xref: /openbmc/linux/mm/hugetlb.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40 
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48 
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52 
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58 	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59 				1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64 	return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68 
69 __initdata LIST_HEAD(huge_boot_pages);
70 
71 /* for command line parsing */
72 static struct hstate * __initdata parsed_hstate;
73 static unsigned long __initdata default_hstate_max_huge_pages;
74 static bool __initdata parsed_valid_hugepagesz = true;
75 static bool __initdata parsed_default_hugepagesz;
76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
77 
78 /*
79  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80  * free_huge_pages, and surplus_huge_pages.
81  */
82 DEFINE_SPINLOCK(hugetlb_lock);
83 
84 /*
85  * Serializes faults on the same logical page.  This is used to
86  * prevent spurious OOMs when the hugepage pool is fully utilized.
87  */
88 static int num_fault_mutexes;
89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
90 
91 /* Forward declaration */
92 static int hugetlb_acct_memory(struct hstate *h, long delta);
93 
94 static inline bool subpool_is_free(struct hugepage_subpool *spool)
95 {
96 	if (spool->count)
97 		return false;
98 	if (spool->max_hpages != -1)
99 		return spool->used_hpages == 0;
100 	if (spool->min_hpages != -1)
101 		return spool->rsv_hpages == spool->min_hpages;
102 
103 	return true;
104 }
105 
106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107 						unsigned long irq_flags)
108 {
109 	spin_unlock_irqrestore(&spool->lock, irq_flags);
110 
111 	/* If no pages are used, and no other handles to the subpool
112 	 * remain, give up any reservations based on minimum size and
113 	 * free the subpool */
114 	if (subpool_is_free(spool)) {
115 		if (spool->min_hpages != -1)
116 			hugetlb_acct_memory(spool->hstate,
117 						-spool->min_hpages);
118 		kfree(spool);
119 	}
120 }
121 
122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123 						long min_hpages)
124 {
125 	struct hugepage_subpool *spool;
126 
127 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
128 	if (!spool)
129 		return NULL;
130 
131 	spin_lock_init(&spool->lock);
132 	spool->count = 1;
133 	spool->max_hpages = max_hpages;
134 	spool->hstate = h;
135 	spool->min_hpages = min_hpages;
136 
137 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138 		kfree(spool);
139 		return NULL;
140 	}
141 	spool->rsv_hpages = min_hpages;
142 
143 	return spool;
144 }
145 
146 void hugepage_put_subpool(struct hugepage_subpool *spool)
147 {
148 	unsigned long flags;
149 
150 	spin_lock_irqsave(&spool->lock, flags);
151 	BUG_ON(!spool->count);
152 	spool->count--;
153 	unlock_or_release_subpool(spool, flags);
154 }
155 
156 /*
157  * Subpool accounting for allocating and reserving pages.
158  * Return -ENOMEM if there are not enough resources to satisfy the
159  * request.  Otherwise, return the number of pages by which the
160  * global pools must be adjusted (upward).  The returned value may
161  * only be different than the passed value (delta) in the case where
162  * a subpool minimum size must be maintained.
163  */
164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
165 				      long delta)
166 {
167 	long ret = delta;
168 
169 	if (!spool)
170 		return ret;
171 
172 	spin_lock_irq(&spool->lock);
173 
174 	if (spool->max_hpages != -1) {		/* maximum size accounting */
175 		if ((spool->used_hpages + delta) <= spool->max_hpages)
176 			spool->used_hpages += delta;
177 		else {
178 			ret = -ENOMEM;
179 			goto unlock_ret;
180 		}
181 	}
182 
183 	/* minimum size accounting */
184 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
185 		if (delta > spool->rsv_hpages) {
186 			/*
187 			 * Asking for more reserves than those already taken on
188 			 * behalf of subpool.  Return difference.
189 			 */
190 			ret = delta - spool->rsv_hpages;
191 			spool->rsv_hpages = 0;
192 		} else {
193 			ret = 0;	/* reserves already accounted for */
194 			spool->rsv_hpages -= delta;
195 		}
196 	}
197 
198 unlock_ret:
199 	spin_unlock_irq(&spool->lock);
200 	return ret;
201 }
202 
203 /*
204  * Subpool accounting for freeing and unreserving pages.
205  * Return the number of global page reservations that must be dropped.
206  * The return value may only be different than the passed value (delta)
207  * in the case where a subpool minimum size must be maintained.
208  */
209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210 				       long delta)
211 {
212 	long ret = delta;
213 	unsigned long flags;
214 
215 	if (!spool)
216 		return delta;
217 
218 	spin_lock_irqsave(&spool->lock, flags);
219 
220 	if (spool->max_hpages != -1)		/* maximum size accounting */
221 		spool->used_hpages -= delta;
222 
223 	 /* minimum size accounting */
224 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
225 		if (spool->rsv_hpages + delta <= spool->min_hpages)
226 			ret = 0;
227 		else
228 			ret = spool->rsv_hpages + delta - spool->min_hpages;
229 
230 		spool->rsv_hpages += delta;
231 		if (spool->rsv_hpages > spool->min_hpages)
232 			spool->rsv_hpages = spool->min_hpages;
233 	}
234 
235 	/*
236 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
237 	 * quota reference, free it now.
238 	 */
239 	unlock_or_release_subpool(spool, flags);
240 
241 	return ret;
242 }
243 
244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245 {
246 	return HUGETLBFS_SB(inode->i_sb)->spool;
247 }
248 
249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250 {
251 	return subpool_inode(file_inode(vma->vm_file));
252 }
253 
254 /* Helper that removes a struct file_region from the resv_map cache and returns
255  * it for use.
256  */
257 static struct file_region *
258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259 {
260 	struct file_region *nrg = NULL;
261 
262 	VM_BUG_ON(resv->region_cache_count <= 0);
263 
264 	resv->region_cache_count--;
265 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
266 	list_del(&nrg->link);
267 
268 	nrg->from = from;
269 	nrg->to = to;
270 
271 	return nrg;
272 }
273 
274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275 					      struct file_region *rg)
276 {
277 #ifdef CONFIG_CGROUP_HUGETLB
278 	nrg->reservation_counter = rg->reservation_counter;
279 	nrg->css = rg->css;
280 	if (rg->css)
281 		css_get(rg->css);
282 #endif
283 }
284 
285 /* Helper that records hugetlb_cgroup uncharge info. */
286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287 						struct hstate *h,
288 						struct resv_map *resv,
289 						struct file_region *nrg)
290 {
291 #ifdef CONFIG_CGROUP_HUGETLB
292 	if (h_cg) {
293 		nrg->reservation_counter =
294 			&h_cg->rsvd_hugepage[hstate_index(h)];
295 		nrg->css = &h_cg->css;
296 		/*
297 		 * The caller will hold exactly one h_cg->css reference for the
298 		 * whole contiguous reservation region. But this area might be
299 		 * scattered when there are already some file_regions reside in
300 		 * it. As a result, many file_regions may share only one css
301 		 * reference. In order to ensure that one file_region must hold
302 		 * exactly one h_cg->css reference, we should do css_get for
303 		 * each file_region and leave the reference held by caller
304 		 * untouched.
305 		 */
306 		css_get(&h_cg->css);
307 		if (!resv->pages_per_hpage)
308 			resv->pages_per_hpage = pages_per_huge_page(h);
309 		/* pages_per_hpage should be the same for all entries in
310 		 * a resv_map.
311 		 */
312 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313 	} else {
314 		nrg->reservation_counter = NULL;
315 		nrg->css = NULL;
316 	}
317 #endif
318 }
319 
320 static void put_uncharge_info(struct file_region *rg)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 	if (rg->css)
324 		css_put(rg->css);
325 #endif
326 }
327 
328 static bool has_same_uncharge_info(struct file_region *rg,
329 				   struct file_region *org)
330 {
331 #ifdef CONFIG_CGROUP_HUGETLB
332 	return rg->reservation_counter == org->reservation_counter &&
333 	       rg->css == org->css;
334 
335 #else
336 	return true;
337 #endif
338 }
339 
340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341 {
342 	struct file_region *nrg = NULL, *prg = NULL;
343 
344 	prg = list_prev_entry(rg, link);
345 	if (&prg->link != &resv->regions && prg->to == rg->from &&
346 	    has_same_uncharge_info(prg, rg)) {
347 		prg->to = rg->to;
348 
349 		list_del(&rg->link);
350 		put_uncharge_info(rg);
351 		kfree(rg);
352 
353 		rg = prg;
354 	}
355 
356 	nrg = list_next_entry(rg, link);
357 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358 	    has_same_uncharge_info(nrg, rg)) {
359 		nrg->from = rg->from;
360 
361 		list_del(&rg->link);
362 		put_uncharge_info(rg);
363 		kfree(rg);
364 	}
365 }
366 
367 static inline long
368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
369 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
370 		     long *regions_needed)
371 {
372 	struct file_region *nrg;
373 
374 	if (!regions_needed) {
375 		nrg = get_file_region_entry_from_cache(map, from, to);
376 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
377 		list_add(&nrg->link, rg);
378 		coalesce_file_region(map, nrg);
379 	} else
380 		*regions_needed += 1;
381 
382 	return to - from;
383 }
384 
385 /*
386  * Must be called with resv->lock held.
387  *
388  * Calling this with regions_needed != NULL will count the number of pages
389  * to be added but will not modify the linked list. And regions_needed will
390  * indicate the number of file_regions needed in the cache to carry out to add
391  * the regions for this range.
392  */
393 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
394 				     struct hugetlb_cgroup *h_cg,
395 				     struct hstate *h, long *regions_needed)
396 {
397 	long add = 0;
398 	struct list_head *head = &resv->regions;
399 	long last_accounted_offset = f;
400 	struct file_region *iter, *trg = NULL;
401 	struct list_head *rg = NULL;
402 
403 	if (regions_needed)
404 		*regions_needed = 0;
405 
406 	/* In this loop, we essentially handle an entry for the range
407 	 * [last_accounted_offset, iter->from), at every iteration, with some
408 	 * bounds checking.
409 	 */
410 	list_for_each_entry_safe(iter, trg, head, link) {
411 		/* Skip irrelevant regions that start before our range. */
412 		if (iter->from < f) {
413 			/* If this region ends after the last accounted offset,
414 			 * then we need to update last_accounted_offset.
415 			 */
416 			if (iter->to > last_accounted_offset)
417 				last_accounted_offset = iter->to;
418 			continue;
419 		}
420 
421 		/* When we find a region that starts beyond our range, we've
422 		 * finished.
423 		 */
424 		if (iter->from >= t) {
425 			rg = iter->link.prev;
426 			break;
427 		}
428 
429 		/* Add an entry for last_accounted_offset -> iter->from, and
430 		 * update last_accounted_offset.
431 		 */
432 		if (iter->from > last_accounted_offset)
433 			add += hugetlb_resv_map_add(resv, iter->link.prev,
434 						    last_accounted_offset,
435 						    iter->from, h, h_cg,
436 						    regions_needed);
437 
438 		last_accounted_offset = iter->to;
439 	}
440 
441 	/* Handle the case where our range extends beyond
442 	 * last_accounted_offset.
443 	 */
444 	if (!rg)
445 		rg = head->prev;
446 	if (last_accounted_offset < t)
447 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448 					    t, h, h_cg, regions_needed);
449 
450 	return add;
451 }
452 
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456 					int regions_needed)
457 	__must_hold(&resv->lock)
458 {
459 	LIST_HEAD(allocated_regions);
460 	int to_allocate = 0, i = 0;
461 	struct file_region *trg = NULL, *rg = NULL;
462 
463 	VM_BUG_ON(regions_needed < 0);
464 
465 	/*
466 	 * Check for sufficient descriptors in the cache to accommodate
467 	 * the number of in progress add operations plus regions_needed.
468 	 *
469 	 * This is a while loop because when we drop the lock, some other call
470 	 * to region_add or region_del may have consumed some region_entries,
471 	 * so we keep looping here until we finally have enough entries for
472 	 * (adds_in_progress + regions_needed).
473 	 */
474 	while (resv->region_cache_count <
475 	       (resv->adds_in_progress + regions_needed)) {
476 		to_allocate = resv->adds_in_progress + regions_needed -
477 			      resv->region_cache_count;
478 
479 		/* At this point, we should have enough entries in the cache
480 		 * for all the existing adds_in_progress. We should only be
481 		 * needing to allocate for regions_needed.
482 		 */
483 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
484 
485 		spin_unlock(&resv->lock);
486 		for (i = 0; i < to_allocate; i++) {
487 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
488 			if (!trg)
489 				goto out_of_memory;
490 			list_add(&trg->link, &allocated_regions);
491 		}
492 
493 		spin_lock(&resv->lock);
494 
495 		list_splice(&allocated_regions, &resv->region_cache);
496 		resv->region_cache_count += to_allocate;
497 	}
498 
499 	return 0;
500 
501 out_of_memory:
502 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
503 		list_del(&rg->link);
504 		kfree(rg);
505 	}
506 	return -ENOMEM;
507 }
508 
509 /*
510  * Add the huge page range represented by [f, t) to the reserve
511  * map.  Regions will be taken from the cache to fill in this range.
512  * Sufficient regions should exist in the cache due to the previous
513  * call to region_chg with the same range, but in some cases the cache will not
514  * have sufficient entries due to races with other code doing region_add or
515  * region_del.  The extra needed entries will be allocated.
516  *
517  * regions_needed is the out value provided by a previous call to region_chg.
518  *
519  * Return the number of new huge pages added to the map.  This number is greater
520  * than or equal to zero.  If file_region entries needed to be allocated for
521  * this operation and we were not able to allocate, it returns -ENOMEM.
522  * region_add of regions of length 1 never allocate file_regions and cannot
523  * fail; region_chg will always allocate at least 1 entry and a region_add for
524  * 1 page will only require at most 1 entry.
525  */
526 static long region_add(struct resv_map *resv, long f, long t,
527 		       long in_regions_needed, struct hstate *h,
528 		       struct hugetlb_cgroup *h_cg)
529 {
530 	long add = 0, actual_regions_needed = 0;
531 
532 	spin_lock(&resv->lock);
533 retry:
534 
535 	/* Count how many regions are actually needed to execute this add. */
536 	add_reservation_in_range(resv, f, t, NULL, NULL,
537 				 &actual_regions_needed);
538 
539 	/*
540 	 * Check for sufficient descriptors in the cache to accommodate
541 	 * this add operation. Note that actual_regions_needed may be greater
542 	 * than in_regions_needed, as the resv_map may have been modified since
543 	 * the region_chg call. In this case, we need to make sure that we
544 	 * allocate extra entries, such that we have enough for all the
545 	 * existing adds_in_progress, plus the excess needed for this
546 	 * operation.
547 	 */
548 	if (actual_regions_needed > in_regions_needed &&
549 	    resv->region_cache_count <
550 		    resv->adds_in_progress +
551 			    (actual_regions_needed - in_regions_needed)) {
552 		/* region_add operation of range 1 should never need to
553 		 * allocate file_region entries.
554 		 */
555 		VM_BUG_ON(t - f <= 1);
556 
557 		if (allocate_file_region_entries(
558 			    resv, actual_regions_needed - in_regions_needed)) {
559 			return -ENOMEM;
560 		}
561 
562 		goto retry;
563 	}
564 
565 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
566 
567 	resv->adds_in_progress -= in_regions_needed;
568 
569 	spin_unlock(&resv->lock);
570 	return add;
571 }
572 
573 /*
574  * Examine the existing reserve map and determine how many
575  * huge pages in the specified range [f, t) are NOT currently
576  * represented.  This routine is called before a subsequent
577  * call to region_add that will actually modify the reserve
578  * map to add the specified range [f, t).  region_chg does
579  * not change the number of huge pages represented by the
580  * map.  A number of new file_region structures is added to the cache as a
581  * placeholder, for the subsequent region_add call to use. At least 1
582  * file_region structure is added.
583  *
584  * out_regions_needed is the number of regions added to the
585  * resv->adds_in_progress.  This value needs to be provided to a follow up call
586  * to region_add or region_abort for proper accounting.
587  *
588  * Returns the number of huge pages that need to be added to the existing
589  * reservation map for the range [f, t).  This number is greater or equal to
590  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
591  * is needed and can not be allocated.
592  */
593 static long region_chg(struct resv_map *resv, long f, long t,
594 		       long *out_regions_needed)
595 {
596 	long chg = 0;
597 
598 	spin_lock(&resv->lock);
599 
600 	/* Count how many hugepages in this range are NOT represented. */
601 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
602 				       out_regions_needed);
603 
604 	if (*out_regions_needed == 0)
605 		*out_regions_needed = 1;
606 
607 	if (allocate_file_region_entries(resv, *out_regions_needed))
608 		return -ENOMEM;
609 
610 	resv->adds_in_progress += *out_regions_needed;
611 
612 	spin_unlock(&resv->lock);
613 	return chg;
614 }
615 
616 /*
617  * Abort the in progress add operation.  The adds_in_progress field
618  * of the resv_map keeps track of the operations in progress between
619  * calls to region_chg and region_add.  Operations are sometimes
620  * aborted after the call to region_chg.  In such cases, region_abort
621  * is called to decrement the adds_in_progress counter. regions_needed
622  * is the value returned by the region_chg call, it is used to decrement
623  * the adds_in_progress counter.
624  *
625  * NOTE: The range arguments [f, t) are not needed or used in this
626  * routine.  They are kept to make reading the calling code easier as
627  * arguments will match the associated region_chg call.
628  */
629 static void region_abort(struct resv_map *resv, long f, long t,
630 			 long regions_needed)
631 {
632 	spin_lock(&resv->lock);
633 	VM_BUG_ON(!resv->region_cache_count);
634 	resv->adds_in_progress -= regions_needed;
635 	spin_unlock(&resv->lock);
636 }
637 
638 /*
639  * Delete the specified range [f, t) from the reserve map.  If the
640  * t parameter is LONG_MAX, this indicates that ALL regions after f
641  * should be deleted.  Locate the regions which intersect [f, t)
642  * and either trim, delete or split the existing regions.
643  *
644  * Returns the number of huge pages deleted from the reserve map.
645  * In the normal case, the return value is zero or more.  In the
646  * case where a region must be split, a new region descriptor must
647  * be allocated.  If the allocation fails, -ENOMEM will be returned.
648  * NOTE: If the parameter t == LONG_MAX, then we will never split
649  * a region and possibly return -ENOMEM.  Callers specifying
650  * t == LONG_MAX do not need to check for -ENOMEM error.
651  */
652 static long region_del(struct resv_map *resv, long f, long t)
653 {
654 	struct list_head *head = &resv->regions;
655 	struct file_region *rg, *trg;
656 	struct file_region *nrg = NULL;
657 	long del = 0;
658 
659 retry:
660 	spin_lock(&resv->lock);
661 	list_for_each_entry_safe(rg, trg, head, link) {
662 		/*
663 		 * Skip regions before the range to be deleted.  file_region
664 		 * ranges are normally of the form [from, to).  However, there
665 		 * may be a "placeholder" entry in the map which is of the form
666 		 * (from, to) with from == to.  Check for placeholder entries
667 		 * at the beginning of the range to be deleted.
668 		 */
669 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
670 			continue;
671 
672 		if (rg->from >= t)
673 			break;
674 
675 		if (f > rg->from && t < rg->to) { /* Must split region */
676 			/*
677 			 * Check for an entry in the cache before dropping
678 			 * lock and attempting allocation.
679 			 */
680 			if (!nrg &&
681 			    resv->region_cache_count > resv->adds_in_progress) {
682 				nrg = list_first_entry(&resv->region_cache,
683 							struct file_region,
684 							link);
685 				list_del(&nrg->link);
686 				resv->region_cache_count--;
687 			}
688 
689 			if (!nrg) {
690 				spin_unlock(&resv->lock);
691 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
692 				if (!nrg)
693 					return -ENOMEM;
694 				goto retry;
695 			}
696 
697 			del += t - f;
698 			hugetlb_cgroup_uncharge_file_region(
699 				resv, rg, t - f, false);
700 
701 			/* New entry for end of split region */
702 			nrg->from = t;
703 			nrg->to = rg->to;
704 
705 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
706 
707 			INIT_LIST_HEAD(&nrg->link);
708 
709 			/* Original entry is trimmed */
710 			rg->to = f;
711 
712 			list_add(&nrg->link, &rg->link);
713 			nrg = NULL;
714 			break;
715 		}
716 
717 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
718 			del += rg->to - rg->from;
719 			hugetlb_cgroup_uncharge_file_region(resv, rg,
720 							    rg->to - rg->from, true);
721 			list_del(&rg->link);
722 			kfree(rg);
723 			continue;
724 		}
725 
726 		if (f <= rg->from) {	/* Trim beginning of region */
727 			hugetlb_cgroup_uncharge_file_region(resv, rg,
728 							    t - rg->from, false);
729 
730 			del += t - rg->from;
731 			rg->from = t;
732 		} else {		/* Trim end of region */
733 			hugetlb_cgroup_uncharge_file_region(resv, rg,
734 							    rg->to - f, false);
735 
736 			del += rg->to - f;
737 			rg->to = f;
738 		}
739 	}
740 
741 	spin_unlock(&resv->lock);
742 	kfree(nrg);
743 	return del;
744 }
745 
746 /*
747  * A rare out of memory error was encountered which prevented removal of
748  * the reserve map region for a page.  The huge page itself was free'ed
749  * and removed from the page cache.  This routine will adjust the subpool
750  * usage count, and the global reserve count if needed.  By incrementing
751  * these counts, the reserve map entry which could not be deleted will
752  * appear as a "reserved" entry instead of simply dangling with incorrect
753  * counts.
754  */
755 void hugetlb_fix_reserve_counts(struct inode *inode)
756 {
757 	struct hugepage_subpool *spool = subpool_inode(inode);
758 	long rsv_adjust;
759 	bool reserved = false;
760 
761 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
762 	if (rsv_adjust > 0) {
763 		struct hstate *h = hstate_inode(inode);
764 
765 		if (!hugetlb_acct_memory(h, 1))
766 			reserved = true;
767 	} else if (!rsv_adjust) {
768 		reserved = true;
769 	}
770 
771 	if (!reserved)
772 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
773 }
774 
775 /*
776  * Count and return the number of huge pages in the reserve map
777  * that intersect with the range [f, t).
778  */
779 static long region_count(struct resv_map *resv, long f, long t)
780 {
781 	struct list_head *head = &resv->regions;
782 	struct file_region *rg;
783 	long chg = 0;
784 
785 	spin_lock(&resv->lock);
786 	/* Locate each segment we overlap with, and count that overlap. */
787 	list_for_each_entry(rg, head, link) {
788 		long seg_from;
789 		long seg_to;
790 
791 		if (rg->to <= f)
792 			continue;
793 		if (rg->from >= t)
794 			break;
795 
796 		seg_from = max(rg->from, f);
797 		seg_to = min(rg->to, t);
798 
799 		chg += seg_to - seg_from;
800 	}
801 	spin_unlock(&resv->lock);
802 
803 	return chg;
804 }
805 
806 /*
807  * Convert the address within this vma to the page offset within
808  * the mapping, in pagecache page units; huge pages here.
809  */
810 static pgoff_t vma_hugecache_offset(struct hstate *h,
811 			struct vm_area_struct *vma, unsigned long address)
812 {
813 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
814 			(vma->vm_pgoff >> huge_page_order(h));
815 }
816 
817 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
818 				     unsigned long address)
819 {
820 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
821 }
822 EXPORT_SYMBOL_GPL(linear_hugepage_index);
823 
824 /*
825  * Return the size of the pages allocated when backing a VMA. In the majority
826  * cases this will be same size as used by the page table entries.
827  */
828 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
829 {
830 	if (vma->vm_ops && vma->vm_ops->pagesize)
831 		return vma->vm_ops->pagesize(vma);
832 	return PAGE_SIZE;
833 }
834 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
835 
836 /*
837  * Return the page size being used by the MMU to back a VMA. In the majority
838  * of cases, the page size used by the kernel matches the MMU size. On
839  * architectures where it differs, an architecture-specific 'strong'
840  * version of this symbol is required.
841  */
842 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
843 {
844 	return vma_kernel_pagesize(vma);
845 }
846 
847 /*
848  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
849  * bits of the reservation map pointer, which are always clear due to
850  * alignment.
851  */
852 #define HPAGE_RESV_OWNER    (1UL << 0)
853 #define HPAGE_RESV_UNMAPPED (1UL << 1)
854 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
855 
856 /*
857  * These helpers are used to track how many pages are reserved for
858  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
859  * is guaranteed to have their future faults succeed.
860  *
861  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
862  * the reserve counters are updated with the hugetlb_lock held. It is safe
863  * to reset the VMA at fork() time as it is not in use yet and there is no
864  * chance of the global counters getting corrupted as a result of the values.
865  *
866  * The private mapping reservation is represented in a subtly different
867  * manner to a shared mapping.  A shared mapping has a region map associated
868  * with the underlying file, this region map represents the backing file
869  * pages which have ever had a reservation assigned which this persists even
870  * after the page is instantiated.  A private mapping has a region map
871  * associated with the original mmap which is attached to all VMAs which
872  * reference it, this region map represents those offsets which have consumed
873  * reservation ie. where pages have been instantiated.
874  */
875 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
876 {
877 	return (unsigned long)vma->vm_private_data;
878 }
879 
880 static void set_vma_private_data(struct vm_area_struct *vma,
881 							unsigned long value)
882 {
883 	vma->vm_private_data = (void *)value;
884 }
885 
886 static void
887 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
888 					  struct hugetlb_cgroup *h_cg,
889 					  struct hstate *h)
890 {
891 #ifdef CONFIG_CGROUP_HUGETLB
892 	if (!h_cg || !h) {
893 		resv_map->reservation_counter = NULL;
894 		resv_map->pages_per_hpage = 0;
895 		resv_map->css = NULL;
896 	} else {
897 		resv_map->reservation_counter =
898 			&h_cg->rsvd_hugepage[hstate_index(h)];
899 		resv_map->pages_per_hpage = pages_per_huge_page(h);
900 		resv_map->css = &h_cg->css;
901 	}
902 #endif
903 }
904 
905 struct resv_map *resv_map_alloc(void)
906 {
907 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
908 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
909 
910 	if (!resv_map || !rg) {
911 		kfree(resv_map);
912 		kfree(rg);
913 		return NULL;
914 	}
915 
916 	kref_init(&resv_map->refs);
917 	spin_lock_init(&resv_map->lock);
918 	INIT_LIST_HEAD(&resv_map->regions);
919 
920 	resv_map->adds_in_progress = 0;
921 	/*
922 	 * Initialize these to 0. On shared mappings, 0's here indicate these
923 	 * fields don't do cgroup accounting. On private mappings, these will be
924 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
925 	 * reservations are to be un-charged from here.
926 	 */
927 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
928 
929 	INIT_LIST_HEAD(&resv_map->region_cache);
930 	list_add(&rg->link, &resv_map->region_cache);
931 	resv_map->region_cache_count = 1;
932 
933 	return resv_map;
934 }
935 
936 void resv_map_release(struct kref *ref)
937 {
938 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
939 	struct list_head *head = &resv_map->region_cache;
940 	struct file_region *rg, *trg;
941 
942 	/* Clear out any active regions before we release the map. */
943 	region_del(resv_map, 0, LONG_MAX);
944 
945 	/* ... and any entries left in the cache */
946 	list_for_each_entry_safe(rg, trg, head, link) {
947 		list_del(&rg->link);
948 		kfree(rg);
949 	}
950 
951 	VM_BUG_ON(resv_map->adds_in_progress);
952 
953 	kfree(resv_map);
954 }
955 
956 static inline struct resv_map *inode_resv_map(struct inode *inode)
957 {
958 	/*
959 	 * At inode evict time, i_mapping may not point to the original
960 	 * address space within the inode.  This original address space
961 	 * contains the pointer to the resv_map.  So, always use the
962 	 * address space embedded within the inode.
963 	 * The VERY common case is inode->mapping == &inode->i_data but,
964 	 * this may not be true for device special inodes.
965 	 */
966 	return (struct resv_map *)(&inode->i_data)->private_data;
967 }
968 
969 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
970 {
971 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
972 	if (vma->vm_flags & VM_MAYSHARE) {
973 		struct address_space *mapping = vma->vm_file->f_mapping;
974 		struct inode *inode = mapping->host;
975 
976 		return inode_resv_map(inode);
977 
978 	} else {
979 		return (struct resv_map *)(get_vma_private_data(vma) &
980 							~HPAGE_RESV_MASK);
981 	}
982 }
983 
984 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
985 {
986 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988 
989 	set_vma_private_data(vma, (get_vma_private_data(vma) &
990 				HPAGE_RESV_MASK) | (unsigned long)map);
991 }
992 
993 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
994 {
995 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
996 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
997 
998 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
999 }
1000 
1001 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1002 {
1003 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004 
1005 	return (get_vma_private_data(vma) & flag) != 0;
1006 }
1007 
1008 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1009 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1010 {
1011 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012 	if (!(vma->vm_flags & VM_MAYSHARE))
1013 		vma->vm_private_data = (void *)0;
1014 }
1015 
1016 /*
1017  * Reset and decrement one ref on hugepage private reservation.
