1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/compiler.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/sysfs.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_helpers.h> 27 #include <linux/swap.h> 28 #include <linux/swapops.h> 29 #include <linux/jhash.h> 30 #include <linux/numa.h> 31 #include <linux/llist.h> 32 #include <linux/cma.h> 33 #include <linux/migrate.h> 34 #include <linux/nospec.h> 35 #include <linux/delayacct.h> 36 #include <linux/memory.h> 37 38 #include <asm/page.h> 39 #include <asm/pgalloc.h> 40 #include <asm/tlb.h> 41 42 #include <linux/io.h> 43 #include <linux/hugetlb.h> 44 #include <linux/hugetlb_cgroup.h> 45 #include <linux/node.h> 46 #include <linux/page_owner.h> 47 #include "internal.h" 48 #include "hugetlb_vmemmap.h" 49 50 int hugetlb_max_hstate __read_mostly; 51 unsigned int default_hstate_idx; 52 struct hstate hstates[HUGE_MAX_HSTATE]; 53 54 #ifdef CONFIG_CMA 55 static struct cma *hugetlb_cma[MAX_NUMNODES]; 56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; 57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 58 { 59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 60 1 << order); 61 } 62 #else 63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) 64 { 65 return false; 66 } 67 #endif 68 static unsigned long hugetlb_cma_size __initdata; 69 70 __initdata LIST_HEAD(huge_boot_pages); 71 72 /* for command line parsing */ 73 static struct hstate * __initdata parsed_hstate; 74 static unsigned long __initdata default_hstate_max_huge_pages; 75 static bool __initdata parsed_valid_hugepagesz = true; 76 static bool __initdata parsed_default_hugepagesz; 77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 78 79 /* 80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 81 * free_huge_pages, and surplus_huge_pages. 82 */ 83 DEFINE_SPINLOCK(hugetlb_lock); 84 85 /* 86 * Serializes faults on the same logical page. This is used to 87 * prevent spurious OOMs when the hugepage pool is fully utilized. 88 */ 89 static int num_fault_mutexes; 90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 91 92 /* Forward declaration */ 93 static int hugetlb_acct_memory(struct hstate *h, long delta); 94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); 96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 97 98 static inline bool subpool_is_free(struct hugepage_subpool *spool) 99 { 100 if (spool->count) 101 return false; 102 if (spool->max_hpages != -1) 103 return spool->used_hpages == 0; 104 if (spool->min_hpages != -1) 105 return spool->rsv_hpages == spool->min_hpages; 106 107 return true; 108 } 109 110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 111 unsigned long irq_flags) 112 { 113 spin_unlock_irqrestore(&spool->lock, irq_flags); 114 115 /* If no pages are used, and no other handles to the subpool 116 * remain, give up any reservations based on minimum size and 117 * free the subpool */ 118 if (subpool_is_free(spool)) { 119 if (spool->min_hpages != -1) 120 hugetlb_acct_memory(spool->hstate, 121 -spool->min_hpages); 122 kfree(spool); 123 } 124 } 125 126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 127 long min_hpages) 128 { 129 struct hugepage_subpool *spool; 130 131 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 132 if (!spool) 133 return NULL; 134 135 spin_lock_init(&spool->lock); 136 spool->count = 1; 137 spool->max_hpages = max_hpages; 138 spool->hstate = h; 139 spool->min_hpages = min_hpages; 140 141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 142 kfree(spool); 143 return NULL; 144 } 145 spool->rsv_hpages = min_hpages; 146 147 return spool; 148 } 149 150 void hugepage_put_subpool(struct hugepage_subpool *spool) 151 { 152 unsigned long flags; 153 154 spin_lock_irqsave(&spool->lock, flags); 155 BUG_ON(!spool->count); 156 spool->count--; 157 unlock_or_release_subpool(spool, flags); 158 } 159 160 /* 161 * Subpool accounting for allocating and reserving pages. 162 * Return -ENOMEM if there are not enough resources to satisfy the 163 * request. Otherwise, return the number of pages by which the 164 * global pools must be adjusted (upward). The returned value may 165 * only be different than the passed value (delta) in the case where 166 * a subpool minimum size must be maintained. 167 */ 168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 169 long delta) 170 { 171 long ret = delta; 172 173 if (!spool) 174 return ret; 175 176 spin_lock_irq(&spool->lock); 177 178 if (spool->max_hpages != -1) { /* maximum size accounting */ 179 if ((spool->used_hpages + delta) <= spool->max_hpages) 180 spool->used_hpages += delta; 181 else { 182 ret = -ENOMEM; 183 goto unlock_ret; 184 } 185 } 186 187 /* minimum size accounting */ 188 if (spool->min_hpages != -1 && spool->rsv_hpages) { 189 if (delta > spool->rsv_hpages) { 190 /* 191 * Asking for more reserves than those already taken on 192 * behalf of subpool. Return difference. 193 */ 194 ret = delta - spool->rsv_hpages; 195 spool->rsv_hpages = 0; 196 } else { 197 ret = 0; /* reserves already accounted for */ 198 spool->rsv_hpages -= delta; 199 } 200 } 201 202 unlock_ret: 203 spin_unlock_irq(&spool->lock); 204 return ret; 205 } 206 207 /* 208 * Subpool accounting for freeing and unreserving pages. 209 * Return the number of global page reservations that must be dropped. 210 * The return value may only be different than the passed value (delta) 211 * in the case where a subpool minimum size must be maintained. 212 */ 213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 214 long delta) 215 { 216 long ret = delta; 217 unsigned long flags; 218 219 if (!spool) 220 return delta; 221 222 spin_lock_irqsave(&spool->lock, flags); 223 224 if (spool->max_hpages != -1) /* maximum size accounting */ 225 spool->used_hpages -= delta; 226 227 /* minimum size accounting */ 228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 229 if (spool->rsv_hpages + delta <= spool->min_hpages) 230 ret = 0; 231 else 232 ret = spool->rsv_hpages + delta - spool->min_hpages; 233 234 spool->rsv_hpages += delta; 235 if (spool->rsv_hpages > spool->min_hpages) 236 spool->rsv_hpages = spool->min_hpages; 237 } 238 239 /* 240 * If hugetlbfs_put_super couldn't free spool due to an outstanding 241 * quota reference, free it now. 242 */ 243 unlock_or_release_subpool(spool, flags); 244 245 return ret; 246 } 247 248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 249 { 250 return HUGETLBFS_SB(inode->i_sb)->spool; 251 } 252 253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 254 { 255 return subpool_inode(file_inode(vma->vm_file)); 256 } 257 258 /* Helper that removes a struct file_region from the resv_map cache and returns 259 * it for use. 260 */ 261 static struct file_region * 262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 263 { 264 struct file_region *nrg; 265 266 VM_BUG_ON(resv->region_cache_count <= 0); 267 268 resv->region_cache_count--; 269 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 270 list_del(&nrg->link); 271 272 nrg->from = from; 273 nrg->to = to; 274 275 return nrg; 276 } 277 278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 279 struct file_region *rg) 280 { 281 #ifdef CONFIG_CGROUP_HUGETLB 282 nrg->reservation_counter = rg->reservation_counter; 283 nrg->css = rg->css; 284 if (rg->css) 285 css_get(rg->css); 286 #endif 287 } 288 289 /* Helper that records hugetlb_cgroup uncharge info. */ 290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 291 struct hstate *h, 292 struct resv_map *resv, 293 struct file_region *nrg) 294 { 295 #ifdef CONFIG_CGROUP_HUGETLB 296 if (h_cg) { 297 nrg->reservation_counter = 298 &h_cg->rsvd_hugepage[hstate_index(h)]; 299 nrg->css = &h_cg->css; 300 /* 301 * The caller will hold exactly one h_cg->css reference for the 302 * whole contiguous reservation region. But this area might be 303 * scattered when there are already some file_regions reside in 304 * it. As a result, many file_regions may share only one css 305 * reference. In order to ensure that one file_region must hold 306 * exactly one h_cg->css reference, we should do css_get for 307 * each file_region and leave the reference held by caller 308 * untouched. 309 */ 310 css_get(&h_cg->css); 311 if (!resv->pages_per_hpage) 312 resv->pages_per_hpage = pages_per_huge_page(h); 313 /* pages_per_hpage should be the same for all entries in 314 * a resv_map. 315 */ 316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 317 } else { 318 nrg->reservation_counter = NULL; 319 nrg->css = NULL; 320 } 321 #endif 322 } 323 324 static void put_uncharge_info(struct file_region *rg) 325 { 326 #ifdef CONFIG_CGROUP_HUGETLB 327 if (rg->css) 328 css_put(rg->css); 329 #endif 330 } 331 332 static bool has_same_uncharge_info(struct file_region *rg, 333 struct file_region *org) 334 { 335 #ifdef CONFIG_CGROUP_HUGETLB 336 return rg->reservation_counter == org->reservation_counter && 337 rg->css == org->css; 338 339 #else 340 return true; 341 #endif 342 } 343 344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 345 { 346 struct file_region *nrg, *prg; 347 348 prg = list_prev_entry(rg, link); 349 if (&prg->link != &resv->regions && prg->to == rg->from && 350 has_same_uncharge_info(prg, rg)) { 351 prg->to = rg->to; 352 353 list_del(&rg->link); 354 put_uncharge_info(rg); 355 kfree(rg); 356 357 rg = prg; 358 } 359 360 nrg = list_next_entry(rg, link); 361 if (&nrg->link != &resv->regions && nrg->from == rg->to && 362 has_same_uncharge_info(nrg, rg)) { 363 nrg->from = rg->from; 364 365 list_del(&rg->link); 366 put_uncharge_info(rg); 367 kfree(rg); 368 } 369 } 370 371 static inline long 372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 373 long to, struct hstate *h, struct hugetlb_cgroup *cg, 374 long *regions_needed) 375 { 376 struct file_region *nrg; 377 378 if (!regions_needed) { 379 nrg = get_file_region_entry_from_cache(map, from, to); 380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 381 list_add(&nrg->link, rg); 382 coalesce_file_region(map, nrg); 383 } else 384 *regions_needed += 1; 385 386 return to - from; 387 } 388 389 /* 390 * Must be called with resv->lock held. 391 * 392 * Calling this with regions_needed != NULL will count the number of pages 393 * to be added but will not modify the linked list. And regions_needed will 394 * indicate the number of file_regions needed in the cache to carry out to add 395 * the regions for this range. 396 */ 397 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 398 struct hugetlb_cgroup *h_cg, 399 struct hstate *h, long *regions_needed) 400 { 401 long add = 0; 402 struct list_head *head = &resv->regions; 403 long last_accounted_offset = f; 404 struct file_region *iter, *trg = NULL; 405 struct list_head *rg = NULL; 406 407 if (regions_needed) 408 *regions_needed = 0; 409 410 /* In this loop, we essentially handle an entry for the range 411 * [last_accounted_offset, iter->from), at every iteration, with some 412 * bounds checking. 413 */ 414 list_for_each_entry_safe(iter, trg, head, link) { 415 /* Skip irrelevant regions that start before our range. */ 416 if (iter->from < f) { 417 /* If this region ends after the last accounted offset, 418 * then we need to update last_accounted_offset. 419 */ 420 if (iter->to > last_accounted_offset) 421 last_accounted_offset = iter->to; 422 continue; 423 } 424 425 /* When we find a region that starts beyond our range, we've 426 * finished. 427 */ 428 if (iter->from >= t) { 429 rg = iter->link.prev; 430 break; 431 } 432 433 /* Add an entry for last_accounted_offset -> iter->from, and 434 * update last_accounted_offset. 435 */ 436 if (iter->from > last_accounted_offset) 437 add += hugetlb_resv_map_add(resv, iter->link.prev, 438 last_accounted_offset, 439 iter->from, h, h_cg, 440 regions_needed); 441 442 last_accounted_offset = iter->to; 443 } 444 445 /* Handle the case where our range extends beyond 446 * last_accounted_offset. 447 */ 448 if (!rg) 449 rg = head->prev; 450 if (last_accounted_offset < t) 451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 452 t, h, h_cg, regions_needed); 453 454 return add; 455 } 456 457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 458 */ 459 static int allocate_file_region_entries(struct resv_map *resv, 460 int regions_needed) 461 __must_hold(&resv->lock) 462 { 463 LIST_HEAD(allocated_regions); 464 int to_allocate = 0, i = 0; 465 struct file_region *trg = NULL, *rg = NULL; 466 467 VM_BUG_ON(regions_needed < 0); 468 469 /* 470 * Check for sufficient descriptors in the cache to accommodate 471 * the number of in progress add operations plus regions_needed. 472 * 473 * This is a while loop because when we drop the lock, some other call 474 * to region_add or region_del may have consumed some region_entries, 475 * so we keep looping here until we finally have enough entries for 476 * (adds_in_progress + regions_needed). 477 */ 478 while (resv->region_cache_count < 479 (resv->adds_in_progress + regions_needed)) { 480 to_allocate = resv->adds_in_progress + regions_needed - 481 resv->region_cache_count; 482 483 /* At this point, we should have enough entries in the cache 484 * for all the existing adds_in_progress. We should only be 485 * needing to allocate for regions_needed. 486 */ 487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 488 489 spin_unlock(&resv->lock); 490 for (i = 0; i < to_allocate; i++) { 491 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 492 if (!trg) 493 goto out_of_memory; 494 list_add(&trg->link, &allocated_regions); 495 } 496 497 spin_lock(&resv->lock); 498 499 list_splice(&allocated_regions, &resv->region_cache); 500 resv->region_cache_count += to_allocate; 501 } 502 503 return 0; 504 505 out_of_memory: 506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 507 list_del(&rg->link); 508 kfree(rg); 509 } 510 return -ENOMEM; 511 } 512 513 /* 514 * Add the huge page range represented by [f, t) to the reserve 515 * map. Regions will be taken from the cache to fill in this range. 516 * Sufficient regions should exist in the cache due to the previous 517 * call to region_chg with the same range, but in some cases the cache will not 518 * have sufficient entries due to races with other code doing region_add or 519 * region_del. The extra needed entries will be allocated. 520 * 521 * regions_needed is the out value provided by a previous call to region_chg. 522 * 523 * Return the number of new huge pages added to the map. This number is greater 524 * than or equal to zero. If file_region entries needed to be allocated for 525 * this operation and we were not able to allocate, it returns -ENOMEM. 526 * region_add of regions of length 1 never allocate file_regions and cannot 527 * fail; region_chg will always allocate at least 1 entry and a region_add for 528 * 1 page will only require at most 1 entry. 529 */ 530 static long region_add(struct resv_map *resv, long f, long t, 531 long in_regions_needed, struct hstate *h, 532 struct hugetlb_cgroup *h_cg) 533 { 534 long add = 0, actual_regions_needed = 0; 535 536 spin_lock(&resv->lock); 537 retry: 538 539 /* Count how many regions are actually needed to execute this add. */ 540 add_reservation_in_range(resv, f, t, NULL, NULL, 541 &actual_regions_needed); 542 543 /* 544 * Check for sufficient descriptors in the cache to accommodate 545 * this add operation. Note that actual_regions_needed may be greater 546 * than in_regions_needed, as the resv_map may have been modified since 547 * the region_chg call. In this case, we need to make sure that we 548 * allocate extra entries, such that we have enough for all the 549 * existing adds_in_progress, plus the excess needed for this 550 * operation. 551 */ 552 if (actual_regions_needed > in_regions_needed && 553 resv->region_cache_count < 554 resv->adds_in_progress + 555 (actual_regions_needed - in_regions_needed)) { 556 /* region_add operation of range 1 should never need to 557 * allocate file_region entries. 558 */ 559 VM_BUG_ON(t - f <= 1); 560 561 if (allocate_file_region_entries( 562 resv, actual_regions_needed - in_regions_needed)) { 563 return -ENOMEM; 564 } 565 566 goto retry; 567 } 568 569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 570 571 resv->adds_in_progress -= in_regions_needed; 572 573 spin_unlock(&resv->lock); 574 return add; 575 } 576 577 /* 578 * Examine the existing reserve map and determine how many 579 * huge pages in the specified range [f, t) are NOT currently 580 * represented. This routine is called before a subsequent 581 * call to region_add that will actually modify the reserve 582 * map to add the specified range [f, t). region_chg does 583 * not change the number of huge pages represented by the 584 * map. A number of new file_region structures is added to the cache as a 585 * placeholder, for the subsequent region_add call to use. At least 1 586 * file_region structure is added. 587 * 588 * out_regions_needed is the number of regions added to the 589 * resv->adds_in_progress. This value needs to be provided to a follow up call 590 * to region_add or region_abort for proper accounting. 591 * 592 * Returns the number of huge pages that need to be added to the existing 593 * reservation map for the range [f, t). This number is greater or equal to 594 * zero. -ENOMEM is returned if a new file_region structure or cache entry 595 * is needed and can not be allocated. 596 */ 597 static long region_chg(struct resv_map *resv, long f, long t, 598 long *out_regions_needed) 599 { 600 long chg = 0; 601 602 spin_lock(&resv->lock); 603 604 /* Count how many hugepages in this range are NOT represented. */ 605 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 606 out_regions_needed); 607 608 if (*out_regions_needed == 0) 609 *out_regions_needed = 1; 610 611 if (allocate_file_region_entries(resv, *out_regions_needed)) 612 return -ENOMEM; 613 614 resv->adds_in_progress += *out_regions_needed; 615 616 spin_unlock(&resv->lock); 617 return chg; 618 } 619 620 /* 621 * Abort the in progress add operation. The adds_in_progress field 622 * of the resv_map keeps track of the operations in progress between 623 * calls to region_chg and region_add. Operations are sometimes 624 * aborted after the call to region_chg. In such cases, region_abort 625 * is called to decrement the adds_in_progress counter. regions_needed 626 * is the value returned by the region_chg call, it is used to decrement 627 * the adds_in_progress counter. 628 * 629 * NOTE: The range arguments [f, t) are not needed or used in this 630 * routine. They are kept to make reading the calling code easier as 631 * arguments will match the associated region_chg call. 632 */ 633 static void region_abort(struct resv_map *resv, long f, long t, 634 long regions_needed) 635 { 636 spin_lock(&resv->lock); 637 VM_BUG_ON(!resv->region_cache_count); 638 resv->adds_in_progress -= regions_needed; 639 spin_unlock(&resv->lock); 640 } 641 642 /* 643 * Delete the specified range [f, t) from the reserve map. If the 644 * t parameter is LONG_MAX, this indicates that ALL regions after f 645 * should be deleted. Locate the regions which intersect [f, t) 646 * and either trim, delete or split the existing regions. 647 * 648 * Returns the number of huge pages deleted from the reserve map. 649 * In the normal case, the return value is zero or more. In the 650 * case where a region must be split, a new region descriptor must 651 * be allocated. If the allocation fails, -ENOMEM will be returned. 652 * NOTE: If the parameter t == LONG_MAX, then we will never split 653 * a region and possibly return -ENOMEM. Callers specifying 654 * t == LONG_MAX do not need to check for -ENOMEM error. 655 */ 656 static long region_del(struct resv_map *resv, long f, long t) 657 { 658 struct list_head *head = &resv->regions; 659 struct file_region *rg, *trg; 660 struct file_region *nrg = NULL; 661 long del = 0; 662 663 retry: 664 spin_lock(&resv->lock); 665 list_for_each_entry_safe(rg, trg, head, link) { 666 /* 667 * Skip regions before the range to be deleted. file_region 668 * ranges are normally of the form [from, to). However, there 669 * may be a "placeholder" entry in the map which is of the form 670 * (from, to) with from == to. Check for placeholder entries 671 * at the beginning of the range to be deleted. 672 */ 673 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 674 continue; 675 676 if (rg->from >= t) 677 break; 678 679 if (f > rg->from && t < rg->to) { /* Must split region */ 680 /* 681 * Check for an entry in the cache before dropping 682 * lock and attempting allocation. 683 */ 684 if (!nrg && 685 resv->region_cache_count > resv->adds_in_progress) { 686 nrg = list_first_entry(&resv->region_cache, 687 struct file_region, 688 link); 689 list_del(&nrg->link); 690 resv->region_cache_count--; 691 } 692 693 if (!nrg) { 694 spin_unlock(&resv->lock); 695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 696 if (!nrg) 697 return -ENOMEM; 698 goto retry; 699 } 700 701 del += t - f; 702 hugetlb_cgroup_uncharge_file_region( 703 resv, rg, t - f, false); 704 705 /* New entry for end of split region */ 706 nrg->from = t; 707 nrg->to = rg->to; 708 709 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 710 711 INIT_LIST_HEAD(&nrg->link); 712 713 /* Original entry is trimmed */ 714 rg->to = f; 715 716 list_add(&nrg->link, &rg->link); 717 nrg = NULL; 718 break; 719 } 720 721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 722 del += rg->to - rg->from; 723 hugetlb_cgroup_uncharge_file_region(resv, rg, 724 rg->to - rg->from, true); 725 list_del(&rg->link); 726 kfree(rg); 727 continue; 728 } 729 730 if (f <= rg->from) { /* Trim beginning of region */ 731 hugetlb_cgroup_uncharge_file_region(resv, rg, 732 t - rg->from, false); 733 734 del += t - rg->from; 735 rg->from = t; 736 } else { /* Trim end of region */ 737 hugetlb_cgroup_uncharge_file_region(resv, rg, 738 rg->to - f, false); 739 740 del += rg->to - f; 741 rg->to = f; 742 } 743 } 744 745 spin_unlock(&resv->lock); 746 kfree(nrg); 747 return del; 748 } 749 750 /* 751 * A rare out of memory error was encountered which prevented removal of 752 * the reserve map region for a page. The huge page itself was free'ed 753 * and removed from the page cache. This routine will adjust the subpool 754 * usage count, and the global reserve count if needed. By incrementing 755 * these counts, the reserve map entry which could not be deleted will 756 * appear as a "reserved" entry instead of simply dangling with incorrect 757 * counts. 758 */ 759 void hugetlb_fix_reserve_counts(struct inode *inode) 760 { 761 struct hugepage_subpool *spool = subpool_inode(inode); 762 long rsv_adjust; 763 bool reserved = false; 764 765 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 766 if (rsv_adjust > 0) { 767 struct hstate *h = hstate_inode(inode); 768 769 if (!hugetlb_acct_memory(h, 1)) 770 reserved = true; 771 } else if (!rsv_adjust) { 772 reserved = true; 773 } 774 775 if (!reserved) 776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 777 } 778 779 /* 780 * Count and return the number of huge pages in the reserve map 781 * that intersect with the range [f, t). 782 */ 783 static long region_count(struct resv_map *resv, long f, long t) 784 { 785 struct list_head *head = &resv->regions; 786 struct file_region *rg; 787 long chg = 0; 788 789 spin_lock(&resv->lock); 790 /* Locate each segment we overlap with, and count that overlap. */ 791 list_for_each_entry(rg, head, link) { 792 long seg_from; 793 long seg_to; 794 795 if (rg->to <= f) 796 continue; 797 if (rg->from >= t) 798 break; 799 800 seg_from = max(rg->from, f); 801 seg_to = min(rg->to, t); 802 803 chg += seg_to - seg_from; 804 } 805 spin_unlock(&resv->lock); 806 807 return chg; 808 } 809 810 /* 811 * Convert the address within this vma to the page offset within 812 * the mapping, in pagecache page units; huge pages here. 813 */ 814 static pgoff_t vma_hugecache_offset(struct hstate *h, 815 struct vm_area_struct *vma, unsigned long address) 816 { 817 return ((address - vma->vm_start) >> huge_page_shift(h)) + 818 (vma->vm_pgoff >> huge_page_order(h)); 819 } 820 821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 822 unsigned long address) 823 { 824 return vma_hugecache_offset(hstate_vma(vma), vma, address); 825 } 826 EXPORT_SYMBOL_GPL(linear_hugepage_index); 827 828 /* 829 * Return the size of the pages allocated when backing a VMA. In the majority 830 * cases this will be same size as used by the page table entries. 831 */ 832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 833 { 834 if (vma->vm_ops && vma->vm_ops->pagesize) 835 return vma->vm_ops->pagesize(vma); 836 return PAGE_SIZE; 837 } 838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 839 840 /* 841 * Return the page size being used by the MMU to back a VMA. In the majority 842 * of cases, the page size used by the kernel matches the MMU size. On 843 * architectures where it differs, an architecture-specific 'strong' 844 * version of this symbol is required. 845 */ 846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 847 { 848 return vma_kernel_pagesize(vma); 849 } 850 851 /* 852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 853 * bits of the reservation map pointer, which are always clear due to 854 * alignment. 855 */ 856 #define HPAGE_RESV_OWNER (1UL << 0) 857 #define HPAGE_RESV_UNMAPPED (1UL << 1) 858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 859 860 /* 861 * These helpers are used to track how many pages are reserved for 862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 863 * is guaranteed to have their future faults succeed. 864 * 865 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 866 * the reserve counters are updated with the hugetlb_lock held. It is safe 867 * to reset the VMA at fork() time as it is not in use yet and there is no 868 * chance of the global counters getting corrupted as a result of the values. 869 * 870 * The private mapping reservation is represented in a subtly different 871 * manner to a shared mapping. A shared mapping has a region map associated 872 * with the underlying file, this region map represents the backing file 873 * pages which have ever had a reservation assigned which this persists even 874 * after the page is instantiated. A private mapping has a region map 875 * associated with the original mmap which is attached to all VMAs which 876 * reference it, this region map represents those offsets which have consumed 877 * reservation ie. where pages have been instantiated. 878 */ 879 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 880 { 881 return (unsigned long)vma->vm_private_data; 882 } 883 884 static void set_vma_private_data(struct vm_area_struct *vma, 885 unsigned long value) 886 { 887 vma->vm_private_data = (void *)value; 888 } 889 890 static void 891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 892 struct hugetlb_cgroup *h_cg, 893 struct hstate *h) 894 { 895 #ifdef CONFIG_CGROUP_HUGETLB 896 if (!h_cg || !h) { 897 resv_map->reservation_counter = NULL; 898 resv_map->pages_per_hpage = 0; 899 resv_map->css = NULL; 900 } else { 901 resv_map->reservation_counter = 902 &h_cg->rsvd_hugepage[hstate_index(h)]; 903 resv_map->pages_per_hpage = pages_per_huge_page(h); 904 resv_map->css = &h_cg->css; 905 } 906 #endif 907 } 908 909 struct resv_map *resv_map_alloc(void) 910 { 911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 913 914 if (!resv_map || !rg) { 915 kfree(resv_map); 916 kfree(rg); 917 return NULL; 918 } 919 920 kref_init(&resv_map->refs); 921 spin_lock_init(&resv_map->lock); 922 INIT_LIST_HEAD(&resv_map->regions); 923 924 resv_map->adds_in_progress = 0; 925 /* 926 * Initialize these to 0. On shared mappings, 0's here indicate these 927 * fields don't do cgroup accounting. On private mappings, these will be 928 * re-initialized to the proper values, to indicate that hugetlb cgroup 929 * reservations are to be un-charged from here. 930 */ 931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 932 933 INIT_LIST_HEAD(&resv_map->region_cache); 934 list_add(&rg->link, &resv_map->region_cache); 935 resv_map->region_cache_count = 1; 936 937 return resv_map; 938 } 939 940 void resv_map_release(struct kref *ref) 941 { 942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 943 struct list_head *head = &resv_map->region_cache; 944 struct file_region *rg, *trg; 945 946 /* Clear out any active regions before we release the map. */ 947 region_del(resv_map, 0, LONG_MAX); 948 949 /* ... and any entries left in the cache */ 950 list_for_each_entry_safe(rg, trg, head, link) { 951 list_del(&rg->link); 952 kfree(rg); 953 } 954 955 VM_BUG_ON(resv_map->adds_in_progress); 956 957 kfree(resv_map); 958 } 959 960 static inline struct resv_map *inode_resv_map(struct inode *inode) 961 { 962 /* 963 * At inode evict time, i_mapping may not point to the original 964 * address space within the inode. This original address space 965 * contains the pointer to the resv_map. So, always use the 966 * address space embedded within the inode. 