xref: /openbmc/linux/mm/hugetlb.c (revision 50fc8d92)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49 
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54 
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60 
61 __initdata LIST_HEAD(huge_boot_pages);
62 
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68 
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74 
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81 
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84 
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
88 
89 	spin_unlock(&spool->lock);
90 
91 	/* If no pages are used, and no other handles to the subpool
92 	 * remain, give up any reservations based on minimum size and
93 	 * free the subpool */
94 	if (free) {
95 		if (spool->min_hpages != -1)
96 			hugetlb_acct_memory(spool->hstate,
97 						-spool->min_hpages);
98 		kfree(spool);
99 	}
100 }
101 
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 						long min_hpages)
104 {
105 	struct hugepage_subpool *spool;
106 
107 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 	if (!spool)
109 		return NULL;
110 
111 	spin_lock_init(&spool->lock);
112 	spool->count = 1;
113 	spool->max_hpages = max_hpages;
114 	spool->hstate = h;
115 	spool->min_hpages = min_hpages;
116 
117 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 		kfree(spool);
119 		return NULL;
120 	}
121 	spool->rsv_hpages = min_hpages;
122 
123 	return spool;
124 }
125 
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128 	spin_lock(&spool->lock);
129 	BUG_ON(!spool->count);
130 	spool->count--;
131 	unlock_or_release_subpool(spool);
132 }
133 
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 				      long delta)
144 {
145 	long ret = delta;
146 
147 	if (!spool)
148 		return ret;
149 
150 	spin_lock(&spool->lock);
151 
152 	if (spool->max_hpages != -1) {		/* maximum size accounting */
153 		if ((spool->used_hpages + delta) <= spool->max_hpages)
154 			spool->used_hpages += delta;
155 		else {
156 			ret = -ENOMEM;
157 			goto unlock_ret;
158 		}
159 	}
160 
161 	/* minimum size accounting */
162 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 		if (delta > spool->rsv_hpages) {
164 			/*
165 			 * Asking for more reserves than those already taken on
166 			 * behalf of subpool.  Return difference.
167 			 */
168 			ret = delta - spool->rsv_hpages;
169 			spool->rsv_hpages = 0;
170 		} else {
171 			ret = 0;	/* reserves already accounted for */
172 			spool->rsv_hpages -= delta;
173 		}
174 	}
175 
176 unlock_ret:
177 	spin_unlock(&spool->lock);
178 	return ret;
179 }
180 
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 				       long delta)
189 {
190 	long ret = delta;
191 
192 	if (!spool)
193 		return delta;
194 
195 	spin_lock(&spool->lock);
196 
197 	if (spool->max_hpages != -1)		/* maximum size accounting */
198 		spool->used_hpages -= delta;
199 
200 	 /* minimum size accounting */
201 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 		if (spool->rsv_hpages + delta <= spool->min_hpages)
203 			ret = 0;
204 		else
205 			ret = spool->rsv_hpages + delta - spool->min_hpages;
206 
207 		spool->rsv_hpages += delta;
208 		if (spool->rsv_hpages > spool->min_hpages)
209 			spool->rsv_hpages = spool->min_hpages;
210 	}
211 
212 	/*
213 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 	 * quota reference, free it now.
215 	 */
216 	unlock_or_release_subpool(spool);
217 
218 	return ret;
219 }
220 
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 	return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225 
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 	return subpool_inode(file_inode(vma->vm_file));
229 }
230 
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237 	struct file_region *nrg = NULL;
238 
239 	VM_BUG_ON(resv->region_cache_count <= 0);
240 
241 	resv->region_cache_count--;
242 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 	list_del(&nrg->link);
244 
245 	nrg->from = from;
246 	nrg->to = to;
247 
248 	return nrg;
249 }
250 
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252 					      struct file_region *rg)
253 {
254 #ifdef CONFIG_CGROUP_HUGETLB
255 	nrg->reservation_counter = rg->reservation_counter;
256 	nrg->css = rg->css;
257 	if (rg->css)
258 		css_get(rg->css);
259 #endif
260 }
261 
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264 						struct hstate *h,
265 						struct resv_map *resv,
266 						struct file_region *nrg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269 	if (h_cg) {
270 		nrg->reservation_counter =
271 			&h_cg->rsvd_hugepage[hstate_index(h)];
272 		nrg->css = &h_cg->css;
273 		if (!resv->pages_per_hpage)
274 			resv->pages_per_hpage = pages_per_huge_page(h);
275 		/* pages_per_hpage should be the same for all entries in
276 		 * a resv_map.
277 		 */
278 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279 	} else {
280 		nrg->reservation_counter = NULL;
281 		nrg->css = NULL;
282 	}
283 #endif
284 }
285 
286 static bool has_same_uncharge_info(struct file_region *rg,
287 				   struct file_region *org)
288 {
289 #ifdef CONFIG_CGROUP_HUGETLB
290 	return rg && org &&
291 	       rg->reservation_counter == org->reservation_counter &&
292 	       rg->css == org->css;
293 
294 #else
295 	return true;
296 #endif
297 }
298 
299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300 {
301 	struct file_region *nrg = NULL, *prg = NULL;
302 
303 	prg = list_prev_entry(rg, link);
304 	if (&prg->link != &resv->regions && prg->to == rg->from &&
305 	    has_same_uncharge_info(prg, rg)) {
306 		prg->to = rg->to;
307 
308 		list_del(&rg->link);
309 		kfree(rg);
310 
311 		rg = prg;
312 	}
313 
314 	nrg = list_next_entry(rg, link);
315 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316 	    has_same_uncharge_info(nrg, rg)) {
317 		nrg->from = rg->from;
318 
319 		list_del(&rg->link);
320 		kfree(rg);
321 	}
322 }
323 
324 /*
325  * Must be called with resv->lock held.
326  *
327  * Calling this with regions_needed != NULL will count the number of pages
328  * to be added but will not modify the linked list. And regions_needed will
329  * indicate the number of file_regions needed in the cache to carry out to add
330  * the regions for this range.
331  */
332 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
333 				     struct hugetlb_cgroup *h_cg,
334 				     struct hstate *h, long *regions_needed)
335 {
336 	long add = 0;
337 	struct list_head *head = &resv->regions;
338 	long last_accounted_offset = f;
339 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340 
341 	if (regions_needed)
342 		*regions_needed = 0;
343 
344 	/* In this loop, we essentially handle an entry for the range
345 	 * [last_accounted_offset, rg->from), at every iteration, with some
346 	 * bounds checking.
347 	 */
348 	list_for_each_entry_safe(rg, trg, head, link) {
349 		/* Skip irrelevant regions that start before our range. */
350 		if (rg->from < f) {
351 			/* If this region ends after the last accounted offset,
352 			 * then we need to update last_accounted_offset.
353 			 */
354 			if (rg->to > last_accounted_offset)
355 				last_accounted_offset = rg->to;
356 			continue;
357 		}
358 
359 		/* When we find a region that starts beyond our range, we've
360 		 * finished.
361 		 */
362 		if (rg->from > t)
363 			break;
364 
365 		/* Add an entry for last_accounted_offset -> rg->from, and
366 		 * update last_accounted_offset.
367 		 */
368 		if (rg->from > last_accounted_offset) {
369 			add += rg->from - last_accounted_offset;
370 			if (!regions_needed) {
371 				nrg = get_file_region_entry_from_cache(
372 					resv, last_accounted_offset, rg->from);
373 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 								    resv, nrg);
375 				list_add(&nrg->link, rg->link.prev);
376 				coalesce_file_region(resv, nrg);
377 			} else
378 				*regions_needed += 1;
379 		}
380 
381 		last_accounted_offset = rg->to;
382 	}
383 
384 	/* Handle the case where our range extends beyond
385 	 * last_accounted_offset.
386 	 */
387 	if (last_accounted_offset < t) {
388 		add += t - last_accounted_offset;
389 		if (!regions_needed) {
390 			nrg = get_file_region_entry_from_cache(
391 				resv, last_accounted_offset, t);
392 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393 			list_add(&nrg->link, rg->link.prev);
394 			coalesce_file_region(resv, nrg);
395 		} else
396 			*regions_needed += 1;
397 	}
398 
399 	VM_BUG_ON(add < 0);
400 	return add;
401 }
402 
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406 					int regions_needed)
407 	__must_hold(&resv->lock)
408 {
409 	struct list_head allocated_regions;
410 	int to_allocate = 0, i = 0;
411 	struct file_region *trg = NULL, *rg = NULL;
412 
413 	VM_BUG_ON(regions_needed < 0);
414 
415 	INIT_LIST_HEAD(&allocated_regions);
416 
417 	/*
418 	 * Check for sufficient descriptors in the cache to accommodate
419 	 * the number of in progress add operations plus regions_needed.
420 	 *
421 	 * This is a while loop because when we drop the lock, some other call
422 	 * to region_add or region_del may have consumed some region_entries,
423 	 * so we keep looping here until we finally have enough entries for
424 	 * (adds_in_progress + regions_needed).
425 	 */
426 	while (resv->region_cache_count <
427 	       (resv->adds_in_progress + regions_needed)) {
428 		to_allocate = resv->adds_in_progress + regions_needed -
429 			      resv->region_cache_count;
430 
431 		/* At this point, we should have enough entries in the cache
432 		 * for all the existings adds_in_progress. We should only be
433 		 * needing to allocate for regions_needed.
434 		 */
435 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436 
437 		spin_unlock(&resv->lock);
438 		for (i = 0; i < to_allocate; i++) {
439 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 			if (!trg)
441 				goto out_of_memory;
442 			list_add(&trg->link, &allocated_regions);
443 		}
444 
445 		spin_lock(&resv->lock);
446 
447 		list_splice(&allocated_regions, &resv->region_cache);
448 		resv->region_cache_count += to_allocate;
449 	}
450 
451 	return 0;
452 
453 out_of_memory:
454 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455 		list_del(&rg->link);
456 		kfree(rg);
457 	}
458 	return -ENOMEM;
459 }
460 
461 /*
462  * Add the huge page range represented by [f, t) to the reserve
463  * map.  Regions will be taken from the cache to fill in this range.
464  * Sufficient regions should exist in the cache due to the previous
465  * call to region_chg with the same range, but in some cases the cache will not
466  * have sufficient entries due to races with other code doing region_add or
467  * region_del.  The extra needed entries will be allocated.
468  *
469  * regions_needed is the out value provided by a previous call to region_chg.
470  *
471  * Return the number of new huge pages added to the map.  This number is greater
472  * than or equal to zero.  If file_region entries needed to be allocated for
473  * this operation and we were not able to allocate, it returns -ENOMEM.
474  * region_add of regions of length 1 never allocate file_regions and cannot
475  * fail; region_chg will always allocate at least 1 entry and a region_add for
476  * 1 page will only require at most 1 entry.
477  */
478 static long region_add(struct resv_map *resv, long f, long t,
479 		       long in_regions_needed, struct hstate *h,
480 		       struct hugetlb_cgroup *h_cg)
481 {
482 	long add = 0, actual_regions_needed = 0;
483 
484 	spin_lock(&resv->lock);
485 retry:
486 
487 	/* Count how many regions are actually needed to execute this add. */
488 	add_reservation_in_range(resv, f, t, NULL, NULL,
489 				 &actual_regions_needed);
490 
491 	/*
492 	 * Check for sufficient descriptors in the cache to accommodate
493 	 * this add operation. Note that actual_regions_needed may be greater
494 	 * than in_regions_needed, as the resv_map may have been modified since
495 	 * the region_chg call. In this case, we need to make sure that we
496 	 * allocate extra entries, such that we have enough for all the
497 	 * existing adds_in_progress, plus the excess needed for this
498 	 * operation.
499 	 */
500 	if (actual_regions_needed > in_regions_needed &&
501 	    resv->region_cache_count <
502 		    resv->adds_in_progress +
503 			    (actual_regions_needed - in_regions_needed)) {
504 		/* region_add operation of range 1 should never need to
505 		 * allocate file_region entries.
506 		 */
507 		VM_BUG_ON(t - f <= 1);
508 
509 		if (allocate_file_region_entries(
510 			    resv, actual_regions_needed - in_regions_needed)) {
511 			return -ENOMEM;
512 		}
513 
514 		goto retry;
515 	}
516 
517 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
518 
519 	resv->adds_in_progress -= in_regions_needed;
520 
521 	spin_unlock(&resv->lock);
522 	VM_BUG_ON(add < 0);
523 	return add;
524 }
525 
526 /*
527  * Examine the existing reserve map and determine how many
528  * huge pages in the specified range [f, t) are NOT currently
529  * represented.  This routine is called before a subsequent
530  * call to region_add that will actually modify the reserve
531  * map to add the specified range [f, t).  region_chg does
532  * not change the number of huge pages represented by the
533  * map.  A number of new file_region structures is added to the cache as a
534  * placeholder, for the subsequent region_add call to use. At least 1
535  * file_region structure is added.
536  *
537  * out_regions_needed is the number of regions added to the
538  * resv->adds_in_progress.  This value needs to be provided to a follow up call
539  * to region_add or region_abort for proper accounting.
540  *
541  * Returns the number of huge pages that need to be added to the existing
542  * reservation map for the range [f, t).  This number is greater or equal to
543  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
544  * is needed and can not be allocated.
545  */
546 static long region_chg(struct resv_map *resv, long f, long t,
547 		       long *out_regions_needed)
548 {
549 	long chg = 0;
550 
551 	spin_lock(&resv->lock);
552 
553 	/* Count how many hugepages in this range are NOT represented. */
554 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
555 				       out_regions_needed);
556 
557 	if (*out_regions_needed == 0)
558 		*out_regions_needed = 1;
559 
560 	if (allocate_file_region_entries(resv, *out_regions_needed))
561 		return -ENOMEM;
562 
563 	resv->adds_in_progress += *out_regions_needed;
564 
565 	spin_unlock(&resv->lock);
566 	return chg;
567 }
568 
569 /*
570  * Abort the in progress add operation.  The adds_in_progress field
571  * of the resv_map keeps track of the operations in progress between
572  * calls to region_chg and region_add.  Operations are sometimes
573  * aborted after the call to region_chg.  In such cases, region_abort
574  * is called to decrement the adds_in_progress counter. regions_needed
575  * is the value returned by the region_chg call, it is used to decrement
576  * the adds_in_progress counter.
577  *
578  * NOTE: The range arguments [f, t) are not needed or used in this
579  * routine.  They are kept to make reading the calling code easier as
580  * arguments will match the associated region_chg call.
581  */
582 static void region_abort(struct resv_map *resv, long f, long t,
583 			 long regions_needed)
584 {
585 	spin_lock(&resv->lock);
586 	VM_BUG_ON(!resv->region_cache_count);
587 	resv->adds_in_progress -= regions_needed;
588 	spin_unlock(&resv->lock);
589 }
590 
591 /*
592  * Delete the specified range [f, t) from the reserve map.  If the
593  * t parameter is LONG_MAX, this indicates that ALL regions after f
594  * should be deleted.  Locate the regions which intersect [f, t)
595  * and either trim, delete or split the existing regions.
596  *
597  * Returns the number of huge pages deleted from the reserve map.
598  * In the normal case, the return value is zero or more.  In the
599  * case where a region must be split, a new region descriptor must
600  * be allocated.  If the allocation fails, -ENOMEM will be returned.
601  * NOTE: If the parameter t == LONG_MAX, then we will never split
602  * a region and possibly return -ENOMEM.  Callers specifying
603  * t == LONG_MAX do not need to check for -ENOMEM error.
604  */
605 static long region_del(struct resv_map *resv, long f, long t)
606 {
607 	struct list_head *head = &resv->regions;
608 	struct file_region *rg, *trg;
609 	struct file_region *nrg = NULL;
610 	long del = 0;
611 
612 retry:
613 	spin_lock(&resv->lock);
614 	list_for_each_entry_safe(rg, trg, head, link) {
615 		/*
616 		 * Skip regions before the range to be deleted.  file_region
617 		 * ranges are normally of the form [from, to).  However, there
618 		 * may be a "placeholder" entry in the map which is of the form
619 		 * (from, to) with from == to.  Check for placeholder entries
620 		 * at the beginning of the range to be deleted.
621 		 */
622 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
623 			continue;
624 
625 		if (rg->from >= t)
626 			break;
627 
628 		if (f > rg->from && t < rg->to) { /* Must split region */
629 			/*
630 			 * Check for an entry in the cache before dropping
631 			 * lock and attempting allocation.
632 			 */
633 			if (!nrg &&
634 			    resv->region_cache_count > resv->adds_in_progress) {
635 				nrg = list_first_entry(&resv->region_cache,
636 							struct file_region,
637 							link);
638 				list_del(&nrg->link);
639 				resv->region_cache_count--;
640 			}
641 
642 			if (!nrg) {
643 				spin_unlock(&resv->lock);
644 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645 				if (!nrg)
646 					return -ENOMEM;
647 				goto retry;
648 			}
649 
650 			del += t - f;
651 			hugetlb_cgroup_uncharge_file_region(
652 				resv, rg, t - f);
653 
654 			/* New entry for end of split region */
655 			nrg->from = t;
656 			nrg->to = rg->to;
657 
658 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
659 
660 			INIT_LIST_HEAD(&nrg->link);
661 
662 			/* Original entry is trimmed */
663 			rg->to = f;
664 
665 			list_add(&nrg->link, &rg->link);
666 			nrg = NULL;
667 			break;
668 		}
669 
670 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671 			del += rg->to - rg->from;
672 			hugetlb_cgroup_uncharge_file_region(resv, rg,
673 							    rg->to - rg->from);
674 			list_del(&rg->link);
675 			kfree(rg);
676 			continue;
677 		}
678 
679 		if (f <= rg->from) {	/* Trim beginning of region */
680 			hugetlb_cgroup_uncharge_file_region(resv, rg,
681 							    t - rg->from);
682 
683 			del += t - rg->from;
684 			rg->from = t;
685 		} else {		/* Trim end of region */
686 			hugetlb_cgroup_uncharge_file_region(resv, rg,
687 							    rg->to - f);
688 
689 			del += rg->to - f;
690 			rg->to = f;
691 		}
692 	}
693 
694 	spin_unlock(&resv->lock);
695 	kfree(nrg);
696 	return del;
697 }
698 
699 /*
700  * A rare out of memory error was encountered which prevented removal of
701  * the reserve map region for a page.  The huge page itself was free'ed
702  * and removed from the page cache.  This routine will adjust the subpool
703  * usage count, and the global reserve count if needed.  By incrementing
704  * these counts, the reserve map entry which could not be deleted will
705  * appear as a "reserved" entry instead of simply dangling with incorrect
706  * counts.
707  */
708 void hugetlb_fix_reserve_counts(struct inode *inode)
709 {
710 	struct hugepage_subpool *spool = subpool_inode(inode);
711 	long rsv_adjust;
712 
713 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
714 	if (rsv_adjust) {
715 		struct hstate *h = hstate_inode(inode);
716 
717 		hugetlb_acct_memory(h, 1);
718 	}
719 }
720 
721 /*
722  * Count and return the number of huge pages in the reserve map
723  * that intersect with the range [f, t).
724  */
725 static long region_count(struct resv_map *resv, long f, long t)
726 {
727 	struct list_head *head = &resv->regions;
728 	struct file_region *rg;
729 	long chg = 0;
730 
731 	spin_lock(&resv->lock);
732 	/* Locate each segment we overlap with, and count that overlap. */
733 	list_for_each_entry(rg, head, link) {
734 		long seg_from;
735 		long seg_to;
736 
737 		if (rg->to <= f)
738 			continue;
739 		if (rg->from >= t)
740 			break;
741 
742 		seg_from = max(rg->from, f);
743 		seg_to = min(rg->to, t);
744 
745 		chg += seg_to - seg_from;
746 	}
747 	spin_unlock(&resv->lock);
748 
749 	return chg;
750 }
751 
752 /*
753  * Convert the address within this vma to the page offset within
754  * the mapping, in pagecache page units; huge pages here.
755  */
756 static pgoff_t vma_hugecache_offset(struct hstate *h,
757 			struct vm_area_struct *vma, unsigned long address)
758 {
759 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
760 			(vma->vm_pgoff >> huge_page_order(h));
761 }
762 
763 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764 				     unsigned long address)
765 {
766 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
767 }
768 EXPORT_SYMBOL_GPL(linear_hugepage_index);
769 
770 /*
771  * Return the size of the pages allocated when backing a VMA. In the majority
772  * cases this will be same size as used by the page table entries.
773  */
774 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
775 {
776 	if (vma->vm_ops && vma->vm_ops->pagesize)
777 		return vma->vm_ops->pagesize(vma);
778 	return PAGE_SIZE;
779 }
780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
781 
782 /*
783  * Return the page size being used by the MMU to back a VMA. In the majority
784  * of cases, the page size used by the kernel matches the MMU size. On
785  * architectures where it differs, an architecture-specific 'strong'
786  * version of this symbol is required.
787  */
788 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
789 {
790 	return vma_kernel_pagesize(vma);
791 }
792 
793 /*
794  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
795  * bits of the reservation map pointer, which are always clear due to
796  * alignment.
797  */
798 #define HPAGE_RESV_OWNER    (1UL << 0)
799 #define HPAGE_RESV_UNMAPPED (1UL << 1)
800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
801 
802 /*
803  * These helpers are used to track how many pages are reserved for
804  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805  * is guaranteed to have their future faults succeed.
806  *
807  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808  * the reserve counters are updated with the hugetlb_lock held. It is safe
809  * to reset the VMA at fork() time as it is not in use yet and there is no
810  * chance of the global counters getting corrupted as a result of the values.
