xref: /openbmc/linux/mm/hugetlb.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27 
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38 
39 int hugepages_treat_as_movable;
40 
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 
50 __initdata LIST_HEAD(huge_boot_pages);
51 
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57 
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63 
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70 
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73 
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
77 
78 	spin_unlock(&spool->lock);
79 
80 	/* If no pages are used, and no other handles to the subpool
81 	 * remain, give up any reservations mased on minimum size and
82 	 * free the subpool */
83 	if (free) {
84 		if (spool->min_hpages != -1)
85 			hugetlb_acct_memory(spool->hstate,
86 						-spool->min_hpages);
87 		kfree(spool);
88 	}
89 }
90 
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 						long min_hpages)
93 {
94 	struct hugepage_subpool *spool;
95 
96 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 	if (!spool)
98 		return NULL;
99 
100 	spin_lock_init(&spool->lock);
101 	spool->count = 1;
102 	spool->max_hpages = max_hpages;
103 	spool->hstate = h;
104 	spool->min_hpages = min_hpages;
105 
106 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 		kfree(spool);
108 		return NULL;
109 	}
110 	spool->rsv_hpages = min_hpages;
111 
112 	return spool;
113 }
114 
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 	spin_lock(&spool->lock);
118 	BUG_ON(!spool->count);
119 	spool->count--;
120 	unlock_or_release_subpool(spool);
121 }
122 
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 				      long delta)
133 {
134 	long ret = delta;
135 
136 	if (!spool)
137 		return ret;
138 
139 	spin_lock(&spool->lock);
140 
141 	if (spool->max_hpages != -1) {		/* maximum size accounting */
142 		if ((spool->used_hpages + delta) <= spool->max_hpages)
143 			spool->used_hpages += delta;
144 		else {
145 			ret = -ENOMEM;
146 			goto unlock_ret;
147 		}
148 	}
149 
150 	/* minimum size accounting */
151 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 		if (delta > spool->rsv_hpages) {
153 			/*
154 			 * Asking for more reserves than those already taken on
155 			 * behalf of subpool.  Return difference.
156 			 */
157 			ret = delta - spool->rsv_hpages;
158 			spool->rsv_hpages = 0;
159 		} else {
160 			ret = 0;	/* reserves already accounted for */
161 			spool->rsv_hpages -= delta;
162 		}
163 	}
164 
165 unlock_ret:
166 	spin_unlock(&spool->lock);
167 	return ret;
168 }
169 
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 				       long delta)
178 {
179 	long ret = delta;
180 
181 	if (!spool)
182 		return delta;
183 
184 	spin_lock(&spool->lock);
185 
186 	if (spool->max_hpages != -1)		/* maximum size accounting */
187 		spool->used_hpages -= delta;
188 
189 	 /* minimum size accounting */
190 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 		if (spool->rsv_hpages + delta <= spool->min_hpages)
192 			ret = 0;
193 		else
194 			ret = spool->rsv_hpages + delta - spool->min_hpages;
195 
196 		spool->rsv_hpages += delta;
197 		if (spool->rsv_hpages > spool->min_hpages)
198 			spool->rsv_hpages = spool->min_hpages;
199 	}
200 
201 	/*
202 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 	 * quota reference, free it now.
204 	 */
205 	unlock_or_release_subpool(spool);
206 
207 	return ret;
208 }
209 
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 	return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214 
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 	return subpool_inode(file_inode(vma->vm_file));
218 }
219 
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240 	struct list_head link;
241 	long from;
242 	long to;
243 };
244 
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 	struct list_head *head = &resv->regions;
262 	struct file_region *rg, *nrg, *trg;
263 	long add = 0;
264 
265 	spin_lock(&resv->lock);
266 	/* Locate the region we are either in or before. */
267 	list_for_each_entry(rg, head, link)
268 		if (f <= rg->to)
269 			break;
270 
271 	/*
272 	 * If no region exists which can be expanded to include the
273 	 * specified range, the list must have been modified by an
274 	 * interleving call to region_del().  Pull a region descriptor
275 	 * from the cache and use it for this range.
276 	 */
277 	if (&rg->link == head || t < rg->from) {
278 		VM_BUG_ON(resv->region_cache_count <= 0);
279 
280 		resv->region_cache_count--;
281 		nrg = list_first_entry(&resv->region_cache, struct file_region,
282 					link);
283 		list_del(&nrg->link);
284 
285 		nrg->from = f;
286 		nrg->to = t;
287 		list_add(&nrg->link, rg->link.prev);
288 
289 		add += t - f;
290 		goto out_locked;
291 	}
292 
293 	/* Round our left edge to the current segment if it encloses us. */
294 	if (f > rg->from)
295 		f = rg->from;
296 
297 	/* Check for and consume any regions we now overlap with. */
298 	nrg = rg;
299 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 		if (&rg->link == head)
301 			break;
302 		if (rg->from > t)
303 			break;
304 
305 		/* If this area reaches higher then extend our area to
306 		 * include it completely.  If this is not the first area
307 		 * which we intend to reuse, free it. */
308 		if (rg->to > t)
309 			t = rg->to;
310 		if (rg != nrg) {
311 			/* Decrement return value by the deleted range.
312 			 * Another range will span this area so that by
313 			 * end of routine add will be >= zero
314 			 */
315 			add -= (rg->to - rg->from);
316 			list_del(&rg->link);
317 			kfree(rg);
318 		}
319 	}
320 
321 	add += (nrg->from - f);		/* Added to beginning of region */
322 	nrg->from = f;
323 	add += t - nrg->to;		/* Added to end of region */
324 	nrg->to = t;
325 
326 out_locked:
327 	resv->adds_in_progress--;
328 	spin_unlock(&resv->lock);
329 	VM_BUG_ON(add < 0);
330 	return add;
331 }
332 
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 	struct list_head *head = &resv->regions;
358 	struct file_region *rg, *nrg = NULL;
359 	long chg = 0;
360 
361 retry:
362 	spin_lock(&resv->lock);
363 retry_locked:
364 	resv->adds_in_progress++;
365 
366 	/*
367 	 * Check for sufficient descriptors in the cache to accommodate
368 	 * the number of in progress add operations.
369 	 */
370 	if (resv->adds_in_progress > resv->region_cache_count) {
371 		struct file_region *trg;
372 
373 		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 		/* Must drop lock to allocate a new descriptor. */
375 		resv->adds_in_progress--;
376 		spin_unlock(&resv->lock);
377 
378 		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 		if (!trg) {
380 			kfree(nrg);
381 			return -ENOMEM;
382 		}
383 
384 		spin_lock(&resv->lock);
385 		list_add(&trg->link, &resv->region_cache);
386 		resv->region_cache_count++;
387 		goto retry_locked;
388 	}
389 
390 	/* Locate the region we are before or in. */
391 	list_for_each_entry(rg, head, link)
392 		if (f <= rg->to)
393 			break;
394 
395 	/* If we are below the current region then a new region is required.
396 	 * Subtle, allocate a new region at the position but make it zero
397 	 * size such that we can guarantee to record the reservation. */
398 	if (&rg->link == head || t < rg->from) {
399 		if (!nrg) {
400 			resv->adds_in_progress--;
401 			spin_unlock(&resv->lock);
402 			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 			if (!nrg)
404 				return -ENOMEM;
405 
406 			nrg->from = f;
407 			nrg->to   = f;
408 			INIT_LIST_HEAD(&nrg->link);
409 			goto retry;
410 		}
411 
412 		list_add(&nrg->link, rg->link.prev);
413 		chg = t - f;
414 		goto out_nrg;
415 	}
416 
417 	/* Round our left edge to the current segment if it encloses us. */
418 	if (f > rg->from)
419 		f = rg->from;
420 	chg = t - f;
421 
422 	/* Check for and consume any regions we now overlap with. */
423 	list_for_each_entry(rg, rg->link.prev, link) {
424 		if (&rg->link == head)
425 			break;
426 		if (rg->from > t)
427 			goto out;
428 
429 		/* We overlap with this area, if it extends further than
430 		 * us then we must extend ourselves.  Account for its
431 		 * existing reservation. */
432 		if (rg->to > t) {
433 			chg += rg->to - t;
434 			t = rg->to;
435 		}
436 		chg -= rg->to - rg->from;
437 	}
438 
439 out:
440 	spin_unlock(&resv->lock);
441 	/*  We already know we raced and no longer need the new region */
442 	kfree(nrg);
443 	return chg;
444 out_nrg:
445 	spin_unlock(&resv->lock);
446 	return chg;
447 }
448 
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 	spin_lock(&resv->lock);
463 	VM_BUG_ON(!resv->region_cache_count);
464 	resv->adds_in_progress--;
465 	spin_unlock(&resv->lock);
466 }
467 
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 	struct list_head *head = &resv->regions;
485 	struct file_region *rg, *trg;
486 	struct file_region *nrg = NULL;
487 	long del = 0;
488 
489 retry:
490 	spin_lock(&resv->lock);
491 	list_for_each_entry_safe(rg, trg, head, link) {
492 		/*
493 		 * Skip regions before the range to be deleted.  file_region
494 		 * ranges are normally of the form [from, to).  However, there
495 		 * may be a "placeholder" entry in the map which is of the form
496 		 * (from, to) with from == to.  Check for placeholder entries
497 		 * at the beginning of the range to be deleted.
498 		 */
499 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 			continue;
501 
502 		if (rg->from >= t)
503 			break;
504 
505 		if (f > rg->from && t < rg->to) { /* Must split region */
506 			/*
507 			 * Check for an entry in the cache before dropping
508 			 * lock and attempting allocation.
509 			 */
510 			if (!nrg &&
511 			    resv->region_cache_count > resv->adds_in_progress) {
512 				nrg = list_first_entry(&resv->region_cache,
513 							struct file_region,
514 							link);
515 				list_del(&nrg->link);
516 				resv->region_cache_count--;
517 			}
518 
519 			if (!nrg) {
520 				spin_unlock(&resv->lock);
521 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 				if (!nrg)
523 					return -ENOMEM;
524 				goto retry;
525 			}
526 
527 			del += t - f;
528 
529 			/* New entry for end of split region */
530 			nrg->from = t;
531 			nrg->to = rg->to;
532 			INIT_LIST_HEAD(&nrg->link);
533 
534 			/* Original entry is trimmed */
535 			rg->to = f;
536 
537 			list_add(&nrg->link, &rg->link);
538 			nrg = NULL;
539 			break;
540 		}
541 
542 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 			del += rg->to - rg->from;
544 			list_del(&rg->link);
545 			kfree(rg);
546 			continue;
547 		}
548 
549 		if (f <= rg->from) {	/* Trim beginning of region */
550 			del += t - rg->from;
551 			rg->from = t;
552 		} else {		/* Trim end of region */
553 			del += rg->to - f;
554 			rg->to = f;
555 		}
556 	}
557 
558 	spin_unlock(&resv->lock);
559 	kfree(nrg);
560 	return del;
561 }
562 
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 	struct hugepage_subpool *spool = subpool_inode(inode);
575 	long rsv_adjust;
576 
577 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 	if (rsv_adjust) {
579 		struct hstate *h = hstate_inode(inode);
580 
581 		hugetlb_acct_memory(h, 1);
582 	}
583 }
584 
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 	struct list_head *head = &resv->regions;
592 	struct file_region *rg;
593 	long chg = 0;
594 
595 	spin_lock(&resv->lock);
596 	/* Locate each segment we overlap with, and count that overlap. */
597 	list_for_each_entry(rg, head, link) {
598 		long seg_from;
599 		long seg_to;
600 
601 		if (rg->to <= f)
602 			continue;
603 		if (rg->from >= t)
604 			break;
605 
606 		seg_from = max(rg->from, f);
607 		seg_to = min(rg->to, t);
608 
609 		chg += seg_to - seg_from;
610 	}
611 	spin_unlock(&resv->lock);
612 
613 	return chg;
614 }
615 
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 			struct vm_area_struct *vma, unsigned long address)
622 {
623 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 			(vma->vm_pgoff >> huge_page_order(h));
625 }
626 
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 				     unsigned long address)
629 {
630 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633 
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 	struct hstate *hstate;
641 
642 	if (!is_vm_hugetlb_page(vma))
643 		return PAGE_SIZE;
644 
645 	hstate = hstate_vma(vma);
646 
647 	return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650 
651 /*
652  * Return the page size being used by the MMU to back a VMA. In the majority
653  * of cases, the page size used by the kernel matches the MMU size. On
654  * architectures where it differs, an architecture-specific version of this
655  * function is required.
656  */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 	return vma_kernel_pagesize(vma);
661 }
662 #endif
663 
664 /*
665  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
666  * bits of the reservation map pointer, which are always clear due to
667  * alignment.
668  */
669 #define HPAGE_RESV_OWNER    (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672 
673 /*
674  * These helpers are used to track how many pages are reserved for
675  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676  * is guaranteed to have their future faults succeed.
677  *
678  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679  * the reserve counters are updated with the hugetlb_lock held. It is safe
680  * to reset the VMA at fork() time as it is not in use yet and there is no
681  * chance of the global counters getting corrupted as a result of the values.
682  *
683  * The private mapping reservation is represented in a subtly different
684  * manner to a shared mapping.  A shared mapping has a region map associated
685  * with the underlying file, this region map represents the backing file
686  * pages which have ever had a reservation assigned which this persists even
687  * after the page is instantiated.  A private mapping has a region map
688  * associated with the original mmap which is attached to all VMAs which
689  * reference it, this region map represents those offsets which have consumed
690  * reservation ie. where pages have been instantiated.
691  */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 	return (unsigned long)vma->vm_private_data;
695 }
696 
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 							unsigned long value)
699 {
700 	vma->vm_private_data = (void *)value;
701 }
702 
703 struct resv_map *resv_map_alloc(void)
704 {
705 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707 
708 	if (!resv_map || !rg) {
709 		kfree(resv_map);
710 		kfree(rg);
711 		return NULL;
712 	}
713 
714 	kref_init(&resv_map->refs);
715 	spin_lock_init(&resv_map->lock);
716 	INIT_LIST_HEAD(&resv_map->regions);
717 
718 	resv_map->adds_in_progress = 0;
719 
720 	INIT_LIST_HEAD(&resv_map->region_cache);
721 	list_add(&rg->link, &resv_map->region_cache);
722 	resv_map->region_cache_count = 1;
723 
724 	return resv_map;
725 }
726 
727 void resv_map_release(struct kref *ref)
728 {
729 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 	struct list_head *head = &resv_map->region_cache;
731 	struct file_region *rg, *trg;
732 
733 	/* Clear out any active regions before we release the map. */
734 	region_del(resv_map, 0, LONG_MAX);
735 
736 	/* ... and any entries left in the cache */
737 	list_for_each_entry_safe(rg, trg, head, link) {
738 		list_del(&rg->link);
739 		kfree(rg);
740 	}
741 
742 	VM_BUG_ON(resv_map->adds_in_progress);
743 
744 	kfree(resv_map);
745 }
746 
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 	return inode->i_mapping->private_data;
750 }
751 
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 	if (vma->vm_flags & VM_MAYSHARE) {
756 		struct address_space *mapping = vma->vm_file->f_mapping;
757 		struct inode *inode = mapping->host;
758 
759 		return inode_resv_map(inode);
760 
761 	} else {
762 		return (struct resv_map *)(get_vma_private_data(vma) &
763 							~HPAGE_RESV_MASK);
764 	}
765 }
766 
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771 
772 	set_vma_private_data(vma, (get_vma_private_data(vma) &
773 				HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775 
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 
781 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783 
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 
788 	return (get_vma_private_data(vma) & flag) != 0;
789 }
790 
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 	if (!(vma->vm_flags & VM_MAYSHARE))
796 		vma->vm_private_data = (void *)0;
797 }
798 
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 	if (vma->vm_flags & VM_NORESERVE) {
803 		/*
804 		 * This address is already reserved by other process(chg == 0),
805 		 * so, we should decrement reserved count. Without decrementing,
806 		 * reserve count remains after releasing inode, because this
807 		 * allocated page will go into page cache and is regarded as
808 		 * coming from reserved pool in releasing step.  Currently, we
809 		 * don't have any other solution to deal with this situation
810 		 * properly, so add work-around here.
811 		 */
812 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 			return true;
814 		else
815 			return false;
816 	}
817 
818 	/* Shared mappings always use reserves */
819 	if (vma->vm_flags & VM_MAYSHARE) {
820 		/*
821 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
822 		 * be a region map for all pages.  The only situation where
823 		 * there is no region map is if a hole was punched via
824 		 * fallocate.  In this case, there really are no reverves to
825 		 * use.  This situation is indicated if chg != 0.
826 		 */
827 		if (chg)
828 			return false;
829 		else
830 			return true;
831 	}
832 
833 	/*
834 	 * Only the process that called mmap() has reserves for
835 	 * private mappings.
836 	 */
837 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 		/*
839 		 * Like the shared case above, a hole punch or truncate
840 		 * could have been performed on the private mapping.
841 		 * Examine the value of chg to determine if reserves
842 		 * actually exist or were previously consumed.
843 		 * Very Subtle - The value of chg comes from a previous
844 		 * call to vma_needs_reserves().  The reserve map for
845 		 * private mappings has different (opposite) semantics
846 		 * than that of shared mappings.  vma_needs_reserves()
847 		 * has already taken this difference in semantics into
848 		 * account.  Therefore, the meaning of chg is the same
849 		 * as in the shared case above.  Code could easily be
850 		 * combined, but keeping it separate draws attention to
851 		 * subtle differences.
852 		 */
853 		if (chg)
854 			return false;
855 		else
856 			return true;
857 	}
858 
859 	return false;
860 }
861 
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 	int nid = page_to_nid(page);
865 	list_move(&page->lru, &h->hugepage_freelists[nid]);
866 	h->free_huge_pages++;
867 	h->free_huge_pages_node[nid]++;
868 }
869 
870 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
871 {
872 	struct page *page;
873 
874 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 		if (!is_migrate_isolate_page(page))
876 			break;
877 	/*
878 	 * if 'non-isolated free hugepage' not found on the list,
879 	 * the allocation fails.