967 * The VERY common case is inode->mapping == &inode->i_data but, 968 * this may not be true for device special inodes. 969 */ 970 return (struct resv_map *)(&inode->i_data)->private_data; 971 } 972 973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 974 { 975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 976 if (vma->vm_flags & VM_MAYSHARE) { 977 struct address_space *mapping = vma->vm_file->f_mapping; 978 struct inode *inode = mapping->host; 979 980 return inode_resv_map(inode); 981 982 } else { 983 return (struct resv_map *)(get_vma_private_data(vma) & 984 ~HPAGE_RESV_MASK); 985 } 986 } 987 988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 989 { 990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 992 993 set_vma_private_data(vma, (get_vma_private_data(vma) & 994 HPAGE_RESV_MASK) | (unsigned long)map); 995 } 996 997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 998 { 999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1001 1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1003 } 1004 1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1006 { 1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1008 1009 return (get_vma_private_data(vma) & flag) != 0; 1010 } 1011 1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1013 { 1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1015 /* 1016 * Clear vm_private_data 1017 * - For shared mappings this is a per-vma semaphore that may be 1018 * allocated in a subsequent call to hugetlb_vm_op_open. 1019 * Before clearing, make sure pointer is not associated with vma 1020 * as this will leak the structure. This is the case when called 1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1022 * been called to allocate a new structure. 1023 * - For MAP_PRIVATE mappings, this is the reserve map which does 1024 * not apply to children. Faults generated by the children are 1025 * not guaranteed to succeed, even if read-only. 1026 */ 1027 if (vma->vm_flags & VM_MAYSHARE) { 1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1029 1030 if (vma_lock && vma_lock->vma != vma) 1031 vma->vm_private_data = NULL; 1032 } else 1033 vma->vm_private_data = NULL; 1034 } 1035 1036 /* 1037 * Reset and decrement one ref on hugepage private reservation. 1038 * Called with mm->mmap_sem writer semaphore held. 1039 * This function should be only used by move_vma() and operate on 1040 * same sized vma. It should never come here with last ref on the 1041 * reservation. 1042 */ 1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1044 { 1045 /* 1046 * Clear the old hugetlb private page reservation. 1047 * It has already been transferred to new_vma. 1048 * 1049 * During a mremap() operation of a hugetlb vma we call move_vma() 1050 * which copies vma into new_vma and unmaps vma. After the copy 1051 * operation both new_vma and vma share a reference to the resv_map 1052 * struct, and at that point vma is about to be unmapped. We don't 1053 * want to return the reservation to the pool at unmap of vma because 1054 * the reservation still lives on in new_vma, so simply decrement the 1055 * ref here and remove the resv_map reference from this vma. 1056 */ 1057 struct resv_map *reservations = vma_resv_map(vma); 1058 1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1061 kref_put(&reservations->refs, resv_map_release); 1062 } 1063 1064 hugetlb_dup_vma_private(vma); 1065 } 1066 1067 /* Returns true if the VMA has associated reserve pages */ 1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 1069 { 1070 if (vma->vm_flags & VM_NORESERVE) { 1071 /* 1072 * This address is already reserved by other process(chg == 0), 1073 * so, we should decrement reserved count. Without decrementing, 1074 * reserve count remains after releasing inode, because this 1075 * allocated page will go into page cache and is regarded as 1076 * coming from reserved pool in releasing step. Currently, we 1077 * don't have any other solution to deal with this situation 1078 * properly, so add work-around here. 1079 */ 1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 1081 return true; 1082 else 1083 return false; 1084 } 1085 1086 /* Shared mappings always use reserves */ 1087 if (vma->vm_flags & VM_MAYSHARE) { 1088 /* 1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD 1090 * be a region map for all pages. The only situation where 1091 * there is no region map is if a hole was punched via 1092 * fallocate. In this case, there really are no reserves to 1093 * use. This situation is indicated if chg != 0. 1094 */ 1095 if (chg) 1096 return false; 1097 else 1098 return true; 1099 } 1100 1101 /* 1102 * Only the process that called mmap() has reserves for 1103 * private mappings. 1104 */ 1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1106 /* 1107 * Like the shared case above, a hole punch or truncate 1108 * could have been performed on the private mapping. 1109 * Examine the value of chg to determine if reserves 1110 * actually exist or were previously consumed. 1111 * Very Subtle - The value of chg comes from a previous 1112 * call to vma_needs_reserves(). The reserve map for 1113 * private mappings has different (opposite) semantics 1114 * than that of shared mappings. vma_needs_reserves() 1115 * has already taken this difference in semantics into 1116 * account. Therefore, the meaning of chg is the same 1117 * as in the shared case above. Code could easily be 1118 * combined, but keeping it separate draws attention to 1119 * subtle differences. 1120 */ 1121 if (chg) 1122 return false; 1123 else 1124 return true; 1125 } 1126 1127 return false; 1128 } 1129 1130 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1131 { 1132 int nid = folio_nid(folio); 1133 1134 lockdep_assert_held(&hugetlb_lock); 1135 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1136 1137 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1138 h->free_huge_pages++; 1139 h->free_huge_pages_node[nid]++; 1140 folio_set_hugetlb_freed(folio); 1141 } 1142 1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 1144 { 1145 struct page *page; 1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1147 1148 lockdep_assert_held(&hugetlb_lock); 1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { 1150 if (pin && !is_longterm_pinnable_page(page)) 1151 continue; 1152 1153 if (PageHWPoison(page)) 1154 continue; 1155 1156 list_move(&page->lru, &h->hugepage_activelist); 1157 set_page_refcounted(page); 1158 ClearHPageFreed(page); 1159 h->free_huge_pages--; 1160 h->free_huge_pages_node[nid]--; 1161 return page; 1162 } 1163 1164 return NULL; 1165 } 1166 1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 1168 nodemask_t *nmask) 1169 { 1170 unsigned int cpuset_mems_cookie; 1171 struct zonelist *zonelist; 1172 struct zone *zone; 1173 struct zoneref *z; 1174 int node = NUMA_NO_NODE; 1175 1176 zonelist = node_zonelist(nid, gfp_mask); 1177 1178 retry_cpuset: 1179 cpuset_mems_cookie = read_mems_allowed_begin(); 1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1181 struct page *page; 1182 1183 if (!cpuset_zone_allowed(zone, gfp_mask)) 1184 continue; 1185 /* 1186 * no need to ask again on the same node. Pool is node rather than 1187 * zone aware 1188 */ 1189 if (zone_to_nid(zone) == node) 1190 continue; 1191 node = zone_to_nid(zone); 1192 1193 page = dequeue_huge_page_node_exact(h, node); 1194 if (page) 1195 return page; 1196 } 1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1198 goto retry_cpuset; 1199 1200 return NULL; 1201 } 1202 1203 static unsigned long available_huge_pages(struct hstate *h) 1204 { 1205 return h->free_huge_pages - h->resv_huge_pages; 1206 } 1207 1208 static struct page *dequeue_huge_page_vma(struct hstate *h, 1209 struct vm_area_struct *vma, 1210 unsigned long address, int avoid_reserve, 1211 long chg) 1212 { 1213 struct page *page = NULL; 1214 struct mempolicy *mpol; 1215 gfp_t gfp_mask; 1216 nodemask_t *nodemask; 1217 int nid; 1218 1219 /* 1220 * A child process with MAP_PRIVATE mappings created by their parent 1221 * have no page reserves. This check ensures that reservations are 1222 * not "stolen". The child may still get SIGKILLed 1223 */ 1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) 1225 goto err; 1226 1227 /* If reserves cannot be used, ensure enough pages are in the pool */ 1228 if (avoid_reserve && !available_huge_pages(h)) 1229 goto err; 1230 1231 gfp_mask = htlb_alloc_mask(h); 1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1233 1234 if (mpol_is_preferred_many(mpol)) { 1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1236 1237 /* Fallback to all nodes if page==NULL */ 1238 nodemask = NULL; 1239 } 1240 1241 if (!page) 1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 1243 1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 1245 SetHPageRestoreReserve(page); 1246 h->resv_huge_pages--; 1247 } 1248 1249 mpol_cond_put(mpol); 1250 return page; 1251 1252 err: 1253 return NULL; 1254 } 1255 1256 /* 1257 * common helper functions for hstate_next_node_to_{alloc|free}. 1258 * We may have allocated or freed a huge page based on a different 1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 1260 * be outside of *nodes_allowed. Ensure that we use an allowed 1261 * node for alloc or free. 1262 */ 1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 1264 { 1265 nid = next_node_in(nid, *nodes_allowed); 1266 VM_BUG_ON(nid >= MAX_NUMNODES); 1267 1268 return nid; 1269 } 1270 1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 1272 { 1273 if (!node_isset(nid, *nodes_allowed)) 1274 nid = next_node_allowed(nid, nodes_allowed); 1275 return nid; 1276 } 1277 1278 /* 1279 * returns the previously saved node ["this node"] from which to 1280 * allocate a persistent huge page for the pool and advance the 1281 * next node from which to allocate, handling wrap at end of node 1282 * mask. 1283 */ 1284 static int hstate_next_node_to_alloc(struct hstate *h, 1285 nodemask_t *nodes_allowed) 1286 { 1287 int nid; 1288 1289 VM_BUG_ON(!nodes_allowed); 1290 1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1293 1294 return nid; 1295 } 1296 1297 /* 1298 * helper for remove_pool_huge_page() - return the previously saved 1299 * node ["this node"] from which to free a huge page. Advance the 1300 * next node id whether or not we find a free huge page to free so 1301 * that the next attempt to free addresses the next node. 1302 */ 1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1304 { 1305 int nid; 1306 1307 VM_BUG_ON(!nodes_allowed); 1308 1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1311 1312 return nid; 1313 } 1314 1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1316 for (nr_nodes = nodes_weight(*mask); \ 1317 nr_nodes > 0 && \ 1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1319 nr_nodes--) 1320 1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1322 for (nr_nodes = nodes_weight(*mask); \ 1323 nr_nodes > 0 && \ 1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1325 nr_nodes--) 1326 1327 /* used to demote non-gigantic_huge pages as well */ 1328 static void __destroy_compound_gigantic_folio(struct folio *folio, 1329 unsigned int order, bool demote) 1330 { 1331 int i; 1332 int nr_pages = 1 << order; 1333 struct page *p; 1334 1335 atomic_set(folio_mapcount_ptr(folio), 0); 1336 atomic_set(folio_subpages_mapcount_ptr(folio), 0); 1337 atomic_set(folio_pincount_ptr(folio), 0); 1338 1339 for (i = 1; i < nr_pages; i++) { 1340 p = folio_page(folio, i); 1341 p->mapping = NULL; 1342 clear_compound_head(p); 1343 if (!demote) 1344 set_page_refcounted(p); 1345 } 1346 1347 folio_set_compound_order(folio, 0); 1348 __folio_clear_head(folio); 1349 } 1350 1351 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, 1352 unsigned int order) 1353 { 1354 __destroy_compound_gigantic_folio(folio, order, true); 1355 } 1356 1357 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1358 static void destroy_compound_gigantic_folio(struct folio *folio, 1359 unsigned int order) 1360 { 1361 __destroy_compound_gigantic_folio(folio, order, false); 1362 } 1363 1364 static void free_gigantic_folio(struct folio *folio, unsigned int order) 1365 { 1366 /* 1367 * If the page isn't allocated using the cma allocator, 1368 * cma_release() returns false. 1369 */ 1370 #ifdef CONFIG_CMA 1371 int nid = folio_nid(folio); 1372 1373 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) 1374 return; 1375 #endif 1376 1377 free_contig_range(folio_pfn(folio), 1 << order); 1378 } 1379 1380 #ifdef CONFIG_CONTIG_ALLOC 1381 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1382 int nid, nodemask_t *nodemask) 1383 { 1384 struct page *page; 1385 unsigned long nr_pages = pages_per_huge_page(h); 1386 if (nid == NUMA_NO_NODE) 1387 nid = numa_mem_id(); 1388 1389 #ifdef CONFIG_CMA 1390 { 1391 int node; 1392 1393 if (hugetlb_cma[nid]) { 1394 page = cma_alloc(hugetlb_cma[nid], nr_pages, 1395 huge_page_order(h), true); 1396 if (page) 1397 return page_folio(page); 1398 } 1399 1400 if (!(gfp_mask & __GFP_THISNODE)) { 1401 for_each_node_mask(node, *nodemask) { 1402 if (node == nid || !hugetlb_cma[node]) 1403 continue; 1404 1405 page = cma_alloc(hugetlb_cma[node], nr_pages, 1406 huge_page_order(h), true); 1407 if (page) 1408 return page_folio(page); 1409 } 1410 } 1411 } 1412 #endif 1413 1414 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); 1415 return page ? page_folio(page) : NULL; 1416 } 1417 1418 #else /* !CONFIG_CONTIG_ALLOC */ 1419 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1420 int nid, nodemask_t *nodemask) 1421 { 1422 return NULL; 1423 } 1424 #endif /* CONFIG_CONTIG_ALLOC */ 1425 1426 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1427 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, 1428 int nid, nodemask_t *nodemask) 1429 { 1430 return NULL; 1431 } 1432 static inline void free_gigantic_folio(struct folio *folio, 1433 unsigned int order) { } 1434 static inline void destroy_compound_gigantic_folio(struct folio *folio, 1435 unsigned int order) { } 1436 #endif 1437 1438 /* 1439 * Remove hugetlb folio from lists, and update dtor so that the folio appears 1440 * as just a compound page. 1441 * 1442 * A reference is held on the folio, except in the case of demote. 1443 * 1444 * Must be called with hugetlb lock held. 1445 */ 1446 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1447 bool adjust_surplus, 1448 bool demote) 1449 { 1450 int nid = folio_nid(folio); 1451 1452 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1453 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1454 1455 lockdep_assert_held(&hugetlb_lock); 1456 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1457 return; 1458 1459 list_del(&folio->lru); 1460 1461 if (folio_test_hugetlb_freed(folio)) { 1462 h->free_huge_pages--; 1463 h->free_huge_pages_node[nid]--; 1464 } 1465 if (adjust_surplus) { 1466 h->surplus_huge_pages--; 1467 h->surplus_huge_pages_node[nid]--; 1468 } 1469 1470 /* 1471 * Very subtle 1472 * 1473 * For non-gigantic pages set the destructor to the normal compound 1474 * page dtor. This is needed in case someone takes an additional 1475 * temporary ref to the page, and freeing is delayed until they drop 1476 * their reference. 1477 * 1478 * For gigantic pages set the destructor to the null dtor. This 1479 * destructor will never be called. Before freeing the gigantic 1480 * page destroy_compound_gigantic_folio will turn the folio into a 1481 * simple group of pages. After this the destructor does not 1482 * apply. 1483 * 1484 * This handles the case where more than one ref is held when and 1485 * after update_and_free_hugetlb_folio is called. 1486 * 1487 * In the case of demote we do not ref count the page as it will soon 1488 * be turned into a page of smaller size. 1489 */ 1490 if (!demote) 1491 folio_ref_unfreeze(folio, 1); 1492 if (hstate_is_gigantic(h)) 1493 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); 1494 else 1495 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); 1496 1497 h->nr_huge_pages--; 1498 h->nr_huge_pages_node[nid]--; 1499 } 1500 1501 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1502 bool adjust_surplus) 1503 { 1504 __remove_hugetlb_folio(h, folio, adjust_surplus, false); 1505 } 1506 1507 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, 1508 bool adjust_surplus) 1509 { 1510 __remove_hugetlb_folio(h, folio, adjust_surplus, true); 1511 } 1512 1513 static void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1514 bool adjust_surplus) 1515 { 1516 int zeroed; 1517 int nid = folio_nid(folio); 1518 1519 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1520 1521 lockdep_assert_held(&hugetlb_lock); 1522 1523 INIT_LIST_HEAD(&folio->lru); 1524 h->nr_huge_pages++; 1525 h->nr_huge_pages_node[nid]++; 1526 1527 if (adjust_surplus) { 1528 h->surplus_huge_pages++; 1529 h->surplus_huge_pages_node[nid]++; 1530 } 1531 1532 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1533 folio_change_private(folio, NULL); 1534 /* 1535 * We have to set hugetlb_vmemmap_optimized again as above 1536 * folio_change_private(folio, NULL) cleared it. 1537 */ 1538 folio_set_hugetlb_vmemmap_optimized(folio); 1539 1540 /* 1541 * This folio is about to be managed by the hugetlb allocator and 1542 * should have no users. Drop our reference, and check for others 1543 * just in case. 1544 */ 1545 zeroed = folio_put_testzero(folio); 1546 if (unlikely(!zeroed)) 1547 /* 1548 * It is VERY unlikely soneone else has taken a ref on 1549 * the page. In this case, we simply return as the 1550 * hugetlb destructor (free_huge_page) will be called 1551 * when this other ref is dropped. 1552 */ 1553 return; 1554 1555 arch_clear_hugepage_flags(&folio->page); 1556 enqueue_hugetlb_folio(h, folio); 1557 } 1558 1559 static void __update_and_free_page(struct hstate *h, struct page *page) 1560 { 1561 int i; 1562 struct folio *folio = page_folio(page); 1563 struct page *subpage; 1564 1565 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 1566 return; 1567 1568 /* 1569 * If we don't know which subpages are hwpoisoned, we can't free 1570 * the hugepage, so it's leaked intentionally. 1571 */ 1572 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1573 return; 1574 1575 if (hugetlb_vmemmap_restore(h, page)) { 1576 spin_lock_irq(&hugetlb_lock); 1577 /* 1578 * If we cannot allocate vmemmap pages, just refuse to free the 1579 * page and put the page back on the hugetlb free list and treat 1580 * as a surplus page. 1581 */ 1582 add_hugetlb_folio(h, folio, true); 1583 spin_unlock_irq(&hugetlb_lock); 1584 return; 1585 } 1586 1587 /* 1588 * Move PageHWPoison flag from head page to the raw error pages, 1589 * which makes any healthy subpages reusable. 1590 */ 1591 if (unlikely(folio_test_hwpoison(folio))) 1592 hugetlb_clear_page_hwpoison(&folio->page); 1593 1594 for (i = 0; i < pages_per_huge_page(h); i++) { 1595 subpage = folio_page(folio, i); 1596 subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1597 1 << PG_referenced | 1 << PG_dirty | 1598 1 << PG_active | 1 << PG_private | 1599 1 << PG_writeback); 1600 } 1601 1602 /* 1603 * Non-gigantic pages demoted from CMA allocated gigantic pages 1604 * need to be given back to CMA in free_gigantic_folio. 1605 */ 1606 if (hstate_is_gigantic(h) || 1607 hugetlb_cma_folio(folio, huge_page_order(h))) { 1608 destroy_compound_gigantic_folio(folio, huge_page_order(h)); 1609 free_gigantic_folio(folio, huge_page_order(h)); 1610 } else { 1611 __free_pages(page, huge_page_order(h)); 1612 } 1613 } 1614 1615 /* 1616 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1617 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1618 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1619 * the vmemmap pages. 1620 * 1621 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1622 * freed and frees them one-by-one. As the page->mapping pointer is going 1623 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1624 * structure of a lockless linked list of huge pages to be freed. 1625 */ 1626 static LLIST_HEAD(hpage_freelist); 1627 1628 static void free_hpage_workfn(struct work_struct *work) 1629 { 1630 struct llist_node *node; 1631 1632 node = llist_del_all(&hpage_freelist); 1633 1634 while (node) { 1635 struct page *page; 1636 struct hstate *h; 1637 1638 page = container_of((struct address_space **)node, 1639 struct page, mapping); 1640 node = node->next; 1641 page->mapping = NULL; 1642 /* 1643 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() 1644 * is going to trigger because a previous call to 1645 * remove_hugetlb_folio() will call folio_set_compound_dtor 1646 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() 1647 * directly. 1648 */ 1649 h = size_to_hstate(page_size(page)); 1650 1651 __update_and_free_page(h, page); 1652 1653 cond_resched(); 1654 } 1655 } 1656 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1657 1658 static inline void flush_free_hpage_work(struct hstate *h) 1659 { 1660 if (hugetlb_vmemmap_optimizable(h)) 1661 flush_work(&free_hpage_work); 1662 } 1663 1664 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1665 bool atomic) 1666 { 1667 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1668 __update_and_free_page(h, &folio->page); 1669 return; 1670 } 1671 1672 /* 1673 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1674 * 1675 * Only call schedule_work() if hpage_freelist is previously 1676 * empty. Otherwise, schedule_work() had been called but the workfn 1677 * hasn't retrieved the list yet. 1678 */ 1679 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1680 schedule_work(&free_hpage_work); 1681 } 1682 1683 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) 1684 { 1685 struct page *page, *t_page; 1686 struct folio *folio; 1687 1688 list_for_each_entry_safe(page, t_page, list, lru) { 1689 folio = page_folio(page); 1690 update_and_free_hugetlb_folio(h, folio, false); 1691 cond_resched(); 1692 } 1693 } 1694 1695 struct hstate *size_to_hstate(unsigned long size) 1696 { 1697 struct hstate *h; 1698 1699 for_each_hstate(h) { 1700 if (huge_page_size(h) == size) 1701 return h; 1702 } 1703 return NULL; 1704 } 1705 1706 void free_huge_page(struct page *page) 1707 { 1708 /* 1709 * Can't pass hstate in here because it is called from the 1710 * compound page destructor. 1711 */ 1712 struct folio *folio = page_folio(page); 1713 struct hstate *h = folio_hstate(folio); 1714 int nid = folio_nid(folio); 1715 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1716 bool restore_reserve; 1717 unsigned long flags; 1718 1719 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1720 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1721 1722 hugetlb_set_folio_subpool(folio, NULL); 1723 if (folio_test_anon(folio)) 1724 __ClearPageAnonExclusive(&folio->page); 1725 folio->mapping = NULL; 1726 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1727 folio_clear_hugetlb_restore_reserve(folio); 1728 1729 /* 1730 * If HPageRestoreReserve was set on page, page allocation consumed a 1731 * reservation. If the page was associated with a subpool, there 1732 * would have been a page reserved in the subpool before allocation 1733 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1734 * reservation, do not call hugepage_subpool_put_pages() as this will 1735 * remove the reserved page from the subpool. 1736 */ 1737 if (!restore_reserve) { 1738 /* 1739 * A return code of zero implies that the subpool will be 1740 * under its minimum size if the reservation is not restored 1741 * after page is free. Therefore, force restore_reserve 1742 * operation. 1743 */ 1744 if (hugepage_subpool_put_pages(spool, 1) == 0) 1745 restore_reserve = true; 1746 } 1747 1748 spin_lock_irqsave(&hugetlb_lock, flags); 1749 folio_clear_hugetlb_migratable(folio); 1750 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1751 pages_per_huge_page(h), folio); 1752 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1753 pages_per_huge_page(h), folio); 1754 if (restore_reserve) 1755 h->resv_huge_pages++; 1756 1757 if (folio_test_hugetlb_temporary(folio)) { 1758 remove_hugetlb_folio(h, folio, false); 1759 spin_unlock_irqrestore(&hugetlb_lock, flags); 1760 update_and_free_hugetlb_folio(h, folio, true); 1761 } else if (h->surplus_huge_pages_node[nid]) { 1762 /* remove the page from active list */ 1763 remove_hugetlb_folio(h, folio, true); 1764 spin_unlock_irqrestore(&hugetlb_lock, flags); 1765 update_and_free_hugetlb_folio(h, folio, true); 1766 } else { 1767 arch_clear_hugepage_flags(page); 1768 enqueue_hugetlb_folio(h, folio); 1769 spin_unlock_irqrestore(&hugetlb_lock, flags); 1770 } 1771 } 1772 1773 /* 1774 * Must be called with the hugetlb lock held 1775 */ 1776 static void __prep_account_new_huge_page(struct hstate *h, int nid) 1777 { 1778 lockdep_assert_held(&hugetlb_lock); 1779 h->nr_huge_pages++; 1780 h->nr_huge_pages_node[nid]++; 1781 } 1782 1783 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1784 { 1785 hugetlb_vmemmap_optimize(h, &folio->page); 1786 INIT_LIST_HEAD(&folio->lru); 1787 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); 1788 hugetlb_set_folio_subpool(folio, NULL); 1789 set_hugetlb_cgroup(folio, NULL); 1790 set_hugetlb_cgroup_rsvd(folio, NULL); 1791 } 1792 1793 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) 1794 { 1795 __prep_new_hugetlb_folio(h, folio); 1796 spin_lock_irq(&hugetlb_lock); 1797 __prep_account_new_huge_page(h, nid); 1798 spin_unlock_irq(&hugetlb_lock); 1799 } 1800 1801 static bool __prep_compound_gigantic_folio(struct folio *folio, 1802 unsigned int order, bool demote) 1803 { 1804 int i, j; 1805 int nr_pages = 1 << order; 1806 struct page *p; 1807 1808 /* we rely on prep_new_hugetlb_folio to set the destructor */ 1809 folio_set_compound_order(folio, order); 1810 __folio_clear_reserved(folio); 1811 __folio_set_head(folio); 1812 for (i = 0; i < nr_pages; i++) { 1813 p = folio_page(folio, i); 1814 1815 /* 1816 * For gigantic hugepages allocated through bootmem at 1817 * boot, it's safer to be consistent with the not-gigantic 1818 * hugepages and clear the PG_reserved bit from all tail pages 1819 * too. Otherwise drivers using get_user_pages() to access tail 1820 * pages may get the reference counting wrong if they see 1821 * PG_reserved set on a tail page (despite the head page not 1822 * having PG_reserved set). Enforcing this consistency between 1823 * head and tail pages allows drivers to optimize away a check 1824 * on the head page when they need know if put_page() is needed 1825 * after get_user_pages(). 1826 */ 1827 if (i != 0) /* head page cleared above */ 1828 __ClearPageReserved(p); 1829 /* 1830 * Subtle and very unlikely 1831 * 1832 * Gigantic 'page allocators' such as memblock or cma will 1833 * return a set of pages with each page ref counted. We need 1834 * to turn this set of pages into a compound page with tail 1835 * page ref counts set to zero. Code such as speculative page 1836 * cache adding could take a ref on a 'to be' tail page. 1837 * We need to respect any increased ref count, and only set 1838 * the ref count to zero if count is currently 1. If count 1839 * is not 1, we return an error. An error return indicates 1840 * the set of pages can not be converted to a gigantic page. 1841 * The caller who allocated the pages should then discard the 1842 * pages using the appropriate free interface. 1843 * 1844 * In the case of demote, the ref count will be zero. 1845 */ 1846 if (!demote) { 1847 if (!page_ref_freeze(p, 1)) { 1848 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); 1849 goto out_error; 1850 } 1851 } else { 1852 VM_BUG_ON_PAGE(page_count(p), p); 1853 } 1854 if (i != 0) 1855 set_compound_head(p, &folio->page); 1856 } 1857 atomic_set(folio_mapcount_ptr(folio), -1); 1858 atomic_set(folio_subpages_mapcount_ptr(folio), 0); 1859 atomic_set(folio_pincount_ptr(folio), 0); 1860 return true; 1861 1862 out_error: 1863 /* undo page modifications made above */ 1864 for (j = 0; j < i; j++) { 1865 p = folio_page(folio, j); 1866 if (j != 0) 1867 clear_compound_head(p); 1868 set_page_refcounted(p); 1869 } 1870 /* need to clear PG_reserved on remaining tail pages */ 1871 for (; j < nr_pages; j++) { 1872 p = folio_page(folio, j); 1873 __ClearPageReserved(p); 1874 } 1875 folio_set_compound_order(folio, 0); 1876 __folio_clear_head(folio); 1877 return false; 1878 } 1879 1880 static bool prep_compound_gigantic_folio(struct folio *folio, 1881 unsigned int order) 1882 { 1883 return __prep_compound_gigantic_folio(folio, order, false); 1884 } 1885 1886 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, 1887 unsigned int order) 1888 { 1889 return __prep_compound_gigantic_folio(folio, order, true); 1890 } 1891 1892 /* 1893 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1894 * transparent huge pages. See the PageTransHuge() documentation for more 1895 * details. 