, i);
2539 		h->max_huge_pages = i;
2540 	}
2541 
2542 	kfree(node_alloc_noretry);
2543 }
2544 
2545 static void __init hugetlb_init_hstates(void)
2546 {
2547 	struct hstate *h;
2548 
2549 	for_each_hstate(h) {
2550 		if (minimum_order > huge_page_order(h))
2551 			minimum_order = huge_page_order(h);
2552 
2553 		/* oversize hugepages were init'ed in early boot */
2554 		if (!hstate_is_gigantic(h))
2555 			hugetlb_hstate_alloc_pages(h);
2556 	}
2557 	VM_BUG_ON(minimum_order == UINT_MAX);
2558 }
2559 
2560 static void __init report_hugepages(void)
2561 {
2562 	struct hstate *h;
2563 
2564 	for_each_hstate(h) {
2565 		char buf[32];
2566 
2567 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2568 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2569 			buf, h->free_huge_pages);
2570 	}
2571 }
2572 
2573 #ifdef CONFIG_HIGHMEM
2574 static void try_to_free_low(struct hstate *h, unsigned long count,
2575 						nodemask_t *nodes_allowed)
2576 {
2577 	int i;
2578 
2579 	if (hstate_is_gigantic(h))
2580 		return;
2581 
2582 	for_each_node_mask(i, *nodes_allowed) {
2583 		struct page *page, *next;
2584 		struct list_head *freel = &h->hugepage_freelists[i];
2585 		list_for_each_entry_safe(page, next, freel, lru) {
2586 			if (count >= h->nr_huge_pages)
2587 				return;
2588 			if (PageHighMem(page))
2589 				continue;
2590 			list_del(&page->lru);
2591 			update_and_free_page(h, page);
2592 			h->free_huge_pages--;
2593 			h->free_huge_pages_node[page_to_nid(page)]--;
2594 		}
2595 	}
2596 }
2597 #else
2598 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2599 						nodemask_t *nodes_allowed)
2600 {
2601 }
2602 #endif
2603 
2604 /*
2605  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2606  * balanced by operating on them in a round-robin fashion.
2607  * Returns 1 if an adjustment was made.
2608  */
2609 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2610 				int delta)
2611 {
2612 	int nr_nodes, node;
2613 
2614 	VM_BUG_ON(delta != -1 && delta != 1);
2615 
2616 	if (delta < 0) {
2617 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2618 			if (h->surplus_huge_pages_node[node])
2619 				goto found;
2620 		}
2621 	} else {
2622 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2623 			if (h->surplus_huge_pages_node[node] <
2624 					h->nr_huge_pages_node[node])
2625 				goto found;
2626 		}
2627 	}
2628 	return 0;
2629 
2630 found:
2631 	h->surplus_huge_pages += delta;
2632 	h->surplus_huge_pages_node[node] += delta;
2633 	return 1;
2634 }
2635 
2636 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2637 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2638 			      nodemask_t *nodes_allowed)
2639 {
2640 	unsigned long min_count, ret;
2641 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2642 
2643 	/*
2644 	 * Bit mask controlling how hard we retry per-node allocations.
2645 	 * If we can not allocate the bit mask, do not attempt to allocate
2646 	 * the requested huge pages.
2647 	 */
2648 	if (node_alloc_noretry)
2649 		nodes_clear(*node_alloc_noretry);
2650 	else
2651 		return -ENOMEM;
2652 
2653 	spin_lock(&hugetlb_lock);
2654 
2655 	/*
2656 	 * Check for a node specific request.
2657 	 * Changing node specific huge page count may require a corresponding
2658 	 * change to the global count.  In any case, the passed node mask
2659 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2660 	 */
2661 	if (nid != NUMA_NO_NODE) {
2662 		unsigned long old_count = count;
2663 
2664 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2665 		/*
2666 		 * User may have specified a large count value which caused the
2667 		 * above calculation to overflow.  In this case, they wanted
2668 		 * to allocate as many huge pages as possible.  Set count to
2669 		 * largest possible value to align with their intention.
2670 		 */
2671 		if (count < old_count)
2672 			count = ULONG_MAX;
2673 	}
2674 
2675 	/*
2676 	 * Gigantic pages runtime allocation depend on the capability for large
2677 	 * page range allocation.
2678 	 * If the system does not provide this feature, return an error when
2679 	 * the user tries to allocate gigantic pages but let the user free the
2680 	 * boottime allocated gigantic pages.
2681 	 */
2682 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2683 		if (count > persistent_huge_pages(h)) {
2684 			spin_unlock(&hugetlb_lock);
2685 			NODEMASK_FREE(node_alloc_noretry);
2686 			return -EINVAL;
2687 		}
2688 		/* Fall through to decrease pool */
2689 	}
2690 
2691 	/*
2692 	 * Increase the pool size
2693 	 * First take pages out of surplus state.  Then make up the
2694 	 * remaining difference by allocating fresh huge pages.
2695 	 *
2696 	 * We might race with alloc_surplus_huge_page() here and be unable
2697 	 * to convert a surplus huge page to a normal huge page. That is
2698 	 * not critical, though, it just means the overall size of the
2699 	 * pool might be one hugepage larger than it needs to be, but
2700 	 * within all the constraints specified by the sysctls.
2701 	 */
2702 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2703 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2704 			break;
2705 	}
2706 
2707 	while (count > persistent_huge_pages(h)) {
2708 		/*
2709 		 * If this allocation races such that we no longer need the
2710 		 * page, free_huge_page will handle it by freeing the page
2711 		 * and reducing the surplus.
2712 		 */
2713 		spin_unlock(&hugetlb_lock);
2714 
2715 		/* yield cpu to avoid soft lockup */
2716 		cond_resched();
2717 
2718 		ret = alloc_pool_huge_page(h, nodes_allowed,
2719 						node_alloc_noretry);
2720 		spin_lock(&hugetlb_lock);
2721 		if (!ret)
2722 			goto out;
2723 
2724 		/* Bail for signals. Probably ctrl-c from user */
2725 		if (signal_pending(current))
2726 			goto out;
2727 	}
2728 
2729 	/*
2730 	 * Decrease the pool size
2731 	 * First return free pages to the buddy allocator (being careful
2732 	 * to keep enough around to satisfy reservations).  Then place
2733 	 * pages into surplus state as needed so the pool will shrink
2734 	 * to the desired size as pages become free.
2735 	 *
2736 	 * By placing pages into the surplus state independent of the
2737 	 * overcommit value, we are allowing the surplus pool size to
2738 	 * exceed overcommit. There are few sane options here. Since
2739 	 * alloc_surplus_huge_page() is checking the global counter,
2740 	 * though, we'll note that we're not allowed to exceed surplus
2741 	 * and won't grow the pool anywhere else. Not until one of the
2742 	 * sysctls are changed, or the surplus pages go out of use.
2743 	 */
2744 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2745 	min_count = max(count, min_count);
2746 	try_to_free_low(h, min_count, nodes_allowed);
2747 	while (min_count < persistent_huge_pages(h)) {
2748 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2749 			break;
2750 		cond_resched_lock(&hugetlb_lock);
2751 	}
2752 	while (count < persistent_huge_pages(h)) {
2753 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2754 			break;
2755 	}
2756 out:
2757 	h->max_huge_pages = persistent_huge_pages(h);
2758 	spin_unlock(&hugetlb_lock);
2759 
2760 	NODEMASK_FREE(node_alloc_noretry);
2761 
2762 	return 0;
2763 }
2764 
2765 #define HSTATE_ATTR_RO(_name) \
2766 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2767 
2768 #define HSTATE_ATTR(_name) \
2769 	static struct kobj_attribute _name##_attr = \
2770 		__ATTR(_name, 0644, _name##_show, _name##_store)
2771 
2772 static struct kobject *hugepages_kobj;
2773 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2774 
2775 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2776 
2777 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2778 {
2779 	int i;
2780 
2781 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2782 		if (hstate_kobjs[i] == kobj) {
2783 			if (nidp)
2784 				*nidp = NUMA_NO_NODE;
2785 			return &hstates[i];
2786 		}
2787 
2788 	return kobj_to_node_hstate(kobj, nidp);
2789 }
2790 
2791 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2792 					struct kobj_attribute *attr, char *buf)
2793 {
2794 	struct hstate *h;
2795 	unsigned long nr_huge_pages;
2796 	int nid;
2797 
2798 	h = kobj_to_hstate(kobj, &nid);
2799 	if (nid == NUMA_NO_NODE)
2800 		nr_huge_pages = h->nr_huge_pages;
2801 	else
2802 		nr_huge_pages = h->nr_huge_pages_node[nid];
2803 
2804 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2805 }
2806 
2807 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2808 					   struct hstate *h, int nid,
2809 					   unsigned long count, size_t len)
2810 {
2811 	int err;
2812 	nodemask_t nodes_allowed, *n_mask;
2813 
2814 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2815 		return -EINVAL;
2816 
2817 	if (nid == NUMA_NO_NODE) {
2818 		/*
2819 		 * global hstate attribute
2820 		 */
2821 		if (!(obey_mempolicy &&
2822 				init_nodemask_of_mempolicy(&nodes_allowed)))
2823 			n_mask = &node_states[N_MEMORY];
2824 		else
2825 			n_mask = &nodes_allowed;
2826 	} else {
2827 		/*
2828 		 * Node specific request.  count adjustment happens in
2829 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2830 		 */
2831 		init_nodemask_of_node(&nodes_allowed, nid);
2832 		n_mask = &nodes_allowed;
2833 	}
2834 
2835 	err = set_max_huge_pages(h, count, nid, n_mask);
2836 
2837 	return err ? err : len;
2838 }
2839 
2840 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2841 					 struct kobject *kobj, const char *buf,
2842 					 size_t len)
2843 {
2844 	struct hstate *h;
2845 	unsigned long count;
2846 	int nid;
2847 	int err;
2848 
2849 	err = kstrtoul(buf, 10, &count);
2850 	if (err)
2851 		return err;
2852 
2853 	h = kobj_to_hstate(kobj, &nid);
2854 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2855 }
2856 
2857 static ssize_t nr_hugepages_show(struct kobject *kobj,
2858 				       struct kobj_attribute *attr, char *buf)
2859 {
2860 	return nr_hugepages_show_common(kobj, attr, buf);
2861 }
2862 
2863 static ssize_t nr_hugepages_store(struct kobject *kobj,
2864 	       struct kobj_attribute *attr, const char *buf, size_t len)
2865 {
2866 	return nr_hugepages_store_common(false, kobj, buf, len);
2867 }
2868 HSTATE_ATTR(nr_hugepages);
2869 
2870 #ifdef CONFIG_NUMA
2871 
2872 /*
2873  * hstate attribute for optionally mempolicy-based constraint on persistent
2874  * huge page alloc/free.
