1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/mmdebug.h> 23 #include <linux/sched/signal.h> 24 #include <linux/rmap.h> 25 #include <linux/string_helpers.h> 26 #include <linux/swap.h> 27 #include <linux/swapops.h> 28 #include <linux/jhash.h> 29 #include <linux/numa.h> 30 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/tlb.h> 34 35 #include <linux/io.h> 36 #include <linux/hugetlb.h> 37 #include <linux/hugetlb_cgroup.h> 38 #include <linux/node.h> 39 #include <linux/userfaultfd_k.h> 40 #include <linux/page_owner.h> 41 #include "internal.h" 42 43 int hugetlb_max_hstate __read_mostly; 44 unsigned int default_hstate_idx; 45 struct hstate hstates[HUGE_MAX_HSTATE]; 46 /* 47 * Minimum page order among possible hugepage sizes, set to a proper value 48 * at boot time. 49 */ 50 static unsigned int minimum_order __read_mostly = UINT_MAX; 51 52 __initdata LIST_HEAD(huge_boot_pages); 53 54 /* for command line parsing */ 55 static struct hstate * __initdata parsed_hstate; 56 static unsigned long __initdata default_hstate_max_huge_pages; 57 static unsigned long __initdata default_hstate_size; 58 static bool __initdata parsed_valid_hugepagesz = true; 59 60 /* 61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 62 * free_huge_pages, and surplus_huge_pages. 63 */ 64 DEFINE_SPINLOCK(hugetlb_lock); 65 66 /* 67 * Serializes faults on the same logical page. This is used to 68 * prevent spurious OOMs when the hugepage pool is fully utilized. 69 */ 70 static int num_fault_mutexes; 71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 72 73 /* Forward declaration */ 74 static int hugetlb_acct_memory(struct hstate *h, long delta); 75 76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 77 { 78 bool free = (spool->count == 0) && (spool->used_hpages == 0); 79 80 spin_unlock(&spool->lock); 81 82 /* If no pages are used, and no other handles to the subpool 83 * remain, give up any reservations mased on minimum size and 84 * free the subpool */ 85 if (free) { 86 if (spool->min_hpages != -1) 87 hugetlb_acct_memory(spool->hstate, 88 -spool->min_hpages); 89 kfree(spool); 90 } 91 } 92 93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 94 long min_hpages) 95 { 96 struct hugepage_subpool *spool; 97 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 99 if (!spool) 100 return NULL; 101 102 spin_lock_init(&spool->lock); 103 spool->count = 1; 104 spool->max_hpages = max_hpages; 105 spool->hstate = h; 106 spool->min_hpages = min_hpages; 107 108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 109 kfree(spool); 110 return NULL; 111 } 112 spool->rsv_hpages = min_hpages; 113 114 return spool; 115 } 116 117 void hugepage_put_subpool(struct hugepage_subpool *spool) 118 { 119 spin_lock(&spool->lock); 120 BUG_ON(!spool->count); 121 spool->count--; 122 unlock_or_release_subpool(spool); 123 } 124 125 /* 126 * Subpool accounting for allocating and reserving pages. 127 * Return -ENOMEM if there are not enough resources to satisfy the 128 * the request. Otherwise, return the number of pages by which the 129 * global pools must be adjusted (upward). The returned value may 130 * only be different than the passed value (delta) in the case where 131 * a subpool minimum size must be manitained. 132 */ 133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 134 long delta) 135 { 136 long ret = delta; 137 138 if (!spool) 139 return ret; 140 141 spin_lock(&spool->lock); 142 143 if (spool->max_hpages != -1) { /* maximum size accounting */ 144 if ((spool->used_hpages + delta) <= spool->max_hpages) 145 spool->used_hpages += delta; 146 else { 147 ret = -ENOMEM; 148 goto unlock_ret; 149 } 150 } 151 152 /* minimum size accounting */ 153 if (spool->min_hpages != -1 && spool->rsv_hpages) { 154 if (delta > spool->rsv_hpages) { 155 /* 156 * Asking for more reserves than those already taken on 157 * behalf of subpool. Return difference. 158 */ 159 ret = delta - spool->rsv_hpages; 160 spool->rsv_hpages = 0; 161 } else { 162 ret = 0; /* reserves already accounted for */ 163 spool->rsv_hpages -= delta; 164 } 165 } 166 167 unlock_ret: 168 spin_unlock(&spool->lock); 169 return ret; 170 } 171 172 /* 173 * Subpool accounting for freeing and unreserving pages. 174 * Return the number of global page reservations that must be dropped. 175 * The return value may only be different than the passed value (delta) 176 * in the case where a subpool minimum size must be maintained. 177 */ 178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 179 long delta) 180 { 181 long ret = delta; 182 183 if (!spool) 184 return delta; 185 186 spin_lock(&spool->lock); 187 188 if (spool->max_hpages != -1) /* maximum size accounting */ 189 spool->used_hpages -= delta; 190 191 /* minimum size accounting */ 192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 193 if (spool->rsv_hpages + delta <= spool->min_hpages) 194 ret = 0; 195 else 196 ret = spool->rsv_hpages + delta - spool->min_hpages; 197 198 spool->rsv_hpages += delta; 199 if (spool->rsv_hpages > spool->min_hpages) 200 spool->rsv_hpages = spool->min_hpages; 201 } 202 203 /* 204 * If hugetlbfs_put_super couldn't free spool due to an outstanding 205 * quota reference, free it now. 206 */ 207 unlock_or_release_subpool(spool); 208 209 return ret; 210 } 211 212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 213 { 214 return HUGETLBFS_SB(inode->i_sb)->spool; 215 } 216 217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 218 { 219 return subpool_inode(file_inode(vma->vm_file)); 220 } 221 222 /* 223 * Region tracking -- allows tracking of reservations and instantiated pages 224 * across the pages in a mapping. 225 * 226 * The region data structures are embedded into a resv_map and protected 227 * by a resv_map's lock. The set of regions within the resv_map represent 228 * reservations for huge pages, or huge pages that have already been 229 * instantiated within the map. The from and to elements are huge page 230 * indicies into the associated mapping. from indicates the starting index 231 * of the region. to represents the first index past the end of the region. 232 * 233 * For example, a file region structure with from == 0 and to == 4 represents 234 * four huge pages in a mapping. It is important to note that the to element 235 * represents the first element past the end of the region. This is used in 236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 237 * 238 * Interval notation of the form [from, to) will be used to indicate that 239 * the endpoint from is inclusive and to is exclusive. 240 */ 241 struct file_region { 242 struct list_head link; 243 long from; 244 long to; 245 }; 246 247 /* 248 * Add the huge page range represented by [f, t) to the reserve 249 * map. In the normal case, existing regions will be expanded 250 * to accommodate the specified range. Sufficient regions should 251 * exist for expansion due to the previous call to region_chg 252 * with the same range. However, it is possible that region_del 253 * could have been called after region_chg and modifed the map 254 * in such a way that no region exists to be expanded. In this 255 * case, pull a region descriptor from the cache associated with 256 * the map and use that for the new range. 257 * 258 * Return the number of new huge pages added to the map. This 259 * number is greater than or equal to zero. 260 */ 261 static long region_add(struct resv_map *resv, long f, long t) 262 { 263 struct list_head *head = &resv->regions; 264 struct file_region *rg, *nrg, *trg; 265 long add = 0; 266 267 spin_lock(&resv->lock); 268 /* Locate the region we are either in or before. */ 269 list_for_each_entry(rg, head, link) 270 if (f <= rg->to) 271 break; 272 273 /* 274 * If no region exists which can be expanded to include the 275 * specified range, the list must have been modified by an 276 * interleving call to region_del(). Pull a region descriptor 277 * from the cache and use it for this range. 278 */ 279 if (&rg->link == head || t < rg->from) { 280 VM_BUG_ON(resv->region_cache_count <= 0); 281 282 resv->region_cache_count--; 283 nrg = list_first_entry(&resv->region_cache, struct file_region, 284 link); 285 list_del(&nrg->link); 286 287 nrg->from = f; 288 nrg->to = t; 289 list_add(&nrg->link, rg->link.prev); 290 291 add += t - f; 292 goto out_locked; 293 } 294 295 /* Round our left edge to the current segment if it encloses us. */ 296 if (f > rg->from) 297 f = rg->from; 298 299 /* Check for and consume any regions we now overlap with. */ 300 nrg = rg; 301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 302 if (&rg->link == head) 303 break; 304 if (rg->from > t) 305 break; 306 307 /* If this area reaches higher then extend our area to 308 * include it completely. If this is not the first area 309 * which we intend to reuse, free it. */ 310 if (rg->to > t) 311 t = rg->to; 312 if (rg != nrg) { 313 /* Decrement return value by the deleted range. 314 * Another range will span this area so that by 315 * end of routine add will be >= zero 316 */ 317 add -= (rg->to - rg->from); 318 list_del(&rg->link); 319 kfree(rg); 320 } 321 } 322 323 add += (nrg->from - f); /* Added to beginning of region */ 324 nrg->from = f; 325 add += t - nrg->to; /* Added to end of region */ 326 nrg->to = t; 327 328 out_locked: 329 resv->adds_in_progress--; 330 spin_unlock(&resv->lock); 331 VM_BUG_ON(add < 0); 332 return add; 333 } 334 335 /* 336 * Examine the existing reserve map and determine how many 337 * huge pages in the specified range [f, t) are NOT currently 338 * represented. This routine is called before a subsequent 339 * call to region_add that will actually modify the reserve 340 * map to add the specified range [f, t). region_chg does 341 * not change the number of huge pages represented by the 342 * map. However, if the existing regions in the map can not 343 * be expanded to represent the new range, a new file_region 344 * structure is added to the map as a placeholder. This is 345 * so that the subsequent region_add call will have all the 346 * regions it needs and will not fail. 347 * 348 * Upon entry, region_chg will also examine the cache of region descriptors 349 * associated with the map. If there are not enough descriptors cached, one 350 * will be allocated for the in progress add operation. 351 * 352 * Returns the number of huge pages that need to be added to the existing 353 * reservation map for the range [f, t). This number is greater or equal to 354 * zero. -ENOMEM is returned if a new file_region structure or cache entry 355 * is needed and can not be allocated. 356 */ 357 static long region_chg(struct resv_map *resv, long f, long t) 358 { 359 struct list_head *head = &resv->regions; 360 struct file_region *rg, *nrg = NULL; 361 long chg = 0; 362 363 retry: 364 spin_lock(&resv->lock); 365 retry_locked: 366 resv->adds_in_progress++; 367 368 /* 369 * Check for sufficient descriptors in the cache to accommodate 370 * the number of in progress add operations. 371 */ 372 if (resv->adds_in_progress > resv->region_cache_count) { 373 struct file_region *trg; 374 375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 376 /* Must drop lock to allocate a new descriptor. */ 377 resv->adds_in_progress--; 378 spin_unlock(&resv->lock); 379 380 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 381 if (!trg) { 382 kfree(nrg); 383 return -ENOMEM; 384 } 385 386 spin_lock(&resv->lock); 387 list_add(&trg->link, &resv->region_cache); 388 resv->region_cache_count++; 389 goto retry_locked; 390 } 391 392 /* Locate the region we are before or in. */ 393 list_for_each_entry(rg, head, link) 394 if (f <= rg->to) 395 break; 396 397 /* If we are below the current region then a new region is required. 398 * Subtle, allocate a new region at the position but make it zero 399 * size such that we can guarantee to record the reservation. */ 400 if (&rg->link == head || t < rg->from) { 401 if (!nrg) { 402 resv->adds_in_progress--; 403 spin_unlock(&resv->lock); 404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 405 if (!nrg) 406 return -ENOMEM; 407 408 nrg->from = f; 409 nrg->to = f; 410 INIT_LIST_HEAD(&nrg->link); 411 goto retry; 412 } 413 414 list_add(&nrg->link, rg->link.prev); 415 chg = t - f; 416 goto out_nrg; 417 } 418 419 /* Round our left edge to the current segment if it encloses us. */ 420 if (f > rg->from) 421 f = rg->from; 422 chg = t - f; 423 424 /* Check for and consume any regions we now overlap with. */ 425 list_for_each_entry(rg, rg->link.prev, link) { 426 if (&rg->link == head) 427 break; 428 if (rg->from > t) 429 goto out; 430 431 /* We overlap with this area, if it extends further than 432 * us then we must extend ourselves. Account for its 433 * existing reservation. */ 434 if (rg->to > t) { 435 chg += rg->to - t; 436 t = rg->to; 437 } 438 chg -= rg->to - rg->from; 439 } 440 441 out: 442 spin_unlock(&resv->lock); 443 /* We already know we raced and no longer need the new region */ 444 kfree(nrg); 445 return chg; 446 out_nrg: 447 spin_unlock(&resv->lock); 448 return chg; 449 } 450 451 /* 452 * Abort the in progress add operation. The adds_in_progress field 453 * of the resv_map keeps track of the operations in progress between 454 * calls to region_chg and region_add. Operations are sometimes 455 * aborted after the call to region_chg. In such cases, region_abort 456 * is called to decrement the adds_in_progress counter. 457 * 458 * NOTE: The range arguments [f, t) are not needed or used in this 459 * routine. They are kept to make reading the calling code easier as 460 * arguments will match the associated region_chg call. 461 */ 462 static void region_abort(struct resv_map *resv, long f, long t) 463 { 464 spin_lock(&resv->lock); 465 VM_BUG_ON(!resv->region_cache_count); 466 resv->adds_in_progress--; 467 spin_unlock(&resv->lock); 468 } 469 470 /* 471 * Delete the specified range [f, t) from the reserve map. If the 472 * t parameter is LONG_MAX, this indicates that ALL regions after f 473 * should be deleted. Locate the regions which intersect [f, t) 474 * and either trim, delete or split the existing regions. 475 * 476 * Returns the number of huge pages deleted from the reserve map. 477 * In the normal case, the return value is zero or more. In the 478 * case where a region must be split, a new region descriptor must 479 * be allocated. If the allocation fails, -ENOMEM will be returned. 480 * NOTE: If the parameter t == LONG_MAX, then we will never split 481 * a region and possibly return -ENOMEM. Callers specifying 482 * t == LONG_MAX do not need to check for -ENOMEM error. 483 */ 484 static long region_del(struct resv_map *resv, long f, long t) 485 { 486 struct list_head *head = &resv->regions; 487 struct file_region *rg, *trg; 488 struct file_region *nrg = NULL; 489 long del = 0; 490 491 retry: 492 spin_lock(&resv->lock); 493 list_for_each_entry_safe(rg, trg, head, link) { 494 /* 495 * Skip regions before the range to be deleted. file_region 496 * ranges are normally of the form [from, to). However, there 497 * may be a "placeholder" entry in the map which is of the form 498 * (from, to) with from == to. Check for placeholder entries 499 * at the beginning of the range to be deleted. 500 */ 501 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 502 continue; 503 504 if (rg->from >= t) 505 break; 506 507 if (f > rg->from && t < rg->to) { /* Must split region */ 508 /* 509 * Check for an entry in the cache before dropping 510 * lock and attempting allocation. 511 */ 512 if (!nrg && 513 resv->region_cache_count > resv->adds_in_progress) { 514 nrg = list_first_entry(&resv->region_cache, 515 struct file_region, 516 link); 517 list_del(&nrg->link); 518 resv->region_cache_count--; 519 } 520 521 if (!nrg) { 522 spin_unlock(&resv->lock); 523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 524 if (!nrg) 525 return -ENOMEM; 526 goto retry; 527 } 528 529 del += t - f; 530 531 /* New entry for end of split region */ 532 nrg->from = t; 533 nrg->to = rg->to; 534 INIT_LIST_HEAD(&nrg->link); 535 536 /* Original entry is trimmed */ 537 rg->to = f; 538 539 list_add(&nrg->link, &rg->link); 540 nrg = NULL; 541 break; 542 } 543 544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 545 del += rg->to - rg->from; 546 list_del(&rg->link); 547 kfree(rg); 548 continue; 549 } 550 551 if (f <= rg->from) { /* Trim beginning of region */ 552 del += t - rg->from; 553 rg->from = t; 554 } else { /* Trim end of region */ 555 del += rg->to - f; 556 rg->to = f; 557 } 558 } 559 560 spin_unlock(&resv->lock); 561 kfree(nrg); 562 return del; 563 } 564 565 /* 566 * A rare out of memory error was encountered which prevented removal of 567 * the reserve map region for a page. The huge page itself was free'ed 568 * and removed from the page cache. This routine will adjust the subpool 569 * usage count, and the global reserve count if needed. By incrementing 570 * these counts, the reserve map entry which could not be deleted will 571 * appear as a "reserved" entry instead of simply dangling with incorrect 572 * counts. 573 */ 574 void hugetlb_fix_reserve_counts(struct inode *inode) 575 { 576 struct hugepage_subpool *spool = subpool_inode(inode); 577 long rsv_adjust; 578 579 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 580 if (rsv_adjust) { 581 struct hstate *h = hstate_inode(inode); 582 583 hugetlb_acct_memory(h, 1); 584 } 585 } 586 587 /* 588 * Count and return the number of huge pages in the reserve map 589 * that intersect with the range [f, t). 590 */ 591 static long region_count(struct resv_map *resv, long f, long t) 592 { 593 struct list_head *head = &resv->regions; 594 struct file_region *rg; 595 long chg = 0; 596 597 spin_lock(&resv->lock); 598 /* Locate each segment we overlap with, and count that overlap. */ 599 list_for_each_entry(rg, head, link) { 600 long seg_from; 601 long seg_to; 602 603 if (rg->to <= f) 604 continue; 605 if (rg->from >= t) 606 break; 607 608 seg_from = max(rg->from, f); 609 seg_to = min(rg->to, t); 610 611 chg += seg_to - seg_from; 612 } 613 spin_unlock(&resv->lock); 614 615 return chg; 616 } 617 618 /* 619 * Convert the address within this vma to the page offset within 620 * the mapping, in pagecache page units; huge pages here. 621 */ 622 static pgoff_t vma_hugecache_offset(struct hstate *h, 623 struct vm_area_struct *vma, unsigned long address) 624 { 625 return ((address - vma->vm_start) >> huge_page_shift(h)) + 626 (vma->vm_pgoff >> huge_page_order(h)); 627 } 628 629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 630 unsigned long address) 631 { 632 return vma_hugecache_offset(hstate_vma(vma), vma, address); 633 } 634 EXPORT_SYMBOL_GPL(linear_hugepage_index); 635 636 /* 637 * Return the size of the pages allocated when backing a VMA. In the majority 638 * cases this will be same size as used by the page table entries. 