1896 */ 1897 int PageHuge(struct page *page) 1898 { 1899 if (!PageCompound(page)) 1900 return 0; 1901 1902 page = compound_head(page); 1903 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1904 } 1905 EXPORT_SYMBOL_GPL(PageHuge); 1906 1907 /* 1908 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1909 * normal or transparent huge pages. 1910 */ 1911 int PageHeadHuge(struct page *page_head) 1912 { 1913 if (!PageHead(page_head)) 1914 return 0; 1915 1916 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; 1917 } 1918 EXPORT_SYMBOL_GPL(PageHeadHuge); 1919 1920 /* 1921 * Find and lock address space (mapping) in write mode. 1922 * 1923 * Upon entry, the page is locked which means that page_mapping() is 1924 * stable. Due to locking order, we can only trylock_write. If we can 1925 * not get the lock, simply return NULL to caller. 1926 */ 1927 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) 1928 { 1929 struct address_space *mapping = page_mapping(hpage); 1930 1931 if (!mapping) 1932 return mapping; 1933 1934 if (i_mmap_trylock_write(mapping)) 1935 return mapping; 1936 1937 return NULL; 1938 } 1939 1940 pgoff_t hugetlb_basepage_index(struct page *page) 1941 { 1942 struct page *page_head = compound_head(page); 1943 pgoff_t index = page_index(page_head); 1944 unsigned long compound_idx; 1945 1946 if (compound_order(page_head) >= MAX_ORDER) 1947 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1948 else 1949 compound_idx = page - page_head; 1950 1951 return (index << compound_order(page_head)) + compound_idx; 1952 } 1953 1954 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, 1955 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1956 nodemask_t *node_alloc_noretry) 1957 { 1958 int order = huge_page_order(h); 1959 struct page *page; 1960 bool alloc_try_hard = true; 1961 bool retry = true; 1962 1963 /* 1964 * By default we always try hard to allocate the page with 1965 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in 1966 * a loop (to adjust global huge page counts) and previous allocation 1967 * failed, do not continue to try hard on the same node. Use the 1968 * node_alloc_noretry bitmap to manage this state information. 1969 */ 1970 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1971 alloc_try_hard = false; 1972 gfp_mask |= __GFP_COMP|__GFP_NOWARN; 1973 if (alloc_try_hard) 1974 gfp_mask |= __GFP_RETRY_MAYFAIL; 1975 if (nid == NUMA_NO_NODE) 1976 nid = numa_mem_id(); 1977 retry: 1978 page = __alloc_pages(gfp_mask, order, nid, nmask); 1979 1980 /* Freeze head page */ 1981 if (page && !page_ref_freeze(page, 1)) { 1982 __free_pages(page, order); 1983 if (retry) { /* retry once */ 1984 retry = false; 1985 goto retry; 1986 } 1987 /* WOW! twice in a row. */ 1988 pr_warn("HugeTLB head page unexpected inflated ref count\n"); 1989 page = NULL; 1990 } 1991 1992 /* 1993 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this 1994 * indicates an overall state change. Clear bit so that we resume 1995 * normal 'try hard' allocations. 1996 */ 1997 if (node_alloc_noretry && page && !alloc_try_hard) 1998 node_clear(nid, *node_alloc_noretry); 1999 2000 /* 2001 * If we tried hard to get a page but failed, set bit so that 2002 * subsequent attempts will not try as hard until there is an 2003 * overall state change. 2004 */ 2005 if (node_alloc_noretry && !page && alloc_try_hard) 2006 node_set(nid, *node_alloc_noretry); 2007 2008 if (!page) { 2009 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 2010 return NULL; 2011 } 2012 2013 __count_vm_event(HTLB_BUDDY_PGALLOC); 2014 return page_folio(page); 2015 } 2016 2017 /* 2018 * Common helper to allocate a fresh hugetlb page. All specific allocators 2019 * should use this function to get new hugetlb pages 2020 * 2021 * Note that returned page is 'frozen': ref count of head page and all tail 2022 * pages is zero. 2023 */ 2024 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 2025 gfp_t gfp_mask, int nid, nodemask_t *nmask, 2026 nodemask_t *node_alloc_noretry) 2027 { 2028 struct folio *folio; 2029 bool retry = false; 2030 2031 retry: 2032 if (hstate_is_gigantic(h)) 2033 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); 2034 else 2035 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, 2036 nid, nmask, node_alloc_noretry); 2037 if (!folio) 2038 return NULL; 2039 if (hstate_is_gigantic(h)) { 2040 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { 2041 /* 2042 * Rare failure to convert pages to compound page. 2043 * Free pages and try again - ONCE! 2044 */ 2045 free_gigantic_folio(folio, huge_page_order(h)); 2046 if (!retry) { 2047 retry = true; 2048 goto retry; 2049 } 2050 return NULL; 2051 } 2052 } 2053 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 2054 2055 return folio; 2056 } 2057 2058 /* 2059 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 2060 * manner. 2061 */ 2062 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 2063 nodemask_t *node_alloc_noretry) 2064 { 2065 struct folio *folio; 2066 int nr_nodes, node; 2067 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2068 2069 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2070 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, 2071 nodes_allowed, node_alloc_noretry); 2072 if (folio) { 2073 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 2074 return 1; 2075 } 2076 } 2077 2078 return 0; 2079 } 2080 2081 /* 2082 * Remove huge page from pool from next node to free. Attempt to keep 2083 * persistent huge pages more or less balanced over allowed nodes. 2084 * This routine only 'removes' the hugetlb page. The caller must make 2085 * an additional call to free the page to low level allocators. 2086 * Called with hugetlb_lock locked. 2087 */ 2088 static struct page *remove_pool_huge_page(struct hstate *h, 2089 nodemask_t *nodes_allowed, 2090 bool acct_surplus) 2091 { 2092 int nr_nodes, node; 2093 struct page *page = NULL; 2094 struct folio *folio; 2095 2096 lockdep_assert_held(&hugetlb_lock); 2097 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2098 /* 2099 * If we're returning unused surplus pages, only examine 2100 * nodes with surplus pages. 2101 */ 2102 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 2103 !list_empty(&h->hugepage_freelists[node])) { 2104 page = list_entry(h->hugepage_freelists[node].next, 2105 struct page, lru); 2106 folio = page_folio(page); 2107 remove_hugetlb_folio(h, folio, acct_surplus); 2108 break; 2109 } 2110 } 2111 2112 return page; 2113 } 2114 2115 /* 2116 * Dissolve a given free hugepage into free buddy pages. This function does 2117 * nothing for in-use hugepages and non-hugepages. 2118 * This function returns values like below: 2119 * 2120 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2121 * when the system is under memory pressure and the feature of 2122 * freeing unused vmemmap pages associated with each hugetlb page 2123 * is enabled. 2124 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2125 * (allocated or reserved.) 2126 * 0: successfully dissolved free hugepages or the page is not a 2127 * hugepage (considered as already dissolved) 2128 */ 2129 int dissolve_free_huge_page(struct page *page) 2130 { 2131 int rc = -EBUSY; 2132 struct folio *folio = page_folio(page); 2133 2134 retry: 2135 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2136 if (!folio_test_hugetlb(folio)) 2137 return 0; 2138 2139 spin_lock_irq(&hugetlb_lock); 2140 if (!folio_test_hugetlb(folio)) { 2141 rc = 0; 2142 goto out; 2143 } 2144 2145 if (!folio_ref_count(folio)) { 2146 struct hstate *h = folio_hstate(folio); 2147 if (!available_huge_pages(h)) 2148 goto out; 2149 2150 /* 2151 * We should make sure that the page is already on the free list 2152 * when it is dissolved. 2153 */ 2154 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2155 spin_unlock_irq(&hugetlb_lock); 2156 cond_resched(); 2157 2158 /* 2159 * Theoretically, we should return -EBUSY when we 2160 * encounter this race. In fact, we have a chance 2161 * to successfully dissolve the page if we do a 2162 * retry. Because the race window is quite small. 2163 * If we seize this opportunity, it is an optimization 2164 * for increasing the success rate of dissolving page. 2165 */ 2166 goto retry; 2167 } 2168 2169 remove_hugetlb_folio(h, folio, false); 2170 h->max_huge_pages--; 2171 spin_unlock_irq(&hugetlb_lock); 2172 2173 /* 2174 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2175 * before freeing the page. update_and_free_hugtlb_folio will fail to 2176 * free the page if it can not allocate required vmemmap. We 2177 * need to adjust max_huge_pages if the page is not freed. 2178 * Attempt to allocate vmemmmap here so that we can take 2179 * appropriate action on failure. 2180 */ 2181 rc = hugetlb_vmemmap_restore(h, &folio->page); 2182 if (!rc) { 2183 update_and_free_hugetlb_folio(h, folio, false); 2184 } else { 2185 spin_lock_irq(&hugetlb_lock); 2186 add_hugetlb_folio(h, folio, false); 2187 h->max_huge_pages++; 2188 spin_unlock_irq(&hugetlb_lock); 2189 } 2190 2191 return rc; 2192 } 2193 out: 2194 spin_unlock_irq(&hugetlb_lock); 2195 return rc; 2196 } 2197 2198 /* 2199 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2200 * make specified memory blocks removable from the system. 2201 * Note that this will dissolve a free gigantic hugepage completely, if any 2202 * part of it lies within the given range. 2203 * Also note that if dissolve_free_huge_page() returns with an error, all 2204 * free hugepages that were dissolved before that error are lost. 2205 */ 2206 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 2207 { 2208 unsigned long pfn; 2209 struct page *page; 2210 int rc = 0; 2211 unsigned int order; 2212 struct hstate *h; 2213 2214 if (!hugepages_supported()) 2215 return rc; 2216 2217 order = huge_page_order(&default_hstate); 2218 for_each_hstate(h) 2219 order = min(order, huge_page_order(h)); 2220 2221 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2222 page = pfn_to_page(pfn); 2223 rc = dissolve_free_huge_page(page); 2224 if (rc) 2225 break; 2226 } 2227 2228 return rc; 2229 } 2230 2231 /* 2232 * Allocates a fresh surplus page from the page allocator. 2233 */ 2234 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 2235 int nid, nodemask_t *nmask) 2236 { 2237 struct folio *folio = NULL; 2238 2239 if (hstate_is_gigantic(h)) 2240 return NULL; 2241 2242 spin_lock_irq(&hugetlb_lock); 2243 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2244 goto out_unlock; 2245 spin_unlock_irq(&hugetlb_lock); 2246 2247 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2248 if (!folio) 2249 return NULL; 2250 2251 spin_lock_irq(&hugetlb_lock); 2252 /* 2253 * We could have raced with the pool size change. 2254 * Double check that and simply deallocate the new page 2255 * if we would end up overcommiting the surpluses. Abuse 2256 * temporary page to workaround the nasty free_huge_page 2257 * codeflow 2258 */ 2259 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2260 folio_set_hugetlb_temporary(folio); 2261 spin_unlock_irq(&hugetlb_lock); 2262 free_huge_page(&folio->page); 2263 return NULL; 2264 } 2265 2266 h->surplus_huge_pages++; 2267 h->surplus_huge_pages_node[folio_nid(folio)]++; 2268 2269 out_unlock: 2270 spin_unlock_irq(&hugetlb_lock); 2271 2272 return &folio->page; 2273 } 2274 2275 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 2276 int nid, nodemask_t *nmask) 2277 { 2278 struct folio *folio; 2279 2280 if (hstate_is_gigantic(h)) 2281 return NULL; 2282 2283 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 2284 if (!folio) 2285 return NULL; 2286 2287 /* fresh huge pages are frozen */ 2288 folio_ref_unfreeze(folio, 1); 2289 /* 2290 * We do not account these pages as surplus because they are only 2291 * temporary and will be released properly on the last reference 2292 */ 2293 folio_set_hugetlb_temporary(folio); 2294 2295 return &folio->page; 2296 } 2297 2298 /* 2299 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2300 */ 2301 static 2302 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 2303 struct vm_area_struct *vma, unsigned long addr) 2304 { 2305 struct page *page = NULL; 2306 struct mempolicy *mpol; 2307 gfp_t gfp_mask = htlb_alloc_mask(h); 2308 int nid; 2309 nodemask_t *nodemask; 2310 2311 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2312 if (mpol_is_preferred_many(mpol)) { 2313 gfp_t gfp = gfp_mask | __GFP_NOWARN; 2314 2315 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2316 page = alloc_surplus_huge_page(h, gfp, nid, nodemask); 2317 2318 /* Fallback to all nodes if page==NULL */ 2319 nodemask = NULL; 2320 } 2321 2322 if (!page) 2323 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 2324 mpol_cond_put(mpol); 2325 return page; 2326 } 2327 2328 /* page migration callback function */ 2329 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 2330 nodemask_t *nmask, gfp_t gfp_mask) 2331 { 2332 spin_lock_irq(&hugetlb_lock); 2333 if (available_huge_pages(h)) { 2334 struct page *page; 2335 2336 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 2337 if (page) { 2338 spin_unlock_irq(&hugetlb_lock); 2339 return page; 2340 } 2341 } 2342 spin_unlock_irq(&hugetlb_lock); 2343 2344 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 2345 } 2346 2347 /* mempolicy aware migration callback */ 2348 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 2349 unsigned long address) 2350 { 2351 struct mempolicy *mpol; 2352 nodemask_t *nodemask; 2353 struct page *page; 2354 gfp_t gfp_mask; 2355 int node; 2356 2357 gfp_mask = htlb_alloc_mask(h); 2358 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 2359 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); 2360 mpol_cond_put(mpol); 2361 2362 return page; 2363 } 2364 2365 /* 2366 * Increase the hugetlb pool such that it can accommodate a reservation 2367 * of size 'delta'. 2368 */ 2369 static int gather_surplus_pages(struct hstate *h, long delta) 2370 __must_hold(&hugetlb_lock) 2371 { 2372 LIST_HEAD(surplus_list); 2373 struct page *page, *tmp; 2374 int ret; 2375 long i; 2376 long needed, allocated; 2377 bool alloc_ok = true; 2378 2379 lockdep_assert_held(&hugetlb_lock); 2380 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2381 if (needed <= 0) { 2382 h->resv_huge_pages += delta; 2383 return 0; 2384 } 2385 2386 allocated = 0; 2387 2388 ret = -ENOMEM; 2389 retry: 2390 spin_unlock_irq(&hugetlb_lock); 2391 for (i = 0; i < needed; i++) { 2392 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 2393 NUMA_NO_NODE, NULL); 2394 if (!page) { 2395 alloc_ok = false; 2396 break; 2397 } 2398 list_add(&page->lru, &surplus_list); 2399 cond_resched(); 2400 } 2401 allocated += i; 2402 2403 /* 2404 * After retaking hugetlb_lock, we need to recalculate 'needed' 2405 * because either resv_huge_pages or free_huge_pages may have changed. 2406 */ 2407 spin_lock_irq(&hugetlb_lock); 2408 needed = (h->resv_huge_pages + delta) - 2409 (h->free_huge_pages + allocated); 2410 if (needed > 0) { 2411 if (alloc_ok) 2412 goto retry; 2413 /* 2414 * We were not able to allocate enough pages to 2415 * satisfy the entire reservation so we free what 2416 * we've allocated so far. 2417 */ 2418 goto free; 2419 } 2420 /* 2421 * The surplus_list now contains _at_least_ the number of extra pages 2422 * needed to accommodate the reservation. Add the appropriate number 2423 * of pages to the hugetlb pool and free the extras back to the buddy 2424 * allocator. Commit the entire reservation here to prevent another 2425 * process from stealing the pages as they are added to the pool but 2426 * before they are reserved. 2427 */ 2428 needed += allocated; 2429 h->resv_huge_pages += delta; 2430 ret = 0; 2431 2432 /* Free the needed pages to the hugetlb pool */ 2433 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 2434 if ((--needed) < 0) 2435 break; 2436 /* Add the page to the hugetlb allocator */ 2437 enqueue_hugetlb_folio(h, page_folio(page)); 2438 } 2439 free: 2440 spin_unlock_irq(&hugetlb_lock); 2441 2442 /* 2443 * Free unnecessary surplus pages to the buddy allocator. 2444 * Pages have no ref count, call free_huge_page directly. 2445 */ 2446 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 2447 free_huge_page(page); 2448 spin_lock_irq(&hugetlb_lock); 2449 2450 return ret; 2451 } 2452 2453 /* 2454 * This routine has two main purposes: 2455 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2456 * in unused_resv_pages. This corresponds to the prior adjustments made 2457 * to the associated reservation map. 2458 * 2) Free any unused surplus pages that may have been allocated to satisfy 2459 * the reservation. As many as unused_resv_pages may be freed. 2460 */ 2461 static void return_unused_surplus_pages(struct hstate *h, 2462 unsigned long unused_resv_pages) 2463 { 2464 unsigned long nr_pages; 2465 struct page *page; 2466 LIST_HEAD(page_list); 2467 2468 lockdep_assert_held(&hugetlb_lock); 2469 /* Uncommit the reservation */ 2470 h->resv_huge_pages -= unused_resv_pages; 2471 2472 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 2473 goto out; 2474 2475 /* 2476 * Part (or even all) of the reservation could have been backed 2477 * by pre-allocated pages. Only free surplus pages. 2478 */ 2479 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2480 2481 /* 2482 * We want to release as many surplus pages as possible, spread 2483 * evenly across all nodes with memory. Iterate across these nodes 2484 * until we can no longer free unreserved surplus pages. This occurs 2485 * when the nodes with surplus pages have no free pages. 2486 * remove_pool_huge_page() will balance the freed pages across the 2487 * on-line nodes with memory and will handle the hstate accounting. 2488 */ 2489 while (nr_pages--) { 2490 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); 2491 if (!page) 2492 goto out; 2493 2494 list_add(&page->lru, &page_list); 2495 } 2496 2497 out: 2498 spin_unlock_irq(&hugetlb_lock); 2499 update_and_free_pages_bulk(h, &page_list); 2500 spin_lock_irq(&hugetlb_lock); 2501 } 2502 2503 2504 /* 2505 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2506 * are used by the huge page allocation routines to manage reservations. 2507 * 2508 * vma_needs_reservation is called to determine if the huge page at addr 2509 * within the vma has an associated reservation. If a reservation is 2510 * needed, the value 1 is returned. The caller is then responsible for 2511 * managing the global reservation and subpool usage counts. After 2512 * the huge page has been allocated, vma_commit_reservation is called 2513 * to add the page to the reservation map. If the page allocation fails, 2514 * the reservation must be ended instead of committed. vma_end_reservation 2515 * is called in such cases. 2516 * 2517 * In the normal case, vma_commit_reservation returns the same value 2518 * as the preceding vma_needs_reservation call. The only time this 2519 * is not the case is if a reserve map was changed between calls. It 2520 * is the responsibility of the caller to notice the difference and 2521 * take appropriate action. 2522 * 2523 * vma_add_reservation is used in error paths where a reservation must 2524 * be restored when a newly allocated huge page must be freed. It is 2525 * to be called after calling vma_needs_reservation to determine if a 2526 * reservation exists. 2527 * 2528 * vma_del_reservation is used in error paths where an entry in the reserve 2529 * map was created during huge page allocation and must be removed. It is to 2530 * be called after calling vma_needs_reservation to determine if a reservation 2531 * exists. 2532 */ 2533 enum vma_resv_mode { 2534 VMA_NEEDS_RESV, 2535 VMA_COMMIT_RESV, 2536 VMA_END_RESV, 2537 VMA_ADD_RESV, 2538 VMA_DEL_RESV, 2539 }; 2540 static long __vma_reservation_common(struct hstate *h, 2541 struct vm_area_struct *vma, unsigned long addr, 2542 enum vma_resv_mode mode) 2543 { 2544 struct resv_map *resv; 2545 pgoff_t idx; 2546 long ret; 2547 long dummy_out_regions_needed; 2548 2549 resv = vma_resv_map(vma); 2550 if (!resv) 2551 return 1; 2552 2553 idx = vma_hugecache_offset(h, vma, addr); 2554 switch (mode) { 2555 case VMA_NEEDS_RESV: 2556 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2557 /* We assume that vma_reservation_* routines always operate on 2558 * 1 page, and that adding to resv map a 1 page entry can only 2559 * ever require 1 region. 2560 */ 2561 VM_BUG_ON(dummy_out_regions_needed != 1); 2562 break; 2563 case VMA_COMMIT_RESV: 2564 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2565 /* region_add calls of range 1 should never fail. */ 2566 VM_BUG_ON(ret < 0); 2567 break; 2568 case VMA_END_RESV: 2569 region_abort(resv, idx, idx + 1, 1); 2570 ret = 0; 2571 break; 2572 case VMA_ADD_RESV: 2573 if (vma->vm_flags & VM_MAYSHARE) { 2574 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2575 /* region_add calls of range 1 should never fail. */ 2576 VM_BUG_ON(ret < 0); 2577 } else { 2578 region_abort(resv, idx, idx + 1, 1); 2579 ret = region_del(resv, idx, idx + 1); 2580 } 2581 break; 2582 case VMA_DEL_RESV: 2583 if (vma->vm_flags & VM_MAYSHARE) { 2584 region_abort(resv, idx, idx + 1, 1); 2585 ret = region_del(resv, idx, idx + 1); 2586 } else { 2587 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2588 /* region_add calls of range 1 should never fail. */ 2589 VM_BUG_ON(ret < 0); 2590 } 2591 break; 2592 default: 2593 BUG(); 2594 } 2595 2596 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2597 return ret; 2598 /* 2599 * We know private mapping must have HPAGE_RESV_OWNER set. 2600 * 2601 * In most cases, reserves always exist for private mappings. 2602 * However, a file associated with mapping could have been 2603 * hole punched or truncated after reserves were consumed. 2604 * As subsequent fault on such a range will not use reserves. 2605 * Subtle - The reserve map for private mappings has the 2606 * opposite meaning than that of shared mappings. If NO 2607 * entry is in the reserve map, it means a reservation exists. 2608 * If an entry exists in the reserve map, it means the 2609 * reservation has already been consumed. As a result, the 2610 * return value of this routine is the opposite of the 2611 * value returned from reserve map manipulation routines above. 2612 */ 2613 if (ret > 0) 2614 return 0; 2615 if (ret == 0) 2616 return 1; 2617 return ret; 2618 } 2619 2620 static long vma_needs_reservation(struct hstate *h, 2621 struct vm_area_struct *vma, unsigned long addr) 2622 { 2623 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2624 } 2625 2626 static long vma_commit_reservation(struct hstate *h, 2627 struct vm_area_struct *vma, unsigned long addr) 2628 { 2629 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2630 } 2631 2632 static void vma_end_reservation(struct hstate *h, 2633 struct vm_area_struct *vma, unsigned long addr) 2634 { 2635 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2636 } 2637 2638 static long vma_add_reservation(struct hstate *h, 2639 struct vm_area_struct *vma, unsigned long addr) 2640 { 2641 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2642 } 2643 2644 static long vma_del_reservation(struct hstate *h, 2645 struct vm_area_struct *vma, unsigned long addr) 2646 { 2647 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2648 } 2649 2650 /* 2651 * This routine is called to restore reservation information on error paths. 2652 * It should ONLY be called for pages allocated via alloc_huge_page(), and 2653 * the hugetlb mutex should remain held when calling this routine. 2654 * 2655 * It handles two specific cases: 2656 * 1) A reservation was in place and the page consumed the reservation. 2657 * HPageRestoreReserve is set in the page. 2658 * 2) No reservation was in place for the page, so HPageRestoreReserve is 2659 * not set. However, alloc_huge_page always updates the reserve map. 2660 * 2661 * In case 1, free_huge_page later in the error path will increment the 2662 * global reserve count. But, free_huge_page does not have enough context 2663 * to adjust the reservation map. This case deals primarily with private 2664 * mappings. Adjust the reserve map here to be consistent with global 2665 * reserve count adjustments to be made by free_huge_page. Make sure the 2666 * reserve map indicates there is a reservation present. 2667 * 2668 * In case 2, simply undo reserve map modifications done by alloc_huge_page. 2669 */ 2670 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2671 unsigned long address, struct page *page) 2672 { 2673 long rc = vma_needs_reservation(h, vma, address); 2674 2675 if (HPageRestoreReserve(page)) { 2676 if (unlikely(rc < 0)) 2677 /* 2678 * Rare out of memory condition in reserve map 2679 * manipulation. Clear HPageRestoreReserve so that 2680 * global reserve count will not be incremented 2681 * by free_huge_page. This will make it appear 2682 * as though the reservation for this page was 2683 * consumed. This may prevent the task from 2684 * faulting in the page at a later time. This 2685 * is better than inconsistent global huge page 2686 * accounting of reserve counts. 2687 */ 2688 ClearHPageRestoreReserve(page); 2689 else if (rc) 2690 (void)vma_add_reservation(h, vma, address); 2691 else 2692 vma_end_reservation(h, vma, address); 2693 } else { 2694 if (!rc) { 2695 /* 2696 * This indicates there is an entry in the reserve map 2697 * not added by alloc_huge_page. We know it was added 2698 * before the alloc_huge_page call, otherwise 2699 * HPageRestoreReserve would be set on the page. 2700 * Remove the entry so that a subsequent allocation 2701 * does not consume a reservation. 2702 */ 2703 rc = vma_del_reservation(h, vma, address); 2704 if (rc < 0) 2705 /* 2706 * VERY rare out of memory condition. Since 2707 * we can not delete the entry, set 2708 * HPageRestoreReserve so that the reserve 2709 * count will be incremented when the page 2710 * is freed. This reserve will be consumed 2711 * on a subsequent allocation. 2712 */ 2713 SetHPageRestoreReserve(page); 2714 } else if (rc < 0) { 2715 /* 2716 * Rare out of memory condition from 2717 * vma_needs_reservation call. Memory allocation is 2718 * only attempted if a new entry is needed. Therefore, 2719 * this implies there is not an entry in the 2720 * reserve map. 2721 * 2722 * For shared mappings, no entry in the map indicates 2723 * no reservation. We are done. 2724 */ 2725 if (!(vma->vm_flags & VM_MAYSHARE)) 2726 /* 2727 * For private mappings, no entry indicates 2728 * a reservation is present. Since we can 2729 * not add an entry, set SetHPageRestoreReserve 2730 * on the page so reserve count will be 2731 * incremented when freed. This reserve will 2732 * be consumed on a subsequent allocation. 2733 */ 2734 SetHPageRestoreReserve(page); 2735 } else 2736 /* 2737 * No reservation present, do nothing 2738 */ 2739 vma_end_reservation(h, vma, address); 2740 } 2741 } 2742 2743 /* 2744 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2745 * the old one 2746 * @h: struct hstate old page belongs to 2747 * @old_folio: Old folio to dissolve 2748 * @list: List to isolate the page in case we need to 2749 * Returns 0 on success, otherwise negated error. 2750 */ 2751 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, 2752 struct folio *old_folio, struct list_head *list) 2753 { 2754 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2755 int nid = folio_nid(old_folio); 2756 struct folio *new_folio; 2757 int ret = 0; 2758 2759 /* 2760 * Before dissolving the folio, we need to allocate a new one for the 2761 * pool to remain stable. Here, we allocate the folio and 'prep' it 2762 * by doing everything but actually updating counters and adding to 2763 * the pool. This simplifies and let us do most of the processing 2764 * under the lock. 2765 */ 2766 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); 2767 if (!new_folio) 2768 return -ENOMEM; 2769 __prep_new_hugetlb_folio(h, new_folio); 2770 2771 retry: 2772 spin_lock_irq(&hugetlb_lock); 2773 if (!folio_test_hugetlb(old_folio)) { 2774 /* 2775 * Freed from under us. Drop new_folio too. 2776 */ 2777 goto free_new; 2778 } else if (folio_ref_count(old_folio)) { 2779 /* 2780 * Someone has grabbed the folio, try to isolate it here. 2781 * Fail with -EBUSY if not possible. 2782 */ 2783 spin_unlock_irq(&hugetlb_lock); 2784 ret = isolate_hugetlb(&old_folio->page, list); 2785 spin_lock_irq(&hugetlb_lock); 2786 goto free_new; 2787 } else if (!folio_test_hugetlb_freed(old_folio)) { 2788 /* 2789 * Folio's refcount is 0 but it has not been enqueued in the 2790 * freelist yet. Race window is small, so we can succeed here if 2791 * we retry. 