2875  */
2876 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2877 					   struct kobj_attribute *attr,
2878 					   char *buf)
2879 {
2880 	return nr_hugepages_show_common(kobj, attr, buf);
2881 }
2882 
2883 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2884 	       struct kobj_attribute *attr, const char *buf, size_t len)
2885 {
2886 	return nr_hugepages_store_common(true, kobj, buf, len);
2887 }
2888 HSTATE_ATTR(nr_hugepages_mempolicy);
2889 #endif
2890 
2891 
2892 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2893 					struct kobj_attribute *attr, char *buf)
2894 {
2895 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2896 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2897 }
2898 
2899 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2900 		struct kobj_attribute *attr, const char *buf, size_t count)
2901 {
2902 	int err;
2903 	unsigned long input;
2904 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2905 
2906 	if (hstate_is_gigantic(h))
2907 		return -EINVAL;
2908 
2909 	err = kstrtoul(buf, 10, &input);
2910 	if (err)
2911 		return err;
2912 
2913 	spin_lock(&hugetlb_lock);
2914 	h->nr_overcommit_huge_pages = input;
2915 	spin_unlock(&hugetlb_lock);
2916 
2917 	return count;
2918 }
2919 HSTATE_ATTR(nr_overcommit_hugepages);
2920 
2921 static ssize_t free_hugepages_show(struct kobject *kobj,
2922 					struct kobj_attribute *attr, char *buf)
2923 {
2924 	struct hstate *h;
2925 	unsigned long free_huge_pages;
2926 	int nid;
2927 
2928 	h = kobj_to_hstate(kobj, &nid);
2929 	if (nid == NUMA_NO_NODE)
2930 		free_huge_pages = h->free_huge_pages;
2931 	else
2932 		free_huge_pages = h->free_huge_pages_node[nid];
2933 
2934 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2935 }
2936 HSTATE_ATTR_RO(free_hugepages);
2937 
2938 static ssize_t resv_hugepages_show(struct kobject *kobj,
2939 					struct kobj_attribute *attr, char *buf)
2940 {
2941 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2942 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2943 }
2944 HSTATE_ATTR_RO(resv_hugepages);
2945 
2946 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2947 					struct kobj_attribute *attr, char *buf)
2948 {
2949 	struct hstate *h;
2950 	unsigned long surplus_huge_pages;
2951 	int nid;
2952 
2953 	h = kobj_to_hstate(kobj, &nid);
2954 	if (nid == NUMA_NO_NODE)
2955 		surplus_huge_pages = h->surplus_huge_pages;
2956 	else
2957 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2958 
2959 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2960 }
2961 HSTATE_ATTR_RO(surplus_hugepages);
2962 
2963 static struct attribute *hstate_attrs[] = {
2964 	&nr_hugepages_attr.attr,
2965 	&nr_overcommit_hugepages_attr.attr,
2966 	&free_hugepages_attr.attr,
2967 	&resv_hugepages_attr.attr,
2968 	&surplus_hugepages_attr.attr,
2969 #ifdef CONFIG_NUMA
2970 	&nr_hugepages_mempolicy_attr.attr,
2971 #endif
2972 	NULL,
2973 };
2974 
2975 static const struct attribute_group hstate_attr_group = {
2976 	.attrs = hstate_attrs,
2977 };
2978 
2979 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2980 				    struct kobject **hstate_kobjs,
2981 				    const struct attribute_group *hstate_attr_group)
2982 {
2983 	int retval;
2984 	int hi = hstate_index(h);
2985 
2986 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2987 	if (!hstate_kobjs[hi])
2988 		return -ENOMEM;
2989 
2990 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2991 	if (retval)
2992 		kobject_put(hstate_kobjs[hi]);
2993 
2994 	return retval;
2995 }
2996 
2997 static void __init hugetlb_sysfs_init(void)
2998 {
2999 	struct hstate *h;
3000 	int err;
3001 
3002 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3003 	if (!hugepages_kobj)
3004 		return;
3005 
3006 	for_each_hstate(h) {
3007 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3008 					 hstate_kobjs, &hstate_attr_group);
3009 		if (err)
3010 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3011 	}
3012 }
3013 
3014 #ifdef CONFIG_NUMA
3015 
3016 /*
3017  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3018  * with node devices in node_devices[] using a parallel array.  The array
3019  * index of a node device or _hstate == node id.
3020  * This is here to avoid any static dependency of the node device driver, in
3021  * the base kernel, on the hugetlb module.
3022  */
3023 struct node_hstate {
3024 	struct kobject		*hugepages_kobj;
3025 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3026 };
3027 static struct node_hstate node_hstates[MAX_NUMNODES];
3028 
3029 /*
3030  * A subset of global hstate attributes for node devices
3031  */
3032 static struct attribute *per_node_hstate_attrs[] = {
3033 	&nr_hugepages_attr.attr,
3034 	&free_hugepages_attr.attr,
3035 	&surplus_hugepages_attr.attr,
3036 	NULL,
3037 };
3038 
3039 static const struct attribute_group per_node_hstate_attr_group = {
3040 	.attrs = per_node_hstate_attrs,
3041 };
3042 
3043 /*
3044  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3045  * Returns node id via non-NULL nidp.
3046  */
3047 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3048 {
3049 	int nid;
3050 
3051 	for (nid = 0; nid < nr_node_ids; nid++) {
3052 		struct node_hstate *nhs = &node_hstates[nid];
3053 		int i;
3054 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3055 			if (nhs->hstate_kobjs[i] == kobj) {
3056 				if (nidp)
3057 					*nidp = nid;
3058 				return &hstates[i];
3059 			}
3060 	}
3061 
3062 	BUG();
3063 	return NULL;
3064 }
3065 
3066 /*
3067  * Unregister hstate attributes from a single node device.
3068  * No-op if no hstate attributes attached.
3069  */
3070 static void hugetlb_unregister_node(struct node *node)
3071 {
3072 	struct hstate *h;
3073 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3074 
3075 	if (!nhs->hugepages_kobj)
3076 		return;		/* no hstate attributes */
3077 
3078 	for_each_hstate(h) {
3079 		int idx = hstate_index(h);
3080 		if (nhs->hstate_kobjs[idx]) {
3081 			kobject_put(nhs->hstate_kobjs[idx]);
3082 			nhs->hstate_kobjs[idx] = NULL;
3083 		}
3084 	}
3085 
3086 	kobject_put(nhs->hugepages_kobj);
3087 	nhs->hugepages_kobj = NULL;
3088 }
3089 
3090 
3091 /*
3092  * Register hstate attributes for a single node device.
3093  * No-op if attributes already registered.
3094  */
3095 static void hugetlb_register_node(struct node *node)
3096 {
3097 	struct hstate *h;
3098 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3099 	int err;
3100 
3101 	if (nhs->hugepages_kobj)
3102 		return;		/* already allocated */
3103 
3104 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3105 							&node->dev.kobj);
3106 	if (!nhs->hugepages_kobj)
3107 		return;
3108 
3109 	for_each_hstate(h) {
3110 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3111 						nhs->hstate_kobjs,
3112 						&per_node_hstate_attr_group);
3113 		if (err) {
3114 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3115 				h->name, node->dev.id);
3116 			hugetlb_unregister_node(node);
3117 			break;
3118 		}
3119 	}
3120 }
3121 
3122 /*
3123  * hugetlb init time:  register hstate attributes for all registered node
3124  * devices of nodes that have memory.  All on-line nodes should have
3125  * registered their associated device by this time.
3126  */
3127 static void __init hugetlb_register_all_nodes(void)
3128 {
3129 	int nid;
3130 
3131 	for_each_node_state(nid, N_MEMORY) {
3132 		struct node *node = node_devices[nid];
3133 		if (node->dev.id == nid)
3134 			hugetlb_register_node(node);
3135 	}
3136 
3137 	/*
3138 	 * Let the node device driver know we're here so it can
3139 	 * [un]register hstate attributes on node hotplug.
3140 	 */
3141 	register_hugetlbfs_with_node(hugetlb_register_node,
3142 				     hugetlb_unregister_node);
3143 }
3144 #else	/* !CONFIG_NUMA */
3145 
3146 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3147 {
3148 	BUG();
3149 	if (nidp)
3150 		*nidp = -1;
3151 	return NULL;
3152 }
3153 
3154 static void hugetlb_register_all_nodes(void) { }
3155 
3156 #endif
3157 
3158 static int __init hugetlb_init(void)
3159 {
3160 	int i;
3161 
3162 	if (!hugepages_supported()) {
3163 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3164 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3165 		return 0;
3166 	}
3167 
3168 	/*
3169 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3170 	 * architectures depend on setup being done here.
3171 	 */
3172 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3173 	if (!parsed_default_hugepagesz) {
3174 		/*
3175 		 * If we did not parse a default huge page size, set
3176 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3177 		 * number of huge pages for this default size was implicitly
3178 		 * specified, set that here as well.
3179 		 * Note that the implicit setting will overwrite an explicit
3180 		 * setting.  A warning will be printed in this case.
3181 		 */
3182 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3183 		if (default_hstate_max_huge_pages) {
3184 			if (default_hstate.max_huge_pages) {
3185 				char buf[32];
3186 
3187 				string_get_size(huge_page_size(&default_hstate),
3188 					1, STRING_UNITS_2, buf, 32);
3189 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3190 					default_hstate.max_huge_pages, buf);
3191 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3192 					default_hstate_max_huge_pages);
3193 			}
3194 			default_hstate.max_huge_pages =
3195 				default_hstate_max_huge_pages;
3196 		}
3197 	}
3198 
3199 	hugetlb_cma_check();
3200 	hugetlb_init_hstates();
3201 	gather_bootmem_prealloc();
3202 	report_hugepages();
3203 
3204 	hugetlb_sysfs_init();
3205 	hugetlb_register_all_nodes();
3206 	hugetlb_cgroup_file_init();
3207 
3208 #ifdef CONFIG_SMP
3209 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3210 #else
3211 	num_fault_mutexes = 1;
3212 #endif
3213 	hugetlb_fault_mutex_table =
3214 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3215 			      GFP_KERNEL);
3216 	BUG_ON(!hugetlb_fault_mutex_table);
3217 
3218 	for (i = 0; i < num_fault_mutexes; i++)
3219 		mutex_init(&hugetlb_fault_mutex_table[i]);
3220 	return 0;
3221 }
3222 subsys_initcall(hugetlb_init);
3223 
3224 /* Overwritten by architectures with more huge page sizes */
3225 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3226 {
3227 	return size == HPAGE_SIZE;
3228 }
3229 
3230 void __init hugetlb_add_hstate(unsigned int order)
3231 {
3232 	struct hstate *h;
3233 	unsigned long i;
3234 
3235 	if (size_to_hstate(PAGE_SIZE << order)) {
3236 		return;
3237 	}
3238 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3239 	BUG_ON(order == 0);
3240 	h = &hstates[hugetlb_max_hstate++];
3241 	h->order = order;
3242 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3243 	for (i = 0; i < MAX_NUMNODES; ++i)
3244 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3245 	INIT_LIST_HEAD(&h->hugepage_activelist);
3246 	h->next_nid_to_alloc = first_memory_node;
3247 	h->next_nid_to_free = first_memory_node;
3248 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3249 					huge_page_size(h)/1024);
3250 
3251 	parsed_hstate = h;
3252 }
3253 
3254 /*
3255  * hugepages command line processing
3256  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3257  * specification.  If not, ignore the hugepages value.  hugepages can also
3258  * be the first huge page command line  option in which case it implicitly
3259  * specifies the number of huge pages for the default size.
3260  */
3261 static int __init hugepages_setup(char *s)
3262 {
3263 	unsigned long *mhp;
3264 	static unsigned long *last_mhp;
3265 
3266 	if (!parsed_valid_hugepagesz) {
3267 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3268 		parsed_valid_hugepagesz = true;
3269 		return 0;
3270 	}
3271 
3272 	/*
3273 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3274 	 * yet, so this hugepages= parameter goes to the "default hstate".
3275 	 * Otherwise, it goes with the previously parsed hugepagesz or
3276 	 * default_hugepagesz.
3277 	 */
3278 	else if (!hugetlb_max_hstate)
3279 		mhp = &default_hstate_max_huge_pages;
3280 	else
3281 		mhp = &parsed_hstate->max_huge_pages;
3282 
3283 	if (mhp == last_mhp) {
3284 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3285 		return 0;
3286 	}
3287 
3288 	if (sscanf(s, "%lu", mhp) <= 0)
3289 		*mhp = 0;
3290 
3291 	/*
3292 	 * Global state is always initialized later in hugetlb_init.
3293 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3294 	 * use the bootmem allocator.
3295 	 */
3296 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3297 		hugetlb_hstate_alloc_pages(parsed_hstate);
3298 
3299 	last_mhp = mhp;
3300 
3301 	return 1;
3302 }
3303 __setup("hugepages=", hugepages_setup);
3304 
3305 /*
3306  * hugepagesz command line processing
3307  * A specific huge page size can only be specified once with hugepagesz.
3308  * hugepagesz is followed by hugepages on the command line.  The global
3309  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3310  * hugepagesz argument was valid.
3311  */
3312 static int __init hugepagesz_setup(char *s)
3313 {
3314 	unsigned long size;
3315 	struct hstate *h;
3316 
3317 	parsed_valid_hugepagesz = false;
3318 	size = (unsigned long)memparse(s, NULL);
3319 
3320 	if (!arch_hugetlb_valid_size(size)) {
3321 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3322 		return 0;
3323 	}
3324 
3325 	h = size_to_hstate(size);
3326 	if (h) {
3327 		/*
3328 		 * hstate for this size already exists.  This is normally
3329 		 * an error, but is allowed if the existing hstate is the
3330 		 * default hstate.  More specifically, it is only allowed if
3331 		 * the number of huge pages for the default hstate was not
3332 		 * previously specified.
3333 		 */
3334 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3335 		    default_hstate.max_huge_pages) {
3336 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3337 			return 0;
3338 		}
3339 
3340 		/*
3341 		 * No need to call hugetlb_add_hstate() as hstate already
3342 		 * exists.  But, do set parsed_hstate so that a following
3343 		 * hugepages= parameter will be applied to this hstate.
3344 		 */
3345 		parsed_hstate = h;
3346 		parsed_valid_hugepagesz = true;
3347 		return 1;
3348 	}
3349 
3350 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3351 	parsed_valid_hugepagesz = true;
3352 	return 1;
3353 }
3354 __setup("hugepagesz=", hugepagesz_setup);
3355 
3356 /*
3357  * default_hugepagesz command line input
3358  * Only one instance of default_hugepagesz allowed on command line.