639 */ 640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 641 { 642 if (vma->vm_ops && vma->vm_ops->pagesize) 643 return vma->vm_ops->pagesize(vma); 644 return PAGE_SIZE; 645 } 646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 647 648 /* 649 * Return the page size being used by the MMU to back a VMA. In the majority 650 * of cases, the page size used by the kernel matches the MMU size. On 651 * architectures where it differs, an architecture-specific 'strong' 652 * version of this symbol is required. 653 */ 654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 655 { 656 return vma_kernel_pagesize(vma); 657 } 658 659 /* 660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 661 * bits of the reservation map pointer, which are always clear due to 662 * alignment. 663 */ 664 #define HPAGE_RESV_OWNER (1UL << 0) 665 #define HPAGE_RESV_UNMAPPED (1UL << 1) 666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 667 668 /* 669 * These helpers are used to track how many pages are reserved for 670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 671 * is guaranteed to have their future faults succeed. 672 * 673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 674 * the reserve counters are updated with the hugetlb_lock held. It is safe 675 * to reset the VMA at fork() time as it is not in use yet and there is no 676 * chance of the global counters getting corrupted as a result of the values. 677 * 678 * The private mapping reservation is represented in a subtly different 679 * manner to a shared mapping. A shared mapping has a region map associated 680 * with the underlying file, this region map represents the backing file 681 * pages which have ever had a reservation assigned which this persists even 682 * after the page is instantiated. A private mapping has a region map 683 * associated with the original mmap which is attached to all VMAs which 684 * reference it, this region map represents those offsets which have consumed 685 * reservation ie. where pages have been instantiated. 686 */ 687 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 688 { 689 return (unsigned long)vma->vm_private_data; 690 } 691 692 static void set_vma_private_data(struct vm_area_struct *vma, 693 unsigned long value) 694 { 695 vma->vm_private_data = (void *)value; 696 } 697 698 struct resv_map *resv_map_alloc(void) 699 { 700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 702 703 if (!resv_map || !rg) { 704 kfree(resv_map); 705 kfree(rg); 706 return NULL; 707 } 708 709 kref_init(&resv_map->refs); 710 spin_lock_init(&resv_map->lock); 711 INIT_LIST_HEAD(&resv_map->regions); 712 713 resv_map->adds_in_progress = 0; 714 715 INIT_LIST_HEAD(&resv_map->region_cache); 716 list_add(&rg->link, &resv_map->region_cache); 717 resv_map->region_cache_count = 1; 718 719 return resv_map; 720 } 721 722 void resv_map_release(struct kref *ref) 723 { 724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 725 struct list_head *head = &resv_map->region_cache; 726 struct file_region *rg, *trg; 727 728 /* Clear out any active regions before we release the map. */ 729 region_del(resv_map, 0, LONG_MAX); 730 731 /* ... and any entries left in the cache */ 732 list_for_each_entry_safe(rg, trg, head, link) { 733 list_del(&rg->link); 734 kfree(rg); 735 } 736 737 VM_BUG_ON(resv_map->adds_in_progress); 738 739 kfree(resv_map); 740 } 741 742 static inline struct resv_map *inode_resv_map(struct inode *inode) 743 { 744 /* 745 * At inode evict time, i_mapping may not point to the original 746 * address space within the inode. This original address space 747 * contains the pointer to the resv_map. So, always use the 748 * address space embedded within the inode. 749 * The VERY common case is inode->mapping == &inode->i_data but, 750 * this may not be true for device special inodes. 751 */ 752 return (struct resv_map *)(&inode->i_data)->private_data; 753 } 754 755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 756 { 757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 758 if (vma->vm_flags & VM_MAYSHARE) { 759 struct address_space *mapping = vma->vm_file->f_mapping; 760 struct inode *inode = mapping->host; 761 762 return inode_resv_map(inode); 763 764 } else { 765 return (struct resv_map *)(get_vma_private_data(vma) & 766 ~HPAGE_RESV_MASK); 767 } 768 } 769 770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 771 { 772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 774 775 set_vma_private_data(vma, (get_vma_private_data(vma) & 776 HPAGE_RESV_MASK) | (unsigned long)map); 777 } 778 779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 780 { 781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 783 784 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 785 } 786 787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 788 { 789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 790 791 return (get_vma_private_data(vma) & flag) != 0; 792 } 793 794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 796 { 797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 798 if (!(vma->vm_flags & VM_MAYSHARE)) 799 vma->vm_private_data = (void *)0; 800 } 801 802 /* Returns true if the VMA has associated reserve pages */ 803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 804 { 805 if (vma->vm_flags & VM_NORESERVE) { 806 /* 807 * This address is already reserved by other process(chg == 0), 808 * so, we should decrement reserved count. Without decrementing, 809 * reserve count remains after releasing inode, because this 810 * allocated page will go into page cache and is regarded as 811 * coming from reserved pool in releasing step. Currently, we 812 * don't have any other solution to deal with this situation 813 * properly, so add work-around here. 814 */ 815 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 816 return true; 817 else 818 return false; 819 } 820 821 /* Shared mappings always use reserves */ 822 if (vma->vm_flags & VM_MAYSHARE) { 823 /* 824 * We know VM_NORESERVE is not set. Therefore, there SHOULD 825 * be a region map for all pages. The only situation where 826 * there is no region map is if a hole was punched via 827 * fallocate. In this case, there really are no reverves to 828 * use. This situation is indicated if chg != 0. 829 */ 830 if (chg) 831 return false; 832 else 833 return true; 834 } 835 836 /* 837 * Only the process that called mmap() has reserves for 838 * private mappings. 839 */ 840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 841 /* 842 * Like the shared case above, a hole punch or truncate 843 * could have been performed on the private mapping. 844 * Examine the value of chg to determine if reserves 845 * actually exist or were previously consumed. 846 * Very Subtle - The value of chg comes from a previous 847 * call to vma_needs_reserves(). The reserve map for 848 * private mappings has different (opposite) semantics 849 * than that of shared mappings. vma_needs_reserves() 850 * has already taken this difference in semantics into 851 * account. Therefore, the meaning of chg is the same 852 * as in the shared case above. Code could easily be 853 * combined, but keeping it separate draws attention to 854 * subtle differences. 855 */ 856 if (chg) 857 return false; 858 else 859 return true; 860 } 861 862 return false; 863 } 864 865 static void enqueue_huge_page(struct hstate *h, struct page *page) 866 { 867 int nid = page_to_nid(page); 868 list_move(&page->lru, &h->hugepage_freelists[nid]); 869 h->free_huge_pages++; 870 h->free_huge_pages_node[nid]++; 871 } 872 873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 874 { 875 struct page *page; 876 877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 878 if (!PageHWPoison(page)) 879 break; 880 /* 881 * if 'non-isolated free hugepage' not found on the list, 882 * the allocation fails. 883 */ 884 if (&h->hugepage_freelists[nid] == &page->lru) 885 return NULL; 886 list_move(&page->lru, &h->hugepage_activelist); 887 set_page_refcounted(page); 888 h->free_huge_pages--; 889 h->free_huge_pages_node[nid]--; 890 return page; 891 } 892 893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 894 nodemask_t *nmask) 895 { 896 unsigned int cpuset_mems_cookie; 897 struct zonelist *zonelist; 898 struct zone *zone; 899 struct zoneref *z; 900 int node = NUMA_NO_NODE; 901 902 zonelist = node_zonelist(nid, gfp_mask); 903 904 retry_cpuset: 905 cpuset_mems_cookie = read_mems_allowed_begin(); 906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 907 struct page *page; 908 909 if (!cpuset_zone_allowed(zone, gfp_mask)) 910 continue; 911 /* 912 * no need to ask again on the same node. Pool is node rather than 913 * zone aware 914 */ 915 if (zone_to_nid(zone) == node) 916 continue; 917 node = zone_to_nid(zone); 918 919 page = dequeue_huge_page_node_exact(h, node); 920 if (page) 921 return page; 922 } 923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 924 goto retry_cpuset; 925 926 return NULL; 927 } 928 929 /* Movability of hugepages depends on migration support. */ 930 static inline gfp_t htlb_alloc_mask(struct hstate *h) 931 { 932 if (hugepage_movable_supported(h)) 933 return GFP_HIGHUSER_MOVABLE; 934 else 935 return GFP_HIGHUSER; 936 } 937 938 static struct page *dequeue_huge_page_vma(struct hstate *h, 939 struct vm_area_struct *vma, 940 unsigned long address, int avoid_reserve, 941 long chg) 942 { 943 struct page *page; 944 struct mempolicy *mpol; 945 gfp_t gfp_mask; 946 nodemask_t *nodemask; 947 int nid; 948 949 /* 950 * A child process with MAP_PRIVATE mappings created by their parent 951 * have no page reserves. This check ensures that reservations are 952 * not "stolen". The child may still get SIGKILLed 953 */ 954 if (!vma_has_reserves(vma, chg) && 955 h->free_huge_pages - h->resv_huge_pages == 0) 956 goto err; 957 958 /* If reserves cannot be used, ensure enough pages are in the pool */ 959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 960 goto err; 961 962 gfp_mask = htlb_alloc_mask(h); 963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 966 SetPagePrivate(page); 967 h->resv_huge_pages--; 968 } 969 970 mpol_cond_put(mpol); 971 return page; 972 973 err: 974 return NULL; 975 } 976 977 /* 978 * common helper functions for hstate_next_node_to_{alloc|free}. 979 * We may have allocated or freed a huge page based on a different 980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 981 * be outside of *nodes_allowed. Ensure that we use an allowed 982 * node for alloc or free. 983 */ 984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 985 { 986 nid = next_node_in(nid, *nodes_allowed); 987 VM_BUG_ON(nid >= MAX_NUMNODES); 988 989 return nid; 990 } 991 992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 993 { 994 if (!node_isset(nid, *nodes_allowed)) 995 nid = next_node_allowed(nid, nodes_allowed); 996 return nid; 997 } 998 999 /* 1000 * returns the previously saved node ["this node"] from which to 1001 * allocate a persistent huge page for the pool and advance the 1002 * next node from which to allocate, handling wrap at end of node 1003 * mask. 1004 */ 1005 static int hstate_next_node_to_alloc(struct hstate *h, 1006 nodemask_t *nodes_allowed) 1007 { 1008 int nid; 1009 1010 VM_BUG_ON(!nodes_allowed); 1011 1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1014 1015 return nid; 1016 } 1017 1018 /* 1019 * helper for free_pool_huge_page() - return the previously saved 1020 * node ["this node"] from which to free a huge page. Advance the 1021 * next node id whether or not we find a free huge page to free so 1022 * that the next attempt to free addresses the next node. 1023 */ 1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1025 { 1026 int nid; 1027 1028 VM_BUG_ON(!nodes_allowed); 1029 1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1032 1033 return nid; 1034 } 1035 1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1037 for (nr_nodes = nodes_weight(*mask); \ 1038 nr_nodes > 0 && \ 1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1040 nr_nodes--) 1041 1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1043 for (nr_nodes = nodes_weight(*mask); \ 1044 nr_nodes > 0 && \ 1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1046 nr_nodes--) 1047 1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1049 static void destroy_compound_gigantic_page(struct page *page, 1050 unsigned int order) 1051 { 1052 int i; 1053 int nr_pages = 1 << order; 1054 struct page *p = page + 1; 1055 1056 atomic_set(compound_mapcount_ptr(page), 0); 1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1058 clear_compound_head(p); 1059 set_page_refcounted(p); 1060 } 1061 1062 set_compound_order(page, 0); 1063 __ClearPageHead(page); 1064 } 1065 1066 static void free_gigantic_page(struct page *page, unsigned int order) 1067 { 1068 free_contig_range(page_to_pfn(page), 1 << order); 1069 } 1070 1071 #ifdef CONFIG_CONTIG_ALLOC 1072 static int __alloc_gigantic_page(unsigned long start_pfn, 1073 unsigned long nr_pages, gfp_t gfp_mask) 1074 { 1075 unsigned long end_pfn = start_pfn + nr_pages; 1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1077 gfp_mask); 1078 } 1079 1080 static bool pfn_range_valid_gigantic(struct zone *z, 1081 unsigned long start_pfn, unsigned long nr_pages) 1082 { 1083 unsigned long i, end_pfn = start_pfn + nr_pages; 1084 struct page *page; 1085 1086 for (i = start_pfn; i < end_pfn; i++) { 1087 if (!pfn_valid(i)) 1088 return false; 1089 1090 page = pfn_to_page(i); 1091 1092 if (page_zone(page) != z) 1093 return false; 1094 1095 if (PageReserved(page)) 1096 return false; 1097 1098 if (page_count(page) > 0) 1099 return false; 1100 1101 if (PageHuge(page)) 1102 return false; 1103 } 1104 1105 return true; 1106 } 1107 1108 static bool zone_spans_last_pfn(const struct zone *zone, 1109 unsigned long start_pfn, unsigned long nr_pages) 1110 { 1111 unsigned long last_pfn = start_pfn + nr_pages - 1; 1112 return zone_spans_pfn(zone, last_pfn); 1113 } 1114 1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1116 int nid, nodemask_t *nodemask) 1117 { 1118 unsigned int order = huge_page_order(h); 1119 unsigned long nr_pages = 1 << order; 1120 unsigned long ret, pfn, flags; 1121 struct zonelist *zonelist; 1122 struct zone *zone; 1123 struct zoneref *z; 1124 1125 zonelist = node_zonelist(nid, gfp_mask); 1126 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1127 spin_lock_irqsave(&zone->lock, flags); 1128 1129 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1130 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1131 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1132 /* 1133 * We release the zone lock here because 1134 * alloc_contig_range() will also lock the zone 1135 * at some point. If there's an allocation 1136 * spinning on this lock, it may win the race 1137 * and cause alloc_contig_range() to fail... 1138 */ 1139 spin_unlock_irqrestore(&zone->lock, flags); 1140 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1141 if (!ret) 1142 return pfn_to_page(pfn); 1143 spin_lock_irqsave(&zone->lock, flags); 1144 } 1145 pfn += nr_pages; 1146 } 1147 1148 spin_unlock_irqrestore(&zone->lock, flags); 1149 } 1150 1151 return NULL; 1152 } 1153 1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1156 #else /* !CONFIG_CONTIG_ALLOC */ 1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1158 int nid, nodemask_t *nodemask) 1159 { 1160 return NULL; 1161 } 1162 #endif /* CONFIG_CONTIG_ALLOC */ 1163 1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1166 int nid, nodemask_t *nodemask) 1167 { 1168 return NULL; 1169 } 1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1171 static inline void destroy_compound_gigantic_page(struct page *page, 1172 unsigned int order) { } 1173 #endif 1174 1175 static void update_and_free_page(struct hstate *h, struct page *page) 1176 { 1177 int i; 1178 1179 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1180 return; 1181 1182 h->nr_huge_pages--; 1183 h->nr_huge_pages_node[page_to_nid(page)]--; 1184 for (i = 0; i < pages_per_huge_page(h); i++) { 1185 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1186 1 << PG_referenced | 1 << PG_dirty | 1187 1 << PG_active | 1 << PG_private | 1188 1 << PG_writeback); 1189 } 1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1191 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1192 set_page_refcounted(page); 1193 if (hstate_is_gigantic(h)) { 1194 destroy_compound_gigantic_page(page, huge_page_order(h)); 1195 free_gigantic_page(page, huge_page_order(h)); 1196 } else { 1197 __free_pages(page, huge_page_order(h)); 1198 } 1199 } 1200 1201 struct hstate *size_to_hstate(unsigned long size) 1202 { 1203 struct hstate *h; 1204 1205 for_each_hstate(h) { 1206 if (huge_page_size(h) == size) 1207 return h; 1208 } 1209 return NULL; 1210 } 1211 1212 /* 1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1214 * to hstate->hugepage_activelist.) 1215 * 1216 * This function can be called for tail pages, but never returns true for them. 1217 */ 1218 bool page_huge_active(struct page *page) 1219 { 1220 VM_BUG_ON_PAGE(!PageHuge(page), page); 1221 return PageHead(page) && PagePrivate(&page[1]); 1222 } 1223 1224 /* never called for tail page */ 1225 static void set_page_huge_active(struct page *page) 1226 { 1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1228 SetPagePrivate(&page[1]); 1229 } 1230 1231 static void clear_page_huge_active(struct page *page) 1232 { 1233 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1234 ClearPagePrivate(&page[1]); 1235 } 1236 1237 /* 1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1239 * code 1240 */ 1241 static inline bool PageHugeTemporary(struct page *page) 1242 { 1243 if (!PageHuge(page)) 1244 return false; 1245 1246 return (unsigned long)page[2].mapping == -1U; 1247 } 1248 1249 static inline void SetPageHugeTemporary(struct page *page) 1250 { 1251 page[2].mapping = (void *)-1U; 1252 } 1253 1254 static inline void ClearPageHugeTemporary(struct page *page) 1255 { 1256 page[2].mapping = NULL; 1257 } 1258 1259 void free_huge_page(struct page *page) 1260 { 1261 /* 1262 * Can't pass hstate in here because it is called from the 1263 * compound page destructor. 1264 */ 1265 struct hstate *h = page_hstate(page); 1266 int nid = page_to_nid(page); 1267 struct hugepage_subpool *spool = 1268 (struct hugepage_subpool *)page_private(page); 1269 bool restore_reserve; 1270 1271 VM_BUG_ON_PAGE(page_count(page), page); 1272 VM_BUG_ON_PAGE(page_mapcount(page), page); 1273 1274 set_page_private(page, 0); 1275 page->mapping = NULL; 1276 restore_reserve = PagePrivate(page); 1277 ClearPagePrivate(page); 1278 1279 /* 1280 * If PagePrivate() was set on page, page allocation consumed a 1281 * reservation. If the page was associated with a subpool, there 1282 * would have been a page reserved in the subpool before allocation 1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1284 * reservtion, do not call hugepage_subpool_put_pages() as this will 1285 * remove the reserved page from the subpool. 