811  *
812  * The private mapping reservation is represented in a subtly different
813  * manner to a shared mapping.  A shared mapping has a region map associated
814  * with the underlying file, this region map represents the backing file
815  * pages which have ever had a reservation assigned which this persists even
816  * after the page is instantiated.  A private mapping has a region map
817  * associated with the original mmap which is attached to all VMAs which
818  * reference it, this region map represents those offsets which have consumed
819  * reservation ie. where pages have been instantiated.
820  */
821 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
822 {
823 	return (unsigned long)vma->vm_private_data;
824 }
825 
826 static void set_vma_private_data(struct vm_area_struct *vma,
827 							unsigned long value)
828 {
829 	vma->vm_private_data = (void *)value;
830 }
831 
832 static void
833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834 					  struct hugetlb_cgroup *h_cg,
835 					  struct hstate *h)
836 {
837 #ifdef CONFIG_CGROUP_HUGETLB
838 	if (!h_cg || !h) {
839 		resv_map->reservation_counter = NULL;
840 		resv_map->pages_per_hpage = 0;
841 		resv_map->css = NULL;
842 	} else {
843 		resv_map->reservation_counter =
844 			&h_cg->rsvd_hugepage[hstate_index(h)];
845 		resv_map->pages_per_hpage = pages_per_huge_page(h);
846 		resv_map->css = &h_cg->css;
847 	}
848 #endif
849 }
850 
851 struct resv_map *resv_map_alloc(void)
852 {
853 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
854 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
855 
856 	if (!resv_map || !rg) {
857 		kfree(resv_map);
858 		kfree(rg);
859 		return NULL;
860 	}
861 
862 	kref_init(&resv_map->refs);
863 	spin_lock_init(&resv_map->lock);
864 	INIT_LIST_HEAD(&resv_map->regions);
865 
866 	resv_map->adds_in_progress = 0;
867 	/*
868 	 * Initialize these to 0. On shared mappings, 0's here indicate these
869 	 * fields don't do cgroup accounting. On private mappings, these will be
870 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 	 * reservations are to be un-charged from here.
872 	 */
873 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
874 
875 	INIT_LIST_HEAD(&resv_map->region_cache);
876 	list_add(&rg->link, &resv_map->region_cache);
877 	resv_map->region_cache_count = 1;
878 
879 	return resv_map;
880 }
881 
882 void resv_map_release(struct kref *ref)
883 {
884 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
885 	struct list_head *head = &resv_map->region_cache;
886 	struct file_region *rg, *trg;
887 
888 	/* Clear out any active regions before we release the map. */
889 	region_del(resv_map, 0, LONG_MAX);
890 
891 	/* ... and any entries left in the cache */
892 	list_for_each_entry_safe(rg, trg, head, link) {
893 		list_del(&rg->link);
894 		kfree(rg);
895 	}
896 
897 	VM_BUG_ON(resv_map->adds_in_progress);
898 
899 	kfree(resv_map);
900 }
901 
902 static inline struct resv_map *inode_resv_map(struct inode *inode)
903 {
904 	/*
905 	 * At inode evict time, i_mapping may not point to the original
906 	 * address space within the inode.  This original address space
907 	 * contains the pointer to the resv_map.  So, always use the
908 	 * address space embedded within the inode.
909 	 * The VERY common case is inode->mapping == &inode->i_data but,
910 	 * this may not be true for device special inodes.
911 	 */
912 	return (struct resv_map *)(&inode->i_data)->private_data;
913 }
914 
915 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
916 {
917 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
918 	if (vma->vm_flags & VM_MAYSHARE) {
919 		struct address_space *mapping = vma->vm_file->f_mapping;
920 		struct inode *inode = mapping->host;
921 
922 		return inode_resv_map(inode);
923 
924 	} else {
925 		return (struct resv_map *)(get_vma_private_data(vma) &
926 							~HPAGE_RESV_MASK);
927 	}
928 }
929 
930 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
931 {
932 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
934 
935 	set_vma_private_data(vma, (get_vma_private_data(vma) &
936 				HPAGE_RESV_MASK) | (unsigned long)map);
937 }
938 
939 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
940 {
941 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
943 
944 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
945 }
946 
947 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
948 {
949 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 
951 	return (get_vma_private_data(vma) & flag) != 0;
952 }
953 
954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
955 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
956 {
957 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 	if (!(vma->vm_flags & VM_MAYSHARE))
959 		vma->vm_private_data = (void *)0;
960 }
961 
962 /* Returns true if the VMA has associated reserve pages */
963 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
964 {
965 	if (vma->vm_flags & VM_NORESERVE) {
966 		/*
967 		 * This address is already reserved by other process(chg == 0),
968 		 * so, we should decrement reserved count. Without decrementing,
969 		 * reserve count remains after releasing inode, because this
970 		 * allocated page will go into page cache and is regarded as
971 		 * coming from reserved pool in releasing step.  Currently, we
972 		 * don't have any other solution to deal with this situation
973 		 * properly, so add work-around here.
974 		 */
975 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
976 			return true;
977 		else
978 			return false;
979 	}
980 
981 	/* Shared mappings always use reserves */
982 	if (vma->vm_flags & VM_MAYSHARE) {
983 		/*
984 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
985 		 * be a region map for all pages.  The only situation where
986 		 * there is no region map is if a hole was punched via
987 		 * fallocate.  In this case, there really are no reserves to
988 		 * use.  This situation is indicated if chg != 0.
989 		 */
990 		if (chg)
991 			return false;
992 		else
993 			return true;
994 	}
995 
996 	/*
997 	 * Only the process that called mmap() has reserves for
998 	 * private mappings.
999 	 */
1000 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001 		/*
1002 		 * Like the shared case above, a hole punch or truncate
1003 		 * could have been performed on the private mapping.
1004 		 * Examine the value of chg to determine if reserves
1005 		 * actually exist or were previously consumed.
1006 		 * Very Subtle - The value of chg comes from a previous
1007 		 * call to vma_needs_reserves().  The reserve map for
1008 		 * private mappings has different (opposite) semantics
1009 		 * than that of shared mappings.  vma_needs_reserves()
1010 		 * has already taken this difference in semantics into
1011 		 * account.  Therefore, the meaning of chg is the same
1012 		 * as in the shared case above.  Code could easily be
1013 		 * combined, but keeping it separate draws attention to
1014 		 * subtle differences.
1015 		 */
1016 		if (chg)
1017 			return false;
1018 		else
1019 			return true;
1020 	}
1021 
1022 	return false;
1023 }
1024 
1025 static void enqueue_huge_page(struct hstate *h, struct page *page)
1026 {
1027 	int nid = page_to_nid(page);
1028 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1029 	h->free_huge_pages++;
1030 	h->free_huge_pages_node[nid]++;
1031 }
1032 
1033 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1034 {
1035 	struct page *page;
1036 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1037 
1038 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1039 		if (nocma && is_migrate_cma_page(page))
1040 			continue;
1041 
1042 		if (PageHWPoison(page))
1043 			continue;
1044 
1045 		list_move(&page->lru, &h->hugepage_activelist);
1046 		set_page_refcounted(page);
1047 		h->free_huge_pages--;
1048 		h->free_huge_pages_node[nid]--;
1049 		return page;
1050 	}
1051 
1052 	return NULL;
1053 }
1054 
1055 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1056 		nodemask_t *nmask)
1057 {
1058 	unsigned int cpuset_mems_cookie;
1059 	struct zonelist *zonelist;
1060 	struct zone *zone;
1061 	struct zoneref *z;
1062 	int node = NUMA_NO_NODE;
1063 
1064 	zonelist = node_zonelist(nid, gfp_mask);
1065 
1066 retry_cpuset:
1067 	cpuset_mems_cookie = read_mems_allowed_begin();
1068 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1069 		struct page *page;
1070 
1071 		if (!cpuset_zone_allowed(zone, gfp_mask))
1072 			continue;
1073 		/*
1074 		 * no need to ask again on the same node. Pool is node rather than
1075 		 * zone aware
1076 		 */
1077 		if (zone_to_nid(zone) == node)
1078 			continue;
1079 		node = zone_to_nid(zone);
1080 
1081 		page = dequeue_huge_page_node_exact(h, node);
1082 		if (page)
1083 			return page;
1084 	}
1085 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1086 		goto retry_cpuset;
1087 
1088 	return NULL;
1089 }
1090 
1091 static struct page *dequeue_huge_page_vma(struct hstate *h,
1092 				struct vm_area_struct *vma,
1093 				unsigned long address, int avoid_reserve,
1094 				long chg)
1095 {
1096 	struct page *page;
1097 	struct mempolicy *mpol;
1098 	gfp_t gfp_mask;
1099 	nodemask_t *nodemask;
1100 	int nid;
1101 
1102 	/*
1103 	 * A child process with MAP_PRIVATE mappings created by their parent
1104 	 * have no page reserves. This check ensures that reservations are
1105 	 * not "stolen". The child may still get SIGKILLed
1106 	 */
1107 	if (!vma_has_reserves(vma, chg) &&
1108 			h->free_huge_pages - h->resv_huge_pages == 0)
1109 		goto err;
1110 
1111 	/* If reserves cannot be used, ensure enough pages are in the pool */
1112 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1113 		goto err;
1114 
1115 	gfp_mask = htlb_alloc_mask(h);
1116 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1117 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1118 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1119 		SetPagePrivate(page);
1120 		h->resv_huge_pages--;
1121 	}
1122 
1123 	mpol_cond_put(mpol);
1124 	return page;
1125 
1126 err:
1127 	return NULL;
1128 }
1129 
1130 /*
1131  * common helper functions for hstate_next_node_to_{alloc|free}.
1132  * We may have allocated or freed a huge page based on a different
1133  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1134  * be outside of *nodes_allowed.  Ensure that we use an allowed
1135  * node for alloc or free.
1136  */
1137 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1138 {
1139 	nid = next_node_in(nid, *nodes_allowed);
1140 	VM_BUG_ON(nid >= MAX_NUMNODES);
1141 
1142 	return nid;
1143 }
1144 
1145 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1146 {
1147 	if (!node_isset(nid, *nodes_allowed))
1148 		nid = next_node_allowed(nid, nodes_allowed);
1149 	return nid;
1150 }
1151 
1152 /*
1153  * returns the previously saved node ["this node"] from which to
1154  * allocate a persistent huge page for the pool and advance the
1155  * next node from which to allocate, handling wrap at end of node
1156  * mask.
1157  */
1158 static int hstate_next_node_to_alloc(struct hstate *h,
1159 					nodemask_t *nodes_allowed)
1160 {
1161 	int nid;
1162 
1163 	VM_BUG_ON(!nodes_allowed);
1164 
1165 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1166 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1167 
1168 	return nid;
1169 }
1170 
1171 /*
1172  * helper for free_pool_huge_page() - return the previously saved
1173  * node ["this node"] from which to free a huge page.  Advance the
1174  * next node id whether or not we find a free huge page to free so
1175  * that the next attempt to free addresses the next node.
1176  */
1177 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1178 {
1179 	int nid;
1180 
1181 	VM_BUG_ON(!nodes_allowed);
1182 
1183 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1184 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1185 
1186 	return nid;
1187 }
1188 
1189 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1190 	for (nr_nodes = nodes_weight(*mask);				\
1191 		nr_nodes > 0 &&						\
1192 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1193 		nr_nodes--)
1194 
1195 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1196 	for (nr_nodes = nodes_weight(*mask);				\
1197 		nr_nodes > 0 &&						\
1198 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1199 		nr_nodes--)
1200 
1201 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1202 static void destroy_compound_gigantic_page(struct page *page,
1203 					unsigned int order)
1204 {
1205 	int i;
1206 	int nr_pages = 1 << order;
1207 	struct page *p = page + 1;
1208 
1209 	atomic_set(compound_mapcount_ptr(page), 0);
1210 	if (hpage_pincount_available(page))
1211 		atomic_set(compound_pincount_ptr(page), 0);
1212 
1213 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1214 		clear_compound_head(p);
1215 		set_page_refcounted(p);
1216 	}
1217 
1218 	set_compound_order(page, 0);
1219 	page[1].compound_nr = 0;
1220 	__ClearPageHead(page);
1221 }
1222 
1223 static void free_gigantic_page(struct page *page, unsigned int order)
1224 {
1225 	/*
1226 	 * If the page isn't allocated using the cma allocator,
1227 	 * cma_release() returns false.
1228 	 */
1229 #ifdef CONFIG_CMA
1230 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1231 		return;
1232 #endif
1233 
1234 	free_contig_range(page_to_pfn(page), 1 << order);
1235 }
1236 
1237 #ifdef CONFIG_CONTIG_ALLOC
1238 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1239 		int nid, nodemask_t *nodemask)
1240 {
1241 	unsigned long nr_pages = 1UL << huge_page_order(h);
1242 	if (nid == NUMA_NO_NODE)
1243 		nid = numa_mem_id();
1244 
1245 #ifdef CONFIG_CMA
1246 	{
1247 		struct page *page;
1248 		int node;
1249 
1250 		if (hugetlb_cma[nid]) {
1251 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1252 					huge_page_order(h), true);
1253 			if (page)
1254 				return page;
1255 		}
1256 
1257 		if (!(gfp_mask & __GFP_THISNODE)) {
1258 			for_each_node_mask(node, *nodemask) {
1259 				if (node == nid || !hugetlb_cma[node])
1260 					continue;
1261 
1262 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1263 						huge_page_order(h), true);
1264 				if (page)
1265 					return page;
1266 			}
1267 		}
1268 	}
1269 #endif
1270 
1271 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1272 }
1273 
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276 #else /* !CONFIG_CONTIG_ALLOC */
1277 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278 					int nid, nodemask_t *nodemask)
1279 {
1280 	return NULL;
1281 }
1282 #endif /* CONFIG_CONTIG_ALLOC */
1283 
1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 					int nid, nodemask_t *nodemask)
1287 {
1288 	return NULL;
1289 }
1290 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291 static inline void destroy_compound_gigantic_page(struct page *page,
1292 						unsigned int order) { }
1293 #endif
1294 
1295 static void update_and_free_page(struct hstate *h, struct page *page)
1296 {
1297 	int i;
1298 
1299 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300 		return;
1301 
1302 	h->nr_huge_pages--;
1303 	h->nr_huge_pages_node[page_to_nid(page)]--;
1304 	for (i = 0; i < pages_per_huge_page(h); i++) {
1305 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306 				1 << PG_referenced | 1 << PG_dirty |
1307 				1 << PG_active | 1 << PG_private |
1308 				1 << PG_writeback);
1309 	}
1310 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1313 	set_page_refcounted(page);
1314 	if (hstate_is_gigantic(h)) {
1315 		/*
1316 		 * Temporarily drop the hugetlb_lock, because
1317 		 * we might block in free_gigantic_page().
1318 		 */
1319 		spin_unlock(&hugetlb_lock);
1320 		destroy_compound_gigantic_page(page, huge_page_order(h));
1321 		free_gigantic_page(page, huge_page_order(h));
1322 		spin_lock(&hugetlb_lock);
1323 	} else {
1324 		__free_pages(page, huge_page_order(h));
1325 	}
1326 }
1327 
1328 struct hstate *size_to_hstate(unsigned long size)
1329 {
1330 	struct hstate *h;
1331 
1332 	for_each_hstate(h) {
1333 		if (huge_page_size(h) == size)
1334 			return h;
1335 	}
1336 	return NULL;
1337 }
1338 
1339 /*
1340  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341  * to hstate->hugepage_activelist.)
1342  *
1343  * This function can be called for tail pages, but never returns true for them.
1344  */
1345 bool page_huge_active(struct page *page)
1346 {
1347 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1348 	return PageHead(page) && PagePrivate(&page[1]);
1349 }
1350 
1351 /* never called for tail page */
1352 static void set_page_huge_active(struct page *page)
1353 {
1354 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355 	SetPagePrivate(&page[1]);
1356 }
1357 
1358 static void clear_page_huge_active(struct page *page)
1359 {
1360 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361 	ClearPagePrivate(&page[1]);
1362 }
1363 
1364 /*
1365  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366  * code
1367  */
1368 static inline bool PageHugeTemporary(struct page *page)
1369 {
1370 	if (!PageHuge(page))
1371 		return false;
1372 
1373 	return (unsigned long)page[2].mapping == -1U;
1374 }
1375 
1376 static inline void SetPageHugeTemporary(struct page *page)
1377 {
1378 	page[2].mapping = (void *)-1U;
1379 }
1380 
1381 static inline void ClearPageHugeTemporary(struct page *page)
1382 {
1383 	page[2].mapping = NULL;
1384 }
1385 
1386 static void __free_huge_page(struct page *page)
1387 {
1388 	/*
1389 	 * Can't pass hstate in here because it is called from the
1390 	 * compound page destructor.
1391 	 */
1392 	struct hstate *h = page_hstate(page);
1393 	int nid = page_to_nid(page);
1394 	struct hugepage_subpool *spool =
1395 		(struct hugepage_subpool *)page_private(page);
1396 	bool restore_reserve;
1397 
1398 	VM_BUG_ON_PAGE(page_count(page), page);
1399 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1400 
1401 	set_page_private(page, 0);
1402 	page->mapping = NULL;
1403 	restore_reserve = PagePrivate(page);
1404 	ClearPagePrivate(page);
1405 
1406 	/*
1407 	 * If PagePrivate() was set on page, page allocation consumed a
1408 	 * reservation.  If the page was associated with a subpool, there
1409 	 * would have been a page reserved in the subpool before allocation
1410 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1411 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1412 	 * remove the reserved page from the subpool.
1413 	 */
1414 	if (!restore_reserve) {
1415 		/*
1416 		 * A return code of zero implies that the subpool will be
1417 		 * under its minimum size if the reservation is not restored
1418 		 * after page is free.  Therefore, force restore_reserve
1419 		 * operation.
1420 		 */
1421 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1422 			restore_reserve = true;
1423 	}
1424 
1425 	spin_lock(&hugetlb_lock);
1426 	clear_page_huge_active(page);
1427 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1428 				     pages_per_huge_page(h), page);
1429 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430 					  pages_per_huge_page(h), page);
1431 	if (restore_reserve)
1432 		h->resv_huge_pages++;
1433 
1434 	if (PageHugeTemporary(page)) {
1435 		list_del(&page->lru);
1436 		ClearPageHugeTemporary(page);
1437 		update_and_free_page(h, page);
1438 	} else if (h->surplus_huge_pages_node[nid]) {
1439 		/* remove the page from active list */
1440 		list_del(&page->lru);
1441 		update_and_free_page(h, page);
1442 		h->surplus_huge_pages--;
1443 		h->surplus_huge_pages_node[nid]--;
1444 	} else {
1445 		arch_clear_hugepage_flags(page);
1446 		enqueue_huge_page(h, page);
1447 	}
1448 	spin_unlock(&hugetlb_lock);
1449 }
1450 
1451 /*
1452  * As free_huge_page() can be called from a non-task context, we have
1453  * to defer the actual freeing in a workqueue to prevent potential
1454  * hugetlb_lock deadlock.
1455  *
1456  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457  * be freed and frees them one-by-one. As the page->mapping pointer is
1458  * going to be cleared in __free_huge_page() anyway, it is reused as the
1459  * llist_node structure of a lockless linked list of huge pages to be freed.
1460  */
1461 static LLIST_HEAD(hpage_freelist);
1462 
1463 static void free_hpage_workfn(struct work_struct *work)
1464 {
1465 	struct llist_node *node;
1466 	struct page *page;
1467 
1468 	node = llist_del_all(&hpage_freelist);
1469 
1470 	while (node) {
1471 		page = container_of((struct address_space **)node,
1472 				     struct page, mapping);
1473 		node = node->next;
1474 		__free_huge_page(page);
1475 	}
1476 }
1477 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1478 
1479 void free_huge_page(struct page *page)
1480 {
1481 	/*
1482 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1483 	 */
1484 	if (!in_task()) {
1485 		/*
1486 		 * Only call schedule_work() if hpage_freelist is previously
1487 		 * empty. Otherwise, schedule_work() had been called but the
1488 		 * workfn hasn't retrieved the list yet.
1489 		 */
1490 		if (llist_add((struct llist_node *)&page->mapping,
1491 			      &hpage_freelist))
1492 			schedule_work(&free_hpage_work);
1493 		return;
1494 	}
1495 
1496 	__free_huge_page(page);
1497 }
1498 
1499 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1500 {
1501 	INIT_LIST_HEAD(&page->lru);
1502 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503 	set_hugetlb_cgroup(page, NULL);
1504 	set_hugetlb_cgroup_rsvd(page, NULL);
1505 	spin_lock(&hugetlb_lock);
1506 	h->nr_huge_pages++;
1507 	h->nr_huge_pages_node[nid]++;
1508 	spin_unlock(&hugetlb_lock);
1509 }
1510 
1511 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1512 {
1513 	int i;
1514 	int nr_pages = 1 << order;
1515 	struct page *p = page + 1;
1516 
1517 	/* we rely on prep_new_huge_page to set the destructor */
1518 	set_compound_order(page, order);
1519 	__ClearPageReserved(page);
1520 	__SetPageHead(page);
1521 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1522 		/*
1523 		 * For gigantic hugepages allocated through bootmem at
1524 		 * boot, it's safer to be consistent with the not-gigantic
1525 		 * hugepages and clear the PG_reserved bit from all tail pages
1526 		 * too.  Otherwise drivers using get_user_pages() to access tail
1527 		 * pages may get the reference counting wrong if they see
1528 		 * PG_reserved set on a tail page (despite the head page not
1529 		 * having PG_reserved set).  Enforcing this consistency between
1530 		 * head and tail pages allows drivers to optimize away a check
1531 		 * on the head page when they need know if put_page() is needed
1532 		 * after get_user_pages().