3359  */
3360 static int __init default_hugepagesz_setup(char *s)
3361 {
3362 	unsigned long size;
3363 
3364 	parsed_valid_hugepagesz = false;
3365 	if (parsed_default_hugepagesz) {
3366 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3367 		return 0;
3368 	}
3369 
3370 	size = (unsigned long)memparse(s, NULL);
3371 
3372 	if (!arch_hugetlb_valid_size(size)) {
3373 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3374 		return 0;
3375 	}
3376 
3377 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3378 	parsed_valid_hugepagesz = true;
3379 	parsed_default_hugepagesz = true;
3380 	default_hstate_idx = hstate_index(size_to_hstate(size));
3381 
3382 	/*
3383 	 * The number of default huge pages (for this size) could have been
3384 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3385 	 * then default_hstate_max_huge_pages is set.  If the default huge
3386 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3387 	 * allocated here from bootmem allocator.
3388 	 */
3389 	if (default_hstate_max_huge_pages) {
3390 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3391 		if (hstate_is_gigantic(&default_hstate))
3392 			hugetlb_hstate_alloc_pages(&default_hstate);
3393 		default_hstate_max_huge_pages = 0;
3394 	}
3395 
3396 	return 1;
3397 }
3398 __setup("default_hugepagesz=", default_hugepagesz_setup);
3399 
3400 static unsigned int allowed_mems_nr(struct hstate *h)
3401 {
3402 	int node;
3403 	unsigned int nr = 0;
3404 	nodemask_t *mpol_allowed;
3405 	unsigned int *array = h->free_huge_pages_node;
3406 	gfp_t gfp_mask = htlb_alloc_mask(h);
3407 
3408 	mpol_allowed = policy_nodemask_current(gfp_mask);
3409 
3410 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3411 		if (!mpol_allowed ||
3412 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3413 			nr += array[node];
3414 	}
3415 
3416 	return nr;
3417 }
3418 
3419 #ifdef CONFIG_SYSCTL
3420 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3421 					  void *buffer, size_t *length,
3422 					  loff_t *ppos, unsigned long *out)
3423 {
3424 	struct ctl_table dup_table;
3425 
3426 	/*
3427 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3428 	 * can duplicate the @table and alter the duplicate of it.
3429 	 */
3430 	dup_table = *table;
3431 	dup_table.data = out;
3432 
3433 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3434 }
3435 
3436 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3437 			 struct ctl_table *table, int write,
3438 			 void *buffer, size_t *length, loff_t *ppos)
3439 {
3440 	struct hstate *h = &default_hstate;
3441 	unsigned long tmp = h->max_huge_pages;
3442 	int ret;
3443 
3444 	if (!hugepages_supported())
3445 		return -EOPNOTSUPP;
3446 
3447 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3448 					     &tmp);
3449 	if (ret)
3450 		goto out;
3451 
3452 	if (write)
3453 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3454 						  NUMA_NO_NODE, tmp, *length);
3455 out:
3456 	return ret;
3457 }
3458 
3459 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3460 			  void *buffer, size_t *length, loff_t *ppos)
3461 {
3462 
3463 	return hugetlb_sysctl_handler_common(false, table, write,
3464 							buffer, length, ppos);
3465 }
3466 
3467 #ifdef CONFIG_NUMA
3468 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3469 			  void *buffer, size_t *length, loff_t *ppos)
3470 {
3471 	return hugetlb_sysctl_handler_common(true, table, write,
3472 							buffer, length, ppos);
3473 }
3474 #endif /* CONFIG_NUMA */
3475 
3476 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3477 		void *buffer, size_t *length, loff_t *ppos)
3478 {
3479 	struct hstate *h = &default_hstate;
3480 	unsigned long tmp;
3481 	int ret;
3482 
3483 	if (!hugepages_supported())
3484 		return -EOPNOTSUPP;
3485 
3486 	tmp = h->nr_overcommit_huge_pages;
3487 
3488 	if (write && hstate_is_gigantic(h))
3489 		return -EINVAL;
3490 
3491 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3492 					     &tmp);
3493 	if (ret)
3494 		goto out;
3495 
3496 	if (write) {
3497 		spin_lock(&hugetlb_lock);
3498 		h->nr_overcommit_huge_pages = tmp;
3499 		spin_unlock(&hugetlb_lock);
3500 	}
3501 out:
3502 	return ret;
3503 }
3504 
3505 #endif /* CONFIG_SYSCTL */
3506 
3507 void hugetlb_report_meminfo(struct seq_file *m)
3508 {
3509 	struct hstate *h;
3510 	unsigned long total = 0;
3511 
3512 	if (!hugepages_supported())
3513 		return;
3514 
3515 	for_each_hstate(h) {
3516 		unsigned long count = h->nr_huge_pages;
3517 
3518 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3519 
3520 		if (h == &default_hstate)
3521 			seq_printf(m,
3522 				   "HugePages_Total:   %5lu\n"
3523 				   "HugePages_Free:    %5lu\n"
3524 				   "HugePages_Rsvd:    %5lu\n"
3525 				   "HugePages_Surp:    %5lu\n"
3526 				   "Hugepagesize:   %8lu kB\n",
3527 				   count,
3528 				   h->free_huge_pages,
3529 				   h->resv_huge_pages,
3530 				   h->surplus_huge_pages,
3531 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3532 	}
3533 
3534 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3535 }
3536 
3537 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3538 {
3539 	struct hstate *h = &default_hstate;
3540 
3541 	if (!hugepages_supported())
3542 		return 0;
3543 
3544 	return sysfs_emit_at(buf, len,
3545 			     "Node %d HugePages_Total: %5u\n"
3546 			     "Node %d HugePages_Free:  %5u\n"
3547 			     "Node %d HugePages_Surp:  %5u\n",
3548 			     nid, h->nr_huge_pages_node[nid],
3549 			     nid, h->free_huge_pages_node[nid],
3550 			     nid, h->surplus_huge_pages_node[nid]);
3551 }
3552 
3553 void hugetlb_show_meminfo(void)
3554 {
3555 	struct hstate *h;
3556 	int nid;
3557 
3558 	if (!hugepages_supported())
3559 		return;
3560 
3561 	for_each_node_state(nid, N_MEMORY)
3562 		for_each_hstate(h)
3563 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3564 				nid,
3565 				h->nr_huge_pages_node[nid],
3566 				h->free_huge_pages_node[nid],
3567 				h->surplus_huge_pages_node[nid],
3568 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3569 }
3570 
3571 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3572 {
3573 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3574 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3575 }
3576 
3577 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3578 unsigned long hugetlb_total_pages(void)
3579 {
3580 	struct hstate *h;
3581 	unsigned long nr_total_pages = 0;
3582 
3583 	for_each_hstate(h)
3584 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3585 	return nr_total_pages;
3586 }
3587 
3588 static int hugetlb_acct_memory(struct hstate *h, long delta)
3589 {
3590 	int ret = -ENOMEM;
3591 
3592 	spin_lock(&hugetlb_lock);
3593 	/*
3594 	 * When cpuset is configured, it breaks the strict hugetlb page
3595 	 * reservation as the accounting is done on a global variable. Such
3596 	 * reservation is completely rubbish in the presence of cpuset because
3597 	 * the reservation is not checked against page availability for the
3598 	 * current cpuset. Application can still potentially OOM'ed by kernel
3599 	 * with lack of free htlb page in cpuset that the task is in.
3600 	 * Attempt to enforce strict accounting with cpuset is almost
3601 	 * impossible (or too ugly) because cpuset is too fluid that
3602 	 * task or memory node can be dynamically moved between cpusets.
3603 	 *
3604 	 * The change of semantics for shared hugetlb mapping with cpuset is
3605 	 * undesirable. However, in order to preserve some of the semantics,
3606 	 * we fall back to check against current free page availability as
3607 	 * a best attempt and hopefully to minimize the impact of changing
3608 	 * semantics that cpuset has.
3609 	 *
3610 	 * Apart from cpuset, we also have memory policy mechanism that
3611 	 * also determines from which node the kernel will allocate memory
3612 	 * in a NUMA system. So similar to cpuset, we also should consider
3613 	 * the memory policy of the current task. Similar to the description
3614 	 * above.
3615 	 */
3616 	if (delta > 0) {
3617 		if (gather_surplus_pages(h, delta) < 0)
3618 			goto out;
3619 
3620 		if (delta > allowed_mems_nr(h)) {
3621 			return_unused_surplus_pages(h, delta);
3622 			goto out;
3623 		}
3624 	}
3625 
3626 	ret = 0;
3627 	if (delta < 0)
3628 		return_unused_surplus_pages(h, (unsigned long) -delta);
3629 
3630 out:
3631 	spin_unlock(&hugetlb_lock);
3632 	return ret;
3633 }
3634 
3635 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3636 {
3637 	struct resv_map *resv = vma_resv_map(vma);
3638 
3639 	/*
3640 	 * This new VMA should share its siblings reservation map if present.
3641 	 * The VMA will only ever have a valid reservation map pointer where
3642 	 * it is being copied for another still existing VMA.  As that VMA
3643 	 * has a reference to the reservation map it cannot disappear until
3644 	 * after this open call completes.  It is therefore safe to take a
3645 	 * new reference here without additional locking.
3646 	 */
3647 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3648 		kref_get(&resv->refs);
3649 }
3650 
3651 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3652 {
3653 	struct hstate *h = hstate_vma(vma);
3654 	struct resv_map *resv = vma_resv_map(vma);
3655 	struct hugepage_subpool *spool = subpool_vma(vma);
3656 	unsigned long reserve, start, end;
3657 	long gbl_reserve;
3658 
3659 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3660 		return;
3661 
3662 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3663 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3664 
3665 	reserve = (end - start) - region_count(resv, start, end);
3666 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3667 	if (reserve) {
3668 		/*
3669 		 * Decrement reserve counts.  The global reserve count may be
3670 		 * adjusted if the subpool has a minimum size.
3671 		 */
3672 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3673 		hugetlb_acct_memory(h, -gbl_reserve);
3674 	}
3675 
3676 	kref_put(&resv->refs, resv_map_release);
3677 }
3678 
3679 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3680 {
3681 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3682 		return -EINVAL;
3683 	return 0;
3684 }
3685 
3686 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3687 {
3688 	struct hstate *hstate = hstate_vma(vma);
3689 
3690 	return 1UL << huge_page_shift(hstate);
3691 }
3692 
3693 /*
3694  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3695  * handle_mm_fault() to try to instantiate regular-sized pages in the
3696  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3697  * this far.
3698  */
3699 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3700 {
3701 	BUG();
3702 	return 0;
3703 }
3704 
3705 /*
3706  * When a new function is introduced to vm_operations_struct and added
3707  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3708  * This is because under System V memory model, mappings created via
3709  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3710  * their original vm_ops are overwritten with shm_vm_ops.
3711  */
3712 const struct vm_operations_struct hugetlb_vm_ops = {
3713 	.fault = hugetlb_vm_op_fault,
3714 	.open = hugetlb_vm_op_open,
3715 	.close = hugetlb_vm_op_close,
3716 	.may_split = hugetlb_vm_op_split,
3717 	.pagesize = hugetlb_vm_op_pagesize,
3718 };
3719 
3720 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3721 				int writable)
3722 {
3723 	pte_t entry;
3724 
3725 	if (writable) {
3726 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3727 					 vma->vm_page_prot)));
3728 	} else {
3729 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3730 					   vma->vm_page_prot));
3731 	}
3732 	entry = pte_mkyoung(entry);
3733 	entry = pte_mkhuge(entry);
3734 	entry = arch_make_huge_pte(entry, vma, page, writable);
3735 
3736 	return entry;
3737 }
3738 
3739 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3740 				   unsigned long address, pte_t *ptep)
3741 {
3742 	pte_t entry;
3743 
3744 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3745 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3746 		update_mmu_cache(vma, address, ptep);
3747 }
3748 
3749 bool is_hugetlb_entry_migration(pte_t pte)
3750 {
3751 	swp_entry_t swp;
3752 
3753 	if (huge_pte_none(pte) || pte_present(pte))
3754 		return false;
3755 	swp = pte_to_swp_entry(pte);
3756 	if (is_migration_entry(swp))
3757 		return true;
3758 	else
3759 		return false;
3760 }
3761 
3762 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3763 {
3764 	swp_entry_t swp;
3765 
3766 	if (huge_pte_none(pte) || pte_present(pte))
3767 		return false;
3768 	swp = pte_to_swp_entry(pte);
3769 	if (is_hwpoison_entry(swp))
3770 		return true;
3771 	else
3772 		return false;
3773 }
3774 
3775 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3776 			    struct vm_area_struct *vma)
3777 {
3778 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3779 	struct page *ptepage;
3780 	unsigned long addr;
3781 	int cow;
3782 	struct hstate *h = hstate_vma(vma);
3783 	unsigned long sz = huge_page_size(h);
3784 	struct address_space *mapping = vma->vm_file->f_mapping;
3785 	struct mmu_notifier_range range;
3786 	int ret = 0;
3787 
3788 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3789 
3790 	if (cow) {
3791 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3792 					vma->vm_start,
3793 					vma->vm_end);
3794 		mmu_notifier_invalidate_range_start(&range);
3795 	} else {
3796 		/*
3797 		 * For shared mappings i_mmap_rwsem must be held to call
3798 		 * huge_pte_alloc, otherwise the returned ptep could go
3799 		 * away if part of a shared pmd and another thread calls
3800 		 * huge_pmd_unshare.