2792 */ 2793 spin_unlock_irq(&hugetlb_lock); 2794 cond_resched(); 2795 goto retry; 2796 } else { 2797 /* 2798 * Ok, old_folio is still a genuine free hugepage. Remove it from 2799 * the freelist and decrease the counters. These will be 2800 * incremented again when calling __prep_account_new_huge_page() 2801 * and enqueue_hugetlb_folio() for new_folio. The counters will 2802 * remain stable since this happens under the lock. 2803 */ 2804 remove_hugetlb_folio(h, old_folio, false); 2805 2806 /* 2807 * Ref count on new_folio is already zero as it was dropped 2808 * earlier. It can be directly added to the pool free list. 2809 */ 2810 __prep_account_new_huge_page(h, nid); 2811 enqueue_hugetlb_folio(h, new_folio); 2812 2813 /* 2814 * Folio has been replaced, we can safely free the old one. 2815 */ 2816 spin_unlock_irq(&hugetlb_lock); 2817 update_and_free_hugetlb_folio(h, old_folio, false); 2818 } 2819 2820 return ret; 2821 2822 free_new: 2823 spin_unlock_irq(&hugetlb_lock); 2824 /* Folio has a zero ref count, but needs a ref to be freed */ 2825 folio_ref_unfreeze(new_folio, 1); 2826 update_and_free_hugetlb_folio(h, new_folio, false); 2827 2828 return ret; 2829 } 2830 2831 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) 2832 { 2833 struct hstate *h; 2834 struct folio *folio = page_folio(page); 2835 int ret = -EBUSY; 2836 2837 /* 2838 * The page might have been dissolved from under our feet, so make sure 2839 * to carefully check the state under the lock. 2840 * Return success when racing as if we dissolved the page ourselves. 2841 */ 2842 spin_lock_irq(&hugetlb_lock); 2843 if (folio_test_hugetlb(folio)) { 2844 h = folio_hstate(folio); 2845 } else { 2846 spin_unlock_irq(&hugetlb_lock); 2847 return 0; 2848 } 2849 spin_unlock_irq(&hugetlb_lock); 2850 2851 /* 2852 * Fence off gigantic pages as there is a cyclic dependency between 2853 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2854 * of bailing out right away without further retrying. 2855 */ 2856 if (hstate_is_gigantic(h)) 2857 return -ENOMEM; 2858 2859 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list)) 2860 ret = 0; 2861 else if (!folio_ref_count(folio)) 2862 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); 2863 2864 return ret; 2865 } 2866 2867 struct page *alloc_huge_page(struct vm_area_struct *vma, 2868 unsigned long addr, int avoid_reserve) 2869 { 2870 struct hugepage_subpool *spool = subpool_vma(vma); 2871 struct hstate *h = hstate_vma(vma); 2872 struct page *page; 2873 struct folio *folio; 2874 long map_chg, map_commit; 2875 long gbl_chg; 2876 int ret, idx; 2877 struct hugetlb_cgroup *h_cg; 2878 bool deferred_reserve; 2879 2880 idx = hstate_index(h); 2881 /* 2882 * Examine the region/reserve map to determine if the process 2883 * has a reservation for the page to be allocated. A return 2884 * code of zero indicates a reservation exists (no change). 2885 */ 2886 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2887 if (map_chg < 0) 2888 return ERR_PTR(-ENOMEM); 2889 2890 /* 2891 * Processes that did not create the mapping will have no 2892 * reserves as indicated by the region/reserve map. Check 2893 * that the allocation will not exceed the subpool limit. 2894 * Allocations for MAP_NORESERVE mappings also need to be 2895 * checked against any subpool limit. 2896 */ 2897 if (map_chg || avoid_reserve) { 2898 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2899 if (gbl_chg < 0) { 2900 vma_end_reservation(h, vma, addr); 2901 return ERR_PTR(-ENOSPC); 2902 } 2903 2904 /* 2905 * Even though there was no reservation in the region/reserve 2906 * map, there could be reservations associated with the 2907 * subpool that can be used. This would be indicated if the 2908 * return value of hugepage_subpool_get_pages() is zero. 2909 * However, if avoid_reserve is specified we still avoid even 2910 * the subpool reservations. 2911 */ 2912 if (avoid_reserve) 2913 gbl_chg = 1; 2914 } 2915 2916 /* If this allocation is not consuming a reservation, charge it now. 2917 */ 2918 deferred_reserve = map_chg || avoid_reserve; 2919 if (deferred_reserve) { 2920 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2921 idx, pages_per_huge_page(h), &h_cg); 2922 if (ret) 2923 goto out_subpool_put; 2924 } 2925 2926 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2927 if (ret) 2928 goto out_uncharge_cgroup_reservation; 2929 2930 spin_lock_irq(&hugetlb_lock); 2931 /* 2932 * glb_chg is passed to indicate whether or not a page must be taken 2933 * from the global free pool (global change). gbl_chg == 0 indicates 2934 * a reservation exists for the allocation. 2935 */ 2936 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2937 if (!page) { 2938 spin_unlock_irq(&hugetlb_lock); 2939 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2940 if (!page) 2941 goto out_uncharge_cgroup; 2942 spin_lock_irq(&hugetlb_lock); 2943 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2944 SetHPageRestoreReserve(page); 2945 h->resv_huge_pages--; 2946 } 2947 list_add(&page->lru, &h->hugepage_activelist); 2948 set_page_refcounted(page); 2949 /* Fall through */ 2950 } 2951 folio = page_folio(page); 2952 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2953 /* If allocation is not consuming a reservation, also store the 2954 * hugetlb_cgroup pointer on the page. 2955 */ 2956 if (deferred_reserve) { 2957 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 2958 h_cg, page); 2959 } 2960 2961 spin_unlock_irq(&hugetlb_lock); 2962 2963 hugetlb_set_page_subpool(page, spool); 2964 2965 map_commit = vma_commit_reservation(h, vma, addr); 2966 if (unlikely(map_chg > map_commit)) { 2967 /* 2968 * The page was added to the reservation map between 2969 * vma_needs_reservation and vma_commit_reservation. 2970 * This indicates a race with hugetlb_reserve_pages. 2971 * Adjust for the subpool count incremented above AND 2972 * in hugetlb_reserve_pages for the same page. Also, 2973 * the reservation count added in hugetlb_reserve_pages 2974 * no longer applies. 2975 */ 2976 long rsv_adjust; 2977 2978 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2979 hugetlb_acct_memory(h, -rsv_adjust); 2980 if (deferred_reserve) 2981 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 2982 pages_per_huge_page(h), folio); 2983 } 2984 return page; 2985 2986 out_uncharge_cgroup: 2987 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2988 out_uncharge_cgroup_reservation: 2989 if (deferred_reserve) 2990 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 2991 h_cg); 2992 out_subpool_put: 2993 if (map_chg || avoid_reserve) 2994 hugepage_subpool_put_pages(spool, 1); 2995 vma_end_reservation(h, vma, addr); 2996 return ERR_PTR(-ENOSPC); 2997 } 2998 2999 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3000 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3001 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3002 { 3003 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3004 int nr_nodes, node; 3005 3006 /* do node specific alloc */ 3007 if (nid != NUMA_NO_NODE) { 3008 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 3009 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3010 if (!m) 3011 return 0; 3012 goto found; 3013 } 3014 /* allocate from next node when distributing huge pages */ 3015 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 3016 m = memblock_alloc_try_nid_raw( 3017 huge_page_size(h), huge_page_size(h), 3018 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 3019 /* 3020 * Use the beginning of the huge page to store the 3021 * huge_bootmem_page struct (until gather_bootmem 3022 * puts them into the mem_map). 3023 */ 3024 if (!m) 3025 return 0; 3026 goto found; 3027 } 3028 3029 found: 3030 /* Put them into a private list first because mem_map is not up yet */ 3031 INIT_LIST_HEAD(&m->list); 3032 list_add(&m->list, &huge_boot_pages); 3033 m->hstate = h; 3034 return 1; 3035 } 3036 3037 /* 3038 * Put bootmem huge pages into the standard lists after mem_map is up. 3039 * Note: This only applies to gigantic (order > MAX_ORDER) pages. 3040 */ 3041 static void __init gather_bootmem_prealloc(void) 3042 { 3043 struct huge_bootmem_page *m; 3044 3045 list_for_each_entry(m, &huge_boot_pages, list) { 3046 struct page *page = virt_to_page(m); 3047 struct folio *folio = page_folio(page); 3048 struct hstate *h = m->hstate; 3049 3050 VM_BUG_ON(!hstate_is_gigantic(h)); 3051 WARN_ON(folio_ref_count(folio) != 1); 3052 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { 3053 WARN_ON(folio_test_reserved(folio)); 3054 prep_new_hugetlb_folio(h, folio, folio_nid(folio)); 3055 free_huge_page(page); /* add to the hugepage allocator */ 3056 } else { 3057 /* VERY unlikely inflated ref count on a tail page */ 3058 free_gigantic_folio(folio, huge_page_order(h)); 3059 } 3060 3061 /* 3062 * We need to restore the 'stolen' pages to totalram_pages 3063 * in order to fix confusing memory reports from free(1) and 3064 * other side-effects, like CommitLimit going negative. 3065 */ 3066 adjust_managed_page_count(page, pages_per_huge_page(h)); 3067 cond_resched(); 3068 } 3069 } 3070 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3071 { 3072 unsigned long i; 3073 char buf[32]; 3074 3075 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3076 if (hstate_is_gigantic(h)) { 3077 if (!alloc_bootmem_huge_page(h, nid)) 3078 break; 3079 } else { 3080 struct folio *folio; 3081 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3082 3083 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3084 &node_states[N_MEMORY], NULL); 3085 if (!folio) 3086 break; 3087 free_huge_page(&folio->page); /* free it into the hugepage allocator */ 3088 } 3089 cond_resched(); 3090 } 3091 if (i == h->max_huge_pages_node[nid]) 3092 return; 3093 3094 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3095 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3096 h->max_huge_pages_node[nid], buf, nid, i); 3097 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3098 h->max_huge_pages_node[nid] = i; 3099 } 3100 3101 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3102 { 3103 unsigned long i; 3104 nodemask_t *node_alloc_noretry; 3105 bool node_specific_alloc = false; 3106 3107 /* skip gigantic hugepages allocation if hugetlb_cma enabled */ 3108 if (hstate_is_gigantic(h) && hugetlb_cma_size) { 3109 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3110 return; 3111 } 3112 3113 /* do node specific alloc */ 3114 for_each_online_node(i) { 3115 if (h->max_huge_pages_node[i] > 0) { 3116 hugetlb_hstate_alloc_pages_onenode(h, i); 3117 node_specific_alloc = true; 3118 } 3119 } 3120 3121 if (node_specific_alloc) 3122 return; 3123 3124 /* below will do all node balanced alloc */ 3125 if (!hstate_is_gigantic(h)) { 3126 /* 3127 * Bit mask controlling how hard we retry per-node allocations. 3128 * Ignore errors as lower level routines can deal with 3129 * node_alloc_noretry == NULL. If this kmalloc fails at boot 3130 * time, we are likely in bigger trouble. 3131 */ 3132 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), 3133 GFP_KERNEL); 3134 } else { 3135 /* allocations done at boot time */ 3136 node_alloc_noretry = NULL; 3137 } 3138 3139 /* bit mask controlling how hard we retry per-node allocations */ 3140 if (node_alloc_noretry) 3141 nodes_clear(*node_alloc_noretry); 3142 3143 for (i = 0; i < h->max_huge_pages; ++i) { 3144 if (hstate_is_gigantic(h)) { 3145 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3146 break; 3147 } else if (!alloc_pool_huge_page(h, 3148 &node_states[N_MEMORY], 3149 node_alloc_noretry)) 3150 break; 3151 cond_resched(); 3152 } 3153 if (i < h->max_huge_pages) { 3154 char buf[32]; 3155 3156 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3157 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3158 h->max_huge_pages, buf, i); 3159 h->max_huge_pages = i; 3160 } 3161 kfree(node_alloc_noretry); 3162 } 3163 3164 static void __init hugetlb_init_hstates(void) 3165 { 3166 struct hstate *h, *h2; 3167 3168 for_each_hstate(h) { 3169 /* oversize hugepages were init'ed in early boot */ 3170 if (!hstate_is_gigantic(h)) 3171 hugetlb_hstate_alloc_pages(h); 3172 3173 /* 3174 * Set demote order for each hstate. Note that 3175 * h->demote_order is initially 0. 3176 * - We can not demote gigantic pages if runtime freeing 3177 * is not supported, so skip this. 3178 * - If CMA allocation is possible, we can not demote 3179 * HUGETLB_PAGE_ORDER or smaller size pages. 3180 */ 3181 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3182 continue; 3183 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) 3184 continue; 3185 for_each_hstate(h2) { 3186 if (h2 == h) 3187 continue; 3188 if (h2->order < h->order && 3189 h2->order > h->demote_order) 3190 h->demote_order = h2->order; 3191 } 3192 } 3193 } 3194 3195 static void __init report_hugepages(void) 3196 { 3197 struct hstate *h; 3198 3199 for_each_hstate(h) { 3200 char buf[32]; 3201 3202 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3203 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3204 buf, h->free_huge_pages); 3205 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3206 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3207 } 3208 } 3209 3210 #ifdef CONFIG_HIGHMEM 3211 static void try_to_free_low(struct hstate *h, unsigned long count, 3212 nodemask_t *nodes_allowed) 3213 { 3214 int i; 3215 LIST_HEAD(page_list); 3216 3217 lockdep_assert_held(&hugetlb_lock); 3218 if (hstate_is_gigantic(h)) 3219 return; 3220 3221 /* 3222 * Collect pages to be freed on a list, and free after dropping lock 3223 */ 3224 for_each_node_mask(i, *nodes_allowed) { 3225 struct page *page, *next; 3226 struct list_head *freel = &h->hugepage_freelists[i]; 3227 list_for_each_entry_safe(page, next, freel, lru) { 3228 if (count >= h->nr_huge_pages) 3229 goto out; 3230 if (PageHighMem(page)) 3231 continue; 3232 remove_hugetlb_folio(h, page_folio(page), false); 3233 list_add(&page->lru, &page_list); 3234 } 3235 } 3236 3237 out: 3238 spin_unlock_irq(&hugetlb_lock); 3239 update_and_free_pages_bulk(h, &page_list); 3240 spin_lock_irq(&hugetlb_lock); 3241 } 3242 #else 3243 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3244 nodemask_t *nodes_allowed) 3245 { 3246 } 3247 #endif 3248 3249 /* 3250 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3251 * balanced by operating on them in a round-robin fashion. 3252 * Returns 1 if an adjustment was made. 3253 */ 3254 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3255 int delta) 3256 { 3257 int nr_nodes, node; 3258 3259 lockdep_assert_held(&hugetlb_lock); 3260 VM_BUG_ON(delta != -1 && delta != 1); 3261 3262 if (delta < 0) { 3263 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 3264 if (h->surplus_huge_pages_node[node]) 3265 goto found; 3266 } 3267 } else { 3268 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3269 if (h->surplus_huge_pages_node[node] < 3270 h->nr_huge_pages_node[node]) 3271 goto found; 3272 } 3273 } 3274 return 0; 3275 3276 found: 3277 h->surplus_huge_pages += delta; 3278 h->surplus_huge_pages_node[node] += delta; 3279 return 1; 3280 } 3281 3282 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3283 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3284 nodemask_t *nodes_allowed) 3285 { 3286 unsigned long min_count, ret; 3287 struct page *page; 3288 LIST_HEAD(page_list); 3289 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3290 3291 /* 3292 * Bit mask controlling how hard we retry per-node allocations. 3293 * If we can not allocate the bit mask, do not attempt to allocate 3294 * the requested huge pages. 3295 */ 3296 if (node_alloc_noretry) 3297 nodes_clear(*node_alloc_noretry); 3298 else 3299 return -ENOMEM; 3300 3301 /* 3302 * resize_lock mutex prevents concurrent adjustments to number of 3303 * pages in hstate via the proc/sysfs interfaces. 3304 */ 3305 mutex_lock(&h->resize_lock); 3306 flush_free_hpage_work(h); 3307 spin_lock_irq(&hugetlb_lock); 3308 3309 /* 3310 * Check for a node specific request. 3311 * Changing node specific huge page count may require a corresponding 3312 * change to the global count. In any case, the passed node mask 3313 * (nodes_allowed) will restrict alloc/free to the specified node. 3314 */ 3315 if (nid != NUMA_NO_NODE) { 3316 unsigned long old_count = count; 3317 3318 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 3319 /* 3320 * User may have specified a large count value which caused the 3321 * above calculation to overflow. In this case, they wanted 3322 * to allocate as many huge pages as possible. Set count to 3323 * largest possible value to align with their intention. 3324 */ 3325 if (count < old_count) 3326 count = ULONG_MAX; 3327 } 3328 3329 /* 3330 * Gigantic pages runtime allocation depend on the capability for large 3331 * page range allocation. 3332 * If the system does not provide this feature, return an error when 3333 * the user tries to allocate gigantic pages but let the user free the 3334 * boottime allocated gigantic pages. 3335 */ 3336 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3337 if (count > persistent_huge_pages(h)) { 3338 spin_unlock_irq(&hugetlb_lock); 3339 mutex_unlock(&h->resize_lock); 3340 NODEMASK_FREE(node_alloc_noretry); 3341 return -EINVAL; 3342 } 3343 /* Fall through to decrease pool */ 3344 } 3345 3346 /* 3347 * Increase the pool size 3348 * First take pages out of surplus state. Then make up the 3349 * remaining difference by allocating fresh huge pages. 3350 * 3351 * We might race with alloc_surplus_huge_page() here and be unable 3352 * to convert a surplus huge page to a normal huge page. That is 3353 * not critical, though, it just means the overall size of the 3354 * pool might be one hugepage larger than it needs to be, but 3355 * within all the constraints specified by the sysctls. 3356 */ 3357 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3358 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3359 break; 3360 } 3361 3362 while (count > persistent_huge_pages(h)) { 3363 /* 3364 * If this allocation races such that we no longer need the 3365 * page, free_huge_page will handle it by freeing the page 3366 * and reducing the surplus. 3367 */ 3368 spin_unlock_irq(&hugetlb_lock); 3369 3370 /* yield cpu to avoid soft lockup */ 3371 cond_resched(); 3372 3373 ret = alloc_pool_huge_page(h, nodes_allowed, 3374 node_alloc_noretry); 3375 spin_lock_irq(&hugetlb_lock); 3376 if (!ret) 3377 goto out; 3378 3379 /* Bail for signals. Probably ctrl-c from user */ 3380 if (signal_pending(current)) 3381 goto out; 3382 } 3383 3384 /* 3385 * Decrease the pool size 3386 * First return free pages to the buddy allocator (being careful 3387 * to keep enough around to satisfy reservations). Then place 3388 * pages into surplus state as needed so the pool will shrink 3389 * to the desired size as pages become free. 3390 * 3391 * By placing pages into the surplus state independent of the 3392 * overcommit value, we are allowing the surplus pool size to 3393 * exceed overcommit. There are few sane options here. Since 3394 * alloc_surplus_huge_page() is checking the global counter, 3395 * though, we'll note that we're not allowed to exceed surplus 3396 * and won't grow the pool anywhere else. Not until one of the 3397 * sysctls are changed, or the surplus pages go out of use. 3398 */ 3399 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 3400 min_count = max(count, min_count); 3401 try_to_free_low(h, min_count, nodes_allowed); 3402 3403 /* 3404 * Collect pages to be removed on list without dropping lock 3405 */ 3406 while (min_count < persistent_huge_pages(h)) { 3407 page = remove_pool_huge_page(h, nodes_allowed, 0); 3408 if (!page) 3409 break; 3410 3411 list_add(&page->lru, &page_list); 3412 } 3413 /* free the pages after dropping lock */ 3414 spin_unlock_irq(&hugetlb_lock); 3415 update_and_free_pages_bulk(h, &page_list); 3416 flush_free_hpage_work(h); 3417 spin_lock_irq(&hugetlb_lock); 3418 3419 while (count < persistent_huge_pages(h)) { 3420 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3421 break; 3422 } 3423 out: 3424 h->max_huge_pages = persistent_huge_pages(h); 3425 spin_unlock_irq(&hugetlb_lock); 3426 mutex_unlock(&h->resize_lock); 3427 3428 NODEMASK_FREE(node_alloc_noretry); 3429 3430 return 0; 3431 } 3432 3433 static int demote_free_huge_page(struct hstate *h, struct page *page) 3434 { 3435 int i, nid = page_to_nid(page); 3436 struct hstate *target_hstate; 3437 struct folio *folio = page_folio(page); 3438 struct page *subpage; 3439 int rc = 0; 3440 3441 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); 3442 3443 remove_hugetlb_folio_for_demote(h, folio, false); 3444 spin_unlock_irq(&hugetlb_lock); 3445 3446 rc = hugetlb_vmemmap_restore(h, page); 3447 if (rc) { 3448 /* Allocation of vmemmmap failed, we can not demote page */ 3449 spin_lock_irq(&hugetlb_lock); 3450 set_page_refcounted(page); 3451 add_hugetlb_folio(h, page_folio(page), false); 3452 return rc; 3453 } 3454 3455 /* 3456 * Use destroy_compound_hugetlb_folio_for_demote for all huge page 3457 * sizes as it will not ref count pages. 3458 */ 3459 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); 3460 3461 /* 3462 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3463 * Without the mutex, pages added to target hstate could be marked 3464 * as surplus. 3465 * 3466 * Note that we already hold h->resize_lock. To prevent deadlock, 3467 * use the convention of always taking larger size hstate mutex first. 3468 */ 3469 mutex_lock(&target_hstate->resize_lock); 3470 for (i = 0; i < pages_per_huge_page(h); 3471 i += pages_per_huge_page(target_hstate)) { 3472 subpage = nth_page(page, i); 3473 folio = page_folio(subpage); 3474 if (hstate_is_gigantic(target_hstate)) 3475 prep_compound_gigantic_folio_for_demote(folio, 3476 target_hstate->order); 3477 else 3478 prep_compound_page(subpage, target_hstate->order); 3479 set_page_private(subpage, 0); 3480 prep_new_hugetlb_folio(target_hstate, folio, nid); 3481 free_huge_page(subpage); 3482 } 3483 mutex_unlock(&target_hstate->resize_lock); 3484 3485 spin_lock_irq(&hugetlb_lock); 3486 3487 /* 3488 * Not absolutely necessary, but for consistency update max_huge_pages 3489 * based on pool changes for the demoted page. 3490 */ 3491 h->max_huge_pages--; 3492 target_hstate->max_huge_pages += 3493 pages_per_huge_page(h) / pages_per_huge_page(target_hstate); 3494 3495 return rc; 3496 } 3497 3498 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 3499 __must_hold(&hugetlb_lock) 3500 { 3501 int nr_nodes, node; 3502 struct page *page; 3503 3504 lockdep_assert_held(&hugetlb_lock); 3505 3506 /* We should never get here if no demote order */ 3507 if (!h->demote_order) { 3508 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 3509 return -EINVAL; /* internal error */ 3510 } 3511 3512 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3513 list_for_each_entry(page, &h->hugepage_freelists[node], lru) { 3514 if (PageHWPoison(page)) 3515 continue; 3516 3517 return demote_free_huge_page(h, page); 3518 } 3519 } 3520 3521 /* 3522 * Only way to get here is if all pages on free lists are poisoned. 3523 * Return -EBUSY so that caller will not retry. 3524 */ 3525 return -EBUSY; 3526 } 3527 3528 #define HSTATE_ATTR_RO(_name) \ 3529 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3530 3531 #define HSTATE_ATTR_WO(_name) \ 3532 static struct kobj_attribute _name##_attr = __ATTR_WO(_name) 3533 3534 #define HSTATE_ATTR(_name) \ 3535 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3536 3537 static struct kobject *hugepages_kobj; 3538 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3539 3540 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 3541 3542 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 3543 { 3544 int i; 3545 3546 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3547 if (hstate_kobjs[i] == kobj) { 3548 if (nidp) 3549 *nidp = NUMA_NO_NODE; 3550 return &hstates[i]; 3551 } 3552 3553 return kobj_to_node_hstate(kobj, nidp); 3554 } 3555 3556 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 3557 struct kobj_attribute *attr, char *buf) 3558 { 3559 struct hstate *h; 3560 unsigned long nr_huge_pages; 3561 int nid; 3562 3563 h = kobj_to_hstate(kobj, &nid); 3564 if (nid == NUMA_NO_NODE) 3565 nr_huge_pages = h->nr_huge_pages; 3566 else 3567 nr_huge_pages = h->nr_huge_pages_node[nid]; 3568 3569 return sysfs_emit(buf, "%lu\n", nr_huge_pages); 3570 } 3571 3572 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 3573 struct hstate *h, int nid, 3574 unsigned long count, size_t len) 3575 { 3576 int err; 3577 nodemask_t nodes_allowed, *n_mask; 3578 3579 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) 3580 return -EINVAL; 3581 3582 if (nid == NUMA_NO_NODE) { 3583 /* 3584 * global hstate attribute 3585 */ 3586 if (!