1286 */ 1287 if (!restore_reserve) { 1288 /* 1289 * A return code of zero implies that the subpool will be 1290 * under its minimum size if the reservation is not restored 1291 * after page is free. Therefore, force restore_reserve 1292 * operation. 1293 */ 1294 if (hugepage_subpool_put_pages(spool, 1) == 0) 1295 restore_reserve = true; 1296 } 1297 1298 spin_lock(&hugetlb_lock); 1299 clear_page_huge_active(page); 1300 hugetlb_cgroup_uncharge_page(hstate_index(h), 1301 pages_per_huge_page(h), page); 1302 if (restore_reserve) 1303 h->resv_huge_pages++; 1304 1305 if (PageHugeTemporary(page)) { 1306 list_del(&page->lru); 1307 ClearPageHugeTemporary(page); 1308 update_and_free_page(h, page); 1309 } else if (h->surplus_huge_pages_node[nid]) { 1310 /* remove the page from active list */ 1311 list_del(&page->lru); 1312 update_and_free_page(h, page); 1313 h->surplus_huge_pages--; 1314 h->surplus_huge_pages_node[nid]--; 1315 } else { 1316 arch_clear_hugepage_flags(page); 1317 enqueue_huge_page(h, page); 1318 } 1319 spin_unlock(&hugetlb_lock); 1320 } 1321 1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1323 { 1324 INIT_LIST_HEAD(&page->lru); 1325 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1326 spin_lock(&hugetlb_lock); 1327 set_hugetlb_cgroup(page, NULL); 1328 h->nr_huge_pages++; 1329 h->nr_huge_pages_node[nid]++; 1330 spin_unlock(&hugetlb_lock); 1331 } 1332 1333 static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1334 { 1335 int i; 1336 int nr_pages = 1 << order; 1337 struct page *p = page + 1; 1338 1339 /* we rely on prep_new_huge_page to set the destructor */ 1340 set_compound_order(page, order); 1341 __ClearPageReserved(page); 1342 __SetPageHead(page); 1343 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1344 /* 1345 * For gigantic hugepages allocated through bootmem at 1346 * boot, it's safer to be consistent with the not-gigantic 1347 * hugepages and clear the PG_reserved bit from all tail pages 1348 * too. Otherwse drivers using get_user_pages() to access tail 1349 * pages may get the reference counting wrong if they see 1350 * PG_reserved set on a tail page (despite the head page not 1351 * having PG_reserved set). Enforcing this consistency between 1352 * head and tail pages allows drivers to optimize away a check 1353 * on the head page when they need know if put_page() is needed 1354 * after get_user_pages(). 1355 */ 1356 __ClearPageReserved(p); 1357 set_page_count(p, 0); 1358 set_compound_head(p, page); 1359 } 1360 atomic_set(compound_mapcount_ptr(page), -1); 1361 } 1362 1363 /* 1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1365 * transparent huge pages. See the PageTransHuge() documentation for more 1366 * details. 1367 */ 1368 int PageHuge(struct page *page) 1369 { 1370 if (!PageCompound(page)) 1371 return 0; 1372 1373 page = compound_head(page); 1374 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1375 } 1376 EXPORT_SYMBOL_GPL(PageHuge); 1377 1378 /* 1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1380 * normal or transparent huge pages. 1381 */ 1382 int PageHeadHuge(struct page *page_head) 1383 { 1384 if (!PageHead(page_head)) 1385 return 0; 1386 1387 return get_compound_page_dtor(page_head) == free_huge_page; 1388 } 1389 1390 pgoff_t __basepage_index(struct page *page) 1391 { 1392 struct page *page_head = compound_head(page); 1393 pgoff_t index = page_index(page_head); 1394 unsigned long compound_idx; 1395 1396 if (!PageHuge(page_head)) 1397 return page_index(page); 1398 1399 if (compound_order(page_head) >= MAX_ORDER) 1400 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1401 else 1402 compound_idx = page - page_head; 1403 1404 return (index << compound_order(page_head)) + compound_idx; 1405 } 1406 1407 static struct page *alloc_buddy_huge_page(struct hstate *h, 1408 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1409 { 1410 int order = huge_page_order(h); 1411 struct page *page; 1412 1413 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1414 if (nid == NUMA_NO_NODE) 1415 nid = numa_mem_id(); 1416 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1417 if (page) 1418 __count_vm_event(HTLB_BUDDY_PGALLOC); 1419 else 1420 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1421 1422 return page; 1423 } 1424 1425 /* 1426 * Common helper to allocate a fresh hugetlb page. All specific allocators 1427 * should use this function to get new hugetlb pages 1428 */ 1429 static struct page *alloc_fresh_huge_page(struct hstate *h, 1430 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1431 { 1432 struct page *page; 1433 1434 if (hstate_is_gigantic(h)) 1435 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1436 else 1437 page = alloc_buddy_huge_page(h, gfp_mask, 1438 nid, nmask); 1439 if (!page) 1440 return NULL; 1441 1442 if (hstate_is_gigantic(h)) 1443 prep_compound_gigantic_page(page, huge_page_order(h)); 1444 prep_new_huge_page(h, page, page_to_nid(page)); 1445 1446 return page; 1447 } 1448 1449 /* 1450 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1451 * manner. 1452 */ 1453 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1454 { 1455 struct page *page; 1456 int nr_nodes, node; 1457 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1458 1459 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1460 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1461 if (page) 1462 break; 1463 } 1464 1465 if (!page) 1466 return 0; 1467 1468 put_page(page); /* free it into the hugepage allocator */ 1469 1470 return 1; 1471 } 1472 1473 /* 1474 * Free huge page from pool from next node to free. 1475 * Attempt to keep persistent huge pages more or less 1476 * balanced over allowed nodes. 1477 * Called with hugetlb_lock locked. 1478 */ 1479 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1480 bool acct_surplus) 1481 { 1482 int nr_nodes, node; 1483 int ret = 0; 1484 1485 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1486 /* 1487 * If we're returning unused surplus pages, only examine 1488 * nodes with surplus pages. 1489 */ 1490 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1491 !list_empty(&h->hugepage_freelists[node])) { 1492 struct page *page = 1493 list_entry(h->hugepage_freelists[node].next, 1494 struct page, lru); 1495 list_del(&page->lru); 1496 h->free_huge_pages--; 1497 h->free_huge_pages_node[node]--; 1498 if (acct_surplus) { 1499 h->surplus_huge_pages--; 1500 h->surplus_huge_pages_node[node]--; 1501 } 1502 update_and_free_page(h, page); 1503 ret = 1; 1504 break; 1505 } 1506 } 1507 1508 return ret; 1509 } 1510 1511 /* 1512 * Dissolve a given free hugepage into free buddy pages. This function does 1513 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1514 * dissolution fails because a give page is not a free hugepage, or because 1515 * free hugepages are fully reserved. 1516 */ 1517 int dissolve_free_huge_page(struct page *page) 1518 { 1519 int rc = -EBUSY; 1520 1521 spin_lock(&hugetlb_lock); 1522 if (PageHuge(page) && !page_count(page)) { 1523 struct page *head = compound_head(page); 1524 struct hstate *h = page_hstate(head); 1525 int nid = page_to_nid(head); 1526 if (h->free_huge_pages - h->resv_huge_pages == 0) 1527 goto out; 1528 /* 1529 * Move PageHWPoison flag from head page to the raw error page, 1530 * which makes any subpages rather than the error page reusable. 1531 */ 1532 if (PageHWPoison(head) && page != head) { 1533 SetPageHWPoison(page); 1534 ClearPageHWPoison(head); 1535 } 1536 list_del(&head->lru); 1537 h->free_huge_pages--; 1538 h->free_huge_pages_node[nid]--; 1539 h->max_huge_pages--; 1540 update_and_free_page(h, head); 1541 rc = 0; 1542 } 1543 out: 1544 spin_unlock(&hugetlb_lock); 1545 return rc; 1546 } 1547 1548 /* 1549 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1550 * make specified memory blocks removable from the system. 1551 * Note that this will dissolve a free gigantic hugepage completely, if any 1552 * part of it lies within the given range. 1553 * Also note that if dissolve_free_huge_page() returns with an error, all 1554 * free hugepages that were dissolved before that error are lost. 1555 */ 1556 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1557 { 1558 unsigned long pfn; 1559 struct page *page; 1560 int rc = 0; 1561 1562 if (!hugepages_supported()) 1563 return rc; 1564 1565 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1566 page = pfn_to_page(pfn); 1567 if (PageHuge(page) && !page_count(page)) { 1568 rc = dissolve_free_huge_page(page); 1569 if (rc) 1570 break; 1571 } 1572 } 1573 1574 return rc; 1575 } 1576 1577 /* 1578 * Allocates a fresh surplus page from the page allocator. 1579 */ 1580 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1581 int nid, nodemask_t *nmask) 1582 { 1583 struct page *page = NULL; 1584 1585 if (hstate_is_gigantic(h)) 1586 return NULL; 1587 1588 spin_lock(&hugetlb_lock); 1589 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1590 goto out_unlock; 1591 spin_unlock(&hugetlb_lock); 1592 1593 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1594 if (!page) 1595 return NULL; 1596 1597 spin_lock(&hugetlb_lock); 1598 /* 1599 * We could have raced with the pool size change. 1600 * Double check that and simply deallocate the new page 1601 * if we would end up overcommiting the surpluses. Abuse 1602 * temporary page to workaround the nasty free_huge_page 1603 * codeflow 1604 */ 1605 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1606 SetPageHugeTemporary(page); 1607 spin_unlock(&hugetlb_lock); 1608 put_page(page); 1609 return NULL; 1610 } else { 1611 h->surplus_huge_pages++; 1612 h->surplus_huge_pages_node[page_to_nid(page)]++; 1613 } 1614 1615 out_unlock: 1616 spin_unlock(&hugetlb_lock); 1617 1618 return page; 1619 } 1620 1621 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1622 int nid, nodemask_t *nmask) 1623 { 1624 struct page *page; 1625 1626 if (hstate_is_gigantic(h)) 1627 return NULL; 1628 1629 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1630 if (!page) 1631 return NULL; 1632 1633 /* 1634 * We do not account these pages as surplus because they are only 1635 * temporary and will be released properly on the last reference 1636 */ 1637 SetPageHugeTemporary(page); 1638 1639 return page; 1640 } 1641 1642 /* 1643 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1644 */ 1645 static 1646 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1647 struct vm_area_struct *vma, unsigned long addr) 1648 { 1649 struct page *page; 1650 struct mempolicy *mpol; 1651 gfp_t gfp_mask = htlb_alloc_mask(h); 1652 int nid; 1653 nodemask_t *nodemask; 1654 1655 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1656 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1657 mpol_cond_put(mpol); 1658 1659 return page; 1660 } 1661 1662 /* page migration callback function */ 1663 struct page *alloc_huge_page_node(struct hstate *h, int nid) 1664 { 1665 gfp_t gfp_mask = htlb_alloc_mask(h); 1666 struct page *page = NULL; 1667 1668 if (nid != NUMA_NO_NODE) 1669 gfp_mask |= __GFP_THISNODE; 1670 1671 spin_lock(&hugetlb_lock); 1672 if (h->free_huge_pages - h->resv_huge_pages > 0) 1673 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1674 spin_unlock(&hugetlb_lock); 1675 1676 if (!page) 1677 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1678 1679 return page; 1680 } 1681 1682 /* page migration callback function */ 1683 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1684 nodemask_t *nmask) 1685 { 1686 gfp_t gfp_mask = htlb_alloc_mask(h); 1687 1688 spin_lock(&hugetlb_lock); 1689 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1690 struct page *page; 1691 1692 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1693 if (page) { 1694 spin_unlock(&hugetlb_lock); 1695 return page; 1696 } 1697 } 1698 spin_unlock(&hugetlb_lock); 1699 1700 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1701 } 1702 1703 /* mempolicy aware migration callback */ 1704 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1705 unsigned long address) 1706 { 1707 struct mempolicy *mpol; 1708 nodemask_t *nodemask; 1709 struct page *page; 1710 gfp_t gfp_mask; 1711 int node; 1712 1713 gfp_mask = htlb_alloc_mask(h); 1714 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1715 page = alloc_huge_page_nodemask(h, node, nodemask); 1716 mpol_cond_put(mpol); 1717 1718 return page; 1719 } 1720 1721 /* 1722 * Increase the hugetlb pool such that it can accommodate a reservation 1723 * of size 'delta'. 1724 */ 1725 static int gather_surplus_pages(struct hstate *h, int delta) 1726 { 1727 struct list_head surplus_list; 1728 struct page *page, *tmp; 1729 int ret, i; 1730 int needed, allocated; 1731 bool alloc_ok = true; 1732 1733 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1734 if (needed <= 0) { 1735 h->resv_huge_pages += delta; 1736 return 0; 1737 } 1738 1739 allocated = 0; 1740 INIT_LIST_HEAD(&surplus_list); 1741 1742 ret = -ENOMEM; 1743 retry: 1744 spin_unlock(&hugetlb_lock); 1745 for (i = 0; i < needed; i++) { 1746 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1747 NUMA_NO_NODE, NULL); 1748 if (!page) { 1749 alloc_ok = false; 1750 break; 1751 } 1752 list_add(&page->lru, &surplus_list); 1753 cond_resched(); 1754 } 1755 allocated += i; 1756 1757 /* 1758 * After retaking hugetlb_lock, we need to recalculate 'needed' 1759 * because either resv_huge_pages or free_huge_pages may have changed. 1760 */ 1761 spin_lock(&hugetlb_lock); 1762 needed = (h->resv_huge_pages + delta) - 1763 (h->free_huge_pages + allocated); 1764 if (needed > 0) { 1765 if (alloc_ok) 1766 goto retry; 1767 /* 1768 * We were not able to allocate enough pages to 1769 * satisfy the entire reservation so we free what 1770 * we've allocated so far. 1771 */ 1772 goto free; 1773 } 1774 /* 1775 * The surplus_list now contains _at_least_ the number of extra pages 1776 * needed to accommodate the reservation. Add the appropriate number 1777 * of pages to the hugetlb pool and free the extras back to the buddy 1778 * allocator. Commit the entire reservation here to prevent another 1779 * process from stealing the pages as they are added to the pool but 1780 * before they are reserved. 1781 */ 1782 needed += allocated; 1783 h->resv_huge_pages += delta; 1784 ret = 0; 1785 1786 /* Free the needed pages to the hugetlb pool */ 1787 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1788 if ((--needed) < 0) 1789 break; 1790 /* 1791 * This page is now managed by the hugetlb allocator and has 1792 * no users -- drop the buddy allocator's reference. 1793 */ 1794 put_page_testzero(page); 1795 VM_BUG_ON_PAGE(page_count(page), page); 1796 enqueue_huge_page(h, page); 1797 } 1798 free: 1799 spin_unlock(&hugetlb_lock); 1800 1801 /* Free unnecessary surplus pages to the buddy allocator */ 1802 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1803 put_page(page); 1804 spin_lock(&hugetlb_lock); 1805 1806 return ret; 1807 } 1808 1809 /* 1810 * This routine has two main purposes: 1811 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1812 * in unused_resv_pages. This corresponds to the prior adjustments made 1813 * to the associated reservation map. 1814 * 2) Free any unused surplus pages that may have been allocated to satisfy 1815 * the reservation. As many as unused_resv_pages may be freed. 1816 * 1817 * Called with hugetlb_lock held. However, the lock could be dropped (and 1818 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1819 * we must make sure nobody else can claim pages we are in the process of 1820 * freeing. Do this by ensuring resv_huge_page always is greater than the 1821 * number of huge pages we plan to free when dropping the lock. 1822 */ 1823 static void return_unused_surplus_pages(struct hstate *h, 1824 unsigned long unused_resv_pages) 1825 { 1826 unsigned long nr_pages; 1827 1828 /* Cannot return gigantic pages currently */ 1829 if (hstate_is_gigantic(h)) 1830 goto out; 1831 1832 /* 1833 * Part (or even all) of the reservation could have been backed 1834 * by pre-allocated pages. Only free surplus pages. 1835 */ 1836 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1837 1838 /* 1839 * We want to release as many surplus pages as possible, spread 1840 * evenly across all nodes with memory. Iterate across these nodes 1841 * until we can no longer free unreserved surplus pages. This occurs 1842 * when the nodes with surplus pages have no free pages. 1843 * free_pool_huge_page() will balance the the freed pages across the 1844 * on-line nodes with memory and will handle the hstate accounting. 1845 * 1846 * Note that we decrement resv_huge_pages as we free the pages. If 1847 * we drop the lock, resv_huge_pages will still be sufficiently large 1848 * to cover subsequent pages we may free. 1849 */ 1850 while (nr_pages--) { 1851 h->resv_huge_pages--; 1852 unused_resv_pages--; 1853 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1854 goto out; 1855 cond_resched_lock(&hugetlb_lock); 1856 } 1857 1858 out: 1859 /* Fully uncommit the reservation */ 1860 h->resv_huge_pages -= unused_resv_pages; 1861 } 1862 1863 1864 /* 1865 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1866 * are used by the huge page allocation routines to manage reservations. 1867 * 1868 * vma_needs_reservation is called to determine if the huge page at addr 1869 * within the vma has an associated reservation. If a reservation is 1870 * needed, the value 1 is returned. The caller is then responsible for 1871 * managing the global reservation and subpool usage counts. After 1872 * the huge page has been allocated, vma_commit_reservation is called 1873 * to add the page to the reservation map. If the page allocation fails, 1874 * the reservation must be ended instead of committed. vma_end_reservation 1875 * is called in such cases. 1876 * 1877 * In the normal case, vma_commit_reservation returns the same value 1878 * as the preceding vma_needs_reservation call. The only time this 1879 * is not the case is if a reserve map was changed between calls. It 1880 * is the responsibility of the caller to notice the difference and 1881 * take appropriate action. 1882 * 1883 * vma_add_reservation is used in error paths where a reservation must 1884 * be restored when a newly allocated huge page must be freed. It is 1885 * to be called after calling vma_needs_reservation to determine if a 1886 * reservation exists. 