1018  * Called with mm->mmap_sem writer semaphore held.
1019  * This function should be only used by move_vma() and operate on
1020  * same sized vma. It should never come here with last ref on the
1021  * reservation.
1022  */
1023 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1024 {
1025 	/*
1026 	 * Clear the old hugetlb private page reservation.
1027 	 * It has already been transferred to new_vma.
1028 	 *
1029 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1030 	 * which copies vma into new_vma and unmaps vma. After the copy
1031 	 * operation both new_vma and vma share a reference to the resv_map
1032 	 * struct, and at that point vma is about to be unmapped. We don't
1033 	 * want to return the reservation to the pool at unmap of vma because
1034 	 * the reservation still lives on in new_vma, so simply decrement the
1035 	 * ref here and remove the resv_map reference from this vma.
1036 	 */
1037 	struct resv_map *reservations = vma_resv_map(vma);
1038 
1039 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1040 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1041 		kref_put(&reservations->refs, resv_map_release);
1042 	}
1043 
1044 	reset_vma_resv_huge_pages(vma);
1045 }
1046 
1047 /* Returns true if the VMA has associated reserve pages */
1048 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1049 {
1050 	if (vma->vm_flags & VM_NORESERVE) {
1051 		/*
1052 		 * This address is already reserved by other process(chg == 0),
1053 		 * so, we should decrement reserved count. Without decrementing,
1054 		 * reserve count remains after releasing inode, because this
1055 		 * allocated page will go into page cache and is regarded as
1056 		 * coming from reserved pool in releasing step.  Currently, we
1057 		 * don't have any other solution to deal with this situation
1058 		 * properly, so add work-around here.
1059 		 */
1060 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1061 			return true;
1062 		else
1063 			return false;
1064 	}
1065 
1066 	/* Shared mappings always use reserves */
1067 	if (vma->vm_flags & VM_MAYSHARE) {
1068 		/*
1069 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1070 		 * be a region map for all pages.  The only situation where
1071 		 * there is no region map is if a hole was punched via
1072 		 * fallocate.  In this case, there really are no reserves to
1073 		 * use.  This situation is indicated if chg != 0.
1074 		 */
1075 		if (chg)
1076 			return false;
1077 		else
1078 			return true;
1079 	}
1080 
1081 	/*
1082 	 * Only the process that called mmap() has reserves for
1083 	 * private mappings.
1084 	 */
1085 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1086 		/*
1087 		 * Like the shared case above, a hole punch or truncate
1088 		 * could have been performed on the private mapping.
1089 		 * Examine the value of chg to determine if reserves
1090 		 * actually exist or were previously consumed.
1091 		 * Very Subtle - The value of chg comes from a previous
1092 		 * call to vma_needs_reserves().  The reserve map for
1093 		 * private mappings has different (opposite) semantics
1094 		 * than that of shared mappings.  vma_needs_reserves()
1095 		 * has already taken this difference in semantics into
1096 		 * account.  Therefore, the meaning of chg is the same
1097 		 * as in the shared case above.  Code could easily be
1098 		 * combined, but keeping it separate draws attention to
1099 		 * subtle differences.
1100 		 */
1101 		if (chg)
1102 			return false;
1103 		else
1104 			return true;
1105 	}
1106 
1107 	return false;
1108 }
1109 
1110 static void enqueue_huge_page(struct hstate *h, struct page *page)
1111 {
1112 	int nid = page_to_nid(page);
1113 
1114 	lockdep_assert_held(&hugetlb_lock);
1115 	VM_BUG_ON_PAGE(page_count(page), page);
1116 
1117 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1118 	h->free_huge_pages++;
1119 	h->free_huge_pages_node[nid]++;
1120 	SetHPageFreed(page);
1121 }
1122 
1123 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1124 {
1125 	struct page *page;
1126 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1127 
1128 	lockdep_assert_held(&hugetlb_lock);
1129 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1130 		if (pin && !is_longterm_pinnable_page(page))
1131 			continue;
1132 
1133 		if (PageHWPoison(page))
1134 			continue;
1135 
1136 		list_move(&page->lru, &h->hugepage_activelist);
1137 		set_page_refcounted(page);
1138 		ClearHPageFreed(page);
1139 		h->free_huge_pages--;
1140 		h->free_huge_pages_node[nid]--;
1141 		return page;
1142 	}
1143 
1144 	return NULL;
1145 }
1146 
1147 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1148 		nodemask_t *nmask)
1149 {
1150 	unsigned int cpuset_mems_cookie;
1151 	struct zonelist *zonelist;
1152 	struct zone *zone;
1153 	struct zoneref *z;
1154 	int node = NUMA_NO_NODE;
1155 
1156 	zonelist = node_zonelist(nid, gfp_mask);
1157 
1158 retry_cpuset:
1159 	cpuset_mems_cookie = read_mems_allowed_begin();
1160 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1161 		struct page *page;
1162 
1163 		if (!cpuset_zone_allowed(zone, gfp_mask))
1164 			continue;
1165 		/*
1166 		 * no need to ask again on the same node. Pool is node rather than
1167 		 * zone aware
1168 		 */
1169 		if (zone_to_nid(zone) == node)
1170 			continue;
1171 		node = zone_to_nid(zone);
1172 
1173 		page = dequeue_huge_page_node_exact(h, node);
1174 		if (page)
1175 			return page;
1176 	}
1177 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1178 		goto retry_cpuset;
1179 
1180 	return NULL;
1181 }
1182 
1183 static struct page *dequeue_huge_page_vma(struct hstate *h,
1184 				struct vm_area_struct *vma,
1185 				unsigned long address, int avoid_reserve,
1186 				long chg)
1187 {
1188 	struct page *page = NULL;
1189 	struct mempolicy *mpol;
1190 	gfp_t gfp_mask;
1191 	nodemask_t *nodemask;
1192 	int nid;
1193 
1194 	/*
1195 	 * A child process with MAP_PRIVATE mappings created by their parent
1196 	 * have no page reserves. This check ensures that reservations are
1197 	 * not "stolen". The child may still get SIGKILLed
1198 	 */
1199 	if (!vma_has_reserves(vma, chg) &&
1200 			h->free_huge_pages - h->resv_huge_pages == 0)
1201 		goto err;
1202 
1203 	/* If reserves cannot be used, ensure enough pages are in the pool */
1204 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1205 		goto err;
1206 
1207 	gfp_mask = htlb_alloc_mask(h);
1208 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1209 
1210 	if (mpol_is_preferred_many(mpol)) {
1211 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1212 
1213 		/* Fallback to all nodes if page==NULL */
1214 		nodemask = NULL;
1215 	}
1216 
1217 	if (!page)
1218 		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1219 
1220 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1221 		SetHPageRestoreReserve(page);
1222 		h->resv_huge_pages--;
1223 	}
1224 
1225 	mpol_cond_put(mpol);
1226 	return page;
1227 
1228 err:
1229 	return NULL;
1230 }
1231 
1232 /*
1233  * common helper functions for hstate_next_node_to_{alloc|free}.
1234  * We may have allocated or freed a huge page based on a different
1235  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1236  * be outside of *nodes_allowed.  Ensure that we use an allowed
1237  * node for alloc or free.
1238  */
1239 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1240 {
1241 	nid = next_node_in(nid, *nodes_allowed);
1242 	VM_BUG_ON(nid >= MAX_NUMNODES);
1243 
1244 	return nid;
1245 }
1246 
1247 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1248 {
1249 	if (!node_isset(nid, *nodes_allowed))
1250 		nid = next_node_allowed(nid, nodes_allowed);
1251 	return nid;
1252 }
1253 
1254 /*
1255  * returns the previously saved node ["this node"] from which to
1256  * allocate a persistent huge page for the pool and advance the
1257  * next node from which to allocate, handling wrap at end of node
1258  * mask.
1259  */
1260 static int hstate_next_node_to_alloc(struct hstate *h,
1261 					nodemask_t *nodes_allowed)
1262 {
1263 	int nid;
1264 
1265 	VM_BUG_ON(!nodes_allowed);
1266 
1267 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1268 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1269 
1270 	return nid;
1271 }
1272 
1273 /*
1274  * helper for remove_pool_huge_page() - return the previously saved
1275  * node ["this node"] from which to free a huge page.  Advance the
1276  * next node id whether or not we find a free huge page to free so
1277  * that the next attempt to free addresses the next node.
1278  */
1279 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1280 {
1281 	int nid;
1282 
1283 	VM_BUG_ON(!nodes_allowed);
1284 
1285 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1286 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1287 
1288 	return nid;
1289 }
1290 
1291 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1292 	for (nr_nodes = nodes_weight(*mask);				\
1293 		nr_nodes > 0 &&						\
1294 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1295 		nr_nodes--)
1296 
1297 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1298 	for (nr_nodes = nodes_weight(*mask);				\
1299 		nr_nodes > 0 &&						\
1300 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1301 		nr_nodes--)
1302 
1303 /* used to demote non-gigantic_huge pages as well */
1304 static void __destroy_compound_gigantic_page(struct page *page,
1305 					unsigned int order, bool demote)
1306 {
1307 	int i;
1308 	int nr_pages = 1 << order;
1309 	struct page *p = page + 1;
1310 
1311 	atomic_set(compound_mapcount_ptr(page), 0);
1312 	atomic_set(compound_pincount_ptr(page), 0);
1313 
1314 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1315 		p->mapping = NULL;
1316 		clear_compound_head(p);
1317 		if (!demote)
1318 			set_page_refcounted(p);
1319 	}
1320 
1321 	set_compound_order(page, 0);
1322 #ifdef CONFIG_64BIT
1323 	page[1].compound_nr = 0;
1324 #endif
1325 	__ClearPageHead(page);
1326 }
1327 
1328 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1329 					unsigned int order)
1330 {
1331 	__destroy_compound_gigantic_page(page, order, true);
1332 }
1333 
1334 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1335 static void destroy_compound_gigantic_page(struct page *page,
1336 					unsigned int order)
1337 {
1338 	__destroy_compound_gigantic_page(page, order, false);
1339 }
1340 
1341 static void free_gigantic_page(struct page *page, unsigned int order)
1342 {
1343 	/*
1344 	 * If the page isn't allocated using the cma allocator,
1345 	 * cma_release() returns false.
1346 	 */
1347 #ifdef CONFIG_CMA
1348 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1349 		return;
1350 #endif
1351 
1352 	free_contig_range(page_to_pfn(page), 1 << order);
1353 }
1354 
1355 #ifdef CONFIG_CONTIG_ALLOC
1356 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1357 		int nid, nodemask_t *nodemask)
1358 {
1359 	unsigned long nr_pages = pages_per_huge_page(h);
1360 	if (nid == NUMA_NO_NODE)
1361 		nid = numa_mem_id();
1362 
1363 #ifdef CONFIG_CMA
1364 	{
1365 		struct page *page;
1366 		int node;
1367 
1368 		if (hugetlb_cma[nid]) {
1369 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1370 					huge_page_order(h), true);
1371 			if (page)
1372 				return page;
1373 		}
1374 
1375 		if (!(gfp_mask & __GFP_THISNODE)) {
1376 			for_each_node_mask(node, *nodemask) {
1377 				if (node == nid || !hugetlb_cma[node])
1378 					continue;
1379 
1380 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1381 						huge_page_order(h), true);
1382 				if (page)
1383 					return page;
1384 			}
1385 		}
1386 	}
1387 #endif
1388 
1389 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1390 }
1391 
1392 #else /* !CONFIG_CONTIG_ALLOC */
1393 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1394 					int nid, nodemask_t *nodemask)
1395 {
1396 	return NULL;
1397 }
1398 #endif /* CONFIG_CONTIG_ALLOC */
1399 
1400 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402 					int nid, nodemask_t *nodemask)
1403 {
1404 	return NULL;
1405 }
1406 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1407 static inline void destroy_compound_gigantic_page(struct page *page,
1408 						unsigned int order) { }
1409 #endif
1410 
1411 /*
1412  * Remove hugetlb page from lists, and update dtor so that page appears
1413  * as just a compound page.
1414  *
1415  * A reference is held on the page, except in the case of demote.
1416  *
1417  * Must be called with hugetlb lock held.
1418  */
1419 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1420 							bool adjust_surplus,
1421 							bool demote)
1422 {
1423 	int nid = page_to_nid(page);
1424 
1425 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1426 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1427 
1428 	lockdep_assert_held(&hugetlb_lock);
1429 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1430 		return;
1431 
1432 	list_del(&page->lru);
1433 
1434 	if (HPageFreed(page)) {
1435 		h->free_huge_pages--;
1436 		h->free_huge_pages_node[nid]--;
1437 	}
1438 	if (adjust_surplus) {
1439 		h->surplus_huge_pages--;
1440 		h->surplus_huge_pages_node[nid]--;
1441 	}
1442 
1443 	/*
1444 	 * Very subtle
1445 	 *
1446 	 * For non-gigantic pages set the destructor to the normal compound
1447 	 * page dtor.  This is needed in case someone takes an additional
1448 	 * temporary ref to the page, and freeing is delayed until they drop
1449 	 * their reference.
1450 	 *
1451 	 * For gigantic pages set the destructor to the null dtor.  This
1452 	 * destructor will never be called.  Before freeing the gigantic
1453 	 * page destroy_compound_gigantic_page will turn the compound page
1454 	 * into a simple group of pages.  After this the destructor does not
1455 	 * apply.
1456 	 *
1457 	 * This handles the case where more than one ref is held when and
1458 	 * after update_and_free_page is called.
1459 	 *
1460 	 * In the case of demote we do not ref count the page as it will soon
1461 	 * be turned into a page of smaller size.
1462 	 */
1463 	if (!demote)
1464 		set_page_refcounted(page);
1465 	if (hstate_is_gigantic(h))
1466 		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1467 	else
1468 		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1469 
1470 	h->nr_huge_pages--;
1471 	h->nr_huge_pages_node[nid]--;
1472 }
1473 
1474 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1475 							bool adjust_surplus)
1476 {
1477 	__remove_hugetlb_page(h, page, adjust_surplus, false);
1478 }
1479 
1480 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1481 							bool adjust_surplus)
1482 {
1483 	__remove_hugetlb_page(h, page, adjust_surplus, true);
1484 }
1485 
1486 static void add_hugetlb_page(struct hstate *h, struct page *page,
1487 			     bool adjust_surplus)
1488 {
1489 	int zeroed;
1490 	int nid = page_to_nid(page);
1491 
1492 	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1493 
1494 	lockdep_assert_held(&hugetlb_lock);
1495 
1496 	INIT_LIST_HEAD(&page->lru);
1497 	h->nr_huge_pages++;
1498 	h->nr_huge_pages_node[nid]++;
1499 
1500 	if (adjust_surplus) {
1501 		h->surplus_huge_pages++;
1502 		h->surplus_huge_pages_node[nid]++;
1503 	}
1504 
1505 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1506 	set_page_private(page, 0);
1507 	/*
1508 	 * We have to set HPageVmemmapOptimized again as above
1509 	 * set_page_private(page, 0) cleared it.
1510 	 */
1511 	SetHPageVmemmapOptimized(page);
1512 
1513 	/*
1514 	 * This page is about to be managed by the hugetlb allocator and
1515 	 * should have no users.  Drop our reference, and check for others
1516 	 * just in case.
1517 	 */
1518 	zeroed = put_page_testzero(page);
1519 	if (!zeroed)
1520 		/*
1521 		 * It is VERY unlikely soneone else has taken a ref on
1522 		 * the page.  In this case, we simply return as the
1523 		 * hugetlb destructor (free_huge_page) will be called
1524 		 * when this other ref is dropped.
1525 		 */
1526 		return;
1527 
1528 	arch_clear_hugepage_flags(page);
1529 	enqueue_huge_page(h, page);
1530 }
1531 
1532 static void __update_and_free_page(struct hstate *h, struct page *page)
1533 {
1534 	int i;
1535 	struct page *subpage = page;
1536 
1537 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1538 		return;
1539 
1540 	/*
1541 	 * If we don't know which subpages are hwpoisoned, we can't free
1542 	 * the hugepage, so it's leaked intentionally.
1543 	 */
1544 	if (HPageRawHwpUnreliable(page))
1545 		return;
1546 
1547 	if (hugetlb_vmemmap_restore(h, page)) {
1548 		spin_lock_irq(&hugetlb_lock);
1549 		/*
1550 		 * If we cannot allocate vmemmap pages, just refuse to free the
1551 		 * page and put the page back on the hugetlb free list and treat
1552 		 * as a surplus page.
1553 		 */
1554 		add_hugetlb_page(h, page, true);
1555 		spin_unlock_irq(&hugetlb_lock);
1556 		return;
1557 	}
1558 
1559 	/*
1560 	 * Move PageHWPoison flag from head page to the raw error pages,
1561 	 * which makes any healthy subpages reusable.
1562 	 */
1563 	if (unlikely(PageHWPoison(page)))
1564 		hugetlb_clear_page_hwpoison(page);
1565 
1566 	for (i = 0; i < pages_per_huge_page(h);
1567 	     i++, subpage = mem_map_next(subpage, page, i)) {
1568 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1569 				1 << PG_referenced | 1 << PG_dirty |
1570 				1 << PG_active | 1 << PG_private |
1571 				1 << PG_writeback);
1572 	}
1573 
1574 	/*
1575 	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1576 	 * need to be given back to CMA in free_gigantic_page.
1577 	 */
1578 	if (hstate_is_gigantic(h) ||
1579 	    hugetlb_cma_page(page, huge_page_order(h))) {
1580 		destroy_compound_gigantic_page(page, huge_page_order(h));
1581 		free_gigantic_page(page, huge_page_order(h));
1582 	} else {
1583 		__free_pages(page, huge_page_order(h));
1584 	}
1585 }
1586 
1587 /*
1588  * As update_and_free_page() can be called under any context, so we cannot
1589  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1590  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1591  * the vmemmap pages.
1592  *
1593  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1594  * freed and frees them one-by-one. As the page->mapping pointer is going
1595  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1596  * structure of a lockless linked list of huge pages to be freed.
1597  */
1598 static LLIST_HEAD(hpage_freelist);
1599 
1600 static void free_hpage_workfn(struct work_struct *work)
1601 {
1602 	struct llist_node *node;
1603 
1604 	node = llist_del_all(&hpage_freelist);
1605 
1606 	while (node) {
1607 		struct page *page;
1608 		struct hstate *h;
1609 
1610 		page = container_of((struct address_space **)node,
1611 				     struct page, mapping);
1612 		node = node->next;
1613 		page->mapping = NULL;
1614 		/*
1615 		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1616 		 * is going to trigger because a previous call to
1617 		 * remove_hugetlb_page() will set_compound_page_dtor(page,
1618 		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1619 		 */
1620 		h = size_to_hstate(page_size(page));
1621 
1622 		__update_and_free_page(h, page);
1623 
1624 		cond_resched();
1625 	}
1626 }
1627 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1628 
1629 static inline void flush_free_hpage_work(struct hstate *h)
1630 {
1631 	if (hugetlb_vmemmap_optimizable(h))
1632 		flush_work(&free_hpage_work);
1633 }
1634 
1635 static void update_and_free_page(struct hstate *h, struct page *page,
1636 				 bool atomic)
1637 {
1638 	if (!HPageVmemmapOptimized(page) || !atomic) {
1639 		__update_and_free_page(h, page);
1640 		return;
1641 	}
1642 
1643 	/*
1644 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1645 	 *
1646 	 * Only call schedule_work() if hpage_freelist is previously
1647 	 * empty. Otherwise, schedule_work() had been called but the workfn
1648 	 * hasn't retrieved the list yet.
1649 	 */
1650 	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1651 		schedule_work(&free_hpage_work);
1652 }
1653 
1654 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1655 {
1656 	struct page *page, *t_page;
1657 
1658 	list_for_each_entry_safe(page, t_page, list, lru) {
1659 		update_and_free_page(h, page, false);
1660 		cond_resched();
1661 	}
1662 }
1663 
1664 struct hstate *size_to_hstate(unsigned long size)
1665 {
1666 	struct hstate *h;
1667 
1668 	for_each_hstate(h) {
1669 		if (huge_page_size(h) == size)
1670 			return h;
1671 	}
1672 	return NULL;
1673 }
1674 
1675 void free_huge_page(struct page *page)
1676 {
1677 	/*
1678 	 * Can't pass hstate in here because it is called from the
1679 	 * compound page destructor.
1680 	 */
1681 	struct hstate *h = page_hstate(page);
1682 	int nid = page_to_nid(page);
1683 	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1684 	bool restore_reserve;
1685 	unsigned long flags;
1686 
1687 	VM_BUG_ON_PAGE(page_count(page), page);
1688 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1689 
1690 	hugetlb_set_page_subpool(page, NULL);
1691 	if (PageAnon(page))
1692 		__ClearPageAnonExclusive(page);
1693 	page->mapping = NULL;
1694 	restore_reserve = HPageRestoreReserve(page);
1695 	ClearHPageRestoreReserve(page);
1696 
1697 	/*
1698 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1699 	 * reservation.  If the page was associated with a subpool, there
1700 	 * would have been a page reserved in the subpool before allocation
1701 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1702 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1703 	 * remove the reserved page from the subpool.
1704 	 */
1705 	if (!restore_reserve) {
1706 		/*
1707 		 * A return code of zero implies that the subpool will be
1708 		 * under its minimum size if the reservation is not restored
1709 		 * after page is free.  Therefore, force restore_reserve
1710 		 * operation.
1711 		 */
1712 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1713 			restore_reserve = true;
1714 	}
1715 
1716 	spin_lock_irqsave(&hugetlb_lock, flags);
1717 	ClearHPageMigratable(page);
1718 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1719 				     pages_per_huge_page(h), page);
1720 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1721 					  pages_per_huge_page(h), page);
1722 	if (restore_reserve)
1723 		h->resv_huge_pages++;
1724 
1725 	if (HPageTemporary(page)) {
1726 		remove_hugetlb_page(h, page, false);
1727 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1728 		update_and_free_page(h, page, true);
1729 	} else if (h->surplus_huge_pages_node[nid]) {
1730 		/* remove the page from active list */
1731 		remove_hugetlb_page(h, page, true);
1732 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1733 		update_and_free_page(h, page, true);
1734 	} else {
1735 		arch_clear_hugepage_flags(page);
1736 		enqueue_huge_page(h, page);
1737 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1738 	}
1739 }
1740 
1741 /*
1742  * Must be called with the hugetlb lock held
1743  */
1744 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1745 {
1746 	lockdep_assert_held(&hugetlb_lock);
1747 	h->nr_huge_pages++;
1748 	h->nr_huge_pages_node[nid]++;
1749 }
1750 
1751 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1752 {
1753 	hugetlb_vmemmap_optimize(h, page);
1754 	INIT_LIST_HEAD(&page->lru);
1755 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1756 	hugetlb_set_page_subpool(page, NULL);
1757 	set_hugetlb_cgroup(page, NULL);
1758 	set_hugetlb_cgroup_rsvd(page, NULL);
1759 }
1760 
1761 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1762 {
1763 	__prep_new_huge_page(h, page);
1764 	spin_lock_irq(&hugetlb_lock);
1765 	__prep_account_new_huge_page(h, nid);
1766 	spin_unlock_irq(&hugetlb_lock);
1767 }
1768 
1769 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1770 								bool demote)
1771 {
1772 	int i, j;
1773 	int nr_pages = 1 << order;
1774 	struct page *p = page + 1;
1775 
1776 	/* we rely on prep_new_huge_page to set the destructor */
1777 	set_compound_order(page, order);
1778 	__ClearPageReserved(page);
1779 	__SetPageHead(page);
1780 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1781 		/*
1782 		 * For gigantic hugepages allocated through bootmem at
1783 		 * boot, it's safer to be consistent with the not-gigantic
1784 		 * hugepages and clear the PG_reserved bit from all tail pages
1785 		 * too.  Otherwise drivers using get_user_pages() to access tail
1786 		 * pages may get the reference counting wrong if they see
1787 		 * PG_reserved set on a tail page (despite the head page not
1788 		 * having PG_reserved set).  Enforcing this consistency between
1789 		 * head and tail pages allows drivers to optimize away a check
1790 		 * on the head page when they need know if put_page() is needed
1791 		 * after get_user_pages().
1792 		 */
1793 		__ClearPageReserved(p);
1794 		/*
1795 		 * Subtle and very unlikely
1796 		 *
1797 		 * Gigantic 'page allocators' such as memblock or cma will
1798 		 * return a set of pages with each page ref counted.  We need
1799 		 * to turn this set of pages into a compound page with tail
1800 		 * page ref counts set to zero.  Code such as speculative page
1801 		 * cache adding could take a ref on a 'to be' tail page.
1802 		 * We need to respect any increased ref count, and only set
1803 		 * the ref count to zero if count is currently 1.  If count
1804 		 * is not 1, we return an error.  An error return indicates
1805 		 * the set of pages can not be converted to a gigantic page.
1806 		 * The caller who allocated the pages should then discard the
1807 		 * pages using the appropriate free interface.
1808 		 *
1809 		 * In the case of demote, the ref count will be zero.
1810 		 */
1811 		if (!demote) {
1812 			if (!page_ref_freeze(p, 1)) {
1813 				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1814 				goto out_error;
1815 			}
1816 		} else {
1817 			VM_BUG_ON_PAGE(page_count(p), p);
1818 		}
1819 		set_compound_head(p, page);
1820 	}
1821 	atomic_set(compound_mapcount_ptr(page), -1);
1822 	atomic_set(compound_pincount_ptr(page), 0);
1823 	return true;
1824 
1825 out_error:
1826 	/* undo tail page modifications made above */
1827 	p = page + 1;
1828 	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1829 		clear_compound_head(p);
1830 		set_page_refcounted(p);
1831 	}
1832 	/* need to clear PG_reserved on remaining tail pages  */
1833 	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1834 		__ClearPageReserved(p);
1835 	set_compound_order(page, 0);
1836 #ifdef CONFIG_64BIT
1837 	page[1].compound_nr = 0;
1838 #endif
1839 	__ClearPageHead(page);
1840 	return false;
1841 }
1842 
1843 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1844 {
1845 	return __prep_compound_gigantic_page(page, order, false);
1846 }
1847 
1848 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1849 							unsigned int order)
1850 {
1851 	return __prep_compound_gigantic_page(page, order, true);
1852 }
1853 
1854 /*
1855  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1856  * transparent huge pages.  See the PageTransHuge() documentation for more
1857  * details.
1858  */
1859 int PageHuge(struct page *page)
1860 {
1861 	if (!PageCompound(page))
1862 		return 0;
1863 
1864 	page = compound_head(page);
1865 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1866 }
1867 EXPORT_SYMBOL_GPL(PageHuge);
1868 
1869 /*
1870  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1871  * normal or transparent huge pages.
1872  */
1873 int PageHeadHuge(struct page *page_head)
1874 {
1875 	if (!PageHead(page_head))
1876 		return 0;
1877 
1878 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1879 }
1880 EXPORT_SYMBOL_GPL(PageHeadHuge);
1881 
1882 /*
1883  * Find and lock address space (mapping) in write mode.
1884  *
1885  * Upon entry, the page is locked which means that page_mapping() is
1886  * stable.  Due to locking order, we can only trylock_write.  If we can
1887  * not get the lock, simply return NULL to caller.
1888  */
1889 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1890 {
1891 	struct address_space *mapping = page_mapping(hpage);
1892 
1893 	if (!mapping)
1894 		return mapping;
1895 
1896 	if (i_mmap_trylock_write(mapping))
1897 		return mapping;
1898 
1899 	return NULL;
1900 }
1901 
1902 pgoff_t hugetlb_basepage_index(struct page *page)
1903 {
1904 	struct page *page_head = compound_head(page);
1905 	pgoff_t index = page_index(page_head);
1906 	unsigned long compound_idx;
1907 
1908 	if (compound_order(page_head) >= MAX_ORDER)
1909 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1910 	else
1911 		compound_idx = page - page_head;
1912 
1913 	return (index << compound_order(page_head)) + compound_idx;
1914 }
1915 
1916 static struct page *alloc_buddy_huge_page(struct hstate *h,
1917 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1918 		nodemask_t *node_alloc_noretry)
1919 {
1920 	int order = huge_page_order(h);
1921 	struct page *page;
1922 	bool alloc_try_hard = true;
1923 
1924 	/*
1925 	 * By default we always try hard to allocate the page with
1926 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1927 	 * a loop (to adjust global huge page counts) and previous allocation
1928 	 * failed, do not continue to try hard on the same node.  Use the
1929 	 * node_alloc_noretry bitmap to manage this state information.
1930 	 */
1931 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1932 		alloc_try_hard = false;
1933 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1934 	if (alloc_try_hard)
1935 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1936 	if (nid == NUMA_NO_NODE)
1937 		nid = numa_mem_id();
1938 	page = __alloc_pages(gfp_mask, order, nid, nmask);
1939 	if (page)
1940 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1941 	else
1942 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1943 
1944 	/*
1945 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1946 	 * indicates an overall state change.  Clear bit so that we resume
1947 	 * normal 'try hard' allocations.
1948 	 */
1949 	if (node_alloc_noretry && page && !alloc_try_hard)
1950 		node_clear(nid, *node_alloc_noretry);
1951 
1952 	/*
1953 	 * If we tried hard to get a page but failed, set bit so that
1954 	 * subsequent attempts will not try as hard until there is an
1955 	 * overall state change.