(obey_mempolicy && 3587 init_nodemask_of_mempolicy(&nodes_allowed))) 3588 n_mask = &node_states[N_MEMORY]; 3589 else 3590 n_mask = &nodes_allowed; 3591 } else { 3592 /* 3593 * Node specific request. count adjustment happens in 3594 * set_max_huge_pages() after acquiring hugetlb_lock. 3595 */ 3596 init_nodemask_of_node(&nodes_allowed, nid); 3597 n_mask = &nodes_allowed; 3598 } 3599 3600 err = set_max_huge_pages(h, count, nid, n_mask); 3601 3602 return err ? err : len; 3603 } 3604 3605 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 3606 struct kobject *kobj, const char *buf, 3607 size_t len) 3608 { 3609 struct hstate *h; 3610 unsigned long count; 3611 int nid; 3612 int err; 3613 3614 err = kstrtoul(buf, 10, &count); 3615 if (err) 3616 return err; 3617 3618 h = kobj_to_hstate(kobj, &nid); 3619 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 3620 } 3621 3622 static ssize_t nr_hugepages_show(struct kobject *kobj, 3623 struct kobj_attribute *attr, char *buf) 3624 { 3625 return nr_hugepages_show_common(kobj, attr, buf); 3626 } 3627 3628 static ssize_t nr_hugepages_store(struct kobject *kobj, 3629 struct kobj_attribute *attr, const char *buf, size_t len) 3630 { 3631 return nr_hugepages_store_common(false, kobj, buf, len); 3632 } 3633 HSTATE_ATTR(nr_hugepages); 3634 3635 #ifdef CONFIG_NUMA 3636 3637 /* 3638 * hstate attribute for optionally mempolicy-based constraint on persistent 3639 * huge page alloc/free. 3640 */ 3641 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 3642 struct kobj_attribute *attr, 3643 char *buf) 3644 { 3645 return nr_hugepages_show_common(kobj, attr, buf); 3646 } 3647 3648 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 3649 struct kobj_attribute *attr, const char *buf, size_t len) 3650 { 3651 return nr_hugepages_store_common(true, kobj, buf, len); 3652 } 3653 HSTATE_ATTR(nr_hugepages_mempolicy); 3654 #endif 3655 3656 3657 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 3658 struct kobj_attribute *attr, char *buf) 3659 { 3660 struct hstate *h = kobj_to_hstate(kobj, NULL); 3661 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); 3662 } 3663 3664 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 3665 struct kobj_attribute *attr, const char *buf, size_t count) 3666 { 3667 int err; 3668 unsigned long input; 3669 struct hstate *h = kobj_to_hstate(kobj, NULL); 3670 3671 if (hstate_is_gigantic(h)) 3672 return -EINVAL; 3673 3674 err = kstrtoul(buf, 10, &input); 3675 if (err) 3676 return err; 3677 3678 spin_lock_irq(&hugetlb_lock); 3679 h->nr_overcommit_huge_pages = input; 3680 spin_unlock_irq(&hugetlb_lock); 3681 3682 return count; 3683 } 3684 HSTATE_ATTR(nr_overcommit_hugepages); 3685 3686 static ssize_t free_hugepages_show(struct kobject *kobj, 3687 struct kobj_attribute *attr, char *buf) 3688 { 3689 struct hstate *h; 3690 unsigned long free_huge_pages; 3691 int nid; 3692 3693 h = kobj_to_hstate(kobj, &nid); 3694 if (nid == NUMA_NO_NODE) 3695 free_huge_pages = h->free_huge_pages; 3696 else 3697 free_huge_pages = h->free_huge_pages_node[nid]; 3698 3699 return sysfs_emit(buf, "%lu\n", free_huge_pages); 3700 } 3701 HSTATE_ATTR_RO(free_hugepages); 3702 3703 static ssize_t resv_hugepages_show(struct kobject *kobj, 3704 struct kobj_attribute *attr, char *buf) 3705 { 3706 struct hstate *h = kobj_to_hstate(kobj, NULL); 3707 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); 3708 } 3709 HSTATE_ATTR_RO(resv_hugepages); 3710 3711 static ssize_t surplus_hugepages_show(struct kobject *kobj, 3712 struct kobj_attribute *attr, char *buf) 3713 { 3714 struct hstate *h; 3715 unsigned long surplus_huge_pages; 3716 int nid; 3717 3718 h = kobj_to_hstate(kobj, &nid); 3719 if (nid == NUMA_NO_NODE) 3720 surplus_huge_pages = h->surplus_huge_pages; 3721 else 3722 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 3723 3724 return sysfs_emit(buf, "%lu\n", surplus_huge_pages); 3725 } 3726 HSTATE_ATTR_RO(surplus_hugepages); 3727 3728 static ssize_t demote_store(struct kobject *kobj, 3729 struct kobj_attribute *attr, const char *buf, size_t len) 3730 { 3731 unsigned long nr_demote; 3732 unsigned long nr_available; 3733 nodemask_t nodes_allowed, *n_mask; 3734 struct hstate *h; 3735 int err; 3736 int nid; 3737 3738 err = kstrtoul(buf, 10, &nr_demote); 3739 if (err) 3740 return err; 3741 h = kobj_to_hstate(kobj, &nid); 3742 3743 if (nid != NUMA_NO_NODE) { 3744 init_nodemask_of_node(&nodes_allowed, nid); 3745 n_mask = &nodes_allowed; 3746 } else { 3747 n_mask = &node_states[N_MEMORY]; 3748 } 3749 3750 /* Synchronize with other sysfs operations modifying huge pages */ 3751 mutex_lock(&h->resize_lock); 3752 spin_lock_irq(&hugetlb_lock); 3753 3754 while (nr_demote) { 3755 /* 3756 * Check for available pages to demote each time thorough the 3757 * loop as demote_pool_huge_page will drop hugetlb_lock. 3758 */ 3759 if (nid != NUMA_NO_NODE) 3760 nr_available = h->free_huge_pages_node[nid]; 3761 else 3762 nr_available = h->free_huge_pages; 3763 nr_available -= h->resv_huge_pages; 3764 if (!nr_available) 3765 break; 3766 3767 err = demote_pool_huge_page(h, n_mask); 3768 if (err) 3769 break; 3770 3771 nr_demote--; 3772 } 3773 3774 spin_unlock_irq(&hugetlb_lock); 3775 mutex_unlock(&h->resize_lock); 3776 3777 if (err) 3778 return err; 3779 return len; 3780 } 3781 HSTATE_ATTR_WO(demote); 3782 3783 static ssize_t demote_size_show(struct kobject *kobj, 3784 struct kobj_attribute *attr, char *buf) 3785 { 3786 struct hstate *h = kobj_to_hstate(kobj, NULL); 3787 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; 3788 3789 return sysfs_emit(buf, "%lukB\n", demote_size); 3790 } 3791 3792 static ssize_t demote_size_store(struct kobject *kobj, 3793 struct kobj_attribute *attr, 3794 const char *buf, size_t count) 3795 { 3796 struct hstate *h, *demote_hstate; 3797 unsigned long demote_size; 3798 unsigned int demote_order; 3799 3800 demote_size = (unsigned long)memparse(buf, NULL); 3801 3802 demote_hstate = size_to_hstate(demote_size); 3803 if (!demote_hstate) 3804 return -EINVAL; 3805 demote_order = demote_hstate->order; 3806 if (demote_order < HUGETLB_PAGE_ORDER) 3807 return -EINVAL; 3808 3809 /* demote order must be smaller than hstate order */ 3810 h = kobj_to_hstate(kobj, NULL); 3811 if (demote_order >= h->order) 3812 return -EINVAL; 3813 3814 /* resize_lock synchronizes access to demote size and writes */ 3815 mutex_lock(&h->resize_lock); 3816 h->demote_order = demote_order; 3817 mutex_unlock(&h->resize_lock); 3818 3819 return count; 3820 } 3821 HSTATE_ATTR(demote_size); 3822 3823 static struct attribute *hstate_attrs[] = { 3824 &nr_hugepages_attr.attr, 3825 &nr_overcommit_hugepages_attr.attr, 3826 &free_hugepages_attr.attr, 3827 &resv_hugepages_attr.attr, 3828 &surplus_hugepages_attr.attr, 3829 #ifdef CONFIG_NUMA 3830 &nr_hugepages_mempolicy_attr.attr, 3831 #endif 3832 NULL, 3833 }; 3834 3835 static const struct attribute_group hstate_attr_group = { 3836 .attrs = hstate_attrs, 3837 }; 3838 3839 static struct attribute *hstate_demote_attrs[] = { 3840 &demote_size_attr.attr, 3841 &demote_attr.attr, 3842 NULL, 3843 }; 3844 3845 static const struct attribute_group hstate_demote_attr_group = { 3846 .attrs = hstate_demote_attrs, 3847 }; 3848 3849 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 3850 struct kobject **hstate_kobjs, 3851 const struct attribute_group *hstate_attr_group) 3852 { 3853 int retval; 3854 int hi = hstate_index(h); 3855 3856 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 3857 if (!hstate_kobjs[hi]) 3858 return -ENOMEM; 3859 3860 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 3861 if (retval) { 3862 kobject_put(hstate_kobjs[hi]); 3863 hstate_kobjs[hi] = NULL; 3864 return retval; 3865 } 3866 3867 if (h->demote_order) { 3868 retval = sysfs_create_group(hstate_kobjs[hi], 3869 &hstate_demote_attr_group); 3870 if (retval) { 3871 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); 3872 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); 3873 kobject_put(hstate_kobjs[hi]); 3874 hstate_kobjs[hi] = NULL; 3875 return retval; 3876 } 3877 } 3878 3879 return 0; 3880 } 3881 3882 #ifdef CONFIG_NUMA 3883 static bool hugetlb_sysfs_initialized __ro_after_init; 3884 3885 /* 3886 * node_hstate/s - associate per node hstate attributes, via their kobjects, 3887 * with node devices in node_devices[] using a parallel array. The array 3888 * index of a node device or _hstate == node id. 3889 * This is here to avoid any static dependency of the node device driver, in 3890 * the base kernel, on the hugetlb module. 3891 */ 3892 struct node_hstate { 3893 struct kobject *hugepages_kobj; 3894 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 3895 }; 3896 static struct node_hstate node_hstates[MAX_NUMNODES]; 3897 3898 /* 3899 * A subset of global hstate attributes for node devices 3900 */ 3901 static struct attribute *per_node_hstate_attrs[] = { 3902 &nr_hugepages_attr.attr, 3903 &free_hugepages_attr.attr, 3904 &surplus_hugepages_attr.attr, 3905 NULL, 3906 }; 3907 3908 static const struct attribute_group per_node_hstate_attr_group = { 3909 .attrs = per_node_hstate_attrs, 3910 }; 3911 3912 /* 3913 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 3914 * Returns node id via non-NULL nidp. 3915 */ 3916 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 3917 { 3918 int nid; 3919 3920 for (nid = 0; nid < nr_node_ids; nid++) { 3921 struct node_hstate *nhs = &node_hstates[nid]; 3922 int i; 3923 for (i = 0; i < HUGE_MAX_HSTATE; i++) 3924 if (nhs->hstate_kobjs[i] == kobj) { 3925 if (nidp) 3926 *nidp = nid; 3927 return &hstates[i]; 3928 } 3929 } 3930 3931 BUG(); 3932 return NULL; 3933 } 3934 3935 /* 3936 * Unregister hstate attributes from a single node device. 3937 * No-op if no hstate attributes attached. 3938 */ 3939 void hugetlb_unregister_node(struct node *node) 3940 { 3941 struct hstate *h; 3942 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3943 3944 if (!nhs->hugepages_kobj) 3945 return; /* no hstate attributes */ 3946 3947 for_each_hstate(h) { 3948 int idx = hstate_index(h); 3949 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; 3950 3951 if (!hstate_kobj) 3952 continue; 3953 if (h->demote_order) 3954 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); 3955 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); 3956 kobject_put(hstate_kobj); 3957 nhs->hstate_kobjs[idx] = NULL; 3958 } 3959 3960 kobject_put(nhs->hugepages_kobj); 3961 nhs->hugepages_kobj = NULL; 3962 } 3963 3964 3965 /* 3966 * Register hstate attributes for a single node device. 3967 * No-op if attributes already registered. 3968 */ 3969 void hugetlb_register_node(struct node *node) 3970 { 3971 struct hstate *h; 3972 struct node_hstate *nhs = &node_hstates[node->dev.id]; 3973 int err; 3974 3975 if (!hugetlb_sysfs_initialized) 3976 return; 3977 3978 if (nhs->hugepages_kobj) 3979 return; /* already allocated */ 3980 3981 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 3982 &node->dev.kobj); 3983 if (!nhs->hugepages_kobj) 3984 return; 3985 3986 for_each_hstate(h) { 3987 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 3988 nhs->hstate_kobjs, 3989 &per_node_hstate_attr_group); 3990 if (err) { 3991 pr_err("HugeTLB: Unable to add hstate %s for node %d\n", 3992 h->name, node->dev.id); 3993 hugetlb_unregister_node(node); 3994 break; 3995 } 3996 } 3997 } 3998 3999 /* 4000 * hugetlb init time: register hstate attributes for all registered node 4001 * devices of nodes that have memory. All on-line nodes should have 4002 * registered their associated device by this time. 4003 */ 4004 static void __init hugetlb_register_all_nodes(void) 4005 { 4006 int nid; 4007 4008 for_each_online_node(nid) 4009 hugetlb_register_node(node_devices[nid]); 4010 } 4011 #else /* !CONFIG_NUMA */ 4012 4013 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 4014 { 4015 BUG(); 4016 if (nidp) 4017 *nidp = -1; 4018 return NULL; 4019 } 4020 4021 static void hugetlb_register_all_nodes(void) { } 4022 4023 #endif 4024 4025 #ifdef CONFIG_CMA 4026 static void __init hugetlb_cma_check(void); 4027 #else 4028 static inline __init void hugetlb_cma_check(void) 4029 { 4030 } 4031 #endif 4032 4033 static void __init hugetlb_sysfs_init(void) 4034 { 4035 struct hstate *h; 4036 int err; 4037 4038 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 4039 if (!hugepages_kobj) 4040 return; 4041 4042 for_each_hstate(h) { 4043 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 4044 hstate_kobjs, &hstate_attr_group); 4045 if (err) 4046 pr_err("HugeTLB: Unable to add hstate %s", h->name); 4047 } 4048 4049 #ifdef CONFIG_NUMA 4050 hugetlb_sysfs_initialized = true; 4051 #endif 4052 hugetlb_register_all_nodes(); 4053 } 4054 4055 static int __init hugetlb_init(void) 4056 { 4057 int i; 4058 4059 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4060 __NR_HPAGEFLAGS); 4061 4062 if (!hugepages_supported()) { 4063 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4064 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4065 return 0; 4066 } 4067 4068 /* 4069 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4070 * architectures depend on setup being done here. 4071 */ 4072 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4073 if (!parsed_default_hugepagesz) { 4074 /* 4075 * If we did not parse a default huge page size, set 4076 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4077 * number of huge pages for this default size was implicitly 4078 * specified, set that here as well. 4079 * Note that the implicit setting will overwrite an explicit 4080 * setting. A warning will be printed in this case. 4081 */ 4082 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4083 if (default_hstate_max_huge_pages) { 4084 if (default_hstate.max_huge_pages) { 4085 char buf[32]; 4086 4087 string_get_size(huge_page_size(&default_hstate), 4088 1, STRING_UNITS_2, buf, 32); 4089 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4090 default_hstate.max_huge_pages, buf); 4091 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4092 default_hstate_max_huge_pages); 4093 } 4094 default_hstate.max_huge_pages = 4095 default_hstate_max_huge_pages; 4096 4097 for_each_online_node(i) 4098 default_hstate.max_huge_pages_node[i] = 4099 default_hugepages_in_node[i]; 4100 } 4101 } 4102 4103 hugetlb_cma_check(); 4104 hugetlb_init_hstates(); 4105 gather_bootmem_prealloc(); 4106 report_hugepages(); 4107 4108 hugetlb_sysfs_init(); 4109 hugetlb_cgroup_file_init(); 4110 4111 #ifdef CONFIG_SMP 4112 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4113 #else 4114 num_fault_mutexes = 1; 4115 #endif 4116 hugetlb_fault_mutex_table = 4117 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4118 GFP_KERNEL); 4119 BUG_ON(!hugetlb_fault_mutex_table); 4120 4121 for (i = 0; i < num_fault_mutexes; i++) 4122 mutex_init(&hugetlb_fault_mutex_table[i]); 4123 return 0; 4124 } 4125 subsys_initcall(hugetlb_init); 4126 4127 /* Overwritten by architectures with more huge page sizes */ 4128 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4129 { 4130 return size == HPAGE_SIZE; 4131 } 4132 4133 void __init hugetlb_add_hstate(unsigned int order) 4134 { 4135 struct hstate *h; 4136 unsigned long i; 4137 4138 if (size_to_hstate(PAGE_SIZE << order)) { 4139 return; 4140 } 4141 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4142 BUG_ON(order == 0); 4143 h = &hstates[hugetlb_max_hstate++]; 4144 mutex_init(&h->resize_lock); 4145 h->order = order; 4146 h->mask = ~(huge_page_size(h) - 1); 4147 for (i = 0; i < MAX_NUMNODES; ++i) 4148 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4149 INIT_LIST_HEAD(&h->hugepage_activelist); 4150 h->next_nid_to_alloc = first_memory_node; 4151 h->next_nid_to_free = first_memory_node; 4152 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4153 huge_page_size(h)/SZ_1K); 4154 4155 parsed_hstate = h; 4156 } 4157 4158 bool __init __weak hugetlb_node_alloc_supported(void) 4159 { 4160 return true; 4161 } 4162 4163 static void __init hugepages_clear_pages_in_node(void) 4164 { 4165 if (!hugetlb_max_hstate) { 4166 default_hstate_max_huge_pages = 0; 4167 memset(default_hugepages_in_node, 0, 4168 sizeof(default_hugepages_in_node)); 4169 } else { 4170 parsed_hstate->max_huge_pages = 0; 4171 memset(parsed_hstate->max_huge_pages_node, 0, 4172 sizeof(parsed_hstate->max_huge_pages_node)); 4173 } 4174 } 4175 4176 /* 4177 * hugepages command line processing 4178 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4179 * specification. If not, ignore the hugepages value. hugepages can also 4180 * be the first huge page command line option in which case it implicitly 4181 * specifies the number of huge pages for the default size. 4182 */ 4183 static int __init hugepages_setup(char *s) 4184 { 4185 unsigned long *mhp; 4186 static unsigned long *last_mhp; 4187 int node = NUMA_NO_NODE; 4188 int count; 4189 unsigned long tmp; 4190 char *p = s; 4191 4192 if (!parsed_valid_hugepagesz) { 4193 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4194 parsed_valid_hugepagesz = true; 4195 return 1; 4196 } 4197 4198 /* 4199 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4200 * yet, so this hugepages= parameter goes to the "default hstate". 4201 * Otherwise, it goes with the previously parsed hugepagesz or 4202 * default_hugepagesz. 4203 */ 4204 else if (!hugetlb_max_hstate) 4205 mhp = &default_hstate_max_huge_pages; 4206 else 4207 mhp = &parsed_hstate->max_huge_pages; 4208 4209 if (mhp == last_mhp) { 4210 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4211 return 1; 4212 } 4213 4214 while (*p) { 4215 count = 0; 4216 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4217 goto invalid; 4218 /* Parameter is node format */ 4219 if (p[count] == ':') { 4220 if (!hugetlb_node_alloc_supported()) { 4221 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4222 return 1; 4223 } 4224 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4225 goto invalid; 4226 node = array_index_nospec(tmp, MAX_NUMNODES); 4227 p += count + 1; 4228 /* Parse hugepages */ 4229 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4230 goto invalid; 4231 if (!hugetlb_max_hstate) 4232 default_hugepages_in_node[node] = tmp; 4233 else 4234 parsed_hstate->max_huge_pages_node[node] = tmp; 4235 *mhp += tmp; 4236 /* Go to parse next node*/ 4237 if (p[count] == ',') 4238 p += count + 1; 4239 else 4240 break; 4241 } else { 4242 if (p != s) 4243 goto invalid; 4244 *mhp = tmp; 4245 break; 4246 } 4247 } 4248 4249 /* 4250 * Global state is always initialized later in hugetlb_init. 4251 * But we need to allocate gigantic hstates here early to still 4252 * use the bootmem allocator. 4253 */ 4254 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) 4255 hugetlb_hstate_alloc_pages(parsed_hstate); 4256 4257 last_mhp = mhp; 4258 4259 return 1; 4260 4261 invalid: 4262 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4263 hugepages_clear_pages_in_node(); 4264 return 1; 4265 } 4266 __setup("hugepages=", hugepages_setup); 4267 4268 /* 4269 * hugepagesz command line processing 4270 * A specific huge page size can only be specified once with hugepagesz. 4271 * hugepagesz is followed by hugepages on the command line. The global 4272 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4273 * hugepagesz argument was valid. 4274 */ 4275 static int __init hugepagesz_setup(char *s) 4276 { 4277 unsigned long size; 4278 struct hstate *h; 4279 4280 parsed_valid_hugepagesz = false; 4281 size = (unsigned long)memparse(s, NULL); 4282 4283 if (!arch_hugetlb_valid_size(size)) { 4284 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4285 return 1; 4286 } 4287 4288 h = size_to_hstate(size); 4289 if (h) { 4290 /* 4291 * hstate for this size already exists. This is normally 4292 * an error, but is allowed if the existing hstate is the 4293 * default hstate. More specifically, it is only allowed if 4294 * the number of huge pages for the default hstate was not 4295 * previously specified. 4296 */ 4297 if (!parsed_default_hugepagesz || h != &default_hstate || 4298 default_hstate.max_huge_pages) { 4299 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4300 return 1; 4301 } 4302 4303 /* 4304 * No need to call hugetlb_add_hstate() as hstate already 4305 * exists. But, do set parsed_hstate so that a following 4306 * hugepages= parameter will be applied to this hstate. 4307 */ 4308 parsed_hstate = h; 4309 parsed_valid_hugepagesz = true; 4310 return 1; 4311 } 4312 4313 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4314 parsed_valid_hugepagesz = true; 4315 return 1; 4316 } 4317 __setup("hugepagesz=", hugepagesz_setup); 4318 4319 /* 4320 * default_hugepagesz command line input 4321 * Only one instance of default_hugepagesz allowed on command line. 4322 */ 4323 static int __init default_hugepagesz_setup(char *s) 4324 { 4325 unsigned long size; 4326 int i; 4327 4328 parsed_valid_hugepagesz = false; 4329 if (parsed_default_hugepagesz) { 4330 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4331 return 1; 4332 } 4333 4334 size = (unsigned long)memparse(s, NULL); 4335 4336 if (!arch_hugetlb_valid_size(size)) { 4337 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4338 return 1; 4339 } 4340 4341 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4342 parsed_valid_hugepagesz = true; 4343 parsed_default_hugepagesz = true; 4344 default_hstate_idx = hstate_index(size_to_hstate(size)); 4345 4346 /* 4347 * The number of default huge pages (for this size) could have been 4348 * specified as the first hugetlb parameter: hugepages=X. If so, 4349 * then default_hstate_max_huge_pages is set. If the default huge 4350 * page size is gigantic (>= MAX_ORDER), then the pages must be 4351 * allocated here from bootmem allocator. 4352 */ 4353 if (default_hstate_max_huge_pages) { 4354 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4355 for_each_online_node(i) 4356 default_hstate.max_huge_pages_node[i] = 4357 default_hugepages_in_node[i]; 4358 if (hstate_is_gigantic(&default_hstate)) 4359 hugetlb_hstate_alloc_pages(&default_hstate); 4360 default_hstate_max_huge_pages = 0; 4361 } 4362 4363 return 1; 4364 } 4365 __setup("default_hugepagesz=", default_hugepagesz_setup); 4366 4367 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 4368 { 4369 #ifdef CONFIG_NUMA 4370 struct mempolicy *mpol = get_task_policy(current); 4371 4372 /* 4373 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 4374 * (from policy_nodemask) specifically for hugetlb case 4375 */ 4376 if (mpol->mode == MPOL_BIND && 4377 (apply_policy_zone(mpol, gfp_zone(gfp)) && 4378 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 4379 return &mpol->nodes; 4380 #endif 4381 return NULL; 4382 } 4383 4384 static unsigned int allowed_mems_nr(struct hstate *h) 4385 { 4386 int node; 4387 unsigned int nr = 0; 4388 nodemask_t *mbind_nodemask; 4389 unsigned int *array = h->free_huge_pages_node; 4390 gfp_t gfp_mask = htlb_alloc_mask(h); 4391 4392 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4393 for_each_node_mask(node, cpuset_current_mems_allowed) { 4394 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4395 nr += array[node]; 4396 } 4397 4398 return nr; 4399 } 4400 4401 #ifdef CONFIG_SYSCTL 4402 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, 4403 void *buffer, size_t *length, 4404 loff_t *ppos, unsigned long *out) 4405 { 4406 struct ctl_table dup_table; 4407 4408 /* 4409 * In order to avoid races with __do_proc_doulongvec_minmax(), we 4410 * can duplicate the @table and alter the duplicate of it. 4411 */ 4412 dup_table = *table; 4413 dup_table.data = out; 4414 4415 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); 4416 } 4417 4418 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 4419 struct ctl_table *table, int write, 4420 void *buffer, size_t *length, loff_t *ppos) 4421 { 4422 struct hstate *h = &default_hstate; 4423 unsigned long tmp = h->max_huge_pages; 4424 int ret; 4425 4426 if (!hugepages_supported()) 4427 return -EOPNOTSUPP; 4428 4429 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4430 &tmp); 4431 if (ret) 4432 goto out; 4433 4434 if (write) 4435 ret = __nr_hugepages_store_common(obey_mempolicy, h, 4436 NUMA_NO_NODE, tmp, *length); 4437 out: 4438 return ret; 4439 } 4440 4441 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 4442 void *buffer, size_t *length, loff_t *ppos) 4443 { 4444 4445 return hugetlb_sysctl_handler_common(false, table, write, 4446 buffer, length, ppos); 4447 } 4448 4449 #ifdef CONFIG_NUMA 4450 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 4451 void *buffer, size_t *length, loff_t *ppos) 4452 { 4453 return hugetlb_sysctl_handler_common(true, table, write, 4454 buffer, length, ppos); 4455 } 4456 #endif /* CONFIG_NUMA */ 4457 4458 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 4459 void *buffer, size_t *length, loff_t *ppos) 4460 { 4461 struct hstate *h = &default_hstate; 4462 unsigned long tmp; 4463 int ret; 4464 4465 if (!hugepages_supported()) 4466 return -EOPNOTSUPP; 4467 4468 tmp = h->nr_overcommit_huge_pages; 4469 4470 if (write && hstate_is_gigantic(h)) 4471 return -EINVAL; 4472 4473 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, 4474 &tmp); 4475 if (ret) 4476 goto out; 4477 4478 if (write) { 4479 spin_lock_irq(&hugetlb_lock); 4480 h->nr_overcommit_huge_pages = tmp; 4481 spin_unlock_irq(&hugetlb_lock); 4482 } 4483 out: 4484 return ret; 4485 } 4486 4487 #endif /* CONFIG_SYSCTL */ 4488 4489 void hugetlb_report_meminfo(struct seq_file *m) 4490 { 4491 struct hstate *h; 4492 unsigned long total = 0; 4493 4494 if (!hugepages_supported()) 4495 return; 4496 4497 for_each_hstate(h) { 4498 unsigned long count = h->nr_huge_pages; 4499 4500 total += huge_page_size(h) * count; 4501 4502 if (h == &default_hstate) 4503 seq_printf(m, 4504 "HugePages_Total: %5lu\n" 4505 "HugePages_Free: %5lu\n" 4506 "HugePages_Rsvd: %5lu\n" 4507 "HugePages_Surp: %5lu\n" 4508 "Hugepagesize: %8lu kB\n", 4509 count, 4510 h->free_huge_pages, 4511 h->resv_huge_pages, 4512 h->surplus_huge_pages, 4513 huge_page_size(h) / SZ_1K); 4514 } 4515 4516 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4517 } 4518 4519 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4520 { 4521 struct hstate *h = &default_hstate; 4522 4523 if (!hugepages_supported()) 4524 return 0; 4525 4526 return sysfs_emit_at(buf, len, 4527 "Node %d HugePages_Total: %5u\n" 4528 "Node %d HugePages_Free: %5u\n" 4529 "Node %d HugePages_Surp: %5u\n", 4530 nid, h->nr_huge_pages_node[nid], 4531 nid, h->free_huge_pages_node[nid], 4532 nid, h->surplus_huge_pages_node[nid]); 4533 } 4534 4535 void hugetlb_show_meminfo_node(int nid) 4536 { 4537 struct hstate *h; 4538 4539 if (!hugepages_supported()) 4540 return; 4541 4542 for_each_hstate(h) 4543 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4544 nid, 4545 h->nr_huge_pages_node[nid], 4546 h->free_huge_pages_node[nid], 4547 h->surplus_huge_pages_node[nid], 4548 huge_page_size(h) / SZ_1K); 4549 } 4550 4551 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4552 { 4553 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4554 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 4555 } 4556 4557 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4558 unsigned long hugetlb_total_pages(void) 4559 { 4560 struct hstate *h; 4561 unsigned long nr_total_pages = 0; 4562 4563 for_each_hstate(h) 4564 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4565 return nr_total_pages; 4566 } 4567 4568 static int hugetlb_acct_memory(struct hstate *h, long delta) 4569 { 4570 int ret = -ENOMEM; 4571 4572 if (!delta) 4573 return 0; 4574 4575 spin_lock_irq(&hugetlb_lock); 4576 /* 4577 * When cpuset is configured, it breaks the strict hugetlb page 4578 * reservation as the accounting is done on a global variable. Such 4579 * reservation is completely rubbish in the presence of cpuset because 4580 * the reservation is not checked against page availability for the 4581 * current cpuset. Application can still potentially OOM'ed by kernel 4582 * with lack of free htlb page in cpuset that the task is in. 4583 * Attempt to enforce strict accounting with cpuset is almost 4584 * impossible (or too ugly) because cpuset is too fluid that 4585 * task or memory node can be dynamically moved between cpusets. 4586 * 4587 * The change of semantics for shared hugetlb mapping with cpuset is 4588 * undesirable. However, in order to preserve some of the semantics, 4589 * we fall back to check against current free page availability as 4590 * a best attempt and hopefully to minimize the impact of changing 4591 * semantics that cpuset has. 4592 * 4593 * Apart from cpuset, we also have memory policy mechanism that 4594 * also determines from which node the kernel will allocate memory 4595 * in a NUMA system. So similar to cpuset, we also should consider 4596 * the memory policy of the current task. Similar to the description 4597 * above. 4598 */ 4599 if (delta > 0) { 4600 if (gather_surplus_pages(h, delta) < 0) 4601 goto out; 4602 4603 if (delta > allowed_mems_nr(h)) { 4604 return_unused_surplus_pages(h, delta); 4605 goto out; 4606 } 4607 } 4608 4609 ret = 0; 4610 if (delta < 0) 4611 return_unused_surplus_pages(h, (unsigned long) -delta); 4612 4613 out: 4614 spin_unlock_irq(&hugetlb_lock); 4615 return ret; 4616 } 4617 4618 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4619 { 4620 struct resv_map *resv = vma_resv_map(vma); 4621 4622 /* 4623 * HPAGE_RESV_OWNER indicates a private mapping. 4624 * This new VMA should share its siblings reservation map if present. 4625 * The VMA will only ever have a valid reservation map pointer where 4626 * it is being copied for another still existing VMA. As that VMA 4627 * has a reference to the reservation map it cannot disappear until 4628 * after this open call completes. It is therefore safe to take a 4629 * new reference here without additional locking. 4630 */ 4631 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4632 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4633 kref_get(&resv->refs); 4634 } 4635 4636 /* 4637 * vma_lock structure for sharable mappings is vma specific. 4638 * Clear old pointer (if copied via vm_area_dup) and allocate 4639 * new structure. Before clearing, make sure vma_lock is not 4640 * for this vma. 4641 */ 4642 if (vma->vm_flags & VM_MAYSHARE) { 4643 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4644 4645 if (vma_lock) { 4646 if (vma_lock->vma != vma) { 4647 vma->vm_private_data = NULL; 4648 hugetlb_vma_lock_alloc(vma); 4649 } else 4650 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4651 } else 4652 hugetlb_vma_lock_alloc(vma); 4653 } 4654 } 4655 4656 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4657 { 4658 struct hstate *h = hstate_vma(vma); 4659 struct resv_map *resv; 4660 struct hugepage_subpool *spool = subpool_vma(vma); 4661 unsigned long reserve, start, end; 4662 long gbl_reserve; 4663 4664 hugetlb_vma_lock_free(vma); 4665 4666 resv = vma_resv_map(vma); 4667 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4668 return; 4669 4670 start = vma_hugecache_offset(h, vma, vma->vm_start); 4671 end = vma_hugecache_offset(h, vma, vma->vm_end); 4672 4673 reserve = (end - start) - region_count(resv, start, end); 4674 hugetlb_cgroup_uncharge_counter(resv, start, end); 4675 if (reserve) { 4676 /* 4677 * Decrement reserve counts. The global reserve count may be 4678 * adjusted if the subpool has a minimum size. 4679 */ 4680 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4681 hugetlb_acct_memory(h, -gbl_reserve); 4682 } 4683 4684 kref_put(&resv->refs, resv_map_release); 4685 } 4686 4687 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4688 { 4689 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4690 return -EINVAL; 4691 return 0; 4692 } 4693 4694 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4695 { 4696 return huge_page_size(hstate_vma(vma)); 4697 } 4698 4699 /* 4700 * We cannot handle pagefaults against hugetlb pages at all. They cause 4701 * handle_mm_fault() to try to instantiate regular-sized pages in the 4702 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4703 * this far. 4704 */ 4705 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4706 { 4707 BUG(); 4708 return 0; 4709 } 4710 4711 /* 4712 * When a new function is introduced to vm_operations_struct and added 4713 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4714 * This is because under System V memory model, mappings created via 4715 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4716 * their original vm_ops are overwritten with shm_vm_ops. 4717 */ 4718 const struct vm_operations_struct hugetlb_vm_ops = { 4719 .fault = hugetlb_vm_op_fault, 4720 .open = hugetlb_vm_op_open, 4721 .close = hugetlb_vm_op_close, 4722 .may_split = hugetlb_vm_op_split, 4723 .pagesize = hugetlb_vm_op_pagesize, 4724 }; 4725 4726 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 4727 int writable) 4728 { 4729 pte_t entry; 4730 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4731 4732 if (writable) { 4733 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 4734 vma->vm_page_prot))); 4735 } else { 4736 entry = huge_pte_wrprotect(mk_huge_pte(page, 4737 vma->vm_page_prot)); 4738 } 4739 entry = pte_mkyoung(entry); 4740 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4741 4742 return entry; 4743 } 4744 4745 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4746 unsigned long address, pte_t *ptep) 4747 { 4748 pte_t entry; 4749 4750 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 4751 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4752 update_mmu_cache(vma, address, ptep); 4753 } 4754 4755 bool is_hugetlb_entry_migration(pte_t pte) 4756 { 4757 swp_entry_t swp; 4758 4759 if (huge_pte_none(pte) || pte_present(pte)) 4760 return false; 4761 swp = pte_to_swp_entry(pte); 4762 if (is_migration_entry(swp)) 4763 return true; 4764 else 4765 return false; 4766 } 4767 4768 static bool is_hugetlb_entry_hwpoisoned(pte_t pte) 4769 { 4770 swp_entry_t swp; 4771 4772 if (huge_pte_none(pte) || pte_present(pte)) 4773 return false; 4774 swp = pte_to_swp_entry(pte); 4775 if (is_hwpoison_entry(swp)) 4776 return true; 4777 else 4778 return false; 4779 } 4780 4781 static void 4782 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4783 struct page *new_page) 4784 { 4785 __SetPageUptodate(new_page); 4786 hugepage_add_new_anon_rmap(new_page, vma, addr); 4787 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); 4788 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4789 SetHPageMigratable(new_page); 4790 } 4791 4792 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4793 struct vm_area_struct *dst_vma, 4794 struct vm_area_struct *src_vma) 4795 { 4796 pte_t *src_pte, *dst_pte, entry; 4797 struct page *ptepage; 4798 unsigned long addr; 4799 bool cow = is_cow_mapping(src_vma->vm_flags); 4800 struct hstate *h = hstate_vma(src_vma); 4801 unsigned long sz = huge_page_size(h); 4802 unsigned long npages = pages_per_huge_page(h); 4803 struct mmu_notifier_range range; 4804 unsigned long last_addr_mask; 4805 int ret = 0; 4806 4807 if (cow) { 4808 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, 4809 src_vma->vm_start, 4810 src_vma->vm_end); 4811 mmu_notifier_invalidate_range_start(&range); 4812 mmap_assert_write_locked(src); 4813 raw_write_seqcount_begin(&src->write_protect_seq); 4814 } else { 4815 /* 4816 * For shared mappings the vma lock must be held before 4817 * calling huge_pte_offset in the src vma. Otherwise, the 4818 * returned ptep could go away if part of a shared pmd and 4819 * another thread calls huge_pmd_unshare. 