3801 		 */
3802 		i_mmap_lock_read(mapping);
3803 	}
3804 
3805 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3806 		spinlock_t *src_ptl, *dst_ptl;
3807 		src_pte = huge_pte_offset(src, addr, sz);
3808 		if (!src_pte)
3809 			continue;
3810 		dst_pte = huge_pte_alloc(dst, addr, sz);
3811 		if (!dst_pte) {
3812 			ret = -ENOMEM;
3813 			break;
3814 		}
3815 
3816 		/*
3817 		 * If the pagetables are shared don't copy or take references.
3818 		 * dst_pte == src_pte is the common case of src/dest sharing.
3819 		 *
3820 		 * However, src could have 'unshared' and dst shares with
3821 		 * another vma.  If dst_pte !none, this implies sharing.
3822 		 * Check here before taking page table lock, and once again
3823 		 * after taking the lock below.
3824 		 */
3825 		dst_entry = huge_ptep_get(dst_pte);
3826 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3827 			continue;
3828 
3829 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3830 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3831 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3832 		entry = huge_ptep_get(src_pte);
3833 		dst_entry = huge_ptep_get(dst_pte);
3834 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3835 			/*
3836 			 * Skip if src entry none.  Also, skip in the
3837 			 * unlikely case dst entry !none as this implies
3838 			 * sharing with another vma.
3839 			 */
3840 			;
3841 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3842 				    is_hugetlb_entry_hwpoisoned(entry))) {
3843 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3844 
3845 			if (is_write_migration_entry(swp_entry) && cow) {
3846 				/*
3847 				 * COW mappings require pages in both
3848 				 * parent and child to be set to read.
3849 				 */
3850 				make_migration_entry_read(&swp_entry);
3851 				entry = swp_entry_to_pte(swp_entry);
3852 				set_huge_swap_pte_at(src, addr, src_pte,
3853 						     entry, sz);
3854 			}
3855 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3856 		} else {
3857 			if (cow) {
3858 				/*
3859 				 * No need to notify as we are downgrading page
3860 				 * table protection not changing it to point
3861 				 * to a new page.
3862 				 *
3863 				 * See Documentation/vm/mmu_notifier.rst
3864 				 */
3865 				huge_ptep_set_wrprotect(src, addr, src_pte);
3866 			}
3867 			entry = huge_ptep_get(src_pte);
3868 			ptepage = pte_page(entry);
3869 			get_page(ptepage);
3870 			page_dup_rmap(ptepage, true);
3871 			set_huge_pte_at(dst, addr, dst_pte, entry);
3872 			hugetlb_count_add(pages_per_huge_page(h), dst);
3873 		}
3874 		spin_unlock(src_ptl);
3875 		spin_unlock(dst_ptl);
3876 	}
3877 
3878 	if (cow)
3879 		mmu_notifier_invalidate_range_end(&range);
3880 	else
3881 		i_mmap_unlock_read(mapping);
3882 
3883 	return ret;
3884 }
3885 
3886 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3887 			    unsigned long start, unsigned long end,
3888 			    struct page *ref_page)
3889 {
3890 	struct mm_struct *mm = vma->vm_mm;
3891 	unsigned long address;
3892 	pte_t *ptep;
3893 	pte_t pte;
3894 	spinlock_t *ptl;
3895 	struct page *page;
3896 	struct hstate *h = hstate_vma(vma);
3897 	unsigned long sz = huge_page_size(h);
3898 	struct mmu_notifier_range range;
3899 
3900 	WARN_ON(!is_vm_hugetlb_page(vma));
3901 	BUG_ON(start & ~huge_page_mask(h));
3902 	BUG_ON(end & ~huge_page_mask(h));
3903 
3904 	/*
3905 	 * This is a hugetlb vma, all the pte entries should point
3906 	 * to huge page.
3907 	 */
3908 	tlb_change_page_size(tlb, sz);
3909 	tlb_start_vma(tlb, vma);
3910 
3911 	/*
3912 	 * If sharing possible, alert mmu notifiers of worst case.
3913 	 */
3914 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3915 				end);
3916 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3917 	mmu_notifier_invalidate_range_start(&range);
3918 	address = start;
3919 	for (; address < end; address += sz) {
3920 		ptep = huge_pte_offset(mm, address, sz);
3921 		if (!ptep)
3922 			continue;
3923 
3924 		ptl = huge_pte_lock(h, mm, ptep);
3925 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3926 			spin_unlock(ptl);
3927 			/*
3928 			 * We just unmapped a page of PMDs by clearing a PUD.
3929 			 * The caller's TLB flush range should cover this area.
3930 			 */
3931 			continue;
3932 		}
3933 
3934 		pte = huge_ptep_get(ptep);
3935 		if (huge_pte_none(pte)) {
3936 			spin_unlock(ptl);
3937 			continue;
3938 		}
3939 
3940 		/*
3941 		 * Migrating hugepage or HWPoisoned hugepage is already
3942 		 * unmapped and its refcount is dropped, so just clear pte here.
3943 		 */
3944 		if (unlikely(!pte_present(pte))) {
3945 			huge_pte_clear(mm, address, ptep, sz);
3946 			spin_unlock(ptl);
3947 			continue;
3948 		}
3949 
3950 		page = pte_page(pte);
3951 		/*
3952 		 * If a reference page is supplied, it is because a specific
3953 		 * page is being unmapped, not a range. Ensure the page we
3954 		 * are about to unmap is the actual page of interest.
3955 		 */
3956 		if (ref_page) {
3957 			if (page != ref_page) {
3958 				spin_unlock(ptl);
3959 				continue;
3960 			}
3961 			/*
3962 			 * Mark the VMA as having unmapped its page so that
3963 			 * future faults in this VMA will fail rather than
3964 			 * looking like data was lost
3965 			 */
3966 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3967 		}
3968 
3969 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3970 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3971 		if (huge_pte_dirty(pte))
3972 			set_page_dirty(page);
3973 
3974 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3975 		page_remove_rmap(page, true);
3976 
3977 		spin_unlock(ptl);
3978 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3979 		/*
3980 		 * Bail out after unmapping reference page if supplied
3981 		 */
3982 		if (ref_page)
3983 			break;
3984 	}
3985 	mmu_notifier_invalidate_range_end(&range);
3986 	tlb_end_vma(tlb, vma);
3987 }
3988 
3989 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3990 			  struct vm_area_struct *vma, unsigned long start,
3991 			  unsigned long end, struct page *ref_page)
3992 {
3993 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3994 
3995 	/*
3996 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3997 	 * test will fail on a vma being torn down, and not grab a page table
3998 	 * on its way out.  We're lucky that the flag has such an appropriate
3999 	 * name, and can in fact be safely cleared here. We could clear it
4000 	 * before the __unmap_hugepage_range above, but all that's necessary
4001 	 * is to clear it before releasing the i_mmap_rwsem. This works
4002 	 * because in the context this is called, the VMA is about to be
4003 	 * destroyed and the i_mmap_rwsem is held.
4004 	 */
4005 	vma->vm_flags &= ~VM_MAYSHARE;
4006 }
4007 
4008 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4009 			  unsigned long end, struct page *ref_page)
4010 {
4011 	struct mm_struct *mm;
4012 	struct mmu_gather tlb;
4013 	unsigned long tlb_start = start;
4014 	unsigned long tlb_end = end;
4015 
4016 	/*
4017 	 * If shared PMDs were possibly used within this vma range, adjust
4018 	 * start/end for worst case tlb flushing.
4019 	 * Note that we can not be sure if PMDs are shared until we try to
4020 	 * unmap pages.  However, we want to make sure TLB flushing covers
4021 	 * the largest possible range.
4022 	 */
4023 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4024 
4025 	mm = vma->vm_mm;
4026 
4027 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4028 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4029 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4030 }
4031 
4032 /*
4033  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4034  * mappping it owns the reserve page for. The intention is to unmap the page
4035  * from other VMAs and let the children be SIGKILLed if they are faulting the
4036  * same region.
4037  */
4038 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4039 			      struct page *page, unsigned long address)
4040 {
4041 	struct hstate *h = hstate_vma(vma);
4042 	struct vm_area_struct *iter_vma;
4043 	struct address_space *mapping;
4044 	pgoff_t pgoff;
4045 
4046 	/*
4047 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4048 	 * from page cache lookup which is in HPAGE_SIZE units.
4049 	 */
4050 	address = address & huge_page_mask(h);
4051 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4052 			vma->vm_pgoff;
4053 	mapping = vma->vm_file->f_mapping;
4054 
4055 	/*
4056 	 * Take the mapping lock for the duration of the table walk. As
4057 	 * this mapping should be shared between all the VMAs,
4058 	 * __unmap_hugepage_range() is called as the lock is already held
4059 	 */
4060 	i_mmap_lock_write(mapping);
4061 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4062 		/* Do not unmap the current VMA */
4063 		if (iter_vma == vma)
4064 			continue;
4065 
4066 		/*
4067 		 * Shared VMAs have their own reserves and do not affect
4068 		 * MAP_PRIVATE accounting but it is possible that a shared
4069 		 * VMA is using the same page so check and skip such VMAs.
4070 		 */
4071 		if (iter_vma->vm_flags & VM_MAYSHARE)
4072 			continue;
4073 
4074 		/*
4075 		 * Unmap the page from other VMAs without their own reserves.
4076 		 * They get marked to be SIGKILLed if they fault in these
4077 		 * areas. This is because a future no-page fault on this VMA
4078 		 * could insert a zeroed page instead of the data existing
4079 		 * from the time of fork. This would look like data corruption
4080 		 */
4081 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4082 			unmap_hugepage_range(iter_vma, address,
4083 					     address + huge_page_size(h), page);
4084 	}
4085 	i_mmap_unlock_write(mapping);
4086 }
4087 
4088 /*
4089  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4090  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4091  * cannot race with other handlers or page migration.
4092  * Keep the pte_same checks anyway to make transition from the mutex easier.
4093  */
4094 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4095 		       unsigned long address, pte_t *ptep,
4096 		       struct page *pagecache_page, spinlock_t *ptl)
4097 {
4098 	pte_t pte;
4099 	struct hstate *h = hstate_vma(vma);
4100 	struct page *old_page, *new_page;
4101 	int outside_reserve = 0;
4102 	vm_fault_t ret = 0;
4103 	unsigned long haddr = address & huge_page_mask(h);
4104 	struct mmu_notifier_range range;
4105 
4106 	pte = huge_ptep_get(ptep);
4107 	old_page = pte_page(pte);
4108 
4109 retry_avoidcopy:
4110 	/* If no-one else is actually using this page, avoid the copy
4111 	 * and just make the page writable */
4112 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4113 		page_move_anon_rmap(old_page, vma);
4114 		set_huge_ptep_writable(vma, haddr, ptep);
4115 		return 0;
4116 	}
4117 
4118 	/*
4119 	 * If the process that created a MAP_PRIVATE mapping is about to
4120 	 * perform a COW due to a shared page count, attempt to satisfy
4121 	 * the allocation without using the existing reserves. The pagecache
4122 	 * page is used to determine if the reserve at this address was
4123 	 * consumed or not. If reserves were used, a partial faulted mapping
4124 	 * at the time of fork() could consume its reserves on COW instead
4125 	 * of the full address range.
4126 	 */
4127 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4128 			old_page != pagecache_page)
4129 		outside_reserve = 1;
4130 
4131 	get_page(old_page);
4132 
4133 	/*
4134 	 * Drop page table lock as buddy allocator may be called. It will
4135 	 * be acquired again before returning to the caller, as expected.