880 	 */
881 	if (&h->hugepage_freelists[nid] == &page->lru)
882 		return NULL;
883 	list_move(&page->lru, &h->hugepage_activelist);
884 	set_page_refcounted(page);
885 	h->free_huge_pages--;
886 	h->free_huge_pages_node[nid]--;
887 	return page;
888 }
889 
890 /* Movability of hugepages depends on migration support. */
891 static inline gfp_t htlb_alloc_mask(struct hstate *h)
892 {
893 	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
894 		return GFP_HIGHUSER_MOVABLE;
895 	else
896 		return GFP_HIGHUSER;
897 }
898 
899 static struct page *dequeue_huge_page_vma(struct hstate *h,
900 				struct vm_area_struct *vma,
901 				unsigned long address, int avoid_reserve,
902 				long chg)
903 {
904 	struct page *page = NULL;
905 	struct mempolicy *mpol;
906 	nodemask_t *nodemask;
907 	struct zonelist *zonelist;
908 	struct zone *zone;
909 	struct zoneref *z;
910 	unsigned int cpuset_mems_cookie;
911 
912 	/*
913 	 * A child process with MAP_PRIVATE mappings created by their parent
914 	 * have no page reserves. This check ensures that reservations are
915 	 * not "stolen". The child may still get SIGKILLed
916 	 */
917 	if (!vma_has_reserves(vma, chg) &&
918 			h->free_huge_pages - h->resv_huge_pages == 0)
919 		goto err;
920 
921 	/* If reserves cannot be used, ensure enough pages are in the pool */
922 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
923 		goto err;
924 
925 retry_cpuset:
926 	cpuset_mems_cookie = read_mems_allowed_begin();
927 	zonelist = huge_zonelist(vma, address,
928 					htlb_alloc_mask(h), &mpol, &nodemask);
929 
930 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
931 						MAX_NR_ZONES - 1, nodemask) {
932 		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
933 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
934 			if (page) {
935 				if (avoid_reserve)
936 					break;
937 				if (!vma_has_reserves(vma, chg))
938 					break;
939 
940 				SetPagePrivate(page);
941 				h->resv_huge_pages--;
942 				break;
943 			}
944 		}
945 	}
946 
947 	mpol_cond_put(mpol);
948 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
949 		goto retry_cpuset;
950 	return page;
951 
952 err:
953 	return NULL;
954 }
955 
956 /*
957  * common helper functions for hstate_next_node_to_{alloc|free}.
958  * We may have allocated or freed a huge page based on a different
959  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
960  * be outside of *nodes_allowed.  Ensure that we use an allowed
961  * node for alloc or free.
962  */
963 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
964 {
965 	nid = next_node_in(nid, *nodes_allowed);
966 	VM_BUG_ON(nid >= MAX_NUMNODES);
967 
968 	return nid;
969 }
970 
971 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
972 {
973 	if (!node_isset(nid, *nodes_allowed))
974 		nid = next_node_allowed(nid, nodes_allowed);
975 	return nid;
976 }
977 
978 /*
979  * returns the previously saved node ["this node"] from which to
980  * allocate a persistent huge page for the pool and advance the
981  * next node from which to allocate, handling wrap at end of node
982  * mask.
983  */
984 static int hstate_next_node_to_alloc(struct hstate *h,
985 					nodemask_t *nodes_allowed)
986 {
987 	int nid;
988 
989 	VM_BUG_ON(!nodes_allowed);
990 
991 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
992 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
993 
994 	return nid;
995 }
996 
997 /*
998  * helper for free_pool_huge_page() - return the previously saved
999  * node ["this node"] from which to free a huge page.  Advance the
1000  * next node id whether or not we find a free huge page to free so
1001  * that the next attempt to free addresses the next node.
1002  */
1003 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1004 {
1005 	int nid;
1006 
1007 	VM_BUG_ON(!nodes_allowed);
1008 
1009 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1010 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1011 
1012 	return nid;
1013 }
1014 
1015 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1016 	for (nr_nodes = nodes_weight(*mask);				\
1017 		nr_nodes > 0 &&						\
1018 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1019 		nr_nodes--)
1020 
1021 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1022 	for (nr_nodes = nodes_weight(*mask);				\
1023 		nr_nodes > 0 &&						\
1024 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1025 		nr_nodes--)
1026 
1027 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1028 	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1029 	defined(CONFIG_CMA))
1030 static void destroy_compound_gigantic_page(struct page *page,
1031 					unsigned int order)
1032 {
1033 	int i;
1034 	int nr_pages = 1 << order;
1035 	struct page *p = page + 1;
1036 
1037 	atomic_set(compound_mapcount_ptr(page), 0);
1038 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1039 		clear_compound_head(p);
1040 		set_page_refcounted(p);
1041 	}
1042 
1043 	set_compound_order(page, 0);
1044 	__ClearPageHead(page);
1045 }
1046 
1047 static void free_gigantic_page(struct page *page, unsigned int order)
1048 {
1049 	free_contig_range(page_to_pfn(page), 1 << order);
1050 }
1051 
1052 static int __alloc_gigantic_page(unsigned long start_pfn,
1053 				unsigned long nr_pages)
1054 {
1055 	unsigned long end_pfn = start_pfn + nr_pages;
1056 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1057 				  GFP_KERNEL);
1058 }
1059 
1060 static bool pfn_range_valid_gigantic(struct zone *z,
1061 			unsigned long start_pfn, unsigned long nr_pages)
1062 {
1063 	unsigned long i, end_pfn = start_pfn + nr_pages;
1064 	struct page *page;
1065 
1066 	for (i = start_pfn; i < end_pfn; i++) {
1067 		if (!pfn_valid(i))
1068 			return false;
1069 
1070 		page = pfn_to_page(i);
1071 
1072 		if (page_zone(page) != z)
1073 			return false;
1074 
1075 		if (PageReserved(page))
1076 			return false;
1077 
1078 		if (page_count(page) > 0)
1079 			return false;
1080 
1081 		if (PageHuge(page))
1082 			return false;
1083 	}
1084 
1085 	return true;
1086 }
1087 
1088 static bool zone_spans_last_pfn(const struct zone *zone,
1089 			unsigned long start_pfn, unsigned long nr_pages)
1090 {
1091 	unsigned long last_pfn = start_pfn + nr_pages - 1;
1092 	return zone_spans_pfn(zone, last_pfn);
1093 }
1094 
1095 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1096 {
1097 	unsigned long nr_pages = 1 << order;
1098 	unsigned long ret, pfn, flags;
1099 	struct zone *z;
1100 
1101 	z = NODE_DATA(nid)->node_zones;
1102 	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1103 		spin_lock_irqsave(&z->lock, flags);
1104 
1105 		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1106 		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1107 			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1108 				/*
1109 				 * We release the zone lock here because
1110 				 * alloc_contig_range() will also lock the zone
1111 				 * at some point. If there's an allocation
1112 				 * spinning on this lock, it may win the race
1113 				 * and cause alloc_contig_range() to fail...
1114 				 */
1115 				spin_unlock_irqrestore(&z->lock, flags);
1116 				ret = __alloc_gigantic_page(pfn, nr_pages);
1117 				if (!ret)
1118 					return pfn_to_page(pfn);
1119 				spin_lock_irqsave(&z->lock, flags);
1120 			}
1121 			pfn += nr_pages;
1122 		}
1123 
1124 		spin_unlock_irqrestore(&z->lock, flags);
1125 	}
1126 
1127 	return NULL;
1128 }
1129 
1130 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1131 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1132 
1133 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1134 {
1135 	struct page *page;
1136 
1137 	page = alloc_gigantic_page(nid, huge_page_order(h));
1138 	if (page) {
1139 		prep_compound_gigantic_page(page, huge_page_order(h));
1140 		prep_new_huge_page(h, page, nid);
1141 	}
1142 
1143 	return page;
1144 }
1145 
1146 static int alloc_fresh_gigantic_page(struct hstate *h,
1147 				nodemask_t *nodes_allowed)
1148 {
1149 	struct page *page = NULL;
1150 	int nr_nodes, node;
1151 
1152 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1153 		page = alloc_fresh_gigantic_page_node(h, node);
1154 		if (page)
1155 			return 1;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static inline bool gigantic_page_supported(void) { return true; }
1162 #else
1163 static inline bool gigantic_page_supported(void) { return false; }
1164 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1165 static inline void destroy_compound_gigantic_page(struct page *page,
1166 						unsigned int order) { }
1167 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1168 					nodemask_t *nodes_allowed) { return 0; }
1169 #endif
1170 
1171 static void update_and_free_page(struct hstate *h, struct page *page)
1172 {
1173 	int i;
1174 
1175 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1176 		return;
1177 
1178 	h->nr_huge_pages--;
1179 	h->nr_huge_pages_node[page_to_nid(page)]--;
1180 	for (i = 0; i < pages_per_huge_page(h); i++) {
1181 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1182 				1 << PG_referenced | 1 << PG_dirty |
1183 				1 << PG_active | 1 << PG_private |
1184 				1 << PG_writeback);
1185 	}
1186 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1187 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1188 	set_page_refcounted(page);
1189 	if (hstate_is_gigantic(h)) {
1190 		destroy_compound_gigantic_page(page, huge_page_order(h));
1191 		free_gigantic_page(page, huge_page_order(h));
1192 	} else {
1193 		__free_pages(page, huge_page_order(h));
1194 	}
1195 }
1196 
1197 struct hstate *size_to_hstate(unsigned long size)
1198 {
1199 	struct hstate *h;
1200 
1201 	for_each_hstate(h) {
1202 		if (huge_page_size(h) == size)
1203 			return h;
1204 	}
1205 	return NULL;
1206 }
1207 
1208 /*
1209  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1210  * to hstate->hugepage_activelist.)
1211  *
1212  * This function can be called for tail pages, but never returns true for them.
1213  */
1214 bool page_huge_active(struct page *page)
1215 {
1216 	VM_BUG_ON_PAGE(!PageHuge(page), page);
1217 	return PageHead(page) && PagePrivate(&page[1]);
1218 }
1219 
1220 /* never called for tail page */
1221 static void set_page_huge_active(struct page *page)
1222 {
1223 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1224 	SetPagePrivate(&page[1]);
1225 }
1226 
1227 static void clear_page_huge_active(struct page *page)
1228 {
1229 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1230 	ClearPagePrivate(&page[1]);
1231 }
1232 
1233 void free_huge_page(struct page *page)
1234 {
1235 	/*
1236 	 * Can't pass hstate in here because it is called from the
1237 	 * compound page destructor.
1238 	 */
1239 	struct hstate *h = page_hstate(page);
1240 	int nid = page_to_nid(page);
1241 	struct hugepage_subpool *spool =
1242 		(struct hugepage_subpool *)page_private(page);
1243 	bool restore_reserve;
1244 
1245 	set_page_private(page, 0);
1246 	page->mapping = NULL;
1247 	VM_BUG_ON_PAGE(page_count(page), page);
1248 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1249 	restore_reserve = PagePrivate(page);
1250 	ClearPagePrivate(page);
1251 
1252 	/*
1253 	 * A return code of zero implies that the subpool will be under its
1254 	 * minimum size if the reservation is not restored after page is free.
1255 	 * Therefore, force restore_reserve operation.
1256 	 */
1257 	if (hugepage_subpool_put_pages(spool, 1) == 0)
1258 		restore_reserve = true;
1259 
1260 	spin_lock(&hugetlb_lock);
1261 	clear_page_huge_active(page);
1262 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1263 				     pages_per_huge_page(h), page);
1264 	if (restore_reserve)
1265 		h->resv_huge_pages++;
1266 
1267 	if (h->surplus_huge_pages_node[nid]) {
1268 		/* remove the page from active list */
1269 		list_del(&page->lru);
1270 		update_and_free_page(h, page);
1271 		h->surplus_huge_pages--;
1272 		h->surplus_huge_pages_node[nid]--;
1273 	} else {
1274 		arch_clear_hugepage_flags(page);
1275 		enqueue_huge_page(h, page);
1276 	}
1277 	spin_unlock(&hugetlb_lock);
1278 }
1279 
1280 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1281 {
1282 	INIT_LIST_HEAD(&page->lru);
1283 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1284 	spin_lock(&hugetlb_lock);
1285 	set_hugetlb_cgroup(page, NULL);
1286 	h->nr_huge_pages++;
1287 	h->nr_huge_pages_node[nid]++;
1288 	spin_unlock(&hugetlb_lock);
1289 	put_page(page); /* free it into the hugepage allocator */
1290 }
1291 
1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1293 {
1294 	int i;
1295 	int nr_pages = 1 << order;
1296 	struct page *p = page + 1;
1297 
1298 	/* we rely on prep_new_huge_page to set the destructor */
1299 	set_compound_order(page, order);
1300 	__ClearPageReserved(page);
1301 	__SetPageHead(page);
1302 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1303 		/*
1304 		 * For gigantic hugepages allocated through bootmem at
1305 		 * boot, it's safer to be consistent with the not-gigantic
1306 		 * hugepages and clear the PG_reserved bit from all tail pages
1307 		 * too.  Otherwse drivers using get_user_pages() to access tail
1308 		 * pages may get the reference counting wrong if they see
1309 		 * PG_reserved set on a tail page (despite the head page not
1310 		 * having PG_reserved set).  Enforcing this consistency between
1311 		 * head and tail pages allows drivers to optimize away a check
1312 		 * on the head page when they need know if put_page() is needed
1313 		 * after get_user_pages().
1314 		 */
1315 		__ClearPageReserved(p);
1316 		set_page_count(p, 0);
1317 		set_compound_head(p, page);
1318 	}
1319 	atomic_set(compound_mapcount_ptr(page), -1);
1320 }
1321 
1322 /*
1323  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1324  * transparent huge pages.  See the PageTransHuge() documentation for more
1325  * details.
1326  */
1327 int PageHuge(struct page *page)
1328 {
1329 	if (!PageCompound(page))
1330 		return 0;
1331 
1332 	page = compound_head(page);
1333 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1334 }
1335 EXPORT_SYMBOL_GPL(PageHuge);
1336 
1337 /*
1338  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1339  * normal or transparent huge pages.
1340  */
1341 int PageHeadHuge(struct page *page_head)
1342 {
1343 	if (!PageHead(page_head))
1344 		return 0;
1345 
1346 	return get_compound_page_dtor(page_head) == free_huge_page;
1347 }
1348 
1349 pgoff_t __basepage_index(struct page *page)
1350 {
1351 	struct page *page_head = compound_head(page);
1352 	pgoff_t index = page_index(page_head);
1353 	unsigned long compound_idx;
1354 
1355 	if (!PageHuge(page_head))
1356 		return page_index(page);
1357 
1358 	if (compound_order(page_head) >= MAX_ORDER)
1359 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1360 	else
1361 		compound_idx = page - page_head;
1362 
1363 	return (index << compound_order(page_head)) + compound_idx;
1364 }
1365 
1366 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1367 {
1368 	struct page *page;
1369 
1370 	page = __alloc_pages_node(nid,
1371 		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1372 						__GFP_REPEAT|__GFP_NOWARN,
1373 		huge_page_order(h));
1374 	if (page) {
1375 		prep_new_huge_page(h, page, nid);
1376 	}
1377 
1378 	return page;
1379 }
1380 
1381 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1382 {
1383 	struct page *page;
1384 	int nr_nodes, node;
1385 	int ret = 0;
1386 
1387 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388 		page = alloc_fresh_huge_page_node(h, node);
1389 		if (page) {
1390 			ret = 1;
1391 			break;
1392 		}
1393 	}
1394 
1395 	if (ret)
1396 		count_vm_event(HTLB_BUDDY_PGALLOC);
1397 	else
1398 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399 
1400 	return ret;
1401 }
1402 
1403 /*
1404  * Free huge page from pool from next node to free.
1405  * Attempt to keep persistent huge pages more or less
1406  * balanced over allowed nodes.
1407  * Called with hugetlb_lock locked.
1408  */
1409 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1410 							 bool acct_surplus)
1411 {
1412 	int nr_nodes, node;
1413 	int ret = 0;
1414 
1415 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1416 		/*
1417 		 * If we're returning unused surplus pages, only examine
1418 		 * nodes with surplus pages.
1419 		 */
1420 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1421 		    !list_empty(&h->hugepage_freelists[node])) {
1422 			struct page *page =
1423 				list_entry(h->hugepage_freelists[node].next,
1424 					  struct page, lru);
1425 			list_del(&page->lru);
1426 			h->free_huge_pages--;
1427 			h->free_huge_pages_node[node]--;
1428 			if (acct_surplus) {
1429 				h->surplus_huge_pages--;
1430 				h->surplus_huge_pages_node[node]--;
1431 			}
1432 			update_and_free_page(h, page);
1433 			ret = 1;
1434 			break;
1435 		}
1436 	}
1437 
1438 	return ret;
1439 }
1440 
1441 /*
1442  * Dissolve a given free hugepage into free buddy pages. This function does
1443  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1444  * number of free hugepages would be reduced below the number of reserved
1445  * hugepages.
1446  */
1447 static int dissolve_free_huge_page(struct page *page)
1448 {
1449 	int rc = 0;
1450 
1451 	spin_lock(&hugetlb_lock);
1452 	if (PageHuge(page) && !page_count(page)) {
1453 		struct page *head = compound_head(page);
1454 		struct hstate *h = page_hstate(head);
1455 		int nid = page_to_nid(head);
1456 		if (h->free_huge_pages - h->resv_huge_pages == 0) {
1457 			rc = -EBUSY;
1458 			goto out;
1459 		}
1460 		list_del(&head->lru);
1461 		h->free_huge_pages--;
1462 		h->free_huge_pages_node[nid]--;
1463 		h->max_huge_pages--;
1464 		update_and_free_page(h, head);
1465 	}
1466 out:
1467 	spin_unlock(&hugetlb_lock);
1468 	return rc;
1469 }
1470 
1471 /*
1472  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1473  * make specified memory blocks removable from the system.