1533 		 */
1534 		__ClearPageReserved(p);
1535 		set_page_count(p, 0);
1536 		set_compound_head(p, page);
1537 	}
1538 	atomic_set(compound_mapcount_ptr(page), -1);
1539 
1540 	if (hpage_pincount_available(page))
1541 		atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543 
1544 /*
1545  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546  * transparent huge pages.  See the PageTransHuge() documentation for more
1547  * details.
1548  */
1549 int PageHuge(struct page *page)
1550 {
1551 	if (!PageCompound(page))
1552 		return 0;
1553 
1554 	page = compound_head(page);
1555 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558 
1559 /*
1560  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561  * normal or transparent huge pages.
1562  */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565 	if (!PageHead(page_head))
1566 		return 0;
1567 
1568 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570 
1571 /*
1572  * Find and lock address space (mapping) in write mode.
1573  *
1574  * Upon entry, the page is locked which means that page_mapping() is
1575  * stable.  Due to locking order, we can only trylock_write.  If we can
1576  * not get the lock, simply return NULL to caller.
1577  */
1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579 {
1580 	struct address_space *mapping = page_mapping(hpage);
1581 
1582 	if (!mapping)
1583 		return mapping;
1584 
1585 	if (i_mmap_trylock_write(mapping))
1586 		return mapping;
1587 
1588 	return NULL;
1589 }
1590 
1591 pgoff_t __basepage_index(struct page *page)
1592 {
1593 	struct page *page_head = compound_head(page);
1594 	pgoff_t index = page_index(page_head);
1595 	unsigned long compound_idx;
1596 
1597 	if (!PageHuge(page_head))
1598 		return page_index(page);
1599 
1600 	if (compound_order(page_head) >= MAX_ORDER)
1601 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602 	else
1603 		compound_idx = page - page_head;
1604 
1605 	return (index << compound_order(page_head)) + compound_idx;
1606 }
1607 
1608 static struct page *alloc_buddy_huge_page(struct hstate *h,
1609 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610 		nodemask_t *node_alloc_noretry)
1611 {
1612 	int order = huge_page_order(h);
1613 	struct page *page;
1614 	bool alloc_try_hard = true;
1615 
1616 	/*
1617 	 * By default we always try hard to allocate the page with
1618 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1619 	 * a loop (to adjust global huge page counts) and previous allocation
1620 	 * failed, do not continue to try hard on the same node.  Use the
1621 	 * node_alloc_noretry bitmap to manage this state information.
1622 	 */
1623 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624 		alloc_try_hard = false;
1625 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626 	if (alloc_try_hard)
1627 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1628 	if (nid == NUMA_NO_NODE)
1629 		nid = numa_mem_id();
1630 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1631 	if (page)
1632 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1633 	else
1634 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1635 
1636 	/*
1637 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 	 * indicates an overall state change.  Clear bit so that we resume
1639 	 * normal 'try hard' allocations.
1640 	 */
1641 	if (node_alloc_noretry && page && !alloc_try_hard)
1642 		node_clear(nid, *node_alloc_noretry);
1643 
1644 	/*
1645 	 * If we tried hard to get a page but failed, set bit so that
1646 	 * subsequent attempts will not try as hard until there is an
1647 	 * overall state change.
1648 	 */
1649 	if (node_alloc_noretry && !page && alloc_try_hard)
1650 		node_set(nid, *node_alloc_noretry);
1651 
1652 	return page;
1653 }
1654 
1655 /*
1656  * Common helper to allocate a fresh hugetlb page. All specific allocators
1657  * should use this function to get new hugetlb pages
1658  */
1659 static struct page *alloc_fresh_huge_page(struct hstate *h,
1660 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661 		nodemask_t *node_alloc_noretry)
1662 {
1663 	struct page *page;
1664 
1665 	if (hstate_is_gigantic(h))
1666 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667 	else
1668 		page = alloc_buddy_huge_page(h, gfp_mask,
1669 				nid, nmask, node_alloc_noretry);
1670 	if (!page)
1671 		return NULL;
1672 
1673 	if (hstate_is_gigantic(h))
1674 		prep_compound_gigantic_page(page, huge_page_order(h));
1675 	prep_new_huge_page(h, page, page_to_nid(page));
1676 
1677 	return page;
1678 }
1679 
1680 /*
1681  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682  * manner.
1683  */
1684 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685 				nodemask_t *node_alloc_noretry)
1686 {
1687 	struct page *page;
1688 	int nr_nodes, node;
1689 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1690 
1691 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1692 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693 						node_alloc_noretry);
1694 		if (page)
1695 			break;
1696 	}
1697 
1698 	if (!page)
1699 		return 0;
1700 
1701 	put_page(page); /* free it into the hugepage allocator */
1702 
1703 	return 1;
1704 }
1705 
1706 /*
1707  * Free huge page from pool from next node to free.
1708  * Attempt to keep persistent huge pages more or less
1709  * balanced over allowed nodes.
1710  * Called with hugetlb_lock locked.
1711  */
1712 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1713 							 bool acct_surplus)
1714 {
1715 	int nr_nodes, node;
1716 	int ret = 0;
1717 
1718 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1719 		/*
1720 		 * If we're returning unused surplus pages, only examine
1721 		 * nodes with surplus pages.
1722 		 */
1723 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1724 		    !list_empty(&h->hugepage_freelists[node])) {
1725 			struct page *page =
1726 				list_entry(h->hugepage_freelists[node].next,
1727 					  struct page, lru);
1728 			list_del(&page->lru);
1729 			h->free_huge_pages--;
1730 			h->free_huge_pages_node[node]--;
1731 			if (acct_surplus) {
1732 				h->surplus_huge_pages--;
1733 				h->surplus_huge_pages_node[node]--;
1734 			}
1735 			update_and_free_page(h, page);
1736 			ret = 1;
1737 			break;
1738 		}
1739 	}
1740 
1741 	return ret;
1742 }
1743 
1744 /*
1745  * Dissolve a given free hugepage into free buddy pages. This function does
1746  * nothing for in-use hugepages and non-hugepages.
1747  * This function returns values like below:
1748  *
1749  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1750  *          (allocated or reserved.)
1751  *       0: successfully dissolved free hugepages or the page is not a
1752  *          hugepage (considered as already dissolved)
1753  */
1754 int dissolve_free_huge_page(struct page *page)
1755 {
1756 	int rc = -EBUSY;
1757 
1758 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1759 	if (!PageHuge(page))
1760 		return 0;
1761 
1762 	spin_lock(&hugetlb_lock);
1763 	if (!PageHuge(page)) {
1764 		rc = 0;
1765 		goto out;
1766 	}
1767 
1768 	if (!page_count(page)) {
1769 		struct page *head = compound_head(page);
1770 		struct hstate *h = page_hstate(head);
1771 		int nid = page_to_nid(head);
1772 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1773 			goto out;
1774 		/*
1775 		 * Move PageHWPoison flag from head page to the raw error page,
1776 		 * which makes any subpages rather than the error page reusable.
1777 		 */
1778 		if (PageHWPoison(head) && page != head) {
1779 			SetPageHWPoison(page);
1780 			ClearPageHWPoison(head);
1781 		}
1782 		list_del(&head->lru);
1783 		h->free_huge_pages--;
1784 		h->free_huge_pages_node[nid]--;
1785 		h->max_huge_pages--;
1786 		update_and_free_page(h, head);
1787 		rc = 0;
1788 	}
1789 out:
1790 	spin_unlock(&hugetlb_lock);
1791 	return rc;
1792 }
1793 
1794 /*
1795  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1796  * make specified memory blocks removable from the system.
1797  * Note that this will dissolve a free gigantic hugepage completely, if any
1798  * part of it lies within the given range.
1799  * Also note that if dissolve_free_huge_page() returns with an error, all
1800  * free hugepages that were dissolved before that error are lost.
1801  */
1802 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1803 {
1804 	unsigned long pfn;
1805 	struct page *page;
1806 	int rc = 0;
1807 
1808 	if (!hugepages_supported())
1809 		return rc;
1810 
1811 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1812 		page = pfn_to_page(pfn);
1813 		rc = dissolve_free_huge_page(page);
1814 		if (rc)
1815 			break;
1816 	}
1817 
1818 	return rc;
1819 }
1820 
1821 /*
1822  * Allocates a fresh surplus page from the page allocator.
1823  */
1824 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1825 		int nid, nodemask_t *nmask)
1826 {
1827 	struct page *page = NULL;
1828 
1829 	if (hstate_is_gigantic(h))
1830 		return NULL;
1831 
1832 	spin_lock(&hugetlb_lock);
1833 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1834 		goto out_unlock;
1835 	spin_unlock(&hugetlb_lock);
1836 
1837 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1838 	if (!page)
1839 		return NULL;
1840 
1841 	spin_lock(&hugetlb_lock);
1842 	/*
1843 	 * We could have raced with the pool size change.
1844 	 * Double check that and simply deallocate the new page
1845 	 * if we would end up overcommiting the surpluses. Abuse
1846 	 * temporary page to workaround the nasty free_huge_page
1847 	 * codeflow
1848 	 */
1849 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1850 		SetPageHugeTemporary(page);
1851 		spin_unlock(&hugetlb_lock);
1852 		put_page(page);
1853 		return NULL;
1854 	} else {
1855 		h->surplus_huge_pages++;
1856 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1857 	}
1858 
1859 out_unlock:
1860 	spin_unlock(&hugetlb_lock);
1861 
1862 	return page;
1863 }
1864 
1865 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1866 				     int nid, nodemask_t *nmask)
1867 {
1868 	struct page *page;
1869 
1870 	if (hstate_is_gigantic(h))
1871 		return NULL;
1872 
1873 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1874 	if (!page)
1875 		return NULL;
1876 
1877 	/*
1878 	 * We do not account these pages as surplus because they are only
1879 	 * temporary and will be released properly on the last reference
1880 	 */
1881 	SetPageHugeTemporary(page);
1882 
1883 	return page;
1884 }
1885 
1886 /*
1887  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1888  */
1889 static
1890 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1891 		struct vm_area_struct *vma, unsigned long addr)
1892 {
1893 	struct page *page;
1894 	struct mempolicy *mpol;
1895 	gfp_t gfp_mask = htlb_alloc_mask(h);
1896 	int nid;
1897 	nodemask_t *nodemask;
1898 
1899 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1900 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1901 	mpol_cond_put(mpol);
1902 
1903 	return page;
1904 }
1905 
1906 /* page migration callback function */
1907 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1908 		nodemask_t *nmask, gfp_t gfp_mask)
1909 {
1910 	spin_lock(&hugetlb_lock);
1911 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1912 		struct page *page;
1913 
1914 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1915 		if (page) {
1916 			spin_unlock(&hugetlb_lock);
1917 			return page;
1918 		}
1919 	}
1920 	spin_unlock(&hugetlb_lock);
1921 
1922 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1923 }
1924 
1925 /* mempolicy aware migration callback */
1926 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1927 		unsigned long address)
1928 {
1929 	struct mempolicy *mpol;
1930 	nodemask_t *nodemask;
1931 	struct page *page;
1932 	gfp_t gfp_mask;
1933 	int node;
1934 
1935 	gfp_mask = htlb_alloc_mask(h);
1936 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1937 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1938 	mpol_cond_put(mpol);
1939 
1940 	return page;
1941 }
1942 
1943 /*
1944  * Increase the hugetlb pool such that it can accommodate a reservation
1945  * of size 'delta'.
1946  */
1947 static int gather_surplus_pages(struct hstate *h, long delta)
1948 	__must_hold(&hugetlb_lock)
1949 {
1950 	struct list_head surplus_list;
1951 	struct page *page, *tmp;
1952 	int ret;
1953 	long i;
1954 	long needed, allocated;
1955 	bool alloc_ok = true;
1956 
1957 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1958 	if (needed <= 0) {
1959 		h->resv_huge_pages += delta;
1960 		return 0;
1961 	}
1962 
1963 	allocated = 0;
1964 	INIT_LIST_HEAD(&surplus_list);
1965 
1966 	ret = -ENOMEM;
1967 retry:
1968 	spin_unlock(&hugetlb_lock);
1969 	for (i = 0; i < needed; i++) {
1970 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1971 				NUMA_NO_NODE, NULL);
1972 		if (!page) {
1973 			alloc_ok = false;
1974 			break;
1975 		}
1976 		list_add(&page->lru, &surplus_list);
1977 		cond_resched();
1978 	}
1979 	allocated += i;
1980 
1981 	/*
1982 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1983 	 * because either resv_huge_pages or free_huge_pages may have changed.
1984 	 */
1985 	spin_lock(&hugetlb_lock);
1986 	needed = (h->resv_huge_pages + delta) -
1987 			(h->free_huge_pages + allocated);
1988 	if (needed > 0) {
1989 		if (alloc_ok)
1990 			goto retry;
1991 		/*
1992 		 * We were not able to allocate enough pages to
1993 		 * satisfy the entire reservation so we free what
1994 		 * we've allocated so far.
1995 		 */
1996 		goto free;
1997 	}
1998 	/*
1999 	 * The surplus_list now contains _at_least_ the number of extra pages
2000 	 * needed to accommodate the reservation.  Add the appropriate number
2001 	 * of pages to the hugetlb pool and free the extras back to the buddy
2002 	 * allocator.  Commit the entire reservation here to prevent another
2003 	 * process from stealing the pages as they are added to the pool but
2004 	 * before they are reserved.
2005 	 */
2006 	needed += allocated;
2007 	h->resv_huge_pages += delta;
2008 	ret = 0;
2009 
2010 	/* Free the needed pages to the hugetlb pool */
2011 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2012 		if ((--needed) < 0)
2013 			break;
2014 		/*
2015 		 * This page is now managed by the hugetlb allocator and has
2016 		 * no users -- drop the buddy allocator's reference.
2017 		 */
2018 		VM_BUG_ON_PAGE(!put_page_testzero(page), page);
2019 		enqueue_huge_page(h, page);
2020 	}
2021 free:
2022 	spin_unlock(&hugetlb_lock);
2023 
2024 	/* Free unnecessary surplus pages to the buddy allocator */
2025 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2026 		put_page(page);
2027 	spin_lock(&hugetlb_lock);
2028 
2029 	return ret;
2030 }
2031 
2032 /*
2033  * This routine has two main purposes:
2034  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2035  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2036  *    to the associated reservation map.
2037  * 2) Free any unused surplus pages that may have been allocated to satisfy
2038  *    the reservation.  As many as unused_resv_pages may be freed.
2039  *
2040  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2041  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2042  * we must make sure nobody else can claim pages we are in the process of
2043  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2044  * number of huge pages we plan to free when dropping the lock.
2045  */
2046 static void return_unused_surplus_pages(struct hstate *h,
2047 					unsigned long unused_resv_pages)
2048 {
2049 	unsigned long nr_pages;
2050 
2051 	/* Cannot return gigantic pages currently */
2052 	if (hstate_is_gigantic(h))
2053 		goto out;
2054 
2055 	/*
2056 	 * Part (or even all) of the reservation could have been backed
2057 	 * by pre-allocated pages. Only free surplus pages.
2058 	 */
2059 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2060 
2061 	/*
2062 	 * We want to release as many surplus pages as possible, spread
2063 	 * evenly across all nodes with memory. Iterate across these nodes
2064 	 * until we can no longer free unreserved surplus pages. This occurs
2065 	 * when the nodes with surplus pages have no free pages.
2066 	 * free_pool_huge_page() will balance the freed pages across the
2067 	 * on-line nodes with memory and will handle the hstate accounting.
2068 	 *
2069 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2070 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2071 	 * to cover subsequent pages we may free.
2072 	 */
2073 	while (nr_pages--) {
2074 		h->resv_huge_pages--;
2075 		unused_resv_pages--;
2076 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2077 			goto out;
2078 		cond_resched_lock(&hugetlb_lock);
2079 	}
2080 
2081 out:
2082 	/* Fully uncommit the reservation */
2083 	h->resv_huge_pages -= unused_resv_pages;
2084 }
2085 
2086 
2087 /*
2088  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2089  * are used by the huge page allocation routines to manage reservations.
2090  *
2091  * vma_needs_reservation is called to determine if the huge page at addr
2092  * within the vma has an associated reservation.  If a reservation is
2093  * needed, the value 1 is returned.  The caller is then responsible for
2094  * managing the global reservation and subpool usage counts.  After
2095  * the huge page has been allocated, vma_commit_reservation is called
2096  * to add the page to the reservation map.  If the page allocation fails,
2097  * the reservation must be ended instead of committed.  vma_end_reservation
2098  * is called in such cases.
2099  *
2100  * In the normal case, vma_commit_reservation returns the same value
2101  * as the preceding vma_needs_reservation call.  The only time this
2102  * is not the case is if a reserve map was changed between calls.  It
2103  * is the responsibility of the caller to notice the difference and
2104  * take appropriate action.
2105  *
2106  * vma_add_reservation is used in error paths where a reservation must
2107  * be restored when a newly allocated huge page must be freed.  It is
2108  * to be called after calling vma_needs_reservation to determine if a
2109  * reservation exists.
2110  */
2111 enum vma_resv_mode {
2112 	VMA_NEEDS_RESV,
2113 	VMA_COMMIT_RESV,
2114 	VMA_END_RESV,
2115 	VMA_ADD_RESV,
2116 };
2117 static long __vma_reservation_common(struct hstate *h,
2118 				struct vm_area_struct *vma, unsigned long addr,
2119 				enum vma_resv_mode mode)
2120 {
2121 	struct resv_map *resv;
2122 	pgoff_t idx;
2123 	long ret;
2124 	long dummy_out_regions_needed;
2125 
2126 	resv = vma_resv_map(vma);
2127 	if (!resv)
2128 		return 1;
2129 
2130 	idx = vma_hugecache_offset(h, vma, addr);
2131 	switch (mode) {
2132 	case VMA_NEEDS_RESV:
2133 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2134 		/* We assume that vma_reservation_* routines always operate on
2135 		 * 1 page, and that adding to resv map a 1 page entry can only
2136 		 * ever require 1 region.
2137 		 */
2138 		VM_BUG_ON(dummy_out_regions_needed != 1);
2139 		break;
2140 	case VMA_COMMIT_RESV:
2141 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2142 		/* region_add calls of range 1 should never fail. */
2143 		VM_BUG_ON(ret < 0);
2144 		break;
2145 	case VMA_END_RESV:
2146 		region_abort(resv, idx, idx + 1, 1);
2147 		ret = 0;
2148 		break;
2149 	case VMA_ADD_RESV:
2150 		if (vma->vm_flags & VM_MAYSHARE) {
2151 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2152 			/* region_add calls of range 1 should never fail. */
2153 			VM_BUG_ON(ret < 0);
2154 		} else {
2155 			region_abort(resv, idx, idx + 1, 1);
2156 			ret = region_del(resv, idx, idx + 1);
2157 		}
2158 		break;
2159 	default:
2160 		BUG();
2161 	}
2162 
2163 	if (vma->vm_flags & VM_MAYSHARE)
2164 		return ret;
2165 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2166 		/*
2167 		 * In most cases, reserves always exist for private mappings.
2168 		 * However, a file associated with mapping could have been
2169 		 * hole punched or truncated after reserves were consumed.
2170 		 * As subsequent fault on such a range will not use reserves.
2171 		 * Subtle - The reserve map for private mappings has the
2172 		 * opposite meaning than that of shared mappings.  If NO
2173 		 * entry is in the reserve map, it means a reservation exists.
2174 		 * If an entry exists in the reserve map, it means the
2175 		 * reservation has already been consumed.  As a result, the
2176 		 * return value of this routine is the opposite of the
2177 		 * value returned from reserve map manipulation routines above.
2178 		 */
2179 		if (ret)
2180 			return 0;
2181 		else
2182 			return 1;
2183 	}
2184 	else
2185 		return ret < 0 ? ret : 0;
2186 }
2187 
2188 static long vma_needs_reservation(struct hstate *h,
2189 			struct vm_area_struct *vma, unsigned long addr)
2190 {
2191 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2192 }
2193 
2194 static long vma_commit_reservation(struct hstate *h,
2195 			struct vm_area_struct *vma, unsigned long addr)
2196 {
2197 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2198 }
2199 
2200 static void vma_end_reservation(struct hstate *h,
2201 			struct vm_area_struct *vma, unsigned long addr)
2202 {
2203 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2204 }
2205 
2206 static long vma_add_reservation(struct hstate *h,
2207 			struct vm_area_struct *vma, unsigned long addr)
2208 {
2209 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2210 }
2211 
2212 /*
2213  * This routine is called to restore a reservation on error paths.  In the
2214  * specific error paths, a huge page was allocated (via alloc_huge_page)
2215  * and is about to be freed.  If a reservation for the page existed,
2216  * alloc_huge_page would have consumed the reservation and set PagePrivate
2217  * in the newly allocated page.  When the page is freed via free_huge_page,
2218  * the global reservation count will be incremented if PagePrivate is set.
2219  * However, free_huge_page can not adjust the reserve map.  Adjust the
2220  * reserve map here to be consistent with global reserve count adjustments
2221  * to be made by free_huge_page.
2222  */
2223 static void restore_reserve_on_error(struct hstate *h,
2224 			struct vm_area_struct *vma, unsigned long address,
2225 			struct page *page)
2226 {
2227 	if (unlikely(PagePrivate(page))) {
2228 		long rc = vma_needs_reservation(h, vma, address);
2229 
2230 		if (unlikely(rc < 0)) {
2231 			/*
2232 			 * Rare out of memory condition in reserve map
2233 			 * manipulation.  Clear PagePrivate so that
2234 			 * global reserve count will not be incremented
2235 			 * by free_huge_page.  This will make it appear
2236 			 * as though the reservation for this page was
2237 			 * consumed.  This may prevent the task from
2238 			 * faulting in the page at a later time.  This
2239 			 * is better than inconsistent global huge page
2240 			 * accounting of reserve counts.