4820 */ 4821 hugetlb_vma_lock_read(src_vma); 4822 } 4823 4824 last_addr_mask = hugetlb_mask_last_page(h); 4825 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4826 spinlock_t *src_ptl, *dst_ptl; 4827 src_pte = huge_pte_offset(src, addr, sz); 4828 if (!src_pte) { 4829 addr |= last_addr_mask; 4830 continue; 4831 } 4832 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4833 if (!dst_pte) { 4834 ret = -ENOMEM; 4835 break; 4836 } 4837 4838 /* 4839 * If the pagetables are shared don't copy or take references. 4840 * 4841 * dst_pte == src_pte is the common case of src/dest sharing. 4842 * However, src could have 'unshared' and dst shares with 4843 * another vma. So page_count of ptep page is checked instead 4844 * to reliably determine whether pte is shared. 4845 */ 4846 if (page_count(virt_to_page(dst_pte)) > 1) { 4847 addr |= last_addr_mask; 4848 continue; 4849 } 4850 4851 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4852 src_ptl = huge_pte_lockptr(h, src, src_pte); 4853 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4854 entry = huge_ptep_get(src_pte); 4855 again: 4856 if (huge_pte_none(entry)) { 4857 /* 4858 * Skip if src entry none. 4859 */ 4860 ; 4861 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { 4862 bool uffd_wp = huge_pte_uffd_wp(entry); 4863 4864 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4865 entry = huge_pte_clear_uffd_wp(entry); 4866 set_huge_pte_at(dst, addr, dst_pte, entry); 4867 } else if (unlikely(is_hugetlb_entry_migration(entry))) { 4868 swp_entry_t swp_entry = pte_to_swp_entry(entry); 4869 bool uffd_wp = huge_pte_uffd_wp(entry); 4870 4871 if (!is_readable_migration_entry(swp_entry) && cow) { 4872 /* 4873 * COW mappings require pages in both 4874 * parent and child to be set to read. 4875 */ 4876 swp_entry = make_readable_migration_entry( 4877 swp_offset(swp_entry)); 4878 entry = swp_entry_to_pte(swp_entry); 4879 if (userfaultfd_wp(src_vma) && uffd_wp) 4880 entry = huge_pte_mkuffd_wp(entry); 4881 set_huge_pte_at(src, addr, src_pte, entry); 4882 } 4883 if (!userfaultfd_wp(dst_vma) && uffd_wp) 4884 entry = huge_pte_clear_uffd_wp(entry); 4885 set_huge_pte_at(dst, addr, dst_pte, entry); 4886 } else if (unlikely(is_pte_marker(entry))) { 4887 /* 4888 * We copy the pte marker only if the dst vma has 4889 * uffd-wp enabled. 4890 */ 4891 if (userfaultfd_wp(dst_vma)) 4892 set_huge_pte_at(dst, addr, dst_pte, entry); 4893 } else { 4894 entry = huge_ptep_get(src_pte); 4895 ptepage = pte_page(entry); 4896 get_page(ptepage); 4897 4898 /* 4899 * Failing to duplicate the anon rmap is a rare case 4900 * where we see pinned hugetlb pages while they're 4901 * prone to COW. We need to do the COW earlier during 4902 * fork. 4903 * 4904 * When pre-allocating the page or copying data, we 4905 * need to be without the pgtable locks since we could 4906 * sleep during the process. 4907 */ 4908 if (!PageAnon(ptepage)) { 4909 page_dup_file_rmap(ptepage, true); 4910 } else if (page_try_dup_anon_rmap(ptepage, true, 4911 src_vma)) { 4912 pte_t src_pte_old = entry; 4913 struct page *new; 4914 4915 spin_unlock(src_ptl); 4916 spin_unlock(dst_ptl); 4917 /* Do not use reserve as it's private owned */ 4918 new = alloc_huge_page(dst_vma, addr, 1); 4919 if (IS_ERR(new)) { 4920 put_page(ptepage); 4921 ret = PTR_ERR(new); 4922 break; 4923 } 4924 copy_user_huge_page(new, ptepage, addr, dst_vma, 4925 npages); 4926 put_page(ptepage); 4927 4928 /* Install the new huge page if src pte stable */ 4929 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4930 src_ptl = huge_pte_lockptr(h, src, src_pte); 4931 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4932 entry = huge_ptep_get(src_pte); 4933 if (!pte_same(src_pte_old, entry)) { 4934 restore_reserve_on_error(h, dst_vma, addr, 4935 new); 4936 put_page(new); 4937 /* huge_ptep of dst_pte won't change as in child */ 4938 goto again; 4939 } 4940 hugetlb_install_page(dst_vma, dst_pte, addr, new); 4941 spin_unlock(src_ptl); 4942 spin_unlock(dst_ptl); 4943 continue; 4944 } 4945 4946 if (cow) { 4947 /* 4948 * No need to notify as we are downgrading page 4949 * table protection not changing it to point 4950 * to a new page. 4951 * 4952 * See Documentation/mm/mmu_notifier.rst 4953 */ 4954 huge_ptep_set_wrprotect(src, addr, src_pte); 4955 entry = huge_pte_wrprotect(entry); 4956 } 4957 4958 set_huge_pte_at(dst, addr, dst_pte, entry); 4959 hugetlb_count_add(npages, dst); 4960 } 4961 spin_unlock(src_ptl); 4962 spin_unlock(dst_ptl); 4963 } 4964 4965 if (cow) { 4966 raw_write_seqcount_end(&src->write_protect_seq); 4967 mmu_notifier_invalidate_range_end(&range); 4968 } else { 4969 hugetlb_vma_unlock_read(src_vma); 4970 } 4971 4972 return ret; 4973 } 4974 4975 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 4976 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) 4977 { 4978 struct hstate *h = hstate_vma(vma); 4979 struct mm_struct *mm = vma->vm_mm; 4980 spinlock_t *src_ptl, *dst_ptl; 4981 pte_t pte; 4982 4983 dst_ptl = huge_pte_lock(h, mm, dst_pte); 4984 src_ptl = huge_pte_lockptr(h, mm, src_pte); 4985 4986 /* 4987 * We don't have to worry about the ordering of src and dst ptlocks 4988 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock. 4989 */ 4990 if (src_ptl != dst_ptl) 4991 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4992 4993 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); 4994 set_huge_pte_at(mm, new_addr, dst_pte, pte); 4995 4996 if (src_ptl != dst_ptl) 4997 spin_unlock(src_ptl); 4998 spin_unlock(dst_ptl); 4999 } 5000 5001 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5002 struct vm_area_struct *new_vma, 5003 unsigned long old_addr, unsigned long new_addr, 5004 unsigned long len) 5005 { 5006 struct hstate *h = hstate_vma(vma); 5007 struct address_space *mapping = vma->vm_file->f_mapping; 5008 unsigned long sz = huge_page_size(h); 5009 struct mm_struct *mm = vma->vm_mm; 5010 unsigned long old_end = old_addr + len; 5011 unsigned long last_addr_mask; 5012 pte_t *src_pte, *dst_pte; 5013 struct mmu_notifier_range range; 5014 bool shared_pmd = false; 5015 5016 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, 5017 old_end); 5018 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5019 /* 5020 * In case of shared PMDs, we should cover the maximum possible 5021 * range. 5022 */ 5023 flush_cache_range(vma, range.start, range.end); 5024 5025 mmu_notifier_invalidate_range_start(&range); 5026 last_addr_mask = hugetlb_mask_last_page(h); 5027 /* Prevent race with file truncation */ 5028 hugetlb_vma_lock_write(vma); 5029 i_mmap_lock_write(mapping); 5030 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5031 src_pte = huge_pte_offset(mm, old_addr, sz); 5032 if (!src_pte) { 5033 old_addr |= last_addr_mask; 5034 new_addr |= last_addr_mask; 5035 continue; 5036 } 5037 if (huge_pte_none(huge_ptep_get(src_pte))) 5038 continue; 5039 5040 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { 5041 shared_pmd = true; 5042 old_addr |= last_addr_mask; 5043 new_addr |= last_addr_mask; 5044 continue; 5045 } 5046 5047 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5048 if (!dst_pte) 5049 break; 5050 5051 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); 5052 } 5053 5054 if (shared_pmd) 5055 flush_tlb_range(vma, range.start, range.end); 5056 else 5057 flush_tlb_range(vma, old_end - len, old_end); 5058 mmu_notifier_invalidate_range_end(&range); 5059 i_mmap_unlock_write(mapping); 5060 hugetlb_vma_unlock_write(vma); 5061 5062 return len + old_addr - old_end; 5063 } 5064 5065 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5066 unsigned long start, unsigned long end, 5067 struct page *ref_page, zap_flags_t zap_flags) 5068 { 5069 struct mm_struct *mm = vma->vm_mm; 5070 unsigned long address; 5071 pte_t *ptep; 5072 pte_t pte; 5073 spinlock_t *ptl; 5074 struct page *page; 5075 struct hstate *h = hstate_vma(vma); 5076 unsigned long sz = huge_page_size(h); 5077 unsigned long last_addr_mask; 5078 bool force_flush = false; 5079 5080 WARN_ON(!is_vm_hugetlb_page(vma)); 5081 BUG_ON(start & ~huge_page_mask(h)); 5082 BUG_ON(end & ~huge_page_mask(h)); 5083 5084 /* 5085 * This is a hugetlb vma, all the pte entries should point 5086 * to huge page. 5087 */ 5088 tlb_change_page_size(tlb, sz); 5089 tlb_start_vma(tlb, vma); 5090 5091 last_addr_mask = hugetlb_mask_last_page(h); 5092 address = start; 5093 for (; address < end; address += sz) { 5094 ptep = huge_pte_offset(mm, address, sz); 5095 if (!ptep) { 5096 address |= last_addr_mask; 5097 continue; 5098 } 5099 5100 ptl = huge_pte_lock(h, mm, ptep); 5101 if (huge_pmd_unshare(mm, vma, address, ptep)) { 5102 spin_unlock(ptl); 5103 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); 5104 force_flush = true; 5105 address |= last_addr_mask; 5106 continue; 5107 } 5108 5109 pte = huge_ptep_get(ptep); 5110 if (huge_pte_none(pte)) { 5111 spin_unlock(ptl); 5112 continue; 5113 } 5114 5115 /* 5116 * Migrating hugepage or HWPoisoned hugepage is already 5117 * unmapped and its refcount is dropped, so just clear pte here. 5118 */ 5119 if (unlikely(!pte_present(pte))) { 5120 /* 5121 * If the pte was wr-protected by uffd-wp in any of the 5122 * swap forms, meanwhile the caller does not want to 5123 * drop the uffd-wp bit in this zap, then replace the 5124 * pte with a marker. 5125 */ 5126 if (pte_swp_uffd_wp_any(pte) && 5127 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5128 set_huge_pte_at(mm, address, ptep, 5129 make_pte_marker(PTE_MARKER_UFFD_WP)); 5130 else 5131 huge_pte_clear(mm, address, ptep, sz); 5132 spin_unlock(ptl); 5133 continue; 5134 } 5135 5136 page = pte_page(pte); 5137 /* 5138 * If a reference page is supplied, it is because a specific 5139 * page is being unmapped, not a range. Ensure the page we 5140 * are about to unmap is the actual page of interest. 5141 */ 5142 if (ref_page) { 5143 if (page != ref_page) { 5144 spin_unlock(ptl); 5145 continue; 5146 } 5147 /* 5148 * Mark the VMA as having unmapped its page so that 5149 * future faults in this VMA will fail rather than 5150 * looking like data was lost 5151 */ 5152 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5153 } 5154 5155 pte = huge_ptep_get_and_clear(mm, address, ptep); 5156 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5157 if (huge_pte_dirty(pte)) 5158 set_page_dirty(page); 5159 /* Leave a uffd-wp pte marker if needed */ 5160 if (huge_pte_uffd_wp(pte) && 5161 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5162 set_huge_pte_at(mm, address, ptep, 5163 make_pte_marker(PTE_MARKER_UFFD_WP)); 5164 hugetlb_count_sub(pages_per_huge_page(h), mm); 5165 page_remove_rmap(page, vma, true); 5166 5167 spin_unlock(ptl); 5168 tlb_remove_page_size(tlb, page, huge_page_size(h)); 5169 /* 5170 * Bail out after unmapping reference page if supplied 5171 */ 5172 if (ref_page) 5173 break; 5174 } 5175 tlb_end_vma(tlb, vma); 5176 5177 /* 5178 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We 5179 * could defer the flush until now, since by holding i_mmap_rwsem we 5180 * guaranteed that the last refernece would not be dropped. But we must 5181 * do the flushing before we return, as otherwise i_mmap_rwsem will be 5182 * dropped and the last reference to the shared PMDs page might be 5183 * dropped as well. 5184 * 5185 * In theory we could defer the freeing of the PMD pages as well, but 5186 * huge_pmd_unshare() relies on the exact page_count for the PMD page to 5187 * detect sharing, so we cannot defer the release of the page either. 5188 * Instead, do flush now. 5189 */ 5190 if (force_flush) 5191 tlb_flush_mmu_tlbonly(tlb); 5192 } 5193 5194 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 5195 struct vm_area_struct *vma, unsigned long start, 5196 unsigned long end, struct page *ref_page, 5197 zap_flags_t zap_flags) 5198 { 5199 hugetlb_vma_lock_write(vma); 5200 i_mmap_lock_write(vma->vm_file->f_mapping); 5201 5202 /* mmu notification performed in caller */ 5203 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); 5204 5205 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5206 /* 5207 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5208 * When the vma_lock is freed, this makes the vma ineligible 5209 * for pmd sharing. And, i_mmap_rwsem is required to set up 5210 * pmd sharing. This is important as page tables for this 5211 * unmapped range will be asynchrously deleted. If the page 5212 * tables are shared, there will be issues when accessed by 5213 * someone else. 5214 */ 5215 __hugetlb_vma_unlock_write_free(vma); 5216 i_mmap_unlock_write(vma->vm_file->f_mapping); 5217 } else { 5218 i_mmap_unlock_write(vma->vm_file->f_mapping); 5219 hugetlb_vma_unlock_write(vma); 5220 } 5221 } 5222 5223 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5224 unsigned long end, struct page *ref_page, 5225 zap_flags_t zap_flags) 5226 { 5227 struct mmu_notifier_range range; 5228 struct mmu_gather tlb; 5229 5230 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 5231 start, end); 5232 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5233 mmu_notifier_invalidate_range_start(&range); 5234 tlb_gather_mmu(&tlb, vma->vm_mm); 5235 5236 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); 5237 5238 mmu_notifier_invalidate_range_end(&range); 5239 tlb_finish_mmu(&tlb); 5240 } 5241 5242 /* 5243 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5244 * mapping it owns the reserve page for. The intention is to unmap the page 5245 * from other VMAs and let the children be SIGKILLed if they are faulting the 5246 * same region. 5247 */ 5248 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5249 struct page *page, unsigned long address) 5250 { 5251 struct hstate *h = hstate_vma(vma); 5252 struct vm_area_struct *iter_vma; 5253 struct address_space *mapping; 5254 pgoff_t pgoff; 5255 5256 /* 5257 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5258 * from page cache lookup which is in HPAGE_SIZE units. 5259 */ 5260 address = address & huge_page_mask(h); 5261 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5262 vma->vm_pgoff; 5263 mapping = vma->vm_file->f_mapping; 5264 5265 /* 5266 * Take the mapping lock for the duration of the table walk. As 5267 * this mapping should be shared between all the VMAs, 5268 * __unmap_hugepage_range() is called as the lock is already held 5269 */ 5270 i_mmap_lock_write(mapping); 5271 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5272 /* Do not unmap the current VMA */ 5273 if (iter_vma == vma) 5274 continue; 5275 5276 /* 5277 * Shared VMAs have their own reserves and do not affect 5278 * MAP_PRIVATE accounting but it is possible that a shared 5279 * VMA is using the same page so check and skip such VMAs. 5280 */ 5281 if (iter_vma->vm_flags & VM_MAYSHARE) 5282 continue; 5283 5284 /* 5285 * Unmap the page from other VMAs without their own reserves. 5286 * They get marked to be SIGKILLed if they fault in these 5287 * areas. This is because a future no-page fault on this VMA 5288 * could insert a zeroed page instead of the data existing 5289 * from the time of fork. This would look like data corruption 5290 */ 5291 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5292 unmap_hugepage_range(iter_vma, address, 5293 address + huge_page_size(h), page, 0); 5294 } 5295 i_mmap_unlock_write(mapping); 5296 } 5297 5298 /* 5299 * hugetlb_wp() should be called with page lock of the original hugepage held. 5300 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5301 * cannot race with other handlers or page migration. 5302 * Keep the pte_same checks anyway to make transition from the mutex easier. 5303 */ 5304 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, 5305 unsigned long address, pte_t *ptep, unsigned int flags, 5306 struct page *pagecache_page, spinlock_t *ptl) 5307 { 5308 const bool unshare = flags & FAULT_FLAG_UNSHARE; 5309 pte_t pte; 5310 struct hstate *h = hstate_vma(vma); 5311 struct page *old_page, *new_page; 5312 int outside_reserve = 0; 5313 vm_fault_t ret = 0; 5314 unsigned long haddr = address & huge_page_mask(h); 5315 struct mmu_notifier_range range; 5316 5317 /* 5318 * hugetlb does not support FOLL_FORCE-style write faults that keep the 5319 * PTE mapped R/O such as maybe_mkwrite() would do. 5320 */ 5321 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) 5322 return VM_FAULT_SIGSEGV; 5323 5324 /* Let's take out MAP_SHARED mappings first. */ 5325 if (vma->vm_flags & VM_MAYSHARE) { 5326 set_huge_ptep_writable(vma, haddr, ptep); 5327 return 0; 5328 } 5329 5330 pte = huge_ptep_get(ptep); 5331 old_page = pte_page(pte); 5332 5333 delayacct_wpcopy_start(); 5334 5335 retry_avoidcopy: 5336 /* 5337 * If no-one else is actually using this page, we're the exclusive 5338 * owner and can reuse this page. 5339 */ 5340 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 5341 if (!PageAnonExclusive(old_page)) 5342 page_move_anon_rmap(old_page, vma); 5343 if (likely(!unshare)) 5344 set_huge_ptep_writable(vma, haddr, ptep); 5345 5346 delayacct_wpcopy_end(); 5347 return 0; 5348 } 5349 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), 5350 old_page); 5351 5352 /* 5353 * If the process that created a MAP_PRIVATE mapping is about to 5354 * perform a COW due to a shared page count, attempt to satisfy 5355 * the allocation without using the existing reserves. The pagecache 5356 * page is used to determine if the reserve at this address was 5357 * consumed or not. If reserves were used, a partial faulted mapping 5358 * at the time of fork() could consume its reserves on COW instead 5359 * of the full address range. 5360 */ 5361 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5362 old_page != pagecache_page) 5363 outside_reserve = 1; 5364 5365 get_page(old_page); 5366 5367 /* 5368 * Drop page table lock as buddy allocator may be called. It will 5369 * be acquired again before returning to the caller, as expected. 5370 */ 5371 spin_unlock(ptl); 5372 new_page = alloc_huge_page(vma, haddr, outside_reserve); 5373 5374 if (IS_ERR(new_page)) { 5375 /* 5376 * If a process owning a MAP_PRIVATE mapping fails to COW, 5377 * it is due to references held by a child and an insufficient 5378 * huge page pool. To guarantee the original mappers 5379 * reliability, unmap the page from child processes. The child 5380 * may get SIGKILLed if it later faults. 5381 */ 5382 if (outside_reserve) { 5383 struct address_space *mapping = vma->vm_file->f_mapping; 5384 pgoff_t idx; 5385 u32 hash; 5386 5387 put_page(old_page); 5388 /* 5389 * Drop hugetlb_fault_mutex and vma_lock before 5390 * unmapping. unmapping needs to hold vma_lock 5391 * in write mode. Dropping vma_lock in read mode 5392 * here is OK as COW mappings do not interact with 5393 * PMD sharing. 5394 * 5395 * Reacquire both after unmap operation. 5396 */ 5397 idx = vma_hugecache_offset(h, vma, haddr); 5398 hash = hugetlb_fault_mutex_hash(mapping, idx); 5399 hugetlb_vma_unlock_read(vma); 5400 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5401 5402 unmap_ref_private(mm, vma, old_page, haddr); 5403 5404 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5405 hugetlb_vma_lock_read(vma); 5406 spin_lock(ptl); 5407 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5408 if (likely(ptep && 5409 pte_same(huge_ptep_get(ptep), pte))) 5410 goto retry_avoidcopy; 5411 /* 5412 * race occurs while re-acquiring page table 5413 * lock, and our job is done. 5414 */ 5415 delayacct_wpcopy_end(); 5416 return 0; 5417 } 5418 5419 ret = vmf_error(PTR_ERR(new_page)); 5420 goto out_release_old; 5421 } 5422 5423 /* 5424 * When the original hugepage is shared one, it does not have 5425 * anon_vma prepared. 5426 */ 5427 if (unlikely(anon_vma_prepare(vma))) { 5428 ret = VM_FAULT_OOM; 5429 goto out_release_all; 5430 } 5431 5432 copy_user_huge_page(new_page, old_page, address, vma, 5433 pages_per_huge_page(h)); 5434 __SetPageUptodate(new_page); 5435 5436 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, 5437 haddr + huge_page_size(h)); 5438 mmu_notifier_invalidate_range_start(&range); 5439 5440 /* 5441 * Retake the page table lock to check for racing updates 5442 * before the page tables are altered 5443 */ 5444 spin_lock(ptl); 5445 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5446 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 5447 /* Break COW or unshare */ 5448 huge_ptep_clear_flush(vma, haddr, ptep); 5449 mmu_notifier_invalidate_range(mm, range.start, range.end); 5450 page_remove_rmap(old_page, vma, true); 5451 hugepage_add_new_anon_rmap(new_page, vma, haddr); 5452 set_huge_pte_at(mm, haddr, ptep, 5453 make_huge_pte(vma, new_page, !unshare)); 5454 SetHPageMigratable(new_page); 5455 /* Make the old page be freed below */ 5456 new_page = old_page; 5457 } 5458 spin_unlock(ptl); 5459 mmu_notifier_invalidate_range_end(&range); 5460 out_release_all: 5461 /* 5462 * No restore in case of successful pagetable update (Break COW or 5463 * unshare) 5464 */ 5465 if (new_page != old_page) 5466 restore_reserve_on_error(h, vma, haddr, new_page); 5467 put_page(new_page); 5468 out_release_old: 5469 put_page(old_page); 5470 5471 spin_lock(ptl); /* Caller expects lock to be held */ 5472 5473 delayacct_wpcopy_end(); 5474 return ret; 5475 } 5476 5477 /* 5478 * Return whether there is a pagecache page to back given address within VMA. 5479 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 5480 */ 5481 static bool hugetlbfs_pagecache_present(struct hstate *h, 5482 struct vm_area_struct *vma, unsigned long address) 5483 { 5484 struct address_space *mapping; 5485 pgoff_t idx; 5486 struct page *page; 5487 5488 mapping = vma->vm_file->f_mapping; 5489 idx = vma_hugecache_offset(h, vma, address); 5490 5491 page = find_get_page(mapping, idx); 5492 if (page) 5493 put_page(page); 5494 return page != NULL; 5495 } 5496 5497 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, 5498 pgoff_t idx) 5499 { 5500 struct folio *folio = page_folio(page); 5501 struct inode *inode = mapping->host; 5502 struct hstate *h = hstate_inode(inode); 5503 int err; 5504 5505 __folio_set_locked(folio); 5506 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5507 5508 if (unlikely(err)) { 5509 __folio_clear_locked(folio); 5510 return err; 5511 } 5512 ClearHPageRestoreReserve(page); 5513 5514 /* 5515 * mark folio dirty so that it will not be removed from cache/file 5516 * by non-hugetlbfs specific code paths. 5517 */ 5518 folio_mark_dirty(folio); 5519 5520 spin_lock(&inode->i_lock); 5521 inode->i_blocks += blocks_per_huge_page(h); 5522 spin_unlock(&inode->i_lock); 5523 return 0; 5524 } 5525 5526 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, 5527 struct address_space *mapping, 5528 pgoff_t idx, 5529 unsigned int flags, 5530 unsigned long haddr, 5531 unsigned long addr, 5532 unsigned long reason) 5533 { 5534 u32 hash; 5535 struct vm_fault vmf = { 5536 .vma = vma, 5537 .address = haddr, 5538 .real_address = addr, 5539 .flags = flags, 5540 5541 /* 5542 * Hard to debug if it ends up being 5543 * used by a callee that assumes 5544 * something about the other 5545 * uninitialized fields... same as in 5546 * memory.c 5547 */ 5548 }; 5549 5550 /* 5551 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5552 * userfault. Also mmap_lock could be dropped due to handling 5553 * userfault, any vma operation should be careful from here. 5554 */ 5555 hugetlb_vma_unlock_read(vma); 5556 hash = hugetlb_fault_mutex_hash(mapping, idx); 5557 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5558 return handle_userfault(&vmf, reason); 5559 } 5560 5561 /* 5562 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5563 * false if pte changed or is changing. 5564 */ 5565 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, 5566 pte_t *ptep, pte_t old_pte) 5567 { 5568 spinlock_t *ptl; 5569 bool same; 5570 5571 ptl = huge_pte_lock(h, mm, ptep); 5572 same = pte_same(huge_ptep_get(ptep), old_pte); 5573 spin_unlock(ptl); 5574 5575 return same; 5576 } 5577 5578 static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 5579 struct vm_area_struct *vma, 5580 struct address_space *mapping, pgoff_t idx, 5581 unsigned long address, pte_t *ptep, 5582 pte_t old_pte, unsigned int flags) 5583 { 5584 struct hstate *h = hstate_vma(vma); 5585 vm_fault_t ret = VM_FAULT_SIGBUS; 5586 int anon_rmap = 0; 5587 unsigned long size; 5588 struct page *page; 5589 pte_t new_pte; 5590 spinlock_t *ptl; 5591 unsigned long haddr = address & huge_page_mask(h); 5592 bool new_page, new_pagecache_page = false; 5593 u32 hash = hugetlb_fault_mutex_hash(mapping, idx); 5594 5595 /* 5596 * Currently, we are forced to kill the process in the event the 5597 * original mapper has unmapped pages from the child due to a failed 5598 * COW/unsharing. Warn that such a situation has occurred as it may not 5599 * be obvious. 5600 */ 5601 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5602 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5603 current->pid); 5604 goto out; 5605 } 5606 5607 /* 5608 * Use page lock to guard against racing truncation 5609 * before we get page_table_lock. 5610 */ 5611 new_page = false; 5612 page = find_lock_page(mapping, idx); 5613 if (!page) { 5614 size = i_size_read(mapping->host) >> huge_page_shift(h); 5615 if (idx >= size) 5616 goto out; 5617 /* Check for page in userfault range */ 5618 if (userfaultfd_missing(vma)) { 5619 /* 5620 * Since hugetlb_no_page() was examining pte 5621 * without pgtable lock, we need to re-test under 5622 * lock because the pte may not be stable and could 5623 * have changed from under us. Try to detect 5624 * either changed or during-changing ptes and retry 5625 * properly when needed. 5626 * 5627 * Note that userfaultfd is actually fine with 5628 * false positives (e.g. caused by pte changed), 5629 * but not wrong logical events (e.g. caused by 5630 * reading a pte during changing). The latter can 5631 * confuse the userspace, so the strictness is very 5632 * much preferred. E.g., MISSING event should 5633 * never happen on the page after UFFDIO_COPY has 5634 * correctly installed the page and returned. 