1474  * Note that this will dissolve a free gigantic hugepage completely, if any
1475  * part of it lies within the given range.
1476  * Also note that if dissolve_free_huge_page() returns with an error, all
1477  * free hugepages that were dissolved before that error are lost.
1478  */
1479 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1480 {
1481 	unsigned long pfn;
1482 	struct page *page;
1483 	int rc = 0;
1484 
1485 	if (!hugepages_supported())
1486 		return rc;
1487 
1488 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1489 		page = pfn_to_page(pfn);
1490 		if (PageHuge(page) && !page_count(page)) {
1491 			rc = dissolve_free_huge_page(page);
1492 			if (rc)
1493 				break;
1494 		}
1495 	}
1496 
1497 	return rc;
1498 }
1499 
1500 /*
1501  * There are 3 ways this can get called:
1502  * 1. With vma+addr: we use the VMA's memory policy
1503  * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1504  *    page from any node, and let the buddy allocator itself figure
1505  *    it out.
1506  * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1507  *    strictly from 'nid'
1508  */
1509 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1510 		struct vm_area_struct *vma, unsigned long addr, int nid)
1511 {
1512 	int order = huge_page_order(h);
1513 	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1514 	unsigned int cpuset_mems_cookie;
1515 
1516 	/*
1517 	 * We need a VMA to get a memory policy.  If we do not
1518 	 * have one, we use the 'nid' argument.
1519 	 *
1520 	 * The mempolicy stuff below has some non-inlined bits
1521 	 * and calls ->vm_ops.  That makes it hard to optimize at
1522 	 * compile-time, even when NUMA is off and it does
1523 	 * nothing.  This helps the compiler optimize it out.
1524 	 */
1525 	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1526 		/*
1527 		 * If a specific node is requested, make sure to
1528 		 * get memory from there, but only when a node
1529 		 * is explicitly specified.
1530 		 */
1531 		if (nid != NUMA_NO_NODE)
1532 			gfp |= __GFP_THISNODE;
1533 		/*
1534 		 * Make sure to call something that can handle
1535 		 * nid=NUMA_NO_NODE
1536 		 */
1537 		return alloc_pages_node(nid, gfp, order);
1538 	}
1539 
1540 	/*
1541 	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1542 	 * allocate a huge page with it.  We will only reach this
1543 	 * when CONFIG_NUMA=y.
1544 	 */
1545 	do {
1546 		struct page *page;
1547 		struct mempolicy *mpol;
1548 		struct zonelist *zl;
1549 		nodemask_t *nodemask;
1550 
1551 		cpuset_mems_cookie = read_mems_allowed_begin();
1552 		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1553 		mpol_cond_put(mpol);
1554 		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1555 		if (page)
1556 			return page;
1557 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1558 
1559 	return NULL;
1560 }
1561 
1562 /*
1563  * There are two ways to allocate a huge page:
1564  * 1. When you have a VMA and an address (like a fault)
1565  * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1566  *
1567  * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1568  * this case which signifies that the allocation should be done with
1569  * respect for the VMA's memory policy.
1570  *
1571  * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1572  * implies that memory policies will not be taken in to account.
1573  */
1574 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1575 		struct vm_area_struct *vma, unsigned long addr, int nid)
1576 {
1577 	struct page *page;
1578 	unsigned int r_nid;
1579 
1580 	if (hstate_is_gigantic(h))
1581 		return NULL;
1582 
1583 	/*
1584 	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1585 	 * This makes sure the caller is picking _one_ of the modes with which
1586 	 * we can call this function, not both.
1587 	 */
1588 	if (vma || (addr != -1)) {
1589 		VM_WARN_ON_ONCE(addr == -1);
1590 		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1591 	}
1592 	/*
1593 	 * Assume we will successfully allocate the surplus page to
1594 	 * prevent racing processes from causing the surplus to exceed
1595 	 * overcommit
1596 	 *
1597 	 * This however introduces a different race, where a process B
1598 	 * tries to grow the static hugepage pool while alloc_pages() is
1599 	 * called by process A. B will only examine the per-node
1600 	 * counters in determining if surplus huge pages can be
1601 	 * converted to normal huge pages in adjust_pool_surplus(). A
1602 	 * won't be able to increment the per-node counter, until the
1603 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1604 	 * no more huge pages can be converted from surplus to normal
1605 	 * state (and doesn't try to convert again). Thus, we have a
1606 	 * case where a surplus huge page exists, the pool is grown, and
1607 	 * the surplus huge page still exists after, even though it
1608 	 * should just have been converted to a normal huge page. This
1609 	 * does not leak memory, though, as the hugepage will be freed
1610 	 * once it is out of use. It also does not allow the counters to
1611 	 * go out of whack in adjust_pool_surplus() as we don't modify
1612 	 * the node values until we've gotten the hugepage and only the
1613 	 * per-node value is checked there.
1614 	 */
1615 	spin_lock(&hugetlb_lock);
1616 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617 		spin_unlock(&hugetlb_lock);
1618 		return NULL;
1619 	} else {
1620 		h->nr_huge_pages++;
1621 		h->surplus_huge_pages++;
1622 	}
1623 	spin_unlock(&hugetlb_lock);
1624 
1625 	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1626 
1627 	spin_lock(&hugetlb_lock);
1628 	if (page) {
1629 		INIT_LIST_HEAD(&page->lru);
1630 		r_nid = page_to_nid(page);
1631 		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1632 		set_hugetlb_cgroup(page, NULL);
1633 		/*
1634 		 * We incremented the global counters already
1635 		 */
1636 		h->nr_huge_pages_node[r_nid]++;
1637 		h->surplus_huge_pages_node[r_nid]++;
1638 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1639 	} else {
1640 		h->nr_huge_pages--;
1641 		h->surplus_huge_pages--;
1642 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1643 	}
1644 	spin_unlock(&hugetlb_lock);
1645 
1646 	return page;
1647 }
1648 
1649 /*
1650  * Allocate a huge page from 'nid'.  Note, 'nid' may be
1651  * NUMA_NO_NODE, which means that it may be allocated
1652  * anywhere.
1653  */
1654 static
1655 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1656 {
1657 	unsigned long addr = -1;
1658 
1659 	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1660 }
1661 
1662 /*
1663  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1664  */
1665 static
1666 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1667 		struct vm_area_struct *vma, unsigned long addr)
1668 {
1669 	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1670 }
1671 
1672 /*
1673  * This allocation function is useful in the context where vma is irrelevant.
1674  * E.g. soft-offlining uses this function because it only cares physical
1675  * address of error page.
1676  */
1677 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1678 {
1679 	struct page *page = NULL;
1680 
1681 	spin_lock(&hugetlb_lock);
1682 	if (h->free_huge_pages - h->resv_huge_pages > 0)
1683 		page = dequeue_huge_page_node(h, nid);
1684 	spin_unlock(&hugetlb_lock);
1685 
1686 	if (!page)
1687 		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1688 
1689 	return page;
1690 }
1691 
1692 /*
1693  * Increase the hugetlb pool such that it can accommodate a reservation
1694  * of size 'delta'.
1695  */
1696 static int gather_surplus_pages(struct hstate *h, int delta)
1697 {
1698 	struct list_head surplus_list;
1699 	struct page *page, *tmp;
1700 	int ret, i;
1701 	int needed, allocated;
1702 	bool alloc_ok = true;
1703 
1704 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1705 	if (needed <= 0) {
1706 		h->resv_huge_pages += delta;
1707 		return 0;
1708 	}
1709 
1710 	allocated = 0;
1711 	INIT_LIST_HEAD(&surplus_list);
1712 
1713 	ret = -ENOMEM;
1714 retry:
1715 	spin_unlock(&hugetlb_lock);
1716 	for (i = 0; i < needed; i++) {
1717 		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1718 		if (!page) {
1719 			alloc_ok = false;
1720 			break;
1721 		}
1722 		list_add(&page->lru, &surplus_list);
1723 	}
1724 	allocated += i;
1725 
1726 	/*
1727 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1728 	 * because either resv_huge_pages or free_huge_pages may have changed.
1729 	 */
1730 	spin_lock(&hugetlb_lock);
1731 	needed = (h->resv_huge_pages + delta) -
1732 			(h->free_huge_pages + allocated);
1733 	if (needed > 0) {
1734 		if (alloc_ok)
1735 			goto retry;
1736 		/*
1737 		 * We were not able to allocate enough pages to
1738 		 * satisfy the entire reservation so we free what
1739 		 * we've allocated so far.
1740 		 */
1741 		goto free;
1742 	}
1743 	/*
1744 	 * The surplus_list now contains _at_least_ the number of extra pages
1745 	 * needed to accommodate the reservation.  Add the appropriate number
1746 	 * of pages to the hugetlb pool and free the extras back to the buddy
1747 	 * allocator.  Commit the entire reservation here to prevent another
1748 	 * process from stealing the pages as they are added to the pool but
1749 	 * before they are reserved.
1750 	 */
1751 	needed += allocated;
1752 	h->resv_huge_pages += delta;
1753 	ret = 0;
1754 
1755 	/* Free the needed pages to the hugetlb pool */
1756 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757 		if ((--needed) < 0)
1758 			break;
1759 		/*
1760 		 * This page is now managed by the hugetlb allocator and has
1761 		 * no users -- drop the buddy allocator's reference.
1762 		 */
1763 		put_page_testzero(page);
1764 		VM_BUG_ON_PAGE(page_count(page), page);
1765 		enqueue_huge_page(h, page);
1766 	}
1767 free:
1768 	spin_unlock(&hugetlb_lock);
1769 
1770 	/* Free unnecessary surplus pages to the buddy allocator */
1771 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772 		put_page(page);
1773 	spin_lock(&hugetlb_lock);
1774 
1775 	return ret;
1776 }
1777 
1778 /*
1779  * This routine has two main purposes:
1780  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1782  *    to the associated reservation map.
1783  * 2) Free any unused surplus pages that may have been allocated to satisfy
1784  *    the reservation.  As many as unused_resv_pages may be freed.
1785  *
1786  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1787  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1788  * we must make sure nobody else can claim pages we are in the process of
1789  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1790  * number of huge pages we plan to free when dropping the lock.
1791  */
1792 static void return_unused_surplus_pages(struct hstate *h,
1793 					unsigned long unused_resv_pages)
1794 {
1795 	unsigned long nr_pages;
1796 
1797 	/* Cannot return gigantic pages currently */
1798 	if (hstate_is_gigantic(h))
1799 		goto out;
1800 
1801 	/*
1802 	 * Part (or even all) of the reservation could have been backed
1803 	 * by pre-allocated pages. Only free surplus pages.
1804 	 */
1805 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806 
1807 	/*
1808 	 * We want to release as many surplus pages as possible, spread
1809 	 * evenly across all nodes with memory. Iterate across these nodes
1810 	 * until we can no longer free unreserved surplus pages. This occurs
1811 	 * when the nodes with surplus pages have no free pages.
1812 	 * free_pool_huge_page() will balance the the freed pages across the
1813 	 * on-line nodes with memory and will handle the hstate accounting.
1814 	 *
1815 	 * Note that we decrement resv_huge_pages as we free the pages.  If
1816 	 * we drop the lock, resv_huge_pages will still be sufficiently large
1817 	 * to cover subsequent pages we may free.
1818 	 */
1819 	while (nr_pages--) {
1820 		h->resv_huge_pages--;
1821 		unused_resv_pages--;
1822 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823 			goto out;
1824 		cond_resched_lock(&hugetlb_lock);
1825 	}
1826 
1827 out:
1828 	/* Fully uncommit the reservation */
1829 	h->resv_huge_pages -= unused_resv_pages;
1830 }
1831 
1832 
1833 /*
1834  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835  * are used by the huge page allocation routines to manage reservations.
1836  *
1837  * vma_needs_reservation is called to determine if the huge page at addr
1838  * within the vma has an associated reservation.  If a reservation is
1839  * needed, the value 1 is returned.  The caller is then responsible for
1840  * managing the global reservation and subpool usage counts.  After
1841  * the huge page has been allocated, vma_commit_reservation is called
1842  * to add the page to the reservation map.  If the page allocation fails,
1843  * the reservation must be ended instead of committed.  vma_end_reservation
1844  * is called in such cases.
1845  *
1846  * In the normal case, vma_commit_reservation returns the same value
1847  * as the preceding vma_needs_reservation call.  The only time this
1848  * is not the case is if a reserve map was changed between calls.  It
1849  * is the responsibility of the caller to notice the difference and
1850  * take appropriate action.
1851  *
1852  * vma_add_reservation is used in error paths where a reservation must
1853  * be restored when a newly allocated huge page must be freed.  It is
1854  * to be called after calling vma_needs_reservation to determine if a
1855  * reservation exists.
1856  */
1857 enum vma_resv_mode {
1858 	VMA_NEEDS_RESV,
1859 	VMA_COMMIT_RESV,
1860 	VMA_END_RESV,
1861 	VMA_ADD_RESV,
1862 };
1863 static long __vma_reservation_common(struct hstate *h,
1864 				struct vm_area_struct *vma, unsigned long addr,
1865 				enum vma_resv_mode mode)
1866 {
1867 	struct resv_map *resv;
1868 	pgoff_t idx;
1869 	long ret;
1870 
1871 	resv = vma_resv_map(vma);
1872 	if (!resv)
1873 		return 1;
1874 
1875 	idx = vma_hugecache_offset(h, vma, addr);
1876 	switch (mode) {
1877 	case VMA_NEEDS_RESV:
1878 		ret = region_chg(resv, idx, idx + 1);
1879 		break;
1880 	case VMA_COMMIT_RESV:
1881 		ret = region_add(resv, idx, idx + 1);
1882 		break;
1883 	case VMA_END_RESV:
1884 		region_abort(resv, idx, idx + 1);
1885 		ret = 0;
1886 		break;
1887 	case VMA_ADD_RESV:
1888 		if (vma->vm_flags & VM_MAYSHARE)
1889 			ret = region_add(resv, idx, idx + 1);
1890 		else {
1891 			region_abort(resv, idx, idx + 1);
1892 			ret = region_del(resv, idx, idx + 1);
1893 		}
1894 		break;
1895 	default:
1896 		BUG();
1897 	}
1898 
1899 	if (vma->vm_flags & VM_MAYSHARE)
1900 		return ret;
1901 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 		/*
1903 		 * In most cases, reserves always exist for private mappings.
1904 		 * However, a file associated with mapping could have been
1905 		 * hole punched or truncated after reserves were consumed.
1906 		 * As subsequent fault on such a range will not use reserves.
1907 		 * Subtle - The reserve map for private mappings has the
1908 		 * opposite meaning than that of shared mappings.  If NO
1909 		 * entry is in the reserve map, it means a reservation exists.
1910 		 * If an entry exists in the reserve map, it means the
1911 		 * reservation has already been consumed.  As a result, the
1912 		 * return value of this routine is the opposite of the
1913 		 * value returned from reserve map manipulation routines above.
1914 		 */
1915 		if (ret)
1916 			return 0;
1917 		else
1918 			return 1;
1919 	}
1920 	else
1921 		return ret < 0 ? ret : 0;
1922 }
1923 
1924 static long vma_needs_reservation(struct hstate *h,
1925 			struct vm_area_struct *vma, unsigned long addr)
1926 {
1927 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928 }
1929 
1930 static long vma_commit_reservation(struct hstate *h,
1931 			struct vm_area_struct *vma, unsigned long addr)
1932 {
1933 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934 }
1935 
1936 static void vma_end_reservation(struct hstate *h,
1937 			struct vm_area_struct *vma, unsigned long addr)
1938 {
1939 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 }
1941 
1942 static long vma_add_reservation(struct hstate *h,
1943 			struct vm_area_struct *vma, unsigned long addr)
1944 {
1945 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946 }
1947 
1948 /*
1949  * This routine is called to restore a reservation on error paths.  In the
1950  * specific error paths, a huge page was allocated (via alloc_huge_page)
1951  * and is about to be freed.  If a reservation for the page existed,
1952  * alloc_huge_page would have consumed the reservation and set PagePrivate
1953  * in the newly allocated page.  When the page is freed via free_huge_page,
1954  * the global reservation count will be incremented if PagePrivate is set.
1955  * However, free_huge_page can not adjust the reserve map.  Adjust the
1956  * reserve map here to be consistent with global reserve count adjustments
1957  * to be made by free_huge_page.
1958  */
1959 static void restore_reserve_on_error(struct hstate *h,
1960 			struct vm_area_struct *vma, unsigned long address,
1961 			struct page *page)
1962 {
1963 	if (unlikely(PagePrivate(page))) {
1964 		long rc = vma_needs_reservation(h, vma, address);
1965 
1966 		if (unlikely(rc < 0)) {
1967 			/*
1968 			 * Rare out of memory condition in reserve map
1969 			 * manipulation.  Clear PagePrivate so that
1970 			 * global reserve count will not be incremented
1971 			 * by free_huge_page.  This will make it appear
1972 			 * as though the reservation for this page was
1973 			 * consumed.  This may prevent the task from
1974 			 * faulting in the page at a later time.  This
1975 			 * is better than inconsistent global huge page
1976 			 * accounting of reserve counts.
1977 			 */
1978 			ClearPagePrivate(page);
1979 		} else if (rc) {
1980 			rc = vma_add_reservation(h, vma, address);
1981 			if (unlikely(rc < 0))
1982 				/*
1983 				 * See above comment about rare out of
1984 				 * memory condition.