2241 			 */
2242 			ClearPagePrivate(page);
2243 		} else if (rc) {
2244 			rc = vma_add_reservation(h, vma, address);
2245 			if (unlikely(rc < 0))
2246 				/*
2247 				 * See above comment about rare out of
2248 				 * memory condition.
2249 				 */
2250 				ClearPagePrivate(page);
2251 		} else
2252 			vma_end_reservation(h, vma, address);
2253 	}
2254 }
2255 
2256 struct page *alloc_huge_page(struct vm_area_struct *vma,
2257 				    unsigned long addr, int avoid_reserve)
2258 {
2259 	struct hugepage_subpool *spool = subpool_vma(vma);
2260 	struct hstate *h = hstate_vma(vma);
2261 	struct page *page;
2262 	long map_chg, map_commit;
2263 	long gbl_chg;
2264 	int ret, idx;
2265 	struct hugetlb_cgroup *h_cg;
2266 	bool deferred_reserve;
2267 
2268 	idx = hstate_index(h);
2269 	/*
2270 	 * Examine the region/reserve map to determine if the process
2271 	 * has a reservation for the page to be allocated.  A return
2272 	 * code of zero indicates a reservation exists (no change).
2273 	 */
2274 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2275 	if (map_chg < 0)
2276 		return ERR_PTR(-ENOMEM);
2277 
2278 	/*
2279 	 * Processes that did not create the mapping will have no
2280 	 * reserves as indicated by the region/reserve map. Check
2281 	 * that the allocation will not exceed the subpool limit.
2282 	 * Allocations for MAP_NORESERVE mappings also need to be
2283 	 * checked against any subpool limit.
2284 	 */
2285 	if (map_chg || avoid_reserve) {
2286 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2287 		if (gbl_chg < 0) {
2288 			vma_end_reservation(h, vma, addr);
2289 			return ERR_PTR(-ENOSPC);
2290 		}
2291 
2292 		/*
2293 		 * Even though there was no reservation in the region/reserve
2294 		 * map, there could be reservations associated with the
2295 		 * subpool that can be used.  This would be indicated if the
2296 		 * return value of hugepage_subpool_get_pages() is zero.
2297 		 * However, if avoid_reserve is specified we still avoid even
2298 		 * the subpool reservations.
2299 		 */
2300 		if (avoid_reserve)
2301 			gbl_chg = 1;
2302 	}
2303 
2304 	/* If this allocation is not consuming a reservation, charge it now.
2305 	 */
2306 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2307 	if (deferred_reserve) {
2308 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2309 			idx, pages_per_huge_page(h), &h_cg);
2310 		if (ret)
2311 			goto out_subpool_put;
2312 	}
2313 
2314 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2315 	if (ret)
2316 		goto out_uncharge_cgroup_reservation;
2317 
2318 	spin_lock(&hugetlb_lock);
2319 	/*
2320 	 * glb_chg is passed to indicate whether or not a page must be taken
2321 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2322 	 * a reservation exists for the allocation.
2323 	 */
2324 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2325 	if (!page) {
2326 		spin_unlock(&hugetlb_lock);
2327 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2328 		if (!page)
2329 			goto out_uncharge_cgroup;
2330 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2331 			SetPagePrivate(page);
2332 			h->resv_huge_pages--;
2333 		}
2334 		spin_lock(&hugetlb_lock);
2335 		list_add(&page->lru, &h->hugepage_activelist);
2336 		/* Fall through */
2337 	}
2338 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2339 	/* If allocation is not consuming a reservation, also store the
2340 	 * hugetlb_cgroup pointer on the page.
2341 	 */
2342 	if (deferred_reserve) {
2343 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2344 						  h_cg, page);
2345 	}
2346 
2347 	spin_unlock(&hugetlb_lock);
2348 
2349 	set_page_private(page, (unsigned long)spool);
2350 
2351 	map_commit = vma_commit_reservation(h, vma, addr);
2352 	if (unlikely(map_chg > map_commit)) {
2353 		/*
2354 		 * The page was added to the reservation map between
2355 		 * vma_needs_reservation and vma_commit_reservation.
2356 		 * This indicates a race with hugetlb_reserve_pages.
2357 		 * Adjust for the subpool count incremented above AND
2358 		 * in hugetlb_reserve_pages for the same page.  Also,
2359 		 * the reservation count added in hugetlb_reserve_pages
2360 		 * no longer applies.
2361 		 */
2362 		long rsv_adjust;
2363 
2364 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2365 		hugetlb_acct_memory(h, -rsv_adjust);
2366 		if (deferred_reserve)
2367 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2368 					pages_per_huge_page(h), page);
2369 	}
2370 	return page;
2371 
2372 out_uncharge_cgroup:
2373 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2374 out_uncharge_cgroup_reservation:
2375 	if (deferred_reserve)
2376 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2377 						    h_cg);
2378 out_subpool_put:
2379 	if (map_chg || avoid_reserve)
2380 		hugepage_subpool_put_pages(spool, 1);
2381 	vma_end_reservation(h, vma, addr);
2382 	return ERR_PTR(-ENOSPC);
2383 }
2384 
2385 int alloc_bootmem_huge_page(struct hstate *h)
2386 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2387 int __alloc_bootmem_huge_page(struct hstate *h)
2388 {
2389 	struct huge_bootmem_page *m;
2390 	int nr_nodes, node;
2391 
2392 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2393 		void *addr;
2394 
2395 		addr = memblock_alloc_try_nid_raw(
2396 				huge_page_size(h), huge_page_size(h),
2397 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2398 		if (addr) {
2399 			/*
2400 			 * Use the beginning of the huge page to store the
2401 			 * huge_bootmem_page struct (until gather_bootmem
2402 			 * puts them into the mem_map).
2403 			 */
2404 			m = addr;
2405 			goto found;
2406 		}
2407 	}
2408 	return 0;
2409 
2410 found:
2411 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2412 	/* Put them into a private list first because mem_map is not up yet */
2413 	INIT_LIST_HEAD(&m->list);
2414 	list_add(&m->list, &huge_boot_pages);
2415 	m->hstate = h;
2416 	return 1;
2417 }
2418 
2419 static void __init prep_compound_huge_page(struct page *page,
2420 		unsigned int order)
2421 {
2422 	if (unlikely(order > (MAX_ORDER - 1)))
2423 		prep_compound_gigantic_page(page, order);
2424 	else
2425 		prep_compound_page(page, order);
2426 }
2427 
2428 /* Put bootmem huge pages into the standard lists after mem_map is up */
2429 static void __init gather_bootmem_prealloc(void)
2430 {
2431 	struct huge_bootmem_page *m;
2432 
2433 	list_for_each_entry(m, &huge_boot_pages, list) {
2434 		struct page *page = virt_to_page(m);
2435 		struct hstate *h = m->hstate;
2436 
2437 		WARN_ON(page_count(page) != 1);
2438 		prep_compound_huge_page(page, h->order);
2439 		WARN_ON(PageReserved(page));
2440 		prep_new_huge_page(h, page, page_to_nid(page));
2441 		put_page(page); /* free it into the hugepage allocator */
2442 
2443 		/*
2444 		 * If we had gigantic hugepages allocated at boot time, we need
2445 		 * to restore the 'stolen' pages to totalram_pages in order to
2446 		 * fix confusing memory reports from free(1) and another
2447 		 * side-effects, like CommitLimit going negative.
2448 		 */
2449 		if (hstate_is_gigantic(h))
2450 			adjust_managed_page_count(page, 1 << h->order);
2451 		cond_resched();
2452 	}
2453 }
2454 
2455 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2456 {
2457 	unsigned long i;
2458 	nodemask_t *node_alloc_noretry;
2459 
2460 	if (!hstate_is_gigantic(h)) {
2461 		/*
2462 		 * Bit mask controlling how hard we retry per-node allocations.
2463 		 * Ignore errors as lower level routines can deal with
2464 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2465 		 * time, we are likely in bigger trouble.
2466 		 */
2467 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2468 						GFP_KERNEL);
2469 	} else {
2470 		/* allocations done at boot time */
2471 		node_alloc_noretry = NULL;
2472 	}
2473 
2474 	/* bit mask controlling how hard we retry per-node allocations */
2475 	if (node_alloc_noretry)
2476 		nodes_clear(*node_alloc_noretry);
2477 
2478 	for (i = 0; i < h->max_huge_pages; ++i) {
2479 		if (hstate_is_gigantic(h)) {
2480 			if (hugetlb_cma_size) {
2481 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2482 				break;
2483 			}
2484 			if (!alloc_bootmem_huge_page(h))
2485 				break;
2486 		} else if (!alloc_pool_huge_page(h,
2487 					 &node_states[N_MEMORY],
2488 					 node_alloc_noretry))
2489 			break;
2490 		cond_resched();
2491 	}
2492 	if (i < h->max_huge_pages) {
2493 		char buf[32];
2494 
2495 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2496 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2497 			h->max_huge_pages, buf, i);
2498 		h->max_huge_pages = i;
2499 	}
2500 
2501 	kfree(node_alloc_noretry);
2502 }
2503 
2504 static void __init hugetlb_init_hstates(void)
2505 {
2506 	struct hstate *h;
2507 
2508 	for_each_hstate(h) {
2509 		if (minimum_order > huge_page_order(h))
2510 			minimum_order = huge_page_order(h);
2511 
2512 		/* oversize hugepages were init'ed in early boot */
2513 		if (!hstate_is_gigantic(h))
2514 			hugetlb_hstate_alloc_pages(h);
2515 	}
2516 	VM_BUG_ON(minimum_order == UINT_MAX);
2517 }
2518 
2519 static void __init report_hugepages(void)
2520 {
2521 	struct hstate *h;
2522 
2523 	for_each_hstate(h) {
2524 		char buf[32];
2525 
2526 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2527 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2528 			buf, h->free_huge_pages);
2529 	}
2530 }
2531 
2532 #ifdef CONFIG_HIGHMEM
2533 static void try_to_free_low(struct hstate *h, unsigned long count,
2534 						nodemask_t *nodes_allowed)
2535 {
2536 	int i;
2537 
2538 	if (hstate_is_gigantic(h))
2539 		return;
2540 
2541 	for_each_node_mask(i, *nodes_allowed) {
2542 		struct page *page, *next;
2543 		struct list_head *freel = &h->hugepage_freelists[i];
2544 		list_for_each_entry_safe(page, next, freel, lru) {
2545 			if (count >= h->nr_huge_pages)
2546 				return;
2547 			if (PageHighMem(page))
2548 				continue;
2549 			list_del(&page->lru);
2550 			update_and_free_page(h, page);
2551 			h->free_huge_pages--;
2552 			h->free_huge_pages_node[page_to_nid(page)]--;
2553 		}
2554 	}
2555 }
2556 #else
2557 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2558 						nodemask_t *nodes_allowed)
2559 {
2560 }
2561 #endif
2562 
2563 /*
2564  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2565  * balanced by operating on them in a round-robin fashion.
2566  * Returns 1 if an adjustment was made.
2567  */
2568 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2569 				int delta)
2570 {
2571 	int nr_nodes, node;
2572 
2573 	VM_BUG_ON(delta != -1 && delta != 1);
2574 
2575 	if (delta < 0) {
2576 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2577 			if (h->surplus_huge_pages_node[node])
2578 				goto found;
2579 		}
2580 	} else {
2581 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2582 			if (h->surplus_huge_pages_node[node] <
2583 					h->nr_huge_pages_node[node])
2584 				goto found;
2585 		}
2586 	}
2587 	return 0;
2588 
2589 found:
2590 	h->surplus_huge_pages += delta;
2591 	h->surplus_huge_pages_node[node] += delta;
2592 	return 1;
2593 }
2594 
2595 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2596 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2597 			      nodemask_t *nodes_allowed)
2598 {
2599 	unsigned long min_count, ret;
2600 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2601 
2602 	/*
2603 	 * Bit mask controlling how hard we retry per-node allocations.
2604 	 * If we can not allocate the bit mask, do not attempt to allocate
2605 	 * the requested huge pages.
2606 	 */
2607 	if (node_alloc_noretry)
2608 		nodes_clear(*node_alloc_noretry);
2609 	else
2610 		return -ENOMEM;
2611 
2612 	spin_lock(&hugetlb_lock);
2613 
2614 	/*
2615 	 * Check for a node specific request.
2616 	 * Changing node specific huge page count may require a corresponding
2617 	 * change to the global count.  In any case, the passed node mask
2618 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2619 	 */
2620 	if (nid != NUMA_NO_NODE) {
2621 		unsigned long old_count = count;
2622 
2623 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2624 		/*
2625 		 * User may have specified a large count value which caused the
2626 		 * above calculation to overflow.  In this case, they wanted
2627 		 * to allocate as many huge pages as possible.  Set count to
2628 		 * largest possible value to align with their intention.
2629 		 */
2630 		if (count < old_count)
2631 			count = ULONG_MAX;
2632 	}
2633 
2634 	/*
2635 	 * Gigantic pages runtime allocation depend on the capability for large
2636 	 * page range allocation.
2637 	 * If the system does not provide this feature, return an error when
2638 	 * the user tries to allocate gigantic pages but let the user free the
2639 	 * boottime allocated gigantic pages.
2640 	 */
2641 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2642 		if (count > persistent_huge_pages(h)) {
2643 			spin_unlock(&hugetlb_lock);
2644 			NODEMASK_FREE(node_alloc_noretry);
2645 			return -EINVAL;
2646 		}
2647 		/* Fall through to decrease pool */
2648 	}
2649 
2650 	/*
2651 	 * Increase the pool size
2652 	 * First take pages out of surplus state.  Then make up the
2653 	 * remaining difference by allocating fresh huge pages.
2654 	 *
2655 	 * We might race with alloc_surplus_huge_page() here and be unable
2656 	 * to convert a surplus huge page to a normal huge page. That is
2657 	 * not critical, though, it just means the overall size of the
2658 	 * pool might be one hugepage larger than it needs to be, but
2659 	 * within all the constraints specified by the sysctls.
2660 	 */
2661 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2662 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2663 			break;
2664 	}
2665 
2666 	while (count > persistent_huge_pages(h)) {
2667 		/*
2668 		 * If this allocation races such that we no longer need the
2669 		 * page, free_huge_page will handle it by freeing the page
2670 		 * and reducing the surplus.
2671 		 */
2672 		spin_unlock(&hugetlb_lock);
2673 
2674 		/* yield cpu to avoid soft lockup */
2675 		cond_resched();
2676 
2677 		ret = alloc_pool_huge_page(h, nodes_allowed,
2678 						node_alloc_noretry);
2679 		spin_lock(&hugetlb_lock);
2680 		if (!ret)
2681 			goto out;
2682 
2683 		/* Bail for signals. Probably ctrl-c from user */
2684 		if (signal_pending(current))
2685 			goto out;
2686 	}
2687 
2688 	/*
2689 	 * Decrease the pool size
2690 	 * First return free pages to the buddy allocator (being careful
2691 	 * to keep enough around to satisfy reservations).  Then place
2692 	 * pages into surplus state as needed so the pool will shrink
2693 	 * to the desired size as pages become free.
2694 	 *
2695 	 * By placing pages into the surplus state independent of the
2696 	 * overcommit value, we are allowing the surplus pool size to
2697 	 * exceed overcommit. There are few sane options here. Since
2698 	 * alloc_surplus_huge_page() is checking the global counter,
2699 	 * though, we'll note that we're not allowed to exceed surplus
2700 	 * and won't grow the pool anywhere else. Not until one of the
2701 	 * sysctls are changed, or the surplus pages go out of use.
2702 	 */
2703 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2704 	min_count = max(count, min_count);
2705 	try_to_free_low(h, min_count, nodes_allowed);
2706 	while (min_count < persistent_huge_pages(h)) {
2707 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2708 			break;
2709 		cond_resched_lock(&hugetlb_lock);
2710 	}
2711 	while (count < persistent_huge_pages(h)) {
2712 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2713 			break;
2714 	}
2715 out:
2716 	h->max_huge_pages = persistent_huge_pages(h);
2717 	spin_unlock(&hugetlb_lock);
2718 
2719 	NODEMASK_FREE(node_alloc_noretry);
2720 
2721 	return 0;
2722 }
2723 
2724 #define HSTATE_ATTR_RO(_name) \
2725 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2726 
2727 #define HSTATE_ATTR(_name) \
2728 	static struct kobj_attribute _name##_attr = \
2729 		__ATTR(_name, 0644, _name##_show, _name##_store)
2730 
2731 static struct kobject *hugepages_kobj;
2732 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2733 
2734 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2735 
2736 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2737 {
2738 	int i;
2739 
2740 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2741 		if (hstate_kobjs[i] == kobj) {
2742 			if (nidp)
2743 				*nidp = NUMA_NO_NODE;
2744 			return &hstates[i];
2745 		}
2746 
2747 	return kobj_to_node_hstate(kobj, nidp);
2748 }
2749 
2750 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2751 					struct kobj_attribute *attr, char *buf)
2752 {
2753 	struct hstate *h;
2754 	unsigned long nr_huge_pages;
2755 	int nid;
2756 
2757 	h = kobj_to_hstate(kobj, &nid);
2758 	if (nid == NUMA_NO_NODE)
2759 		nr_huge_pages = h->nr_huge_pages;
2760 	else
2761 		nr_huge_pages = h->nr_huge_pages_node[nid];
2762 
2763 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2764 }
2765 
2766 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2767 					   struct hstate *h, int nid,
2768 					   unsigned long count, size_t len)
2769 {
2770 	int err;
2771 	nodemask_t nodes_allowed, *n_mask;
2772 
2773 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2774 		return -EINVAL;
2775 
2776 	if (nid == NUMA_NO_NODE) {
2777 		/*
2778 		 * global hstate attribute
2779 		 */
2780 		if (!(obey_mempolicy &&
2781 				init_nodemask_of_mempolicy(&nodes_allowed)))
2782 			n_mask = &node_states[N_MEMORY];
2783 		else
2784 			n_mask = &nodes_allowed;
2785 	} else {
2786 		/*
2787 		 * Node specific request.  count adjustment happens in
2788 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2789 		 */
2790 		init_nodemask_of_node(&nodes_allowed, nid);
2791 		n_mask = &nodes_allowed;
2792 	}
2793 
2794 	err = set_max_huge_pages(h, count, nid, n_mask);
2795 
2796 	return err ? err : len;
2797 }
2798 
2799 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2800 					 struct kobject *kobj, const char *buf,
2801 					 size_t len)
2802 {
2803 	struct hstate *h;
2804 	unsigned long count;
2805 	int nid;
2806 	int err;
2807 
2808 	err = kstrtoul(buf, 10, &count);
2809 	if (err)
2810 		return err;
2811 
2812 	h = kobj_to_hstate(kobj, &nid);
2813 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2814 }
2815 
2816 static ssize_t nr_hugepages_show(struct kobject *kobj,
2817 				       struct kobj_attribute *attr, char *buf)
2818 {
2819 	return nr_hugepages_show_common(kobj, attr, buf);
2820 }
2821 
2822 static ssize_t nr_hugepages_store(struct kobject *kobj,
2823 	       struct kobj_attribute *attr, const char *buf, size_t len)
2824 {
2825 	return nr_hugepages_store_common(false, kobj, buf, len);
2826 }
2827 HSTATE_ATTR(nr_hugepages);
2828 
2829 #ifdef CONFIG_NUMA
2830 
2831 /*
2832  * hstate attribute for optionally mempolicy-based constraint on persistent
2833  * huge page alloc/free.
2834  */
2835 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2836 					   struct kobj_attribute *attr,
2837 					   char *buf)
2838 {
2839 	return nr_hugepages_show_common(kobj, attr, buf);
2840 }
2841 
2842 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2843 	       struct kobj_attribute *attr, const char *buf, size_t len)
2844 {
2845 	return nr_hugepages_store_common(true, kobj, buf, len);
2846 }
2847 HSTATE_ATTR(nr_hugepages_mempolicy);
2848 #endif
2849 
2850 
2851 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2852 					struct kobj_attribute *attr, char *buf)
2853 {
2854 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2855 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2856 }
2857 
2858 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2859 		struct kobj_attribute *attr, const char *buf, size_t count)
2860 {
2861 	int err;
2862 	unsigned long input;
2863 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2864 
2865 	if (hstate_is_gigantic(h))
2866 		return -EINVAL;
2867 
2868 	err = kstrtoul(buf, 10, &input);
2869 	if (err)
2870 		return err;
2871 
2872 	spin_lock(&hugetlb_lock);
2873 	h->nr_overcommit_huge_pages = input;
2874 	spin_unlock(&hugetlb_lock);
2875 
2876 	return count;
2877 }
2878 HSTATE_ATTR(nr_overcommit_hugepages);
2879 
2880 static ssize_t free_hugepages_show(struct kobject *kobj,
2881 					struct kobj_attribute *attr, char *buf)
2882 {
2883 	struct hstate *h;
2884 	unsigned long free_huge_pages;
2885 	int nid;
2886 
2887 	h = kobj_to_hstate(kobj, &nid);
2888 	if (nid == NUMA_NO_NODE)
2889 		free_huge_pages = h->free_huge_pages;
2890 	else
2891 		free_huge_pages = h->free_huge_pages_node[nid];
2892 
2893 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
2894 }
2895 HSTATE_ATTR_RO(free_hugepages);
2896 
2897 static ssize_t resv_hugepages_show(struct kobject *kobj,
2898 					struct kobj_attribute *attr, char *buf)
2899 {
2900 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2901 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2902 }
2903 HSTATE_ATTR_RO(resv_hugepages);
2904 
2905 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2906 					struct kobj_attribute *attr, char *buf)
2907 {
2908 	struct hstate *h;
2909 	unsigned long surplus_huge_pages;
2910 	int nid;
2911 
2912 	h = kobj_to_hstate(kobj, &nid);
2913 	if (nid == NUMA_NO_NODE)
2914 		surplus_huge_pages = h->surplus_huge_pages;
2915 	else
2916 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2917 
2918 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2919 }
2920 HSTATE_ATTR_RO(surplus_hugepages);
2921 
2922 static struct attribute *hstate_attrs[] = {
2923 	&nr_hugepages_attr.attr,
2924 	&nr_overcommit_hugepages_attr.attr,
2925 	&free_hugepages_attr.attr,
2926 	&resv_hugepages_attr.attr,
2927 	&surplus_hugepages_attr.attr,
2928 #ifdef CONFIG_NUMA
2929 	&nr_hugepages_mempolicy_attr.attr,
2930 #endif
2931 	NULL,
2932 };
2933 
2934 static const struct attribute_group hstate_attr_group = {
2935 	.attrs = hstate_attrs,
2936 };
2937 
2938 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2939 				    struct kobject **hstate_kobjs,
2940 				    const struct attribute_group *hstate_attr_group)
2941 {
2942 	int retval;
2943 	int hi = hstate_index(h);
2944 
2945 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2946 	if (!hstate_kobjs[hi])
2947 		return -ENOMEM;
2948 
2949 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2950 	if (retval)
2951 		kobject_put(hstate_kobjs[hi]);
2952 
2953 	return retval;
2954 }
2955 
2956 static void __init hugetlb_sysfs_init(void)
2957 {
2958 	struct hstate *h;
2959 	int err;
2960 
2961 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2962 	if (!hugepages_kobj)
2963 		return;
2964 
2965 	for_each_hstate(h) {
2966 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2967 					 hstate_kobjs, &hstate_attr_group);
2968 		if (err)
2969 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
2970 	}
2971 }
2972 
2973 #ifdef CONFIG_NUMA
2974 
2975 /*
2976  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2977  * with node devices in node_devices[] using a parallel array.  The array
2978  * index of a node device or _hstate == node id.