5635 */ 5636 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5637 ret = 0; 5638 goto out; 5639 } 5640 5641 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5642 haddr, address, 5643 VM_UFFD_MISSING); 5644 } 5645 5646 page = alloc_huge_page(vma, haddr, 0); 5647 if (IS_ERR(page)) { 5648 /* 5649 * Returning error will result in faulting task being 5650 * sent SIGBUS. The hugetlb fault mutex prevents two 5651 * tasks from racing to fault in the same page which 5652 * could result in false unable to allocate errors. 5653 * Page migration does not take the fault mutex, but 5654 * does a clear then write of pte's under page table 5655 * lock. Page fault code could race with migration, 5656 * notice the clear pte and try to allocate a page 5657 * here. Before returning error, get ptl and make 5658 * sure there really is no pte entry. 5659 */ 5660 if (hugetlb_pte_stable(h, mm, ptep, old_pte)) 5661 ret = vmf_error(PTR_ERR(page)); 5662 else 5663 ret = 0; 5664 goto out; 5665 } 5666 clear_huge_page(page, address, pages_per_huge_page(h)); 5667 __SetPageUptodate(page); 5668 new_page = true; 5669 5670 if (vma->vm_flags & VM_MAYSHARE) { 5671 int err = hugetlb_add_to_page_cache(page, mapping, idx); 5672 if (err) { 5673 /* 5674 * err can't be -EEXIST which implies someone 5675 * else consumed the reservation since hugetlb 5676 * fault mutex is held when add a hugetlb page 5677 * to the page cache. So it's safe to call 5678 * restore_reserve_on_error() here. 5679 */ 5680 restore_reserve_on_error(h, vma, haddr, page); 5681 put_page(page); 5682 goto out; 5683 } 5684 new_pagecache_page = true; 5685 } else { 5686 lock_page(page); 5687 if (unlikely(anon_vma_prepare(vma))) { 5688 ret = VM_FAULT_OOM; 5689 goto backout_unlocked; 5690 } 5691 anon_rmap = 1; 5692 } 5693 } else { 5694 /* 5695 * If memory error occurs between mmap() and fault, some process 5696 * don't have hwpoisoned swap entry for errored virtual address. 5697 * So we need to block hugepage fault by PG_hwpoison bit check. 5698 */ 5699 if (unlikely(PageHWPoison(page))) { 5700 ret = VM_FAULT_HWPOISON_LARGE | 5701 VM_FAULT_SET_HINDEX(hstate_index(h)); 5702 goto backout_unlocked; 5703 } 5704 5705 /* Check for page in userfault range. */ 5706 if (userfaultfd_minor(vma)) { 5707 unlock_page(page); 5708 put_page(page); 5709 /* See comment in userfaultfd_missing() block above */ 5710 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { 5711 ret = 0; 5712 goto out; 5713 } 5714 return hugetlb_handle_userfault(vma, mapping, idx, flags, 5715 haddr, address, 5716 VM_UFFD_MINOR); 5717 } 5718 } 5719 5720 /* 5721 * If we are going to COW a private mapping later, we examine the 5722 * pending reservations for this page now. This will ensure that 5723 * any allocations necessary to record that reservation occur outside 5724 * the spinlock. 5725 */ 5726 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5727 if (vma_needs_reservation(h, vma, haddr) < 0) { 5728 ret = VM_FAULT_OOM; 5729 goto backout_unlocked; 5730 } 5731 /* Just decrements count, does not deallocate */ 5732 vma_end_reservation(h, vma, haddr); 5733 } 5734 5735 ptl = huge_pte_lock(h, mm, ptep); 5736 ret = 0; 5737 /* If pte changed from under us, retry */ 5738 if (!pte_same(huge_ptep_get(ptep), old_pte)) 5739 goto backout; 5740 5741 if (anon_rmap) 5742 hugepage_add_new_anon_rmap(page, vma, haddr); 5743 else 5744 page_dup_file_rmap(page, true); 5745 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 5746 && (vma->vm_flags & VM_SHARED))); 5747 /* 5748 * If this pte was previously wr-protected, keep it wr-protected even 5749 * if populated. 5750 */ 5751 if (unlikely(pte_marker_uffd_wp(old_pte))) 5752 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); 5753 set_huge_pte_at(mm, haddr, ptep, new_pte); 5754 5755 hugetlb_count_add(pages_per_huge_page(h), mm); 5756 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5757 /* Optimization, do the COW without a second fault */ 5758 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); 5759 } 5760 5761 spin_unlock(ptl); 5762 5763 /* 5764 * Only set HPageMigratable in newly allocated pages. Existing pages 5765 * found in the pagecache may not have HPageMigratableset if they have 5766 * been isolated for migration. 5767 */ 5768 if (new_page) 5769 SetHPageMigratable(page); 5770 5771 unlock_page(page); 5772 out: 5773 hugetlb_vma_unlock_read(vma); 5774 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5775 return ret; 5776 5777 backout: 5778 spin_unlock(ptl); 5779 backout_unlocked: 5780 if (new_page && !new_pagecache_page) 5781 restore_reserve_on_error(h, vma, haddr, page); 5782 5783 unlock_page(page); 5784 put_page(page); 5785 goto out; 5786 } 5787 5788 #ifdef CONFIG_SMP 5789 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5790 { 5791 unsigned long key[2]; 5792 u32 hash; 5793 5794 key[0] = (unsigned long) mapping; 5795 key[1] = idx; 5796 5797 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5798 5799 return hash & (num_fault_mutexes - 1); 5800 } 5801 #else 5802 /* 5803 * For uniprocessor systems we always use a single mutex, so just 5804 * return 0 and avoid the hashing overhead. 5805 */ 5806 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5807 { 5808 return 0; 5809 } 5810 #endif 5811 5812 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5813 unsigned long address, unsigned int flags) 5814 { 5815 pte_t *ptep, entry; 5816 spinlock_t *ptl; 5817 vm_fault_t ret; 5818 u32 hash; 5819 pgoff_t idx; 5820 struct page *page = NULL; 5821 struct page *pagecache_page = NULL; 5822 struct hstate *h = hstate_vma(vma); 5823 struct address_space *mapping; 5824 int need_wait_lock = 0; 5825 unsigned long haddr = address & huge_page_mask(h); 5826 5827 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 5828 if (ptep) { 5829 /* 5830 * Since we hold no locks, ptep could be stale. That is 5831 * OK as we are only making decisions based on content and 5832 * not actually modifying content here. 5833 */ 5834 entry = huge_ptep_get(ptep); 5835 if (unlikely(is_hugetlb_entry_migration(entry))) { 5836 migration_entry_wait_huge(vma, ptep); 5837 return 0; 5838 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 5839 return VM_FAULT_HWPOISON_LARGE | 5840 VM_FAULT_SET_HINDEX(hstate_index(h)); 5841 } 5842 5843 /* 5844 * Serialize hugepage allocation and instantiation, so that we don't 5845 * get spurious allocation failures if two CPUs race to instantiate 5846 * the same page in the page cache. 5847 */ 5848 mapping = vma->vm_file->f_mapping; 5849 idx = vma_hugecache_offset(h, vma, haddr); 5850 hash = hugetlb_fault_mutex_hash(mapping, idx); 5851 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5852 5853 /* 5854 * Acquire vma lock before calling huge_pte_alloc and hold 5855 * until finished with ptep. This prevents huge_pmd_unshare from 5856 * being called elsewhere and making the ptep no longer valid. 5857 * 5858 * ptep could have already be assigned via huge_pte_offset. That 5859 * is OK, as huge_pte_alloc will return the same value unless 5860 * something has changed. 5861 */ 5862 hugetlb_vma_lock_read(vma); 5863 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); 5864 if (!ptep) { 5865 hugetlb_vma_unlock_read(vma); 5866 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5867 return VM_FAULT_OOM; 5868 } 5869 5870 entry = huge_ptep_get(ptep); 5871 /* PTE markers should be handled the same way as none pte */ 5872 if (huge_pte_none_mostly(entry)) 5873 /* 5874 * hugetlb_no_page will drop vma lock and hugetlb fault 5875 * mutex internally, which make us return immediately. 5876 */ 5877 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, 5878 entry, flags); 5879 5880 ret = 0; 5881 5882 /* 5883 * entry could be a migration/hwpoison entry at this point, so this 5884 * check prevents the kernel from going below assuming that we have 5885 * an active hugepage in pagecache. This goto expects the 2nd page 5886 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will 5887 * properly handle it. 5888 */ 5889 if (!pte_present(entry)) 5890 goto out_mutex; 5891 5892 /* 5893 * If we are going to COW/unshare the mapping later, we examine the 5894 * pending reservations for this page now. This will ensure that any 5895 * allocations necessary to record that reservation occur outside the 5896 * spinlock. Also lookup the pagecache page now as it is used to 5897 * determine if a reservation has been consumed. 5898 */ 5899 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5900 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { 5901 if (vma_needs_reservation(h, vma, haddr) < 0) { 5902 ret = VM_FAULT_OOM; 5903 goto out_mutex; 5904 } 5905 /* Just decrements count, does not deallocate */ 5906 vma_end_reservation(h, vma, haddr); 5907 5908 pagecache_page = find_lock_page(mapping, idx); 5909 } 5910 5911 ptl = huge_pte_lock(h, mm, ptep); 5912 5913 /* Check for a racing update before calling hugetlb_wp() */ 5914 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 5915 goto out_ptl; 5916 5917 /* Handle userfault-wp first, before trying to lock more pages */ 5918 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && 5919 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 5920 struct vm_fault vmf = { 5921 .vma = vma, 5922 .address = haddr, 5923 .real_address = address, 5924 .flags = flags, 5925 }; 5926 5927 spin_unlock(ptl); 5928 if (pagecache_page) { 5929 unlock_page(pagecache_page); 5930 put_page(pagecache_page); 5931 } 5932 hugetlb_vma_unlock_read(vma); 5933 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5934 return handle_userfault(&vmf, VM_UFFD_WP); 5935 } 5936 5937 /* 5938 * hugetlb_wp() requires page locks of pte_page(entry) and 5939 * pagecache_page, so here we need take the former one 5940 * when page != pagecache_page or !pagecache_page. 5941 */ 5942 page = pte_page(entry); 5943 if (page != pagecache_page) 5944 if (!trylock_page(page)) { 5945 need_wait_lock = 1; 5946 goto out_ptl; 5947 } 5948 5949 get_page(page); 5950 5951 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5952 if (!huge_pte_write(entry)) { 5953 ret = hugetlb_wp(mm, vma, address, ptep, flags, 5954 pagecache_page, ptl); 5955 goto out_put_page; 5956 } else if (likely(flags & FAULT_FLAG_WRITE)) { 5957 entry = huge_pte_mkdirty(entry); 5958 } 5959 } 5960 entry = pte_mkyoung(entry); 5961 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 5962 flags & FAULT_FLAG_WRITE)) 5963 update_mmu_cache(vma, haddr, ptep); 5964 out_put_page: 5965 if (page != pagecache_page) 5966 unlock_page(page); 5967 put_page(page); 5968 out_ptl: 5969 spin_unlock(ptl); 5970 5971 if (pagecache_page) { 5972 unlock_page(pagecache_page); 5973 put_page(pagecache_page); 5974 } 5975 out_mutex: 5976 hugetlb_vma_unlock_read(vma); 5977 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5978 /* 5979 * Generally it's safe to hold refcount during waiting page lock. But 5980 * here we just wait to defer the next page fault to avoid busy loop and 5981 * the page is not used after unlocked before returning from the current 5982 * page fault. So we are safe from accessing freed page, even if we wait 5983 * here without taking refcount. 5984 */ 5985 if (need_wait_lock) 5986 wait_on_page_locked(page); 5987 return ret; 5988 } 5989 5990 #ifdef CONFIG_USERFAULTFD 5991 /* 5992 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 5993 * modifications for huge pages. 5994 */ 5995 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 5996 pte_t *dst_pte, 5997 struct vm_area_struct *dst_vma, 5998 unsigned long dst_addr, 5999 unsigned long src_addr, 6000 enum mcopy_atomic_mode mode, 6001 struct page **pagep, 6002 bool wp_copy) 6003 { 6004 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); 6005 struct hstate *h = hstate_vma(dst_vma); 6006 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6007 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6008 unsigned long size; 6009 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6010 pte_t _dst_pte; 6011 spinlock_t *ptl; 6012 int ret = -ENOMEM; 6013 struct page *page; 6014 int writable; 6015 bool page_in_pagecache = false; 6016 6017 if (is_continue) { 6018 ret = -EFAULT; 6019 page = find_lock_page(mapping, idx); 6020 if (!page) 6021 goto out; 6022 page_in_pagecache = true; 6023 } else if (!*pagep) { 6024 /* If a page already exists, then it's UFFDIO_COPY for 6025 * a non-missing case. Return -EEXIST. 6026 */ 6027 if (vm_shared && 6028 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6029 ret = -EEXIST; 6030 goto out; 6031 } 6032 6033 page = alloc_huge_page(dst_vma, dst_addr, 0); 6034 if (IS_ERR(page)) { 6035 ret = -ENOMEM; 6036 goto out; 6037 } 6038 6039 ret = copy_huge_page_from_user(page, 6040 (const void __user *) src_addr, 6041 pages_per_huge_page(h), false); 6042 6043 /* fallback to copy_from_user outside mmap_lock */ 6044 if (unlikely(ret)) { 6045 ret = -ENOENT; 6046 /* Free the allocated page which may have 6047 * consumed a reservation. 6048 */ 6049 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6050 put_page(page); 6051 6052 /* Allocate a temporary page to hold the copied 6053 * contents. 6054 */ 6055 page = alloc_huge_page_vma(h, dst_vma, dst_addr); 6056 if (!page) { 6057 ret = -ENOMEM; 6058 goto out; 6059 } 6060 *pagep = page; 6061 /* Set the outparam pagep and return to the caller to 6062 * copy the contents outside the lock. Don't free the 6063 * page. 6064 */ 6065 goto out; 6066 } 6067 } else { 6068 if (vm_shared && 6069 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6070 put_page(*pagep); 6071 ret = -EEXIST; 6072 *pagep = NULL; 6073 goto out; 6074 } 6075 6076 page = alloc_huge_page(dst_vma, dst_addr, 0); 6077 if (IS_ERR(page)) { 6078 put_page(*pagep); 6079 ret = -ENOMEM; 6080 *pagep = NULL; 6081 goto out; 6082 } 6083 copy_user_huge_page(page, *pagep, dst_addr, dst_vma, 6084 pages_per_huge_page(h)); 6085 put_page(*pagep); 6086 *pagep = NULL; 6087 } 6088 6089 /* 6090 * The memory barrier inside __SetPageUptodate makes sure that 6091 * preceding stores to the page contents become visible before 6092 * the set_pte_at() write. 6093 */ 6094 __SetPageUptodate(page); 6095 6096 /* Add shared, newly allocated pages to the page cache. */ 6097 if (vm_shared && !is_continue) { 6098 size = i_size_read(mapping->host) >> huge_page_shift(h); 6099 ret = -EFAULT; 6100 if (idx >= size) 6101 goto out_release_nounlock; 6102 6103 /* 6104 * Serialization between remove_inode_hugepages() and 6105 * hugetlb_add_to_page_cache() below happens through the 6106 * hugetlb_fault_mutex_table that here must be hold by 6107 * the caller. 6108 */ 6109 ret = hugetlb_add_to_page_cache(page, mapping, idx); 6110 if (ret) 6111 goto out_release_nounlock; 6112 page_in_pagecache = true; 6113 } 6114 6115 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6116 6117 ret = -EIO; 6118 if (PageHWPoison(page)) 6119 goto out_release_unlock; 6120 6121 /* 6122 * We allow to overwrite a pte marker: consider when both MISSING|WP 6123 * registered, we firstly wr-protect a none pte which has no page cache 6124 * page backing it, then access the page. 6125 */ 6126 ret = -EEXIST; 6127 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) 6128 goto out_release_unlock; 6129 6130 if (page_in_pagecache) 6131 page_dup_file_rmap(page, true); 6132 else 6133 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 6134 6135 /* 6136 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6137 * with wp flag set, don't set pte write bit. 6138 */ 6139 if (wp_copy || (is_continue && !vm_shared)) 6140 writable = 0; 6141 else 6142 writable = dst_vma->vm_flags & VM_WRITE; 6143 6144 _dst_pte = make_huge_pte(dst_vma, page, writable); 6145 /* 6146 * Always mark UFFDIO_COPY page dirty; note that this may not be 6147 * extremely important for hugetlbfs for now since swapping is not 6148 * supported, but we should still be clear in that this page cannot be 6149 * thrown away at will, even if write bit not set. 6150 */ 6151 _dst_pte = huge_pte_mkdirty(_dst_pte); 6152 _dst_pte = pte_mkyoung(_dst_pte); 6153 6154 if (wp_copy) 6155 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6156 6157 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 6158 6159 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6160 6161 /* No need to invalidate - it was non-present before */ 6162 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6163 6164 spin_unlock(ptl); 6165 if (!is_continue) 6166 SetHPageMigratable(page); 6167 if (vm_shared || is_continue) 6168 unlock_page(page); 6169 ret = 0; 6170 out: 6171 return ret; 6172 out_release_unlock: 6173 spin_unlock(ptl); 6174 if (vm_shared || is_continue) 6175 unlock_page(page); 6176 out_release_nounlock: 6177 if (!page_in_pagecache) 6178 restore_reserve_on_error(h, dst_vma, dst_addr, page); 6179 put_page(page); 6180 goto out; 6181 } 6182 #endif /* CONFIG_USERFAULTFD */ 6183 6184 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, 6185 int refs, struct page **pages, 6186 struct vm_area_struct **vmas) 6187 { 6188 int nr; 6189 6190 for (nr = 0; nr < refs; nr++) { 6191 if (likely(pages)) 6192 pages[nr] = nth_page(page, nr); 6193 if (vmas) 6194 vmas[nr] = vma; 6195 } 6196 } 6197 6198 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, 6199 unsigned int flags, pte_t *pte, 6200 bool *unshare) 6201 { 6202 pte_t pteval = huge_ptep_get(pte); 6203 6204 *unshare = false; 6205 if (is_swap_pte(pteval)) 6206 return true; 6207 if (huge_pte_write(pteval)) 6208 return false; 6209 if (flags & FOLL_WRITE) 6210 return true; 6211 if (gup_must_unshare(vma, flags, pte_page(pteval))) { 6212 *unshare = true; 6213 return true; 6214 } 6215 return false; 6216 } 6217 6218 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 6219 unsigned long address, unsigned int flags) 6220 { 6221 struct hstate *h = hstate_vma(vma); 6222 struct mm_struct *mm = vma->vm_mm; 6223 unsigned long haddr = address & huge_page_mask(h); 6224 struct page *page = NULL; 6225 spinlock_t *ptl; 6226 pte_t *pte, entry; 6227 6228 /* 6229 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via 6230 * follow_hugetlb_page(). 6231 */ 6232 if (WARN_ON_ONCE(flags & FOLL_PIN)) 6233 return NULL; 6234 6235 retry: 6236 pte = huge_pte_offset(mm, haddr, huge_page_size(h)); 6237 if (!pte) 6238 return NULL; 6239 6240 ptl = huge_pte_lock(h, mm, pte); 6241 entry = huge_ptep_get(pte); 6242 if (pte_present(entry)) { 6243 page = pte_page(entry) + 6244 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); 6245 /* 6246 * Note that page may be a sub-page, and with vmemmap 6247 * optimizations the page struct may be read only. 6248 * try_grab_page() will increase the ref count on the 6249 * head page, so this will be OK. 6250 * 6251 * try_grab_page() should always succeed here, because we hold 6252 * the ptl lock and have verified pte_present(). 6253 */ 6254 if (WARN_ON_ONCE(!try_grab_page(page, flags))) { 6255 page = NULL; 6256 goto out; 6257 } 6258 } else { 6259 if (is_hugetlb_entry_migration(entry)) { 6260 spin_unlock(ptl); 6261 __migration_entry_wait_huge(pte, ptl); 6262 goto retry; 6263 } 6264 /* 6265 * hwpoisoned entry is treated as no_page_table in 6266 * follow_page_mask(). 6267 */ 6268 } 6269 out: 6270 spin_unlock(ptl); 6271 return page; 6272 } 6273 6274 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 6275 struct page **pages, struct vm_area_struct **vmas, 6276 unsigned long *position, unsigned long *nr_pages, 6277 long i, unsigned int flags, int *locked) 6278 { 6279 unsigned long pfn_offset; 6280 unsigned long vaddr = *position; 6281 unsigned long remainder = *nr_pages; 6282 struct hstate *h = hstate_vma(vma); 6283 int err = -EFAULT, refs; 6284 6285 while (vaddr < vma->vm_end && remainder) { 6286 pte_t *pte; 6287 spinlock_t *ptl = NULL; 6288 bool unshare = false; 6289 int absent; 6290 struct page *page; 6291 6292 /* 6293 * If we have a pending SIGKILL, don't keep faulting pages and 6294 * potentially allocating memory. 6295 */ 6296 if (fatal_signal_pending(current)) { 6297 remainder = 0; 6298 break; 6299 } 6300 6301 /* 6302 * Some archs (sparc64, sh*) have multiple pte_ts to 6303 * each hugepage. We have to make sure we get the 6304 * first, for the page indexing below to work. 6305 * 6306 * Note that page table lock is not held when pte is null. 6307 */ 6308 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 6309 huge_page_size(h)); 6310 if (pte) 6311 ptl = huge_pte_lock(h, mm, pte); 6312 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 6313 6314 /* 6315 * When coredumping, it suits get_dump_page if we just return 6316 * an error where there's an empty slot with no huge pagecache 6317 * to back it. This way, we avoid allocating a hugepage, and 6318 * the sparse dumpfile avoids allocating disk blocks, but its 6319 * huge holes still show up with zeroes where they need to be. 6320 */ 6321 if (absent && (flags & FOLL_DUMP) && 6322 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 6323 if (pte) 6324 spin_unlock(ptl); 6325 remainder = 0; 6326 break; 6327 } 6328 6329 /* 6330 * We need call hugetlb_fault for both hugepages under migration 6331 * (in which case hugetlb_fault waits for the migration,) and 6332 * hwpoisoned hugepages (in which case we need to prevent the 6333 * caller from accessing to them.) In order to do this, we use 6334 * here is_swap_pte instead of is_hugetlb_entry_migration and 6335 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 6336 * both cases, and because we can't follow correct pages 6337 * directly from any kind of swap entries. 6338 */ 6339 if (absent || 6340 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { 6341 vm_fault_t ret; 6342 unsigned int fault_flags = 0; 6343 6344 if (pte) 6345 spin_unlock(ptl); 6346 if (flags & FOLL_WRITE) 6347 fault_flags |= FAULT_FLAG_WRITE; 6348 else if (unshare) 6349 fault_flags |= FAULT_FLAG_UNSHARE; 6350 if (locked) 6351 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6352 FAULT_FLAG_KILLABLE; 6353 if (flags & FOLL_NOWAIT) 6354 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 6355 FAULT_FLAG_RETRY_NOWAIT; 6356 if (flags & FOLL_TRIED) { 6357 /* 6358 * Note: FAULT_FLAG_ALLOW_RETRY and 6359 * FAULT_FLAG_TRIED can co-exist 6360 */ 6361 fault_flags |= FAULT_FLAG_TRIED; 6362 } 6363 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 6364 if (ret & VM_FAULT_ERROR) { 6365 err = vm_fault_to_errno(ret, flags); 6366 remainder = 0; 6367 break; 6368 } 6369 if (ret & VM_FAULT_RETRY) { 6370 if (locked && 6371 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 6372 *locked = 0; 6373 *nr_pages = 0; 6374 /* 6375 * VM_FAULT_RETRY must not return an 6376 * error, it will return zero 6377 * instead. 6378 * 6379 * No need to update "position" as the 6380 * caller will not check it after 6381 * *nr_pages is set to 0. 6382 */ 6383 return i; 6384 } 6385 continue; 6386 } 6387 6388 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 6389 page = pte_page(huge_ptep_get(pte)); 6390 6391 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 6392 !PageAnonExclusive(page), page); 6393 6394 /* 6395 * If subpage information not requested, update counters 6396 * and skip the same_page loop below. 6397 */ 6398 if (!pages && !vmas && !pfn_offset && 6399 (vaddr + huge_page_size(h) < vma->vm_end) && 6400 (remainder >= pages_per_huge_page(h))) { 6401 vaddr += huge_page_size(h); 6402 remainder -= pages_per_huge_page(h); 6403 i += pages_per_huge_page(h); 6404 spin_unlock(ptl); 6405 continue; 6406 } 6407 6408 /* vaddr may not be aligned to PAGE_SIZE */ 6409 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, 6410 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); 6411 6412 if (pages || vmas) 6413 record_subpages_vmas(nth_page(page, pfn_offset), 6414 vma, refs, 6415 likely(pages) ? pages + i : NULL, 6416 vmas ? vmas + i : NULL); 6417 6418 if (pages) { 6419 /* 6420 * try_grab_folio() should always succeed here, 6421 * because: a) we hold the ptl lock, and b) we've just 6422 * checked that the huge page is present in the page 6423 * tables. If the huge page is present, then the tail 6424 * pages must also be present. The ptl prevents the 6425 * head page and tail pages from being rearranged in 6426 * any way. So this page must be available at this 6427 * point, unless the page refcount overflowed: 6428 */ 6429 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, 6430 flags))) { 6431 spin_unlock(ptl); 6432 remainder = 0; 6433 err = -ENOMEM; 6434 break; 6435 } 6436 } 6437 6438 vaddr += (refs << PAGE_SHIFT); 6439 remainder -= refs; 6440 i += refs; 6441 6442 spin_unlock(ptl); 6443 } 6444 *nr_pages = remainder; 6445 /* 6446 * setting position is actually required only if remainder is 6447 * not zero but it's faster not to add a "if (remainder)" 6448 * branch. 6449 */ 6450 *position = vaddr; 6451 6452 return i ? i : err; 6453 } 6454 6455 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 6456 unsigned long address, unsigned long end, 6457 pgprot_t newprot, unsigned long cp_flags) 6458 { 6459 struct mm_struct *mm = vma->vm_mm; 6460 unsigned long start = address; 6461 pte_t *ptep; 6462 pte_t pte; 6463 struct hstate *h = hstate_vma(vma); 6464 unsigned long pages = 0, psize = huge_page_size(h); 6465 bool shared_pmd = false; 6466 struct mmu_notifier_range range; 6467 unsigned long last_addr_mask; 6468 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6469 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6470 6471 /* 6472 * In the case of shared PMDs, the area to flush could be beyond 6473 * start/end. Set range.start/range.end to cover the maximum possible 6474 * range if PMD sharing is possible. 6475 */ 6476 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6477 0, vma, mm, start, end); 6478 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6479 6480 BUG_ON(address >= end); 6481 flush_cache_range(vma, range.start, range.end); 6482 6483 mmu_notifier_invalidate_range_start(&range); 6484 hugetlb_vma_lock_write(vma); 6485 i_mmap_lock_write(vma->vm_file->f_mapping); 6486 last_addr_mask = hugetlb_mask_last_page(h); 6487 for (; address < end; address += psize) { 6488 spinlock_t *ptl; 6489 ptep = huge_pte_offset(mm, address, psize); 6490 if (!ptep) { 6491 address |= last_addr_mask; 6492 continue; 6493 } 6494 ptl = huge_pte_lock(h, mm, ptep); 6495 if (huge_pmd_unshare(mm, vma, address, ptep)) { 6496 /* 6497 * When uffd-wp is enabled on the vma, unshare 6498 * shouldn't happen at all. Warn about it if it 6499 * happened due to some reason. 6500 */ 6501 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6502 pages++; 6503 spin_unlock(ptl); 6504 shared_pmd = true; 6505 address |= last_addr_mask; 6506 continue; 6507 } 6508 pte = huge_ptep_get(ptep); 6509 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 6510 spin_unlock(ptl); 6511 continue; 6512 } 6513 if (unlikely(is_hugetlb_entry_migration(pte))) { 6514 swp_entry_t entry = pte_to_swp_entry(pte); 6515 struct page *page = pfn_swap_entry_to_page(entry); 6516 6517 if (!is_readable_migration_entry(entry)) { 6518 pte_t newpte; 6519 6520 if (PageAnon(page)) 6521 entry = make_readable_exclusive_migration_entry( 6522 swp_offset(entry)); 6523 else 6524 entry = make_readable_migration_entry( 6525 swp_offset(entry)); 6526 newpte = swp_entry_to_pte(entry); 6527 if (uffd_wp) 6528 newpte = pte_swp_mkuffd_wp(newpte); 6529 else if (uffd_wp_resolve) 6530 newpte = pte_swp_clear_uffd_wp(newpte); 6531 set_huge_pte_at(mm, address, ptep, newpte); 6532 pages++; 6533 } 6534 spin_unlock(ptl); 6535 continue; 6536 } 6537 if (unlikely(pte_marker_uffd_wp(pte))) { 6538 /* 6539 * This is changing a non-present pte into a none pte, 6540 * no need for huge_ptep_modify_prot_start/commit(). 