4136 	 */
4137 	spin_unlock(ptl);
4138 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4139 
4140 	if (IS_ERR(new_page)) {
4141 		/*
4142 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4143 		 * it is due to references held by a child and an insufficient
4144 		 * huge page pool. To guarantee the original mappers
4145 		 * reliability, unmap the page from child processes. The child
4146 		 * may get SIGKILLed if it later faults.
4147 		 */
4148 		if (outside_reserve) {
4149 			struct address_space *mapping = vma->vm_file->f_mapping;
4150 			pgoff_t idx;
4151 			u32 hash;
4152 
4153 			put_page(old_page);
4154 			BUG_ON(huge_pte_none(pte));
4155 			/*
4156 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4157 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4158 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4159 			 * here is OK as COW mappings do not interact with
4160 			 * PMD sharing.
4161 			 *
4162 			 * Reacquire both after unmap operation.
4163 			 */
4164 			idx = vma_hugecache_offset(h, vma, haddr);
4165 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4166 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4167 			i_mmap_unlock_read(mapping);
4168 
4169 			unmap_ref_private(mm, vma, old_page, haddr);
4170 
4171 			i_mmap_lock_read(mapping);
4172 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4173 			spin_lock(ptl);
4174 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4175 			if (likely(ptep &&
4176 				   pte_same(huge_ptep_get(ptep), pte)))
4177 				goto retry_avoidcopy;
4178 			/*
4179 			 * race occurs while re-acquiring page table
4180 			 * lock, and our job is done.
4181 			 */
4182 			return 0;
4183 		}
4184 
4185 		ret = vmf_error(PTR_ERR(new_page));
4186 		goto out_release_old;
4187 	}
4188 
4189 	/*
4190 	 * When the original hugepage is shared one, it does not have
4191 	 * anon_vma prepared.
4192 	 */
4193 	if (unlikely(anon_vma_prepare(vma))) {
4194 		ret = VM_FAULT_OOM;
4195 		goto out_release_all;
4196 	}
4197 
4198 	copy_user_huge_page(new_page, old_page, address, vma,
4199 			    pages_per_huge_page(h));
4200 	__SetPageUptodate(new_page);
4201 
4202 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4203 				haddr + huge_page_size(h));
4204 	mmu_notifier_invalidate_range_start(&range);
4205 
4206 	/*
4207 	 * Retake the page table lock to check for racing updates
4208 	 * before the page tables are altered
4209 	 */
4210 	spin_lock(ptl);
4211 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4212 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4213 		ClearPagePrivate(new_page);
4214 
4215 		/* Break COW */
4216 		huge_ptep_clear_flush(vma, haddr, ptep);
4217 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4218 		set_huge_pte_at(mm, haddr, ptep,
4219 				make_huge_pte(vma, new_page, 1));
4220 		page_remove_rmap(old_page, true);
4221 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4222 		set_page_huge_active(new_page);
4223 		/* Make the old page be freed below */
4224 		new_page = old_page;
4225 	}
4226 	spin_unlock(ptl);
4227 	mmu_notifier_invalidate_range_end(&range);
4228 out_release_all:
4229 	restore_reserve_on_error(h, vma, haddr, new_page);
4230 	put_page(new_page);
4231 out_release_old:
4232 	put_page(old_page);
4233 
4234 	spin_lock(ptl); /* Caller expects lock to be held */
4235 	return ret;
4236 }
4237 
4238 /* Return the pagecache page at a given address within a VMA */
4239 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4240 			struct vm_area_struct *vma, unsigned long address)
4241 {
4242 	struct address_space *mapping;
4243 	pgoff_t idx;
4244 
4245 	mapping = vma->vm_file->f_mapping;
4246 	idx = vma_hugecache_offset(h, vma, address);
4247 
4248 	return find_lock_page(mapping, idx);
4249 }
4250 
4251 /*
4252  * Return whether there is a pagecache page to back given address within VMA.
4253  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4254  */
4255 static bool hugetlbfs_pagecache_present(struct hstate *h,
4256 			struct vm_area_struct *vma, unsigned long address)
4257 {
4258 	struct address_space *mapping;
4259 	pgoff_t idx;
4260 	struct page *page;
4261 
4262 	mapping = vma->vm_file->f_mapping;
4263 	idx = vma_hugecache_offset(h, vma, address);
4264 
4265 	page = find_get_page(mapping, idx);
4266 	if (page)
4267 		put_page(page);
4268 	return page != NULL;
4269 }
4270 
4271 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4272 			   pgoff_t idx)
4273 {
4274 	struct inode *inode = mapping->host;
4275 	struct hstate *h = hstate_inode(inode);
4276 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4277 
4278 	if (err)
4279 		return err;
4280 	ClearPagePrivate(page);
4281 
4282 	/*
4283 	 * set page dirty so that it will not be removed from cache/file
4284 	 * by non-hugetlbfs specific code paths.
4285 	 */
4286 	set_page_dirty(page);
4287 
4288 	spin_lock(&inode->i_lock);
4289 	inode->i_blocks += blocks_per_huge_page(h);
4290 	spin_unlock(&inode->i_lock);
4291 	return 0;
4292 }
4293 
4294 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4295 			struct vm_area_struct *vma,
4296 			struct address_space *mapping, pgoff_t idx,
4297 			unsigned long address, pte_t *ptep, unsigned int flags)
4298 {
4299 	struct hstate *h = hstate_vma(vma);
4300 	vm_fault_t ret = VM_FAULT_SIGBUS;
4301 	int anon_rmap = 0;
4302 	unsigned long size;
4303 	struct page *page;
4304 	pte_t new_pte;
4305 	spinlock_t *ptl;
4306 	unsigned long haddr = address & huge_page_mask(h);
4307 	bool new_page = false;
4308 
4309 	/*
4310 	 * Currently, we are forced to kill the process in the event the
4311 	 * original mapper has unmapped pages from the child due to a failed
4312 	 * COW. Warn that such a situation has occurred as it may not be obvious
4313 	 */
4314 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4315 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4316 			   current->pid);
4317 		return ret;
4318 	}
4319 
4320 	/*
4321 	 * We can not race with truncation due to holding i_mmap_rwsem.
4322 	 * i_size is modified when holding i_mmap_rwsem, so check here
4323 	 * once for faults beyond end of file.
4324 	 */
4325 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4326 	if (idx >= size)
4327 		goto out;
4328 
4329 retry:
4330 	page = find_lock_page(mapping, idx);
4331 	if (!page) {
4332 		/*
4333 		 * Check for page in userfault range
4334 		 */
4335 		if (userfaultfd_missing(vma)) {
4336 			u32 hash;
4337 			struct vm_fault vmf = {
4338 				.vma = vma,
4339 				.address = haddr,
4340 				.flags = flags,
4341 				/*
4342 				 * Hard to debug if it ends up being
4343 				 * used by a callee that assumes
4344 				 * something about the other
4345 				 * uninitialized fields... same as in
4346 				 * memory.c
4347 				 */
4348 			};
4349 
4350 			/*
4351 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4352 			 * dropped before handling userfault.  Reacquire
4353 			 * after handling fault to make calling code simpler.
4354 			 */
4355 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4356 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4357 			i_mmap_unlock_read(mapping);
4358 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4359 			i_mmap_lock_read(mapping);
4360 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4361 			goto out;
4362 		}
4363 
4364 		page = alloc_huge_page(vma, haddr, 0);
4365 		if (IS_ERR(page)) {
4366 			/*
4367 			 * Returning error will result in faulting task being
4368 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4369 			 * tasks from racing to fault in the same page which
4370 			 * could result in false unable to allocate errors.
4371 			 * Page migration does not take the fault mutex, but
4372 			 * does a clear then write of pte's under page table
4373 			 * lock.  Page fault code could race with migration,
4374 			 * notice the clear pte and try to allocate a page
4375 			 * here.  Before returning error, get ptl and make
4376 			 * sure there really is no pte entry.
4377 			 */
4378 			ptl = huge_pte_lock(h, mm, ptep);
4379 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4380 				ret = 0;
4381 				spin_unlock(ptl);
4382 				goto out;
4383 			}
4384 			spin_unlock(ptl);
4385 			ret = vmf_error(PTR_ERR(page));
4386 			goto out;
4387 		}
4388 		clear_huge_page(page, address, pages_per_huge_page(h));
4389 		__SetPageUptodate(page);
4390 		new_page = true;
4391 
4392 		if (vma->vm_flags & VM_MAYSHARE) {
4393 			int err = huge_add_to_page_cache(page, mapping, idx);
4394 			if (err) {
4395 				put_page(page);
4396 				if (err == -EEXIST)
4397 					goto retry;
4398 				goto out;
4399 			}
4400 		} else {
4401 			lock_page(page);
4402 			if (unlikely(anon_vma_prepare(vma))) {
4403 				ret = VM_FAULT_OOM;
4404 				goto backout_unlocked;
4405 			}
4406 			anon_rmap = 1;
4407 		}
4408 	} else {
4409 		/*
4410 		 * If memory error occurs between mmap() and fault, some process
4411 		 * don't have hwpoisoned swap entry for errored virtual address.
4412 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4413 		 */
4414 		if (unlikely(PageHWPoison(page))) {
4415 			ret = VM_FAULT_HWPOISON_LARGE |
4416 				VM_FAULT_SET_HINDEX(hstate_index(h));
4417 			goto backout_unlocked;
4418 		}
4419 	}
4420 
4421 	/*
4422 	 * If we are going to COW a private mapping later, we examine the
4423 	 * pending reservations for this page now. This will ensure that
4424 	 * any allocations necessary to record that reservation occur outside
4425 	 * the spinlock.
4426 	 */
4427 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4428 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4429 			ret = VM_FAULT_OOM;
4430 			goto backout_unlocked;
4431 		}
4432 		/* Just decrements count, does not deallocate */
4433 		vma_end_reservation(h, vma, haddr);
4434 	}
4435 
4436 	ptl = huge_pte_lock(h, mm, ptep);
4437 	ret = 0;
4438 	if (!huge_pte_none(huge_ptep_get(ptep)))
4439 		goto backout;
4440 
4441 	if (anon_rmap) {
4442 		ClearPagePrivate(page);
4443 		hugepage_add_new_anon_rmap(page, vma, haddr);
4444 	} else
4445 		page_dup_rmap(page, true);
4446 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4447 				&& (vma->vm_flags & VM_SHARED)));
4448 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4449 
4450 	hugetlb_count_add(pages_per_huge_page(h), mm);
4451 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4452 		/* Optimization, do the COW without a second fault */
4453 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4454 	}
4455 
4456 	spin_unlock(ptl);
4457 
4458 	/*
4459 	 * Only make newly allocated pages active.  Existing pages found
4460 	 * in the pagecache could be !page_huge_active() if they have been
4461 	 * isolated for migration.
4462 	 */
4463 	if (new_page)
4464 		set_page_huge_active(page);
4465 
4466 	unlock_page(page);
4467 out:
4468 	return ret;
4469 
4470 backout:
4471 	spin_unlock(ptl);
4472 backout_unlocked:
4473 	unlock_page(page);
4474 	restore_reserve_on_error(h, vma, haddr, page);
4475 	put_page(page);
4476 	goto out;
4477 }
4478 
4479 #ifdef CONFIG_SMP
4480 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4481 {
4482 	unsigned long key[2];
4483 	u32 hash;
4484 
4485 	key[0] = (unsigned long) mapping;
4486 	key[1] = idx;
4487 
4488 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4489 
4490 	return hash & (num_fault_mutexes - 1);
4491 }
4492 #else
4493 /*
4494  * For uniprocesor systems we always use a single mutex, so just
4495  * return 0 and avoid the hashing overhead.
4496  */
4497 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4498 {
4499 	return 0;
4500 }
4501 #endif
4502 
4503 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4504 			unsigned long address, unsigned int flags)
4505 {
4506 	pte_t *ptep, entry;
4507 	spinlock_t *ptl;
4508 	vm_fault_t ret;
4509 	u32 hash;
4510 	pgoff_t idx;
4511 	struct page *page = NULL;
4512 	struct page *pagecache_page = NULL;
4513 	struct hstate *h = hstate_vma(vma);
4514 	struct address_space *mapping;
4515 	int need_wait_lock = 0;
4516 	unsigned long haddr = address & huge_page_mask(h);
4517 
4518 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4519 	if (ptep) {
4520 		/*
4521 		 * Since we hold no locks, ptep could be stale.  That is
4522 		 * OK as we are only making decisions based on content and
4523 		 * not actually modifying content here.
4524 		 */
4525 		entry = huge_ptep_get(ptep);
4526 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4527 			migration_entry_wait_huge(vma, mm, ptep);
4528 			return 0;
4529 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4530 			return VM_FAULT_HWPOISON_LARGE |
4531 				VM_FAULT_SET_HINDEX(hstate_index(h));
4532 	}
4533 
4534 	/*
4535 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4536 	 * until finished with ptep.  This serves two purposes:
4537 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4538 	 *    and making the ptep no longer valid.