1985 				 */
1986 				ClearPagePrivate(page);
1987 		} else
1988 			vma_end_reservation(h, vma, address);
1989 	}
1990 }
1991 
1992 struct page *alloc_huge_page(struct vm_area_struct *vma,
1993 				    unsigned long addr, int avoid_reserve)
1994 {
1995 	struct hugepage_subpool *spool = subpool_vma(vma);
1996 	struct hstate *h = hstate_vma(vma);
1997 	struct page *page;
1998 	long map_chg, map_commit;
1999 	long gbl_chg;
2000 	int ret, idx;
2001 	struct hugetlb_cgroup *h_cg;
2002 
2003 	idx = hstate_index(h);
2004 	/*
2005 	 * Examine the region/reserve map to determine if the process
2006 	 * has a reservation for the page to be allocated.  A return
2007 	 * code of zero indicates a reservation exists (no change).
2008 	 */
2009 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010 	if (map_chg < 0)
2011 		return ERR_PTR(-ENOMEM);
2012 
2013 	/*
2014 	 * Processes that did not create the mapping will have no
2015 	 * reserves as indicated by the region/reserve map. Check
2016 	 * that the allocation will not exceed the subpool limit.
2017 	 * Allocations for MAP_NORESERVE mappings also need to be
2018 	 * checked against any subpool limit.
2019 	 */
2020 	if (map_chg || avoid_reserve) {
2021 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022 		if (gbl_chg < 0) {
2023 			vma_end_reservation(h, vma, addr);
2024 			return ERR_PTR(-ENOSPC);
2025 		}
2026 
2027 		/*
2028 		 * Even though there was no reservation in the region/reserve
2029 		 * map, there could be reservations associated with the
2030 		 * subpool that can be used.  This would be indicated if the
2031 		 * return value of hugepage_subpool_get_pages() is zero.
2032 		 * However, if avoid_reserve is specified we still avoid even
2033 		 * the subpool reservations.
2034 		 */
2035 		if (avoid_reserve)
2036 			gbl_chg = 1;
2037 	}
2038 
2039 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040 	if (ret)
2041 		goto out_subpool_put;
2042 
2043 	spin_lock(&hugetlb_lock);
2044 	/*
2045 	 * glb_chg is passed to indicate whether or not a page must be taken
2046 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2047 	 * a reservation exists for the allocation.
2048 	 */
2049 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050 	if (!page) {
2051 		spin_unlock(&hugetlb_lock);
2052 		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053 		if (!page)
2054 			goto out_uncharge_cgroup;
2055 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056 			SetPagePrivate(page);
2057 			h->resv_huge_pages--;
2058 		}
2059 		spin_lock(&hugetlb_lock);
2060 		list_move(&page->lru, &h->hugepage_activelist);
2061 		/* Fall through */
2062 	}
2063 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064 	spin_unlock(&hugetlb_lock);
2065 
2066 	set_page_private(page, (unsigned long)spool);
2067 
2068 	map_commit = vma_commit_reservation(h, vma, addr);
2069 	if (unlikely(map_chg > map_commit)) {
2070 		/*
2071 		 * The page was added to the reservation map between
2072 		 * vma_needs_reservation and vma_commit_reservation.
2073 		 * This indicates a race with hugetlb_reserve_pages.
2074 		 * Adjust for the subpool count incremented above AND
2075 		 * in hugetlb_reserve_pages for the same page.  Also,
2076 		 * the reservation count added in hugetlb_reserve_pages
2077 		 * no longer applies.
2078 		 */
2079 		long rsv_adjust;
2080 
2081 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082 		hugetlb_acct_memory(h, -rsv_adjust);
2083 	}
2084 	return page;
2085 
2086 out_uncharge_cgroup:
2087 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088 out_subpool_put:
2089 	if (map_chg || avoid_reserve)
2090 		hugepage_subpool_put_pages(spool, 1);
2091 	vma_end_reservation(h, vma, addr);
2092 	return ERR_PTR(-ENOSPC);
2093 }
2094 
2095 /*
2096  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2097  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2098  * where no ERR_VALUE is expected to be returned.
2099  */
2100 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2101 				unsigned long addr, int avoid_reserve)
2102 {
2103 	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2104 	if (IS_ERR(page))
2105 		page = NULL;
2106 	return page;
2107 }
2108 
2109 int __weak alloc_bootmem_huge_page(struct hstate *h)
2110 {
2111 	struct huge_bootmem_page *m;
2112 	int nr_nodes, node;
2113 
2114 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2115 		void *addr;
2116 
2117 		addr = memblock_virt_alloc_try_nid_nopanic(
2118 				huge_page_size(h), huge_page_size(h),
2119 				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2120 		if (addr) {
2121 			/*
2122 			 * Use the beginning of the huge page to store the
2123 			 * huge_bootmem_page struct (until gather_bootmem
2124 			 * puts them into the mem_map).
2125 			 */
2126 			m = addr;
2127 			goto found;
2128 		}
2129 	}
2130 	return 0;
2131 
2132 found:
2133 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2134 	/* Put them into a private list first because mem_map is not up yet */
2135 	list_add(&m->list, &huge_boot_pages);
2136 	m->hstate = h;
2137 	return 1;
2138 }
2139 
2140 static void __init prep_compound_huge_page(struct page *page,
2141 		unsigned int order)
2142 {
2143 	if (unlikely(order > (MAX_ORDER - 1)))
2144 		prep_compound_gigantic_page(page, order);
2145 	else
2146 		prep_compound_page(page, order);
2147 }
2148 
2149 /* Put bootmem huge pages into the standard lists after mem_map is up */
2150 static void __init gather_bootmem_prealloc(void)
2151 {
2152 	struct huge_bootmem_page *m;
2153 
2154 	list_for_each_entry(m, &huge_boot_pages, list) {
2155 		struct hstate *h = m->hstate;
2156 		struct page *page;
2157 
2158 #ifdef CONFIG_HIGHMEM
2159 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2160 		memblock_free_late(__pa(m),
2161 				   sizeof(struct huge_bootmem_page));
2162 #else
2163 		page = virt_to_page(m);
2164 #endif
2165 		WARN_ON(page_count(page) != 1);
2166 		prep_compound_huge_page(page, h->order);
2167 		WARN_ON(PageReserved(page));
2168 		prep_new_huge_page(h, page, page_to_nid(page));
2169 		/*
2170 		 * If we had gigantic hugepages allocated at boot time, we need
2171 		 * to restore the 'stolen' pages to totalram_pages in order to
2172 		 * fix confusing memory reports from free(1) and another
2173 		 * side-effects, like CommitLimit going negative.
2174 		 */
2175 		if (hstate_is_gigantic(h))
2176 			adjust_managed_page_count(page, 1 << h->order);
2177 	}
2178 }
2179 
2180 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2181 {
2182 	unsigned long i;
2183 
2184 	for (i = 0; i < h->max_huge_pages; ++i) {
2185 		if (hstate_is_gigantic(h)) {
2186 			if (!alloc_bootmem_huge_page(h))
2187 				break;
2188 		} else if (!alloc_fresh_huge_page(h,
2189 					 &node_states[N_MEMORY]))
2190 			break;
2191 	}
2192 	h->max_huge_pages = i;
2193 }
2194 
2195 static void __init hugetlb_init_hstates(void)
2196 {
2197 	struct hstate *h;
2198 
2199 	for_each_hstate(h) {
2200 		if (minimum_order > huge_page_order(h))
2201 			minimum_order = huge_page_order(h);
2202 
2203 		/* oversize hugepages were init'ed in early boot */
2204 		if (!hstate_is_gigantic(h))
2205 			hugetlb_hstate_alloc_pages(h);
2206 	}
2207 	VM_BUG_ON(minimum_order == UINT_MAX);
2208 }
2209 
2210 static char * __init memfmt(char *buf, unsigned long n)
2211 {
2212 	if (n >= (1UL << 30))
2213 		sprintf(buf, "%lu GB", n >> 30);
2214 	else if (n >= (1UL << 20))
2215 		sprintf(buf, "%lu MB", n >> 20);
2216 	else
2217 		sprintf(buf, "%lu KB", n >> 10);
2218 	return buf;
2219 }
2220 
2221 static void __init report_hugepages(void)
2222 {
2223 	struct hstate *h;
2224 
2225 	for_each_hstate(h) {
2226 		char buf[32];
2227 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2228 			memfmt(buf, huge_page_size(h)),
2229 			h->free_huge_pages);
2230 	}
2231 }
2232 
2233 #ifdef CONFIG_HIGHMEM
2234 static void try_to_free_low(struct hstate *h, unsigned long count,
2235 						nodemask_t *nodes_allowed)
2236 {
2237 	int i;
2238 
2239 	if (hstate_is_gigantic(h))
2240 		return;
2241 
2242 	for_each_node_mask(i, *nodes_allowed) {
2243 		struct page *page, *next;
2244 		struct list_head *freel = &h->hugepage_freelists[i];
2245 		list_for_each_entry_safe(page, next, freel, lru) {
2246 			if (count >= h->nr_huge_pages)
2247 				return;
2248 			if (PageHighMem(page))
2249 				continue;
2250 			list_del(&page->lru);
2251 			update_and_free_page(h, page);
2252 			h->free_huge_pages--;
2253 			h->free_huge_pages_node[page_to_nid(page)]--;
2254 		}
2255 	}
2256 }
2257 #else
2258 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2259 						nodemask_t *nodes_allowed)
2260 {
2261 }
2262 #endif
2263 
2264 /*
2265  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2266  * balanced by operating on them in a round-robin fashion.
2267  * Returns 1 if an adjustment was made.
2268  */
2269 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2270 				int delta)
2271 {
2272 	int nr_nodes, node;
2273 
2274 	VM_BUG_ON(delta != -1 && delta != 1);
2275 
2276 	if (delta < 0) {
2277 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2278 			if (h->surplus_huge_pages_node[node])
2279 				goto found;
2280 		}
2281 	} else {
2282 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2283 			if (h->surplus_huge_pages_node[node] <
2284 					h->nr_huge_pages_node[node])
2285 				goto found;
2286 		}
2287 	}
2288 	return 0;
2289 
2290 found:
2291 	h->surplus_huge_pages += delta;
2292 	h->surplus_huge_pages_node[node] += delta;
2293 	return 1;
2294 }
2295 
2296 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2297 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2298 						nodemask_t *nodes_allowed)
2299 {
2300 	unsigned long min_count, ret;
2301 
2302 	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2303 		return h->max_huge_pages;
2304 
2305 	/*
2306 	 * Increase the pool size
2307 	 * First take pages out of surplus state.  Then make up the
2308 	 * remaining difference by allocating fresh huge pages.
2309 	 *
2310 	 * We might race with __alloc_buddy_huge_page() here and be unable
2311 	 * to convert a surplus huge page to a normal huge page. That is
2312 	 * not critical, though, it just means the overall size of the
2313 	 * pool might be one hugepage larger than it needs to be, but
2314 	 * within all the constraints specified by the sysctls.
2315 	 */
2316 	spin_lock(&hugetlb_lock);
2317 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2318 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2319 			break;
2320 	}
2321 
2322 	while (count > persistent_huge_pages(h)) {
2323 		/*
2324 		 * If this allocation races such that we no longer need the
2325 		 * page, free_huge_page will handle it by freeing the page
2326 		 * and reducing the surplus.
2327 		 */
2328 		spin_unlock(&hugetlb_lock);
2329 
2330 		/* yield cpu to avoid soft lockup */
2331 		cond_resched();
2332 
2333 		if (hstate_is_gigantic(h))
2334 			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2335 		else
2336 			ret = alloc_fresh_huge_page(h, nodes_allowed);
2337 		spin_lock(&hugetlb_lock);
2338 		if (!ret)
2339 			goto out;
2340 
2341 		/* Bail for signals. Probably ctrl-c from user */
2342 		if (signal_pending(current))
2343 			goto out;
2344 	}
2345 
2346 	/*
2347 	 * Decrease the pool size
2348 	 * First return free pages to the buddy allocator (being careful
2349 	 * to keep enough around to satisfy reservations).  Then place
2350 	 * pages into surplus state as needed so the pool will shrink
2351 	 * to the desired size as pages become free.
2352 	 *
2353 	 * By placing pages into the surplus state independent of the
2354 	 * overcommit value, we are allowing the surplus pool size to
2355 	 * exceed overcommit. There are few sane options here. Since
2356 	 * __alloc_buddy_huge_page() is checking the global counter,
2357 	 * though, we'll note that we're not allowed to exceed surplus
2358 	 * and won't grow the pool anywhere else. Not until one of the
2359 	 * sysctls are changed, or the surplus pages go out of use.
2360 	 */
2361 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2362 	min_count = max(count, min_count);
2363 	try_to_free_low(h, min_count, nodes_allowed);
2364 	while (min_count < persistent_huge_pages(h)) {
2365 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2366 			break;
2367 		cond_resched_lock(&hugetlb_lock);
2368 	}
2369 	while (count < persistent_huge_pages(h)) {
2370 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2371 			break;
2372 	}
2373 out:
2374 	ret = persistent_huge_pages(h);
2375 	spin_unlock(&hugetlb_lock);
2376 	return ret;
2377 }
2378 
2379 #define HSTATE_ATTR_RO(_name) \
2380 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2381 
2382 #define HSTATE_ATTR(_name) \
2383 	static struct kobj_attribute _name##_attr = \
2384 		__ATTR(_name, 0644, _name##_show, _name##_store)
2385 
2386 static struct kobject *hugepages_kobj;
2387 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2388 
2389 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2390 
2391 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2392 {
2393 	int i;
2394 
2395 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2396 		if (hstate_kobjs[i] == kobj) {
2397 			if (nidp)
2398 				*nidp = NUMA_NO_NODE;
2399 			return &hstates[i];
2400 		}
2401 
2402 	return kobj_to_node_hstate(kobj, nidp);
2403 }
2404 
2405 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2406 					struct kobj_attribute *attr, char *buf)
2407 {
2408 	struct hstate *h;
2409 	unsigned long nr_huge_pages;
2410 	int nid;
2411 
2412 	h = kobj_to_hstate(kobj, &nid);
2413 	if (nid == NUMA_NO_NODE)
2414 		nr_huge_pages = h->nr_huge_pages;
2415 	else
2416 		nr_huge_pages = h->nr_huge_pages_node[nid];
2417 
2418 	return sprintf(buf, "%lu\n", nr_huge_pages);
2419 }
2420 
2421 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2422 					   struct hstate *h, int nid,
2423 					   unsigned long count, size_t len)
2424 {
2425 	int err;
2426 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2427 
2428 	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2429 		err = -EINVAL;
2430 		goto out;
2431 	}
2432 
2433 	if (nid == NUMA_NO_NODE) {
2434 		/*
2435 		 * global hstate attribute
2436 		 */
2437 		if (!(obey_mempolicy &&
2438 				init_nodemask_of_mempolicy(nodes_allowed))) {
2439 			NODEMASK_FREE(nodes_allowed);
2440 			nodes_allowed = &node_states[N_MEMORY];
2441 		}
2442 	} else if (nodes_allowed) {
2443 		/*
2444 		 * per node hstate attribute: adjust count to global,
2445 		 * but restrict alloc/free to the specified node.
2446 		 */
2447 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2448 		init_nodemask_of_node(nodes_allowed, nid);
2449 	} else
2450 		nodes_allowed = &node_states[N_MEMORY];
2451 
2452 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2453 
2454 	if (nodes_allowed != &node_states[N_MEMORY])
2455 		NODEMASK_FREE(nodes_allowed);
2456 
2457 	return len;
2458 out:
2459 	NODEMASK_FREE(nodes_allowed);
2460 	return err;
2461 }
2462 
2463 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2464 					 struct kobject *kobj, const char *buf,
2465 					 size_t len)
2466 {
2467 	struct hstate *h;
2468 	unsigned long count;
2469 	int nid;
2470 	int err;
2471 
2472 	err = kstrtoul(buf, 10, &count);
2473 	if (err)
2474 		return err;
2475 
2476 	h = kobj_to_hstate(kobj, &nid);
2477 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2478 }
2479 
2480 static ssize_t nr_hugepages_show(struct kobject *kobj,
2481 				       struct kobj_attribute *attr, char *buf)
2482 {
2483 	return nr_hugepages_show_common(kobj, attr, buf);
2484 }
2485 
2486 static ssize_t nr_hugepages_store(struct kobject *kobj,
2487 	       struct kobj_attribute *attr, const char *buf, size_t len)
2488 {
2489 	return nr_hugepages_store_common(false, kobj, buf, len);
2490 }
2491 HSTATE_ATTR(nr_hugepages);
2492 
2493 #ifdef CONFIG_NUMA
2494 
2495 /*
2496  * hstate attribute for optionally mempolicy-based constraint on persistent
2497  * huge page alloc/free.