1956 	 */
1957 	if (node_alloc_noretry && !page && alloc_try_hard)
1958 		node_set(nid, *node_alloc_noretry);
1959 
1960 	return page;
1961 }
1962 
1963 /*
1964  * Common helper to allocate a fresh hugetlb page. All specific allocators
1965  * should use this function to get new hugetlb pages
1966  */
1967 static struct page *alloc_fresh_huge_page(struct hstate *h,
1968 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1969 		nodemask_t *node_alloc_noretry)
1970 {
1971 	struct page *page;
1972 	bool retry = false;
1973 
1974 retry:
1975 	if (hstate_is_gigantic(h))
1976 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1977 	else
1978 		page = alloc_buddy_huge_page(h, gfp_mask,
1979 				nid, nmask, node_alloc_noretry);
1980 	if (!page)
1981 		return NULL;
1982 
1983 	if (hstate_is_gigantic(h)) {
1984 		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1985 			/*
1986 			 * Rare failure to convert pages to compound page.
1987 			 * Free pages and try again - ONCE!
1988 			 */
1989 			free_gigantic_page(page, huge_page_order(h));
1990 			if (!retry) {
1991 				retry = true;
1992 				goto retry;
1993 			}
1994 			return NULL;
1995 		}
1996 	}
1997 	prep_new_huge_page(h, page, page_to_nid(page));
1998 
1999 	return page;
2000 }
2001 
2002 /*
2003  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2004  * manner.
2005  */
2006 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2007 				nodemask_t *node_alloc_noretry)
2008 {
2009 	struct page *page;
2010 	int nr_nodes, node;
2011 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2012 
2013 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2014 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2015 						node_alloc_noretry);
2016 		if (page)
2017 			break;
2018 	}
2019 
2020 	if (!page)
2021 		return 0;
2022 
2023 	put_page(page); /* free it into the hugepage allocator */
2024 
2025 	return 1;
2026 }
2027 
2028 /*
2029  * Remove huge page from pool from next node to free.  Attempt to keep
2030  * persistent huge pages more or less balanced over allowed nodes.
2031  * This routine only 'removes' the hugetlb page.  The caller must make
2032  * an additional call to free the page to low level allocators.
2033  * Called with hugetlb_lock locked.
2034  */
2035 static struct page *remove_pool_huge_page(struct hstate *h,
2036 						nodemask_t *nodes_allowed,
2037 						 bool acct_surplus)
2038 {
2039 	int nr_nodes, node;
2040 	struct page *page = NULL;
2041 
2042 	lockdep_assert_held(&hugetlb_lock);
2043 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2044 		/*
2045 		 * If we're returning unused surplus pages, only examine
2046 		 * nodes with surplus pages.
2047 		 */
2048 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2049 		    !list_empty(&h->hugepage_freelists[node])) {
2050 			page = list_entry(h->hugepage_freelists[node].next,
2051 					  struct page, lru);
2052 			remove_hugetlb_page(h, page, acct_surplus);
2053 			break;
2054 		}
2055 	}
2056 
2057 	return page;
2058 }
2059 
2060 /*
2061  * Dissolve a given free hugepage into free buddy pages. This function does
2062  * nothing for in-use hugepages and non-hugepages.
2063  * This function returns values like below:
2064  *
2065  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2066  *           when the system is under memory pressure and the feature of
2067  *           freeing unused vmemmap pages associated with each hugetlb page
2068  *           is enabled.
2069  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2070  *           (allocated or reserved.)
2071  *       0:  successfully dissolved free hugepages or the page is not a
2072  *           hugepage (considered as already dissolved)
2073  */
2074 int dissolve_free_huge_page(struct page *page)
2075 {
2076 	int rc = -EBUSY;
2077 
2078 retry:
2079 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2080 	if (!PageHuge(page))
2081 		return 0;
2082 
2083 	spin_lock_irq(&hugetlb_lock);
2084 	if (!PageHuge(page)) {
2085 		rc = 0;
2086 		goto out;
2087 	}
2088 
2089 	if (!page_count(page)) {
2090 		struct page *head = compound_head(page);
2091 		struct hstate *h = page_hstate(head);
2092 		if (h->free_huge_pages - h->resv_huge_pages == 0)
2093 			goto out;
2094 
2095 		/*
2096 		 * We should make sure that the page is already on the free list
2097 		 * when it is dissolved.
2098 		 */
2099 		if (unlikely(!HPageFreed(head))) {
2100 			spin_unlock_irq(&hugetlb_lock);
2101 			cond_resched();
2102 
2103 			/*
2104 			 * Theoretically, we should return -EBUSY when we
2105 			 * encounter this race. In fact, we have a chance
2106 			 * to successfully dissolve the page if we do a
2107 			 * retry. Because the race window is quite small.
2108 			 * If we seize this opportunity, it is an optimization
2109 			 * for increasing the success rate of dissolving page.
2110 			 */
2111 			goto retry;
2112 		}
2113 
2114 		remove_hugetlb_page(h, head, false);
2115 		h->max_huge_pages--;
2116 		spin_unlock_irq(&hugetlb_lock);
2117 
2118 		/*
2119 		 * Normally update_and_free_page will allocate required vmemmmap
2120 		 * before freeing the page.  update_and_free_page will fail to
2121 		 * free the page if it can not allocate required vmemmap.  We
2122 		 * need to adjust max_huge_pages if the page is not freed.
2123 		 * Attempt to allocate vmemmmap here so that we can take
2124 		 * appropriate action on failure.
2125 		 */
2126 		rc = hugetlb_vmemmap_restore(h, head);
2127 		if (!rc) {
2128 			update_and_free_page(h, head, false);
2129 		} else {
2130 			spin_lock_irq(&hugetlb_lock);
2131 			add_hugetlb_page(h, head, false);
2132 			h->max_huge_pages++;
2133 			spin_unlock_irq(&hugetlb_lock);
2134 		}
2135 
2136 		return rc;
2137 	}
2138 out:
2139 	spin_unlock_irq(&hugetlb_lock);
2140 	return rc;
2141 }
2142 
2143 /*
2144  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2145  * make specified memory blocks removable from the system.
2146  * Note that this will dissolve a free gigantic hugepage completely, if any
2147  * part of it lies within the given range.
2148  * Also note that if dissolve_free_huge_page() returns with an error, all
2149  * free hugepages that were dissolved before that error are lost.
2150  */
2151 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2152 {
2153 	unsigned long pfn;
2154 	struct page *page;
2155 	int rc = 0;
2156 	unsigned int order;
2157 	struct hstate *h;
2158 
2159 	if (!hugepages_supported())
2160 		return rc;
2161 
2162 	order = huge_page_order(&default_hstate);
2163 	for_each_hstate(h)
2164 		order = min(order, huge_page_order(h));
2165 
2166 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2167 		page = pfn_to_page(pfn);
2168 		rc = dissolve_free_huge_page(page);
2169 		if (rc)
2170 			break;
2171 	}
2172 
2173 	return rc;
2174 }
2175 
2176 /*
2177  * Allocates a fresh surplus page from the page allocator.
2178  */
2179 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2180 		int nid, nodemask_t *nmask, bool zero_ref)
2181 {
2182 	struct page *page = NULL;
2183 	bool retry = false;
2184 
2185 	if (hstate_is_gigantic(h))
2186 		return NULL;
2187 
2188 	spin_lock_irq(&hugetlb_lock);
2189 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2190 		goto out_unlock;
2191 	spin_unlock_irq(&hugetlb_lock);
2192 
2193 retry:
2194 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2195 	if (!page)
2196 		return NULL;
2197 
2198 	spin_lock_irq(&hugetlb_lock);
2199 	/*
2200 	 * We could have raced with the pool size change.
2201 	 * Double check that and simply deallocate the new page
2202 	 * if we would end up overcommiting the surpluses. Abuse
2203 	 * temporary page to workaround the nasty free_huge_page
2204 	 * codeflow
2205 	 */
2206 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2207 		SetHPageTemporary(page);
2208 		spin_unlock_irq(&hugetlb_lock);
2209 		put_page(page);
2210 		return NULL;
2211 	}
2212 
2213 	if (zero_ref) {
2214 		/*
2215 		 * Caller requires a page with zero ref count.
2216 		 * We will drop ref count here.  If someone else is holding
2217 		 * a ref, the page will be freed when they drop it.  Abuse
2218 		 * temporary page flag to accomplish this.
2219 		 */
2220 		SetHPageTemporary(page);
2221 		if (!put_page_testzero(page)) {
2222 			/*
2223 			 * Unexpected inflated ref count on freshly allocated
2224 			 * huge.  Retry once.
2225 			 */
2226 			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2227 			spin_unlock_irq(&hugetlb_lock);
2228 			if (retry)
2229 				return NULL;
2230 
2231 			retry = true;
2232 			goto retry;
2233 		}
2234 		ClearHPageTemporary(page);
2235 	}
2236 
2237 	h->surplus_huge_pages++;
2238 	h->surplus_huge_pages_node[page_to_nid(page)]++;
2239 
2240 out_unlock:
2241 	spin_unlock_irq(&hugetlb_lock);
2242 
2243 	return page;
2244 }
2245 
2246 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2247 				     int nid, nodemask_t *nmask)
2248 {
2249 	struct page *page;
2250 
2251 	if (hstate_is_gigantic(h))
2252 		return NULL;
2253 
2254 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2255 	if (!page)
2256 		return NULL;
2257 
2258 	/*
2259 	 * We do not account these pages as surplus because they are only
2260 	 * temporary and will be released properly on the last reference
2261 	 */
2262 	SetHPageTemporary(page);
2263 
2264 	return page;
2265 }
2266 
2267 /*
2268  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2269  */
2270 static
2271 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2272 		struct vm_area_struct *vma, unsigned long addr)
2273 {
2274 	struct page *page = NULL;
2275 	struct mempolicy *mpol;
2276 	gfp_t gfp_mask = htlb_alloc_mask(h);
2277 	int nid;
2278 	nodemask_t *nodemask;
2279 
2280 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2281 	if (mpol_is_preferred_many(mpol)) {
2282 		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2283 
2284 		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2285 		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2286 
2287 		/* Fallback to all nodes if page==NULL */
2288 		nodemask = NULL;
2289 	}
2290 
2291 	if (!page)
2292 		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2293 	mpol_cond_put(mpol);
2294 	return page;
2295 }
2296 
2297 /* page migration callback function */
2298 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2299 		nodemask_t *nmask, gfp_t gfp_mask)
2300 {
2301 	spin_lock_irq(&hugetlb_lock);
2302 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2303 		struct page *page;
2304 
2305 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2306 		if (page) {
2307 			spin_unlock_irq(&hugetlb_lock);
2308 			return page;
2309 		}
2310 	}
2311 	spin_unlock_irq(&hugetlb_lock);
2312 
2313 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2314 }
2315 
2316 /* mempolicy aware migration callback */
2317 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2318 		unsigned long address)
2319 {
2320 	struct mempolicy *mpol;
2321 	nodemask_t *nodemask;
2322 	struct page *page;
2323 	gfp_t gfp_mask;
2324 	int node;
2325 
2326 	gfp_mask = htlb_alloc_mask(h);
2327 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2328 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2329 	mpol_cond_put(mpol);
2330 
2331 	return page;
2332 }
2333 
2334 /*
2335  * Increase the hugetlb pool such that it can accommodate a reservation
2336  * of size 'delta'.
2337  */
2338 static int gather_surplus_pages(struct hstate *h, long delta)
2339 	__must_hold(&hugetlb_lock)
2340 {
2341 	LIST_HEAD(surplus_list);
2342 	struct page *page, *tmp;
2343 	int ret;
2344 	long i;
2345 	long needed, allocated;
2346 	bool alloc_ok = true;
2347 
2348 	lockdep_assert_held(&hugetlb_lock);
2349 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2350 	if (needed <= 0) {
2351 		h->resv_huge_pages += delta;
2352 		return 0;
2353 	}
2354 
2355 	allocated = 0;
2356 
2357 	ret = -ENOMEM;
2358 retry:
2359 	spin_unlock_irq(&hugetlb_lock);
2360 	for (i = 0; i < needed; i++) {
2361 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2362 				NUMA_NO_NODE, NULL, true);
2363 		if (!page) {
2364 			alloc_ok = false;
2365 			break;
2366 		}
2367 		list_add(&page->lru, &surplus_list);
2368 		cond_resched();
2369 	}
2370 	allocated += i;
2371 
2372 	/*
2373 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2374 	 * because either resv_huge_pages or free_huge_pages may have changed.
2375 	 */
2376 	spin_lock_irq(&hugetlb_lock);
2377 	needed = (h->resv_huge_pages + delta) -
2378 			(h->free_huge_pages + allocated);
2379 	if (needed > 0) {
2380 		if (alloc_ok)
2381 			goto retry;
2382 		/*
2383 		 * We were not able to allocate enough pages to
2384 		 * satisfy the entire reservation so we free what
2385 		 * we've allocated so far.
2386 		 */
2387 		goto free;
2388 	}
2389 	/*
2390 	 * The surplus_list now contains _at_least_ the number of extra pages
2391 	 * needed to accommodate the reservation.  Add the appropriate number
2392 	 * of pages to the hugetlb pool and free the extras back to the buddy
2393 	 * allocator.  Commit the entire reservation here to prevent another
2394 	 * process from stealing the pages as they are added to the pool but
2395 	 * before they are reserved.
2396 	 */
2397 	needed += allocated;
2398 	h->resv_huge_pages += delta;
2399 	ret = 0;
2400 
2401 	/* Free the needed pages to the hugetlb pool */
2402 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2403 		if ((--needed) < 0)
2404 			break;
2405 		/* Add the page to the hugetlb allocator */
2406 		enqueue_huge_page(h, page);
2407 	}
2408 free:
2409 	spin_unlock_irq(&hugetlb_lock);
2410 
2411 	/*
2412 	 * Free unnecessary surplus pages to the buddy allocator.
2413 	 * Pages have no ref count, call free_huge_page directly.
2414 	 */
2415 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2416 		free_huge_page(page);
2417 	spin_lock_irq(&hugetlb_lock);
2418 
2419 	return ret;
2420 }
2421 
2422 /*
2423  * This routine has two main purposes:
2424  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2425  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2426  *    to the associated reservation map.
2427  * 2) Free any unused surplus pages that may have been allocated to satisfy
2428  *    the reservation.  As many as unused_resv_pages may be freed.
2429  */
2430 static void return_unused_surplus_pages(struct hstate *h,
2431 					unsigned long unused_resv_pages)
2432 {
2433 	unsigned long nr_pages;
2434 	struct page *page;
2435 	LIST_HEAD(page_list);
2436 
2437 	lockdep_assert_held(&hugetlb_lock);
2438 	/* Uncommit the reservation */
2439 	h->resv_huge_pages -= unused_resv_pages;
2440 
2441 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2442 		goto out;
2443 
2444 	/*
2445 	 * Part (or even all) of the reservation could have been backed
2446 	 * by pre-allocated pages. Only free surplus pages.
2447 	 */
2448 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2449 
2450 	/*
2451 	 * We want to release as many surplus pages as possible, spread
2452 	 * evenly across all nodes with memory. Iterate across these nodes
2453 	 * until we can no longer free unreserved surplus pages. This occurs
2454 	 * when the nodes with surplus pages have no free pages.
2455 	 * remove_pool_huge_page() will balance the freed pages across the
2456 	 * on-line nodes with memory and will handle the hstate accounting.
2457 	 */
2458 	while (nr_pages--) {
2459 		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2460 		if (!page)
2461 			goto out;
2462 
2463 		list_add(&page->lru, &page_list);
2464 	}
2465 
2466 out:
2467 	spin_unlock_irq(&hugetlb_lock);
2468 	update_and_free_pages_bulk(h, &page_list);
2469 	spin_lock_irq(&hugetlb_lock);
2470 }
2471 
2472 
2473 /*
2474  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2475  * are used by the huge page allocation routines to manage reservations.
2476  *
2477  * vma_needs_reservation is called to determine if the huge page at addr
2478  * within the vma has an associated reservation.  If a reservation is
2479  * needed, the value 1 is returned.  The caller is then responsible for
2480  * managing the global reservation and subpool usage counts.  After
2481  * the huge page has been allocated, vma_commit_reservation is called
2482  * to add the page to the reservation map.  If the page allocation fails,
2483  * the reservation must be ended instead of committed.  vma_end_reservation
2484  * is called in such cases.
2485  *
2486  * In the normal case, vma_commit_reservation returns the same value
2487  * as the preceding vma_needs_reservation call.  The only time this
2488  * is not the case is if a reserve map was changed between calls.  It
2489  * is the responsibility of the caller to notice the difference and
2490  * take appropriate action.
2491  *
2492  * vma_add_reservation is used in error paths where a reservation must
2493  * be restored when a newly allocated huge page must be freed.  It is
2494  * to be called after calling vma_needs_reservation to determine if a
2495  * reservation exists.
2496  *
2497  * vma_del_reservation is used in error paths where an entry in the reserve
2498  * map was created during huge page allocation and must be removed.  It is to
2499  * be called after calling vma_needs_reservation to determine if a reservation
2500  * exists.
2501  */
2502 enum vma_resv_mode {
2503 	VMA_NEEDS_RESV,
2504 	VMA_COMMIT_RESV,
2505 	VMA_END_RESV,
2506 	VMA_ADD_RESV,
2507 	VMA_DEL_RESV,
2508 };
2509 static long __vma_reservation_common(struct hstate *h,
2510 				struct vm_area_struct *vma, unsigned long addr,
2511 				enum vma_resv_mode mode)
2512 {
2513 	struct resv_map *resv;
2514 	pgoff_t idx;
2515 	long ret;
2516 	long dummy_out_regions_needed;
2517 
2518 	resv = vma_resv_map(vma);
2519 	if (!resv)
2520 		return 1;
2521 
2522 	idx = vma_hugecache_offset(h, vma, addr);
2523 	switch (mode) {
2524 	case VMA_NEEDS_RESV:
2525 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2526 		/* We assume that vma_reservation_* routines always operate on
2527 		 * 1 page, and that adding to resv map a 1 page entry can only
2528 		 * ever require 1 region.
2529 		 */
2530 		VM_BUG_ON(dummy_out_regions_needed != 1);
2531 		break;
2532 	case VMA_COMMIT_RESV:
2533 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2534 		/* region_add calls of range 1 should never fail. */
2535 		VM_BUG_ON(ret < 0);
2536 		break;
2537 	case VMA_END_RESV:
2538 		region_abort(resv, idx, idx + 1, 1);
2539 		ret = 0;
2540 		break;
2541 	case VMA_ADD_RESV:
2542 		if (vma->vm_flags & VM_MAYSHARE) {
2543 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2544 			/* region_add calls of range 1 should never fail. */
2545 			VM_BUG_ON(ret < 0);
2546 		} else {
2547 			region_abort(resv, idx, idx + 1, 1);
2548 			ret = region_del(resv, idx, idx + 1);
2549 		}
2550 		break;
2551 	case VMA_DEL_RESV:
2552 		if (vma->vm_flags & VM_MAYSHARE) {
2553 			region_abort(resv, idx, idx + 1, 1);
2554 			ret = region_del(resv, idx, idx + 1);
2555 		} else {
2556 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2557 			/* region_add calls of range 1 should never fail. */
2558 			VM_BUG_ON(ret < 0);
2559 		}
2560 		break;
2561 	default:
2562 		BUG();
2563 	}
2564 
2565 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2566 		return ret;
2567 	/*
2568 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2569 	 *
2570 	 * In most cases, reserves always exist for private mappings.
2571 	 * However, a file associated with mapping could have been
2572 	 * hole punched or truncated after reserves were consumed.
2573 	 * As subsequent fault on such a range will not use reserves.
2574 	 * Subtle - The reserve map for private mappings has the
2575 	 * opposite meaning than that of shared mappings.  If NO
2576 	 * entry is in the reserve map, it means a reservation exists.
2577 	 * If an entry exists in the reserve map, it means the
2578 	 * reservation has already been consumed.  As a result, the
2579 	 * return value of this routine is the opposite of the
2580 	 * value returned from reserve map manipulation routines above.
2581 	 */
2582 	if (ret > 0)
2583 		return 0;
2584 	if (ret == 0)
2585 		return 1;
2586 	return ret;
2587 }
2588 
2589 static long vma_needs_reservation(struct hstate *h,
2590 			struct vm_area_struct *vma, unsigned long addr)
2591 {
2592 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2593 }
2594 
2595 static long vma_commit_reservation(struct hstate *h,
2596 			struct vm_area_struct *vma, unsigned long addr)
2597 {
2598 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2599 }
2600 
2601 static void vma_end_reservation(struct hstate *h,
2602 			struct vm_area_struct *vma, unsigned long addr)
2603 {
2604 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2605 }
2606 
2607 static long vma_add_reservation(struct hstate *h,
2608 			struct vm_area_struct *vma, unsigned long addr)
2609 {
2610 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2611 }
2612 
2613 static long vma_del_reservation(struct hstate *h,
2614 			struct vm_area_struct *vma, unsigned long addr)
2615 {
2616 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2617 }
2618 
2619 /*
2620  * This routine is called to restore reservation information on error paths.
2621  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2622  * the hugetlb mutex should remain held when calling this routine.
2623  *
2624  * It handles two specific cases:
2625  * 1) A reservation was in place and the page consumed the reservation.
2626  *    HPageRestoreReserve is set in the page.
2627  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2628  *    not set.  However, alloc_huge_page always updates the reserve map.
2629  *
2630  * In case 1, free_huge_page later in the error path will increment the
2631  * global reserve count.  But, free_huge_page does not have enough context
2632  * to adjust the reservation map.  This case deals primarily with private
2633  * mappings.  Adjust the reserve map here to be consistent with global
2634  * reserve count adjustments to be made by free_huge_page.  Make sure the
2635  * reserve map indicates there is a reservation present.
2636  *
2637  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2638  */
2639 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2640 			unsigned long address, struct page *page)
2641 {
2642 	long rc = vma_needs_reservation(h, vma, address);
2643 
2644 	if (HPageRestoreReserve(page)) {
2645 		if (unlikely(rc < 0))
2646 			/*
2647 			 * Rare out of memory condition in reserve map
2648 			 * manipulation.  Clear HPageRestoreReserve so that
2649 			 * global reserve count will not be incremented
2650 			 * by free_huge_page.  This will make it appear
2651 			 * as though the reservation for this page was
2652 			 * consumed.  This may prevent the task from
2653 			 * faulting in the page at a later time.  This
2654 			 * is better than inconsistent global huge page
2655 			 * accounting of reserve counts.
2656 			 */
2657 			ClearHPageRestoreReserve(page);
2658 		else if (rc)
2659 			(void)vma_add_reservation(h, vma, address);
2660 		else
2661 			vma_end_reservation(h, vma, address);
2662 	} else {
2663 		if (!rc) {
2664 			/*
2665 			 * This indicates there is an entry in the reserve map
2666 			 * not added by alloc_huge_page.  We know it was added
2667 			 * before the alloc_huge_page call, otherwise
2668 			 * HPageRestoreReserve would be set on the page.
2669 			 * Remove the entry so that a subsequent allocation
2670 			 * does not consume a reservation.
2671 			 */
2672 			rc = vma_del_reservation(h, vma, address);
2673 			if (rc < 0)
2674 				/*
2675 				 * VERY rare out of memory condition.  Since
2676 				 * we can not delete the entry, set
2677 				 * HPageRestoreReserve so that the reserve
2678 				 * count will be incremented when the page
2679 				 * is freed.  This reserve will be consumed
2680 				 * on a subsequent allocation.
2681 				 */
2682 				SetHPageRestoreReserve(page);
2683 		} else if (rc < 0) {
2684 			/*
2685 			 * Rare out of memory condition from
2686 			 * vma_needs_reservation call.  Memory allocation is
2687 			 * only attempted if a new entry is needed.  Therefore,
2688 			 * this implies there is not an entry in the
2689 			 * reserve map.
2690 			 *
2691 			 * For shared mappings, no entry in the map indicates
2692 			 * no reservation.  We are done.
2693 			 */
2694 			if (!(vma->vm_flags & VM_MAYSHARE))
2695 				/*
2696 				 * For private mappings, no entry indicates
2697 				 * a reservation is present.  Since we can
2698 				 * not add an entry, set SetHPageRestoreReserve
2699 				 * on the page so reserve count will be
2700 				 * incremented when freed.  This reserve will
2701 				 * be consumed on a subsequent allocation.
2702 				 */
2703 				SetHPageRestoreReserve(page);
2704 		} else
2705 			/*
2706 			 * No reservation present, do nothing
2707 			 */
2708 			 vma_end_reservation(h, vma, address);
2709 	}
2710 }
2711 
2712 /*
2713  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2714  * @h: struct hstate old page belongs to
2715  * @old_page: Old page to dissolve
2716  * @list: List to isolate the page in case we need to
2717  * Returns 0 on success, otherwise negated error.
2718  */
2719 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2720 					struct list_head *list)
2721 {
2722 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2723 	int nid = page_to_nid(old_page);
2724 	bool alloc_retry = false;
2725 	struct page *new_page;
2726 	int ret = 0;
2727 
2728 	/*
2729 	 * Before dissolving the page, we need to allocate a new one for the
2730 	 * pool to remain stable.  Here, we allocate the page and 'prep' it
2731 	 * by doing everything but actually updating counters and adding to
2732 	 * the pool.  This simplifies and let us do most of the processing
2733 	 * under the lock.
2734 	 */
2735 alloc_retry:
2736 	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2737 	if (!new_page)
2738 		return -ENOMEM;
2739 	/*
2740 	 * If all goes well, this page will be directly added to the free
2741 	 * list in the pool.  For this the ref count needs to be zero.
2742 	 * Attempt to drop now, and retry once if needed.  It is VERY
2743 	 * unlikely there is another ref on the page.
2744 	 *
2745 	 * If someone else has a reference to the page, it will be freed
2746 	 * when they drop their ref.  Abuse temporary page flag to accomplish
2747 	 * this.  Retry once if there is an inflated ref count.
2748 	 */
2749 	SetHPageTemporary(new_page);
2750 	if (!put_page_testzero(new_page)) {
2751 		if (alloc_retry)
2752 			return -EBUSY;
2753 
2754 		alloc_retry = true;
2755 		goto alloc_retry;
2756 	}
2757 	ClearHPageTemporary(new_page);
2758 
2759 	__prep_new_huge_page(h, new_page);
2760 
2761 retry:
2762 	spin_lock_irq(&hugetlb_lock);
2763 	if (!PageHuge(old_page)) {
2764 		/*
2765 		 * Freed from under us. Drop new_page too.
2766 		 */
2767 		goto free_new;
2768 	} else if (page_count(old_page)) {
2769 		/*
2770 		 * Someone has grabbed the page, try to isolate it here.
2771 		 * Fail with -EBUSY if not possible.
2772 		 */
2773 		spin_unlock_irq(&hugetlb_lock);
2774 		ret = isolate_hugetlb(old_page, list);
2775 		spin_lock_irq(&hugetlb_lock);
2776 		goto free_new;
2777 	} else if (!HPageFreed(old_page)) {
2778 		/*
2779 		 * Page's refcount is 0 but it has not been enqueued in the
2780 		 * freelist yet. Race window is small, so we can succeed here if
2781 		 * we retry.
2782 		 */
2783 		spin_unlock_irq(&hugetlb_lock);
2784 		cond_resched();
2785 		goto retry;
2786 	} else {
2787 		/*
2788 		 * Ok, old_page is still a genuine free hugepage. Remove it from
2789 		 * the freelist and decrease the counters. These will be
2790 		 * incremented again when calling __prep_account_new_huge_page()
2791 		 * and enqueue_huge_page() for new_page. The counters will remain
2792 		 * stable since this happens under the lock.
2793 		 */
2794 		remove_hugetlb_page(h, old_page, false);
2795 
2796 		/*
2797 		 * Ref count on new page is already zero as it was dropped
2798 		 * earlier.  It can be directly added to the pool free list.
2799 		 */
2800 		__prep_account_new_huge_page(h, nid);
2801 		enqueue_huge_page(h, new_page);
2802 
2803 		/*
2804 		 * Pages have been replaced, we can safely free the old one.
2805 		 */
2806 		spin_unlock_irq(&hugetlb_lock);
2807 		update_and_free_page(h, old_page, false);
2808 	}
2809 
2810 	return ret;
2811 
2812 free_new:
2813 	spin_unlock_irq(&hugetlb_lock);
2814 	/* Page has a zero ref count, but needs a ref to be freed */
2815 	set_page_refcounted(new_page);
2816 	update_and_free_page(h, new_page, false);
2817 
2818 	return ret;
2819 }
2820 
2821 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2822 {
2823 	struct hstate *h;
2824 	struct page *head;
2825 	int ret = -EBUSY;
2826 
2827 	/*
2828 	 * The page might have been dissolved from under our feet, so make sure
2829 	 * to carefully check the state under the lock.
2830 	 * Return success when racing as if we dissolved the page ourselves.