4539 	 * 2) It synchronizes us with i_size modifications during truncation.
4540 	 *
4541 	 * ptep could have already be assigned via huge_pte_offset.  That
4542 	 * is OK, as huge_pte_alloc will return the same value unless
4543 	 * something has changed.
4544 	 */
4545 	mapping = vma->vm_file->f_mapping;
4546 	i_mmap_lock_read(mapping);
4547 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4548 	if (!ptep) {
4549 		i_mmap_unlock_read(mapping);
4550 		return VM_FAULT_OOM;
4551 	}
4552 
4553 	/*
4554 	 * Serialize hugepage allocation and instantiation, so that we don't
4555 	 * get spurious allocation failures if two CPUs race to instantiate
4556 	 * the same page in the page cache.
4557 	 */
4558 	idx = vma_hugecache_offset(h, vma, haddr);
4559 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4560 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4561 
4562 	entry = huge_ptep_get(ptep);
4563 	if (huge_pte_none(entry)) {
4564 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4565 		goto out_mutex;
4566 	}
4567 
4568 	ret = 0;
4569 
4570 	/*
4571 	 * entry could be a migration/hwpoison entry at this point, so this
4572 	 * check prevents the kernel from going below assuming that we have
4573 	 * an active hugepage in pagecache. This goto expects the 2nd page
4574 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4575 	 * properly handle it.
4576 	 */
4577 	if (!pte_present(entry))
4578 		goto out_mutex;
4579 
4580 	/*
4581 	 * If we are going to COW the mapping later, we examine the pending
4582 	 * reservations for this page now. This will ensure that any
4583 	 * allocations necessary to record that reservation occur outside the
4584 	 * spinlock. For private mappings, we also lookup the pagecache
4585 	 * page now as it is used to determine if a reservation has been
4586 	 * consumed.
4587 	 */
4588 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4589 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4590 			ret = VM_FAULT_OOM;
4591 			goto out_mutex;
4592 		}
4593 		/* Just decrements count, does not deallocate */
4594 		vma_end_reservation(h, vma, haddr);
4595 
4596 		if (!(vma->vm_flags & VM_MAYSHARE))
4597 			pagecache_page = hugetlbfs_pagecache_page(h,
4598 								vma, haddr);
4599 	}
4600 
4601 	ptl = huge_pte_lock(h, mm, ptep);
4602 
4603 	/* Check for a racing update before calling hugetlb_cow */
4604 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4605 		goto out_ptl;
4606 
4607 	/*
4608 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4609 	 * pagecache_page, so here we need take the former one
4610 	 * when page != pagecache_page or !pagecache_page.
4611 	 */
4612 	page = pte_page(entry);
4613 	if (page != pagecache_page)
4614 		if (!trylock_page(page)) {
4615 			need_wait_lock = 1;
4616 			goto out_ptl;
4617 		}
4618 
4619 	get_page(page);
4620 
4621 	if (flags & FAULT_FLAG_WRITE) {
4622 		if (!huge_pte_write(entry)) {
4623 			ret = hugetlb_cow(mm, vma, address, ptep,
4624 					  pagecache_page, ptl);
4625 			goto out_put_page;
4626 		}
4627 		entry = huge_pte_mkdirty(entry);
4628 	}
4629 	entry = pte_mkyoung(entry);
4630 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4631 						flags & FAULT_FLAG_WRITE))
4632 		update_mmu_cache(vma, haddr, ptep);
4633 out_put_page:
4634 	if (page != pagecache_page)
4635 		unlock_page(page);
4636 	put_page(page);
4637 out_ptl:
4638 	spin_unlock(ptl);
4639 
4640 	if (pagecache_page) {
4641 		unlock_page(pagecache_page);
4642 		put_page(pagecache_page);
4643 	}
4644 out_mutex:
4645 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4646 	i_mmap_unlock_read(mapping);
4647 	/*
4648 	 * Generally it's safe to hold refcount during waiting page lock. But
4649 	 * here we just wait to defer the next page fault to avoid busy loop and
4650 	 * the page is not used after unlocked before returning from the current
4651 	 * page fault. So we are safe from accessing freed page, even if we wait
4652 	 * here without taking refcount.
4653 	 */
4654 	if (need_wait_lock)
4655 		wait_on_page_locked(page);
4656 	return ret;
4657 }
4658 
4659 /*
4660  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4661  * modifications for huge pages.
4662  */
4663 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4664 			    pte_t *dst_pte,
4665 			    struct vm_area_struct *dst_vma,
4666 			    unsigned long dst_addr,
4667 			    unsigned long src_addr,
4668 			    struct page **pagep)
4669 {
4670 	struct address_space *mapping;
4671 	pgoff_t idx;
4672 	unsigned long size;
4673 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4674 	struct hstate *h = hstate_vma(dst_vma);
4675 	pte_t _dst_pte;
4676 	spinlock_t *ptl;
4677 	int ret;
4678 	struct page *page;
4679 
4680 	if (!*pagep) {
4681 		ret = -ENOMEM;
4682 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4683 		if (IS_ERR(page))
4684 			goto out;
4685 
4686 		ret = copy_huge_page_from_user(page,
4687 						(const void __user *) src_addr,
4688 						pages_per_huge_page(h), false);
4689 
4690 		/* fallback to copy_from_user outside mmap_lock */
4691 		if (unlikely(ret)) {
4692 			ret = -ENOENT;
4693 			*pagep = page;
4694 			/* don't free the page */
4695 			goto out;
4696 		}
4697 	} else {
4698 		page = *pagep;
4699 		*pagep = NULL;
4700 	}
4701 
4702 	/*
4703 	 * The memory barrier inside __SetPageUptodate makes sure that
4704 	 * preceding stores to the page contents become visible before
4705 	 * the set_pte_at() write.
4706 	 */
4707 	__SetPageUptodate(page);
4708 
4709 	mapping = dst_vma->vm_file->f_mapping;
4710 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4711 
4712 	/*
4713 	 * If shared, add to page cache
4714 	 */
4715 	if (vm_shared) {
4716 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4717 		ret = -EFAULT;
4718 		if (idx >= size)
4719 			goto out_release_nounlock;
4720 
4721 		/*
4722 		 * Serialization between remove_inode_hugepages() and
4723 		 * huge_add_to_page_cache() below happens through the
4724 		 * hugetlb_fault_mutex_table that here must be hold by
4725 		 * the caller.
4726 		 */
4727 		ret = huge_add_to_page_cache(page, mapping, idx);
4728 		if (ret)
4729 			goto out_release_nounlock;
4730 	}
4731 
4732 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4733 	spin_lock(ptl);
4734 
4735 	/*
4736 	 * Recheck the i_size after holding PT lock to make sure not
4737 	 * to leave any page mapped (as page_mapped()) beyond the end
4738 	 * of the i_size (remove_inode_hugepages() is strict about
4739 	 * enforcing that). If we bail out here, we'll also leave a
4740 	 * page in the radix tree in the vm_shared case beyond the end
4741 	 * of the i_size, but remove_inode_hugepages() will take care
4742 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4743 	 */
4744 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4745 	ret = -EFAULT;
4746 	if (idx >= size)
4747 		goto out_release_unlock;
4748 
4749 	ret = -EEXIST;
4750 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4751 		goto out_release_unlock;
4752 
4753 	if (vm_shared) {
4754 		page_dup_rmap(page, true);
4755 	} else {
4756 		ClearPagePrivate(page);
4757 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4758 	}
4759 
4760 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4761 	if (dst_vma->vm_flags & VM_WRITE)
4762 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4763 	_dst_pte = pte_mkyoung(_dst_pte);
4764 
4765 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4766 
4767 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4768 					dst_vma->vm_flags & VM_WRITE);
4769 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4770 
4771 	/* No need to invalidate - it was non-present before */
4772 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4773 
4774 	spin_unlock(ptl);
4775 	set_page_huge_active(page);
4776 	if (vm_shared)
4777 		unlock_page(page);
4778 	ret = 0;
4779 out:
4780 	return ret;
4781 out_release_unlock:
4782 	spin_unlock(ptl);
4783 	if (vm_shared)
4784 		unlock_page(page);
4785 out_release_nounlock:
4786 	put_page(page);
4787 	goto out;
4788 }
4789 
4790 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4791 			 struct page **pages, struct vm_area_struct **vmas,
4792 			 unsigned long *position, unsigned long *nr_pages,
4793 			 long i, unsigned int flags, int *locked)
4794 {
4795 	unsigned long pfn_offset;
4796 	unsigned long vaddr = *position;
4797 	unsigned long remainder = *nr_pages;
4798 	struct hstate *h = hstate_vma(vma);
4799 	int err = -EFAULT;
4800 
4801 	while (vaddr < vma->vm_end && remainder) {
4802 		pte_t *pte;
4803 		spinlock_t *ptl = NULL;
4804 		int absent;
4805 		struct page *page;
4806 
4807 		/*
4808 		 * If we have a pending SIGKILL, don't keep faulting pages and
4809 		 * potentially allocating memory.
4810 		 */
4811 		if (fatal_signal_pending(current)) {
4812 			remainder = 0;
4813 			break;
4814 		}
4815 
4816 		/*
4817 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4818 		 * each hugepage.  We have to make sure we get the
4819 		 * first, for the page indexing below to work.
4820 		 *
4821 		 * Note that page table lock is not held when pte is null.
4822 		 */
4823 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4824 				      huge_page_size(h));
4825 		if (pte)
4826 			ptl = huge_pte_lock(h, mm, pte);
4827 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4828 
4829 		/*
4830 		 * When coredumping, it suits get_dump_page if we just return
4831 		 * an error where there's an empty slot with no huge pagecache
4832 		 * to back it.  This way, we avoid allocating a hugepage, and
4833 		 * the sparse dumpfile avoids allocating disk blocks, but its
4834 		 * huge holes still show up with zeroes where they need to be.
4835 		 */
4836 		if (absent && (flags & FOLL_DUMP) &&
4837 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4838 			if (pte)
4839 				spin_unlock(ptl);
4840 			remainder = 0;
4841 			break;
4842 		}
4843 
4844 		/*
4845 		 * We need call hugetlb_fault for both hugepages under migration
4846 		 * (in which case hugetlb_fault waits for the migration,) and
4847 		 * hwpoisoned hugepages (in which case we need to prevent the
4848 		 * caller from accessing to them.) In order to do this, we use
4849 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4850 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4851 		 * both cases, and because we can't follow correct pages
4852 		 * directly from any kind of swap entries.
4853 		 */
4854 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4855 		    ((flags & FOLL_WRITE) &&
4856 		      !huge_pte_write(huge_ptep_get(pte)))) {
4857 			vm_fault_t ret;
4858 			unsigned int fault_flags = 0;
4859 
4860 			if (pte)
4861 				spin_unlock(ptl);
4862 			if (flags & FOLL_WRITE)
4863 				fault_flags |= FAULT_FLAG_WRITE;
4864 			if (locked)
4865 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4866 					FAULT_FLAG_KILLABLE;
4867 			if (flags & FOLL_NOWAIT)
4868 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4869 					FAULT_FLAG_RETRY_NOWAIT;
4870 			if (flags & FOLL_TRIED) {
4871 				/*
4872 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4873 				 * FAULT_FLAG_TRIED can co-exist
4874 				 */
4875 				fault_flags |= FAULT_FLAG_TRIED;
4876 			}
4877 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4878 			if (ret & VM_FAULT_ERROR) {
4879 				err = vm_fault_to_errno(ret, flags);
4880 				remainder = 0;
4881 				break;
4882 			}
4883 			if (ret & VM_FAULT_RETRY) {
4884 				if (locked &&
4885 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4886 					*locked = 0;
4887 				*nr_pages = 0;
4888 				/*
4889 				 * VM_FAULT_RETRY must not return an
4890 				 * error, it will return zero
4891 				 * instead.
4892 				 *
4893 				 * No need to update "position" as the
4894 				 * caller will not check it after
4895 				 * *nr_pages is set to 0.
4896 				 */
4897 				return i;
4898 			}
4899 			continue;
4900 		}
4901 
4902 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4903 		page = pte_page(huge_ptep_get(pte));
4904 
4905 		/*
4906 		 * If subpage information not requested, update counters
4907 		 * and skip the same_page loop below.