2979  * This is here to avoid any static dependency of the node device driver, in
2980  * the base kernel, on the hugetlb module.
2981  */
2982 struct node_hstate {
2983 	struct kobject		*hugepages_kobj;
2984 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2985 };
2986 static struct node_hstate node_hstates[MAX_NUMNODES];
2987 
2988 /*
2989  * A subset of global hstate attributes for node devices
2990  */
2991 static struct attribute *per_node_hstate_attrs[] = {
2992 	&nr_hugepages_attr.attr,
2993 	&free_hugepages_attr.attr,
2994 	&surplus_hugepages_attr.attr,
2995 	NULL,
2996 };
2997 
2998 static const struct attribute_group per_node_hstate_attr_group = {
2999 	.attrs = per_node_hstate_attrs,
3000 };
3001 
3002 /*
3003  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3004  * Returns node id via non-NULL nidp.
3005  */
3006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3007 {
3008 	int nid;
3009 
3010 	for (nid = 0; nid < nr_node_ids; nid++) {
3011 		struct node_hstate *nhs = &node_hstates[nid];
3012 		int i;
3013 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3014 			if (nhs->hstate_kobjs[i] == kobj) {
3015 				if (nidp)
3016 					*nidp = nid;
3017 				return &hstates[i];
3018 			}
3019 	}
3020 
3021 	BUG();
3022 	return NULL;
3023 }
3024 
3025 /*
3026  * Unregister hstate attributes from a single node device.
3027  * No-op if no hstate attributes attached.
3028  */
3029 static void hugetlb_unregister_node(struct node *node)
3030 {
3031 	struct hstate *h;
3032 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3033 
3034 	if (!nhs->hugepages_kobj)
3035 		return;		/* no hstate attributes */
3036 
3037 	for_each_hstate(h) {
3038 		int idx = hstate_index(h);
3039 		if (nhs->hstate_kobjs[idx]) {
3040 			kobject_put(nhs->hstate_kobjs[idx]);
3041 			nhs->hstate_kobjs[idx] = NULL;
3042 		}
3043 	}
3044 
3045 	kobject_put(nhs->hugepages_kobj);
3046 	nhs->hugepages_kobj = NULL;
3047 }
3048 
3049 
3050 /*
3051  * Register hstate attributes for a single node device.
3052  * No-op if attributes already registered.
3053  */
3054 static void hugetlb_register_node(struct node *node)
3055 {
3056 	struct hstate *h;
3057 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3058 	int err;
3059 
3060 	if (nhs->hugepages_kobj)
3061 		return;		/* already allocated */
3062 
3063 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3064 							&node->dev.kobj);
3065 	if (!nhs->hugepages_kobj)
3066 		return;
3067 
3068 	for_each_hstate(h) {
3069 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3070 						nhs->hstate_kobjs,
3071 						&per_node_hstate_attr_group);
3072 		if (err) {
3073 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3074 				h->name, node->dev.id);
3075 			hugetlb_unregister_node(node);
3076 			break;
3077 		}
3078 	}
3079 }
3080 
3081 /*
3082  * hugetlb init time:  register hstate attributes for all registered node
3083  * devices of nodes that have memory.  All on-line nodes should have
3084  * registered their associated device by this time.
3085  */
3086 static void __init hugetlb_register_all_nodes(void)
3087 {
3088 	int nid;
3089 
3090 	for_each_node_state(nid, N_MEMORY) {
3091 		struct node *node = node_devices[nid];
3092 		if (node->dev.id == nid)
3093 			hugetlb_register_node(node);
3094 	}
3095 
3096 	/*
3097 	 * Let the node device driver know we're here so it can
3098 	 * [un]register hstate attributes on node hotplug.
3099 	 */
3100 	register_hugetlbfs_with_node(hugetlb_register_node,
3101 				     hugetlb_unregister_node);
3102 }
3103 #else	/* !CONFIG_NUMA */
3104 
3105 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3106 {
3107 	BUG();
3108 	if (nidp)
3109 		*nidp = -1;
3110 	return NULL;
3111 }
3112 
3113 static void hugetlb_register_all_nodes(void) { }
3114 
3115 #endif
3116 
3117 static int __init hugetlb_init(void)
3118 {
3119 	int i;
3120 
3121 	if (!hugepages_supported()) {
3122 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3123 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3124 		return 0;
3125 	}
3126 
3127 	/*
3128 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3129 	 * architectures depend on setup being done here.
3130 	 */
3131 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3132 	if (!parsed_default_hugepagesz) {
3133 		/*
3134 		 * If we did not parse a default huge page size, set
3135 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3136 		 * number of huge pages for this default size was implicitly
3137 		 * specified, set that here as well.
3138 		 * Note that the implicit setting will overwrite an explicit
3139 		 * setting.  A warning will be printed in this case.
3140 		 */
3141 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3142 		if (default_hstate_max_huge_pages) {
3143 			if (default_hstate.max_huge_pages) {
3144 				char buf[32];
3145 
3146 				string_get_size(huge_page_size(&default_hstate),
3147 					1, STRING_UNITS_2, buf, 32);
3148 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3149 					default_hstate.max_huge_pages, buf);
3150 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3151 					default_hstate_max_huge_pages);
3152 			}
3153 			default_hstate.max_huge_pages =
3154 				default_hstate_max_huge_pages;
3155 		}
3156 	}
3157 
3158 	hugetlb_cma_check();
3159 	hugetlb_init_hstates();
3160 	gather_bootmem_prealloc();
3161 	report_hugepages();
3162 
3163 	hugetlb_sysfs_init();
3164 	hugetlb_register_all_nodes();
3165 	hugetlb_cgroup_file_init();
3166 
3167 #ifdef CONFIG_SMP
3168 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3169 #else
3170 	num_fault_mutexes = 1;
3171 #endif
3172 	hugetlb_fault_mutex_table =
3173 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3174 			      GFP_KERNEL);
3175 	BUG_ON(!hugetlb_fault_mutex_table);
3176 
3177 	for (i = 0; i < num_fault_mutexes; i++)
3178 		mutex_init(&hugetlb_fault_mutex_table[i]);
3179 	return 0;
3180 }
3181 subsys_initcall(hugetlb_init);
3182 
3183 /* Overwritten by architectures with more huge page sizes */
3184 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3185 {
3186 	return size == HPAGE_SIZE;
3187 }
3188 
3189 void __init hugetlb_add_hstate(unsigned int order)
3190 {
3191 	struct hstate *h;
3192 	unsigned long i;
3193 
3194 	if (size_to_hstate(PAGE_SIZE << order)) {
3195 		return;
3196 	}
3197 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3198 	BUG_ON(order == 0);
3199 	h = &hstates[hugetlb_max_hstate++];
3200 	h->order = order;
3201 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3202 	for (i = 0; i < MAX_NUMNODES; ++i)
3203 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3204 	INIT_LIST_HEAD(&h->hugepage_activelist);
3205 	h->next_nid_to_alloc = first_memory_node;
3206 	h->next_nid_to_free = first_memory_node;
3207 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3208 					huge_page_size(h)/1024);
3209 
3210 	parsed_hstate = h;
3211 }
3212 
3213 /*
3214  * hugepages command line processing
3215  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3216  * specification.  If not, ignore the hugepages value.  hugepages can also
3217  * be the first huge page command line  option in which case it implicitly
3218  * specifies the number of huge pages for the default size.
3219  */
3220 static int __init hugepages_setup(char *s)
3221 {
3222 	unsigned long *mhp;
3223 	static unsigned long *last_mhp;
3224 
3225 	if (!parsed_valid_hugepagesz) {
3226 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3227 		parsed_valid_hugepagesz = true;
3228 		return 0;
3229 	}
3230 
3231 	/*
3232 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3233 	 * yet, so this hugepages= parameter goes to the "default hstate".
3234 	 * Otherwise, it goes with the previously parsed hugepagesz or
3235 	 * default_hugepagesz.
3236 	 */
3237 	else if (!hugetlb_max_hstate)
3238 		mhp = &default_hstate_max_huge_pages;
3239 	else
3240 		mhp = &parsed_hstate->max_huge_pages;
3241 
3242 	if (mhp == last_mhp) {
3243 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3244 		return 0;
3245 	}
3246 
3247 	if (sscanf(s, "%lu", mhp) <= 0)
3248 		*mhp = 0;
3249 
3250 	/*
3251 	 * Global state is always initialized later in hugetlb_init.
3252 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3253 	 * use the bootmem allocator.
3254 	 */
3255 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3256 		hugetlb_hstate_alloc_pages(parsed_hstate);
3257 
3258 	last_mhp = mhp;
3259 
3260 	return 1;
3261 }
3262 __setup("hugepages=", hugepages_setup);
3263 
3264 /*
3265  * hugepagesz command line processing
3266  * A specific huge page size can only be specified once with hugepagesz.
3267  * hugepagesz is followed by hugepages on the command line.  The global
3268  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3269  * hugepagesz argument was valid.
3270  */
3271 static int __init hugepagesz_setup(char *s)
3272 {
3273 	unsigned long size;
3274 	struct hstate *h;
3275 
3276 	parsed_valid_hugepagesz = false;
3277 	size = (unsigned long)memparse(s, NULL);
3278 
3279 	if (!arch_hugetlb_valid_size(size)) {
3280 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3281 		return 0;
3282 	}
3283 
3284 	h = size_to_hstate(size);
3285 	if (h) {
3286 		/*
3287 		 * hstate for this size already exists.  This is normally
3288 		 * an error, but is allowed if the existing hstate is the
3289 		 * default hstate.  More specifically, it is only allowed if
3290 		 * the number of huge pages for the default hstate was not
3291 		 * previously specified.
3292 		 */
3293 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3294 		    default_hstate.max_huge_pages) {
3295 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3296 			return 0;
3297 		}
3298 
3299 		/*
3300 		 * No need to call hugetlb_add_hstate() as hstate already
3301 		 * exists.  But, do set parsed_hstate so that a following
3302 		 * hugepages= parameter will be applied to this hstate.
3303 		 */
3304 		parsed_hstate = h;
3305 		parsed_valid_hugepagesz = true;
3306 		return 1;
3307 	}
3308 
3309 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3310 	parsed_valid_hugepagesz = true;
3311 	return 1;
3312 }
3313 __setup("hugepagesz=", hugepagesz_setup);
3314 
3315 /*
3316  * default_hugepagesz command line input
3317  * Only one instance of default_hugepagesz allowed on command line.
3318  */
3319 static int __init default_hugepagesz_setup(char *s)
3320 {
3321 	unsigned long size;
3322 
3323 	parsed_valid_hugepagesz = false;
3324 	if (parsed_default_hugepagesz) {
3325 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3326 		return 0;
3327 	}
3328 
3329 	size = (unsigned long)memparse(s, NULL);
3330 
3331 	if (!arch_hugetlb_valid_size(size)) {
3332 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3333 		return 0;
3334 	}
3335 
3336 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3337 	parsed_valid_hugepagesz = true;
3338 	parsed_default_hugepagesz = true;
3339 	default_hstate_idx = hstate_index(size_to_hstate(size));
3340 
3341 	/*
3342 	 * The number of default huge pages (for this size) could have been
3343 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3344 	 * then default_hstate_max_huge_pages is set.  If the default huge
3345 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3346 	 * allocated here from bootmem allocator.
3347 	 */
3348 	if (default_hstate_max_huge_pages) {
3349 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3350 		if (hstate_is_gigantic(&default_hstate))
3351 			hugetlb_hstate_alloc_pages(&default_hstate);
3352 		default_hstate_max_huge_pages = 0;
3353 	}
3354 
3355 	return 1;
3356 }
3357 __setup("default_hugepagesz=", default_hugepagesz_setup);
3358 
3359 static unsigned int allowed_mems_nr(struct hstate *h)
3360 {
3361 	int node;
3362 	unsigned int nr = 0;
3363 	nodemask_t *mpol_allowed;
3364 	unsigned int *array = h->free_huge_pages_node;
3365 	gfp_t gfp_mask = htlb_alloc_mask(h);
3366 
3367 	mpol_allowed = policy_nodemask_current(gfp_mask);
3368 
3369 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3370 		if (!mpol_allowed ||
3371 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3372 			nr += array[node];
3373 	}
3374 
3375 	return nr;
3376 }
3377 
3378 #ifdef CONFIG_SYSCTL
3379 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3380 					  void *buffer, size_t *length,
3381 					  loff_t *ppos, unsigned long *out)
3382 {
3383 	struct ctl_table dup_table;
3384 
3385 	/*
3386 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3387 	 * can duplicate the @table and alter the duplicate of it.
3388 	 */
3389 	dup_table = *table;
3390 	dup_table.data = out;
3391 
3392 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3393 }
3394 
3395 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3396 			 struct ctl_table *table, int write,
3397 			 void *buffer, size_t *length, loff_t *ppos)
3398 {
3399 	struct hstate *h = &default_hstate;
3400 	unsigned long tmp = h->max_huge_pages;
3401 	int ret;
3402 
3403 	if (!hugepages_supported())
3404 		return -EOPNOTSUPP;
3405 
3406 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3407 					     &tmp);
3408 	if (ret)
3409 		goto out;
3410 
3411 	if (write)
3412 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3413 						  NUMA_NO_NODE, tmp, *length);
3414 out:
3415 	return ret;
3416 }
3417 
3418 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3419 			  void *buffer, size_t *length, loff_t *ppos)
3420 {
3421 
3422 	return hugetlb_sysctl_handler_common(false, table, write,
3423 							buffer, length, ppos);
3424 }
3425 
3426 #ifdef CONFIG_NUMA
3427 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3428 			  void *buffer, size_t *length, loff_t *ppos)
3429 {
3430 	return hugetlb_sysctl_handler_common(true, table, write,
3431 							buffer, length, ppos);
3432 }
3433 #endif /* CONFIG_NUMA */
3434 
3435 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3436 		void *buffer, size_t *length, loff_t *ppos)
3437 {
3438 	struct hstate *h = &default_hstate;
3439 	unsigned long tmp;
3440 	int ret;
3441 
3442 	if (!hugepages_supported())
3443 		return -EOPNOTSUPP;
3444 
3445 	tmp = h->nr_overcommit_huge_pages;
3446 
3447 	if (write && hstate_is_gigantic(h))
3448 		return -EINVAL;
3449 
3450 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3451 					     &tmp);
3452 	if (ret)
3453 		goto out;
3454 
3455 	if (write) {
3456 		spin_lock(&hugetlb_lock);
3457 		h->nr_overcommit_huge_pages = tmp;
3458 		spin_unlock(&hugetlb_lock);
3459 	}
3460 out:
3461 	return ret;
3462 }
3463 
3464 #endif /* CONFIG_SYSCTL */
3465 
3466 void hugetlb_report_meminfo(struct seq_file *m)
3467 {
3468 	struct hstate *h;
3469 	unsigned long total = 0;
3470 
3471 	if (!hugepages_supported())
3472 		return;
3473 
3474 	for_each_hstate(h) {
3475 		unsigned long count = h->nr_huge_pages;
3476 
3477 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3478 
3479 		if (h == &default_hstate)
3480 			seq_printf(m,
3481 				   "HugePages_Total:   %5lu\n"
3482 				   "HugePages_Free:    %5lu\n"
3483 				   "HugePages_Rsvd:    %5lu\n"
3484 				   "HugePages_Surp:    %5lu\n"
3485 				   "Hugepagesize:   %8lu kB\n",
3486 				   count,
3487 				   h->free_huge_pages,
3488 				   h->resv_huge_pages,
3489 				   h->surplus_huge_pages,
3490 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3491 	}
3492 
3493 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3494 }
3495 
3496 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3497 {
3498 	struct hstate *h = &default_hstate;
3499 
3500 	if (!hugepages_supported())
3501 		return 0;
3502 
3503 	return sysfs_emit_at(buf, len,
3504 			     "Node %d HugePages_Total: %5u\n"
3505 			     "Node %d HugePages_Free:  %5u\n"
3506 			     "Node %d HugePages_Surp:  %5u\n",
3507 			     nid, h->nr_huge_pages_node[nid],
3508 			     nid, h->free_huge_pages_node[nid],
3509 			     nid, h->surplus_huge_pages_node[nid]);
3510 }
3511 
3512 void hugetlb_show_meminfo(void)
3513 {
3514 	struct hstate *h;
3515 	int nid;
3516 
3517 	if (!hugepages_supported())
3518 		return;
3519 
3520 	for_each_node_state(nid, N_MEMORY)
3521 		for_each_hstate(h)
3522 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3523 				nid,
3524 				h->nr_huge_pages_node[nid],
3525 				h->free_huge_pages_node[nid],
3526 				h->surplus_huge_pages_node[nid],
3527 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3528 }
3529 
3530 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3531 {
3532 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3533 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3534 }
3535 
3536 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3537 unsigned long hugetlb_total_pages(void)
3538 {
3539 	struct hstate *h;
3540 	unsigned long nr_total_pages = 0;
3541 
3542 	for_each_hstate(h)
3543 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3544 	return nr_total_pages;
3545 }
3546 
3547 static int hugetlb_acct_memory(struct hstate *h, long delta)
3548 {
3549 	int ret = -ENOMEM;
3550 
3551 	spin_lock(&hugetlb_lock);
3552 	/*
3553 	 * When cpuset is configured, it breaks the strict hugetlb page
3554 	 * reservation as the accounting is done on a global variable. Such
3555 	 * reservation is completely rubbish in the presence of cpuset because
3556 	 * the reservation is not checked against page availability for the
3557 	 * current cpuset. Application can still potentially OOM'ed by kernel
3558 	 * with lack of free htlb page in cpuset that the task is in.
3559 	 * Attempt to enforce strict accounting with cpuset is almost
3560 	 * impossible (or too ugly) because cpuset is too fluid that
3561 	 * task or memory node can be dynamically moved between cpusets.
3562 	 *
3563 	 * The change of semantics for shared hugetlb mapping with cpuset is
3564 	 * undesirable. However, in order to preserve some of the semantics,
3565 	 * we fall back to check against current free page availability as
3566 	 * a best attempt and hopefully to minimize the impact of changing
3567 	 * semantics that cpuset has.
3568 	 *
3569 	 * Apart from cpuset, we also have memory policy mechanism that
3570 	 * also determines from which node the kernel will allocate memory
3571 	 * in a NUMA system. So similar to cpuset, we also should consider
3572 	 * the memory policy of the current task. Similar to the description
3573 	 * above.
3574 	 */
3575 	if (delta > 0) {
3576 		if (gather_surplus_pages(h, delta) < 0)
3577 			goto out;
3578 
3579 		if (delta > allowed_mems_nr(h)) {
3580 			return_unused_surplus_pages(h, delta);
3581 			goto out;
3582 		}
3583 	}
3584 
3585 	ret = 0;
3586 	if (delta < 0)
3587 		return_unused_surplus_pages(h, (unsigned long) -delta);
3588 
3589 out:
3590 	spin_unlock(&hugetlb_lock);
3591 	return ret;
3592 }
3593 
3594 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3595 {
3596 	struct resv_map *resv = vma_resv_map(vma);
3597 
3598 	/*
3599 	 * This new VMA should share its siblings reservation map if present.
3600 	 * The VMA will only ever have a valid reservation map pointer where
3601 	 * it is being copied for another still existing VMA.  As that VMA
3602 	 * has a reference to the reservation map it cannot disappear until
3603 	 * after this open call completes.  It is therefore safe to take a
3604 	 * new reference here without additional locking.
3605 	 */
3606 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3607 		kref_get(&resv->refs);
3608 }
3609 
3610 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3611 {
3612 	struct hstate *h = hstate_vma(vma);
3613 	struct resv_map *resv = vma_resv_map(vma);
3614 	struct hugepage_subpool *spool = subpool_vma(vma);
3615 	unsigned long reserve, start, end;
3616 	long gbl_reserve;
3617 
3618 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3619 		return;
3620 
3621 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3622 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3623 
3624 	reserve = (end - start) - region_count(resv, start, end);
3625 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3626 	if (reserve) {
3627 		/*
3628 		 * Decrement reserve counts.  The global reserve count may be
3629 		 * adjusted if the subpool has a minimum size.