2831 	 */
2832 	spin_lock_irq(&hugetlb_lock);
2833 	if (PageHuge(page)) {
2834 		head = compound_head(page);
2835 		h = page_hstate(head);
2836 	} else {
2837 		spin_unlock_irq(&hugetlb_lock);
2838 		return 0;
2839 	}
2840 	spin_unlock_irq(&hugetlb_lock);
2841 
2842 	/*
2843 	 * Fence off gigantic pages as there is a cyclic dependency between
2844 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2845 	 * of bailing out right away without further retrying.
2846 	 */
2847 	if (hstate_is_gigantic(h))
2848 		return -ENOMEM;
2849 
2850 	if (page_count(head) && !isolate_hugetlb(head, list))
2851 		ret = 0;
2852 	else if (!page_count(head))
2853 		ret = alloc_and_dissolve_huge_page(h, head, list);
2854 
2855 	return ret;
2856 }
2857 
2858 struct page *alloc_huge_page(struct vm_area_struct *vma,
2859 				    unsigned long addr, int avoid_reserve)
2860 {
2861 	struct hugepage_subpool *spool = subpool_vma(vma);
2862 	struct hstate *h = hstate_vma(vma);
2863 	struct page *page;
2864 	long map_chg, map_commit;
2865 	long gbl_chg;
2866 	int ret, idx;
2867 	struct hugetlb_cgroup *h_cg;
2868 	bool deferred_reserve;
2869 
2870 	idx = hstate_index(h);
2871 	/*
2872 	 * Examine the region/reserve map to determine if the process
2873 	 * has a reservation for the page to be allocated.  A return
2874 	 * code of zero indicates a reservation exists (no change).
2875 	 */
2876 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2877 	if (map_chg < 0)
2878 		return ERR_PTR(-ENOMEM);
2879 
2880 	/*
2881 	 * Processes that did not create the mapping will have no
2882 	 * reserves as indicated by the region/reserve map. Check
2883 	 * that the allocation will not exceed the subpool limit.
2884 	 * Allocations for MAP_NORESERVE mappings also need to be
2885 	 * checked against any subpool limit.
2886 	 */
2887 	if (map_chg || avoid_reserve) {
2888 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2889 		if (gbl_chg < 0) {
2890 			vma_end_reservation(h, vma, addr);
2891 			return ERR_PTR(-ENOSPC);
2892 		}
2893 
2894 		/*
2895 		 * Even though there was no reservation in the region/reserve
2896 		 * map, there could be reservations associated with the
2897 		 * subpool that can be used.  This would be indicated if the
2898 		 * return value of hugepage_subpool_get_pages() is zero.
2899 		 * However, if avoid_reserve is specified we still avoid even
2900 		 * the subpool reservations.
2901 		 */
2902 		if (avoid_reserve)
2903 			gbl_chg = 1;
2904 	}
2905 
2906 	/* If this allocation is not consuming a reservation, charge it now.
2907 	 */
2908 	deferred_reserve = map_chg || avoid_reserve;
2909 	if (deferred_reserve) {
2910 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2911 			idx, pages_per_huge_page(h), &h_cg);
2912 		if (ret)
2913 			goto out_subpool_put;
2914 	}
2915 
2916 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2917 	if (ret)
2918 		goto out_uncharge_cgroup_reservation;
2919 
2920 	spin_lock_irq(&hugetlb_lock);
2921 	/*
2922 	 * glb_chg is passed to indicate whether or not a page must be taken
2923 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2924 	 * a reservation exists for the allocation.
2925 	 */
2926 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2927 	if (!page) {
2928 		spin_unlock_irq(&hugetlb_lock);
2929 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2930 		if (!page)
2931 			goto out_uncharge_cgroup;
2932 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2933 			SetHPageRestoreReserve(page);
2934 			h->resv_huge_pages--;
2935 		}
2936 		spin_lock_irq(&hugetlb_lock);
2937 		list_add(&page->lru, &h->hugepage_activelist);
2938 		/* Fall through */
2939 	}
2940 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2941 	/* If allocation is not consuming a reservation, also store the
2942 	 * hugetlb_cgroup pointer on the page.
2943 	 */
2944 	if (deferred_reserve) {
2945 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2946 						  h_cg, page);
2947 	}
2948 
2949 	spin_unlock_irq(&hugetlb_lock);
2950 
2951 	hugetlb_set_page_subpool(page, spool);
2952 
2953 	map_commit = vma_commit_reservation(h, vma, addr);
2954 	if (unlikely(map_chg > map_commit)) {
2955 		/*
2956 		 * The page was added to the reservation map between
2957 		 * vma_needs_reservation and vma_commit_reservation.
2958 		 * This indicates a race with hugetlb_reserve_pages.
2959 		 * Adjust for the subpool count incremented above AND
2960 		 * in hugetlb_reserve_pages for the same page.  Also,
2961 		 * the reservation count added in hugetlb_reserve_pages
2962 		 * no longer applies.
2963 		 */
2964 		long rsv_adjust;
2965 
2966 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2967 		hugetlb_acct_memory(h, -rsv_adjust);
2968 		if (deferred_reserve)
2969 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2970 					pages_per_huge_page(h), page);
2971 	}
2972 	return page;
2973 
2974 out_uncharge_cgroup:
2975 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2976 out_uncharge_cgroup_reservation:
2977 	if (deferred_reserve)
2978 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2979 						    h_cg);
2980 out_subpool_put:
2981 	if (map_chg || avoid_reserve)
2982 		hugepage_subpool_put_pages(spool, 1);
2983 	vma_end_reservation(h, vma, addr);
2984 	return ERR_PTR(-ENOSPC);
2985 }
2986 
2987 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2988 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2989 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2990 {
2991 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2992 	int nr_nodes, node;
2993 
2994 	/* do node specific alloc */
2995 	if (nid != NUMA_NO_NODE) {
2996 		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2997 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2998 		if (!m)
2999 			return 0;
3000 		goto found;
3001 	}
3002 	/* allocate from next node when distributing huge pages */
3003 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3004 		m = memblock_alloc_try_nid_raw(
3005 				huge_page_size(h), huge_page_size(h),
3006 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3007 		/*
3008 		 * Use the beginning of the huge page to store the
3009 		 * huge_bootmem_page struct (until gather_bootmem
3010 		 * puts them into the mem_map).
3011 		 */
3012 		if (!m)
3013 			return 0;
3014 		goto found;
3015 	}
3016 
3017 found:
3018 	/* Put them into a private list first because mem_map is not up yet */
3019 	INIT_LIST_HEAD(&m->list);
3020 	list_add(&m->list, &huge_boot_pages);
3021 	m->hstate = h;
3022 	return 1;
3023 }
3024 
3025 /*
3026  * Put bootmem huge pages into the standard lists after mem_map is up.
3027  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3028  */
3029 static void __init gather_bootmem_prealloc(void)
3030 {
3031 	struct huge_bootmem_page *m;
3032 
3033 	list_for_each_entry(m, &huge_boot_pages, list) {
3034 		struct page *page = virt_to_page(m);
3035 		struct hstate *h = m->hstate;
3036 
3037 		VM_BUG_ON(!hstate_is_gigantic(h));
3038 		WARN_ON(page_count(page) != 1);
3039 		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3040 			WARN_ON(PageReserved(page));
3041 			prep_new_huge_page(h, page, page_to_nid(page));
3042 			put_page(page); /* add to the hugepage allocator */
3043 		} else {
3044 			/* VERY unlikely inflated ref count on a tail page */
3045 			free_gigantic_page(page, huge_page_order(h));
3046 		}
3047 
3048 		/*
3049 		 * We need to restore the 'stolen' pages to totalram_pages
3050 		 * in order to fix confusing memory reports from free(1) and
3051 		 * other side-effects, like CommitLimit going negative.
3052 		 */
3053 		adjust_managed_page_count(page, pages_per_huge_page(h));
3054 		cond_resched();
3055 	}
3056 }
3057 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3058 {
3059 	unsigned long i;
3060 	char buf[32];
3061 
3062 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3063 		if (hstate_is_gigantic(h)) {
3064 			if (!alloc_bootmem_huge_page(h, nid))
3065 				break;
3066 		} else {
3067 			struct page *page;
3068 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3069 
3070 			page = alloc_fresh_huge_page(h, gfp_mask, nid,
3071 					&node_states[N_MEMORY], NULL);
3072 			if (!page)
3073 				break;
3074 			put_page(page); /* free it into the hugepage allocator */
3075 		}
3076 		cond_resched();
3077 	}
3078 	if (i == h->max_huge_pages_node[nid])
3079 		return;
3080 
3081 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3082 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3083 		h->max_huge_pages_node[nid], buf, nid, i);
3084 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3085 	h->max_huge_pages_node[nid] = i;
3086 }
3087 
3088 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3089 {
3090 	unsigned long i;
3091 	nodemask_t *node_alloc_noretry;
3092 	bool node_specific_alloc = false;
3093 
3094 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3095 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3096 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3097 		return;
3098 	}
3099 
3100 	/* do node specific alloc */
3101 	for_each_online_node(i) {
3102 		if (h->max_huge_pages_node[i] > 0) {
3103 			hugetlb_hstate_alloc_pages_onenode(h, i);
3104 			node_specific_alloc = true;
3105 		}
3106 	}
3107 
3108 	if (node_specific_alloc)
3109 		return;
3110 
3111 	/* below will do all node balanced alloc */
3112 	if (!hstate_is_gigantic(h)) {
3113 		/*
3114 		 * Bit mask controlling how hard we retry per-node allocations.
3115 		 * Ignore errors as lower level routines can deal with
3116 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3117 		 * time, we are likely in bigger trouble.
3118 		 */
3119 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3120 						GFP_KERNEL);
3121 	} else {
3122 		/* allocations done at boot time */
3123 		node_alloc_noretry = NULL;
3124 	}
3125 
3126 	/* bit mask controlling how hard we retry per-node allocations */
3127 	if (node_alloc_noretry)
3128 		nodes_clear(*node_alloc_noretry);
3129 
3130 	for (i = 0; i < h->max_huge_pages; ++i) {
3131 		if (hstate_is_gigantic(h)) {
3132 			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3133 				break;
3134 		} else if (!alloc_pool_huge_page(h,
3135 					 &node_states[N_MEMORY],
3136 					 node_alloc_noretry))
3137 			break;
3138 		cond_resched();
3139 	}
3140 	if (i < h->max_huge_pages) {
3141 		char buf[32];
3142 
3143 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3144 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3145 			h->max_huge_pages, buf, i);
3146 		h->max_huge_pages = i;
3147 	}
3148 	kfree(node_alloc_noretry);
3149 }
3150 
3151 static void __init hugetlb_init_hstates(void)
3152 {
3153 	struct hstate *h, *h2;
3154 
3155 	for_each_hstate(h) {
3156 		/* oversize hugepages were init'ed in early boot */
3157 		if (!hstate_is_gigantic(h))
3158 			hugetlb_hstate_alloc_pages(h);
3159 
3160 		/*
3161 		 * Set demote order for each hstate.  Note that
3162 		 * h->demote_order is initially 0.
3163 		 * - We can not demote gigantic pages if runtime freeing
3164 		 *   is not supported, so skip this.
3165 		 * - If CMA allocation is possible, we can not demote
3166 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3167 		 */
3168 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3169 			continue;
3170 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3171 			continue;
3172 		for_each_hstate(h2) {
3173 			if (h2 == h)
3174 				continue;
3175 			if (h2->order < h->order &&
3176 			    h2->order > h->demote_order)
3177 				h->demote_order = h2->order;
3178 		}
3179 	}
3180 }
3181 
3182 static void __init report_hugepages(void)
3183 {
3184 	struct hstate *h;
3185 
3186 	for_each_hstate(h) {
3187 		char buf[32];
3188 
3189 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3190 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3191 			buf, h->free_huge_pages);
3192 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3193 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3194 	}
3195 }
3196 
3197 #ifdef CONFIG_HIGHMEM
3198 static void try_to_free_low(struct hstate *h, unsigned long count,
3199 						nodemask_t *nodes_allowed)
3200 {
3201 	int i;
3202 	LIST_HEAD(page_list);
3203 
3204 	lockdep_assert_held(&hugetlb_lock);
3205 	if (hstate_is_gigantic(h))
3206 		return;
3207 
3208 	/*
3209 	 * Collect pages to be freed on a list, and free after dropping lock
3210 	 */
3211 	for_each_node_mask(i, *nodes_allowed) {
3212 		struct page *page, *next;
3213 		struct list_head *freel = &h->hugepage_freelists[i];
3214 		list_for_each_entry_safe(page, next, freel, lru) {
3215 			if (count >= h->nr_huge_pages)
3216 				goto out;
3217 			if (PageHighMem(page))
3218 				continue;
3219 			remove_hugetlb_page(h, page, false);
3220 			list_add(&page->lru, &page_list);
3221 		}
3222 	}
3223 
3224 out:
3225 	spin_unlock_irq(&hugetlb_lock);
3226 	update_and_free_pages_bulk(h, &page_list);
3227 	spin_lock_irq(&hugetlb_lock);
3228 }
3229 #else
3230 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3231 						nodemask_t *nodes_allowed)
3232 {
3233 }
3234 #endif
3235 
3236 /*
3237  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3238  * balanced by operating on them in a round-robin fashion.
3239  * Returns 1 if an adjustment was made.
3240  */
3241 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3242 				int delta)
3243 {
3244 	int nr_nodes, node;
3245 
3246 	lockdep_assert_held(&hugetlb_lock);
3247 	VM_BUG_ON(delta != -1 && delta != 1);
3248 
3249 	if (delta < 0) {
3250 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3251 			if (h->surplus_huge_pages_node[node])
3252 				goto found;
3253 		}
3254 	} else {
3255 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3256 			if (h->surplus_huge_pages_node[node] <
3257 					h->nr_huge_pages_node[node])
3258 				goto found;
3259 		}
3260 	}
3261 	return 0;
3262 
3263 found:
3264 	h->surplus_huge_pages += delta;
3265 	h->surplus_huge_pages_node[node] += delta;
3266 	return 1;
3267 }
3268 
3269 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3270 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3271 			      nodemask_t *nodes_allowed)
3272 {
3273 	unsigned long min_count, ret;
3274 	struct page *page;
3275 	LIST_HEAD(page_list);
3276 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3277 
3278 	/*
3279 	 * Bit mask controlling how hard we retry per-node allocations.
3280 	 * If we can not allocate the bit mask, do not attempt to allocate
3281 	 * the requested huge pages.
3282 	 */
3283 	if (node_alloc_noretry)
3284 		nodes_clear(*node_alloc_noretry);
3285 	else
3286 		return -ENOMEM;
3287 
3288 	/*
3289 	 * resize_lock mutex prevents concurrent adjustments to number of
3290 	 * pages in hstate via the proc/sysfs interfaces.
3291 	 */
3292 	mutex_lock(&h->resize_lock);
3293 	flush_free_hpage_work(h);
3294 	spin_lock_irq(&hugetlb_lock);
3295 
3296 	/*
3297 	 * Check for a node specific request.
3298 	 * Changing node specific huge page count may require a corresponding
3299 	 * change to the global count.  In any case, the passed node mask
3300 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3301 	 */
3302 	if (nid != NUMA_NO_NODE) {
3303 		unsigned long old_count = count;
3304 
3305 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3306 		/*
3307 		 * User may have specified a large count value which caused the
3308 		 * above calculation to overflow.  In this case, they wanted
3309 		 * to allocate as many huge pages as possible.  Set count to
3310 		 * largest possible value to align with their intention.
3311 		 */
3312 		if (count < old_count)
3313 			count = ULONG_MAX;
3314 	}
3315 
3316 	/*
3317 	 * Gigantic pages runtime allocation depend on the capability for large
3318 	 * page range allocation.
3319 	 * If the system does not provide this feature, return an error when
3320 	 * the user tries to allocate gigantic pages but let the user free the
3321 	 * boottime allocated gigantic pages.
3322 	 */
3323 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3324 		if (count > persistent_huge_pages(h)) {
3325 			spin_unlock_irq(&hugetlb_lock);
3326 			mutex_unlock(&h->resize_lock);
3327 			NODEMASK_FREE(node_alloc_noretry);
3328 			return -EINVAL;
3329 		}
3330 		/* Fall through to decrease pool */
3331 	}
3332 
3333 	/*
3334 	 * Increase the pool size
3335 	 * First take pages out of surplus state.  Then make up the
3336 	 * remaining difference by allocating fresh huge pages.
3337 	 *
3338 	 * We might race with alloc_surplus_huge_page() here and be unable
3339 	 * to convert a surplus huge page to a normal huge page. That is
3340 	 * not critical, though, it just means the overall size of the
3341 	 * pool might be one hugepage larger than it needs to be, but
3342 	 * within all the constraints specified by the sysctls.
3343 	 */
3344 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3345 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3346 			break;
3347 	}
3348 
3349 	while (count > persistent_huge_pages(h)) {
3350 		/*
3351 		 * If this allocation races such that we no longer need the
3352 		 * page, free_huge_page will handle it by freeing the page
3353 		 * and reducing the surplus.
3354 		 */
3355 		spin_unlock_irq(&hugetlb_lock);
3356 
3357 		/* yield cpu to avoid soft lockup */
3358 		cond_resched();
3359 
3360 		ret = alloc_pool_huge_page(h, nodes_allowed,
3361 						node_alloc_noretry);
3362 		spin_lock_irq(&hugetlb_lock);
3363 		if (!ret)
3364 			goto out;
3365 
3366 		/* Bail for signals. Probably ctrl-c from user */
3367 		if (signal_pending(current))
3368 			goto out;
3369 	}
3370 
3371 	/*
3372 	 * Decrease the pool size
3373 	 * First return free pages to the buddy allocator (being careful
3374 	 * to keep enough around to satisfy reservations).  Then place
3375 	 * pages into surplus state as needed so the pool will shrink
3376 	 * to the desired size as pages become free.
3377 	 *
3378 	 * By placing pages into the surplus state independent of the
3379 	 * overcommit value, we are allowing the surplus pool size to
3380 	 * exceed overcommit. There are few sane options here. Since
3381 	 * alloc_surplus_huge_page() is checking the global counter,
3382 	 * though, we'll note that we're not allowed to exceed surplus
3383 	 * and won't grow the pool anywhere else. Not until one of the
3384 	 * sysctls are changed, or the surplus pages go out of use.
3385 	 */
3386 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3387 	min_count = max(count, min_count);
3388 	try_to_free_low(h, min_count, nodes_allowed);
3389 
3390 	/*
3391 	 * Collect pages to be removed on list without dropping lock
3392 	 */
3393 	while (min_count < persistent_huge_pages(h)) {
3394 		page = remove_pool_huge_page(h, nodes_allowed, 0);
3395 		if (!page)
3396 			break;
3397 
3398 		list_add(&page->lru, &page_list);
3399 	}
3400 	/* free the pages after dropping lock */
3401 	spin_unlock_irq(&hugetlb_lock);
3402 	update_and_free_pages_bulk(h, &page_list);
3403 	flush_free_hpage_work(h);
3404 	spin_lock_irq(&hugetlb_lock);
3405 
3406 	while (count < persistent_huge_pages(h)) {
3407 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3408 			break;
3409 	}
3410 out:
3411 	h->max_huge_pages = persistent_huge_pages(h);
3412 	spin_unlock_irq(&hugetlb_lock);
3413 	mutex_unlock(&h->resize_lock);
3414 
3415 	NODEMASK_FREE(node_alloc_noretry);
3416 
3417 	return 0;
3418 }
3419 
3420 static int demote_free_huge_page(struct hstate *h, struct page *page)
3421 {
3422 	int i, nid = page_to_nid(page);
3423 	struct hstate *target_hstate;
3424 	struct page *subpage;
3425 	int rc = 0;
3426 
3427 	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3428 
3429 	remove_hugetlb_page_for_demote(h, page, false);
3430 	spin_unlock_irq(&hugetlb_lock);
3431 
3432 	rc = hugetlb_vmemmap_restore(h, page);
3433 	if (rc) {
3434 		/* Allocation of vmemmmap failed, we can not demote page */
3435 		spin_lock_irq(&hugetlb_lock);
3436 		set_page_refcounted(page);
3437 		add_hugetlb_page(h, page, false);
3438 		return rc;
3439 	}
3440 
3441 	/*
3442 	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3443 	 * sizes as it will not ref count pages.
3444 	 */
3445 	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3446 
3447 	/*
3448 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3449 	 * Without the mutex, pages added to target hstate could be marked
3450 	 * as surplus.
3451 	 *
3452 	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3453 	 * use the convention of always taking larger size hstate mutex first.
3454 	 */
3455 	mutex_lock(&target_hstate->resize_lock);
3456 	for (i = 0; i < pages_per_huge_page(h);
3457 				i += pages_per_huge_page(target_hstate)) {
3458 		subpage = nth_page(page, i);
3459 		if (hstate_is_gigantic(target_hstate))
3460 			prep_compound_gigantic_page_for_demote(subpage,
3461 							target_hstate->order);
3462 		else
3463 			prep_compound_page(subpage, target_hstate->order);
3464 		set_page_private(subpage, 0);
3465 		set_page_refcounted(subpage);
3466 		prep_new_huge_page(target_hstate, subpage, nid);
3467 		put_page(subpage);
3468 	}
3469 	mutex_unlock(&target_hstate->resize_lock);
3470 
3471 	spin_lock_irq(&hugetlb_lock);
3472 
3473 	/*
3474 	 * Not absolutely necessary, but for consistency update max_huge_pages
3475 	 * based on pool changes for the demoted page.
3476 	 */
3477 	h->max_huge_pages--;
3478 	target_hstate->max_huge_pages +=
3479 		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3480 
3481 	return rc;
3482 }
3483 
3484 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3485 	__must_hold(&hugetlb_lock)
3486 {
3487 	int nr_nodes, node;
3488 	struct page *page;
3489 
3490 	lockdep_assert_held(&hugetlb_lock);
3491 
3492 	/* We should never get here if no demote order */
3493 	if (!h->demote_order) {
3494 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3495 		return -EINVAL;		/* internal error */
3496 	}
3497 
3498 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3499 		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3500 			if (PageHWPoison(page))
3501 				continue;
3502 
3503 			return demote_free_huge_page(h, page);
3504 		}
3505 	}
3506 
3507 	/*
3508 	 * Only way to get here is if all pages on free lists are poisoned.
3509 	 * Return -EBUSY so that caller will not retry.
3510 	 */
3511 	return -EBUSY;
3512 }
3513 
3514 #define HSTATE_ATTR_RO(_name) \
3515 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3516 
3517 #define HSTATE_ATTR_WO(_name) \
3518 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3519 
3520 #define HSTATE_ATTR(_name) \
3521 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3522 
3523 static struct kobject *hugepages_kobj;
3524 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3525 
3526 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3527 
3528 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3529 {
3530 	int i;
3531 
3532 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3533 		if (hstate_kobjs[i] == kobj) {
3534 			if (nidp)
3535 				*nidp = NUMA_NO_NODE;
3536 			return &hstates[i];
3537 		}
3538 
3539 	return kobj_to_node_hstate(kobj, nidp);
3540 }
3541 
3542 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3543 					struct kobj_attribute *attr, char *buf)
3544 {
3545 	struct hstate *h;
3546 	unsigned long nr_huge_pages;
3547 	int nid;
3548 
3549 	h = kobj_to_hstate(kobj, &nid);
3550 	if (nid == NUMA_NO_NODE)
3551 		nr_huge_pages = h->nr_huge_pages;
3552 	else
3553 		nr_huge_pages = h->nr_huge_pages_node[nid];
3554 
3555 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3556 }
3557 
3558 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3559 					   struct hstate *h, int nid,
3560 					   unsigned long count, size_t len)
3561 {
3562 	int err;
3563 	nodemask_t nodes_allowed, *n_mask;
3564 
3565 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3566 		return -EINVAL;
3567 
3568 	if (nid == NUMA_NO_NODE) {
3569 		/*
3570 		 * global hstate attribute
3571 		 */
3572 		if (!(obey_mempolicy &&
3573 				init_nodemask_of_mempolicy(&nodes_allowed)))
3574 			n_mask = &node_states[N_MEMORY];
3575 		else
3576 			n_mask = &nodes_allowed;
3577 	} else {
3578 		/*
3579 		 * Node specific request.  count adjustment happens in
3580 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3581 		 */
3582 		init_nodemask_of_node(&nodes_allowed, nid);
3583 		n_mask = &nodes_allowed;
3584 	}
3585 
3586 	err = set_max_huge_pages(h, count, nid, n_mask);
3587 
3588 	return err ? err : len;
3589 }
3590 
3591 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3592 					 struct kobject *kobj, const char *buf,
3593 					 size_t len)
3594 {
3595 	struct hstate *h;
3596 	unsigned long count;
3597 	int nid;
3598 	int err;
3599 
3600 	err = kstrtoul(buf, 10, &count);
3601 	if (err)
3602 		return err;
3603 
3604 	h = kobj_to_hstate(kobj, &nid);
3605 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3606 }
3607 
3608 static ssize_t nr_hugepages_show(struct kobject *kobj,
3609 				       struct kobj_attribute *attr, char *buf)
3610 {
3611 	return nr_hugepages_show_common(kobj, attr, buf);
3612 }
3613 
3614 static ssize_t nr_hugepages_store(struct kobject *kobj,
3615 	       struct kobj_attribute *attr, const char *buf, size_t len)
3616 {
3617 	return nr_hugepages_store_common(false, kobj, buf, len);
3618 }
3619 HSTATE_ATTR(nr_hugepages);
3620 
3621 #ifdef CONFIG_NUMA
3622 
3623 /*
3624  * hstate attribute for optionally mempolicy-based constraint on persistent
3625  * huge page alloc/free.