4908 		 */
4909 		if (!pages && !vmas && !pfn_offset &&
4910 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4911 		    (remainder >= pages_per_huge_page(h))) {
4912 			vaddr += huge_page_size(h);
4913 			remainder -= pages_per_huge_page(h);
4914 			i += pages_per_huge_page(h);
4915 			spin_unlock(ptl);
4916 			continue;
4917 		}
4918 
4919 same_page:
4920 		if (pages) {
4921 			pages[i] = mem_map_offset(page, pfn_offset);
4922 			/*
4923 			 * try_grab_page() should always succeed here, because:
4924 			 * a) we hold the ptl lock, and b) we've just checked
4925 			 * that the huge page is present in the page tables. If
4926 			 * the huge page is present, then the tail pages must
4927 			 * also be present. The ptl prevents the head page and
4928 			 * tail pages from being rearranged in any way. So this
4929 			 * page must be available at this point, unless the page
4930 			 * refcount overflowed:
4931 			 */
4932 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4933 				spin_unlock(ptl);
4934 				remainder = 0;
4935 				err = -ENOMEM;
4936 				break;
4937 			}
4938 		}
4939 
4940 		if (vmas)
4941 			vmas[i] = vma;
4942 
4943 		vaddr += PAGE_SIZE;
4944 		++pfn_offset;
4945 		--remainder;
4946 		++i;
4947 		if (vaddr < vma->vm_end && remainder &&
4948 				pfn_offset < pages_per_huge_page(h)) {
4949 			/*
4950 			 * We use pfn_offset to avoid touching the pageframes
4951 			 * of this compound page.
4952 			 */
4953 			goto same_page;
4954 		}
4955 		spin_unlock(ptl);
4956 	}
4957 	*nr_pages = remainder;
4958 	/*
4959 	 * setting position is actually required only if remainder is
4960 	 * not zero but it's faster not to add a "if (remainder)"
4961 	 * branch.
4962 	 */
4963 	*position = vaddr;
4964 
4965 	return i ? i : err;
4966 }
4967 
4968 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4969 /*
4970  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4971  * implement this.
4972  */
4973 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4974 #endif
4975 
4976 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4977 		unsigned long address, unsigned long end, pgprot_t newprot)
4978 {
4979 	struct mm_struct *mm = vma->vm_mm;
4980 	unsigned long start = address;
4981 	pte_t *ptep;
4982 	pte_t pte;
4983 	struct hstate *h = hstate_vma(vma);
4984 	unsigned long pages = 0;
4985 	bool shared_pmd = false;
4986 	struct mmu_notifier_range range;
4987 
4988 	/*
4989 	 * In the case of shared PMDs, the area to flush could be beyond
4990 	 * start/end.  Set range.start/range.end to cover the maximum possible
4991 	 * range if PMD sharing is possible.
4992 	 */
4993 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4994 				0, vma, mm, start, end);
4995 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4996 
4997 	BUG_ON(address >= end);
4998 	flush_cache_range(vma, range.start, range.end);
4999 
5000 	mmu_notifier_invalidate_range_start(&range);
5001 	i_mmap_lock_write(vma->vm_file->f_mapping);
5002 	for (; address < end; address += huge_page_size(h)) {
5003 		spinlock_t *ptl;
5004 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5005 		if (!ptep)
5006 			continue;
5007 		ptl = huge_pte_lock(h, mm, ptep);
5008 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5009 			pages++;
5010 			spin_unlock(ptl);
5011 			shared_pmd = true;
5012 			continue;
5013 		}
5014 		pte = huge_ptep_get(ptep);
5015 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5016 			spin_unlock(ptl);
5017 			continue;
5018 		}
5019 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5020 			swp_entry_t entry = pte_to_swp_entry(pte);
5021 
5022 			if (is_write_migration_entry(entry)) {
5023 				pte_t newpte;
5024 
5025 				make_migration_entry_read(&entry);
5026 				newpte = swp_entry_to_pte(entry);
5027 				set_huge_swap_pte_at(mm, address, ptep,
5028 						     newpte, huge_page_size(h));
5029 				pages++;
5030 			}
5031 			spin_unlock(ptl);
5032 			continue;
5033 		}
5034 		if (!huge_pte_none(pte)) {
5035 			pte_t old_pte;
5036 
5037 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5038 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5039 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5040 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5041 			pages++;
5042 		}
5043 		spin_unlock(ptl);
5044 	}
5045 	/*
5046 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5047 	 * may have cleared our pud entry and done put_page on the page table:
5048 	 * once we release i_mmap_rwsem, another task can do the final put_page
5049 	 * and that page table be reused and filled with junk.  If we actually
5050 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5051 	 */
5052 	if (shared_pmd)
5053 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5054 	else
5055 		flush_hugetlb_tlb_range(vma, start, end);
5056 	/*
5057 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5058 	 * page table protection not changing it to point to a new page.
5059 	 *
5060 	 * See Documentation/vm/mmu_notifier.rst
5061 	 */
5062 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5063 	mmu_notifier_invalidate_range_end(&range);
5064 
5065 	return pages << h->order;
5066 }
5067 
5068 int hugetlb_reserve_pages(struct inode *inode,
5069 					long from, long to,
5070 					struct vm_area_struct *vma,
5071 					vm_flags_t vm_flags)
5072 {
5073 	long ret, chg, add = -1;
5074 	struct hstate *h = hstate_inode(inode);
5075 	struct hugepage_subpool *spool = subpool_inode(inode);
5076 	struct resv_map *resv_map;
5077 	struct hugetlb_cgroup *h_cg = NULL;
5078 	long gbl_reserve, regions_needed = 0;
5079 
5080 	/* This should never happen */
5081 	if (from > to) {
5082 		VM_WARN(1, "%s called with a negative range\n", __func__);
5083 		return -EINVAL;
5084 	}
5085 
5086 	/*
5087 	 * Only apply hugepage reservation if asked. At fault time, an
5088 	 * attempt will be made for VM_NORESERVE to allocate a page
5089 	 * without using reserves
5090 	 */
5091 	if (vm_flags & VM_NORESERVE)
5092 		return 0;
5093 
5094 	/*
5095 	 * Shared mappings base their reservation on the number of pages that
5096 	 * are already allocated on behalf of the file. Private mappings need
5097 	 * to reserve the full area even if read-only as mprotect() may be
5098 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5099 	 */
5100 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5101 		/*
5102 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5103 		 * called for inodes for which resv_maps were created (see
5104 		 * hugetlbfs_get_inode).
5105 		 */
5106 		resv_map = inode_resv_map(inode);
5107 
5108 		chg = region_chg(resv_map, from, to, &regions_needed);
5109 
5110 	} else {
5111 		/* Private mapping. */
5112 		resv_map = resv_map_alloc();
5113 		if (!resv_map)
5114 			return -ENOMEM;
5115 
5116 		chg = to - from;
5117 
5118 		set_vma_resv_map(vma, resv_map);
5119 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5120 	}
5121 
5122 	if (chg < 0) {
5123 		ret = chg;
5124 		goto out_err;
5125 	}
5126 
5127 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5128 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5129 
5130 	if (ret < 0) {
5131 		ret = -ENOMEM;
5132 		goto out_err;
5133 	}
5134 
5135 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5136 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5137 		 * of the resv_map.
5138 		 */
5139 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5140 	}
5141 
5142 	/*
5143 	 * There must be enough pages in the subpool for the mapping. If
5144 	 * the subpool has a minimum size, there may be some global
5145 	 * reservations already in place (gbl_reserve).
5146 	 */
5147 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5148 	if (gbl_reserve < 0) {
5149 		ret = -ENOSPC;
5150 		goto out_uncharge_cgroup;
5151 	}
5152 
5153 	/*
5154 	 * Check enough hugepages are available for the reservation.
5155 	 * Hand the pages back to the subpool if there are not
5156 	 */
5157 	ret = hugetlb_acct_memory(h, gbl_reserve);
5158 	if (ret < 0) {
5159 		goto out_put_pages;
5160 	}
5161 
5162 	/*
5163 	 * Account for the reservations made. Shared mappings record regions
5164 	 * that have reservations as they are shared by multiple VMAs.
5165 	 * When the last VMA disappears, the region map says how much
5166 	 * the reservation was and the page cache tells how much of
5167 	 * the reservation was consumed. Private mappings are per-VMA and
5168 	 * only the consumed reservations are tracked. When the VMA
5169 	 * disappears, the original reservation is the VMA size and the
5170 	 * consumed reservations are stored in the map. Hence, nothing
5171 	 * else has to be done for private mappings here
5172 	 */
5173 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5174 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5175 
5176 		if (unlikely(add < 0)) {
5177 			hugetlb_acct_memory(h, -gbl_reserve);
5178 			ret = add;
5179 			goto out_put_pages;
5180 		} else if (unlikely(chg > add)) {
5181 			/*
5182 			 * pages in this range were added to the reserve
5183 			 * map between region_chg and region_add.  This
5184 			 * indicates a race with alloc_huge_page.  Adjust
5185 			 * the subpool and reserve counts modified above
5186 			 * based on the difference.
5187 			 */
5188 			long rsv_adjust;
5189 
5190 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5191 				hstate_index(h),
5192 				(chg - add) * pages_per_huge_page(h), h_cg);
5193 
5194 			rsv_adjust = hugepage_subpool_put_pages(spool,
5195 								chg - add);
5196 			hugetlb_acct_memory(h, -rsv_adjust);
5197 		}
5198 	}
5199 	return 0;
5200 out_put_pages:
5201 	/* put back original number of pages, chg */
5202 	(void)hugepage_subpool_put_pages(spool, chg);
5203 out_uncharge_cgroup:
5204 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5205 					    chg * pages_per_huge_page(h), h_cg);
5206 out_err:
5207 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5208 		/* Only call region_abort if the region_chg succeeded but the
5209 		 * region_add failed or didn't run.
5210 		 */
5211 		if (chg >= 0 && add < 0)
5212 			region_abort(resv_map, from, to, regions_needed);
5213 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5214 		kref_put(&resv_map->refs, resv_map_release);
5215 	return ret;
5216 }
5217 
5218 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5219 								long freed)
5220 {
5221 	struct hstate *h = hstate_inode(inode);
5222 	struct resv_map *resv_map = inode_resv_map(inode);
5223 	long chg = 0;
5224 	struct hugepage_subpool *spool = subpool_inode(inode);
5225 	long gbl_reserve;
5226 
5227 	/*
5228 	 * Since this routine can be called in the evict inode path for all
5229 	 * hugetlbfs inodes, resv_map could be NULL.
5230 	 */
5231 	if (resv_map) {
5232 		chg = region_del(resv_map, start, end);
5233 		/*
5234 		 * region_del() can fail in the rare case where a region
5235 		 * must be split and another region descriptor can not be
5236 		 * allocated.  If end == LONG_MAX, it will not fail.
5237 		 */
5238 		if (chg < 0)
5239 			return chg;
5240 	}
5241 
5242 	spin_lock(&inode->i_lock);
5243 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5244 	spin_unlock(&inode->i_lock);
5245 
5246 	/*
5247 	 * If the subpool has a minimum size, the number of global
5248 	 * reservations to be released may be adjusted.
5249 	 */
5250 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5251 	hugetlb_acct_memory(h, -gbl_reserve);
5252 
5253 	return 0;
5254 }
5255 
5256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5257 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5258 				struct vm_area_struct *vma,
5259 				unsigned long addr, pgoff_t idx)
5260 {
5261 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5262 				svma->vm_start;
5263 	unsigned long sbase = saddr & PUD_MASK;
5264 	unsigned long s_end = sbase + PUD_SIZE;
5265 
5266 	/* Allow segments to share if only one is marked locked */
5267 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5268 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269 
5270 	/*
5271 	 * match the virtual addresses, permission and the alignment of the
5272 	 * page table page.
5273 	 */
5274 	if (pmd_index(addr) != pmd_index(saddr) ||
5275 	    vm_flags != svm_flags ||
5276 	    sbase < svma->vm_start || svma->vm_end < s_end)
5277 		return 0;
5278 
5279 	return saddr;
5280 }
5281 
5282 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5283 {
5284 	unsigned long base = addr & PUD_MASK;
5285 	unsigned long end = base + PUD_SIZE;
5286 
5287 	/*
5288 	 * check on proper vm_flags and page table alignment
5289 	 */
5290 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5291 		return true;
5292 	return false;
5293 }
5294 
5295 /*
5296  * Determine if start,end range within vma could be mapped by shared pmd.
5297  * If yes, adjust start and end to cover range associated with possible
5298  * shared pmd mappings.