3630 		 */
3631 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3632 		hugetlb_acct_memory(h, -gbl_reserve);
3633 	}
3634 
3635 	kref_put(&resv->refs, resv_map_release);
3636 }
3637 
3638 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3639 {
3640 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3641 		return -EINVAL;
3642 	return 0;
3643 }
3644 
3645 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3646 {
3647 	struct hstate *hstate = hstate_vma(vma);
3648 
3649 	return 1UL << huge_page_shift(hstate);
3650 }
3651 
3652 /*
3653  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3654  * handle_mm_fault() to try to instantiate regular-sized pages in the
3655  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3656  * this far.
3657  */
3658 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3659 {
3660 	BUG();
3661 	return 0;
3662 }
3663 
3664 /*
3665  * When a new function is introduced to vm_operations_struct and added
3666  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3667  * This is because under System V memory model, mappings created via
3668  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3669  * their original vm_ops are overwritten with shm_vm_ops.
3670  */
3671 const struct vm_operations_struct hugetlb_vm_ops = {
3672 	.fault = hugetlb_vm_op_fault,
3673 	.open = hugetlb_vm_op_open,
3674 	.close = hugetlb_vm_op_close,
3675 	.may_split = hugetlb_vm_op_split,
3676 	.pagesize = hugetlb_vm_op_pagesize,
3677 };
3678 
3679 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3680 				int writable)
3681 {
3682 	pte_t entry;
3683 
3684 	if (writable) {
3685 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3686 					 vma->vm_page_prot)));
3687 	} else {
3688 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3689 					   vma->vm_page_prot));
3690 	}
3691 	entry = pte_mkyoung(entry);
3692 	entry = pte_mkhuge(entry);
3693 	entry = arch_make_huge_pte(entry, vma, page, writable);
3694 
3695 	return entry;
3696 }
3697 
3698 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3699 				   unsigned long address, pte_t *ptep)
3700 {
3701 	pte_t entry;
3702 
3703 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3704 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3705 		update_mmu_cache(vma, address, ptep);
3706 }
3707 
3708 bool is_hugetlb_entry_migration(pte_t pte)
3709 {
3710 	swp_entry_t swp;
3711 
3712 	if (huge_pte_none(pte) || pte_present(pte))
3713 		return false;
3714 	swp = pte_to_swp_entry(pte);
3715 	if (is_migration_entry(swp))
3716 		return true;
3717 	else
3718 		return false;
3719 }
3720 
3721 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3722 {
3723 	swp_entry_t swp;
3724 
3725 	if (huge_pte_none(pte) || pte_present(pte))
3726 		return false;
3727 	swp = pte_to_swp_entry(pte);
3728 	if (is_hwpoison_entry(swp))
3729 		return true;
3730 	else
3731 		return false;
3732 }
3733 
3734 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3735 			    struct vm_area_struct *vma)
3736 {
3737 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3738 	struct page *ptepage;
3739 	unsigned long addr;
3740 	int cow;
3741 	struct hstate *h = hstate_vma(vma);
3742 	unsigned long sz = huge_page_size(h);
3743 	struct address_space *mapping = vma->vm_file->f_mapping;
3744 	struct mmu_notifier_range range;
3745 	int ret = 0;
3746 
3747 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3748 
3749 	if (cow) {
3750 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3751 					vma->vm_start,
3752 					vma->vm_end);
3753 		mmu_notifier_invalidate_range_start(&range);
3754 	} else {
3755 		/*
3756 		 * For shared mappings i_mmap_rwsem must be held to call
3757 		 * huge_pte_alloc, otherwise the returned ptep could go
3758 		 * away if part of a shared pmd and another thread calls
3759 		 * huge_pmd_unshare.
3760 		 */
3761 		i_mmap_lock_read(mapping);
3762 	}
3763 
3764 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3765 		spinlock_t *src_ptl, *dst_ptl;
3766 		src_pte = huge_pte_offset(src, addr, sz);
3767 		if (!src_pte)
3768 			continue;
3769 		dst_pte = huge_pte_alloc(dst, addr, sz);
3770 		if (!dst_pte) {
3771 			ret = -ENOMEM;
3772 			break;
3773 		}
3774 
3775 		/*
3776 		 * If the pagetables are shared don't copy or take references.
3777 		 * dst_pte == src_pte is the common case of src/dest sharing.
3778 		 *
3779 		 * However, src could have 'unshared' and dst shares with
3780 		 * another vma.  If dst_pte !none, this implies sharing.
3781 		 * Check here before taking page table lock, and once again
3782 		 * after taking the lock below.
3783 		 */
3784 		dst_entry = huge_ptep_get(dst_pte);
3785 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3786 			continue;
3787 
3788 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3789 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3790 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3791 		entry = huge_ptep_get(src_pte);
3792 		dst_entry = huge_ptep_get(dst_pte);
3793 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3794 			/*
3795 			 * Skip if src entry none.  Also, skip in the
3796 			 * unlikely case dst entry !none as this implies
3797 			 * sharing with another vma.
3798 			 */
3799 			;
3800 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3801 				    is_hugetlb_entry_hwpoisoned(entry))) {
3802 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3803 
3804 			if (is_write_migration_entry(swp_entry) && cow) {
3805 				/*
3806 				 * COW mappings require pages in both
3807 				 * parent and child to be set to read.
3808 				 */
3809 				make_migration_entry_read(&swp_entry);
3810 				entry = swp_entry_to_pte(swp_entry);
3811 				set_huge_swap_pte_at(src, addr, src_pte,
3812 						     entry, sz);
3813 			}
3814 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3815 		} else {
3816 			if (cow) {
3817 				/*
3818 				 * No need to notify as we are downgrading page
3819 				 * table protection not changing it to point
3820 				 * to a new page.
3821 				 *
3822 				 * See Documentation/vm/mmu_notifier.rst
3823 				 */
3824 				huge_ptep_set_wrprotect(src, addr, src_pte);
3825 			}
3826 			entry = huge_ptep_get(src_pte);
3827 			ptepage = pte_page(entry);
3828 			get_page(ptepage);
3829 			page_dup_rmap(ptepage, true);
3830 			set_huge_pte_at(dst, addr, dst_pte, entry);
3831 			hugetlb_count_add(pages_per_huge_page(h), dst);
3832 		}
3833 		spin_unlock(src_ptl);
3834 		spin_unlock(dst_ptl);
3835 	}
3836 
3837 	if (cow)
3838 		mmu_notifier_invalidate_range_end(&range);
3839 	else
3840 		i_mmap_unlock_read(mapping);
3841 
3842 	return ret;
3843 }
3844 
3845 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3846 			    unsigned long start, unsigned long end,
3847 			    struct page *ref_page)
3848 {
3849 	struct mm_struct *mm = vma->vm_mm;
3850 	unsigned long address;
3851 	pte_t *ptep;
3852 	pte_t pte;
3853 	spinlock_t *ptl;
3854 	struct page *page;
3855 	struct hstate *h = hstate_vma(vma);
3856 	unsigned long sz = huge_page_size(h);
3857 	struct mmu_notifier_range range;
3858 
3859 	WARN_ON(!is_vm_hugetlb_page(vma));
3860 	BUG_ON(start & ~huge_page_mask(h));
3861 	BUG_ON(end & ~huge_page_mask(h));
3862 
3863 	/*
3864 	 * This is a hugetlb vma, all the pte entries should point
3865 	 * to huge page.
3866 	 */
3867 	tlb_change_page_size(tlb, sz);
3868 	tlb_start_vma(tlb, vma);
3869 
3870 	/*
3871 	 * If sharing possible, alert mmu notifiers of worst case.
3872 	 */
3873 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3874 				end);
3875 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3876 	mmu_notifier_invalidate_range_start(&range);
3877 	address = start;
3878 	for (; address < end; address += sz) {
3879 		ptep = huge_pte_offset(mm, address, sz);
3880 		if (!ptep)
3881 			continue;
3882 
3883 		ptl = huge_pte_lock(h, mm, ptep);
3884 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3885 			spin_unlock(ptl);
3886 			/*
3887 			 * We just unmapped a page of PMDs by clearing a PUD.
3888 			 * The caller's TLB flush range should cover this area.
3889 			 */
3890 			continue;
3891 		}
3892 
3893 		pte = huge_ptep_get(ptep);
3894 		if (huge_pte_none(pte)) {
3895 			spin_unlock(ptl);
3896 			continue;
3897 		}
3898 
3899 		/*
3900 		 * Migrating hugepage or HWPoisoned hugepage is already
3901 		 * unmapped and its refcount is dropped, so just clear pte here.
3902 		 */
3903 		if (unlikely(!pte_present(pte))) {
3904 			huge_pte_clear(mm, address, ptep, sz);
3905 			spin_unlock(ptl);
3906 			continue;
3907 		}
3908 
3909 		page = pte_page(pte);
3910 		/*
3911 		 * If a reference page is supplied, it is because a specific
3912 		 * page is being unmapped, not a range. Ensure the page we
3913 		 * are about to unmap is the actual page of interest.
3914 		 */
3915 		if (ref_page) {
3916 			if (page != ref_page) {
3917 				spin_unlock(ptl);
3918 				continue;
3919 			}
3920 			/*
3921 			 * Mark the VMA as having unmapped its page so that
3922 			 * future faults in this VMA will fail rather than
3923 			 * looking like data was lost
3924 			 */
3925 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3926 		}
3927 
3928 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3929 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3930 		if (huge_pte_dirty(pte))
3931 			set_page_dirty(page);
3932 
3933 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3934 		page_remove_rmap(page, true);
3935 
3936 		spin_unlock(ptl);
3937 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3938 		/*
3939 		 * Bail out after unmapping reference page if supplied
3940 		 */
3941 		if (ref_page)
3942 			break;
3943 	}
3944 	mmu_notifier_invalidate_range_end(&range);
3945 	tlb_end_vma(tlb, vma);
3946 }
3947 
3948 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3949 			  struct vm_area_struct *vma, unsigned long start,
3950 			  unsigned long end, struct page *ref_page)
3951 {
3952 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3953 
3954 	/*
3955 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3956 	 * test will fail on a vma being torn down, and not grab a page table
3957 	 * on its way out.  We're lucky that the flag has such an appropriate
3958 	 * name, and can in fact be safely cleared here. We could clear it
3959 	 * before the __unmap_hugepage_range above, but all that's necessary
3960 	 * is to clear it before releasing the i_mmap_rwsem. This works
3961 	 * because in the context this is called, the VMA is about to be
3962 	 * destroyed and the i_mmap_rwsem is held.
3963 	 */
3964 	vma->vm_flags &= ~VM_MAYSHARE;
3965 }
3966 
3967 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3968 			  unsigned long end, struct page *ref_page)
3969 {
3970 	struct mm_struct *mm;
3971 	struct mmu_gather tlb;
3972 	unsigned long tlb_start = start;
3973 	unsigned long tlb_end = end;
3974 
3975 	/*
3976 	 * If shared PMDs were possibly used within this vma range, adjust
3977 	 * start/end for worst case tlb flushing.
3978 	 * Note that we can not be sure if PMDs are shared until we try to
3979 	 * unmap pages.  However, we want to make sure TLB flushing covers
3980 	 * the largest possible range.
3981 	 */
3982 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3983 
3984 	mm = vma->vm_mm;
3985 
3986 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3987 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3988 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3989 }
3990 
3991 /*
3992  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3993  * mappping it owns the reserve page for. The intention is to unmap the page
3994  * from other VMAs and let the children be SIGKILLed if they are faulting the
3995  * same region.
3996  */
3997 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3998 			      struct page *page, unsigned long address)
3999 {
4000 	struct hstate *h = hstate_vma(vma);
4001 	struct vm_area_struct *iter_vma;
4002 	struct address_space *mapping;
4003 	pgoff_t pgoff;
4004 
4005 	/*
4006 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4007 	 * from page cache lookup which is in HPAGE_SIZE units.
4008 	 */
4009 	address = address & huge_page_mask(h);
4010 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4011 			vma->vm_pgoff;
4012 	mapping = vma->vm_file->f_mapping;
4013 
4014 	/*
4015 	 * Take the mapping lock for the duration of the table walk. As
4016 	 * this mapping should be shared between all the VMAs,
4017 	 * __unmap_hugepage_range() is called as the lock is already held
4018 	 */
4019 	i_mmap_lock_write(mapping);
4020 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4021 		/* Do not unmap the current VMA */
4022 		if (iter_vma == vma)
4023 			continue;
4024 
4025 		/*
4026 		 * Shared VMAs have their own reserves and do not affect
4027 		 * MAP_PRIVATE accounting but it is possible that a shared
4028 		 * VMA is using the same page so check and skip such VMAs.
4029 		 */
4030 		if (iter_vma->vm_flags & VM_MAYSHARE)
4031 			continue;
4032 
4033 		/*
4034 		 * Unmap the page from other VMAs without their own reserves.
4035 		 * They get marked to be SIGKILLed if they fault in these
4036 		 * areas. This is because a future no-page fault on this VMA
4037 		 * could insert a zeroed page instead of the data existing
4038 		 * from the time of fork. This would look like data corruption
4039 		 */
4040 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4041 			unmap_hugepage_range(iter_vma, address,
4042 					     address + huge_page_size(h), page);
4043 	}
4044 	i_mmap_unlock_write(mapping);
4045 }
4046 
4047 /*
4048  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4049  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4050  * cannot race with other handlers or page migration.
4051  * Keep the pte_same checks anyway to make transition from the mutex easier.
4052  */
4053 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4054 		       unsigned long address, pte_t *ptep,
4055 		       struct page *pagecache_page, spinlock_t *ptl)
4056 {
4057 	pte_t pte;
4058 	struct hstate *h = hstate_vma(vma);
4059 	struct page *old_page, *new_page;
4060 	int outside_reserve = 0;
4061 	vm_fault_t ret = 0;
4062 	unsigned long haddr = address & huge_page_mask(h);
4063 	struct mmu_notifier_range range;
4064 
4065 	pte = huge_ptep_get(ptep);
4066 	old_page = pte_page(pte);
4067 
4068 retry_avoidcopy:
4069 	/* If no-one else is actually using this page, avoid the copy
4070 	 * and just make the page writable */
4071 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4072 		page_move_anon_rmap(old_page, vma);
4073 		set_huge_ptep_writable(vma, haddr, ptep);
4074 		return 0;
4075 	}
4076 
4077 	/*
4078 	 * If the process that created a MAP_PRIVATE mapping is about to
4079 	 * perform a COW due to a shared page count, attempt to satisfy
4080 	 * the allocation without using the existing reserves. The pagecache
4081 	 * page is used to determine if the reserve at this address was
4082 	 * consumed or not. If reserves were used, a partial faulted mapping
4083 	 * at the time of fork() could consume its reserves on COW instead
4084 	 * of the full address range.
4085 	 */
4086 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4087 			old_page != pagecache_page)
4088 		outside_reserve = 1;
4089 
4090 	get_page(old_page);
4091 
4092 	/*
4093 	 * Drop page table lock as buddy allocator may be called. It will
4094 	 * be acquired again before returning to the caller, as expected.
4095 	 */
4096 	spin_unlock(ptl);
4097 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4098 
4099 	if (IS_ERR(new_page)) {
4100 		/*
4101 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4102 		 * it is due to references held by a child and an insufficient
4103 		 * huge page pool. To guarantee the original mappers
4104 		 * reliability, unmap the page from child processes. The child
4105 		 * may get SIGKILLed if it later faults.
4106 		 */
4107 		if (outside_reserve) {
4108 			put_page(old_page);
4109 			BUG_ON(huge_pte_none(pte));
4110 			unmap_ref_private(mm, vma, old_page, haddr);
4111 			BUG_ON(huge_pte_none(pte));
4112 			spin_lock(ptl);
4113 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4114 			if (likely(ptep &&
4115 				   pte_same(huge_ptep_get(ptep), pte)))
4116 				goto retry_avoidcopy;
4117 			/*
4118 			 * race occurs while re-acquiring page table
4119 			 * lock, and our job is done.
4120 			 */
4121 			return 0;
4122 		}
4123 
4124 		ret = vmf_error(PTR_ERR(new_page));
4125 		goto out_release_old;
4126 	}
4127 
4128 	/*
4129 	 * When the original hugepage is shared one, it does not have
4130 	 * anon_vma prepared.
4131 	 */
4132 	if (unlikely(anon_vma_prepare(vma))) {
4133 		ret = VM_FAULT_OOM;
4134 		goto out_release_all;
4135 	}
4136 
4137 	copy_user_huge_page(new_page, old_page, address, vma,
4138 			    pages_per_huge_page(h));
4139 	__SetPageUptodate(new_page);
4140 
4141 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4142 				haddr + huge_page_size(h));
4143 	mmu_notifier_invalidate_range_start(&range);
4144 
4145 	/*
4146 	 * Retake the page table lock to check for racing updates
4147 	 * before the page tables are altered
4148 	 */
4149 	spin_lock(ptl);
4150 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4151 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4152 		ClearPagePrivate(new_page);
4153 
4154 		/* Break COW */
4155 		huge_ptep_clear_flush(vma, haddr, ptep);
4156 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4157 		set_huge_pte_at(mm, haddr, ptep,
4158 				make_huge_pte(vma, new_page, 1));
4159 		page_remove_rmap(old_page, true);
4160 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4161 		set_page_huge_active(new_page);
4162 		/* Make the old page be freed below */
4163 		new_page = old_page;
4164 	}
4165 	spin_unlock(ptl);
4166 	mmu_notifier_invalidate_range_end(&range);
4167 out_release_all:
4168 	restore_reserve_on_error(h, vma, haddr, new_page);
4169 	put_page(new_page);
4170 out_release_old:
4171 	put_page(old_page);
4172 
4173 	spin_lock(ptl); /* Caller expects lock to be held */
4174 	return ret;
4175 }
4176 
4177 /* Return the pagecache page at a given address within a VMA */
4178 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4179 			struct vm_area_struct *vma, unsigned long address)
4180 {
4181 	struct address_space *mapping;
4182 	pgoff_t idx;
4183 
4184 	mapping = vma->vm_file->f_mapping;
4185 	idx = vma_hugecache_offset(h, vma, address);
4186 
4187 	return find_lock_page(mapping, idx);
4188 }
4189 
4190 /*
4191  * Return whether there is a pagecache page to back given address within VMA.
4192  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4193  */
4194 static bool hugetlbfs_pagecache_present(struct hstate *h,
4195 			struct vm_area_struct *vma, unsigned long address)
4196 {
4197 	struct address_space *mapping;
4198 	pgoff_t idx;
4199 	struct page *page;
4200 
4201 	mapping = vma->vm_file->f_mapping;
4202 	idx = vma_hugecache_offset(h, vma, address);
4203 
4204 	page = find_get_page(mapping, idx);
4205 	if (page)
4206 		put_page(page);
4207 	return page != NULL;
4208 }
4209 
4210 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4211 			   pgoff_t idx)
4212 {
4213 	struct inode *inode = mapping->host;
4214 	struct hstate *h = hstate_inode(inode);
4215 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4216 
4217 	if (err)
4218 		return err;
4219 	ClearPagePrivate(page);
4220 
4221 	/*
4222 	 * set page dirty so that it will not be removed from cache/file
4223 	 * by non-hugetlbfs specific code paths.
4224 	 */
4225 	set_page_dirty(page);
4226 
4227 	spin_lock(&inode->i_lock);
4228 	inode->i_blocks += blocks_per_huge_page(h);
4229 	spin_unlock(&inode->i_lock);
4230 	return 0;
4231 }
4232 
4233 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4234 			struct vm_area_struct *vma,
4235 			struct address_space *mapping, pgoff_t idx,
4236 			unsigned long address, pte_t *ptep, unsigned int flags)
4237 {
4238 	struct hstate *h = hstate_vma(vma);
4239 	vm_fault_t ret = VM_FAULT_SIGBUS;
4240 	int anon_rmap = 0;
4241 	unsigned long size;
4242 	struct page *page;
4243 	pte_t new_pte;
4244 	spinlock_t *ptl;
4245 	unsigned long haddr = address & huge_page_mask(h);
4246 	bool new_page = false;
4247 
4248 	/*
4249 	 * Currently, we are forced to kill the process in the event the
4250 	 * original mapper has unmapped pages from the child due to a failed
4251 	 * COW. Warn that such a situation has occurred as it may not be obvious
4252 	 */
4253 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4254 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4255 			   current->pid);
4256 		return ret;
4257 	}
4258 
4259 	/*
4260 	 * We can not race with truncation due to holding i_mmap_rwsem.
4261 	 * i_size is modified when holding i_mmap_rwsem, so check here
4262 	 * once for faults beyond end of file.
4263 	 */
4264 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4265 	if (idx >= size)
4266 		goto out;
4267 
4268 retry:
4269 	page = find_lock_page(mapping, idx);
4270 	if (!page) {
4271 		/*
4272 		 * Check for page in userfault range
4273 		 */
4274 		if (userfaultfd_missing(vma)) {
4275 			u32 hash;
4276 			struct vm_fault vmf = {
4277 				.vma = vma,
4278 				.address = haddr,
4279 				.flags = flags,
4280 				/*
4281 				 * Hard to debug if it ends up being
4282 				 * used by a callee that assumes
4283 				 * something about the other
4284 				 * uninitialized fields... same as in
4285 				 * memory.c
4286 				 */
4287 			};
4288 
4289 			/*
4290 			 * hugetlb_fault_mutex and i_mmap_rwsem must be
4291 			 * dropped before handling userfault.  Reacquire
4292 			 * after handling fault to make calling code simpler.