3626  */
3627 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3628 					   struct kobj_attribute *attr,
3629 					   char *buf)
3630 {
3631 	return nr_hugepages_show_common(kobj, attr, buf);
3632 }
3633 
3634 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3635 	       struct kobj_attribute *attr, const char *buf, size_t len)
3636 {
3637 	return nr_hugepages_store_common(true, kobj, buf, len);
3638 }
3639 HSTATE_ATTR(nr_hugepages_mempolicy);
3640 #endif
3641 
3642 
3643 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3644 					struct kobj_attribute *attr, char *buf)
3645 {
3646 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3647 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3648 }
3649 
3650 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3651 		struct kobj_attribute *attr, const char *buf, size_t count)
3652 {
3653 	int err;
3654 	unsigned long input;
3655 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3656 
3657 	if (hstate_is_gigantic(h))
3658 		return -EINVAL;
3659 
3660 	err = kstrtoul(buf, 10, &input);
3661 	if (err)
3662 		return err;
3663 
3664 	spin_lock_irq(&hugetlb_lock);
3665 	h->nr_overcommit_huge_pages = input;
3666 	spin_unlock_irq(&hugetlb_lock);
3667 
3668 	return count;
3669 }
3670 HSTATE_ATTR(nr_overcommit_hugepages);
3671 
3672 static ssize_t free_hugepages_show(struct kobject *kobj,
3673 					struct kobj_attribute *attr, char *buf)
3674 {
3675 	struct hstate *h;
3676 	unsigned long free_huge_pages;
3677 	int nid;
3678 
3679 	h = kobj_to_hstate(kobj, &nid);
3680 	if (nid == NUMA_NO_NODE)
3681 		free_huge_pages = h->free_huge_pages;
3682 	else
3683 		free_huge_pages = h->free_huge_pages_node[nid];
3684 
3685 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3686 }
3687 HSTATE_ATTR_RO(free_hugepages);
3688 
3689 static ssize_t resv_hugepages_show(struct kobject *kobj,
3690 					struct kobj_attribute *attr, char *buf)
3691 {
3692 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3693 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3694 }
3695 HSTATE_ATTR_RO(resv_hugepages);
3696 
3697 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3698 					struct kobj_attribute *attr, char *buf)
3699 {
3700 	struct hstate *h;
3701 	unsigned long surplus_huge_pages;
3702 	int nid;
3703 
3704 	h = kobj_to_hstate(kobj, &nid);
3705 	if (nid == NUMA_NO_NODE)
3706 		surplus_huge_pages = h->surplus_huge_pages;
3707 	else
3708 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3709 
3710 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3711 }
3712 HSTATE_ATTR_RO(surplus_hugepages);
3713 
3714 static ssize_t demote_store(struct kobject *kobj,
3715 	       struct kobj_attribute *attr, const char *buf, size_t len)
3716 {
3717 	unsigned long nr_demote;
3718 	unsigned long nr_available;
3719 	nodemask_t nodes_allowed, *n_mask;
3720 	struct hstate *h;
3721 	int err = 0;
3722 	int nid;
3723 
3724 	err = kstrtoul(buf, 10, &nr_demote);
3725 	if (err)
3726 		return err;
3727 	h = kobj_to_hstate(kobj, &nid);
3728 
3729 	if (nid != NUMA_NO_NODE) {
3730 		init_nodemask_of_node(&nodes_allowed, nid);
3731 		n_mask = &nodes_allowed;
3732 	} else {
3733 		n_mask = &node_states[N_MEMORY];
3734 	}
3735 
3736 	/* Synchronize with other sysfs operations modifying huge pages */
3737 	mutex_lock(&h->resize_lock);
3738 	spin_lock_irq(&hugetlb_lock);
3739 
3740 	while (nr_demote) {
3741 		/*
3742 		 * Check for available pages to demote each time thorough the
3743 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3744 		 */
3745 		if (nid != NUMA_NO_NODE)
3746 			nr_available = h->free_huge_pages_node[nid];
3747 		else
3748 			nr_available = h->free_huge_pages;
3749 		nr_available -= h->resv_huge_pages;
3750 		if (!nr_available)
3751 			break;
3752 
3753 		err = demote_pool_huge_page(h, n_mask);
3754 		if (err)
3755 			break;
3756 
3757 		nr_demote--;
3758 	}
3759 
3760 	spin_unlock_irq(&hugetlb_lock);
3761 	mutex_unlock(&h->resize_lock);
3762 
3763 	if (err)
3764 		return err;
3765 	return len;
3766 }
3767 HSTATE_ATTR_WO(demote);
3768 
3769 static ssize_t demote_size_show(struct kobject *kobj,
3770 					struct kobj_attribute *attr, char *buf)
3771 {
3772 	struct hstate *h = kobj_to_hstate(kobj, NULL);
3773 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3774 
3775 	return sysfs_emit(buf, "%lukB\n", demote_size);
3776 }
3777 
3778 static ssize_t demote_size_store(struct kobject *kobj,
3779 					struct kobj_attribute *attr,
3780 					const char *buf, size_t count)
3781 {
3782 	struct hstate *h, *demote_hstate;
3783 	unsigned long demote_size;
3784 	unsigned int demote_order;
3785 
3786 	demote_size = (unsigned long)memparse(buf, NULL);
3787 
3788 	demote_hstate = size_to_hstate(demote_size);
3789 	if (!demote_hstate)
3790 		return -EINVAL;
3791 	demote_order = demote_hstate->order;
3792 	if (demote_order < HUGETLB_PAGE_ORDER)
3793 		return -EINVAL;
3794 
3795 	/* demote order must be smaller than hstate order */
3796 	h = kobj_to_hstate(kobj, NULL);
3797 	if (demote_order >= h->order)
3798 		return -EINVAL;
3799 
3800 	/* resize_lock synchronizes access to demote size and writes */
3801 	mutex_lock(&h->resize_lock);
3802 	h->demote_order = demote_order;
3803 	mutex_unlock(&h->resize_lock);
3804 
3805 	return count;
3806 }
3807 HSTATE_ATTR(demote_size);
3808 
3809 static struct attribute *hstate_attrs[] = {
3810 	&nr_hugepages_attr.attr,
3811 	&nr_overcommit_hugepages_attr.attr,
3812 	&free_hugepages_attr.attr,
3813 	&resv_hugepages_attr.attr,
3814 	&surplus_hugepages_attr.attr,
3815 #ifdef CONFIG_NUMA
3816 	&nr_hugepages_mempolicy_attr.attr,
3817 #endif
3818 	NULL,
3819 };
3820 
3821 static const struct attribute_group hstate_attr_group = {
3822 	.attrs = hstate_attrs,
3823 };
3824 
3825 static struct attribute *hstate_demote_attrs[] = {
3826 	&demote_size_attr.attr,
3827 	&demote_attr.attr,
3828 	NULL,
3829 };
3830 
3831 static const struct attribute_group hstate_demote_attr_group = {
3832 	.attrs = hstate_demote_attrs,
3833 };
3834 
3835 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3836 				    struct kobject **hstate_kobjs,
3837 				    const struct attribute_group *hstate_attr_group)
3838 {
3839 	int retval;
3840 	int hi = hstate_index(h);
3841 
3842 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3843 	if (!hstate_kobjs[hi])
3844 		return -ENOMEM;
3845 
3846 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3847 	if (retval) {
3848 		kobject_put(hstate_kobjs[hi]);
3849 		hstate_kobjs[hi] = NULL;
3850 		return retval;
3851 	}
3852 
3853 	if (h->demote_order) {
3854 		retval = sysfs_create_group(hstate_kobjs[hi],
3855 					    &hstate_demote_attr_group);
3856 		if (retval) {
3857 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3858 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3859 			kobject_put(hstate_kobjs[hi]);
3860 			hstate_kobjs[hi] = NULL;
3861 			return retval;
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static void __init hugetlb_sysfs_init(void)
3869 {
3870 	struct hstate *h;
3871 	int err;
3872 
3873 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3874 	if (!hugepages_kobj)
3875 		return;
3876 
3877 	for_each_hstate(h) {
3878 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3879 					 hstate_kobjs, &hstate_attr_group);
3880 		if (err)
3881 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3882 	}
3883 }
3884 
3885 #ifdef CONFIG_NUMA
3886 
3887 /*
3888  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3889  * with node devices in node_devices[] using a parallel array.  The array
3890  * index of a node device or _hstate == node id.
3891  * This is here to avoid any static dependency of the node device driver, in
3892  * the base kernel, on the hugetlb module.
3893  */
3894 struct node_hstate {
3895 	struct kobject		*hugepages_kobj;
3896 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3897 };
3898 static struct node_hstate node_hstates[MAX_NUMNODES];
3899 
3900 /*
3901  * A subset of global hstate attributes for node devices
3902  */
3903 static struct attribute *per_node_hstate_attrs[] = {
3904 	&nr_hugepages_attr.attr,
3905 	&free_hugepages_attr.attr,
3906 	&surplus_hugepages_attr.attr,
3907 	NULL,
3908 };
3909 
3910 static const struct attribute_group per_node_hstate_attr_group = {
3911 	.attrs = per_node_hstate_attrs,
3912 };
3913 
3914 /*
3915  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3916  * Returns node id via non-NULL nidp.
3917  */
3918 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3919 {
3920 	int nid;
3921 
3922 	for (nid = 0; nid < nr_node_ids; nid++) {
3923 		struct node_hstate *nhs = &node_hstates[nid];
3924 		int i;
3925 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3926 			if (nhs->hstate_kobjs[i] == kobj) {
3927 				if (nidp)
3928 					*nidp = nid;
3929 				return &hstates[i];
3930 			}
3931 	}
3932 
3933 	BUG();
3934 	return NULL;
3935 }
3936 
3937 /*
3938  * Unregister hstate attributes from a single node device.
3939  * No-op if no hstate attributes attached.
3940  */
3941 static void hugetlb_unregister_node(struct node *node)
3942 {
3943 	struct hstate *h;
3944 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3945 
3946 	if (!nhs->hugepages_kobj)
3947 		return;		/* no hstate attributes */
3948 
3949 	for_each_hstate(h) {
3950 		int idx = hstate_index(h);
3951 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3952 
3953 		if (!hstate_kobj)
3954 			continue;
3955 		if (h->demote_order)
3956 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3957 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3958 		kobject_put(hstate_kobj);
3959 		nhs->hstate_kobjs[idx] = NULL;
3960 	}
3961 
3962 	kobject_put(nhs->hugepages_kobj);
3963 	nhs->hugepages_kobj = NULL;
3964 }
3965 
3966 
3967 /*
3968  * Register hstate attributes for a single node device.
3969  * No-op if attributes already registered.
3970  */
3971 static void hugetlb_register_node(struct node *node)
3972 {
3973 	struct hstate *h;
3974 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3975 	int err;
3976 
3977 	if (nhs->hugepages_kobj)
3978 		return;		/* already allocated */
3979 
3980 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3981 							&node->dev.kobj);
3982 	if (!nhs->hugepages_kobj)
3983 		return;
3984 
3985 	for_each_hstate(h) {
3986 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3987 						nhs->hstate_kobjs,
3988 						&per_node_hstate_attr_group);
3989 		if (err) {
3990 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3991 				h->name, node->dev.id);
3992 			hugetlb_unregister_node(node);
3993 			break;
3994 		}
3995 	}
3996 }
3997 
3998 /*
3999  * hugetlb init time:  register hstate attributes for all registered node
4000  * devices of nodes that have memory.  All on-line nodes should have
4001  * registered their associated device by this time.
4002  */
4003 static void __init hugetlb_register_all_nodes(void)
4004 {
4005 	int nid;
4006 
4007 	for_each_node_state(nid, N_MEMORY) {
4008 		struct node *node = node_devices[nid];
4009 		if (node->dev.id == nid)
4010 			hugetlb_register_node(node);
4011 	}
4012 
4013 	/*
4014 	 * Let the node device driver know we're here so it can
4015 	 * [un]register hstate attributes on node hotplug.
4016 	 */
4017 	register_hugetlbfs_with_node(hugetlb_register_node,
4018 				     hugetlb_unregister_node);
4019 }
4020 #else	/* !CONFIG_NUMA */
4021 
4022 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4023 {
4024 	BUG();
4025 	if (nidp)
4026 		*nidp = -1;
4027 	return NULL;
4028 }
4029 
4030 static void hugetlb_register_all_nodes(void) { }
4031 
4032 #endif
4033 
4034 #ifdef CONFIG_CMA
4035 static void __init hugetlb_cma_check(void);
4036 #else
4037 static inline __init void hugetlb_cma_check(void)
4038 {
4039 }
4040 #endif
4041 
4042 static int __init hugetlb_init(void)
4043 {
4044 	int i;
4045 
4046 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4047 			__NR_HPAGEFLAGS);
4048 
4049 	if (!hugepages_supported()) {
4050 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4051 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4052 		return 0;
4053 	}
4054 
4055 	/*
4056 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4057 	 * architectures depend on setup being done here.
4058 	 */
4059 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4060 	if (!parsed_default_hugepagesz) {
4061 		/*
4062 		 * If we did not parse a default huge page size, set
4063 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4064 		 * number of huge pages for this default size was implicitly
4065 		 * specified, set that here as well.
4066 		 * Note that the implicit setting will overwrite an explicit
4067 		 * setting.  A warning will be printed in this case.
4068 		 */
4069 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4070 		if (default_hstate_max_huge_pages) {
4071 			if (default_hstate.max_huge_pages) {
4072 				char buf[32];
4073 
4074 				string_get_size(huge_page_size(&default_hstate),
4075 					1, STRING_UNITS_2, buf, 32);
4076 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4077 					default_hstate.max_huge_pages, buf);
4078 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4079 					default_hstate_max_huge_pages);
4080 			}
4081 			default_hstate.max_huge_pages =
4082 				default_hstate_max_huge_pages;
4083 
4084 			for_each_online_node(i)
4085 				default_hstate.max_huge_pages_node[i] =
4086 					default_hugepages_in_node[i];
4087 		}
4088 	}
4089 
4090 	hugetlb_cma_check();
4091 	hugetlb_init_hstates();
4092 	gather_bootmem_prealloc();
4093 	report_hugepages();
4094 
4095 	hugetlb_sysfs_init();
4096 	hugetlb_register_all_nodes();
4097 	hugetlb_cgroup_file_init();
4098 
4099 #ifdef CONFIG_SMP
4100 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4101 #else
4102 	num_fault_mutexes = 1;
4103 #endif
4104 	hugetlb_fault_mutex_table =
4105 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4106 			      GFP_KERNEL);
4107 	BUG_ON(!hugetlb_fault_mutex_table);
4108 
4109 	for (i = 0; i < num_fault_mutexes; i++)
4110 		mutex_init(&hugetlb_fault_mutex_table[i]);
4111 	return 0;
4112 }
4113 subsys_initcall(hugetlb_init);
4114 
4115 /* Overwritten by architectures with more huge page sizes */
4116 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4117 {
4118 	return size == HPAGE_SIZE;
4119 }
4120 
4121 void __init hugetlb_add_hstate(unsigned int order)
4122 {
4123 	struct hstate *h;
4124 	unsigned long i;
4125 
4126 	if (size_to_hstate(PAGE_SIZE << order)) {
4127 		return;
4128 	}
4129 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4130 	BUG_ON(order == 0);
4131 	h = &hstates[hugetlb_max_hstate++];
4132 	mutex_init(&h->resize_lock);
4133 	h->order = order;
4134 	h->mask = ~(huge_page_size(h) - 1);
4135 	for (i = 0; i < MAX_NUMNODES; ++i)
4136 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4137 	INIT_LIST_HEAD(&h->hugepage_activelist);
4138 	h->next_nid_to_alloc = first_memory_node;
4139 	h->next_nid_to_free = first_memory_node;
4140 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4141 					huge_page_size(h)/SZ_1K);
4142 
4143 	parsed_hstate = h;
4144 }
4145 
4146 bool __init __weak hugetlb_node_alloc_supported(void)
4147 {
4148 	return true;
4149 }
4150 
4151 static void __init hugepages_clear_pages_in_node(void)
4152 {
4153 	if (!hugetlb_max_hstate) {
4154 		default_hstate_max_huge_pages = 0;
4155 		memset(default_hugepages_in_node, 0,
4156 			sizeof(default_hugepages_in_node));
4157 	} else {
4158 		parsed_hstate->max_huge_pages = 0;
4159 		memset(parsed_hstate->max_huge_pages_node, 0,
4160 			sizeof(parsed_hstate->max_huge_pages_node));
4161 	}
4162 }
4163 
4164 /*
4165  * hugepages command line processing
4166  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4167  * specification.  If not, ignore the hugepages value.  hugepages can also
4168  * be the first huge page command line  option in which case it implicitly
4169  * specifies the number of huge pages for the default size.
4170  */
4171 static int __init hugepages_setup(char *s)
4172 {
4173 	unsigned long *mhp;
4174 	static unsigned long *last_mhp;
4175 	int node = NUMA_NO_NODE;
4176 	int count;
4177 	unsigned long tmp;
4178 	char *p = s;
4179 
4180 	if (!parsed_valid_hugepagesz) {
4181 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4182 		parsed_valid_hugepagesz = true;
4183 		return 1;
4184 	}
4185 
4186 	/*
4187 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4188 	 * yet, so this hugepages= parameter goes to the "default hstate".
4189 	 * Otherwise, it goes with the previously parsed hugepagesz or
4190 	 * default_hugepagesz.
4191 	 */
4192 	else if (!hugetlb_max_hstate)
4193 		mhp = &default_hstate_max_huge_pages;
4194 	else
4195 		mhp = &parsed_hstate->max_huge_pages;
4196 
4197 	if (mhp == last_mhp) {
4198 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4199 		return 1;
4200 	}
4201 
4202 	while (*p) {
4203 		count = 0;
4204 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4205 			goto invalid;
4206 		/* Parameter is node format */
4207 		if (p[count] == ':') {
4208 			if (!hugetlb_node_alloc_supported()) {
4209 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4210 				return 1;
4211 			}
4212 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4213 				goto invalid;
4214 			node = array_index_nospec(tmp, MAX_NUMNODES);
4215 			p += count + 1;
4216 			/* Parse hugepages */
4217 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4218 				goto invalid;
4219 			if (!hugetlb_max_hstate)
4220 				default_hugepages_in_node[node] = tmp;
4221 			else
4222 				parsed_hstate->max_huge_pages_node[node] = tmp;
4223 			*mhp += tmp;
4224 			/* Go to parse next node*/
4225 			if (p[count] == ',')
4226 				p += count + 1;
4227 			else
4228 				break;
4229 		} else {
4230 			if (p != s)
4231 				goto invalid;
4232 			*mhp = tmp;
4233 			break;
4234 		}
4235 	}
4236 
4237 	/*
4238 	 * Global state is always initialized later in hugetlb_init.
4239 	 * But we need to allocate gigantic hstates here early to still
4240 	 * use the bootmem allocator.
4241 	 */
4242 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4243 		hugetlb_hstate_alloc_pages(parsed_hstate);
4244 
4245 	last_mhp = mhp;
4246 
4247 	return 1;
4248 
4249 invalid:
4250 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4251 	hugepages_clear_pages_in_node();
4252 	return 1;
4253 }
4254 __setup("hugepages=", hugepages_setup);
4255 
4256 /*
4257  * hugepagesz command line processing
4258  * A specific huge page size can only be specified once with hugepagesz.
4259  * hugepagesz is followed by hugepages on the command line.  The global
4260  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4261  * hugepagesz argument was valid.
4262  */
4263 static int __init hugepagesz_setup(char *s)
4264 {
4265 	unsigned long size;
4266 	struct hstate *h;
4267 
4268 	parsed_valid_hugepagesz = false;
4269 	size = (unsigned long)memparse(s, NULL);
4270 
4271 	if (!arch_hugetlb_valid_size(size)) {
4272 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4273 		return 1;
4274 	}
4275 
4276 	h = size_to_hstate(size);
4277 	if (h) {
4278 		/*
4279 		 * hstate for this size already exists.  This is normally
4280 		 * an error, but is allowed if the existing hstate is the
4281 		 * default hstate.  More specifically, it is only allowed if
4282 		 * the number of huge pages for the default hstate was not
4283 		 * previously specified.
4284 		 */
4285 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4286 		    default_hstate.max_huge_pages) {
4287 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4288 			return 1;
4289 		}
4290 
4291 		/*
4292 		 * No need to call hugetlb_add_hstate() as hstate already
4293 		 * exists.  But, do set parsed_hstate so that a following
4294 		 * hugepages= parameter will be applied to this hstate.
4295 		 */
4296 		parsed_hstate = h;
4297 		parsed_valid_hugepagesz = true;
4298 		return 1;
4299 	}
4300 
4301 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4302 	parsed_valid_hugepagesz = true;
4303 	return 1;
4304 }
4305 __setup("hugepagesz=", hugepagesz_setup);
4306 
4307 /*
4308  * default_hugepagesz command line input
4309  * Only one instance of default_hugepagesz allowed on command line.
4310  */
4311 static int __init default_hugepagesz_setup(char *s)
4312 {
4313 	unsigned long size;
4314 	int i;
4315 
4316 	parsed_valid_hugepagesz = false;
4317 	if (parsed_default_hugepagesz) {
4318 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4319 		return 1;
4320 	}
4321 
4322 	size = (unsigned long)memparse(s, NULL);
4323 
4324 	if (!arch_hugetlb_valid_size(size)) {
4325 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4326 		return 1;
4327 	}
4328 
4329 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4330 	parsed_valid_hugepagesz = true;
4331 	parsed_default_hugepagesz = true;
4332 	default_hstate_idx = hstate_index(size_to_hstate(size));
4333 
4334 	/*
4335 	 * The number of default huge pages (for this size) could have been
4336 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4337 	 * then default_hstate_max_huge_pages is set.  If the default huge
4338 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
4339 	 * allocated here from bootmem allocator.
4340 	 */
4341 	if (default_hstate_max_huge_pages) {
4342 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4343 		for_each_online_node(i)
4344 			default_hstate.max_huge_pages_node[i] =
4345 				default_hugepages_in_node[i];
4346 		if (hstate_is_gigantic(&default_hstate))
4347 			hugetlb_hstate_alloc_pages(&default_hstate);
4348 		default_hstate_max_huge_pages = 0;
4349 	}
4350 
4351 	return 1;
4352 }
4353 __setup("default_hugepagesz=", default_hugepagesz_setup);
4354 
4355 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4356 {
4357 #ifdef CONFIG_NUMA
4358 	struct mempolicy *mpol = get_task_policy(current);
4359 
4360 	/*
4361 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4362 	 * (from policy_nodemask) specifically for hugetlb case
4363 	 */
4364 	if (mpol->mode == MPOL_BIND &&
4365 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4366 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4367 		return &mpol->nodes;
4368 #endif
4369 	return NULL;
4370 }
4371 
4372 static unsigned int allowed_mems_nr(struct hstate *h)
4373 {
4374 	int node;
4375 	unsigned int nr = 0;
4376 	nodemask_t *mbind_nodemask;
4377 	unsigned int *array = h->free_huge_pages_node;
4378 	gfp_t gfp_mask = htlb_alloc_mask(h);
4379 
4380 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4381 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4382 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4383 			nr += array[node];
4384 	}
4385 
4386 	return nr;
4387 }
4388 
4389 #ifdef CONFIG_SYSCTL
4390 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4391 					  void *buffer, size_t *length,
4392 					  loff_t *ppos, unsigned long *out)
4393 {
4394 	struct ctl_table dup_table;
4395 
4396 	/*
4397 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4398 	 * can duplicate the @table and alter the duplicate of it.
4399 	 */
4400 	dup_table = *table;
4401 	dup_table.data = out;
4402 
4403 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4404 }
4405 
4406 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4407 			 struct ctl_table *table, int write,
4408 			 void *buffer, size_t *length, loff_t *ppos)
4409 {
4410 	struct hstate *h = &default_hstate;
4411 	unsigned long tmp = h->max_huge_pages;
4412 	int ret;
4413 
4414 	if (!hugepages_supported())
4415 		return -EOPNOTSUPP;
4416 
4417 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4418 					     &tmp);
4419 	if (ret)
4420 		goto out;
4421 
4422 	if (write)
4423 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4424 						  NUMA_NO_NODE, tmp, *length);
4425 out:
4426 	return ret;
4427 }
4428 
4429 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4430 			  void *buffer, size_t *length, loff_t *ppos)
4431 {
4432 
4433 	return hugetlb_sysctl_handler_common(false, table, write,
4434 							buffer, length, ppos);
4435 }
4436 
4437 #ifdef CONFIG_NUMA
4438 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4439 			  void *buffer, size_t *length, loff_t *ppos)
4440 {
4441 	return hugetlb_sysctl_handler_common(true, table, write,
4442 							buffer, length, ppos);
4443 }
4444 #endif /* CONFIG_NUMA */
4445 
4446 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4447 		void *buffer, size_t *length, loff_t *ppos)
4448 {
4449 	struct hstate *h = &default_hstate;
4450 	unsigned long tmp;
4451 	int ret;
4452 
4453 	if (!hugepages_supported())
4454 		return -EOPNOTSUPP;
4455 
4456 	tmp = h->nr_overcommit_huge_pages;
4457 
4458 	if (write && hstate_is_gigantic(h))
4459 		return -EINVAL;
4460 
4461 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4462 					     &tmp);
4463 	if (ret)
4464 		goto out;
4465 
4466 	if (write) {
4467 		spin_lock_irq(&hugetlb_lock);
4468 		h->nr_overcommit_huge_pages = tmp;
4469 		spin_unlock_irq(&hugetlb_lock);
4470 	}
4471 out:
4472 	return ret;
4473 }
4474 
4475 #endif /* CONFIG_SYSCTL */
4476 
4477 void hugetlb_report_meminfo(struct seq_file *m)
4478 {
4479 	struct hstate *h;
4480 	unsigned long total = 0;
4481 
4482 	if (!hugepages_supported())
4483 		return;
4484 
4485 	for_each_hstate(h) {
4486 		unsigned long count = h->nr_huge_pages;
4487 
4488 		total += huge_page_size(h) * count;
4489 
4490 		if (h == &default_hstate)
4491 			seq_printf(m,
4492 				   "HugePages_Total:   %5lu\n"
4493 				   "HugePages_Free:    %5lu\n"
4494 				   "HugePages_Rsvd:    %5lu\n"
4495 				   "HugePages_Surp:    %5lu\n"
4496 				   "Hugepagesize:   %8lu kB\n",
4497 				   count,
4498 				   h->free_huge_pages,
4499 				   h->resv_huge_pages,
4500 				   h->surplus_huge_pages,
4501 				   huge_page_size(h) / SZ_1K);
4502 	}
4503 
4504 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4505 }
4506 
4507 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4508 {
4509 	struct hstate *h = &default_hstate;
4510 
4511 	if (!hugepages_supported())
4512 		return 0;
4513 
4514 	return sysfs_emit_at(buf, len,
4515 			     "Node %d HugePages_Total: %5u\n"
4516 			     "Node %d HugePages_Free:  %5u\n"
4517 			     "Node %d HugePages_Surp:  %5u\n",
4518 			     nid, h->nr_huge_pages_node[nid],
4519 			     nid, h->free_huge_pages_node[nid],
4520 			     nid, h->surplus_huge_pages_node[nid]);
4521 }
4522 
4523 void hugetlb_show_meminfo_node(int nid)
4524 {
4525 	struct hstate *h;
4526 
4527 	if (!hugepages_supported())
4528 		return;
4529 
4530 	for_each_hstate(h)
4531 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4532 			nid,
4533 			h->nr_huge_pages_node[nid],
4534 			h->free_huge_pages_node[nid],
4535 			h->surplus_huge_pages_node[nid],
4536 			huge_page_size(h) / SZ_1K);
4537 }
4538 
4539 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4540 {
4541 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4542 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4543 }
4544 
4545 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4546 unsigned long hugetlb_total_pages(void)
4547 {
4548 	struct hstate *h;
4549 	unsigned long nr_total_pages = 0;
4550 
4551 	for_each_hstate(h)
4552 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4553 	return nr_total_pages;
4554 }
4555 
4556 static int hugetlb_acct_memory(struct hstate *h, long delta)
4557 {
4558 	int ret = -ENOMEM;
4559 
4560 	if (!delta)
4561 		return 0;
4562 
4563 	spin_lock_irq(&hugetlb_lock);
4564 	/*
4565 	 * When cpuset is configured, it breaks the strict hugetlb page
4566 	 * reservation as the accounting is done on a global variable. Such
4567 	 * reservation is completely rubbish in the presence of cpuset because
4568 	 * the reservation is not checked against page availability for the
4569 	 * current cpuset. Application can still potentially OOM'ed by kernel
4570 	 * with lack of free htlb page in cpuset that the task is in.
4571 	 * Attempt to enforce strict accounting with cpuset is almost
4572 	 * impossible (or too ugly) because cpuset is too fluid that
4573 	 * task or memory node can be dynamically moved between cpusets.
4574 	 *
4575 	 * The change of semantics for shared hugetlb mapping with cpuset is
4576 	 * undesirable. However, in order to preserve some of the semantics,
4577 	 * we fall back to check against current free page availability as
4578 	 * a best attempt and hopefully to minimize the impact of changing
4579 	 * semantics that cpuset has.
4580 	 *
4581 	 * Apart from cpuset, we also have memory policy mechanism that
4582 	 * also determines from which node the kernel will allocate memory
4583 	 * in a NUMA system. So similar to cpuset, we also should consider
4584 	 * the memory policy of the current task. Similar to the description
4585 	 * above.
4586 	 */
4587 	if (delta > 0) {
4588 		if (gather_surplus_pages(h, delta) < 0)
4589 			goto out;
4590 
4591 		if (delta > allowed_mems_nr(h)) {
4592 			return_unused_surplus_pages(h, delta);
4593 			goto out;
4594 		}
4595 	}
4596 
4597 	ret = 0;
4598 	if (delta < 0)
4599 		return_unused_surplus_pages(h, (unsigned long) -delta);
4600 
4601 out:
4602 	spin_unlock_irq(&hugetlb_lock);
4603 	return ret;
4604 }
4605 
4606 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4607 {
4608 	struct resv_map *resv = vma_resv_map(vma);
4609 
4610 	/*
4611 	 * This new VMA should share its siblings reservation map if present.
4612 	 * The VMA will only ever have a valid reservation map pointer where
4613 	 * it is being copied for another still existing VMA.  As that VMA
4614 	 * has a reference to the reservation map it cannot disappear until
4615 	 * after this open call completes.  It is therefore safe to take a
4616 	 * new reference here without additional locking.
4617 	 */
4618 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4619 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4620 		kref_get(&resv->refs);
4621 	}
4622 }
4623 
4624 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4625 {
4626 	struct hstate *h = hstate_vma(vma);
4627 	struct resv_map *resv = vma_resv_map(vma);
4628 	struct hugepage_subpool *spool = subpool_vma(vma);
4629 	unsigned long reserve, start, end;
4630 	long gbl_reserve;
4631 
4632 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4633 		return;
4634 
4635 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4636 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4637 
4638 	reserve = (end - start) - region_count(resv, start, end);
4639 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4640 	if (reserve) {
4641 		/*
4642 		 * Decrement reserve counts.  The global reserve count may be
4643 		 * adjusted if the subpool has a minimum size.
4644 		 */
4645 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4646 		hugetlb_acct_memory(h, -gbl_reserve);
4647 	}
4648 
4649 	kref_put(&resv->refs, resv_map_release);
4650 }
4651 
4652 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4653 {
4654 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4655 		return -EINVAL;
4656 	return 0;
4657 }
4658 
4659 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4660 {
4661 	return huge_page_size(hstate_vma(vma));
4662 }
4663 
4664 /*
4665  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4666  * handle_mm_fault() to try to instantiate regular-sized pages in the
4667  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4668  * this far.
4669  */
4670 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4671 {
4672 	BUG();
4673 	return 0;
4674 }
4675 
4676 /*
4677  * When a new function is introduced to vm_operations_struct and added
4678  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4679  * This is because under System V memory model, mappings created via
4680  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4681  * their original vm_ops are overwritten with shm_vm_ops.