2498  */
2499 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2500 				       struct kobj_attribute *attr, char *buf)
2501 {
2502 	return nr_hugepages_show_common(kobj, attr, buf);
2503 }
2504 
2505 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2506 	       struct kobj_attribute *attr, const char *buf, size_t len)
2507 {
2508 	return nr_hugepages_store_common(true, kobj, buf, len);
2509 }
2510 HSTATE_ATTR(nr_hugepages_mempolicy);
2511 #endif
2512 
2513 
2514 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2515 					struct kobj_attribute *attr, char *buf)
2516 {
2517 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2518 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2519 }
2520 
2521 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2522 		struct kobj_attribute *attr, const char *buf, size_t count)
2523 {
2524 	int err;
2525 	unsigned long input;
2526 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2527 
2528 	if (hstate_is_gigantic(h))
2529 		return -EINVAL;
2530 
2531 	err = kstrtoul(buf, 10, &input);
2532 	if (err)
2533 		return err;
2534 
2535 	spin_lock(&hugetlb_lock);
2536 	h->nr_overcommit_huge_pages = input;
2537 	spin_unlock(&hugetlb_lock);
2538 
2539 	return count;
2540 }
2541 HSTATE_ATTR(nr_overcommit_hugepages);
2542 
2543 static ssize_t free_hugepages_show(struct kobject *kobj,
2544 					struct kobj_attribute *attr, char *buf)
2545 {
2546 	struct hstate *h;
2547 	unsigned long free_huge_pages;
2548 	int nid;
2549 
2550 	h = kobj_to_hstate(kobj, &nid);
2551 	if (nid == NUMA_NO_NODE)
2552 		free_huge_pages = h->free_huge_pages;
2553 	else
2554 		free_huge_pages = h->free_huge_pages_node[nid];
2555 
2556 	return sprintf(buf, "%lu\n", free_huge_pages);
2557 }
2558 HSTATE_ATTR_RO(free_hugepages);
2559 
2560 static ssize_t resv_hugepages_show(struct kobject *kobj,
2561 					struct kobj_attribute *attr, char *buf)
2562 {
2563 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2564 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2565 }
2566 HSTATE_ATTR_RO(resv_hugepages);
2567 
2568 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2569 					struct kobj_attribute *attr, char *buf)
2570 {
2571 	struct hstate *h;
2572 	unsigned long surplus_huge_pages;
2573 	int nid;
2574 
2575 	h = kobj_to_hstate(kobj, &nid);
2576 	if (nid == NUMA_NO_NODE)
2577 		surplus_huge_pages = h->surplus_huge_pages;
2578 	else
2579 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2580 
2581 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2582 }
2583 HSTATE_ATTR_RO(surplus_hugepages);
2584 
2585 static struct attribute *hstate_attrs[] = {
2586 	&nr_hugepages_attr.attr,
2587 	&nr_overcommit_hugepages_attr.attr,
2588 	&free_hugepages_attr.attr,
2589 	&resv_hugepages_attr.attr,
2590 	&surplus_hugepages_attr.attr,
2591 #ifdef CONFIG_NUMA
2592 	&nr_hugepages_mempolicy_attr.attr,
2593 #endif
2594 	NULL,
2595 };
2596 
2597 static struct attribute_group hstate_attr_group = {
2598 	.attrs = hstate_attrs,
2599 };
2600 
2601 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2602 				    struct kobject **hstate_kobjs,
2603 				    struct attribute_group *hstate_attr_group)
2604 {
2605 	int retval;
2606 	int hi = hstate_index(h);
2607 
2608 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2609 	if (!hstate_kobjs[hi])
2610 		return -ENOMEM;
2611 
2612 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2613 	if (retval)
2614 		kobject_put(hstate_kobjs[hi]);
2615 
2616 	return retval;
2617 }
2618 
2619 static void __init hugetlb_sysfs_init(void)
2620 {
2621 	struct hstate *h;
2622 	int err;
2623 
2624 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2625 	if (!hugepages_kobj)
2626 		return;
2627 
2628 	for_each_hstate(h) {
2629 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2630 					 hstate_kobjs, &hstate_attr_group);
2631 		if (err)
2632 			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2633 	}
2634 }
2635 
2636 #ifdef CONFIG_NUMA
2637 
2638 /*
2639  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2640  * with node devices in node_devices[] using a parallel array.  The array
2641  * index of a node device or _hstate == node id.
2642  * This is here to avoid any static dependency of the node device driver, in
2643  * the base kernel, on the hugetlb module.
2644  */
2645 struct node_hstate {
2646 	struct kobject		*hugepages_kobj;
2647 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2648 };
2649 static struct node_hstate node_hstates[MAX_NUMNODES];
2650 
2651 /*
2652  * A subset of global hstate attributes for node devices
2653  */
2654 static struct attribute *per_node_hstate_attrs[] = {
2655 	&nr_hugepages_attr.attr,
2656 	&free_hugepages_attr.attr,
2657 	&surplus_hugepages_attr.attr,
2658 	NULL,
2659 };
2660 
2661 static struct attribute_group per_node_hstate_attr_group = {
2662 	.attrs = per_node_hstate_attrs,
2663 };
2664 
2665 /*
2666  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2667  * Returns node id via non-NULL nidp.
2668  */
2669 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2670 {
2671 	int nid;
2672 
2673 	for (nid = 0; nid < nr_node_ids; nid++) {
2674 		struct node_hstate *nhs = &node_hstates[nid];
2675 		int i;
2676 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2677 			if (nhs->hstate_kobjs[i] == kobj) {
2678 				if (nidp)
2679 					*nidp = nid;
2680 				return &hstates[i];
2681 			}
2682 	}
2683 
2684 	BUG();
2685 	return NULL;
2686 }
2687 
2688 /*
2689  * Unregister hstate attributes from a single node device.
2690  * No-op if no hstate attributes attached.
2691  */
2692 static void hugetlb_unregister_node(struct node *node)
2693 {
2694 	struct hstate *h;
2695 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2696 
2697 	if (!nhs->hugepages_kobj)
2698 		return;		/* no hstate attributes */
2699 
2700 	for_each_hstate(h) {
2701 		int idx = hstate_index(h);
2702 		if (nhs->hstate_kobjs[idx]) {
2703 			kobject_put(nhs->hstate_kobjs[idx]);
2704 			nhs->hstate_kobjs[idx] = NULL;
2705 		}
2706 	}
2707 
2708 	kobject_put(nhs->hugepages_kobj);
2709 	nhs->hugepages_kobj = NULL;
2710 }
2711 
2712 
2713 /*
2714  * Register hstate attributes for a single node device.
2715  * No-op if attributes already registered.
2716  */
2717 static void hugetlb_register_node(struct node *node)
2718 {
2719 	struct hstate *h;
2720 	struct node_hstate *nhs = &node_hstates[node->dev.id];
2721 	int err;
2722 
2723 	if (nhs->hugepages_kobj)
2724 		return;		/* already allocated */
2725 
2726 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2727 							&node->dev.kobj);
2728 	if (!nhs->hugepages_kobj)
2729 		return;
2730 
2731 	for_each_hstate(h) {
2732 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2733 						nhs->hstate_kobjs,
2734 						&per_node_hstate_attr_group);
2735 		if (err) {
2736 			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2737 				h->name, node->dev.id);
2738 			hugetlb_unregister_node(node);
2739 			break;
2740 		}
2741 	}
2742 }
2743 
2744 /*
2745  * hugetlb init time:  register hstate attributes for all registered node
2746  * devices of nodes that have memory.  All on-line nodes should have
2747  * registered their associated device by this time.
2748  */
2749 static void __init hugetlb_register_all_nodes(void)
2750 {
2751 	int nid;
2752 
2753 	for_each_node_state(nid, N_MEMORY) {
2754 		struct node *node = node_devices[nid];
2755 		if (node->dev.id == nid)
2756 			hugetlb_register_node(node);
2757 	}
2758 
2759 	/*
2760 	 * Let the node device driver know we're here so it can
2761 	 * [un]register hstate attributes on node hotplug.
2762 	 */
2763 	register_hugetlbfs_with_node(hugetlb_register_node,
2764 				     hugetlb_unregister_node);
2765 }
2766 #else	/* !CONFIG_NUMA */
2767 
2768 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2769 {
2770 	BUG();
2771 	if (nidp)
2772 		*nidp = -1;
2773 	return NULL;
2774 }
2775 
2776 static void hugetlb_register_all_nodes(void) { }
2777 
2778 #endif
2779 
2780 static int __init hugetlb_init(void)
2781 {
2782 	int i;
2783 
2784 	if (!hugepages_supported())
2785 		return 0;
2786 
2787 	if (!size_to_hstate(default_hstate_size)) {
2788 		default_hstate_size = HPAGE_SIZE;
2789 		if (!size_to_hstate(default_hstate_size))
2790 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2791 	}
2792 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2793 	if (default_hstate_max_huge_pages) {
2794 		if (!default_hstate.max_huge_pages)
2795 			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2796 	}
2797 
2798 	hugetlb_init_hstates();
2799 	gather_bootmem_prealloc();
2800 	report_hugepages();
2801 
2802 	hugetlb_sysfs_init();
2803 	hugetlb_register_all_nodes();
2804 	hugetlb_cgroup_file_init();
2805 
2806 #ifdef CONFIG_SMP
2807 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2808 #else
2809 	num_fault_mutexes = 1;
2810 #endif
2811 	hugetlb_fault_mutex_table =
2812 		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2813 	BUG_ON(!hugetlb_fault_mutex_table);
2814 
2815 	for (i = 0; i < num_fault_mutexes; i++)
2816 		mutex_init(&hugetlb_fault_mutex_table[i]);
2817 	return 0;
2818 }
2819 subsys_initcall(hugetlb_init);
2820 
2821 /* Should be called on processing a hugepagesz=... option */
2822 void __init hugetlb_bad_size(void)
2823 {
2824 	parsed_valid_hugepagesz = false;
2825 }
2826 
2827 void __init hugetlb_add_hstate(unsigned int order)
2828 {
2829 	struct hstate *h;
2830 	unsigned long i;
2831 
2832 	if (size_to_hstate(PAGE_SIZE << order)) {
2833 		pr_warn("hugepagesz= specified twice, ignoring\n");
2834 		return;
2835 	}
2836 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2837 	BUG_ON(order == 0);
2838 	h = &hstates[hugetlb_max_hstate++];
2839 	h->order = order;
2840 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2841 	h->nr_huge_pages = 0;
2842 	h->free_huge_pages = 0;
2843 	for (i = 0; i < MAX_NUMNODES; ++i)
2844 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2845 	INIT_LIST_HEAD(&h->hugepage_activelist);
2846 	h->next_nid_to_alloc = first_memory_node;
2847 	h->next_nid_to_free = first_memory_node;
2848 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2849 					huge_page_size(h)/1024);
2850 
2851 	parsed_hstate = h;
2852 }
2853 
2854 static int __init hugetlb_nrpages_setup(char *s)
2855 {
2856 	unsigned long *mhp;
2857 	static unsigned long *last_mhp;
2858 
2859 	if (!parsed_valid_hugepagesz) {
2860 		pr_warn("hugepages = %s preceded by "
2861 			"an unsupported hugepagesz, ignoring\n", s);
2862 		parsed_valid_hugepagesz = true;
2863 		return 1;
2864 	}
2865 	/*
2866 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2867 	 * so this hugepages= parameter goes to the "default hstate".
2868 	 */
2869 	else if (!hugetlb_max_hstate)
2870 		mhp = &default_hstate_max_huge_pages;
2871 	else
2872 		mhp = &parsed_hstate->max_huge_pages;
2873 
2874 	if (mhp == last_mhp) {
2875 		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2876 		return 1;
2877 	}
2878 
2879 	if (sscanf(s, "%lu", mhp) <= 0)
2880 		*mhp = 0;
2881 
2882 	/*
2883 	 * Global state is always initialized later in hugetlb_init.
2884 	 * But we need to allocate >= MAX_ORDER hstates here early to still
2885 	 * use the bootmem allocator.
2886 	 */
2887 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2888 		hugetlb_hstate_alloc_pages(parsed_hstate);
2889 
2890 	last_mhp = mhp;
2891 
2892 	return 1;
2893 }
2894 __setup("hugepages=", hugetlb_nrpages_setup);
2895 
2896 static int __init hugetlb_default_setup(char *s)
2897 {
2898 	default_hstate_size = memparse(s, &s);
2899 	return 1;
2900 }
2901 __setup("default_hugepagesz=", hugetlb_default_setup);
2902 
2903 static unsigned int cpuset_mems_nr(unsigned int *array)
2904 {
2905 	int node;
2906 	unsigned int nr = 0;
2907 
2908 	for_each_node_mask(node, cpuset_current_mems_allowed)
2909 		nr += array[node];
2910 
2911 	return nr;
2912 }
2913 
2914 #ifdef CONFIG_SYSCTL
2915 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2916 			 struct ctl_table *table, int write,
2917 			 void __user *buffer, size_t *length, loff_t *ppos)
2918 {
2919 	struct hstate *h = &default_hstate;
2920 	unsigned long tmp = h->max_huge_pages;
2921 	int ret;
2922 
2923 	if (!hugepages_supported())
2924 		return -EOPNOTSUPP;
2925 
2926 	table->data = &tmp;
2927 	table->maxlen = sizeof(unsigned long);
2928 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2929 	if (ret)
2930 		goto out;
2931 
2932 	if (write)
2933 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2934 						  NUMA_NO_NODE, tmp, *length);
2935 out:
2936 	return ret;
2937 }
2938 
2939 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2940 			  void __user *buffer, size_t *length, loff_t *ppos)
2941 {
2942 
2943 	return hugetlb_sysctl_handler_common(false, table, write,
2944 							buffer, length, ppos);
2945 }
2946 
2947 #ifdef CONFIG_NUMA
2948 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2949 			  void __user *buffer, size_t *length, loff_t *ppos)
2950 {
2951 	return hugetlb_sysctl_handler_common(true, table, write,
2952 							buffer, length, ppos);
2953 }
2954 #endif /* CONFIG_NUMA */
2955 
2956 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2957 			void __user *buffer,
2958 			size_t *length, loff_t *ppos)
2959 {
2960 	struct hstate *h = &default_hstate;
2961 	unsigned long tmp;
2962 	int ret;
2963 
2964 	if (!hugepages_supported())
2965 		return -EOPNOTSUPP;
2966 
2967 	tmp = h->nr_overcommit_huge_pages;
2968 
2969 	if (write && hstate_is_gigantic(h))
2970 		return -EINVAL;
2971 
2972 	table->data = &tmp;
2973 	table->maxlen = sizeof(unsigned long);
2974 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2975 	if (ret)
2976 		goto out;
2977 
2978 	if (write) {
2979 		spin_lock(&hugetlb_lock);
2980 		h->nr_overcommit_huge_pages = tmp;
2981 		spin_unlock(&hugetlb_lock);
2982 	}
2983 out:
2984 	return ret;
2985 }
2986 
2987 #endif /* CONFIG_SYSCTL */
2988 
2989 void hugetlb_report_meminfo(struct seq_file *m)
2990 {
2991 	struct hstate *h = &default_hstate;
2992 	if (!hugepages_supported())
2993 		return;
2994 	seq_printf(m,
2995 			"HugePages_Total:   %5lu\n"
2996 			"HugePages_Free:    %5lu\n"
2997 			"HugePages_Rsvd:    %5lu\n"
2998 			"HugePages_Surp:    %5lu\n"
2999 			"Hugepagesize:   %8lu kB\n",
3000 			h->nr_huge_pages,
3001 			h->free_huge_pages,
3002 			h->resv_huge_pages,
3003 			h->surplus_huge_pages,
3004 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3005 }
3006 
3007 int hugetlb_report_node_meminfo(int nid, char *buf)
3008 {
3009 	struct hstate *h = &default_hstate;
3010 	if (!hugepages_supported())
3011 		return 0;
3012 	return sprintf(buf,
3013 		"Node %d HugePages_Total: %5u\n"
3014 		"Node %d HugePages_Free:  %5u\n"
3015 		"Node %d HugePages_Surp:  %5u\n",
3016 		nid, h->nr_huge_pages_node[nid],
3017 		nid, h->free_huge_pages_node[nid],
3018 		nid, h->surplus_huge_pages_node[nid]);
3019 }
3020 
3021 void hugetlb_show_meminfo(void)
3022 {
3023 	struct hstate *h;
3024 	int nid;
3025 
3026 	if (!hugepages_supported())
3027 		return;
3028 
3029 	for_each_node_state(nid, N_MEMORY)
3030 		for_each_hstate(h)
3031 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3032 				nid,
3033 				h->nr_huge_pages_node[nid],
3034 				h->free_huge_pages_node[nid],
3035 				h->surplus_huge_pages_node[nid],
3036 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3037 }
3038 
3039 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3040 {
3041 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3042 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3043 }
3044 
3045 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3046 unsigned long hugetlb_total_pages(void)
3047 {
3048 	struct hstate *h;
3049 	unsigned long nr_total_pages = 0;
3050 
3051 	for_each_hstate(h)
3052 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3053 	return nr_total_pages;
3054 }
3055 
3056 static int hugetlb_acct_memory(struct hstate *h, long delta)
3057 {
3058 	int ret = -ENOMEM;
3059 
3060 	spin_lock(&hugetlb_lock);
3061 	/*
3062 	 * When cpuset is configured, it breaks the strict hugetlb page
3063 	 * reservation as the accounting is done on a global variable. Such
3064 	 * reservation is completely rubbish in the presence of cpuset because
3065 	 * the reservation is not checked against page availability for the
3066 	 * current cpuset. Application can still potentially OOM'ed by kernel
3067 	 * with lack of free htlb page in cpuset that the task is in.
3068 	 * Attempt to enforce strict accounting with cpuset is almost
3069 	 * impossible (or too ugly) because cpuset is too fluid that
3070 	 * task or memory node can be dynamically moved between cpusets.
3071 	 *
3072 	 * The change of semantics for shared hugetlb mapping with cpuset is
3073 	 * undesirable. However, in order to preserve some of the semantics,
3074 	 * we fall back to check against current free page availability as
3075 	 * a best attempt and hopefully to minimize the impact of changing
3076 	 * semantics that cpuset has.
3077 	 */
3078 	if (delta > 0) {
3079 		if (gather_surplus_pages(h, delta) < 0)
3080 			goto out;
3081 
3082 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3083 			return_unused_surplus_pages(h, delta);
3084 			goto out;
3085 		}
3086 	}
3087 
3088 	ret = 0;
3089 	if (delta < 0)
3090 		return_unused_surplus_pages(h, (unsigned long) -delta);
3091 
3092 out:
3093 	spin_unlock(&hugetlb_lock);
3094 	return ret;
3095 }
3096 
3097 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3098 {
3099 	struct resv_map *resv = vma_resv_map(vma);
3100 
3101 	/*
3102 	 * This new VMA should share its siblings reservation map if present.
3103 	 * The VMA will only ever have a valid reservation map pointer where
3104 	 * it is being copied for another still existing VMA.  As that VMA
3105 	 * has a reference to the reservation map it cannot disappear until
3106 	 * after this open call completes.  It is therefore safe to take a
3107 	 * new reference here without additional locking.