6541 */ 6542 if (uffd_wp_resolve) 6543 huge_pte_clear(mm, address, ptep, psize); 6544 } 6545 if (!huge_pte_none(pte)) { 6546 pte_t old_pte; 6547 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6548 6549 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6550 pte = huge_pte_modify(old_pte, newprot); 6551 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6552 if (uffd_wp) 6553 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); 6554 else if (uffd_wp_resolve) 6555 pte = huge_pte_clear_uffd_wp(pte); 6556 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6557 pages++; 6558 } else { 6559 /* None pte */ 6560 if (unlikely(uffd_wp)) 6561 /* Safe to modify directly (none->non-present). */ 6562 set_huge_pte_at(mm, address, ptep, 6563 make_pte_marker(PTE_MARKER_UFFD_WP)); 6564 } 6565 spin_unlock(ptl); 6566 } 6567 /* 6568 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 6569 * may have cleared our pud entry and done put_page on the page table: 6570 * once we release i_mmap_rwsem, another task can do the final put_page 6571 * and that page table be reused and filled with junk. If we actually 6572 * did unshare a page of pmds, flush the range corresponding to the pud. 6573 */ 6574 if (shared_pmd) 6575 flush_hugetlb_tlb_range(vma, range.start, range.end); 6576 else 6577 flush_hugetlb_tlb_range(vma, start, end); 6578 /* 6579 * No need to call mmu_notifier_invalidate_range() we are downgrading 6580 * page table protection not changing it to point to a new page. 6581 * 6582 * See Documentation/mm/mmu_notifier.rst 6583 */ 6584 i_mmap_unlock_write(vma->vm_file->f_mapping); 6585 hugetlb_vma_unlock_write(vma); 6586 mmu_notifier_invalidate_range_end(&range); 6587 6588 return pages << h->order; 6589 } 6590 6591 /* Return true if reservation was successful, false otherwise. */ 6592 bool hugetlb_reserve_pages(struct inode *inode, 6593 long from, long to, 6594 struct vm_area_struct *vma, 6595 vm_flags_t vm_flags) 6596 { 6597 long chg, add = -1; 6598 struct hstate *h = hstate_inode(inode); 6599 struct hugepage_subpool *spool = subpool_inode(inode); 6600 struct resv_map *resv_map; 6601 struct hugetlb_cgroup *h_cg = NULL; 6602 long gbl_reserve, regions_needed = 0; 6603 6604 /* This should never happen */ 6605 if (from > to) { 6606 VM_WARN(1, "%s called with a negative range\n", __func__); 6607 return false; 6608 } 6609 6610 /* 6611 * vma specific semaphore used for pmd sharing synchronization 6612 */ 6613 hugetlb_vma_lock_alloc(vma); 6614 6615 /* 6616 * Only apply hugepage reservation if asked. At fault time, an 6617 * attempt will be made for VM_NORESERVE to allocate a page 6618 * without using reserves 6619 */ 6620 if (vm_flags & VM_NORESERVE) 6621 return true; 6622 6623 /* 6624 * Shared mappings base their reservation on the number of pages that 6625 * are already allocated on behalf of the file. Private mappings need 6626 * to reserve the full area even if read-only as mprotect() may be 6627 * called to make the mapping read-write. Assume !vma is a shm mapping 6628 */ 6629 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6630 /* 6631 * resv_map can not be NULL as hugetlb_reserve_pages is only 6632 * called for inodes for which resv_maps were created (see 6633 * hugetlbfs_get_inode). 6634 */ 6635 resv_map = inode_resv_map(inode); 6636 6637 chg = region_chg(resv_map, from, to, ®ions_needed); 6638 } else { 6639 /* Private mapping. */ 6640 resv_map = resv_map_alloc(); 6641 if (!resv_map) 6642 goto out_err; 6643 6644 chg = to - from; 6645 6646 set_vma_resv_map(vma, resv_map); 6647 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 6648 } 6649 6650 if (chg < 0) 6651 goto out_err; 6652 6653 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6654 chg * pages_per_huge_page(h), &h_cg) < 0) 6655 goto out_err; 6656 6657 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { 6658 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6659 * of the resv_map. 6660 */ 6661 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6662 } 6663 6664 /* 6665 * There must be enough pages in the subpool for the mapping. If 6666 * the subpool has a minimum size, there may be some global 6667 * reservations already in place (gbl_reserve). 6668 */ 6669 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6670 if (gbl_reserve < 0) 6671 goto out_uncharge_cgroup; 6672 6673 /* 6674 * Check enough hugepages are available for the reservation. 6675 * Hand the pages back to the subpool if there are not 6676 */ 6677 if (hugetlb_acct_memory(h, gbl_reserve) < 0) 6678 goto out_put_pages; 6679 6680 /* 6681 * Account for the reservations made. Shared mappings record regions 6682 * that have reservations as they are shared by multiple VMAs. 6683 * When the last VMA disappears, the region map says how much 6684 * the reservation was and the page cache tells how much of 6685 * the reservation was consumed. Private mappings are per-VMA and 6686 * only the consumed reservations are tracked. When the VMA 6687 * disappears, the original reservation is the VMA size and the 6688 * consumed reservations are stored in the map. Hence, nothing 6689 * else has to be done for private mappings here 6690 */ 6691 if (!vma || vma->vm_flags & VM_MAYSHARE) { 6692 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6693 6694 if (unlikely(add < 0)) { 6695 hugetlb_acct_memory(h, -gbl_reserve); 6696 goto out_put_pages; 6697 } else if (unlikely(chg > add)) { 6698 /* 6699 * pages in this range were added to the reserve 6700 * map between region_chg and region_add. This 6701 * indicates a race with alloc_huge_page. Adjust 6702 * the subpool and reserve counts modified above 6703 * based on the difference. 6704 */ 6705 long rsv_adjust; 6706 6707 /* 6708 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6709 * reference to h_cg->css. See comment below for detail. 6710 */ 6711 hugetlb_cgroup_uncharge_cgroup_rsvd( 6712 hstate_index(h), 6713 (chg - add) * pages_per_huge_page(h), h_cg); 6714 6715 rsv_adjust = hugepage_subpool_put_pages(spool, 6716 chg - add); 6717 hugetlb_acct_memory(h, -rsv_adjust); 6718 } else if (h_cg) { 6719 /* 6720 * The file_regions will hold their own reference to 6721 * h_cg->css. So we should release the reference held 6722 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6723 * done. 6724 */ 6725 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6726 } 6727 } 6728 return true; 6729 6730 out_put_pages: 6731 /* put back original number of pages, chg */ 6732 (void)hugepage_subpool_put_pages(spool, chg); 6733 out_uncharge_cgroup: 6734 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6735 chg * pages_per_huge_page(h), h_cg); 6736 out_err: 6737 hugetlb_vma_lock_free(vma); 6738 if (!vma || vma->vm_flags & VM_MAYSHARE) 6739 /* Only call region_abort if the region_chg succeeded but the 6740 * region_add failed or didn't run. 6741 */ 6742 if (chg >= 0 && add < 0) 6743 region_abort(resv_map, from, to, regions_needed); 6744 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 6745 kref_put(&resv_map->refs, resv_map_release); 6746 return false; 6747 } 6748 6749 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6750 long freed) 6751 { 6752 struct hstate *h = hstate_inode(inode); 6753 struct resv_map *resv_map = inode_resv_map(inode); 6754 long chg = 0; 6755 struct hugepage_subpool *spool = subpool_inode(inode); 6756 long gbl_reserve; 6757 6758 /* 6759 * Since this routine can be called in the evict inode path for all 6760 * hugetlbfs inodes, resv_map could be NULL. 6761 */ 6762 if (resv_map) { 6763 chg = region_del(resv_map, start, end); 6764 /* 6765 * region_del() can fail in the rare case where a region 6766 * must be split and another region descriptor can not be 6767 * allocated. If end == LONG_MAX, it will not fail. 6768 */ 6769 if (chg < 0) 6770 return chg; 6771 } 6772 6773 spin_lock(&inode->i_lock); 6774 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6775 spin_unlock(&inode->i_lock); 6776 6777 /* 6778 * If the subpool has a minimum size, the number of global 6779 * reservations to be released may be adjusted. 6780 * 6781 * Note that !resv_map implies freed == 0. So (chg - freed) 6782 * won't go negative. 6783 */ 6784 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6785 hugetlb_acct_memory(h, -gbl_reserve); 6786 6787 return 0; 6788 } 6789 6790 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 6791 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6792 struct vm_area_struct *vma, 6793 unsigned long addr, pgoff_t idx) 6794 { 6795 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6796 svma->vm_start; 6797 unsigned long sbase = saddr & PUD_MASK; 6798 unsigned long s_end = sbase + PUD_SIZE; 6799 6800 /* Allow segments to share if only one is marked locked */ 6801 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 6802 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 6803 6804 /* 6805 * match the virtual addresses, permission and the alignment of the 6806 * page table page. 6807 * 6808 * Also, vma_lock (vm_private_data) is required for sharing. 6809 */ 6810 if (pmd_index(addr) != pmd_index(saddr) || 6811 vm_flags != svm_flags || 6812 !range_in_vma(svma, sbase, s_end) || 6813 !svma->vm_private_data) 6814 return 0; 6815 6816 return saddr; 6817 } 6818 6819 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6820 { 6821 unsigned long start = addr & PUD_MASK; 6822 unsigned long end = start + PUD_SIZE; 6823 6824 #ifdef CONFIG_USERFAULTFD 6825 if (uffd_disable_huge_pmd_share(vma)) 6826 return false; 6827 #endif 6828 /* 6829 * check on proper vm_flags and page table alignment 6830 */ 6831 if (!(vma->vm_flags & VM_MAYSHARE)) 6832 return false; 6833 if (!vma->vm_private_data) /* vma lock required for sharing */ 6834 return false; 6835 if (!range_in_vma(vma, start, end)) 6836 return false; 6837 return true; 6838 } 6839 6840 /* 6841 * Determine if start,end range within vma could be mapped by shared pmd. 6842 * If yes, adjust start and end to cover range associated with possible 6843 * shared pmd mappings. 6844 */ 6845 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6846 unsigned long *start, unsigned long *end) 6847 { 6848 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6849 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6850 6851 /* 6852 * vma needs to span at least one aligned PUD size, and the range 6853 * must be at least partially within in. 6854 */ 6855 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6856 (*end <= v_start) || (*start >= v_end)) 6857 return; 6858 6859 /* Extend the range to be PUD aligned for a worst case scenario */ 6860 if (*start > v_start) 6861 *start = ALIGN_DOWN(*start, PUD_SIZE); 6862 6863 if (*end < v_end) 6864 *end = ALIGN(*end, PUD_SIZE); 6865 } 6866 6867 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma) 6868 { 6869 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) && 6870 vma->vm_private_data; 6871 } 6872 6873 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 6874 { 6875 if (__vma_shareable_flags_pmd(vma)) { 6876 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6877 6878 down_read(&vma_lock->rw_sema); 6879 } 6880 } 6881 6882 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 6883 { 6884 if (__vma_shareable_flags_pmd(vma)) { 6885 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6886 6887 up_read(&vma_lock->rw_sema); 6888 } 6889 } 6890 6891 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 6892 { 6893 if (__vma_shareable_flags_pmd(vma)) { 6894 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6895 6896 down_write(&vma_lock->rw_sema); 6897 } 6898 } 6899 6900 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 6901 { 6902 if (__vma_shareable_flags_pmd(vma)) { 6903 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6904 6905 up_write(&vma_lock->rw_sema); 6906 } 6907 } 6908 6909 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 6910 { 6911 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6912 6913 if (!__vma_shareable_flags_pmd(vma)) 6914 return 1; 6915 6916 return down_write_trylock(&vma_lock->rw_sema); 6917 } 6918 6919 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 6920 { 6921 if (__vma_shareable_flags_pmd(vma)) { 6922 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6923 6924 lockdep_assert_held(&vma_lock->rw_sema); 6925 } 6926 } 6927 6928 void hugetlb_vma_lock_release(struct kref *kref) 6929 { 6930 struct hugetlb_vma_lock *vma_lock = container_of(kref, 6931 struct hugetlb_vma_lock, refs); 6932 6933 kfree(vma_lock); 6934 } 6935 6936 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 6937 { 6938 struct vm_area_struct *vma = vma_lock->vma; 6939 6940 /* 6941 * vma_lock structure may or not be released as a result of put, 6942 * it certainly will no longer be attached to vma so clear pointer. 6943 * Semaphore synchronizes access to vma_lock->vma field. 6944 */ 6945 vma_lock->vma = NULL; 6946 vma->vm_private_data = NULL; 6947 up_write(&vma_lock->rw_sema); 6948 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 6949 } 6950 6951 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 6952 { 6953 if (__vma_shareable_flags_pmd(vma)) { 6954 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6955 6956 __hugetlb_vma_unlock_write_put(vma_lock); 6957 } 6958 } 6959 6960 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 6961 { 6962 /* 6963 * Only present in sharable vmas. 6964 */ 6965 if (!vma || !__vma_shareable_flags_pmd(vma)) 6966 return; 6967 6968 if (vma->vm_private_data) { 6969 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 6970 6971 down_write(&vma_lock->rw_sema); 6972 __hugetlb_vma_unlock_write_put(vma_lock); 6973 } 6974 } 6975 6976 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 6977 { 6978 struct hugetlb_vma_lock *vma_lock; 6979 6980 /* Only establish in (flags) sharable vmas */ 6981 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 6982 return; 6983 6984 /* Should never get here with non-NULL vm_private_data */ 6985 if (vma->vm_private_data) 6986 return; 6987 6988 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 6989 if (!vma_lock) { 6990 /* 6991 * If we can not allocate structure, then vma can not 6992 * participate in pmd sharing. This is only a possible 6993 * performance enhancement and memory saving issue. 6994 * However, the lock is also used to synchronize page 6995 * faults with truncation. If the lock is not present, 6996 * unlikely races could leave pages in a file past i_size 6997 * until the file is removed. Warn in the unlikely case of 6998 * allocation failure. 6999 */ 7000 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 7001 return; 7002 } 7003 7004 kref_init(&vma_lock->refs); 7005 init_rwsem(&vma_lock->rw_sema); 7006 vma_lock->vma = vma; 7007 vma->vm_private_data = vma_lock; 7008 } 7009 7010 /* 7011 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 7012 * and returns the corresponding pte. While this is not necessary for the 7013 * !shared pmd case because we can allocate the pmd later as well, it makes the 7014 * code much cleaner. pmd allocation is essential for the shared case because 7015 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 7016 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 7017 * bad pmd for sharing. 7018 */ 7019 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7020 unsigned long addr, pud_t *pud) 7021 { 7022 struct address_space *mapping = vma->vm_file->f_mapping; 7023 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 7024 vma->vm_pgoff; 7025 struct vm_area_struct *svma; 7026 unsigned long saddr; 7027 pte_t *spte = NULL; 7028 pte_t *pte; 7029 spinlock_t *ptl; 7030 7031 i_mmap_lock_read(mapping); 7032 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 7033 if (svma == vma) 7034 continue; 7035 7036 saddr = page_table_shareable(svma, vma, addr, idx); 7037 if (saddr) { 7038 spte = huge_pte_offset(svma->vm_mm, saddr, 7039 vma_mmu_pagesize(svma)); 7040 if (spte) { 7041 get_page(virt_to_page(spte)); 7042 break; 7043 } 7044 } 7045 } 7046 7047 if (!spte) 7048 goto out; 7049 7050 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 7051 if (pud_none(*pud)) { 7052 pud_populate(mm, pud, 7053 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 7054 mm_inc_nr_pmds(mm); 7055 } else { 7056 put_page(virt_to_page(spte)); 7057 } 7058 spin_unlock(ptl); 7059 out: 7060 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7061 i_mmap_unlock_read(mapping); 7062 return pte; 7063 } 7064 7065 /* 7066 * unmap huge page backed by shared pte. 7067 * 7068 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 7069 * indicated by page_count > 1, unmap is achieved by clearing pud and 7070 * decrementing the ref count. If count == 1, the pte page is not shared. 7071 * 7072 * Called with page table lock held. 7073 * 7074 * returns: 1 successfully unmapped a shared pte page 7075 * 0 the underlying pte page is not shared, or it is the last user 7076 */ 7077 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7078 unsigned long addr, pte_t *ptep) 7079 { 7080 pgd_t *pgd = pgd_offset(mm, addr); 7081 p4d_t *p4d = p4d_offset(pgd, addr); 7082 pud_t *pud = pud_offset(p4d, addr); 7083 7084 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7085 hugetlb_vma_assert_locked(vma); 7086 BUG_ON(page_count(virt_to_page(ptep)) == 0); 7087 if (page_count(virt_to_page(ptep)) == 1) 7088 return 0; 7089 7090 pud_clear(pud); 7091 put_page(virt_to_page(ptep)); 7092 mm_dec_nr_pmds(mm); 7093 return 1; 7094 } 7095 7096 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7097 7098 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 7099 { 7100 } 7101 7102 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 7103 { 7104 } 7105 7106 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 7107 { 7108 } 7109 7110 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 7111 { 7112 } 7113 7114 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 7115 { 7116 return 1; 7117 } 7118 7119 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 7120 { 7121 } 7122 7123 void hugetlb_vma_lock_release(struct kref *kref) 7124 { 7125 } 7126 7127 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 7128 { 7129 } 7130 7131 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 7132 { 7133 } 7134 7135 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 7136 { 7137 } 7138 7139 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 7140 unsigned long addr, pud_t *pud) 7141 { 7142 return NULL; 7143 } 7144 7145 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 7146 unsigned long addr, pte_t *ptep) 7147 { 7148 return 0; 7149 } 7150 7151 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7152 unsigned long *start, unsigned long *end) 7153 { 7154 } 7155 7156 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7157 { 7158 return false; 7159 } 7160 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 7161 7162 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7163 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7164 unsigned long addr, unsigned long sz) 7165 { 7166 pgd_t *pgd; 7167 p4d_t *p4d; 7168 pud_t *pud; 7169 pte_t *pte = NULL; 7170 7171 pgd = pgd_offset(mm, addr); 7172 p4d = p4d_alloc(mm, pgd, addr); 7173 if (!p4d) 7174 return NULL; 7175 pud = pud_alloc(mm, p4d, addr); 7176 if (pud) { 7177 if (sz == PUD_SIZE) { 7178 pte = (pte_t *)pud; 7179 } else { 7180 BUG_ON(sz != PMD_SIZE); 7181 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7182 pte = huge_pmd_share(mm, vma, addr, pud); 7183 else 7184 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7185 } 7186 } 7187 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 7188 7189 return pte; 7190 } 7191 7192 /* 7193 * huge_pte_offset() - Walk the page table to resolve the hugepage 7194 * entry at address @addr 7195 * 7196 * Return: Pointer to page table entry (PUD or PMD) for 7197 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7198 * size @sz doesn't match the hugepage size at this level of the page 7199 * table. 7200 */ 7201 pte_t *huge_pte_offset(struct mm_struct *mm, 7202 unsigned long addr, unsigned long sz) 7203 { 7204 pgd_t *pgd; 7205 p4d_t *p4d; 7206 pud_t *pud; 7207 pmd_t *pmd; 7208 7209 pgd = pgd_offset(mm, addr); 7210 if (!pgd_present(*pgd)) 7211 return NULL; 7212 p4d = p4d_offset(pgd, addr); 7213 if (!p4d_present(*p4d)) 7214 return NULL; 7215 7216 pud = pud_offset(p4d, addr); 7217 if (sz == PUD_SIZE) 7218 /* must be pud huge, non-present or none */ 7219 return (pte_t *)pud; 7220 if (!pud_present(*pud)) 7221 return NULL; 7222 /* must have a valid entry and size to go further */ 7223 7224 pmd = pmd_offset(pud, addr); 7225 /* must be pmd huge, non-present or none */ 7226 return (pte_t *)pmd; 7227 } 7228 7229 /* 7230 * Return a mask that can be used to update an address to the last huge 7231 * page in a page table page mapping size. Used to skip non-present 7232 * page table entries when linearly scanning address ranges. Architectures 7233 * with unique huge page to page table relationships can define their own 7234 * version of this routine. 7235 */ 7236 unsigned long hugetlb_mask_last_page(struct hstate *h) 7237 { 7238 unsigned long hp_size = huge_page_size(h); 7239 7240 if (hp_size == PUD_SIZE) 7241 return P4D_SIZE - PUD_SIZE; 7242 else if (hp_size == PMD_SIZE) 7243 return PUD_SIZE - PMD_SIZE; 7244 else 7245 return 0UL; 7246 } 7247 7248 #else 7249 7250 /* See description above. Architectures can provide their own version. */ 7251 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7252 { 7253 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 7254 if (huge_page_size(h) == PMD_SIZE) 7255 return PUD_SIZE - PMD_SIZE; 7256 #endif 7257 return 0UL; 7258 } 7259 7260 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7261 7262 /* 7263 * These functions are overwritable if your architecture needs its own 7264 * behavior. 7265 */ 7266 int isolate_hugetlb(struct page *page, struct list_head *list) 7267 { 7268 int ret = 0; 7269 7270 spin_lock_irq(&hugetlb_lock); 7271 if (!PageHeadHuge(page) || 7272 !HPageMigratable(page) || 7273 !get_page_unless_zero(page)) { 7274 ret = -EBUSY; 7275 goto unlock; 7276 } 7277 ClearHPageMigratable(page); 7278 list_move_tail(&page->lru, list); 7279 unlock: 7280 spin_unlock_irq(&hugetlb_lock); 7281 return ret; 7282 } 7283 7284 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison) 7285 { 7286 int ret = 0; 7287 7288 *hugetlb = false; 7289 spin_lock_irq(&hugetlb_lock); 7290 if (PageHeadHuge(page)) { 7291 *hugetlb = true; 7292 if (HPageFreed(page)) 7293 ret = 0; 7294 else if (HPageMigratable(page) || unpoison) 7295 ret = get_page_unless_zero(page); 7296 else 7297 ret = -EBUSY; 7298 } 7299 spin_unlock_irq(&hugetlb_lock); 7300 return ret; 7301 } 7302 7303 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7304 bool *migratable_cleared) 7305 { 7306 int ret; 7307 7308 spin_lock_irq(&hugetlb_lock); 7309 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7310 spin_unlock_irq(&hugetlb_lock); 7311 return ret; 7312 } 7313 7314 void putback_active_hugepage(struct page *page) 7315 { 7316 spin_lock_irq(&hugetlb_lock); 7317 SetHPageMigratable(page); 7318 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 7319 spin_unlock_irq(&hugetlb_lock); 7320 put_page(page); 7321 } 7322 7323 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7324 { 7325 struct hstate *h = folio_hstate(old_folio); 7326 7327 hugetlb_cgroup_migrate(old_folio, new_folio); 7328 set_page_owner_migrate_reason(&new_folio->page, reason); 7329 7330 /* 7331 * transfer temporary state of the new hugetlb folio. This is 7332 * reverse to other transitions because the newpage is going to 7333 * be final while the old one will be freed so it takes over 7334 * the temporary status. 7335 * 7336 * Also note that we have to transfer the per-node surplus state 7337 * here as well otherwise the global surplus count will not match 7338 * the per-node's. 7339 */ 7340 if (folio_test_hugetlb_temporary(new_folio)) { 7341 int old_nid = folio_nid(old_folio); 7342 int new_nid = folio_nid(new_folio); 7343 7344 folio_set_hugetlb_temporary(old_folio); 7345 folio_clear_hugetlb_temporary(new_folio); 7346 7347 7348 /* 7349 * There is no need to transfer the per-node surplus state 7350 * when we do not cross the node. 7351 */ 7352 if (new_nid == old_nid) 7353 return; 7354 spin_lock_irq(&hugetlb_lock); 7355 if (h->surplus_huge_pages_node[old_nid]) { 7356 h->surplus_huge_pages_node[old_nid]--; 7357 h->surplus_huge_pages_node[new_nid]++; 7358 } 7359 spin_unlock_irq(&hugetlb_lock); 7360 } 7361 } 7362 7363 /* 7364 * This function will unconditionally remove all the shared pmd pgtable entries 7365 * within the specific vma for a hugetlbfs memory range. 7366 */ 7367 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7368 { 7369 struct hstate *h = hstate_vma(vma); 7370 unsigned long sz = huge_page_size(h); 7371 struct mm_struct *mm = vma->vm_mm; 7372 struct mmu_notifier_range range; 7373 unsigned long address, start, end; 7374 spinlock_t *ptl; 7375 pte_t *ptep; 7376 7377 if (!(vma->vm_flags & VM_MAYSHARE)) 7378 return; 7379 7380 start = ALIGN(vma->vm_start, PUD_SIZE); 7381 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 7382 7383 if (start >= end) 7384 return; 7385 7386 flush_cache_range(vma, start, end); 7387 /* 7388 * No need to call adjust_range_if_pmd_sharing_possible(), because 7389 * we have already done the PUD_SIZE alignment. 7390 */ 7391 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 7392 start, end); 7393 mmu_notifier_invalidate_range_start(&range); 7394 hugetlb_vma_lock_write(vma); 7395 i_mmap_lock_write(vma->vm_file->f_mapping); 7396 for (address = start; address < end; address += PUD_SIZE) { 7397 ptep = huge_pte_offset(mm, address, sz); 7398 if (!ptep) 7399 continue; 7400 ptl = huge_pte_lock(h, mm, ptep); 7401 huge_pmd_unshare(mm, vma, address, ptep); 7402 spin_unlock(ptl); 7403 } 7404 flush_hugetlb_tlb_range(vma, start, end); 7405 i_mmap_unlock_write(vma->vm_file->f_mapping); 7406 hugetlb_vma_unlock_write(vma); 7407 /* 7408 * No need to call mmu_notifier_invalidate_range(), see 7409 * Documentation/mm/mmu_notifier.rst. 7410 */ 7411 mmu_notifier_invalidate_range_end(&range); 7412 } 7413 7414 #ifdef CONFIG_CMA 7415 static bool cma_reserve_called __initdata; 7416 7417 static int __init cmdline_parse_hugetlb_cma(char *p) 7418 { 7419 int nid, count = 0; 7420 unsigned long tmp; 7421 char *s = p; 7422 7423 while (*s) { 7424 if (sscanf(s, "%lu%n", &tmp, &count) != 1) 7425 break; 7426 7427 if (s[count] == ':') { 7428 if (tmp >= MAX_NUMNODES) 7429 break; 7430 nid = array_index_nospec(tmp, MAX_NUMNODES); 7431 7432 s += count + 1; 7433 tmp = memparse(s, &s); 7434 hugetlb_cma_size_in_node[nid] = tmp; 7435 hugetlb_cma_size += tmp; 7436 7437 /* 7438 * Skip the separator if have one, otherwise 7439 * break the parsing. 7440 */ 7441 if (*s == ',') 7442 s++; 7443 else 7444 break; 7445 } else { 7446 hugetlb_cma_size = memparse(p, &p); 7447 break; 7448 } 7449 } 7450 7451 return 0; 7452 } 7453 7454 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); 7455 7456 void __init hugetlb_cma_reserve(int order) 7457 { 7458 unsigned long size, reserved, per_node; 7459 bool node_specific_cma_alloc = false; 7460 int nid; 7461 7462 cma_reserve_called = true; 7463 7464 if (!hugetlb_cma_size) 7465 return; 7466 7467 for (nid = 0; nid < MAX_NUMNODES; nid++) { 7468 if (hugetlb_cma_size_in_node[nid] == 0) 7469 continue; 7470 7471 if (!node_online(nid)) { 7472 pr_warn("hugetlb_cma: invalid node %d specified\n", nid); 7473 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7474 hugetlb_cma_size_in_node[nid] = 0; 7475 continue; 7476 } 7477 7478 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { 7479 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", 7480 nid, (PAGE_SIZE << order) / SZ_1M); 7481 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; 7482 hugetlb_cma_size_in_node[nid] = 0; 7483 } else { 7484 node_specific_cma_alloc = true; 7485 } 7486 } 7487 7488 /* Validate the CMA size again in case some invalid nodes specified. */ 7489 if (!hugetlb_cma_size) 7490 return; 7491 7492 if (hugetlb_cma_size < (PAGE_SIZE << order)) { 7493 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", 7494 (PAGE_SIZE << order) / SZ_1M); 7495 hugetlb_cma_size = 0; 7496 return; 7497 } 7498 7499 if (!node_specific_cma_alloc) { 7500 /* 7501 * If 3 GB area is requested on a machine with 4 numa nodes, 7502 * let's allocate 1 GB on first three nodes and ignore the last one. 7503 */ 7504 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); 7505 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", 7506 hugetlb_cma_size / SZ_1M, per_node / SZ_1M); 7507 } 7508 7509 reserved = 0; 7510 for_each_online_node(nid) { 7511 int res; 7512 char name[CMA_MAX_NAME]; 7513 7514 if (node_specific_cma_alloc) { 7515 if (hugetlb_cma_size_in_node[nid] == 0) 7516 continue; 7517 7518 size = hugetlb_cma_size_in_node[nid]; 7519 } else { 7520 size = min(per_node, hugetlb_cma_size - reserved); 7521 } 7522 7523 size = round_up(size, PAGE_SIZE << order); 7524 7525 snprintf(name, sizeof(name), "hugetlb%d", nid); 7526 /* 7527 * Note that 'order per bit' is based on smallest size that 7528 * may be returned to CMA allocator in the case of 7529 * huge page demotion. 7530 */ 7531 res = cma_declare_contiguous_nid(0, size, 0, 7532 PAGE_SIZE << HUGETLB_PAGE_ORDER, 7533 0, false, name, 7534 &hugetlb_cma[nid], nid); 7535 if (res) { 7536 pr_warn("hugetlb_cma: reservation failed: err %d, node %d", 7537 res, nid); 7538 continue; 7539 } 7540 7541 reserved += size; 7542 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", 7543 size / SZ_1M, nid); 7544 7545 if (reserved >= hugetlb_cma_size) 7546 break; 7547 } 7548 7549 if (!reserved) 7550 /* 7551 * hugetlb_cma_size is used to determine if allocations from 7552 * cma are possible. Set to zero if no cma regions are set up. 7553 */ 7554 hugetlb_cma_size = 0; 7555 } 7556 7557 static void __init hugetlb_cma_check(void) 7558 { 7559 if (!hugetlb_cma_size || cma_reserve_called) 7560 return; 7561 7562 pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); 7563 } 7564 7565 #endif /* CONFIG_CMA */ 7566