5299  */
5300 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5301 				unsigned long *start, unsigned long *end)
5302 {
5303 	unsigned long a_start, a_end;
5304 
5305 	if (!(vma->vm_flags & VM_MAYSHARE))
5306 		return;
5307 
5308 	/* Extend the range to be PUD aligned for a worst case scenario */
5309 	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5310 	a_end = ALIGN(*end, PUD_SIZE);
5311 
5312 	/*
5313 	 * Intersect the range with the vma range, since pmd sharing won't be
5314 	 * across vma after all
5315 	 */
5316 	*start = max(vma->vm_start, a_start);
5317 	*end = min(vma->vm_end, a_end);
5318 }
5319 
5320 /*
5321  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5322  * and returns the corresponding pte. While this is not necessary for the
5323  * !shared pmd case because we can allocate the pmd later as well, it makes the
5324  * code much cleaner.
5325  *
5326  * This routine must be called with i_mmap_rwsem held in at least read mode if
5327  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5328  * table entries associated with the address space.  This is important as we
5329  * are setting up sharing based on existing page table entries (mappings).
5330  *
5331  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5332  * huge_pte_alloc know that sharing is not possible and do not take
5333  * i_mmap_rwsem as a performance optimization.  This is handled by the
5334  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5335  * only required for subsequent processing.
5336  */
5337 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5338 {
5339 	struct vm_area_struct *vma = find_vma(mm, addr);
5340 	struct address_space *mapping = vma->vm_file->f_mapping;
5341 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5342 			vma->vm_pgoff;
5343 	struct vm_area_struct *svma;
5344 	unsigned long saddr;
5345 	pte_t *spte = NULL;
5346 	pte_t *pte;
5347 	spinlock_t *ptl;
5348 
5349 	if (!vma_shareable(vma, addr))
5350 		return (pte_t *)pmd_alloc(mm, pud, addr);
5351 
5352 	i_mmap_assert_locked(mapping);
5353 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5354 		if (svma == vma)
5355 			continue;
5356 
5357 		saddr = page_table_shareable(svma, vma, addr, idx);
5358 		if (saddr) {
5359 			spte = huge_pte_offset(svma->vm_mm, saddr,
5360 					       vma_mmu_pagesize(svma));
5361 			if (spte) {
5362 				get_page(virt_to_page(spte));
5363 				break;
5364 			}
5365 		}
5366 	}
5367 
5368 	if (!spte)
5369 		goto out;
5370 
5371 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5372 	if (pud_none(*pud)) {
5373 		pud_populate(mm, pud,
5374 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5375 		mm_inc_nr_pmds(mm);
5376 	} else {
5377 		put_page(virt_to_page(spte));
5378 	}
5379 	spin_unlock(ptl);
5380 out:
5381 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5382 	return pte;
5383 }
5384 
5385 /*
5386  * unmap huge page backed by shared pte.
5387  *
5388  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5389  * indicated by page_count > 1, unmap is achieved by clearing pud and
5390  * decrementing the ref count. If count == 1, the pte page is not shared.
5391  *
5392  * Called with page table lock held and i_mmap_rwsem held in write mode.
5393  *
5394  * returns: 1 successfully unmapped a shared pte page
5395  *	    0 the underlying pte page is not shared, or it is the last user
5396  */
5397 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5398 					unsigned long *addr, pte_t *ptep)
5399 {
5400 	pgd_t *pgd = pgd_offset(mm, *addr);
5401 	p4d_t *p4d = p4d_offset(pgd, *addr);
5402 	pud_t *pud = pud_offset(p4d, *addr);
5403 
5404 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5405 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5406 	if (page_count(virt_to_page(ptep)) == 1)
5407 		return 0;
5408 
5409 	pud_clear(pud);
5410 	put_page(virt_to_page(ptep));
5411 	mm_dec_nr_pmds(mm);
5412 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5413 	return 1;
5414 }
5415 #define want_pmd_share()	(1)
5416 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5417 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5418 {
5419 	return NULL;
5420 }
5421 
5422 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5423 				unsigned long *addr, pte_t *ptep)
5424 {
5425 	return 0;
5426 }
5427 
5428 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5429 				unsigned long *start, unsigned long *end)
5430 {
5431 }
5432 #define want_pmd_share()	(0)
5433 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5434 
5435 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5436 pte_t *huge_pte_alloc(struct mm_struct *mm,
5437 			unsigned long addr, unsigned long sz)
5438 {
5439 	pgd_t *pgd;
5440 	p4d_t *p4d;
5441 	pud_t *pud;
5442 	pte_t *pte = NULL;
5443 
5444 	pgd = pgd_offset(mm, addr);
5445 	p4d = p4d_alloc(mm, pgd, addr);
5446 	if (!p4d)
5447 		return NULL;
5448 	pud = pud_alloc(mm, p4d, addr);
5449 	if (pud) {
5450 		if (sz == PUD_SIZE) {
5451 			pte = (pte_t *)pud;
5452 		} else {
5453 			BUG_ON(sz != PMD_SIZE);
5454 			if (want_pmd_share() && pud_none(*pud))
5455 				pte = huge_pmd_share(mm, addr, pud);
5456 			else
5457 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5458 		}
5459 	}
5460 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5461 
5462 	return pte;
5463 }
5464 
5465 /*
5466  * huge_pte_offset() - Walk the page table to resolve the hugepage
5467  * entry at address @addr
5468  *
5469  * Return: Pointer to page table entry (PUD or PMD) for
5470  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5471  * size @sz doesn't match the hugepage size at this level of the page
5472  * table.
5473  */
5474 pte_t *huge_pte_offset(struct mm_struct *mm,
5475 		       unsigned long addr, unsigned long sz)
5476 {
5477 	pgd_t *pgd;
5478 	p4d_t *p4d;
5479 	pud_t *pud;
5480 	pmd_t *pmd;
5481 
5482 	pgd = pgd_offset(mm, addr);
5483 	if (!pgd_present(*pgd))
5484 		return NULL;
5485 	p4d = p4d_offset(pgd, addr);
5486 	if (!p4d_present(*p4d))
5487 		return NULL;
5488 
5489 	pud = pud_offset(p4d, addr);
5490 	if (sz == PUD_SIZE)
5491 		/* must be pud huge, non-present or none */
5492 		return (pte_t *)pud;
5493 	if (!pud_present(*pud))
5494 		return NULL;
5495 	/* must have a valid entry and size to go further */
5496 
5497 	pmd = pmd_offset(pud, addr);
5498 	/* must be pmd huge, non-present or none */
5499 	return (pte_t *)pmd;
5500 }
5501 
5502 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5503 
5504 /*
5505  * These functions are overwritable if your architecture needs its own
5506  * behavior.
5507  */
5508 struct page * __weak
5509 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5510 			      int write)
5511 {
5512 	return ERR_PTR(-EINVAL);
5513 }
5514 
5515 struct page * __weak
5516 follow_huge_pd(struct vm_area_struct *vma,
5517 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5518 {
5519 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5520 	return NULL;
5521 }
5522 
5523 struct page * __weak
5524 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5525 		pmd_t *pmd, int flags)
5526 {
5527 	struct page *page = NULL;
5528 	spinlock_t *ptl;
5529 	pte_t pte;
5530 
5531 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5532 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5533 			 (FOLL_PIN | FOLL_GET)))
5534 		return NULL;
5535 
5536 retry:
5537 	ptl = pmd_lockptr(mm, pmd);
5538 	spin_lock(ptl);
5539 	/*
5540 	 * make sure that the address range covered by this pmd is not
5541 	 * unmapped from other threads.
5542 	 */
5543 	if (!pmd_huge(*pmd))
5544 		goto out;
5545 	pte = huge_ptep_get((pte_t *)pmd);
5546 	if (pte_present(pte)) {
5547 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5548 		/*
5549 		 * try_grab_page() should always succeed here, because: a) we
5550 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5551 		 * huge pmd (head) page is present in the page tables. The ptl
5552 		 * prevents the head page and tail pages from being rearranged
5553 		 * in any way. So this page must be available at this point,
5554 		 * unless the page refcount overflowed:
5555 		 */
5556 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5557 			page = NULL;
5558 			goto out;
5559 		}
5560 	} else {
5561 		if (is_hugetlb_entry_migration(pte)) {
5562 			spin_unlock(ptl);
5563 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5564 			goto retry;
5565 		}
5566 		/*
5567 		 * hwpoisoned entry is treated as no_page_table in
5568 		 * follow_page_mask().
5569 		 */
5570 	}
5571 out:
5572 	spin_unlock(ptl);
5573 	return page;
5574 }
5575 
5576 struct page * __weak
5577 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5578 		pud_t *pud, int flags)
5579 {
5580 	if (flags & (FOLL_GET | FOLL_PIN))
5581 		return NULL;
5582 
5583 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5584 }
5585 
5586 struct page * __weak
5587 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5588 {
5589 	if (flags & (FOLL_GET | FOLL_PIN))
5590 		return NULL;
5591 
5592 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5593 }
5594 
5595 bool isolate_huge_page(struct page *page, struct list_head *list)
5596 {
5597 	bool ret = true;
5598 
5599 	spin_lock(&hugetlb_lock);
5600 	if (!PageHeadHuge(page) || !page_huge_active(page) ||
5601 	    !get_page_unless_zero(page)) {
5602 		ret = false;
5603 		goto unlock;
5604 	}
5605 	clear_page_huge_active(page);
5606 	list_move_tail(&page->lru, list);
5607 unlock:
5608 	spin_unlock(&hugetlb_lock);
5609 	return ret;
5610 }
5611 
5612 void putback_active_hugepage(struct page *page)
5613 {
5614 	VM_BUG_ON_PAGE(!PageHead(page), page);
5615 	spin_lock(&hugetlb_lock);
5616 	set_page_huge_active(page);
5617 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5618 	spin_unlock(&hugetlb_lock);
5619 	put_page(page);
5620 }
5621 
5622 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5623 {
5624 	struct hstate *h = page_hstate(oldpage);
5625 
5626 	hugetlb_cgroup_migrate(oldpage, newpage);
5627 	set_page_owner_migrate_reason(newpage, reason);
5628 
5629 	/*
5630 	 * transfer temporary state of the new huge page. This is
5631 	 * reverse to other transitions because the newpage is going to
5632 	 * be final while the old one will be freed so it takes over
5633 	 * the temporary status.
5634 	 *
5635 	 * Also note that we have to transfer the per-node surplus state
5636 	 * here as well otherwise the global surplus count will not match
5637 	 * the per-node's.
5638 	 */
5639 	if (PageHugeTemporary(newpage)) {
5640 		int old_nid = page_to_nid(oldpage);
5641 		int new_nid = page_to_nid(newpage);
5642 
5643 		SetPageHugeTemporary(oldpage);
5644 		ClearPageHugeTemporary(newpage);
5645 
5646 		spin_lock(&hugetlb_lock);
5647 		if (h->surplus_huge_pages_node[old_nid]) {
5648 			h->surplus_huge_pages_node[old_nid]--;
5649 			h->surplus_huge_pages_node[new_nid]++;
5650 		}
5651 		spin_unlock(&hugetlb_lock);
5652 	}
5653 }
5654 
5655 #ifdef CONFIG_CMA
5656 static bool cma_reserve_called __initdata;
5657 
5658 static int __init cmdline_parse_hugetlb_cma(char *p)
5659 {
5660 	hugetlb_cma_size = memparse(p, &p);
5661 	return 0;
5662 }
5663 
5664 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5665 
5666 void __init hugetlb_cma_reserve(int order)
5667 {
5668 	unsigned long size, reserved, per_node;
5669 	int nid;
5670 
5671 	cma_reserve_called = true;
5672 
5673 	if (!hugetlb_cma_size)
5674 		return;
5675 
5676 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5677 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5678 			(PAGE_SIZE << order) / SZ_1M);
5679 		return;
5680 	}
5681 
5682 	/*
5683 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5684 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5685 	 */
5686 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5687 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5688 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5689 
5690 	reserved = 0;
5691 	for_each_node_state(nid, N_ONLINE) {
5692 		int res;
5693 		char name[CMA_MAX_NAME];
5694 
5695 		size = min(per_node, hugetlb_cma_size - reserved);
5696 		size = round_up(size, PAGE_SIZE << order);
5697 
5698 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5699 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5700 						 0, false, name,
5701 						 &hugetlb_cma[nid], nid);
5702 		if (res) {
5703 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5704 				res, nid);
5705 			continue;
5706 		}
5707 
5708 		reserved += size;
5709 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5710 			size / SZ_1M, nid);
5711 
5712 		if (reserved >= hugetlb_cma_size)
5713 			break;
5714 	}
5715 }
5716 
5717 void __init hugetlb_cma_check(void)
5718 {
5719 	if (!hugetlb_cma_size || cma_reserve_called)
5720 		return;
5721 
5722 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5723 }
5724 
5725 #endif /* CONFIG_CMA */
5726