3108 	 */
3109 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3110 		kref_get(&resv->refs);
3111 }
3112 
3113 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3114 {
3115 	struct hstate *h = hstate_vma(vma);
3116 	struct resv_map *resv = vma_resv_map(vma);
3117 	struct hugepage_subpool *spool = subpool_vma(vma);
3118 	unsigned long reserve, start, end;
3119 	long gbl_reserve;
3120 
3121 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3122 		return;
3123 
3124 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3125 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3126 
3127 	reserve = (end - start) - region_count(resv, start, end);
3128 
3129 	kref_put(&resv->refs, resv_map_release);
3130 
3131 	if (reserve) {
3132 		/*
3133 		 * Decrement reserve counts.  The global reserve count may be
3134 		 * adjusted if the subpool has a minimum size.
3135 		 */
3136 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3137 		hugetlb_acct_memory(h, -gbl_reserve);
3138 	}
3139 }
3140 
3141 /*
3142  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3143  * handle_mm_fault() to try to instantiate regular-sized pages in the
3144  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3145  * this far.
3146  */
3147 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3148 {
3149 	BUG();
3150 	return 0;
3151 }
3152 
3153 const struct vm_operations_struct hugetlb_vm_ops = {
3154 	.fault = hugetlb_vm_op_fault,
3155 	.open = hugetlb_vm_op_open,
3156 	.close = hugetlb_vm_op_close,
3157 };
3158 
3159 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3160 				int writable)
3161 {
3162 	pte_t entry;
3163 
3164 	if (writable) {
3165 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3166 					 vma->vm_page_prot)));
3167 	} else {
3168 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3169 					   vma->vm_page_prot));
3170 	}
3171 	entry = pte_mkyoung(entry);
3172 	entry = pte_mkhuge(entry);
3173 	entry = arch_make_huge_pte(entry, vma, page, writable);
3174 
3175 	return entry;
3176 }
3177 
3178 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3179 				   unsigned long address, pte_t *ptep)
3180 {
3181 	pte_t entry;
3182 
3183 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3184 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3185 		update_mmu_cache(vma, address, ptep);
3186 }
3187 
3188 static int is_hugetlb_entry_migration(pte_t pte)
3189 {
3190 	swp_entry_t swp;
3191 
3192 	if (huge_pte_none(pte) || pte_present(pte))
3193 		return 0;
3194 	swp = pte_to_swp_entry(pte);
3195 	if (non_swap_entry(swp) && is_migration_entry(swp))
3196 		return 1;
3197 	else
3198 		return 0;
3199 }
3200 
3201 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3202 {
3203 	swp_entry_t swp;
3204 
3205 	if (huge_pte_none(pte) || pte_present(pte))
3206 		return 0;
3207 	swp = pte_to_swp_entry(pte);
3208 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3209 		return 1;
3210 	else
3211 		return 0;
3212 }
3213 
3214 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3215 			    struct vm_area_struct *vma)
3216 {
3217 	pte_t *src_pte, *dst_pte, entry;
3218 	struct page *ptepage;
3219 	unsigned long addr;
3220 	int cow;
3221 	struct hstate *h = hstate_vma(vma);
3222 	unsigned long sz = huge_page_size(h);
3223 	unsigned long mmun_start;	/* For mmu_notifiers */
3224 	unsigned long mmun_end;		/* For mmu_notifiers */
3225 	int ret = 0;
3226 
3227 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3228 
3229 	mmun_start = vma->vm_start;
3230 	mmun_end = vma->vm_end;
3231 	if (cow)
3232 		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3233 
3234 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3235 		spinlock_t *src_ptl, *dst_ptl;
3236 		src_pte = huge_pte_offset(src, addr);
3237 		if (!src_pte)
3238 			continue;
3239 		dst_pte = huge_pte_alloc(dst, addr, sz);
3240 		if (!dst_pte) {
3241 			ret = -ENOMEM;
3242 			break;
3243 		}
3244 
3245 		/* If the pagetables are shared don't copy or take references */
3246 		if (dst_pte == src_pte)
3247 			continue;
3248 
3249 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3250 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3251 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3252 		entry = huge_ptep_get(src_pte);
3253 		if (huge_pte_none(entry)) { /* skip none entry */
3254 			;
3255 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3256 				    is_hugetlb_entry_hwpoisoned(entry))) {
3257 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3258 
3259 			if (is_write_migration_entry(swp_entry) && cow) {
3260 				/*
3261 				 * COW mappings require pages in both
3262 				 * parent and child to be set to read.
3263 				 */
3264 				make_migration_entry_read(&swp_entry);
3265 				entry = swp_entry_to_pte(swp_entry);
3266 				set_huge_pte_at(src, addr, src_pte, entry);
3267 			}
3268 			set_huge_pte_at(dst, addr, dst_pte, entry);
3269 		} else {
3270 			if (cow) {
3271 				huge_ptep_set_wrprotect(src, addr, src_pte);
3272 				mmu_notifier_invalidate_range(src, mmun_start,
3273 								   mmun_end);
3274 			}
3275 			entry = huge_ptep_get(src_pte);
3276 			ptepage = pte_page(entry);
3277 			get_page(ptepage);
3278 			page_dup_rmap(ptepage, true);
3279 			set_huge_pte_at(dst, addr, dst_pte, entry);
3280 			hugetlb_count_add(pages_per_huge_page(h), dst);
3281 		}
3282 		spin_unlock(src_ptl);
3283 		spin_unlock(dst_ptl);
3284 	}
3285 
3286 	if (cow)
3287 		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3288 
3289 	return ret;
3290 }
3291 
3292 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3293 			    unsigned long start, unsigned long end,
3294 			    struct page *ref_page)
3295 {
3296 	struct mm_struct *mm = vma->vm_mm;
3297 	unsigned long address;
3298 	pte_t *ptep;
3299 	pte_t pte;
3300 	spinlock_t *ptl;
3301 	struct page *page;
3302 	struct hstate *h = hstate_vma(vma);
3303 	unsigned long sz = huge_page_size(h);
3304 	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3305 	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3306 
3307 	WARN_ON(!is_vm_hugetlb_page(vma));
3308 	BUG_ON(start & ~huge_page_mask(h));
3309 	BUG_ON(end & ~huge_page_mask(h));
3310 
3311 	/*
3312 	 * This is a hugetlb vma, all the pte entries should point
3313 	 * to huge page.
3314 	 */
3315 	tlb_remove_check_page_size_change(tlb, sz);
3316 	tlb_start_vma(tlb, vma);
3317 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3318 	address = start;
3319 	for (; address < end; address += sz) {
3320 		ptep = huge_pte_offset(mm, address);
3321 		if (!ptep)
3322 			continue;
3323 
3324 		ptl = huge_pte_lock(h, mm, ptep);
3325 		if (huge_pmd_unshare(mm, &address, ptep)) {
3326 			spin_unlock(ptl);
3327 			continue;
3328 		}
3329 
3330 		pte = huge_ptep_get(ptep);
3331 		if (huge_pte_none(pte)) {
3332 			spin_unlock(ptl);
3333 			continue;
3334 		}
3335 
3336 		/*
3337 		 * Migrating hugepage or HWPoisoned hugepage is already
3338 		 * unmapped and its refcount is dropped, so just clear pte here.
3339 		 */
3340 		if (unlikely(!pte_present(pte))) {
3341 			huge_pte_clear(mm, address, ptep);
3342 			spin_unlock(ptl);
3343 			continue;
3344 		}
3345 
3346 		page = pte_page(pte);
3347 		/*
3348 		 * If a reference page is supplied, it is because a specific
3349 		 * page is being unmapped, not a range. Ensure the page we
3350 		 * are about to unmap is the actual page of interest.
3351 		 */
3352 		if (ref_page) {
3353 			if (page != ref_page) {
3354 				spin_unlock(ptl);
3355 				continue;
3356 			}
3357 			/*
3358 			 * Mark the VMA as having unmapped its page so that
3359 			 * future faults in this VMA will fail rather than
3360 			 * looking like data was lost
3361 			 */
3362 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3363 		}
3364 
3365 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3366 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3367 		if (huge_pte_dirty(pte))
3368 			set_page_dirty(page);
3369 
3370 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3371 		page_remove_rmap(page, true);
3372 
3373 		spin_unlock(ptl);
3374 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3375 		/*
3376 		 * Bail out after unmapping reference page if supplied
3377 		 */
3378 		if (ref_page)
3379 			break;
3380 	}
3381 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3382 	tlb_end_vma(tlb, vma);
3383 }
3384 
3385 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3386 			  struct vm_area_struct *vma, unsigned long start,
3387 			  unsigned long end, struct page *ref_page)
3388 {
3389 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3390 
3391 	/*
3392 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3393 	 * test will fail on a vma being torn down, and not grab a page table
3394 	 * on its way out.  We're lucky that the flag has such an appropriate
3395 	 * name, and can in fact be safely cleared here. We could clear it
3396 	 * before the __unmap_hugepage_range above, but all that's necessary
3397 	 * is to clear it before releasing the i_mmap_rwsem. This works
3398 	 * because in the context this is called, the VMA is about to be
3399 	 * destroyed and the i_mmap_rwsem is held.
3400 	 */
3401 	vma->vm_flags &= ~VM_MAYSHARE;
3402 }
3403 
3404 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3405 			  unsigned long end, struct page *ref_page)
3406 {
3407 	struct mm_struct *mm;
3408 	struct mmu_gather tlb;
3409 
3410 	mm = vma->vm_mm;
3411 
3412 	tlb_gather_mmu(&tlb, mm, start, end);
3413 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3414 	tlb_finish_mmu(&tlb, start, end);
3415 }
3416 
3417 /*
3418  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3419  * mappping it owns the reserve page for. The intention is to unmap the page
3420  * from other VMAs and let the children be SIGKILLed if they are faulting the
3421  * same region.
3422  */
3423 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3424 			      struct page *page, unsigned long address)
3425 {
3426 	struct hstate *h = hstate_vma(vma);
3427 	struct vm_area_struct *iter_vma;
3428 	struct address_space *mapping;
3429 	pgoff_t pgoff;
3430 
3431 	/*
3432 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3433 	 * from page cache lookup which is in HPAGE_SIZE units.
3434 	 */
3435 	address = address & huge_page_mask(h);
3436 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3437 			vma->vm_pgoff;
3438 	mapping = vma->vm_file->f_mapping;
3439 
3440 	/*
3441 	 * Take the mapping lock for the duration of the table walk. As
3442 	 * this mapping should be shared between all the VMAs,
3443 	 * __unmap_hugepage_range() is called as the lock is already held
3444 	 */
3445 	i_mmap_lock_write(mapping);
3446 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3447 		/* Do not unmap the current VMA */
3448 		if (iter_vma == vma)
3449 			continue;
3450 
3451 		/*
3452 		 * Shared VMAs have their own reserves and do not affect
3453 		 * MAP_PRIVATE accounting but it is possible that a shared
3454 		 * VMA is using the same page so check and skip such VMAs.
3455 		 */
3456 		if (iter_vma->vm_flags & VM_MAYSHARE)
3457 			continue;
3458 
3459 		/*
3460 		 * Unmap the page from other VMAs without their own reserves.
3461 		 * They get marked to be SIGKILLed if they fault in these
3462 		 * areas. This is because a future no-page fault on this VMA
3463 		 * could insert a zeroed page instead of the data existing
3464 		 * from the time of fork. This would look like data corruption
3465 		 */
3466 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3467 			unmap_hugepage_range(iter_vma, address,
3468 					     address + huge_page_size(h), page);
3469 	}
3470 	i_mmap_unlock_write(mapping);
3471 }
3472 
3473 /*
3474  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3475  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3476  * cannot race with other handlers or page migration.
3477  * Keep the pte_same checks anyway to make transition from the mutex easier.
3478  */
3479 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3480 		       unsigned long address, pte_t *ptep,
3481 		       struct page *pagecache_page, spinlock_t *ptl)
3482 {
3483 	pte_t pte;
3484 	struct hstate *h = hstate_vma(vma);
3485 	struct page *old_page, *new_page;
3486 	int ret = 0, outside_reserve = 0;
3487 	unsigned long mmun_start;	/* For mmu_notifiers */
3488 	unsigned long mmun_end;		/* For mmu_notifiers */
3489 
3490 	pte = huge_ptep_get(ptep);
3491 	old_page = pte_page(pte);
3492 
3493 retry_avoidcopy:
3494 	/* If no-one else is actually using this page, avoid the copy
3495 	 * and just make the page writable */
3496 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3497 		page_move_anon_rmap(old_page, vma);
3498 		set_huge_ptep_writable(vma, address, ptep);
3499 		return 0;
3500 	}
3501 
3502 	/*
3503 	 * If the process that created a MAP_PRIVATE mapping is about to
3504 	 * perform a COW due to a shared page count, attempt to satisfy
3505 	 * the allocation without using the existing reserves. The pagecache
3506 	 * page is used to determine if the reserve at this address was
3507 	 * consumed or not. If reserves were used, a partial faulted mapping
3508 	 * at the time of fork() could consume its reserves on COW instead
3509 	 * of the full address range.
3510 	 */
3511 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3512 			old_page != pagecache_page)
3513 		outside_reserve = 1;
3514 
3515 	get_page(old_page);
3516 
3517 	/*
3518 	 * Drop page table lock as buddy allocator may be called. It will
3519 	 * be acquired again before returning to the caller, as expected.
3520 	 */
3521 	spin_unlock(ptl);
3522 	new_page = alloc_huge_page(vma, address, outside_reserve);
3523 
3524 	if (IS_ERR(new_page)) {
3525 		/*
3526 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3527 		 * it is due to references held by a child and an insufficient
3528 		 * huge page pool. To guarantee the original mappers
3529 		 * reliability, unmap the page from child processes. The child
3530 		 * may get SIGKILLed if it later faults.
3531 		 */
3532 		if (outside_reserve) {
3533 			put_page(old_page);
3534 			BUG_ON(huge_pte_none(pte));
3535 			unmap_ref_private(mm, vma, old_page, address);
3536 			BUG_ON(huge_pte_none(pte));
3537 			spin_lock(ptl);
3538 			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3539 			if (likely(ptep &&
3540 				   pte_same(huge_ptep_get(ptep), pte)))
3541 				goto retry_avoidcopy;
3542 			/*
3543 			 * race occurs while re-acquiring page table
3544 			 * lock, and our job is done.
3545 			 */
3546 			return 0;
3547 		}
3548 
3549 		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3550 			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3551 		goto out_release_old;
3552 	}
3553 
3554 	/*
3555 	 * When the original hugepage is shared one, it does not have
3556 	 * anon_vma prepared.
3557 	 */
3558 	if (unlikely(anon_vma_prepare(vma))) {
3559 		ret = VM_FAULT_OOM;
3560 		goto out_release_all;
3561 	}
3562 
3563 	copy_user_huge_page(new_page, old_page, address, vma,
3564 			    pages_per_huge_page(h));
3565 	__SetPageUptodate(new_page);
3566 	set_page_huge_active(new_page);
3567 
3568 	mmun_start = address & huge_page_mask(h);
3569 	mmun_end = mmun_start + huge_page_size(h);
3570 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3571 
3572 	/*
3573 	 * Retake the page table lock to check for racing updates
3574 	 * before the page tables are altered
3575 	 */
3576 	spin_lock(ptl);
3577 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3578 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3579 		ClearPagePrivate(new_page);
3580 
3581 		/* Break COW */
3582 		huge_ptep_clear_flush(vma, address, ptep);
3583 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3584 		set_huge_pte_at(mm, address, ptep,
3585 				make_huge_pte(vma, new_page, 1));
3586 		page_remove_rmap(old_page, true);
3587 		hugepage_add_new_anon_rmap(new_page, vma, address);
3588 		/* Make the old page be freed below */
3589 		new_page = old_page;
3590 	}
3591 	spin_unlock(ptl);
3592 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3593 out_release_all:
3594 	restore_reserve_on_error(h, vma, address, new_page);
3595 	put_page(new_page);
3596 out_release_old:
3597 	put_page(old_page);
3598 
3599 	spin_lock(ptl); /* Caller expects lock to be held */
3600 	return ret;
3601 }
3602 
3603 /* Return the pagecache page at a given address within a VMA */
3604 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3605 			struct vm_area_struct *vma, unsigned long address)
3606 {
3607 	struct address_space *mapping;
3608 	pgoff_t idx;
3609 
3610 	mapping = vma->vm_file->f_mapping;
3611 	idx = vma_hugecache_offset(h, vma, address);
3612 
3613 	return find_lock_page(mapping, idx);
3614 }
3615 
3616 /*
3617  * Return whether there is a pagecache page to back given address within VMA.
3618  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3619  */
3620 static bool hugetlbfs_pagecache_present(struct hstate *h,
3621 			struct vm_area_struct *vma, unsigned long address)
3622 {
3623 	struct address_space *mapping;
3624 	pgoff_t idx;
3625 	struct page *page;
3626 
3627 	mapping = vma->vm_file->f_mapping;
3628 	idx = vma_hugecache_offset(h, vma, address);
3629 
3630 	page = find_get_page(mapping, idx);
3631 	if (page)
3632 		put_page(page);
3633 	return page != NULL;
3634 }
3635 
3636 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3637 			   pgoff_t idx)
3638 {
3639 	struct inode *inode = mapping->host;
3640 	struct hstate *h = hstate_inode(inode);
3641 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3642 
3643 	if (err)
3644 		return err;
3645 	ClearPagePrivate(page);
3646 
3647 	spin_lock(&inode->i_lock);
3648 	inode->i_blocks += blocks_per_huge_page(h);
3649 	spin_unlock(&inode->i_lock);
3650 	return 0;
3651 }
3652 
3653 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3654 			   struct address_space *mapping, pgoff_t idx,
3655 			   unsigned long address, pte_t *ptep, unsigned int flags)
3656 {
3657 	struct hstate *h = hstate_vma(vma);
3658 	int ret = VM_FAULT_SIGBUS;
3659 	int anon_rmap = 0;
3660 	unsigned long size;
3661 	struct page *page;
3662 	pte_t new_pte;
3663 	spinlock_t *ptl;
3664 
3665 	/*
3666 	 * Currently, we are forced to kill the process in the event the
3667 	 * original mapper has unmapped pages from the child due to a failed
3668 	 * COW. Warn that such a situation has occurred as it may not be obvious
3669 	 */
3670 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3671 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3672 			   current->pid);
3673 		return ret;
3674 	}
3675 
3676 	/*
3677 	 * Use page lock to guard against racing truncation
3678 	 * before we get page_table_lock.