1887 */ 1888 enum vma_resv_mode { 1889 VMA_NEEDS_RESV, 1890 VMA_COMMIT_RESV, 1891 VMA_END_RESV, 1892 VMA_ADD_RESV, 1893 }; 1894 static long __vma_reservation_common(struct hstate *h, 1895 struct vm_area_struct *vma, unsigned long addr, 1896 enum vma_resv_mode mode) 1897 { 1898 struct resv_map *resv; 1899 pgoff_t idx; 1900 long ret; 1901 1902 resv = vma_resv_map(vma); 1903 if (!resv) 1904 return 1; 1905 1906 idx = vma_hugecache_offset(h, vma, addr); 1907 switch (mode) { 1908 case VMA_NEEDS_RESV: 1909 ret = region_chg(resv, idx, idx + 1); 1910 break; 1911 case VMA_COMMIT_RESV: 1912 ret = region_add(resv, idx, idx + 1); 1913 break; 1914 case VMA_END_RESV: 1915 region_abort(resv, idx, idx + 1); 1916 ret = 0; 1917 break; 1918 case VMA_ADD_RESV: 1919 if (vma->vm_flags & VM_MAYSHARE) 1920 ret = region_add(resv, idx, idx + 1); 1921 else { 1922 region_abort(resv, idx, idx + 1); 1923 ret = region_del(resv, idx, idx + 1); 1924 } 1925 break; 1926 default: 1927 BUG(); 1928 } 1929 1930 if (vma->vm_flags & VM_MAYSHARE) 1931 return ret; 1932 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1933 /* 1934 * In most cases, reserves always exist for private mappings. 1935 * However, a file associated with mapping could have been 1936 * hole punched or truncated after reserves were consumed. 1937 * As subsequent fault on such a range will not use reserves. 1938 * Subtle - The reserve map for private mappings has the 1939 * opposite meaning than that of shared mappings. If NO 1940 * entry is in the reserve map, it means a reservation exists. 1941 * If an entry exists in the reserve map, it means the 1942 * reservation has already been consumed. As a result, the 1943 * return value of this routine is the opposite of the 1944 * value returned from reserve map manipulation routines above. 1945 */ 1946 if (ret) 1947 return 0; 1948 else 1949 return 1; 1950 } 1951 else 1952 return ret < 0 ? ret : 0; 1953 } 1954 1955 static long vma_needs_reservation(struct hstate *h, 1956 struct vm_area_struct *vma, unsigned long addr) 1957 { 1958 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1959 } 1960 1961 static long vma_commit_reservation(struct hstate *h, 1962 struct vm_area_struct *vma, unsigned long addr) 1963 { 1964 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1965 } 1966 1967 static void vma_end_reservation(struct hstate *h, 1968 struct vm_area_struct *vma, unsigned long addr) 1969 { 1970 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1971 } 1972 1973 static long vma_add_reservation(struct hstate *h, 1974 struct vm_area_struct *vma, unsigned long addr) 1975 { 1976 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1977 } 1978 1979 /* 1980 * This routine is called to restore a reservation on error paths. In the 1981 * specific error paths, a huge page was allocated (via alloc_huge_page) 1982 * and is about to be freed. If a reservation for the page existed, 1983 * alloc_huge_page would have consumed the reservation and set PagePrivate 1984 * in the newly allocated page. When the page is freed via free_huge_page, 1985 * the global reservation count will be incremented if PagePrivate is set. 1986 * However, free_huge_page can not adjust the reserve map. Adjust the 1987 * reserve map here to be consistent with global reserve count adjustments 1988 * to be made by free_huge_page. 1989 */ 1990 static void restore_reserve_on_error(struct hstate *h, 1991 struct vm_area_struct *vma, unsigned long address, 1992 struct page *page) 1993 { 1994 if (unlikely(PagePrivate(page))) { 1995 long rc = vma_needs_reservation(h, vma, address); 1996 1997 if (unlikely(rc < 0)) { 1998 /* 1999 * Rare out of memory condition in reserve map 2000 * manipulation. Clear PagePrivate so that 2001 * global reserve count will not be incremented 2002 * by free_huge_page. This will make it appear 2003 * as though the reservation for this page was 2004 * consumed. This may prevent the task from 2005 * faulting in the page at a later time. This 2006 * is better than inconsistent global huge page 2007 * accounting of reserve counts. 2008 */ 2009 ClearPagePrivate(page); 2010 } else if (rc) { 2011 rc = vma_add_reservation(h, vma, address); 2012 if (unlikely(rc < 0)) 2013 /* 2014 * See above comment about rare out of 2015 * memory condition. 2016 */ 2017 ClearPagePrivate(page); 2018 } else 2019 vma_end_reservation(h, vma, address); 2020 } 2021 } 2022 2023 struct page *alloc_huge_page(struct vm_area_struct *vma, 2024 unsigned long addr, int avoid_reserve) 2025 { 2026 struct hugepage_subpool *spool = subpool_vma(vma); 2027 struct hstate *h = hstate_vma(vma); 2028 struct page *page; 2029 long map_chg, map_commit; 2030 long gbl_chg; 2031 int ret, idx; 2032 struct hugetlb_cgroup *h_cg; 2033 2034 idx = hstate_index(h); 2035 /* 2036 * Examine the region/reserve map to determine if the process 2037 * has a reservation for the page to be allocated. A return 2038 * code of zero indicates a reservation exists (no change). 2039 */ 2040 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2041 if (map_chg < 0) 2042 return ERR_PTR(-ENOMEM); 2043 2044 /* 2045 * Processes that did not create the mapping will have no 2046 * reserves as indicated by the region/reserve map. Check 2047 * that the allocation will not exceed the subpool limit. 2048 * Allocations for MAP_NORESERVE mappings also need to be 2049 * checked against any subpool limit. 2050 */ 2051 if (map_chg || avoid_reserve) { 2052 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2053 if (gbl_chg < 0) { 2054 vma_end_reservation(h, vma, addr); 2055 return ERR_PTR(-ENOSPC); 2056 } 2057 2058 /* 2059 * Even though there was no reservation in the region/reserve 2060 * map, there could be reservations associated with the 2061 * subpool that can be used. This would be indicated if the 2062 * return value of hugepage_subpool_get_pages() is zero. 2063 * However, if avoid_reserve is specified we still avoid even 2064 * the subpool reservations. 2065 */ 2066 if (avoid_reserve) 2067 gbl_chg = 1; 2068 } 2069 2070 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2071 if (ret) 2072 goto out_subpool_put; 2073 2074 spin_lock(&hugetlb_lock); 2075 /* 2076 * glb_chg is passed to indicate whether or not a page must be taken 2077 * from the global free pool (global change). gbl_chg == 0 indicates 2078 * a reservation exists for the allocation. 2079 */ 2080 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2081 if (!page) { 2082 spin_unlock(&hugetlb_lock); 2083 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2084 if (!page) 2085 goto out_uncharge_cgroup; 2086 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2087 SetPagePrivate(page); 2088 h->resv_huge_pages--; 2089 } 2090 spin_lock(&hugetlb_lock); 2091 list_move(&page->lru, &h->hugepage_activelist); 2092 /* Fall through */ 2093 } 2094 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2095 spin_unlock(&hugetlb_lock); 2096 2097 set_page_private(page, (unsigned long)spool); 2098 2099 map_commit = vma_commit_reservation(h, vma, addr); 2100 if (unlikely(map_chg > map_commit)) { 2101 /* 2102 * The page was added to the reservation map between 2103 * vma_needs_reservation and vma_commit_reservation. 2104 * This indicates a race with hugetlb_reserve_pages. 2105 * Adjust for the subpool count incremented above AND 2106 * in hugetlb_reserve_pages for the same page. Also, 2107 * the reservation count added in hugetlb_reserve_pages 2108 * no longer applies. 2109 */ 2110 long rsv_adjust; 2111 2112 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2113 hugetlb_acct_memory(h, -rsv_adjust); 2114 } 2115 return page; 2116 2117 out_uncharge_cgroup: 2118 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2119 out_subpool_put: 2120 if (map_chg || avoid_reserve) 2121 hugepage_subpool_put_pages(spool, 1); 2122 vma_end_reservation(h, vma, addr); 2123 return ERR_PTR(-ENOSPC); 2124 } 2125 2126 int alloc_bootmem_huge_page(struct hstate *h) 2127 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2128 int __alloc_bootmem_huge_page(struct hstate *h) 2129 { 2130 struct huge_bootmem_page *m; 2131 int nr_nodes, node; 2132 2133 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2134 void *addr; 2135 2136 addr = memblock_alloc_try_nid_raw( 2137 huge_page_size(h), huge_page_size(h), 2138 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2139 if (addr) { 2140 /* 2141 * Use the beginning of the huge page to store the 2142 * huge_bootmem_page struct (until gather_bootmem 2143 * puts them into the mem_map). 2144 */ 2145 m = addr; 2146 goto found; 2147 } 2148 } 2149 return 0; 2150 2151 found: 2152 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2153 /* Put them into a private list first because mem_map is not up yet */ 2154 INIT_LIST_HEAD(&m->list); 2155 list_add(&m->list, &huge_boot_pages); 2156 m->hstate = h; 2157 return 1; 2158 } 2159 2160 static void __init prep_compound_huge_page(struct page *page, 2161 unsigned int order) 2162 { 2163 if (unlikely(order > (MAX_ORDER - 1))) 2164 prep_compound_gigantic_page(page, order); 2165 else 2166 prep_compound_page(page, order); 2167 } 2168 2169 /* Put bootmem huge pages into the standard lists after mem_map is up */ 2170 static void __init gather_bootmem_prealloc(void) 2171 { 2172 struct huge_bootmem_page *m; 2173 2174 list_for_each_entry(m, &huge_boot_pages, list) { 2175 struct page *page = virt_to_page(m); 2176 struct hstate *h = m->hstate; 2177 2178 WARN_ON(page_count(page) != 1); 2179 prep_compound_huge_page(page, h->order); 2180 WARN_ON(PageReserved(page)); 2181 prep_new_huge_page(h, page, page_to_nid(page)); 2182 put_page(page); /* free it into the hugepage allocator */ 2183 2184 /* 2185 * If we had gigantic hugepages allocated at boot time, we need 2186 * to restore the 'stolen' pages to totalram_pages in order to 2187 * fix confusing memory reports from free(1) and another 2188 * side-effects, like CommitLimit going negative. 2189 */ 2190 if (hstate_is_gigantic(h)) 2191 adjust_managed_page_count(page, 1 << h->order); 2192 cond_resched(); 2193 } 2194 } 2195 2196 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2197 { 2198 unsigned long i; 2199 2200 for (i = 0; i < h->max_huge_pages; ++i) { 2201 if (hstate_is_gigantic(h)) { 2202 if (!alloc_bootmem_huge_page(h)) 2203 break; 2204 } else if (!alloc_pool_huge_page(h, 2205 &node_states[N_MEMORY])) 2206 break; 2207 cond_resched(); 2208 } 2209 if (i < h->max_huge_pages) { 2210 char buf[32]; 2211 2212 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2213 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2214 h->max_huge_pages, buf, i); 2215 h->max_huge_pages = i; 2216 } 2217 } 2218 2219 static void __init hugetlb_init_hstates(void) 2220 { 2221 struct hstate *h; 2222 2223 for_each_hstate(h) { 2224 if (minimum_order > huge_page_order(h)) 2225 minimum_order = huge_page_order(h); 2226 2227 /* oversize hugepages were init'ed in early boot */ 2228 if (!hstate_is_gigantic(h)) 2229 hugetlb_hstate_alloc_pages(h); 2230 } 2231 VM_BUG_ON(minimum_order == UINT_MAX); 2232 } 2233 2234 static void __init report_hugepages(void) 2235 { 2236 struct hstate *h; 2237 2238 for_each_hstate(h) { 2239 char buf[32]; 2240 2241 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2242 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2243 buf, h->free_huge_pages); 2244 } 2245 } 2246 2247 #ifdef CONFIG_HIGHMEM 2248 static void try_to_free_low(struct hstate *h, unsigned long count, 2249 nodemask_t *nodes_allowed) 2250 { 2251 int i; 2252 2253 if (hstate_is_gigantic(h)) 2254 return; 2255 2256 for_each_node_mask(i, *nodes_allowed) { 2257 struct page *page, *next; 2258 struct list_head *freel = &h->hugepage_freelists[i]; 2259 list_for_each_entry_safe(page, next, freel, lru) { 2260 if (count >= h->nr_huge_pages) 2261 return; 2262 if (PageHighMem(page)) 2263 continue; 2264 list_del(&page->lru); 2265 update_and_free_page(h, page); 2266 h->free_huge_pages--; 2267 h->free_huge_pages_node[page_to_nid(page)]--; 2268 } 2269 } 2270 } 2271 #else 2272 static inline void try_to_free_low(struct hstate *h, unsigned long count, 2273 nodemask_t *nodes_allowed) 2274 { 2275 } 2276 #endif 2277 2278 /* 2279 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2280 * balanced by operating on them in a round-robin fashion. 2281 * Returns 1 if an adjustment was made. 2282 */ 2283 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2284 int delta) 2285 { 2286 int nr_nodes, node; 2287 2288 VM_BUG_ON(delta != -1 && delta != 1); 2289 2290 if (delta < 0) { 2291 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2292 if (h->surplus_huge_pages_node[node]) 2293 goto found; 2294 } 2295 } else { 2296 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2297 if (h->surplus_huge_pages_node[node] < 2298 h->nr_huge_pages_node[node]) 2299 goto found; 2300 } 2301 } 2302 return 0; 2303 2304 found: 2305 h->surplus_huge_pages += delta; 2306 h->surplus_huge_pages_node[node] += delta; 2307 return 1; 2308 } 2309 2310 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2311 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 2312 nodemask_t *nodes_allowed) 2313 { 2314 unsigned long min_count, ret; 2315 2316 spin_lock(&hugetlb_lock); 2317 2318 /* 2319 * Check for a node specific request. 2320 * Changing node specific huge page count may require a corresponding 2321 * change to the global count. In any case, the passed node mask 2322 * (nodes_allowed) will restrict alloc/free to the specified node. 2323 */ 2324 if (nid != NUMA_NO_NODE) { 2325 unsigned long old_count = count; 2326 2327 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2328 /* 2329 * User may have specified a large count value which caused the 2330 * above calculation to overflow. In this case, they wanted 2331 * to allocate as many huge pages as possible. Set count to 2332 * largest possible value to align with their intention. 2333 */ 2334 if (count < old_count) 2335 count = ULONG_MAX; 2336 } 2337 2338 /* 2339 * Gigantic pages runtime allocation depend on the capability for large 2340 * page range allocation. 2341 * If the system does not provide this feature, return an error when 2342 * the user tries to allocate gigantic pages but let the user free the 2343 * boottime allocated gigantic pages. 2344 */ 2345 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 2346 if (count > persistent_huge_pages(h)) { 2347 spin_unlock(&hugetlb_lock); 2348 return -EINVAL; 2349 } 2350 /* Fall through to decrease pool */ 2351 } 2352 2353 /* 2354 * Increase the pool size 2355 * First take pages out of surplus state. Then make up the 2356 * remaining difference by allocating fresh huge pages. 2357 * 2358 * We might race with alloc_surplus_huge_page() here and be unable 2359 * to convert a surplus huge page to a normal huge page. That is 2360 * not critical, though, it just means the overall size of the 2361 * pool might be one hugepage larger than it needs to be, but 2362 * within all the constraints specified by the sysctls. 2363 */ 2364 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2365 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2366 break; 2367 } 2368 2369 while (count > persistent_huge_pages(h)) { 2370 /* 2371 * If this allocation races such that we no longer need the 2372 * page, free_huge_page will handle it by freeing the page 2373 * and reducing the surplus. 2374 */ 2375 spin_unlock(&hugetlb_lock); 2376 2377 /* yield cpu to avoid soft lockup */ 2378 cond_resched(); 2379 2380 ret = alloc_pool_huge_page(h, nodes_allowed); 2381 spin_lock(&hugetlb_lock); 2382 if (!ret) 2383 goto out; 2384 2385 /* Bail for signals. Probably ctrl-c from user */ 2386 if (signal_pending(current)) 2387 goto out; 2388 } 2389 2390 /* 2391 * Decrease the pool size 2392 * First return free pages to the buddy allocator (being careful 2393 * to keep enough around to satisfy reservations). Then place 2394 * pages into surplus state as needed so the pool will shrink 2395 * to the desired size as pages become free. 2396 * 2397 * By placing pages into the surplus state independent of the 2398 * overcommit value, we are allowing the surplus pool size to 2399 * exceed overcommit. There are few sane options here. Since 2400 * alloc_surplus_huge_page() is checking the global counter, 2401 * though, we'll note that we're not allowed to exceed surplus 2402 * and won't grow the pool anywhere else. Not until one of the 2403 * sysctls are changed, or the surplus pages go out of use. 2404 */ 2405 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2406 min_count = max(count, min_count); 2407 try_to_free_low(h, min_count, nodes_allowed); 2408 while (min_count < persistent_huge_pages(h)) { 2409 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2410 break; 2411 cond_resched_lock(&hugetlb_lock); 2412 } 2413 while (count < persistent_huge_pages(h)) { 2414 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2415 break; 2416 } 2417 out: 2418 h->max_huge_pages = persistent_huge_pages(h); 2419 spin_unlock(&hugetlb_lock); 2420 2421 return 0; 2422 } 2423 2424 #define HSTATE_ATTR_RO(_name) \ 2425 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2426 2427 #define HSTATE_ATTR(_name) \ 2428 static struct kobj_attribute _name##_attr = \ 2429 __ATTR(_name, 0644, _name##_show, _name##_store) 2430 2431 static struct kobject *hugepages_kobj; 2432 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2433 2434 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2435 2436 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2437 { 2438 int i; 2439 2440 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2441 if (hstate_kobjs[i] == kobj) { 2442 if (nidp) 2443 *nidp = NUMA_NO_NODE; 2444 return &hstates[i]; 2445 } 2446 2447 return kobj_to_node_hstate(kobj, nidp); 2448 } 2449 2450 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2451 struct kobj_attribute *attr, char *buf) 2452 { 2453 struct hstate *h; 2454 unsigned long nr_huge_pages; 2455 int nid; 2456 2457 h = kobj_to_hstate(kobj, &nid); 2458 if (nid == NUMA_NO_NODE) 2459 nr_huge_pages = h->nr_huge_pages; 2460 else 2461 nr_huge_pages = h->nr_huge_pages_node[nid]; 2462 2463 return sprintf(buf, "%lu\n", nr_huge_pages); 2464 } 2465 2466 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2467 struct hstate *h, int nid, 2468 unsigned long count, size_t len) 2469 { 2470 int err; 2471 nodemask_t nodes_allowed, *n_mask; 2472 2473 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2474 return -EINVAL; 2475 2476 if (nid == NUMA_NO_NODE) { 2477 /* 2478 * global hstate attribute 2479 */ 2480 if (!