4682  */
4683 const struct vm_operations_struct hugetlb_vm_ops = {
4684 	.fault = hugetlb_vm_op_fault,
4685 	.open = hugetlb_vm_op_open,
4686 	.close = hugetlb_vm_op_close,
4687 	.may_split = hugetlb_vm_op_split,
4688 	.pagesize = hugetlb_vm_op_pagesize,
4689 };
4690 
4691 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4692 				int writable)
4693 {
4694 	pte_t entry;
4695 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4696 
4697 	if (writable) {
4698 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4699 					 vma->vm_page_prot)));
4700 	} else {
4701 		entry = huge_pte_wrprotect(mk_huge_pte(page,
4702 					   vma->vm_page_prot));
4703 	}
4704 	entry = pte_mkyoung(entry);
4705 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4706 
4707 	return entry;
4708 }
4709 
4710 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4711 				   unsigned long address, pte_t *ptep)
4712 {
4713 	pte_t entry;
4714 
4715 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4716 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4717 		update_mmu_cache(vma, address, ptep);
4718 }
4719 
4720 bool is_hugetlb_entry_migration(pte_t pte)
4721 {
4722 	swp_entry_t swp;
4723 
4724 	if (huge_pte_none(pte) || pte_present(pte))
4725 		return false;
4726 	swp = pte_to_swp_entry(pte);
4727 	if (is_migration_entry(swp))
4728 		return true;
4729 	else
4730 		return false;
4731 }
4732 
4733 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4734 {
4735 	swp_entry_t swp;
4736 
4737 	if (huge_pte_none(pte) || pte_present(pte))
4738 		return false;
4739 	swp = pte_to_swp_entry(pte);
4740 	if (is_hwpoison_entry(swp))
4741 		return true;
4742 	else
4743 		return false;
4744 }
4745 
4746 static void
4747 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4748 		     struct page *new_page)
4749 {
4750 	__SetPageUptodate(new_page);
4751 	hugepage_add_new_anon_rmap(new_page, vma, addr);
4752 	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4753 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4754 	ClearHPageRestoreReserve(new_page);
4755 	SetHPageMigratable(new_page);
4756 }
4757 
4758 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4759 			    struct vm_area_struct *dst_vma,
4760 			    struct vm_area_struct *src_vma)
4761 {
4762 	pte_t *src_pte, *dst_pte, entry;
4763 	struct page *ptepage;
4764 	unsigned long addr;
4765 	bool cow = is_cow_mapping(src_vma->vm_flags);
4766 	struct hstate *h = hstate_vma(src_vma);
4767 	unsigned long sz = huge_page_size(h);
4768 	unsigned long npages = pages_per_huge_page(h);
4769 	struct address_space *mapping = src_vma->vm_file->f_mapping;
4770 	struct mmu_notifier_range range;
4771 	unsigned long last_addr_mask;
4772 	int ret = 0;
4773 
4774 	if (cow) {
4775 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4776 					src_vma->vm_start,
4777 					src_vma->vm_end);
4778 		mmu_notifier_invalidate_range_start(&range);
4779 		mmap_assert_write_locked(src);
4780 		raw_write_seqcount_begin(&src->write_protect_seq);
4781 	} else {
4782 		/*
4783 		 * For shared mappings i_mmap_rwsem must be held to call
4784 		 * huge_pte_alloc, otherwise the returned ptep could go
4785 		 * away if part of a shared pmd and another thread calls
4786 		 * huge_pmd_unshare.
4787 		 */
4788 		i_mmap_lock_read(mapping);
4789 	}
4790 
4791 	last_addr_mask = hugetlb_mask_last_page(h);
4792 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4793 		spinlock_t *src_ptl, *dst_ptl;
4794 		src_pte = huge_pte_offset(src, addr, sz);
4795 		if (!src_pte) {
4796 			addr |= last_addr_mask;
4797 			continue;
4798 		}
4799 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4800 		if (!dst_pte) {
4801 			ret = -ENOMEM;
4802 			break;
4803 		}
4804 
4805 		/*
4806 		 * If the pagetables are shared don't copy or take references.
4807 		 *
4808 		 * dst_pte == src_pte is the common case of src/dest sharing.
4809 		 * However, src could have 'unshared' and dst shares with
4810 		 * another vma. So page_count of ptep page is checked instead
4811 		 * to reliably determine whether pte is shared.
4812 		 */
4813 		if (page_count(virt_to_page(dst_pte)) > 1) {
4814 			addr |= last_addr_mask;
4815 			continue;
4816 		}
4817 
4818 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4819 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4820 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4821 		entry = huge_ptep_get(src_pte);
4822 again:
4823 		if (huge_pte_none(entry)) {
4824 			/*
4825 			 * Skip if src entry none.
4826 			 */
4827 			;
4828 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4829 			bool uffd_wp = huge_pte_uffd_wp(entry);
4830 
4831 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4832 				entry = huge_pte_clear_uffd_wp(entry);
4833 			set_huge_pte_at(dst, addr, dst_pte, entry);
4834 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
4835 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
4836 			bool uffd_wp = huge_pte_uffd_wp(entry);
4837 
4838 			if (!is_readable_migration_entry(swp_entry) && cow) {
4839 				/*
4840 				 * COW mappings require pages in both
4841 				 * parent and child to be set to read.
4842 				 */
4843 				swp_entry = make_readable_migration_entry(
4844 							swp_offset(swp_entry));
4845 				entry = swp_entry_to_pte(swp_entry);
4846 				if (userfaultfd_wp(src_vma) && uffd_wp)
4847 					entry = huge_pte_mkuffd_wp(entry);
4848 				set_huge_pte_at(src, addr, src_pte, entry);
4849 			}
4850 			if (!userfaultfd_wp(dst_vma) && uffd_wp)
4851 				entry = huge_pte_clear_uffd_wp(entry);
4852 			set_huge_pte_at(dst, addr, dst_pte, entry);
4853 		} else if (unlikely(is_pte_marker(entry))) {
4854 			/*
4855 			 * We copy the pte marker only if the dst vma has
4856 			 * uffd-wp enabled.
4857 			 */
4858 			if (userfaultfd_wp(dst_vma))
4859 				set_huge_pte_at(dst, addr, dst_pte, entry);
4860 		} else {
4861 			entry = huge_ptep_get(src_pte);
4862 			ptepage = pte_page(entry);
4863 			get_page(ptepage);
4864 
4865 			/*
4866 			 * Failing to duplicate the anon rmap is a rare case
4867 			 * where we see pinned hugetlb pages while they're
4868 			 * prone to COW. We need to do the COW earlier during
4869 			 * fork.
4870 			 *
4871 			 * When pre-allocating the page or copying data, we
4872 			 * need to be without the pgtable locks since we could
4873 			 * sleep during the process.
4874 			 */
4875 			if (!PageAnon(ptepage)) {
4876 				page_dup_file_rmap(ptepage, true);
4877 			} else if (page_try_dup_anon_rmap(ptepage, true,
4878 							  src_vma)) {
4879 				pte_t src_pte_old = entry;
4880 				struct page *new;
4881 
4882 				spin_unlock(src_ptl);
4883 				spin_unlock(dst_ptl);
4884 				/* Do not use reserve as it's private owned */
4885 				new = alloc_huge_page(dst_vma, addr, 1);
4886 				if (IS_ERR(new)) {
4887 					put_page(ptepage);
4888 					ret = PTR_ERR(new);
4889 					break;
4890 				}
4891 				copy_user_huge_page(new, ptepage, addr, dst_vma,
4892 						    npages);
4893 				put_page(ptepage);
4894 
4895 				/* Install the new huge page if src pte stable */
4896 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4897 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4898 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4899 				entry = huge_ptep_get(src_pte);
4900 				if (!pte_same(src_pte_old, entry)) {
4901 					restore_reserve_on_error(h, dst_vma, addr,
4902 								new);
4903 					put_page(new);
4904 					/* huge_ptep of dst_pte won't change as in child */
4905 					goto again;
4906 				}
4907 				hugetlb_install_page(dst_vma, dst_pte, addr, new);
4908 				spin_unlock(src_ptl);
4909 				spin_unlock(dst_ptl);
4910 				continue;
4911 			}
4912 
4913 			if (cow) {
4914 				/*
4915 				 * No need to notify as we are downgrading page
4916 				 * table protection not changing it to point
4917 				 * to a new page.
4918 				 *
4919 				 * See Documentation/mm/mmu_notifier.rst
4920 				 */
4921 				huge_ptep_set_wrprotect(src, addr, src_pte);
4922 				entry = huge_pte_wrprotect(entry);
4923 			}
4924 
4925 			set_huge_pte_at(dst, addr, dst_pte, entry);
4926 			hugetlb_count_add(npages, dst);
4927 		}
4928 		spin_unlock(src_ptl);
4929 		spin_unlock(dst_ptl);
4930 	}
4931 
4932 	if (cow) {
4933 		raw_write_seqcount_end(&src->write_protect_seq);
4934 		mmu_notifier_invalidate_range_end(&range);
4935 	} else {
4936 		i_mmap_unlock_read(mapping);
4937 	}
4938 
4939 	return ret;
4940 }
4941 
4942 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4943 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4944 {
4945 	struct hstate *h = hstate_vma(vma);
4946 	struct mm_struct *mm = vma->vm_mm;
4947 	spinlock_t *src_ptl, *dst_ptl;
4948 	pte_t pte;
4949 
4950 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
4951 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
4952 
4953 	/*
4954 	 * We don't have to worry about the ordering of src and dst ptlocks
4955 	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4956 	 */
4957 	if (src_ptl != dst_ptl)
4958 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4959 
4960 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4961 	set_huge_pte_at(mm, new_addr, dst_pte, pte);
4962 
4963 	if (src_ptl != dst_ptl)
4964 		spin_unlock(src_ptl);
4965 	spin_unlock(dst_ptl);
4966 }
4967 
4968 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4969 			     struct vm_area_struct *new_vma,
4970 			     unsigned long old_addr, unsigned long new_addr,
4971 			     unsigned long len)
4972 {
4973 	struct hstate *h = hstate_vma(vma);
4974 	struct address_space *mapping = vma->vm_file->f_mapping;
4975 	unsigned long sz = huge_page_size(h);
4976 	struct mm_struct *mm = vma->vm_mm;
4977 	unsigned long old_end = old_addr + len;
4978 	unsigned long last_addr_mask;
4979 	pte_t *src_pte, *dst_pte;
4980 	struct mmu_notifier_range range;
4981 	bool shared_pmd = false;
4982 
4983 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4984 				old_end);
4985 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4986 	/*
4987 	 * In case of shared PMDs, we should cover the maximum possible
4988 	 * range.
4989 	 */
4990 	flush_cache_range(vma, range.start, range.end);
4991 
4992 	mmu_notifier_invalidate_range_start(&range);
4993 	last_addr_mask = hugetlb_mask_last_page(h);
4994 	/* Prevent race with file truncation */
4995 	i_mmap_lock_write(mapping);
4996 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4997 		src_pte = huge_pte_offset(mm, old_addr, sz);
4998 		if (!src_pte) {
4999 			old_addr |= last_addr_mask;
5000 			new_addr |= last_addr_mask;
5001 			continue;
5002 		}
5003 		if (huge_pte_none(huge_ptep_get(src_pte)))
5004 			continue;
5005 
5006 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5007 			shared_pmd = true;
5008 			old_addr |= last_addr_mask;
5009 			new_addr |= last_addr_mask;
5010 			continue;
5011 		}
5012 
5013 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5014 		if (!dst_pte)
5015 			break;
5016 
5017 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5018 	}
5019 
5020 	if (shared_pmd)
5021 		flush_tlb_range(vma, range.start, range.end);
5022 	else
5023 		flush_tlb_range(vma, old_end - len, old_end);
5024 	mmu_notifier_invalidate_range_end(&range);
5025 	i_mmap_unlock_write(mapping);
5026 
5027 	return len + old_addr - old_end;
5028 }
5029 
5030 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5031 				   unsigned long start, unsigned long end,
5032 				   struct page *ref_page, zap_flags_t zap_flags)
5033 {
5034 	struct mm_struct *mm = vma->vm_mm;
5035 	unsigned long address;
5036 	pte_t *ptep;
5037 	pte_t pte;
5038 	spinlock_t *ptl;
5039 	struct page *page;
5040 	struct hstate *h = hstate_vma(vma);
5041 	unsigned long sz = huge_page_size(h);
5042 	struct mmu_notifier_range range;
5043 	unsigned long last_addr_mask;
5044 	bool force_flush = false;
5045 
5046 	WARN_ON(!is_vm_hugetlb_page(vma));
5047 	BUG_ON(start & ~huge_page_mask(h));
5048 	BUG_ON(end & ~huge_page_mask(h));
5049 
5050 	/*
5051 	 * This is a hugetlb vma, all the pte entries should point
5052 	 * to huge page.
5053 	 */
5054 	tlb_change_page_size(tlb, sz);
5055 	tlb_start_vma(tlb, vma);
5056 
5057 	/*
5058 	 * If sharing possible, alert mmu notifiers of worst case.
5059 	 */
5060 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5061 				end);
5062 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5063 	mmu_notifier_invalidate_range_start(&range);
5064 	last_addr_mask = hugetlb_mask_last_page(h);
5065 	address = start;
5066 	for (; address < end; address += sz) {
5067 		ptep = huge_pte_offset(mm, address, sz);
5068 		if (!ptep) {
5069 			address |= last_addr_mask;
5070 			continue;
5071 		}
5072 
5073 		ptl = huge_pte_lock(h, mm, ptep);
5074 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5075 			spin_unlock(ptl);
5076 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5077 			force_flush = true;
5078 			address |= last_addr_mask;
5079 			continue;
5080 		}
5081 
5082 		pte = huge_ptep_get(ptep);
5083 		if (huge_pte_none(pte)) {
5084 			spin_unlock(ptl);
5085 			continue;
5086 		}
5087 
5088 		/*
5089 		 * Migrating hugepage or HWPoisoned hugepage is already
5090 		 * unmapped and its refcount is dropped, so just clear pte here.
5091 		 */
5092 		if (unlikely(!pte_present(pte))) {
5093 			/*
5094 			 * If the pte was wr-protected by uffd-wp in any of the
5095 			 * swap forms, meanwhile the caller does not want to
5096 			 * drop the uffd-wp bit in this zap, then replace the
5097 			 * pte with a marker.
5098 			 */
5099 			if (pte_swp_uffd_wp_any(pte) &&
5100 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5101 				set_huge_pte_at(mm, address, ptep,
5102 						make_pte_marker(PTE_MARKER_UFFD_WP));
5103 			else
5104 				huge_pte_clear(mm, address, ptep, sz);
5105 			spin_unlock(ptl);
5106 			continue;
5107 		}
5108 
5109 		page = pte_page(pte);
5110 		/*
5111 		 * If a reference page is supplied, it is because a specific
5112 		 * page is being unmapped, not a range. Ensure the page we
5113 		 * are about to unmap is the actual page of interest.
5114 		 */
5115 		if (ref_page) {
5116 			if (page != ref_page) {
5117 				spin_unlock(ptl);
5118 				continue;
5119 			}
5120 			/*
5121 			 * Mark the VMA as having unmapped its page so that
5122 			 * future faults in this VMA will fail rather than
5123 			 * looking like data was lost
5124 			 */
5125 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5126 		}
5127 
5128 		pte = huge_ptep_get_and_clear(mm, address, ptep);
5129 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5130 		if (huge_pte_dirty(pte))
5131 			set_page_dirty(page);
5132 		/* Leave a uffd-wp pte marker if needed */
5133 		if (huge_pte_uffd_wp(pte) &&
5134 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5135 			set_huge_pte_at(mm, address, ptep,
5136 					make_pte_marker(PTE_MARKER_UFFD_WP));
5137 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5138 		page_remove_rmap(page, vma, true);
5139 
5140 		spin_unlock(ptl);
5141 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5142 		/*
5143 		 * Bail out after unmapping reference page if supplied
5144 		 */
5145 		if (ref_page)
5146 			break;
5147 	}
5148 	mmu_notifier_invalidate_range_end(&range);
5149 	tlb_end_vma(tlb, vma);
5150 
5151 	/*
5152 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5153 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5154 	 * guaranteed that the last refernece would not be dropped. But we must
5155 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5156 	 * dropped and the last reference to the shared PMDs page might be
5157 	 * dropped as well.
5158 	 *
5159 	 * In theory we could defer the freeing of the PMD pages as well, but
5160 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5161 	 * detect sharing, so we cannot defer the release of the page either.
5162 	 * Instead, do flush now.
5163 	 */
5164 	if (force_flush)
5165 		tlb_flush_mmu_tlbonly(tlb);
5166 }
5167 
5168 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5169 			  struct vm_area_struct *vma, unsigned long start,
5170 			  unsigned long end, struct page *ref_page,
5171 			  zap_flags_t zap_flags)
5172 {
5173 	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5174 
5175 	/*
5176 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5177 	 * test will fail on a vma being torn down, and not grab a page table
5178 	 * on its way out.  We're lucky that the flag has such an appropriate
5179 	 * name, and can in fact be safely cleared here. We could clear it
5180 	 * before the __unmap_hugepage_range above, but all that's necessary
5181 	 * is to clear it before releasing the i_mmap_rwsem. This works
5182 	 * because in the context this is called, the VMA is about to be
5183 	 * destroyed and the i_mmap_rwsem is held.
5184 	 */
5185 	vma->vm_flags &= ~VM_MAYSHARE;
5186 }
5187 
5188 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5189 			  unsigned long end, struct page *ref_page,
5190 			  zap_flags_t zap_flags)
5191 {
5192 	struct mmu_gather tlb;
5193 
5194 	tlb_gather_mmu(&tlb, vma->vm_mm);
5195 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5196 	tlb_finish_mmu(&tlb);
5197 }
5198 
5199 /*
5200  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5201  * mapping it owns the reserve page for. The intention is to unmap the page
5202  * from other VMAs and let the children be SIGKILLed if they are faulting the
5203  * same region.
5204  */
5205 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5206 			      struct page *page, unsigned long address)
5207 {
5208 	struct hstate *h = hstate_vma(vma);
5209 	struct vm_area_struct *iter_vma;
5210 	struct address_space *mapping;
5211 	pgoff_t pgoff;
5212 
5213 	/*
5214 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5215 	 * from page cache lookup which is in HPAGE_SIZE units.
5216 	 */
5217 	address = address & huge_page_mask(h);
5218 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5219 			vma->vm_pgoff;
5220 	mapping = vma->vm_file->f_mapping;
5221 
5222 	/*
5223 	 * Take the mapping lock for the duration of the table walk. As
5224 	 * this mapping should be shared between all the VMAs,
5225 	 * __unmap_hugepage_range() is called as the lock is already held
5226 	 */
5227 	i_mmap_lock_write(mapping);
5228 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5229 		/* Do not unmap the current VMA */
5230 		if (iter_vma == vma)
5231 			continue;
5232 
5233 		/*
5234 		 * Shared VMAs have their own reserves and do not affect
5235 		 * MAP_PRIVATE accounting but it is possible that a shared
5236 		 * VMA is using the same page so check and skip such VMAs.
5237 		 */
5238 		if (iter_vma->vm_flags & VM_MAYSHARE)
5239 			continue;
5240 
5241 		/*
5242 		 * Unmap the page from other VMAs without their own reserves.
5243 		 * They get marked to be SIGKILLed if they fault in these
5244 		 * areas. This is because a future no-page fault on this VMA
5245 		 * could insert a zeroed page instead of the data existing
5246 		 * from the time of fork. This would look like data corruption
5247 		 */
5248 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5249 			unmap_hugepage_range(iter_vma, address,
5250 					     address + huge_page_size(h), page, 0);
5251 	}
5252 	i_mmap_unlock_write(mapping);
5253 }
5254 
5255 /*
5256  * hugetlb_wp() should be called with page lock of the original hugepage held.
5257  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5258  * cannot race with other handlers or page migration.
5259  * Keep the pte_same checks anyway to make transition from the mutex easier.
5260  */
5261 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5262 		       unsigned long address, pte_t *ptep, unsigned int flags,
5263 		       struct page *pagecache_page, spinlock_t *ptl)
5264 {
5265 	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5266 	pte_t pte;
5267 	struct hstate *h = hstate_vma(vma);
5268 	struct page *old_page, *new_page;
5269 	int outside_reserve = 0;
5270 	vm_fault_t ret = 0;
5271 	unsigned long haddr = address & huge_page_mask(h);
5272 	struct mmu_notifier_range range;
5273 
5274 	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5275 	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5276 
5277 	/*
5278 	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5279 	 * PTE mapped R/O such as maybe_mkwrite() would do.
5280 	 */
5281 	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5282 		return VM_FAULT_SIGSEGV;
5283 
5284 	/* Let's take out MAP_SHARED mappings first. */
5285 	if (vma->vm_flags & VM_MAYSHARE) {
5286 		if (unlikely(unshare))
5287 			return 0;
5288 		set_huge_ptep_writable(vma, haddr, ptep);
5289 		return 0;
5290 	}
5291 
5292 	pte = huge_ptep_get(ptep);
5293 	old_page = pte_page(pte);
5294 
5295 	delayacct_wpcopy_start();
5296 
5297 retry_avoidcopy:
5298 	/*
5299 	 * If no-one else is actually using this page, we're the exclusive
5300 	 * owner and can reuse this page.
5301 	 */
5302 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5303 		if (!PageAnonExclusive(old_page))
5304 			page_move_anon_rmap(old_page, vma);
5305 		if (likely(!unshare))
5306 			set_huge_ptep_writable(vma, haddr, ptep);
5307 
5308 		delayacct_wpcopy_end();
5309 		return 0;
5310 	}
5311 	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5312 		       old_page);
5313 
5314 	/*
5315 	 * If the process that created a MAP_PRIVATE mapping is about to
5316 	 * perform a COW due to a shared page count, attempt to satisfy
5317 	 * the allocation without using the existing reserves. The pagecache
5318 	 * page is used to determine if the reserve at this address was
5319 	 * consumed or not. If reserves were used, a partial faulted mapping
5320 	 * at the time of fork() could consume its reserves on COW instead
5321 	 * of the full address range.
5322 	 */
5323 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5324 			old_page != pagecache_page)
5325 		outside_reserve = 1;
5326 
5327 	get_page(old_page);
5328 
5329 	/*
5330 	 * Drop page table lock as buddy allocator may be called. It will
5331 	 * be acquired again before returning to the caller, as expected.
5332 	 */
5333 	spin_unlock(ptl);
5334 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5335 
5336 	if (IS_ERR(new_page)) {
5337 		/*
5338 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5339 		 * it is due to references held by a child and an insufficient
5340 		 * huge page pool. To guarantee the original mappers
5341 		 * reliability, unmap the page from child processes. The child
5342 		 * may get SIGKILLed if it later faults.
5343 		 */
5344 		if (outside_reserve) {
5345 			struct address_space *mapping = vma->vm_file->f_mapping;
5346 			pgoff_t idx;
5347 			u32 hash;
5348 
5349 			put_page(old_page);
5350 			/*
5351 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5352 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
5353 			 * in write mode.  Dropping i_mmap_rwsem in read mode
5354 			 * here is OK as COW mappings do not interact with
5355 			 * PMD sharing.
5356 			 *
5357 			 * Reacquire both after unmap operation.
5358 			 */
5359 			idx = vma_hugecache_offset(h, vma, haddr);
5360 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5361 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5362 			i_mmap_unlock_read(mapping);
5363 
5364 			unmap_ref_private(mm, vma, old_page, haddr);
5365 
5366 			i_mmap_lock_read(mapping);
5367 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5368 			spin_lock(ptl);
5369 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5370 			if (likely(ptep &&
5371 				   pte_same(huge_ptep_get(ptep), pte)))
5372 				goto retry_avoidcopy;
5373 			/*
5374 			 * race occurs while re-acquiring page table
5375 			 * lock, and our job is done.
5376 			 */
5377 			delayacct_wpcopy_end();
5378 			return 0;
5379 		}
5380 
5381 		ret = vmf_error(PTR_ERR(new_page));
5382 		goto out_release_old;
5383 	}
5384 
5385 	/*
5386 	 * When the original hugepage is shared one, it does not have
5387 	 * anon_vma prepared.
5388 	 */
5389 	if (unlikely(anon_vma_prepare(vma))) {
5390 		ret = VM_FAULT_OOM;
5391 		goto out_release_all;
5392 	}
5393 
5394 	copy_user_huge_page(new_page, old_page, address, vma,
5395 			    pages_per_huge_page(h));
5396 	__SetPageUptodate(new_page);
5397 
5398 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5399 				haddr + huge_page_size(h));
5400 	mmu_notifier_invalidate_range_start(&range);
5401 
5402 	/*
5403 	 * Retake the page table lock to check for racing updates
5404 	 * before the page tables are altered
5405 	 */
5406 	spin_lock(ptl);
5407 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5408 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5409 		ClearHPageRestoreReserve(new_page);
5410 
5411 		/* Break COW or unshare */
5412 		huge_ptep_clear_flush(vma, haddr, ptep);
5413 		mmu_notifier_invalidate_range(mm, range.start, range.end);
5414 		page_remove_rmap(old_page, vma, true);
5415 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5416 		set_huge_pte_at(mm, haddr, ptep,
5417 				make_huge_pte(vma, new_page, !unshare));
5418 		SetHPageMigratable(new_page);
5419 		/* Make the old page be freed below */
5420 		new_page = old_page;
5421 	}
5422 	spin_unlock(ptl);
5423 	mmu_notifier_invalidate_range_end(&range);
5424 out_release_all:
5425 	/*
5426 	 * No restore in case of successful pagetable update (Break COW or
5427 	 * unshare)
5428 	 */
5429 	if (new_page != old_page)
5430 		restore_reserve_on_error(h, vma, haddr, new_page);
5431 	put_page(new_page);
5432 out_release_old:
5433 	put_page(old_page);
5434 
5435 	spin_lock(ptl); /* Caller expects lock to be held */
5436 
5437 	delayacct_wpcopy_end();
5438 	return ret;
5439 }
5440 
5441 /*
5442  * Return whether there is a pagecache page to back given address within VMA.
5443  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5444  */
5445 static bool hugetlbfs_pagecache_present(struct hstate *h,
5446 			struct vm_area_struct *vma, unsigned long address)
5447 {
5448 	struct address_space *mapping;
5449 	pgoff_t idx;
5450 	struct page *page;
5451 
5452 	mapping = vma->vm_file->f_mapping;
5453 	idx = vma_hugecache_offset(h, vma, address);
5454 
5455 	page = find_get_page(mapping, idx);
5456 	if (page)
5457 		put_page(page);
5458 	return page != NULL;
5459 }
5460 
5461 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5462 			   pgoff_t idx)
5463 {
5464 	struct folio *folio = page_folio(page);
5465 	struct inode *inode = mapping->host;
5466 	struct hstate *h = hstate_inode(inode);
5467 	int err;
5468 
5469 	__folio_set_locked(folio);
5470 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5471 
5472 	if (unlikely(err)) {
5473 		__folio_clear_locked(folio);
5474 		return err;
5475 	}
5476 	ClearHPageRestoreReserve(page);
5477 
5478 	/*
5479 	 * mark folio dirty so that it will not be removed from cache/file
5480 	 * by non-hugetlbfs specific code paths.
5481 	 */
5482 	folio_mark_dirty(folio);
5483 
5484 	spin_lock(&inode->i_lock);
5485 	inode->i_blocks += blocks_per_huge_page(h);
5486 	spin_unlock(&inode->i_lock);
5487 	return 0;
5488 }
5489 
5490 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5491 						  struct address_space *mapping,
5492 						  pgoff_t idx,
5493 						  unsigned int flags,
5494 						  unsigned long haddr,
5495 						  unsigned long addr,
5496 						  unsigned long reason)
5497 {
5498 	vm_fault_t ret;
5499 	u32 hash;
5500 	struct vm_fault vmf = {
5501 		.vma = vma,
5502 		.address = haddr,
5503 		.real_address = addr,
5504 		.flags = flags,
5505 
5506 		/*
5507 		 * Hard to debug if it ends up being
5508 		 * used by a callee that assumes
5509 		 * something about the other
5510 		 * uninitialized fields... same as in
5511 		 * memory.c
5512 		 */
5513 	};
5514 
5515 	/*
5516 	 * hugetlb_fault_mutex and i_mmap_rwsem must be
5517 	 * dropped before handling userfault.  Reacquire
5518 	 * after handling fault to make calling code simpler.
5519 	 */
5520 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5521 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5522 	i_mmap_unlock_read(mapping);
5523 	ret = handle_userfault(&vmf, reason);
5524 	i_mmap_lock_read(mapping);
5525 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5526 
5527 	return ret;
5528 }
5529 
5530 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5531 			struct vm_area_struct *vma,
5532 			struct address_space *mapping, pgoff_t idx,
5533 			unsigned long address, pte_t *ptep,
5534 			pte_t old_pte, unsigned int flags)
5535 {
5536 	struct hstate *h = hstate_vma(vma);
5537 	vm_fault_t ret = VM_FAULT_SIGBUS;
5538 	int anon_rmap = 0;
5539 	unsigned long size;
5540 	struct page *page;
5541 	pte_t new_pte;
5542 	spinlock_t *ptl;
5543 	unsigned long haddr = address & huge_page_mask(h);
5544 	bool new_page, new_pagecache_page = false;
5545 
5546 	/*
5547 	 * Currently, we are forced to kill the process in the event the
5548 	 * original mapper has unmapped pages from the child due to a failed
5549 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5550 	 * be obvious.
5551 	 */
5552 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5553 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5554 			   current->pid);
5555 		return ret;
5556 	}
5557 
5558 	/*
5559 	 * We can not race with truncation due to holding i_mmap_rwsem.