3679 	 */
3680 retry:
3681 	page = find_lock_page(mapping, idx);
3682 	if (!page) {
3683 		size = i_size_read(mapping->host) >> huge_page_shift(h);
3684 		if (idx >= size)
3685 			goto out;
3686 
3687 		/*
3688 		 * Check for page in userfault range
3689 		 */
3690 		if (userfaultfd_missing(vma)) {
3691 			u32 hash;
3692 			struct vm_fault vmf = {
3693 				.vma = vma,
3694 				.address = address,
3695 				.flags = flags,
3696 				/*
3697 				 * Hard to debug if it ends up being
3698 				 * used by a callee that assumes
3699 				 * something about the other
3700 				 * uninitialized fields... same as in
3701 				 * memory.c
3702 				 */
3703 			};
3704 
3705 			/*
3706 			 * hugetlb_fault_mutex must be dropped before
3707 			 * handling userfault.  Reacquire after handling
3708 			 * fault to make calling code simpler.
3709 			 */
3710 			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3711 							idx, address);
3712 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3713 			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3714 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715 			goto out;
3716 		}
3717 
3718 		page = alloc_huge_page(vma, address, 0);
3719 		if (IS_ERR(page)) {
3720 			ret = PTR_ERR(page);
3721 			if (ret == -ENOMEM)
3722 				ret = VM_FAULT_OOM;
3723 			else
3724 				ret = VM_FAULT_SIGBUS;
3725 			goto out;
3726 		}
3727 		clear_huge_page(page, address, pages_per_huge_page(h));
3728 		__SetPageUptodate(page);
3729 		set_page_huge_active(page);
3730 
3731 		if (vma->vm_flags & VM_MAYSHARE) {
3732 			int err = huge_add_to_page_cache(page, mapping, idx);
3733 			if (err) {
3734 				put_page(page);
3735 				if (err == -EEXIST)
3736 					goto retry;
3737 				goto out;
3738 			}
3739 		} else {
3740 			lock_page(page);
3741 			if (unlikely(anon_vma_prepare(vma))) {
3742 				ret = VM_FAULT_OOM;
3743 				goto backout_unlocked;
3744 			}
3745 			anon_rmap = 1;
3746 		}
3747 	} else {
3748 		/*
3749 		 * If memory error occurs between mmap() and fault, some process
3750 		 * don't have hwpoisoned swap entry for errored virtual address.
3751 		 * So we need to block hugepage fault by PG_hwpoison bit check.
3752 		 */
3753 		if (unlikely(PageHWPoison(page))) {
3754 			ret = VM_FAULT_HWPOISON |
3755 				VM_FAULT_SET_HINDEX(hstate_index(h));
3756 			goto backout_unlocked;
3757 		}
3758 	}
3759 
3760 	/*
3761 	 * If we are going to COW a private mapping later, we examine the
3762 	 * pending reservations for this page now. This will ensure that
3763 	 * any allocations necessary to record that reservation occur outside
3764 	 * the spinlock.
3765 	 */
3766 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3767 		if (vma_needs_reservation(h, vma, address) < 0) {
3768 			ret = VM_FAULT_OOM;
3769 			goto backout_unlocked;
3770 		}
3771 		/* Just decrements count, does not deallocate */
3772 		vma_end_reservation(h, vma, address);
3773 	}
3774 
3775 	ptl = huge_pte_lock(h, mm, ptep);
3776 	size = i_size_read(mapping->host) >> huge_page_shift(h);
3777 	if (idx >= size)
3778 		goto backout;
3779 
3780 	ret = 0;
3781 	if (!huge_pte_none(huge_ptep_get(ptep)))
3782 		goto backout;
3783 
3784 	if (anon_rmap) {
3785 		ClearPagePrivate(page);
3786 		hugepage_add_new_anon_rmap(page, vma, address);
3787 	} else
3788 		page_dup_rmap(page, true);
3789 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3790 				&& (vma->vm_flags & VM_SHARED)));
3791 	set_huge_pte_at(mm, address, ptep, new_pte);
3792 
3793 	hugetlb_count_add(pages_per_huge_page(h), mm);
3794 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3795 		/* Optimization, do the COW without a second fault */
3796 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3797 	}
3798 
3799 	spin_unlock(ptl);
3800 	unlock_page(page);
3801 out:
3802 	return ret;
3803 
3804 backout:
3805 	spin_unlock(ptl);
3806 backout_unlocked:
3807 	unlock_page(page);
3808 	restore_reserve_on_error(h, vma, address, page);
3809 	put_page(page);
3810 	goto out;
3811 }
3812 
3813 #ifdef CONFIG_SMP
3814 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3815 			    struct vm_area_struct *vma,
3816 			    struct address_space *mapping,
3817 			    pgoff_t idx, unsigned long address)
3818 {
3819 	unsigned long key[2];
3820 	u32 hash;
3821 
3822 	if (vma->vm_flags & VM_SHARED) {
3823 		key[0] = (unsigned long) mapping;
3824 		key[1] = idx;
3825 	} else {
3826 		key[0] = (unsigned long) mm;
3827 		key[1] = address >> huge_page_shift(h);
3828 	}
3829 
3830 	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3831 
3832 	return hash & (num_fault_mutexes - 1);
3833 }
3834 #else
3835 /*
3836  * For uniprocesor systems we always use a single mutex, so just
3837  * return 0 and avoid the hashing overhead.
3838  */
3839 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840 			    struct vm_area_struct *vma,
3841 			    struct address_space *mapping,
3842 			    pgoff_t idx, unsigned long address)
3843 {
3844 	return 0;
3845 }
3846 #endif
3847 
3848 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3849 			unsigned long address, unsigned int flags)
3850 {
3851 	pte_t *ptep, entry;
3852 	spinlock_t *ptl;
3853 	int ret;
3854 	u32 hash;
3855 	pgoff_t idx;
3856 	struct page *page = NULL;
3857 	struct page *pagecache_page = NULL;
3858 	struct hstate *h = hstate_vma(vma);
3859 	struct address_space *mapping;
3860 	int need_wait_lock = 0;
3861 
3862 	address &= huge_page_mask(h);
3863 
3864 	ptep = huge_pte_offset(mm, address);
3865 	if (ptep) {
3866 		entry = huge_ptep_get(ptep);
3867 		if (unlikely(is_hugetlb_entry_migration(entry))) {
3868 			migration_entry_wait_huge(vma, mm, ptep);
3869 			return 0;
3870 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3871 			return VM_FAULT_HWPOISON_LARGE |
3872 				VM_FAULT_SET_HINDEX(hstate_index(h));
3873 	} else {
3874 		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3875 		if (!ptep)
3876 			return VM_FAULT_OOM;
3877 	}
3878 
3879 	mapping = vma->vm_file->f_mapping;
3880 	idx = vma_hugecache_offset(h, vma, address);
3881 
3882 	/*
3883 	 * Serialize hugepage allocation and instantiation, so that we don't
3884 	 * get spurious allocation failures if two CPUs race to instantiate
3885 	 * the same page in the page cache.
3886 	 */
3887 	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3888 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3889 
3890 	entry = huge_ptep_get(ptep);
3891 	if (huge_pte_none(entry)) {
3892 		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3893 		goto out_mutex;
3894 	}
3895 
3896 	ret = 0;
3897 
3898 	/*
3899 	 * entry could be a migration/hwpoison entry at this point, so this
3900 	 * check prevents the kernel from going below assuming that we have
3901 	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3902 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3903 	 * handle it.
3904 	 */
3905 	if (!pte_present(entry))
3906 		goto out_mutex;
3907 
3908 	/*
3909 	 * If we are going to COW the mapping later, we examine the pending
3910 	 * reservations for this page now. This will ensure that any
3911 	 * allocations necessary to record that reservation occur outside the
3912 	 * spinlock. For private mappings, we also lookup the pagecache
3913 	 * page now as it is used to determine if a reservation has been
3914 	 * consumed.
3915 	 */
3916 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3917 		if (vma_needs_reservation(h, vma, address) < 0) {
3918 			ret = VM_FAULT_OOM;
3919 			goto out_mutex;
3920 		}
3921 		/* Just decrements count, does not deallocate */
3922 		vma_end_reservation(h, vma, address);
3923 
3924 		if (!(vma->vm_flags & VM_MAYSHARE))
3925 			pagecache_page = hugetlbfs_pagecache_page(h,
3926 								vma, address);
3927 	}
3928 
3929 	ptl = huge_pte_lock(h, mm, ptep);
3930 
3931 	/* Check for a racing update before calling hugetlb_cow */
3932 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3933 		goto out_ptl;
3934 
3935 	/*
3936 	 * hugetlb_cow() requires page locks of pte_page(entry) and
3937 	 * pagecache_page, so here we need take the former one
3938 	 * when page != pagecache_page or !pagecache_page.
3939 	 */
3940 	page = pte_page(entry);
3941 	if (page != pagecache_page)
3942 		if (!trylock_page(page)) {
3943 			need_wait_lock = 1;
3944 			goto out_ptl;
3945 		}
3946 
3947 	get_page(page);
3948 
3949 	if (flags & FAULT_FLAG_WRITE) {
3950 		if (!huge_pte_write(entry)) {
3951 			ret = hugetlb_cow(mm, vma, address, ptep,
3952 					  pagecache_page, ptl);
3953 			goto out_put_page;
3954 		}
3955 		entry = huge_pte_mkdirty(entry);
3956 	}
3957 	entry = pte_mkyoung(entry);
3958 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3959 						flags & FAULT_FLAG_WRITE))
3960 		update_mmu_cache(vma, address, ptep);
3961 out_put_page:
3962 	if (page != pagecache_page)
3963 		unlock_page(page);
3964 	put_page(page);
3965 out_ptl:
3966 	spin_unlock(ptl);
3967 
3968 	if (pagecache_page) {
3969 		unlock_page(pagecache_page);
3970 		put_page(pagecache_page);
3971 	}
3972 out_mutex:
3973 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3974 	/*
3975 	 * Generally it's safe to hold refcount during waiting page lock. But
3976 	 * here we just wait to defer the next page fault to avoid busy loop and
3977 	 * the page is not used after unlocked before returning from the current
3978 	 * page fault. So we are safe from accessing freed page, even if we wait
3979 	 * here without taking refcount.
3980 	 */
3981 	if (need_wait_lock)
3982 		wait_on_page_locked(page);
3983 	return ret;
3984 }
3985 
3986 /*
3987  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3988  * modifications for huge pages.
3989  */
3990 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3991 			    pte_t *dst_pte,
3992 			    struct vm_area_struct *dst_vma,
3993 			    unsigned long dst_addr,
3994 			    unsigned long src_addr,
3995 			    struct page **pagep)
3996 {
3997 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
3998 	struct hstate *h = hstate_vma(dst_vma);
3999 	pte_t _dst_pte;
4000 	spinlock_t *ptl;
4001 	int ret;
4002 	struct page *page;
4003 
4004 	if (!*pagep) {
4005 		ret = -ENOMEM;
4006 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4007 		if (IS_ERR(page))
4008 			goto out;
4009 
4010 		ret = copy_huge_page_from_user(page,
4011 						(const void __user *) src_addr,
4012 						pages_per_huge_page(h), false);
4013 
4014 		/* fallback to copy_from_user outside mmap_sem */
4015 		if (unlikely(ret)) {
4016 			ret = -EFAULT;
4017 			*pagep = page;
4018 			/* don't free the page */
4019 			goto out;
4020 		}
4021 	} else {
4022 		page = *pagep;
4023 		*pagep = NULL;
4024 	}
4025 
4026 	/*
4027 	 * The memory barrier inside __SetPageUptodate makes sure that
4028 	 * preceding stores to the page contents become visible before
4029 	 * the set_pte_at() write.
4030 	 */
4031 	__SetPageUptodate(page);
4032 	set_page_huge_active(page);
4033 
4034 	/*
4035 	 * If shared, add to page cache
4036 	 */
4037 	if (vm_shared) {
4038 		struct address_space *mapping = dst_vma->vm_file->f_mapping;
4039 		pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4040 
4041 		ret = huge_add_to_page_cache(page, mapping, idx);
4042 		if (ret)
4043 			goto out_release_nounlock;
4044 	}
4045 
4046 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4047 	spin_lock(ptl);
4048 
4049 	ret = -EEXIST;
4050 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4051 		goto out_release_unlock;
4052 
4053 	if (vm_shared) {
4054 		page_dup_rmap(page, true);
4055 	} else {
4056 		ClearPagePrivate(page);
4057 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4058 	}
4059 
4060 	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4061 	if (dst_vma->vm_flags & VM_WRITE)
4062 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4063 	_dst_pte = pte_mkyoung(_dst_pte);
4064 
4065 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4066 
4067 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4068 					dst_vma->vm_flags & VM_WRITE);
4069 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4070 
4071 	/* No need to invalidate - it was non-present before */
4072 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4073 
4074 	spin_unlock(ptl);
4075 	if (vm_shared)
4076 		unlock_page(page);
4077 	ret = 0;
4078 out:
4079 	return ret;
4080 out_release_unlock:
4081 	spin_unlock(ptl);
4082 out_release_nounlock:
4083 	if (vm_shared)
4084 		unlock_page(page);
4085 	put_page(page);
4086 	goto out;
4087 }
4088 
4089 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4090 			 struct page **pages, struct vm_area_struct **vmas,
4091 			 unsigned long *position, unsigned long *nr_pages,
4092 			 long i, unsigned int flags, int *nonblocking)
4093 {
4094 	unsigned long pfn_offset;
4095 	unsigned long vaddr = *position;
4096 	unsigned long remainder = *nr_pages;
4097 	struct hstate *h = hstate_vma(vma);
4098 
4099 	while (vaddr < vma->vm_end && remainder) {
4100 		pte_t *pte;
4101 		spinlock_t *ptl = NULL;
4102 		int absent;
4103 		struct page *page;
4104 
4105 		/*
4106 		 * If we have a pending SIGKILL, don't keep faulting pages and
4107 		 * potentially allocating memory.
4108 		 */
4109 		if (unlikely(fatal_signal_pending(current))) {
4110 			remainder = 0;
4111 			break;
4112 		}
4113 
4114 		/*
4115 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4116 		 * each hugepage.  We have to make sure we get the
4117 		 * first, for the page indexing below to work.
4118 		 *
4119 		 * Note that page table lock is not held when pte is null.
4120 		 */
4121 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4122 		if (pte)
4123 			ptl = huge_pte_lock(h, mm, pte);
4124 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4125 
4126 		/*
4127 		 * When coredumping, it suits get_dump_page if we just return
4128 		 * an error where there's an empty slot with no huge pagecache
4129 		 * to back it.  This way, we avoid allocating a hugepage, and
4130 		 * the sparse dumpfile avoids allocating disk blocks, but its
4131 		 * huge holes still show up with zeroes where they need to be.
4132 		 */
4133 		if (absent && (flags & FOLL_DUMP) &&
4134 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4135 			if (pte)
4136 				spin_unlock(ptl);
4137 			remainder = 0;
4138 			break;
4139 		}
4140 
4141 		/*
4142 		 * We need call hugetlb_fault for both hugepages under migration
4143 		 * (in which case hugetlb_fault waits for the migration,) and
4144 		 * hwpoisoned hugepages (in which case we need to prevent the
4145 		 * caller from accessing to them.) In order to do this, we use
4146 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4147 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4148 		 * both cases, and because we can't follow correct pages
4149 		 * directly from any kind of swap entries.
4150 		 */
4151 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4152 		    ((flags & FOLL_WRITE) &&
4153 		      !huge_pte_write(huge_ptep_get(pte)))) {
4154 			int ret;
4155 			unsigned int fault_flags = 0;
4156 
4157 			if (pte)
4158 				spin_unlock(ptl);
4159 			if (flags & FOLL_WRITE)
4160 				fault_flags |= FAULT_FLAG_WRITE;
4161 			if (nonblocking)
4162 				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4163 			if (flags & FOLL_NOWAIT)
4164 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4165 					FAULT_FLAG_RETRY_NOWAIT;
4166 			if (flags & FOLL_TRIED) {
4167 				VM_WARN_ON_ONCE(fault_flags &
4168 						FAULT_FLAG_ALLOW_RETRY);
4169 				fault_flags |= FAULT_FLAG_TRIED;
4170 			}
4171 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4172 			if (ret & VM_FAULT_ERROR) {
4173 				remainder = 0;
4174 				break;
4175 			}
4176 			if (ret & VM_FAULT_RETRY) {
4177 				if (nonblocking)
4178 					*nonblocking = 0;
4179 				*nr_pages = 0;
4180 				/*
4181 				 * VM_FAULT_RETRY must not return an
4182 				 * error, it will return zero
4183 				 * instead.
4184 				 *
4185 				 * No need to update "position" as the
4186 				 * caller will not check it after
4187 				 * *nr_pages is set to 0.