(obey_mempolicy && 2481 init_nodemask_of_mempolicy(&nodes_allowed))) 2482 n_mask = &node_states[N_MEMORY]; 2483 else 2484 n_mask = &nodes_allowed; 2485 } else { 2486 /* 2487 * Node specific request. count adjustment happens in 2488 * set_max_huge_pages() after acquiring hugetlb_lock. 2489 */ 2490 init_nodemask_of_node(&nodes_allowed, nid); 2491 n_mask = &nodes_allowed; 2492 } 2493 2494 err = set_max_huge_pages(h, count, nid, n_mask); 2495 2496 return err ? err : len; 2497 } 2498 2499 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2500 struct kobject *kobj, const char *buf, 2501 size_t len) 2502 { 2503 struct hstate *h; 2504 unsigned long count; 2505 int nid; 2506 int err; 2507 2508 err = kstrtoul(buf, 10, &count); 2509 if (err) 2510 return err; 2511 2512 h = kobj_to_hstate(kobj, &nid); 2513 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2514 } 2515 2516 static ssize_t nr_hugepages_show(struct kobject *kobj, 2517 struct kobj_attribute *attr, char *buf) 2518 { 2519 return nr_hugepages_show_common(kobj, attr, buf); 2520 } 2521 2522 static ssize_t nr_hugepages_store(struct kobject *kobj, 2523 struct kobj_attribute *attr, const char *buf, size_t len) 2524 { 2525 return nr_hugepages_store_common(false, kobj, buf, len); 2526 } 2527 HSTATE_ATTR(nr_hugepages); 2528 2529 #ifdef CONFIG_NUMA 2530 2531 /* 2532 * hstate attribute for optionally mempolicy-based constraint on persistent 2533 * huge page alloc/free. 2534 */ 2535 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2536 struct kobj_attribute *attr, char *buf) 2537 { 2538 return nr_hugepages_show_common(kobj, attr, buf); 2539 } 2540 2541 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2542 struct kobj_attribute *attr, const char *buf, size_t len) 2543 { 2544 return nr_hugepages_store_common(true, kobj, buf, len); 2545 } 2546 HSTATE_ATTR(nr_hugepages_mempolicy); 2547 #endif 2548 2549 2550 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2551 struct kobj_attribute *attr, char *buf) 2552 { 2553 struct hstate *h = kobj_to_hstate(kobj, NULL); 2554 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2555 } 2556 2557 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2558 struct kobj_attribute *attr, const char *buf, size_t count) 2559 { 2560 int err; 2561 unsigned long input; 2562 struct hstate *h = kobj_to_hstate(kobj, NULL); 2563 2564 if (hstate_is_gigantic(h)) 2565 return -EINVAL; 2566 2567 err = kstrtoul(buf, 10, &input); 2568 if (err) 2569 return err; 2570 2571 spin_lock(&hugetlb_lock); 2572 h->nr_overcommit_huge_pages = input; 2573 spin_unlock(&hugetlb_lock); 2574 2575 return count; 2576 } 2577 HSTATE_ATTR(nr_overcommit_hugepages); 2578 2579 static ssize_t free_hugepages_show(struct kobject *kobj, 2580 struct kobj_attribute *attr, char *buf) 2581 { 2582 struct hstate *h; 2583 unsigned long free_huge_pages; 2584 int nid; 2585 2586 h = kobj_to_hstate(kobj, &nid); 2587 if (nid == NUMA_NO_NODE) 2588 free_huge_pages = h->free_huge_pages; 2589 else 2590 free_huge_pages = h->free_huge_pages_node[nid]; 2591 2592 return sprintf(buf, "%lu\n", free_huge_pages); 2593 } 2594 HSTATE_ATTR_RO(free_hugepages); 2595 2596 static ssize_t resv_hugepages_show(struct kobject *kobj, 2597 struct kobj_attribute *attr, char *buf) 2598 { 2599 struct hstate *h = kobj_to_hstate(kobj, NULL); 2600 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2601 } 2602 HSTATE_ATTR_RO(resv_hugepages); 2603 2604 static ssize_t surplus_hugepages_show(struct kobject *kobj, 2605 struct kobj_attribute *attr, char *buf) 2606 { 2607 struct hstate *h; 2608 unsigned long surplus_huge_pages; 2609 int nid; 2610 2611 h = kobj_to_hstate(kobj, &nid); 2612 if (nid == NUMA_NO_NODE) 2613 surplus_huge_pages = h->surplus_huge_pages; 2614 else 2615 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2616 2617 return sprintf(buf, "%lu\n", surplus_huge_pages); 2618 } 2619 HSTATE_ATTR_RO(surplus_hugepages); 2620 2621 static struct attribute *hstate_attrs[] = { 2622 &nr_hugepages_attr.attr, 2623 &nr_overcommit_hugepages_attr.attr, 2624 &free_hugepages_attr.attr, 2625 &resv_hugepages_attr.attr, 2626 &surplus_hugepages_attr.attr, 2627 #ifdef CONFIG_NUMA 2628 &nr_hugepages_mempolicy_attr.attr, 2629 #endif 2630 NULL, 2631 }; 2632 2633 static const struct attribute_group hstate_attr_group = { 2634 .attrs = hstate_attrs, 2635 }; 2636 2637 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2638 struct kobject **hstate_kobjs, 2639 const struct attribute_group *hstate_attr_group) 2640 { 2641 int retval; 2642 int hi = hstate_index(h); 2643 2644 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2645 if (!hstate_kobjs[hi]) 2646 return -ENOMEM; 2647 2648 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2649 if (retval) 2650 kobject_put(hstate_kobjs[hi]); 2651 2652 return retval; 2653 } 2654 2655 static void __init hugetlb_sysfs_init(void) 2656 { 2657 struct hstate *h; 2658 int err; 2659 2660 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2661 if (!hugepages_kobj) 2662 return; 2663 2664 for_each_hstate(h) { 2665 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2666 hstate_kobjs, &hstate_attr_group); 2667 if (err) 2668 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2669 } 2670 } 2671 2672 #ifdef CONFIG_NUMA 2673 2674 /* 2675 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2676 * with node devices in node_devices[] using a parallel array. The array 2677 * index of a node device or _hstate == node id. 2678 * This is here to avoid any static dependency of the node device driver, in 2679 * the base kernel, on the hugetlb module. 2680 */ 2681 struct node_hstate { 2682 struct kobject *hugepages_kobj; 2683 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2684 }; 2685 static struct node_hstate node_hstates[MAX_NUMNODES]; 2686 2687 /* 2688 * A subset of global hstate attributes for node devices 2689 */ 2690 static struct attribute *per_node_hstate_attrs[] = { 2691 &nr_hugepages_attr.attr, 2692 &free_hugepages_attr.attr, 2693 &surplus_hugepages_attr.attr, 2694 NULL, 2695 }; 2696 2697 static const struct attribute_group per_node_hstate_attr_group = { 2698 .attrs = per_node_hstate_attrs, 2699 }; 2700 2701 /* 2702 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2703 * Returns node id via non-NULL nidp. 2704 */ 2705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2706 { 2707 int nid; 2708 2709 for (nid = 0; nid < nr_node_ids; nid++) { 2710 struct node_hstate *nhs = &node_hstates[nid]; 2711 int i; 2712 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2713 if (nhs->hstate_kobjs[i] == kobj) { 2714 if (nidp) 2715 *nidp = nid; 2716 return &hstates[i]; 2717 } 2718 } 2719 2720 BUG(); 2721 return NULL; 2722 } 2723 2724 /* 2725 * Unregister hstate attributes from a single node device. 2726 * No-op if no hstate attributes attached. 2727 */ 2728 static void hugetlb_unregister_node(struct node *node) 2729 { 2730 struct hstate *h; 2731 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2732 2733 if (!nhs->hugepages_kobj) 2734 return; /* no hstate attributes */ 2735 2736 for_each_hstate(h) { 2737 int idx = hstate_index(h); 2738 if (nhs->hstate_kobjs[idx]) { 2739 kobject_put(nhs->hstate_kobjs[idx]); 2740 nhs->hstate_kobjs[idx] = NULL; 2741 } 2742 } 2743 2744 kobject_put(nhs->hugepages_kobj); 2745 nhs->hugepages_kobj = NULL; 2746 } 2747 2748 2749 /* 2750 * Register hstate attributes for a single node device. 2751 * No-op if attributes already registered. 2752 */ 2753 static void hugetlb_register_node(struct node *node) 2754 { 2755 struct hstate *h; 2756 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2757 int err; 2758 2759 if (nhs->hugepages_kobj) 2760 return; /* already allocated */ 2761 2762 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2763 &node->dev.kobj); 2764 if (!nhs->hugepages_kobj) 2765 return; 2766 2767 for_each_hstate(h) { 2768 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2769 nhs->hstate_kobjs, 2770 &per_node_hstate_attr_group); 2771 if (err) { 2772 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2773 h->name, node->dev.id); 2774 hugetlb_unregister_node(node); 2775 break; 2776 } 2777 } 2778 } 2779 2780 /* 2781 * hugetlb init time: register hstate attributes for all registered node 2782 * devices of nodes that have memory. All on-line nodes should have 2783 * registered their associated device by this time. 2784 */ 2785 static void __init hugetlb_register_all_nodes(void) 2786 { 2787 int nid; 2788 2789 for_each_node_state(nid, N_MEMORY) { 2790 struct node *node = node_devices[nid]; 2791 if (node->dev.id == nid) 2792 hugetlb_register_node(node); 2793 } 2794 2795 /* 2796 * Let the node device driver know we're here so it can 2797 * [un]register hstate attributes on node hotplug. 2798 */ 2799 register_hugetlbfs_with_node(hugetlb_register_node, 2800 hugetlb_unregister_node); 2801 } 2802 #else /* !CONFIG_NUMA */ 2803 2804 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2805 { 2806 BUG(); 2807 if (nidp) 2808 *nidp = -1; 2809 return NULL; 2810 } 2811 2812 static void hugetlb_register_all_nodes(void) { } 2813 2814 #endif 2815 2816 static int __init hugetlb_init(void) 2817 { 2818 int i; 2819 2820 if (!hugepages_supported()) 2821 return 0; 2822 2823 if (!size_to_hstate(default_hstate_size)) { 2824 if (default_hstate_size != 0) { 2825 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2826 default_hstate_size, HPAGE_SIZE); 2827 } 2828 2829 default_hstate_size = HPAGE_SIZE; 2830 if (!size_to_hstate(default_hstate_size)) 2831 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2832 } 2833 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2834 if (default_hstate_max_huge_pages) { 2835 if (!default_hstate.max_huge_pages) 2836 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2837 } 2838 2839 hugetlb_init_hstates(); 2840 gather_bootmem_prealloc(); 2841 report_hugepages(); 2842 2843 hugetlb_sysfs_init(); 2844 hugetlb_register_all_nodes(); 2845 hugetlb_cgroup_file_init(); 2846 2847 #ifdef CONFIG_SMP 2848 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2849 #else 2850 num_fault_mutexes = 1; 2851 #endif 2852 hugetlb_fault_mutex_table = 2853 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2854 GFP_KERNEL); 2855 BUG_ON(!hugetlb_fault_mutex_table); 2856 2857 for (i = 0; i < num_fault_mutexes; i++) 2858 mutex_init(&hugetlb_fault_mutex_table[i]); 2859 return 0; 2860 } 2861 subsys_initcall(hugetlb_init); 2862 2863 /* Should be called on processing a hugepagesz=... option */ 2864 void __init hugetlb_bad_size(void) 2865 { 2866 parsed_valid_hugepagesz = false; 2867 } 2868 2869 void __init hugetlb_add_hstate(unsigned int order) 2870 { 2871 struct hstate *h; 2872 unsigned long i; 2873 2874 if (size_to_hstate(PAGE_SIZE << order)) { 2875 pr_warn("hugepagesz= specified twice, ignoring\n"); 2876 return; 2877 } 2878 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2879 BUG_ON(order == 0); 2880 h = &hstates[hugetlb_max_hstate++]; 2881 h->order = order; 2882 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2883 h->nr_huge_pages = 0; 2884 h->free_huge_pages = 0; 2885 for (i = 0; i < MAX_NUMNODES; ++i) 2886 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2887 INIT_LIST_HEAD(&h->hugepage_activelist); 2888 h->next_nid_to_alloc = first_memory_node; 2889 h->next_nid_to_free = first_memory_node; 2890 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2891 huge_page_size(h)/1024); 2892 2893 parsed_hstate = h; 2894 } 2895 2896 static int __init hugetlb_nrpages_setup(char *s) 2897 { 2898 unsigned long *mhp; 2899 static unsigned long *last_mhp; 2900 2901 if (!parsed_valid_hugepagesz) { 2902 pr_warn("hugepages = %s preceded by " 2903 "an unsupported hugepagesz, ignoring\n", s); 2904 parsed_valid_hugepagesz = true; 2905 return 1; 2906 } 2907 /* 2908 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2909 * so this hugepages= parameter goes to the "default hstate". 2910 */ 2911 else if (!hugetlb_max_hstate) 2912 mhp = &default_hstate_max_huge_pages; 2913 else 2914 mhp = &parsed_hstate->max_huge_pages; 2915 2916 if (mhp == last_mhp) { 2917 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2918 return 1; 2919 } 2920 2921 if (sscanf(s, "%lu", mhp) <= 0) 2922 *mhp = 0; 2923 2924 /* 2925 * Global state is always initialized later in hugetlb_init. 2926 * But we need to allocate >= MAX_ORDER hstates here early to still 2927 * use the bootmem allocator. 2928 */ 2929 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2930 hugetlb_hstate_alloc_pages(parsed_hstate); 2931 2932 last_mhp = mhp; 2933 2934 return 1; 2935 } 2936 __setup("hugepages=", hugetlb_nrpages_setup); 2937 2938 static int __init hugetlb_default_setup(char *s) 2939 { 2940 default_hstate_size = memparse(s, &s); 2941 return 1; 2942 } 2943 __setup("default_hugepagesz=", hugetlb_default_setup); 2944 2945 static unsigned int cpuset_mems_nr(unsigned int *array) 2946 { 2947 int node; 2948 unsigned int nr = 0; 2949 2950 for_each_node_mask(node, cpuset_current_mems_allowed) 2951 nr += array[node]; 2952 2953 return nr; 2954 } 2955 2956 #ifdef CONFIG_SYSCTL 2957 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2958 struct ctl_table *table, int write, 2959 void __user *buffer, size_t *length, loff_t *ppos) 2960 { 2961 struct hstate *h = &default_hstate; 2962 unsigned long tmp = h->max_huge_pages; 2963 int ret; 2964 2965 if (!hugepages_supported()) 2966 return -EOPNOTSUPP; 2967 2968 table->data = &tmp; 2969 table->maxlen = sizeof(unsigned long); 2970 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2971 if (ret) 2972 goto out; 2973 2974 if (write) 2975 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2976 NUMA_NO_NODE, tmp, *length); 2977 out: 2978 return ret; 2979 } 2980 2981 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2982 void __user *buffer, size_t *length, loff_t *ppos) 2983 { 2984 2985 return hugetlb_sysctl_handler_common(false, table, write, 2986 buffer, length, ppos); 2987 } 2988 2989 #ifdef CONFIG_NUMA 2990 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2991 void __user *buffer, size_t *length, loff_t *ppos) 2992 { 2993 return hugetlb_sysctl_handler_common(true, table, write, 2994 buffer, length, ppos); 2995 } 2996 #endif /* CONFIG_NUMA */ 2997 2998 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2999 void __user *buffer, 3000 size_t *length, loff_t *ppos) 3001 { 3002 struct hstate *h = &default_hstate; 3003 unsigned long tmp; 3004 int ret; 3005 3006 if (!hugepages_supported()) 3007 return -EOPNOTSUPP; 3008 3009 tmp = h->nr_overcommit_huge_pages; 3010 3011 if (write && hstate_is_gigantic(h)) 3012 return -EINVAL; 3013 3014 table->data = &tmp; 3015 table->maxlen = sizeof(unsigned long); 3016 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 3017 if (ret) 3018 goto out; 3019 3020 if (write) { 3021 spin_lock(&hugetlb_lock); 3022 h->nr_overcommit_huge_pages = tmp; 3023 spin_unlock(&hugetlb_lock); 3024 } 3025 out: 3026 return ret; 3027 } 3028 3029 #endif /* CONFIG_SYSCTL */ 3030 3031 void hugetlb_report_meminfo(struct seq_file *m) 3032 { 3033 struct hstate *h; 3034 unsigned long total = 0; 3035 3036 if (!hugepages_supported()) 3037 return; 3038 3039 for_each_hstate(h) { 3040 unsigned long count = h->nr_huge_pages; 3041 3042 total += (PAGE_SIZE << huge_page_order(h)) * count; 3043 3044 if (h == &default_hstate) 3045 seq_printf(m, 3046 "HugePages_Total: %5lu\n" 3047 "HugePages_Free: %5lu\n" 3048 "HugePages_Rsvd: %5lu\n" 3049 "HugePages_Surp: %5lu\n" 3050 "Hugepagesize: %8lu kB\n", 3051 count, 3052 h->free_huge_pages, 3053 h->resv_huge_pages, 3054 h->surplus_huge_pages, 3055 (PAGE_SIZE << huge_page_order(h)) / 1024); 3056 } 3057 3058 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3059 } 3060 3061 int hugetlb_report_node_meminfo(int nid, char *buf) 3062 { 3063 struct hstate *h = &default_hstate; 3064 if (!hugepages_supported()) 3065 return 0; 3066 return sprintf(buf, 3067 "Node %d HugePages_Total: %5u\n" 3068 "Node %d HugePages_Free: %5u\n" 3069 "Node %d HugePages_Surp: %5u\n", 3070 nid, h->nr_huge_pages_node[nid], 3071 nid, h->free_huge_pages_node[nid], 3072 nid, h->surplus_huge_pages_node[nid]); 3073 } 3074 3075 void hugetlb_show_meminfo(void) 3076 { 3077 struct hstate *h; 3078 int nid; 3079 3080 if (!hugepages_supported()) 3081 return; 3082 3083 for_each_node_state(nid, N_MEMORY) 3084 for_each_hstate(h) 3085 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3086 nid, 3087 h->nr_huge_pages_node[nid], 3088 h->free_huge_pages_node[nid], 3089 h->surplus_huge_pages_node[nid], 3090 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3091 } 3092 3093 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3094 { 3095 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3096 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3097 } 3098 3099 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3100 unsigned long hugetlb_total_pages(void) 3101 { 3102 struct hstate *h; 3103 unsigned long nr_total_pages = 0; 3104 3105 for_each_hstate(h) 3106 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3107 return nr_total_pages; 3108 } 3109 3110 static int hugetlb_acct_memory(struct hstate *h, long delta) 3111 { 3112 int ret = -ENOMEM; 3113 3114 spin_lock(&hugetlb_lock); 3115 /* 3116 * When cpuset is configured, it breaks the strict hugetlb page 3117 * reservation as the accounting is done on a global variable. Such 3118 * reservation is completely rubbish in the presence of cpuset because 3119 * the reservation is not checked against page availability for the 3120 * current cpuset. Application can still potentially OOM'ed by kernel 3121 * with lack of free htlb page in cpuset that the task is in. 3122 * Attempt to enforce strict accounting with cpuset is almost 3123 * impossible (or too ugly) because cpuset is too fluid that 3124 * task or memory node can be dynamically moved between cpusets. 3125 * 3126 * The change of semantics for shared hugetlb mapping with cpuset is 3127 * undesirable. However, in order to preserve some of the semantics, 3128 * we fall back to check against current free page availability as 3129 * a best attempt and hopefully to minimize the impact of changing 3130 * semantics that cpuset has. 3131 */ 3132 if (delta > 0) { 3133 if (gather_surplus_pages(h, delta) < 0) 3134 goto out; 3135 3136 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3137 return_unused_surplus_pages(h, delta); 3138 goto out; 3139 } 3140 } 3141 3142 ret = 0; 3143 if (delta < 0) 3144 return_unused_surplus_pages(h, (unsigned long) -delta); 3145 3146 out: 3147 spin_unlock(&hugetlb_lock); 3148 return ret; 3149 } 3150 3151 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3152 { 3153 struct resv_map *resv = vma_resv_map(vma); 3154 3155 /* 3156 * This new VMA should share its siblings reservation map if present. 3157 * The VMA will only ever have a valid reservation map pointer where 3158 * it is being copied for another still existing VMA. As that VMA 3159 * has a reference to the reservation map it cannot disappear until 3160 * after this open call completes. It is therefore safe to take a 3161 * new reference here without additional locking. 