5560 	 * i_size is modified when holding i_mmap_rwsem, so check here
5561 	 * once for faults beyond end of file.
5562 	 */
5563 	size = i_size_read(mapping->host) >> huge_page_shift(h);
5564 	if (idx >= size)
5565 		goto out;
5566 
5567 	new_page = false;
5568 	page = find_lock_page(mapping, idx);
5569 	if (!page) {
5570 		/* Check for page in userfault range */
5571 		if (userfaultfd_missing(vma)) {
5572 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5573 						       flags, haddr, address,
5574 						       VM_UFFD_MISSING);
5575 			goto out;
5576 		}
5577 
5578 		page = alloc_huge_page(vma, haddr, 0);
5579 		if (IS_ERR(page)) {
5580 			/*
5581 			 * Returning error will result in faulting task being
5582 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5583 			 * tasks from racing to fault in the same page which
5584 			 * could result in false unable to allocate errors.
5585 			 * Page migration does not take the fault mutex, but
5586 			 * does a clear then write of pte's under page table
5587 			 * lock.  Page fault code could race with migration,
5588 			 * notice the clear pte and try to allocate a page
5589 			 * here.  Before returning error, get ptl and make
5590 			 * sure there really is no pte entry.
5591 			 */
5592 			ptl = huge_pte_lock(h, mm, ptep);
5593 			ret = 0;
5594 			if (huge_pte_none(huge_ptep_get(ptep)))
5595 				ret = vmf_error(PTR_ERR(page));
5596 			spin_unlock(ptl);
5597 			goto out;
5598 		}
5599 		clear_huge_page(page, address, pages_per_huge_page(h));
5600 		__SetPageUptodate(page);
5601 		new_page = true;
5602 
5603 		if (vma->vm_flags & VM_MAYSHARE) {
5604 			int err = huge_add_to_page_cache(page, mapping, idx);
5605 			if (err) {
5606 				/*
5607 				 * err can't be -EEXIST which implies someone
5608 				 * else consumed the reservation since hugetlb
5609 				 * fault mutex is held when add a hugetlb page
5610 				 * to the page cache. So it's safe to call
5611 				 * restore_reserve_on_error() here.
5612 				 */
5613 				restore_reserve_on_error(h, vma, haddr, page);
5614 				put_page(page);
5615 				goto out;
5616 			}
5617 			new_pagecache_page = true;
5618 		} else {
5619 			lock_page(page);
5620 			if (unlikely(anon_vma_prepare(vma))) {
5621 				ret = VM_FAULT_OOM;
5622 				goto backout_unlocked;
5623 			}
5624 			anon_rmap = 1;
5625 		}
5626 	} else {
5627 		/*
5628 		 * If memory error occurs between mmap() and fault, some process
5629 		 * don't have hwpoisoned swap entry for errored virtual address.
5630 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5631 		 */
5632 		if (unlikely(PageHWPoison(page))) {
5633 			ret = VM_FAULT_HWPOISON_LARGE |
5634 				VM_FAULT_SET_HINDEX(hstate_index(h));
5635 			goto backout_unlocked;
5636 		}
5637 
5638 		/* Check for page in userfault range. */
5639 		if (userfaultfd_minor(vma)) {
5640 			unlock_page(page);
5641 			put_page(page);
5642 			ret = hugetlb_handle_userfault(vma, mapping, idx,
5643 						       flags, haddr, address,
5644 						       VM_UFFD_MINOR);
5645 			goto out;
5646 		}
5647 	}
5648 
5649 	/*
5650 	 * If we are going to COW a private mapping later, we examine the
5651 	 * pending reservations for this page now. This will ensure that
5652 	 * any allocations necessary to record that reservation occur outside
5653 	 * the spinlock.
5654 	 */
5655 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5656 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5657 			ret = VM_FAULT_OOM;
5658 			goto backout_unlocked;
5659 		}
5660 		/* Just decrements count, does not deallocate */
5661 		vma_end_reservation(h, vma, haddr);
5662 	}
5663 
5664 	ptl = huge_pte_lock(h, mm, ptep);
5665 	ret = 0;
5666 	/* If pte changed from under us, retry */
5667 	if (!pte_same(huge_ptep_get(ptep), old_pte))
5668 		goto backout;
5669 
5670 	if (anon_rmap) {
5671 		ClearHPageRestoreReserve(page);
5672 		hugepage_add_new_anon_rmap(page, vma, haddr);
5673 	} else
5674 		page_dup_file_rmap(page, true);
5675 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5676 				&& (vma->vm_flags & VM_SHARED)));
5677 	/*
5678 	 * If this pte was previously wr-protected, keep it wr-protected even
5679 	 * if populated.
5680 	 */
5681 	if (unlikely(pte_marker_uffd_wp(old_pte)))
5682 		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5683 	set_huge_pte_at(mm, haddr, ptep, new_pte);
5684 
5685 	hugetlb_count_add(pages_per_huge_page(h), mm);
5686 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5687 		/* Optimization, do the COW without a second fault */
5688 		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5689 	}
5690 
5691 	spin_unlock(ptl);
5692 
5693 	/*
5694 	 * Only set HPageMigratable in newly allocated pages.  Existing pages
5695 	 * found in the pagecache may not have HPageMigratableset if they have
5696 	 * been isolated for migration.
5697 	 */
5698 	if (new_page)
5699 		SetHPageMigratable(page);
5700 
5701 	unlock_page(page);
5702 out:
5703 	return ret;
5704 
5705 backout:
5706 	spin_unlock(ptl);
5707 backout_unlocked:
5708 	unlock_page(page);
5709 	/* restore reserve for newly allocated pages not in page cache */
5710 	if (new_page && !new_pagecache_page)
5711 		restore_reserve_on_error(h, vma, haddr, page);
5712 	put_page(page);
5713 	goto out;
5714 }
5715 
5716 #ifdef CONFIG_SMP
5717 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5718 {
5719 	unsigned long key[2];
5720 	u32 hash;
5721 
5722 	key[0] = (unsigned long) mapping;
5723 	key[1] = idx;
5724 
5725 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5726 
5727 	return hash & (num_fault_mutexes - 1);
5728 }
5729 #else
5730 /*
5731  * For uniprocessor systems we always use a single mutex, so just
5732  * return 0 and avoid the hashing overhead.
5733  */
5734 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5735 {
5736 	return 0;
5737 }
5738 #endif
5739 
5740 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5741 			unsigned long address, unsigned int flags)
5742 {
5743 	pte_t *ptep, entry;
5744 	spinlock_t *ptl;
5745 	vm_fault_t ret;
5746 	u32 hash;
5747 	pgoff_t idx;
5748 	struct page *page = NULL;
5749 	struct page *pagecache_page = NULL;
5750 	struct hstate *h = hstate_vma(vma);
5751 	struct address_space *mapping;
5752 	int need_wait_lock = 0;
5753 	unsigned long haddr = address & huge_page_mask(h);
5754 
5755 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5756 	if (ptep) {
5757 		/*
5758 		 * Since we hold no locks, ptep could be stale.  That is
5759 		 * OK as we are only making decisions based on content and
5760 		 * not actually modifying content here.
5761 		 */
5762 		entry = huge_ptep_get(ptep);
5763 		if (unlikely(is_hugetlb_entry_migration(entry))) {
5764 			migration_entry_wait_huge(vma, ptep);
5765 			return 0;
5766 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5767 			return VM_FAULT_HWPOISON_LARGE |
5768 				VM_FAULT_SET_HINDEX(hstate_index(h));
5769 	}
5770 
5771 	/*
5772 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5773 	 * until finished with ptep.  This serves two purposes:
5774 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
5775 	 *    and making the ptep no longer valid.
5776 	 * 2) It synchronizes us with i_size modifications during truncation.
5777 	 *
5778 	 * ptep could have already be assigned via huge_pte_offset.  That
5779 	 * is OK, as huge_pte_alloc will return the same value unless
5780 	 * something has changed.
5781 	 */
5782 	mapping = vma->vm_file->f_mapping;
5783 	i_mmap_lock_read(mapping);
5784 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5785 	if (!ptep) {
5786 		i_mmap_unlock_read(mapping);
5787 		return VM_FAULT_OOM;
5788 	}
5789 
5790 	/*
5791 	 * Serialize hugepage allocation and instantiation, so that we don't
5792 	 * get spurious allocation failures if two CPUs race to instantiate
5793 	 * the same page in the page cache.
5794 	 */
5795 	idx = vma_hugecache_offset(h, vma, haddr);
5796 	hash = hugetlb_fault_mutex_hash(mapping, idx);
5797 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5798 
5799 	entry = huge_ptep_get(ptep);
5800 	/* PTE markers should be handled the same way as none pte */
5801 	if (huge_pte_none_mostly(entry)) {
5802 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5803 				      entry, flags);
5804 		goto out_mutex;
5805 	}
5806 
5807 	ret = 0;
5808 
5809 	/*
5810 	 * entry could be a migration/hwpoison entry at this point, so this
5811 	 * check prevents the kernel from going below assuming that we have
5812 	 * an active hugepage in pagecache. This goto expects the 2nd page
5813 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5814 	 * properly handle it.
5815 	 */
5816 	if (!pte_present(entry))
5817 		goto out_mutex;
5818 
5819 	/*
5820 	 * If we are going to COW/unshare the mapping later, we examine the
5821 	 * pending reservations for this page now. This will ensure that any
5822 	 * allocations necessary to record that reservation occur outside the
5823 	 * spinlock. Also lookup the pagecache page now as it is used to
5824 	 * determine if a reservation has been consumed.
5825 	 */
5826 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5827 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5828 		if (vma_needs_reservation(h, vma, haddr) < 0) {
5829 			ret = VM_FAULT_OOM;
5830 			goto out_mutex;
5831 		}
5832 		/* Just decrements count, does not deallocate */
5833 		vma_end_reservation(h, vma, haddr);
5834 
5835 		pagecache_page = find_lock_page(mapping, idx);
5836 	}
5837 
5838 	ptl = huge_pte_lock(h, mm, ptep);
5839 
5840 	/* Check for a racing update before calling hugetlb_wp() */
5841 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5842 		goto out_ptl;
5843 
5844 	/* Handle userfault-wp first, before trying to lock more pages */
5845 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5846 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5847 		struct vm_fault vmf = {
5848 			.vma = vma,
5849 			.address = haddr,
5850 			.real_address = address,
5851 			.flags = flags,
5852 		};
5853 
5854 		spin_unlock(ptl);
5855 		if (pagecache_page) {
5856 			unlock_page(pagecache_page);
5857 			put_page(pagecache_page);
5858 		}
5859 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5860 		i_mmap_unlock_read(mapping);
5861 		return handle_userfault(&vmf, VM_UFFD_WP);
5862 	}
5863 
5864 	/*
5865 	 * hugetlb_wp() requires page locks of pte_page(entry) and
5866 	 * pagecache_page, so here we need take the former one
5867 	 * when page != pagecache_page or !pagecache_page.
5868 	 */
5869 	page = pte_page(entry);
5870 	if (page != pagecache_page)
5871 		if (!trylock_page(page)) {
5872 			need_wait_lock = 1;
5873 			goto out_ptl;
5874 		}
5875 
5876 	get_page(page);
5877 
5878 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5879 		if (!huge_pte_write(entry)) {
5880 			ret = hugetlb_wp(mm, vma, address, ptep, flags,
5881 					 pagecache_page, ptl);
5882 			goto out_put_page;
5883 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
5884 			entry = huge_pte_mkdirty(entry);
5885 		}
5886 	}
5887 	entry = pte_mkyoung(entry);
5888 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5889 						flags & FAULT_FLAG_WRITE))
5890 		update_mmu_cache(vma, haddr, ptep);
5891 out_put_page:
5892 	if (page != pagecache_page)
5893 		unlock_page(page);
5894 	put_page(page);
5895 out_ptl:
5896 	spin_unlock(ptl);
5897 
5898 	if (pagecache_page) {
5899 		unlock_page(pagecache_page);
5900 		put_page(pagecache_page);
5901 	}
5902 out_mutex:
5903 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5904 	i_mmap_unlock_read(mapping);
5905 	/*
5906 	 * Generally it's safe to hold refcount during waiting page lock. But
5907 	 * here we just wait to defer the next page fault to avoid busy loop and
5908 	 * the page is not used after unlocked before returning from the current
5909 	 * page fault. So we are safe from accessing freed page, even if we wait
5910 	 * here without taking refcount.
5911 	 */
5912 	if (need_wait_lock)
5913 		wait_on_page_locked(page);
5914 	return ret;
5915 }
5916 
5917 #ifdef CONFIG_USERFAULTFD
5918 /*
5919  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5920  * modifications for huge pages.
5921  */
5922 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5923 			    pte_t *dst_pte,
5924 			    struct vm_area_struct *dst_vma,
5925 			    unsigned long dst_addr,
5926 			    unsigned long src_addr,
5927 			    enum mcopy_atomic_mode mode,
5928 			    struct page **pagep,
5929 			    bool wp_copy)
5930 {
5931 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5932 	struct hstate *h = hstate_vma(dst_vma);
5933 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
5934 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5935 	unsigned long size;
5936 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5937 	pte_t _dst_pte;
5938 	spinlock_t *ptl;
5939 	int ret = -ENOMEM;
5940 	struct page *page;
5941 	int writable;
5942 	bool page_in_pagecache = false;
5943 
5944 	if (is_continue) {
5945 		ret = -EFAULT;
5946 		page = find_lock_page(mapping, idx);
5947 		if (!page)
5948 			goto out;
5949 		page_in_pagecache = true;
5950 	} else if (!*pagep) {
5951 		/* If a page already exists, then it's UFFDIO_COPY for
5952 		 * a non-missing case. Return -EEXIST.
5953 		 */
5954 		if (vm_shared &&
5955 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5956 			ret = -EEXIST;
5957 			goto out;
5958 		}
5959 
5960 		page = alloc_huge_page(dst_vma, dst_addr, 0);
5961 		if (IS_ERR(page)) {
5962 			ret = -ENOMEM;
5963 			goto out;
5964 		}
5965 
5966 		ret = copy_huge_page_from_user(page,
5967 						(const void __user *) src_addr,
5968 						pages_per_huge_page(h), false);
5969 
5970 		/* fallback to copy_from_user outside mmap_lock */
5971 		if (unlikely(ret)) {
5972 			ret = -ENOENT;
5973 			/* Free the allocated page which may have
5974 			 * consumed a reservation.
5975 			 */
5976 			restore_reserve_on_error(h, dst_vma, dst_addr, page);
5977 			put_page(page);
5978 
5979 			/* Allocate a temporary page to hold the copied
5980 			 * contents.
5981 			 */
5982 			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5983 			if (!page) {
5984 				ret = -ENOMEM;
5985 				goto out;
5986 			}
5987 			*pagep = page;
5988 			/* Set the outparam pagep and return to the caller to
5989 			 * copy the contents outside the lock. Don't free the
5990 			 * page.
5991 			 */
5992 			goto out;
5993 		}
5994 	} else {
5995 		if (vm_shared &&
5996 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5997 			put_page(*pagep);
5998 			ret = -EEXIST;
5999 			*pagep = NULL;
6000 			goto out;
6001 		}
6002 
6003 		page = alloc_huge_page(dst_vma, dst_addr, 0);
6004 		if (IS_ERR(page)) {
6005 			put_page(*pagep);
6006 			ret = -ENOMEM;
6007 			*pagep = NULL;
6008 			goto out;
6009 		}
6010 		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6011 				    pages_per_huge_page(h));
6012 		put_page(*pagep);
6013 		*pagep = NULL;
6014 	}
6015 
6016 	/*
6017 	 * The memory barrier inside __SetPageUptodate makes sure that
6018 	 * preceding stores to the page contents become visible before
6019 	 * the set_pte_at() write.
6020 	 */
6021 	__SetPageUptodate(page);
6022 
6023 	/* Add shared, newly allocated pages to the page cache. */
6024 	if (vm_shared && !is_continue) {
6025 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6026 		ret = -EFAULT;
6027 		if (idx >= size)
6028 			goto out_release_nounlock;
6029 
6030 		/*
6031 		 * Serialization between remove_inode_hugepages() and
6032 		 * huge_add_to_page_cache() below happens through the
6033 		 * hugetlb_fault_mutex_table that here must be hold by
6034 		 * the caller.
6035 		 */
6036 		ret = huge_add_to_page_cache(page, mapping, idx);
6037 		if (ret)
6038 			goto out_release_nounlock;
6039 		page_in_pagecache = true;
6040 	}
6041 
6042 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6043 
6044 	/*
6045 	 * Recheck the i_size after holding PT lock to make sure not
6046 	 * to leave any page mapped (as page_mapped()) beyond the end
6047 	 * of the i_size (remove_inode_hugepages() is strict about
6048 	 * enforcing that). If we bail out here, we'll also leave a
6049 	 * page in the radix tree in the vm_shared case beyond the end
6050 	 * of the i_size, but remove_inode_hugepages() will take care
6051 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
6052 	 */
6053 	size = i_size_read(mapping->host) >> huge_page_shift(h);
6054 	ret = -EFAULT;
6055 	if (idx >= size)
6056 		goto out_release_unlock;
6057 
6058 	ret = -EEXIST;
6059 	/*
6060 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6061 	 * registered, we firstly wr-protect a none pte which has no page cache
6062 	 * page backing it, then access the page.
6063 	 */
6064 	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6065 		goto out_release_unlock;
6066 
6067 	if (page_in_pagecache) {
6068 		page_dup_file_rmap(page, true);
6069 	} else {
6070 		ClearHPageRestoreReserve(page);
6071 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6072 	}
6073 
6074 	/*
6075 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6076 	 * with wp flag set, don't set pte write bit.
6077 	 */
6078 	if (wp_copy || (is_continue && !vm_shared))
6079 		writable = 0;
6080 	else
6081 		writable = dst_vma->vm_flags & VM_WRITE;
6082 
6083 	_dst_pte = make_huge_pte(dst_vma, page, writable);
6084 	/*
6085 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6086 	 * extremely important for hugetlbfs for now since swapping is not
6087 	 * supported, but we should still be clear in that this page cannot be
6088 	 * thrown away at will, even if write bit not set.
6089 	 */
6090 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6091 	_dst_pte = pte_mkyoung(_dst_pte);
6092 
6093 	if (wp_copy)
6094 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6095 
6096 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6097 
6098 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6099 
6100 	/* No need to invalidate - it was non-present before */
6101 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6102 
6103 	spin_unlock(ptl);
6104 	if (!is_continue)
6105 		SetHPageMigratable(page);
6106 	if (vm_shared || is_continue)
6107 		unlock_page(page);
6108 	ret = 0;
6109 out:
6110 	return ret;
6111 out_release_unlock:
6112 	spin_unlock(ptl);
6113 	if (vm_shared || is_continue)
6114 		unlock_page(page);
6115 out_release_nounlock:
6116 	if (!page_in_pagecache)
6117 		restore_reserve_on_error(h, dst_vma, dst_addr, page);
6118 	put_page(page);
6119 	goto out;
6120 }
6121 #endif /* CONFIG_USERFAULTFD */
6122 
6123 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6124 				 int refs, struct page **pages,
6125 				 struct vm_area_struct **vmas)
6126 {
6127 	int nr;
6128 
6129 	for (nr = 0; nr < refs; nr++) {
6130 		if (likely(pages))
6131 			pages[nr] = mem_map_offset(page, nr);
6132 		if (vmas)
6133 			vmas[nr] = vma;
6134 	}
6135 }
6136 
6137 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6138 					       bool *unshare)
6139 {
6140 	pte_t pteval = huge_ptep_get(pte);
6141 
6142 	*unshare = false;
6143 	if (is_swap_pte(pteval))
6144 		return true;
6145 	if (huge_pte_write(pteval))
6146 		return false;
6147 	if (flags & FOLL_WRITE)
6148 		return true;
6149 	if (gup_must_unshare(flags, pte_page(pteval))) {
6150 		*unshare = true;
6151 		return true;
6152 	}
6153 	return false;
6154 }
6155 
6156 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6157 			 struct page **pages, struct vm_area_struct **vmas,
6158 			 unsigned long *position, unsigned long *nr_pages,
6159 			 long i, unsigned int flags, int *locked)
6160 {
6161 	unsigned long pfn_offset;
6162 	unsigned long vaddr = *position;
6163 	unsigned long remainder = *nr_pages;
6164 	struct hstate *h = hstate_vma(vma);
6165 	int err = -EFAULT, refs;
6166 
6167 	while (vaddr < vma->vm_end && remainder) {
6168 		pte_t *pte;
6169 		spinlock_t *ptl = NULL;
6170 		bool unshare = false;
6171 		int absent;
6172 		struct page *page;
6173 
6174 		/*
6175 		 * If we have a pending SIGKILL, don't keep faulting pages and
6176 		 * potentially allocating memory.
6177 		 */
6178 		if (fatal_signal_pending(current)) {
6179 			remainder = 0;
6180 			break;
6181 		}
6182 
6183 		/*
6184 		 * Some archs (sparc64, sh*) have multiple pte_ts to
6185 		 * each hugepage.  We have to make sure we get the
6186 		 * first, for the page indexing below to work.
6187 		 *
6188 		 * Note that page table lock is not held when pte is null.
6189 		 */
6190 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6191 				      huge_page_size(h));
6192 		if (pte)
6193 			ptl = huge_pte_lock(h, mm, pte);
6194 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
6195 
6196 		/*
6197 		 * When coredumping, it suits get_dump_page if we just return
6198 		 * an error where there's an empty slot with no huge pagecache
6199 		 * to back it.  This way, we avoid allocating a hugepage, and
6200 		 * the sparse dumpfile avoids allocating disk blocks, but its
6201 		 * huge holes still show up with zeroes where they need to be.
6202 		 */
6203 		if (absent && (flags & FOLL_DUMP) &&
6204 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6205 			if (pte)
6206 				spin_unlock(ptl);
6207 			remainder = 0;
6208 			break;
6209 		}
6210 
6211 		/*
6212 		 * We need call hugetlb_fault for both hugepages under migration
6213 		 * (in which case hugetlb_fault waits for the migration,) and
6214 		 * hwpoisoned hugepages (in which case we need to prevent the
6215 		 * caller from accessing to them.) In order to do this, we use
6216 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
6217 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6218 		 * both cases, and because we can't follow correct pages
6219 		 * directly from any kind of swap entries.
6220 		 */
6221 		if (absent ||
6222 		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6223 			vm_fault_t ret;
6224 			unsigned int fault_flags = 0;
6225 
6226 			if (pte)
6227 				spin_unlock(ptl);
6228 			if (flags & FOLL_WRITE)
6229 				fault_flags |= FAULT_FLAG_WRITE;
6230 			else if (unshare)
6231 				fault_flags |= FAULT_FLAG_UNSHARE;
6232 			if (locked)
6233 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6234 					FAULT_FLAG_KILLABLE;
6235 			if (flags & FOLL_NOWAIT)
6236 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6237 					FAULT_FLAG_RETRY_NOWAIT;
6238 			if (flags & FOLL_TRIED) {
6239 				/*
6240 				 * Note: FAULT_FLAG_ALLOW_RETRY and
6241 				 * FAULT_FLAG_TRIED can co-exist
6242 				 */
6243 				fault_flags |= FAULT_FLAG_TRIED;
6244 			}
6245 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6246 			if (ret & VM_FAULT_ERROR) {
6247 				err = vm_fault_to_errno(ret, flags);
6248 				remainder = 0;
6249 				break;
6250 			}
6251 			if (ret & VM_FAULT_RETRY) {
6252 				if (locked &&
6253 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6254 					*locked = 0;
6255 				*nr_pages = 0;
6256 				/*
6257 				 * VM_FAULT_RETRY must not return an
6258 				 * error, it will return zero
6259 				 * instead.
6260 				 *
6261 				 * No need to update "position" as the
6262 				 * caller will not check it after
6263 				 * *nr_pages is set to 0.
6264 				 */
6265 				return i;
6266 			}
6267 			continue;
6268 		}
6269 
6270 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6271 		page = pte_page(huge_ptep_get(pte));
6272 
6273 		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6274 			       !PageAnonExclusive(page), page);
6275 
6276 		/*
6277 		 * If subpage information not requested, update counters
6278 		 * and skip the same_page loop below.
6279 		 */
6280 		if (!pages && !vmas && !pfn_offset &&
6281 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
6282 		    (remainder >= pages_per_huge_page(h))) {
6283 			vaddr += huge_page_size(h);
6284 			remainder -= pages_per_huge_page(h);
6285 			i += pages_per_huge_page(h);
6286 			spin_unlock(ptl);
6287 			continue;
6288 		}
6289 
6290 		/* vaddr may not be aligned to PAGE_SIZE */
6291 		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6292 		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6293 
6294 		if (pages || vmas)
6295 			record_subpages_vmas(mem_map_offset(page, pfn_offset),
6296 					     vma, refs,
6297 					     likely(pages) ? pages + i : NULL,
6298 					     vmas ? vmas + i : NULL);
6299 
6300 		if (pages) {
6301 			/*
6302 			 * try_grab_folio() should always succeed here,
6303 			 * because: a) we hold the ptl lock, and b) we've just
6304 			 * checked that the huge page is present in the page
6305 			 * tables. If the huge page is present, then the tail
6306 			 * pages must also be present. The ptl prevents the
6307 			 * head page and tail pages from being rearranged in
6308 			 * any way. So this page must be available at this
6309 			 * point, unless the page refcount overflowed:
6310 			 */
6311 			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6312 							 flags))) {
6313 				spin_unlock(ptl);
6314 				remainder = 0;
6315 				err = -ENOMEM;
6316 				break;
6317 			}
6318 		}
6319 
6320 		vaddr += (refs << PAGE_SHIFT);
6321 		remainder -= refs;
6322 		i += refs;
6323 
6324 		spin_unlock(ptl);
6325 	}
6326 	*nr_pages = remainder;
6327 	/*
6328 	 * setting position is actually required only if remainder is
6329 	 * not zero but it's faster not to add a "if (remainder)"
6330 	 * branch.
6331 	 */
6332 	*position = vaddr;
6333 
6334 	return i ? i : err;
6335 }
6336 
6337 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6338 		unsigned long address, unsigned long end,
6339 		pgprot_t newprot, unsigned long cp_flags)
6340 {
6341 	struct mm_struct *mm = vma->vm_mm;
6342 	unsigned long start = address;
6343 	pte_t *ptep;
6344 	pte_t pte;
6345 	struct hstate *h = hstate_vma(vma);
6346 	unsigned long pages = 0, psize = huge_page_size(h);
6347 	bool shared_pmd = false;
6348 	struct mmu_notifier_range range;
6349 	unsigned long last_addr_mask;
6350 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6351 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6352 
6353 	/*
6354 	 * In the case of shared PMDs, the area to flush could be beyond
6355 	 * start/end.  Set range.start/range.end to cover the maximum possible
6356 	 * range if PMD sharing is possible.
6357 	 */
6358 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6359 				0, vma, mm, start, end);
6360 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6361 
6362 	BUG_ON(address >= end);
6363 	flush_cache_range(vma, range.start, range.end);
6364 
6365 	mmu_notifier_invalidate_range_start(&range);
6366 	last_addr_mask = hugetlb_mask_last_page(h);
6367 	i_mmap_lock_write(vma->vm_file->f_mapping);
6368 	for (; address < end; address += psize) {
6369 		spinlock_t *ptl;
6370 		ptep = huge_pte_offset(mm, address, psize);
6371 		if (!ptep) {
6372 			address |= last_addr_mask;
6373 			continue;
6374 		}
6375 		ptl = huge_pte_lock(h, mm, ptep);
6376 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6377 			/*
6378 			 * When uffd-wp is enabled on the vma, unshare
6379 			 * shouldn't happen at all.  Warn about it if it
6380 			 * happened due to some reason.
6381 			 */
6382 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6383 			pages++;
6384 			spin_unlock(ptl);
6385 			shared_pmd = true;
6386 			address |= last_addr_mask;
6387 			continue;
6388 		}
6389 		pte = huge_ptep_get(ptep);
6390 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6391 			spin_unlock(ptl);
6392 			continue;
6393 		}
6394 		if (unlikely(is_hugetlb_entry_migration(pte))) {
6395 			swp_entry_t entry = pte_to_swp_entry(pte);
6396 			struct page *page = pfn_swap_entry_to_page(entry);
6397 
6398 			if (!is_readable_migration_entry(entry)) {
6399 				pte_t newpte;
6400 
6401 				if (PageAnon(page))
6402 					entry = make_readable_exclusive_migration_entry(
6403 								swp_offset(entry));
6404 				else
6405 					entry = make_readable_migration_entry(
6406 								swp_offset(entry));
6407 				newpte = swp_entry_to_pte(entry);
6408 				if (uffd_wp)
6409 					newpte = pte_swp_mkuffd_wp(newpte);
6410 				else if (uffd_wp_resolve)
6411 					newpte = pte_swp_clear_uffd_wp(newpte);
6412 				set_huge_pte_at(mm, address, ptep, newpte);
6413 				pages++;
6414 			}
6415 			spin_unlock(ptl);
6416 			continue;
6417 		}
6418 		if (unlikely(pte_marker_uffd_wp(pte))) {
6419 			/*
6420 			 * This is changing a non-present pte into a none pte,
6421 			 * no need for huge_ptep_modify_prot_start/commit().