4188 				 */
4189 				return i;
4190 			}
4191 			continue;
4192 		}
4193 
4194 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4195 		page = pte_page(huge_ptep_get(pte));
4196 same_page:
4197 		if (pages) {
4198 			pages[i] = mem_map_offset(page, pfn_offset);
4199 			get_page(pages[i]);
4200 		}
4201 
4202 		if (vmas)
4203 			vmas[i] = vma;
4204 
4205 		vaddr += PAGE_SIZE;
4206 		++pfn_offset;
4207 		--remainder;
4208 		++i;
4209 		if (vaddr < vma->vm_end && remainder &&
4210 				pfn_offset < pages_per_huge_page(h)) {
4211 			/*
4212 			 * We use pfn_offset to avoid touching the pageframes
4213 			 * of this compound page.
4214 			 */
4215 			goto same_page;
4216 		}
4217 		spin_unlock(ptl);
4218 	}
4219 	*nr_pages = remainder;
4220 	/*
4221 	 * setting position is actually required only if remainder is
4222 	 * not zero but it's faster not to add a "if (remainder)"
4223 	 * branch.
4224 	 */
4225 	*position = vaddr;
4226 
4227 	return i ? i : -EFAULT;
4228 }
4229 
4230 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4231 /*
4232  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4233  * implement this.
4234  */
4235 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
4236 #endif
4237 
4238 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4239 		unsigned long address, unsigned long end, pgprot_t newprot)
4240 {
4241 	struct mm_struct *mm = vma->vm_mm;
4242 	unsigned long start = address;
4243 	pte_t *ptep;
4244 	pte_t pte;
4245 	struct hstate *h = hstate_vma(vma);
4246 	unsigned long pages = 0;
4247 
4248 	BUG_ON(address >= end);
4249 	flush_cache_range(vma, address, end);
4250 
4251 	mmu_notifier_invalidate_range_start(mm, start, end);
4252 	i_mmap_lock_write(vma->vm_file->f_mapping);
4253 	for (; address < end; address += huge_page_size(h)) {
4254 		spinlock_t *ptl;
4255 		ptep = huge_pte_offset(mm, address);
4256 		if (!ptep)
4257 			continue;
4258 		ptl = huge_pte_lock(h, mm, ptep);
4259 		if (huge_pmd_unshare(mm, &address, ptep)) {
4260 			pages++;
4261 			spin_unlock(ptl);
4262 			continue;
4263 		}
4264 		pte = huge_ptep_get(ptep);
4265 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4266 			spin_unlock(ptl);
4267 			continue;
4268 		}
4269 		if (unlikely(is_hugetlb_entry_migration(pte))) {
4270 			swp_entry_t entry = pte_to_swp_entry(pte);
4271 
4272 			if (is_write_migration_entry(entry)) {
4273 				pte_t newpte;
4274 
4275 				make_migration_entry_read(&entry);
4276 				newpte = swp_entry_to_pte(entry);
4277 				set_huge_pte_at(mm, address, ptep, newpte);
4278 				pages++;
4279 			}
4280 			spin_unlock(ptl);
4281 			continue;
4282 		}
4283 		if (!huge_pte_none(pte)) {
4284 			pte = huge_ptep_get_and_clear(mm, address, ptep);
4285 			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4286 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4287 			set_huge_pte_at(mm, address, ptep, pte);
4288 			pages++;
4289 		}
4290 		spin_unlock(ptl);
4291 	}
4292 	/*
4293 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4294 	 * may have cleared our pud entry and done put_page on the page table:
4295 	 * once we release i_mmap_rwsem, another task can do the final put_page
4296 	 * and that page table be reused and filled with junk.
4297 	 */
4298 	flush_hugetlb_tlb_range(vma, start, end);
4299 	mmu_notifier_invalidate_range(mm, start, end);
4300 	i_mmap_unlock_write(vma->vm_file->f_mapping);
4301 	mmu_notifier_invalidate_range_end(mm, start, end);
4302 
4303 	return pages << h->order;
4304 }
4305 
4306 int hugetlb_reserve_pages(struct inode *inode,
4307 					long from, long to,
4308 					struct vm_area_struct *vma,
4309 					vm_flags_t vm_flags)
4310 {
4311 	long ret, chg;
4312 	struct hstate *h = hstate_inode(inode);
4313 	struct hugepage_subpool *spool = subpool_inode(inode);
4314 	struct resv_map *resv_map;
4315 	long gbl_reserve;
4316 
4317 	/*
4318 	 * Only apply hugepage reservation if asked. At fault time, an
4319 	 * attempt will be made for VM_NORESERVE to allocate a page
4320 	 * without using reserves
4321 	 */
4322 	if (vm_flags & VM_NORESERVE)
4323 		return 0;
4324 
4325 	/*
4326 	 * Shared mappings base their reservation on the number of pages that
4327 	 * are already allocated on behalf of the file. Private mappings need
4328 	 * to reserve the full area even if read-only as mprotect() may be
4329 	 * called to make the mapping read-write. Assume !vma is a shm mapping
4330 	 */
4331 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4332 		resv_map = inode_resv_map(inode);
4333 
4334 		chg = region_chg(resv_map, from, to);
4335 
4336 	} else {
4337 		resv_map = resv_map_alloc();
4338 		if (!resv_map)
4339 			return -ENOMEM;
4340 
4341 		chg = to - from;
4342 
4343 		set_vma_resv_map(vma, resv_map);
4344 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4345 	}
4346 
4347 	if (chg < 0) {
4348 		ret = chg;
4349 		goto out_err;
4350 	}
4351 
4352 	/*
4353 	 * There must be enough pages in the subpool for the mapping. If
4354 	 * the subpool has a minimum size, there may be some global
4355 	 * reservations already in place (gbl_reserve).
4356 	 */
4357 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4358 	if (gbl_reserve < 0) {
4359 		ret = -ENOSPC;
4360 		goto out_err;
4361 	}
4362 
4363 	/*
4364 	 * Check enough hugepages are available for the reservation.
4365 	 * Hand the pages back to the subpool if there are not
4366 	 */
4367 	ret = hugetlb_acct_memory(h, gbl_reserve);
4368 	if (ret < 0) {
4369 		/* put back original number of pages, chg */
4370 		(void)hugepage_subpool_put_pages(spool, chg);
4371 		goto out_err;
4372 	}
4373 
4374 	/*
4375 	 * Account for the reservations made. Shared mappings record regions
4376 	 * that have reservations as they are shared by multiple VMAs.
4377 	 * When the last VMA disappears, the region map says how much
4378 	 * the reservation was and the page cache tells how much of
4379 	 * the reservation was consumed. Private mappings are per-VMA and
4380 	 * only the consumed reservations are tracked. When the VMA
4381 	 * disappears, the original reservation is the VMA size and the
4382 	 * consumed reservations are stored in the map. Hence, nothing
4383 	 * else has to be done for private mappings here
4384 	 */
4385 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4386 		long add = region_add(resv_map, from, to);
4387 
4388 		if (unlikely(chg > add)) {
4389 			/*
4390 			 * pages in this range were added to the reserve
4391 			 * map between region_chg and region_add.  This
4392 			 * indicates a race with alloc_huge_page.  Adjust
4393 			 * the subpool and reserve counts modified above
4394 			 * based on the difference.
4395 			 */
4396 			long rsv_adjust;
4397 
4398 			rsv_adjust = hugepage_subpool_put_pages(spool,
4399 								chg - add);
4400 			hugetlb_acct_memory(h, -rsv_adjust);
4401 		}
4402 	}
4403 	return 0;
4404 out_err:
4405 	if (!vma || vma->vm_flags & VM_MAYSHARE)
4406 		/* Don't call region_abort if region_chg failed */
4407 		if (chg >= 0)
4408 			region_abort(resv_map, from, to);
4409 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4410 		kref_put(&resv_map->refs, resv_map_release);
4411 	return ret;
4412 }
4413 
4414 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4415 								long freed)
4416 {
4417 	struct hstate *h = hstate_inode(inode);
4418 	struct resv_map *resv_map = inode_resv_map(inode);
4419 	long chg = 0;
4420 	struct hugepage_subpool *spool = subpool_inode(inode);
4421 	long gbl_reserve;
4422 
4423 	if (resv_map) {
4424 		chg = region_del(resv_map, start, end);
4425 		/*
4426 		 * region_del() can fail in the rare case where a region
4427 		 * must be split and another region descriptor can not be
4428 		 * allocated.  If end == LONG_MAX, it will not fail.
4429 		 */
4430 		if (chg < 0)
4431 			return chg;
4432 	}
4433 
4434 	spin_lock(&inode->i_lock);
4435 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4436 	spin_unlock(&inode->i_lock);
4437 
4438 	/*
4439 	 * If the subpool has a minimum size, the number of global
4440 	 * reservations to be released may be adjusted.
4441 	 */
4442 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4443 	hugetlb_acct_memory(h, -gbl_reserve);
4444 
4445 	return 0;
4446 }
4447 
4448 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4449 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4450 				struct vm_area_struct *vma,
4451 				unsigned long addr, pgoff_t idx)
4452 {
4453 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4454 				svma->vm_start;
4455 	unsigned long sbase = saddr & PUD_MASK;
4456 	unsigned long s_end = sbase + PUD_SIZE;
4457 
4458 	/* Allow segments to share if only one is marked locked */
4459 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4460 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4461 
4462 	/*
4463 	 * match the virtual addresses, permission and the alignment of the
4464 	 * page table page.
4465 	 */
4466 	if (pmd_index(addr) != pmd_index(saddr) ||
4467 	    vm_flags != svm_flags ||
4468 	    sbase < svma->vm_start || svma->vm_end < s_end)
4469 		return 0;
4470 
4471 	return saddr;
4472 }
4473 
4474 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4475 {
4476 	unsigned long base = addr & PUD_MASK;
4477 	unsigned long end = base + PUD_SIZE;
4478 
4479 	/*
4480 	 * check on proper vm_flags and page table alignment
4481 	 */
4482 	if (vma->vm_flags & VM_MAYSHARE &&
4483 	    vma->vm_start <= base && end <= vma->vm_end)
4484 		return true;
4485 	return false;
4486 }
4487 
4488 /*
4489  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4490  * and returns the corresponding pte. While this is not necessary for the
4491  * !shared pmd case because we can allocate the pmd later as well, it makes the
4492  * code much cleaner. pmd allocation is essential for the shared case because
4493  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4494  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4495  * bad pmd for sharing.
4496  */
4497 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4498 {
4499 	struct vm_area_struct *vma = find_vma(mm, addr);
4500 	struct address_space *mapping = vma->vm_file->f_mapping;
4501 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4502 			vma->vm_pgoff;
4503 	struct vm_area_struct *svma;
4504 	unsigned long saddr;
4505 	pte_t *spte = NULL;
4506 	pte_t *pte;
4507 	spinlock_t *ptl;
4508 
4509 	if (!vma_shareable(vma, addr))
4510 		return (pte_t *)pmd_alloc(mm, pud, addr);
4511 
4512 	i_mmap_lock_write(mapping);
4513 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4514 		if (svma == vma)
4515 			continue;
4516 
4517 		saddr = page_table_shareable(svma, vma, addr, idx);
4518 		if (saddr) {
4519 			spte = huge_pte_offset(svma->vm_mm, saddr);
4520 			if (spte) {
4521 				get_page(virt_to_page(spte));
4522 				break;
4523 			}
4524 		}
4525 	}
4526 
4527 	if (!spte)
4528 		goto out;
4529 
4530 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4531 	if (pud_none(*pud)) {
4532 		pud_populate(mm, pud,
4533 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4534 		mm_inc_nr_pmds(mm);
4535 	} else {
4536 		put_page(virt_to_page(spte));
4537 	}
4538 	spin_unlock(ptl);
4539 out:
4540 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4541 	i_mmap_unlock_write(mapping);
4542 	return pte;
4543 }
4544 
4545 /*
4546  * unmap huge page backed by shared pte.
4547  *
4548  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4549  * indicated by page_count > 1, unmap is achieved by clearing pud and
4550  * decrementing the ref count. If count == 1, the pte page is not shared.
4551  *
4552  * called with page table lock held.
4553  *
4554  * returns: 1 successfully unmapped a shared pte page
4555  *	    0 the underlying pte page is not shared, or it is the last user
4556  */
4557 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4558 {
4559 	pgd_t *pgd = pgd_offset(mm, *addr);
4560 	p4d_t *p4d = p4d_offset(pgd, *addr);
4561 	pud_t *pud = pud_offset(p4d, *addr);
4562 
4563 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4564 	if (page_count(virt_to_page(ptep)) == 1)
4565 		return 0;
4566 
4567 	pud_clear(pud);
4568 	put_page(virt_to_page(ptep));
4569 	mm_dec_nr_pmds(mm);
4570 	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4571 	return 1;
4572 }
4573 #define want_pmd_share()	(1)
4574 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4575 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4576 {
4577 	return NULL;
4578 }
4579 
4580 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4581 {
4582 	return 0;
4583 }
4584 #define want_pmd_share()	(0)
4585 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4586 
4587 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4588 pte_t *huge_pte_alloc(struct mm_struct *mm,
4589 			unsigned long addr, unsigned long sz)
4590 {
4591 	pgd_t *pgd;
4592 	p4d_t *p4d;
4593 	pud_t *pud;
4594 	pte_t *pte = NULL;
4595 
4596 	pgd = pgd_offset(mm, addr);
4597 	p4d = p4d_offset(pgd, addr);
4598 	pud = pud_alloc(mm, p4d, addr);
4599 	if (pud) {
4600 		if (sz == PUD_SIZE) {
4601 			pte = (pte_t *)pud;
4602 		} else {
4603 			BUG_ON(sz != PMD_SIZE);
4604 			if (want_pmd_share() && pud_none(*pud))
4605 				pte = huge_pmd_share(mm, addr, pud);
4606 			else
4607 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4608 		}
4609 	}
4610 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4611 
4612 	return pte;
4613 }
4614 
4615 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4616 {
4617 	pgd_t *pgd;
4618 	p4d_t *p4d;
4619 	pud_t *pud;
4620 	pmd_t *pmd;
4621 
4622 	pgd = pgd_offset(mm, addr);
4623 	if (!pgd_present(*pgd))
4624 		return NULL;
4625 	p4d = p4d_offset(pgd, addr);
4626 	if (!p4d_present(*p4d))
4627 		return NULL;
4628 	pud = pud_offset(p4d, addr);
4629 	if (!pud_present(*pud))
4630 		return NULL;
4631 	if (pud_huge(*pud))
4632 		return (pte_t *)pud;
4633 	pmd = pmd_offset(pud, addr);
4634 	return (pte_t *) pmd;
4635 }
4636 
4637 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4638 
4639 /*
4640  * These functions are overwritable if your architecture needs its own
4641  * behavior.
4642  */
4643 struct page * __weak
4644 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4645 			      int write)
4646 {
4647 	return ERR_PTR(-EINVAL);
4648 }
4649 
4650 struct page * __weak
4651 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4652 		pmd_t *pmd, int flags)
4653 {
4654 	struct page *page = NULL;
4655 	spinlock_t *ptl;
4656 	pte_t pte;
4657 retry:
4658 	ptl = pmd_lockptr(mm, pmd);
4659 	spin_lock(ptl);
4660 	/*
4661 	 * make sure that the address range covered by this pmd is not
4662 	 * unmapped from other threads.
4663 	 */
4664 	if (!pmd_huge(*pmd))
4665 		goto out;
4666 	pte = huge_ptep_get((pte_t *)pmd);
4667 	if (pte_present(pte)) {
4668 		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4669 		if (flags & FOLL_GET)
4670 			get_page(page);
4671 	} else {
4672 		if (is_hugetlb_entry_migration(pte)) {
4673 			spin_unlock(ptl);
4674 			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4675 			goto retry;
4676 		}
4677 		/*
4678 		 * hwpoisoned entry is treated as no_page_table in
4679 		 * follow_page_mask().
4680 		 */
4681 	}
4682 out:
4683 	spin_unlock(ptl);
4684 	return page;
4685 }
4686 
4687 struct page * __weak
4688 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4689 		pud_t *pud, int flags)
4690 {
4691 	if (flags & FOLL_GET)
4692 		return NULL;
4693 
4694 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4695 }
4696 
4697 #ifdef CONFIG_MEMORY_FAILURE
4698 
4699 /*
4700  * This function is called from memory failure code.
4701  */
4702 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4703 {
4704 	struct hstate *h = page_hstate(hpage);
4705 	int nid = page_to_nid(hpage);
4706 	int ret = -EBUSY;
4707 
4708 	spin_lock(&hugetlb_lock);
4709 	/*
4710 	 * Just checking !page_huge_active is not enough, because that could be
4711 	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4712 	 */
4713 	if (!page_huge_active(hpage) && !page_count(hpage)) {
4714 		/*
4715 		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4716 		 * but dangling hpage->lru can trigger list-debug warnings
4717 		 * (this happens when we call unpoison_memory() on it),
4718 		 * so let it point to itself with list_del_init().
4719 		 */
4720 		list_del_init(&hpage->lru);
4721 		set_page_refcounted(hpage);
4722 		h->free_huge_pages--;
4723 		h->free_huge_pages_node[nid]--;
4724 		ret = 0;
4725 	}
4726 	spin_unlock(&hugetlb_lock);
4727 	return ret;
4728 }
4729 #endif
4730 
4731 bool isolate_huge_page(struct page *page, struct list_head *list)
4732 {
4733 	bool ret = true;
4734 
4735 	VM_BUG_ON_PAGE(!PageHead(page), page);
4736 	spin_lock(&hugetlb_lock);
4737 	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4738 		ret = false;
4739 		goto unlock;
4740 	}
4741 	clear_page_huge_active(page);
4742 	list_move_tail(&page->lru, list);
4743 unlock:
4744 	spin_unlock(&hugetlb_lock);
4745 	return ret;
4746 }
4747 
4748 void putback_active_hugepage(struct page *page)
4749 {
4750 	VM_BUG_ON_PAGE(!PageHead(page), page);
4751 	spin_lock(&hugetlb_lock);
4752 	set_page_huge_active(page);
4753 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4754 	spin_unlock(&hugetlb_lock);
4755 	put_page(page);
4756 }
4757