3162 */ 3163 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3164 kref_get(&resv->refs); 3165 } 3166 3167 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3168 { 3169 struct hstate *h = hstate_vma(vma); 3170 struct resv_map *resv = vma_resv_map(vma); 3171 struct hugepage_subpool *spool = subpool_vma(vma); 3172 unsigned long reserve, start, end; 3173 long gbl_reserve; 3174 3175 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3176 return; 3177 3178 start = vma_hugecache_offset(h, vma, vma->vm_start); 3179 end = vma_hugecache_offset(h, vma, vma->vm_end); 3180 3181 reserve = (end - start) - region_count(resv, start, end); 3182 3183 kref_put(&resv->refs, resv_map_release); 3184 3185 if (reserve) { 3186 /* 3187 * Decrement reserve counts. The global reserve count may be 3188 * adjusted if the subpool has a minimum size. 3189 */ 3190 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3191 hugetlb_acct_memory(h, -gbl_reserve); 3192 } 3193 } 3194 3195 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3196 { 3197 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3198 return -EINVAL; 3199 return 0; 3200 } 3201 3202 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3203 { 3204 struct hstate *hstate = hstate_vma(vma); 3205 3206 return 1UL << huge_page_shift(hstate); 3207 } 3208 3209 /* 3210 * We cannot handle pagefaults against hugetlb pages at all. They cause 3211 * handle_mm_fault() to try to instantiate regular-sized pages in the 3212 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3213 * this far. 3214 */ 3215 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3216 { 3217 BUG(); 3218 return 0; 3219 } 3220 3221 /* 3222 * When a new function is introduced to vm_operations_struct and added 3223 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3224 * This is because under System V memory model, mappings created via 3225 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3226 * their original vm_ops are overwritten with shm_vm_ops. 3227 */ 3228 const struct vm_operations_struct hugetlb_vm_ops = { 3229 .fault = hugetlb_vm_op_fault, 3230 .open = hugetlb_vm_op_open, 3231 .close = hugetlb_vm_op_close, 3232 .split = hugetlb_vm_op_split, 3233 .pagesize = hugetlb_vm_op_pagesize, 3234 }; 3235 3236 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3237 int writable) 3238 { 3239 pte_t entry; 3240 3241 if (writable) { 3242 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3243 vma->vm_page_prot))); 3244 } else { 3245 entry = huge_pte_wrprotect(mk_huge_pte(page, 3246 vma->vm_page_prot)); 3247 } 3248 entry = pte_mkyoung(entry); 3249 entry = pte_mkhuge(entry); 3250 entry = arch_make_huge_pte(entry, vma, page, writable); 3251 3252 return entry; 3253 } 3254 3255 static void set_huge_ptep_writable(struct vm_area_struct *vma, 3256 unsigned long address, pte_t *ptep) 3257 { 3258 pte_t entry; 3259 3260 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3261 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3262 update_mmu_cache(vma, address, ptep); 3263 } 3264 3265 bool is_hugetlb_entry_migration(pte_t pte) 3266 { 3267 swp_entry_t swp; 3268 3269 if (huge_pte_none(pte) || pte_present(pte)) 3270 return false; 3271 swp = pte_to_swp_entry(pte); 3272 if (non_swap_entry(swp) && is_migration_entry(swp)) 3273 return true; 3274 else 3275 return false; 3276 } 3277 3278 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3279 { 3280 swp_entry_t swp; 3281 3282 if (huge_pte_none(pte) || pte_present(pte)) 3283 return 0; 3284 swp = pte_to_swp_entry(pte); 3285 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3286 return 1; 3287 else 3288 return 0; 3289 } 3290 3291 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3292 struct vm_area_struct *vma) 3293 { 3294 pte_t *src_pte, *dst_pte, entry, dst_entry; 3295 struct page *ptepage; 3296 unsigned long addr; 3297 int cow; 3298 struct hstate *h = hstate_vma(vma); 3299 unsigned long sz = huge_page_size(h); 3300 struct mmu_notifier_range range; 3301 int ret = 0; 3302 3303 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3304 3305 if (cow) { 3306 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, 3307 vma->vm_start, 3308 vma->vm_end); 3309 mmu_notifier_invalidate_range_start(&range); 3310 } 3311 3312 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3313 spinlock_t *src_ptl, *dst_ptl; 3314 src_pte = huge_pte_offset(src, addr, sz); 3315 if (!src_pte) 3316 continue; 3317 dst_pte = huge_pte_alloc(dst, addr, sz); 3318 if (!dst_pte) { 3319 ret = -ENOMEM; 3320 break; 3321 } 3322 3323 /* 3324 * If the pagetables are shared don't copy or take references. 3325 * dst_pte == src_pte is the common case of src/dest sharing. 3326 * 3327 * However, src could have 'unshared' and dst shares with 3328 * another vma. If dst_pte !none, this implies sharing. 3329 * Check here before taking page table lock, and once again 3330 * after taking the lock below. 3331 */ 3332 dst_entry = huge_ptep_get(dst_pte); 3333 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3334 continue; 3335 3336 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3337 src_ptl = huge_pte_lockptr(h, src, src_pte); 3338 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3339 entry = huge_ptep_get(src_pte); 3340 dst_entry = huge_ptep_get(dst_pte); 3341 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3342 /* 3343 * Skip if src entry none. Also, skip in the 3344 * unlikely case dst entry !none as this implies 3345 * sharing with another vma. 3346 */ 3347 ; 3348 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3349 is_hugetlb_entry_hwpoisoned(entry))) { 3350 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3351 3352 if (is_write_migration_entry(swp_entry) && cow) { 3353 /* 3354 * COW mappings require pages in both 3355 * parent and child to be set to read. 3356 */ 3357 make_migration_entry_read(&swp_entry); 3358 entry = swp_entry_to_pte(swp_entry); 3359 set_huge_swap_pte_at(src, addr, src_pte, 3360 entry, sz); 3361 } 3362 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3363 } else { 3364 if (cow) { 3365 /* 3366 * No need to notify as we are downgrading page 3367 * table protection not changing it to point 3368 * to a new page. 3369 * 3370 * See Documentation/vm/mmu_notifier.rst 3371 */ 3372 huge_ptep_set_wrprotect(src, addr, src_pte); 3373 } 3374 entry = huge_ptep_get(src_pte); 3375 ptepage = pte_page(entry); 3376 get_page(ptepage); 3377 page_dup_rmap(ptepage, true); 3378 set_huge_pte_at(dst, addr, dst_pte, entry); 3379 hugetlb_count_add(pages_per_huge_page(h), dst); 3380 } 3381 spin_unlock(src_ptl); 3382 spin_unlock(dst_ptl); 3383 } 3384 3385 if (cow) 3386 mmu_notifier_invalidate_range_end(&range); 3387 3388 return ret; 3389 } 3390 3391 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3392 unsigned long start, unsigned long end, 3393 struct page *ref_page) 3394 { 3395 struct mm_struct *mm = vma->vm_mm; 3396 unsigned long address; 3397 pte_t *ptep; 3398 pte_t pte; 3399 spinlock_t *ptl; 3400 struct page *page; 3401 struct hstate *h = hstate_vma(vma); 3402 unsigned long sz = huge_page_size(h); 3403 struct mmu_notifier_range range; 3404 3405 WARN_ON(!is_vm_hugetlb_page(vma)); 3406 BUG_ON(start & ~huge_page_mask(h)); 3407 BUG_ON(end & ~huge_page_mask(h)); 3408 3409 /* 3410 * This is a hugetlb vma, all the pte entries should point 3411 * to huge page. 3412 */ 3413 tlb_change_page_size(tlb, sz); 3414 tlb_start_vma(tlb, vma); 3415 3416 /* 3417 * If sharing possible, alert mmu notifiers of worst case. 3418 */ 3419 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start, 3420 end); 3421 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3422 mmu_notifier_invalidate_range_start(&range); 3423 address = start; 3424 for (; address < end; address += sz) { 3425 ptep = huge_pte_offset(mm, address, sz); 3426 if (!ptep) 3427 continue; 3428 3429 ptl = huge_pte_lock(h, mm, ptep); 3430 if (huge_pmd_unshare(mm, &address, ptep)) { 3431 spin_unlock(ptl); 3432 /* 3433 * We just unmapped a page of PMDs by clearing a PUD. 3434 * The caller's TLB flush range should cover this area. 3435 */ 3436 continue; 3437 } 3438 3439 pte = huge_ptep_get(ptep); 3440 if (huge_pte_none(pte)) { 3441 spin_unlock(ptl); 3442 continue; 3443 } 3444 3445 /* 3446 * Migrating hugepage or HWPoisoned hugepage is already 3447 * unmapped and its refcount is dropped, so just clear pte here. 3448 */ 3449 if (unlikely(!pte_present(pte))) { 3450 huge_pte_clear(mm, address, ptep, sz); 3451 spin_unlock(ptl); 3452 continue; 3453 } 3454 3455 page = pte_page(pte); 3456 /* 3457 * If a reference page is supplied, it is because a specific 3458 * page is being unmapped, not a range. Ensure the page we 3459 * are about to unmap is the actual page of interest. 3460 */ 3461 if (ref_page) { 3462 if (page != ref_page) { 3463 spin_unlock(ptl); 3464 continue; 3465 } 3466 /* 3467 * Mark the VMA as having unmapped its page so that 3468 * future faults in this VMA will fail rather than 3469 * looking like data was lost 3470 */ 3471 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3472 } 3473 3474 pte = huge_ptep_get_and_clear(mm, address, ptep); 3475 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3476 if (huge_pte_dirty(pte)) 3477 set_page_dirty(page); 3478 3479 hugetlb_count_sub(pages_per_huge_page(h), mm); 3480 page_remove_rmap(page, true); 3481 3482 spin_unlock(ptl); 3483 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3484 /* 3485 * Bail out after unmapping reference page if supplied 3486 */ 3487 if (ref_page) 3488 break; 3489 } 3490 mmu_notifier_invalidate_range_end(&range); 3491 tlb_end_vma(tlb, vma); 3492 } 3493 3494 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3495 struct vm_area_struct *vma, unsigned long start, 3496 unsigned long end, struct page *ref_page) 3497 { 3498 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3499 3500 /* 3501 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3502 * test will fail on a vma being torn down, and not grab a page table 3503 * on its way out. We're lucky that the flag has such an appropriate 3504 * name, and can in fact be safely cleared here. We could clear it 3505 * before the __unmap_hugepage_range above, but all that's necessary 3506 * is to clear it before releasing the i_mmap_rwsem. This works 3507 * because in the context this is called, the VMA is about to be 3508 * destroyed and the i_mmap_rwsem is held. 3509 */ 3510 vma->vm_flags &= ~VM_MAYSHARE; 3511 } 3512 3513 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3514 unsigned long end, struct page *ref_page) 3515 { 3516 struct mm_struct *mm; 3517 struct mmu_gather tlb; 3518 unsigned long tlb_start = start; 3519 unsigned long tlb_end = end; 3520 3521 /* 3522 * If shared PMDs were possibly used within this vma range, adjust 3523 * start/end for worst case tlb flushing. 3524 * Note that we can not be sure if PMDs are shared until we try to 3525 * unmap pages. However, we want to make sure TLB flushing covers 3526 * the largest possible range. 3527 */ 3528 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3529 3530 mm = vma->vm_mm; 3531 3532 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3533 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3534 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3535 } 3536 3537 /* 3538 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3539 * mappping it owns the reserve page for. The intention is to unmap the page 3540 * from other VMAs and let the children be SIGKILLed if they are faulting the 3541 * same region. 3542 */ 3543 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3544 struct page *page, unsigned long address) 3545 { 3546 struct hstate *h = hstate_vma(vma); 3547 struct vm_area_struct *iter_vma; 3548 struct address_space *mapping; 3549 pgoff_t pgoff; 3550 3551 /* 3552 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3553 * from page cache lookup which is in HPAGE_SIZE units. 3554 */ 3555 address = address & huge_page_mask(h); 3556 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3557 vma->vm_pgoff; 3558 mapping = vma->vm_file->f_mapping; 3559 3560 /* 3561 * Take the mapping lock for the duration of the table walk. As 3562 * this mapping should be shared between all the VMAs, 3563 * __unmap_hugepage_range() is called as the lock is already held 3564 */ 3565 i_mmap_lock_write(mapping); 3566 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3567 /* Do not unmap the current VMA */ 3568 if (iter_vma == vma) 3569 continue; 3570 3571 /* 3572 * Shared VMAs have their own reserves and do not affect 3573 * MAP_PRIVATE accounting but it is possible that a shared 3574 * VMA is using the same page so check and skip such VMAs. 3575 */ 3576 if (iter_vma->vm_flags & VM_MAYSHARE) 3577 continue; 3578 3579 /* 3580 * Unmap the page from other VMAs without their own reserves. 3581 * They get marked to be SIGKILLed if they fault in these 3582 * areas. This is because a future no-page fault on this VMA 3583 * could insert a zeroed page instead of the data existing 3584 * from the time of fork. This would look like data corruption 3585 */ 3586 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3587 unmap_hugepage_range(iter_vma, address, 3588 address + huge_page_size(h), page); 3589 } 3590 i_mmap_unlock_write(mapping); 3591 } 3592 3593 /* 3594 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3595 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3596 * cannot race with other handlers or page migration. 3597 * Keep the pte_same checks anyway to make transition from the mutex easier. 3598 */ 3599 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3600 unsigned long address, pte_t *ptep, 3601 struct page *pagecache_page, spinlock_t *ptl) 3602 { 3603 pte_t pte; 3604 struct hstate *h = hstate_vma(vma); 3605 struct page *old_page, *new_page; 3606 int outside_reserve = 0; 3607 vm_fault_t ret = 0; 3608 unsigned long haddr = address & huge_page_mask(h); 3609 struct mmu_notifier_range range; 3610 3611 pte = huge_ptep_get(ptep); 3612 old_page = pte_page(pte); 3613 3614 retry_avoidcopy: 3615 /* If no-one else is actually using this page, avoid the copy 3616 * and just make the page writable */ 3617 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3618 page_move_anon_rmap(old_page, vma); 3619 set_huge_ptep_writable(vma, haddr, ptep); 3620 return 0; 3621 } 3622 3623 /* 3624 * If the process that created a MAP_PRIVATE mapping is about to 3625 * perform a COW due to a shared page count, attempt to satisfy 3626 * the allocation without using the existing reserves. The pagecache 3627 * page is used to determine if the reserve at this address was 3628 * consumed or not. If reserves were used, a partial faulted mapping 3629 * at the time of fork() could consume its reserves on COW instead 3630 * of the full address range. 3631 */ 3632 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3633 old_page != pagecache_page) 3634 outside_reserve = 1; 3635 3636 get_page(old_page); 3637 3638 /* 3639 * Drop page table lock as buddy allocator may be called. It will 3640 * be acquired again before returning to the caller, as expected. 3641 */ 3642 spin_unlock(ptl); 3643 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3644 3645 if (IS_ERR(new_page)) { 3646 /* 3647 * If a process owning a MAP_PRIVATE mapping fails to COW, 3648 * it is due to references held by a child and an insufficient 3649 * huge page pool. To guarantee the original mappers 3650 * reliability, unmap the page from child processes. The child 3651 * may get SIGKILLed if it later faults. 3652 */ 3653 if (outside_reserve) { 3654 put_page(old_page); 3655 BUG_ON(huge_pte_none(pte)); 3656 unmap_ref_private(mm, vma, old_page, haddr); 3657 BUG_ON(huge_pte_none(pte)); 3658 spin_lock(ptl); 3659 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3660 if (likely(ptep && 3661 pte_same(huge_ptep_get(ptep), pte))) 3662 goto retry_avoidcopy; 3663 /* 3664 * race occurs while re-acquiring page table 3665 * lock, and our job is done. 3666 */ 3667 return 0; 3668 } 3669 3670 ret = vmf_error(PTR_ERR(new_page)); 3671 goto out_release_old; 3672 } 3673 3674 /* 3675 * When the original hugepage is shared one, it does not have 3676 * anon_vma prepared. 3677 */ 3678 if (unlikely(anon_vma_prepare(vma))) { 3679 ret = VM_FAULT_OOM; 3680 goto out_release_all; 3681 } 3682 3683 copy_user_huge_page(new_page, old_page, address, vma, 3684 pages_per_huge_page(h)); 3685 __SetPageUptodate(new_page); 3686 3687 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 3688 haddr + huge_page_size(h)); 3689 mmu_notifier_invalidate_range_start(&range); 3690 3691 /* 3692 * Retake the page table lock to check for racing updates 3693 * before the page tables are altered 3694 */ 3695 spin_lock(ptl); 3696 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3697 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3698 ClearPagePrivate(new_page); 3699 3700 /* Break COW */ 3701 huge_ptep_clear_flush(vma, haddr, ptep); 3702 mmu_notifier_invalidate_range(mm, range.start, range.end); 3703 set_huge_pte_at(mm, haddr, ptep, 3704 make_huge_pte(vma, new_page, 1)); 3705 page_remove_rmap(old_page, true); 3706 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3707 set_page_huge_active(new_page); 3708 /* Make the old page be freed below */ 3709 new_page = old_page; 3710 } 3711 spin_unlock(ptl); 3712 mmu_notifier_invalidate_range_end(&range); 3713 out_release_all: 3714 restore_reserve_on_error(h, vma, haddr, new_page); 3715 put_page(new_page); 3716 out_release_old: 3717 put_page(old_page); 3718 3719 spin_lock(ptl); /* Caller expects lock to be held */ 3720 return ret; 3721 } 3722 3723 /* Return the pagecache page at a given address within a VMA */ 3724 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3725 struct vm_area_struct *vma, unsigned long address) 3726 { 3727 struct address_space *mapping; 3728 pgoff_t idx; 3729 3730 mapping = vma->vm_file->f_mapping; 3731 idx = vma_hugecache_offset(h, vma, address); 3732 3733 return find_lock_page(mapping, idx); 3734 } 3735 3736 /* 3737 * Return whether there is a pagecache page to back given address within VMA. 3738 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3739 */ 3740 static bool hugetlbfs_pagecache_present(struct hstate *h, 3741 struct vm_area_struct *vma, unsigned long address) 3742 { 3743 struct address_space *mapping; 3744 pgoff_t idx; 3745 struct page *page; 3746 3747 mapping = vma->vm_file->f_mapping; 3748 idx = vma_hugecache_offset(h, vma, address); 3749 3750 page = find_get_page(mapping, idx); 3751 if (page) 3752 put_page(page); 3753 return page != NULL; 3754 } 3755 3756 int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3757 pgoff_t idx) 3758 { 3759 struct inode *inode = mapping->host; 3760 struct hstate *h = hstate_inode(inode); 3761 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3762 3763 if (err) 3764 return err; 3765 ClearPagePrivate(page); 3766 3767 /* 3768 * set page dirty so that it will not be removed from cache/file 3769 * by non-hugetlbfs specific code paths. 