6422 			 */
6423 			if (uffd_wp_resolve)
6424 				huge_pte_clear(mm, address, ptep, psize);
6425 		}
6426 		if (!huge_pte_none(pte)) {
6427 			pte_t old_pte;
6428 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6429 
6430 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6431 			pte = huge_pte_modify(old_pte, newprot);
6432 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6433 			if (uffd_wp)
6434 				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6435 			else if (uffd_wp_resolve)
6436 				pte = huge_pte_clear_uffd_wp(pte);
6437 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6438 			pages++;
6439 		} else {
6440 			/* None pte */
6441 			if (unlikely(uffd_wp))
6442 				/* Safe to modify directly (none->non-present). */
6443 				set_huge_pte_at(mm, address, ptep,
6444 						make_pte_marker(PTE_MARKER_UFFD_WP));
6445 		}
6446 		spin_unlock(ptl);
6447 	}
6448 	/*
6449 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6450 	 * may have cleared our pud entry and done put_page on the page table:
6451 	 * once we release i_mmap_rwsem, another task can do the final put_page
6452 	 * and that page table be reused and filled with junk.  If we actually
6453 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6454 	 */
6455 	if (shared_pmd)
6456 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6457 	else
6458 		flush_hugetlb_tlb_range(vma, start, end);
6459 	/*
6460 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
6461 	 * page table protection not changing it to point to a new page.
6462 	 *
6463 	 * See Documentation/mm/mmu_notifier.rst
6464 	 */
6465 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6466 	mmu_notifier_invalidate_range_end(&range);
6467 
6468 	return pages << h->order;
6469 }
6470 
6471 /* Return true if reservation was successful, false otherwise.  */
6472 bool hugetlb_reserve_pages(struct inode *inode,
6473 					long from, long to,
6474 					struct vm_area_struct *vma,
6475 					vm_flags_t vm_flags)
6476 {
6477 	long chg, add = -1;
6478 	struct hstate *h = hstate_inode(inode);
6479 	struct hugepage_subpool *spool = subpool_inode(inode);
6480 	struct resv_map *resv_map;
6481 	struct hugetlb_cgroup *h_cg = NULL;
6482 	long gbl_reserve, regions_needed = 0;
6483 
6484 	/* This should never happen */
6485 	if (from > to) {
6486 		VM_WARN(1, "%s called with a negative range\n", __func__);
6487 		return false;
6488 	}
6489 
6490 	/*
6491 	 * Only apply hugepage reservation if asked. At fault time, an
6492 	 * attempt will be made for VM_NORESERVE to allocate a page
6493 	 * without using reserves
6494 	 */
6495 	if (vm_flags & VM_NORESERVE)
6496 		return true;
6497 
6498 	/*
6499 	 * Shared mappings base their reservation on the number of pages that
6500 	 * are already allocated on behalf of the file. Private mappings need
6501 	 * to reserve the full area even if read-only as mprotect() may be
6502 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6503 	 */
6504 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6505 		/*
6506 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6507 		 * called for inodes for which resv_maps were created (see
6508 		 * hugetlbfs_get_inode).
6509 		 */
6510 		resv_map = inode_resv_map(inode);
6511 
6512 		chg = region_chg(resv_map, from, to, &regions_needed);
6513 
6514 	} else {
6515 		/* Private mapping. */
6516 		resv_map = resv_map_alloc();
6517 		if (!resv_map)
6518 			return false;
6519 
6520 		chg = to - from;
6521 
6522 		set_vma_resv_map(vma, resv_map);
6523 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6524 	}
6525 
6526 	if (chg < 0)
6527 		goto out_err;
6528 
6529 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6530 				chg * pages_per_huge_page(h), &h_cg) < 0)
6531 		goto out_err;
6532 
6533 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6534 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6535 		 * of the resv_map.
6536 		 */
6537 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6538 	}
6539 
6540 	/*
6541 	 * There must be enough pages in the subpool for the mapping. If
6542 	 * the subpool has a minimum size, there may be some global
6543 	 * reservations already in place (gbl_reserve).
6544 	 */
6545 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6546 	if (gbl_reserve < 0)
6547 		goto out_uncharge_cgroup;
6548 
6549 	/*
6550 	 * Check enough hugepages are available for the reservation.
6551 	 * Hand the pages back to the subpool if there are not
6552 	 */
6553 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6554 		goto out_put_pages;
6555 
6556 	/*
6557 	 * Account for the reservations made. Shared mappings record regions
6558 	 * that have reservations as they are shared by multiple VMAs.
6559 	 * When the last VMA disappears, the region map says how much
6560 	 * the reservation was and the page cache tells how much of
6561 	 * the reservation was consumed. Private mappings are per-VMA and
6562 	 * only the consumed reservations are tracked. When the VMA
6563 	 * disappears, the original reservation is the VMA size and the
6564 	 * consumed reservations are stored in the map. Hence, nothing
6565 	 * else has to be done for private mappings here
6566 	 */
6567 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6568 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6569 
6570 		if (unlikely(add < 0)) {
6571 			hugetlb_acct_memory(h, -gbl_reserve);
6572 			goto out_put_pages;
6573 		} else if (unlikely(chg > add)) {
6574 			/*
6575 			 * pages in this range were added to the reserve
6576 			 * map between region_chg and region_add.  This
6577 			 * indicates a race with alloc_huge_page.  Adjust
6578 			 * the subpool and reserve counts modified above
6579 			 * based on the difference.
6580 			 */
6581 			long rsv_adjust;
6582 
6583 			/*
6584 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6585 			 * reference to h_cg->css. See comment below for detail.
6586 			 */
6587 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6588 				hstate_index(h),
6589 				(chg - add) * pages_per_huge_page(h), h_cg);
6590 
6591 			rsv_adjust = hugepage_subpool_put_pages(spool,
6592 								chg - add);
6593 			hugetlb_acct_memory(h, -rsv_adjust);
6594 		} else if (h_cg) {
6595 			/*
6596 			 * The file_regions will hold their own reference to
6597 			 * h_cg->css. So we should release the reference held
6598 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6599 			 * done.
6600 			 */
6601 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6602 		}
6603 	}
6604 	return true;
6605 
6606 out_put_pages:
6607 	/* put back original number of pages, chg */
6608 	(void)hugepage_subpool_put_pages(spool, chg);
6609 out_uncharge_cgroup:
6610 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6611 					    chg * pages_per_huge_page(h), h_cg);
6612 out_err:
6613 	if (!vma || vma->vm_flags & VM_MAYSHARE)
6614 		/* Only call region_abort if the region_chg succeeded but the
6615 		 * region_add failed or didn't run.
6616 		 */
6617 		if (chg >= 0 && add < 0)
6618 			region_abort(resv_map, from, to, regions_needed);
6619 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6620 		kref_put(&resv_map->refs, resv_map_release);
6621 	return false;
6622 }
6623 
6624 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6625 								long freed)
6626 {
6627 	struct hstate *h = hstate_inode(inode);
6628 	struct resv_map *resv_map = inode_resv_map(inode);
6629 	long chg = 0;
6630 	struct hugepage_subpool *spool = subpool_inode(inode);
6631 	long gbl_reserve;
6632 
6633 	/*
6634 	 * Since this routine can be called in the evict inode path for all
6635 	 * hugetlbfs inodes, resv_map could be NULL.
6636 	 */
6637 	if (resv_map) {
6638 		chg = region_del(resv_map, start, end);
6639 		/*
6640 		 * region_del() can fail in the rare case where a region
6641 		 * must be split and another region descriptor can not be
6642 		 * allocated.  If end == LONG_MAX, it will not fail.
6643 		 */
6644 		if (chg < 0)
6645 			return chg;
6646 	}
6647 
6648 	spin_lock(&inode->i_lock);
6649 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6650 	spin_unlock(&inode->i_lock);
6651 
6652 	/*
6653 	 * If the subpool has a minimum size, the number of global
6654 	 * reservations to be released may be adjusted.
6655 	 *
6656 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6657 	 * won't go negative.
6658 	 */
6659 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6660 	hugetlb_acct_memory(h, -gbl_reserve);
6661 
6662 	return 0;
6663 }
6664 
6665 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6666 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6667 				struct vm_area_struct *vma,
6668 				unsigned long addr, pgoff_t idx)
6669 {
6670 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6671 				svma->vm_start;
6672 	unsigned long sbase = saddr & PUD_MASK;
6673 	unsigned long s_end = sbase + PUD_SIZE;
6674 
6675 	/* Allow segments to share if only one is marked locked */
6676 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6677 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6678 
6679 	/*
6680 	 * match the virtual addresses, permission and the alignment of the
6681 	 * page table page.
6682 	 */
6683 	if (pmd_index(addr) != pmd_index(saddr) ||
6684 	    vm_flags != svm_flags ||
6685 	    !range_in_vma(svma, sbase, s_end))
6686 		return 0;
6687 
6688 	return saddr;
6689 }
6690 
6691 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6692 {
6693 	unsigned long base = addr & PUD_MASK;
6694 	unsigned long end = base + PUD_SIZE;
6695 
6696 	/*
6697 	 * check on proper vm_flags and page table alignment
6698 	 */
6699 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6700 		return true;
6701 	return false;
6702 }
6703 
6704 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6705 {
6706 #ifdef CONFIG_USERFAULTFD
6707 	if (uffd_disable_huge_pmd_share(vma))
6708 		return false;
6709 #endif
6710 	return vma_shareable(vma, addr);
6711 }
6712 
6713 /*
6714  * Determine if start,end range within vma could be mapped by shared pmd.
6715  * If yes, adjust start and end to cover range associated with possible
6716  * shared pmd mappings.
6717  */
6718 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6719 				unsigned long *start, unsigned long *end)
6720 {
6721 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6722 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6723 
6724 	/*
6725 	 * vma needs to span at least one aligned PUD size, and the range
6726 	 * must be at least partially within in.
6727 	 */
6728 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6729 		(*end <= v_start) || (*start >= v_end))
6730 		return;
6731 
6732 	/* Extend the range to be PUD aligned for a worst case scenario */
6733 	if (*start > v_start)
6734 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6735 
6736 	if (*end < v_end)
6737 		*end = ALIGN(*end, PUD_SIZE);
6738 }
6739 
6740 /*
6741  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6742  * and returns the corresponding pte. While this is not necessary for the
6743  * !shared pmd case because we can allocate the pmd later as well, it makes the
6744  * code much cleaner.
6745  *
6746  * This routine must be called with i_mmap_rwsem held in at least read mode if
6747  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6748  * table entries associated with the address space.  This is important as we
6749  * are setting up sharing based on existing page table entries (mappings).
6750  */
6751 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6752 		      unsigned long addr, pud_t *pud)
6753 {
6754 	struct address_space *mapping = vma->vm_file->f_mapping;
6755 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6756 			vma->vm_pgoff;
6757 	struct vm_area_struct *svma;
6758 	unsigned long saddr;
6759 	pte_t *spte = NULL;
6760 	pte_t *pte;
6761 	spinlock_t *ptl;
6762 
6763 	i_mmap_assert_locked(mapping);
6764 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6765 		if (svma == vma)
6766 			continue;
6767 
6768 		saddr = page_table_shareable(svma, vma, addr, idx);
6769 		if (saddr) {
6770 			spte = huge_pte_offset(svma->vm_mm, saddr,
6771 					       vma_mmu_pagesize(svma));
6772 			if (spte) {
6773 				get_page(virt_to_page(spte));
6774 				break;
6775 			}
6776 		}
6777 	}
6778 
6779 	if (!spte)
6780 		goto out;
6781 
6782 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6783 	if (pud_none(*pud)) {
6784 		pud_populate(mm, pud,
6785 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6786 		mm_inc_nr_pmds(mm);
6787 	} else {
6788 		put_page(virt_to_page(spte));
6789 	}
6790 	spin_unlock(ptl);
6791 out:
6792 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6793 	return pte;
6794 }
6795 
6796 /*
6797  * unmap huge page backed by shared pte.
6798  *
6799  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6800  * indicated by page_count > 1, unmap is achieved by clearing pud and
6801  * decrementing the ref count. If count == 1, the pte page is not shared.
6802  *
6803  * Called with page table lock held and i_mmap_rwsem held in write mode.
6804  *
6805  * returns: 1 successfully unmapped a shared pte page
6806  *	    0 the underlying pte page is not shared, or it is the last user
6807  */
6808 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6809 					unsigned long addr, pte_t *ptep)
6810 {
6811 	pgd_t *pgd = pgd_offset(mm, addr);
6812 	p4d_t *p4d = p4d_offset(pgd, addr);
6813 	pud_t *pud = pud_offset(p4d, addr);
6814 
6815 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6816 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
6817 	if (page_count(virt_to_page(ptep)) == 1)
6818 		return 0;
6819 
6820 	pud_clear(pud);
6821 	put_page(virt_to_page(ptep));
6822 	mm_dec_nr_pmds(mm);
6823 	return 1;
6824 }
6825 
6826 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6827 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6828 		      unsigned long addr, pud_t *pud)
6829 {
6830 	return NULL;
6831 }
6832 
6833 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6834 				unsigned long addr, pte_t *ptep)
6835 {
6836 	return 0;
6837 }
6838 
6839 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6840 				unsigned long *start, unsigned long *end)
6841 {
6842 }
6843 
6844 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6845 {
6846 	return false;
6847 }
6848 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6849 
6850 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6851 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6852 			unsigned long addr, unsigned long sz)
6853 {
6854 	pgd_t *pgd;
6855 	p4d_t *p4d;
6856 	pud_t *pud;
6857 	pte_t *pte = NULL;
6858 
6859 	pgd = pgd_offset(mm, addr);
6860 	p4d = p4d_alloc(mm, pgd, addr);
6861 	if (!p4d)
6862 		return NULL;
6863 	pud = pud_alloc(mm, p4d, addr);
6864 	if (pud) {
6865 		if (sz == PUD_SIZE) {
6866 			pte = (pte_t *)pud;
6867 		} else {
6868 			BUG_ON(sz != PMD_SIZE);
6869 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6870 				pte = huge_pmd_share(mm, vma, addr, pud);
6871 			else
6872 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6873 		}
6874 	}
6875 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6876 
6877 	return pte;
6878 }
6879 
6880 /*
6881  * huge_pte_offset() - Walk the page table to resolve the hugepage
6882  * entry at address @addr
6883  *
6884  * Return: Pointer to page table entry (PUD or PMD) for
6885  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6886  * size @sz doesn't match the hugepage size at this level of the page
6887  * table.
6888  */
6889 pte_t *huge_pte_offset(struct mm_struct *mm,
6890 		       unsigned long addr, unsigned long sz)
6891 {
6892 	pgd_t *pgd;
6893 	p4d_t *p4d;
6894 	pud_t *pud;
6895 	pmd_t *pmd;
6896 
6897 	pgd = pgd_offset(mm, addr);
6898 	if (!pgd_present(*pgd))
6899 		return NULL;
6900 	p4d = p4d_offset(pgd, addr);
6901 	if (!p4d_present(*p4d))
6902 		return NULL;
6903 
6904 	pud = pud_offset(p4d, addr);
6905 	if (sz == PUD_SIZE)
6906 		/* must be pud huge, non-present or none */
6907 		return (pte_t *)pud;
6908 	if (!pud_present(*pud))
6909 		return NULL;
6910 	/* must have a valid entry and size to go further */
6911 
6912 	pmd = pmd_offset(pud, addr);
6913 	/* must be pmd huge, non-present or none */
6914 	return (pte_t *)pmd;
6915 }
6916 
6917 /*
6918  * Return a mask that can be used to update an address to the last huge
6919  * page in a page table page mapping size.  Used to skip non-present
6920  * page table entries when linearly scanning address ranges.  Architectures
6921  * with unique huge page to page table relationships can define their own
6922  * version of this routine.
6923  */
6924 unsigned long hugetlb_mask_last_page(struct hstate *h)
6925 {
6926 	unsigned long hp_size = huge_page_size(h);
6927 
6928 	if (hp_size == PUD_SIZE)
6929 		return P4D_SIZE - PUD_SIZE;
6930 	else if (hp_size == PMD_SIZE)
6931 		return PUD_SIZE - PMD_SIZE;
6932 	else
6933 		return 0UL;
6934 }
6935 
6936 #else
6937 
6938 /* See description above.  Architectures can provide their own version. */
6939 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
6940 {
6941 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6942 	if (huge_page_size(h) == PMD_SIZE)
6943 		return PUD_SIZE - PMD_SIZE;
6944 #endif
6945 	return 0UL;
6946 }
6947 
6948 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6949 
6950 /*
6951  * These functions are overwritable if your architecture needs its own
6952  * behavior.
6953  */
6954 struct page * __weak
6955 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6956 			      int write)
6957 {
6958 	return ERR_PTR(-EINVAL);
6959 }
6960 
6961 struct page * __weak
6962 follow_huge_pd(struct vm_area_struct *vma,
6963 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
6964 {
6965 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6966 	return NULL;
6967 }
6968 
6969 struct page * __weak
6970 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6971 		pmd_t *pmd, int flags)
6972 {
6973 	struct page *page = NULL;
6974 	spinlock_t *ptl;
6975 	pte_t pte;
6976 
6977 	/*
6978 	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6979 	 * follow_hugetlb_page().
6980 	 */
6981 	if (WARN_ON_ONCE(flags & FOLL_PIN))
6982 		return NULL;
6983 
6984 retry:
6985 	ptl = pmd_lockptr(mm, pmd);
6986 	spin_lock(ptl);
6987 	/*
6988 	 * make sure that the address range covered by this pmd is not
6989 	 * unmapped from other threads.
6990 	 */
6991 	if (!pmd_huge(*pmd))
6992 		goto out;
6993 	pte = huge_ptep_get((pte_t *)pmd);
6994 	if (pte_present(pte)) {
6995 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6996 		/*
6997 		 * try_grab_page() should always succeed here, because: a) we
6998 		 * hold the pmd (ptl) lock, and b) we've just checked that the
6999 		 * huge pmd (head) page is present in the page tables. The ptl
7000 		 * prevents the head page and tail pages from being rearranged
7001 		 * in any way. So this page must be available at this point,
7002 		 * unless the page refcount overflowed:
7003 		 */
7004 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7005 			page = NULL;
7006 			goto out;
7007 		}
7008 	} else {
7009 		if (is_hugetlb_entry_migration(pte)) {
7010 			spin_unlock(ptl);
7011 			__migration_entry_wait_huge((pte_t *)pmd, ptl);
7012 			goto retry;
7013 		}
7014 		/*
7015 		 * hwpoisoned entry is treated as no_page_table in
7016 		 * follow_page_mask().
7017 		 */
7018 	}
7019 out:
7020 	spin_unlock(ptl);
7021 	return page;
7022 }
7023 
7024 struct page * __weak
7025 follow_huge_pud(struct mm_struct *mm, unsigned long address,
7026 		pud_t *pud, int flags)
7027 {
7028 	struct page *page = NULL;
7029 	spinlock_t *ptl;
7030 	pte_t pte;
7031 
7032 	if (WARN_ON_ONCE(flags & FOLL_PIN))
7033 		return NULL;
7034 
7035 retry:
7036 	ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7037 	if (!pud_huge(*pud))
7038 		goto out;
7039 	pte = huge_ptep_get((pte_t *)pud);
7040 	if (pte_present(pte)) {
7041 		page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7042 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7043 			page = NULL;
7044 			goto out;
7045 		}
7046 	} else {
7047 		if (is_hugetlb_entry_migration(pte)) {
7048 			spin_unlock(ptl);
7049 			__migration_entry_wait(mm, (pte_t *)pud, ptl);
7050 			goto retry;
7051 		}
7052 		/*
7053 		 * hwpoisoned entry is treated as no_page_table in
7054 		 * follow_page_mask().
7055 		 */
7056 	}
7057 out:
7058 	spin_unlock(ptl);
7059 	return page;
7060 }
7061 
7062 struct page * __weak
7063 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7064 {
7065 	if (flags & (FOLL_GET | FOLL_PIN))
7066 		return NULL;
7067 
7068 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7069 }
7070 
7071 int isolate_hugetlb(struct page *page, struct list_head *list)
7072 {
7073 	int ret = 0;
7074 
7075 	spin_lock_irq(&hugetlb_lock);
7076 	if (!PageHeadHuge(page) ||
7077 	    !HPageMigratable(page) ||
7078 	    !get_page_unless_zero(page)) {
7079 		ret = -EBUSY;
7080 		goto unlock;
7081 	}
7082 	ClearHPageMigratable(page);
7083 	list_move_tail(&page->lru, list);
7084 unlock:
7085 	spin_unlock_irq(&hugetlb_lock);
7086 	return ret;
7087 }
7088 
7089 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7090 {
7091 	int ret = 0;
7092 
7093 	*hugetlb = false;
7094 	spin_lock_irq(&hugetlb_lock);
7095 	if (PageHeadHuge(page)) {
7096 		*hugetlb = true;
7097 		if (HPageFreed(page))
7098 			ret = 0;
7099 		else if (HPageMigratable(page))
7100 			ret = get_page_unless_zero(page);
7101 		else
7102 			ret = -EBUSY;
7103 	}
7104 	spin_unlock_irq(&hugetlb_lock);
7105 	return ret;
7106 }
7107 
7108 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7109 {
7110 	int ret;
7111 
7112 	spin_lock_irq(&hugetlb_lock);
7113 	ret = __get_huge_page_for_hwpoison(pfn, flags);
7114 	spin_unlock_irq(&hugetlb_lock);
7115 	return ret;
7116 }
7117 
7118 void putback_active_hugepage(struct page *page)
7119 {
7120 	spin_lock_irq(&hugetlb_lock);
7121 	SetHPageMigratable(page);
7122 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7123 	spin_unlock_irq(&hugetlb_lock);
7124 	put_page(page);
7125 }
7126 
7127 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7128 {
7129 	struct hstate *h = page_hstate(oldpage);
7130 
7131 	hugetlb_cgroup_migrate(oldpage, newpage);
7132 	set_page_owner_migrate_reason(newpage, reason);
7133 
7134 	/*
7135 	 * transfer temporary state of the new huge page. This is
7136 	 * reverse to other transitions because the newpage is going to
7137 	 * be final while the old one will be freed so it takes over
7138 	 * the temporary status.
7139 	 *
7140 	 * Also note that we have to transfer the per-node surplus state
7141 	 * here as well otherwise the global surplus count will not match
7142 	 * the per-node's.
7143 	 */
7144 	if (HPageTemporary(newpage)) {
7145 		int old_nid = page_to_nid(oldpage);
7146 		int new_nid = page_to_nid(newpage);
7147 
7148 		SetHPageTemporary(oldpage);
7149 		ClearHPageTemporary(newpage);
7150 
7151 		/*
7152 		 * There is no need to transfer the per-node surplus state
7153 		 * when we do not cross the node.
7154 		 */
7155 		if (new_nid == old_nid)
7156 			return;
7157 		spin_lock_irq(&hugetlb_lock);
7158 		if (h->surplus_huge_pages_node[old_nid]) {
7159 			h->surplus_huge_pages_node[old_nid]--;
7160 			h->surplus_huge_pages_node[new_nid]++;
7161 		}
7162 		spin_unlock_irq(&hugetlb_lock);
7163 	}
7164 }
7165 
7166 /*
7167  * This function will unconditionally remove all the shared pmd pgtable entries
7168  * within the specific vma for a hugetlbfs memory range.
7169  */
7170 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7171 {
7172 	struct hstate *h = hstate_vma(vma);
7173 	unsigned long sz = huge_page_size(h);
7174 	struct mm_struct *mm = vma->vm_mm;
7175 	struct mmu_notifier_range range;
7176 	unsigned long address, start, end;
7177 	spinlock_t *ptl;
7178 	pte_t *ptep;
7179 
7180 	if (!(vma->vm_flags & VM_MAYSHARE))
7181 		return;
7182 
7183 	start = ALIGN(vma->vm_start, PUD_SIZE);
7184 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7185 
7186 	if (start >= end)
7187 		return;
7188 
7189 	flush_cache_range(vma, start, end);
7190 	/*
7191 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7192 	 * we have already done the PUD_SIZE alignment.
7193 	 */
7194 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7195 				start, end);
7196 	mmu_notifier_invalidate_range_start(&range);
7197 	i_mmap_lock_write(vma->vm_file->f_mapping);
7198 	for (address = start; address < end; address += PUD_SIZE) {
7199 		ptep = huge_pte_offset(mm, address, sz);
7200 		if (!ptep)
7201 			continue;
7202 		ptl = huge_pte_lock(h, mm, ptep);
7203 		huge_pmd_unshare(mm, vma, address, ptep);
7204 		spin_unlock(ptl);
7205 	}
7206 	flush_hugetlb_tlb_range(vma, start, end);
7207 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7208 	/*
7209 	 * No need to call mmu_notifier_invalidate_range(), see
7210 	 * Documentation/mm/mmu_notifier.rst.
7211 	 */
7212 	mmu_notifier_invalidate_range_end(&range);
7213 }
7214 
7215 #ifdef CONFIG_CMA
7216 static bool cma_reserve_called __initdata;
7217 
7218 static int __init cmdline_parse_hugetlb_cma(char *p)
7219 {
7220 	int nid, count = 0;
7221 	unsigned long tmp;
7222 	char *s = p;
7223 
7224 	while (*s) {
7225 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7226 			break;
7227 
7228 		if (s[count] == ':') {
7229 			if (tmp >= MAX_NUMNODES)
7230 				break;
7231 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7232 
7233 			s += count + 1;
7234 			tmp = memparse(s, &s);
7235 			hugetlb_cma_size_in_node[nid] = tmp;
7236 			hugetlb_cma_size += tmp;
7237 
7238 			/*
7239 			 * Skip the separator if have one, otherwise
7240 			 * break the parsing.
7241 			 */
7242 			if (*s == ',')
7243 				s++;
7244 			else
7245 				break;
7246 		} else {
7247 			hugetlb_cma_size = memparse(p, &p);
7248 			break;
7249 		}
7250 	}
7251 
7252 	return 0;
7253 }
7254 
7255 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7256 
7257 void __init hugetlb_cma_reserve(int order)
7258 {
7259 	unsigned long size, reserved, per_node;
7260 	bool node_specific_cma_alloc = false;
7261 	int nid;
7262 
7263 	cma_reserve_called = true;
7264 
7265 	if (!hugetlb_cma_size)
7266 		return;
7267 
7268 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7269 		if (hugetlb_cma_size_in_node[nid] == 0)
7270 			continue;
7271 
7272 		if (!node_online(nid)) {
7273 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7274 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7275 			hugetlb_cma_size_in_node[nid] = 0;
7276 			continue;
7277 		}
7278 
7279 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7280 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7281 				nid, (PAGE_SIZE << order) / SZ_1M);
7282 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7283 			hugetlb_cma_size_in_node[nid] = 0;
7284 		} else {
7285 			node_specific_cma_alloc = true;
7286 		}
7287 	}
7288 
7289 	/* Validate the CMA size again in case some invalid nodes specified. */
7290 	if (!hugetlb_cma_size)
7291 		return;
7292 
7293 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7294 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7295 			(PAGE_SIZE << order) / SZ_1M);
7296 		hugetlb_cma_size = 0;
7297 		return;
7298 	}
7299 
7300 	if (!node_specific_cma_alloc) {
7301 		/*
7302 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7303 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7304 		 */
7305 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7306 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7307 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7308 	}
7309 
7310 	reserved = 0;
7311 	for_each_online_node(nid) {
7312 		int res;
7313 		char name[CMA_MAX_NAME];
7314 
7315 		if (node_specific_cma_alloc) {
7316 			if (hugetlb_cma_size_in_node[nid] == 0)
7317 				continue;
7318 
7319 			size = hugetlb_cma_size_in_node[nid];
7320 		} else {
7321 			size = min(per_node, hugetlb_cma_size - reserved);
7322 		}
7323 
7324 		size = round_up(size, PAGE_SIZE << order);
7325 
7326 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7327 		/*
7328 		 * Note that 'order per bit' is based on smallest size that
7329 		 * may be returned to CMA allocator in the case of
7330 		 * huge page demotion.
7331 		 */
7332 		res = cma_declare_contiguous_nid(0, size, 0,
7333 						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7334 						 0, false, name,
7335 						 &hugetlb_cma[nid], nid);
7336 		if (res) {
7337 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7338 				res, nid);
7339 			continue;
7340 		}
7341 
7342 		reserved += size;
7343 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7344 			size / SZ_1M, nid);
7345 
7346 		if (reserved >= hugetlb_cma_size)
7347 			break;
7348 	}
7349 
7350 	if (!reserved)
7351 		/*
7352 		 * hugetlb_cma_size is used to determine if allocations from
7353 		 * cma are possible.  Set to zero if no cma regions are set up.
7354 		 */
7355 		hugetlb_cma_size = 0;
7356 }
7357 
7358 static void __init hugetlb_cma_check(void)
7359 {
7360 	if (!hugetlb_cma_size || cma_reserve_called)
7361 		return;
7362 
7363 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7364 }
7365 
7366 #endif /* CONFIG_CMA */
7367