4293 			 */
4294 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4295 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4296 			i_mmap_unlock_read(mapping);
4297 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4298 			i_mmap_lock_read(mapping);
4299 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4300 			goto out;
4301 		}
4302 
4303 		page = alloc_huge_page(vma, haddr, 0);
4304 		if (IS_ERR(page)) {
4305 			/*
4306 			 * Returning error will result in faulting task being
4307 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4308 			 * tasks from racing to fault in the same page which
4309 			 * could result in false unable to allocate errors.
4310 			 * Page migration does not take the fault mutex, but
4311 			 * does a clear then write of pte's under page table
4312 			 * lock.  Page fault code could race with migration,
4313 			 * notice the clear pte and try to allocate a page
4314 			 * here.  Before returning error, get ptl and make
4315 			 * sure there really is no pte entry.
4316 			 */
4317 			ptl = huge_pte_lock(h, mm, ptep);
4318 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4319 				ret = 0;
4320 				spin_unlock(ptl);
4321 				goto out;
4322 			}
4323 			spin_unlock(ptl);
4324 			ret = vmf_error(PTR_ERR(page));
4325 			goto out;
4326 		}
4327 		clear_huge_page(page, address, pages_per_huge_page(h));
4328 		__SetPageUptodate(page);
4329 		new_page = true;
4330 
4331 		if (vma->vm_flags & VM_MAYSHARE) {
4332 			int err = huge_add_to_page_cache(page, mapping, idx);
4333 			if (err) {
4334 				put_page(page);
4335 				if (err == -EEXIST)
4336 					goto retry;
4337 				goto out;
4338 			}
4339 		} else {
4340 			lock_page(page);
4341 			if (unlikely(anon_vma_prepare(vma))) {
4342 				ret = VM_FAULT_OOM;
4343 				goto backout_unlocked;
4344 			}
4345 			anon_rmap = 1;
4346 		}
4347 	} else {
4348 		/*
4349 		 * If memory error occurs between mmap() and fault, some process
4350 		 * don't have hwpoisoned swap entry for errored virtual address.
4351 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4352 		 */
4353 		if (unlikely(PageHWPoison(page))) {
4354 			ret = VM_FAULT_HWPOISON |
4355 				VM_FAULT_SET_HINDEX(hstate_index(h));
4356 			goto backout_unlocked;
4357 		}
4358 	}
4359 
4360 	/*
4361 	 * If we are going to COW a private mapping later, we examine the
4362 	 * pending reservations for this page now. This will ensure that
4363 	 * any allocations necessary to record that reservation occur outside
4364 	 * the spinlock.
4365 	 */
4366 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4367 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4368 			ret = VM_FAULT_OOM;
4369 			goto backout_unlocked;
4370 		}
4371 		/* Just decrements count, does not deallocate */
4372 		vma_end_reservation(h, vma, haddr);
4373 	}
4374 
4375 	ptl = huge_pte_lock(h, mm, ptep);
4376 	ret = 0;
4377 	if (!huge_pte_none(huge_ptep_get(ptep)))
4378 		goto backout;
4379 
4380 	if (anon_rmap) {
4381 		ClearPagePrivate(page);
4382 		hugepage_add_new_anon_rmap(page, vma, haddr);
4383 	} else
4384 		page_dup_rmap(page, true);
4385 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4386 				&& (vma->vm_flags & VM_SHARED)));
4387 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4388 
4389 	hugetlb_count_add(pages_per_huge_page(h), mm);
4390 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4391 		/* Optimization, do the COW without a second fault */
4392 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4393 	}
4394 
4395 	spin_unlock(ptl);
4396 
4397 	/*
4398 	 * Only make newly allocated pages active.  Existing pages found
4399 	 * in the pagecache could be !page_huge_active() if they have been
4400 	 * isolated for migration.
4401 	 */
4402 	if (new_page)
4403 		set_page_huge_active(page);
4404 
4405 	unlock_page(page);
4406 out:
4407 	return ret;
4408 
4409 backout:
4410 	spin_unlock(ptl);
4411 backout_unlocked:
4412 	unlock_page(page);
4413 	restore_reserve_on_error(h, vma, haddr, page);
4414 	put_page(page);
4415 	goto out;
4416 }
4417 
4418 #ifdef CONFIG_SMP
4419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4420 {
4421 	unsigned long key[2];
4422 	u32 hash;
4423 
4424 	key[0] = (unsigned long) mapping;
4425 	key[1] = idx;
4426 
4427 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4428 
4429 	return hash & (num_fault_mutexes - 1);
4430 }
4431 #else
4432 /*
4433  * For uniprocesor systems we always use a single mutex, so just
4434  * return 0 and avoid the hashing overhead.
4435  */
4436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4437 {
4438 	return 0;
4439 }
4440 #endif
4441 
4442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4443 			unsigned long address, unsigned int flags)
4444 {
4445 	pte_t *ptep, entry;
4446 	spinlock_t *ptl;
4447 	vm_fault_t ret;
4448 	u32 hash;
4449 	pgoff_t idx;
4450 	struct page *page = NULL;
4451 	struct page *pagecache_page = NULL;
4452 	struct hstate *h = hstate_vma(vma);
4453 	struct address_space *mapping;
4454 	int need_wait_lock = 0;
4455 	unsigned long haddr = address & huge_page_mask(h);
4456 
4457 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4458 	if (ptep) {
4459 		/*
4460 		 * Since we hold no locks, ptep could be stale.  That is
4461 		 * OK as we are only making decisions based on content and
4462 		 * not actually modifying content here.
4463 		 */
4464 		entry = huge_ptep_get(ptep);
4465 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4466 			migration_entry_wait_huge(vma, mm, ptep);
4467 			return 0;
4468 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4469 			return VM_FAULT_HWPOISON_LARGE |
4470 				VM_FAULT_SET_HINDEX(hstate_index(h));
4471 	}
4472 
4473 	/*
4474 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4475 	 * until finished with ptep.  This serves two purposes:
4476 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4477 	 *    and making the ptep no longer valid.
4478 	 * 2) It synchronizes us with i_size modifications during truncation.
4479 	 *
4480 	 * ptep could have already be assigned via huge_pte_offset.  That
4481 	 * is OK, as huge_pte_alloc will return the same value unless
4482 	 * something has changed.
4483 	 */
4484 	mapping = vma->vm_file->f_mapping;
4485 	i_mmap_lock_read(mapping);
4486 	ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4487 	if (!ptep) {
4488 		i_mmap_unlock_read(mapping);
4489 		return VM_FAULT_OOM;
4490 	}
4491 
4492 	/*
4493 	 * Serialize hugepage allocation and instantiation, so that we don't
4494 	 * get spurious allocation failures if two CPUs race to instantiate
4495 	 * the same page in the page cache.
4496 	 */
4497 	idx = vma_hugecache_offset(h, vma, haddr);
4498 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4499 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4500 
4501 	entry = huge_ptep_get(ptep);
4502 	if (huge_pte_none(entry)) {
4503 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4504 		goto out_mutex;
4505 	}
4506 
4507 	ret = 0;
4508 
4509 	/*
4510 	 * entry could be a migration/hwpoison entry at this point, so this
4511 	 * check prevents the kernel from going below assuming that we have
4512 	 * an active hugepage in pagecache. This goto expects the 2nd page
4513 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4514 	 * properly handle it.
4515 	 */
4516 	if (!pte_present(entry))
4517 		goto out_mutex;
4518 
4519 	/*
4520 	 * If we are going to COW the mapping later, we examine the pending
4521 	 * reservations for this page now. This will ensure that any
4522 	 * allocations necessary to record that reservation occur outside the
4523 	 * spinlock. For private mappings, we also lookup the pagecache
4524 	 * page now as it is used to determine if a reservation has been
4525 	 * consumed.
4526 	 */
4527 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4528 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4529 			ret = VM_FAULT_OOM;
4530 			goto out_mutex;
4531 		}
4532 		/* Just decrements count, does not deallocate */
4533 		vma_end_reservation(h, vma, haddr);
4534 
4535 		if (!(vma->vm_flags & VM_MAYSHARE))
4536 			pagecache_page = hugetlbfs_pagecache_page(h,
4537 								vma, haddr);
4538 	}
4539 
4540 	ptl = huge_pte_lock(h, mm, ptep);
4541 
4542 	/* Check for a racing update before calling hugetlb_cow */
4543 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4544 		goto out_ptl;
4545 
4546 	/*
4547 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4548 	 * pagecache_page, so here we need take the former one
4549 	 * when page != pagecache_page or !pagecache_page.
4550 	 */
4551 	page = pte_page(entry);
4552 	if (page != pagecache_page)
4553 		if (!trylock_page(page)) {
4554 			need_wait_lock = 1;
4555 			goto out_ptl;
4556 		}
4557 
4558 	get_page(page);
4559 
4560 	if (flags & FAULT_FLAG_WRITE) {
4561 		if (!huge_pte_write(entry)) {
4562 			ret = hugetlb_cow(mm, vma, address, ptep,
4563 					  pagecache_page, ptl);
4564 			goto out_put_page;
4565 		}
4566 		entry = huge_pte_mkdirty(entry);
4567 	}
4568 	entry = pte_mkyoung(entry);
4569 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4570 						flags & FAULT_FLAG_WRITE))
4571 		update_mmu_cache(vma, haddr, ptep);
4572 out_put_page:
4573 	if (page != pagecache_page)
4574 		unlock_page(page);
4575 	put_page(page);
4576 out_ptl:
4577 	spin_unlock(ptl);
4578 
4579 	if (pagecache_page) {
4580 		unlock_page(pagecache_page);
4581 		put_page(pagecache_page);
4582 	}
4583 out_mutex:
4584 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4585 	i_mmap_unlock_read(mapping);
4586 	/*
4587 	 * Generally it's safe to hold refcount during waiting page lock. But
4588 	 * here we just wait to defer the next page fault to avoid busy loop and
4589 	 * the page is not used after unlocked before returning from the current
4590 	 * page fault. So we are safe from accessing freed page, even if we wait
4591 	 * here without taking refcount.
4592 	 */
4593 	if (need_wait_lock)
4594 		wait_on_page_locked(page);
4595 	return ret;
4596 }
4597 
4598 /*
4599  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4600  * modifications for huge pages.
4601  */
4602 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4603 			    pte_t *dst_pte,
4604 			    struct vm_area_struct *dst_vma,
4605 			    unsigned long dst_addr,
4606 			    unsigned long src_addr,
4607 			    struct page **pagep)
4608 {
4609 	struct address_space *mapping;
4610 	pgoff_t idx;
4611 	unsigned long size;
4612 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4613 	struct hstate *h = hstate_vma(dst_vma);
4614 	pte_t _dst_pte;
4615 	spinlock_t *ptl;
4616 	int ret;
4617 	struct page *page;
4618 
4619 	if (!*pagep) {
4620 		ret = -ENOMEM;
4621 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4622 		if (IS_ERR(page))
4623 			goto out;
4624 
4625 		ret = copy_huge_page_from_user(page,
4626 						(const void __user *) src_addr,
4627 						pages_per_huge_page(h), false);
4628 
4629 		/* fallback to copy_from_user outside mmap_lock */
4630 		if (unlikely(ret)) {
4631 			ret = -ENOENT;
4632 			*pagep = page;
4633 			/* don't free the page */
4634 			goto out;
4635 		}
4636 	} else {
4637 		page = *pagep;
4638 		*pagep = NULL;
4639 	}
4640 
4641 	/*
4642 	 * The memory barrier inside __SetPageUptodate makes sure that
4643 	 * preceding stores to the page contents become visible before
4644 	 * the set_pte_at() write.
4645 	 */
4646 	__SetPageUptodate(page);
4647 
4648 	mapping = dst_vma->vm_file->f_mapping;
4649 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4650 
4651 	/*
4652 	 * If shared, add to page cache
4653 	 */
4654 	if (vm_shared) {
4655 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4656 		ret = -EFAULT;
4657 		if (idx >= size)
4658 			goto out_release_nounlock;
4659 
4660 		/*
4661 		 * Serialization between remove_inode_hugepages() and
4662 		 * huge_add_to_page_cache() below happens through the
4663 		 * hugetlb_fault_mutex_table that here must be hold by
4664 		 * the caller.
4665 		 */
4666 		ret = huge_add_to_page_cache(page, mapping, idx);
4667 		if (ret)
4668 			goto out_release_nounlock;
4669 	}
4670 
4671 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4672 	spin_lock(ptl);
4673 
4674 	/*
4675 	 * Recheck the i_size after holding PT lock to make sure not
4676 	 * to leave any page mapped (as page_mapped()) beyond the end
4677 	 * of the i_size (remove_inode_hugepages() is strict about
4678 	 * enforcing that). If we bail out here, we'll also leave a
4679 	 * page in the radix tree in the vm_shared case beyond the end
4680 	 * of the i_size, but remove_inode_hugepages() will take care
4681 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4682 	 */
4683 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4684 	ret = -EFAULT;
4685 	if (idx >= size)
4686 		goto out_release_unlock;
4687 
4688 	ret = -EEXIST;
4689 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4690 		goto out_release_unlock;
4691 
4692 	if (vm_shared) {
4693 		page_dup_rmap(page, true);
4694 	} else {
4695 		ClearPagePrivate(page);
4696 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4697 	}
4698 
4699 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4700 	if (dst_vma->vm_flags & VM_WRITE)
4701 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4702 	_dst_pte = pte_mkyoung(_dst_pte);
4703 
4704 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4705 
4706 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4707 					dst_vma->vm_flags & VM_WRITE);
4708 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4709 
4710 	/* No need to invalidate - it was non-present before */
4711 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4712 
4713 	spin_unlock(ptl);
4714 	set_page_huge_active(page);
4715 	if (vm_shared)
4716 		unlock_page(page);
4717 	ret = 0;
4718 out:
4719 	return ret;
4720 out_release_unlock:
4721 	spin_unlock(ptl);
4722 	if (vm_shared)
4723 		unlock_page(page);
4724 out_release_nounlock:
4725 	put_page(page);
4726 	goto out;
4727 }
4728 
4729 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4730 			 struct page **pages, struct vm_area_struct **vmas,
4731 			 unsigned long *position, unsigned long *nr_pages,
4732 			 long i, unsigned int flags, int *locked)
4733 {
4734 	unsigned long pfn_offset;
4735 	unsigned long vaddr = *position;
4736 	unsigned long remainder = *nr_pages;
4737 	struct hstate *h = hstate_vma(vma);
4738 	int err = -EFAULT;
4739 
4740 	while (vaddr < vma->vm_end && remainder) {
4741 		pte_t *pte;
4742 		spinlock_t *ptl = NULL;
4743 		int absent;
4744 		struct page *page;
4745 
4746 		/*
4747 		 * If we have a pending SIGKILL, don't keep faulting pages and
4748 		 * potentially allocating memory.
4749 		 */
4750 		if (fatal_signal_pending(current)) {
4751 			remainder = 0;
4752 			break;
4753 		}
4754 
4755 		/*
4756 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4757 		 * each hugepage.  We have to make sure we get the
4758 		 * first, for the page indexing below to work.
4759 		 *
4760 		 * Note that page table lock is not held when pte is null.
4761 		 */
4762 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4763 				      huge_page_size(h));
4764 		if (pte)
4765 			ptl = huge_pte_lock(h, mm, pte);
4766 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4767 
4768 		/*
4769 		 * When coredumping, it suits get_dump_page if we just return
4770 		 * an error where there's an empty slot with no huge pagecache
4771 		 * to back it.  This way, we avoid allocating a hugepage, and
4772 		 * the sparse dumpfile avoids allocating disk blocks, but its
4773 		 * huge holes still show up with zeroes where they need to be.
4774 		 */
4775 		if (absent && (flags & FOLL_DUMP) &&
4776 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4777 			if (pte)
4778 				spin_unlock(ptl);
4779 			remainder = 0;
4780 			break;
4781 		}
4782 
4783 		/*
4784 		 * We need call hugetlb_fault for both hugepages under migration
4785 		 * (in which case hugetlb_fault waits for the migration,) and
4786 		 * hwpoisoned hugepages (in which case we need to prevent the
4787 		 * caller from accessing to them.) In order to do this, we use
4788 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4789 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4790 		 * both cases, and because we can't follow correct pages
4791 		 * directly from any kind of swap entries.
4792 		 */
4793 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4794 		    ((flags & FOLL_WRITE) &&
4795 		      !huge_pte_write(huge_ptep_get(pte)))) {
4796 			vm_fault_t ret;
4797 			unsigned int fault_flags = 0;
4798 
4799 			if (pte)
4800 				spin_unlock(ptl);
4801 			if (flags & FOLL_WRITE)
4802 				fault_flags |= FAULT_FLAG_WRITE;
4803 			if (locked)
4804 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4805 					FAULT_FLAG_KILLABLE;
4806 			if (flags & FOLL_NOWAIT)
4807 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4808 					FAULT_FLAG_RETRY_NOWAIT;
4809 			if (flags & FOLL_TRIED) {
4810 				/*
4811 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4812 				 * FAULT_FLAG_TRIED can co-exist
4813 				 */
4814 				fault_flags |= FAULT_FLAG_TRIED;
4815 			}
4816 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4817 			if (ret & VM_FAULT_ERROR) {
4818 				err = vm_fault_to_errno(ret, flags);
4819 				remainder = 0;
4820 				break;
4821 			}
4822 			if (ret & VM_FAULT_RETRY) {
4823 				if (locked &&
4824 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4825 					*locked = 0;
4826 				*nr_pages = 0;
4827 				/*
4828 				 * VM_FAULT_RETRY must not return an
4829 				 * error, it will return zero
4830 				 * instead.
4831 				 *
4832 				 * No need to update "position" as the
4833 				 * caller will not check it after
4834 				 * *nr_pages is set to 0.
4835 				 */
4836 				return i;
4837 			}
4838 			continue;
4839 		}
4840 
4841 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4842 		page = pte_page(huge_ptep_get(pte));
4843 
4844 		/*
4845 		 * If subpage information not requested, update counters
4846 		 * and skip the same_page loop below.
4847 		 */
4848 		if (!pages && !vmas && !pfn_offset &&
4849 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4850 		    (remainder >= pages_per_huge_page(h))) {
4851 			vaddr += huge_page_size(h);
4852 			remainder -= pages_per_huge_page(h);
4853 			i += pages_per_huge_page(h);
4854 			spin_unlock(ptl);
4855 			continue;
4856 		}
4857 
4858 same_page:
4859 		if (pages) {
4860 			pages[i] = mem_map_offset(page, pfn_offset);
4861 			/*
4862 			 * try_grab_page() should always succeed here, because:
4863 			 * a) we hold the ptl lock, and b) we've just checked
4864 			 * that the huge page is present in the page tables. If
4865 			 * the huge page is present, then the tail pages must
4866 			 * also be present. The ptl prevents the head page and
4867 			 * tail pages from being rearranged in any way. So this
4868 			 * page must be available at this point, unless the page
4869 			 * refcount overflowed:
4870 			 */
4871 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4872 				spin_unlock(ptl);
4873 				remainder = 0;
4874 				err = -ENOMEM;
4875 				break;
4876 			}
4877 		}
4878 
4879 		if (vmas)
4880 			vmas[i] = vma;
4881 
4882 		vaddr += PAGE_SIZE;
4883 		++pfn_offset;
4884 		--remainder;
4885 		++i;
4886 		if (vaddr < vma->vm_end && remainder &&
4887 				pfn_offset < pages_per_huge_page(h)) {
4888 			/*
4889 			 * We use pfn_offset to avoid touching the pageframes
4890 			 * of this compound page.
4891 			 */
4892 			goto same_page;
4893 		}
4894 		spin_unlock(ptl);
4895 	}
4896 	*nr_pages = remainder;
4897 	/*
4898 	 * setting position is actually required only if remainder is
4899 	 * not zero but it's faster not to add a "if (remainder)"
4900 	 * branch.
4901 	 */
4902 	*position = vaddr;
4903 
4904 	return i ? i : err;
4905 }
4906 
4907 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4908 /*
4909  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4910  * implement this.
4911  */
4912 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4913 #endif
4914 
4915 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4916 		unsigned long address, unsigned long end, pgprot_t newprot)
4917 {
4918 	struct mm_struct *mm = vma->vm_mm;
4919 	unsigned long start = address;
4920 	pte_t *ptep;
4921 	pte_t pte;
4922 	struct hstate *h = hstate_vma(vma);
4923 	unsigned long pages = 0;
4924 	bool shared_pmd = false;
4925 	struct mmu_notifier_range range;
4926 
4927 	/*
4928 	 * In the case of shared PMDs, the area to flush could be beyond
4929 	 * start/end.  Set range.start/range.end to cover the maximum possible
4930 	 * range if PMD sharing is possible.
4931 	 */
4932 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4933 				0, vma, mm, start, end);
4934 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4935 
4936 	BUG_ON(address >= end);
4937 	flush_cache_range(vma, range.start, range.end);
4938 
4939 	mmu_notifier_invalidate_range_start(&range);
4940 	i_mmap_lock_write(vma->vm_file->f_mapping);
4941 	for (; address < end; address += huge_page_size(h)) {
4942 		spinlock_t *ptl;
4943 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4944 		if (!ptep)
4945 			continue;
4946 		ptl = huge_pte_lock(h, mm, ptep);
4947 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4948 			pages++;
4949 			spin_unlock(ptl);
4950 			shared_pmd = true;
4951 			continue;
4952 		}
4953 		pte = huge_ptep_get(ptep);
4954 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4955 			spin_unlock(ptl);
4956 			continue;
4957 		}
4958 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4959 			swp_entry_t entry = pte_to_swp_entry(pte);
4960 
4961 			if (is_write_migration_entry(entry)) {
4962 				pte_t newpte;
4963 
4964 				make_migration_entry_read(&entry);
4965 				newpte = swp_entry_to_pte(entry);
4966 				set_huge_swap_pte_at(mm, address, ptep,
4967 						     newpte, huge_page_size(h));
4968 				pages++;
4969 			}
4970 			spin_unlock(ptl);
4971 			continue;
4972 		}
4973 		if (!huge_pte_none(pte)) {
4974 			pte_t old_pte;
4975 
4976 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4977 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4978 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4979 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4980 			pages++;
4981 		}
4982 		spin_unlock(ptl);
4983 	}
4984 	/*
4985 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4986 	 * may have cleared our pud entry and done put_page on the page table:
4987 	 * once we release i_mmap_rwsem, another task can do the final put_page
4988 	 * and that page table be reused and filled with junk.  If we actually
4989 	 * did unshare a page of pmds, flush the range corresponding to the pud.