3770 */ 3771 set_page_dirty(page); 3772 3773 spin_lock(&inode->i_lock); 3774 inode->i_blocks += blocks_per_huge_page(h); 3775 spin_unlock(&inode->i_lock); 3776 return 0; 3777 } 3778 3779 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3780 struct vm_area_struct *vma, 3781 struct address_space *mapping, pgoff_t idx, 3782 unsigned long address, pte_t *ptep, unsigned int flags) 3783 { 3784 struct hstate *h = hstate_vma(vma); 3785 vm_fault_t ret = VM_FAULT_SIGBUS; 3786 int anon_rmap = 0; 3787 unsigned long size; 3788 struct page *page; 3789 pte_t new_pte; 3790 spinlock_t *ptl; 3791 unsigned long haddr = address & huge_page_mask(h); 3792 bool new_page = false; 3793 3794 /* 3795 * Currently, we are forced to kill the process in the event the 3796 * original mapper has unmapped pages from the child due to a failed 3797 * COW. Warn that such a situation has occurred as it may not be obvious 3798 */ 3799 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3800 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3801 current->pid); 3802 return ret; 3803 } 3804 3805 /* 3806 * Use page lock to guard against racing truncation 3807 * before we get page_table_lock. 3808 */ 3809 retry: 3810 page = find_lock_page(mapping, idx); 3811 if (!page) { 3812 size = i_size_read(mapping->host) >> huge_page_shift(h); 3813 if (idx >= size) 3814 goto out; 3815 3816 /* 3817 * Check for page in userfault range 3818 */ 3819 if (userfaultfd_missing(vma)) { 3820 u32 hash; 3821 struct vm_fault vmf = { 3822 .vma = vma, 3823 .address = haddr, 3824 .flags = flags, 3825 /* 3826 * Hard to debug if it ends up being 3827 * used by a callee that assumes 3828 * something about the other 3829 * uninitialized fields... same as in 3830 * memory.c 3831 */ 3832 }; 3833 3834 /* 3835 * hugetlb_fault_mutex must be dropped before 3836 * handling userfault. Reacquire after handling 3837 * fault to make calling code simpler. 3838 */ 3839 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 3840 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3841 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3842 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3843 goto out; 3844 } 3845 3846 page = alloc_huge_page(vma, haddr, 0); 3847 if (IS_ERR(page)) { 3848 ret = vmf_error(PTR_ERR(page)); 3849 goto out; 3850 } 3851 clear_huge_page(page, address, pages_per_huge_page(h)); 3852 __SetPageUptodate(page); 3853 new_page = true; 3854 3855 if (vma->vm_flags & VM_MAYSHARE) { 3856 int err = huge_add_to_page_cache(page, mapping, idx); 3857 if (err) { 3858 put_page(page); 3859 if (err == -EEXIST) 3860 goto retry; 3861 goto out; 3862 } 3863 } else { 3864 lock_page(page); 3865 if (unlikely(anon_vma_prepare(vma))) { 3866 ret = VM_FAULT_OOM; 3867 goto backout_unlocked; 3868 } 3869 anon_rmap = 1; 3870 } 3871 } else { 3872 /* 3873 * If memory error occurs between mmap() and fault, some process 3874 * don't have hwpoisoned swap entry for errored virtual address. 3875 * So we need to block hugepage fault by PG_hwpoison bit check. 3876 */ 3877 if (unlikely(PageHWPoison(page))) { 3878 ret = VM_FAULT_HWPOISON | 3879 VM_FAULT_SET_HINDEX(hstate_index(h)); 3880 goto backout_unlocked; 3881 } 3882 } 3883 3884 /* 3885 * If we are going to COW a private mapping later, we examine the 3886 * pending reservations for this page now. This will ensure that 3887 * any allocations necessary to record that reservation occur outside 3888 * the spinlock. 3889 */ 3890 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3891 if (vma_needs_reservation(h, vma, haddr) < 0) { 3892 ret = VM_FAULT_OOM; 3893 goto backout_unlocked; 3894 } 3895 /* Just decrements count, does not deallocate */ 3896 vma_end_reservation(h, vma, haddr); 3897 } 3898 3899 ptl = huge_pte_lock(h, mm, ptep); 3900 size = i_size_read(mapping->host) >> huge_page_shift(h); 3901 if (idx >= size) 3902 goto backout; 3903 3904 ret = 0; 3905 if (!huge_pte_none(huge_ptep_get(ptep))) 3906 goto backout; 3907 3908 if (anon_rmap) { 3909 ClearPagePrivate(page); 3910 hugepage_add_new_anon_rmap(page, vma, haddr); 3911 } else 3912 page_dup_rmap(page, true); 3913 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3914 && (vma->vm_flags & VM_SHARED))); 3915 set_huge_pte_at(mm, haddr, ptep, new_pte); 3916 3917 hugetlb_count_add(pages_per_huge_page(h), mm); 3918 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3919 /* Optimization, do the COW without a second fault */ 3920 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3921 } 3922 3923 spin_unlock(ptl); 3924 3925 /* 3926 * Only make newly allocated pages active. Existing pages found 3927 * in the pagecache could be !page_huge_active() if they have been 3928 * isolated for migration. 3929 */ 3930 if (new_page) 3931 set_page_huge_active(page); 3932 3933 unlock_page(page); 3934 out: 3935 return ret; 3936 3937 backout: 3938 spin_unlock(ptl); 3939 backout_unlocked: 3940 unlock_page(page); 3941 restore_reserve_on_error(h, vma, haddr, page); 3942 put_page(page); 3943 goto out; 3944 } 3945 3946 #ifdef CONFIG_SMP 3947 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 3948 pgoff_t idx, unsigned long address) 3949 { 3950 unsigned long key[2]; 3951 u32 hash; 3952 3953 key[0] = (unsigned long) mapping; 3954 key[1] = idx; 3955 3956 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3957 3958 return hash & (num_fault_mutexes - 1); 3959 } 3960 #else 3961 /* 3962 * For uniprocesor systems we always use a single mutex, so just 3963 * return 0 and avoid the hashing overhead. 3964 */ 3965 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping, 3966 pgoff_t idx, unsigned long address) 3967 { 3968 return 0; 3969 } 3970 #endif 3971 3972 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3973 unsigned long address, unsigned int flags) 3974 { 3975 pte_t *ptep, entry; 3976 spinlock_t *ptl; 3977 vm_fault_t ret; 3978 u32 hash; 3979 pgoff_t idx; 3980 struct page *page = NULL; 3981 struct page *pagecache_page = NULL; 3982 struct hstate *h = hstate_vma(vma); 3983 struct address_space *mapping; 3984 int need_wait_lock = 0; 3985 unsigned long haddr = address & huge_page_mask(h); 3986 3987 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3988 if (ptep) { 3989 entry = huge_ptep_get(ptep); 3990 if (unlikely(is_hugetlb_entry_migration(entry))) { 3991 migration_entry_wait_huge(vma, mm, ptep); 3992 return 0; 3993 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3994 return VM_FAULT_HWPOISON_LARGE | 3995 VM_FAULT_SET_HINDEX(hstate_index(h)); 3996 } else { 3997 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3998 if (!ptep) 3999 return VM_FAULT_OOM; 4000 } 4001 4002 mapping = vma->vm_file->f_mapping; 4003 idx = vma_hugecache_offset(h, vma, haddr); 4004 4005 /* 4006 * Serialize hugepage allocation and instantiation, so that we don't 4007 * get spurious allocation failures if two CPUs race to instantiate 4008 * the same page in the page cache. 4009 */ 4010 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr); 4011 mutex_lock(&hugetlb_fault_mutex_table[hash]); 4012 4013 entry = huge_ptep_get(ptep); 4014 if (huge_pte_none(entry)) { 4015 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 4016 goto out_mutex; 4017 } 4018 4019 ret = 0; 4020 4021 /* 4022 * entry could be a migration/hwpoison entry at this point, so this 4023 * check prevents the kernel from going below assuming that we have 4024 * a active hugepage in pagecache. This goto expects the 2nd page fault, 4025 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 4026 * handle it. 4027 */ 4028 if (!pte_present(entry)) 4029 goto out_mutex; 4030 4031 /* 4032 * If we are going to COW the mapping later, we examine the pending 4033 * reservations for this page now. This will ensure that any 4034 * allocations necessary to record that reservation occur outside the 4035 * spinlock. For private mappings, we also lookup the pagecache 4036 * page now as it is used to determine if a reservation has been 4037 * consumed. 4038 */ 4039 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 4040 if (vma_needs_reservation(h, vma, haddr) < 0) { 4041 ret = VM_FAULT_OOM; 4042 goto out_mutex; 4043 } 4044 /* Just decrements count, does not deallocate */ 4045 vma_end_reservation(h, vma, haddr); 4046 4047 if (!(vma->vm_flags & VM_MAYSHARE)) 4048 pagecache_page = hugetlbfs_pagecache_page(h, 4049 vma, haddr); 4050 } 4051 4052 ptl = huge_pte_lock(h, mm, ptep); 4053 4054 /* Check for a racing update before calling hugetlb_cow */ 4055 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4056 goto out_ptl; 4057 4058 /* 4059 * hugetlb_cow() requires page locks of pte_page(entry) and 4060 * pagecache_page, so here we need take the former one 4061 * when page != pagecache_page or !pagecache_page. 4062 */ 4063 page = pte_page(entry); 4064 if (page != pagecache_page) 4065 if (!trylock_page(page)) { 4066 need_wait_lock = 1; 4067 goto out_ptl; 4068 } 4069 4070 get_page(page); 4071 4072 if (flags & FAULT_FLAG_WRITE) { 4073 if (!huge_pte_write(entry)) { 4074 ret = hugetlb_cow(mm, vma, address, ptep, 4075 pagecache_page, ptl); 4076 goto out_put_page; 4077 } 4078 entry = huge_pte_mkdirty(entry); 4079 } 4080 entry = pte_mkyoung(entry); 4081 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4082 flags & FAULT_FLAG_WRITE)) 4083 update_mmu_cache(vma, haddr, ptep); 4084 out_put_page: 4085 if (page != pagecache_page) 4086 unlock_page(page); 4087 put_page(page); 4088 out_ptl: 4089 spin_unlock(ptl); 4090 4091 if (pagecache_page) { 4092 unlock_page(pagecache_page); 4093 put_page(pagecache_page); 4094 } 4095 out_mutex: 4096 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4097 /* 4098 * Generally it's safe to hold refcount during waiting page lock. But 4099 * here we just wait to defer the next page fault to avoid busy loop and 4100 * the page is not used after unlocked before returning from the current 4101 * page fault. So we are safe from accessing freed page, even if we wait 4102 * here without taking refcount. 4103 */ 4104 if (need_wait_lock) 4105 wait_on_page_locked(page); 4106 return ret; 4107 } 4108 4109 /* 4110 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4111 * modifications for huge pages. 4112 */ 4113 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4114 pte_t *dst_pte, 4115 struct vm_area_struct *dst_vma, 4116 unsigned long dst_addr, 4117 unsigned long src_addr, 4118 struct page **pagep) 4119 { 4120 struct address_space *mapping; 4121 pgoff_t idx; 4122 unsigned long size; 4123 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4124 struct hstate *h = hstate_vma(dst_vma); 4125 pte_t _dst_pte; 4126 spinlock_t *ptl; 4127 int ret; 4128 struct page *page; 4129 4130 if (!*pagep) { 4131 ret = -ENOMEM; 4132 page = alloc_huge_page(dst_vma, dst_addr, 0); 4133 if (IS_ERR(page)) 4134 goto out; 4135 4136 ret = copy_huge_page_from_user(page, 4137 (const void __user *) src_addr, 4138 pages_per_huge_page(h), false); 4139 4140 /* fallback to copy_from_user outside mmap_sem */ 4141 if (unlikely(ret)) { 4142 ret = -ENOENT; 4143 *pagep = page; 4144 /* don't free the page */ 4145 goto out; 4146 } 4147 } else { 4148 page = *pagep; 4149 *pagep = NULL; 4150 } 4151 4152 /* 4153 * The memory barrier inside __SetPageUptodate makes sure that 4154 * preceding stores to the page contents become visible before 4155 * the set_pte_at() write. 4156 */ 4157 __SetPageUptodate(page); 4158 4159 mapping = dst_vma->vm_file->f_mapping; 4160 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4161 4162 /* 4163 * If shared, add to page cache 4164 */ 4165 if (vm_shared) { 4166 size = i_size_read(mapping->host) >> huge_page_shift(h); 4167 ret = -EFAULT; 4168 if (idx >= size) 4169 goto out_release_nounlock; 4170 4171 /* 4172 * Serialization between remove_inode_hugepages() and 4173 * huge_add_to_page_cache() below happens through the 4174 * hugetlb_fault_mutex_table that here must be hold by 4175 * the caller. 4176 */ 4177 ret = huge_add_to_page_cache(page, mapping, idx); 4178 if (ret) 4179 goto out_release_nounlock; 4180 } 4181 4182 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4183 spin_lock(ptl); 4184 4185 /* 4186 * Recheck the i_size after holding PT lock to make sure not 4187 * to leave any page mapped (as page_mapped()) beyond the end 4188 * of the i_size (remove_inode_hugepages() is strict about 4189 * enforcing that). If we bail out here, we'll also leave a 4190 * page in the radix tree in the vm_shared case beyond the end 4191 * of the i_size, but remove_inode_hugepages() will take care 4192 * of it as soon as we drop the hugetlb_fault_mutex_table. 4193 */ 4194 size = i_size_read(mapping->host) >> huge_page_shift(h); 4195 ret = -EFAULT; 4196 if (idx >= size) 4197 goto out_release_unlock; 4198 4199 ret = -EEXIST; 4200 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4201 goto out_release_unlock; 4202 4203 if (vm_shared) { 4204 page_dup_rmap(page, true); 4205 } else { 4206 ClearPagePrivate(page); 4207 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4208 } 4209 4210 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4211 if (dst_vma->vm_flags & VM_WRITE) 4212 _dst_pte = huge_pte_mkdirty(_dst_pte); 4213 _dst_pte = pte_mkyoung(_dst_pte); 4214 4215 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4216 4217 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4218 dst_vma->vm_flags & VM_WRITE); 4219 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4220 4221 /* No need to invalidate - it was non-present before */ 4222 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4223 4224 spin_unlock(ptl); 4225 set_page_huge_active(page); 4226 if (vm_shared) 4227 unlock_page(page); 4228 ret = 0; 4229 out: 4230 return ret; 4231 out_release_unlock: 4232 spin_unlock(ptl); 4233 if (vm_shared) 4234 unlock_page(page); 4235 out_release_nounlock: 4236 put_page(page); 4237 goto out; 4238 } 4239 4240 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4241 struct page **pages, struct vm_area_struct **vmas, 4242 unsigned long *position, unsigned long *nr_pages, 4243 long i, unsigned int flags, int *nonblocking) 4244 { 4245 unsigned long pfn_offset; 4246 unsigned long vaddr = *position; 4247 unsigned long remainder = *nr_pages; 4248 struct hstate *h = hstate_vma(vma); 4249 int err = -EFAULT; 4250 4251 while (vaddr < vma->vm_end && remainder) { 4252 pte_t *pte; 4253 spinlock_t *ptl = NULL; 4254 int absent; 4255 struct page *page; 4256 4257 /* 4258 * If we have a pending SIGKILL, don't keep faulting pages and 4259 * potentially allocating memory. 4260 */ 4261 if (fatal_signal_pending(current)) { 4262 remainder = 0; 4263 break; 4264 } 4265 4266 /* 4267 * Some archs (sparc64, sh*) have multiple pte_ts to 4268 * each hugepage. We have to make sure we get the 4269 * first, for the page indexing below to work. 4270 * 4271 * Note that page table lock is not held when pte is null. 4272 */ 4273 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4274 huge_page_size(h)); 4275 if (pte) 4276 ptl = huge_pte_lock(h, mm, pte); 4277 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4278 4279 /* 4280 * When coredumping, it suits get_dump_page if we just return 4281 * an error where there's an empty slot with no huge pagecache 4282 * to back it. This way, we avoid allocating a hugepage, and 4283 * the sparse dumpfile avoids allocating disk blocks, but its 4284 * huge holes still show up with zeroes where they need to be. 4285 */ 4286 if (absent && (flags & FOLL_DUMP) && 4287 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4288 if (pte) 4289 spin_unlock(ptl); 4290 remainder = 0; 4291 break; 4292 } 4293 4294 /* 4295 * We need call hugetlb_fault for both hugepages under migration 4296 * (in which case hugetlb_fault waits for the migration,) and 4297 * hwpoisoned hugepages (in which case we need to prevent the 4298 * caller from accessing to them.) In order to do this, we use 4299 * here is_swap_pte instead of is_hugetlb_entry_migration and 4300 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4301 * both cases, and because we can't follow correct pages 4302 * directly from any kind of swap entries. 4303 */ 4304 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4305 ((flags & FOLL_WRITE) && 4306 !huge_pte_write(huge_ptep_get(pte)))) { 4307 vm_fault_t ret; 4308 unsigned int fault_flags = 0; 4309 4310 if (pte) 4311 spin_unlock(ptl); 4312 if (flags & FOLL_WRITE) 4313 fault_flags |= FAULT_FLAG_WRITE; 4314 if (nonblocking) 4315 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4316 if (flags & FOLL_NOWAIT) 4317 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4318 FAULT_FLAG_RETRY_NOWAIT; 4319 if (flags & FOLL_TRIED) { 4320 VM_WARN_ON_ONCE(fault_flags & 4321 FAULT_FLAG_ALLOW_RETRY); 4322 fault_flags |= FAULT_FLAG_TRIED; 4323 } 4324 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4325 if (ret & VM_FAULT_ERROR) { 4326 err = vm_fault_to_errno(ret, flags); 4327 remainder = 0; 4328 break; 4329 } 4330 if (ret & VM_FAULT_RETRY) { 4331 if (nonblocking && 4332 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4333 *nonblocking = 0; 4334 *nr_pages = 0; 4335 /* 4336 * VM_FAULT_RETRY must not return an 4337 * error, it will return zero 4338 * instead. 4339 * 4340 * No need to update "position" as the 4341 * caller will not check it after 4342 * *nr_pages is set to 0. 4343 */ 4344 return i; 4345 } 4346 continue; 4347 } 4348 4349 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4350 page = pte_page(huge_ptep_get(pte)); 4351 4352 /* 4353 * Instead of doing 'try_get_page()' below in the same_page 4354 * loop, just check the count once here. 4355 */ 4356 if (unlikely(page_count(page) <= 0)) { 4357 if (pages) { 4358 spin_unlock(ptl); 4359 remainder = 0; 4360 err = -ENOMEM; 4361 break; 4362 } 4363 } 4364 same_page: 4365 if (pages) { 4366 pages[i] = mem_map_offset(page, pfn_offset); 4367 get_page(pages[i]); 4368 } 4369 4370 if (vmas) 4371 vmas[i] = vma; 4372 4373 vaddr += PAGE_SIZE; 4374 ++pfn_offset; 4375 --remainder; 4376 ++i; 4377 if (vaddr < vma->vm_end && remainder && 4378 pfn_offset < pages_per_huge_page(h)) { 4379 /* 4380 * We use pfn_offset to avoid touching the pageframes 4381 * of this compound page. 4382 */ 4383 goto same_page; 4384 } 4385 spin_unlock(ptl); 4386 } 4387 *nr_pages = remainder; 4388 /* 4389 * setting position is actually required only if remainder is 4390 * not zero but it's faster not to add a "if (remainder)" 4391 * branch. 