4990 	 */
4991 	if (shared_pmd)
4992 		flush_hugetlb_tlb_range(vma, range.start, range.end);
4993 	else
4994 		flush_hugetlb_tlb_range(vma, start, end);
4995 	/*
4996 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
4997 	 * page table protection not changing it to point to a new page.
4998 	 *
4999 	 * See Documentation/vm/mmu_notifier.rst
5000 	 */
5001 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5002 	mmu_notifier_invalidate_range_end(&range);
5003 
5004 	return pages << h->order;
5005 }
5006 
5007 int hugetlb_reserve_pages(struct inode *inode,
5008 					long from, long to,
5009 					struct vm_area_struct *vma,
5010 					vm_flags_t vm_flags)
5011 {
5012 	long ret, chg, add = -1;
5013 	struct hstate *h = hstate_inode(inode);
5014 	struct hugepage_subpool *spool = subpool_inode(inode);
5015 	struct resv_map *resv_map;
5016 	struct hugetlb_cgroup *h_cg = NULL;
5017 	long gbl_reserve, regions_needed = 0;
5018 
5019 	/* This should never happen */
5020 	if (from > to) {
5021 		VM_WARN(1, "%s called with a negative range\n", __func__);
5022 		return -EINVAL;
5023 	}
5024 
5025 	/*
5026 	 * Only apply hugepage reservation if asked. At fault time, an
5027 	 * attempt will be made for VM_NORESERVE to allocate a page
5028 	 * without using reserves
5029 	 */
5030 	if (vm_flags & VM_NORESERVE)
5031 		return 0;
5032 
5033 	/*
5034 	 * Shared mappings base their reservation on the number of pages that
5035 	 * are already allocated on behalf of the file. Private mappings need
5036 	 * to reserve the full area even if read-only as mprotect() may be
5037 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5038 	 */
5039 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5040 		/*
5041 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5042 		 * called for inodes for which resv_maps were created (see
5043 		 * hugetlbfs_get_inode).
5044 		 */
5045 		resv_map = inode_resv_map(inode);
5046 
5047 		chg = region_chg(resv_map, from, to, &regions_needed);
5048 
5049 	} else {
5050 		/* Private mapping. */
5051 		resv_map = resv_map_alloc();
5052 		if (!resv_map)
5053 			return -ENOMEM;
5054 
5055 		chg = to - from;
5056 
5057 		set_vma_resv_map(vma, resv_map);
5058 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5059 	}
5060 
5061 	if (chg < 0) {
5062 		ret = chg;
5063 		goto out_err;
5064 	}
5065 
5066 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5067 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5068 
5069 	if (ret < 0) {
5070 		ret = -ENOMEM;
5071 		goto out_err;
5072 	}
5073 
5074 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5075 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5076 		 * of the resv_map.
5077 		 */
5078 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5079 	}
5080 
5081 	/*
5082 	 * There must be enough pages in the subpool for the mapping. If
5083 	 * the subpool has a minimum size, there may be some global
5084 	 * reservations already in place (gbl_reserve).
5085 	 */
5086 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5087 	if (gbl_reserve < 0) {
5088 		ret = -ENOSPC;
5089 		goto out_uncharge_cgroup;
5090 	}
5091 
5092 	/*
5093 	 * Check enough hugepages are available for the reservation.
5094 	 * Hand the pages back to the subpool if there are not
5095 	 */
5096 	ret = hugetlb_acct_memory(h, gbl_reserve);
5097 	if (ret < 0) {
5098 		goto out_put_pages;
5099 	}
5100 
5101 	/*
5102 	 * Account for the reservations made. Shared mappings record regions
5103 	 * that have reservations as they are shared by multiple VMAs.
5104 	 * When the last VMA disappears, the region map says how much
5105 	 * the reservation was and the page cache tells how much of
5106 	 * the reservation was consumed. Private mappings are per-VMA and
5107 	 * only the consumed reservations are tracked. When the VMA
5108 	 * disappears, the original reservation is the VMA size and the
5109 	 * consumed reservations are stored in the map. Hence, nothing
5110 	 * else has to be done for private mappings here
5111 	 */
5112 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5113 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5114 
5115 		if (unlikely(add < 0)) {
5116 			hugetlb_acct_memory(h, -gbl_reserve);
5117 			ret = add;
5118 			goto out_put_pages;
5119 		} else if (unlikely(chg > add)) {
5120 			/*
5121 			 * pages in this range were added to the reserve
5122 			 * map between region_chg and region_add.  This
5123 			 * indicates a race with alloc_huge_page.  Adjust
5124 			 * the subpool and reserve counts modified above
5125 			 * based on the difference.
5126 			 */
5127 			long rsv_adjust;
5128 
5129 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5130 				hstate_index(h),
5131 				(chg - add) * pages_per_huge_page(h), h_cg);
5132 
5133 			rsv_adjust = hugepage_subpool_put_pages(spool,
5134 								chg - add);
5135 			hugetlb_acct_memory(h, -rsv_adjust);
5136 		}
5137 	}
5138 	return 0;
5139 out_put_pages:
5140 	/* put back original number of pages, chg */
5141 	(void)hugepage_subpool_put_pages(spool, chg);
5142 out_uncharge_cgroup:
5143 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5144 					    chg * pages_per_huge_page(h), h_cg);
5145 out_err:
5146 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5147 		/* Only call region_abort if the region_chg succeeded but the
5148 		 * region_add failed or didn't run.
5149 		 */
5150 		if (chg >= 0 && add < 0)
5151 			region_abort(resv_map, from, to, regions_needed);
5152 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5153 		kref_put(&resv_map->refs, resv_map_release);
5154 	return ret;
5155 }
5156 
5157 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5158 								long freed)
5159 {
5160 	struct hstate *h = hstate_inode(inode);
5161 	struct resv_map *resv_map = inode_resv_map(inode);
5162 	long chg = 0;
5163 	struct hugepage_subpool *spool = subpool_inode(inode);
5164 	long gbl_reserve;
5165 
5166 	/*
5167 	 * Since this routine can be called in the evict inode path for all
5168 	 * hugetlbfs inodes, resv_map could be NULL.
5169 	 */
5170 	if (resv_map) {
5171 		chg = region_del(resv_map, start, end);
5172 		/*
5173 		 * region_del() can fail in the rare case where a region
5174 		 * must be split and another region descriptor can not be
5175 		 * allocated.  If end == LONG_MAX, it will not fail.
5176 		 */
5177 		if (chg < 0)
5178 			return chg;
5179 	}
5180 
5181 	spin_lock(&inode->i_lock);
5182 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5183 	spin_unlock(&inode->i_lock);
5184 
5185 	/*
5186 	 * If the subpool has a minimum size, the number of global
5187 	 * reservations to be released may be adjusted.
5188 	 */
5189 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5190 	hugetlb_acct_memory(h, -gbl_reserve);
5191 
5192 	return 0;
5193 }
5194 
5195 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5196 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5197 				struct vm_area_struct *vma,
5198 				unsigned long addr, pgoff_t idx)
5199 {
5200 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5201 				svma->vm_start;
5202 	unsigned long sbase = saddr & PUD_MASK;
5203 	unsigned long s_end = sbase + PUD_SIZE;
5204 
5205 	/* Allow segments to share if only one is marked locked */
5206 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5207 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5208 
5209 	/*
5210 	 * match the virtual addresses, permission and the alignment of the
5211 	 * page table page.
5212 	 */
5213 	if (pmd_index(addr) != pmd_index(saddr) ||
5214 	    vm_flags != svm_flags ||
5215 	    sbase < svma->vm_start || svma->vm_end < s_end)
5216 		return 0;
5217 
5218 	return saddr;
5219 }
5220 
5221 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5222 {
5223 	unsigned long base = addr & PUD_MASK;
5224 	unsigned long end = base + PUD_SIZE;
5225 
5226 	/*
5227 	 * check on proper vm_flags and page table alignment
5228 	 */
5229 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5230 		return true;
5231 	return false;
5232 }
5233 
5234 /*
5235  * Determine if start,end range within vma could be mapped by shared pmd.
5236  * If yes, adjust start and end to cover range associated with possible
5237  * shared pmd mappings.
5238  */
5239 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5240 				unsigned long *start, unsigned long *end)
5241 {
5242 	unsigned long a_start, a_end;
5243 
5244 	if (!(vma->vm_flags & VM_MAYSHARE))
5245 		return;
5246 
5247 	/* Extend the range to be PUD aligned for a worst case scenario */
5248 	a_start = ALIGN_DOWN(*start, PUD_SIZE);
5249 	a_end = ALIGN(*end, PUD_SIZE);
5250 
5251 	/*
5252 	 * Intersect the range with the vma range, since pmd sharing won't be
5253 	 * across vma after all
5254 	 */
5255 	*start = max(vma->vm_start, a_start);
5256 	*end = min(vma->vm_end, a_end);
5257 }
5258 
5259 /*
5260  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5261  * and returns the corresponding pte. While this is not necessary for the
5262  * !shared pmd case because we can allocate the pmd later as well, it makes the
5263  * code much cleaner.
5264  *
5265  * This routine must be called with i_mmap_rwsem held in at least read mode if
5266  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5267  * table entries associated with the address space.  This is important as we
5268  * are setting up sharing based on existing page table entries (mappings).
5269  *
5270  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5271  * huge_pte_alloc know that sharing is not possible and do not take
5272  * i_mmap_rwsem as a performance optimization.  This is handled by the
5273  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5274  * only required for subsequent processing.
5275  */
5276 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5277 {
5278 	struct vm_area_struct *vma = find_vma(mm, addr);
5279 	struct address_space *mapping = vma->vm_file->f_mapping;
5280 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5281 			vma->vm_pgoff;
5282 	struct vm_area_struct *svma;
5283 	unsigned long saddr;
5284 	pte_t *spte = NULL;
5285 	pte_t *pte;
5286 	spinlock_t *ptl;
5287 
5288 	if (!vma_shareable(vma, addr))
5289 		return (pte_t *)pmd_alloc(mm, pud, addr);
5290 
5291 	i_mmap_assert_locked(mapping);
5292 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5293 		if (svma == vma)
5294 			continue;
5295 
5296 		saddr = page_table_shareable(svma, vma, addr, idx);
5297 		if (saddr) {
5298 			spte = huge_pte_offset(svma->vm_mm, saddr,
5299 					       vma_mmu_pagesize(svma));
5300 			if (spte) {
5301 				get_page(virt_to_page(spte));
5302 				break;
5303 			}
5304 		}
5305 	}
5306 
5307 	if (!spte)
5308 		goto out;
5309 
5310 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5311 	if (pud_none(*pud)) {
5312 		pud_populate(mm, pud,
5313 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5314 		mm_inc_nr_pmds(mm);
5315 	} else {
5316 		put_page(virt_to_page(spte));
5317 	}
5318 	spin_unlock(ptl);
5319 out:
5320 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5321 	return pte;
5322 }
5323 
5324 /*
5325  * unmap huge page backed by shared pte.
5326  *
5327  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5328  * indicated by page_count > 1, unmap is achieved by clearing pud and
5329  * decrementing the ref count. If count == 1, the pte page is not shared.
5330  *
5331  * Called with page table lock held and i_mmap_rwsem held in write mode.
5332  *
5333  * returns: 1 successfully unmapped a shared pte page
5334  *	    0 the underlying pte page is not shared, or it is the last user
5335  */
5336 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5337 					unsigned long *addr, pte_t *ptep)
5338 {
5339 	pgd_t *pgd = pgd_offset(mm, *addr);
5340 	p4d_t *p4d = p4d_offset(pgd, *addr);
5341 	pud_t *pud = pud_offset(p4d, *addr);
5342 
5343 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5344 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5345 	if (page_count(virt_to_page(ptep)) == 1)
5346 		return 0;
5347 
5348 	pud_clear(pud);
5349 	put_page(virt_to_page(ptep));
5350 	mm_dec_nr_pmds(mm);
5351 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5352 	return 1;
5353 }
5354 #define want_pmd_share()	(1)
5355 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5356 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357 {
5358 	return NULL;
5359 }
5360 
5361 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5362 				unsigned long *addr, pte_t *ptep)
5363 {
5364 	return 0;
5365 }
5366 
5367 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5368 				unsigned long *start, unsigned long *end)
5369 {
5370 }
5371 #define want_pmd_share()	(0)
5372 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5373 
5374 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5375 pte_t *huge_pte_alloc(struct mm_struct *mm,
5376 			unsigned long addr, unsigned long sz)
5377 {
5378 	pgd_t *pgd;
5379 	p4d_t *p4d;
5380 	pud_t *pud;
5381 	pte_t *pte = NULL;
5382 
5383 	pgd = pgd_offset(mm, addr);
5384 	p4d = p4d_alloc(mm, pgd, addr);
5385 	if (!p4d)
5386 		return NULL;
5387 	pud = pud_alloc(mm, p4d, addr);
5388 	if (pud) {
5389 		if (sz == PUD_SIZE) {
5390 			pte = (pte_t *)pud;
5391 		} else {
5392 			BUG_ON(sz != PMD_SIZE);
5393 			if (want_pmd_share() && pud_none(*pud))
5394 				pte = huge_pmd_share(mm, addr, pud);
5395 			else
5396 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5397 		}
5398 	}
5399 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5400 
5401 	return pte;
5402 }
5403 
5404 /*
5405  * huge_pte_offset() - Walk the page table to resolve the hugepage
5406  * entry at address @addr
5407  *
5408  * Return: Pointer to page table entry (PUD or PMD) for
5409  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5410  * size @sz doesn't match the hugepage size at this level of the page
5411  * table.
5412  */
5413 pte_t *huge_pte_offset(struct mm_struct *mm,
5414 		       unsigned long addr, unsigned long sz)
5415 {
5416 	pgd_t *pgd;
5417 	p4d_t *p4d;
5418 	pud_t *pud;
5419 	pmd_t *pmd;
5420 
5421 	pgd = pgd_offset(mm, addr);
5422 	if (!pgd_present(*pgd))
5423 		return NULL;
5424 	p4d = p4d_offset(pgd, addr);
5425 	if (!p4d_present(*p4d))
5426 		return NULL;
5427 
5428 	pud = pud_offset(p4d, addr);
5429 	if (sz == PUD_SIZE)
5430 		/* must be pud huge, non-present or none */
5431 		return (pte_t *)pud;
5432 	if (!pud_present(*pud))
5433 		return NULL;
5434 	/* must have a valid entry and size to go further */
5435 
5436 	pmd = pmd_offset(pud, addr);
5437 	/* must be pmd huge, non-present or none */
5438 	return (pte_t *)pmd;
5439 }
5440 
5441 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5442 
5443 /*
5444  * These functions are overwritable if your architecture needs its own
5445  * behavior.
5446  */
5447 struct page * __weak
5448 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5449 			      int write)
5450 {
5451 	return ERR_PTR(-EINVAL);
5452 }
5453 
5454 struct page * __weak
5455 follow_huge_pd(struct vm_area_struct *vma,
5456 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5457 {
5458 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5459 	return NULL;
5460 }
5461 
5462 struct page * __weak
5463 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5464 		pmd_t *pmd, int flags)
5465 {
5466 	struct page *page = NULL;
5467 	spinlock_t *ptl;
5468 	pte_t pte;
5469 
5470 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5471 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5472 			 (FOLL_PIN | FOLL_GET)))
5473 		return NULL;
5474 
5475 retry:
5476 	ptl = pmd_lockptr(mm, pmd);
5477 	spin_lock(ptl);
5478 	/*
5479 	 * make sure that the address range covered by this pmd is not
5480 	 * unmapped from other threads.
5481 	 */
5482 	if (!pmd_huge(*pmd))
5483 		goto out;
5484 	pte = huge_ptep_get((pte_t *)pmd);
5485 	if (pte_present(pte)) {
5486 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5487 		/*
5488 		 * try_grab_page() should always succeed here, because: a) we
5489 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5490 		 * huge pmd (head) page is present in the page tables. The ptl
5491 		 * prevents the head page and tail pages from being rearranged
5492 		 * in any way. So this page must be available at this point,
5493 		 * unless the page refcount overflowed:
5494 		 */
5495 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5496 			page = NULL;
5497 			goto out;
5498 		}
5499 	} else {
5500 		if (is_hugetlb_entry_migration(pte)) {
5501 			spin_unlock(ptl);
5502 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
5503 			goto retry;
5504 		}
5505 		/*
5506 		 * hwpoisoned entry is treated as no_page_table in
5507 		 * follow_page_mask().
5508 		 */
5509 	}
5510 out:
5511 	spin_unlock(ptl);
5512 	return page;
5513 }
5514 
5515 struct page * __weak
5516 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5517 		pud_t *pud, int flags)
5518 {
5519 	if (flags & (FOLL_GET | FOLL_PIN))
5520 		return NULL;
5521 
5522 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5523 }
5524 
5525 struct page * __weak
5526 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5527 {
5528 	if (flags & (FOLL_GET | FOLL_PIN))
5529 		return NULL;
5530 
5531 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5532 }
5533 
5534 bool isolate_huge_page(struct page *page, struct list_head *list)
5535 {
5536 	bool ret = true;
5537 
5538 	VM_BUG_ON_PAGE(!PageHead(page), page);
5539 	spin_lock(&hugetlb_lock);
5540 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5541 		ret = false;
5542 		goto unlock;
5543 	}
5544 	clear_page_huge_active(page);
5545 	list_move_tail(&page->lru, list);
5546 unlock:
5547 	spin_unlock(&hugetlb_lock);
5548 	return ret;
5549 }
5550 
5551 void putback_active_hugepage(struct page *page)
5552 {
5553 	VM_BUG_ON_PAGE(!PageHead(page), page);
5554 	spin_lock(&hugetlb_lock);
5555 	set_page_huge_active(page);
5556 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5557 	spin_unlock(&hugetlb_lock);
5558 	put_page(page);
5559 }
5560 
5561 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5562 {
5563 	struct hstate *h = page_hstate(oldpage);
5564 
5565 	hugetlb_cgroup_migrate(oldpage, newpage);
5566 	set_page_owner_migrate_reason(newpage, reason);
5567 
5568 	/*
5569 	 * transfer temporary state of the new huge page. This is
5570 	 * reverse to other transitions because the newpage is going to
5571 	 * be final while the old one will be freed so it takes over
5572 	 * the temporary status.
5573 	 *
5574 	 * Also note that we have to transfer the per-node surplus state
5575 	 * here as well otherwise the global surplus count will not match
5576 	 * the per-node's.
5577 	 */
5578 	if (PageHugeTemporary(newpage)) {
5579 		int old_nid = page_to_nid(oldpage);
5580 		int new_nid = page_to_nid(newpage);
5581 
5582 		SetPageHugeTemporary(oldpage);
5583 		ClearPageHugeTemporary(newpage);
5584 
5585 		spin_lock(&hugetlb_lock);
5586 		if (h->surplus_huge_pages_node[old_nid]) {
5587 			h->surplus_huge_pages_node[old_nid]--;
5588 			h->surplus_huge_pages_node[new_nid]++;
5589 		}
5590 		spin_unlock(&hugetlb_lock);
5591 	}
5592 }
5593 
5594 #ifdef CONFIG_CMA
5595 static bool cma_reserve_called __initdata;
5596 
5597 static int __init cmdline_parse_hugetlb_cma(char *p)
5598 {
5599 	hugetlb_cma_size = memparse(p, &p);
5600 	return 0;
5601 }
5602 
5603 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5604 
5605 void __init hugetlb_cma_reserve(int order)
5606 {
5607 	unsigned long size, reserved, per_node;
5608 	int nid;
5609 
5610 	cma_reserve_called = true;
5611 
5612 	if (!hugetlb_cma_size)
5613 		return;
5614 
5615 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5616 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5617 			(PAGE_SIZE << order) / SZ_1M);
5618 		return;
5619 	}
5620 
5621 	/*
5622 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5623 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5624 	 */
5625 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5626 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5627 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5628 
5629 	reserved = 0;
5630 	for_each_node_state(nid, N_ONLINE) {
5631 		int res;
5632 		char name[CMA_MAX_NAME];
5633 
5634 		size = min(per_node, hugetlb_cma_size - reserved);
5635 		size = round_up(size, PAGE_SIZE << order);
5636 
5637 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5638 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5639 						 0, false, name,
5640 						 &hugetlb_cma[nid], nid);
5641 		if (res) {
5642 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5643 				res, nid);
5644 			continue;
5645 		}
5646 
5647 		reserved += size;
5648 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5649 			size / SZ_1M, nid);
5650 
5651 		if (reserved >= hugetlb_cma_size)
5652 			break;
5653 	}
5654 }
5655 
5656 void __init hugetlb_cma_check(void)
5657 {
5658 	if (!hugetlb_cma_size || cma_reserve_called)
5659 		return;
5660 
5661 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5662 }
5663 
5664 #endif /* CONFIG_CMA */
5665