4392 */ 4393 *position = vaddr; 4394 4395 return i ? i : err; 4396 } 4397 4398 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4399 /* 4400 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4401 * implement this. 4402 */ 4403 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4404 #endif 4405 4406 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4407 unsigned long address, unsigned long end, pgprot_t newprot) 4408 { 4409 struct mm_struct *mm = vma->vm_mm; 4410 unsigned long start = address; 4411 pte_t *ptep; 4412 pte_t pte; 4413 struct hstate *h = hstate_vma(vma); 4414 unsigned long pages = 0; 4415 bool shared_pmd = false; 4416 struct mmu_notifier_range range; 4417 4418 /* 4419 * In the case of shared PMDs, the area to flush could be beyond 4420 * start/end. Set range.start/range.end to cover the maximum possible 4421 * range if PMD sharing is possible. 4422 */ 4423 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 4424 0, vma, mm, start, end); 4425 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4426 4427 BUG_ON(address >= end); 4428 flush_cache_range(vma, range.start, range.end); 4429 4430 mmu_notifier_invalidate_range_start(&range); 4431 i_mmap_lock_write(vma->vm_file->f_mapping); 4432 for (; address < end; address += huge_page_size(h)) { 4433 spinlock_t *ptl; 4434 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4435 if (!ptep) 4436 continue; 4437 ptl = huge_pte_lock(h, mm, ptep); 4438 if (huge_pmd_unshare(mm, &address, ptep)) { 4439 pages++; 4440 spin_unlock(ptl); 4441 shared_pmd = true; 4442 continue; 4443 } 4444 pte = huge_ptep_get(ptep); 4445 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4446 spin_unlock(ptl); 4447 continue; 4448 } 4449 if (unlikely(is_hugetlb_entry_migration(pte))) { 4450 swp_entry_t entry = pte_to_swp_entry(pte); 4451 4452 if (is_write_migration_entry(entry)) { 4453 pte_t newpte; 4454 4455 make_migration_entry_read(&entry); 4456 newpte = swp_entry_to_pte(entry); 4457 set_huge_swap_pte_at(mm, address, ptep, 4458 newpte, huge_page_size(h)); 4459 pages++; 4460 } 4461 spin_unlock(ptl); 4462 continue; 4463 } 4464 if (!huge_pte_none(pte)) { 4465 pte_t old_pte; 4466 4467 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 4468 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot)); 4469 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4470 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 4471 pages++; 4472 } 4473 spin_unlock(ptl); 4474 } 4475 /* 4476 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4477 * may have cleared our pud entry and done put_page on the page table: 4478 * once we release i_mmap_rwsem, another task can do the final put_page 4479 * and that page table be reused and filled with junk. If we actually 4480 * did unshare a page of pmds, flush the range corresponding to the pud. 4481 */ 4482 if (shared_pmd) 4483 flush_hugetlb_tlb_range(vma, range.start, range.end); 4484 else 4485 flush_hugetlb_tlb_range(vma, start, end); 4486 /* 4487 * No need to call mmu_notifier_invalidate_range() we are downgrading 4488 * page table protection not changing it to point to a new page. 4489 * 4490 * See Documentation/vm/mmu_notifier.rst 4491 */ 4492 i_mmap_unlock_write(vma->vm_file->f_mapping); 4493 mmu_notifier_invalidate_range_end(&range); 4494 4495 return pages << h->order; 4496 } 4497 4498 int hugetlb_reserve_pages(struct inode *inode, 4499 long from, long to, 4500 struct vm_area_struct *vma, 4501 vm_flags_t vm_flags) 4502 { 4503 long ret, chg; 4504 struct hstate *h = hstate_inode(inode); 4505 struct hugepage_subpool *spool = subpool_inode(inode); 4506 struct resv_map *resv_map; 4507 long gbl_reserve; 4508 4509 /* This should never happen */ 4510 if (from > to) { 4511 VM_WARN(1, "%s called with a negative range\n", __func__); 4512 return -EINVAL; 4513 } 4514 4515 /* 4516 * Only apply hugepage reservation if asked. At fault time, an 4517 * attempt will be made for VM_NORESERVE to allocate a page 4518 * without using reserves 4519 */ 4520 if (vm_flags & VM_NORESERVE) 4521 return 0; 4522 4523 /* 4524 * Shared mappings base their reservation on the number of pages that 4525 * are already allocated on behalf of the file. Private mappings need 4526 * to reserve the full area even if read-only as mprotect() may be 4527 * called to make the mapping read-write. Assume !vma is a shm mapping 4528 */ 4529 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4530 /* 4531 * resv_map can not be NULL as hugetlb_reserve_pages is only 4532 * called for inodes for which resv_maps were created (see 4533 * hugetlbfs_get_inode). 4534 */ 4535 resv_map = inode_resv_map(inode); 4536 4537 chg = region_chg(resv_map, from, to); 4538 4539 } else { 4540 resv_map = resv_map_alloc(); 4541 if (!resv_map) 4542 return -ENOMEM; 4543 4544 chg = to - from; 4545 4546 set_vma_resv_map(vma, resv_map); 4547 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4548 } 4549 4550 if (chg < 0) { 4551 ret = chg; 4552 goto out_err; 4553 } 4554 4555 /* 4556 * There must be enough pages in the subpool for the mapping. If 4557 * the subpool has a minimum size, there may be some global 4558 * reservations already in place (gbl_reserve). 4559 */ 4560 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4561 if (gbl_reserve < 0) { 4562 ret = -ENOSPC; 4563 goto out_err; 4564 } 4565 4566 /* 4567 * Check enough hugepages are available for the reservation. 4568 * Hand the pages back to the subpool if there are not 4569 */ 4570 ret = hugetlb_acct_memory(h, gbl_reserve); 4571 if (ret < 0) { 4572 /* put back original number of pages, chg */ 4573 (void)hugepage_subpool_put_pages(spool, chg); 4574 goto out_err; 4575 } 4576 4577 /* 4578 * Account for the reservations made. Shared mappings record regions 4579 * that have reservations as they are shared by multiple VMAs. 4580 * When the last VMA disappears, the region map says how much 4581 * the reservation was and the page cache tells how much of 4582 * the reservation was consumed. Private mappings are per-VMA and 4583 * only the consumed reservations are tracked. When the VMA 4584 * disappears, the original reservation is the VMA size and the 4585 * consumed reservations are stored in the map. Hence, nothing 4586 * else has to be done for private mappings here 4587 */ 4588 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4589 long add = region_add(resv_map, from, to); 4590 4591 if (unlikely(chg > add)) { 4592 /* 4593 * pages in this range were added to the reserve 4594 * map between region_chg and region_add. This 4595 * indicates a race with alloc_huge_page. Adjust 4596 * the subpool and reserve counts modified above 4597 * based on the difference. 4598 */ 4599 long rsv_adjust; 4600 4601 rsv_adjust = hugepage_subpool_put_pages(spool, 4602 chg - add); 4603 hugetlb_acct_memory(h, -rsv_adjust); 4604 } 4605 } 4606 return 0; 4607 out_err: 4608 if (!vma || vma->vm_flags & VM_MAYSHARE) 4609 /* Don't call region_abort if region_chg failed */ 4610 if (chg >= 0) 4611 region_abort(resv_map, from, to); 4612 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4613 kref_put(&resv_map->refs, resv_map_release); 4614 return ret; 4615 } 4616 4617 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4618 long freed) 4619 { 4620 struct hstate *h = hstate_inode(inode); 4621 struct resv_map *resv_map = inode_resv_map(inode); 4622 long chg = 0; 4623 struct hugepage_subpool *spool = subpool_inode(inode); 4624 long gbl_reserve; 4625 4626 /* 4627 * Since this routine can be called in the evict inode path for all 4628 * hugetlbfs inodes, resv_map could be NULL. 4629 */ 4630 if (resv_map) { 4631 chg = region_del(resv_map, start, end); 4632 /* 4633 * region_del() can fail in the rare case where a region 4634 * must be split and another region descriptor can not be 4635 * allocated. If end == LONG_MAX, it will not fail. 4636 */ 4637 if (chg < 0) 4638 return chg; 4639 } 4640 4641 spin_lock(&inode->i_lock); 4642 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4643 spin_unlock(&inode->i_lock); 4644 4645 /* 4646 * If the subpool has a minimum size, the number of global 4647 * reservations to be released may be adjusted. 4648 */ 4649 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4650 hugetlb_acct_memory(h, -gbl_reserve); 4651 4652 return 0; 4653 } 4654 4655 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4656 static unsigned long page_table_shareable(struct vm_area_struct *svma, 4657 struct vm_area_struct *vma, 4658 unsigned long addr, pgoff_t idx) 4659 { 4660 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4661 svma->vm_start; 4662 unsigned long sbase = saddr & PUD_MASK; 4663 unsigned long s_end = sbase + PUD_SIZE; 4664 4665 /* Allow segments to share if only one is marked locked */ 4666 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4667 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4668 4669 /* 4670 * match the virtual addresses, permission and the alignment of the 4671 * page table page. 4672 */ 4673 if (pmd_index(addr) != pmd_index(saddr) || 4674 vm_flags != svm_flags || 4675 sbase < svma->vm_start || svma->vm_end < s_end) 4676 return 0; 4677 4678 return saddr; 4679 } 4680 4681 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4682 { 4683 unsigned long base = addr & PUD_MASK; 4684 unsigned long end = base + PUD_SIZE; 4685 4686 /* 4687 * check on proper vm_flags and page table alignment 4688 */ 4689 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4690 return true; 4691 return false; 4692 } 4693 4694 /* 4695 * Determine if start,end range within vma could be mapped by shared pmd. 4696 * If yes, adjust start and end to cover range associated with possible 4697 * shared pmd mappings. 4698 */ 4699 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4700 unsigned long *start, unsigned long *end) 4701 { 4702 unsigned long check_addr = *start; 4703 4704 if (!(vma->vm_flags & VM_MAYSHARE)) 4705 return; 4706 4707 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4708 unsigned long a_start = check_addr & PUD_MASK; 4709 unsigned long a_end = a_start + PUD_SIZE; 4710 4711 /* 4712 * If sharing is possible, adjust start/end if necessary. 4713 */ 4714 if (range_in_vma(vma, a_start, a_end)) { 4715 if (a_start < *start) 4716 *start = a_start; 4717 if (a_end > *end) 4718 *end = a_end; 4719 } 4720 } 4721 } 4722 4723 /* 4724 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4725 * and returns the corresponding pte. While this is not necessary for the 4726 * !shared pmd case because we can allocate the pmd later as well, it makes the 4727 * code much cleaner. pmd allocation is essential for the shared case because 4728 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4729 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4730 * bad pmd for sharing. 4731 */ 4732 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4733 { 4734 struct vm_area_struct *vma = find_vma(mm, addr); 4735 struct address_space *mapping = vma->vm_file->f_mapping; 4736 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4737 vma->vm_pgoff; 4738 struct vm_area_struct *svma; 4739 unsigned long saddr; 4740 pte_t *spte = NULL; 4741 pte_t *pte; 4742 spinlock_t *ptl; 4743 4744 if (!vma_shareable(vma, addr)) 4745 return (pte_t *)pmd_alloc(mm, pud, addr); 4746 4747 i_mmap_lock_write(mapping); 4748 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4749 if (svma == vma) 4750 continue; 4751 4752 saddr = page_table_shareable(svma, vma, addr, idx); 4753 if (saddr) { 4754 spte = huge_pte_offset(svma->vm_mm, saddr, 4755 vma_mmu_pagesize(svma)); 4756 if (spte) { 4757 get_page(virt_to_page(spte)); 4758 break; 4759 } 4760 } 4761 } 4762 4763 if (!spte) 4764 goto out; 4765 4766 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4767 if (pud_none(*pud)) { 4768 pud_populate(mm, pud, 4769 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4770 mm_inc_nr_pmds(mm); 4771 } else { 4772 put_page(virt_to_page(spte)); 4773 } 4774 spin_unlock(ptl); 4775 out: 4776 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4777 i_mmap_unlock_write(mapping); 4778 return pte; 4779 } 4780 4781 /* 4782 * unmap huge page backed by shared pte. 4783 * 4784 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4785 * indicated by page_count > 1, unmap is achieved by clearing pud and 4786 * decrementing the ref count. If count == 1, the pte page is not shared. 4787 * 4788 * called with page table lock held. 4789 * 4790 * returns: 1 successfully unmapped a shared pte page 4791 * 0 the underlying pte page is not shared, or it is the last user 4792 */ 4793 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4794 { 4795 pgd_t *pgd = pgd_offset(mm, *addr); 4796 p4d_t *p4d = p4d_offset(pgd, *addr); 4797 pud_t *pud = pud_offset(p4d, *addr); 4798 4799 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4800 if (page_count(virt_to_page(ptep)) == 1) 4801 return 0; 4802 4803 pud_clear(pud); 4804 put_page(virt_to_page(ptep)); 4805 mm_dec_nr_pmds(mm); 4806 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4807 return 1; 4808 } 4809 #define want_pmd_share() (1) 4810 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4811 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4812 { 4813 return NULL; 4814 } 4815 4816 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4817 { 4818 return 0; 4819 } 4820 4821 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4822 unsigned long *start, unsigned long *end) 4823 { 4824 } 4825 #define want_pmd_share() (0) 4826 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4827 4828 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4829 pte_t *huge_pte_alloc(struct mm_struct *mm, 4830 unsigned long addr, unsigned long sz) 4831 { 4832 pgd_t *pgd; 4833 p4d_t *p4d; 4834 pud_t *pud; 4835 pte_t *pte = NULL; 4836 4837 pgd = pgd_offset(mm, addr); 4838 p4d = p4d_alloc(mm, pgd, addr); 4839 if (!p4d) 4840 return NULL; 4841 pud = pud_alloc(mm, p4d, addr); 4842 if (pud) { 4843 if (sz == PUD_SIZE) { 4844 pte = (pte_t *)pud; 4845 } else { 4846 BUG_ON(sz != PMD_SIZE); 4847 if (want_pmd_share() && pud_none(*pud)) 4848 pte = huge_pmd_share(mm, addr, pud); 4849 else 4850 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4851 } 4852 } 4853 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4854 4855 return pte; 4856 } 4857 4858 /* 4859 * huge_pte_offset() - Walk the page table to resolve the hugepage 4860 * entry at address @addr 4861 * 4862 * Return: Pointer to page table or swap entry (PUD or PMD) for 4863 * address @addr, or NULL if a p*d_none() entry is encountered and the 4864 * size @sz doesn't match the hugepage size at this level of the page 4865 * table. 4866 */ 4867 pte_t *huge_pte_offset(struct mm_struct *mm, 4868 unsigned long addr, unsigned long sz) 4869 { 4870 pgd_t *pgd; 4871 p4d_t *p4d; 4872 pud_t *pud; 4873 pmd_t *pmd; 4874 4875 pgd = pgd_offset(mm, addr); 4876 if (!pgd_present(*pgd)) 4877 return NULL; 4878 p4d = p4d_offset(pgd, addr); 4879 if (!p4d_present(*p4d)) 4880 return NULL; 4881 4882 pud = pud_offset(p4d, addr); 4883 if (sz != PUD_SIZE && pud_none(*pud)) 4884 return NULL; 4885 /* hugepage or swap? */ 4886 if (pud_huge(*pud) || !pud_present(*pud)) 4887 return (pte_t *)pud; 4888 4889 pmd = pmd_offset(pud, addr); 4890 if (sz != PMD_SIZE && pmd_none(*pmd)) 4891 return NULL; 4892 /* hugepage or swap? */ 4893 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4894 return (pte_t *)pmd; 4895 4896 return NULL; 4897 } 4898 4899 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4900 4901 /* 4902 * These functions are overwritable if your architecture needs its own 4903 * behavior. 4904 */ 4905 struct page * __weak 4906 follow_huge_addr(struct mm_struct *mm, unsigned long address, 4907 int write) 4908 { 4909 return ERR_PTR(-EINVAL); 4910 } 4911 4912 struct page * __weak 4913 follow_huge_pd(struct vm_area_struct *vma, 4914 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4915 { 4916 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4917 return NULL; 4918 } 4919 4920 struct page * __weak 4921 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4922 pmd_t *pmd, int flags) 4923 { 4924 struct page *page = NULL; 4925 spinlock_t *ptl; 4926 pte_t pte; 4927 retry: 4928 ptl = pmd_lockptr(mm, pmd); 4929 spin_lock(ptl); 4930 /* 4931 * make sure that the address range covered by this pmd is not 4932 * unmapped from other threads. 4933 */ 4934 if (!pmd_huge(*pmd)) 4935 goto out; 4936 pte = huge_ptep_get((pte_t *)pmd); 4937 if (pte_present(pte)) { 4938 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4939 if (flags & FOLL_GET) 4940 get_page(page); 4941 } else { 4942 if (is_hugetlb_entry_migration(pte)) { 4943 spin_unlock(ptl); 4944 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4945 goto retry; 4946 } 4947 /* 4948 * hwpoisoned entry is treated as no_page_table in 4949 * follow_page_mask(). 4950 */ 4951 } 4952 out: 4953 spin_unlock(ptl); 4954 return page; 4955 } 4956 4957 struct page * __weak 4958 follow_huge_pud(struct mm_struct *mm, unsigned long address, 4959 pud_t *pud, int flags) 4960 { 4961 if (flags & FOLL_GET) 4962 return NULL; 4963 4964 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4965 } 4966 4967 struct page * __weak 4968 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4969 { 4970 if (flags & FOLL_GET) 4971 return NULL; 4972 4973 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4974 } 4975 4976 bool isolate_huge_page(struct page *page, struct list_head *list) 4977 { 4978 bool ret = true; 4979 4980 VM_BUG_ON_PAGE(!PageHead(page), page); 4981 spin_lock(&hugetlb_lock); 4982 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4983 ret = false; 4984 goto unlock; 4985 } 4986 clear_page_huge_active(page); 4987 list_move_tail(&page->lru, list); 4988 unlock: 4989 spin_unlock(&hugetlb_lock); 4990 return ret; 4991 } 4992 4993 void putback_active_hugepage(struct page *page) 4994 { 4995 VM_BUG_ON_PAGE(!PageHead(page), page); 4996 spin_lock(&hugetlb_lock); 4997 set_page_huge_active(page); 4998 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4999 spin_unlock(&hugetlb_lock); 5000 put_page(page); 5001 } 5002 5003 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 5004 { 5005 struct hstate *h = page_hstate(oldpage); 5006 5007 hugetlb_cgroup_migrate(oldpage, newpage); 5008 set_page_owner_migrate_reason(newpage, reason); 5009 5010 /* 5011 * transfer temporary state of the new huge page. This is 5012 * reverse to other transitions because the newpage is going to 5013 * be final while the old one will be freed so it takes over 5014 * the temporary status. 5015 * 5016 * Also note that we have to transfer the per-node surplus state 5017 * here as well otherwise the global surplus count will not match 5018 * the per-node's. 5019 */ 5020 if (PageHugeTemporary(newpage)) { 5021 int old_nid = page_to_nid(oldpage); 5022 int new_nid = page_to_nid(newpage); 5023 5024 SetPageHugeTemporary(oldpage); 5025 ClearPageHugeTemporary(newpage); 5026 5027 spin_lock(&hugetlb_lock); 5028 if (h->surplus_huge_pages_node[old_nid]) { 5029 h->surplus_huge_pages_node[old_nid]--; 5030 h->surplus_huge_pages_node[new_nid]++; 5031 } 5032 spin_unlock(&hugetlb_lock); 5033 } 5034 } 5035